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Faculté des Sciences Économiques et de Gestion
de l’Université de Strasbourg
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CHAPTER 1

Introduction

Rapid technological advance has created an enormous variety of technologies, and
industrial production has strongly benefited from its increasingly diverse technolog-
ical basis. This ongoing trend has given rise to the “multi-technology firm” which
handles diverse technologies in order to manage and to develop its product lines (see
Granstrand, 1998; Powell et al., 1996, for example). The richness and complexity of
the increasing knowledge base eventually creates an impediment to a firm’s growth
because its internal knowledge base may become insufficient for innovation. Yet firms
need to innovate in order to stay competitive in their markets. Therefore, firms need
to employ complementary knowledge residing outside the boundaries of the firm.

Alliances are frequently used to address this issue nowadays. In strategic alliances,
two or more firms join, exchange or share their resources in order to strengthen their
resource base or to develop a joint business. Firms form strategic alliances to tar-
get any activity along the value chain, from research to production to marketing and
distribution. Research alliances are especially frequent in high-tech industries, where
firms connect for technology transfer, sharing and joint undertaking of research. Al-
though motives to form research alliances vary, access to complementary knowledge
is the most important factor according to the industry actors (Hagedoorn, 1993; Her-
rling, 1998).1 Alliances serve this purpose well because inter-firm cooperation can

1Motives for research alliances may stem from efficiency considerations or firm interdependencies
(see Hemphill and Vonortas, 2003). Efficiency is enhanced, for example, due to realization of
economies of scale and scope, easier access to finance, or using of extant capacities. In high-tech
industries however, where we observe especially many research alliances, access to complementary
knowledge, a form of firm interdependence, seems to be the most important driver of alliance
formation (Hagedoorn, 1993; Herrling, 1998).
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Chapter 1 Introduction

be extremely effective to transfer tacit knowledge. Therefore, the broadening of the
knowledge base induces interaction among the actors which is governed by alliances.
This argument may well explain the rapid rise in research alliances starting in the mid
1970s.

The increasing importance of interaction among actors is reflected in theoretical
approaches to innovation. In the 1980s, a first step has been the “chain-linked model”
of Kline and Rosenberg (1986), which is a general product-life cycle model. Originally
this model was proposed as a reaction on the “linear model” of innovation. The “linear
model” reflects the thinking that a new product passes four subsequent stages. In the
first stage, basic research opens the opportunity for a certain technological application.
A corresponding product is developed in the second stage. In the third and fourth
stage the product is produced and marketed. The “chain-linked model” superseded
the conception of innovation as a linear process within the isolated firm. It extends
the “linear model” mainly by noting two things. Firstly, innovation activities of the
different stages are heavily interconnected by forward and backward links. Secondly,
the model incorporates a knowledge pool outside the boundaries of the firm which is
potentially relevant in all innovation activities. Thus, the “chain-linked model” points
to the relevance of interaction for innovation, within the firm as well as across firm
boundaries.

During the last two decades the “systems of innovation approach” has emerged
which further emphasizes interaction for innovation (see for example Edquist, 2005).
The systems approach to innovation argues that the innovation performance of nation
states, regions or sectors depends not only on the performance of the individual ac-
tors but also on how the actors interact with each other. The innovation process is
depicted as a joint learning activity of firms and other actors, such as research insti-
tutions, which is governed by government agencies and financial institutions. Thus,
innovation is conceptualized as an interactive process of creation, use and diffusion
of economically useful knowledge.2 Within the innovation approach, learning through
interaction among heterogeneous actors is key to innovation. This puts the networks
formed by the actors at the fore.

The structure of the research network is likely to affect the way knowledge is created
and diffused. Empirical studies suggest that the position a firm takes in the research
network affects its knowledge sourcing and production behavior. For example firms
which are more central in the network and firms within a well connected group might
have a higher research productivity (Ahuja, 2000). Because joint research always
entails knowledge sharing and spillovers, the structure of the network is also likely to
affect diffusion and accumulation of technological knowledge within the system (Cowan

2The literature provides varies definitions and classifications of knowledge (see Arora et al., 2002;
Cowan et al., 2000; Rosenberg, 1983). This thesis focuses on technological knowledge without
employing a strict definition. Following Arora et al. (2002), we assume that technological knowledge
is economically useful and may stem for example from science, engineering or practicing.
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and Jonard, 2004).

In this light, a crucial question becomes how networks actually are formed. This
thesis considers how the technological and social endowment of firms affect their deci-
sions to form bilateral alliances, and investigates to what extent our knowledge on the
formation of bilateral alliances helps to explain the structure of the alliance network.
A theoretical model yields insights into how the technological endowment of firms may
affect both the global network structure and the position of firms in the network. An
empirical analysis estimates technological and social network effects on alliance forma-
tion. The estimated model is shown to be rather informative with respect to the firm’s
position in the network but not very informative with respect to the global network
structure.

Prior approaches

Game-theoretic approaches to network formation started off with the connections
model of Jackson and Wolinsky (1996). In the connections model, identical agents
maximize profits by forming links with each other. Formation of links is costly and
profits arise through direct links as well as indirect links. The connections model led
to many descendants with variations of this setting (see Jackson et al., 2003, for a
review). Typically, the analysis focuses on efficiency and stability of the network. A
network is stable if no agent has an incentive to deviate from the given network by
creating a link or dissolving a link. In general it is found that stable networks are not
necessarily efficient. But models in this type of setting are difficult to solve. Because
agents benefit from indirect links, the linking decision of an agent becomes contingent
on the overall network structure. Therefore, for larger networks, a full characterization
of all stable structures usually is not feasible. In cases where a full characterization is
feasible, stable networks are not especially realistic: the empty network, the complete
network, or the star. A further commonality to all these models is that agents are
identical, having essentially no properties. The only characteristic of an agent is its
position in the network. The model of Goyal and Moraga-Gonzalez (2001) and Goyal
and Joshi (2003) are rare exceptions in that cooperation between two agents affects
their production costs in a subsequent competition stage. However, also in this model
agents are initially identical and, hence, have no identity.

Only recently have theoretical models introduced initial properties to the nodes in
order to allow for more realistic network structures. Examples are the islands model of
Jackson and Rogers (2005), a spatial version of the connections model by Carayol and
Roux (2009), or the knowledge portfolio model by Cowan et al. (2007). In these models
the properties of nodes affect the attractiveness of particular nodes as partners. In the
island model agents are positioned on various islands. Link formation is less costly
for agents which are on the same island and more costly across islands. Thus, agents
on the same island are more likely to form a link and the network becomes clustered.

3



Chapter 1 Introduction

In the model of Carayol and Roux (2009), as in the connections model, agents profit
from direct and indirect links and have costs. The difference is that agents are located
in space and costs are a function of the agents’ geographic distance.3 A stochastic
process of network formation results, for certain parameter ranges, in real-world like
networks having the small world properties, i.e. sparse with short average path length
and high clustering. In the knowledge portfolio model of Cowan et al. (2007) agents are
endowed with a knowledge vector which is a vector of integers. In order to innovate,
agents search for complementary knowledge and combine their knowledge vectors. Also
this model generates real-world like networks and moreover shows that the network
structure depends on the modularity of the innovation tasks.4 In all three models,
the properties of the nodes affect the attractiveness of particular agents as partners.
This, of course, implies that the relative properties of the agents predict which links
are likely to be formed and the structure of the network may reflect the structure of
some underlying space in which agents are located.

How relative properties of the firms affect link formation has recently become a
central issue in empirical alliance studies.5 Empirical studies of alliance formation
estimate the factors which cause two particular firms to form an alliance. The main
interest, therefore, is in how firms are technologically, economically and/or socially
related to each other. Summarizing this literature, it is important to distinguish
studies on the formation of research alliances from studies on the formation of alliances
per se which may include various types of alliances. First, the literature on alliance
formation is large whereas only a few studies consider formation of research alliances.
Second, and more important, the two streams follow different approaches. Studies of
research alliances focus on the need to combine complementary knowledge. The larger
literature on alliance formation is primarily occupied with social relations of the firms.
In the language of Eisenhardt and Schoonhoven (1996), research on research alliances
is largely concerned with the inducement of alliance formation, whereas research on
alliances per se largely focuses on the opportunity of alliance formation.

Interest in the social environment of the firm in economics has been spurred by
structural sociology. This approach builds on the conviction that the individual is
“purposeful and goal directed, guided by interests [...] and by the rewards and con-
straints imposed by the social environment.” (Coleman, 1986, p.1310). The claim
that economic action is the result of inducements and opportunities is not a novelty

3The model of Carayol and Roux (2009) resembles another spatial version of the connections model,
the model of Gilles and Johnson (2000). One difference is that agents are located on a ring in the
former and on a line in the latter model. A second difference is that Carayol and Roux (2009)
consider more actors within a stochastic process of network formation and are concerned with the
generation of real-world like networks. Gilles and Johnson (2000) analyze the relationship between
efficiency and stability for a smaller set of actors.

4The issue of modularity is addressed in chapter 5.
5Previously, the literature on alliances has been mainly concerned with other issues such as the

governance of alliances or motives of alliance formation.
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coming from this approach but has been shared by many early economists such as
Smith, Locke or Mill (see Coleman, 1986, p.1310). The novelty rather stems from the
conceptualization of the social environment. The social environment is thought to be
realized through existing social relations among individuals. Therefore, the structure
of the social network defines the (local) working of social norms, and, each individual
acts within its own local social environment (Granovetter, 1985).

Acknowledging that firms act within a historical and social context helped to explain
observed economic behavior which seems inconsistent with the “traditional” perspec-
tive of the rational, self-interested and isolated economic actor. For example research
on alliances needed to explain how it may be that two firms invest in relation-specific
capital and exchange of knowledge under incomplete contracts. Within the “tradi-
tional” view there are serious impediments for alliance formation. Because two firms
are separate legal entities with diverging interests, they might encounter appropri-
ability problems (e.g. leakage of knowledge) and moral hazards (e.g. opportunistic
behavior) (Williamson, 1991). Furthermore, incomplete information on potential part-
ners hinders partner search, and ongoing coordination efforts are necessary during the
alliance in order to be successful. All these issues are better understood when the
social environment of the firm is taken into account. Social and business relationships
provide (trustful) information and sustain norms of behavior (Gulati, 1998).

Empirical research on alliance formation has focused on social effects from the net-
work of prior alliances (Gulati and Gargiulo, 1999; Powell et al., 2005, are probably
the most prominent). The argument for doing so is that, although the network of prior
alliances does not represent the complete social environment, it still is an important
part of it. The typical approach is to construct the network of prior alliances among a
sampled set of actors, then measure firm-pair specific network statistics on the network
and finally introduce these statistics as independent variables in a regression where the
dependent variable is whether or not a certain alliance forms. Empirical results suggest
for example that trust, reputation and the connectedness of the actors are influential
for alliance formation (Gulati and Gargiulo, 1999). Although this literature widely
acknowledges the importance of inducements and opportunities, inducive factors are
typically treated as factors which need to be controled for but which are not of special
interest. Therefore, strategic inducements for alliance formation are captured by rough
proxies such as industry affiliation, type of organization (public, private, non-profit)
or firm size (Gulati and Gargiulo, 1999; Powell et al., 2005; Rosenkopf and Padula,
2008). An issue in this literature is that the social capital of the firm is a derivative
from and proxied by the network structure. For example, trust among firms is said to
arise out of repeated alliances and is measured by the number of prior alliances. This
approach faces the risk of spurious path dependency because exogenous factors as well
might cause stable network structure. If incentives to form alliances are caused by
exogenous factors which remain stable over time, then the network structure is likely
to remain stable as well.

5
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Empirical studies on the formation of research alliances are mainly concerned with
how technological endowment of two firms affect their decision to form an alliance. For
this endeavor one first needs an idea which technological combinations are economically
useful. Most studies which investigated this question took the standpoint that alliance
benefit depends on the relatedness of the knowledge of the firms (see e.g. Cantwell and
Colombo, 2000; Mowery et al., 1998; Rothaermel and Boeker, 2008). On the one hand,
firms ally to access complementary knowledge and, therefore, the knowledge bases of
the partnering firms need to be different to some extent. Another way to put this
argument is that new knowledge is generated by recombination of prior knowledge,
and, novel combinations are possible to the extent that the knowledge bases of the
firms are different. On the other hand, knowledge bases need to be similar because
absorptive capacity of the firms needs to be sufficiently high to evaluate each other’s
knowledge and to commercially exploit the results of the cooperation (Cohen and
Levinthal, 1990). Hence, the knowledge bases of the partners should neither be too
different nor too similar. The knowledge base of the firm is typically measured using
the patent portfolio of the firm. Then, knowledge relatedness is conceptualized as
the proximity of two patent portfolios, where proximity is indicated for example as
overlap of patent citations or similarity of patenting frequency in technological fields.
The results of these studies mostly agree that technological proximity is influential for
alliance formation. Depending on the industry, alliance form (joint venture, research
agreement), and distance measure, studies find that firms are most likely to form
alliances when they have an intermediate or small technological distance (Mowery
et al., 1998; Cantwell and Colombo, 2000, respectively). The issue that the prior
network of alliances might provide private information or trust is widely neglected in
these studies.

The alliance may be considered as the elementary unit in the process of network
formation. A network usually is described by the set of actors and the links between
the actors. The adjacency matrix contains all this information. The adjacency matrix
is a binary matrix with the number of rows and columns equal to the number of actors.
A cell in the adjacency matrix is set to one if an alliance exists between two respective
actors and zero else.6 All higher-level network structures can be extracted from the
adjacency matrix. The number of alliances of the firm corresponds to the row and
column sums. The alliance portfolio of the firm is fully described by the row and
column vectors. The ego-network of the firm entails merely the set of partners and
the links among them. All these levels have been subject to empirical research, with
respect to both alliances and research alliances.

Probably most often investigated is the number of alliances of the firm, be it re-

6This holds for “simple” networks, with only one type of link either existing or not and a fixed set
of actors which formed alliances over a certain time. Different types of links might be represented
by several matrices, valued links by numerical entries in the cells, and time evolution by stacking
adjacency matrices over several time periods.
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search alliances or other types of alliances (Ahuja, 2000; Powell et al., 1996; Shan
et al., 1994; Walker et al., 1997; Zhang et al., 2007). Consistent with the results on
alliance formation, it has been found that firms with high social capital or high tech-
nological capital have many alliances.7 Furthermore, connectedness within the local
social neighborhood and the breadth of the firm’s knowledge base has been found to
positively affect the number of alliances of the firm (Walker et al., 1997; Zhang et al.,
2007, respectively). One observation (which is addressed in chapters 3 and 4) is that,
although all the network levels (alliance, firm ego-network, etc.) are naturally con-
nected, empirical studies usually remain at one level of analysis. A notable exception
is the study of Stuart (1998) who investigates how the technological endowment of
firms affect alliance formation as well as the number of alliances of the firm. Therefore
an interesting question is to what extent studies at different levels are informationally
equivalent. For example, does an empirical study of alliance formation provide good
information on how the network structure forms?

Thesis structure

This thesis investigates the formation of industrial research networks. The focus is
on how heterogeneous technological capabilities of firms affect their decision to form
alliances and, thereby, shape the structure of the network. The technological expla-
nation of network formation is complemented by taking into account social structure
effects arising from the prior network of alliances. In doing so, the thesis mainly builds
on the literature on alliance formation, the resource based view of the firm and social
network theory and analysis.

Chapter 2 introduces technological distance between firm-pairs as a cause of network
formation in a theoretical model. The theory on absorptive capacity, developed by
Cohen and Levinthal (1990), implies that benefits of joint knowledge creation by two
actors vary with their cognitive distance. In an empirical application, Mowery et al.
(1998) found an inverted-U effect of technological distance on the formation of joint
ventures. Chapter 2 investigates how that technological distance effect between firm-
pairs contributes to the structure of the alliance network among multiple actors. In
the model, firms are positioned in technological space and two firms form an alliance if
their technological distance is within a profitable range. The implication of the model
is that when the profitable range is small (large) relative to the technological space,

7A question also investigated by Eisenhardt and Schoonhoven (1996). This study is exceptional in
several regards. First, similar to Ahuja (2000), Eisenhardt and Schoonhoven (1996) investigate
jointly social and technological factors of alliance formation. Second, social embeddedness is not
measured on the prior network of alliances but proxied by the career history of the top management
team. Third, the study does not investigate technological competence by the firm’s patent portfolio
but the firm’s technology strategy by questionnaires and product features. By doing so, the study
circumvents the issue of network endogeneity and includes explicitly the technology strategy of the
firm.
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Chapter 1 Introduction

firms closer to the center of technological space are more (less) central in network
space.

Chapter 3 investigates the empirical relevance of the theoretical model for a research
network of the pharmaceutical industry. Important methodological steps are the de-
velopment of the testing strategy, the measurement of technological distance and the
transfer of the random and fixed effects estimation approach for panel data to the
estimation of firm-pair observations. The empirical results confirm that technologi-
cal distance affects pairwise alliance formation which, in turn, influences higher-level
network structures, especially the firm ego-network.

Chapter 4 compares technological distance to social network variables as explana-
tions of network formation. The social network literature argues that alliance for-
mation is contingent on a concrete social system which is built through business and
personal relationships (Granovetter, 1985). Taking the network of prior alliances as
proxy for the overall social network, empirical studies have found significant social-
network effects but tend to ignore inducements for alliance formation (e.g. Gulati and
Gargiulo, 1999). This chapter presents joint estimates of the standard social network
effects and the technological-distance effect on alliance formation. Social and techno-
logical effects are found to be similarly strong in size and significance. The sensitivity
analysis, however, shows that social-network effects can be expected to have an up-
ward bias due to spurious path dependency. This affects the interpretation of own
estimations but also of previous findings in the empirical literature.

Chapter 5 investigates the effect of modularity in research activity on the alliance
network in an empirical application to the vaccine industry. The idea that product
modularity might induce organizational modularity and vice versa is at the origin of
many theoretical and empirical contributions (e.g. Brusoni et al., 2001; Baldwin, 2008).
Most of these studies are concerned with engineering design. This chapter considers
vaccines as nearly modular products. The analysis suggests that especially integrated
pharmaceutical firms with a large vaccine portfolio benefit from the modular product
architecture. Furthermore, the study suggests that the technological specialization of
biotechnology firms does not predetermine the strategy of the firm. Financial and
organizational resources might be more constraining.

Chapter 6 integrates the findings of the thesis and concludes.
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CHAPTER 2

Theoretical Model of Network Formation

2.1 Introduction

Joint research and development (R&D) by two or more firms is frequent when firms
face high innovation pressure and technological knowledge is dispersed among firms
(Powell et al., 1996). Under these conditions the R&D alliance is important to gener-
ate technical innovations, because it governs the process of recombination of existing
knowledge residing in different firms.1

The choice of an alliance partner involves a trade-off. On the one hand, alliance
partners need the absorptive capacity to evaluate each others knowledge and to appro-
priate the results of the alliance (Cohen and Levinthal, 1990). The more similar the
knowledge of the alliance partners, the higher their absorptive capacity. On the other
hand, firms ally to access new knowledge and form novel combinations (Nooteboom
et al., 2007). The more dissimilar the knowledge of the alliance partners, the higher
the novelty gain. For a beneficial alliance, absorptive capacity and novelty gain are
both preferred to be high. However, with increasing cognitive distance absorptive ca-
pacity decreases and novelty gain increases. This implies that benefit is maximized at
some medium cognitive distance, the point of optimal cognitive distance (Nooteboom
et al., 2007). The empirical literature attests to the relevance of the inverse-U-shaped
benefit-distance effect. Joint R&D is most likely for pairs of firms having intermediate
technological distances (Mowery et al., 1998; Nooteboom et al., 2007).

Observing that the fundamental building block of a network is the bilateral alliance,
the previous results invite the question whether the technological distance effect is vis-

1See (McGee, 1995) for an historical account of technological novelty by recombination.
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Chapter 2 Theoretical Model of Network Formation

ible in aggregate network structures. Could the distribution of firms over a knowledge
space, combined with the technological distance effect, determine the structure of the
network and the position of firms therein?

The structure of an R&D network is likely to influence the generation and diffusion
of knowledge in an industry. Specifically, Cowan and Jonard (2004) argue that small
world networks (i.e. highly clustered networks with small path length (Watts and
Strogatz, 1998)) foster knowledge accumulation of an industry. At the firm level,
empirical work shows that a firm’s network position affects its knowledge sourcing and
production behavior (Ahuja, 2000; Baum et al., 2000; Cockburn and Henderson, 1998;
Gilsing et al., 2008; Powell et al., 1996; Shan et al., 1994). For example, a central
position in the network gives a firm fast access to knowledge (Singh, 2005).

This chapter proposes a theoretical model to investigate the question how the
distance-benefit effect between firm-pairs contributes to the network structure. We
model profit-maximizing firms forming alliances. Profits are determined by the distance-
benefit relationship. Whereas the distance-benefit relationship is common to all firm-
pairs, each firm-pair has a specific technological distance. With the relationship and
all distances given, we know the alliance decision of all firm-pairs and the network
is completely determined. Thus, the network characteristics for the individual firm
and the overall network can be derived. The intuition gained from the model is that
the position of firms in the knowledge space in combination with the benefit-distance
relationship affects the network structure and the position of firms therein.

The model follows the connections model of Jackson and Wolinsky (1996) and its
extension, the spatial social network of Gilles and Johnson (2000). Our model set up
can be seen as a specification of the latter in that it models the benefit distance rela-
tionship to be inverse-U-shaped. However, in contrast to the literature on connections
models we do not focus on stability and efficiency (Jackson et al., 2003) but rather
on the network characteristics implied by the model. This adds an economically mo-
tivated effect to the toolbox of network analysis, which has hitherto been dominated
by socially motivated effects like referrals, trust or status (Powell et al., 2005).

The chapter is organized as follows: section 2 provides some further background on
the literature. The model is introduced in section 3. The analysis in section 4 focuses
on the firm network position resulting from the benefit-distance effect and the firm’s
position in technological space. Section 5 discusses central assumptions of the model.
The final section concludes.

2.2 Background

Economic sociology and literature on knowledge generation and diffusion suggests that
the structure of the network is crucial both for the development of firms and for the
system as a whole. Yet it is not clear how the structure comes to existence. The
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important insight from economic sociology (Burt, 2001; Coleman, 1986; Granovetter,
1985) and organizational learning (Cohen and Levinthal, 1990; Kogut and Zander,
1992) is that alliances take place in a social and historical context (Hemphill and
Vonortas, 2003). This leads to the argument that the prior social network guides the
structure of the network of tomorrow because it mitigates appropriability problems,
moral hazard as well as the coordination problem. Drawing from knowledge economics,
this chapter proposes that the technological landscape also has a strong structuring
element; an alternative which has been widely neglected in the previous literature.

For a beneficial alliance it is crucial that both partners are able to evaluate each
other’s knowledge and to use the new knowledge generated by the alliance. Cohen
and Levinthal (1990) termed this ability the absorptive capacity of a firm. Evaluation
of foreign knowledge and integration into one’s own knowledge base is simpler when
it is related to one’s own prior knowledge. Therefore, driven by increasing absorptive
capacity, we would expect the benefit of joint R&D to increase with as partners’
knowledge bases become more similar. However joint knowledge creation is valuable
exactly when partners contribute knowledge new to each other and combine it in a
new way. In principle, the opportunity to form novel combinations is higher the more
diverse are the knowledge bases of the partnering firms (Nooteboom et al., 2007).
Hence, a higher cognitive distance between two firms yields a novelty gain. The
discussion suggests a trade-off between absorptive capacity and novelty gain. For
a beneficial alliance, both high absorptive capacity and high novelty are desirable.
Since novelty responds positively and absorptive capacity negatively to an increase in
cognitive distance, the expected benefit of an alliance is likely to be maximal at some
medium cognitive distance (Nooteboom et al., 2007).

The concept of cognitive distance is very broad in that it incorporates any difference
between the mind sets of the firms. Cognition includes not only the knowledge of facts
but also e.g. interpretation, categorization and emotions. For R&D alliances tech-
nological knowledge seems most relevant and we may reduce the concept of cognitive
distance to technological distance without losing too much insight. The implication
remains the same: with increasing technological distance benefits of joint innovation
first increase and then decrease. This has been tested empirically by (Mowery et al.,
1998; Nooteboom et al., 2007), who found that joint R&D is most likely for pairs of
firms having intermediate technological distances.

In this chapter, we propose a theoretical model of network formation which builds on
this observation. We assume that there is an inverse-U-shaped benefit-distance effect
and that alliance formation entails some fixed cost. Firms form an alliance whenever
their technological distance implies a benefit which exceeds the cost.

This model is related to the knowledge portfolio model of Cowan and Jonard (2009)
and the spatial social network model of Gilles and Johnson (2000). The knowledge
portfolio model applies the idea of optimal technological distance for joint knowledge
production in an evolutionary model. Firms are characterized by a binary knowledge
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vector. Two firms form an alliance when their knowledge vectors have sufficient over-
lap. During the alliance both firms learn and their knowledge vectors become more
similar. In this way, past alliances indirectly affect future alliance formation. Cowan
and Jonard (2009) show that in certain parameter ranges the optimal distance effect
generates networks that mimic observed real-world networks, i.e. sparse, with high
clustering coefficients and short average distances. The spatial social network model
extends the communication model, in which agents profit from direct and indirect
links (Jackson et al., 2003). In the spatial extension, the costs of tie formation depend
on the social distance between two actors. Carayol and Roux (2009) showed that,
similar to the knowledge portfolio model, the spatial social network model is capable
of producing networks corresponding to the stylized facts of research networks.

We blend both models in that we build on the inverse-U-shaped distance benefit
effect, as in (Cowan and Jonard, 2009). However, the set-up of the technological
space is more similar to (Gilles and Johnson, 2000). This results in a simplification
of both models as no indirect effects of link formation need to be considered: two
firms decide solely on their technological distance, which is not altered by forming a
research alliance. With this assumption, the model remains static. The advantage is
that this simple set-up allows for analytical treatment and to shift the focus from the
network structure to the firm network position. Furthermore, as the model remains
with the main effect, a strong link to the empirical analysis in the following chapter is
facilitated.

2.3 Model

Consider a population of firms located in a knowledge space with a well-defined dis-
tance metric, t. Firms form alliances for the purpose of joint innovation, so value
resides not in firms but in alliances between firm-pairs. Assume that the benefit of
an alliance depends on technological distance in the knowledge space but the cost of
an alliance is fixed. For two firms, i and j, having distance tij in the knowledge (or
technology) space, forming an alliance yields a benefit f(tij) and costs c. The alliance
is valuable, and hence formed, if f(tij) > c.

The discussion of the technological distance effect implies that the value of an al-
liance is an inverse-U-shaped function of distance. In mathematical terms, f(t) is
defined to be a continuous, differentiable, real-valued, single-peaked function, with t
being the technological distance between two firms. Assume further that there exists a
finite t∗ such that ∀ t ≥ t∗, f(t) ≤ 0; and possibly there exists a t∗∗ such that ∀ t ≤ t∗∗,
f(t) ≤ 0. Because the value function is single peaked and costs are assumed to be
constant, all alliances in some range [a, a + b] are profitable and hence realized. As

12
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depicted in figure 2.1, definitions of a and b follow from:

f(a) = c with a > 0,

or a = 0,

f(a + b) = c with b > 0.

distance

benefit novelty gainabsorptive
capacity

cost

a a+bb

Figure 2.1: The inverse-U-shaped benefit-distance relationship arises from the trade-off between ab-
sorptive capacity and novelty gain (the figure displays a multiplicative effect). Taking into account
the costs of alliance formation, one finds the range [a, a + b] in which alliances are profitable.
(Adapted from Nooteboom et al., 2007.)

By forming alliances the firms construct an alliance network. The network can be
described as a graph, in which the firms are nodes and the alliances are the links
connecting the nodes. Different assumptions about the nature of the knowledge space
and the distribution of firms therein lead to different networks. This chapter exam-
ines a one-dimensional knowledge space, over which firms are uniformly distributed.
This simplifies the analysis, but the intuition gained can easily be extended to multi-
dimensional knowledge spaces with unevenly distributed firms. We treat two distinct
knowledge spaces: an unbounded space — the real line; and a bounded space — the
unit interval.

Unbounded space. In the first case, assume that the knowledge space is unbounded
on the real line over which agents are uniformly distributed. In this case, the knowledge
space is translation invariant, so agent 0, located at the origin, is a representative agent.
This agent will maintain a link to an agent located at i if and only if f(i) ≥ c. Thus an
agent at the origin will form links to all agents located in i ∈ [a, a + b]

⋃
[−a,−a − b],

where a and b are defined as above.

In the unbounded knowledge space, all agents face the same problem. Now suppose
the knowledge space is bounded between 0 and 1. Then agents in the center are in a
different position than those at the boundaries because the boundaries restrict the set
of potential partners.
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Bounded space. How the boundaries restrict the neighborhood of firms can be seen
in Figure 2.2. Consider for example the lower left graph. Consider links to the right
of the agent. For the agent at i = 0, its neighborhood will run from a to a + b. As
we increase i, the right neighborhood remains unrestricted until i + a + b > 1, or
equivalently, i > 1 − a − b. As we increase i further, the right boundary restricts the
neighborhood of agent i to be [i + a, 1]. Finally, at the point i = 1 − a, agent i no
longer has any neighbors to the right. The partnering problem is symmetric to left
and right, the same effect moving from i = 1 to i = 0 is seen for left side neighbors.
This effect drives all the results on network measures in the bounded technological
space in the following analysis section (section 2.4), where also figure 2.2 is discussed
in more detail.

 

0 1 − a − b a 1 − a a + b 1

0

1 − 2a

b

total links

case 1: a + (a + b) > 1

knowledge space

0 1 − a − b a 1 − a a + b 1

0

b
links to right links to left

 

0 a 1 − a − b a + b 1 − a 1

0

b

1 − 2a
total links

case 2: a + (a + b) < 1

knowledge space

0 a 1 − a − b a + b 1 − a 1

0

b
links to right links to left

Figure 2.2: Degree centrality as a function of position in the knowledge space. In the bounded knowl-
edge space (the unit interval) the degree (total links) of the agent depends on its position. Firms
with a central position in the knowledge space are less (more) central in the network in case 1 (case
2).

The network is completely determined by the list of pairwise alliances, so in principle
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it is possible to derive any network characteristic from the assumptions on alliance for-
mation. In this chapter however, we will focus on degree centrality, closeness centrality
and clustering: three of the most common measures used in network analysis.

2.4 Analysis

2.4.1 Degree Centrality

The degree centrality of a node is simply the number of links it has to other nodes.
It is thought relevant because a firm with many R&D alliances is highly engaged in
knowledge generation (Ahuja, 2000), and alliances signal access to knowledge (or other
resources) residing in the partnering firms (Arora and Gambardella, 1990).

Unbounded space In the unbounded knowledge space all firms are in the same situa-
tion. The agent at the origin, 0, forms links with all partners j ∈ [−a−b,−a]∪[a, a+b].
In the model it is assumed that firms are uniformly distributed with density one.2

Therefore the degree of agent 0 is calculated by integrating over its neighborhood
which yields a degree of 2b. Because all firms are in the same situation, the degree
distribution of the graph is a point mass at 2b.

Bounded space In the bounded knowledge space the neighborhood of firm i may be
restricted to the left, to the right, or both. This is taken into account in the following
general expression for degree. Denote agent i’s left neighborhood by N1

i with the lower
left boundary B1l

i and the upper left boundary B1u
i . Similarly, denote agent i’s right

neighborhood by N2
i =

[
B1l

i , B1u
i

]
. Then the degree (di) of agent i is

d i = N1
i + N2

i =
(

B1l
i − B1u

i

)

+
(

B2l
i − B2u

i

)

. (2.1)

The left and right neighborhood of agent i are restricted by the profitable range (a
and a+b) and possibly by the boundaries of the knowledge space (0 and 1). Therefore

B1l
i = max(0, i − a − b), B1u

i = max(0, i − a),

B2l
i = min(1, i + a), B2u

i = min(1, i + a + b). (2.2)

If a+b < 1, firms near the left boundary are not restricted on the right and will have a
full right neighborhood of size b (B2l

i = i+a, B2u
i = i+a+b). When moving to the right,

however, at some point (i + a+ b > 1), agents’ right neighborhood’s are bounded by 1

2Integration over the whole knowledge space yields the size of the firm population. Because the
model assumes that the bounded knowledge space is the unit interval and firms are uniformly
distributed with density one, the size of the population is one. Therefore, all results on sizes of a
subpopulation denote a fraction of the total population.
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(B2u
i = 1), and finally (i+a > 1), a right neighborhood becomes impossible (B2l

i = 1).
As the right boundary becomes more restrictive, the left boundary becomes less so.
When moving right from the origin, eventually (i ≥ a) agent i has a left neighborhood
(B1u

i = i − a).

Two cases Whether the gain of lefthand neighbors is higher than the loss of righthand
neighbors depends on the size of the minimum and the maximum distance, i.e. a
and a + b. Figure 2 shows both cases: if i) a + (a + b) > 1, agents moving away
from zero restrict their right neighborhood before a left neighborhood forms. In this
case, being more central in the knowledge space implies lower degree centrality. If
ii) a + (a + b) < 1, agents moving away from zero form a left neighborhood before
their right neighborhood becomes restricted. In this case, agents which are central in
knowledge space are also central in their degree.

Distribution When the degree of each node is known, the degree distribution is gained
simply by sorting the nodes according to their degree. Numerical calculations of degree
formulas 2.1 and 2.2 allow for investigating the distributions occurring in parameter
space a = [0, 1] × b = [0, 1], with a + b ≤ 1. The result is given in figure 2.3, which
depicts the first three moments of the degree distribution, i.e. mean, coefficient of
variation (standard error / mean) and skewness. In each panel a line separates case 1,
a + (a + b) > 1 from case 2, a + (a + b) < 1 (the right upper and the left lower parts
of the panel respectively).
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Figure 2.3: Mean, coefficient of variation (s.e./mean) and skewness of degree distributions in param-
eter space. Calculations are based on 200 agents in the unit interval.

Looking at the left panel, we see that the average mean of degree (the density of
the graph) increases with b, the profitable range, and decreases with a, the minimum
profitable distance. The transition from case 1 to case 2 is smooth and in both cases
we find high and low mean of degree. The coefficient of variation (middle panel) is
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moderate being below 1 for most of the parameter space. Distributions are rather
centered for large regions of the parameter space (green color in right panel).

A stylized fact of real-world networks is that mean degrees are low and degree
distributions are right skewed. This is observed only for small b and a ≈ 0.5. With
respect to degree we therefore note that the model is more consistent with stylized
facts in a small region of the parameter space.

2.4.2 Closeness Centrality

A node with high closeness centrality has short distances to other nodes in the network.
This measure is critical when for example information flows among agents only over
direct links in the network, and degrades with each transfer. In that situation, firms in
a central position have good access to information and might be influential emitters of
information (Singh, 2005). High average closeness in a network indicates the possibility
of rapid spread of information.

Closeness centrality (ci) of a node i is defined as the inverse of the node’s average
path length (pi) to all other reachable nodes in the network

ci = p−1
i =




1

N − 1

N∑

j=1,j 6=i

pij





−1

,

where pij denotes the path length (network distance) between nodes i and j. This
definition is equivalent to

ci =

(∑∞
s=1 s mi,s

∑∞
s=1 mi,s

)−1

, (2.3)

where mi,s is the mass of agents reachable in s steps (i.e. j ∋ pij = s).

Unbounded space For calculation of the closeness coefficient (ci) and average path
length (pi), it remains to derive the mass of agents mi,s reached within each step s.
Considering first the unbounded knowledge space gives a good intuition of how an
agent reaches other agents in knowledge space.

The logic is identical for all cases. Table 2.1 illustrates it for a < b. Agent 0 is
representative of all agents and because of the left-right symmetric we need only look
at agents to his right. At distance 1 are only his immediate neighbors, [a, a+b]. Using
neighbor 2a he can reach (0, a) in one (more) step. Using neighbor a he can reach
[2a, 2a + b] in one (more) step; using a + b he can reach [2a + b, 2a + 2b]. Thus, in 2
steps he reaches (a + b, 2a + 2b] (plus agents in (0, a)). Repeating this strategy we see
that at each step he reaches an additional a + b agents (except at step 2). This gives
the total mass of agents for each step, ms in equation 2.3.
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Table 2.1: Calculation of closeness centrality (a < b)

Step From To Total area Total mass
s ms

1 0 [a, a + b] [a, a + b] b

2
2a (0, a)

(0, a) ∪ (a + b, 2a + 2b] a + a + ba [2a, 2a + b]
a + b [2a + b, 2a + 2b]

3
2a + b [3a + b, 3a + 2b]

(2a + 2b, 3a + 3b] a + b
2a + 2b [3a + 2b, 3a + 3b]

...
...

...
...

...

In each further step, agent 0 reaches two new intervals of size a + b farther to the
right and left in knowledge space, yielding ms = 2(a + b) ∀s > 3. Of course, in the
unbounded knowledge space each node accesses infinitely distant nodes and therefore
the average path length becomes infinite and closeness centrality is not given.

Bounded space In the bounded knowledge space, calculation of average path length
follows the same logic as for unbounded knowledge space. Each step s, a new interval
is founded to the left (N2s−1

s ) and to the right (N2s
s ). In case a > b there might exist

a gap between accessed intervals, which might be closed by expanding surrounding
intervals. Summing up the size of all intervals accessed in a certain step s allows for
calculating the mass of agents reached within distance s,

m1 = |N1
1 | + |N2

1 |,

ms =
2s∑

k=1

|Nk
s | − ms−1 ∀s > 1. (2.4)

The difference with the unbounded knowledge space is that the process is restricted
by the unit interval. Therefore, the boundaries of the kth interval in step s, Nk

s ,
are determined by i) the minimum and maximum profitable range (a and a + b), ii)
existing boundaries of neighboring intervals (Nk−2

s−1 ,Nk+2
s−1 ), or by iii) the boundaries of

knowledge space (0, 1). Taking into account these restrictions yields general formulas

for the lower boundaries (Bk,l
s ) and upper boundaries (Bk,u

s ) of newly founded intervals
to the left

B2s−1,l
s = max(0, B2s−3,l

s−1 − a − b),

B2s−1,u
s = max(0, min(B̄2s−3,l

s−1 , B2s−3,u
s−1 − a)),
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to the right

B2s,l
s = min(1, max(B̄2s−2,u

s−1 , B2s−2,l
s−1 + a)),

B2s,u
s = min(1, B2s−2,u

s−1 + a + b),

and expanded intervals in between

Bk,l
s = max(B̄k−2,u

s−1 , min(Bk−2,l
s−1 + a, Bk+2,l

s−1 − a − b)),

Bk,u
s = min(B̄k+2,l

s−1 , max(Bk−2,u
s−1 + a + b, Bk+2,u

s−1 − a)). (2.5)

Equation 2.4 in combination with equation 2.5 are applied in appendix A.1 to analyze
the two cases and in the main text below to analyze distributions of closeness centrality
in parameter space. Note that there are two kinds of boundaries in equation 2.5.
Boundaries marked with a bar (B̄k,x

s ) represent constraints imposed by neighboring

intervals. Boundaries without bar (Bk,x
s ) serve as stepping stones from which new

agents may be reached. The algorithm in equation 2.5 may create empty intervals
at the boundary of the knowledge space, with the upper and lower boundary being
identical (Bk,l

s = Bk,u
s ). Because empty intervals do not serve as stepping stones, one

needs to set Bk,l
k = Bk,u

s = NULL if Bk,l
s = Bk,u

s , resulting in neglecting all terms

involving Bk,l
s or Bk,u

s .

Two cases Figure 2.4 gives a numerical example of closeness centrality as a function
of the agent’s position in bounded knowledge space. The same cases as for degree are
considered. The example illustrates results under the additional assumptions a ≤ b
and a ≤ 1/3. The effect of the additional assumptions is discussed after the example.
Appendix A.1 provides a detailed mathematical discussion of the two cases.

First, consider case 1 with a + (a + b) > 1. This case is illustrated on the left side
of figure 2.4, where firms closer to the center of knowledge space have lower closeness
centrality. This can be explained by noting two things. Firstly, under the assumptions
that a ≤ b and a ≤ 1/3 all agents reach all other agents in knowledge space in at
most two steps.3 This is because the profitable range is large (b > 1/3 by the case
definition) and no gaps are created between accessed intervals (by a ≤ b and a ≤ 1/3).

Secondly, in case 1, the size of the neighborhood is larger for agents closer to the
boundary of knowledge space (see discussion of degree centrality). When all agents
are reached within two steps, the size of the initial neighborhood drives all the results.
Hence, agents closer to the boundary have shorter average path lengths and higher
closeness centrality. More specifically, agents i ≤ 1−a−b have a full right neighborhood

3If a is too big and if b is too small, it is hard for an agent to reach agents who are too close. In
the extreme, as b → 0 it becomes possible only to reach agents at locations i + ka where k is an
integer.
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0 1 − a − b a 1 − a a + b 1

(1 + 2a)−1

(2 − b)−1

case 1: a + (a + b) > 1

0 a 1 − a − b a + b 1 − a 1

(2 − b)−1

(1 + 2a)−1

case 2: a + (a + b) < 1

Figure 2.4: Closeness centrality as a function of position in the knowledge space. In the bounded
knowledge space (the unit interval) the closeness centrality of the agent depends on its position.
Firms with a central position in the knowledge space are less (more) central in the network in case
1 (case 2).

of size b. As all other neighbors are reached in the next step, their average path length
is b + 2(1 − b) = 2 − b. Agents 1 − a − b < i < a obtain an average path length of
1 + i + a and agents a ≤ i ≤ 0.5 an average path length of 1 + 2a which is lower (see
appendix A.1 for derivations).

However the assumptions a ≤ b and a ≤ 1/3 are necessary for obtaining this result.
If 1/3 < a < 1/2, agents ∈ [1 − 2a, a) need three steps to reach all other agents
in knowledge space, whereas agents ∈ [0, 1 − 2a] ∪ [a, 0.5] only need two steps. In
the first step, agent i ∈ [1 − 2a, a) reaches its neighborhood [i + a, 1]. In the second
step, it reaches agents in [0, 1 − a]. Because a > 1/3, 1 − a < i + a and a gap exists
between the two intervals. This gap is closed in the third step, yielding an average path
length of 3a+2i. Note that as agent i approaches a, the average path length becomes
3a+2a = 5a which is larger than the average path length 1+2a of agents i ∈ [a, 0.5] for
1/3 < a < 1/2. Therefore, closeness centrality becomes a non-continuous function of
the position in knowledge space. It is highest for agents at the boundary and decreases
to its minimum as i goes to a. At a closeness centrality jumps to a higher level which
is maintained until the center of knowledge space. For 1/2 < a agents [1 − a, a] with
undefined closeness centrality.

The second condition, a ≤ b, has been used several times to obtain the example
result. If a > b the size of the initial neighborhood becomes less important relative to
how efficiently further agents are reached subsequently. Numerical calculation show
that closeness centrality becomes a non-continuous function of the position in knowl-
edge space, and for some parameter ranges agents at the center of knowledge space
may have higher closeness centrality than agents at the boundary of knowledge space.
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Now, consider case 2 with a + (a + b) < 1. The right side of figure 2.4 illustrates
this case under the additional condition a ≤ b (see appendix for derivations). We find
that agents closer to the center of knowledge space have shorter average path lengths
and higher closeness centrality. The reason is that i) agents closer to the center of the
knowledge space reach more agents in the first step than agents at the boundary (see
degree section above) as well as ii) all subsequent steps. This is because in the second
step, the interval surrounding agent i ([max(0, i − a), min(1, i + a)]) is reached and
from the second step on, agents farther to the left and right are accessed with speed
a + b until the boundaries of knowledge space are reached. The agent at the center
accesses in all steps agents to the right and to the left and reaches both boundaries
in the same number of steps. The closer an agent to a boundary of knowledge space,
the smaller the number of steps where the agent accesses agents to its left and to its
right. Therefore, agents in the center have higher closeness centrality than agents at
the boundary.

However, as for case 1, the condition a ≤ b is necessary for obtaining the relationship
between closeness centrality and the position in knowledge space. If a > b, closeness
centrality becomes a non-continuous function of knowledge space and for some param-
eter settings agents at the boundary have slightly higher closeness centrality as agents
at the center of knowledge space.

