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Abstract
The measurement of pressure is a field that has been studied for centuries
due to its important technological implications. Our goal is to propose
an original method to measure high hydrostatic pressures using a low cost
optical sensor.

A number of pressure sensors have been developed over the years, and
the first part of this work presents an overview of the main ones. We then
focus on optical pressure sensors, discuss the advantages and inconveniences
of each method with regards to our constraints, and decide to develop the
concept of a sensor based on the piezo-optic effect, i.e. the stress-induced
birefringence in a transparent dielectric subjected to a force.

We presents the tools that will be used to modelize the piezo-optic pres-
sure sensor: we first review the theory of polarization of light, from its
physical origin to the Mueller-Stokes formalism; we then focus on the in-
teraction of polarized light with matter: we discuss the theory of the piezo-
optic effect and the polarization effects of total and partial reflections at an
interface. Both effects are modelized in terms of their Mueller matrices.

We then propose an original concept for a pressure sensor, using an ap-
proach different from the one usually seen in polarimetric sensors. First the
concept of a piezo-optic pressure sensor is presented where polarized light
interacts with a dielectric material subjected to a pressure; the resulting
state of polarization is analyzed by a second polarizer and a photodetector.
Some aspects of the sensor are optimized while its shortcomings are listed.
In light of this analysis we propose a revised concept to addresses these
issues. The new proposal uses carefully oriented reflections to replace all
polarizing elements, enabling simpler and cheaper production. We mod-
elize this device, analyze its optical behavior, and then present the different
sources of measurement error. Most of them are negligible, and we present
methods to mitigate the influence of these that are not.

Part IV focuses on the experimental validation of the concepts presented
so far. We describe the conception, calibration and validation of a Fourier
Transform Mueller polarimeter that we intend to use to study the temper-
ature dependence of the piezo-optic effect. We build a prototype based on
the initial concept of the piezo-optic pressure sensor presented in Part III,
and test its response to pressure. Its behaviour is found to be coherent
with theoretical predictions, and these measurement serve to validate the
concept of the sensor that was developed during this work.
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Résumé
La mesure de pression est un domaine vieux de plusieurs siècles, dont
le développement a été motivé par l’importance de ses applications tech-
nologiques. Le but de ce travail est de proposer une technique de mesure
de fortes pression hydrostatiques par capteur optique à bas coût.

De nombreux types de capteurs de pression ont été développés au cours
du temps, et la première partie de ce document présente une vue d’ensemble
du domaine. Nous nous concentrons ensuite sur les techniques optiques et
présentons leurs avantages et inconvénients. Au vu de notre cahier des
charges, nous choisissons de développer un capteur de pression basé sur
l’effet piezo-optique, c’est à dire l’apparition d’une biréfringence dans un
matériau diélectrique soumis à une force extérieure.

La Partie II du mémoire présente les différents outils qui seront par
la suite utilisés pour modéliser le capteur proposé : tout d’abord nous
rappelons les détails de la théorie de la polarisation, son origine physique
ainsi que le formalisme de Mueller-Stokes. Nous nous intéressons ensuite
aux interactions entre une lumière polarisée et un milieu diélectrique, en
présentant l’effet piezo-optique ainsi que les effets polarisant des réflexions
à une interface. Les effets présentés sont modélisés par leur matrice de
Mueller afin de simplifier l’étude à suivre.

Dans la Partie III nous proposons un concept original de capteur de
pression, utilisant une approche novatrice par rapport à celle usuellement
mise en oeuvre. Le capteur proposé est basé sur l’analyse d’une lumière
dont la polarisation est modifiée par la traversée d’un milieu diélectrique
rendu biréfringent par la pression à mesurer. Certains aspects du cap-
teur sont optimisés, et ses inconvénients discutés. Cette étude aboutit à la
proposition d’un capteur dans lequel les éléments polarisant discrets ont été
remplacés par des réflexions successives. Ce nouveau concept est modélisé,
puis nous présentons les différentes sources potentielles d’erreur de mesure
et proposons des solutions pour compenser celles qui prédominent.

La Partie IV présente la validation expérimentale des concepts précé-
dents. Nous décrivons la conception, la calibration et la validation d’un po-
larimètre de Mueller par Transformée de Fourier, conçu dans le but d’étudier
la dépendance de l’effet piezo-optique à la température. Ensuite nous
présentons la réalisation d’un démonstrateur de capteur piezo-optique de
pression. Les essais effectués sont en accord avec les prédictions théoriques
et valident donc le principe du capteur développé au cours de ce travail.
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General Introduction

Optical sensors have enjoyed an increased success in the industry for the
past years, mainly due to the newfound popularity and availability of com-
pact, reliable and affordable light sources: Light Emitting Diodes (LEDs),
Laser Diodes and more recently Vertical Cavity Surface Emission Lasers
(VCSELs). Optical technologies are now heavily in use in various fields
such as data transfer (from a simple infrared TV remote control to optical
fibers, the backbone of modern telecommunications), information storage
(CD-ROM, DVD-ROM, etc) or high-end metrology systems, but much less
so in low-cost mass-produced measurement systems. For these applications,
their electronic counterparts are usually preferred as they are based on well
known and tried technologies that have been in use for many years. As
a result these components are cheaper, the production techniques are well
tuned and the initial research and development cost very low. The mass
production of optical measurement devices is a younger field, and as a re-
sult the components are often more expensive and the initial R&D time and
cost more important. Optical techniques are also usually harder to mass
produce for base performances often similar to these of electronic sensors.
On the other hand they do have all the advantages usually associated with
optics: they are insensitive to electric and magnetic fields, which makes
them particularly suited for harsh environments, and they have the po-
tential to reach precisions and sensitivity far beyond what is accessible to
conventional electronic sensors. Keeping these facts in mind, it is important
for a company that aims to be at the vanguard of its field of competence to
acquire knowledge and know-how in optical sensing methods, methods that
will no doubt take an important place in sensor technologies in the years to
come.

It is in this global context that HYDAC, an international company spe-
cialized in fluid technology, is looking into the technical and commercial

17
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feasibility of optical techniques to measure hydraulic pressures. With this
goal in mind HYDAC has come to be in contact with the Photonics Sys-
tems Laboratory (Laboratoire des Systèmes Photoniques : LSP) and its
years-long know-how in optical sensor, and in particular in optical fiber
sensors and other integrated devices to optically measure pressure, tem-
perature, electric and magnetic fields or acoustic and seismic vibrations
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The LSP takes particular care in its nu-
merous collaborations with its industrial partners to respond to the usual
preconceptions that optical sensors are more fragile, more expensive and
overall harder to use outside of research laboratories. It is this base of
knowledge and know-how that has been the foundations on top of which
the following work has been conducted.

Part I of this thesis presents the state of the art in the field of high
quasi-static pressure sensing. The different technologies commercially used
in the measurement of hydraulic pressures are described and their perfor-
mances are assessed in Chapter 1. Chapter 2 focuses on the optical methods
suitable to measure hydraulic pressures. The main methods found in the
scientific literature are presented and compared. Finally, in Chapter 3, after
listing the more specific characteristics of sensors as required by HYDAC,
we analyze the different existing possibilities and come to the conclusion
that none is exactly suitable to fulfill the required specifications. Based
on the imposed constraints we propose a novel concept for a piezo-optic
pressure sensor.

The sensor technology that we propose to develop is a polarimetric sen-
sor based on the piezo-optic effect1: when an uniform and isotropic dielec-
tric is subjected to pressure, its index of refraction changes. If the pressure
is anisotropic, the refractive index in the material will in general also be
anisotropic.

As polarized light passes through a transparent material, its state of
polarization can change depending on the distribution of the index of re-
fraction in the material. If the index is uniformly distributed as well as
isotropic, the polarization state remains unchanged; if it is not uniform,
light will not in general propagate in straight lines (this case is not consid-
ered here); finally if the material presents an uniform but anisotropic index

1also known as the elasto-optic or the photoelastic effect



19

of refraction a ray of light will propagate in different ways depending on its
initial state of polarization, and this state can evolve during propagation.

Based on this effect, the sensing method that we propose is implemented
as follows: light in a known state of polarization is sent through a transpar-
ent material subjected to the pressure to be measured; the resulting state of
polarization is measured at the output, and from its evolution the pressure
applied to the material is determined. Over the course of this document,
we will expand on this basic idea and we will study every aspects of the
resulting setup in detail.

In Part II of this document, we present the theoretical tools that are use-
ful to understand and modelize the proposed piezo-optic sensor. In Chapter
4 we review the classical theory of polarization as well as the usual theo-
retical tools used in the literature: we present the polarization ellipse as
a graphical representation of polarization, then the Stokes polarization pa-
rameters and the Mueller matrices as useful tools to perform polarization
calculations.

Chapter 5 focuses on the interaction of polarized light with transparent
dielectrics. We discuss the piezo-optic effect, and the special case of the
evolution of polarization when light is reflected and refracted at an interface
is studied in details.

Part III focuses on the conception of the piezo-optic sensor. Chapter
6 presents the basic concepts and methods behind the sensor as well as
the constraints it will be subjected to. With each of these constraints the
concept is refined and we reach a final design that addresses all of them in
an unified concept.

In Chapter 7 the proposed design is modelized and analyzed using the
tools presented in Part II. Particular care is taken to study the potential
sources errors and their effect on the measured pressure. All the identified
sources of measurement uncertainties are combined and an estimation of
the performances of the sensor is given.

Part IV presents the experimental verification of the models developed in
Part III and validates the concept of a piezo-optic pressure sensor. We begin
by a detailed explanation of the principle, building methods and calibration
procedures of the tool used to measure the response to polarized light of
various experimental setups: a Fourier-Transform Mueller Polarimeter.
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The polarimeter it is tested on a well-known sample to validate its per-
formances.

Finally a prototype version of the sensor is put together and tested, its
readings matched against the predicted theoretical performances.



Part I

Pressure sensing: an overview
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Introduction

The first application of pressure measurement devices has historically been
atmospheric pressure sensing, with the development in 1643 of the mercury
level barometer by Evangelista Torricelli [12, 13, 14]. This device has also
been used in the study of gases from a purely scientific perspective, leading
to the well known perfect gases relationship between pressure and temper-
ature [15]. From these two developments are derived the main modern uses
of pressure sensors: meteorology and control. Pressure sensor are widely
present in the industrial world as monitoring devices: they provide a sim-
ple readable value that allows one to know if for instance a tank is filling
properly, or if a fluid is correctly flowing inside a pipe. They also serve as
warning and diagnostic devices: a sudden drop in pressure can indicate a
serious problem with an hydraulic system, such as a leak, or a dangerous
build up in gas pressure that may result in an explosion. After being purely
passive control devices for years, pressure sensors have now become active
parts of wider automated systems. These transducers provide a necessary
feedback for automated processes that are regulated in real time2.

Pressure sensors consist in one or several transducers, elements that
transform one physical quantity into another. In the case of pressure sensors
the primary transducers are of course pressure or force transducer: they
transform a pressure or a force into a different physical quantity such as a
mechanical, optical, or electrical signal that can be read at the output of
the sensor.

There are several technologies used in industrial settings, the most com-
mon being based on the piezo-resistive effect. This technology allows for
low-cost compact sensors with a typical accuracy around one percent of the
full measurement scale. Other methods to measure pressure exist, most of
them based on either electrical or mechanical effects. In this first part of the

2A common example is the pressure control in automotive fuel injection.
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report we present a state of the art of the pressure sensing techniques used
in commercial devices, before focusing on the purely optical methods that
exist mainly in the scientific literature. We then describe the technological
and industrial constraints imposed by the market on the sensor Hydac aims
to develop, and conclude on the validity of the different existing technolo-
gies. We then propose a concept for a new optical pressure sensor that fits
within the scope of the problem statement.



Chapter 1

Background : commercial
pressure sensors

In this chapter we present the few technologies used by the vast majority
of commercially available pressure sensors. For each of them we give a brief
description of its principle, advantages, drawbacks, typical performances
and finally fields of application.

1.1 Hydrostatic transducers

Hydrostatic transducers find the mechanical equilibrium between the force
due to the pressure being measured and a known force, itself usually created
by either a known pressure reference or by a known weight.

1.1.1 Liquid column

The liquid column manometer is likely to be the first pressure measurement
device ever invented. In its simplest form it consists of a vertical column
containing a liquid, both ends of the column being exposed to two different
pressures; the liquid will move inside the tube until its weight is in equi-
librium with the differential pressure to be measured [16, pp. 5-25][17, pp.
4.01-04]. A well known liquid column manometer, invented by Christian
Huygens in 1661 is the U-tube [18].

The higher the column of fluid the more pressure it exerts, and so the
liquid will reach a stable position that depends on the difference of the
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pressures:

H =
P − Pref

ρg

with ρ the density of the fluid and g the gravitational acceleration.

Figure 1.1: U-tube

This type of manometer is mainly used to measure small pressure vari-
ations for instance in air conditioning systems or atmospheric pressure
monitoring devices. The density of the liquid and the available height
of the column severely limit the range of pressure differences they can
measure: for instance an U-tube 20 centimeters high filled with mercury
(ρ = 13579.04 kg/m3) will at most indicate a pressure differential of roughly
0.27 bar. Liquid column manometers usually have an accuracy around
±1%, for a temperature of operation in the standard industrial range of
-40/+60°C1. They can not be easily used in automated systems as they
require an extra device to read the fluid levels, though this is still used in
some instances [17, p. 4-03].

1.1.2 Piston

In a piston manometer the pressure acts to displace an air-tight piston and
the user seeks an equilibrium by adding weights on that same piston. When
the piston “floats” the forces are equalized; the pressure is then determined

1See for instance the various manometers by HK Instruments at
www.hkinstruments.fi
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through the simple relation P = mg/S with m the mass of the weights, g
the gravitational acceleration and S the surface area of the piston.

This method is mostly used in “dead weight testers” that serve as the
standard instruments for the measurement of accuracy and the calibration
of other pressure sensors [19][16, p. 26]. With precisely machined mechan-
ical parts, dead weight testers can measure thousands of bars, attaining
accuracies of up to 0.008%2.

They are of course too big and impractical as automated control sensors
but are nonetheless very important and widely used as test and calibration
devices.

Figure 1.2: Dead-weight tester

1.2 Mechanical transducers

In mechanical transducers the pressure to be measured causes an elastic
physical deformation of the sensing element. This deformation is then read
through the displacement of a needle or through a secondary transducer.
The particular case of electronic secondary transducers is detailed in section
1.3.

2See for instance Mensor (www.mensor.com) and Fluke DH Instruments Division
(www.dhinstruments.com)
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1.2.1 Bourdon Tube

A Bourdon Tube, named after Eugene Bourdon who invented the device
in 1849, is a coiled tube, usually metallic, with its open end connected to
the pressure to be measured. The tube will uncoil as the pressure increases
and the rotation thus induced can be read directly by connecting it to a
rotating needle pointing at a calibrated panel [16, pp. 35-40][17, p. 4.04].

They usually achieve accuracy around 1-0.5% for wide ranges of pressure
measurement, typically up to 700 bar.

Figure 1.3: Bourdon Tube

A Bourdon tube manometer can be integrated in a control chain by
adding an electronic deformation transducer on the tube itself or an angular
position reader on the needle. This allows a single sensor to be used for quick
visual checks in-situ as well as remote automated control. Additionally, even
in the occurrence of a power failure, pressure can still be read manually
making that kind of manometer a valuable security device.

1.2.2 Diaphragm

Other than Bourdon tubes, needle manometers can use a diaphragm system
where a calibrated membrane is deflected by a difference of pressure on its
two faces. The deflection of the membrane is then read from a panel as
before, or a secondary device can be used to measure the displacement.
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Figure 1.4: Diaphragm manometer

This type of device is very common in applications where high accuracy
isn’t important as it is usually around a few percents. On the other hand
they are very simple and cheap to manufacture and are a good choice for
specific applications. Compared to the Bourdon tube they also have the
added advantage of providing chemical isolation between the fluid and the
sensing element. The range of pressures they can measure is comparable to
that of the Bourdon tubes and depends on the reference pressure applied
to one side of the membrane.

As with the Bourdon tubes, the deflection value can be read from a
secondary electronic transducer and integrated in a control chain.

1.3 Electronic transducers

Modern control sensors use electronic transducers as they permit an easy
integration in a wider control chain. Most electronic pressure sensors do not
directly transduce pressure to electricity; rather a calibrated diaphragm is
deformed by the pressure and a strain gauge transforms the deformation
into an electrical signal. Most of these transducers can of course be applied
to not only diaphragms but also the other mechanical methods seen before
though they are less common as they are bulkier.
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1.3.1 Piezoresistive strain gauge

The piezoresistive effect is the variation of the electrical resistance of a
conductor as its shape changes. In a piezoresistive strain gauge a metallic
foil or a thin film is bonded to an insulating diaphragm, or alternatively
the diaphragm is itself conductive. As the diaphragm is deformed by the
applied pressure its resistance changes and this change is measured usually
through a Wheatstone bridge that can measure minute resistance changes.
Piezoresistive strain gages can be designed to measure a wide range of
pressures, from a few millibars to hundred of bars [20][17, pp. 4.06-09].

Figure 1.5: Typical resistive strain gauge arrangement

A modern form of piezoresistive sensor is the silicon strain gauge. The
electrical resistance of silicon changes not only with a change in its geometry
but also with the internal stress on the material. In this sense the silicon
strain gauges, unlike the types presented before, is a direct pressure to
electrical signal transducer. This effect is orders of magnitude greater than
the piezoresistive response seen in metals and is now commonly used to
create small and accurate pressure sensors that can be directly produced
using the wide-spread microelectronics technologies. This is the most wide-
spread technology for compact low cost pressure sensors [20, chp. 7], their
main inconvenient being a high temperature dependence.
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1.3.2 Capacitive strain gauge

A capacitive strain gauge is physically close to a piezoresistive gauge. The
difference is that there is a second “plate” below the diaphragm, not physi-
cally in contact with it. The ensemble forms a capacitive cell in which the
capacitance depends on the space between the two plates: as the pressure
increases the top plate bonded to the diaphragm presses closer to the bot-
tom plate and the capacity increases. A measure of this capacity is then
linked to the pressure and values as low as a few hundred Pascals can be
measured [20, chp. 8][17, chp. 9].

1.3.3 Magnetic strain gauge

A magnetic strain gauge uses one of a variety of magnetic effects to measure
the deformation of a diaphragm. Examples include variation of the induc-
tance of a deformed coil, through the displacement of the core of a fixed
coil, variation in the magnetic field emitted by a fixed magnet through the
Hall effect, and many others variations of the same principle [17, pp. 4-11].

Depending on the method used the accuracy and sensibility ranges can
vary widely, but magnetic strain gauge have in common that they are usu-
ally bulkier than other types of sensors.

1.3.4 Other pressure sensing technologies

Many other less common methods exist, we can cite a few of them for
reference.

Piezoelectric strain gauges use the piezoelectric properties of certain
materials that generate an electric voltage when physically deformed. Their
main advantage being their fast response time, they are mainly used to
measure transient pressures[17, pp. 4-10]. Somewhat similar with magnetic
strain gauges, potentiometric gauges can be designed where a potentiometer
is acted upon by a deformed diaphragm resulting in a varying electrical
resistance. A last class of interesting pressure sensor are resonant devices
where the change in the geometry of a physical mechanism will modify
its resonance frequency[20, chp. 9]. Finally, optical pressure sensors exist.
They are mainly based on the properties of optical fibers. We describe these
more in details in the next chapter.





Chapter 2

Optical pressure sensors in the
scientific literature

This chapter focuses on optical pressure sensors that can be found in the
scientific literature. The majority are based on waveguides, most of them
optical fibers. When used as primary pressure transducers, waveguide sen-
sors are referred to as intrinsic pressure sensors; when used as secondary
transducers they are called extrinsic pressure sensors.

The basic principle of a waveguide transducer is simple: an external
physical phenomenon modifies one of several parameters of the light that
propagates within the guide; this change is then studied at the output of
the guide. The properties of light on which these sensors are based are: in-
tensity, guided modes, spectrum, phase (through interferometric detection)
and finally state of polarization ([21]).

The challenge is, most of the time, to have one specific external pertur-
bation act on only one parameter. Various designs have been proposed to
answer this problem.

2.1 Phase modulation transducers
In phase modulation transducers, the phase of an optical signal is modulated
in response to the applied pressure. The sensing beam is then compared to
a reference beam through interferometry.

A Mach-Zender interferometer consists of two optical arms, one be-
ing the reference arm and the other one the measurement arm. The
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measurement beam sees its phase modulated by an external pres-
sure before being recombined with the reference beam; the phase dif-
ference will result in interference fringes or a variation of intensity
([22, 23, 24]). A good example of implementation is the optical fiber
Mach-Zender interferometer described in figure 2.1.

Figure 2.1: Fiber Mach-Zender interferometer

The fiber is split and then recombined through two Y-couplers. The
phase in the measurement arm will depend on the pressure applied
on the fiber and the intensity of the light at the exit port or the fiber
will vary.

Integrated waveguides transducers work on the same principles as their
fibered counterparts. They have the added advantage that they can
be mass-produced using the usual tools developed for microelectronic
components. On the other hand, the coupling of light in and out
of these integrated waveguides poses several problems of packaging,
limiting their applications.

Fiber-tip fabry-perot are an interesting class of interferometric sensors
where the tip of a singlemode fiber is modified so that a small fabry-
perot cavity exists [25]. This kind of sensor is punctual but occupies a
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very precise and small spot, making it ideal for precise measurements
in difficult situations such as endoscopy or any application where the
sensor has to travel through a narrow conduit.

Phase modulation transducers are generally very sensitive and accurate, at
the expense of a much higher cost of development and operation. They are
typically reserved to specific applications in controlled environments.

2.2 Spectrum modulation transducers
Spectrum modulation transducers modulate the spectral response of an
element depending on the pressure.

The basic principle is that of a Bragg grating inscribed in an optical fiber.
The grating will transmit and reflect a particular portion of a spectrum
depending on the spacing of its layers. An external pressure on the fiber will
slightly elongate it, modifying the spacing and the transmitted spectrum
([26]). This principle is illustrated on figure 2.2.

Figure 2.2: Typical transmitted and reflected spectrum for a Bragg grating

Another interesting spectrum-modulation device is the O-ring resonator
[27]. A ring-shaped guide next to a straight waveguide will resonated at a
specific wavelength and thus absorb a portion of the spectrum. A pres-
sure on the o-ring will modify its index and hence its resonant frequency,
resulting in a change in the transmitted spectrum.

As with phase modulation transducers, pressure transducers based on
this principle will be usually expensive, mainly due to the price of the source
and detector, and are thus reserved for special applications. One domain
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where they prove useful is distributed sensing over a wide area: several
Bragg gratings can be inscribed in a single fiber, and each can be polled
using time-resolved spectral analysis.

2.3 Polarization modulation transducers

In polarization modulation transducers the state of polarization of a light
beam is dependent on the pressure.

Singlemode optical fiber polarimetric transducers take advantage of
the fact that when stressed by a force from a given direction a sin-
glemode fiber will become birefringent, ie it will have an effect on the
state of polarization of light. In its simplest incarnation, this method
consists in a weighted membrane that stresses a fiber, which modifies
the output state of polarization ([28]). A typical communication-
grade singlemode fiber has a small intrinsic birefringence that makes
the exploitation of this effect difficult over long distances (typically
a few meters). Moreover this technique will typically only work for
directional forces applied on the fiber which mandates the use of a de-
formable membrane if one wishes to measure an hydraulic pressure.

Integrated O-rings produce a very similar effect, with the added benefit
of being totally integrated on silicium and thus easily producible using
the well mastered techniques of microelectronics [27].

Polarization maintaining fibers are special optical fibers designed to
maintain a constant state of polarization of the light over long dis-
tances. They do so by imposing a very large intrinsic birefringence
through a special geometry of the core of the fiber. This birefringence
can be modified by an external modulation. For instance an isotropic
pressure will slightly modify the shape of the core, modifying the bire-
fringence and the output state of polarization ([29, 30, 31]). These
fibers are much more expensive that classical singlemode fibers, but
they allow direct measurement of an hydraulic pressure.
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2.4 Intensity modulation transducers
In this kind of transducers the intensity of the light is directly modified.
This is the cheapest and simplest method, but its performances are lower
than that of other devices based on different principles.