Distribution Numerical calculations provide insights on the occurrence of closeness
distributions in the parameter space a = [0, 0.5] × b = [0, 1], with a + b < 1.4 The
implementation is based on the formulas for closeness (formulas 2.4 and 2.5). Because

0.2

0.4

0.6

0.8

 0.8 

 0
.6

 

 0.4 0

0.5

1

0 0.5

mean

b

a

0.00

0.05

0.10

0.15

 0.05 

 0.05 

 0.1 

 0.1 

0

0.5

1

0 0.5

s. e. / mean

a

−4
−2
0
2
4
6
8

 0 

 0  0 

 1 

 3 

0

0.5

1

0 0.5

skewness

a

Figure 2.5: Mean, coefficient of variation (s.e./mean) and skewness of closeness distributions in
parameter space. Calculations are based on 200 agents in the unit interval.

average closeness increases with the size of the initial neighborhood, we observe the

4The parameter space is chosen in order to avoid isolates. Closeness is not defined for isolates.
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same pattern for the mean of closeness as for average degree, i.e. increasing with b
and decreasing with a (see left panel of figure 2.5). coefficient of variation of closeness
(middle panel of figure 2.5) is on a very low level overall, i.e. < 0.2. However, higher
coefficients of variation are obtained for larger a and b in case 1 (upper right part
of middle panel) and smaller a and b in case 2 (lower left part of middle panel).
The distributions are centered and moderately skewed (< |1|) in large parts of the
parameter space (right panel). High skewness as observed for large b and small a is
exceptional. However, the tendencies for skewness are rather similar as observed for
the corresponding degree distribution in figure 2.3.

Summary The results for both cases may be summarized as follows. Given the
additional conditions a ≤ b and a ≤ 1/3, we obtain the same result as for degree.
In case 1 (case 2), agents which are positioned closer to the center of the knowledge
space have lower (higher) closeness centrality in the network. The additional conditions
affect global optima and continuity of closeness centrality. In case 1, with a > 1/3
the global minimum of closeness centrality is observed between the boundary and the
center of knowledge space. In both cases, with a > b closeness centrality typically is
a non-continuous function in technological space with optima between the boundary
and the center.

The distributions of the closeness coefficient in parameter space parallel the findings
for degree. The reason is that path lengths are short in large regions of the parameter
space and therefore the size of the initial neighborhood, degree, largely determines
closeness centrality. However, closeness distributions have lower coefficients of varia-
tion and are less skewed than degree distributions.

2.4.3 Clustering Coefficient

The clustering coefficient of a node quantifies how close its immediate neighborhood
is to being fully connected. In small-world networks average closeness and average
clustering both are high (Watts and Strogatz, 1998). Whereas high closeness enables
fast diffusion of knowledge, high clustering might foster knowledge generation due to
specialization of groups of firms (Cowan and Jonard, 2004). From a social perspective,
high clustering may indicate the effect of referrals in a network. For example networks
of friendship relations are often highly clustered.

The clustering coefficient (ci) of a node i is defined as the number of links among
its neighbors (ei) divided by all links that possibly could exist among them (1/2d2

i ),
i.e.5

ci =
2ei

d2
i

. (2.6)

5This definition does not correct for self-reflexivity because we consider a continuous distribution of
agents in knowledge space.

22



2.4 Analysis

Each link between two neighbors closes a triangle, which includes the focal agent and
its two neighbors. Therefore, ei, the number of links among agent i’s neighbors, is
also referred to as the number of triangles (or short triangles). Because the number
of triangles is a network measure in its own right, results for both are given in the
following.

Unbounded space In the unbounded knowledge space one might again consider agent
0 as the representative agent. Agent 0 has a neighborhood of size 2b, equally divided
into a left and a right neighborhood of size b. A fully connected graph of size 2b
contains 1/2(2b)2 = 2b2 links. However, the minimum distance a prevents the agents
in the right (left) neighborhood to fully connect among each other. Similarly, the
benefit range prevents some connections between left and right neighbors.

First, consider the number of links among right-hand neighbors of agent 0. Agent
0 has the right neighborhood N2

0 = [a, a + b]. For each agent j ∈ N2
0 , the distance-

benefit range determines the connections to other agents k ∈ N2
0 . If a > b, agent j

connects to no other agent in the neighborhood of agent 0 and the clustering coefficient
is zero. If a ≤ b clustering occurs because the neighborhoods of agents 0 and j overlap.
To avoid the double counting due to bi-directional links, we consider only the right
neighborhood of agent j. Agent 0 and j’s right neighborhoods overlap in the interval
[j+a, a+b] as long as j < b. The size of the overlap is (a+b)−(j+a) = b−j. Knowing
the size of the overlap for each agent, we obtain the number of triangles among agent
0’s right neighbors (er

0) by integrating over all agents which possibly contribute to

clustering, i.e. er
i =

∫ b
a (b − j)dj = 1/2(b − a)2. The number of triangles among agent

0’s left neighbors (el
0) is symmetric. The number of links between left- and right-hand

neighbors (elr
0 ), is similarly derived. Note first that some left-hand neighbors j of agent

0 have a right neighborhood which overlaps with the right neighborhood of agent 0, if
a ≤ b. The overlap is [a, j + a + b], if j > −b. Integration over agents j contributing
to left-to-right clustering yields elr

0 ==
∫ −a
−b (j + b)dj = 1/2(b − a)2. Summing the

triangles gives total triangles of 3/2(b − a)2. Normalizing triangles by the number of

potential links (2b2) gives the clustering coefficient of 3(b−a)2

4b2
.

Bounded space In the bounded knowledge space, the calculation of clustering follows
the same logic as for unbounded knowledge space. However the overlap of neighbor-
hoods and the boundaries of integration depend on the position of the agents. There-
fore, it is convenient first to express the clustering coefficient rather generally: agent i
possibly has a left and a right neighborhood. As in the unbounded knowledge space,
the total number of triangles (ei) is the sum over left triangles (el

i), right triangles (er
i )
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and left-to-right triangles (elr
i ).

ei =

max(B1u
i −a,B1l

i )
∫

B1l
i

(B1u
i − B2l

j ) dj

︸ ︷︷ ︸

el
i

+

max(B2u
i −a,B2l

i )
∫

B2l
i

(B2u
i − B2l

j ) dj

︸ ︷︷ ︸

er
i

+

B1u
i∫

max(0,min(B2l
i −a−b,B1u

i ))

(B2u
j − B2l

i ) dj

︸ ︷︷ ︸

elr
i

(2.7)

where for example B1l
i is the lower boundary (indexed by l) of agent i’s left (indexed by

1) neighborhood and B2u
j is the upper boundary (indexed by u) of agent j’s right (in-

dexed by 2) neighborhood. These boundaries are determined by the benefit-distance
range and the size of the knowledge space, exact formulas are given in the degree
section 2.4.1, equation 2.2. Note that max-, min-expressions restrict integration over
those agents which contribute to clustering. Recall that in the unbounded space, a
necessary condition for clustering to occur has been a ≤ b. If a > b, then for example
right neighbors can not connect within agent i’s right neighborhood nor reach agent
i’s left neighborhood. In bounded knowledge space, the condition a ≤ 0.5 also is nec-
essary for clustering. If a > 0.5, agent i has only a left or right neighborhood which is
of size smaller than a.

Two cases Figure 2.6 gives an example of the clustering coefficient as a function of
the agent’s position in bounded knowledge space. The same two cases as for degree
and closeness centrality are considered. The two cases are discussed qualitatively on
the example given in figure 2.6. Appendix A.2 verifies that the qualitative results
gained from the example hold in general for triangles and clustering. The lower left
panel of figure 2.6 depicts the number of left, right and left-to-right triangles for
each agent i in knowledge space. An agent i close to the boundary of knowledge
space (i ≤ 1 − a − b) has a complete right neighborhood and no left neighborhood.
The right neighborhood yields 1/2(b − a)2 triangles. A result already derived for the
unbounded knowledge space. Moving further to the right, from (i > 1 − a − b) the
right neighborhood becomes restricted by the upper boundary of knowledge space,
and therefore the number of connections among right-hand neighbors decreases. For
i > 1 − 2a right triangles are zero because the right neighborhood of agent i has a
size smaller than a. Then right-hand neighbors are too close to connect to each other.
The situation is symmetric for left triangles. The third kind of connections among
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0 1 − a − b a 1 − a a + b 1

(b − a)2

2

(b − a)2

b2

clustering

total triangles

case 1: a + (a + b) > 1

knowledge space

0 1 − a − b a 1 − a a + b 1

(b − a)2

2
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to right to left
from left 
 to right

0 a 1 − a − b a + b 1 − a 1

(b − a)2
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(b − a)2

b2

clustering

total triangles

case 2: a + (a + b) < 1

knowledge space

0 a 1 − a − b a + b 1 − a 1

(b − a)2

2

triangles

to right to left
from left 
 to right

Figure 2.6: Clustering coefficient as a function of position in the knowledge space. In the bounded
knowledge space (the unit interval) the clustering coefficient of the agent depends on its position.
Firms with a central position in the knowledge space have higher (lower) clustering coefficient in
the network in case 1 (case 2).
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neighbors are left-to-right triangles. Of course, left-to-right triangles may only exist if
both neighborhoods exist (i.e. if a ≤ i ≤ 1 − a). Moving from a further to the right,
left-to-right triangles increase. They attain their maximum of 1/2(b − a)2 if the left
and right neighborhood contains all agents which connect to the other neighborhood
(i.e. if b ≤ i ≤ 1 − b). Note that this maximum is never attained if b > 0.5. For
1− b < i < 0.5, agent i’s right-hand neighbors are removed as left-hand neighbors are
added. The increase of left-to-right triangles is only due to symmetry gains.

Case 1, a + (a + b) > 1, is depicted at the left side of figure 2.6. Summing up all
three kinds of triangles (el

i, er
i , elr

i ) gives the total number of triangles (ei) of agent i
(the lower line in the upper left panel). In the example, increasing i from zero, the
number of triangles first remains stable at 1/2(b−a)2. When moving to the right from
some point (1−a− b < i) the number of triangles decreases as the right neighborhood
is restricted and later on (a ≤ i) increases again when the left neighborhood forms.6

A symmetric pattern appears when decreasing i from one. Clustering takes a similar
shape as triangles (see left upper panel). Appendix A.2 shows that clustering follows
a similar pattern.7

Case 2, a + (a + b) < 1, is illustrated at the right side of figure 2.6. The case
condition now implies that total number of triangles first remains stable for i < a, and
then increases for a ≤ i < 1 − a − b (see upper right panel). Then, for 1 − a − b ≤ i,
the total number of triangles slightly decreases when moving towards the center of
knowledge space. Clustering also first increases and then decreases again. However,
the decrease starts within the interval [a, 1−a−b]. Appendix A.2 validates that in the
interval (1−a− b, 0.5] triangles always decrease or remain stable with i. Furthermore,
it is shown that the shape of clustering as depicted in figure 2.6 is typical for case 2.

Because both the number of triangles and clustering are non-monotonic functions
of the firm position in knowledge space, it is of interest where we observe their global
optima. The various cases make analytical derivation tedious. Therefore, we analyze
the functions numerically by implementing the general formulas for triangles and clus-
tering, i.e. equations 2.6 and 2.7. Calculations are done for the complete parameter
space8 a = [0, 0.5] × b = [0, 1], with a + b ≤ 1. Numerical calculations show that the
example of figure 2.6 represents the general case well. In case 1 (case 2), the maxi-
mum (minimum) of triangles is obtained by agents at the boundary and the minimum
(maximum) of triangles is obtained by agents between the boundary and center of
the knowledge space. Clustering equals triangles normalized by degree and therefore

6Appendix A.2 shows that, from a on, decrease of right triangles is always outweighed by an increase
of left-to-right hand triangles.

7The working condition a + b < 1 has no effect on the general pattern of clustering and triangles
described above. The only difference is that the regime [0, 1−a− b] where triangles and clustering
is stable drops out. Instead, the number of triangles and the clustering coefficient decrease from
the beginning and increase again from point a on.

8The parameter space is complete because no clustering occurs for a > b.
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follows a different pattern. In case 1 (case 2), the maximum9 (minimum) clustering
is obtained by agents in the center of knowledge space and the minimum (maximum)
clustering is obtained by agents between the boundary and center of the knowledge
space.
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Figure 2.7: Mean, coefficient of variation (s.e./mean) and skewness in parameter space. Calculations
are based on 200 agents in the unit interval.

Distribution Triangle and clustering distributions are depicted in figure 2.7. Triangle
and closeness distributions have a similar pattern in parameter space with respect to
their mean and coefficient of variation (see left and middle panels). The two cases imply
similar levels of mean and coefficient of variation. The transition from one case to the
other is smooth (crossing the diagonal line in left and middle panels). For triangles
in the lower right panel, we find that the distribution is left skewed or centered for

9Only in some isolated cases with a small and b large (e.g. a = 0.2, b = 0.75) firms at the boundary
of knowledge space have a slightly higher clustering coefficient.
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most parameter settings. This means that mostly, many agents have relatively high
number of triangles and few agents have low number of triangles. Note that skewness
is opposite for clustering due to the normalization by the potential number of triangles
(for a < 0.4).

Table 2.2: Slopes and optima of clustering (ci) and triangles (ei) in two casesa

Case 1 (a + (a + b) > 1) Case 2 (a + (a + b) < 1)

i ∈ [0, 1 − a − b) [1 − a − b, a) [a, 0.5] [0, a) [a, 1 − a − b) [1 − a − b, 0.5]
∂ei/∂i 0 −, 0 +, 0 0 + −, 0
∂ci/∂i 0 −, 0 +, 0 0 +,− −, 0
Optima ei max min – min max –
Optima ci – min max – max min

a Reading example: in case 2, interval [a, 1 − a − b), the slope of the clustering coefficient
(∂ci/∂i) is first increasing and later decreasing.

Summary In case 1 (case 2), agents at the boundary of knowledge space have the
maximum (minimum) number of triangles. Moving towards the center of knowledge
space, the number of triangles first decreases (increases) and later increases (decreases)
again. Clustering follows the same pattern but the maximum (minimum) is attained
for agents in the center. In case 1 (case 2) agents at an intermediate position between
the boundary and the center of the knowledge space obtain the minimum (maximum)
number of triangles and clustering coefficient. This result is summarized in table 2.2
and visible in figure 2.6.

2.5 Discussion

This model gives us an intuition about how the benefit-distance relationship affects
network formation. The analysis demonstrates how the agent’s position in the network
becomes a function of its position in knowledge space. Furthermore, the analysis of the
distributions of network measures showed that the overall network structure depends
on the benefit-distance relationship. A comparison of the three network measures,
triangles, closeness and degree, reveals that the three are closely related. All three
network measures take a similar shape as a function of the position in technological
space (compare figures 2.2, 2.4 and 2.6). Furthermore, the pattern of their distribu-
tions over the parameter space are similar with respect to the first three moments
(compare figures 2.3, 2.5 and 2.7). One reason is that the network measures are re-
lated in network space. For example degree partly determines the closeness coefficient.
However, another reason is that the model determines the relationships of the agents
in the network according to their relationships in knowledge space, moderated by the
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benefit-distance effect. For example if alliance formation is beneficial for technologi-
cally close firm-pairs, high clustering occurs because the agent and its neighbors are
all close in knowledge space.

The result is that agents which have high degree centrality also have high closeness
centrality and relatively high number of triangles. Furthermore, some regions in pa-
rameter space generate networks with high average closeness centrality as well as high
clustering; defining characteristics of small world networks (Watts and Strogatz, 1998).
However, different to the rewiring model of Watts and Strogatz (1998), where neigh-
boring agents in a ring are linked and short cuts are introduced by random rewiring,
our model obtains high clustering and short path length because of the agent’s prefer-
ence to connect to agents within a larger region of the structuring (knowledge) space.
Therefore, when the network has high average closeness and clustering, it is also dense.
This contradicts stylized facts on small world networks, which usually are sparse.

The central result of the analysis, however, is that we observe two different regimes
at the level of the agent. If small (large) technological distances are profitable, then
agents in the center (at the boundary) of technological space are more central in the
network. Whether this intuition is correct depends on the assumptions of the model.
Would we gain the same intuition from alternative, more realistic assumptions?

For discussing this question, first recall the main building blocks of the model. In
the model, a population of identical agents are uniformly distributed in technological
space. The value of an alliance depends on the technological distance between the firm-
pair. If the technological distance between the firm-pair is within a profitable range,
the firm-pair forms an alliance. These building blocks express several assumptions
regarding the knowledge space, the population of agents and their decision making.
The central assumptions concern the modeling of technological space and the benefit
of alliance formation. This is where we focus our attention in the following chapters.
Further issues such as (in-)complete information of the agents and development of a
dynamic model would rather shift the focus of the analysis than alter our findings of
the analysis.

The assumption of a one-dimensional knowledge space is a simplification which does
not seem to alter the results. Agents in the center of a multi-dimensional technological
space are still less (more) restricted in alliance formation than agents at a boundary, if
technological proximity (distance) is preferred. The intuition holds also for arbitrary
distributions of agents in technological space. It is probably true that some regions
in technological space are more crowded than others and that this is likely to affect
alliance formation (Stuart, 1998). Allowing for arbitrary distributions would be a
generalization of the model which would simply add an effect. Then, the number of
alliances of an agent depends on the distribution of firms in knowledge space and the
boundaries of knowledge space. The relationship between the three network measures
would be similar as for the uniform distribution.

The assumption of an inverse-U-shaped relationship between technological distance
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and benefit of joint knowledge creation is theoretically justified (Cohen and Levinthal,
1990) and empirically grounded (Mowery et al., 1998). Of course, alliances depend on
many other factors (Ahuja, 2000) but these do not necessarily alter the benefit-distance
effect. However, because in the model the value of an alliance depends uniquely on
the technological distance between the firm-pair, each alliance decision is independent
from all other (potential) alliances in the network. This assumption of independence
of alliance formation includes two issues. First, the alliance decision of one agent is
independent from alliances formed by other agents. Second, the agent decides on each
alliance independent from other alliances it might potentially form.

The first issue arises because there are no indirect effects of alliance formation.
Empirical work suggests that indirect links affect the firms’ innovative performance
(Ahuja, 2000), whereas in the model, alliances of third parties are not taken into
account in decision making. The argument which justifies this assumption is that we
model joint knowledge creation and not information spill-overs and that direct links
are relatively more important for innovative performance than indirect links (Ahuja,
2000, p.449). However, introducing indirect benefits would change the analysis and
the results. The analysis would change because with interdependent alliance formation
one would expect to find multiple equilibria of network configurations (as e.g. in Gilles
and Johnson, 2000). The resulting networks would change because indirect benefits
motivate agents to increase their closeness centrality. This fosters the creation of
short-cuts in the network, which results in less skewed closeness distributions.

The second issue arises because the decision of a firm-pair is modeled rather than
the decision of a firm on its alliance portfolio. Of course, the strategic variable used to
maximize the benefit of the firm is its alliance portfolio (e.g. Ozcan and Eisenhardt,
2009). The assumption that each alliance is considered in isolation excludes for exam-
ple congestion effects, where the sheer number of alliances would negatively affect the
value of additional alliances. Furthermore, novelty gain is likely to decrease with the
number of partners having similar knowledge. If a technologically distant partner is
chosen for high novelty gain, then a second partner with similar knowledge yields lower
novelty gain. This effect is not in the model but would alter the network structure
fundamentally. In the model, agents partner with whole fractions of the population
whereas with decreasing returns agents would rather partner with individual agents
for which the distance-benefit effect is highest. This could result in relatively sparse
networks with lower average closeness and lower clustering than in the original model
but probably it would not affect the qualitative results.

Seen in this light, the model describes the agent’s opportunities for alliance forma-
tion which are given by its position in the knowledge space together with the distance-
benefit effect. Some agents are in a richer environment than others, in the sense that
they face more agents with which alliance formation would be (technologically) reason-
able. Realization of alliances would then result from optimizing the alliance portfolio.
However, this in fact changes only slightly the intuition gained from the model. Those
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agents which have more opportunities for alliance formation are in a better position
to become central in the network.

2.6 Conclusion

This chapter proposes a theoretical model which shows how the technological posi-
tion of firms affects network formation. In the model, we assume an inverse-U-shaped
relationship between distance and benefit for two firms forming an alliance. The mi-
croeconomic foundation of this assumption is the trade-off between absorptive capacity
and novelty gain (Cohen and Levinthal, 1990; Nooteboom et al., 2007). Mowery et al.
(1998) confirmed the existence of this inverse-U-shaped benefit-distance effect on joint
venture formation.

The theoretical model shows how certain benefit-distance specifications affect the
network structure and firm positions. The model can be seen as a specification of the
spatial social network, which is in the communication network tradition (Gilles and
Johnson, 2000), or as a simplification of the evolutionary knowledge portfolio model of
Cowan and Jonard (2009). The value of simplifying is less in giving analytical solutions
but in shifting the focus from the overall network structure towards the firm network
position. The main insight of the theoretical analysis is that a strong preference for
technological proximity (distance) implies that firms which are in the center (at the
boundary) of the knowledge space are going to be central in the research network.

Theoretical results on the network structure do not show a strong regime shift
as is the case for the firm network position. In both cases, whether short or long
technological distance makes a bilateral alliance beneficial, global network statistics
may be skewed on higher as well as lower levels.
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APPENDIX A

Derivation of Network Measures

A.1 Closeness Centrality

This section gives expressions for closeness centrality depending on the agents position
in knowledge space. Application of the general formulas 2.4 and 2.5 necessitates auxil-
iary conditions besides the case conditions. To derive explicit expressions of closeness,
we apply those conditions which correspond to the example in the main text, figure
2.4. Then the effect of the auxiliary conditions is discussed.

Two cases Case 1, (a > 1 − a − b): In order to apply the general formulas 2.4
and 2.5, auxiliary conditions are needed. We specify three auxiliary conditions: i)
a + b < 1, there exist agents with one complete left or right neighborhood, ii) a ≤ 0.5,
the graph has no isolates, and iii) a ≤ b, no gaps exist between newly founded intervals
(see discussion of how agents reach other agents in knowledge space in the main text,
described in table 2.1).

Given these conditions there are three kinds of agents within the interval [0, 0.5].
Agents with complete right neighborhood but no left neighborhood, [0, 1 − a − b],
agents with restricted right neighborhood and no left neighborhood, (1−a− b, a), and
agents with restricted left and right neighborhood, [a, 0.5].

For agents i ∈ [0, 1 − a − b] the boundaries in the first step become

B1l
1 = 0, B1u

1 = 0, B2l
1 = i + a, B2u

1 = i + a + b,

yielding md=1 = b. The boundaries of the second step are obtained by inserting the
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boundaries of the first step into equation 2.5.

B3l
2 = max(0, NULL − a − b) = 0,

B3u
2 = max(0, min(0, NULL − a)) = 0,

B4l
2 = min(1, max(i + a + b, i + 2a))) = i + a + b by a ≤ b,

B4u
2 = min(1, i + 2(a + b)) = 1 by case 1,

B0l
2 = max(0, min(i − b, NULL + a)) = 0 by a ≤ b,

B0u
2 = min(i + a,max(NULL + a + b, i + b)) = i + a by a ≤ b.

This yields md=2 = 1 − (i + a + b) + (i + a) − 0 = 1 − b. Obviously, within two steps
all nodes are reached giving an average shortest path of p = b + 2(1 − b) = 2 − b.

The average path length of agents i ∈ (1 − a − b, a) is similarly derived. The
boundaries of the first and second step are

B1l
1 = 0, B1u

1 = 0, B2l
1 = i + a, B2u

1 = 1,

B3l
2 = 0, B3u

2 = 0, B4l
2 = 1, B4u

2 = 1,

B0l
2 = 0, B0u

2 =

{

i + a if i ≤ 1 − 2a,

1 − a else.

The last equation B0u
2 distinguishes two subcases. Given that a > 1/3, there are

agents i ∈ (1 − 2a, a) for which B0u
2 = 1 − a. They need to access the remaining

mi,s=3 = (i+a)− (1−a) agents in a third step. This results in an average path length
of

p =







1 + i + a for i ∈ (1 − a − b, a), if a ≤ 1/3

1 + i + a for i ∈ (1 − a − b, 1 − 2a], if a > 1/3,

3a + 2i for i ∈ (1 − 2a, a), if a > 1/3.

The interesting result here is that for both a > 1/3 and a ≤ 1/3, the average path
length increases with i over the whole interval (1 − a − b, a).

Agents i ∈ [a, 0.5] have the boundaries

B1l
1 = 0 B1u

1 = i − a B2l
1 = i + a B2u

1 = 1

B3l
2 = 0 B3u

2 = 0 B4l
2 = 1 B4u

2 = 1

B0l
2 = i − a B0u

2 = i + a,

which yields md=1 = 1 − 2a, md=2 = 2a and d = 1 + 2a for all agents i ∈ [a, 0.5].
Collecting the results on average path length and taking the inverse gives an overview
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on closeness centrality as a function of the position in knowledge space

c = p−1 =







(2 − b)−1 for i ∈ [0, 1 − a − b],

(1 + i + a)−1 for i ∈ (1 − a − b, a), if a ≤ 1/3,

(1 + i + a)−1 for i ∈ (1 − a − b, 1 − 2a], if a > 1/3,

(3a + 2i)−1 for i ∈ (1 − 2a, a), if a > 1/3,

(1 + 2a)−1 for i ∈ [a, 0.5].

Comparing closeness centrality for different agents, we find that agents at the boundary
have higher closeness centrality than firms at the center of knowledge space ((2−b)−1 >
(1 + 2a)−1 by the case condition). Furthermore, within the interval (1 − a − b, a)
closeness centrality decreases monotonically with i. If a ≤ 1/3, closeness centrality is
a continuous and monotonically decreasing function from the boundary to the center of
the knowledge space. For a > 1/3 closeness centrality becomes a non-continuous and
non-monotonic function of position in knowledge space. There is a jump at position
a from (3a + 2i)−1 up to (1 + 2a)−1.

To what extent are the auxiliary conditions necessary to obtain the results that i)
agents at the boundary have higher closeness centrality than agents at the center and
ii) closeness centrality decreases monotonically and continuously from the boundary
to the center of the knowledge space? To see this, in the following we drop each of the
conditions while maintaining the others.

Condition i) a+b < 1 generates two groups of agents, [0, 1−a−b] and (1−a−b, a).
The alternative specification, a + b ≥ 1, would imply that 1− a− b ≤ 0. This has the
only effect that the formula for closeness which has been previously derived for agents
i ∈ (1 − a − b, a) now applies to all agents i ∈ [0, a). Hence, this condition does not
affect the results.

Condition ii) a ≤ 0.5 affects the partitioning of knowledge space and has been used
to derive interval boundaries. Alternatively, we may specify a > 0.5, keep condition
iii), a ≤ b, and drop condition i) a+ b < 1. Then, agents of the two intervals, [0, 1− a]
and (1−a, 0.5], need to be distinguished. Agents i ∈ (1−a, 0.5] are isolates, for which
we set closeness centrality to zero. Agent i ∈ [0, 1 − a] reaches all other connected
agents within three steps. Its right neighborhood, step 1, is [i + a, 1]. In the second
step, via agent 1, agent i reaches [0, 1 − a]. In the final, third step, via agent 0 all
remaining agents i ∈ [1 − a, i + a] are reached. This results in an average path length
of p = 1−(i+a)+2(1−a)+3(i+a−a) = 3−3a+2i. The inverse, closeness centrality,
decreases monotonically with i and there is a jump down to zero at position a. Hence,
this condition does not affect the results.

Condition iii) a ≤ b ensures that closeness centrality is a monotonic and continuous
function from the boundary to the center of knowledge space. For a > b closeness
centrality in general is non-continuous. Numerical calculations show that global min-
ima and maxima of closeness centrality might be obtained between the boundary
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and center of the knowledge space. The reason is that if a > b there are gaps between
newly founded intervals and agents in between might expand intervals more efficiently.
However, in case 1, closeness centrality is always higher or as high for agent 0 at the
boundary than for agent 0.5 in the center of knowledge space.

Case 2 (a < 1− a− b): In this case some agents have a restricted left neighborhood
and a complete right neighborhood. Given the auxiliary conditions i) 1/2 ≤ (a + b)
and ii) a ≤ b, we derive the boundaries for agents of the intervals [0, a), [a, 1 − a −
b], (1 − a − b, 0.5]. For agents i ∈ [0, a) these are

B1l
1 = 0 B1u

1 = 0 B2l
1 = i + a B2u

1 = i + a + b

B3l
2 = 0 B3u

2 = 0 B4l
2 = i + a + b B4u

2 = 1

B0l
2 = 0 B0u

2 = i − a

yielding an average shortest path of pi = b + 2(i + a + 1 − (i + a + b)) = 2 − b. For
agents i ∈ [a, 1 − a − b] the boundaries are

B1l
1 = 0 B1u

1 = i − a B2l
1 = i + a B2u

1 = i + a + b

B3l
2 = 0 B3u

2 = 0 B4l
2 = i + a + b B4u

2 = 1

B0l
2 = i − a B0u

2 = i + a

yielding an average shortest path of pi = (i−a)+b+2((i+a)−(i−a))+1−(i+a+b)) =
2 + a − b − i. For agents i ∈ (1 − a − b, 0.5] the boundaries are

B1l
1 = 0 B1u

1 = i − a B2l
1 = i + a B2u

1 = 1

B3l
2 = 0 B3u

2 = 0 B4l
2 = 1 B4u

2 = 1

B0l
2 = i − a B0u

2 = i + a

yielding an average shortest path of pi = (i−a)+1−(i+a)+2((i+a)−(i−a)) = 1+2a.
Collecting the results gives

c = p−1 =







(2 − b)−1 for i ∈ [0, a),

(2 + a − b − i)−1 for i ∈ [a, 1 − a − b],

(1 + 2a)−1 for i ∈ (1 − a − b, 0.5].

Comparing closeness centrality, we find that agents close to the boundary are less cen-
tral than agents close to the center of knowledge space ((2− b)−1 < (1 + 2a)−1 by the
case condition). Furthermore, within the interval [a, 1− a− b] closeness centrality in-
creases monotonically with i. Thus, given the case condition and auxiliary conditions,
agents closer to the center of the knowledge space have higher closeness centrality in
the network. Would this result be altered when dropping the auxiliary conditions?
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A.2 Clustering Coefficient

Condition i) 1/2 ≤ (a+b) ensures relatively low average path lengths in the network,
so that the example remains short. Smaller profitable ranges with 1/2 > (a + b) do
not affect the result. The general argument is that under case 2, agents closer to the
center have i) larger neighborhoods and ii) reach further agents more efficiently. (A
more detailed argumentation is given in the main text.)

Condition ii) specifies a ≤ b. As for case 1, this is a necessary condition for obtaining
a monotone relationship between an agent’s position in technological space and its
closeness centrality in the network. For a > b and a, b sufficiently high (e.g. a = 0.35
and b = 0.25), closeness centrality becomes non-monotonic function of the position in
knowledge space between 0 and 0.5. However, firms in the center of knowledge space
always have higher closeness centrality than agents at the boundary of knowledge
space.

A.2 Clustering Coefficient

This section provides i) formulas for left, right and left-to-right number of triangles
depending on the relevant intervals in knowledge space, ii) shows that two statements
with respect to the slope of total number of triangles hold, and iii) gives expressions
for triangles and clustering depending on the agents position in knowledge space.

Number of triangles In the model, there are three types of connections among an
agent i’s neighbors (triangles). Neighbors to the left of agent i in knowledge space
may connect (left triangles el

i), right-hand neighbors of agent i may connect (right
triangles er

i ) and left-hand neighbors may connect to right-hand neighbors of agent
i (left-to-right triangles elr

i ). How many triangles of each type form depends on the
size of agent i’s left and right neighborhood. As agent i’s neighborhood is a function
of its position in knowledge space, so is agent i’s number of triangles. The main text
derives in which intervals the different types of triangles increase, decrease, remain
stable at zero or remain complete (1/2(b− a)2). The following lists the corresponding
formulas derived from the general equations for triangles (equation 2.7). The formulas
are needed subsequently to validate statements on the shape of the triangle functions.

Agents i ≤ 1−a−b have a complete right neighborhood and therefore complete right
triangles. Moving further to the right, the right neighborhood becomes restricted and
right triangles as well. When the right neighborhood is smaller a (for i < 1−2a), right-
hand neighbors do not connect to each other. Applying equation 2.7 for respective
intervals yields the number of right triangles,

er
i =







1
2(b − a)2 if 0 ≤ i ≤ 1 − a − b,
1
2(1 − 2a − i)2 if 1 − a − b < i < 1 − 2a,

0 if 1 − 2a ≤ i ≤ 1.
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The situation is symmetric for left triangles. Left neighbors only connect with each
other for i ≥ 2a. Moving further to the right increases the number of left triangles
until i = a + b, where the left neighborhood becomes complete.

el
i =







0 if 0 ≤ i < 2a,
1
2(i − 2a)2 if 2a ≤ i < a + b,
1
2(b − a)2 if a + b ≤ i ≤ 1.

Left-to-right triangles only exist if both neighborhoods exist (if a ≤ i ≤ 1−a). Moving
further to the right, left-to-right triangles increase. They attain their maximum of
1/2(b− a)2 if the left and right neighborhood contains all agents which connect to the
other neighborhood (if b ≤ i ≤ 1 − b).

elr
i =







0 if 0 ≤ i < a,
1
2(i − a)2 + (b − i)(i − a) if a ≤ i < b(< 0.5),
1
2(b − a)2 if b ≤ i ≤ 0.5,

Given b > 0.5, this maximum never is attained. For i > 1 − b, agent i’s right-hand
neighbors contributing to left-right clustering are removed as left-hand neighbors are
added.

elr
i =







0 if 0 ≤ i < a,
1
2(i − a)2 + (b − i)(i − a) if a ≤ i < 1 − b(< 0.5),
1
2(1 − a − b)2 + (b − i)(1 − a − b) +

(1 − i − a)(i − 1 + b) if 1 − b ≤ i ≤ 0.5,

Statement 1 In case 1, a+(a+b) > 1, total number of triangles always is increasing
or stable with i for a ≤ i ≤ 0.5.
This is shown by comparing the slopes of the functions for left, right and left-to-right
triangles, taking into account the sub-cases b >≤ 0.5.
Step 1: The slope of right triangles is

∂er
i

∂i
=

∂1/2(1 − 2a − i)2

∂i
= i + 2a − 1, if 1 − a − b < i < 1 − 2a,

the slope of left-to-right triangles is

∂elr
i

∂i
=







b − i if a ≤ i < b, 1 − b,

0 if b ≤ i ≤ 0.5,

1 − 2i if 1 − b ≤ i ≤ 0.5,
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and the slope of left triangles is

∂el
i

∂i
= (i − 2a), if 2a ≤ i < a + b.

Step 2: The case condition implies that the initial increase (a < i < min(b, 1 − b)) of
left-to-right triangles is larger than the decrease of right triangles, i.e.

a + (a + b) > 1 ⇔ b + 2a − 1 > 0

⇔ (b − i) + (i + 2a − 1) > 0

⇔ ∂elr
i

∂i
+

∂er
i

∂i
> 0.

Step 3: For min(b, 1 − b) < i < 0.5 the cases b ≤ 0.5 and b > 0.5 need to be
discussed separately. If b ≤ 0.5, then from b on left-to-right triangles stagnate at their
maximum. However, the case condition ensures that right triangles stagnate at zero
before (b > 1 − 2a). If b > 0.5, the slope of left-to-right triangles eventually becomes
1 − 2i. This increase is positive for 2a ≥ i ((1 − 2i) + (i + 2a − 1) = 2a − i > 0).
For i > 2a, left triangles form, which causes an increase of total triangles as well
((1− 2i) + (i + 2a− 1) + (1− 2a) = 1− i > 0). Therefore, in case 1, the total number
of triangles always increases from a until the center of knowledge space (0.5).

Statement 2 In case 2, a+(a+b) < 1, total number of triangles always is decreasing
or stable with i for 1 − a − b < i ≤ 0.5.
To proof this, it suffices to show that the decrease of right triangles always outweighs
the increase of the sum of left-to-right and left triangles. The first step is to note
that, for 1− a − b < i ≤ 0.5, whenever left-to-right triangles or left triangles increase,
right triangles decrease. This implies that the sum over the slopes of all three triangle
types is above or equal to the slope of total triangles, without the need to consider the
different case conditions. Therefore, in the final step, it suffices to show that the sum
over the slopes of all three triangle types always is negative or zero.
Step 1: Right triangles decrease for 1 − a − b < i ≤ 1 − 2a. 1 − 2a is only below
0.5 if a > 1/4. However, a > 1/4 implies that left triangles do not increase for
1−a−b < i < 0.5. Furthermore, for 1−2a ≤ i, left-to-right triangles already attained
their maximum, because the case condition implies that b < 1 − 2a ≤ i. Therefore,
right triangles always decrease when left or left-to-right triangles increase.
Step 2: For summing up all three types of triangles, the two cases for b need to be
distinguished. First, assume that b ≤ 0.5, then the maximum slope possibly attained
is

∂elr
i

∂i
+

∂el
i

∂i
+

∂er
i

∂i
= (b − i) + (i − 2a) + (i + 2a − 1) = i − 1 + b ≤ 0,

39



Appendix A Derivation of Network Measures

because i ≤ 0.5 and b ≤ 0.5. Assuming b > 0.5 gives a total slope of

∂elr
i

∂i
+

∂el
i

∂i
+

∂er
i

∂i
= (i + 2a − 1) + (i − 2a) + (i + 2a − 1) = 0.

Therefore, the sum over the slopes of all types of triangles always is negative or zero.

Taking into account the result of step 1, the result of step 2 implies that in case
2, a + (a + b) < 1, total number of triangles always is decreasing or stable with i for
1 − a − b < i ≤ 0.5

Two cases The interest is in triangles and clustering as functions of the agents posi-
tion in knowledge space. More specifically, we are interested in which slopes (positive
or negative) these functions take in the different intervals for case 1 and 2. The slope
of the triangle function is clear from the case condition and the two above statements.
Recall that in case 1 (case 2), triangles first are stable for 0 ≤ i < 1 − a − b (for
0 ≤ i < a), then decrease (increase) for 1 − a − b ≤ i < a (a ≤ i < 1 − a − b) and
later increase (decrease) again or remain stable until the center of knowledge space.
Normalizing triangles by the potential number of triangles (1/2 degree2) yields the
clustering coefficient. In case 1 (case 2), triangles and degree are both decreasing (in-
creasing) with i for 1 − a − b ≤ i < a (for a ≤ i < 1 − a − b). Therefore, it remains
to show for case 1 (case 2) that clustering is decreasing (increasing) as well in this
interval.

First consider case 1 with a > 1−a− b. Agents i ∈ [1−a− b, a) have a right neigh-
borhood only and, therefore, the number of right triangles equals the total number of
triangles (er

i = ei). The agents in this interval obtain different clustering coefficients
depending on the parameter value a. Given a ≤ 1/3, all agents i have right-hand
neighbors which contribute to clustering. In this case, the relevant boundaries are

B1l
i = 0 B1u

i = 0 B2l
i = i + a B2u

i = 1 B2l
j = j + a

and max(B2u
i − a, B2l

i ) = 1 − a. Inserting the boundaries gives

ei = er
i =

1−a∫

i+a

1 − (j + a) dj =
1

2
(1 − 2a − i)2

Given a ≥ 1/3 agents i < 1 − 2a and agents i ≥ 1 − 2a are going to have different
clustering coefficients. For agents i ∈ (1− a− b, 1− 2a), the total number of triangles
ei equals the formula above (ei = 1/2(1−2a− i)2)). However, right-hand neighbors of
agents i ∈ [1− 2a, a) have an empty right-hand neighborhood and therefore clustering
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to the right is zero. We summarize this result and write

ei =







1
2(1 − 2a − i)2 if i ∈ [1 − a − b, a) ∧ a ≤ 1/3,
1
2(1 − 2a − i)2 if i ∈ [1 − a − b, 1 − 2a) ∧ a > 1/3,

0 if i ∈ [1 − 2a, a) ∧ a > 1/3.

Note that the number of triangles is decreasing or constant with i. Taking into account
the degree of 1 − a − i, the clustering coefficient becomes

ci =







(
1−2a−i
1−a−i

)2
if i ∈ [1 − a − b, a) ∧ a ≤ 1/3,

(
1−2a−i
1−a−i

)2
if i ∈ [1 − a − b, 1 − 2a) ∧ a > 1/3,

0 if i ∈ [1 − 2a, a) ∧ a > 1/3.

The derivations with respect to i are

∂ci

∂i
=







21−2a−i
1−a−i

−a
(1−a−i)2

< 0 if i ∈ [1 − a − b, a) ∧ a ≤ 1/3,

21−2a−i
1−a−i

−a
(1−a−i)2

< 0 if i ∈ [1 − a − b, 1 − 2a) ∧ a > 1/3,

0 if i ∈ [1 − 2a, a) ∧ a > 1/3.

Derivations are negative as the first fraction is positive (by i < 1−2a and 0 < 1−a−b <
1− a− i) and the second fraction is negative (by a > 0). Therefore, both the number
of triangles as well as the clustering coefficient are decreasing with i.

Now consider case 2 with a < 1 − a − b. Agents i ∈ [a, 1 − a − b) have a complete
right neighborhood and a restricted left neighborhood with the boundaries

B1l
i = 0, B1u

i = i − a, B2l
i = i + a, B2u

i = i + a + b.

With this neighborhood, left, right and left-to-right triangles become respectively

el
i =

{
1
2(i − 2a)2 if i > 2a,

0 else,

er
i =

1

2
(b − a)2,

elr
i =

{
1
2(b − a)2 if i ≥ b,
1
2(i − a)2 + (b − i)(i − a) else.
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Note that the left-to-right triangle case i ≥ 1−b is excluded as i < 1−a−b ⇒ i < 1−b.
The total mass of links among neighbors ei = el

i + er
i + elr

i is clearly increasing because
both el

i and elr
i are increasing/stable and er

i remains stable. The clustering coefficient
is obtained by normalizing the mass of links by 1/2d2

i = 1/2(i − a + b)2.

cl
i =







(
i−2a

i−a+b

)2
if i > 2a,

0 else,

cr
i =

(
b − a

i − a + b

)2

,

clr
i =







(
b−a

i−a+b

)2
if i ≥ b,

(
i−a

i−a+b

)2
+ 2(b−i)(i−a)

(i−a+b)2
else.

In order to see how the clustering coefficient changes with i, we take the derivative
with respect to i:

∂cl
i/∂i =

{
2(i−2a)(a+b)

(i−a+b)3
> 0 if i > 2a,

0 else,

∂cr
i /∂i =

−2(b − a)2

(i − a + b)3
< 0,

∂clr
i /∂i =

{
−2(b−a)2

(i−a+b)3
< 0 if i ≥ b,

2(b−i)
(i−a+b)2

− 2(i−a)2+4(b−i)(i−a)
(i−a+b)3

>< 0 else.

The left-hand contribution to clustering is always increasing or stable. The clustering
contribution to the right is always decreasing because the size of the overall neigh-
borhood increases whereas the mass of links among right-hand neighbors remains
constant. Finally, the clustering contribution by links between left- and right-hand
neighbors at the beginning increases (i = a) and eventually decreases. The turning
point depends on the parameters a and b. Overall clustering, that is the sum of the
three types of clustering is a concave function which obtains its maximum for i < 2a
and i ≤ b with i = 3ab−2a2

2b−a . For 1 − a − b close to a the maximum might be obtained
at the boundary (1 − a − b).
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CHAPTER 3

Technological Effects on Network Formation

3.1 Introduction

This chapter investigates the technological-distance effect on network formation empir-
ically. Our theoretical model in the previous chapter assumes that firms are positioned
in technological space and a firm-pair forms a research alliance depending on its tech-
nological distance. The alliance decisions of all firm-pairs create a research network.
In the model, the network structure depends on which technological distances are
profitable and the position of a firm in this network becomes a function of its position
in technological space.

The empirical application is on the pharmaceutical industry because the model is
expected to be especially relevant for this industry. Firstly, the alliance network in the
industry is large and half of the alliances focus on joint research & development. Sec-
ondly, firms possess distinctive technological competences. Both can be traced back to
the biotechnology revolution (Arora and Gambardella, 1990; Galambos and Sturchio,
1998; Henderson et al., 1999; Orsenigo et al., 2001). Although today all pharmaceuti-
cal firms are based on modern life sciences (Cockburn et al., 1999), research alliances
remain important. No firm is able to master all the fields that are potentially rele-
vant for the development of new drugs. Therefore firms need to specialize and when
necessary join complementary technological knowledge in research alliances (Powell
et al., 2005). This makes the pharmaceutical industry a promising candidate for an
empirical application. A further attraction is that the measurement of the firms’ tech-
nological knowledge with patent data seems valid. In this industry, patents are highly
used (Arundel and Kabla, 1998) in order to protect intellectual property and to signal

43



Chapter 3 Technological Effects on Network Formation

technological competence (Bureth et al., 2007).

We sample a network which consists of 200 firms and their 300 research alliances
formed within a six-year period. The analysis proceeds at three levels: i) at the dyad
level, we use pairwise distances and the presence or absence of an alliance between
pairs to estimate the benefit-distance relationship. Using this estimate of the distance-
benefit function we can predict (probabilistically) ii) individual firms’ ego-network
properties, and iii) the network structures. The results confirm the relevance of the
benefit-distance relationship as instrumental in pairwise alliance formation which in
turn influences higher-level network structures. In addition, the analysis highlights the
size of the firm’s patent portfolio as a determinant of alliance formation and higher-
level network structures. We conclude that the technological position of the firm is
best captured by considering the size dimension (the patent portfolio size) jointly with
the structural dimension (the benefit-distance effect).

The chapter is structured as follows: the next section discusses related empirical
work on alliance and network formation. Section 3.3 develops the hypotheses. Em-
pirical methods and statistical evidence are presented in section 3.4. Section 3.5 gives
the results and investigates their sensitivity to alternative measures of technological
distance. The chapter ends with a discussion and conclusion.

3.2 Background

3.2.1 Research Alliances in the Pharmaceutical Industry

An alliance in the pharmaceutical industry may govern any of the activities along
the value chain. Our CGCP data set, described in the sample section 3.4.1, provides
a categorization according to the main purpose of the alliance. Roughly, we observe
marketing and distribution alliances (25%), pure licensing and contract research (25%),
manufacturing and supply (10%) and joint research and development alliances (50%).
Many alliances include agreements on subsequent stages of the product life cycle. For
example, research and development agreements are often combined with allocation
of commercialization rights in case of success. Furthermore, alliances might involve
equity transfers between the partnering firms.

In this chapter, we focus on joint research alliances where we expect the strongest
effect of technological distance on alliance formation. We define research alliances
as long-term agreements for reciprocal technology sharing and joint undertaking of
research between independent actors. This includes research joint ventures in which
two companies found a distinct firm for joint research; as well as research collaborations
which establish joint undertaking of R&D projects with shared resources (definition
from Hagedoorn and Schakenraad, 1994).

Pharmaceutical companies frequently enter research alliances. More than 700 al-
liances are formed annually, with a total value of over 30 billion US dollars in 2004
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(recap, cited in Gassmann, 2008, p.75). The relevance of research alliances has in-
creased continually in the last years, both in terms of the number of alliances and
in terms of amounts spent (in total and in percent of the R&D budget) (Gassmann,
2008; Ernst&Young, 2008, p.75,p.47 resp.). Most research alliances are formed be-
tween integrated pharmaceutical companies and small biotechnology firms. Pharma-
ceutical companies spend a considerable part of their overall R&D budget in research
alliances, for example Aventis engages with 15% of its R&D budget (Gassmann, 2008,
p.75). Biotechnology firms finance the lion share of their R&D expenditures this way
(Ernst&Young, 2007, p.17).

Motives for research alliances may stem from efficiency considerations or firm inter-
dependencies. Efficiency is enhanced, for example, due to the realization of economies
of scale and scope, cost and risk sharing, easier access to finance, speed to market,
internalization of knowledge spillovers, and more effective use of extant resources (see
e.g. Hagedoorn, 1993; Hemphill and Vonortas, 2003). Firm interdependencies arise
when two firms occupy similar positions in the industry (competitive interdependence)
or when firm activities are closely connected (symbiotic interdependence) (Pfeffer and
Nowak, 1976). Firms with competitive interdependence might ally in order to mitigate
competition for the input and sales markets (Burt, 1980; Eisenhardt and Schoonhoven,
1996; Pfeffer and Nowak, 1976). Symbiotic interdependence is emphasized in the re-
source based view of the firm and arises when the activity of one firm depends on the
activity or the resources of another firm (Richardson, 1972). Here, alliances enable
close coordination of activities or access to complementary external resources.

In the pharmaceutical industry, symbiotic interdependence is likely to be especially
high. Since the 1980s, the biotechnological revolution brought a whole array of new
scientific disciplines to the life sciences (Galambos and Sturchio, 1998). Because the
scientific advances originated in universities and public research organizations outside
the established pharmaceutical companies, the technological change induced industrial
change. New biotechnology firms entered the industry in several waves, endowed
with specific research approaches and tools (Orsenigo et al., 2001). Although the
new scientific approaches diffused and nowadays all firms apply modern life sciences
in their research, technological knowledge remains fragmented and dispersed among
firms (Cockburn et al., 1999). It remains a common theme that not even the largest
firm is able to do all the research for tomorrow’s products in-house (Ernst&Young,
2008). Therefore, access to complementary technological knowledge is one of the main
motives to engage in research alliances (Hagedoorn, 1993; Herrling, 1998).

The motivation to form an alliance is closely connected to the search for relevant
partners. Given that a firm needs to access complementary technological knowledge,
then this firm is going to consider how the technological knowledge of its potential
partners fit its own technologies. One of the hypotheses put forward in this chapter is
that two firms having an intermediate technological distance are most likely to form
a research alliance. Roughly speaking, the argument is that two firms engaging in
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joint research seek new technological knowledge but need some technological overlap
to work together (see discussion in chapter 2, section 2.2).

3.2.2 Empirical Studies on Research Alliance Formation

The question how the technological endowment of two firms affect their propensity to
form a (research) alliance has been seen in some prior empirical research (Cantwell
and Colombo, 2000; Mowery et al., 1998; Rothaermel and Boeker, 2008; Stuart, 1998).
The work of Mowery et al. (1998) seems to be the earliest effort in this direction.
As in our work, it argues that absorptive capacity and novelty gain yield a trade-off
in partner choice and tests for the inverse-U-shaped benefit-distance effect. Different
from our work, their analysis considers research joint ventures in various industries.
In their study, technological distance between firm-pairs is measured with cross and
common patent citation rates. Estimation of the effect of technological distance on
joint venture formation is accomplished with a logit regression on a pooled matched-
pair sample. The findings support a curvilinear benefit-distance effect; albeit with a
strong preference for technological similarity.

Cantwell and Colombo (2000) investigate the formation of different types of alliances
among the 68 largest firms of the IT sector. They argue that firm-pairs with smaller
technological distance have more complementary technologies as well as higher absorp-
tive capacity and, therefore, are more susceptible to engage in close interaction for joint
knowledge creation and learning. On the other hand, firm-pairs with distinct technolo-
gies but similar products are likely to interact in more market-like transactions such as
licensing. Two measures of technological similarity are provided. The first indicates
whether two firms are both active in one of three broad technological niches. As alter-
native measure of technological distance, correlated revealed technological advantage
(cRTA) is calculated on the firm-pair’s patents.1 Results of difference-of-means tests
using both measures support the hypothesis that alliances in general and technological
agreements in particular are more frequent for technologically close firms. A further
finding is that technological similarity, measured by cRTA, is not positively associated
with all kinds of technological agreements. Whereas technological similarity increases
the probability of licensing and non-equity technological alliances, it decreases slightly
the probability of research joint ventures. This finding is opposite to the results of
(Mowery et al., 1998) who focused exclusively on research joint ventures and found
that technological similarity increases the probability of occurrence. The explanation
put forward by Cantwell and Colombo (2000) is that equity joint ventures are more effi-
cient for inter-organizational learning when the knowledge bases of the partners differ.

1A firm’s revealed technological advantage (RTA) indicates, for a vector of technological fields, the
extent to which a firm is specialized in a given technological field relative to the population’s
average specialization. The cRTA is the correlation coefficient of the RTA vectors of two firms.
(For mathematical expressions, see appendix B.2 where cRTA is applied in the sensitivity analysis.)
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In our view, a further explanation might be differences of the population (IT versus
any industry) and different measures of technological similarity (cross and common
citation rates versus cRTA).

With respect to our work, adverse effects of equity joint ventures should not be
expected because our sample includes only a small share of research joint ventures;
around 2% of all research alliances. However, alternative measures of technological
similarity might yield different results and therefore will be presented in the sensitivity
analysis.

The study of Rothaermel and Boeker (2008) considers alliance formation in the phar-
maceutical industry. Their sample consists of pharmaceutical-biotechnology firm-pairs
built by crossing about 60 pharmaceutical with 500 biotechnology firms. Observations
are over a four year period. The reasoning, again, draws from the symbiotic interde-
pendence argument of the resource-based view of the firm and the inter-organizational
learning perspective. Whereas alliances are motivated by complementarities between
firms with different competences, alliances are more efficient for firms having a similar
knowledge base. In addition, based on reputation arguments, the authors consider
moderating effects of the biotechnology firm’s age. From all the results of the study,
contradictory results on the effect of technological similarity on the propensity of al-
liance formation are especially interesting in our context. Technological similarity is
measured by common and cross patent citation rates, as in Mowery et al. (1998).
However, the logit regression yields a negative effect of common citation rate and a
positive effect of cross citation rate on alliance formation, both at a 5% significance
level. The explanation of the authors is that common citation rate may be a better
proxy of technological similarity than cross citation rate. A negative effect of com-
mon citation rate might arise because firms are too similar to complement each other
(Rothaermel and Boeker, 2008, p.73).

Our own experience with these measures in an exploratory analysis on an uncleaned
data set suggests that there are also technical issues to consider. In the study of
(Rothaermel and Boeker, 2008), crossing of firms yields about 30000 firm-pairs which
cited each others patents 750 times (cross citation rate) and the same patents 5460
times (common citation rate) (Rothaermel and Boeker, 2008, p.59). This implies that
most firm-pairs do not cite each other patents or the same patents and, therefore,
technological similarity becomes zero for these firm-pairs. Thus, in the sample the
distance measures applied are largely uninformative.2 Yet, both measures of tech-
nological similarity are significant with opposed signs. The reason might be in the
estimation procedure, in which the common logit model is regressed on a large sample
of firm-pairs. The sample of firm-pairs results from pairing each firm with all other

2This observation led us not to engage in building a data set for calculation of common and cross
citation rates. In the study of (Mowery et al., 1998) the cross citation rate is ten times higher
whereas the common citation rate is on about the same level as in (Rothaermel and Boeker, 2008).
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firms. The 60 pharmaceutical firms and 500 biotechnology firms result in 30000 firm-
pairs. Firm-pair observations are not independent over firms because each firm enters
many observations. If this is not taken into account in the estimation, either through
correction terms or by explicitly modeling dependencies among observations, signifi-
cance levels might be underestimated (too low) (see e.g. Fafchamps and Gubert, 2007;
Hoff, 2003). The conclusion from this study is largely technical. Firstly, measures
of technological similarity based on patent citations might be misleading. Secondly,
deflation of standard errors due to crossing of firms is an issue.

Stuart (1998) takes a structuralist perspective. Building on the argument of White
(1981) that a firm’s action in a market is determined by the position the firm takes
relative to other firms in the market, Stuart (1998) claims that alliance formation is
determined by the position the firm takes in technological space. He argues that for
reasons of opportunity, absorptive capacity, and efficiency firms in crowded regions
of technological space are more likely to form alliances. In addition, firms located in
isolated regions might seek alliances with firms in crowded regions because crowded
regions are likely to represent the industry’s core activities. The implication is that
technological space structures alliance formation by the distribution of firms therein.
The theoretical model in the previous chapter in principle takes the same stand-point
by ascribing a structuring role to technological space. However, in our model, firms
are uniformly distributed in technological space and the structuring element is the
benefit-distance effect on a firm-pair. Because we do not deny that firms in reality
are unevenly distributed in knowledge space, our model should not be understood as
an alternative explanation but rather as a refinement. According to Stuart, firms in
densely populated regions are positioned in a rich local environment which provides
many opportunities for alliances. Our model adds that this is actually only the case
if technological similarity is preferred. Given that technological distance is beneficial
to alliance formation, it is not the local environment in technological space but more
distant, possibly sparsely populated, regions which determine the opportunities of the
firm.

A methodological difference however remains. The starting point of Stuart is that
the decision to form an alliance is determined by the overall structure provided by
the population of firms in technological space. In a second step, he proposes that this
kind of decision making is going to be visible in the alliance formation between firm-
pairs. We argue the opposite way round. In our theoretical model, alliance formation
is exclusively determined by cost-benefit considerations of the firm-pair and we argue
that this is going to be visible in the firm network position.

In the empirical analysis, Stuart (1998) tests the implications of his arguments on
a longitudinal sample of semiconductor firms. Regressions are at the firm and the
dyad level. At the firm level, a Poisson regression estimates the effect of the firm’s
position in technological space on its alliance formation rate. At the dyad level, a
Probit regression estimates the effect of a firm-pair’s technological distance on alliance
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formation. The finding is that two firms which are technologically close are more likely
to form an alliance and that firms which are positioned in a crowded region have more
alliances. A finding which is internally consistent with Stuart’s arguments as well as
with our theoretical model.

3.2.3 Empirical Studies on Research Network Formation

In the theoretical model, which we attempt to test in this chapter, firm-pairs form
alliances and thereby create a network. The analysis in chapter 2, section 2.4, discusses
the implication of the dyadic decision making on higher-level network structures, i.e.
the firm position in the research network and the global network structure. Therefore
it is noteworthy that all the studies discussed above remain on the dyad level, the only
exception being (Stuart, 1998). Furthermore, when searching the literature, we did not
find further empirical contributions about how the position of a firm in technological
space affects the firm’s position in the network of alliances. Related empirical work
rather investigates the effect of the firm’s technological competence (e.g. number
of patents) on the firm’s rate of alliance formation (Ahuja, 2000; Eisenhardt and
Schoonhoven, 1996; Shan et al., 1994; Zhang et al., 2007).

Two studies find positive and significant effects of the firm’s technological compe-
tence on the formation rate of technological alliances in the chemicals and semicon-
ductor industry respectively (Ahuja, 2000; Eisenhardt and Schoonhoven, 1996).3 Shan
et al. (1994) analyze the relationship of alliance formation and innovative capabilities
for young biotechnology firms in the pharmaceutical industry. They do not find that
the number of the firm’s patents affects the number of its commercial alliances. How-
ever, an important qualification may be that the study is on alliance formation during
the 1980s; a very early period. The more recent work of Zhang et al. (2007) considers
the alliance activity of 43 large pharmaceutical firms over the period 1993-2002. In-
fluenced by the learning-organization perspective, they argue that a firm with a broad
knowledge base has many opportunities to access and to commercially exploit the
technological knowledge of other firms. Breadth of knowledge is measured in terms of
the number of technological fields in which the firm patented and is found to increase
the rate of alliance formation.

The study of Gay and Dousset (2005) explicitly links the firm’s technological com-
petence to its position in the network of alliances. This work provides a descriptive
analysis of the alliance network in the human antibody sector, a sub-sector of the phar-
maceutical industry. It is convincingly shown that firms holding intellectual property
on ‘key’ innovations obtained central positions in the network. By out-licensing their
innovations, these actors became hubs with high out-degree, betweenness and closeness

3The focus of these studies is the relationship between technological and social effects on alliance
formation. We treat this question in the next chapter, 4, which provides a more detailed discussion
in section 4.2.
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centrality. The formation of hubs is found to induce network structures characterized
by short average path length and higher clustering.

The findings of Gay and Dousset (2005) exemplify the findings of a study on the
formation of the overall pharmaceutical network (Orsenigo et al., 2001). Orsenigo
et al. (2001) describe how waves of entries of biotechnology firms altered the structure
of the alliance network in the pharmaceutical industry. On the one hand, entry of
firms with general purpose technologies decrease the hierarchy in the network because
these technologies are widely applicable. On the other hand, entry of firms with
co-specialized technologies increase the hierarchy in the network. Thus, the study of
Orsenigo et al. (2001) focus on how the entry of firm types influence network structures.
Our approach is more micro-oriented as we investigate how the alliance decisions of
firm-pairs influences network structures.

3.2.4 Summary

We may summarize our discussion of prior empirical work as follows. Firstly, the
inverse-U-shaped technological distance effect on alliance formation has been found
to be relevant for the formation of research joint ventures (Mowery et al., 1998).
Secondly, all studies on alliance formation found that technologically close firm-pairs
are more likely to enter a research alliance than technologically distant firm-pairs.
Thirdly, technical issues to consider include dyadic interdependence and alternative
measures of technological distance. Fourthly, technological competence, as measured
for example by the size of the firm’s patent portfolio, is found to be positively related
to the firm’s rate of research alliance formation. To the best of our knowledge, the
question of how the benefit-distance effect influences higher-level network structures
has not yet been treated empirically. Guided by the theoretical model of the previous
chapter, the following analysis focuses on this issue.

3.3 Hypotheses

The main implication of the model is that when the distance benefit range is small
(large) relative to the technological space, a firm which is central in the technological
space, is more (less) central in the research network. An obvious way to proceed would
be to determine the relevant case for a population of firms and test the implication of
the model directly. To this end, one needs to measure the distance benefit range, the
diameter of the knowledge space and how central a firm is in knowledge space.

However, whereas in the model firms are uniformly distributed in a one-dimensional
space, in reality we are confronted with unevenly distributed firms in a multi-dimensional
space. In such a setting, two firms which are positioned in different regions of techno-
logical space but have the same distance to the center of technological space do not
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necessarily have the same opportunities to form alliances. The firm’s actual opportu-
nities to form alliances depend on its distances to all other firms in knowledge space.
This means that in our empirical setting we lose information if the position of a firm is
indicated only by its distance to the center of technological space. A firm’s position in
technological space is better expressed by its technological distance to all other firms.

Therefore, we do not test directly the relationship between central positions in
technological space and firm network positions as well as global network structures,
though we will provide some visual evidence that is indicative. We do, however,
derive three hypotheses: the first is in fact the key assumption of the model, which
is the distance-benefit relationship on the dyad level. The second hypothesis treats
its implications on the network characteristics on the firm level. Finally, the third
hypothesis addresses the implications on network measure distributions on the global
level. In this way, the assumption on the benefit-distance range is disentangled from
its effect on higher-level network structures.

The first hypothesis is simply the main assumption of the model:

Hypothesis 1 Alliance formation. The probability of two firms forming an al-
liance will be a curvilinear function, having an internal maximum, of their technolog-
ical distance.

The theoretical model assumes that the benefit-distance relationship is the same for
all firm-pairs. Therefore, the position of a firm in the network depends on its position
in knowledge space:

Hypothesis 2 Ego-network structures. Firm-level network characteristics depend
on the firms’ position in the knowledge space for a given benefit-distance relationship.

On the network level, network measures describe the architecture of a network by
neglecting the individuality of the nodes. The analysis showed that depending on the
distance-benefit effect network measure distributions will be more or less skewed and
on a higher or lower level. The relevance of the model for the network architecture is
tested by the following hypothesis:

Hypothesis 3 Global network structures. Distributions of network measures are
related to the firms’ distribution in knowledge space for a given benefit-distance rela-
tionship.

The hypotheses are formulated in broad terms to capture the main idea of the
model: the benefit-distance relationship is a local effect, which determines the alliance
decision of firm-pairs. Because the network is the aggregate of all alliance decisions,
the local effect shapes firm network characteristics and network measure distributions.
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3.4 Empirical Methods

3.4.1 Sample

The firm sample is drawn from the CGCP database. The CGCP database is a compre-
hensive collection of publicly announced formal agreements. A valuable feature is that
it classifies alliances by industry and type (such as e.g. joint venture, commercial or
research alliance).4 The classification allows us to focus on research and development
alliances in the pharmaceutical industry.

The sample consists of the 250 firms, being most active in the pharmaceutical in-
dustry. To derive the sample, first all dyadic (bio-)pharmaceutical alliances between
the years 2001 and 2006 (inclusive) have been extracted. Because firm-level informa-
tion needs to be added, not all firms involved could enter the sample. Selecting the
250 most active firms assured that the network will be reasonably dense, with many
alliances among the selected firms.

This sample is not representative; neither of the pharmaceutical industry nor of
the global pharmaceutical network. However, the dependent variable is the alliance
decision of the firm-dyad and not the number of alliances of the firm. Because selection
is not based on the dependent variable, estimates need not be biased.

The technological position of firms is measured with patent data. The advantages
and disadvantages of measuring technological capabilities with patent data have been
discussed elsewhere (e.g. Pavitt, 1982). Because in the pharmaceutical industry firms
patent extensively (Arundel and Kabla, 1998), we think that patent information re-
flects sufficiently the technological activity of the firms. The objectivity, information
content and availability of patent data makes it superior to other information sources
in our case.

The patent data have been extracted from the EPO Patstat database (EPO, 2008).
Only those patents, which seem relevant for the bio-pharmaceutical industry, have
been considered. The restriction is based on concordances of the international patent
classification (IPC) on the four digit level to the biopharmaceutical industry. In detail,
the set of IPC classes considered comprises those of the OECD definition (OECD,
2008b), the MERIT definition (Verspagen et al., 1994) and the ISI definition (Schmoch
et al., 2003). One invention is often patented via a priority application to a national
office and equivalent foreign versions of the application. In these cases, double counting
has been avoided by considering only the priority application (OECD, 1994).

The hypotheses imply a direction of causality, namely that a firm’s technological
characteristics affects its alliance activity. This is accounted for by sampling the patent
data from a time period previous to the time period of the alliance data. Whereas the
alliances took place between the years 2001 and 2006, the patents have a priority date
between the years 1995 and 2000.

4For a description see www.cgcpmaps.com .
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The firm names given in the alliance database denote mostly a pharmaceutical
business, either the entire group or a subsidiary. Therefore patents have been matched
on the same level when possible. In those cases where the pharmaceutical business is
part of a diversified group but applies for patents solely in the name of the group no
matching can be done. Additionally, for some firms no patents have been found due
to the time or IPC restriction.

The patent matching yielded patent applications within the given priority date and
IPC classes for 212 firms or their respective pharmaceutical business. For ten firms,
mostly software and service firms, no patents could be found at all. Six firms only
applied for patents on behalf of a diversified group. Twenty-two firms applied for
patents but after the given time period.

In order to control for firm size, the number of employees has been collected from
publicly available information, mostly annual reports of the SEC. About seventy per
cent of the figures are at or before 2001. For the rest of firms this information could
only be obtained from later years. For 14 out of the 250 firms, the number of employees
could not be found.

Thus, of the initial 250 firms, 38 have zero or missing patent assignments, 14 have
missing employee information and 45 firms have either no patent or no employee infor-
mation assigned. Finally, for 205 firms, which is 82 percent of the sample, patenting
and employee information is given, and these firms constitute the sample we work
with.

3.4.2 Measures

Joint technological agreement

The dependent variable at the dyad level, joint technological agreement (jointtech), is
defined as a joint project of two firms, in which both firms contribute to research and/or
development. This definition excludes for example research projects conducted by one
firm and financed by another. The fact that only publicly announced agreements enter
the CGCP data base inevitably imposes a restriction to formal agreements.

Firm network position and network structure

The dependent variable at the firm level is the firm network position. At the network
level it is the network structure. The firm network position as well as the network
structure are described using the four network measures degree centrality, closeness
centrality, clustering coefficient and the number of triangles a firm is involved in.
(Short notations are “degree”, “closeness”, “clustering” and “triangles” respectively.
For definitions see chapter 2, section 2.4). All network measures are calculated from
the network of joint technological agreements among the firms, for which the distance-
benefit relationship is estimated.
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Technological position

The technological position of a firm is given by its technological distance to all other
firms. The technological distance between any two firms is measured on their patent
portfolios, where we take into account the size of the patent portfolios as well as the
technological classes covered by the portfolio.

During examination, a patent examiner of the patent office assigns each patent
according to the inventions claimed to one or several technological classes of the inter-
national patent classification (IPC) (OECD, 1994, p.30). Therefore, the IPC classes
of a firm’s patents reveal in which technological fields a firm is active. For indication,
we use the main and secondary IPC classes. Intuitively, two firms are technologically
close when they patent in the same technological fields. To capture this we use “over-
lap”, defined as the number of IPC classes covered jointly by both firms divided by
the number of IPC classes covered by at least one firm:

overlapij =
|IPCi

⋂
IPCj |

|IPCi
⋃

IPCj |
,

where IPCi is the set of IPC, in which firm i had at least one patent application and
|| denotes the size of the set. In order to allow for a curvilinear relationship the square
of the overlap (overlap2

ij) is included in the estimations as well.
The overlap measure loses information on the size of the patent portfolios. Therefore,

additional information on the size of the patent portfolios of firms i and j is captured
by two further variables: the sum and the absolute difference of the log-transformed
patent count of firm i and j (absDiffLnPC ij and sumLnPC ij). These measure whether
the potential partners are jointly large, in terms of patent holdings; and whether they
differ in size.

Note that absDiffLnPC ij and sumLnPC ij are information equivalent to the log
transformed patent counts of the two portfolios. The number of patents is log-scaled
in order to take into account the decreasing importance of one more patent in a bigger
patent portfolio. Technically, the log-scale leads to less skewed distributions.

In the literature other distance measures based on patents have been used. (Mow-
ery et al., 1998; Schoenmakers and Duysters, 2006) calculated the overlap of patent
citations. Other measures include the cosine index (Jaffe, 1986, 1989), the correlated
revealed technological advantage (cRTA) (Cantwell and Colombo, 2000; Gilsing et al.,
2008; Nooteboom et al., 2007) or the euclidean distance (Rosenkopf and Almeida,
2003). Some of these will be considered in the sensitivity analysis in Section 3.5.2
below.

Firm size

Features of drug development and commercialization hint to further drivers of alliance
formation (Galambos and Sturchio, 1998; OECD, 2008a). Development of new drugs is
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extremely costly and time consuming. On average, 800 million dollars need to be spent
over 10 years in order to bring a new drug to the market (DiMasi et al., 2003). Drug
application processes are country-specific and demand strong organizational compe-
tencies to meet legal requirements. Because production costs are low compared to the
high initial development expenses, sales revenues need to be maximized. This can only
be achieved with strong marketing and distribution channels in national markets.

Because the size of the patent portfolio is strongly correlated with the size of the
firm, controlling for firm size is crucial to sort out technological from financial and
organizational interdependencies. This is achieved by introducing the two variables
absDiffLnEmployees ij and sumLnEmployees ij combining the size information of two
firms i and j. Similarly to our treatment of the size of the patent portfolios, they
denote the sum as well as the absolute difference of the log-transformed number of
employees of two firms i and j.

3.4.3 Statistical Analysis

In the following, we provide statistics which correspond to the three hypotheses on
i) alliance formation, ii) ego-network structures and iii) global network structures. A
summary is provided at the end of the statistical analysis.

Alliance formation. The basic assumption of the model is that the decision of two
firms forming an alliance depends on their technological distance. Specifically, the
relationship between the benefit of forming an alliance and technological distance is
assumed to be inverse-U-shaped. Therefore, we provide first descriptive statistics on
the benefit-distance relationship. In addition, basic information on further regressors
on alliance formation is given.

In our sample, there are in total 205 firms for which patent and size information
is given. Crossing all firms yields 20910 firm-pairs. These firm-pairs effected 339
technological agreements, corresponding to 2% of all potential links. Firms contributed
unequally to link formation in the observed network. Whereas 39 firms have no links
with other firms in the sample and 41 firms have one link only, five firms have fourteen
or more links within the network. Overlap, our measure of technological proximity, on
average is 0.3 with a variance of 0.05. It is slightly right skewed (0.4) with 11.1% of
dyads having no overlap and 0.2% having complete overlap. Since overlap is mostly an
internal point of the unit interval, it is a measure, which is capable of differentiating
the firm-pair distances.

The box-plot in figure 3.1 compares the overlap of firm-pairs forming and not forming
an alliance. The first quartile (the lower end of the box) and the median (the bar
in the box) of overlap is higher for firm-pairs forming an alliance. This suggests that
technological proximity is preferable, which corresponds to a small maximum profitable
distance, a + b, in the theoretical model.
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Figure 3.1: Box-plot of technological proximity (overlap) depending on alliance formation (jointtech).
The boxes comprise the lower and upper quartile of respective distributions, the median is marked
with a bar, hinges extend the boxes by at most 1.5 the interquartile range, notches indicate 95%
confidence intervals around the median assuming independently, normally distributed data.

The patent and employee information is used to construct further regressors describ-
ing the dyad. The distribution of number of patents is extremely right skewed, as is
the number of employees. Number of patents range from one patent for eleven firms
to 10500 patents for one firm, with a median of 62 and a mean of 591. The distri-
bution becomes symmetric in log-scale with median being 4.2 and mean 4.3. Sizes of
the firms ranges from 5 to 120000. Again, log-transformation centers the distribution
around a value of 6. Because the number of patents and the number of employees have
been log-scaled before being summed and differenced, the resulting variables all have
a smooth distribution ranging between 0 and 30.

Table 1 shows that all variables are significantly correlated. The high significance
is partly the effect of inflating the observations by forming firm-dyads.5 Nevertheless,
all technological indicators are highly correlated with jointtech, supporting the impor-
tance of technological characteristics for joint technological agreements. However, the
correlation of the employee information with technological characteristics hints at or-
ganizational and financial drivers of alliance formation and the importance to control
for such drivers.

5In other words, adding one more firm to a sample of N firms yields N more firm-pair observations.
The number of new firm-pair observations is inflated compared to the number of independent
observations containing the same amount of information.
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Table 3.1: Mean, standard deviations and correlations a

Mean S.D. 1 2 3 4 5 6

Jointtech (1) 0.02 0.13
SumLnPC (2) 8.77 2.94 0.09*
AbsDiffLnPC (3) 2.38 1.75 0.06* 0.14*
Overlap (4) 0.32 0.23 0.04* 0.57* -0.37*

Overlap2 (5) 0.15 0.17 0.04* 0.51* -0.35* 0.95*
SumLnEmpl (6) 13.11 3.41 0.07* 0.56* 0.23* 0.22* 0.23*
AbsDiffLnEmpl (7) 2.74 2.05 0.08* 0.16* 0.34* -0.15* -0.18* 0.29*

a N=20910 firm-pairs from crossing 205 firms; * signifies 0.1% rejection level of significance.

Ego-network structures. We present a graphical analysis of the results on ego-
network statistics and position in the knowledge space. We argued above that firms
near the center of the space should have differently structured ego-networks than those
near the periphery. Because the model makes some very specific assumptions about
the space and the distribution of firms within it, and because it is difficult to cre-
ate a knowledge space empirically, we cannot do a direct test of the analytic results.
However, the figures below suggest that they do conform to what we can observe.

Figures 3.2 and 3.3 provide a coherent picture of the case in which centrality in
technological space leads to high centrality in the network and a higher number of
triads.

Our data on knowledge allows us to compute for each firm not its position in knowl-
edge space, but rather its distance from all other firms. There are several algorithms
to take this information and project it onto a two-dimensional plane. In figure 3.2
we do this using the Fruchterman-Reingold algorithm.6 Having positioned the firms
in knowledge space, we superimpose their alliance network: lines between two points
indicate the presence of an alliance between those two firms; the size of a point corre-
sponds to the log-transformed number of alliances. It seems that firms more central
in knowledge space also have higher degree centrality in the network. Technological
distance of most alliances is rather short. Most alliances span at most half the tech-
nological space and there are no alliances, which span the entire space. Note that this
strengthens our previous observation on alliance formation above that alliances are
more frequent for technologically close firm-pairs. Furthermore, it suggests that the
technological distance over which an alliance can be successful is small relative to tech-
nological space. This corresponds to a small benefit-distance range in the theoretical
model, which implies that we should be interested in the second case (a + (a + b) < 1)

6This algorithm optimizes the positions against two criteria: covering the plane, and placing pairs
of firms with low distance close to each other. The mapping is not unique, but we have presented
here a representative mapping of a sample of 100 such mappings.
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Figure 3.2: The network of joint technological agreements. Nodes are mapped into two dimensional
knowledge space based on firm-pair overlap using the Fruchterman-Reingold algorithm. Size of the
nodes equals log of degree.
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Figure 3.3: Ego-network structure by average overlap. The higher the overlap to all other firms in
the sample, the more central a firm is in technological space. Firms having a degree or closeness
centrality of zero are singletons, not connected to the network.

as derived in chapter 2, section 2.4.

This is confirmed in figure 3.3, where the average overlap of one firm to all other
firms measures the firm’s position in technological space. Firms with large average
overlap are close to most other firms and, therefore, can be considered to be close to
the center of the technological space. The top left panel in figure 3.3 plots degree
centrality as a function of average overlap. It seems that the population is divided
at an average overlap of 0.3. There are only two firms which are distant from the
technological center (average overlap below 0.3) and yet have more than five alliances
in the sample. Although there are firms which are close to the center in technological
space (overlap above 0.3) and have few alliances, firms closer to the technological
center in general have more alliances. The absence of any firm being at the boundary
of technological space and having a high degree even suggests that being central in
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technological space is a prerequisite for having many research alliances.

The effect on closeness centrality, shown in the top right panel in figure 3.3, is less
clear cut. Here, the Pearson’s correlation between expected and observed firm network
characteristics, with a coefficient of 0.34 and a significance level below 0.001%, gives a
clear indication. Again, firms located near the center of the technological space tend
to have a high closeness centrality. However, the clustering coefficient, given in the
bottom left panel, deviates from theoretical prediction in that it is higher for firms
being close to the technological center. In the model in case 2 (1 < 2a + b), firms at
the center have relatively a high number of triangles but due to having high degree,
their clustering becomes low. In our sample firms at the center do have a high number
of triangles as well as a high degree (see upper left and lower right panels). However,
their degree is not high enough to cause a low clustering coefficient.

Global network structures. The global network structure is characterized by the dis-
tributions of network measures. Locating the distributions of the sample network in
parameter space of the theoretical model is not attempted here because the model
assumptions naturally lead to a discrepancy between empirical and theoretical distri-
butions. The deterministic decision making in the model leads an agent to connect to
all agents within its profitable range, which is a fraction of the population. In reality,
firms are going to connect only to individual agents within their profitable range be-
cause accessing many agents with similar knowledge is not beneficial. In addition, the
model assumes that knowledge space is continuously populated whereas population in
real world is probably both less dense and less uniform.7

Both assumptions lead to theoretical networks which are denser than the sampled
network. Thus, the average degree of theoretical networks generally is higher than
of the sampled network. Comparing the means of the other distributions, we find
that theoretical distributions of closeness, clustering and triangles also have a higher
mean in large regions of parameter space (see first column of table 3.2 and figures 2.3,
2.5, 2.7 in chapter 2, section 2.4.). Furthermore, the magnitudes of the coefficients
of variation and skewness of theoretical distributions are generally lower than of the
sampled distributions. Therefore, attempting to pin down the parameters a and b
for the observed network measure distributions is not promising. A second sample
network is needed to provide a reference point. Then, comparing the network measure
distributions of two networks might allow to conclude on the relative shape of the
benefit-distance effects working in each sample.

A further observation on the theoretical model is that the relation of network mea-
sure distributions is the same over the whole parameter space. For example if average
degree centrality is high, average closeness centrality tends to be high. The close rela-
tion of network measures is caused by definition of the network measures (for example

7See also the model discussion in chapter 2, section 2.4.
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Table 3.2: Moments of network measure distributions

Mean S.D./Mean Skewness

Degree 3.31 1.09 1.98
Closeness 0.23 0.02 -1.08
Clustering 0.02 0.003 3.35
Triangles 0.41 1.33 4.47

degree enters the calculation of closeness centrality) but is also due to the model as-
sumptions. Note that a close relation is also observed for the sampled distributions. All
sample distributions have low means and high coefficients of variation and skewness.
In this respect observed distributions are consistent with the theoretical model.

Statistics summary In sum, our statistical evidence is internally consistent with
the model results. Firstly, alliance formation potentially is driven by technological
distance. Firm-pairs which form alliances have smaller technological distances than
firm-pairs which do not form alliances. Secondly, the observed relationship of the
firms’ position in technological space and their network characteristics is implied by
the second case of the model. Thirdly, observed network measure distributions are
similarly related to each other as are theoretical distributions; although on a lower
level. The empirical relevance of the model is further confirmed by inductive statistics,
which follow now.

3.4.4 Testing Strategy

To test the first hypothesis, the effect of technological distance on joint technological
agreements is estimated. The estimates assign to each firm-pair a probability of form-
ing an alliance and, when aggregated, yield expectations on the network. The expected
network implies both expected firm network positions and expected network measure
distributions. The relevance of the local effect on the network is revealed by comparing
the expected with the observed firm network positions (hypothesis two) as well as with
the network measure distributions (hypothesis three). The next paragraphs discuss
these steps in more detail.

Alliance formation A logit function is an appropriate model for the decision of two
firms to form an alliance. However, when estimating link formation in a network,
the non-independence of observations is an issue (van Duijn and Vermunt, 2006). An
important source of dependence is the repeated observation of one firm over several
firm-pairs. This is likely to cause correlated errors over firm-pair observations, because
some firms are more susceptible to form alliances than others for unknown reasons. In
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this case, maintaining the independence assumption under-estimates standard errors
and potentially gives biased coefficient estimates.

This problem is similar to that of repeated observations of one firm over time in
a panel. In the panel setting, the problem is usually handled by introducing unob-
served firm specific effects (Cameron and Trivedi, 2005). Under the assumption that
firm specific effects are uncorrelated with other independent variables, one estimates
a random effects model. When correlated, the random effects model yields biased
coefficient estimates and the less efficient fixed effects model is appropriate. Which
model to choose is based on a Hausman test, which tells whether the coefficients can
be assumed to be equal given their variances.

We apply the standard solution for panel data to the estimation of link formation in
a network. Different from panel data though, we are handling dyads. Therefore, the
conditional probability that firm-pair ij forms an alliance is conditional not on one
but on two unobserved firm specific effects, ai and aj , and the Logit model becomes

Pr[jointtechij = 1|xij , ai, aj ] =
exp(x′

ijβ + ai + aj)

1 + exp(x′
ijβ + ai + aj)

,

where xij is a vector of dyadic-covariates and β the corresponding coefficients. As is
common for panel data models, we distinguish random and fixed effects. A random
effects model to estimate link formation in a network has been proposed by (Hoff,
2003). We estimate it by maximum simulated likelihood under the assumption that
firm specific effects are independently normally distributed. The fixed effects model
is estimated with maximum likelihood by introducing a dummy variable for each firm
(an approach already taken by Stuart, 1998). This does not cause the incidental
parameter issue because the number of firm-pairs (observations) increases much faster
then the number of firms (variables). However, firms which have no links with other
firms in the sample need to be excluded, because their fixed effect is minus infinity
(not defined). This is not the case for the random effects model, where the inclusion
of these firms rather increases the variance of the random effects distribution. Because
the Hausman test showed that the coefficient estimates of the random effects model
are similar to those of the fixed effects model, we present only the results of the more
efficient random effects model; estimated on the complete sample. Econometric details
and results for fixed and random effects estimation are given in appendix B.1.

Introduction of firm specific-effects does not necessarily make observations indepen-
dent. Errors might still be systematically correlated, for example when firms favor
alliances with firms that are already close in the network. One strategy is to incor-
porate sufficient statistics for different kind of dependencies, as in the framework of
Markov Graphs (van Duijn and Vermunt, 2006). The problem is that estimation might
not be possible for some (larger) networks (Hunter et al., 2007), which happened in our
case when introducing statistics of a dyadic dependence model. Because firm specific-
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effects probably control for the most important source of bias and variance deflation,
we leave the problem of more complicated network dependencies to future research.

Ego-networks The estimates obtained from the Logit model are used to form expec-
tations on the firm network positions. In principle expectations can be analytically
derived. For example the expected degree centrality of a firm is simply the sum of the
probabilities of link formation over all firm dyads that include the focal firm. Analyt-
ical derivation of the expectations of the other network measures is more complicated
but easily obtained by simulation. The estimates of alliance formation can be used to
create a probabilistic adjacency matrix: the probability that each potential alliance
exists. One instance of a network is simulated by random realization of all links given
this probabilistic adjacency matrix. From each simulated network the position of each
firm in terms of degree, clustering, closeness and number of triangles is calculated.
Then, the average over many such simulations yields the expected firm position. The
presented expectations are based on 1000 simulations, sufficient that different runs
give the same results. Significant correlation of the expected network positions with
the observed ones would corroborate hypothesis two.

Global networks Hypothesis three is similarly tested by comparing the expected
with the observed network measure distributions. From each simulated network the
network measure distributions are obtained. Their average gives the expected network
measure distributions. Visual comparison of the distributions is valuable to judge the
validity of hypothesis three (Hunter et al., 2008). In addition, we use the Kullback
Leibler Information Criterion (KLIC) to measure the distance from the expected to
the observed network measure distributions.8

3.5 Results

3.5.1 Hypothesis Testing

Hypothesis 1, Alliance Formation

Table 3.3 reports the results of the regression analysis on the effect of technological dis-
tance on joint technological agreements. The estimations support the first hypothesis.
There is a curvilinear relationship between our structural measure of technological dis-
tance, overlap, and joint technological agreements, jointtech. Furthermore, we find a

8The KLIC for discrete distributions equals KLIC(p, π) =
∑

p(y) ln(p(y)/π(y)) and measures how
close the distribution p(y) is to a reference distribution π(y). KLIC(p, π) is strictly convex,
KLIC(p, π) > 0 always and KLIC(p, π) = 0 ⇐⇒ p = π. We calculate the KLIC for discrete
distributions because our reference distribution, the observed network measure distribution, is
discrete. This makes necessary to discretize the expected network measure distributions. The
discretization is presented together with the results.
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preference to combine with unequal partners regarding the size of the patent portfolio
as well as firm size.

In table 3.3, model 1 is the baseline equation, containing only the firm size control
variables. The sum and absolute difference of log-employees (sumLnEmpl and absD-
iffLnEmpl) are positive, showing that big and small firms are likely to ally. This is in
accord with previous findings on the interdependencies of small and big firms in the
pharmaceutical industry (Powell et al., 2005). Model 2 adds the sum and absolute
difference of patent portfolio sizes (sumLnPC and absDiffLnPC ). Their significance
and a decreasing Akaike Information Criterion (AIC) assigns high relevance to both
variables. The decrease of the coefficients on the size control variables supports the
idea that the interdependencies between big and small firms are partly technologi-
cal. Model 3 adds the second dimension of technological distance namely overlap. It
supports hypothesis one of a curvilinear relationship, with overlap being positive and
overlap2 negative.

The estimated point of optimal technological distance is the value of overlap where
the probability of forming an alliance is maximal. For the logit function, derivation
of the linear regressor with respect to overlap yields a point of optimal technological
overlap of 0.77. Thus, the inverse-U-shaped benefit-distance effect has an internal
maximum. More specifically, the probability of alliance formation increases with in-
creasing technological distance from one overlap (no distance) up to an overlap of 0.77
and then decreases again until zero overlap (the maximum distance) is reached.

Table 3.3: Random effects logit models of alliance formation (jointtech) a

Model 1 Model 2 Model 3

Intercept -7.23*** (0.347) -7.78*** (0.364) -8.37*** (0.422)
Overlap – – 4.12*** (0.987)
Overlap2 – – -2.69** (1.032)
SumLnPC – 0.21*** (0.026) 0.11*** (0.032)
AbsDiffLnPC – 0.09** (0.033) 0.21*** (0.042)
AbsDiffLnEmpl 0.23*** (0.026) 0.2*** (0.029) 0.21*** (0.030)
SumLnEmpl 0.16*** (0.019) 0.04* (0.023) 0.05* (0.024)
σ2 b 0.35 (0.095) 0.35 (0.097) 0.38 (0.099)

AIC 3287.05 3208.87 3186.22

a N=20910 firm-pair observations from crossing 205 firms; standard errors in
brackets; *,**,*** signify 5%, 1% and 0.1% rejection levels of significance.

b The estimate of random effects variance follows a log-normal distribution
and are therefore strictly positive.
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In order to test hypothesis 1, three models estimated local effects of network for-
mation: the first model the heterophily of big and small firms, the second model adds
the heterophily of firms with big and small patent stocks and the third model adds
the distance benefit relationship of technological distance. All effects are significant
— separately and jointly.

Hypothesis 2, Ego-Network Structures

Hypothesis 2 proposes that network characteristics of a firm depend on its position
in the knowledge space and that the relationship is determined by the benefit-range
(parameters a and b in the model). Based on a numerical simulation of networks using
the model estimates obtained above, we derived the expected network position of each
firm. Correlation of expected with observed network positions shows how well the
respective model of dyad formation explains the higher-level phenomenon of a firm’s
network position.