Microbending transducers work by locally deforming a multimode op-
tical fiber at a given period [32, 33, 34, 2, 35]. This is typically done
through rigid “teeth” pressing on the fiber, and a variation in this pres-
sure will result in a variation of the losses of the fiber and a global
lowering in light intensity.

Figure 2.3: Multimode fiber microbendings transducer

Reflective membranes can be used to modulate the intensity of a signal.
A fixed fiber illuminates the membrane and a second fiber picks up
the reflected light. The intensity will directly depend on the distance
between the reflective surface and the fibers.

Mechanical obturation will also modulate the amplitude of light. A
membrane will move in the path of a light source as the pressure
increases, decreasing the intensity received by a detector.

All these methods are cheap by themselves, but they offer no real advan-
tages over cheaper and more robust electronic transducers except for use in
electromagnetically polluted environment. The exception may be the mi-
crobending sensors as variations on the basic idea have seen recent industrial
development for distributed and distant sensing [36].





Chapter 3

Proposition of a novel optical
pressure sensor

In this chapter we state the technical and technological requirements of a
new pressure sensor that uses an optical pressure transducer. These require-
ment were provided by Hydac and the goal is to develop a low-cost high
hydrostatic pressure optical sensor. From these requirements we eliminate
several potential technologies and conclude by proposing a new concept for
an original optical pressure sensor.

3.1 Problem statement

The development of the new pressure sensor that we propose has been
guided by two distinct considerations.

The first was of a technological nature: the goal was to design a pressure
transducer that makes use of optical effects to generate a measurable signal.
A well designed optical sensor is insensitive to high electric and magnetic
fields as well as intrinsically safe in dangerous environments (such as explo-
sive gas or fluids) as long as is relies on low-power optical effects. Moreover
it should be possible to reach a high precision and accuracy through such
a system, at least as good, if not better, than typical electrical sensors of
equivalent price and application ranges. For all these reasons such a devel-
opment is desirable.

The second consideration was a more commercial aspect associated with
the production of pressure sensors. As explained in the previous chapter the
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most common type of hydrostatic pressure sensor is the piezoresistive strain
gauge. Its most common implementation for sensors that aim to achieve
precisions around one percent is through thin film deposition directly on a
ceramic layer, layer itself bonded to the metal membrane under stress. The
deposition process requires access to expensive equipments such as a clean
room or vacuum sputtering machines as well as to highly skilled workers.
The thickness of the metal membrane is of paramount importance as it will
dictate the sensitivity of the final device. All these difficulties contribute
to the production of elements of extremely variable quality unless there is
a strict process control, another expensive step. All sensors will still need
to be calibrated, the calibration information written to a micro controller,
and this information used in signal conditioning in order to give accurate
pressure readings.

In light of these problems it was decided to look into the feasibility of an
optical pressure sensor that would meet the specifications detailed below.

The prime technical goal was to develop a sensor that would fit in Hy-
dac’s current commercial offering. As such the proposed sensor should
measure the same ranges of pressure, work in similar conditions with sim-
ilar resolution and accuracy and have about the same production price as
Hydac’s piezoresistive pressure sensors. A detailed list of technical require-
ments is presented in annex A, and we highlight here the main points:

Working pressure range: The sensor should be able to measure hydraulic
pressure (relatively to the ambient pressure) in the 0-100 bar range
approximately. It should be able to sustain a transient pressure of
600 bar without permanent damage or loss of containment.

Precision and accuracy: The sensor should output a value of pressure
with a total uncertainty better than one percent of the full measure-
ment scale (1% FS). Ideally the intrinsic accuracy should be good
enough that no calibration is required after production.

Environmental sensitivity: The sensor should maintain its measurement
performances in the -20°C to +70°C temperature range. It should not
be sensitive to other external factors such as the nature of the fluid
under pressure or ambient vibrations, magnetic or electric fields.
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Production cost: The total cost of the parts used to build the sensor
should not exceed a few euros, and it should not require access to
highly specific processes or machines such as clean rooms technologies.

Safety: The sensor should be adapted or adaptable to safe remote sensing
where no electrical current is present near the sensing element.

3.2 Proposition of a low cost piezo-optic
pressure sensor

If we look back at the pressure sensors found in the literature described in
Chapter 2 with the conditions highlighted above in mind, we can restrict
the number of usable technologies.

Phase modulation sensors rely either on silicon waveguide or on sin-
glemode optical fibers and so their fabrication processes require the use of
expensive specific tools: access to a clean room and integrated electronics
processing facilities for waveguides, various cleavers, splicers and expensive
light sources for fibers. Moreover production of sensors that use singlemode
fibers cannot easily be automated as their tuning is complex. Each unit
would essentially be hand-crafted with all the problems it entails.

Spectrum modulation technologies, based on Bragg gratings, pose es-
sentially the same problems, with the added requirement of an expensive
method to analyze the output spectrum for each sensor.

Intensity modulation sensors are more promising since they can make
use of telecom multimode optical fiber which are much easier to handle than
singlemode ones. Moreover, multimode fiber can also be used with a simple
LED as a light source. The main drawback is that a sensor based on an
optical fiber would require qualified handling as well as difficult development
of special machines if the production process is to be automated for mass
production.

Finally, polarimetric sensors typically use standard singlemode fibers,
polarization maintaining fibers or integrated waveguides, all methods we
have eliminated earlier.

Although the typical fibered polarimetric pressure measurement meth-
ods found in the literature are not adapted to our specific problem, partially
due to industrialization difficulties, the nature of this measurement method
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is interesting by itself. As explained before a polarimetric sensor relies on
the fact that the refraction index of a material will change due to internal
stress; an anisotropic distribution of index will then lead to a change in the
polarization of a beam of light that propagates through it. This fact, known
as photoelasticity, has long been used in structural engineering before we
came to rely on finite element deformation simulations: once a structure,
for instance a bridge, has been designed, a miniature replica would be fab-
ricated in a transparent material. Loading the model would stress it in a
similar manner to a real load on the real bridge, and the repartition of stress
could be visualized using polarizers [37, 38, 39, 40, 41, 42].

Figure 3.1: Example of photoelasticity: visualization of residual stress in
a plastic ruler due to its fabrication process (Source: Nevit Dilmen, with
permission under Creative Commons Attribution ShareAlike 3.0)

Nowadays the elasto-optic effect is mostly used in light deflectors, light
modulators, and high-precision polarization generators [43]: a device pre-
cisely controls the force applied on a transparent material which then be-
comes birefringent with a very precisely controlled variable phase retar-
dance.



3.2. PROPOSITION OF A LOW COST PIEZO-OPTIC PRESSURE
SENSOR 43

This same technique can be used to measure an external pressure. The
basic concept is the following: the sensor will consist of a piece of transpar-
ent material between two crossed polarizers. The light source is a simple
LED and the detector any kind of photodetector. As the pressure on the ma-
terial increases the polarization of the light inside the material will change,
and as it is filtered by the output polarizer so will the output light intensity.

In the next chapters of this report this initial concept will be detailed,
refined and optimized. We will modelize it and analyze its performances in
the context of the constraints presented above.





Part II

Theoretical Tools
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Introduction

One of the first scientific descriptions of a polarization effect dates from 1669
when Danish mathematician Erasmus Bartholinus performed a series of
experiments involving a natural crystal named “Iceland Spar”. He reported
that when looked through in a certain way the scene behind the crystal is
doubled into two slightly separated but roughly identical images.

In 1677 Christian Huygens, a Dutch mathematician, physicist and as-
tronomer, first describes light as a wave and shows that the well-known
Snell-Descartes rules of reflection and refraction are compatible with this
new model. Also experimenting with Iceland Spar, he notices that light is
split into two paths as it goes through the crystal but that each path will
not split further is sent through a second crystal oriented in the same man-
ner as the first one. He interprets this behaviour as natural light possessing
two “sides” that Iceland Spar can separate.

Thomas Young proposes in 1801 his now famous double-slits interference
experiment that validates the wave-like nature of light imagined by Huy-
gens. Later, both Young and Augustin-Jean Fresnel independently show
that “double refraction” as it occurs in Iceland Spar can be explained if
light is described as the sum of two perpendicular waves that oscillate in
planes themselves perpendicular to the direction of propagation of the ray.
At this point the polarization phenomena can be formalized and further
studied in a quantitative manner.

These results were later explained by the Electro-Magnetic theory that
culminated in the development by physicist James-Clerck Maxwell in 1861
of the first version of the now well known set of equations that govern
classical electromagnetism, the Maxwell Equations.

In Chapter 4 we begin the mathematical study of polarization from
these general equations before presenting further tools more adapted to
the description and representation of polarized light, most importantly the
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Mueller-Stokes formalism.
We then describe in Chapter 5 the behavior of polarized light in trans-

parent media that present an anisotropic index of refraction. We describe
the particular case of pressure-induced birefringence, the piezo-optic effect.
Finally we use the Mueller matrix formulation to describe the effect on po-
larization of the piezo-optic effect as well as of partial and total reflection at
a dielectric boundary. These tools will then be used in part III to modelize
the proposed piezo-optic pressure sensor.



Chapter 4

Polarization of light

In this chapter we present the mathematical description of light as an elec-
tromagnetic field before exposing some of the useful tools developed to
study the particular problem of polarization.

4.1 Light as a vectorial electromagnetic field

4.1.1 The free space wave equation

Let us begin by writing down the well-known macroscopic Maxwell equa-
tions that describe the behaviour of electromagnetic fields [44]:

∇× E(r, t) = −∂B(r, t)

∂t
(4.1)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
(4.2)

∇ ·D(r, t) = ρ(r, t) (4.3)

∇ ·B(r, t) = 0 (4.4)

A bold font indicates a vector while variables in italic are scalar. The
∇· and ∇× operators are respectively the divergence and rotation (or curl)
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operators that act on a vector F = Fxi+Fyj+Fzk in a Cartesian basis
(i, j,k) in the following manner:

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

∇× F = (
∂Fz
∂y
− ∂Fy

∂z
)i + (

∂Fx
∂z
− ∂Fz

∂x
)j + (

∂Fy
∂x
− ∂Fx

∂y
)k

E(r, t) and H(r, t) are respectively the electric and magnetic field vec-
tors, D(r, t) is the electric displacement field, B(r, t) is the magnetic induc-
tion vector,J(r, t) is the total current density and ρ(r, t) the total charge
density. r = xi + yj + zk is of course the position of a point in space and t
represents the time variable.

In the special case of free space, we have the following additional rela-
tions:

D(r, t) = ε0E(r, t) (4.5)

B(r, t) = µ0H(r, t) (4.6)

where ε0 ≈ 8.85 × 10−12As/V m is the permittivity of free space and µ0 =
4π × 10−7H/m is its permeability [44, p. 4].

Free space also implies an absence of free charges, and hence of currents,
ie J(r, t) = 0 and ρ(r, t) = 0. Combined with all of this equations 4.7
through 4.10 now become:

∇× E(r, t) = −µ0
∂H(r, t)

∂t
(4.7)

∇×H(r, t) = ε0
∂E(r, t)

∂t
(4.8)

∇ · E(r, t) = 0 (4.9)

∇ ·H(r, t) = 0 (4.10)

Taking the curl of 4.7 yields

∇×∇× E(r, t) = −µ0
∂

∂t
(∇×H(r, t))
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and combined with equation 4.2 it becomes

∇×∇× E(r, t) = −µ0ε0
∂2E(r, t)

∂t2

Given that ∇×∇×E(r, t) = ∇·∇·E(r, t)−∇2E(r, t) and that equation
4.9 sets ∇ · E(r, t) = 0, we no have:

∇2E(r, t) = µ0ε0
∂2E(r, t)

∂t2
(4.11)

This equation is known as the propagation equation. Any solution to this
equation will be a solution to the free space Maxwell equations and describe
one of the many types of behaviors an electromagnetic field can displays.
The first observation we can make it that there appear to be solutions other
than a null field, which entails that an electromagnetic field can exist in the
absence of charges and currents. A second observation is that there is a
whole class of material known as dielectric materials in which there are no
free charges; any solution to equation 4.11 will be valid for propagation in
these materials by substituting ε and µ the permittivity and permeability
of the material to ε0 and µ0; for most materials µ ≈ µ0 [45, p. 3]. These
solution will notably be valid for propagation in glass, clear plastics or var-
ious types of crystals. A final observation is that as this type of equation
is present throughout physics it is known that its solution represent prop-
agating waves with phase velocity c0 = 1/

√
ε0µ0 , c0 being in this case the

speed of light in a vacuum. In the case of propagation in a dielectric ma-
terial the phase velocity is c = c0/n = 1/

√
εµ =

√
εµ
ε0µ0

/
√
ε0µ0 = c0

√
εµ
ε0µ0

with n = 1/
√

εµ
ε0µ0
≈ 1/

√
εr being the refractive index and εr = ε/ε0 the

relative permittivity. Finally we rewrite equation 4.11 as:

∇2E(r, t)− 1

c2
· ∂

2E(r, t)

∂t2
= 0 (4.12)

4.1.2 Plane waves

4.1.2.1 The plane wave solution

There exists a relatively simple class of solutions to the wave equation called
the plane wave solution. Let us consider the special case where E(r, t) only
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depends on one spacial direction, for instance z, and on time. Equation
4.12 now becomes:

∂2E(z, t)

∂z2
− 1

c2
· ∂

2E(z, t)

∂t2
= 0 (4.13)

which can be rewritten as(
∂.

∂z
− 1

c
· ∂.
∂t

)(
∂.

∂z
+

1

c
· ∂.
∂t

)
E(z, t) = 0

We now introduce the new variables a = z + ct and b = z − ct, combine
them to get:

t =
1

2c
(a− b), z =

1

2
(a+ b)

and through differentiation:

∂.

∂a
=

1

2

(
∂.

∂z
− 1

c
· ∂.
∂t

)
,
∂.

∂b
=

1

2

(
∂.

∂z
+

1

c
· ∂.
∂t

)
This transformation allows us to rewrite equation 4.13 as

∂2E(z, t)

∂a∂b
= 0

which has for obvious solution any function E(z, t) such that

E(z, t) = E1(a) + E2(b)

ie
E(z, t) = E1(z + ct) + E2(z − ct)

If we consider the case E1 = 0 we find that E(z, t) = E(z−ct) which is a
function with a constant value at all (z, t) pairs such that z = ct+constant.
Since E(z, t) doesn’t depend on x or y, it it described by an unique vectorial
value in any given (x, y) plane. If we know that value at any point (xi, yi)
in the plane z = 0 at time t = 0, E(xi, yi, z = 0, t = 0) = E0, then the same
uniform plane with value E0 will be present at any instant and position such
that z = ct : this solution propagates uniform infinite planes through space
at speed c, positively along the z axis. Each plane of the function behaves in
a similar manner, and this particular solution to the propagation equation
is known as a plane wave. The same reasoning holds for E(z + ct) which
represents a plane wave propagating along z in the negative direction, and
the whole demonstration can of course be applied to H(r, t) with similar
conclusions.
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4.1.2.2 Properties of plane waves

For the sake of clarity we only derive the properties of the plane waves
using forward propagating waves, but the results are trivially demonstrated
in the general case.

A first interesting general property of plane waves can be determined by
through the use of equation 4.9, ∇ · E(r, t) = 0, applied to a plane wave:

∇ · E(z − ct) =
∂Ex(z − ct)

∂x
+
∂Ey(z − ct)

∂y
+
∂Ez(z − ct)

∂z

=
∂Ez(z − ct)

∂z

=
∂Ez
∂z

(z − ct)

= 0

This final equation ∂Ez
∂z

(z − ct) = 0 tells us that Ez is constant for all
values of the position z at a given instant t, and it follows from our previous
demonstration that a plane wave propagates without changes along z that it
must also be constant at all instants in time. The same demonstration can
be applied to H(z− ct) and in the end we have the following relationships:{

Ez(z − ct) = constant 1

Hz(z − ct) = constant 2
(4.14)

We see from equation 4.14 that a plane wave can only have constant
electric or magnetic fields along its direction of propagation. Taking these
constants to be anything else than zero leads to interesting theoretical im-
plications, but this case is usually ignored for reasons explained bellow in
section 4.1.2.3. If the longitudinal field is null then all components of the
electromagnetic wave are contained in a plane perpendicular to the direction
of propagation, and such a plane wave is said to be transverse.

Another important property of a plane wave concerns the relationship
between E(r, t) and H(r, t). Taking the curl of the electric field of a plane
wave E(z, t) = E(z−ct) = E(b) and the time derivative of the corresponding
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magnetic field, we have:

∇× E(r, t) = ∇× E(z − ct)

= (
∂Ez(z − ct)

∂y
− ∂Ey(z − ct)

∂z
)i

+ (
∂Ex(z − ct)

∂z
− ∂Ez(z − ct)

∂x
)j

+ (
∂Ey(z − ct)

∂x
− ∂Ex(z − ct)

∂y
)k

= −∂Ey(b)
∂z

i +
∂Ex(b)

∂z
j

= −∂Ey(b)
∂b

∂b

∂z
i +

∂Ex(b)

∂b

∂b

∂z
j

= −dEy(b)
db

i +
dEx(b)
db

j

∂H(r, t)

∂t
=
∂H(z − ct)

∂t

=
∂Hx(z − ct)

∂t
i +

∂Hy(z − ct)
∂t

j +
∂Hz(z − ct)

∂t
k

= −cdHx(b)

db
i +−cdHy(b)

db
j

Injecting these results in equation 4.7 we end up with the sets of equations:{
dEy(b)

db = −µ0c
dHx(b)

db
dE(b)

db = µ0c
dHy(b)

db

and integrating with respects to b yields:{
Ey = −µ0cHx

Ex = µ0cHy

and finally we obtain the equality:

ExHx + EyHy = µ0cHyHx − µ0cHxHy = 0 (4.15)

We recognize in equation 4.15 a null scalar product between the two vectors
E and H, which indicates that the electric and magnetic fields of a plane
wave are always perpendicular to each other, as well as to the propagation
direction as demonstrated before.
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4.1.2.3 Monochromatic plane waves

So far we have imposed no special condition on the behaviour of E or H
except that they are at least twice derivable. There is one special case
that is of particular physical importance because it describes everyday light
and “colors”, the case where all components of E and H are simple har-
monic functions of time. Such a wave oscillates at a single frequency with
time, and since each color corresponds to a different frequency it is called a
monochromatic wave. When combined with the concept of plane wave we
get one of the most basic and useful entities used to describe the behaviour
of light : the monochromatic plane wave.

First let us look back at equation 4.14: the longitudinal fields can only
be constant which is incompatible with the harmonic property of monochro-
matic plane waves unless the oscillating frequency is null or the amplitude
of this component is zero. Since we are not concerned with static field the
only possibility is that the longitudinal component is always null, and thus
a monochromatic plane wave is always transverse.

Let us consider a forward propagating plane wave as before. The electric
field only depends on z−ct, and we recall that E(z−ct) is a vector function:
both its amplitude and orientation can vary with z − ct and one has to
decompose it into its scalar projections on (i, j) to explicit the function (a
monochromatic plane wave has no component along k as discussed before).
We can now write:

E(z − ct)

{
Ex = E0x cos(k(z − ct) + ϕx)

Ey = E0y cos(k(z − ct) + ϕy)
(4.16)

which describes the most general configuration of the monochromatic plane
wave. k is a constant, the wave number, ϕx, ϕy simply serve to set the
initial value of each component at t = 0,z = 0, and the overall argument to
the cosinus, (k(z − ct) + ϕx), is called the phase of the wave. It is easy to
identify the pulsation of the wave as the coefficient in front of t so ω = kc
and its frequency is ν = ω/2π = kc/2π.

If we now “freeze” the wave in time and look at its spatial values we see
that it follows a wave with spatial period λ = 2π/k = 2πc/ω = c/ν. This
spatial period is called the wavelength of the light and is the most widely
used value to describe a given monochromatic wave.

It is important to note that a monochromatic plane wave is defined as
an harmonic function of time and for a good reason: most detectors (such
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as the eye . . . ) detect color depending on the time frequency of the light.
The wavelength for a given time frequency depends on the speed of light
and thus the wavelength will vary depending on the medium in which the
light propagates. When referring to a light of a particular wavelength one
always refers to its wavelength in a vacuum to avoid confusion.

4.1.2.4 The complex notation for monochromatic plane waves

The trigonometric notation of equation 4.16, though useful in some cases,
can lead to quite complicated calculations as soon as one wishes to use
a plane wave to describe even simple phenomenon. An useful alternative
representation of an harmonic plane wave is the complex notation that we
describe now.

The representation presented in equation 4.16 make use of simple trigono-
metric functions. Using Euler’s formula:

eix = cos(x) + i sin(x)

we immediately have:

E(z − ct)

{
Ex = E0x cos(kz − ωt+ ϕx) = <

{
E0xe

i(kz−ωt+ϕx)
}

Ey = E0y cos(kz − ωt+ ϕy) = <
{
E0ye

i(kz−ωt+ϕy)
}

which can be rewritten as:

E(z − ct) = Exi + Eyj

= <
{
E0xe

i(kz−ωt+ϕx)
}
i + <

{
E0ye

i(kz−ωt+ϕy)
}
j (4.17)

= <
{(
E0xe

iϕxi + E0ye
iϕyj
)
ei(kz−ωt)

}
with < the “real part” operator and i the imaginary unit (not to be confused
with the bold i which still denotes one of the unit directing vectors of our
basis).

The expression is now conveniently separated into a constant complex
vector D0 = E0xe

iϕxi + E0ye
iϕyj and a complex exponential ei(kz−ωt) which

contains the time and space dependence of the field. As the wave propagates
the exponential will act on the constant vector to change, in the most
general case, both its length and its direction. To illustrate this principle,
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we plot the evolution of the vector D0 = 1eiπ/4i+ 1
2
ei0j at different instants

at z = 0. For convenience we set ω = 1. The electric field vector is then
described by:

E(0, t) = <
{

(1eiπ/4i +
1

2
ei0j) · ei(0−t)

}
= <

{
ei(π/4−t)

}
i + <

{
1

2
e−it
}
j

= cos(π/4− t) · i +
1

2
cos(−t) · j

which we plot on figure 4.1 for different values of t.

Figure 4.1: Example of the evolution of the electric field vector through
time.

To simplify the representation the real part operator is usually omit-
ted but it is implicitly understood that the last operation in a series of
computations will always be to take the real part of the result. Using this
convention we now represent the electric field component of a monochro-
matic plane wave in the following manner:

E(z, t) = D0e
i(kz−ωt)

Neglecting to take the real part during a calculation is correct as long as
one only applies linear operations to the complex field but if we need to, for
instance, multiply two fields as part of a non-linear process then the real
part must be taken before carrying out the operation.
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4.1.3 Defining polarization

At this point we have a solution, the monochromatic plane wave, that ex-
actly corresponds to the representation of light proposed by Young and
Fresnel as discussed in the introduction (cf. p.47): a wave oscillating in
planes transverse to its direction of propagation that can be split into two
perpendicular components due to its vectorial nature. It is precisely this
vectorial nature that gives rise to the conventional definition of polariza-
tion: to study polarization is to study the time-behavior of the electric field
vector of a transverse monochromatic plane wave at a fixed point in space.

It is important to remember that as shown here the notion of polariza-
tion is only strictly defined for a monochromatic plane wave when viewed in
a plane transverse to the direction of propagation and that it is not trivial
to generalize this notion to an arbitrary waveform. We stray a lot from this
definition when dealing, for instance, with focused waves or high numerical
aperture optical instruments. Special attention must be paid when carry-
ing out experiments in polarization in order to stay in the region where our
models and tools are valid.

4.2 The polarization ellipse

As we have seen in the previous section, the polarization of a plane wave
describes the time-behaviour of its electric field vector. To visualize this
behaviour, consider the following thought experiment: take an observation
plane perpendicular to the direction of propagation of an incoming plane
wave with arbitrary polarization, and as the wave passes through it observe
the figure drawn on the virtual plane by the tip of the electric field vector as
if it had a physical length proportional to its magnitude. Taking the same
D0 as in figure 4.1, letting ωt vary between 0 and 2π in order to represent a
full cycle, and superposing the vectors on the same figure, we obtain figure
4.2:
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Figure 4.2: Evolution of the electric field vector through a full cycle.