Table 3.4 partially supports the hypothesis. The first model, only taking into ac-
count the size of the firms, is capable of predicting degree centrality and number of
triangles. Adding the size of the patent portfolios in model 2 improves the predictive
power for degree, triangles and especially closeness. Predictions of all three measures
improve significantly from model 1 to model 2, i.e. the null hypothesis that correlation
coefficients of model 1 and model 2 are equal is rejected below or equal to the 5% sig-
nificance level (see rows ‘Pm=m−1’, column ‘model 2’).9 Correlations between observed
and estimated values increase when the distance benefit relationship (in terms of over-
lap and its square) are included. However, model 3 improves model 2 predictions only
for degree significantly at a 2.4% rejection level. Once the information on the size
of the patent portfolios is taken into account, adding the structural information of
technological position does not significantly improve predictions of the firms’ closeness
centrality or triangles (see rows ‘Pm=m−1’, column ‘model 3’). Clustering is not well
explained by any of the models. Probably due to the low number of triangles in the
network and the normalization by degree it is very difficult to predict.

In sum, we find that including the firm position in technological space, in model 2
the size dimension and in model 3 the structural dimension, helps to explain the firm
position in network space. Introduction of the size dimension improves predictions
considerably. Further improvements by adding the structural dimension are relatively
small.

9Tests for the null hypothesis that correlation coefficients for two models are equal are based on
Williamson’s test statistic for dependent correlation coefficients as described in Steiger (1980,
p.246); all tests are one-sided.
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Table 3.4: Pearson’s correlation of observed and expected firm ego-
network statistics a

Model 1 Model 2 Model 3

Degree
rm

b 0.49*** 0.61*** 0.64***
Pm=m−1

c – 0.001 0.024

Closeness
rm 0.13 0.3*** 0.33***

Pm=m−1 – 0.003 0.223

Clustering
rm -0.07 -0.03 0.00

Pm=m−1 – 0.181 0.437

Triangles
rm 0.19** 0.31*** 0.32***

Pm=m−1 – 0.050 0.130

a Expectations are based on estimates of the random
firm effects model in a monte carlo approach with 1000
draws.

b rm denotes the correlation coefficient; *,**,*** signify
5%, 1% and 0.1% significance level of zero correlation.

c P [rm = rm−1] is rejection level of the null hypothesis
that correlation coefficients of models m and m − 1
are equal.
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Hypothesis 3, Global Network Structures

Hypothesis 3 proposes that network measure distributions depend on the firms’ loca-
tions in knowledge space. This hypothesis is supported but the effect is weak. The
firms’ technological characteristics, i.e. sizes of patent stocks and overlap in IPC
classes, improve the explanation of the observed network measure distributions only
slightly after the size of firms is taken into account.

Figure 3.4 compares observed with expected network measure distributions. The
performance of the three models can be judged by how they improve the random
model.10 The random model of alliance formation contains no firm information but
only an intercept and, therefore, the probability that an alliance forms is the same
for all firm-pairs. Interestingly, the random model generates a centralized network
with some clustering/triangles. However, centralization and clustering/triangles are
different to the observed network and introduction of firm-level information improves
the expected distributions.

For all four network measure distributions we find a big improvement from the
random model to model 1, where firm size is introduced. Introduction of the firm
position in knowledge space, with model 2 and model 3, yields minor improvements
relative to model 1.

The degree distribution is met best. The reason is that the regression estimates dyad
formation and this is highly related to degree, which is simply the sum over all dyads
formed by a firm. The other measures depend on more complex network structures
which have not been included in the estimation of coefficients. Closeness takes into
account the whole network, triangles the links between three firms and clustering the
ratio of triangles to density.

One important result is that network measures which capture the structure of the
network are better predicted simply by introduction of exogenous factors in the model
of pairwise alliance formation. If a model is capable of reproducing the observed
network structure without including references to it, in form of network statistics
either as regressors or as optimization objectives, then the network structure might
not be endogenously but exogenously determined.

3.5.2 Sensitivity Analysis

The results discussed above are based on the random effects logit, which assumes that
firm specific effects are not correlated with other covariates. Besides the random effects
logit, we estimated a fixed effects logit and compared the coefficients using a Hausman
test. The Hausman test shows that both models yield similar coefficient estimates,
which justifies focusing on the random effects model. For discussion and results of the
random versus fixed effects estimations see Appendix B.1.

10The random model is also known as Erdös-Rényi model.
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Figure 3.4: Observed and expected network measure distributions. Black circles are observations,
lines give the average over 1000 simulations, circles connected by vertical lines indicate 90%-
confidence intervals. KLIC compares probability masses according to the following cutpoints: degree
(1, 2, 3, 5), closeness (0, 0.258, 0.287, 0.317), clustering (0, 0.015, 0.041, 0.1, 0.167), triangles
(1, 2).
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A further issue might be the inclusion of firms with few patents. Patents signal the
technological position of firms. When a firm applies for only a few patents during the
period of observation, the signal might not give the full range of technological fields a
firm in fact covers. Then, the firm might be wrongly taken as being at the boundary
of technological space. The sensitivity of our results with respect to this issue is
tested on firms having more than five patents and thus signals more reliably their
position. This restriction makes little change to the coefficient estimates, whereas the
level of significance of overlap2 increases to 5%. This is due to a higher standard error
along with the reduced number of observations. Therefore, regression on the restricted
sample supports hypothesis 1. Also, tests of hypothesis 2 and hypothesis 3 give results
that are equal in magnitude and significance to the results already discussed above.

Finally, other distance measures than overlap have been applied. We repeated the
analysis for the uncentered correlation of firms technology vector, introduced by Jaffe
(1986, 1989), and the correlated revealed technological advantage (cRTA), introduced
by Soete (1987); Patel and Pavitt (1987). These measures have been developed for
different reasons. As its predecessor, revealed comparative advantage, revealed tech-
nological advantage (RTA) has been applied to compare the relative specialization of
countries. Jaffe (1986) aggregated all IPC classes into 49 technology fields to calculate
the uncentered correlation for firms of various sectors.

Whereas cRTA is highly significant when regressing joint technological agreements,
uncentered correlation is not. The estimation of pairwise alliance formation using
cRTA finds a strong preference for technological proximity which is significant but
does not confirm the hypothesized inverse-U-shape of the benefit-distance relation-
ship. The support for hypotheses two and three using cRTA is similar in strength to
those presented in the previous section. However, predictions of the firm’s ego-network
structure are different for the overlap and cRTA measure. Whereas the overlap measure
improves especially predictions of the firm’s degree centrality, cRTA improves predic-
tions of the firm’s number of triangles. One reason for this finding might be that the
two measures capture different aspects of the structure provided by the technological
space. Therefore, considering results on both distance measures further supports hy-
pothesis 2 that the position of firm’s in network space depends on their position in
technological space. However, the uncentered correlation measure does not improve
predictions; neither of ego-network structures nor of global network structures. Thus,
estimation with alternative distance measures partly supports the existence of a local
technological distance effect on the network. Also, the exact shape of the local effect
depends on the distance measure.11

11Appendix B.2 provides the results on alternative measures of technological distance as well as the
sample restriction on firms having a minimum number of patents.
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Chapter 3 Technological Effects on Network Formation

3.6 Discussion and Conclusion

In this chapter we investigate empirically how the technological position of firms affects
network formation. In the theoretical model of the previous chapter, we assumed
an inverse-U-shaped relationship between distance and benefit for two firms forming
an alliance (Cohen and Levinthal, 1990; Nooteboom et al., 2007). This assumption
is empirically confirmed for the overlap measure, which strengthens prior empirical
findings (Mowery et al., 1998).

However, the sensitivity analysis shows that different measures of technological dis-
tance yield different results. Using correlated revealed technological advantage, al-
liance formation is most likely for technologically close firms, as observed by Stuart
(1998). Uncentered correlation is not significant. From a technical point of view, the
different results arise because the information provided by the patent portfolio is dif-
ferently used and transformed. An interpretation, however, is that different measures
of technological distance capture different aspects of the technological relation of two
firms. It is likely that firms consider a great variety of technological aspects which in-
fluence their decision to form an alliance in different ways. The way we construct the
technological relatedness of two firms, i.e. the choice of the distance measure, is likely
to determine which aspects are emphasized and which are neglected in our measure-
ment. Therefore, one would be even surprised if different measures of technological
distance would yield the same results.

The theoretical model shows how certain benefit-distance specifications affect the
network structure and firm positions. The main insight of the theoretical analysis
is that if alliance formation is beneficial for technologically close (distant) firm-pairs,
then firms which are in the center (at the boundary) of the knowledge space are going
to be central in the research network.

The empirical analysis finds this effect in the pharmaceutical industry. We provide
statistics showing that firms in the center of technological space are also in the center
of the network. In the econometric analysis, however, the effect of the benefit-distance
relationship on the firms’ position in the research network becomes small once the size
information of the firms’ patent portfolio is taken into account. Thus, a description of
the technological position of the firm best includes a size dimension, here the size of the
patent portfolio, and a structural dimension, here the benefit-distance relationship.

Our finding on the importance of the size dimension of the firm’s technological
position supports previous findings of Ahuja (2000). He proxies the firm’s technological
capital by patent portfolio size and also finds it highly relevant for the firm’s number
of alliances; one aspect of the firm’s ego-network.

The fact that we find the benefit-distance effect to be relevant for the position of the
firm in the network yields management implications. In the short run, management
cannot freely envisage profitable network positions but is bounded by the firms techno-
logical endowment. This needs to be considered in the technology strategy of the firm.
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3.6 Discussion and Conclusion

Firms that focus on distant technological niches to reduce competitive pressure might
find themselves isolated in the research network as well. Considering opportunities
for cooperation besides unique technological qualification is crucial, because research
alliances are important sources of financing and internal technological development.

The empirical analysis on the network level assigns a weak role to the benefit-
distance relationship. It does not improve significantly the predictions based on firm
size effects. Whereas any of our models predicts the degree distributions very well, pre-
dictions of the other network measures might be improved. The next chapter studies
whether social network factors in a model of alliance formation are more informative.
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APPENDIX B

Econometric Analysis

B.1 Random and Fixed Effects

B.1.1 Models and Estimation

For the logit model with firm specific effects the conditional probability of alliance
formation is:

pij = Pr[yij = 1|xij , ai, aj ] =
exp(x′

ijβ + ai + aj)

1 + exp(x′
ijβ + ai + aj)

,

where pij is the probability that firm i and j form an alliance (i.e. yij = 1), xij is a
vector of dyadic-covariates, and ai and aj are firm specific effects. The model assumes
that firm specific effects are the only source of dependence and hence, given ai and aj ,
the dyadic observations are assumed to be independent.

Estimation of the fixed effects model is done with introduction of firm dummies (see
also Stuart, 1998). A necessary assumption for asymptotic theory to hold is that the
number of parameters is fixed whereas the number of observations goes to infinity.
This assumption is approximately given because the number of firm specific effects
increases with n (number of firms) whereas the number of observations increases with
n(n−1)/2 (number of firm-pairs). Therefore, estimation of the fixed firm effects model
is feasible with Maximum Likelihood.

However, direct estimation of firm dummies is inefficient. To estimate the more
efficient random effects model, the firm specific effects are integrated out. We do this
with a direct monte carlo simulator under the assumption that the ai are independent
and identical distributed (i.i.d.) according to a normal distribution N(0, σ2). Each
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draw yields a random realization of all firm specific effects and allows to calculate
the conditional probability for each observation. The average of S draws yields the
simulated probability, f̂(·), now conditional on known (simulated) firm specific effects
and the variance of the distribution, which as well needs to be optimized:

f̂(yij |xij , ais, ajs, σ) =
1

S

∑ exp(x′
ijβ + σais + σajs)

1 + exp(x′
ijβ + σais + σajs)

where the ais are i.i.d. draws from N(0, 1) and transformed to firm specific effects
by multiplication with the parameter σ. The simulated densities enter the maximum
simulated likelihood estimator, which maximizes:

lnL(β) =
∑

ln f̂ [yij |xij , ais, ajs, σ]

over all firm-pairs. As long as S, N → ∞ and
√

N/S → 0, the single simulations (one
draw) are unbiased and the usual assumptions for likelihood estimation apply. Then,
the estimator has a limit normal distribution

√
N(θ̂MSL − θ0)

d→ N [0, A−1(θ0)],

where

A(θ0) = −plim

[

N−1
∑ δ2 ln f(yij |xij , θ)

δθδθ

]

(see Cameron and Trivedi, 2005, p.393ff). The variance matrix is needed to derive
confidence intervals and can be estimated in various ways. We choose the simplest
estimator which is the BHHH estimate for the information matrix (see Cameron and
Trivedi, 2005, p.393ff).

The simulated likelihood is estimated with the iterative Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method. Here, as in other optimization procedures (e.g. Newton-
Raphson, BHHH) the direction of the steps towards the optimum is given by the
gradient in the current step and the size of the step is determined by the slope of the
likelihood-function. The difference is that whereas other approaches use information
for the slope only given by the current position (for Newton-Raphson the Hessian ma-
trix, for BHHH the information matrix), BFGS determines the slope of the likelihood
function by differences of the gradient caused by non-marginal position changes. This
gives speed advantages in non-simple environments (Train, 2003, p.201).

For optimization we use the optim function in the R-stats-package to which we
provide the simulated likelihood function:

lnL(β) =
2

N(N − 1)

N∑

i=1

N(N−1)/2
∑

j=i+1

ln
1

S

S∑

s=1

(
exp(·)

1 + exp(·)

)yij
(

1

1 + exp(·)

)1−yij

,
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where exp(·) = exp(x′
ijβ + σai + σaj). To ensure a positive variance σ, we optimize

log(σ) which results in a log-normal distribution for its standard error. Because there
is no principal difference between β and σ in the following, we combine them to θ
with indicators for firm specific effects also incorporated in xij . In order to increase
estimation speed, we derive the gradient of the MSL estimator.

δlnL(θ)

δθ
=

2

N(N − 1)

N∑

i=1

N(N−1)/2
∑

j=i+1






δ 1
S

∑S
s=1

(
exp(·)

1+exp(·)

)yij
(

1
1+exp(·)

)1−yij

/δβ

1
S

∑S
s=1

(
exp(·)

1+exp(·)

)yij
(

1
1+exp(·)

)1−yij






because
δ ln fij

δθ =
δfij/δθ

fij
and after some calculation

δlnL(θ)

δθ
=

2

N(N − 1)

N∑

i=1

N(N−1)/2
∑

j=i+1






1
S

∑S
s=1

((

yijxij
exp(·)

yij

(1+exp(·))2

)

−

(

(1 − yij)xij
exp(·)

1+yij

(1+exp(·))2

))

1
S

∑S
s=1

(
exp(·)

1+exp(·)

)yij
(

1
1+exp(·)

)1−yij






Comparison of fixed and random effects models is based on the simplified version
of the Hausman test. Under the assumption that the random effects estimate is fully
efficient, the covariances among the coefficients of the two models equal the variance
of the efficient model coefficients (Cameron and Trivedi, 2005, p.272). This allows for
separate estimation of both models, which simplifies the Hausman test.

B.1.2 Results

In the fixed effects model the firm dummy controls for the overall alliance activity of
the firm. If for a firm no alliance is observed, the dummy coefficient takes on minus
infinity and hence is not defined. Therefore, a comparison of fixed and random effects
can only be done on the restricted set of 166 firms, which have alliance partners in the
network.

Table B.1 gives the results of the random and fixed effects models as well as the
Hausman test, which compares their coefficients. Except for absDiffLnPC, for no
coefficient the null hypothesis of random and fixed effects estimation being equal can
be rejected. This justifies to base the analysis in the main text on the random effects
estimates.

The random effects model coefficients overlap and overlap2 are still significant when
estimated on the restricted firm sample. However, compared to the estimation on
the complete sample magnitude decreases (see table 3.3 in the main text). Figure
3.2 reveals the reason: many firms with no alliance partners are at the boundary
of the knowledge space; which supports hypothesis one. In the fixed effects model
overlap and overlap2 are not significant. Although the Hausman test confirms that
coefficients are similar to the random effects estimation, increasing standard errors
prevent significance. This effect can be largely attributed to the efficiency loss due to
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Table B.1: Hausman’s test (model 3) a

Random Effects Fixed Effects b H-Value Pr(> |H|) c

Intercept -7.24*** (0.429) – – –
Overlap 3.5*** (1.002) 2.28 (1.823) 0.64 0.42
Overlap2 -1.88* (1.047) -1.79 (1.729) 0.00 0.95
SumLnPC 0.06* (0.032) -0.01 (0.910) 0.00 0.94
AbsDiffLnPC 0.25*** (0.042) 0.14** (0.061) 5.91 0.02
SumLnEmpl 0.03 (0.024) -0.47 (1.015) 0.24 0.62
AbsDiffLnEmpl 0.21*** (0.031) 0.18*** (0.037) 1.92 0.17
σ2 0.49 (0.108) – – –

AIC 2964.66 3008.28 – –

a N=13695 firm-pair observations from crossing 166 firms. Standard errors in
brackets; *,**,*** signify 5%, 1% and 0.1% rejection levels of significance.

b Firm dummy estimates not displayed.
c Pr(> |H|) is significance level of rejection of equality of coefficients from chi-

square distributed H-value with 1 d.o.f.

firm dummy estimation. Therefore the fixed effects estimation does not necessarily
refuse hypothesis one. The heterophily of big and small firms in terms of patent
counts and employees is confirmed in both models. Although, the coefficient capturing
the difference in the number of patents changes significantly, it remains positive and
significant even in the fixed effects model. In total, the comparison of random and fixed
models justifies the focus on the random effects model and further supports hypothesis
one.

B.2 Sensitivity Analysis

The sensitivity analysis employs a restricted estimation set as well as alternative mea-
sures of technological proximity. As in the main analysis, we estimate i) the benefit-
distance effect on alliance formation of firm-pairs and then use these estimates to
predict ii) the ego-network of the firm and iii) global network structures. The esti-
mation results on the restricted estimation set, which includes only firms with more
than five patents, parallels results on the complete estimation set. The technological-
distance effect on pairwise alliance formation is significant for one alternative measure
of technological proximity (cRTA) but not for the other (uncCorr). Predictions of the
firm’s ego-network based on the significant distance measure cRTA improve predic-
tions based only on the size of the firm and the size of its patent portfolio (model 2).
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Results on global network structures are similar to the findings in the main analysis.

B.2.1 Restricted Estimation Set

The restricted estimation set includes only firms having more than 5 patents with
priority date between the years 1995 and 2000. We repeat the analysis using the
restricted estimation set because firms with few patents might not reliably signal their
technological specialization.

Alliance formation We find that estimation of the benefit-distance effect is robust to
the sample restriction. The inverse-U-shaped benefit distance effect remains significant
(see overlap and overlap2 in model 3, table B.2). Compared to the estimation results
on the full sample, presented in table 3.3 in the results section 3.5, coefficients change
only little with respect to standard errors. The increase of the significance level of the
square of overlap is mainly due to increasing standard error along with the reduction
of observations.

Table B.2: Random effects logit models of alliance formation (jointtech) - restricted sample a

Model 1 Model 2 Model 3

Intercept -7.01*** (0.375) -7.62*** (0.396) -8.15*** (0.481)
Overlap – – 3.63*** (1.175)
Overlap2 – – -2.24* (1.219)
SumLnPC – 0.18*** (0.029) 0.09** (0.035)
AbsDiffLnPC – 0.11** (0.040) 0.21*** (0.047)
AbsDiffLnEmpl 0.23*** (0.027) 0.19*** (0.030) 0.2*** (0.032)
SumLnEmpl 0.15*** (0.020) 0.06* (0.024) 0.06** (0.025)
σ2 b 0.41 (0.111) 0.35 (0.113) 0.33 (0.113)

AIC 2922.35 2874.24 2858.02

a N=16653 firm-pair observations from crossing 183 firms; standard errors in
brackets; *,**,*** signify 5%, 1% and 0.1% rejection levels of significance.

b The estimate of random effects variance follows a log-normal distribution
and are therefore strictly positive.

Ego-network structures Predictions of ego-network structures in the restricted sam-
ple are comparable to those on the unrestricted sample. In comparison to model 1
(includes firm size only), model 2 improves significantly predictions of all aspects of the
firm’s ego-network except clustering by adding patent portfolio size. Model 3 further
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adds the benefit-distance relationship and thereby improves all predictions; improve-
ment with respect to model 2 is significant for degree centrality at a 3.5% significance
level (see degree, row Pm=m−1, column ‘model 3’ in table B.3).1

Table B.3: Pearson’s correlation of observed and expected firm ego-
network statistics - restricted sample a

Model 1 Model 2 Model 3

Degree
rm

b 0.49*** 0.59*** 0.61***
Pm=m−1

c – 0.004 0.035

Closeness
rm 0.17* 0.23** 0.27***

Pm=m−1 – 0.076 0.161

Clustering
rm 0.1 0.15* 0.19**

Pm=m−1 – 0.174 0.105

Triangles
rm 0.18* 0.28*** 0.30***

Pm=m−1 – 0.018 0.165

a Expectations are based on estimates of the random
firm effects model in a monte carlo approach with
1000 draws.

b rm denotes the correlation coefficient; *,**,*** signify
5%, 1% and 0.1% significance level of zero correlation.

c P [rm = rm−1] is rejection level of the null hypothesis
that correlation coefficients of models m and m − 1
are equal.

Global network structures Results on the global network structure parallel the find-
ings presented in the main text. Compared to the random model with intercept only,
using the firm size information in model 1 improves expected distributions of network
measures. In particular, expected distributions of degree and closeness approach ob-
served distribution. Taking furthermore into account the technological position of the
firm, i.e. the size of the patent portfolio and the benefit-distance relationship, yields
minor improvements in prediction.

B.2.2 Alternative Measures of Technological Proximity

Alternative specifications We compare results on the three measures of technological
proximity ‘correlated revealed technological advantage’ (cRTA), ‘uncentered correla-

1Tests for the null hypothesis that correlation coefficients for two models are equal are based on
Williamson’s test statistic for dependent correlation coefficients as described in Steiger (1980,
p.246); all tests are one-sided.
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Figure B.1: Observed and expected network measure distributions - restricted sample. Black circles
are observations, lines give the average over 1000 simulations, circles connected by vertical lines
indicate 90%-confidence intervals. KLIC compares probability masses according to the following
cutpoints: degree (1, 2, 3, 5), closeness (0, 0.258, 0.287, 0.317), clustering (0, 0.015, 0.041, 0.1,
0.167), triangles (1, 2).

79



Appendix B Econometric Analysis

tion’, and ‘overlap’. The analysis in the main text presented results of the overlap
measure. All three measures are based on technological patent classes and we use the
international patent classification (IPC). Patents are ascribed to IPC classes by the
examiner in the patent office. The general idea is that a firm reveals its technological
specialization by patenting in certain technological patent classes. The three distance
measures use this information differently: overlap measures to what extent two firms
patent in the same patent classes (see section 3.4.2). cRTA measures the similarity
of specialization profiles, calculated with respect to the overall industry. Uncentered
correlation simply correlates two vectors where each vector contains the number of a
firm’s patents in each IPC class. For use of these measures in prior literature see dis-
cussion when overlap is introduced, section 3.4.2, and the sensitivity analysis, section
3.5.2. The measures are calculated as follows:

overlapij =
|IPCi

⋂
IPCj |

|IPCi
⋃

IPCj |
,

where IPCi is the set of IPC, in which firm i had at least one patent applications and
|| denotes the size of the set. Correlated revealed technological advantage (cRTA) is
calculated in several steps (see e.g. Cantwell and Colombo, 2000). The revealed tech-
nological advantage (RTAik) of firm i in technological class k is firm i’s specialization
in class k relative to the average specialization in the industry, i.e.

RTAik =
Pik/

∑

k Pik
∑

j Pjk/
∑

jk Pjk

where Pik is the number of patents firm i has in class k. This is done for each techno-
logical class to derive the RTA vector of firm i, i.e. (RTAi1, . . . , RTAik, . . . , RTAiK).
Finally, cRTA is Pearson’s correlation coefficient of the RTA vectors of two firms. The
uncentered correlation of the IPC vectors of two firms is simply,

uncCorr ij =

∑K
k=1 PikPjk

(
∑K

k=1 P 2
ik)

1/2(
∑K

k=1 P 2
jk)

1/2

where Pik is the number of patents firm i has in patent class k (see e.g. Jaffe, 1986).
Uncentered correlation is different to Pearson’s correlation in that vectors are not
centered for calculating the angle of the vectors and, therefore, uncentered correlation
remains between 0 (distant) and 1 (close) for vectors with only positive entries.

Alliance formation Table B.4 compares the estimation results for alternative speci-
fications. Estimations based on the distance measure cRTA suggests that firms with
similar specialization profiles attract each other since proximity measured by cRTA
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is positive and significant (see row ‘proximity’, column ‘cRTA’). The square of cRTA
however is not significant (proximity2, third column). Thus, the cRTA model finds a
positive effect of technological proximity on alliance formation but does not confirm
the hypothesized curvilinear shape of the benefit-distance function. The measure unc-
Corr does not find a significant effect of technological distance on alliance formation
(fourth column). In sum, we find that not all distance measures attest to the effect of
technological distance on alliance formation. The measures which do find a benefit-
distance effect suggest that alliance formation is beneficial especially for firm-pairs
which are close in technological space.

Table B.4: Random effects logit models of alliance formation (jointtech) -
alternative proximity measures a

Model 2 Overlap Corr. RTA UncCorr.

Intercept -7.78*** -8.37*** -7.95*** -8.03***
(0.364) (0.422) (0.375) (0.425)

Proximity – 4.12*** 1.29*** 0.91
(0.987) (0.370) (0.739)

Proximity2 – -2.69** -0.37 0.08
(1.032) (0.63) (0.706)

SumLnPC 0.21*** 0.11*** 0.2*** 0.16***
(0.026) (0.032) (0.026) (0.028)

AbsDiffLnPC 0.09** 0.21*** 0.1** 0.13***
(0.033) (0.042) (0.034) (0.035)

AbsDiffLnEmpl 0.2*** 0.21*** 0.21*** 0.2***
(0.029) (0.03) (0.029) (0.029)

SumLnEmpl 0.04* 0.05* 0.05* 0.05*
(0.023) (0.024) (0.024) (0.024)

σ2 b 0.35 0.38 0.35 0.44
(0.097) (0.099) (0.099) (0.101)

AIC 3208.87 3186.22 3186.29 3188.7

a N=20910 firm-pair observations from crossing 205 firms; stan-
dard errors in brackets; *,**,*** signify 5%, 1% and 0.1%
rejection levels of significance.

b The estimate of random effects variance follows a log-normal
distribution and are therefore strictly positive.

Ego-network structures Table B.5 gives the correlation coefficients of observed and
expected network measure distributions based on the estimates in table B.4. Over-
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lap and cRTA improve predictions of model 2 which includes only size information
(firm size and patent portfolio size). However, each improves significantly another
aspect of the firm’s ego-network. Whereas overlap improves significantly predictions
of degree, cRTA improves triangles significantly. Uncentered correlation (uncCorr),
with insignificant coefficients in the estimation, predicts closeness worse and triangles
better than the benchmark, model 2. In sum, we find that distance measures which
have been estimated to be significant improve predictions on ego-network structures
relative to models which include only information on the size of the firm and the size
of the patent portfolio.2

Table B.5: Pearson’s correlation of observed and expected firm ego-network character-
istics - alternative proximity measures a

Model 2 Overlap Corr. RTA UncCorr.

Degree
rm

b 0.62*** 0.64*** 0.62*** 0.62***
Pm=model2

c – 0.024 0.170 0.148

Closeness
rm 0.29*** 0.32*** 0.30*** 0.26***

Pm=model2 – 0.222 0.369 1.000

Clustering
rm -0.03 0.00 -0.07 0.03

Pm=model2 – 0.436 0.106 0.084

Triangles
rm 0.30*** 0.33*** 0.37*** 0.34***

Pm=model2 – 0.130 0.001 0.110

a Expectations are based on estimates of the random firm effects model
in a monte carlo approach with 1000 draws.

b rm denotes the correlation coefficient; *,**,*** signify 5%, 1% and
0.1% significance level of zero correlation.

c P [rm = rm−1] is rejection level of the null hypothesis that correlation
coefficients of models m and m − 1 are equal.

2Tests for the null hypothesis that correlation coefficients for two models are equal are based on
Williamson’s test statistic for dependent correlation coefficients as described in Steiger (1980,
p.246); all tests are one-sided.
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Global network structures Figure B.2 visualizes expected and observed network mea-
sure distributions for alternative specifications. Predictive power of all three distance
measures is obviously very similar. Differences in the KLIC are low and attributable
to the discretization of expected distributions.
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Figure B.2: Observed and expected network measure distributions - restricted sample. Black circles
are observations, lines give the average over 1000 simulations, circles connected by vertical lines
indicate 90%-confidence intervals. KLIC compares probability masses according to the following
cutpoints: degree (1, 2, 3, 5), closeness (0, 0.258, 0.287, 0.317), clustering (0, 0.015, 0.041, 0.1,
0.167), triangles (1, 2).
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CHAPTER 4

Technological and Social Effects on Network Formation

4.1 Introduction

This chapter compares two determinants of R&D networks: the technological space
and the social network of prior alliances. The previous chapter confirms that the firms’
technological position affects the pairwise formation of research alliances which in
turn influences higher-level network structures. The social network perspective argues
for the influence of the network structure on pairwise alliance formation. Whereas
technological factors induce alliance formation, social factors enable and guide alliance
formation. Both are important. How they relate to each other is an intriguing question
which we tackle in this chapter.

For the empirical analysis, we use the same sample of the pharmaceutical industry
and follow the same analysis strategy as in the previous chapter. Social network
factors are estimated on the prior network of alliances. First, we estimate technological
and social network factors on pairwise alliance formation. These estimates are then
used to make predictions of both the firms’ ego-networks and the global network
structure. Technological and social network explanations yield similar results. Both
are significant for dyad formation and relevant predictors of firms’ ego-networks but do
not predict global network structures very well. Models of pairwise alliance formation
which include social network factors tend to better fit network structures. However,
the sensitivity analysis shows that social network factors are susceptible of spurious
path dependency. Therefore, explanation of research alliances and networks is better
sought in technological factors.

The chapter is structured as follows. Section 2 gives a background on the litera-
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ture and develops the research questions. Section 3 provides a statistical analysis on
how the network of prior alliances relates to the current research network. Section 4
presents the results of the separate and joint estimation of technological and social
network effects. Section 5 discusses the results, addressing the potential relevance of
measurement errors and network endogeneity. The final section concludes.

4.2 Background Literature and Research Questions

4.2.1 Social Network Effects

The discussion in the previous chapter highlights the need to access complementary
technological resources as the main motivation for joint research. The alliance partner
needs to provide complementary resources and needs to have a self-interest in the part-
nership. However, finding the right partner might prove difficult and, given the right
partner has been found, more obstacles need to be overcome. Two firms are separate
legal entities with diverging interests. Thus, they might encounter appropriability
problems (e.g. leakage of knowledge) and moral hazards (e.g. opportunistic behavior)
(Williamson, 1991). Because during an alliance unforeseen, non-contractible events
arise, partnering firms need to trust each other (Gulati, 1995a). In addition, part-
nering firms face organizational problems. They need to decompose tasks, coordinate
inter-firm communication and adapt to fit their processes together (Doz, 1996; Gulati
and Singh, 1998). Inefficient coordination may become costly and time consuming. In
the worst case, lack of appropriate coordination makes alliances fail (Doz, 1996).

The important insight from economic sociology (Burt, 2001; Coleman, 1986; Gra-
novetter, 1985) and organizational learning (Cohen and Levinthal, 1990; Kogut and
Zander, 1992) is that alliances take place in a social and historical context (Hemphill
and Vonortas, 2003). This guides partner search, mitigates appropriability problems,
moral hazard as well as the coordination problem.

Firms are directly and indirectly connected through business and personal relation-
ships. This creates a social network in which firms are embedded. The firm’s social
network performs several important functions (Granovetter, 1985). It provides in-
formation, allows for inter-organizational learning and generates norms of behavior.
Granovetter (1985) argues that the structure of the social network is influential be-
cause social mechanisms act locally through actual relationships. For example access
to personal information is not the same for all firms but is provided to firms via their
relationship to specific other firms. Furthermore, social mechanisms are moderated
by local configurations of the social network (Coleman, 1988). For example com-
mon norms of behavior are enforced through coordinated action of densely connected
agents. Therefore, the social network structure and the position a firm takes in the
network determine the firm’s constraints and opportunities for economic action.

The effect of social structure on firm behavior tends to be couched in terms of three
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types of embeddedness: relational, structural and positional embeddedness (Gulati
and Gargiulo, 1999).

Relational embeddedness addresses the direct relationship of two specific firms.
Through ongoing interactions, firms learn about conduct, capabilities and needs of
the partnering firm (Gulati, 1995a). This is valuable information for future partner
search and raises the awareness for collaboration opportunities with that particular
firm. In addition, social relationships develop, which creates a common understanding
and norms of behavior. Firms build routines for interaction and shared codes of un-
derstanding. This decreases coordination costs and increases the probability of success
(Powell et al., 1996; Ring and Ven, 1994). Furthermore, anticipation of alliances in
the future enforces good behavior (Gulati, 1995a). All points mentioned, i.e. knowl-
edge about the partner, social relationships, common understanding and anticipation
of future alliances, create trust among the partners, which is a crucial ingredient for
collaboration.1

Structural embeddedness takes into account the local network structure in which a
firm is embedded. The local network results from all partners of the focal firm and all
their relationships. First consider only relationships among the partners of the focal
firm. When the partners are closely connected among each other, the focal firm and its
partners form a cohesive group. Coleman (1988) argues that closed social structures
facilitate joint action of individuals to make norms effective. Imagine our focal firm
behaves opportunistically with one partner. Other partners will be informed about
this misbehavior through their contacts in the group with the effect that the (local)
reputation of the focal firm is damaged. In this way, firms in cohesive groups can
trust each other because good behavior is enforced. For the formation of alliances the
effect of referrals has been found to be important too. Two firms having no direct
relationship might be referred to each other by a common partner. Because a common
partner has personal experience with both firms, she knows about their conduct, needs
and capabilities (Gulati and Gargiulo, 1999).

Positional embeddedness describes the position of the firm within the overall net-
work. The position may be described in terms of its centrality in the network. Since
the network structure directs information, firms in more central positions have access
to more timely and more accurate information (Owen-Smith and Powell, 2004). Thus,
they gain better information about more potential partners and are able to seize op-
portunities for alliances (Gulati and Gargiulo, 1999). In addition, central firms having
many alliances are more visible in the industry. Successful alliances in the past build
a reputation as a reliable and capable partner (Gulati and Gargiulo, 1999). Finally,
alliances with central firms may also be sought because they enhance the legitimacy
of the partnering firm (Oliver, 1990).

1Trust resulting from past interaction is also called knowledge-based trust, trust resulting from future
expectations deterrence-based trust (Gulati and Singh, 1998).
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We summarize the discussion of social network effects. Empirical studies have found
that alliance formation is moderated by the structure of the prior network of alliances.
We may conveniently distinguish three kinds of social embeddedness: relational, struc-
tural and positional embeddedness. Two firms are relationally embedded, when they
had a relationship in the past. The effect of prior ties on alliance formation has been
found to be significant in virtually all studies. Structural embeddedness takes into ac-
count the local network of a focal firm. When two firms have many common partners,
they are highly structurally embedded. Many but not all studies found that having
common partners increases the probability for two firms to form an alliance. One
reason is the referrals from common third parties. Positional embeddedness describes
the role of a firm in the overall network. This is most commonly done by measures of
centrality (degree and eigenvector) which, again, are found to be significant in most
studies.

4.2.2 Technological and Social Network Effects

This section joins prior empirical literature on technological and social network ef-
fects to develop the research questions. The discussion of prior literature is organized
according to the three levels which we follow in our empirical analysis. The levels
are i) alliance formation between firm-pairs, ii) ego-network structures, and iii) global
network structure.

Alliance formation Empirical research on how social embeddedness affects pairwise
alliance formation is extant. Relational, structural and positional embeddedness has
been found to significantly affect alliance formation in various industries.2 The typical
strategy in this literature is to introduce social network statistics in a binary choice
model, such as logit or probit, where the outcome is whether or not a specific firm-pair
forms an alliance. All studies find a strong positive effect of relational embeddedness
in prior ties. Structural embeddedness typically is introduced via the number of com-
mon partners of a firm-pair given they do not have a direct relationship (Gulati, 1995b;
Gulati and Gargiulo, 1999; Rosenkopf and Padula, 2008; Hallen, 2008). This measure
is designed to catch the effect of referrals. It has been found to be positive signifi-
cant in all studies, except Rosenkopf and Padula (2008) who investigate the mobile
communication industry. Positional embeddedness often is indicated by the agents’
centrality in the network. Specifically eigenvector centrality (Gulati and Gargiulo,

2(Gulati, 1995b; Gulati and Gargiulo, 1999) investigate the new materials, industrial automation
and automotive sectors in a (panel data); (Powell et al., 2005) the alliance network of bio-
pharmaceutical firms (panel data); (Rosenkopf and Padula, 2008) the mobile communications
industry (panel data); (Chung et al., 2000) underwriting syndicates in the banking sector (cross-
section analysis) and (Hallen, 2008) corporate investments on start-ups in various industries (cross-
section analysis). None of these studies focuses on research alliances.
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1999; Rosenkopf and Padula, 2008) and degree centrality (Gulati, 1995b; Powell et al.,
2005) have been used and found to be significant.

Whereas the empirical literature on alliance formation in general focuses on social
network effects, the empirical literature which considers explicitly the formation of
research alliances focuses on technological explanations (see also the discussion in the
previous chapter, section 3.2). However, the arguments put forward by knowledge
economics and social structure thinking are complementary to each other. Access to
complementary knowledge induces, whereas social embeddedness enables the forma-
tion of research alliances (Eisenhardt and Schoonhoven, 1996). Yet, no empirical work
on pairwise alliance formation discussed above focuses on the relationship of techno-
logical and social network effects. Technological factors often are only controlled for
by rough proxies. For example Gulati (1995b) controls for interdependence by (joint)
industry affiliation of the firms. The relative and joint relevance of technological and
social factors on the decision to form an alliance is therefore an open question.

This chapter investigates the intriguing question whether one effect dominates the
other or can be a statistical proxy for the other. For strategic management this is
of high interest. Empirical findings on the strong structuring effect of past alliance
networks lead to the perception that alliance formation is highly path dependent.
Recently, active networking has been emphasized in order to break out of the high
path dependency of network formation and to achieve outperforming network posi-
tions (Gilsing et al., 2007; Ozcan and Eisenhardt, 2009). A different course of action
would be suggested if technological characteristics turn out to be the main determining
factors.

Another question tackled in this chapter is to what extent social embeddedness mod-
erates technological effects. The concept of absorptive capacity states that for joint
knowledge production, firms need to be cognitively close. This leads to the proposition
that two firms being close in technological space are likely to form a research alliance.
However, absorptive capacity is broader in its meaning. It also implies that a shared
language and adapted organizational processes are necessary (Cohen and Levinthal,
1990). The literature on organizational learning argues that firms might adapt their
languages and routines in prior alliances and interaction within a cohesive group of
firms (for example Gulati, 1995a; Kogut and Zander, 1992). Therefore, it might well
be that social embeddedness alleviates the necessity of technological proximity. This
would imply that two firms which face low organizational risk might be able to bear
higher technological risks by combining more distant technological knowledge. A sim-
ilar implication has been investigated by Gilsing et al. (2008). They found a trade-off
between network centrality and technological distance for explorative technological
search by firms in the chemicals, automotive and pharmaceutical sectors. Because
there might also be a trade-off between technological and social proximity in the deci-
sion with whom to partner, we introduce interaction effects of social and technological
distance in the regression.
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Ego-network structures Following the analysis strategy in the last chapter, we are
not only interested in what drives pairwise formation of research alliances but, in
addition, how the pairwise alliance formation process influences higher-level network
structures. As before we investigate the implications of pairwise alliance formation
both on the firm’s ego-network structure and on the global structure of the research
network.

Prior analyses of the effect of social embeddedness on firm alliance behavior typi-
cally remains at the firm level. One prevailing line of research is to consider the firm’s
embeddedness in the social network as a source of value creation as it provides op-
portunities for interaction among firms. In this view, social embeddedness determines
the social capital of the firm. In general, social capital is assumed to be higher for
firms that are more embedded in the social network. Social capital has been measured
by degree centrality (Ahuja, 2000) but also via the contribution of the firms’ (cohe-
sive) group to the overall structure of the alliance network (Shan et al., 1994; Walker
et al., 1997).3 In either case, social capital has been found to increase the number
of commercial ties of biotechnology firms (Shan et al., 1994), research joint ventures
of chemical companies (Ahuja, 2000) and any type of alliance for biotechnology firms
(Powell et al., 1996).

The study of Ahuja (2000) is especially relevant to us as he combines the symbiotic
interdependency argument of the resource-based view with the social capital argu-
ment of structural sociology. He subdivides the firm’s resources into technological,
commercial and social capital. According to the author, a firm is attractive to poten-
tial alliance partners if it is able to offer either technological or commercial resources
needed by the partner. Thus, mutual access to complementary resources provide the
inducement to form an alliance. The third type of capital, social capital, refers to
embeddedness in the social network (Coleman, 1988). Invoking the social network
arguments discussed above, Ahuja proposes that firms which are highly (positionally)
embedded in the network have higher incentives and more opportunities to form al-
liances. He analyzes a longitudinal sample of agreements among the 100 largest firms
in the chemicals industry over a ten year period. Agreements include research joint
ventures and research alliances. Technological capital is measured as the number of
patents applied for within the last four years, commercial capital is proxied by the
assets of the firm, and social capital is measured as the firm’s number of past tech-
nological agreements. The number of the firm’s past commercial alliances is used as
a control. A poisson panel model estimates the effect of one-year-lagged variables on
the number of research agreements formed by the firm in a given year. The estimation
results confirm that each type of capital by itself increases the propensity of a firm to
engage in technological agreements. A comparison of the effects is accomplished by
estimating the effect of a one standard deviation increase in each of the three forms

3This measure mixes structural embeddedness and positional embeddedness.
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of capital on the ‘average’ firm. The estimates imply that increasing technological,
commercial and social capital by one standard deviation increases linkage formation
by 20%, 50% and 10% respectively. In addition, the author finds a moderating effect
between technical and commercial capital. If both is high, alliance rate decreases. The
explanation put forward is the lower necessity to access either kind of complementary
resource.

Taking the same theoretical stand-point, one contribution of this chapter is to
broaden the perspective. Ahuja (2000) highlights the relevance of social and tech-
nological factors but includes only the size dimension, i.e. the number of alliances and
patents respectively. Our study is broader in that we include also the structural dimen-
sion, i.e. the local structure of the firm’s ego-network and the technological-distance
relationship in technological space.

Global network structures Although many empirical studies investigate how the
social network structure influences firm-pair alliance formation, little is known on their
relevance in the network formation process. Because relatively few potential alliances
actually realize, estimated errors are considerable and a large part of alliance formation
between firm-pairs remains unexplained. Therefore findings on the significance of
social network effects on alliance formation do not give us a clear perception of the
extent to which the past network determines the future network. Thus, one might be
tempted to state that actually no empirical study exists which explicitly investigates
social network effects on the network level.

Cowan et al. (2007) model theoretically the formation of a network formed by joint
knowledge production among heterogeneous agents. The partnering decision of firms
depends on the complementarity of their knowledge endowments but also on their rela-
tional and structural embeddedness in the network of prior alliances. When two firms
already had a successful alliance learning effects lead to higher probabilities of success
in future alliances. Furthermore, referrals affect positively the mutual perception of
two formerly unrelated firms. The model has been found to produce realistic networks,
i.e. networks with the small world properties of short average distance and high clus-
tering. However, a more recent theoretical model shows that real-world like networks
might also be created solely through technological effects (Cowan and Jonard, 2009).
To what extent social and technological factors determine the global network structure
is an empirical question which we tackle in the following.

4.3 Empirical Methods

The empirical analysis of this chapter builds on the previous chapter. The sample,
measures and estimation strategy are as in the previous chapter and only extended to
include social network variables as independent variables. In order to avoid duplication
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of information, in the following only the most relevant information is briefly given and
the reader is referred to the previous chapter for detailed explanations.

4.3.1 Sample

As in the previous chapter we work on a sample of the 250 most active firms in the
pharmaceutical industry. The phenomenon which we aim to explain is the research
network among the sampled firms which has been formed between the years 2001
and 2006 (inclusive). The technological position of firms is measured with patent
data. The patent data are obtained from a period previous to the time period of the
research network, i.e. between the years 1995 and 2000. To control for size effects, we
also collected the firms’ number of employees for the time shortly before the research
network actually formed; mostly for the year 2001.