As we see in this example, the field intensity will draw a figure that
looks like an ellipse. Using equation 4.16 and setting τ = k(z − ct), we can
prove that the figure is indeed always an ellipse:{

Ex = E0x cos(τ + ϕx)

Ey = E0y cos(τ + ϕy)

can be rewritten as Ex
E0x

= cos(τ) cos(ϕx)− sin(τ) sin(ϕx)
Ey
E0y

= cos(τ) cos(ϕy)− sin(τ) sin(ϕy)

which combines into Ex
E0x

sin(ϕy)− Ey
E0y

sin(ϕx) = cos(τ) sin(ϕy − ϕx)
Ex
E0x

cos(ϕy)− Ey
E0y

cos(ϕx) = sin(τ) sin(ϕy − ϕx)

and finally, by squaring and then adding:(
Ex
E0x

)2

+

(
Ey
E0y

)2

− 2
Ex
E0x

Ey
E0y

cos(ϕy − ϕx) = sin2(ϕy − ϕx) (4.18)

Equation 4.18, which describes the locus of points traveled by the “tip”
of the electric field vector, is the equation of an ellipse, the polarization
ellipse. A given polarization can thus be described by the two parameters
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that identify its associated polarization ellipse: the orientation angle ψ
between the major axis and the horizontal direction, and the ellipticity
angle χ often defined through its tangent being equal to the ratio of the
lengths of the two axes, tan(χ) = b/a. Figure 4.3 illustrates the polarization
ellipse and its parameters.

Figure 4.3: The polarization ellipse and its parameters.

ψ and χ are related to the physical parameters of the plane wave through
the auxiliary angle α [45, p. 28]:

tan(α) =
E0y

E0x

tan(2ψ) = tan(2α) cos(δ)

sin(2χ) = sin(2α) sin(δ)

Using this tool we can explore a few special cases of polarization states.
As we have seen, the figure is in general an ellipse. When χ = 0, ie when
either E0x is null, E0y is null, or the two components are in phase (δ = 0),
the figure is a line and describes linear polarization which can have any
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orientation, with two particular cases being horizontal linear polarization
when φ = 0 or vertical linear polarization when φ = π/2. The locus becomes
a circle when a = b ie χ = ±π/4 and describes circular polarization. Figure
4.4 presents a few typical polarization ellipses and the physical parameters
they derive from.

Figure 4.4: The polarization ellipse and its degenerate forms for different
values of the physical parameters: circular polarization, two identical elliptic
polarizations with different orientations, and three linear polarizations with
various orientation.

4.3 Polarizing optical elements

As shown by the Iceland Spar that so puzzled Bartholinus, Huygens, Young
and many others there are certain optical elements that have a direct effect
on the state of polarization of light. We now present the most common
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of these elements as they will be widely used throughout the rest of this
document.

4.3.1 The waveplate

A waveplate is an optical element that adds a known phase delay (the
retardance of the waveplate) to light along one of its axes. The axis that
adds a positive phase delay (i.e. the axis that adds more phase than the
other) is known as the slow axis while the other one is the fast axis of the
waveplate.

Let us consider a waveplate with retardance 4ϕ in the path of a beam
of light, its slow axis aligned along i and its fast axis along j. The initial
electric field is:

E(z, t) = D0e
i(kz−ωt) = (E0xe

iϕxi + E0ye
iϕyj)ei(kz−ωt)

and after the waveplate it becomes:

E(z, t) = (E0xe
i(ϕx+4ϕ)i + E0ye

iϕyj)ei(kz−ωt) = D1e
i(kz−ωt)

The state of polarization of the wave was modified by the waveplate, in
this case simply acting on one component of the vector. If the plate is now
rotated so that its axes are not aligned with i and j an angle dependent
phase delay will be added to both components. The exact dependence on
the inclination angle will be explicited in section 4.5.

We can express Ex as:

Ex = E0xe
i(ϕx+4ϕ)ei(kz−ωt)

= E0xe
i(kz−ωt+ϕx+4ϕ)

= E0xe
i(k(z+4ϕ

k
)−ωt+ϕx)

= E0xe
i(k(z+4ϕ

2π
λ)−ωt+ϕx)

which expresses the phase delay as an extra length, 4z given as a fraction
of the wavelength, traveled by that component of the plane wave. For this
reason waveplate retardance are usually given as a fraction of their design
wavelength.

From the expression above we can identify two special values of 4ϕ of
particular importance. We simply present here their basic behavior as they
will be studied in details in section 4.5.
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If we select a linear polarization inclined of 45° D0 = E0e
i0i+E0e

i0yj =
E0i + E0j and send it through a waveplate with retardance 4ϕ = π/2 the
output polarization vector will be D1 = E0e

iπ
2 i+E0e

i0yj = E0ii+E0j which
identifies a circular polarization. If we express the equivalent wavelength
fraction we find 4z = 4ϕ

2π
λ = λ

4
and this element is named a quarter-wave

plate. A quarter-wave plate will transform a linear polarization at 45° into
a circular polarization, and a circular polarization into a linear one.

The second interesting waveplate is the half-wave plate with retardance
4ϕ = π or4z = λ

2
. It has the particular effect of modifying the orientation

angle of an incoming polarization without changing its ellipticity. If viewed
in terms of polarization ellipse the half-wave plate retains the shape of the
ellipse but rotates it around its center.

4.3.2 The diattenuator

So far we have only acted on the phase of each components of the light but
it is also interesting to only modify their amplitudes. Such optical elements
exist and are called diattenuators: they absorb a different fraction of the
light along each of their axes. The axis that transmits the most light is the
transmission axis.

The most widely used diattenuator is the polarizer which totally ab-
sorbs light along its extinction axis. Take for instance a beam of circularly
polarized light : {

Ex = E0cos(kz − ωt)
Ey = E0cos(kz − ωt+ π

2
)

if the polarizer has its extinction axis along −→y the resulting light will
be described by {

Ex = E0cos(kz − ωt)
Ey = 0

which is clearly a linear vertical polarization. The perfect polarizer is
an element that convert any incoming light into a perfectly linearly polar-
ized output of, most of the time, a different intensity. The output intensity
depends on the input state of polarization and two special cases can be
highlighted : if the incoming light is linearly polarized along the transmis-
sion axis of the polarizer it will have no effect on it, while if the polarization
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lies perpendicularly to that axis no light at all will exit the system. For an
angle in between the intensity follows Malus’ Law:

I = cos2 (θ) (4.19)

where θ is the angle between the orientation of the linear polarization and
the orientation of the transmission axis of the polarizer.

4.4 The Stokes Polarization Parameters

4.4.1 Definition

The two representation of the state of polarization that we presented so
far have an important drawback: they can only describe a totally polarized
light, ie one that is totally described by the evolution of the electromagnetic
field over a single period. Practical light sources show a different behaviour.
Imagine for instance a light beam created by combining two uncorrelated
linearly polarized light beams at 90° of each other. Let this beam pass
through a linear rotating polarizer: whatever its orientation, the intensity
on the detector will stay constant as per Malus’ Law (4.19) applied once for
each polarization; if we add a quarter-wave plate before the polarizer, the
result is identical. According to the polarization ellipse the first observation
would indicated a circularly polarized beam, but the second experiment is
not consistent with this conclusion. This state of polarization can not be
correctly described as the light, in this case, is unpolarized. In general light
can be totally polarized, partially polarized or unpolarized.

In order to address this problem, as well as the fact that the polarization
ellipse deals with field amplitudes while the only experimentally available
quantity is the intensity which is a time-average of the amplitude, we in-
troduce the Stokes Polarization Parameters [46, p. 57][44, p. 51]:

S0 =
〈
Ex(t)

2
〉

+
〈
Ey(t)

2
〉

(4.20)
S1 =

〈
Ex(t)

2
〉
−
〈
Ey(t)

2
〉

(4.21)
S2 = 〈2Ex(t)Ey(t)〉 (4.22)

S3 =

〈
2Ex(t)Ey(t−

π

2
· 1

ω
)

〉
(4.23)

where 〈 〉 denotes a time average, and as before Ei(t) is the amplitude of
the field along axis i at instant t. S0 is the sum of the average intensities
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along the two axes, S1 is the difference of the same average intensities, S2

is the correlation between the fields along the two axes and finally S3 is the
correlation between the field along one axis and the field along the other
retarded by one quarter of a period of the osciallation. By convention the
x axis is often taken along the horizontal physical direction; from now on
we will often use the term “horizontal” instead of “along the x axis” and
“vertical” instead of “along the y axis”.

If the light under study is a purely harmonic plane wave, we have
Ex = E0x cos(z − ct + ϕx), Ey = E0y cos(z − ct + ϕy) and equations 4.20
through 4.23 reduce to the commonly presented form of the Stokes Polariza-
tion Parameters for a totally polarized light (except for a 1

2
proportionality

factor):

S0 = E2
0x + E2

0y (4.24)
S1 = E2

0x − E2
0y (4.25)

S2 = 2E0xE0y cos (δ) (4.26)
S3 = 2E0xE0y sin (δ) (4.27)

The first parameter S0 is obviously the total intensity of the light and
can be measured by a photodetector. It is customary to set it to one and
to express the other components as their actual ratio to S0.

S1 represents the balance between the horizontal and the vertical linearly
polarized component of the light: it is equal to 1 if the light is totally
horizontally polarized and to -1 if it is vertically polarized. Its value can be
computed by measuring the intensities through an horizontal and a vertical
polarizer and subtracting the two values.

Likewise S2 represents the difference between linearly polarized portions
of the light at +45° and −45°. Though this interpretation is not as obvious
as the first two, if we remember the polarization ellipse it becomes apparent
that S2 = ±1 when Ex = Ey and δ = 0 + n · π

2
, ie when the light is linearly

polarized at ±45°. Its value can be accessed in a similar manner as S1 using
a rotating polarizer at ±45°.

Finally S3 represents the portion of the light that is circularly polarized,
as shown once again by the polarization ellipse. To measure it one can send
the light first through a quarter-wave plate, then through a rotating linear
polarizer oriented at +45° and −45°.
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The validity of the measurement methods given here will be justified in
section 4.5.4.

4.4.2 Stokes vectors and their properties

4.4.2.1 Definition

For ease of use the Stokes parameters are often presented as a vector named
the Stokes Vector S = [S0;S1;S2;S3]. For instance, the Stokes vectors for
some of the remarkable states polarization are:

Linear horizontal polarization Linear vertical polarization
1

1

0

0




1

−1

0

0


Linear polarization at +45° Linear polarization at -45°

1

0

1

0




1

0

−1

0


Right circular polarization Left circular polarization

1

0

0

1




1

0

0

−1



4.4.2.2 Physically realizable Stokes vectors

For totally uncorrelated Ex and Ey, S1 through S3 from equations 4.21
through 4.23 will be null and this state represents a totally unpolarized
light [44, p. 51]. If in contrast the light is totally polarized, equations
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4.25-4.27 yield:

S2
1 + S2

2 + S2
3 = (E2

x − E2
y)

2 + 4E2
xE

2
y cos(δ) + 4E2

xE
2
y sin(δ)

= S2
0

Any partially polarized state will lie in between these values and so a Stokes
vector represents a physically possible state of polarization if:

S2
1 + S2

2 + S2
3 ≤ S2

0

4.4.2.3 Sum of Stokes vectors

If we superpose two uncorrelated beams of light of Stokes parameters S(1)
i

and S(2)
i , the resulting time average of the square of the electric field along

x will be equal to:〈
E2
x

〉
=
〈
(E(1)

x + E(2)
x )2

〉
=
〈
(E(1)

x )2
〉

+
〈
(E(2)

x )2
〉

+ 2
〈
E(1)
x E(2)

x

〉
=
〈
(E(1)

x )2
〉

+
〈
(E(2)

x )2
〉

which results in the S0and S1 Stokes parameters of the resulting beam be-
ing equal to the sum of the S0and S1 Stokes parameters of the two original
beams. The same result can be demonstrated for S2 and S3, and the conse-
quence is a very important and useful property of Stokes vectors: the Stokes
vector of the sum of two beams is the sum of their individual Stokes vectors.

4.4.3 Degree of polarization

If we now apply the Stokes representation to our opening example, two
linearly polarized beams, one horizontal and the second vertical, give a
resulting beam with Stokes vector:

S0

S1

S2

S3

 =


1

1

0

0

+


1

−1

0

0

 =


2

0

0

0


We see that this beam cannot be described as having linearly or cir-

cularly polarized components. We define the degree of polarization as the
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ratio of “polarized light” (in any of the three possible states) to the total
intensity [46, p. 71]:

P =

√
S2

1 + S2
2 + S2

3

S0

(4.28)

When a Stokes vector represents a totally polarized light, such as a linear
or circular polarization, then P = 1; if the light is unpolarized then P = 0;
any value in between identifies a partially polarized light.

4.5 Computing changes in polarization: the
Mueller Matrix

4.5.1 Definition

As we have seen, the Stokes coefficients can be conveniently arranged as
a vector. It is then natural to define a transfer matrix between any two
Stokes vectors:

S ′0
S ′1
S ′2
S ′3

 =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 ·

S0

S1

S2

S3

 (4.29)

This 4× 4 components transfer matrix is called a Mueller Matrix. The
effect of any optical system that acts on polarization in a linear manner
can be represented by a Mueller matrix. Since we only consider linear
systems, the coefficients of the matrix are independent from the input or
output parameters. This tool enables simple and efficient calculation of
the evolution of a state of polarization as light passes through an optical
system.

4.5.2 The Mueller matrices of usual polarizing
elements

We can now apply the Mueller matrix formalism to the polarizing elements
we presented in section 4.3. Moreover we introduce a new type of element:
since the Stokes formalism can represent partially polarized light, we define
a depolarizer that can lower the degree of polarization.
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4.5.2.1 The Mueller Matrix of a Waveplate

As seen in section 4.3.1 a waveplate adds a phase difference 4ϕ between
Ex and Ey thus the only difference between the input and output Stokes
vectors will be the phase in S2 and S3. Using equations 4.24-4.27 and 4.29
we have:

S0

S1

2ExEy cos (δ +4ϕ)

2ExEy sin (δ +4ϕ)

 =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 ·


S0

S1

2ExEy cos (δ)

2ExEy sin (δ)


The fact that S0 and S1 are not modified and that the equation must be
verified for any value they may take directly implies that m00 = m11 = 1
and that all other coefficients but m22, m23, m32, and m33 are null. We are
left with the two equations:

m22 cos (δ) +m23 sin (δ) = cos (δ +4ϕ) = cos (δ) cos (4ϕ)− sin (δ) sin (4ϕ)

m32 cos (δ) +m33 sin (δ) = sin (δ +4ϕ) = cos (δ) sin (4ϕ) + sin (δ) cos (4ϕ)

and we identify directly m22 = m33 = cos (4ϕ), m23 = − sin (4ϕ) and
m32 = sin (4ϕ). The Mueller matrix of a waveplate is thus:

MWP (4ϕ) =


1 0 0 0

0 1 0 0

0 0 cos (4ϕ) − sin (4ϕ)

0 0 sin (4ϕ) cos (4ϕ)

 (4.30)

In section 4.3.1 we mentioned two remarkable wave plates: the quarter-
wave plate with retardance ∆φ = π/2 and the half-wave plate with ∆φ = π.
Their Mueller matrices are respectively:

MQWP =


1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0

 (4.31)
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for the quarter-wave plate, and:

MWP (4ϕ) =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 (4.32)

for the half-wave plate.

4.5.2.2 The Mueller Matrix of a Diattenuator

A diattenuator absorbs a fraction of the input electric field along each of
its axes. If one of the axes totally absorbs the field, the element is called an
ideal linear polarizer as it only lets totally polarized linear light through.
Taking the amplitude transmission coefficients along axes x and y of the
diattenuator as px and py, we have E ′x = pxEx and E ′y = pyEy hence:

p2
xE

2
x + p2

yE
2
y

p2
xE

2
x − p2

yE
2
y

2pxpyExEy cos (δ)

2pxpyExEy sin (δ)

 =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 ·


E2
x + E2

y

E2
x − E2

y

2ExEy cos (δ)

2ExEy sin (δ)


which resolves to the Mueller Matrix of a diattenuator:

Mdiat (px, py) =
1

2
·


p2
x + p2

y p2
x − p2

y 0 0

p2
x − p2

y p2
x + p2

y 0 0

0 0 2pxpy 0

0 0 0 2pxpy

 (4.33)

In the case of an ideal horizontal linear polarizer this matrix reduces to
Mpol = Mdiat (px, 0) ie:

Mpolh =
p2
x

2
·


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (4.34)
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and in the case of an ideal vertical linear polarizer to:

Mpolv =
p2
y

2
·


1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

 (4.35)

4.5.2.3 The Mueller Matrix of a Depolarizer

We define a depolarizer as an element that decreases the degree of polar-
ization P =

√
S2

1 + S2
2 + S2

3/S0. In general a depolarizer could also modify
the relative amount of light in any of the three states represented by S1

through S3, but we restrict ourselves to a pure depolarizer that only lowers
P without modifying the ratios S1/S2, S1/S3, S2/S3 or the total intensity
S0. A depolarization ratio α, 0 ≤ α ≤ 1 results in:

P ′ = αP√
S ′21 + S ′22 + S ′23/S0 = α

√
S2

1 + S2
2 + S2

3/S0√
S ′21 + S ′22 + S ′23 =

√
α2S2

1 + α2S2
2 + α2S2

3

which in turns implies the Mueller Matrix for a pure depolarizer:

Mdepol (α) =


1 0 0 0

0 α 0 0

0 0 α 0

0 0 0 α

 (4.36)

In the case of a perfect depolarizer we have α = 0 and (4.36) reduces to a
matrix full of zeros except for m00 = 1.

4.5.3 The Mueller Matrix of a rotated optical element

The Mueller matrices we have defined in 4.5.2 describe optical elements with
a fixed orientation. In practice a polarizer or a waveplate is often mounted
so that it can freely rotate about its optical axis, and it is desirable to
describe the behaviour of such rotated elements.
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Let us consider an optical element described by a Mueller matrix M in
the path of a beam of light with Stokes vector S. The output Stokes vector
is then S′ = M · S. Consider now that the optical element is rotated by an
angle θ: the Mueller matrix M does not describe it anymore; but if we -
mathematically - apply a rotation of angle −θ to the system consisting of
the input beams and the optical element, the resulting system corresponds
to the non rotated optical element now acting on an input beam with po-
larization rotated by −θ; this is exactly equivalent to a projection of the
polarization along the reference axes of the optical element. Applied di-
rectly to the electric field of the light, a rotation of angle θ is described by
the well known rotation matrix for a 2D vector:

[
Erx
Ery

]
=

[
cos (θ) − sin (θ)

sin (θ) cos (θ)

]
·

[
Ex

Ey

]
=

[
Ex cos (θ)− Ey sin (θ)

Ex sin (θ) + Ey cos (θ)

]

which in turn, when combined with 4.24-4.27 and4.29 gives us the Mueller
matrix for a rotator:

Mrot (θ) =


1 0 0 0

0 cos (2θ) − sin (2θ) 0

0 sin (2θ) cos (2θ) 0

0 0 0 1

 (4.37)

We can then compute the effect of a rotated element through the following
steps: decompose the polarization of the incoming beam along the main
axes of the rotated element, apply the Mueller matrix of the non-rotated
element to this state of polarization, and finally project the resulting state
back onto the original reference axes. The whole procedure is described by:

S′ = Mrot (θ) ·M ·Mrot (−θ) · S (4.38)

which produces a direct expression for the Mueller matrix of a rotated
optical element.

Carrying out the matrix multiplications in equation 4.38 we get the
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Mueller matrix of a waveplate with retardance 4ϕ rotated by an angle θ:

MWP (4ϕ, θ) =
1 0 0 0

0 cos2 (2θ) + cos (4ϕ) sin2 (2θ) (1− cos (4ϕ)) cos (2θ) sin (2θ) sin (4ϕ) sin (2θ)

0 (1− cos (4ϕ)) cos (2θ) sin (2θ) cos (4ϕ) cos2 (2θ) + sin2 (2θ) − sin (4ϕ) cos (2θ)

0 − sin (4ϕ) sin (2θ) sin (4ϕ) cos (2θ) cos (4ϕ)


(4.39)

and of a diattenuator rotated by an angle θ:

Mdiat (px, py, θ) =

1

2


p2
x + p2

y

(
p2
x − p2

y

)
cos (2θ)

(
p2
x − p2

y

)
sin (2θ) 0(

p2
x − p2

y

)
cos (2θ)

(
p2
x + p2

y

)
cos2 (2θ) + 2pxpy sin2 (2θ) (px − py)2 cos (2θ) sin (2θ) 0(

p2
x − p2

y

)
sin (2θ) (px − py)2 cos (2θ) sin (2θ)

(
p2
x + p2

y

)
sin2 (2θ) + 2pxpy cos2 (2θ) 0

0 0 0 2pxpy


(4.40)

which in turns reduces for an ideal horizontal polarizer (px = 1, py = 0) to:

Mpolh (θ) =
1

2


1 cos (2θ) sin (2θ) 0

cos (2θ) cos2 (2θ) cos (2θ) sin (2θ) 0

sin (2θ) cos (2θ) sin (2θ) sin2 (2θ) 0

0 0 0 0

 (4.41)

4.5.4 Measurement of the Stokes parameters

Now that we have an efficient tool to perform polarization calculus, we
can apply it to show how the Stokes parameters can be experimentally
measured. The method presented here is far from being the best, or even the
simplest, method to measure Stokes parameters, but it serves to illustrate
the physical meaning we gave to each of them in section 4.4.1.

Let us consider a beam of light of unknown polarization state S =
[S0 S1 S2 S3]. The intensity observed through an ideal horizontal linear
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polarizer is computed through:

1

2
·


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 ·

S0

S1

S2

S3

 =
1

2


S0 + S1

S0 + S1

0

0


and found to be equal to I1 = 1

2
(S0 + S1); likewise, an ideal vertical linear

polarizer yields an intensity I2 = 1
2
(S0 − S1). We directly obtain the first

two Stokes parameters by addition and subtraction:

S0 = I1 + I2

S1 = I1 − I2

If the polarizer is now rotated first at +45° and then at −45° we obtain the
two intensities I3 = 1

2
(S0 + S2) and I4 = 1

2
(S0 − S2) and straightforwardly:

S2 = I3 − I4

Finally we now place a quarter-wave plate in front the polarizer at +45°:

1

2
·


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

 ·


1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0

 ·

S0

S1

S2

S3

 =
1

2


S0 − S3

0

S0 − S3

0


to obtain I5 = 1

2
(S0−S3) and then rotate the polarizer to −45° which yields

I6 = 1
2
(S0 + S3). S3 is then given by:

S3 = I6 − I5

This method of measuring the Stokes parameters clearly shows the phys-
ical meaning of each one: S0 is the total intensity of the light, S1 represents
the fraction of the light that is predominantly either horizontally or verti-
cally linearly polarized, S2 is the same for linearly polarized light oriented at
±45°, and finally S3 is the fraction of light that is circularly polarized: the
quarter-wave plate transforms the circular component into linearly polar-
ized light at ±45° and the inclined polarizers measures it, the whole system
acting as a circular polarizer.

These four measurementes are sufficient to completely determine the
state of polarization.



Chapter 5

Polarized light in transparent
media

This chapter deals with the interaction of polarized light with transparent
media and focuses on two particular points: birefringence, its causes and
its effects, and reflection/transmission at an interface.

5.1 The notion of linear birefringence

We have seen in the wave equation 4.12 that the phase speed of light de-
pends on physical properties of the material, namely its permittivity ε and
permeability µ that combine into the refractive index n = c0/c =

√
εµ
ε0µ0

.
The electric field being of vectorial nature, it is sensitive to the refractive
index along its orientation. It is then interesting to study the scenario where
the index is not the same along i and j the two axes perpendicular to the
direction of propagation of light: the two components of the electric field
along each axis will “see” two different indexes of refraction. This is known
as linear birefringence and a material that displays this property is called
birefringent.