The sample is extended by the network of prior alliances. The prior network is
the collection of all (bio-)pharmaceutical alliances between 1995 and 2000 (inclusive)
between all actors in the industry. It is built using all types of alliances because the
arguments for social network effects are not specific to any particular kind of inter-firm
relationship. Furthermore it contains all actors of the industry in order to capture the
embeddedness of the sampled firms in the overall network of alliances. Thus, in the
analysis we use snapshots of two networks both formed within six years. The prior
network, built between 1995 and 2000 containing all types of alliances between all
actors, yields social network measures which are used to explain the research network
of the sampled firms, built between 2001 and 2006. Both networks are constructed
from data of the same data base, i.e. the CGCP data base.

The sample consists of 250 firms. 38 firms have zero or missing patent assignments,
14 firms have missing employee information and 45 firms have neither patent nor
employee information assigned. In total, for 205 firms, which is 82% of the sample,
patenting and employee information is given. This sample has been used for the
analysis in the previous chapter.

For 68 firms out of the 205 focal firms, no alliance in the prior network is registered
in the database. From the set of firms without registered alliances, we chose a random
control sample of ten firms and searched for public agreements on the firms’ websites,
their public releases, and other alliance databases. For eight out of ten firms, we found
alliances for the respective time period. However, the number of alliances per firm in
the control sample is small (mostly one, up to four alliances). Furthermore, the group
of 68 firms without prior alliance activity has low centrality in the global network
formed in the years 2001 and 2006. The fact that no sudden change in the alliance
activity occurred implies that missing alliance data does not necessarily create a large
bias. Nevertheless, the robustness analysis (Appendix C.4) addresses this issue and
presents additional results on a restricted sample which excludes firms without prior
alliances. In the following we present data and results of the full working set, with all
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205 focal firms included; the same working set as in the previous chapter.

4.3.2 Measures

The dependent variable at the firm-pair level is ‘joint technological agreement’ (joint-
tech), which indicates whether or not a firm-pair had at least one research alliance
between the years 2001 and 2006. In addition, we aim to explain the ego-network of
the firm and the global structure of the research network which formed in the years
2001 to 2006. Both are described with the four network measures degree centrality,
closeness centrality, clustering coefficient and number of triangles (in short degree,
closeness, clustering, and triangles).4

Independent variables include those used in the previous chapter (see chapter 3,
section 3.4.2 for explanation or table 4.1 for a summary). Notably information on the
technological position of the firm as measured by its patenting between the years 1995
and 2000. This includes the technological proximity between the firm-pair, measured
by overlap and the information on patent portfolio sizes, captured by the sum as well
as the absolute difference of the log-transformed patent counts (sumLnPC, absDif-
fLnPC ). In order to control for the size of the firm we construct similarly the sum and
the absolute difference of the log-transformed number of employees of the firm-pair
(sumLnEmployee, absDiffLnEmployee).

The independent variables introduced in this chapter aim to capture the structuring
effect of the prior network of alliances, formed in the years 1995 to 2000. Following
the seminal study of Gulati and Gargiulo (1999), we construct one network measure
for each type of embeddedness from the network of prior alliances. Two firms are
relationally embedded when they had an alliance in the prior network. This is indicated
by prior ties. Structural embeddedness takes into account the local network of the
focal firms. Two firms which have many common partners are highly structurally
embedded, which we indicate by the number of common partners. In order to capture
the effect from referrals common partners is set to zero if the firm-pair has prior ties
(see also Gulati and Gargiulo, 1999, p.1463). Positional embeddedness refers to the
position of the focal firm in the global network. As Ahuja (2000), we indicate positional
embeddedness with the firm’s degree centrality, i.e. the number of alliances in the prior
network. In order to introduce this information as independent variable in a model
of firm-pair alliance formation, we need to construct a relational variable out of the
degree of two firms. Similar to the patent counts and firm size, the degree information

4The network measures are assumed to be relevant for various reasons, depending on the theoretical
framework. For example a high degree centrality, i.e. many alliances, might give a firm high
reputation in the industry. High closeness centrality, i.e. short network paths to all other firms
in the network, might give a firm fast access to information. High clustering and many triangles
might enforce trust by enabling joint action. Please see the discussions when the network measures
are introduced in chapter 2, section 2.4
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is captured by taking the sum and the absolute difference of the log-transformed degree
of firm i and j (sumLnDegree, absDiffLnDegree). These and all other variables used
in this study are summarized in table 4.1.

4.3.3 Statistical Analysis

As a first step of the data analysis, this section compares the position of the 205 focal
firms in the prior network of alliances with their positions in the current network of
alliances. Descriptive statistics show that these firms kept their network positions over
time. This implies that the network has some inertia and, therefore, path dependency
due to social network effects qualifies as a possible explanation. In particular it is
shown that the three types of embeddedness, i.e. positional, structural, and relational
embeddedness, potentially cause structural stability of the alliance network.

Prior and Current Network The 205 focal firms linked to each other in 339 dyadic
research alliances between the years 2001 and 2006. This is the research network
which we aim to explain. The research network of the focal firms is part of the global
pharmaceutical network. The global network includes around 5000 firms which are
connected by 7000 alliances for diverse purposes. The main component of the global
pharmaceutical network, i.e. the largest connected subgraph, connects over 80% of
the firms.

As the prior network of alliances we denote the global pharmaceutical network which
has been formed between the years 1995 and 2000. The structure of this network might
partly explain the research network which formed in the following time period. The
prior network of alliances consists of 1404 firms, linked by 2256 alliances. The majority
of firms (85%) is connected within the main component.

Positional embeddedness Table 4.2 compares the average position of sampled firms
to the average position of all firms in the prior and current global network. We
sampled the 250 firms which have most alliances in the current global pharmaceutical
network. Naturally, they are central actors in the current global network. Sampled
firms have much higher degree than the average and higher closeness (see table 4.2,
column ‘current global network’). Their network position in the core of the network
makes them participate in many triangles. This also yields a high clustering coefficient
compared to the average firm in the network. A social network explanation of the
firm’s central position in the current global network would be that these firms occupied
favorable positions in the prior network giving them many opportunities for alliance
formation. Indeed, our sampled firms took central positions already in the prior global
network (1995-2000) (see table 4.2, column ‘prior global network’). Their average
number of alliances is about twice the population average. Also in terms of closeness
centrality, sampled firms are (slightly) more central in the prior network.
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Table 4.1: Variables of alliance and network formation a

Variable Label Unit of
Observation

Description

Dependent Variables (2001-2006)

Jointtech Dyad Indicates a joint technological agreement between a firm-pair
Degree centrality Firm/Networkb The firm’s number of alliances
Closeness centrality Firm/Network One divided by the firm’s average path length to all other firms
Clustering coefficient Firm/Network How close the firm’s neighborhood is to being fully connected
Number of triangles Firm/Network The number of alliances among neighbors of the firm

Independent Variables (1995-2000)

Prior ties Dyad Indicates whether a firm-pair had a prior alliances
Common partners Dyad Number of partners common to both firms, zero if firm-pair has prior ties
AbsDiffLnDeg Dyad Absolute difference of the firms’ log-transformed degree
SumLnDeg Dyad Sum of the firms’ log-transformed degree
Overlap Dyad Number of IPC classes covered jointly by both firms divided by

the number of IPC classes covered by at least one firm
Overlap2 Dyad The square of overlap
AbsDiffLnPC Dyad Absolute difference of the firms’ log-transformed number of patents
SumLnPC Dyad Sum of the firms’ log-transformed number of patents
AbsDiffLnEmployees Dyad Absolute difference of the firms’ log-transformed number of employees
SumLnEmployees Dyad Sum of the firms’ log-transformed number of employees

a Prior ties, common partners, absDiffLnDeg, and sumLnDeg are introduced in this chapter, all other variables are
introduced in the previous chapter, section 3.4.2.

b The network structure is described by the distribution of network measures over sampled firms.
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Table 4.2: Network positions in the prior and current network

Prior Global Network
(1995-2000)

Current Global Network
(2001-2006)

Population Sampled Firms Population Sampled Firms
Degree 3.2 6.5 2.9 20.5
Closeness 0.23 0.26 0.20 0.25
Clustering 0.020 0.025 0.008 0.026
Triangles 0.4 1.4 0.28 5.3

In total, the 205 focal firms have been central in the prior network (1995-2000) and,
when the overall alliance activity tripled, these firms became even more central in the
current network (2001-2006). The fact that the focal firms strengthened their central
network position relative to the rest of the population might indicate the existence of
the social network effect termed accumulated advantage (also called the rich-get-richer
effect).5 Accumulated advantage fosters network centralization because it means that
firms with more links have a higher propensity to attract further links during network
growth. In the context of alliance networks explanations for the existence of such an
effect have been for example reputation and signaling effects. The fact that a firm has
many alliances signals that this firm is a valuable and trustable partner. Firms with
many alliances enjoy high reputation in the industry and connecting to such firms also
increases the reputation of the alliance partner.

Comparison of the focal firms’ positions relative to each other further supports the
existence of an accumulated advantage effect. Pearson’s correlation coefficients of the
sample firm’s degree in the prior global network (1995-2000) is highly correlated with
their degree in the current research network (2001-2006), with a correlation coefficient
of 0.62, below the 1% significance level. Also closeness centrality measured on the two
networks obtains a high correlation coefficient of 0.4 below the 1% significance level.6

This means that the ranking among the focal firms with respect to their centrality
remained stable. In sum, our observations on positional embeddedness, i.e. degree and
closeness centrality, supports the network path dependency as well as the accumulated

5The accumulated advantage effect became famous for a theoretical model of network formation. In
the theoretical model of Barabási and Albert (1999), each time step a new node is added to the
network and connects to nodes already in the network. The probability to connect to a certain node
is proportional to the number of links of the node in the network. The model attracted considerable
attention because it has been shown that this simple process is able to produce degree distributions
according to the power law; a feature of the global network structure shared by many different
kinds of real-world networks.

6Correlation between the prior global network (1995-2000) and the current global network (2001-
2006) are similarly high and of same significance for degree and closeness.
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advantage arguments.

Structural Embeddedness Whether structural embeddedness may affect future net-
work formation is reflected in the structure of the firm’s ego-networks. The average
clustering coefficient in the global current network is much higher than would be ex-
pected in a random network of the same size and density (0.01 vs. 0.0004). High
clustering in the network might be caused by referrals. A referral effect is when two
firms have no direct prior relationship but form an alliance after having been intro-
duced by a common alliance partner. Each referral closes a triangle. Because sampled
firms are involved in an increasing number of triangles (see table 4.2, row ‘triangles’),
they might well be influenced by referrals, captured by the variable common partners
in the econometric analysis.

Clustering also provides some evidence on network inertia. Clustering of the sampled
firms in the prior global network (1995-2000) and in the current research network
(2001-2006) are considerably correlated with a Pearson’s correlation coefficients of
0.14 being below the 5% level of significance. For triangles, we obtain a correlation
coefficient of 0.31 below the 1% level of significance. This suggests that the structure
of the focal firms’ ego-networks remained rather stable and firms stayed over time in
more or less densely connected regions of the network.7

Relational Embeddedness Finally, relational embeddedness, measured by prior ties,
potentially explains alliance formation. Table 4.3 shows that prior ties, measured on
the prior network, is significantly correlated with research alliance formation (joint-
tech). Theoretical explanations for the positive effect of prior collaborations are among
others organizational adaptation and building of trust.

Summary and Remark To summarize, descriptive statistics suggest that positional,
structural and relational embeddedness may affect network formation. Furthermore,
firms kept their relative network position in a growing and centralizing network. This
regularity gives rise to the social network thesis that the network of alliances is self-
reproducing due to social network effects.

However, an alternative explanation is that stable exogenous factors cause the sta-
bility of network configurations. If firms form alliances due to their relative properties,
such as complementary knowledge, then persistence of the firms’ properties leads to

7It might be noticed that clustering among the focal firms in the current research network is low;
similar to expected clustering of a random graph of same size and density (0.02 vs. 0.013). The
reason might be in the sampling procedure. Because firms have been sampled according to their
degree centrality, local network structures are not respected and, therefore, the ego-network of the
focal firms is not complete in the current research network. Nevertheless, when connections among
focal firms result from third party referrals this is going to be reflected in the estimation because
the global prior pharmaceutical network is used to calculated the number of common partners.
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stable network structures. In principle all resources defined within the resource based
view may qualify; they are stable, slowly accumulating and practically not tradeable.
In particular, the previous chapter showed that the technological space provides a
structure which is reflected in the research network. The econometric section com-
pares the technological and social structure explanation.

Table 4.3 summarizes the correlation between dependent and independent variables
which are taken into account in the model of alliance formation. Stated significance
levels for the correlation coefficients are probably too low because the covariance of
error terms between observations is not taken into account. Nevertheless at least two
things might be noted. Firstly, variables capturing size aspects of the firm-pair are
strongly correlated. These are the sum of the firm-pair’s joint patent-portfolio (sumL-
nPC ), their joint degree centrality (sumLnDeg) and the sum of firm size (sumLnEmpl).
Secondly, we also observe some correlation among variables which capture structural
aspects of the social network and technological space. More specifically, the social
network variables common partners, prior ties and the technological variable overlap
are significantly correlated. Therefore we might expect that our measures of the social
space and the technological space provide similar information for alliance formation.
If both types of variables proxy the same factors of alliance formation, coefficients of
joint and separate estimations are going to differ.

4.3.4 Estimation Strategy

The principle steps of this analysis are the same as in the previous chapter, described in
section 3.4.4. In the first step, a logit model of pairwise alliance formation is estimated.
The logit model includes firm specific effects to account for dyadic interdependence.
The estimates of random and fixed firm specific effects are compared using a simplified
Hausman test. In the second step, the estimates of the logit model are used to predict
i) the firms’ ego-network structures and ii) the global network structure. Expectations
are derived from 1000 simulations. The number of simulations suffices to obtain the
same results in different simulation studies. Comparison of predictions and observa-
tions in the sample informs us on the explanatory power of the variables introduced
in the logit model of dyadic decision making.

Estimation results are obtained under the assumption of no measurement errors and
no spurious path dependency. These issues are discussed in the sensitivity analysis
section. The potential upward bias of social network effects due to spurious path
dependency is addressed by estimations which distinguish prior research alliances from
prior non-research alliances. Another issue is that some focal firms are not embedded
in the prior alliance network. This might create a downward bias of social network
effects, which we address in a separate estimation on a restricted sample.
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Table 4.3: Mean, standard deviations and correlations a

Mean S.D. 1 2 3 4 5 6 7 8 9 10

Jointtech (1) 0.02 0.13
SumLnPC (2) 8.77 2.94 0.09***
AbsDiffLnPC (3) 2.38 1.75 0.06*** 0.14***
Overlap (4) 0.32 0.23 0.04*** 0.57*** -0.37***
Overlap2 (5) 0.15 0.17 0.04*** 0.51*** -0.35*** 0.95***
Prior ties (6) 0.01 0.13 0.09*** 0.08*** 0.01 0.07*** 0.06***
Common partners (7) 0.08 0.40 0.03*** 0.22*** -0.03*** 0.20*** 0.23*** -0.02**
SumLnDeg (8) 2.43 1.68 0.10*** 0.48*** 0.12*** 0.33*** 0.31*** 0.17*** 0.38***
AbsDiffLnDeg (9) 1.33 1.04 0.02** 0.17*** 0.21*** 0.02* -0.01 -0.04*** -0.10*** 0.33***
SumLnEmpl (10) 13.11 3.41 0.07*** 0.56*** 0.23*** 0.22*** 0.23*** 0.05*** 0.17*** 0.30*** 0.14***
AbsDiffLnEmpl (11) 2.74 2.05 0.08*** 0.16*** 0.34*** -0.15*** -0.18*** 0.04*** -0.05*** 0.07*** 0.10*** 0.29***

a N=20910 firm-pair observations from crossing 205 firms; *,**,*** signify 5%, 1% and 0.1% rejection levels of significance.
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Chapter 4 Technological and Social Effects on Network Formation

4.4 Results

4.4.1 Estimation Results

Alliance Formation

Estimation Results Tables 4.4 and 4.5 present the results of the logit estimation. In
table 4.4, model 1 is the base model which contains only firm size controls. Technolog-
ical and social network effects are estimated separately in models 2 and 3 respectively
and jointly in model 4. In addition, models 5 to 8 in table 4.5 include interaction
effects between the technological-distance effect and variables of social embeddedness.

Comparing the overall fit of the models, we find that both the social network model
(model 3) and the technology model (model 2) perform better than the base model, as
the Akaike Information Criterion (AIC) decreases. The social network model (model
3) provides a better fit to the data than the technology model (model 2). Combining
both explanations in model 4 improves the fit; but only slightly. Interaction terms in
models 5 to 8 do not improve the model any more (see AIC in table 4.5).

Examining the coefficient estimates of the social network model (model 3) shows that
prior ties positively affect alliance formation. Furthermore two firms with high degree
are likely to form alliances as indicated by the variable sumLnDeg which is positive
and significant. One interpretation of this result is that firms with high reputation
tend to join for alliances. The other two social network variables are not significant.
The number of common partners has no significant effect on the propensity of a firm-
pair to form a research alliance suggesting that in this sample at least, referrals are
not playing a large role in partner choice. Also absDiffLnDeg is insignificant, meaning
that firm-pairs with large differences in their degree do not attract each other. This
result may be partly due to the sampling of larger firms in the core of the network.

The positive effect of relational embeddedness, indicated by prior ties, is in accord
with empirical findings in the previous literature. Also joint centrality of the firm-pair
has been estimated to be positive (Gulati and Gargiulo, 1999, p.1470). With respect
to the literature, it is remarkable that the number of common partners has no effects.
All the studies in the literature section (section 4.2) found a significant positive effect
of common partners except the study by Rosenkopf and Padula (2008) who investigate
the mobile communication industry. A simple explanation for our result may be that
referrals have no effect in our sample because firms from the core of the network know
about each other very well.

The technological variables are all significant when estimated separately in model
2. When estimated jointly with social network variables, the coefficient of sumLnPC
(joint size of the patent portfolio) becomes insignificant and coefficients of the other
technology variables change only slightly with respect to standard errors. In particu-
lar, the inverse-U-shaped benefit-distance effect, i.e. overlap and overlap2, is similarly
strong and significant in both models. Social network estimates are similar in the
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Table 4.4: Random effects logit models of alliance formation (joint-
tech), models 1-4 a

Model 1 Model 2 Model 3 Model 4

Intercept -7.23*** -8.37*** -7.29*** -7.94***
(0.347) (0.422) (0.383) (0.436)

Overlap – 4.12*** – 3.21***
– (0.987) – (1.035)

Overlap2 – -2.69** – -2.44*
– (1.032) – (1.094)

SumLnPC – 0.11*** – 0.03
– (0.032) – (0.034)

AbsDiffLnPC – 0.21*** – 0.15***
– (0.042) – (0.044)

Prior ties – – 0.7*** 0.7***
– – (0.153) (0.153)

Common partners – – 0 0.02
– – (0.08) (0.083)

SumLnDeg – – 0.45*** 0.35***
– – (0.044) (0.05)

AbsDiffLnDeg – – 0.07 0.03
– – (0.056) (0.059)

SumLnEmpl 0.16*** 0.05* 0.05* 0.03
(0.019) (0.024) (0.022) (0.025)

AbsDiffLnEmpl 0.23*** 0.21*** 0.21*** 0.19***
(0.026) (0.03) (0.027) (0.031)

σ2 b 0.35 0.38 0.39 0.39
(0.095) (0.099) (0.102) (0.102)

AIC 3287.05 3186.22 3105.1 3084.65

a N=20910 firm-pair observations from crossing 205 firms; stan-
dard errors in brackets; *,**,*** signify 5%, 1% and 0.1%
rejection levels of significance.

b The estimate of random effects variance follows a log-normal
distribution and are therefore strictly positive.
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Table 4.5: Random effects logit models of alliance formation (jointtech), models 5-8 a

Model 5 Model 6 Model 7 Model 8

Intercept -7.95*** (0.439) -8.03*** (0.448) -8.64*** (0.599) -8.02*** (0.518)
Overlap 3.08** (1.057) 4.01*** (1.083) 7.28** (2.597) 3.68* (1.700)

Overlap2 -2.19* (1.137) -3.5** (1.172) -6.76* (3.260) -2.9 (1.781)
SumLnPC 0.03 (0.034) 0.03 (0.034) 0.03 (0.034) 0.03 (0.034)
AbsDiffLnPC 0.15*** (0.044) 0.15*** (0.044) 0.14*** (0.044) 0.15*** (0.044)
Prior ties 1.2 (1.201) 0.67*** (0.157) 0.73*** (0.154) 0.69*** (0.153)
Common partners 0.01 (0.084) 0.29 (0.532) 0.01 (0.096) 0.02 (0.085)
SumLnDeg 0.35*** (0.050) 0.37*** (0.051) 0.58*** (0.138) 0.35*** (0.050)
AbsDiffLnDeg 0.03 (0.059) 0.02 (0.059) 0.02 (0.059) 0.09 (0.17)
Overlap · Prior ties -0.15 (4.962) – – –

Overlap2 · Prior ties -1.61 (4.818) – – –
Overlap · Common partners – -1.88 (1.784) – –

Overlap2 · Common partners – 1.93 (1.363) – –
Overlap · SumLnDeg – – -1.11* (0.611) –

Overlap2 · SumLnDeg – – 1.11 (0.688) –
Overlap · AbsDiffLnDeg – – – -0.29 (0.855)

Overlap2 · AbsDiffLnDeg – – – 0.28 (1.011)
SumLnEmpl 0.03 (0.025) 0.02 (0.025) 0.02 (0.025) 0.03 (0.025)
AbsDiffLnEmpl 0.19*** (0.031) 0.19*** (0.031) 0.19*** (0.031) 0.19*** (0.031)
σ2 b 0.41 (0.103) 0.41 (0.104) 0.4 (0.104) 0.39 (0.103)

AIC 3084.83 3082.86 3084.59 3088.48

a N=20910 firm-pair observations from crossing 205 firms; standard errors in brackets; *,**,*** signify 5%, 1%
and 0.1% rejection levels of significance.

b The estimate of random effects variance follows a log-normal distribution and are therefore strictly positive.
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4.4 Results

separate estimation, model 3, and joint estimation, model 4. Introduction of techno-
logical variables decreases the coefficient of joint network centrality, sumLnDeg, by a
magnitude of about two standard errors. The estimate of prior ties remains stable
when estimated jointly with technological variables.

Interaction terms in models 5 to 8 are all insignificant except one. This suggests
that social network effects do not moderate the technological-distance effect. In other
words, social proximity does not trade off for technological proximity. The effect of
technological distance on alliance formation remains unchanged by letting it interact
with social network variables.

To summarize, both the social model and the technology model are informative for
alliance formation. The social model fits the data better. Introduction of social and
technology variables in the joint estimation improves the model fit. Furthermore, most
coefficient estimates remain stable in the joint model compared to separate estimation,
and there are no interaction effects between social network variables and the technolog-
ical distance effect. Therefore, technological and social factors are capturing distinct
and largely independent aspects of the alliance decision. The notable exception is
that joint centrality in the network, sumLnDeg, and joint size of the patent portfolios,
sumLnPC, seem to capture related aspects as both decrease when estimated jointly.
The question of how to interpret this effect is discussed in the next section 4.4.2, based
on further estimations.

Interpretation of Coefficients The effect of a marginal change of social and techno-
logical characteristics on the probability of alliance formation informs us about their
relative importance. We have calculated marginal effects for significant social and
technological variables in the joint model, 4. In the logit model, marginal effects differ
over observations because they depend on the overall probability of success. In other
words a marginal change of one characteristic is going to affect firm-dyads differently
as soon as they differ in any of the characteristics taken into account by the model.
Therefore, marginal effects as well as their significance for individual firm-pairs spread
considerably over the population. Results on marginal effects for each firm-pair are
provided in the appendix C.3. A good intuition however is gained by giving examples
of marginal effects for ‘typical’ firms. This is done in the following, first for technolog-
ical and then for social network effects.

A marginal increase in overlap increases the probability of alliance formation signif-
icantly for firm-pairs with an overlap between 0 and around 0.4. Further increase of
overlap for firm-pairs with overlap between 0.4 to 0.7 still positively affects the prob-
ability of alliance formation but not significantly. The point of optimal technological
distance is reached at around 0.7 overlap. From then on further increasing the overlap
reduces the probability of alliance formation, where the change in probability is not
significantly different from zero. The actual relevance of overlap for research alliance
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formation is clarified in an example.

Example 1 (Marginal Effect of overlap) Consider a dyad, in which one firm cov-
ers 10 patent classes and the other firm covers 15 patent classes. This is a typical
configuration, because 10 patent classes is the median in the firm population and 15
is the 0.75 quantile. Assume further that the firms have 5 patent classes in common.
This yields an ‘overlap’ of 5/20 = 0.25, close to the population average of 0.3 ‘overlap’.
Five more patent classes in common, increases the ‘overlap’ to 10/20 = 0.5 ‘overlap’.
This is a 100% increase and corresponds to one standard deviation change (0.25).
The marginal effect for firm-dyads having an ‘overlap’ of 0.25 on average is positive
at 0.025 and significant. Thus, a one standard deviation increase implies on average
an increase in probability of 0.025 · 100% = 2.5%. This is a considerable effect given
the overall rate of success of 2%.

The average marginal effects of the size difference of the firm-pair’s patent portfolios,
absDiffLnPC, increases with increasing size differences. Marginal effects are overall
significant with a spread between 0 and 0.04. The following example suggests that
the technology-distance effect is more important than the effect of differences in the
patent portfolio.

Example 2 (Marginal Effect of absDiffLnPC) Consider a dyad, in which one
firm applied for 1140 patents and the other firm applied for 50 patents. Since the
number of patent applications is very skewed, such cases are common. The log-
transformed patent counts become approximately LnPC = 7 and LnPC = 4 yielding
‘absDiffLnPC’ = 3, close to the average of 2.4. A one standard deviation increase
of 1.75 represents an increase of 58%. This is obtained for example by increasing the
number of patents for the first firm to 6300 patents or decreasing the number of patents
of the second firm to 5 patents. The average marginal effect for ‘absDiffLnPC’ of 3
is 0.003. Thus, a one standard deviation change implies an increase in probability of
0.174% (0.003 · 58%). This effect is one order of magnitude below the overall rate of
success of 2%.

Interpretation of social network effects is also meaningful in terms of marginal effects.
Marginal effects of changes of prior ties are always positive and mostly significant (see
appendix C.3). On average, firm-pairs with prior ties have a higher probability of
1.2% compared to firms having no prior tie.

For joint network centrality of a firm-pair, sumLnDeg, marginal effects are positive
and significant for all firm-pair observations. The effect is relatively weak, as the
example suggests.

Example 3 (Marginal Effect of sumLnDeg) Focal firms on average have 6 al-
liances in the prior network. Because the median is lower (at 2 prior alliances), assume
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that there is a dyad where both firms have 3 alliances. This yield a joint centrality of
‘sumLnDeg’ = 2.8, which is close to the average of 2.6. An increase of one standard
deviation (1.7) represents a 60% increase. This compares to an increase in the number
of alliances of one firm by 17 alliances or an increase in the number of alliances of
both firms by 6 alliances. The marginal effect for firm-pairs with ‘sumLnDeg’ = 2.8
in average is 0.004. Thus, a one standard deviation increase implies an increase in
probability of 0.004 · 60% = 0.24%.

Summary The estimates as well as marginal effects show that technological and
social network effects are equally influential for alliance formation. When estimated
separately both groups of factors fit the data similarly well (social network effects fit
slightly better). In the joint estimation coefficients remain rather stable compared to
separate estimation. In addition, there are no interaction effects between social factors
and technological distance. Therefore, both groups of factors seem to capture distinct
aspects of alliance formation.

Interpretation of the effects has been based on the joint estimation in model 4. We
find that technological proximity (overlap) is valuable for distant firm-pairs (overlap
between 0 and 0.4). For the average firm-pair with overlap 0.25 a one standard de-
viation increase in overlap increases the probability of alliance formation by 2.5%.
This is a large effect, given the average probability of alliance formation of 2%. The
effect of prior ties is similarly strong. Furthermore, we find a preference for differ-
ently sized patent portfolios, absDiffLnPC, and for high joint centrality in the prior
network, sumLnDeg. Both effects are moderate. A one standard deviation increase of
absDiffLnPC and sumLnDeg increases in average the probability of alliance formation
by 0.174% and 0.24%, respectively.

Ego-Network Structures

Based on simulation of networks using the model estimates gained above, we derived
the expected network position of each firm. The correlation of expected with observed
network positions shows how well the respective model of dyad formation explains the
higher-level phenomenon of a firm’s ego-network structure. Broadly, the results show
that model 2, including technological characteristics, and model 3, including social
network characteristics, both improve significantly the base model 1 which includes
only information on firm size. The social model 3 predicts the firms’ ego-network
structure better than does the technology model 2. Joint estimation of technological
and social variables in model 4 outperforms separate estimation.

Table 4.6 gives the correlation coefficients for each model (columns) and network
measure describing the firm network position (rows). We test the null hypothesis
of zero correlation (indicated by *) as well as the null hypothesis that correlation
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coefficient’s of two models are equal.8

Table 4.6: Pearson’s correlation of observed and expected firm-ego network statis-
tics a

Model 1 Model 2 Model 3 Model 4

Degree
rm

b 0.49*** 0.64*** 0.71*** 0.73***
Pm=model 1

c – 0.000 0.000 0.000
Pm=model 2 – – 0.013 0.061
Pm=model 3 – – – 0.000

Closeness
rm 0.13 0.33*** 0.42*** 0.43***

Pm=model 1 – 0.004 0.000 0.000
Pm=model 2 – – 0.075 0.009
Pm=model 3 – – – 0.252

Clustering
rm -0.09 -0.02 0.02 0.05

Pm=model 1 – 0.235 0.120 0.068
Pm=model 2 – – 0.237 0.098
Pm=model 3 – – – 0.233

Triangles
rm 0.19** 0.32*** 0.38*** 0.40***

Pm=model 1 – 0.023 0.003 0.002
Pm=model 2 – – 0.124 0.049
Pm=model 3 – – – 0.070

a Expectations are based on estimates of the random firm effects
model by simple monte carlo estimation with 1000 draws.

b rm denotes the correlation coefficient. *,**,*** signify 5%, 1%
and 0.1% rejection levels of the null hypothesis that correlation
coefficient is zero.

c Pm=model x is rejection level of the null hypothesis that correlation
coefficients of models m and x are equal (one-sided tests).

Base model 1 includes only firm size controls. Expected and observed degree and
triangles over firms are significantly correlated and, hence, base model 1 has some pre-
dictive power with respect to these network measures. The technology model, 2, adds
information on the firm’s technological position and thereby improves significantly
predictions of the base model 1 in terms of degree, triangles and especially closeness
(see table 4.6, column ‘model 2’ and rows Pm=model 1 for each network measure). Sim-
ilarly, model 3 adds information on social embeddedness to the size information in

8Tests for the null hypothesis that correlation coefficients for two models are equal are based on
Williamson’s test statistic for dependent correlation coefficients as described in (Steiger, 1980,
p.246); all tests are one-sided.
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model 1, which yields even higher correlations compared to the technology model 2.
In particular, the social model 3 predicts degree and closeness significantly better than
does the technology model 2 (column ‘model 3’, rows Pm=model 2). Finally model 4
(joint estimation of social and technological position) improves models 2 and 3 signifi-
cantly with respect to degree and triangles. Correlations of closeness and clustering is
significantly higher than for the technology model 2 but not when compared to model
3 (see column ‘model 4’, rows Pm=model 2 and Pm=model 3). Finally, note that no model
is capable of predicting the firms’ clustering coefficient. Probably due to the low num-
ber of triangles in the network and the normalization by degree it is very difficult to
predict.

Steady increase of correlation coefficients from model 1 to model 4 implies an or-
dering of the models with respect to their predictive power of ego-network structures.
The ordering is the same as implied by the Akaike Information Criterion (AIC) of
model fit when estimating alliance formation of firm-pairs. Thus, the added value of
firm-level predictions is not the finding that one model fits better the dyad level and
another the firm level. The real value is simply to recognize what model fit on the
dyad level actually implies on the firm level. The important finding is that the firm’s
ego-network structure can be predicted to a large extent simply by the relationship of
firm-pairs in technological and social space.

Global Network Structures

Figure 4.1 compares expected with observed network measure distributions. The fig-
ure provides the Kullback Leibler Information Criterion (KLIC) to assess how close
expected and observed distributions are.9 Visual inspection of expected network mea-
sure distributions and their 90% confidence intervals, however, is more informative.

The ordering of models with respect to how expected distributions fit observed
distributions is the same as model fit on the dyad and firm level. However, significant
differences in how the models fit observed network measure distributions are observed
only for the distribution of closeness centrality. All models predict very well the degree
distribution and perform badly with respect to triangles and clustering distributions.

The degree distribution is shown in figure 4.1 upper left panel. It is difficult to
recognize any difference between the models visually. Because all models predict the
degree distribution equally well, firm size information seems to be sufficient to infer
on the degree distribution of the network.

9The KLIC for discrete distributions equals KLIC(p, π) =
∑

p(y) ln(p(y)/π(y)) and measures how
close the distribution p(y) is to a reference distribution π(y). KLIC(p, π) is strictly convex,
KLIC(p, π) > 0 always and KLIC(p, π) = 0 ⇐⇒ p = π. We calculate the KLIC for discrete
distributions because our reference distribution, the observed network measure distribution, is
discrete. This makes necessary to discretize the expected network measure distributions. The
discretization is presented together with the results.
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Figure 4.1: Observed and expected network measure distributions. Black circles are observations,
lines give the average over 1000 simulations, circles connected by vertical lines indicate 90%-
confidence intervals. KLIC compares probability masses according to the following cutpoints: degree
(1, 2, 3, 5), closeness (0, 0.258, 0.287, 0.317), clustering (0, 0.015, 0.041, 0.1, 0.167), triangles
(1, 2).
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Expected distributions of closeness centrality differ across models (see the upper
right panel of figure 4.1). All models expect a less skewed closeness distribution which
is on a lower level than the observed distribution. The technology model 2 implies a
more skewed distribution which is on a higher level than that of the base model 1.
The social network model 3 comes even closer to the observed distribution. Further
improvement due to joint estimation of technological and social factors in model 4 is
marginal. The closeness distribution of the observed network is on a high level and
skewed due to its core-periphery structure. Thus, the size model yields a random
network with sufficient hubs to meet the degree distribution, but it does not imply the
observed core-periphery structure. In this respect, technological and social network
variables clearly improve expectations.

Distributions of clustering and triangles are given in the lower left and right panel
respectively. Because only 40 firms are involved in triangles only the upper tails of
the distributions are displayed (150th to 205th firm). Both tails seem to be similarly
difficult to predict: expected distributions are below observed distributions and not
significantly different from each other; their 90% confidence largely overlap. Within
these uncertainties, we observe the same order of models with respect to their predic-
tive power as throughout the analysis: firm size model 1, technology model 2, social
network model 3 and, finally, technology and social network model 4.

4.4.2 Sensitivity Analysis

In the previous sections, we presented the estimation results of models including tech-
nological variables and social network variables. But what do these variables capture
really? For interpretation of the results two issues seem to be especially relevant:
Firstly, our indicator of technological fit seems to be rough. Secondly, the social net-
work variables are similar to lagged variables as they are measured on the prior network
of alliances. The consequence of both issues together is that our estimates represent
a lower bound for technological effects and an upper bound for social network effects.
Particularly, we can not exclude the possibility that social network variables are purely
indirect indicators of technological effects. Because this has serious implications on
our work, we elaborate this argument in the following.

The indicator of technological fit, overlap, is rough. The firm’s technological capabil-
ity is described by its coverage of patent classes on the 4-digit level. This information
does not contain many aspects on the firm’s technology which influence the decision
to form an alliance. In particular, with our measurement differences within the patent
classes disappear (as do similarities across patent classes). In the best case, this in-
accuracy imposes a considerable measurement error on our measure of technological
fit.

The social network variables are measured on the prior network of alliances. The
principle argument is that the prior network of alliances proxies the social network
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among the firms. However, a network is the aggregate of alliance decisions and, hence,
reflects all factors which influence alliance decisions. Those factors which remain sta-
ble over time are going to be reflected in the prior network as well as in the current
network. Because social network variables represent structural characteristics of the
prior network, they also incorporate such stable factors. More specifically, social net-
work variables represent specific network configurations and therefore incorporate the
effect of all stable, systematic factors on respective network configurations.

A simple thought experiment illustrates that within our estimation approach any
significant social network variable is susceptible of spurious path dependency due to
measurement error or omitted variables. Imagine that two networks are deterministi-
cally determined by several exogenous factors. Some factors change randomly from the
first to the second network and some remain constant. Now, measure social network
variables on the first network and estimate their coefficients on the second network
jointly with the constant determining factors. If all constant factors are included, so-
cial network measures do not add information and remain insignificant. But the more
constant factors are excluded from the regression or become contaminated with mea-
surement errors, the more the social network measures add to the regression because
they incorporate the information which has been lost. In this sense social network mea-
sures indicate structural stability, be it given socially, economically, technologically or
in any other way.

Because measurement errors have in principle the same effect as omitted variables,
our estimates of social network factors are not fully controlled for technological or
economic factors. Therefore, it is likely that we overestimate their effect and give an
upper bound. Similarly, the effect of technological fit is likely to be underestimated
due to measurement error, yielding a lower bound. Particularly, if firms’ technological
capabilities (i.e. coverage of patent classes) change slowly.

Since we estimate the formation of research alliances, social network variables mea-
sured on the prior research network are more likely to introduce spurious path de-
pendency than those measured on the prior network of non-research alliances. In
addition, social variables from the prior research network are most likely to capture
stable technological factors. Therefore, network measures based on the research net-
work are most likely to be affected when we control for technological factors using our
technological variables. We test this idea with two alternative estimations of model 3,
which includes only social network variables and model 4, which includes technological
and social variables. Estimations differ because we now split social network variables
into the contribution coming from past research alliances and the contribution coming
from past non-research alliances. Our reasoning is supported if social network vari-
ables of the prior research network become weaker by introduction of technological
variables. In order to remain parsimonious, we split only those variables which have
been significant in table 4.4, i.e. prior ties and joint network centrality (sumLnDeg).

Estimation results are given in the table 4.7. Model 3’ estimates only social network
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variables, model 4’ controls for technological characteristics. The estimate of joint
centrality in the research network (research sumLnDeg) decreases considerably and
becomes insignificant by the introduction of technological variables in model 4’. This
means that research sumLnDeg represents neither status homophily nor accumulated
advantage but in fact catches structural stability of the network due to stability of
the firm’s position in technological space. Of course, this concern carries over to the
interpretation of non-research sumLnDeg, which might capture structural stability due
to other, especially economic factors.

Table 4.7: Random effects logit models of alliance formation (jointtech), re-
search and non-research network a

Model 3’ Model 4’

Intercept -7.03*** (0.355) -7.74*** (0.419)
Overlap – 3.22** (1.042)
Overlap2 – -2.49* (1.104)
SumLnPC – 0.04 (0.034)
AbsDiffLnPC – 0.15*** (0.044)
Research prior ties 0.67** (0.275) 0.72** (0.279)
Non-research prior ties 0.65** (0.214) 0.63** (0.216)
Common partners -0.03 (0.081) 0 (0.084)
Research sumLnDeg 0.21** (0.069) 0.12 (0.073)
Non-research sumLnDeg 0.34*** (0.067) 0.31*** (0.067)
AbsDiffLnDeg 0.03 (0.056) 0 (0.058)
AbsDiffLnEmpl 0.2*** (0.027) 0.18*** (0.031)
SumLnEmpl 0.05* (0.022) 0.02 (0.025)
σ2 b 0.43 (0.103) 0.42 (0.104)

AIC 3107.03 3086

a N=20910 firm-pair observations from crossing 205 firms; stan-
dard errors in brackets; *,**,*** signify 5%, 1% and 0.1%
rejection levels of significance.

b The estimate of random effects variance follows a log-normal
distribution and are therefore strictly positive.

On the other hand, introduction of technological effects in model 4’ does not de-
crease the coefficient estimate of prior research ties. Thus, the alternative estimation
does not support the idea that prior research ties is in fact just capturing techno-
logical stability. Therefore, one might conclude that prior ties has in itself an effect
which is coherent with theoretical arguments of organizational learning and structural
sociology. However, an alternative explanation of the estimation results also might be
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correct. Because technological fit of two firms in the real-world is far more complex
than our technological variables are able to capture, prior ties might be simply the
best proxy of technological fit that we have.

Another issue is that, up to now, we have assumed that there are no measurement
errors of social network variables. We know that this is not the case. Therefore, the
upper bound of social network variables postulated above is not strict. The bound
might increase as measurement of social network variables improves. In particular, our
sample includes 68 firms with no registered prior alliance and it is likely that many
of them in reality did have (an) alliance(s) (see section 4.3.1). In order to see how
these firms affected our results, we ran additional regressions excluding these firms
from the sample. This restriction does not induce major changes in the social network
coefficient estimates (table 4.4).

4.5 Discussion and Conclusion

Coleman’s theory of structural sociology describes economic behavior as purposeful
action enabled and constrained by social structure (Coleman, 1986). The literature
on the formation of research alliances up to now emphasized the purpose by focusing
on technological factors. Research on alliance formation in general emphasized op-
portunities and constraints imposed by social structure. This chapter proposes that
firms’ embeddedness in both technological space and in social space is influential in
the formation of pairwise research alliances which, in turn, has implications on the
firm’s ego-network structure and the global network structure.

Our estimation results support this view. Technological distance between two firms
and their prior alliance history are both found to be important for joint research
alliances. Still relevant but less important are differences in the size of the firms’ patent
portfolios and joint centrality in the prior alliance network. In addition, we found that
the estimated firm-pair decision model which takes into account both technological and
social factors, predicts firm ego-networks better than only taking into account either
technological or social factors. Thus, the two types of factors complement each other.
With respect to distributions of network statistics, the value of adding social network
factors to technological factors is limited to the closeness distribution. Whereas the
degree distribution is met very well by all models, the fit to triangles and clustering
distributions might be improved in the future.

The insight that econometric models of pairwise alliance formation do not neces-
sarily generate networks which cohere with higher-level network structures is already
valuable in itself. In principle, it is desirable to have models at hand which produce
a coherent picture of all relevant aspects of reality. Structural theories argue that the
firms’ ego-networks and the global network structure are relevant aspects of reality.
Most empirical work in the literature on alliance formation takes this into account only
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by introducing social network variables as regressors. Implications of (estimated) al-
liance formation models on higher-level network structures are usually not considered
in this literature. Comparison of expected and observed network measure distributions
of models of network formation has been suggested recently by Goodreau et al. (2007).
We extend this approach and consider in addition ego-network structures. Our anal-
ysis shows that this is valuable because alliance formation models do not necessarily
cohere with higher-level network structures. One possible approach to reach this goal
in future research is to introduce sufficient statistics on network statistics in the model,
as suggested for example by Snijders et al. (2006).10

Our sensitivity analysis points to an even more pressing issue. We show that some
social network variables may incorporate spurious path dependency. This means that
social network variables capture not only the effect of the network but also incorporate
effects of stable, exogenous factors. The implication is that our estimates represent
upper bounds of ‘true’ network effects. It is important to note that this issue concerns
not only our analysis but the majority of empirical studies on the effect of prior alliance
networks on alliance activity. This includes highly-cited studies which investigate the
effect of the firms’ embeddedness in the alliance network on pairwise alliance formation
by Gulati and Gargiulo (1999), on partner choice by Powell et al. (2005) or on rates
of alliance formation by Ahuja (2000). Therefore, controlling for stable structures is
an important issue for future research.

10We tried this approach but failed to reach convergence in the estimation which is still an issue to
be resolved (Goodreau et al., 2007).
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APPENDIX C

Statistics and Analysis

C.1 Network Description

Table C.1 presents network statistics for various networks depending on the time span
it has been formed, the population it includes, and the type of alliance in the network.
The analysis focuses on effects of the prior global pharmaceutical network (first row
in table C.1) on the current research network among sampled firms (last row in table
C.1).

The prior global network and the (current) global network both formed during a
six year period. Yet, the current network is three times as large as the prior network.
The growth is due to the entry of new firms in the network. The average number
of alliances (degree) per firm slightly decreased from 3.2 alliances in the prior period
(1995-2000) to 2.9 alliances in the current period (2001-2006). During growth the
network became more centralized in terms of degree, which can be explained with the
tendency of new entrants to connect with firms in the core.1

C.2 Hausman Test

In the fixed effects model firm dummies control for the rate of alliance formation of
the firm. If for a firm no alliance is observed, the dummy coefficient takes on minus
infinity and hence is not defined. Therefore, a comparison of fixed and random effects
can only be done on a restricted set of 166 firms, which includes only firms with at

1Higher centralization is indicated by increasing right skewness of the degree distribution from 4 in
the prior global network to 10 in the current global network
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Table C.1: Network statistics

Time span 1995-2000 1995-2000 1995-2000 1995-2000 2001-2006 2001-2006 2001-2006 2001-2006
Alliance type Any alliance Any alliance Jointtech Jointtech Any alliance Any alliance Jointtech Jointtech
Firm population All firms Focal firms All firms Focal firms All firms Focal firms All firms Focal firms

Vertices 1403.00 205.00 1403.00 205.00 5094.00 205.00 5092.00 205.00
Edges 2256.00 213.00 954.00 99.00 7240.00 690.00 3525.00 339.00
Main component a 1193.00 102.00 590.00 73.00 4053.00 194.00 2196.00 162.00

Degree
Mean 3.22 2.08 1.36 0.97 2.84 6.73 1.38 3.31
Var. 28.62 10.07 6.34 2.80 35.12 38.91 12.62 12.91
Skew. 4.50 2.29 4.03 2.21 10.39 2.19 11.97 1.98

Closeness
Mean 0.20 0.16 0.09 0.09 0.16 0.33 0.08 0.23
Var. 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01
Skew. -1.45 0.16 0.45 0.75 -1.07 -2.41 0.41 -1.08

Clustering
Mean 0.02 0.05 0.01 0.02 0.01 0.09 0.00 0.02
Var. 0.01 0.02 0.00 0.01 0.00 0.01 0.00 0.00
Skew. 7.81 4.81 14.38 8.53 13.29 1.96 27.78 3.35

Triangles
Mean 0.42 0.41 0.06 0.06 0.28 3.21 0.04 0.41
Var. 3.10 1.30 0.12 0.06 4.44 28.22 0.15 1.34
Skew. 7.26 4.11 8.13 4.65 14.04 2.66 16.52 4.47

a indicates the number of vertices in the largest connected subgraph.

1
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C.3 Marginal Effects

least one alliance partner in the network. For econometric details please see chapter
3, Appendix B.1.

Table C.2 gives the results of the random and fixed effects specification as well as
the Hausman test for model 4. For no coefficient the null hypothesis that random and
fixed effects coefficients are equal can be rejected. This justifies to base the analysis
in the main text on random effects estimates.

Table C.2: Hausman’s test (model 4) a

Random effects Fixed effects H-value Pr(> |H|)
Intercept -6.99*** (0.442) – – –
Overlap 2.59** (1.056) 1.96 (1.829) 0.18 0.67
Overlap2 -1.57 (1.114) -1.53 (1.738) 0.00 0.98
SumLnPC 0.00 (0.034) -0.32 (1.405) 0.05 0.82
AbsDiffLnPC 0.2*** (0.045) 0.15** (0.062) 1.41 0.24
Prior ties 0.76*** (0.162) 0.81*** (0.168) 1.13 0.29
Common partners 0.06 (0.084) -0.02 (0.104) 1.77 0.18
SumLnDeg 0.27*** (0.05) 1.02 (2.009) 0.14 0.71
AbsDiffLnDeg 0.06 (0.06) 0.00 (0.074) 1.73 0.19
AbsDiffLnEmpl 0.19*** (0.032) 0.16*** (0.038) 0.16 0.69
SumLnEmpl 0.01 (0.025) -0.40 (1.03) 1.78 0.18
σ2 0.50 (0.113) – – –

AIC 2894.64 2990.05 – –

a N=13695 firm-pair observations from crossing 166 firms. Standard errors in brack-
ets; *,**,*** signify 5%, 1% and 0.1% rejection levels of significance.

b Firm dummy estimates not displayed.
c Pr(> |H|) is significance level of rejection of equality of coefficients from chi-square

distributed H-value with 1 d.o.f.

C.3 Marginal Effects

The dependent variables are interpreted by their marginal effect on the dyadic alliance
decision. Marginal effects are defined to be the first derivative of the probability of
success with respect to the variable. Because the logit model is non-linear, each obser-
vation has its own marginal effects which is a function of the estimated coefficients and
the independent variables of the observation. Their distribution has been calculated
using the delta-method (Cameron and Trivedi, 2005, p.227ff.).

Figures C.1 and C.2 display marginal effects of technological and social variables, re-
spectively. Estimation is based on the model 4, which includes both types of variables.
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The discussion of marginal effects is in the results section 4.4.
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Figure C.1: Marginal effects of technology factors as estimated in model 4, where sumLnPC and
absDiffLnPC denote the sum and absolute difference of log-transformed patent counts respectively.
Blue circles (red crosses) indicate (non-)significance on 5%-level of a two-tailed z-test. Lines give
a local average.

C.4 Sensitivity Analysis - Restricted Sample

The sample which we use for the analysis in the main text contains 68 firms for which
no prior alliance between the years 1995 and 2000 is registered in the data base. Out
of these 68 firms, we chose randomly 10 firms and found that 8 of these in fact did
have an alliance. Estimations including firms which are falsely coded as not having a
prior alliance might yield a downward-bias of social network estimates. Therefore, we
present in table C.3 estimations of a restricted estimation set, which includes only firms
with prior alliances. The result shows that social network coefficients have not been
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Figure C.2: Marginal effects of social factors as estimated in model 4, where sumLnDeg and absDiff-
LnDeg denote the sum and absolute difference of log-transformed degree respectively. Blue circles
(red crosses) indicate (non-)significance on 5%-level of a two-tailed z-test. Lines give a local average.
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negatively effected by inclusion of firms without prior alliances. However, technological
coefficients changed slightly and became less significant as compared to the estimation
on the full working set.

Table C.3: Random effects logit models of alliance formation
(jointtech), restricted sample a

Model 4’ Model 5’
Intercept -6.8*** (0.505) -7.32*** (0.583)
Overlap – 2.29* (1.329)

Overlap2 – -1.66 (1.354)
SumLnPC – 0.04 (0.04)

AbsDiffLnPC – 0.15** (0.053)
Prior ties 0.7*** (0.159) 0.7*** (0.157)

Common partners 0.03 (0.082) 0.05 (0.085)
SumLnDeg 0.44*** (0.069) 0.35*** (0.078)

AbsDiffLnDeg 0.03 (0.086) -0.01 (0.088)
AbsDiffLnEmpl 0.23*** (0.033) 0.2*** (0.038)

SumLnEmpl 0.02 (0.028) 0 (0.031)
σ2 b 0.39 (0.128) 0.36 (0.13)

AIC 2055.38 2048.35
a N=9316 firm-pair observations from crossing 137 firms;

standard errors in brackets; *,**,*** signify 5%, 1% and
0.1% rejection levels of significance.

b The estimate of random effects variance follows a log-
normal distribution and are therefore strictly positive.
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CHAPTER 5

Modularity in the Vaccine Industry

5.1 Introduction

The pharmaceutical industry is characterized by an extensive division of innovative
labor among firms and other institutions (Malerba, 2005). Organizations with hetero-
geneous capabilities engage in interrelated innovation activities along the pharmaceu-
tical value chain. The division of innovative labor is necessarily accompanied by inter-
organizational interaction. How innovation activities are mapped to organizations and
how organizations interact is crucial for the overall functioning of the innovation sys-
tem (Marengo and Dosi, 2005) as well as the prospects of the organizations (Jacobides
et al., 2006).

This chapter investigates the division of innovative labor among firms in the vaccine
industry. The specificity of this pharmaceutical sub-sector arises from the product ar-
chitecture of vaccines. The effectiveness of a vaccine rests on three functions. Research
on the three functional elements draws from specific scientific domains and is handled
increasingly independently from each other. This problem decomposition is visible in
an organizational division of research. New biotechnology firms specialize in specific
vaccine components and do research in parallel, largely independently of each other.
At a later stage, their research results are integrated for the development of novel
vaccines. Typically, such a work flow is associated with modular design in engineer-
ing. However, the coordination principle is different. Complex product development
usually invokes the design of a product architecture, i.e. the mapping of functions
to components and specification of their interfaces. Contrary to complex products,
the product architecture of vaccines is provided by the scientific landscape. Thus, the
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vaccine industry exemplifies how the scientific landscape allows for and coordinates
organizational division of pharmaceutical research.

The analysis in this chapter continues work which started with the research project
‘MIDeV’ (“Modularite et Incitations dans le Developpement de Vaccins geniques”).
Eventually, this project led to a publication on modular innovation of new vaccines
with a focus on the dual role of patents as exclusion and coordination device (Bu-
reth et al., 2007). The article argues that, on the one hand, firms use patents to
exclude competitors with similar technological specialization from their research. On
the other hand, patents signal technological competence and certify property rights
which enables technology transfers between firms with complementary technologies.
In that work collaboration between different technological domains was measured by
simple frequency counts which suggest that alliance formation is more frequent across
technological domains than within technological domains. The approach is unsatisfac-
tory because frequency counts do not take into account the number of firms in each
technological class or that firms have multiple specializations.

The analysis in this chapter deviates in three major points from the previous anal-
ysis of Bureth et al. (2007). Firstly, the population considered in the analysis is
extended. Besides biotechnology firms specialized in vaccine components the analy-
sis now includes also general purpose technology firms and integrated pharmaceutical
firms. Secondly, the direction of technology flow between these types of firms is consid-
ered. Thirdly, hypotheses on the pattern of technology flow are developed and tested
using exact tests.

The chapter is structured as follows. The next section provides the background
for the analysis. It includes an overview on the market for vaccines as well as the
technological characteristics of vaccines, followed by a discussion on modularity of
vaccines and how this affects the division of work in the industry. The empirical
analysis, section 5.3, presents the sample, the estimation strategy and the results of
the analysis. Section 5.4 further investigates technology sourcing and supply of two
individual firms. The two cases help to better understand the analysis results. The
final section concludes.

5.2 Vaccines and Modularity

5.2.1 Market

Today, there are vaccines against 26 infectious diseases on the market. Together they
generate an annual turnover of ca. 9 billion Euros. This is approximately 1.5% of the
worldwide turnover of 550 billion Euros stemming from pharmaceuticals. The market
for vaccines is highly concentrated. It is clearly dominated by the five firms Merck,
GlaxoSmithKline, sanofi-aventis, Wyeth and Novartis, where the first three players
take a market share of 85%. For no indication are there more than two firms offering
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a vaccine.1

The market structure is the result of a concentration process starting 50 years ago. It
has been argued that actors withdrew from the vaccine market because margins are low
relative to other pharmaceutical investments (Pauly, 2005). The costs however are as
high as for other medicaments (500 800 million $), as are the development times (15 to
20 years) and the increasing burden through the clinical stages with high bureaucratic
costs for approval (Grabowski et al., 2004; Plotkin, 2005). Especially for vaccines,
it might be difficult to recoup such high fixed costs because a successful vaccine will
automatically reduce demand (Danzon and Pereira, 2005). The low competition per
indication might be explained by the difficulty of product differentiation, since the
more efficient vaccine is likely to take over the whole market (Danzon and Pereira,
2005).

Nevertheless some new players increased their US market share from 3% in 1999
to 20% in 2002 through differentiation, new indications or improved versions. For ex-
ample, they entered the market with transitory vaccines for travelling, a new vaccine
against cholesterol (Avant Immunotherapeutics), variation of administration (MedIm-
mune) or improvement of parts of an existing vaccine (Corixa, Coley Pharmaceutical
Group, CSL Limited) (Savopoulos, 2004).

The vaccine market is estimated to grow 20% annually in the next years, which ap-
proximates the growth prospects of the whole pharmaceutical market (30%) (Bonah
et al., 2007). This translates into an estimated turnover of 18.4 billion Euros in 2010,
of which 2/3 will be generated by new vaccines. Expectations for the long run are
very high, because of the opportunities opened up by the biotechnological revolution.
Besides more efficient development and improvement of vaccines for traditional in-
dications, the vaccination principle is extended to further indications. Traditionally
vaccines are prophylactic (prior infection) and target viruses which cause acute in-
fections. Now, therapeutic vaccines (after infection) seem to be within reach. New
indications are chronic infections caused by viruses like HIV, hepatitis C virus or hu-
man papillomavirus causing cancer (Berzofsky et al., 2004; Rogan and Babiuk, 2005).
The new markets are expected to be highly profitable and firms increasingly invest to
capture them (Pasternak et al., 2006).

The development of the vaccine sector represents one instance of the effect of the
biotechnological revolution on the pharmaceutical industry (general insights are pro-
vided for example by Henderson et al., 1999; Galambos and Sturchio, 1998). Due to
long development times, the vaccines offered do not reflect this revolution yet. How-
ever, the new opportunities opened up by scientific progress can be seen very clearly
in the changed industry structure. In order to understand the change, some basic
knowledge about the vaccine technology is appropriate:

1All market information from (Bonah et al., 2007, p.79-153).
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5.2.2 Technological System

Traditionally, a vaccine is a preparation based on a pathogenic agent (bacteria, virus,
parasite), which stimulates the production of antibodies or T cells without provoking
the illness itself. New approaches often use the fact that the immune response is caused
by the introduction of any antigen (a macromolecule provoking an immune response)
having the same epitopes (characteristic part to which an antibody connects) as the
pathogenic agent.2 It is helpful to distinguish vaccines into those which replicate
themselves in the organism of the patient, i.e. replicating vaccines, and those which
do not, i.e. non-replicating or inactivated vaccines. There is a trade-off between
the two: replicating vaccines cause an effective and long-lasting immune reaction,
including a humoral response (production of antibodies) and a cell-mediated response
(including among others T-cells, macrophages and killer cells). Inactive vaccines are
less efficient, because they do not cause a cell-mediated response (e.g. T-cells) but only
a humoral response (antibodies). In order to increase the immunological response,
some compound (called an adjuvant) has to be added. On the other hand inactive
vaccines are less risky. Since they are non-replicating, they are not infectious.

Traditionally an attenuated vaccine has been created by selection of non-virulent
mutants. They became non-virulent either by spontaneous mutagenesis or mutations
having been created by undirected processes with chemicals or heat. Inactivated vac-
cines used the whole killed pathogenic agent or, in case of a subunit vaccine, purified
the subunit antigen in a costly process to remove toxic and immunosuppressive units
of the agent.

Scientific advances have changed the development and the production of vaccines.
Genetic engineering techniques allow for new ways of developing attenuated vaccines:
Genes associated with the virulence can be identified and deleted or inactivated in
order to make the agent inoffensive (gene-deleted attenuated vaccines). Another way
is to choose an inoffensive virus or bacteria (the vector) and to transfect the antigen
DNA. This virus then serves as a live vector which expresses the antigen (recombinant
live vector vaccines). Furthermore, the production of subunit vaccines is altered by
biology and genetic engineering tools. They allow for tailoring single proteins and
for producing them in a cell system. Genomic and proteomic bioinformatics made
possible rapid identification of protective epitopes (the counterpart of the antibody).

Yet a completely new possibility for vaccination is represented by DNA vaccines.
The DNA which encodes the antigen is inserted into the cells of the patient, which then
themselves act as producers of the vaccine. In principle the DNA might be delivered
into the cell by microparticles or electroporation.

Problem decomposition is often mentioned as a consequence of the new scientific
approaches in biopharmaceutical research (e.g. Henderson and Cockburn, 1994). The

2About technological developments in vaccines, see for example (Berzofsky et al., 2004; Rogan and
Babiuk, 2005).
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description of the new approaches for attenuated, inactivated or DNA vaccines shows
how problem decomposition became concrete for vaccines. The three main functional
elements of a vaccine are handled increasingly independently from each other (Bureth
et al., 2007; Bonah et al., 2007). First, screening technologies and genetic mapping
are used to identify the epitopes on the antigen, which characterize the virus and
thus function as the target of the immune system (Antigen). Second, recombination
techniques are able to combine this target with an appropriate vector, which is used
as a carrier for delivery into the organism (Vector). Third, the immune response has
to be stimulated. Most often this is done by adjuvants but also by appropriate choice
and design of the vector (Adjuvant). Thus, the three major functions are now mainly
represented by the complementary entities 1) Antigen, 2) Vector, and 3) Adjuvant.

From the property of problem decomposition, it follows that research becomes more
specific. Since most new biotechnology firms have their origins in basic research,
they are highly specialized and problem decomposition translates in an isomorphism
between the scientific field and the industrial organization. Here isomorphism means
that the boundaries of scientific topics and the technological boundaries of the firms
have a high overlap rate and that the dependence structure among the scientific topics
translates into a similar (technological) dependence structure among the firms. Bureth
et al. (2007) show that the isomorphism concept is valid for the vaccine sector which
means that firms specialized in 1) Antigen, 2) Vector, and 3) Adjuvant entered the
industry. Thus, in the vaccine industry, we observe a division of innovative labor among
firms which are specialized in vaccine components. In the literature on engineering
design such a division of labor is usually considered to be facilitated by a modular
product architecture. The following section discusses the extent to which vaccines
actually are modular and how modularity affects the product development process.

5.2.3 Modularity in Product Development

The shift from the traditional to the new concept of a vaccine represents a shift from
an integral to a nearly modular product architecture. Ulrich (1995, p.422) synthesizes
different research streams on modularity and product design in order to provide a
typology of product architectures. According to Ulrich (1995, p.422) a modular ar-
chitecture is given when there is i) a one-to-one mapping of functions to components
and when ii) the components are not coupled (de-coupled). “Two components are
coupled if a change made to one component requires a change to the other component
in order for the overall product to work correctly.”(Ulrich, 1995, p.423) In contrast,
an integral architecture maps several functions onto one component or splits functions
over components which are not de-coupled (for definition see Ulrich, 1995, p.422).

A traditional vaccine consists of whole (attenuated) viruses or parts thereof. Thus,
in the case of traditional vaccines, one element (the virus) provides all the functions
of a vaccine. It serves as a vector, provides the antigen and also causes the immune-
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response.3 Therefore, traditional vaccines have an integrated architecture where one
component provides all functions. In contrast, novel vaccines have a nearly modular
architecture. The one-to-one mapping of functions to elements is largely given for
vaccines. The new biotechnological methods led to a conception of vaccines where
each function is represented by a separate component. For example the antigen is
now considered to be the expression of a certain DNA fragment. The second defi-
nitional criterion of a modular architecture is that the components are de-coupled.
Also this is given to some extent because components are substitutable. Exchanging
the DNA fragment which codes the antigen and maintaining the same vector and ad-
juvant combination might yield a well-functioning vaccine. Because a pathogen has
several specific characteristics, even the same indication might be targeted with such
an alternative product. However, de-coupling of components is not complete because
interactions between components are not fully understood. Whether a new combina-
tion is valuable needs to be tested. Therefore, one might say that vaccines have a
nearly modular architecture.

The product architecture is important because it influences the product development
and the division of work in the industry. The design of a product architecture specifies
which components provide which functions and how the components are interrelated.
Shifting from an integral architecture to a modular product architecture may improve
product life cycle management and make the organization of product development
more efficient.

Within a modular product architecture changing one component does not necessitate
changes in other components. Therefore it is possible to develop new products by
replacing components or recombining components and to use the same components
in multiple products (Ulrich, 1995). Thus innovations are more easily introduced
and synergies over product lines may be realized. In addition, the organization of
the development process might become more efficient. Von Hippel (1990) describes
the innovation process as a network of tasks. Given some output from another task,
a task consists of solving a certain problem and yields some input for subsequent
tasks. Thus, tasks need to be coordinated and transactions take place between the
tasks. Von Hippel argues that the need for coordination increases with the problem-
solving interdependence between the tasks. Similar to the coupling of components in
the product architecture, problem-solving interdependence captures the responsiveness
of two tasks in the product development process. More specifically, the degree of
problem-solving interdependence between two tasks is “the probability that efforts to
perform one of the tasks to specification will require related problem-solving of the
other.”(von Hippel, 1990, p.409). A modular product architecture allows a partitioning
such that the boundaries of the tasks match with the boundaries of the modules. This
reduces the effort for coordination as well as transaction costs because problem-solving

3A qualification is that adjuvants have been added in traditional vaccines as well.
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activities are only loosely coupled as long as they comply with the specification of the
architecture. Also from an information-processing point of view de-coupling of tasks
is beneficial because decisions with respect to the task can be made without the need
to consider manifold interdependencies with other tasks (Simon, cited by von Hippel,
1990, p.409).

A modular organization makes the innovation process not only more efficient but
also reduces time to innovation. De-coupling of problem-solving tasks oriented on
a modular product architecture implies that components can be developed simulta-
neously by different groups or other organizational entities (Sanchez and Mahoney,
1996; Ulrich, 1995; von Hippel, 1990). The modular product architecture becomes the
main structuring element because it provides all the information which is necessary to
perform a certain task (Sanchez and Mahoney, 1996).

The discussion shows that the product architecture affects the innovation process
which has been described as a system of problem-solving activities. This has further
consequences. In order to solve a problem one needs to have the relevant knowledge
and by solving a problem one usually learns something. Therefore, the assignment of
innovation tasks needs to take into account the knowledge of the actors, and is going
to affect the knowledge of the actors. Drawing from the differentiation of architectural
and component knowledge by Henderson and Clark (1990),4 Sanchez and Mahoney
(1996) argue that organizational modularity generates specialization effects. Firms or
other organizational entities which are predominantly focusing on a certain component
are going to learn about the component. Those firms or entities which predominantly
integrate components foster their architectural competence by architectural learning
(Sanchez and Mahoney, 1996, p.73).

The study of Brusoni et al. (2001) provides an important qualification for this ar-
gument by noting that organizations which are involved in the innovation process are
usually not completely de-coupled but loosely coupled. The authors investigate the
role of engine manufacturers in the aircraft engine industry. The engine manufacturers
act as system integrators who need to integrate several technologies in their engines,
among which are engine control systems which they receive from external suppliers.
The authors analyze how engine manufacturers, as systems integrators, accommodate
the changing technology of engine control systems. The important contribution of
Brusoni et al. (2001) is the observation that systems integrators need architectural
knowledge as well as component knowledge.

By knowing more, multitechnology firms can coordinate loosely coupled
networks of suppliers of equipment, components, and specialized knowledge
and maintain a capability for systems integration.(Brusoni et al., 2001,
p.597)

4Roughly spoken, architectural knowledge is knowledge about the interrelationships of components,
whereas component knowledge is about the inner functioning of the component.
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The reason that a system integrator needs to maintain component knowledge is be-
cause organizations involved in the innovation process are not completely de-coupled
but loosely coupled. Here, loose coupling means that organizational entities are sep-
arated (distinctiveness) but need to be coordinated (responsiveness) (Brusoni et al.,
2001, p.610). Coordination between organizations is needed if the architecture is not
completely modular. This is the case for example when (some) interdependencies
between the components are not fully understood. Then, problem-solving tasks be-
come interdependent and need to be adjusted by active coordination. However, active
coordination may also be necessary because technologies are evolving over time. If
progress of the technologies which underlie the different components is uneven, then
adjustments of the product architecture might be necessary due to cascading effects
across components (Brusoni et al., 2001, p.608). In the case when specialized knowl-
edge producers are loosely coupled, Brusoni et al. (2001, p.608) ascribe a very active
role to the system integrator. In the narrative account of the study, system integrators
specify the functioning of the component as well as their relations at the beginning
of the development process and actively adapt the architecture during the develop-
ment process. In addition, technological advance in the technologies of individual
components may trigger an architectural innovation by the systems integrator.

However, we may note that the importance of a systems integrator decreases, the
more the organizations involved in product development are de-coupled. As an ex-
treme example, consider a modular product with completely standardized components
such as the mouse connecting to a computer via a USB interface. Two firms, one de-
veloping a computer and one developing a mouse are completely de-coupled. The
interface specification provides all the information needed for coordination of the two
firms. The complete de-coupling does not only allow for simultaneous development
of the components but moreover makes the development autonomous in two respects.
Firstly, firms autonomously decide upon the specification of their component, only
limited by the standardized architecture. Secondly, firms do not need to interact be-
fore or after the development process. Whereas the first point is already achieved by
adopting a modular architecture, the second point arises due to the standardization
of the components. Due to the standard, firms may enter the market and develop
products without the need to coordinate a priori with other actors on the market (see
e.g. Matutes and Regibeau, 1996). The standard specification and market prices are
sufficient to form expectations on the future prospects of the newly developed product.
The point is that within a stable and public product architecture firms can form expec-
tations on the future relevance of their research products and therefore autonomously
decide what, when and how to develop components.5

Although vaccines are not standardized, firms specialized in vaccine components are

5For a similar line of thought on the need of ex ante coordination see Richardson (1972)’s account
on firm interdependence due to ‘close complementarity’.
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relatively autonomous in their development decisions. They enter the industry without
existing relationships to other firms and they form alliances to integrate components
after having developed vaccine components (Bonah et al., 2007, p.228ff).

This is possible because industry participants share a common understanding of the
vaccine architecture (Bonah et al., 2007, p.224). The actors are all embedded within
the same scientific paradigm. Problem decomposition in science led to specialization in
research and to the conception of a vaccine as a nearly modular product. This ‘design
process’ is different from the one usually described in the literature on modularity
which focuses on engineering design (see for example the review of Colfer, 2007).
Whereas in engineering design, the product architecture is considered to be a decision
variable (for example Brusoni et al., 2001; Sanchez and Mahoney, 1996; Ulrich, 1995;
von Hippel, 1990), the vaccines architecture emerged from scientific progress.

Although vaccine components as well as respective organizations are not completely
de-coupled, it seems appropriate to describe them as being loosely coupled. Compo-
nents are loosely coupled because they are distinct and exchangeable to some extent.
However, because interactions are not clearly understood the result of a novel combi-
nation of components remains uncertain. With respect to organizational modularity
it is noticeable that the division of work in many alliances is rather clear cut, with
an ex ante division of tasks and rather few joint research activities (Bonah et al.,
2007, p.234). Distinct organizations are simultaneously and autonomously engaged in
the product development process but need to respond to each other when integrating
the components. Hence, besides product components, also organizations are loosely
coupled.

In comparison to an integrated product architecture, a loosely coupled product
architecture tends to offer similar advantages as a modular architecture. It may i)
improve the product life cycle management, ii) make the organization of product de-
velopment more efficient, iii) allow for simultaneous development of components, and
iv) yield specialization effects. Furthermore, we observe that the novel product archi-
tecture allows for a division of research between firms.6 The following section focuses
on the question how modularization of the vaccine is reflected in the organization of
the industry.

5.2.4 Technology Transfers between Firms

This chapter considers the division of labor among firms in the vaccine industry. Fol-
lowing Jacobides et al. (2006) and von Hippel (1990), the division of labor may be

6The question whether an integrated/modular product architecture is best (normative) or often
(descriptive) mapped to an integrated/modular organizational architecture has a long tradition
(see Colfer, 2007, for a recent review). The empirical literature suggests that a modular product
architecture does not necessarily induce a modular organizational architecture but probably is a
prerequisite.
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characterized by the mapping of actors onto (a set of) tasks and the pattern of trans-
actions between the actors. Assume that the technological specialization of firms as
well as their resources are given. Furthermore, we may assume that firms try to ex-
ploit their comparative advantage and choose to perform those tasks to which their
specialization fits best (Richardson, 1972). Then, the remaining question concerns
the pattern of transactions between firms. This question is the focus of the empirical
analysis in this chapter.

Before proceeding to the empirical analysis, this section discusses arguments to form
expectations on the pattern of technology flow. First, we briefly consider the vertical
division of work between integrated pharmaceutical firms and biotechnology firms. In
a second step, biotechnology firms are further distinguished by their specialization into
transversal technology firms and firms which are co-specialized on certain diseases. In
a third step, it is discussed how the presence of firms specialized in vaccine components
possibly affects the pattern of technology flow. Note that the discussion, as well as the
empirical analysis, remains restricted to firms. Non-profit research organizations are
not considered in the discussion because they have other incentives and are not in the
analysis because of the problem to measure their competences. However, excluding
non-profit research organizations does not change the pattern of technology flow among
firms, which is the main interest here.

Transactions from Biotechnology Firms to Pharmaceutical Firms The previous
literature on the division of innovative labor in the pharmaceutical industry first dis-
tinguished integrated pharmaceutical firms and new biotechnology firms (e.g. Arora
and Gambardella, 1990). The division of work between these two firm types seems to
be predefined by the distribution of resources. The integrated pharmaceutical firm typ-
ically has strong financial and organizational resources which are necessary for drug
development and commercialization. The biotechnology firm is supposed to master
better the new scientific methods which emerged during the biotechnology revolution.
This fosters a vertical division of innovative labor. Integrated pharmaceutical firms
cover all activities along the value chain with a focus on downstream activities, whereas
biotechnology firms focus on research; the upstream activity in the value chain.

Transactions from Co-specialized and Transversal Biotechnology Firms A closer
look on the pharmaceutical industry reveals that biotechnology firms might take very
different roles in the industry (Pammolli, 2004). Some biotechnology firms develop
transversal technologies which might be used in diverse applications; research as well as
production. Other biotechnology firms focus on product development and co-specialize
on a certain treatment of an indication. Differentiating between transversal technology
firms and co-specialized firms leads to important insights. The firm types follow dif-
ferent business models and find themselves in different niches (Orsenigo et al., 2001).
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Transversal technology firms face a large inter-industry market for their research tools
and services because many firms potentially apply their proprietary technology. Li-
censing of a single technology to many industry actors may create an early stream
of revenue and yield financial stability (Gambardella and McGahan, 2009). The sit-
uation is different for co-specialized firms. Co-specialized firms have fewer potential
customers as their technology is not widely applicable. Actual distribution of their
research on pharmaceuticals is furthermore limited by the need for exclusivity in drug
development. A potential buyer only values high an exclusive license because large
losses might incur if a competitor as well develops the drug and wins the race. Fur-
thermore, co-specialized firms face the high risk of failure during product development.
After spending large amounts of money and time the product might fail in one of the
development stages. Nevertheless, profits might be very high later when the product
turns out to be a success. In sum, transversal technology firms and co-specialized firms
face different markets (wide and narrow), different risks (low and high) and different
revenue streams (stable and loss/profit) (Gambardella and McGahan, 2009).

The study of Orsenigo et al. (2001) investigates how the different roles of transversal
and co-specialized firms affect the network of alliances. They find that co-specialized
firms tend to have few collaborations with integrated pharmaceutical firms which gen-
erates a hierarchical structure similar to a network tree. In contrast, transversal firms
supply their technology to many firms, including integrated pharmaceutical firms as
well as co-specialized firms. This alliance behavior has been found to interconnect the
branches of the network tree and thereby fosters a less hierarchical network. Most
alliances in the pharmaceutical industry include some kind of technology transfer, be
it technological knowledge (e.g. research alliance) or property rights on technology
(e.g. commercialization alliance). This leads us to largely equate the network struc-
ture with the pattern of technology flow. Therefore, based on the study of Orsenigo
et al. (2001), we expect a technology flow from transversal firms to all other firms
(integrated pharmaceutical firms and co-specialized firms) and a technology flow from
co-specialized firms mainly to integrated pharmaceutical firms.

In the vaccine industry, one can distinguish at least two generic fields of expertise
resulting in transversal technologies (Bonah et al., 2007). One field is cell cultures.
Cells are used for production of vaccines as well as for cultivation of pathogenic agents,
making cells a premise for research (Cells). The second field subsumes the various
transversal technologies to identify and operate on the genetic code, e.g. recombina-
tion technology and diagnostics using proteomic and genomic platforms (Drug Discov-
ery/Diagnostics). Both types of specialization, Cells and Drug Discovery/Diagnostics,
will be distinguished in the subsequent analysis. In our case, co-specialized firms are
firms which are specialized on vaccine components. The next paragraphs discuss their
potential role in the industry in more detail.
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Transactions for integration of components Recent technological developments in
vaccines research enable a further division of labor. Besides co-specialized firms and
transversal technology firms, we now observe firms which are specialized in components
of a pharmaceutical product (in the following denoted also as “component firms”).
This chapter argues that the more fine grained division of labor has been made possible
by problem decomposition due to the biotechnological revolution.

A changing product architecture due to disruptive technological change allows for
a (re-)definition of roles in the industry (Jacobides et al., 2006, p.1203). Therefore, a
priori, it is not clear which roles the different firms take over and, hence, how the new
division of work looks like. However, it is clear that specialization of firms in product
components necessitates integration of components across firm boundaries. Hence, the
role of the integrator need to be taken over by some firm(s). The question of who takes
this strategic position determines to a large part the organizational architecture in the
industry. There are strong reasons to believe that integrated pharmaceutical firms will
act as systems integrators in the industry. However, the technological discontinuity
which led to the modularization of vaccines might allow new biotechnology firms to
take over this role. Let’s consider briefly the arguments for both alternatives.

Pharmaceutical firms may have the motivation as well as the potential to act as sys-
tems integrator. Firstly, pharmaceutical firms have the motivation to in-source novel
components because they are likely to realize high profits by i) exploiting the “mix-
and-match” property of modular architectures (Ulrich, 1995) and by ii) employing
their complementary resources for commercialization of novel vaccines (Teece, 1986).
i) Modularization implies that novel components can be applied in several vaccines
for different indications (see Ulrich, 1995, for a general discussion). Because pharma-
ceutical firms offer vaccines for several indications they are able to exploit economies
of scope by introducing improved components in several of their product lines. For
example the same adjuvant may be used in several vaccines. In addition individual
vaccines may be continuously improved and diversified by exchanging or adding com-
ponents. For example a further antigen might be added into an existing vaccine to
extent indications. ii) Furthermore, pharmaceutical firms have an interest in devel-
oping novel vaccines because they have the complementary resources to successfully
commercialize the innovation (Teece, 1986, p.288). Their established commercializa-
tion and distribution channels allow for fast recoup of development costs.

Secondly, pharmaceutical firms may have the capability to integrate. The study
of (Brusoni et al., 2001) emphasizes that firms which integrate the external research
efforts of specialized knowledge producers need to have a broad knowledge base. Sys-
tem integrators need to have architectural as well as component knowledge for both,
integration and management of research efforts. Pharmaceutical firms are likely to
have this knowledge base due to their own past and current research efforts in vac-
cines. Note that past experience probably includes not only traditional approaches
of vaccine research, but also new scientific approaches in drug discovery (Cockburn
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and Henderson, 1998). In sum, the economic as well as technological arguments put
forward so far support the view that pharmaceutical firms are most likely to take
over the role of system integrators. This would result in a technology flow from all
“component” firms to pharmaceutical firms.

On the other hand, there are also arguments that “component” firms are willing
and able to act as systems integrator. Even though “component” firms do not have
the commercialization and distribution channels, they might favor to integrate com-
ponents themselves because the later the development stage of a product, the larger
is the bargaining power of specialized firms with respect to integrated pharmaceutical
firms. This is due to the high failure rate of new products in pharmaceutical research
and development. There are vast research opportunities, many early stage efforts and
very few late stage products (DiMasi et al., 2003). This pattern implies that the bar-
gaining power of research firms is very low when trading early stage research efforts.
From the point of view of the pharmaceutical firm, contracting with a specific research
firm for early stage products is not a necessity. There are many other research firms
offering a similar prospectus for a successful product. This puts biotechnology firms in
a weak bargaining position. Market power is reversed for late stage products because
late stage products are relatively scarce and strategically important for integrated
pharmaceutical firms. For integrated firms, it is crucial to gain the commercialization
rights of a novel product in order to keep up a high market share. This puts biotech-
nology firms in a strong bargaining position. Hence, they might appropriate a higher
rent from their research efforts the later the development stage of the product.

Besides the incentive, “component” firms also might have the capability to inte-
grate. The technological change which led to the modularization of vaccines might be
an advantage for biotechnology firms which are more familiar with the new research
regime than pharmaceutical firms. In the language of Henderson and Clark (1990),
modularization might be competence destroying for pharmaceutical firms because a
large part of their accumulated knowledge on traditional vaccines became obsolete
under the new research regime. Having an edge in scientific research might trade-off
for the more narrow knowledge base of “component” firms.

Given that “component” firms integrate components, the question remains which of
the “component” firms is most likely to do so. Among others, this is going to depend
on the bargaining position among component firms vis-a-vis each other as well as their
technological competences. All three components, i.e. antigen, vector and adjuvant,
are complementary to each other as each is needed for a vaccine. However, they differ
in that antigen is specific to a certain indication whereas vector and adjuvant may be
introduced in vaccines for several indications. Therefore, vector and adjuvant are more
easily substituted than antigen when a novel vaccine is developed. The bargaining
power of a firm is lower, the easier it is to substitute its input (Jacobides et al.,
2006). This gives the antigen firm a stronger bargaining position as the vector and
adjuvant firms. The technological argument is that antigen firms are specialized on the
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indication which the future vaccine is going to target. Evaluation and improvement of
vaccines need to be done with respect to the illness and, therefore, also technological
specialization of antigen firms is in favor of their potential role as systems integrator.
In sum, antigen firms are most likely to act as system integrators and we expect that
technology flow is directed from vector and adjuvant firms to antigen firms.

Transactions between firms of the same specialization So far we discussed poten-
tial relationships and associated technology flows between the different firm types.
The question remains to what extent technology might be transfered between firms of
the same type. To get an intuition, we start from the observation that research on vac-
cines entails many activities (see Baldwin, 2008, for this train of thought). Activities
are interrelated to the extent that one activity depends on another activity. Inter-
dependent activities need to be coordinated and, because the output of one activity
serves as an input of another activity, something is transfered between the activities.
Problem decomposition in pharmaceutical research in general and modularization of
vaccine research in particular implies that activities cluster in sets of activities which
are strongly interrelated. According to the definition of modules in complex systems by
Simon (1962), these clusters are modules where interaction within modules is stronger
than between modules. Baldwin (2008) argues that the modular structure of activities
influences the division of work in the industry, i.e. the mapping of firms onto sets of
activities. The mapping determines which activities are coordinated inside the firm
and which activities are coordinated between firms. Next to the coordination it also
determines the intra- and inter-firm flow of inputs and outputs of activities. From a
transaction costs perspective, Baldwin (2008) argues that the boundaries of the firms
are likely to match the module boundaries. In this case transaction costs associated
with organization and transfer of inputs and outputs are low. Our typology of firm
types rests on the firm’s technological specialization in modules. Building on Baldwin’s
argument, we expect that firms cover rather self-contained sets of activities which al-
low for the production of complete components and not only parts of it. Therefore
firms of one module are not likely to be in symbiotic interdependence but rather to
be in competition. The final conclusion is that firms of one module are unlikely to
cooperate and, hence, we expect a weak technology flow among firms having the same
specialization (BurethPenin).

Summary Table 5.1 summarizes the pattern of technology flow as implied by the
discussion of firm interdependence. The expected network is strongly hierarchical. In
particular, integrated pharmaceutical firms with diverse competences in vaccines (in
the following also ‘diverse’ firms) are expected to receive technology from all other par-
ticipants; indicated by entries of one in the first column of table 5.1. Two arguments
justify this expectation. Firstly, the distribution of technological, organizational, and
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economic resources over biotechnology and integrated pharmaceutical firms implies
a vertical division of labor in the pharmaceutical industry. Secondly, pharmaceuti-
cal firms are also likely to integrate vaccine components because they have a broad
knowledge base and are able to exploit the benefits of (modular) product development.

Technology flow among biotechnology firms also is expected to be hierarchical. It
has been argued that specialized biotechnology firms have a stronger bargaining po-
sition vis-a-vis pharmaceutical firms, the more their product is developed. This gives
specialized “component” firms the incentive to develop vaccines by integrating com-
ponents. Because adjuvants and vectors are more easily substituted than antigen,
antigen firms are most likely to act as integrators. This led us to expect that there is
a technology flow from adjuvant and vector firms to antigen firms.

Firms specialized in transversal technologies are expected to follow a business model
in which they supply all other firms with generic technologies. Finally, strong coopera-
tion among firms with the same specialization is not expected because high transaction
costs prevent cooperation within modules. The discussion above neglected the role of
other firms and actors in the industry, which are subsumed in the remainder category
“Other” in table 5.1.

Table 5.1: Expected technology flow between firm types a

P
P

P
P

P
P

PP
From

To
Diverse Antigen Adjuvant Vector Diagnostic Cell Other

Diverse . 0 0 0 0 0 .
Antigen 1 0 0 0 0 0 .
Adjuvant 1 1 0 0 0 0 .
Vector 1 1 0 0 0 0 .
Diagnostic 1 1 1 1 0 0 .
Cell 1 1 1 1 0 0 .
Other . . . . . . .

a 1/0 indicates high/low technology flow respectively, (.) indicates no expectation.

5.3 Pattern of Technology Flow

The previous section developed a theoretical image of the pattern of technology flow
among firms of the vaccines industry. This section investigates to what extent the
empirical technology flow among firm types corresponds to the pattern of technology
flow as implied by the theoretical discussion. The first subsection presents the sam-
ple which consists of French vaccine firms as well as their collaborators. The data
yields the directed technology flow among firm types. The second subsection develops
a testing strategy and discusses two exact tests. Both tests assess to what extent
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the observed pattern of technology flow systematically complies with the theoretical
discussion. Testing results are presented in the last subsection. Whereas the central
role of pharmaceutical firms is strongly confirmed, results are largely inconclusive with
respect to the pattern of technology flow among biotechnology firms. Therefore, an
analysis of the in- and out-sourcing behavior of individual firms follows in the next
section.

5.3.1 Sample

The previous section developed a theoretical image of the network among firms ac-
tive in the vaccines industry. This section derives and describes the sample used for
assessing the empirical relevance of this image. Before going into the details of the
sampling process, an overview is helpful: the sample is a dynamic network among
firms and other institutions active in the pharmaceutical industry, reconstructed for
the years 1994 until 2006 inclusive. The sample population is derived in a two step
snowballing procedure; starting with a nucleus of French vaccine actors, all their part-
ners in vaccine alliances are included in the population. The entities in the sample
population are characterized by their technological competences along the categories
derived in the previous sections. Information on entry and exit, partly due to Mergers
and Acquisitions, is used to reconstruct the dynamics within the population from the
year 1994 until the year 2006. Alliances between members of the population for these
years are collected. The alliances are categorized into alliances which have or have
no vaccine content. For those with vaccine content, the direction of technology flow
is identified. This provides the information on directed vaccine alliances among firms
with specific technological characteristics needed for the analysis in the next section.

The sample is based on a two step snowballing procedure. In a first step, the nucleus
of the network is formed by all French organizations active in research on vaccines in
2005. These organizations form the nucleus because it is a well defined sub-population
of the vaccine industry and detailed information from previous research is readily
available (Bonah et al., 2007). In 2005, the French vaccine sector consisted out of 28
entities: 22 small/medium biotechnology firms, three big pharmaceutical firms and
two research institutions (Bureth et al., 2007). Some of the firms have predecessors
which are also included into the list of nucleus organizations, yielding a total of 34 legal
entities. Over time, these entities have been engaged in formal agreements with firms,
universities/public research institutes and other institutions. Their agreements have
been collected from three sources: interviews, the recap database (www.recap.com,
accessed 2007) and the firms websites. These alliances are used to expand the popu-
lation in a second step. In the second step, the collaboration partners of the French
firms extend our panel. In order to remain in the vaccine industry, a firm is added if
the respective agreement has some vaccine content (i.e. considers a vaccine product or
a method potentially connected to vaccines), or the agreement changes the ownership
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structure of the panel companies (e.g. an acquisition). This step yields another 145
international players, 123 of them being firms. The firms enter and complete the sam-
ple consisting of 157 firms (131 biotechnology firms and 26 integrated pharmaceutical
firms).

The categorization describes competences with respect to the functional elements
of a vaccine, i.e. antigen, vector and adjuvant as well as the more generic compe-
tences cells and drug discovery / diagnostics. A specific technological competence has
been assigned to a firm, if it is one of its main competences. Integrated pharmaceu-
tical firms with diverse competences in research for vaccines have been coded diverse.
Pharmaceutical firms with little competence in vaccines, signaled by few research and
commercial commitment, are coded other drug. For some firms, coded n.a., compe-
tences could not be defined. For the analysis other drug and n.a. are both joined
within the category other.

The identification of categories results for 28 cases from interviews. All other as-
signments are based on public information, mostly the firms’ web sites but also their
patents, and have been assigned by myself or other economists of our institute. Some
assignments called for judgment by the researcher. In these cases we discussed and
searched further indications. Although such assignment procedures can not be fully
objective, the joint effort increases reliability of the data. The assignment is based
on observations in 2006 and earlier, if the firm exited before. Because detailed his-
torical data is not available, the assignment of technological competences is largely
static. Changes in a firms technological competence are solely caused by mergers and
acquisitions, where one firm is completely absorbed by another firm. In those cases, it
seems plausible that the acquiring firm acquires the competences of the acquired firm.
This results in accumulation of research fields for all firm types except pharmaceutical
firms with with diverse competences in vaccine research (coded diverse) which have
been defined as being knowledgeable to some extent in all specialization fields. The
identification of categories yields one category for 132 firms, two categories for 22 firms
and three categories for 3 firms. We observe about 20 firms in each of the categories,
except for the ‘cell’ competence where we observe 8 firms. Furthermore, there are 8
firms to which no category could be ascribed. The appendix D provides a table which
summarizes the result of the categorization.