Equation 4.17 shows that after traveling through a dielectric material of
thickness z and refractive index n the electric field of a propagating wave
of pulsation ω has acquired a phase equal to 4ϕ = kz = ω

c0
nz = 2π

λ0
nz. If

the refractive indexes along the two axes i and j are n1 and n2, the electric

75
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field after the birefringent material is:

E(z, t) = (E0xe
i(ϕx+4ϕ1)i + E0ye

i(ϕy+4ϕ2)j)ei(kz−ωt)

and the phase difference between the two components is:

4ϕ =
2π

λ0

(n1 − n2) z =
2π

λ0

4n · z

In the end, a birefringent material has the effect of adding a phase difference
4ϕ between the two components of the electric field. The axis with the
highest refractive index is known as the slow axis of the material, as the
phase speed is the slowest of the two. Likewise, the axis with the lowest
refractive index is the fast axis of the material.

Since the orientation of the electric field depends on the relative, and not
absolute, phases of the two components, the effect of a birefringent material
with birefringence ∆n and thickness e is exactly that of a waveplate as
described in section 4.3.1 and it can be modelized by the Mueller matrix
5.1:

Mbiref

(
4ϕ =

2π

λ0

4n · e
)

=


1 0 0 0

0 1 0 0

0 0 cos
(

2π
λ0
4n · e

)
− sin

(
2π
λ0
4n · e

)
0 0 sin

(
2π
λ0
4n · e

)
cos
(

2π
λ0
4n · e

)


(5.1)
Naturally birefringent materials, such as quartz, are often used in practi-

cal implementations of wave plates by cutting them to the desired thickness.
For instance, a quarterwave-plate made of quartz, which has a birefringence
of ∆n ≈ 9.01 × 10−3 at λ0 = 670.8nm [47], would have a thickness of
18.6µm.

In opposition to linear birefringence, some material present a different
refractive index to right and left circular polarizations. This is known as
circular birefringence and its effect on a linear polarization is simply to
rotate its orientation angle. This effect is not used in the rest of this docu-
ment, and we only mention it succinctly to justify the “linear” adjective we
associated to birefringence.
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5.2 Stress-induced linear birefringence : the
piezo-optic effect

5.2.1 The dielectric tensor

In section 4.1 we stated that in an isotropic dielectric media the electric field
E and the electric displacement field D are linked by the dielectric constant
ε through the equation D(r, t) = εE(r, t). If the material is electrically
anisotropic, we can no longer assume that D and E are collinear; if we still
admit that there exists a linear relationships between the components [45,
p. 790], they are now linked by the set of equations:

Dx = εxxEx + εxyEy + εxzEz

Dy = εyxEx + εyyEy + εyzEz

Dz = εzxEx + εzyEy + εzzEz

(5.2)

from which we define the dielectric tensor ε:

ε =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


that links D to E through D(r, t) = εE(r, t). It can be shown that the
dielectric tensor is always a symmetric tensor, ie that is εij = εji (i, j =
x, y, z), which in turns implies that there always exists a system of coordi-
nates (x̂, ŷ, ẑ), in general different from (x, y, z), in which ε is diagonal [45,
pp. 791,792]:

ε̂ =

 εx̂ 0 0

0 εŷ 0

0 0 εẑ


εx̂, εŷ, εẑ are the principal dielectric constants, and and in this basis the
system 5.2 can be rewritten as:

Dx̂ = εx̂Ex̂

Dŷ = εŷEŷ

Dẑ = εẑEẑ
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The behaviour of the components of the electric field along each of the three
principal axes are now independent from each other and can be treated
separately: each component of the electric field interacts with a different
dielectric constant, which results for a non-magnetic material in each com-
ponent interacting with a different index of refraction nî = 1/

√
εî/ε0. We

drop the “ ˆ ” symbol from now on and always work in the principal basis
unless specified otherwise.

5.2.2 The effect of stress on an isotropic dielectric
material

We assume that in first approximation the variation in the dielectric con-
stant, 4ε, of a material due to stress is linearly dependent on the local
stress. This assumption has been largely verified experimentally over the
years since it was first proposed by Pockels (see references [37, 38, 39, 40, 42]
for instance). The stress in a material being in general described by a sym-
metric 3 × 3 tensor σ [48], that can always be represented as a diagonal
tensor in its principal basis just as the dielectric tensor. The two principal
bases need not in general be the same, and so σ will be in general linked to
4ε through a set of 6 × 6 coefficients, the piezo-optic or stress-optic con-
stants pijkl. In an isotropic dielectric, these 36 components reduce to only
two [49] and written in the system of coordinates of the principal stresses
we have:

4εxx
4εyy
4εzz
4εxy
4εxz
4εyz


=



p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 1
2
(p11 − p12) 0 0

0 0 0 0 1
2
(p11 − p12) 0

0 0 0 0 0 1
2
(p11 − p12)


·



σx
σy
σz
0

0

0


(5.3)

The first result from 5.3 is that 4εxy = 4εxz = 4εyz = 0, which
means that for an isotropic material, the principal dielectric directions are
the same as the principal stress directions.

Assuming small variations in the dielectric indices and since in an isotropic
material εx = εy = εz = 1/n2, 4εi ∼ −2δni/n

3 and we obtain the variation
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of the index of refraction along each direction due to stress:
δnx = −1

2
n3(p11σx + p12(σy + σz))

δny = −1
2
n3(p11σy + p12(σx + σz))

δnz = −1
2
n3(p11σz + p12(σx + σy))

(5.4)

If a plane wave now propagates in such stressed material along the z direc-
tion it will see two difference refraction indices nx = n−δnx and ny = n−δny
which finally gives an expression of the stress-induced birefringence in an
isotropic material :

4n = nx − ny =
1

2
n3(p11 − p12)(σx − σy) (5.5)

Experimentally we do not often access the piezo-optic constants directly,
so the 1

2
n3(p11 − p12) factor is often measured as a constant C called the

piezo-optic coefficient1 and the birefringence is 4n = C · (σx − σy).

5.3 Polarization effects at an interface

When a propagating electromagnetic wave comes in contact with an inter-
face between two dielectric material of different refraction index, the wave
is in general split into a refracted (transmitted) wave and a reflected wave.

To illustrate the reflection and transmission at an interface, consider
figure 5.1. An incident plane wave E(i), here represented as a ray of light
that indicates it propagation direction, reaches an interface between two
materials of respective refractive indices n1 and n2. At the interface E(i)

is split into a transmitted wave E(t) and a reflected wave E(r). The plane
that contains the incident ray and the normal to the surface is known as
the plane of incidence, and both the reflected and refracted rays lie in it
[45, p. 39].

1Or sometimes stress-optic coefficient, Brewster constant or elasto-optic coefficient.
When referring to the coefficients that link stress to index of refraction, the correct
prefix is either stress- or piezo-; elasto- should be reserved when the physical variable
one considers is an elongation (strain).



80 CHAPTER 5. POLARIZED LIGHT IN TRANSPARENT MEDIA

Figure 5.1: Reflection and transmission at an interface.

5.3.1 Snell’s law of refraction

The angle the refracted ray makes with the normal to the interface is related
to the angle of the incident wave through the law of refraction [45, p. 40]:

sin(θt) =
n1

n2

sin(θi) (5.6)

If n2 > n1there exists a real angle θt for any angle of incidence. On
the other hand, if n1 > n2 there exists a critical angle θc, found through
the equation sin(θc) = n2

n1
, above which n1

n2
sin(θi) > 1 and the transmission

angle becomes imaginary. In this situation no light is transmitted beyond
the interface, and this phenomenon is known as total internal reflection.
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5.3.2 The Fresnel reflection and transmission
coefficients

The behaviour of the transmitted and reflected electric fields are governed
by the Fresnel coefficients [45, p. 42]:

t⊥ =
E

(t)
⊥

E
(i)
⊥

=
2 sin(θt) cos(θi)

sin(θt + θi)
=

2n1 cos(θi)

n1 cos(θi) + n2 cos(θt)
(5.7)

tq =
E

(t)
q

E
(i)
q

=
2 sin(θt) cos(θi)

sin(θi + θt) cos(θi − θt)
=

2n1 cos(θi)

n2 cos(θi) + n1 cos(θt)
(5.8)

r⊥ =
E

(r)
⊥

E
(i)
⊥

= −sin(θi − θt)
sin(θi + θt)

=
n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)
(5.9)

rq =
E

(r)
q

E
(i)
q

=
tan(θi − θt)
tan(θi + θt)

=
n2 cos(θi)− n1 cos(θt)

n2 cos(θi) + n1 cos(θt)
(5.10)

where E⊥ denotes the component of the field perpendicular to the plane
of incidence and Eq the component parallel to the plane of incidence. These
coefficients compute the reflected and transmitted amplitudes ; one has to
square them to obtain the intensity coefficients. Only the properties of
reflected waves are needed in the rest of this document, and so we focus on
the reflection coefficients only.

5.3.2.1 Partial reflection and the Brewster angle

We first consider the case where n2 > n1. The reflection coefficients are real
for any value of the incidence angle, and are plotted on figure 5.2 for both
the parallel and perpendicular components of the electric field:
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Figure 5.2: Reflection coefficients at a dielectric interface (n1 = 1, n2 = 1.5,
approximately an air/glass interface).

An important property of dielectric reflection is immediately apparent:
there exists an incidence angle, the Brewster Angle θB, at which the com-
ponent of the field parallel to the plan of incidence is not reflected at all.
Only a portion of the perpendicular component is reflected, and thus the
reflected light is linearly polarized perpendicularly to the plane of incidence.
Looking at the transmission coefficient, this angle corresponds to a special
situation where the reflected and transmitted rays are at a 90° angle with
each other: θt = θr + π

2
= −θi + π

2
which implies that θi + θt = π

2
and since

1/ tan(π/2) = 0 we obtain rq = 0. Injecting this property in the law of
refraction 5.6 we obtain:

tan(θB) =
n2

n1

(5.11)

and r⊥ becomes:

r⊥(θB) =
n2

1 − n2
2

n2
1 + n2

2

(5.12)
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5.3.2.2 Total reflection

If we now consider the case where n1 > n2, we have mentioned before that
the transmission angle becomes imaginary when n1

n2
sin(θi) > 1.

We first rewrite the reflection coefficients by expressing cos(θt) as a
function of θi by using the trigonometric identity cos2(θt) + sin2(θt) = 1.
We obtain:

cos(θt) = ±
√

1− sin2(θt) = ±i
√

sin2(θt)− 1

= ±i

√(
n1

n2

sin(θi)

)2

− 1 (5.13)

As long as θi < θc we have n1

n2
sin(θi) < 1 ie

(
n1

n2
sin(θi)

)2

− 1 < 0, and so

cos(θt) = ±(i)2

√
1−

(
n1

n2
sin(θi)

)2

. Since the refracted ray is always inside

the second material, we see from figure [fig] that cos(θt) > 0 and from these
two relations we deduce that only the negative sign in front of the square
root in equation 5.13 corresponds to a physical situation and so:

cos(θt) = −i

√(
n1

n2

sin(θi)

)2

− 1 (5.14)

Using a similar argument for the sign of the square root, we can also give
an expression of cos(θi):

cos(θi) =
√

1− sin2(θi) (5.15)

We can now rewrite the reflection coefficients using equations 5.10, 5.9,
5.14 and 5.15:

r⊥ =
n1

√
1− sin2(θi) + n2i

√(
n1

n2
sin(θi)

)2

− 1

n1

√
1− sin2(θi)− n2i

√(
n1

n2
sin(θi)

)2

− 1

(5.16)

rq =
n2

√
1− sin2(θi) + n1i

√(
n1

n2
sin(θi)

)2

− 1

n2

√
1− sin2(θi)− n1i

√(
n1

n2
sin(θi)

)2

− 1

(5.17)
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As long as θi < θc, r⊥ and rqare real as before. Once θi > θc they become
complex numbers, and computing their modulus yields:

|r⊥| = r⊥r
∗
⊥ = 1

|rq| = rqr
∗
q = 1

which indicates that the amplitude of the field of the reflected wave is equal
to that of the incident wave: the light is totally reflected at the interface as
illustrated on figure 5.3.

Figure 5.3: Reflection coefficients at an interface with n1 = 1.5, n2 = 1)

In contrast, the arguments of the reflection coefficients are not zero and
thus a total internal reflection adds a phase shift to each component of the
field. To find the phase shift on each component we write the reflection
coefficients in their polar forms:

r⊥ = |r⊥| eiϕ⊥

rq = |rq| eiϕq
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with ϕ⊥ and ϕq defined by [45, p. 52]:

tan(
1

2
ϕ⊥) = −

√
sin2(θi)−

(
n2

n1

)2

cos(θi)

tan(
1

2
ϕq) = −

√
sin2(θi)−

(
n2

n1

)2

(
n2

n1

)2

cos(θi)

Since polarization effects arise from phase differences between the two com-
ponents of the electric field, we express the phase difference δr = ϕ⊥ − ϕq
resulting from a total internal reflexion as:

tan(
1

2
δr) = −

cos(θi)

√
sin2(θi)−

(
n2

n1

)2

sin2(θi)
(5.18)

which we plot on figure 5.4.
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Figure 5.4: Phase difference between the two components of the field after
a reflection (n1 = 1.5, n2 = 1).

5.3.3 The Mueller matrix of a reflection

We now use the tools of section 4.5 to modelize the effects of a reflection at
an interface in terms of its effects on polarization.

5.3.3.1 The Mueller matrix of a partial reflection

We have seen that as long as the incidence angle is below the critical angle
the reflexion coefficients are real. In this case a different proportion of each
component of the field is transmitted, and as such a partial reflection behave
exactly as a diattenuator [50]. We recall the Mueller matrix from section
4.5.2.2, and taking px = r⊥ and py = rq as defined in equations 5.9 and 5.10
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we obtain:

Mpr (n1, n2, θi < θc) =
1

2
·


r2
⊥ + r2

q r2
⊥ − r2

q 0 0

r2
⊥ − r2

q r2
⊥ + r2

q 0 0

0 0 2r⊥rq 0

0 0 0 2r⊥rq

 (5.19)

At the Brewster angle we have rq = 0 and r⊥ =
n2
1−n2

2

n2
1+n2

2
, which yields:

Mpr (n1, n2, θB) =
1

2
·
(
n2

1 − n2
2

n2
1 + n2

2

)2

·


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (5.20)

and we verify that indeed a reflection at this particular angle acts as a linear
polarizer.

5.3.3.2 The Mueller matrix of a total internal reflection

Above the critical angle, the reflection coefficients become complex with an
unitary amplitude and an argument δr = ϕ⊥ − ϕq as defined in equation
5.18. A pure phase shift is exactly the effect of a waveplate as defined in
section 4.5.2.1 and thus the equivalent Mueller matrix for a total reflection
is:

Mtr (n1, n2, θi > θc) =


1 0 0 0

0 1 0 0

0 0 cos (δr) − sin (δr)

0 0 sin (δr) cos (δr)

 (5.21)





Part III

Piezo-optic Pressure Sensor

89





Introduction

After having presented both the commercial and scientific environment the
present work fits in as well as the theoretical tools that are going to be used,
we now enter into a more detailed description of the proposed piezo-optic
pressure sensor.

Chapter 6 presents the conceptual design of our sensor. We start by
exposing the underlying idea, the various environmental and commercial
constraints and the resulting expected performances of the sensor. A critical
look at the initial design leads to the highlighting of a few keys points that
can be modified in order to improve the overall quality of the proposed
sensor. Each problem is analyzed and solved to result in a refined proposal.
The final concept uses an original approach, different from the one usually
seen in polarimetric sensors.

Chapter 7 concerns itself with the modelization of the proposed sensor
using the theoretical tools presented before. We first modelize each compo-
nent of the sensor in terms of Mueller matrices and show the final integrated
behaviour of the device in response to pressure. The next section deals with
tolerancing. We analyze the theoretical sensitivity of our design to mechan-
ical construction errors as well as to temperature fluctuations and establish
a theoretical model of the precision and accuracy of the sensor in the ab-
sence of calibration. We also propose solutions to physically compensate
for temperature-induced uncertainties when necessary.
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Chapter 6

Conceptual design of a
piezo-optic pressure sensor

This chapter presents the evolution of the proposed sensor from a simple
initial concept to a more polished design. The initial idea is presented in de-
tails with its strengths and weaknesses. We present the different constraints
- both environmental and commercial - the sensor would be subjected to,
as well as its qualities with regards to each of them. From this analysis we
find the key points that can be improved and propose a revised concept for
the sensor.

6.1 Initial concept

The proposed sensor is based on a simple idea: a dielectric material sub-
jected to a force will become birefringent through the piezo-optic effect, as
presented in chapter 5. This birefringence can be analyzed by using po-
larized light, and the amplitude of the force can thus be deduced. This
principle, upon which we will build the rest of the discussion, is illustrated
in figures 6.1 (a) and (b).
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(a) (b)

Figure 6.1: Initial concept of a piezo-optic pressure sensor. (a) 2D sketch
of the principle, (b) 3D representation of a possible realization.

A source of unpolarized light sends a beam through a first polarizer, then
through the dielectric material embedded in a rigid cell and finally through
a second polarizer; the output intensity is detected on a photodetector.
The presence of the rigid cell is motivated by two reasons: firstly only one
face of the dielectric material is under pressure, effectively converting the
pressure into a directional force, and secondly the cell allows the portion
of the system potentially exposed to the fluid to be quite small and more
robust, greatly reducing the risk of leakage.

We now present how this system works in greater details.

6.2 Modelization

6.2.1 Mechanical modelization

We modelize the dielectric transducing portion of the system as a cylinder
oriented along y. The rigid cell prevents any deformation along x and z
as well as any movement of the lower face of the cylinder. Only the top
face is free, and that face is subjected to a pressure P . The two windows
through which the light will enter and exit the cell are along the x axis
and are considered small compared to the size of the system. The dielectric
cylinder has Young modulus E, Poisson ratio ν and diameter d.
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Considering only elastic deformations, we can calculate the distribution
of stress σ and strain δ in the material using Hooke’s Law [51]. Owing
to the isotropy of the material and the uniformity of the constraints, any
solution in a elementary portion of the volume will be valid for the whole
cylinder and no shear stresses or strains can appear. Hooke’s laws gives the
elementary displacements as:

δx = 1
E

(σx − ν(σy + σz))

δy = 1
E

(σy − ν(σx + σz))

δz = 1
E

(σz − ν(σx + σy))

(6.1)

The cylindrical symmetry of the geometry imposes that σx = σz = σ, and
the fact that the rigid cell prevents any displacement along x and z imposes
δx = δz = 0. The stress along y is only due to the pressure on the element,
ie σy = −P , and we can now easily solve the problem:

δx =
1

E
(σx − ν(σy + σz)) =

1

E
(σ − ν(−P + σ)) = 0

ie σ = − νP

1− ν

δy =
1

E
(σy − ν(σx + σz)) =

1

E
(−P − 2νσ)

ie δy = −P
E

(
1− 2ν2

1− ν

)
and in the end we have:

δx = 0

δy = −P
E

(
1− 2ν2

1−ν

)
δz = 0


σx = − νP

1−ν

σy = −P

σz = − νP
1−ν

(6.2)

These results are independent from the dimensions of the cylinder and are
valid at all points in the volume under pressure.

In a practical device the dielectric cylinder would be bound to the walls
of the cell, resulting in a non-uniform stress in the path of the light. The
problem can be modelized and solved using a Finite Element Method (FEM)
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simulation to obtain the kind of “realistic” stress and strain profiles illus-
trated in figure 6.2:

Figure 6.2: FEM (COMSOL) Simulation of a realistic device with the edges
of the dielectric cylinder rigidly bound to the rigid cell (not shown). The
gradient indicates internal stress, and the apparent deformation is propor-
tional to the computed surface deformation.

The magnitude of the effect of the walls on the stress/strain distribu-
tion will depend on various parameters, but with a wide enough cylinder
and small overall deformations this error can be small enough to be safely
ignored in a first modelization of the problem. The validity of this simplifi-
cation will be further justified in chapter 7 through a comparison between
FEM models.

6.2.2 Optical modelization

Using the Mueller matrices presented in section 4.5 and 5.1, the behaviour
of the system is straightforward to modelize. So far we have not specified
the orientations of the different optical elements, and so we have in general:

M = Mdiat (px2, py2, θ2) ·MCell ·Mdiat (px1, py1, θ1)

We choose to use the direction of the force on the dielectric cylinder, ie y, as
the reference for angular positions. From the stress-induced birefringence
result of section 5.2 and the mechanical stress in 6.2 we find that the phase
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difference due to the pressure is:

4ϕ =
2π

λ
· d · 4n =

2π

λ
· d · C · (σx − σy)

=
2π

λ
· d · C · P · 1− 2ν

1− ν
(6.3)

and we can explicit MCell:

MCell =


1 0 0 0

0 1 0 0

0 0 cos
(

2π
λ
· d · C · P · 1−2ν

1−ν

)
− sin

(
2π
λ
· d · C · P · 1−2ν

1−ν

)
0 0 sin

(
2π
λ
· d · C · P · 1−2ν

1−ν

)
cos
(

2π
λ
· d · C · P · 1−2ν

1−ν

)


(6.4)

Carrying out the multiplications and applying the resulting matrix to the
Stokes vector for an unpolarized light, we find that the output intensity is:

I =
I0

4
·
(
p2
x2 + p2

y2

) (
p2
x1 + p2

y1

)
(6.5)

+
I0

4
·
(
p2
x2 − p2

y2

) (
p2
x1 − p2

y1

)
cos (2θ1) cos (2θ2)

− I0

4
·
(
p2
x2 − p2

y2

) (
p2
x1 − p2

y1

)
sin (2θ1) sin (2θ2) cos

(
2π

λ
· d · C · P · 1− 2ν

1− ν

)
We see from this expression that the overall sensitivity of the sensor will
depend on the quality of the polarizers and on the relative angular orien-
tations of the elements. The sensitivity to the pressure is readily seen to
depend on the term sin (2θ1) sin (2θ2), and will be maximum if θ1 and θ2

are multiples of π/4. We can reach a similar conclusion without the explicit
formula through a more physical and visual approach to the problem:

Consider a totally polarized light as the sum of two independent trans-
verse waves respectively oscillating along x and y, of amplitudes Ex, Ey.
These waves cross a birefringent element with its axes also aligned with x
and y. In this configuration the birefringent material simply adds a differ-
ent phase to each component of the light. Consider the case where Ex = 0:
the output beam is only polarized along y and though its phase will vary
its intensity will not; but if Ex increases both waves have to be summed to
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find the output state of polarization, and the phase component starts hav-
ing an effect. The same result is of course true for Ey = 0, and intuitively
the maximum effect is attained when Ex = Ey. In the case of a linearly
polarized input light, this corresponds to a ±45° inclination of the input
polarizer with regards to the stress axes.

To find the optimal orientation for the output polarizer we can reason
in a similar way: if it is oriented along either x or y it will only “select”
Ex or Ey, totally ignoring any phase difference effect. The optimal angle
is then once again ±45°, which means the two polarizers have to be either
crossed or parallel to each other.

Finally we can use a graphical simulation, presented on figure 6.3 of the
sensitivity with regards to the angles to confirm our result:

Figure 6.3: Sensitivity depending on the angles of the input and output
polarizers. The sensitivity is calculated here as the difference between the
minimum and maximum output intensity for each combination of polarizer
angles.

We see clearly that the maximums of sensitivity are attained for any
combination of θ1 = ±45° and θ2 = ±45° as expected. Another interesting
aspect is that the peaks are rather flat which indicates a low sensitivity
to positioning errors; this particular aspect of the system, along with its
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sensitivity to various other parameters, will be further studied in the next
section.

6.3 Performances and limitations of the
proposed concept

Now that the mechanical and optical behaviors of our sensing system are
clearer, we analyze it in terms of performances: realistic ranges of pressure
that can be measured, measurement precision, and sensitivity to fabrication
errors.

We then analyze it further in terms of commercial feasibility, mainly
by checking the cost/quality ratio of our sensor compared to commercially
available products.

6.3.1 Theoretical performances

6.3.1.1 Sensor size and pressure measurement range

Simplifying equation 6.5 by considering perfect polarizers at the ideal incli-
nation, we find that the output intensity of our sensor would follow:

I =
I0

4
·
(

1− cos

(
2π

λ
· d · C · P · 1− 2ν

1− ν

))
(6.6)

The periodicity of this function restricts the unambiguous measurement of
its phase to one period and we have a first restriction on the pressure we
can measure:

P 5
λ

d
· 1− ν

1− 2ν
· 1

C
(6.7)

We grouped the parameters depending on the level of control that we can
have over them: the wavelength and the length of the cylinder can be
somewhat freely selected, the second term depends on the geometry of the
cell (most importantly on whether the cylinder is allowed to deform in a
given direction) and on the Poisson ratio, and the last variable is set by the
choice of the dielectric material.