Mergers and Acquisitions led to changes in the population. Within the years 1994
and 2006, we observe 11 mergers and acquisitions among panel firms. The network is
accumulated in such a way that the successor takes over all alliances of its predecessor.
Firms enter the network when they are founded as isolates. In case the founding date
is not known, they enter with their first alliance. Entry and exit in combination
with mergers and acquisitions results in a population which changes over time. Basic
statistics on population dynamics and the alliances are provided in the appendix D.

The firms in the population and their antecedents had various alliances over time.
Most of the alliances observed are taken from the recap database (recap 2007). The

137



Chapter 5 Modularity in the Vaccine Industry

recap database gives, among others, the date of agreement and a description of the
alliance content. Based on the alliance description given by recap and public firm an-
nouncements, alliances are indicated as having vaccine content or not. For most of the
vaccine alliances a direction of technology flow from one partner to the other partner
could be assigned. In case of licensing, the donor and receiver of the product can be
clearly identified. But also in collaboration agreements often it is possible to deter-
mine the respective roles. Mostly, one partner brings in a technology developed until a
certain stage and the other partner takes over the technology for further development
and exploitation (see also for example Orsenigo et al., 2001). In cases where both
partner exploit the results of collaboration, the technology flow is in both directions
weighted by one half.

Turning to the alliances, table D.3 shows that the number of alliances has been
increasing over the years, from 9 alliances in the year 1994 up to 30 alliances in the
year 2006. Vaccine alliances take a share of around 80%, with most of them being
directed. In total, we observe 225 directed vaccine alliances. Firms are involved in
directed vaccine alliances to a differing degree. The firms’ number of alliances ranges
between 0 and 45 alliances with an average of 2.8 alliances. Out of 131 firms in 2006,
22 firms of the sample have no directed vaccine alliance, 48 firms have one directed
vaccine alliance and 61 firms have two or more directed vaccine alliances.7 The number
of in- and out-sourcing alliances per firm are similarly skewed.

Table 5.2 shows which firm types delivered technology to which other firm types
in directed vaccine alliances. This table reveals that diverse firms function in most
alliances as receiver of technology from all firm types; integrated pharmaceutical firms
in-source technology in 113 out of the 225 alliances. The role of the other firm types
is less clear because the number of firms in each category varies over years. Therefore,
the analysis in the next section provides some further insights.

5.3.2 Testing Strategy

The observed firm type interaction, aggregated over years, is given in table 5.2 and
the hypothesized firm type interaction, independent of time, is given in table 5.1.
Now, we would like to know: is the observed firm type interaction random, or is it
systematically influenced by firm interdependence as hypothesized in the ideal image
of table 5.1?

This question can be answered by following the methodology of exact tests. We
assume that the observed network is one possible realization of a random network
formation process. Under the null hypothesis, firm types are irrelevant for alliance
formation. This allows us to define a set of comparable random networks, the refer-
ence set of random networks, which could have been realized as well under the null

7The description of the alliance activity of firms is based on the alliance activity over years but for
the consilidated set of firms at the end of 2006.

138



5.3 Pattern of Technology Flow

Table 5.2: Frequencies of directed vaccine alliances a

P
P

P
P

P
P

PP
From

To
Diverse Antigen Adjuvant Vector Diagn. Cell Other

∑
Supply

Diverse 5.0 2.8 1.5 0.4 1.2 0.2 4.0 15.0
Antigen 21.4 10.2 2.2 1.9 0.7 0.7 3.1 40.1

Adjuvant 10.9 2.2 1.9 0.5 1.6 0.2 3.8 21.1
Vector 15.3 5.9 0.9 2.5 1.0 0.5 3.1 29.2

Diagnostic 29.1 5.5 2.0 2.1 5.2 0.8 7.8 52.5
Cell 11.2 6.2 1.2 1.5 0.7 2.0 2.2 25.1

Other 20.0 6.6 1.6 4.5 3.8 0.6 5.0 42.0
∑

Source 113.0 39.2 11.2 13.4 14.2 4.9 29.0 225.0

a Calculated on a year-wise basis and aggregated over years 1994-2006.

hypothesis. All networks of the reference set share features which are considered to
be invariant and influential for the aspect of the network we are interested in. Two
important features are for example the number of firms in each category and the over-
all number of alliances in the network. The reference set of random networks allows
a comparison of the observed firm type interaction with the distribution of firm type
interactions resulting within the reference set of random networks. The comparison
enables us to deduce whether the observed firm type interaction is significantly unusual
and therefore can be assumed to be non-random in the hypothesized way.

More formally, let the aspect of firm type interaction we are interested in be cap-
tured by the test statistic T (y), which is calculated on the network y. Under the
null hypothesis of irrelevance of firm types, the observed network x is assumed to be
one realization from a set of random networks. The set of random networks is con-
structed by defining invariant features shared by all networks of the set. The exact
probability of observing a test statistic equal to or more extreme than T (x) is the
sum of all probabilities over those networks which yield such extreme test statistics
(
∑

y:T (y)≥T (x) Pr(y)). The sum over probabilities equals the significance level of rejec-
tion of the null hypothesis. In the following, we assume that networks are uniformly
distributed, i.e. that each network of the reference set has the same probability of
being realized. Then, the significance level of rejection equals the fraction of networks
with “high” test statistics in the set of comparable networks.

In order to proceed we need to define an appropriate test statistic and an appropriate
reference set of random networks. Finally, because enumeration of all networks within
the reference set usually is not practicable, we need to obtain a uniformly distributed
sample of the reference set of random networks in order to approximate the distribution
of the test statistic. These steps are discussed in the following.
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Chapter 5 Modularity in the Vaccine Industry

The hypothesized ideal image provides a joint hypothesis with respect to the overall
pattern of firm type interaction (the pattern of zero-one entries) as well as hypotheses
regarding the interaction among each two firm types (single entries in each cell of the
table). The test statistic needed for the joint test necessarily differs from the test
statistic used for single hypotheses.

Single hypotheses concern the interaction of two specific firm types i and j. For
those firm type combinations ij which are coded as one (zero) in the hypothesized ideal
image, we would like to know whether we observe more (fewer) alliances than expected
by chance. The share of alliances falling into the respective firm type combination is
an appropriate test statistic. Therefore, we define for single hypothesis testing the
test statistic Tij(y) = fij(y) / N(y), where fij(y) is the ij’th entry in the firm type
interaction table of network y and N(y) is the number of alliances in the network.

The single hypotheses are one sided. For those firm type combinations where the
hypothesized ideal image displays a one, we expect many alliances. Under the uni-
form distribution assumption, the significance level of rejection equals the share of
networks from the reference family of random networks which displays a higher fre-
quency of respective firm type interactions than observed in the sample. When firm
type combinations in the ideal image are coded as zero, we expect few alliances and,
accordingly, count the number of networks which display fewer firm type interactions.

Another test statistic is needed for the joint hypothesis. The joint hypothesis states
that the observed network among firms is associated with the overall hypothesized pat-
tern of firm type interaction. A simple and yet meaningful test statistic is the share
of alliances falling into those firm type combinations which are assumed to be interde-
pendent. More formally, we choose the test statistic T (y) =

∑

i

∑

j dij fij(y) / N(y),
where the sums are over all firm type combinations ij, dij is the entry in the hypothe-
sized firm type interaction matrix, fij(y) is the entry in the firm type interaction table
of network y and N(y) the number of alliances in the network. 8

8Whereas the hypotheses are stated on the level of firm types, the principle unit of observation is
the network of alliances between firms. Therefore, test statistics are calculated on the level of the
network among firms (i.e. based on the adjacency matrix representing alliances among firms) or
on the level of firm type interaction (i.e. based on the firm type interaction matrix). In the former
case one needs to map the hypothesized firm type interaction on the population of firms and derive
a hypothesized network among firms. In the latter case one needs to map the network among firms
on the firm types. Because the latter is non-injective one might consider whether there is some
loss of information. In particular, in case the observed network among firms is weighted, the non-
injective mapping causes the loss of information on the variance of firm interaction. However, this
is not a problem when we handle binary adjacency matrices. Therefore, we derive test statistics on
the level of firm type interaction which lead to exactly the same ranking of networks as obtained
by similar appropriate test statistics on the level of firms. For example, the test statistic proposed
yields the same ranking of networks as does the correlation of the hypothesized matrix of alliances
with the empirical matrix of alliances (as long as the network density within the set of comparable
networks is fixed). To see this, assume there is an empirical network y and another network y′

with only one link being different. Both are correlated with the hypothesized firm network h such
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5.3 Pattern of Technology Flow

For deciding on the reference family of random networks, it is important that the
ideal image of firm type interaction reflects two types of firm interdependence. The first
type is the interdependence between large integrated pharmaceutical firms and small
specialized biotechnology firms due to the separation of financial and technological
resources. This kind of interdependence led to the hypothesis that diverse firms occupy
central positions in the network, being the sinks of technological flow. Note that strong
interdependence is assumed with all other firm types and no difference is made between
different types of specialized firms. In the ideal image of firm type interaction, this
is reflected in the entries of the first column being all one. Thus, the focus of this
hypothesis is on the position of diverse firms in the network, characterized by the
frequency of in-sourcing alliances irrespective of firm types.

The second type of interdependence is assumed among specialized biotechnology
firms due to the separation of different fields of technology and their use and interplay
within the value chain. This kind of interdependence led to the hypotheses that
specific firm type interactions are more likely to occur than others. For example we
expect a higher technology flow from vector firms to antigen firms than to adjuvant
firms because of the central importance of the antigen function in a vaccine. Such
considerations imply a certain pattern in partner choice (e.g. vector firms delivering
rather antigen firms than adjuvant firms).

To summarize, financial-technological interdependence rather yields hypotheses on
the frequency of alliance formation whereas inter-technological interdependence rather
yields hypotheses on the pattern of partner choice. This can be taken into account
in hypothesis testing. Different constraints on random networks define the set of
comparable random networks which allows for testing frequency and pattern of alliance
formation jointly or for testing only pattern of alliance formation.

First one may restrict to all networks which have exactly the same (graph) structure
with the only random element being that firms are randomly assigned to nodes. Using
this set of random graphs allows for testing whether firm types are associated with the
firms’ network position. Because the firm’s network position results from frequency
of alliance formation and pattern of alliance formation, such a reference distribution
yields a joint test on the relevance of firm types for frequency and pattern of alliance
formation. The advantage of this approach is that no assumptions additional to the
irrelevance of firm types need to be employed. Especially no further assumptions
regarding the network formation process are introduced, because all networks of the
reference distribution display the same graph structure. The disadvantage is that the
contribution of rate and pattern to the significance result can not be distinguished. In
testing for alliance formation implied by firm interdependence this creates a problem,

that Cor(y, h) < Cor(y′, h). Because density is fixed in the binary adjacency matrix, mean and
variance of the adjacency matrices of y and y′ are equal. Therefore, any change of an alliance
which causes higher correlation of y′ is going to change the firm type interaction matrix as well.
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Chapter 5 Modularity in the Vaccine Industry

because frequency of alliance formation of firm types may differ for other reasons than
interdependence.

Therefore, it is reasonable to specify a second reference family of random graphs by
restricting the in- and out-going alliances for all firms to be the same as in the observed
network. Fixing the frequency of alliance formation allows only partner choice to be
random. Hence, only the irrelevance of firm types for partner choice is tested. The
advantage is that the frequency of alliance formation is controlled for completely.
Besides losing the aspect of frequency of alliance formation, one disadvantage is the
implicit assumption of independence of alliance formation during network formation;
each network with the same distribution of in- and out-going ties is assumed to be
equally likely irrespective of further structural characteristics.

In the following, we provide hypothesis tests for each of the family of random graphs
discussed. However, for neither family of random graphs exact statistics can be ob-
tained because it is not practicable to enumerate all their members. Therefore, testing
is based on a uniformly distributed sample of the set of random graphs which is ob-
tained by Monte Carlo techniques.

For the first reference family of random graphs, a sample of random networks having
the same structural properties as the observed network is drawn by applying the
Quadratic Assignment Procedure (QAP). Within the QAP, firm types observed in the
population are randomly assigned to firms. For static networks, which are represented
by a single adjacency matrix, drawing a uniform sample of random networks is simple.
One random draw is obtained by random permutation of the firm labels. However,
our case is more complicated because we observe a dynamic network with changing
population and varying firm types ascribed to firms. Simply permuting the firm labels
within the adjacency matrix of each year would not respect the evolution process of
the network which causes ascribed firm types to vary over time. In our setting it is
more appropriate to permute the firm types initially ascribed to firms. Therefore, one
draw from the reference family is obtained by random permutation of the firm types
initially ascribed to firms, letting the network evolve over years as described in section
5.3.1, extract the year wise adjacency matrices and calculate the firm type interaction
matrix aggregated over years.

The second reference family of random graphs are all networks with the same row
and column sums as the observed network. Because firm identities as well as their
frequency of alliance formation are fixed, network evolution need not to be considered.
One draw from the reference family is obtained by drawing one random adjacency
matrix for each year and aggregating them. Due to the procedure, the test is called
“adjacency matrix permutation test” in the following. The sample is obtained with a
Markov Chain Monte Carlo (MCMC) algorithm developed by Verhelst (2008), which
is implemented in R in the package RaschSampler. This MCMC sampler converges
towards a uniform stationary distribution of random networks of the family of zero-one-
matrices with given marginals. Important parameters for the MCMC algorithm are the
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5.3 Pattern of Technology Flow

burn-in period, i.e. the number of steps until convergence to stationary distribution
should be reached and the step size, i.e. the number of steps between two consecutive
draws in order to avoid correlation between draws. They are set large enough so that
further increase does not change the result.

5.3.3 Results

The QAP test and the adjacency matrix permutation test in combination yield the
following results. The hypotheses on technology flow from biotechnology firms to phar-
maceutical firms is strongly supported by the data. The hypotheses on the hierarchical
relationship among biotechnology firms is weakly supported. In particular, the data
does not show a triadic configuration, where adjuvant and vector firms supply technol-
ogy to antigen firms. However, as hypothesized, technology flow between adjuvant and
vector firms is weak and antigen firms seem to integrate components for development
of vaccines. The following discussion first focuses on the QAP test results and then
on the adjacency matrix permutation test results. Both tests complement each other
by focusing on different aspects. A summary is given at the end of this section.

QAP test Consider first the QAP test results in table 5.3. This permutation test
assumes that the observed pattern of technology flow among firm types is simply
determined by the structure of the alliance network in combination with the number
of firms of each specialization. The null hypothesis is that firm types are not associated
with the pattern of technology flow. Under the null hypothesis, a random permutation
of firm labels is likely to yield a pattern of technology flow which is similar to the
observed one.

The joint test of irrelevance of firm categories for the pattern of technology flow is
rejected at a significance level below 0.1%. This means that 99.9% of all permutations
result in a technology flow among hypothesized firm type combinations which is weaker
than actually observed.9

The high significance of the joint QAP test is largely due to the central role of
pharmaceutical firms with diverse competences in research on vaccines. These firms in-
source technology from all biotechnology firms at a significantly high rate (indicated by
significant entries in the first column of table 5.3). This result has been expected from
the hypotheses. However, the literature discussion provides two explanations. The first
is the vertical division of labor due to financial and technological interdependence. The
second is the potential role of pharmaceutical firms as system integrators. To what
extent the latter argument holds is not answered by the test. The case of Sanofi
Pasteur, presented in the next section, however, suggests that the strong technology
flow is at least partly caused by integrating activities of pharmaceutical firms.

9Hypothesized firm type combinations are indicated by entries of one in table 5.1.
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Table 5.3: Quadratic Assignment Procedure (QAP) test results a

P
P

P
P

P
P

PP
From

To
Diverse Antigen Adjuvant Vector Diagnostic Cell Other

Diverse
2.22 1.22 0.67 0.19 * 0.52 0.07 1.78

0/2.04/4.89 0.67/2.59/5.11 0.37/1.98/4.22 0.44/2.1/4.67 0.44/2.21/4.89 0/0.92/2.52 0.44/2.58/5.56

Antigen
9.52 * 4.52 0.96 0.83 0.31 * 0.3 1.37

0.56/2.7/6.04 0.86/3.16/6.04 0.59/2.49/5.19 0.81/2.65/5.3 0.67/2.66/5.7 0.11/1.15/2.78 1/3.19/6.39

Adjuvant
4.85 * 0.96 0.85 0.22 * 0.7 0.07 1.7

0.37/2.03/4.59 0.57/2.47/5.19 0.22/1.8/4.22 0.44/2.09/4.76 0.3/2.02/4.44 0/0.89/2.37 0.44/2.4/4.9

Vector
6.81 * 2.61 0.41 * 1.11 0.46 * 0.22 1.37

0.26/2.2/4.74 0.74/2.64/5.09 0.44/2.12/4.56 0.33/2.11/4.67 0.48/2.14/4.54 0.07/0.97/2.67 0.74/2.68/6

Diagnostic
12.93 * 2.43 0.89 0.94 2.3 0.37 3.48

0.44/2.29/5.22 0.78/2.62/4.93 0.48/2/4.48 0.44/2.27/5.02 0.3/2.11/4.67 0/0.95/2.57 0.44/2.7/5.81

Cell
5 * 2.78 * 0.52 0.67 0.33 0.89 0.96

0/0.97/2.74 0.19/1.19/2.61 0/0.9/2.28 0/1.04/2.67 0/0.97/2.54 0/0.38/1.14 0.11/1.14/2.89

Other
8.89 * 2.93 0.7 2 1.67 0.26 2.22

0.44/2.6/5.78 0.81/3.15/6.16 0.44/2.29/5.33 0.67/2.69/5.59 0.59/2.59/5.52 0/1.15/3.26 0.44/3/6.22

a Cell entries display observed (simulated 5-percentile/average/95-percentile) frequencies by total number of alliances. * denotes signifi-
cance at 5% rejection level of one-sided test. Significance level of joint hypothesis is below 0.1%. Results are based on 400 simulations.
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5.3 Pattern of Technology Flow

The QAP test yields also significant results on technology flow among specialized
biotechnology firms. Notably, technology flow between vector and adjuvant firms is
weak (see entries vector -adjuvant and adjuvant-vector in table 5.3). This finding
is coherent with the arguments put forward in the last section. Recall that both
technologies are more easily substituted than antigens. This puts adjuvant and vector
firms in a weak bargaining position to in-source antigens. However, both technologies
are complementary only when joint with an antigen and, therefore, weak technology
flow between these two firm types has been expected.

Furthermore, as hypothesized, technology flow is directed from transversal biotech-
nology firms to co-specialized biotechnology firms. Significant are the strong technol-
ogy flow from cell firms to antigen firms as well as the weak technology flow from
antigen firms and vector firms to diagnostic firms (see entries cell -antigen, antigen-
diagnostic, and vector -diagnostic in table 5.3).

However, for interpretation one needs to keep in mind that within the QAP test
the firms’ rate of alliance formation plays a role. Assume for example that firms of
two firm categories have a very high rate of alliance formation relative to other firms.
Assume further that all firms choose randomly firms as alliance partners, irrespective
of specialization. Then, the QAP test may find technology flow among the two firm
categories having a high rate significantly strong; solely because of their high rate of
alliance formation. The arguments which support the hypothesized pattern of tech-
nology flow among biotechnology firms mostly ignore how much technology actually
is transfered but focus on to whom technology is transfered. The adjacency matrix
permutation test controls for the firms’ rate of alliance formation. Therefore, it is
appropriate to discuss the relationships among biotechnology firms with the results of
the adjacency matrix permutation test in view.

Adjacency matrix permutation test Results of the adjacency matrix permutation
test are given in table 5.4. This test assumes that the observed pattern of technology
flow simply results from the specialization of each firm in combination with its rate
of alliance formation. The null hypothesis is that partner choice is independent of
firm specialization. Keeping fixed the number of in- and out-going alliances for each
firm, the test informs on the relative importance of firm specialization in technology
sourcing and supply.

The joint hypothesis test is significant at a rejection level of 10.5%. This means
that we observe in 10.5% of permutations with random partner choice more directed
alliances which are in accord with the hypotheses than are in the sample. Thus, the
null hypothesis of random partner choice can not be rejected with high confidence.

Nevertheless, some technology transfers between firm categories are significant. Sig-
nificant entries in table 5.4 suggest that i) pharmaceutical firms are unlikely to source
technology from other pharmaceutical firms (see entry diverse-diverse), ii) pharma-
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Table 5.4: Adjacency matrix permutation test results a

P
P

P
P

P
P

PP
From

To
Diverse Antigen Adjuvant Vector Diagnostic Cell Other

Diverse
2.22 * 1.22 0.67 0.19 0.52 0.07 1.78

2.67/3.96/5.33 0.44/1.35/2.37 0/0.46/1.04 0/0.46/1.11 0/0.56/1.33 0/0.27/0.7 0.44/1.39/2.67

Antigen
9.52 4.52 * 0.96 0.83 0.31 * 0.3 1.37 *

8.15/9.79/11.56 1.85/2.95/4.07 0.41/1.05/1.85 0.59/1.3/2.11 0.37/1.07/1.89 0.06/0.37/0.78 1.48/2.58/3.78

Adjuvant
4.85 0.96 0.85 0.22 0.7 0.07 1.7

3.63/4.98/6.37 0.7/1.54/2.52 0/0.43/1 0.07/0.58/1.22 0.11/0.62/1.26 0/0.18/0.56 0.44/1.32/2.37

Vector
6.81 2.61 0.41 1.11 0.46 0.22 1.37

4.44/6.01/7.44 1.53/2.55/3.65 0.22/0.71/1.33 0.26/0.94/1.63 0.15/0.76/1.52 0.05/0.31/0.63 1.04/2.02/3.11

Diagnostic
12.93 * 2.43 * 0.89 0.94 2.3 0.37 3.48

8.44/10.69/12.78 2.9/4.34/5.83 0.52/1.25/2.1 0.74/1.59/2.59 0.67/1.63/2.81 0.15/0.52/0.96 1.78/3.27/4.78

Cell
5 2.78 0.52 0.67 0.33 0.89 * 0.96

3.89/5.2/6.52 1.2/2.06/3 0.12/0.44/0.91 0.15/0.65/1.19 0.22/0.82/1.44 0/0.3/0.67 0.67/1.61/2.59

Other
8.89 2.93 0.7 2 1.67 0.26 2.22

8/10.02/12.44 2/3.36/4.74 0.22/0.81/1.52 0.22/1.18/2.22 0.67/1.68/2.78 0/0.47/0.96 0.89/2.48/4

a Cell entries display observed (simulated 5-percentile/average/95-percentile) frequencies by total number of alliances. * denotes significance
at 5% rejection level of one-sided test. Significance level of joint hypothesis is 6.6%. Results are based on 400 simulations.
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5.3 Pattern of Technology Flow

ceutical firms are likely to source from diagnostic firms (see entry diverse-diagnostic,
iii) technology sourcing among antigen and diagnostic firms is weak in both directions
(see entries antigen-diagnostic and diagnostic-antigen), and iv) antigen firms as well
as cell firms are likely to partner with firms having the same specialization (see entries
antigen-antigen and cell -cell). Each of these outcomes is discussed in the following.

i) Technology transfers among pharmaceutical firms are rare, given their overall
alliance activity. One explanation might be that pharmaceutical firms among them-
selves are in competitive interdependence which induces alliance formation to a lesser
extent than symbiotic interdependence.

ii) Symbiotic interdependence is likely to induce the significantly strong technology
flow from diagnostic firms to pharmaceutical firms. Taking into account more detailed
information from the recap data base and companies’ newsletters on the alliances
confirms that the strong technology flow is mainly due to supply of diagnostic kits and
other research tools from diagnostic firms to pharmaceutical firms. This observation
attests to the pharmaceutical firms’ strong in-house research efforts focused on product
development.

iii) Technology flow from antigen firms to diagnostic firms is significantly weak,
given their overall involvement in technology transfers. This has been expected on the
consideration that technology flow is directed from upstream to downstream firms.
The relatively weak supply of diagnostic technology to antigen firms is not explained
easily. From a technical point of view one may state simply that antigen firms are
more apt to source technology from other firm types.10

iv) Finally, we observe a significant number of technology transfers within the group
of antigen firms and cell firms. This is in contrast to the hypotheses. The argument for
not expecting within-group technology flow was that transaction costs for technology
transfer between firms are low across module boundaries but high within modules.
Therefore, it was expected that firms do research on technologies of their fields rather
self-contained and deliver their output as an input for research to firms of other fields.
The question is to what extent the empirical observation argues against this reasoning.
Because the number of alliances is relatively small, it is reasonable to investigate
additional information on these alliances. Additional information has been collected
from the recap database and the companies’ press releases as well as SEC filings.

First, we focus on the technology flow among firms with antigen specialization.
The entry in table 5.2, which presents the technology flow among firm types, assigns
a value of 10.2 to technology flow from antigen to antigen firms. The number is
rational because each alliance is assumed to have an overall weight of one which is
split equally over all the technologies of a multi-technology firm. In fact, the entry of
10.2 in table 5.2 is caused by 17 alliances among (multi-technology) firms with antigen

10Specifically the supply of cell technology, the second group of generic technologies, to antigen firms
has been found to be significantly strong in the QAP test.
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specialization. Out of these 17 alliances, only six alliances are among firms which are
only specialized in antigen and in eleven alliances firms with multiple specialization are
involved. Therefore, the alliances focus not only on antigen technologies. In particular,
the alliances govern the transfer of four antigens, two adjuvants, two vectors, and one
cell technology. Furthermore four alliances govern manufacturing agreements or extra-
mural research and for three alliances no detailed information is available.11 None
of these alliances is actually a joint research project to develop an antigen but all
focus on complete products by joining complementary technologies. Thus, we may
conclude that the high interaction among antigen firms is not counter to the argument
that technology transfers are mostly across modules. Rather, the result confirms the
hypothesis that antigen firms are susceptible to act as system integrators.

Also, technology transfers among cell technology firms do not actually target devel-
opment of cell lines. The technology flow of 2 among cell firms in table 5.2 is due to
seven alliances including firms with multiple specialization. Six out of seven alliances
consider licensing of two widely applied cell lines.12 In these alliances, interaction
among firms is weak. Therefore, the significantly strong technology flow among cell
firms is not counter to the argument that transaction costs are high within module
boundaries. However, the data also does not support that firms having the same
specialization act as competitors and, therefore, are unlikely to transfer technology.

Summary We may summarize the main results of both tests in four points. Firstly,
pharmaceutical firms with diverse competences in vaccine research in-source technol-
ogy from all biotechnology firms at a high rate. They are central, downstream in the
industrial network. This is confirmed by significant entries in the first column of table
5.3.

Secondly, the hypothesized hierarchical configuration among the three component
firms is not clearly supported by the data. The hypothesis was that adjuvant and
vector firms supply technology to antigen firms but not to each other. Contrary to
expectations, adjuvant and vector firms are not particularly likely to supply technology
to antigen firms (see table 5.4). However, technology flow among adjuvant and vector
firms is weak as expected. This is confirmed by significantly few technology transfers in
the QAP test, table 5.3, and is also visible but not significant in the adjacency matrix
permutation test, table 5.4. Furthermore, antigen firms are susceptible to transfer
technology among each other (see table 5.4). A closer look on these alliances suggests
that within-group interaction among antigen firms is due to the integrating activities
of antigen firms.

11It is at least notable that only in three alliances firms supply technology which is not considered
to be their main competence. This supports the assumption that, in principle, the content of
technology flow corresponds to the firm’s specialization.

12In the seventh alliance an antigen is supplied by a firm with specialization antigen and cell.
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Thirdly, technology tends to flow from biotechnology firms with transversal tech-
nologies to biotechnology firms specialized in components and not vice versa. The
QAP test assigns significance to the weak technology flow from antigen and vector
firms to diagnostic firms. The adjacency matrix permutation test assigns significance
to the weak technology flow from antigen firms to diagnostic firms. However, also
technology flow from diagnostic firms to antigen firms is significantly unlikely (see
table 5.4).

Fourthly, the hypothesis that few technology transfers take place among firms hav-
ing the same specialization is not confirmed. Within-group interaction is particularly
strong among antigen firms as well as among cell firms, being significant in the ad-
jacency matrix permutation test. Furthermore, adjuvant, vector and diagnostic firms
tend to partner among each other. This however is not significant.

For interpretation, note that the interdependence between integrated pharmaceuti-
cal and biotechnology firms is strongly supported, whereas evidence for the hypothe-
sized hierarchical technology transfer among biotechnology firms is weak.

5.4 Firm Cases

The previous analysis investigates the technology flow among firm types. The analysis
confirms that the group of integrated pharmaceutical firms takes a central position
by in-sourcing technology. However, technology flow among specialized biotechnol-
ogy firms is relatively weak and the pattern between firm types is not very strong.
This section considers the alliance behavior of two individual firms in order to better
understand and interpret these results.

The central position of integrated pharmaceutical firms is in accord with the liter-
ature discussion. However, the literature discussion builds on several arguments. In
order to gain a better intuition on how to interpret our results, we consider the alliances
of one pharmaceutical firm, Sanofi Pasteur. We find that this company indeed exploits
the benefits of modular design and acts as an integrator of vaccine components.

The diffuse pattern of technology flow among specialized biotechnology firms had
not been expected from the discussion of the literature. The case of Crucell, a biotech-
nology firm with multiple competences, helps to better understand this result. This
case shows that in general the arguments invoked in the literature discussion hold.
However, it also suggests that the type of technological specialization does not prede-
termine the business model followed by the firm, which was an implicit assumption in
the literature discussion in section 5.2.

5.4.1 The Case of Sanofi Pasteur

Sanofi Pasteur is the most actively in-sourcing company in the sample. The five
most actively technology sourcing companies are Sanofi Pasteur (45 alliances/41 in-
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sourcing), Merck & Co., Inc. (Merck) (21/19), GlaxoSmithKline plc (GSK) (22/14)
, and MERIAL S.A. (Merial) (17/17). Together they are involved in 36% of all sam-
pled vaccine alliances. All five firms are integrated pharmaceutical firms with diverse
technological competences. All of them target various therapeutic areas for which pre-
ventive and/or therapeutic vaccines are under development. Roche, Sanofi Pasteur,
Merck and GSK focus on human vaccines. Their therapeutic areas are partly but not
completely overlapping. Merial is in the veterinary business. All five firms take a con-
siderable share of their worldwide markets, which signals their capability to develop
and commercialize vaccines.

We examine more closely Sanofi Pasteur because all its directed alliances on vaccines
entered the sample. It had 45 alliances between 1994 and 2006 which entered the
sample. This significantly influenced the analysis results which is based on a sample
of 225 alliances.

Basic information Sanofi Pasteur is the human vaccines division of sanofi-aventis.
Sanofi Pasteur is an integrated pharmaceutical business with diverse competences in
vaccines research. It covers the whole value chain from research and development from
production to commercialization. To date Sanofi Pasteur commercializes 21 vaccines
all over the world with a slightly varying product portfolio in the different countries
(Sanofi Pasteur, 2009). In Europe, its vaccines are marketed by Sanofi Pasteur MSD,
a joint venture of the French Sanofi Pasteur S.A. and the American Merck & Co.
Inc.. Sales worldwide in 2008 amounted to approximately 2.8 billion euros, implying
a market share of around 20% on the global vaccine market (sanofi-aventis, 2008,
p.39).13

Sanofi Pasteur currently has 28 vaccines under development (Sanofi Pasteur, 2009).
Products under development are traditional prophylactic vaccines but also vaccines
which open up new markets such as a prophylactic vaccine against HIV or a thera-
peutic vaccine against HPV (human papillomavirus) which might cause cancer. The
new vaccines have been developed partly in-house, external or in joint partnerships.

13The business originates from Pasteur Mérieux Connaught, the vaccines division of the Rhône-
Poulenc group. The subsequent mergers of Rhône-Poulenc with Hoechst AG to form Aventis in
1999 and Aventis with sanofi-synthélabo to form sanofi-aventis in 2004 led to several name changes
of the respective vaccine businesses. Consistent with these name changes, all alliances conducted
by Pasteur Mérieux Connaught, Aventis Pasteur and Sanofi Pasteur have been joined to build
the alliance Portfolio presented here under the heading of Sanofi Pasteur. In Europe, Sanofi
Pasteur markets its vaccines via Sanofi Pasteur MSD, which is a joint venture of the French Sanofi
Pasteur S.A. and the American Merck & Co., Inc.. Pasteur MSD has been originally founded
in 1994 as Pasteur Mérieux MSD; a joint venture of Merck & Co. Inc. and Pasteur Mérieux
Connaught, a subsidiary of Rhône-Poulenc. Each party contributed its European vaccine business.
The subsequent mergers of Rhône-Poulenc with Hoechst to form Aventis in 1999 and Aventis with
sanofi-synthélabo to form sanofi-aventis in 2004 led to name changes of the European vaccine joint
venture paralleling the name changes of the vaccines business but with ’MSD’ appended. All of
the alliances discussed are of the subsidiary of sanofi-aventis and not the joint venture with Merck.
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Acquisition of external technologies and products have been via alliances (including
licenses) as well as acquisitions.14

Alliances Table 5.5 summarizes the alliances of Sanofi Pasteur which entered the
sample. Between 1994 and 2006, Sanofi Pasteur had 51 alliances with partners of
various technological specialization (see first four columns of table 5.5).15 In most
of the alliances, Sanofi Pasteur in-sources technology, i.e. it acquires property rights
on the (resulting) technology of the alliance (see column ‘Techn. Flow’ of table 5.5).
Alliances include joint research, extramural research as well as pure licensing agree-
ments. Examples in table 5.5 are alliances with ID 1, 40, and 47 respectively. This
means that Sanofi Pasteur does active research in a broad range of projects jointly
with collaborators as well as in isolation. Therefore, the business is likely to have the
broad knowledge base which is necessary to act as system integrator as emphasized
by Brusoni et al. (2001).

Indeed, Sanofi Pasteur in-sources vaccine components besides transversal technolo-
gies and vaccines. In some alliances, Sanofi Pasteur accesses vaccine components to
develop vaccines against currently untreated diseases. For example in 2002, the busi-
ness licensed two cancer related antigens from Epimmune Inc. (alliance ID 46 in table
5.5). Other vaccine components have been in-sourced in order to enhance or to extend
the indication of already marketed vaccines. Here, one example would be the alliance
with Emergent BioSolutions Inc. in 2004, where the alliance partner provides an anti-
gen in order to extend the indication of Sanofi Pasteur’s Meningitis vaccine (alliance
ID 50 in table 5.5). Finally, we observe that in-sourced vaccine components are in-
troduced into several vaccines. The first alliance (ID 1) provides a good example for
this practice. In 1994 the business (at that time named Pasteur Merieux Connaught)
licensed naked DNA vaccine technology from Vical Inc.. Both firms agreed that Sanofi
Pasteur has the exclusive right to use this technology for six different vaccines.16 Note
that according to Ulrich (1995), using the same component in several products is one of
the advantages of a modular architecture (see section 5.2.3). Furthermore, we observe
that Sanofi Pasteur enhances existing product lines such as its flu vaccines and vac-
cines against children’s diseases; the second advantage noted by Ulrich (1995). These
benefits of modularity increase with the number of products. Therefore, the case of
Sanofi Pasteur shows that firms with a large vaccine portfolio potentially profit more

14For example, in September 2008, Sanofi Pasteur acquired its former collaborator Acambis Plc
(Acambis). Besides three joint development projects with Sanofi Pasteur, Acambis had two further
vaccines under development. All the projects of Acambis have been based on Acambis’ proprietary
technology ChimeriVax for recombinant vaccines. Thus, Sanofi Pasteur acquired at least five
products in development and one generic technology (Sanofi Pasteur, 2008).

15Six alliances of Sanofi Pasteur did not enter the sample because they are with non-profit institutions.
16These are vaccines against cytomegalovirus (CMV), respiratory syncytial virus (RSV), Lyme disease,

Helicobacter pylori, malaria, and herpes zoster
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from the modular architecture.
Finally, a vertical division of work between the business and its partners is prevalent.

Partners mostly deliver research results and early stage development projects which
are carried further by Sanofi Pasteur towards commercialization. This observation
strengthens the argument in the literature section, that a vertical division of labor
between biotechnology firms and pharmaceutical firms exists due to heterogeneity of
resources.

Summary The literature discussion put forward two arguments for why integrated
pharmaceutical firms are likely to in-source technology from all other firm types. The
first argument is that the firm’s endowment with technological, organizational and
financial resources implies a vertical division of labor between integrated pharmaceu-
tical firms and specialized biotechnology firms. Indeed, Sanofi Pasteur has strong
capabilities in development and commercialization, which it leverages in practically
all its alliances. The second argument is that integrated pharmaceutical firms are
likely to act as an integrator of individual components because they have the neces-
sary knowledge for integration and profit from integration. Also this is true for Sanofi
Pasteur. Own research, alliances, and acquisitions seem to give the business the neces-
sary architectural and component knowledge. Furthermore, benefits from the modular
vaccine architecture seem to be especially high. Sanofi Pasteur’s large vaccine port-
folio allows for in-sourcing individual components in order to enhance one product or
simultaneously several products of its portfolio. Furthermore many research projects
on untreated diseases are leveraged by in-sourcing external technology.
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Table 5.5: Alliances of Sanofi Pasteur

ID Year Partner name Partner techn. a Flow Technology Product b Division of workc

Partner Sanofi Pasteur

1 1994 Vical Vector Source Vector Six naked DNA V R R/D/Prod/Com
2 1994 Antex Biologics Antigen Source n.a. Otitis Media V n.a. n.a.
3 1994 Avant Immuno. Vector Source Vec./Adj. Flu/Lyme V - D/Prod/Com
4 1995 Cornell University Bi-dir. n.a. Tuberculosis V n.a. n.a.
5 1995 Id Biomedical Ant./Adj./Oth. n.a. n.a. Tuberculosis V n.a.
6 1995 Emisphere Tech. Oth. Source Other Delivery for Flu V R D/Prod/Com
7 1995 Vaxcel Adj./Oth. Source Adjuvant Flu V n.a. n.a.
8 1995 Avant Immuno. Vector Source Vec./Adj. Delivery for Vs R D/Prod/Com
9 1995 Nventa Biopharma. Adjuvant n.a. n.a. n.a. n.a. n.a.

10 1995 Id Biomedical Ant./Adj./Oth. n.a. n.a. Tuberculosis V n.a. n.a.
11 1995 Protein Sciences Cell Source Antigen Flu V - D/Prod/Com
12 1995 Oravax Antigen Bi-dir. Ant./V H. Pylori V D (JV) D (JV), Com
13 1995 North American V. Antigen Source Vaccine Meningitis B V D D, Fin.
14 1995 Rgene Therapeutics Vector n.a. n.a. n.a. n.a. n.a.
15 1996 Human Genome Sc. Diagn. Source Other Genome of H. Pylori R/D (JV) R/D (JV)
16 1996 Iscotec Adjuvant n.a. Adjuvant n.a. n.a. n.a.
17 1996 Corixa Adjuvant Source Adjuvant Several V – R/D/Prod/Com
18 1997 Imclone Systems Other supply Vaccine HIV V D Prod/Com
19 1997 Rhone-Poulenc Rorer Diverse n.a. n.a. Gene therapy n.a. n.a.
20 1998 Therion Biologics Ant./Adj. Source Vaccine Cancer V R/D Fin
21 1998 Vaxgen Ant./Cell Source V (boost) HIV V D D
22 1998 Zycos Ant./Vec. Source Antigens Cancer V – R/D/Prod/Com
23 1998 Btg Diverse Source Vector Unkn. V – R/D
24 1998 Oravax Antigen Source Ant./Vec. Dengue V R/D Fin/Com
25 1998 Lion Bioscience Diagn. Source Diagnostics Several V R
26 1998 Medimmune Ant./Oth. Source Antigen Enhanced Lyme V – R/D
27 1999 Acambis Ant./Cell Source Ant./Vec. West-Nile V D Fin/Com
28 1999 Visionary Med. Prod. Other Source Other Delivery for Flu V Prod. D
29 1999 Rhein Biotech Ag Adj./Cell Source Other Hepatitis B Antibody Prod
30 1999 Zycos Ant./Vec. Source Antigens Cancer V n.a. R/D/Com
31 1999 Dyax Diagn. Source Antigen Unkn. V R R/D/Com
32 1999 Chiron Ant./Adj./Cell Source Vaccine CMV V – D/Com
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Alliances of Sanofi Pasteur (continued)

ID Year Partner name Partner techn. a Flow Technology Product b Division of workc

Partner Sanofi Pasteur

33 2000 Eos Biotechnology Diagn. Source Antigen Cancer V R R/D
34 2000 Chiron Ant./Adj./Cell Source Vaccine Menj./Fluad V Prod Com
35 2000 Active Biotech Ant./Adj. Source Vaccine Cholera V Prod Com
36 2001 Fibrogen Other Source Other Stabilizer for live V D D
37 2001 Vivalis Cell Source Cell Several V – Prod
38 2001 Sbl Vaccin Ab n.a. Source Cell Unkn. Vaccine Prod Com
39 2001 Transgene Ant./Vec. Bi-dir. Vector n.a. n.a. n.a.
40 2001 Maxygen Ant./Diagn. Source Ant./Vec. Unkn. V R/D Fin/Com
41 2002 Epimmune Antigen Source Antigen Cancer V – R/D
42 2002 Nautilus Biotech Adj./Oth. Source Cell Unkn. V R Fin
43 2003 CruCell / Berna Rhein Vec./Cell/Diagn. Source Cell Unkn. V n.a. D/Prod
44 2003 CruCell / Berna Rhein Vec./Cell/Diagn. Source Cell Flu V – Prod
45 2004 Provalis Other Source Vaccine S. Pneum. V R D
46 2005 Agensys Ant./Oth. Source Target Cancer V – R/D/Prod/Com
47 2005 Eisai n.a. Source Adjuvant Unkn. V – R/D
48 2005 Becton Dickinson Diagn./Oth. Source Other Delivery unkn. V R D
49 2006 Nabi Ant./Oth. Source Other Rabies Antibody Prod D/Com
50 2006 Emergent Biosolutions Ant./Oth. Source Antigen Meningitis B V D D/Com/Fin
51 2006 Medigene Vec./Oth. Source Diagnostics T-Cell Diagn. D Fin

a Ant. - Antigen, Vec. - Vector, Adj. - Adjuvant, Diagn. - Diagnostics, Oth. - Others V. - Vaccine(s), n.a. - not available, unkn. - unknown
b Menj. - Menjugate, CMV - Cytomegalovirus, S. Pneum. - Streptococcus pneumoniae
c R - Research, D - Development, Prod - Production, Com - Commercialization, Fin - Financing, JV - Joint Venture,

- - no contribution besides technology licensing
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5.4 Firm Cases

5.4.2 The Case of Crucell

The technology flow among specialized biotechnology firms does not show the clear
pattern which has been implied by the literature discussion. One reason might be
that the theoretical argumentation was wrong or incomplete. Another reason might
be that simplifying assumptions in the empirical analysis yield misleading results.
The following case on Crucell N.V. (in the following Crucell or the company) serves
to clarify these issues. The company has been chosen because it is a multi-technology
firm which grew from a specialized biotechnology firm to an integrated pharmaceutical
firm. Thus, the case allows us to review the argumentation of the literature discussion
as well as simplifying assumptions of the empirical analysis.

Incorporation Crucell is a limited liability company incorporated in The Nether-
lands. Crucell has been incorporated in the year 2000 as the holding company of
Crucell Holland B.V., which resulted from the acquisition of U-BiSys B.V. (U-BiSys)
by IntroGene B.V. (IntroGene). In the same year, the company had its initial public
offering (IPO) on Euronext and NASDAQ. After the merger, total assets reached 200
million Euros. An income of about 7 million Euros from licensing revenues (6 million
Euros) and contract research and governmant grants (1 million Euros) faced expences
from ordinary activities of about 15 million Euros for research and overhead (each
about 7.5 million Euros) (Crucell N.V., 2001, p.50). End of December 2000, Cru-
cell had 110 full-time employees, 85 of whom were engaged in, or directly supported,
research and development activities, and 25 were in administrative and business devel-
opment positions (Crucell N.V., 2002, p.46). Thus, the merger generated a very large
biotechnology firm. The number of employees as well as R&D spending double those
of a typical biotechnology firm having an age between 10 and 15 years (EuropaBio,
2005, p.21).