We now impose further restrictions to our sensor, keeping in mind that
they are just rough constraints to make the problem more realistic:
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• The cost being of importance, the light source should be the cheapest
possible. The oldest, easiest to produce and thus cheapest LEDs emit
in the red and infrared regions [52]; we select 650nm as a reference
wavelength,

• A second consequence of the cost limitation is that the dielectric has to
be readily available. Such common transparent materials include glass
as well as polymethylmethacrylate (PMMA) and a variety of other
polymers [53, 54]; these two examples have physical properties typical
of the materials we could use, and we will use them as reference,

• The size of the sensor is somewhat limited by its commercially avail-
able equivalents to a few centimeters in length at most, so we impose
that the dielectric path be no longer than two centimeters.

With these additional constraints we can estimate that the sensor will mea-
sure pressures on a full scale of as little as 400mbar with a soft polymer1.
The range can be increased to much higher pressures by a suitable choice
of material, and for instance a full scale of 100 bar using typical PMMA2

cylinder is attainable for d 5 2.1 cm.

6.3.1.2 Sensitivity to pressure

As discussed in section 6.2.2, the overall amplitude of the response of our
transducer can be maximized by selecting the optimal angles for the polar-
izers. The resulting output intensity, assuming that we are using perfect
polarizers, then follows equation 6.6, where is it seen that the response
follows a sine function with respect to increasing pressure.

Taking the Taylor expansion of equation 6.6 near three different points
of the sine curve, 4ϕ = 2π

λ
· d · C · 1−2ν

1−ν · P = K · P = 0, π
2
, π, pro-

vides information on the sensitivity of the sensor. For low pressures, ie
around the zero of the sine curve, the intensity varies with the square of
the pressure: the sensor has very poor sensitivity and a highly non-linear
response; around the middle of the curve the intensity is proportional to
pressure with maximum sensitivity and linearity; finally at the “top” of the
sine the intensity varies once again with the square of the pressure. These

1d = 2 cm, ν = 0.4, C = 1.2 · 10−9 Pa−1 [54]
2Plexiglas 55, ν = 0.345, C = 3.3 · 10−12 Pa−1 [55, 56]
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conclusions immediately apparent when looking at figure 6.4 which shows
a typical pressure/intensity response curve:

Figure 6.4: A typical pressure/intensity response curve, which illustrates
the differences in sensitivity depending on the measurement point.

Clearly the most favorable point of measurement is around the ϕ = π/2
portion of the response curve as it is the point where the sensitivity is
maximal and the response is the most linear. Using this result in the Mueller
matrix of our birefringent cell (equation 6.4), we obtain the Mueller matrix
of a quarter-wave plate with its axes aligned with our reference axes. The
combination of a quarterwave-plate right after a linear polarizer inclined at
45° always results in a circular polarization, and so the best performances of
the proposed sensor are attained when the detected polarization is circular.

6.3.1.3 Sensitivity to temperature

One critical point, if the transducer is to be integrated in an industrial
product, is its behaviour under temperature changes. Temperature could
easily affect the precision or the accuracy of a sensor, so its sensitivity to
temperature has to be carefully checked and made as small as possible.

In our case temperature can have an effect on three different parameters
of the transducer:

- it can modify the refractive index of the dielectric material [57],

- it can result in a deformation of the geometry through temperature-
induced dilatation and contraction [58, 59]; a dilatation or a



102
CHAPTER 6. CONCEPTUAL DESIGN OF A PIEZO-OPTIC

PRESSURE SENSOR

contraction can, in turn, result in a new distribution of stress
in the material,

- the Young modulus and Poisson ratio of the material depend on
temperature and will also be modified [58, 59].

All of these effects will have to be taken into account and potentially com-
pensated for if they turn out to be too important to maintain the precision
within the desired range.

6.3.1.4 Systematic errors

The sensitivity to temperature was singled out in the previous section be-
cause of its importance, but it is only one of the various possible sources
of measurement uncertainty in the proposed sensor. The temperature-
independent optical sources of uncertainty can be identified in equation
6.5: in the subsequent analysis we assumed perfect polarizers and a perfect
alignment of the optical components, which is of course never the case in
practice [60].

The first limiting factor is the quality of the polarizers: as can be seen
in equation 6.5 a non-zero extinction along the extinction axis will result in
a systematic error:

4Iext =
I0

4
·
(
1−

(
p2
x2 + p2

y2

) (
p2
x1 + p2

y1

))
that is in effect a constant bias added to the measured pressure. The same
defects in the polarizers will also impact the sensitivity of the system as can
be seen in equation 6.5.

The second source of error is the alignment of the polarizers with respect
to each other and to the direction of applied force. In the same manner as
before we can see that an error on the alignment, in the presence of non-ideal
polarizers, results in a systematic error:

4Ialign =
I0

4
·
(
p2
x2 − p2

y2

) (
p2
x1 − p2

y1

)
cos (2θ1) cos (2θ2)

As with the extinction ratio, this issue results in a lower sensitivity.
Preventing these systematic errors requires high quality polarizers and a

precise alignment method, but they could also be compensated for through
a calibration phase for each sensor previously to its use.
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6.3.2 Commercial and technological constraints

So far we have only analyzed the theoretical behaviour, and potential prob-
lems, of the proposed system. Another aspect of the problem to take into
consideration, if the ultimate goal is a commercial application, is the overall
cost of producing the sensor. Putting aside everything not related to the
optical portion of the device, we can split the cost into the cost of the indi-
vidual elements and the cost of assembling these elements, ie the complexity
of the system.

So far the proposed design requires at least three purely optical com-
ponents (ignoring the light source, detector, and the accompanying elec-
tronics): two polarizers and the dielectric cell. While the dielectric cell can
be made of any convenient material and is a very flexible component, the
polarizers pose more of a problem. Plastic “Polaroid” polarizers are cheap,
but their poor extinction ratio [61] will create a systematic error as seen
in the section 6.3.1.4. High quality polarizers would reduce that error, but
they are much more expensive and difficult to handle.

The second source of production costs is the inherent complexity of the
system and the number of steps it would take to build it. Here the costly
steps would mainly be the alignment of the polarizers. As we have seen
in section 6.3.1.4, an alignment error is yet another source of systematic
error, and a precise alignment can only be achieved through optical control,
hardly a simple step to add to a production chain.

Although the problems listed here are not intractable in the proposed
setup, they are best addressed through a redesign of the transducer.

6.4 Revised concept

The previous section presented a basic concept for a piezo-optic pressure
transducer. Although the proposed setup is a straightforward application
of the theoretical principles that make this transducing method work, it
presents several shortcomings and weaknesses that we now try to negate.
The main issues were the price and quality of polarizers, the low sensitivity
around the “null pressure” point, and the overall complexity of the system.
We now address these points one by one and unify the resulting solutions
into a revised design proposal.
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6.4.1 Maximization of the sensitivity

We deduced in section 6.2.2 a condition on the orientation of the input
and output polarizers to maximize the sensitivity of the sensor. We now
produce a more general demonstration where the input state of polarization
is not linear anymore but can be any fully-polarized state.

We consider, as before, a dielectric cell with one of its faces submitted
to the pressure to be measured. The force applied to the dielectric material
is in strictly vertical (see 6.2.1), so the total effect is that of a vertical
variable-phase waveplate as we presented in equation 6.4. After passing
through the cell, the light goes through a linear polarizer that can be set at
any desired angle before hitting the detector. Assuming that we use perfect
components the output of the full system can be described by:

Sout = MRotator(−θpol) ·MPolarizer ·MRotator(θpol) ·Mwaveplate(4ϕ) · Sin

where the first component of Sout will be the intensity seen by the detector.
Carrying out the multiplications and looking only at S0out which con-

tains the intensity seen by the detector, we find that:

Iout = S0out =
1

2
·(S0in + S1in cos(2θpol) + (S2in cos(∆ϕ)− S3in sin(∆ϕ)) · sin(2θpol))

(6.8)
The first noticeable aspect of this equation is that the amplitude of

the force-dependent portion of the output intensity is directly modulated
by the orientation of the output polarizer through the term sin(2θpol). The
amplitude is maximal for sin(2θpol) = ±1, ie for θpol = π

4
+n· π

2
, which means

that the axes of the polarizer have to be oriented at ±45° of the vertical
axis for best performances. This is the same result we found before, and
we select this angle for the rest of the analysis.

Another point of interest is revealed through the application of the
trigonometric identity

S2in cos(∆ϕ)− S3in sin(∆ϕ) =
√
S22

in + S32
in · sin(∆ϕ+ Φ)

where tan(Φ) = S2in
−S3in

. Since we only considered totally polarized light we
know that S12

in+S22
in+S32

in = S02
in ie that

√
S22

in + S32
in = S0in·

√
1− S12

in

which has to be maximized in order to once again optimize the sensitivity.
The maximum is obviously attained for S12

in = 0 which gives a new strong
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constraint on the input state of polarization for best performances of the
setup.

With these two conditions,{
θpol = ±45°

S1in = 0

we have maximized the sensitivity of the setup and the output intensity is,
similarly to equation 6.6:

Iout
Iin

=
1

2
· (1 + sin(∆ϕ+ Φ))

Because Φ depends on S2in
−S3in

, changing the input state of polarization
changes the zero point of the sensor on the response curve, and thus the
sensitivity to pressure around that point. Exactly as discussed in section
6.3.1.2 we can see that the response is most sensitive and linear for a circu-
lar input polarization, but one additional important information from this
derivation is that the polarization only has to be circular when it reaches
the output polarizer ; as long as S1in = 0 before entering the piezo-optic
cell, the sensitivity will be maximum. This deduction decorrelates the op-
timization of the sensitivity of the piezo-optic process and the optimization
of the sensitivity of the detection process and grants us more freedom in
the conception of the overall system.

We can now optimize the sensitivity of the detection process, or rather
recall that we already did before in section 6.3.1.2: we have shown that
the detection sensitivity in highest in the quasi-linear part of the typical
sinusoidal response curve, which corresponds to a circular polarization right
before the final linear polarizer.

From the two conclusions above we now know how to, at least in prin-
ciple, maximize the sensitivity of the transducer.

6.4.2 Reduction of the complexity of the design

6.4.2.1 Generation of the optimal state of polarization

We have shown that maximal piezo-optic sensitivity is attained when the
state of polarization entering the piezo-birefringent portion of the sensor
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verifies the condition S1in = 0. As for the maximal sensitivity of the detec-
tion, it is attained for a circular polarization at the output linear polarizer.

The first condition is easily achieved by rotating the input polarizer to
45° of the principal axes of the pressure-sensitive section.

The second requirement can be met by placing a quarter-wave plate in
the path of the light, either before or after piezo-birefringent area. Both
of these solutions have the inconvenience of adding another component to
the sensor, a component that has to be precisely aligned; moreover, good
quarter-wave plates are expensive, and cheap plastic ones are notoriously
sensitive to temperature. Alternatively, we can use the polarizing properties
of reflections to achieve the desired optical functions.

We have seen in chapter 5 that partial and total reflections at a dielec-
tric boundary have respectively the properties of a diattenuator and of a
waveplate. Our goal being to emulate a quarter-wave plate, we can make
use of the phase shift induced by a total internal reflection to transform
a linear polarization into a circular one. This is essentially the problem
solved by Fresnel in the creation of the Fresnel rhomb [45, p. 53], and we
are confronted with the same issue: the refractive index of usual materi-
als is too small to generate a full π/2 phase shift in a single reflection (on
figure 5.4 for instance, at a typical glass/air interface, the maximum phase
shift is a little over 45°); this is easily solved by ensuring that the beam of
light reflects twice to achieve the desired total phase shift. For instance,
numerically solving for the incidence angle in equation 5.18 with δr = π/4,
n1 = 1.5, n2 = 1 we obtain two values for the “semi-circularizing” angle:

θsc =

{
50.2°

53.3°

We can find the minimum value for n2/n1 that allows a π/4 phase shift
by differentiating δr with regards to θi in equation 5.18 and equating the
result to zero in order to find the angle for which the phase difference is
maximum. This yields:

θm =
π

2
− arcsin

(√
(n1/n2)2 − 1

(n1/n2)2 + 1

)
(6.9)

and inserting it back into 5.18:

tan(
1

2
δr) =

(n1/n2)2 − 1

2(n1/n2)
(6.10)
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Finally, solving 6.10 for δr = π/4 yields the condition on the ratio of the
refraction indices:

n1

n2

≥ 1.4966 (6.11)

At this particular ratio, the semi-circularizing angle is, as per equation 6.9,
equal to 51.79°.

6.4.2.2 Replacement of the polarizers

One method to easily attain high degrees of linear polarization is to make
use of the Brewster Angle at a reflection. We discussed this effect in section
5.3. To summarize the principle, there exists an angle θB for which the
reflected light will be totally linearly polarized perpendicularly to the plane
of incidence.

Since this effect is dependent on the angle of incidence, and hence the
divergence of the light source, planar polarizers are often preferred as they
are not as challenging to align and use. Brewster polarizers are also more
bulky than their conventional counterparts. They are mostly used when
extremely high extinction ratios that can not be attained by regular po-
larizers are required, and this results in most available Brewster polarizers
being very precise and expensive optical components. In the case of our
pressure transducer, we are in the special situation where even low-quality
Brewster polarizers would give us a much better extinction ratio than low-
cost Polaroid ones for a comparable final cost, as they can be molded in
plastic or any other easily usable material. Moreover we already plan on
using reflection effects to generate circular polarization, and consequently
adding one more interface at a precise angle will not be a problem.

6.4.3 Proposed design for a piezo-optic pressure
sensor

Building on all the ideas put forward in this chapter, we can now propose a
monolithic design for a piezo-optic pressure sensor, presented on figure 6.5.

The first component of the system is a LED so as to provide cheap,
reliable, and relatively monochromatic unpolarized light (1). This unpo-
larized beam enters a single specially shaped block of dielectric material,
and the first interface it crosses is at the Brewster angle (2); the beam is
now linearly polarized in the incidence plane of the Brewster interface (3).
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The next surface (4) has its plane of incidence oriented at 45° to that of
the Brewster interface, and the incidence angle of the beam is θsc so that
a relative phase shift of π/4 is added, resulting in an elliptic polarization
(5). The light now enters the pressure-sensitive section of the sensor, which
consists in a rigid cell (not shown) encasing the dielectric material (6), en-
suring that hydraulic pressure will only act on one of its faces; the cell has
two optical windows to let the light beam in and out (not shown). The
rest of the system is symmetrical to the first part: the light next reaches a
second interface at the angle θsc, before being filtered by a second Brewster
interface. Finally the output intensity is detected on a photodetector (7).

In the schematic representation presented here the pressure applied on
(6) would be transmitted to the whole material and modify its properties
outside of the area of interest, but in practice the section under pressure
would be isolated inside a steel vessel (with windows to let the light through)
around which the rest of the device would be molded.

Figure 6.5: 3D representation of the proposed optical component for a
piezo-optic pressure sensor
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This orignal design presents several advantages, the main one being that
it can essentially molded in a single block of transparent material. Once a
mold has been realized, each sensor can be produced in only a few steps
and does not require any sort of setup to align optical elements. Once the
monolithic portion has been molded the optical portion of the device is
ready. Another advantage, as discussed before, is that the sensor works in
its range of maximum sensitivity; the response is also quasi-linear and does
not require complex electronic corrections to output a pressure value.





Chapter 7

Modelization of the proposed
piezo-optic pressure sensor

We now consider the concept proposed in the previous chapter and modelize
its behaviour using the theoretical tools presented in chapters 4 and 5. Once
the system has been modelized in terms of Mueller matrices, we explicit its
response in an ideal scenario. We then analyze and quantify the different
sources of error and uncertainty that can appear in a real device.

7.1 Optical modelization

7.1.1 Description

We briefly recall the principle of the device being modelized, as illustrated
on figure 7.1.

An unpolarized beam of light enters a transparent material. It is re-
flected on a first interface at the Brewster angle θB, then on a second in-
terface at the angle θhc; the plane of incidence on the first interface (1) is
tilted 45° from the plane of incidence (2) on the second interface. The beam
of light next passes through a section of the device that can be subjected
to an external pressure. In a symmetrical manner, it is then once again
reflected at the angle θhc and on a final interface at the Brewster angle; the
two planes of incidence are tilted at 45° of each other.

111
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Figure 7.1: Schematic of the path followed by a ray of light inside the
proposed device

7.1.2 Mueller-Stokes modelization

We now describe the system in terms of Mueller matrices and calculate the
Stokes vectors that describe the polarization at different points along the
optical path. Mueller matrices and Stokes coefficients are defined in a given
basis, and in the case of reflections at an interface we use the one defined by
the plane of incidence and the propagation direction. As seen in figure 7.1
the light propagates in three non-collinear planes as it crosses the device.
The Mueller matrices will always be defined in the plane of incidence of
the reflection they describe, and we will specify the plane which serves as
reference for the Stokes coefficients with the exponent S(i).

The source emits unpolarized light. Ignoring eventual losses at the en-
trance of the device, the normalized initial Stokes vector is S(1)

in = [1; 0; 0; 0].

The first reflection is a partial reflection at the angle θB1, equal or close to
the Brewster angle, and is described by Mueller matrix 7.1 (using equations
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5.10, 5.9 and 5.19):

Mpr (n1, n2, θB1) = 1
2
·


r2
⊥ + r2

q r2
⊥ − r2

q 0 0

r2
⊥ − r2

q r2
⊥ + r2

q 0 0

0 0 2r⊥rq 0

0 0 0 2r⊥rq


r⊥ = − sin(θB1−θt1)

sin(θB1+θt1)
= n1 cos(θB1)−n2 cos(θt1)

n1 cos(θB1)+n2 cos(θt1)

rq = tan(θB1−θt1)
tan(θB1+θt1)

= n2 cos(θB1)−n1 cos(θt1)
n2 cos(θB1)+n1 cos(θt1)

(7.1)

after which the Stokes vector becomes S
(1)
1 = Mpr (n1, n2, θB1) · Sin. The

plane of incidence of the second reflection being tilted at θ1 = 45° with
respects to the plane of incidence of the first reflection, so we have to perform
a rotation of the basis in which we describe the Stokes coefficients before
carrying out the next calculation. Taking the second plane as the new
reference, this is in effect equivalent to the polarization being subjected to
a rotation of angle θ1 described by Mueller matrix 7.2 (from equation 4.37):

Mrot (θ1) =


1 0 0 0

0 cos (2θ1) − sin (2θ1) 0

0 sin (2θ1) cos (2θ1) 0

0 0 0 1

 (7.2)

and the Stokes parameters in the correct basis are described by S
(2)
1 =

Mrot (θ1) ·Mpr (n1, n2, θB1) · S(1)
in .

The second reflection is a total reflection at the angle θsc1, and it is
described by Mueller matrix :

Mtr (n1, n2, θsc1) =


1 0 0 0

0 1 0 0

0 0 cos (δr1) − sin (δr1)

0 0 sin (δr1) cos (δr1)


tan(1

2
δr1) = −

cos(θsc1)

√
sin2(θsc1)−

(
n2
n1

)2
sin2(θsc1)

(7.3)

The Stokes vector at this point is then S
(2)
2 = Mtr (n1, n2, θsc1) · S(2)

1 .
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Next, the beam of light propagates through the piezo-birefringent sec-
tion of the system. We recall from equation 6.4 that it is described by the
Mueller matrix:

MCell(4ϕ) =


1 0 0 0

0 1 0 0

0 0 cos (4ϕ) − sin (4ϕ)

0 0 sin (4ϕ) cos (4ϕ)


4ϕ = 2π

λ
· d · C · P · 1−2ν

1−ν

(7.4)

and the state of polarization at this point is described by the Stokes vector
S

(2)
3 = MCell(4ϕ) · S(2)

2 .
The system is then symmetrical: a total reflection at angle θsc2 yields

S
(2)
4 = Mtr (n1, n2, θsc2) ·S(2)

3 , and a last partial reflection at angle θB2 after
a rotation of angle θ2 finally results in the output Stokes vector S

(1)
out =

Mpr (n1, n2, θB2) ·Mrot (θ2) · S(2)
4 .

We can now describe the total polarimetric behaviour of the system by
a single Mueller matrix:

M = Mpr (n1, n2, θB2) ·Mrot (θ2) ·Mtr (n1, n2, θsc2) (7.5)
×MCell(4ϕ)

×Mtr (n1, n2, θsc1) ·Mrot (θ1) ·Mpr (n1, n2, θB1)

7.1.3 Ideal optical behaviour

Let us consider the case where all the angles in the previous modelization
are perfectly equal to their desired value: θB1 = θB2 = θB, θ1 = θ2 = 45°
and θsc1 = θsc1 = θsc. The two partial reflections simplify to:

Mpr (n1, n2, θB) =
1

2
·
(
n2

1 − n2
2

n2
1 + n2

2

)2

·


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0
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the two total reflections to:

Mtr (n1, n2, θhc) =

√
2

2


√

2 0 0 0

0
√

2 0 0

0 0 1 −1

0 0 1 1


and the two rotations to:

Mrot (π/4) =


1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1


Carrying out the operations in equation 7.5 we obtain the Mueller matrix
for an “ideal” device:

M =
1

4
·
(
n2

1 − n2
2

n2
1 + n2

2

)4

· (1 + sin(4ϕ)) ·


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (7.6)

Equation 7.6 is clearly the Mueller matrix of a linear polarizer with an
optical density that depends on the pressure. Assuming the light at the
input is totally unpolarized, i.e. Sin = I0 · [1; 0; 0; 0], the output intensity is
then:

I =
I0

4
·
(
n2

1 − n2
2

n2
1 + n2

2

)4

· (1 + sin(4ϕ)) (7.7)

which is exactly equivalent to equation 6.6 with a π/2 offset on the phase
and an attenuation factor that depends on the optical properties of the
material. To get a sense of the order of magnitude of this attenuation
factor we can select n1 = 1.5 and n2 = 1 as typical refraction indices, and
for 4ϕ = 0 we obtain I/I0 ' 5.5× 10−3.
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7.2 Measurement uncertainties

7.2.1 Geometry errors

7.2.1.1 Errors on the “semi-circularizing” angles

One source of uncertainty is the angle of the two “semi-circularizing” reflec-
tions.

We have seen previously that there are in general two reflection angles
that will give us the desired π/4 phase shift, but it is apparent on figure
7.2 that the phase shift has a steeper dependence on the angle around the
least inclined reflection. To minimize the influence of angle error, we always
select the second value.

We have also computed in equation 6.11 the ratio of refraction indices,
and the corresponding angle, for which the phase shift is exactly π/4. Since
at this point the curve is at a maximum, and since the curve for different
indices ratios is sensibly the same as illustrated on figure 7.2, this is the
combination of values for which the system will be the least sensitive to an
error on the angle of reflection if the right combination of materials can be
found.

Figure 7.2: Phase shifts induced by a total reflection for different ratios of
the indices of refraction
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Figure 7.3 displays the phase shift for n1/n2 = 1.4966 around θi =
51.79°, and a quadratic fit shows that the phase shift error varies with the
angle error as:

∆δr ≈ −0.106 (∆θi)
2

Since the effect of pressure is also to add a phase shift, we can directly
obtain the constant error on pressure generated by an error on the angle of
reflection:

∆P ≈ −0.106
λ(1− ν)

2πdC(1− 2ν)
(∆θi)

2 (7.8)

which gives a full-scale precision, according to equation 6.7, of ∆P/Pmax ≈
−0.0169 · (∆θi)2. For instance, with a tolerance on the angle allowing for 1°
of error, the error on the measured pressure is lower than 0.06% of the full
scale. This error, shown on figure 7.3, is systematic and can be calibrated
for, though its order of magnitude is small enough to be ignored depending
on the target precision for the sensor.

Figure 7.3: Error on the phase shift resulting from an error on the reflection
angle (n1/n2 = 1.4966, incidence angle centered on θi = 51.79° and phase
shift on 45°)
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7.2.1.2 Errors on the Brewster angles

A second source of uncertainty in the response of the system is the effect of
angle errors on the two Brewster reflections.

If the reflection angle slightly differs from the Brewster angle, we no
longer have r⊥ =

n2
1−n2

2

n2
1+n2

2
and rq = 0, and the Mueller matrix associated with

the reflection becomes that of an imperfect polarizer. The light after the
first reflection would in this case be slightly depolarized, and we can split
the beam into the sum of a totally polarized beam and a totally depolarized
one (cf. section 4.4.2.3, [62, 63]). Applying system 7.1 to Sin = [1; 0; 0; 0]
we obtain:

S =


(r⊥ + ∆r⊥)2 + (rq + ∆rq)

2

(r⊥ + ∆r⊥)2 − (rq + ∆rq)
2

0

0



=
(
(r⊥ + ∆r⊥)2 − (∆rq)

2
)


1

1

0

0

+ 2(∆rq)
2


1

0

0

0

 (7.9)

The depolarized light would of course not be modified by any polarizing
element save the output Brewster angle, and would result in an output
intensity offset. The totally polarized fraction of the light would propagate
in the system as described before and result in an output intensity described
by a slightly different version of equation 7.7 with a multiplicative factor
modified as in 7.9.

Differentiating equations 5.6 and 5.9 with respects to θi and taking the
Taylor expansions at θi = θB + ∆θB yields error ∆r⊥ ≈ r⊥(θB + ∆θB) −
r⊥(θB) on the reflection coefficients as:

∆r⊥ ≈
2n1/n2

(n2/n1)2 + 1
∆θB (7.10)

If we use the “ideal” ratio of indices of refraction as before, i.e. n1/n2 =
1.4966, equation 7.10 yields ∆r⊥ ≈ 2.07∆θB, and equation 5.12 r⊥(θB) ≈
0.383. As for the parallel component, it is easier to work ∆r2

q than with ∆rq;
since r q (θB) = 0 we have (rq + ∆rq)

2 = r2
q + (∆rq)

2 + 2rq∆rq = (∆rq)
2 =
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r2
q + ∆r2

q and so the two terms are equivalent, (∆rq)
2 = ∆r2

q . A quadratic
fit on equation 5.10 squared yields ∆r2

q ≈ 1.93(∆θB)2. Using these values
the Stokes vector 7.9 becomes:

S ≈
(
0.147 + 1.58∆θB + 2.35(∆θB)2

)


1

1

0

0

+ 3.86(∆θB)2


1

0

0

0


This amounts to the unpolarized light generating and intensity that corre-
sponds to a pressure offset at the output, assuming a perfect angle for the
second Brewster reflection, of:

∆P

Pmax
≈ 3.86 (∆θB)2

2π (0.147 + 1.58∆θB + 2.35(∆θB)2)
(7.11)

which, for instance taking an 1° error on the angle as before, represents a
0.21% full-scale measurement error. Once again this is a systematic error
that can be calibrated for.

7.2.1.3 Light source collimation

Another source of geometry error is the angular spread of the light source.
So far we have always considered a perfectly collimated beam of light,

but a real source will emit over an angular aperture. Each ray of light will
meet the different interfaces at a slightly incorrect angle, and the result
will be exactly as if there was an error on the inclination of the interfaces
and produce the results discussed previously. Each ray can be treated
independently from the others, and their total effect on the measurement
error is the integration of their individual errors, with a proportionality
coefficient that represents the fraction of the total intensity that corresponds
to a given angle, over the aperture of the source.

The aperture can be easily controlled in practice by using diaphragms of
suitable sizes in front of the source and of the detector. Another method is
to use additional collimation/imaging optics that can be directly integrated
by modifying the mold.
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7.2.2 Influence of temperature

7.2.2.1 ... on the index of refraction

In general, the refraction index depends on the temperature in a complex
manner. One widely used model is that of Prod’homme [64]. For polymers
there exists a linear relationship, derived from the Lorentz-Lorenz equation,
between the temperature, the linear thermal expansion coefficient of the
material and a polynomial that contains the index of refraction [65, 66]:

n2 + 2

n2 − 1
= αL(T − Tref ) + b (7.12)

where n is the index of refraction, T the temperature, αL the linear expan-
sion coefficient and b a constant offset found by b = (n2

ref + 2)/(n2
ref − 1)−

αLTref when a reference index nref for the material is known at a reference
temperature Tref . αL is constant over wide ranges of temperature between
transition points in the polymer [67, 66, 65].

Using the values from [66] as an example, differentiating equation 7.12
for PMMA with n(T=0°C) = 1.4948 yields an almost constant thermo-optic
coefficient between -20°C and 70°C, dn/dt ≈ −1.2 × 10−4K−1. Over the
same temperature range, the index of refraction varies between n(T=−20°C) =
1.4972 and n(T=95°C) = 1.4834.

Since the Brewster angles are dependent on the refractive indices, a
temperature induced variation of n is equivalent to an error on the an-
gles. Setting n2 = 1 in equation 5.11 and differentiating with respects to
temperature, we obtain:

dθB
dT

=
1

1 + n2
1

dn1

dT

i.e. for PMMA:

∆θB ≈ −3.71× 10−5∆T

which yields an angle error over the -20°C / +70°C temperature range com-
prised between +0.04° and −0.15°. The corresponding errors on the mea-
sured pressure are calculated as before using equation 7.11 and we obtain
between 2.28× 10−4% and 2.9× 10−3% of Pmax.
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As for the “semi-circularizing” reflections, we can directly estimate the
effect on the phase shift by differentiating 5.18 to obtain:

dδr
dT

=
2 · tan(1

2
δr) · cos2(1

2
δr)

n3
1(sin(θsc)− 1/n2

1)

dn1

dT

or, with the numerical values used before, dδr/dT ≈ −1.48 × 10−4K−1.
Since P/Pmax = ∆ϕ/2π, the equivalent full-scale error on the measured
pressure is,

∆P

Pmax
=

1

2π
· dδr
dT
·∆T ≈ −2.36× 10−5∆T

which is comprised between 0.047% and -0.17% of Pmax for T between -20°C
and 70°C.

7.2.2.2 ... on the piezo-optic coefficients

It has been reported in [68, 69], and experimentally verified in[57] for
PMMA, that the piezo-optic coefficient C = 1

2
n3(p11 − p12) varies linearly

with the temperature as long as it doesn’t get too close to the transition
temperatures [70]. In most optical plastics the glass transition tempera-
ture is typically around 100°C [53, pp. 122-147], a good margin from our
maximum temperature of 70°C.

The temperature dependence of the piezo-optic coefficients for different
materials is not easily found in the literature, but some examples for silica
glass [71, 72, 73] and PMMA [74, 57] are available. To get a sense of the
order of magnitude of the thermal effect, we can extract the values of the
variation of C with temperature from [57] and we obtain for PMMA:{

C(T=20°C,λ=650nm) = 1.2× 10−12 Pa−1

dC
dT

= 6.9× 10−15 Pa−1K−1

Differentiating 6.3 with regards to C we obtain the relative error on the
measured pressure:

∆P

P
=

∆C

C
=

1

C

dC

dT
∆T (7.13)

which for PMMA using the values given above, results in ∆P/P ≈ 5.75×
10−3∆T . This is equivalent to a relative error on the measured pressure of
-23% at -20°C and +29% at 70°C. These values are very high compared to
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any of the other sources of errors we have seen so far, and it follows that
one of the most important factors in choosing the dielectric material has to
be the thermal sensitivity of the piezo-optic coefficients. In practice this is
the key point in the choice of the dielectric material for the sensor.

7.2.2.3 ... on the elastic deformation

The mechanical properties of polymers in general, and PMMA in particular,
have been extensively studied [75, 76, 54, 58, 59]. Their elastic properties
vary slowly as long as the temperature is not too close to the transition
temperatures[77]. This remains typically correct as long as the temperature
is at least 20K below the glass transition temperature. In this domain, using
the model proposed by Seitz [78, 70], the values for PMMA given in [70,
sec. ll.B.2.b], and a linear regression over -20°C / +70°C, we obtain the
temperature variation of the Poisson ratio:{

ν(T=23°C) = 0.354

dν
dT

= 2.18× 10−4K−1

The relative error on pressure is, differentiating 6.3 with regards to ν,

∆P

P
=

−1

(1− ν)(1− 2ν)

dν

dT
∆T (7.14)

i.e. ∆P/P ≈ −1.16 × 10−3∆T . This corresponds to a relative error of
+5.2% at -20°C and -5.2% at +70°C.

The Young modulus also varies with temperature. Even though the re-
sponse of our sensor does not depend on it due to the particular geometrical
configuration we considered, it is useful to know it behaves. There exists
a good model that works across transition temperatures [79], but since we
limit ourselves to a ranger lower than the glass transition we can use a
simpler representation valid over than range [79, 54, 75, 80]:

E(T )

E(Tref )
=

Tg/Tref + 2

Tg/Tref + 2T/Tref
(7.15)

where Tref is the reference temperature at which a value of the Young
modulus is known, Tg is the glass transition temperature of the polymer
and T is the temperature in Kelvin.
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Another important effect of a temperature change is thermal dilatation.
The linear thermal expansion coefficient αL is defined as:

αL =
1

L

dL

dT

where L is the dimension which dilatation we are considering. Modifying
the Hooke’s law system of equations 6.1 to take the thermal expansion into
account yields:

δy =
1

E
(σy − ν(σx + σz)) + αL∆T

and ultimately:

σx − σy =
1− 2ν

1− ν

(
P − E · αL

1− 2ν
∆T

)
which has the total effect of adding a negative temperature dependent offset
to the measured pressure:

4P = −E · αL
1− 2ν

∆T (7.16)

Typical values of for PMMA are αL ≈ 7×10−5K−1 and E ≈ 3×109Pa [53,
pp. 122-147] which yields a temperature-induced offset on the measured
pressure 4P ≈ −7.2 × 105∆T , or 7.2 bars per Celsius degree. This is
of course an unacceptable error value that would overshadow any pressure
measurement, simple geometrical changes can be made to physically remove
this effect.

One such change is to add a second identical pressure sensitive section
in the optical path right after the first one. The only differences is that
the free face would not be subjected to pressure (or rather, it would be
subjected to ambient pressure) and oriented perpendicularly to the first
one, i.e. along the x axis instead of y. This way, the two sections add a
temperature dependent phase of the exact same value but of opposite sign:
the two effects exactly compensate each other and the temperature induced
pressure offset disappears.

A second method is to let the the dielectric expand in all directions in
the volume that interacts with the light. This is equivalent to having an
unconstrained cylinder while maintaining a seal at the top of the sensor
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where it is in contact with the fluid under pressure. In this configuration
equation 6.3 becomes:

4ϕ =
2π

λ
· d · 4n =

2π

λ
· d · C · (σx − σy) =

2π

λ
· d · C · P

In this configuration the dependence on the Poisson ratio vanished, remov-
ing one source of uncertainty and slightly increasing the sensitivity. As
we mentioned the effect of the thermal dilatation is also negated since the
material can freely expand in all directions.
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Introduction

We now propose to experimentally validate the concept of a piezo-optic
pressure sensor that we presented and modelized in part III.

To analyze the polarization effects of various optical elements we first
describe the realization and calibration of a Mueller polarimeter, an experi-
mental tool that allows us to obtain the Mueller matrix of a component. The
polarimeter we built is a dual rotating compensators1 polarimeter: the light
passes through a fixed linear polarizer, then through a quarter-wave plate
that can be rotated to any angle, then though the sample to the analyzed,
and then through a symmetric setup: a rotated quarter-wave plate and a
fixed polarizer. Finally the output intensity is read from a photodetector.
We present the experimental setup and its specificities, the calibration of
the elements, the compensation of errors in the Mueller coefficients recon-
struction method, and finally the measured Mueller matrix of the “void”,
i.e. with no sample, to validate the polarimeter.

In Chapter 9 we describe one experimental realization of the proposed
pressure sensor in order to validate the measurement principle.

1waveplates
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Chapter 8

Mueller polarimeter

In this chapter, we describe the experimental realization of a Mueller po-
larimeter. We first describe the theoretical behavior of a rotating compen-
sators polarimeter and explain how the Mueller coefficients can be recovered
using a 2D Fourier Transform. We then describe the actual realization of
our polarimeter, the calibration of the elements and the compensation of
their defects. Finally we extract a Mueller matrix with no sample in the
polarimeter in order to validate its performances.

8.1 Measurement of Mueller coefficients
using a dual rotating compensators
polarimeter

8.1.1 Choice of polarimeter configuration

There are various ways to obtain the Mueller matrix of an element, but the
general method is always the same: a polarization generator creates known
states of polarization, the light propagates through (or reflects on) the sam-
ple, and the resulting state of polarization is determined by a polarization
analyzer. By repeating this analysis for several input states of polarization,
the Mueller coefficients of the sample can be determined. A good overview
of the various existing methods with key references has been written by
Chipman [81, chp. 15].

We have selected to use a very popular polarimeter, a dual rotating
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compensator polarimeter. In this configuration a light source shines through
a fixed linear polarizer, then through a rotating waveplate, then through
the sample, then through a second rotating waveplate and finally through
another fixed linear polarizer. In our polarimeter, schematically represented
on figure 8.1, the entrance polarizer has its transmission axis horizontal and
the exit polarizer has his vertical. The two waveplates are quarter-wave
plates (the optimal retardance to minimize errors is around 127° [82] but
such waveplates were not available to us) that can be rotated independently
from each other, in contrast with a popular type of polarimeter where they
have a fixed θwp1 = 5θwp2 relationship [83, 84].

Figure 8.1: Principle of the dual rotating compensators polarimeter.

This configuration provides several advantages. The main one comes
from the fact that the two polarizers are fixed: this renders the polarimeter
insensitive to the eventual polarization effects of optical components before
and after the polarimeter itself as it ensures that the light after the first
polarizer will always be polarized in the same manner, and likewise for the
light after the second polarizer. This is most important if the input light
is not perfectly unpolarized, which is never the case in practice, and when
there are collection optics behind the polarimeter that will have an eventual
polarization response.

A second advantage of this configuration is that, as will be explained
in the next section, the Mueller coefficients can be obtained by applying a
Fourier Transform to the experimentally measured intensities. This method
is simple, robust, and a fast algorithm to compute it, the Fast Fourier Trans-
form, exists. Increasing the number of sample points increases the precision
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on the coefficients without requiring the inversion of a large matrix as in a
direct inversion method, and information about the sources of measurement
errors can be found in the Fourier coefficients that should theoretically be
zero but are not due to imperfections in the polarimeter.

8.1.2 Computation of the Mueller coefficients

Using the Mueller matrices from Chapter 4, the Mueller matrix of an ideal
polarimeter is given by:

Mideal = Mpolv ·MQWP (θA) ·Msample ·MQWP (θG) ·Mpolh (8.1)

After carrying out the matrix multiplications and only looking at the
intensity of the output light for an unpolarized input light of intensity I0

we obtain equation 8.2:

Iideal
I0

= sin(2θG) ·
(

1

4
m13 +

1

2
m03 −

1

2
m33 sin(2θA) +

1

4
m13 cos(4θA) +

1

4
m23 sin(4θA)

)
+ cos(4θG) ·

(
−1

4
m01 −

1

8
m11 +

1

4
m31 sin(2θA)− 1

8
m11 cos(4θA)− 1

8
m21 sin(4θA)

)
+ sin(4θG) ·

(
1

4
m02 +

1

8
m12 −

1

4
m32 sin(2θA) +

1

8
m12 cos(4θA) +

1

8
m22 sin(4θA)

)
+

(
−1

8
m11 +

1

4
m10 −

1

4
m01 +

1

2
m00

)
+

(
1

4
m31 −

1

2
m30

)
· sin(2θA)

+

(
1

4
m10 −

1

8
m11

)
· cos(4θA)

+

(
1

4
m20 −

1

8
m21

)
· sin(4θA) (8.2)

in which we have factored cos(nθG) and sin(nθG). It is immediately visible
that we can extract the coefficients of the harmonic functions of θG by
Fourier Transform (FT). Likewise, a second FT on the resulting coefficients
that only depend on θA will yield a combination of the Mueller coefficients
of the sample, and this provides a simple method to obtain the coefficients:
rotate the two waveplates, record the intensities for each combination of
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angles in a matrix and perform a 2D FT on it. The Mueller coefficients are
then obtained by simple manipulations of the Fourier coefficients.

One important point to note is that while the first FT acts on real
values, and will thus always output conjugate coefficients for the positive
and negative frequencies, the second one does not: the negative part of the
resulting spectrum is not redundant can not be ignored, it is necessary to
obtain all the Mueller coefficients.

The Fourier coefficients calculated from equation 8.2 are presented on
table 8.1. We separated the real and imaginary part of each coefficient to
simplify reading. The coefficients for harmonics not represented in the table
are zero. We will refer to each Fourier coefficient by fFg,Fa where Fg and Fa
are the normalized frequencies of, respectively, the polarization generator
and analyzer with regards to the “unit” frequency that corresponds to one
turn of a waveplate. Using this notation, coefficient f2,−2 in the table is for
instance equal to −1

8
m33.
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Table 8.1: Frequency content of the intensity at the output of the polarimeter. The reference unity frequency
corresponds to one full turn of the waveplates. Fg (lines) indexes the frequencies relative to the rotation of
the polarization generator’s waveplate. Fa (columns) indexes the frequencies relative to the rotation of the
analyzer’s waveplate.



134 CHAPTER 8. MUELLER POLARIMETER

Setting m00 to 1 to normalize the reconstructed Mueller matrix with
regards to a constant attenuation, we then obtain from table 8.1 the Mueller
coefficients:

m00 =1 (8.3)

m01 =8 · <
{
f0,4 −

1

2
f0,0 +

1

4

}
(8.4)

m02 =8 · = {f4,0 + f−4,4 + f−4,−4} (8.5)
m03 =4 · = {f2,0 − 2 · f2,4} (8.6)

m10 =8 · <
{
f4,0 −

1

2
f0,0 +

1

4

}
(8.7)

m11 =16 · <
{

1

2
f0,0 − f4,0 − f0,4 −

1

4

}
(8.8)

m12 =16 · = {−f−4,4 − f−4,−4} (8.9)
m13 =16 · = {f2,4} (8.10)
m20 =8 · = {f0,4 + f4,−4 + f−4,−4} (8.11)
m21 =16 · = {f4,−4 + f−4,−4} (8.12)

m22 =16 · <
{

1

4
− 1

2
· f0,0 + f4,0 + f0,4 − 2 · f4,4

}
(8.13)

m23 =16 · < {−f2,4} (8.14)
m30 =4 · = {2 · f4,2 − f0,2} (8.15)
m31 =16 · = {f4,2} (8.16)
m32 =16 · < {f4,2} (8.17)
m33 =8 · < {f2,2} (8.18)

where <{·} denotes the real part and ={·} the imaginary part.

8.1.3 imperfect compensators

When the retardance of the waveplates is not exactly π/2, the above rela-
tionships are modified. Mueller polarimeters with imperfect compensators
and other sources of errors have been extensively studied [85, 86, 83, 87,
88, 82]. The dominant sources of measurement errors are small errors on
the relative angular positions of the different elements as well as the non
ideal retardation of the waveplates [86]; of those, in our case, only the angle
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of the exit polarizer and the retardations of the waveplates are systematic
errors, and according to [86] the waveplates should be the main sources of
error.

In general the errors on the Fourier coefficients due to imperfect com-
pensators will depend on the Mueller matrix being measured. To simplify
the problem here, we only check the effect on the measurement of the “no
sample” Mueller matrix, i.e. the identity matrix.

Using a small angle approximation on Mueller matrix 4.39, the Mueller
matrix of an imperfect quarter-wave plate is:

MWP

(π
2
− ε, θ

)
=


1 0 0 0

0 cos2 (2θ) + ε sin2 (2θ) (1− ε) cos (2θ) sin (2θ) sin (2θ)

0 (1− ε) cos (2θ) sin (2θ) ε cos2 (2θ) + sin2 (2θ) − cos (2θ)

0 − sin (2θ) cos (2θ) ε


which can be mathematically decomposed in the sum of the Mueller matrix
of a perfect quarter-wave plate and of an error matrix:

MWP

(π
2
− ε, θ

)
= MQWP (θ) + ε ·


0 0 0 0

0 sin2 (2θ) cos (2θ) sin (2θ) 0

0 cos (2θ) sin (2θ) cos2 (2θ) 0

0 0 0 1


= MQWP (θ) + M∆ (ε, θ)

Equation 8.1 becomes:

M = Mpolv ·MWP

(π
2
− εA, θA

)
· Id ·MWP

(π
2
− εG, θG

)
·Mpolh

= Mpolv · (MQWP (θA) + M∆ (εG, θG)) · Id · (MQWP (θG) + M∆ (εG, θG)) ·Mpolh

which decomposes in the sum of the Mueller matrix of the ideal polarimeter
and of several other terms that depend on the error matrices. Consequently,
computing the intensity at the exit of the polarimeter yields a sum of the
ideal intensity and of three error intensity terms that depend respectively
on εA, εG and εAεG. The cross term will be negligible in front of the two
others so we neglect it from now on. Carrying out the calculation that we
do not detail here, the errors on intensity due to the retardance errors are
respectively:

∆IG =
εG
16

(−1 + cos(4θG)− cos(4θA) + cos(4θG) cos(4θA) + sin(4θG) sin(4θA))
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and:

∆IGA =
εA
16

(−1− cos(4θG) + cos(4θA)− cos(4θG) cos(4θA) + sin(4θG) sin(4θA))

Due to the linearity of the Fourier transform, this directly results in the
errors, listed in table 8.2, on the Fourier coefficients:

Fa
0 4 -4

0 1
16

(εG + εA) 1
32

(εG − εA) 1
32

(εG − εA)

Fg 4 1
32

(εA − εG) 1
32
εA − 1

32
εG

-4 1
32

(εA − εG) − 1
32
εG

1
32
εA

Table 8.2: Errors caused by imperfect compensators on the Fourier coeffi-
cients when measuring the “void” Mueller matrix.

Inserted these errors into equations 8.3-8.18, we obtain the measured
Mueller matrix with no sample in the polarimeter:

Mvoid =


1 −1

2
εA 0 0

−1
2
εG 1 + 1

2
(εA + εG) 0 0

0 0 1− 1
2
(εA + εG)− εA 0

0 0 0 1


8.2 Experimental realization of the

polarimeter

8.2.1 Description of the experimental setup

The experimental setup is pictured on figure 8.2 below. The datasheets
for the various components are available in Annex E. The polarization gen-
erator and analyzer are separated on two Newport X26 rails so as to be
independent from each other. In between is a heating apparatus with a
temperature sensor feedback on which is placed a metal cell with two 5mm
clear aperture windows; this enables control of the temperature in the cell
while Mueller measurements are performed on the sample placed inside.
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Figure 8.2: Photography of the polarimeter. A sample that has to be
characterized at a given temperature can be put in the heated cell (7).

The light source is a L7868-02 red LED by HAMAMATSU, equipped
with a glass lens window to obtain a small beam divergence (typically ±1°
at 50% intensity). Its emission is centered on 670nm with a 20nm spectral
half width. The LED is alimented by a laser diode controller in constant
current mode in order to obtain a light intensity as stable as possible. The
controller is a Thorlabs LDC202B that can provide up to 200mA with an
accuracy of ±0.1mA and fluctuations at a set current inferior to 10µA. The
stability of the source was checked by recording the measurement signal over
12 hours. No variation above the resolution of the recording instrument was
found.

The polarizers are TechSpec linear polarizers from Edmund Optics, with
announced extinction ratio 10000:1 at visible wavelength. The two quarter-
wave plates are optimized for 670nm and were also provided by Edmund
Optics with an announced precision of 1/500th wavelength retardance error.
Both elements were experimentally calibrated and the results are presented
in the next section. They are mounted on manual rotation stages with
vertical and horizontal tilt tuning knobs, and were aligned using the retro-
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reflection at about three meters of a laser beam on their surface.

The detector is a HAMAMATSU S7183 photodiode with an integrated
current amplifier that amplifies the photocurrent up to 1300 times, allow-
ing direct current measurements without additional amplification under low
illumination conditions. The detector was alimented by a battery to mini-
mize voltage fluctuations, and the whole device put inside an isolated metal
box so as to form a floating sensor. It was connected to a Metrix MTX3250
precision multimeter (0.08% announced accuracy) through a shielded foiled
twisted pairs cable to avoid electromagnetic induction noise.

Particular steps were taken to minimize various sources of errors. Var-
ious screw holes in the rotating stages were sealed to avoid stray light,
and the walls inside the windows of the temperature-controlled cell were
blackened to minimize reflections. One source of error in non-imaging po-
larimeters is the light reflected and diffused on the apertures of the optical
elements: its polarization is modified by the interaction with the edges and
generates an error on the real state of polarization we want to measure.
An example of this effect is shown on figure 8.3. To avoid this problem,
we added a diaphragmed lens between the exit polarizer and the detector.
The lens focal length, position and diaphragm aperture were calculated so
that the marginal rays seen by the detector would always be inside of the
apertures of the elements of the system; in practice the most limiting aper-
tures are the windows of the temperature-controlled cell, and the system
was calculated so that the center of the cell is imaged on the detector. This
configuration has the added benefices of strictly limiting the sources of par-
asite light that influence the detector, as well as of limiting the inclination
of the observed rays; this serves to minimize the effect of the optics on
non perpendicular rays and to ensure that we observe waves that are close
to plane waves. In practice, the most inclined rays seen by the detector
make angle angle smaller than 3° with the optical axis. This was checked
by placing opaque screens at different positions on the various apertures of
the system while recording the intensity on the detector: it would start to
drop when the screen entered the portion of the aperture that was “visible”
by the detector.
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Figure 8.3: Mueller image of a depolarizer in a metal holder. The repolar-
izing effect of edge reflections is clearly visible on m11 and slightly on m12

and m21. (Image courtesy of Y. TAKAKURA)

8.2.2 Calibration and adjustment of the elements of
the polarimeter

8.2.2.1 Photodetector

Since the photodetector has an integrated current amplifier, it is very sen-
sitive even for very small illuminations. The detection circuit can thus be a
simple battery and a resistance in series with the detector. The measured
signal is the tension value is across the resistance, read by a low-noise oper-
ational amplifier in voltage follower configuration. As mentioned before, we
use a battery which is a very stable source of tension to minimize the power
source noise; moreover the whole circuit was put inside a conducting box
and connected to the external voltmeter through a shielded foiled twisted
pairs cable (each twisted pair is wrapped in a conducting foil, and the whole
cable is itself shielded) to minimize the influence of electromagnetic induc-
tion from environmental sources (mainly power outlets, fluorescent lights
in the adjacent rooms, and heavy machinery in a workshop under the labo-
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ratory). References [89, 90, 91] give a good hands on overview of “do’s and
don’t’s” when it comes to shielding a circuit from external sources of noise.

Calibration using a variable optical density filter was performed to check
the linearity of the photodetector’s response. The log of the measured signal
was taken, since an linearly varying optical density results in an exponential
transmission coefficient, and the result plotted and fitted to a linear curve
(see figure 8.4). It was found that it is linear within 0.1% over a wide range
of light intensities, down to “no light” where the measured tension results
from the dark current of the diode. The superimposed points correspond to

Figure 8.4: Test of the linearity of the photodetector at room temperature.
All values in arbitrary normalized units.

the regions were two series of measurements have been superposed, which
was necessary to explore the whole dynamic of the detector with a single
variable optical density of limited maximum attenuation: between each
series the power of the LED was reduced and the optical density reset to
minimum attenuation. Near zero intensity the noise on the measured points
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is due to the instability of the source of current that powers the LED at
low currents.

As the voltage across the resistance increases, the linearity drops; in
practice this effect is not noticeable as long as the voltage across the pho-
todetector is 5 Volts or above, i.e. as long as the voltage across the resistance
is no closer than 5 Volts to the supplied voltage.

The value of the resistance was selected so that the maximum light
intensity in the polarimeter, i.e. when both polarizers are aligned, would
not force the detector outside of its linear response region. The voltage of
the power supply was selected so that when there is no current in the circuit
the voltage across the detector does not exceed the maximum tolerated
value. The combination of these two choices ensures that we obtain the
largest output voltage dynamic for our photodetector.

Measured values for the “dark voltage” and the “maximum voltage”
across the resistance were respectively 0.02mV and 7.3V, which corresponds
to a dark current of 0,2nA and a maximum current in the detector of 73µA.

8.2.2.2 Polarizers

The entrance polarizer was rotated to have its transmission axis horizontal.
To ensure that the horizontal position was identified as well as possible we
used the fact, presented in section 5.3, that the reflection coefficient for the
parallel polarization is always smaller than for perpendicular polarization.
We placed a PMMA cube, set on an horizontal rotation stage, on the path
with it’s first face perpendicular to the optical axis; the perpendicularity
was checked by retro-reflection of the same alignment laser used to align
the other elements and the deviation from vertical at the point of impact
of the laser spot was minimized to less than 0.04°. The rotation stage
was then rotated approximately to the Brewster angle of PMMA. In this
configuration, the plane of incidence on the face of the cube was parallel
to the ground, so any fraction of the incident light polarized parallel to the
ground would be almost extinguished in the reflection. The polarizer was
then rotated to minimize the intensity of the reflected light, i.e. until only
parallel polarized light was reflecting on the cube. This method ensured that
the polarizer was as horizontal as possible given the experimental setup.

The exit polarizer was set on the bench and rotated to minimize the
intensity on the detector, i.e. to a position where its transmission axis was
vertical. It was then rotated approximately to 90° of this orientation to
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obtain the maximum light intensity and set the resistance of the detector,
before being set back to its crossed position.

The voltage was measured at the output of the detector for crossed and
parallel polarizers to obtain the extinction ratio of the polarizers. It was
found different combination of the direction the two sides of each polarizer
faced slightly influenced the extinction ratio. The configuration selected
in the end was the one that presented the best extinction ratio, close to
1:7000.

With crossed polarizers in this configuration, the voltage at the detector
was measured to be 1.04mV. This is a factor 50 over the dark and noise
levels, making them negligible in this application.

8.2.2.3 Waveplates

The two waveplates were supposed to be quarter-wave plates. There are var-
ious methods to calibrate waveplates [92, 93, 94, 95, 96, 97, 98] with various
degrees of precision. We selected a method based on Fourier Transforms,
as its precision increases with the number of measurement points and does
not only depend on the precision of a few punctual intensity measurements
as in several other methods.

To measure their exact retardance, we rotate each waveplate between
the two polarizers positioned parallel to each other. The Mueller-Stokes
calculus for this system gives for the output intensity:

I = I0

(
3

4
+

1

4
cos(φ) +

1

4
(1− cos(φ)) · cos(4θ)

)
(8.19)

where φ is the retardance of the waveplate and θ its orientation. We see that
the intensity varies periodically with the angular position of the waveplate.
A Fourier Transform on the measured intensity yields two coefficients f0 and
f4 that correspond respectively to the amplitude of the constant intensity
and to the amplitude of the periodic portion with a normalized frequency
of 4. All the other coefficients are zero since only these two frequencies
have non-null components. From these coefficients we directly deduce the
retardance of the waveplate through equation 8.20:

cos(φ) = 2 · f0 − f4

f0 + f4

− 1 (8.20)
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Using this method, the retardances of the two waveplates were determined
to be:

{
φG = π

2
− π

72.5

φA = π
2
− π

1987

Figures 8.5 and 8.6 show the experimentally measured intensities versus the
orientation of the waveplates, and the theoretical responses of a waveplate
with the calculated retardance. The maxima and minima over a full rotation
of the waveplates were at a constant level, a good indication that there is
no noticeable diattenuation in the plates.

Figure 8.5: Comparison between the experimental intensity response of the
first waveplate (squares) and the response of an ideal waveplate with the
same estimated retardance (solid line). The intensities are in arbitrary
units.
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Figure 8.6: Comparison between the experimental intensity response of the
second waveplate (squares) and the response of an ideal waveplate with
the same estimated retardance (solid line). The intensities are in arbitrary
units.

Something should be mentioned about the orientation of the two po-
larizers: they could also have been crossed, with less imprecision on their
orientation since the operation involves a null-intensity measurement that is
more precise than a maximum intensity measurement. But in this case the
output intensity varies between “zero” and an unknown maximum, giving us
no value with which to normalize the measured intensities. The value of the
maximum could be obtained by measuring it when the two polarizers are
parallel, but inserting the waveplate afterward would modify it by an un-
known factor because of reflections on the faces of the element. In contrast,
with the parallel polarizers the maximum intensity is always measured and
the minimum intensity that we never directly measure is known since we
know the extinction ratio of the polarizers.

Once the exact retardance of both waveplates had been determined, the
two polarizers were once again crossed and the plates were placed in the
polarimeter with their fast axes horizontal. The approximate position of the
fast axis was indicated by a white dot on the side of each waveplate; it can
alternately be determined by Tutton’s test [99] or other methods [100, 101].
First the waveplate of the polarization generator was placed, and rotated
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to minimize the intensity on the detector so as to ensure that its fast axis
was horizontal; this position was marked as the origin of rotation . The
waveplate of the polarization analyzer was positioned in a similar manner.

8.2.3 Validation of the polarimeter: measurement of
the matrix of the void

In order to validate the polarimeter as well as the error analysis performed
above, we performed a series of measurement with no sample in the po-
larimeter in order to obtain the “matrix of the void” which should in theory
be a 4x4 identity matrix. The measurement was performed in the dark,
taking special care to remove all sources of stray light (to give an example,
the 7 segments display on a voltage source almost 3 meters away and per-
pendicularly to the optical axis was enough to add a noticeable signal on
the detector). Each waveplate was set at 11 different angular positions over
180°, resulting in a total of 121 measurement points.

Using these measurements, the reconstructed Mueller matrices, first
without and then with the corrections for the non-ideal behaviour of the
polarising elements, were found to be respectively:

Mnc =


1 −0.027 −0.018 0.001

0.012 1.019 0.012 −0.009

0.012 −0.010 0.942 −0.001

0 −0.002 0.010 1.013


and:

Mc =


1 −0.005 −0.018 0.001

0.013 0.997 0.012 −0.009

0.012 −0.010 1.008 −0.001

0 −0.002 0.010 1.013


where it is seen that the error after correction is lower than 1% on most of
the terms.

Owing to the measurement method, the errors should be further reduced
by taking more precise and numerous angle positions on the waveplates, a
work that would require the automation of the measurement. One impor-
tant source of error is the angular positioning of the waveplates (a 0.3° error
can result in up to 2% of error on the diagonal coefficients [86]), which would
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be greatly reduced by using automated precision rotation stages. Other
sources of errors (such as the non-planar rotation of optical elements, the
non-strictly collinear nature of the beam, and many more) exist that we
have considered small with regards to the waveplates positioning and retar-
dance, and they would have to be checked to improve accuracy further.



Chapter 9

Experimental validation of the
proposed piezo-optic pressure
sensor

The full piezo-optic pressure sensor presented and modelized in Chapter 7
has not been realized because of a lack of both time and financial means to
have the mold produced. Instead, the principle of the measurement method
was validated by testing a pressure sensor in the configuration described in
Chapter 6.

9.1 Description of the experimental pressure
sensor

The sensor that was realized is a slightly modified version of the one pictured
on figure 6.1 (a): the polarizers were directly included on the surface of the
dielectric, and a space was left at the bottom of the metal cell to allow
thermal dilatation and mitigate the temperature sensitivity as discussed
before. This configuration is represented on figure 9.1.

The source and detectors are directly attached to the cell. The photode-
tector is a BPW34 large-area photodiode, and its photocurrent is amplified
and read through a low-noise operational amplifier in transimpedance con-
figuration. The light source is a SuperFlux LPWT-MD00 red (640nm) LED
in a clear plastic casing alimented by a simple Zener diode + transistor cur-
rent source.
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Figure 9.1: Schematic representation of the experimentally realized piezo-
optic pressure sensor.

The polarizers were Polaroid plastic polarizers with a typical extinction
ratio of 1:500, and two different dielectric materials were tested: a cylinder
of clear commercial PMMA and a cylinder made from Sololast “GTS Pro”
clear molding resin. In both cases a small flat section was cut on each side of
the cylinder, and the polarizers were glued after alignment. Only then were
the cylinder forced into the metal cell. The length of the optical path inside
the polymer was in both case 1cm. Figure 9.2 illustrates the compactness
of the finished sensor.

Figure 9.2: One instance of the realized piezo-optic pressure sensor, under
two angles. The LED is seen on the right of the sensor and the photodetector
on its left. In the picture on the left, the dark inner circle has a diameter
of 1 centimeter.
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9.2 Measurements

Pressure was applied to the sensor by pressurized oil driven by a pump, with
an attached control manometer. The sensor was screwed in a test vessel.
The setup is pictured on figure 9.3.

Figure 9.3: Pressure sensors testing setup. Oil under pressure circulates
inside the pump and the test vessel.

Figure 9.4 presents sensor output voltages for pressures varying from
atmospheric pressure to 60 bars. The pressure was not increased further for
fear of leaks, though several series of measurements were carried out at this
pressure without any problem. The repeatability of the measurement was
to better than 1% of the measured pressure, only limited by the precision
of the reference manometer and by the degree of control over the pressure
allowed by the manual pump.

The theoretical fit yields a total measurable pressure (corresponding
to a maximum phase difference of π) of Pmax ≈ 74.6 bars using this
configuration. This corresponds to a piezo-optic coefficient C ≈ 4.3 ·
10−12 Pa−1, a value of the typical order of magnitude for hard glassy poly-
mers [81, 53, 102, 70, 80, 54, 57, 55].
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Figure 9.4: Sensor output voltage for relative pressures varying between 0
and 60 bars. Dielectric: polymer inclusion resin “GTS Pro”.

In the same configuration but with PMMA as the dielectric, we obtained
Pmax ≈ 88.6 bars and a piezo-optic coefficient C ≈ 3.6 · 10−12 Pa−1, well in
the range of typical values found in the litterature [71, 81, 102, 103].

Several series of measurement were performed at different ambient tem-
peratures without an apparent effect on the response of the transducer, in
apparent contradiction with the order of magnitude for the temperature
dependence of the piezo-optic coefficient we gave in Chapter 7. This could
be due to the use of a different type of PMMA compared to the one used in
reference [57] from which we extracted the values; the difference in piezo-
optic coefficients is an indication that this is the case. Since no systematic
study of the temperature dependence was carried out, no definite conclusion
can be drawn.

These measurements are not a definite indication of the behavior of the
transducer, but they serve to validate the concept of the optical measure-
ment of pressure through the piezo-optic effect.



General Conclusion and
Perspectives

The goal of this work was to propose an original method to measure high
hydrostatic pressures using a low cost optical sensor.

In Part I of this document we presented the state of the pressure mea-
surement field and stated the problem this work aimed at solving. In Chap-
ters 1 and 2 we presented an overview of the main pressure sensing methods
and the principles on which they are based. Chapter 2 focused on optical
pressure sensors, most of which are based on the properties of optical fibers.
Once the state of the optical pressure measurement field was clear, we dis-
cussed in Chapter 3 the advantages and inconveniences of each method
with regards to a set of technological imperatives. We finally selected to
develop the concept of a sensor based on the piezo-optic effect, i.e. on the
measurement of stress-induced birefringence in a transparent dielectric.

In order to modelize a piezo-optic pressure sensor, we presented in Part
II the tools that are used in the rest of the document. In chapter 4 we first
reviewed the theory of polarization of light, from its physical origin to the
more advanced Mueller-Stokes formalism. We then focused, in chapter 5,
on the interaction of polarized light with matter: we described the effect
of birefringence and presented the theory of the piezo-optic effect. Finally
we described the effects on polarized light of total and partial reflections
at an interface between two dielectrics. Both the piezo-optic effect and
the reflections have been modelized in terms of their Mueller matrices to
simplify the modelization of the sensors.

Once the theoretical tools had been presented, we applied them to the
modelization of a pressure sensor in part III. Chapter 6 began by the pre-
sentation of the concept of a piezo-optic pressure sensor: polarized light in-
teracts with a dielectric material subjected to an external directional force
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generated by the pressure to measure; the resulting modified state of polar-
ization is then analyzed by a second polarizer and a photodetector. Some
aspects of the sensor were optimized, while it’s drawbacks and shortcomings
were highlighted. In light of this analysis, we proposed a revised concept
that addresses the identified issues. The improved proposal uses carefully
oriented reflections to replace all polarizing elements, enabling simpler and
cheaper production. In Chapter 7 we modelized the proposed sensor using
the tools from Part II. The optical behavior of the sensor was described,
and then analyzed in terms of sources of error. Geometrical errors were
found to be negligible. Temperature effects were also found to be negligible
except regarding two aspects: temperature dilatation and the temperature
dependence of the piezo-optic coefficient. Two solutions to physically com-
pensate for the thermal dilatation were proposed. Regarding the piezo-optic
coefficients, only a careful choice of the dielectric material can ensure that
they are not too sensitive to temperature.

Finally in Part IV we presented experimental validations of the concepts
developed before. We built, calibrated and tested a Fourier Transform
Mueller polarimeter; the different steps of the process were described. We
also built a prototype of the piezo-optic pressure sensor using two different
dielectric materials, PMMA and a polymer resin. The results were found
to be in agreement with the piezo-optic coefficients found in the literature
and the concept of the pressure sensor was validated.

To summarize the work presented in this document, we have identified
an useful method to measure pressures and have presented in an unified
manner the different theoretical tools required in the modelization of the
sensor. We have then built upon the initial concept to improve and simplify
the sensor. The resulting proposal was modelized and analyzed in terms
of measurement errors, and solutions to compensate for these errors were
proposed. Finally we have validated the principle of the sensor through
the realization and the testing of a prototype device. We have also built a
Mueller polarimeter that can be used to carry out extensive campaigns of
measurements of the effect of temperature on the piezo-optic effect.

One of the first steps to continue this work would be the realization of a
prototype that uses the improved geometry based on polarizing reflections,
and a characterization of its behavior.
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The next step would be to use the polarimeter to extensively determine
the piezo-optic coefficient and its dependence to temperature of several
materials. This is a crucial step needed in the realization of a sensor that
will not be overly sensitive to temperature.

The proposed geometry could be extended to include a differential mea-
surement of pressure where one path would, for zero pressure, contain right
circularly polarized light and the other one left circularly polarized light. A
differential measurement of intensity would then yield “zero” for no pressure
while still maintaining the sensor in its maximum sensitivity range.

Finally, the range of pressures that can be measured could be greatly
increased by using multiple wavelengths in the sensor. Since the stress-
induced phase difference is inversely proportional to the wavelength, a
shorter wavelength means a smaller maximum measurable pressure but a
greater precision. By combining it with a longer wavelength, the “best of
both worlds” could be obtained: the long wavelength light would give a
coarse measurement of the pressure, enough to remove the ambiguity (due
to the periodic nature of the response) on the pressure measured by the
shorter wavelength which would in turn yield a more precise measurement.
By using more than two wavelength, even greater freedom over the balance
between the range and the precision of the measurement could be obtained,
with the added benefit that once a dielectric with sympathetic physical
characteristics has been found it could be used in a variety of sensors with
only a modification of the light sources, and not of the geometry.
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Introduction

Les capteurs optiques connaissent depuis plusieurs années un succès croissant  en milieu 
industriel  et  ce principalement  depuis l'apparition commerciale  de micro composants optique et 
électronique, et notamment de sources de lumières compactes, bon marché et fiables : les diodes 
électroluminescentes  ou  LED  (Light  Emitting  Diode),  les  diodes  laser  et  plus  récemment  les 
VCSELs.

Les technologies de l'optique sont exploitées dans plusieurs domaines industriels tels que le 
transfert  de  données  (de la  simple  télécommande infrarouge jusqu'aux fibres  optiques  qui  sont 
notamment à la base fonctionnelle de l'internet moderne) ou encore le stockage informatique (sur 
CDROM, DVDROM et maintenant Blu-Ray) ainsi que dans des systèmes de métrologie comme les 
mesures de distance. Mais ces technologies sont nettement moins présentes dans les systèmes de 
mesure à faible coût et à grande production (la seule exception notable étant peut-être les barrières 
de  franchissement  infrarouges  et  les  souris  optiques).  En  effet  les  systèmes  de  mesures 
électroniques, principalement des capteurs basés sur des techniques connues, éprouvées et utilisées 
depuis de nombreuses années remplissent ces fonctions. De ce fait les composants électroniques 
sont bon marché, les techniques de production (essentiellement d'assemblage) sont maitrisées, et les 
couts en recherche , développement et production sont très faibles. 

Par opposition, les systèmes de mesures optiques sont relativement récents et il en résulte 
des composants plus chers et un temps de R&D plus important pour les dispositifs les incorporant. 
On peut aussi noter que ces produits sont en général plus délicats à gérer au niveau de la production 
de masse, et que leurs performances brutes sont souvent comparables à celles de leurs équivalents 
électroniques  bien  qu'ayant  de  grandes  marges  de  progression.  Elles  cumulent  par  contre  les 
avantages inhérents à l'optique photonique, à savoir principalement une insensibilité naturelle aux 
champs électriques et  magnétiques intense ainsi  qu'une précision atteignable,  avec la  recherche 
nécessaire  pour  celà,  plus  importante.  Pour  toutes  ces  raisons,  même  si  la  transition  vers  des 
mesures optiques dans les dispositifs produit en masse n'en est qu'à son début il est important pour 
une  entreprise  concevant  des  produits  de  mesure  innovants  d'acquérir  des  connaissances  et  un 
savoir-faire dans ce domaine qui sera sans aucun doute amené à prendre une place de plus en plus  
importante dans les branches de l'industrie concernée au cours les années à venir.

C'est dans ce contexte que la société Hydac, spécialiste international de la technique des 
fluides (mesure et contrôle), cherche à étudier la faisabilité technique et commerciale de la mesure 
de pressions hydrauliques utilisant des méthodes optiques. Dans ce but, elle s'est associée dans le 
cadre d'une convention CIFRE au Laboratoire des Système Photoniques qui possède un long savoir-
faire dans le domaine des capteurs optiques, notamment pour ce qui est des capteurs à base de guide 
de lumière (principalement fibres optiques) dont les propriétés sont utilisées pour mesurer pression, 
température, champs électriques et magnétique, mais aussi vibrations sonores ou sismiques. Le LSP 
s'applique  notamment  dans  ses  collaborations  avec  ses  partenaires  industriels  à  répondre  aux 
préjugés usuels qui veulent que les dispositifs optiques photoniques de mesure et de contrôle soient 
plus fragiles, plus chères et délicats à utiliser, et qu'ils soient finalement confinée aux laboratoires de 
recherche ou à de rares équipements à prix élevés (par exemple dans le domaine spatial). C'est en  
s'appuyant sur cette base de connaissances et ce savoir-faire que ce travail a été mené avec succès.



1 État de l'art
Dans cette partie du travail nous présentons un état de l'art et du marché commercial des 

capteurs de pression, puis nous nous intéressons aux capteurs optiques présents dans la littérature 
scientifique  afin  de  situer  notre  étude  dans  son  environnement  industriel  et  scientifique.  Nous 
présentons  ensuite  le  cahier  des  charges imposé  par  la  société  HYDAC pour  conclure  que  les 
technologies  actuellement  sur  le  marché  ne  sont  pas  satisfaisantes  par  rapport  aux  contraintes 
imposées. Suite à ce constat  nous proposons un nouveau concept de transducteur piezo-optique 
adapté aux performances du cahier des charges et notamment à une production de masse.

Le choix du principe du capteur à utiliser dépend fortement de : la précision recherchée, des 
gammes et plages de pression, de l'hostilité de l'environnement et de bien d'autres facteurs, mais  
quelques tendances se retrouvent dans la majorité des technologies.

1.1 Principaux capteurs de pression hydraulique du commerce

La principale grandeur généralement mesurée par les capteurs de pression hydraulique est la 
force appliquée sur une surface calibrée par la pression à mesurer. Les méthodes courantes pour ce 
faire sont :

• les effets  purement  mécaniques :  équilibres  de liquides  (baromètres à  liquide  comme le 
mercure par exemple), déflexion d'une aiguille par une membrane soumise à la pression 
(manomètre à aiguille), déformation d'un "tube" (tube de bourdon), etc,

• l'effet  piezo-résistif  :  le  transducteur  est  une  fine  membrane  soumise  à  la  pression.  La 
déformation due à la force appliquée modifie sa résistance électrique qui est mesurée en 
général par un pont de Wheatstone. On utilise couramment de fines couches de silicium ou 
de divers métaux déposés en membranes d'épaisseur strictement controllée,

• l'effet  piezo-électrique  :  les  matériaux  piezo-électriques,  comme le  quartz,  génèrent  une 
tension électrique quand ils sont soumis à une force,

• divers  effets  électriques  comme  une  variation  de  capacitance  ou  d'inductance  par 
déformation mécanique.

• Les méthodes optiques, détaillées ci-dessous

Il existe d'autres méthodes moins courantes pour des applications très spécifiques; elle sont de peu 
d'intérêt pour notre étude.

1.2 Le cas des capteurs optiques de pression hydraulique

Les  capteurs  optiques  de  pression  se  divisent  en  deux  grandes  catégories  :  capteurs 
extrinsèques  où  l'optique  n'est  pas  au  cœur  du  transducteur  mais  sert  uniquement  à  mesurer 
l'évolution du transducteur lui même (par exemple pour mesurer le déplacement d'une membrane 
par interférométrie), et les capteurs intrinsèques où l'effet à mesurer est directement optique; c'est ce 
dernier cas qui nous intéresse.  Tous les capteurs optiques existant de ce type sont des capteurs 
intrinsèques à fibre optique :

• Les  capteurs  à  modulation  d'amplitude  :  La  grandeur  physique  à  mesurer  module 
directement l'intensité  de la  lumière traversant la  fibre. C'est  une méthode très simple à 
mettre en œuvre, car elle ne nécessite pas de matériel sophistiqué. La principale technique 
consiste à utiliser des microcourbures sur la fibre, courbures qui sont modifiées par une 
pression externe.  Cette technologie n'existe  pratiquement  pas dans le  commerce car elle 
nécessite des réglages et des précautions gérables facilement pour le moment uniquement en 
laboratoire.



• Les capteurs à modulation de phase : C'est le type de capteur intrinsèque à fibres optiques le  
plus précis.  Ici  l'effet  physique à mesurer module par  action sur le matériau de la  fibre 
optique la phase de l'onde lumineuse se propageant dans cette fibre. Si l'on prend le cas de la 
pressions, une pression hydrostatique va comprimer la fibre et donc faire varier l'indice du 
cœur de cette fibre. Par conséquent, la propagation de l'onde lumineuse sera altérée. C'est le 
cas notamment de tous les capteurs interférométriques du type Mach-Zender.

• Les capteurs à modulation de longueur d'onde :  la  pression va influer sur le spectre  de 
longueurs d'ondes qui peuvent se propager dans la fibre. C'est le cas des fibres à réseau de 
bragg par exemple, mais cette technique nécessite un outil d'analyse en longueur d'onde en 
général couteux et délicat à exploiter (sauf dans des cas simples) en sortie de fibre.

• Capteurs polarimétriques : l'état de polarisation de la lumière dans une fibre dépend de la 
biréfringence de celle-ci, qui peut être modifiée par un effort externe. C'est cette variation 
d'état de polarisation qui est détecté, principalement en utilisant des fibres à maintien de 
polarisation ou des fibres monomodes correctement caractérisées.

1.3 Cahier des charges du capteur de pression hydraustatique

Le cadre dans lequel doit rentrer le capteur étudié tel que spécifié par HYDAC est le suivant :
• être un capteur intrinsèque et donc simple
• être utilisable dans une gamme allant de 1 bar à 100 bars pour une mesure hydrostatique 

(relativement à la pression atmosphérique)
• disposer d'une précision sur la mesure de 1% de la plage de mesure
• rentrer dans la gamme de prix en matériaux bruts et main d'œuvre de la gamme actuelle de 

capteurs  de pression Hydac sans demander de modification significative  des  moyens de 
production  de  cette  société  habituée  à  l'exploitation  de  procédés  propres  à  l'industrie 
microélectronique.

Le point le plus critique que nous avons identifié à été le quatrième : toutes les technologies 
de capteur à base de fibre optique demandent des moyens de production particuliers (soudeuse à 
fibres, "graveur" de réseau de bragg, etc), une expertise qui est absente dans l'entreprise de la part 
de la main d'œuvre, et les composants à considérer peuvent être hors de la gamme de prix visée  
(spectromètres …).

Notre choix s'est donc porté sur une méthode polarimétrique n'utilisant pas de fibre optique 
mais  un  guide  de  lumière  adapté  qui  deviendra  biréfringent  si  il  est  soumis  à  une  pression 
hydraulique.  Le  principal  avantage  de  notre  proposition  est  qu'un  tel  composant  peut  être 
directement moulé en matière plastique pour un coût très faible, en grandes quantités et qu'il pourra 
être  facilement  intégré  au  dispositif  utilisant  les  procédés  de  la  microélectronique.  Le 
fonctionnement spécifique du capteur est présenté dans les sections qui suivent.
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2 Etude théorique
Dans cette seconde partie du travail, il s'est tout d'abord agit d'analyser les outils théoriques 

existants pour traiter de la polarisation de la lumière ainsi que des effets d'une déformation physique 
sur les propriétés optiques des matériaux. Une fois les bases établies nous avons élaboré sur la base 
de ces concepts une première approche de la  modélisation permettant de proposer  une version 
conceptuelle du capteur piezo-optique que nous présentons.

Une fois les bases théoriques posées nous présentons le concept global du capteur ainsi que 
les contraintes de conception, de fabrication et d'exploitation qui nous guident. Nous optimisons le 
design du capteur que nous proposons en réponse à ces contraintes et nous présentons une version 
finale du capteur de pression. L'étape suivante est la modélisation théorique du comportement du 
capteur en utilisant les outils présentés précédemment couplés à une analyse par éléments finis des 
déformations mécaniques. 

2.1 Polarisation de la lumière

La première partie de notre étude théorique présente le cadre classique de la théorie de la 
polarisation  :  nous  étudions  l'évolution  dans  un  plan  fixe  de  l'évolution  temporelle  du  vecteur 
champ électrique  d'une onde monochromatique plane.  Les trois représentations classiques de la 
polarisation et les méthodes de calculs qui leur sont associées sont traitées pour être exploitables 
dans le cadre de nos objectifs :

• L'ellipse de polarisation, ellipse dessinée par le vecteur champ électrique. On distingue les 
cas dégénérés classiques :  les polarisation circulaire droite et  gauche,  linéaires verticales 
horizontales et à plus ou moins 45°

• La représentation de Jones en vecteur 2x1 complexe et le formalisme des matrices de Jones 
qui lui est associé

• Les  vecteurs  de  Stokes  4x1  qui  permettent  de  représenter  une  lumière  partiellement 
polarisée, et les matrices de transformation linéaires qui leurs sont associées : les matrices de  
Mueller

Sont également présentés les composants optiques classiques de l'étude de la polarisation, à savoir 
les lames à retard, les rotateurs et les diatténuateurs.

Enfin nous introduisons la « sphère de Poincaré » qui permet de représenter graphiquement 
l'action d'un élément  optique polarisant  soit  sur une polarisation d'entrée donnée,  en traçant un 
parcours sur la sphère, soit d'une polarisation quelconque en présentant la déformation de la sphère.

2.2 Présentation de l'effet piezo-optique et de son exploitation dans le 
capteur proposé

Dans cette section nous considérons le modèle simple de Hook pour les petites déformations 
élastiques  des  matériaux.  Nous relions ensuite  ces déformations  à  la  variation  d'indice qu'elles 
provoquent dans un matériau transparent (et donc leur effet créateur de biréfringence) au travers des 
coefficients  piezo-optiques  de  Pockels  et  plus  simplement  du  "coefficient  elasto-optique"  d'un 
matériau.  Nous  étudions  également  l'effet  de  la  température  sur  la  biréfringence  induite  par 
pression.

Nous  présentons  ensuite  le  cas  particulier,  qui  est  utilisé  dans  le  dispositif  proposé,  de 
l'évolution polarimétrique d'une lumière réfléchie à une interface notamment en terme d'effets de la 
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pression et de la température.

Finalement le comportement simple d'un système constitué en série d'une source de lumière, 
d'un polariseur,  d'un cube transparent  soumis  à  une force,  d'un second polariseur  et  enfin d'un 
photodétecteur est étudié en guise de validation de l'étude conceptuelle présentée dans le chapitre.

2.3 Architecture du capteur piezo-optique de pression hydaulique que 
nous proposons

Cette architecture repose sur l'étude théorique précédente et est adaptée pour une mesure de 
pression hydrostatique mais présente quelques inconvénients que nous sommes amenés à gérer.

Cette architecture est particulièrement sensible à la température et sa précision est fortement 
limitée par la qualité des polariseurs qui ne peuvent, pour l'application envisagée, qu'être de piètre  
qualité. Cette configuration est loin d'être idéale comme illustré par sa réponse à la pression ci-
dessous; elle doit donc être améliorée.

La réponse basique est sinusoïdale et à pression "nulle" (atmosphérique) nous nous trouvons 
proche du zero. Dans le cas d'un capteur bas coût la réponse doit être le plus linéaire possible pour 
éviter d'avoir à intégrer une électronique de correction trop complexe ce qui n'est le cas ici que pour 
une très faible étendue de variation de la pression; mais dans ce cas la dynamique du capteur est  
extrêmement faible, comme le montre l'écrasement de la courbe autour de zéro.
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Dessin 2: Principe de base Dessin 1: Exemple de déformation mécanique  
due à la pression

Dessin 3: Réponse à une force appliquée



Le point de mesure idéal se situe bien entendu en milieu de courbe : la réponse est quasi-
linaire  sur  une  grande  plage  ,et  la  dynamique  y  est  maximale.  Cela  correspond  à  un  état  de 
polarisation circulaire que nous allons donc chercher à obtenir dans un processus d'optimisation.

Nous proposons donc la solution optimisée représentée par l'architecture de la figure 4 :

Le fonctionnement du transducteur opérant selon ce schéma de concept est le suivant :

• une  lumière  non  polarisée  arrive  à  une  interface  à  l'angle  de  brewster  et  ressort  très 
fortement polarisée (bien au delà de la qualité que peut fournir un polariseur à bas coût). Le 
principe est exposé sur le dessin 5

• le faisceau subit une réflexion totale interne qui oriente son axe de polarisation pour pour 
maximum de sensibilité à la pression, cf dessins 6 et 7

• il traverse la cellule rendue biréfringente par effet de la pression

• une réflexion transforme ensuite la polarisation de manière à ce que si la cellule n'est pas 
biréfringente l'on obtienne une polarisation circulaire

• une dernière réflexion à l'angle de brewster se comporte comme un second polariseur de 
haute qualité malgré un cout très faible
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Dessin 4: Design optimisé

Dessin 6: Angle de Brewster Dessin 5: Évolution des paramètres elliptiques  
après réflexion



Ce  design  règle  les  problèmes  de  coût  (car  il  est  en  polymère  injecté),  de  qualité  des 
polariseurs ainsi que de dynamique du capteur. De plus il assure une bonne linéarité autour de zéro.  
Il a également l'avantage de ne comporter que peu d'éléments puisque l'on supprime les polariseurs 
et par là même l'erreur de positionnement de leurs axes. Il s'agit d'un système monolithique qui peut 
donc être moulé par injection en grande quantité et à coût très faible. Enfin, une simulation tenant  
compte de tous les paramètres montre qu'une auto-compensation physique due à la symétrie du 
système minimise la dépendance à la température puisqu'une variation de plus de 100°C correspond 
à environ 0,2% d'écart au maximum à la courbe de réponse à température ambiante ce qui élimine 
la nécessité d'une correction thermique.

Un calcul  de tolérancement  et  de propagation d'erreur  montre que l'on peut  obtenir  une 
précision de 0,5% - 1% de la valeur mesurée pour une erreur sur les angles (et donc sur le moule) de 
1% ce qui est tout à fait compatible avec les technologies d'injection de polymères en production.
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Dessin 7: Sensibilité à l'orientation de la  
polarisation

Dessin 8: Effet de la température sur le déphasage pour  
une pression donnée



3 Validation expérimentale
Après l'étude théorique du système proposé, il s'agit de comparer les résultats de calculs et 

de simulation au comportement réel des matériaux.

Une grande partie de notre  travail  doctoral  expérimental  a consisté  en la  conception,  la 
réalisation puis  la  caractérisation  d'un  instrument  de mesure  polarimétrique  :  le  polarimètre  de 
Mueller.  Ce polarimètre  peut  ensuite  être  utilisé  pour  caractériser  la  réponse  polarimétrique  de 
différents matériaux transparents soumis à des pressions et températures différentes et valider les 
différents éléments du capteur final tel que proposé ci-dessus.

3.1 Polarimètre de Mueller

Un polarimètre de Mueller a été conçu et réalisé. Il a été réalisé selon le modèle : source –  
polariseur – lame quart d'onde – espace échantillon – lame quart d'onde – polariseur – détecteur. 
Afin de minimiser les effets polarimétriques des ouvertures diaphragmantes se situant le long du 
chemin optique, le détecteur est constitué d'une lentille d'ouverture très faible, et donc de grande 
profondeur de champs, qui image une zone au centre de l'espace échantillon sur une photodiode.

Ce polarimètre est utilisé en mode transformée de Fourier : après avoir choisi un pas, pour 
chaque angle de la lame quart-d'onde d'entrée l'intensité de sortie est mesurée pour n positions de la 
quart  d'onde  de  sortie,  et  de  même  pour  chaque  angle  d'entrée  possible.  La  table  de  mesure 
résultante  subit  une  transformée  de  Fourier  2D  et  les  coefficients  résultants  permettent  de 
déterminer les différents coefficients de la matrice de Mueller de l'échantillon.

Différents  éléments  extérieurs  au  capteur  que  nous  proposons ont  été  caractérisés,  dont 
principalement la linéarité du détecteur, son seuil de bruit, le taux d'extinction des polariseurs et les 
retards  effectifs  des  deux  lames quart  d'onde.  Le  détecteur  utilisé  présente  une  large  plage  de 
linéarité, les polariseurs ont un taux d'extinction d'environ 1:7000 et les lames à retard présentent  
des retards respectifs de  π /2−π /72,5  et  π /2−π /1987 ; ces valeurs ont été intégrées dans 
l'algorithme de reconstruction de la matrice de Mueller.

Au final la polarimètre permet  d'obtenir  des mesures d'une précision approchant les 2% 
d'erreur  maximale sur les coefficients  de Mueller.  Les différentes étapes de calibration et  deux 
mesures d'échantillons sont présentées sur les images ci-dessous.
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Dessin 9: Polarimètre de Mueller



3.2 Validation expérimentale du capteur piezo-optique proposé

Une version simplifiée du capteur piezo-optique que nous proposons, décrite dans la partie 
théorique du travail, a été réalisée et testée sur un banc de mesure de pression hydrostatique. La 
version pre-industrielle du capteur ne sera pas réalisée puisque cette étape n'est pas comprises dans 
notre plan de travail, mais ses différentes composantes aient été validées individuellement ce qui est  
l'une des étapes les plus importantes.
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Dessin 11: Caractérisation de la linéarité de la  
photodiode

Dessin 12: Mesure de la matrice du vide pour  
calibration

Dessin 10: Détermination du retard de la quart  
d'onde d'entrée
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Dessin 14: Capteur piezo-optique  
de pression Dessin 13: Banc de test de capteurs :  

pompe avec manomètre de référence et  
bloc de test

Dessin 15: Courbe de réponse expérimentale  
avec barres d'erreur



Conclusion

Pour  conclure,  nous  récapitulons  les  résultats  produits  au  cour  de  cette  étude  doctorale 
menée sous financement CIFRE en partenariat avec la société HYDAC. À partir d'un état de l'art  
commercial et scientifique des capteurs de pression hydrostatiques ainsi que d'un cahier des charges 
établi par HYDAC un nouveau concept de transducteur piezo-optique de pression pour les mesures 
hydrauliques a été proposé. Les principaux avantages de ce capteur sont sa robustesse, sa simplicité 
de fabrication et son faible coût au vu des performances qu'il peut atteindre. Le capteur proposé est  
modélisé et analysé en utilisant les outils classiques de l'étude de la polarisation puis sa sensibilité à  
différentes sources d'erreurs potentielles est prise en compte. D'un point de vue expérimental un 
polarimètre de Mueller a été réalisé, calibré et testé. Une version simplifiée du capteur de pression 
hydraulique proposé a été fabriquée est testée. Différentes perspectives s'ouvrent pour poursuivre ce 
travail. D'un point de vue matériaux il serait important d'étudier l'effet du vieillissement du milieu 
transparent  sur  les  performances  du  capteur,  ainsi  que  de  compenser  plus  avant  les  effets  des 
variations de température afin d'améliorer la précision intrinsèque du capteur. L'étude de ces points 
pourrait amener à l'élaboration d'un processus d'auto-calibration du capteur. Un autre facteur clé 
pour l'amélioration de la précision atteignable serait le développement plus avant du dispositif de 
détection de la polarisation tout en maintenant un coût et une complexité du capteur minimale.
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Requirement Specification Pressure Sensor 100 bar 

1. EMC 5
2. Electrical Requirements 6
2.1 Temperatures 6
2.2 Pressure ranges 6
2.3 Power supply 6

2.4 Output signal 6
2.5 Dynamics 8
3. Explanation 8
4. Price 9

1. EMC Requirements

No. 
tests required?
yes no

Brief description

1.1 X Immunity to voltage spikes on power supply lines

1.2 X Immunity to voltage spikes on signal, data and control lines

1.3 X Emission of spikes on supply, signal, data and control lines

1.4 X Measurement of conducted interference from electromechanical components 

1.5 X Measurement of conducted interference from electronic components

1.6 X Measurement of transient emissions with the TEM cell

1.7 X Measurement of transient emissions with the stripline

1.8 X Measurement of transient emissions with the current probe.

1.9 X Immunity of interference with the TEM cell / stripline
Extended requirements for this component:
Immunity to interference 100 V/m

1.10 X Immunity to Interference with the stripline from 1 to 1000 MHz
Extended requirements for this component:
Immunity to interference: till 100 V/m
Non-destructive range: till 200 V/m

1.11 X Immunity to interference according to the BCI method

1.12 X Immunity to interference in the anechoic chamber for system setups

1.14 X Immunity to interference in the mobile radio areas

1.15 X Immunity to electrostatic discharge (ESD)

1.16 X Immunity of components to ripple of the vehicle electrical system

1.17 X Progression of low-frequency attenuation for audio systems

1.18 X Clocked voltages and currents on the vehicle electrical system

1.19 X Ground offset between ground-pin and metal housing

2. Electrical Requirements

Symbol Min. Typ. Max.
Unit
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2.1 temperatures

2.1.1
Room temperature ϑR 18 23 28 ° C 

2.1.2
Operation temperature ϑOP -40 135 ° C 

2.2 Pressure ranges 0 ?

2.2.1 Measuring range pR 0 100 bar

2.2.2
Non-destructive range 

pnd 150 (or 1,5x of pMAX ) bar

2.2.3
burst pressure

pburst 600 (or 6x of pMax) bar

2.2.4. Dynamic pressure test pdyn 107 pulse* (2 Hz) at 150 bar +5%

2.3 Power supply 

2.3.1
Operation supply voltage 

US 4.7 5 5.3 V

2.3.2 Non-destructive supply voltage max. 10 min. UndS -14 16 V

2.3.3
Supply current at US IS 10 mA

2.3.4 supply current at UndS beyond US IndS 18 mA

2.4 Output signal The behavior of the output signal is ratiometric to supply voltage.

%US
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100

0 50 100 150 200

3.4.3

3.4.2

3.4.1 3.4.3

3.4.6, 3.4.7

[bar]

2.4.1
low saturation voltage

UO lo 6.5 %US

2.4.2
high saturation voltage

UO hi 95,0 %US

2.4.3
Output voltage, if failure mode

UO fail 96,0 4,0 %US

2.4.4
Offsetvoltage 
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2.4.4.1
- as-delivered condition

Uoff(del) 10.5 13,0 15.5 %US

2.4.4.2
- total

Uoff(tot) 10,0 13,0 16,0 %US

2.4.4.3 - depends on ϑOP uoff(ϑOP) 0.0016 0.0073 0.013 %US/°C

2.4.4.4
Rate of change of offset

voff ±1,0 %US /s

2.4.5
Sensitivity

usens 0,355 0,385 0,415 %US 

/bar

2.4.6
Total error at room temperature

164
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2.4.7
Temperatureinfluence on the total error

23

135

0

0.25

0.5

0.75

1

1.25

1.5

1.75

-40 -20 0 20 40 60 80 100 120

Temperature

Temperature multiplicator

 [°C]

2.4.8
r.m.s. noise voltage

Unoise 10 mV

2.4.9
Output driver current

IO 0.8 5.0 mA

2.4.10
Output impedance 

ZO 110 120 130 Ω

2.4.11
Nominal load resistor to ground

RLN 47.5 50 52.5 kΩ
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2.4.12
Nominal load capacitance

CLN 0.5 1 1.5 nF

2.4.13
Max. load capacitance

CL max 20 nF

2.5 Dynamics

2.5.1
Nominal frequency

fN 0 0 0 Hz

2.5.2
Upper cut-off frequency

fhi 25 Hz

2.5.3
Response time 

tresponse 10 ms

2.5.4
Resonant frequency

fres 800 Hz

2.5.5
Time until availability

tavail 200 ms

2.5.6
Turn off time 

tturnoff 20 ms

3. Explanation

Symbol Definitions

3.2 Pressure
Values are relativpressure 

3.2.1 pR Measuring  range  
specification has to be fulfilled

3.2.2 pnd Non-destructive range
specification has to be fulfilled, beyond pR no change of the output.

3.2.3 pburst burst pressure
No leakage, sensor does not has to fulfil the specification after returning to pR

3.3.2 UndS Non-destructive supply voltage
beyond US has to be UO = UO fail

After returning to US within 10 min the spec has to be fulfilled

3.4 UO Output signal
No oscillation if the device is defect

3.4.1 UO lo low saturation voltage
At the working sensor UO must not fall below UO lo

3.4.2 UO hi high saturation voltage
At the working sensor UO must not exceed UO hi

3.4.3 UO fail Output voltage, if failure mode
if failure mode, UO has to be less than UO fail max ore more than UO fail min

Failures are for instance: Open supply or ground short between any lines

3.4.4.1 Uoff(del) Offsetvoltage at 0 bar and ϑR as-delivered condition

3.4.4.2 Uoff(tot) Offsetvoltage at 0 bar over ϑOP and lifetime

3.4.4.3 uoff(ϑOP) depends on ϑOP

Influence of the temperature on the offset

3.4.4.4 voff Drift velocity of offset
At changes of the enviromental conditions
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3.4.5 usens Sensitivity
The relation between the change of output value to change of input value
including linearity error at 0 Hz

3.4.8 Unoise r.m.s. noise voltage
Measured r.m.s. value (root mean square) at frequency range from flo(typ) to fhi(typ)

3.4.9 IO Output driver current
output long-time short-circuit proof
Sensor fulfils specification after short-circuit

3.4.13 CL max Max. load capacitance
The maximum allowed capacitive load between output and ground without stability problems of 
the sensor

3.5 Dynamic working range from static input till fhi

3.5.3 tresponse Response time
Maximum time needed to change from 0 % to 90 % or 100 % to 10 % of its final output value 
after an applied step pressure input from 0 bar to pR max or from pR max to 0 bar

3.5.4 fres Resonant frequency
Resonant phenomenons may only occur above fres

3.5.5 tavail Time until availability
Time needed after UN is connected to the sensor until the sensor meets the specification

3.5.6 tturnoff Turn off time
Time needed after the supply voltage is reduced from UN to 0.1V (time < 0.1s) until Uoff(ϑR) has 
reached 0.25V

4. Price Aim for production costs 

(benchmark for competitive pressure sensors 2005) 

70.000 Sensors < 10,25 EUR/Sennsor

130.000 Sensors < 10,12 EUR/Sennsor

150.000 Sensors < 9,81 EUR/Sennsor

200.000 Sensors < 8,30 EUR/Sennsor
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* Dynamic Pulse form 
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