Technological and business development For its further development, Crucell built
on the technologies developed by U-BiSys and IntroGene. IntroGene has been founded
in 1993 by the two scientists Jack Roth and Dinko (Domenico) Valerio. At this
time, Dinko Valerio held a professorship in Gene Therapy at Leiden University in
The Netherlands and IntroGene collaborated with Leiden University to develop its
human cell line technology, commercialized under the registered trademark Per.C6.
The cell line is based on a human fetal cell which has been genetically modified so
that it can replicate itself indefinitely. Such a cell line allows for controlled replication
of viruses or production of proteins. This opens up production of and research on i)
fully-human antibodies and other therapeutic proteins, ii) classical and recombinant
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vaccines, iii) gene therapy17 and iv) functional genomics18 (Crucell N.V., 2002, p.16).
For use in combination with its cell line technology, IntroGene developed the pro-
prietary adenoviral vector AdVac. The adenoviral vector may be used as carrier for
gene-related vaccines and can be produced within the cell line. Based on its proprietary
technologies, IntroGene is categorized as specialized in cell and vector technology.

Similar to IntroGene, U-BiSys has been founded by two scientists. In 1996, when In-
troGene was founded, both scientists held a position at the University of Utrecht, The
Netherlands. U-BiSys developed a phage antibody-display library called MAbstract,
which became the third core technology of Crucell. The phage antibody-display library
is a high-throughput screening technology used for discovery of antibodies binding to
new or known drug targets. In addition, U-BiSys had strong competences in genetic
engineering related to the creation of fully-human antibodies (Crucell N.V., 2002,
p.17). Both the phage-display library and the genetic engineering competence are
general purpose technologies which fall in the category drug discovery / diagnostics.
Thus, Crucell started with three core technologies: cell, drug discovery / diagnostics
and vector.

The overall business strategy of the newly founded company has been to commer-
cialize its technology via i) licensing and contract research and ii) development of
own products in-house and in collaboration (Crucell N.V., 2001, p.22).19 From its
predecessors, Crucell inherited a product pipeline with eight fully human antibody
products and one flu-vaccine in pre-clinical stages (Crucell N.V., 2001, p.22). The
firm developed the flu-vaccine mainly because it perceived that Per.C6 has compar-
ative advantages in production and not because it found a novel or superior antigen
(Crucell N.V., 2002, p.22). In the year 2003, Crucell agreed with Aventis Pasteur S.A.
on joint collaboration of the flu-vaccine. According to the agreement, Aventis Pasteur
S.A. did further research, development, manufacturing and commercialization using
the Per.C6 cell line (Crucell N.V., 2004, p.27).

In the same year, Crucell started vaccine projects targeting West Nile, Ebola and
Malaria. The West Nile vaccine has been developed entirely in-house. This vaccine

17“Gene therapy seeks to treat certain diseases through the transfer of a therapeutic gene into the
cells of the patient to replace absent or defective genes or to stimulate a target cell into producing a
therapeutic protein. Per.C6 can be used to produce adenoviral vectors carrying therapeutic genes,
which can be used to treat patients by delivering the therapeutic gene into their cells. Adenoviruses
can be modified for use as a vector - a gene delivery mechanism by replacing naturally existing
genes in the virus with specific genes for therapeutic purposes.” (Crucell N.V., 2002, p.16) Gene
therapy is sometimes used interchangeably with (prophylactic or therapeutic) DNA vaccines as
both let foreign DNA be expressed by human cells in vivo (Liu et al., 2004, p.14567).

18“Our Per.C6 technology can be used to produce libraries of adenoviruses into which genes to be
studied have been inserted. The resulting adenoviral vectors can then be put into cells and the
effects of their expression analyzed to determine the function of genes in a disease process.” (Crucell
N.V., 2002, p.16).

19A third route to commercialization has been to set up Galapagos N.V., a joint venture with the
Belgian biotechnology firm Tibotec B.V.B.A., for research in in the field of functional genomics.
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follows the classical approach by growing the West Nile Virus in the cell line and in-
activating it (see patent De Vocht et al., 2006). Within such a process, research on
antigen seems not to be crucial. The other two vaccines have been joint development
projects. For development of the Ebola vaccine, Crucell collaborated with the U.S.
based Vaccine Research Center of the National Institute of Allergy and Infectious Dis-
eases (NIAID), one of the institutes of the National Institutes of Health (NIH). In this
project NIAID supplied genes encoding Ebola antigens to Crucell. Crucell introduced
these genes into its vector AdVac, which in turn has been produced with the cell line
Per.C6 (press release). For development of the Malaria vaccine, Crucell collaborated
with the U.S. Walter Reed Army Institute of Research (WRAIR) and GlaxoSmithK-
line Biologicals (GSK) (Crucell N.V., 2004, p.27ff). The DNA fragment of the Malaria
antigen has been known beforehand from public research (Bruna-Romero et al., 2001).
The novelty of the developed vaccine is to express it in the carrier provided by Crucell
(see patent Maria Pau, 2008). One more vaccine project followed in the year 2004.
Crucell entered a new collaboration with the Aeras Global TB Vaccine Foundation on
the development of a tuberculosis vaccine. The aim was to improve an existing vac-
cine/antigen through production in Per.C6 and formulation within the AdVac vector
(Crucell N.V., 2005, p.40). In the same year, Crucell acquired ChromaGenics B.V.
and its proprietary STAR technology. This technology improves the production of
recombinant antibodies and therapeutic proteins in mammalian cells and, hence, in
the Per.C6 cell line. Thus, the STAR technology rather strengthened than diversified
Crucell’s portfolio of technologies.

The strategy of own product development seemed to force diversification into com-
plementary business activities. In 2006, Crucell acquired the Swiss based Berna
Biotech AG to become a fully integrated pharmaceutical firm. This acquisition gave
Crucell access to 900 additional employees, various projects including novel technolo-
gies, several marketed products and marketing and distributional capability in Europe
and Korea (Crucell N.V., 2007, p.21,28). To date it develops, produces and mar-
kets drugs in-house as well as in cooperation with many partners. As of the end of
2008, Crucell marketed 8 paediatric, travel and endemic vaccines all over the world.
It has six further vaccines in various stages of development (against yellow fever,
influenza, tuberculosis, malaria, ebola and marburg and HIV) and two antibody prod-
ucts (against rabies and influenza), mostly developed together with a strategic partner
(Crucell N.V., 2009, p.19). As of end of 2008, Crucell employed in total 1,100 people,
generated total revenues of 270 million Euros (with product sales 230 million Euros,
license fees 30 million Euros, services 10 million Euros), 130 million Euros operating
expenses (research 70 million Euros, overhead 65 million Euros) and 145 million Euros
total cost of goods sold (Crucell N.V., 2009, p.44,127). Thus, with the acquisition of
Berna Biotech in 2008, Crucell became an integrated pharmaceutical firm with diverse
competences.

The technological development of Crucell may be summarized as follows: in the

157



Chapter 5 Modularity in the Vaccine Industry

year 2000, Crucell started with three distinct and complementary technologies in the
fields cell, drug discovery / diagnostics and vector. In the following 6 years, all internal
projects aimed to further develop these technologies or to apply these technologies for
proprietary drugs. In particular, the increasing number of drug development projects
did not force technological diversification. Crucell in-sourced the antigen DNA frag-
ments and transfected them into its proprietary vector. This exemplifies how modu-
larity in vaccines allows for division of research.20

For the assessment of the empirical analysis it is noticeable that the core compe-
tences of Crucell (and its predecessors) did not change due to organic growth. Ma-
jor changes in the technological specialization are due to external growth, i.e. when
Crucell is founded and when it acquired Berna Biotech. In the empirical analysis,
technological specialization of the firm is assumed to be stable in general but changes
in technological specialization due to mergers and acquisitions are taken into account.
With respect to Crucell this approach seems to be justified.

Licensing Already prior to the incorporation of Crucell, in the years 1998 and 1999,
IntroGene commercialized its Per.C6 technology through non-exclusive licensing to
biotechnology and pharmaceutical firms. Agreements targeted mainly development of
gene therapy products but also vaccines.21 Crucell successfully continued out-licensing
its cell technology after the merger. At the end of 2008, Crucell counted 70 licensing
agreements or partnerships for developing vaccines (14), proteins (39), gene therapy
(7), functional genomics (1) and manufacturing agreements (9). Out of these 70 agree-
ments, 59 build primarily on the cell technology Per.C6 (Crucell N.V., 2009, pp.185-
187). The second most out-licensed technology is the cell technology STAR with 8
licenses. The other technologies, AdVac (vector) and MAbstract (diagnostics / drug
discovery), have little significance in the overall licensing and partnering activity.

The alliance activity observed in the sample follows the same pattern (see table 5.6).
In the large majority of alliances, Crucell licenses its Per.C6 cell technology. The cell
line has been used for research as well as production for multiple indications. Other
technologies are of minor importance for alliance formation. Because Crucell was a
firm with multiple specializations (including vector, cell, and diagnostics) but most
alliances focus on its cell technology, equating technological specialization and alliance

20Note that the literature discussion did not suggest that vector firms integrate vaccine components.
The argument was that vector firms have a weak bargaining-power vis-a-vis antigen firms because
vector technology is easier to substitute. However, the partners which provided the antigen to
Crucell have been non-profit research organizations. Therefore, the case of Crucell is not contrary
to the bargaining argument. Nevertheless, the case shows that non-profit research institutions and
further actors of the pharmaceutical field heavily influence economic and technological development
of firms in the industry.

21Firms involved have been Genzyme Corporation, Schering AG, Merck & Co. Inc., Novartis, Aven-
tis Pharmaceutical Products Inc., Pfizer/Warner-Lambert, Cobra Therapeutics Ltd. and Glaxo-
SmithKline plc.
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content results in a large bias in the case of Crucell. Simply splitting each alliance over
its fields of specialization overemphasizes Crucell’s role as vector and drug discovery
/ diagnostics specialist and underestimates its role as cell specialist in the industry.

Summary The empirical analysis made two major simplifying assumptions. Firstly,
it has been assumed that the firm’s technological specialization remains the same
throughout the considered time period. Secondly, because information on the tech-
nological content of alliances was not available, each alliance of a multi-technology
firm counted to equal parts for each of the firm’s technologies. The first assumption
is not put into question by the case. Despite its growth, Crucell’s technological spe-
cialization remained remarkably stable. The second assumption, however, might have
prevented the emergence of the expected pattern of technology flow. Whereas Crucell
is specialized in cell, diagnostics and vector technology, it out-licensed predominantly
it’s cell technology.

Based on public information, we describe the economic and technological develop-
ment of the company. Crucell’s strategy was to commercialize early it’s transversal
technology by out-licensing and, at the same time, to develop own products. This
strategy has not been considered in the literature section for two reasons. Firstly,
there was the (implicit) assumption that technological specialization determines the
strategy of the firm. Secondly, non-profit actors of the pharmaceutical field, specifically
non-profit research organizations, have been excluded from this study. The reason was
that incentives of for-profit and non-profit organizations are likely to differ. However,
Crucell had relevant generic competences and a large initial success in out-licensing
its transversal technology. This enabled the company to in-source antigens from non-
profit organizations, develop its own products and even acquire the complementary
resources needed for distribution and marketing. Thus, the case shows that non-profit
research organizations are a relevant tier in the pattern of technology flow. In addition,
the firm’s technological specialization does not seem to predetermine its strategy.

5.5 Discussion and Conclusion

Modular product architectures facilitate the division of innovative labor across firms.
Once a modular architecture is specified, firms may simultaneously and independently
develop individual components which adhere to the specification. Moreover, in case
the architecture becomes an industry standard, firms become autonomous in that no a
priori coordination is required between the firm which develops a product component
and the firm which integrates this component. Although these arguments have been
previously invoked with respect to engineering products, they seem to capture also the
situation of industrial research on vaccines.

Most importantly, we observe that biotechnology firms simultaneously and au-
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Table 5.6: Alliances of Crucell with sample firms

Year Partner name Partner techn. a Techn. flow Technology Objective Alliance type b

2000 Merck Diverse Supply Per.C6 cell HIV vaccine development License, Option
2002 Innogenetics Ant., Diagn. Supply Per.C6 cell Antibody production License
2002 Rhein Biotech Ag Adj., Cell Supply Per.C6 cell Japanese Encephalitis vaccine develop. License
2002 Medimmune Ant., Other Supply Per.C6 cell Influenza vaccine develop./prod. License
2003 Aventis Pasteur Diverse Supply Per.C6 cell Unknown vaccine develop. and prod. License
2003 Merck Diverse Supply Per.C6 cell Antibody production License
2003 Novavax Ant., Adj. Supply Per.C6 cell Unknown vaccine develop./prod. License, Prod., Develop.
2003 Glaxosmithkline Diverse Bi-directed AdVac vector Res. to combine two Malaria vaccines Research, Collaboration
2003 Aventis Pasteur Diverse Supply Per.C6 cell Influenza vaccine production License, Res., Develop.
2004 Chiron Ant., Adj., Cell Supply Per.C6 cell Antibody production License
2004 Glaxosmithkline Diverse Supply Per.C6 cell Antibody research and development License
2004 Merial Diverse Supply Per.C6 cell Foot-and-Mouth vaccine res./develop. License
2004 Chiron Ant., Adj., Cell Supply Per.C6 cell Alphavirus vaccine development License
2005 Medarex Other Supply Star cell Antibody production Develop., Prod.
2005 Chiron Ant., Adj., Cell Supply Per.C6 cell Protein production License
2005 Merial Diverse Supply Per.C6 cell Veterinary gene-therapy research License, Option
2006 Novartis Diverse Supply Star cell Protein production License
2006 Merck Diverse Bi-directed Per.C6 cell Vaccine research and production Cross-License

a Ant. - Antigen, Adj. - Adjuvant, Diagn. - Diagnostics
b Res. - Research, Develop. - Development, Prod. - Production
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tonomously do research on components of a vaccine. The explanation is that problem
decomposition in the life sciences shifted the product architecture of vaccines from
an integrated to a nearly modular product architecture. More specifically, scientific
advance led to a specialization in research on vaccines and the common perception
that a vaccine provides essentially three functions which might be provided by three
different components. The one-to-one mapping of functions onto components allows
specialized firms to do simultaneously research on components. Moreover, similar to
an industry standard, the actors in the industry have a common perception of vaccines
as nearly modular products. Therefore, firms can do research not only simultaneously
but also autonomously, without a priori coordination.

That a division of research on vaccines among firms takes place has been observed
within the MiDeV project (Bonah et al., 2007). The main question of this chapter is
which pattern of technology flow is associated with the division of labor. Specialization
of research on vaccine components necessitates the transfer of components across firm
boundaries and integration of components by some firm(s). Technology flow is going
to be directed towards the firm which integrates the components.

Several theoretical arguments support the idea that integrated pharmaceutical firms
are likely to act as integrators. They have the necessary broad knowledge base (Brusoni
et al., 2001), complementary resources for commercialization (Teece, 1986) and are able
to exploit advantages of modular product design due to their large vaccine portfolios
(Ulrich, 1995). Other arguments led us to expect that biotechnology firms specialized
in antigen take over the role of the integrator. Firstly, new biotechnology firms might
be more efficient in integration due to higher technological competence in the new
research regime. Secondly, biotechnology firms might appropriate a higher return from
their efforts the more developed the product is due to increasing bargaining power vis-
a-vis pharmaceutical firms. Thirdly, firms specialized in antigen are likely to have
a stronger bargaining power vis-a-vis firms specialized in the other two components
because antigens are least substitutable (Jacobides et al., 2006).

In the sample of directed technology transfers among French vaccine firms and
their collaborators, pharmaceutical firms in-source the lion share of technology. The
empirical analysis confirms that integrated pharmaceutical firms in-source technology
from biotechnology firms of all specializations at a high rate. Investigation of the
alliances of Sanofi Pasteur suggest that the theoretical arguments with respect to
pharmaceutical firms hold. Most importantly, Sanofi Pasteur takes advantage of the
modular product architecture in its product life cycle management. In particular, an
in-sourced component may be introduced in several product lines and products are
continuously improved by adding or replacing components.

The empirical analysis on the pattern of technology flow among biotechnology firms
is less clear. Partly this is because technology flow among biotechnology firms is
rather weak; most of the technology is in-sourced by pharmaceutical firms. Another
reason is that some firms are specialized in more than one field. Given two firms
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with multiple technological specialization, theoretical arguments suggested a symbiotic
interdependence for one combination of technologies but not for the other.

Nevertheless, in accord with the arguments on bargaining power among component
firms (Jacobides et al., 2006), permutation tests show that technology transfer between
adjuvant and vector firms is weak. Also, there is a high propensity of antigen firms
to collaborate with each other. Investigation of these alliances shows that this is
caused partly by integration activities of these firms, which has been expected from the
theoretical discussion. Furthermore, the direction of technology flow from transversal
technology firms to co-specialized component firms is statistically confirmed for some
firm type combinations. Finally, the data does not show that firms tend to collaborate
across scientific domains rather than within scientific domains (Bureth et al., 2007).
However, the empirical analysis also does not show the opposite.

The empirical analysis is complemented by a more detailed account of the biotech-
nology firm Crucell. Crucell’s commercial success in licensing its transversal technology
opened the route for product development and acquisition of complementary resources
for marketing. For its strategy, collaboration with non-profit research organizations
has been important because they provided the strategic vaccine component antigen.
The case does not put into question the theoretical arguments on the bargaining power
among biotechnology firms. However, the case yields the important insight that the
technological specialization does not determine the strategy of the firm because hier-
archical relationships among firms resulting from technological specialization may be
circumvented by partnering with non-profit research organizations.
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APPENDIX D

Sample Statistics

This section provides descriptive statistics on the sample used for the empirical anal-
ysis. Table D.1 displays which categories have been ascribed to firms in the sample.
Note that some firms have multiple specializations. For example there are 14 firms
which are specialized in antigen and adjuvant.

Table D.1: Categorization of sample firms a

Diverse Antigen Adjuvant Vector Diagnostic Cell Other Drug n.a.

Diverse 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Antigen 0.0 38.0 14.0 12.0 10.0 6.0 0.0 0.0
Adjuvant 0.0 0.0 26.0 0.0 2.0 4.0 0.0 0.0
Vector 0.0 0.0 0.0 29.0 2.0 10.0 0.0 0.0
Diagnostic 0.0 0.0 0.0 0.0 28.0 2.0 0.0 0.0
Cell 0.0 0.0 0.0 0.0 0.0 15.0 0.0 0.0
Other Drug 0.0 0.0 0.0 0.0 0.0 0.0 21.0 0.0
n.a. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0

a Some firms have multiple specializations. For example there are 14 firms which are specialized
in antigen and adjuvant at the same time.

Table D.2 indicates the involvement of firm types in acquisitions among firms in the
population. Acquisitions among firms with multiple specialization weight for each firm
type combination equally such that they sum to one. Therefore table D.2 contains
rational numbers. The table gives, from the left to the right, which firm types have
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been acquired by which other firm types. For example, a share of 1.6 adjuvant firms
has been acquired by diverse firms (see table D.2). The table reveals that most firms
have been absorbed by diverse firms or by firms of similar type. This pattern fits well
the interdependence among firms depicted in the earlier sections.

Table D.2: Acquisitions by firm categories (weighted)

Diverse Antigen Adjuvant Vector Diagnostic Cell Other
∑

Diverse 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Antigen 0.5 1.0 0.5 0.0 0.0 0.5 0.0 2.5
Adjuvant 1.5 0.5 1.1 0.6 0.1 0.1 0.0 4.0
Vector 0.0 0.5 0.0 0.5 0.0 0.0 0.0 1.0
Diagnostic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cell 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.5
Other 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
∑

2.0 2.0 1.8 1.2 0.2 0.8 1.0 9.0

The last table, table D.3, gives some basic statistics on the dynamics of the popula-
tion and the alliances for the years 1994 until 2006. The population of firms increases
from 79 firms in the year 1994 up to 131 firms in the year 2006 (see ’nb. firms’ in
table D.3). The number of firms with competences in antigen, adjuvant and cell first
increase, reach a maximum in the early years of this century and then decrease again,
where exits are most often due to acquisitions.
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Table D.3: Population and alliance formation over years (percentage in brackets).

Year 1994 1995 1996 1997 1998 1999 2000 2001

Nb. firms 79 (100) 89 (100) 91 (100) 101 (100) 107 (100) 118 (100) 122 (100) 129 (100)
Diverse 15 (19) 15 (16.9) 15 (16.5) 16 (15.8) 17 (15.9) 17 (14.4) 18 (14.8) 18 (14)
Antigen 20 (25.3) 23 (25.8) 23 (25.3) 26 (25.7) 29 (27.1) 31 (26.3) 31 (25.4) 33 (25.6)
Adjuvant 14 (17.7) 14 (15.7) 15 (16.5) 15 (14.9) 16 (15) 21 (17.8) 22 (18) 22 (17.1)
Vector 10 (12.7) 14 (15.7) 15 (16.5) 16 (15.8) 17 (15.9) 19 (16.1) 20 (16.4) 23 (17.8)
Diagnostic 9 (11.4) 12 (13.5) 12 (13.2) 16 (15.8) 17 (15.9) 19 (16.1) 20 (16.4) 20 (15.5)
Cell 8 (10.1) 8 (9) 9 (9.9) 9 (8.9) 10 (9.3) 12 (10.2) 13 (10.7) 14 (10.9)
Other 17 (21.5) 19 (21.3) 19 (20.9) 21 (20.8) 22 (20.6) 24 (20.3) 25 (20.5) 27 (20.9)

Nb. alliances 9 (100) 13 (100) 11 (100) 19 (100) 25 (100) 23 (100) 29 (100) 30 (100)
Equity/ownership 2 (22.2) 2 (15.4) 0 (0) 3 (15.8) 5 (20) 3 (13) 2 (6.9) 2 (6.7)
Vaccine 7 (77.8) 11 (84.6) 9 (81.8) 14 (73.7) 21 (84) 21 (91.3) 20 (69) 23 (76.7)
Directed vaccine 7 (77.8) 4 (30.8) 5 (45.5) 11 (57.9) 20 (80) 17 (73.9) 19 (65.5) 21 (70)

Year 2002 2003 2004 2005 2006 sum avg

Nb. firms 134 (100) 131 (100) 135 (100) 133 (100) 131 (100) 1500 (100) 115 (100)
Diverse 18 (13.4) 18 (13.7) 18 (13.3) 18 (13.5) 18 (13.7) 221 (14.7) 17 (14.7)
Antigen 34 (25.4) 32 (24.4) 34 (25.2) 31 (23.3) 30 (22.9) 377 (25.1) 29 (25.1)
Adjuvant 21 (15.7) 20 (15.3) 20 (14.8) 19 (14.3) 18 (13.7) 237 (15.8) 18 (15.8)
Vector 23 (17.2) 23 (17.6) 23 (17) 26 (19.5) 26 (19.8) 255 (17) 20 (17)
Diagnostic 23 (17.2) 22 (16.8) 23 (17) 23 (17.3) 23 (17.6) 239 (15.9) 18 (15.9)
Cell 14 (10.4) 14 (10.7) 15 (11.1) 14 (10.5) 13 (9.9) 153 (10.2) 12 (10.2)
Other 28 (20.9) 28 (21.4) 28 (20.7) 28 (21.1) 28 (21.4) 314 (20.9) 24 (20.9)

Nb. alliances 30 (100) 27 (100) 27 (100) 31 (100) 30 (100) 304 (100) 23 (100)
Equity/ownership 2 (6.7) 0 (0) 0 (0) 2 (6.5) 3 (10) 26 (8.6) 2 (8.6)
Vaccine 27 (90) 21 (77.8) 23 (85.2) 27 (87.1) 23 (76.7) 247 (81.2) 19 (81.2)
Directed vaccine 28 (93.3) 20 (74.1) 25 (92.6) 27 (87.1) 21 (70) 225 (74) 17 (74)

1
6
5
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CHAPTER 6

Conclusion

The dramatic increase in alliances among firms has led to a large, and growing lit-
erature attempting to understand its causes and effects. We see this in sociology,
economics, business and management studies among other fields. One over-riding
concern has been to explain the formation of bilateral alliances, and to understand
why particular pairs of firms partner, while others do not. One of the common ex-
planatory factors has been social capital, which tends to be linked, in the literature, to
past (and present) industry network structures. There is, thus, a two-way link between
alliances and networks: on the one hand bilateral alliances are the basic building blocks
of industry-wide networks; on the other, the structure of existing networks is thought
to influence future alliance behavior. Part of the goal of this thesis is to understand
better that interaction.

If the alliance behavior of firms would follow a deterministic model of which all
parameters were known to us, then the formation of the alliance network would be
completely given as well. In fact, though, our knowledge on the firm’s alliance behavior
is very limited and, a priori, it is not clear to what extent this limited knowledge helps
to explain the formation of higher-level network structures. Therefore, one aim of this
thesis has been to better understand the alliance behavior of the firm and to clarify the
extent to which this knowledge actually helps to explain the formation of networks.

The starting point of the thesis has been a theoretical model which shows how the
technological endowment of firms may influence the network structure. The basic
assumption of the model is that the profit for two firms from forming an alliance fol-
lows an inverse-U-shaped function of their technological distance. The micro-economic
foundation of the assumption is the trade-off between absorptive capacity and novelty
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gain (Cohen and Levinthal, 1990; Nooteboom et al., 2007). For a beneficial alliance
both would be preferred to be high. However, absorptive capacity responds negatively
and novelty gain positively on an increase in technological distance. Therefore, the
expected benefit of an alliance is likely to be maximal at some intermediate point of
technological distance. The inverse-U-shaped benefit-distance effect has been empir-
ically validated by Mowery et al. (1998) and Nooteboom et al. (2007). They found
that two firms having an intermediate technological distance are most likely to join
for research and development. The model is concerned with how the benefit-distance
relationship between firm-pairs shapes the firm’s ego-network and the global network
structure.

The model assumes that firms are uniformly distributed in a bounded technological
space. The inverse-U-shaped benefit-distance relationship implies that alliance forma-
tion is beneficial for firm-pairs within a certain distance range, the profitable distance
range. All firm-pairs within the profitable distance range form an alliance. Therefore,
given the positions of firms in technological space and the profitable range, the net-
work is completely determined. We analyze how variations of the profitable distance
range generate different networks.

While other models begin to generate real-world-like networks, the added value of
our model is to shift the focus of the analysis from the global network structure to
the firm’s ego-network. The analysis demonstrates how the firm’s position in network
space becomes a function of the firm’s position in technological space. The central
result is that we observe two different regimes depending on the specification of the
benefit distance range. If small (large) technological distances are profitable for alliance
formation, then agents in the center (at the boundary) of technological space are more
central in the network.

The model exemplifies a more general insight. Because firms are heterogeneous in
their endowments, each firm faces a different set of potential alliance partners, both in
size and in composition. The differences in the inducement of alliance formation are
likely to be visible in the firm’s ego-network as well as the global network structure.
The theoretical model proposes that the technological endowment of firms together
with how knowledge is profitably (re-)combined has this effect.

In chapter 3, the technological distance effect on network formation is tested em-
pirically on a research network of the pharmaceutical industry. As a result of the
biotechnology revolution, the knowledge space in the pharmaceutical industry has be-
come fragmented. This means that firms have heterogeneous technological capabilities
and frequently need to pool their technological knowledge in joint research alliances.
In addition, patenting is frequent in this industry which facilitates the measurement
of the technological knowledge of the firm. This makes the pharmaceutical industry a
promising field to test the model.

The theoretical model is tested in three steps. First, the basic assumption of the
model is validated by estimating the effect of technological distance on pairwise al-

168



liance formation. The estimates assign to each firm-pair the probability to realize an
alliance. Then, in a monte carlo approach, the estimated probabilities are used to
simulate networks which are used to get expected network statistics. In the second
step, expected and observed statistics on the firms’ ego-networks are compared. In
the third step, we relate expected and observed statistics on the global network.

Simulation of networks based on estimated probabilities of link formation and sub-
sequent comparison of observed and simulated network statistics has been originally
proposed by Goodreau et al. (2007). In this thesis it is done for the first time, we
think, for alliance networks. In addition, ego-networks are considered next to the
global network structure.

The estimation results imply that the probability of alliance formation is an inverse-
U-shaped function of technological distance. The optimal technological distance, where
alliance formation is most likely, is estimated to be relatively short. However, the sen-
sitivity analysis shows that different measures of technological distance yield different
results. Besides overlap, we constructed two further measures, uncentered correlation
and correlated revealed technological advantage. For correlated revealed technological
advantage alliance formation is most likely for firms which are technologically close.
The third measure of technological distance, uncentered correlation of the patent class
vectors, is insignificant.

Thus, estimates of the distance-benefit effect vary with the distance measure. A pos-
sible interpretation is that different measures capture different aspects of technological
distance. The technological space is complex and high-dimensional. Therefore it is
likely that firms consider a great variety of technological aspects which influence their
decision to form an alliance in different ways. Formalizing this decision process and
measuring the technological fit of firms probably captures some aspects and neglects
others. Which aspects are emphasized depends on how we measure technological fit.
Therefore, we would not expect that different measures of technological distance yield
the same results.

Using the overlap measure, alliance formation is most likely between firms at rela-
tively short distance. The theoretical model implies that when alliance formation is
beneficial for two firms having a short technological distance, firms which are central
in technological space are going to be central in the network of alliances. Descriptive
statistics show that this is the case in our sample.

The econometric analysis attests empirical relevance to the theoretical model. We
show that taking into account the firm’s technological position in a model of pairwise
alliance formation helps to explain the firm’s ego-network structure. Compared to the
base line model which only includes firm size information, adding the size dimension
of the firm’s technological position, that is the size of the firm’s patent portfolio,
improves significantly predictions of the firm’s degree centrality, closeness centrality,
and clustering coefficient. Adding the structural dimension, firm-pair overlap in patent
classes, further improves significantly predictions of the firm’s degree centrality.
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The econometric result hints at the importance of patent portfolio size on the firm’s
network position. This corresponds to findings of Ahuja (2000) who finds a positive
effect of the firm’s number of patents on its number of research alliances. Whereas
Ahuja (2000) estimates this effect directly, we observe this effect as the outcome of a
model of pairwise alliance formation.

Including the firm’s technological characteristics in a model of pairwise alliance
formation is not especially informative for the global network structure. The base
model with only firm size generates networks with a degree distribution (distribution
of number of alliances in the network) very close to the observed one. The base model
does not fit well the distributions of the other network statistics. Taking into account
the firm’s technological position does not significantly improve predictions of the global
network structure.

To summarize, taking into account the technological position of the firm in a model
of alliance formation is informative on the relative network positions of the firms.
For example, expected ranking of firms by closeness centrality becomes more like the
observed ranking if technological position is taken into account. However, it is not
informative for the distribution of network statistics in the network. For example,
expected average closeness centrality does not further approach the observed level by
taking into account the firm’s technological position.

Chapter 4 considers the firm’s embeddedness in the prior network of alliances next
to the firm’s position in technological space. The analysis follows exactly the analysis
of the previous chapter. The main interests of the comparison are i) the relative effect
of technological and social factors on alliance formation and ii) the extent to which
social network effects in alliance formation influence higher-level network structures.

Results show that social and technological variables are similarly influential for
pairwise alliance formation. The relevance of social network variables on alliance
formation is in accord with several empirical studies (see e.g. Gulati and Gargiulo,
1999; Hallen, 2008; Rosenkopf and Padula, 2008). A further result is that technological
proximity and social proximity do not moderate each other; there are no interaction
effects. So they seem to be capturing two distinct, equally important, but independent
drivers of firms’ alliance decisions.

With respect to the firm’s ego-network structure the social model and the technology
model perform similarly well, the social model fits the data on ego-network structures
somewhat better. The model of bilateral alliance formation which includes both types
of factors predicts ego-network structures significantly better than models which take
into account only one type of factor. At the global network level, compared to the
technology model, including social factors in the model of alliance formation does not
improve significantly the fit to the observed distribution of global network statistics.

Thus, introduction of social network variables in a model of pairwise alliance forma-
tion improves the fit on the alliance data but does not necessarily improve the fit on
the observed network structure. This implies that the model and estimation approach
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is to some extent inconsistent. The social network variables are introduced in the re-
gression because the network structure is considered to be relevant. Yet introduction
of social network measures as regressors is not sufficient to obtain a model which is
consistent with the network structure.

More importantly, simply improving model fit by introducing network statistics
might misleadingly suggest that the network structure has a strong causal effect on
alliance and network formation. The sensitivity analysis shows that the estimated
effect of one social network measure, joint degree centrality, is spurious. This means
that joint degree centrality captures not only the effect of the network on alliance
formation (true path dependency) but also incorporates effects of stable, exogenous
factors (spurious path dependency). This finding puts into question the estimates
of all social network effects as estimated in this thesis and many other studies in
the field (for example Ahuja, 2000; Gulati and Gargiulo, 1999; Powell et al., 2005).
Therefore, an important issue for future research is to control for exogenous, stable
structures which underly network formation. Underlying stable structures might be
the technological space but stable economic characteristics as well might create the
observed path dependency of network formation.

Chapter 5 investigates the division of innovative labor in the vaccine industry. This
chapter deviates from the approach taken in the previous chapters in two respects.
Firstly, the representation of the firm’s technological knowledge is different. The chap-
ter considers vaccines as nearly modular products which consist of distinct components.
Therefore, we classify firms according to their technological competence in each com-
ponent. Secondly, the focus is not on the network among individual firms but on the
technology flow in the network among types of firms. The research question, however,
remains similar compared to the previous chapters. How does the firm’s technologi-
cal specialization affect alliance formation and, in turn, influence higher-level network
phenomena? In chapter 5, the higher-level phenomena of interest is the pattern of
technology flow among different types of firms.

The empirical analysis found a significant technology flow from specialized, biotech-
nology firms to integrated, pharmaceutical firms. Part of the high in-sourcing activity
is caused by the modular architecture of vaccines. One case on a pharmaceutical firm
suggests that firms with large vaccine portfolios can take advantage of the modular
architecture by in-sourcing vaccine components in order to enhance existing vaccines
and develop novel vaccines.

Technology flow among specialized biotechnology firms is not clearly directed de-
pending on the firm type. The argument that firms which are specialized in less
substitutable vaccine components have higher bargaining-power and therefore attract
technology has been weakly supported. Furthermore, the argument that competitive
interdependence among firms with similar specialization results in a weak technology
flow and symbiotic interdependence among firms with complementary specialization
induces a strong technology flow is not supported by the data.
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In order to better understand this result, the empirical analysis is complemented by
the case of the biotechnology firm Crucell. Crucell’s commercial success in licensing
its transversal technology opened the route for product development and, later on,
the acquisition of complementary resources for marketing and distribution. The case
yields the important insight that the technological specialization of the firm does not
predetermine its strategy and the role it is going to play in the industry.

The results of this thesis yield some general insights on how to understand alliance
formation and its interaction with firms’ technological and network characteristics,
as well as how our empirical results on alliance formation can or cannot be used to
understand aggregate network properties.

Firms are heterogeneous in their (technological, financial, business, and so on) en-
dowments and the relative properties of two firms determine the benefit of an alliance
between them. The pattern of how resources are distributed over firms provides a
structure for alliance formation because the resource distribution assigns a potential
alliance benefit to any two firms in the population. Thus, firms are positioned in a
common space which relates all firms to each other. The thesis shows that the position
of firms in technological space influences higher-level network structures. The insight
that firms are located in a common environment whose structure affects the pattern of
firm interaction will almost certainly apply to many more determinants of alliance for-
mation. While we have addressed the issue of how technological endowments of firms
affect alliance formation, and thus network structures, we have not investigated how
alliance participation and network position affect a firm’s technological endowments.
They certainly co-evolve, but understanding this co-evolution remains a challenge.

For this endeavor, one needs to take into account that technological space is complex
and high-dimensional. Formalization and measurement of technological space reduces
this complexity. Necessarily, some aspects of technology are neglected by any measure
whereas other aspects are captured. In the study, we found that different measures
of technological distance yield different results. This suggests that firms care about
many aspects of what we have called “technological fit” and that the way we formalize
and measure technological space in general and technological fit in particular deter-
mines which aspects of technology are captured in the analysis. It is still an open
question, how the different measures relate to each other, not at the technical level of
how they are calculated, but how they need to be interpreted relative to each other.
Furthermore, since they are likely to capture different aspects of technology, they
might complement each other to obtain a more complete picture of the technological
landscape and the relation of firms therein.

The firms’ interaction does not only affect the technological space but, most directly,
their social space which, in turn, affects alliance formation. Both technological and
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social factors have been found to be (equally) important but distinct and apparently
independent. However, social network effects are special predictors of firm interac-
tion in that they are usually measured on the aggregated outcome of firm interaction
itself. This bears the risk of spurious path dependence. Stable network structures
over time are probably caused by both true path dependence of network formation
and stable, exogenous factors (possibly including slow-changing technological compe-
tences). Sorting out the path dependency effects from the influence of the (stable)
distribution of heterogeneous resources is going to yield important management and
policy implications. Therefore, spurious path dependency needs to be controlled for
in network formation models. The discussion in the previous paragraphs opens up a
potential route because it clarifies that in empirical research on interaction one does
not need to control only for characteristics of the individual but one needs also to
control for the latent structure which relates all individuals.

When researchers consider social network effects on alliances formation, they em-
phasize that firm interaction is a phenomenon which spans several levels which include
alliances, ego-network structures and the global network of alliances. These levels are
interconnected. This thesis first took a technical perspective. We argued that alliances
are the elementary building blocks of a network and, therefore, models of alliance for-
mation might be informative for higher-level network structures. We found that the
alliance formation model has been informative for the firms’ ego-network structures
but less so for the global network structure. This exercise shows that models which
focus at one level of the phenomenon, such as alliance formation models, might not
generate a coherent picture of the whole network formation process. The lack of it
indicates that something is missing and this is a valuable insight. The missing element
might be further exogenous factors, besides technology. However, it might also be that
interactions between the levels need to be taken into account. Something which to
date, has either been ignored or assumed to be more or less automatic and thus not
particularly interesting. The results obtained here suggest that neither is the case.
An interesting starting point would be to stronger connect the decision of the firm
on its alliance portfolio with the process of alliance formation. The firm is not an
automaton. The firm’s resource endowment and the environment it faces do not auto-
matically imply a certain behavior of the firm. It is the strategy and internal working
of the firm which links the firm’s fundamentals with economic action. Incorporating
the (diversity of the) strategies of the firms in theoretical models and empirical studies
of alliance formation is an issue which has not been tackled in this thesis but deserves
further attention.
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Abrégé de la Thèse

Le développement rapide de nouvelles technologies entrâıne un accroissement con-
stant des combinaisons technologiques des produits et des processus de production.
Ce développement est à l’origine de l’entreprise multi-technologies, qui doit mâıtriser
de nombreuses technologies pour gérer et développer ses lignes de produits (voir
Granstrand, 1998; Powell et al., 1996, par example). L’élargissement concomitant
de la base de connaissances de l’entreprise finit cependant par lui créer un handicap,
l’entreprise ne possédant plus les connaissances nécessaires à l’innovation. Les en-
treprises doivent pourtant innover afin de rester compétitives sur le marché. Pour ce
faire elles doivent donc s’appuyer sur les connaissances complémentaires disponibles à
l’extérieur de leurs frontières.

Les alliances sont fréquemment utilisées pour résoudre ce problème. Dans les al-
liances stratégiques, deux entreprises ou plus mettent leur ressources en commun,
les échangent ou les partagent afin de renforcer leur base de connaissances ou de
développer une activité conjointe. Les entreprises peuvent créer des alliances straté-
giques à différents points de la châıne de la valeur, de la recherche et développement
(R&D) à la distribution, en passant par le marketing et la production. Cette thèse
se focalise plus particulièrement sur les alliances de R&D qui génèrent transfert et
partage de technologie, et R&D commune. Bien que les motivations à l’origine de la
formation d’alliances de R&D soient diverses, les acteurs de l’industrie citent l’accès
aux connaissances complémentaires comme le facteur le plus important (Hagedoorn,
1993; Herrling, 1998).1 Les alliances sont particulièrement adaptées à cet objectif car

1Les alliances de R&D peuvent aussi être motivées par des considérations d’efficacité ou des in-
terdépendances entre entreprises (see Hemphill and Vonortas, 2003). L’efficacité peut par exemple
être améliorée par la réalisation d’économies d’échelle et de gamme, un meilleur accès au finance-
ment, ou l’utilisation de capacités supplémentaires. Dans les industries high-tech, où les alliances
technologiques sont particulièrement nombreuses, l’accès aux connaissances complémentaires, une
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la coopération entre entreprises peut être extrèmement efficace pour le transfert de
connaissances tacites. L’élargissement de la base de connaissances induit ainsi des
interactions entre les acteurs régulées par des alliances. Ce mécanisme peut expliquer
le développement rapide des alliances de recherche depuis le milieu des années 1970.

La structure du réseau de recherche influence probablement la façon dont les connai-
sances sont créées et diffusée. Les études empiriques suggèrent que la position occupée
par une entreprise au sein d’un réseau de recherche a une influence sur son comporte-
ment d’acquisition et de production des connaissances. Par exemple, les entreprises
qui ont une position centrale dans le réseau et les entreprises membres d’un groupe très
connecté peuvent présenter une productivité plus élevée de leurs activités de recherche
(Ahuja, 2000). Comme la R&D commune génère des partage de connaissances et des
spillovers, la structure du réseau peut aussi influencer la diffusion et l’accumulation de
connaissances technologiques au sein du système (Cowan and Jonard, 2004). Dans ce
contexte, la question du mode de formation des réseaux devient cruciale.

L’unité élémentaire du réseau étant l’alliance, les études portant sur la formation
d’alliances apportent des éléments de réponse. Les études empiriques sur la for-
mation d’alliances permettent d’estimer les facteurs expliquant pourquoi deux en-
treprises spécifiques vont former une alliance. La question est donc de savoir comment
deux entreprises peuvent être technologiquement, économiquement et/ou socialement
proches l’une de l’autre. Pour synthétiser cette littérature il est important de dis-
tinguer les études sur la formation des alliances de recherche et les études sur la
formation d’alliances per se, qui peuvent inclure différents types d’alliances. D’une
part, la littérature sur la formation d’alliances est très étendue alors que seulement
quelques études sont consacrées à la formation d’alliances de recherche. D’autre
part, et surtout, les deux courants de littérature suivent des approches différentes:
la littérature sur les alliances de recherche se focalise sur le besoin de combiner les
connaissances complémentaires alors que la littérature sur la formation d’alliances,
plus étendue, s’intéresse principalement aux relations sociales des entreprises. Pour
reprendre les termes de Eisenhardt and Schoonhoven (1996), la recherche sur les al-
liances de R&D se préoccuppe de l’incitation à la formation d’alliances, alors que
la recherche sur les alliances per se s’intéresse principalement à l’opportunité de la
formation d’alliances.

L’intérêt pour l’environnement social de l’entreprise au sein de l’analyse économique
a été suscité par l’approche structuraliste en sociologie. Cette approche repose sur la
conviction que l’individu est ”purposeful and goal directed, guided by interests [...]
and by the rewards and constraints imposed by the social environment.” (Coleman,
1986, p.1310). La vision de l’action économique comme résultant d’incitations et
d’opportunités n’est pas nouvelle en soi, et a été partagée par les premiers économistes

forme d’interdépendance, semble cependant être le facteur principal de formation d’alliances (Hage-
doorn, 1993; Herrling, 1998).
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tels Smith, Locke ou Mill (see Coleman, 1986, p.1310). La nouveauté vient plutôt de la
conceptualisation de l’environnement social. Il est en effet conçu comme se réalisant à
travers les relations existantes entre les individus. La structure du réseau social définit
ainsi (localement) le fonctionnement des normes sociales, et chaque individu agit au
sein de son propre environnement social local (Granovetter, 1985).

La prise en compte du contexte historique et social dans lequel les entreprises agis-
sent a permis d’expliquer des comportements économiques observables incompatibles
avec la perspective ”traditionnelle” de l’acteur économique isolé, égoste et rationnel.
La recherche sur les alliances devait par exemple expliquer pourquoi deux entreprises
pouvaient investir dans du capital spécifique et échanger des connaissances dans le
cadre de contrats incomplets. D’après la perspective ”traditionnelle” de nombreux ob-
stacles s’opposent à la formation d’alliances: deux entreprises étant deux entités légales
aux intérêts divergeants, des problèmes d’appropriabilité (par exemple des fuites de
connaissances) et d’aléa moral (par exemple des comportements opportunistes) peu-
vent apparâıtre (Williamson, 1991). De plus, l’information incomplète sur les parte-
naires potentiels réduit l’efficacité de la recherche de partenaire et des efforts perma-
nents de coordination sont nécessaires au succès de l’alliance. Tous ces problèmes sont
mieux appréhendés lorsque l’environnement social de l’entreprise est pris en compte.
Les relations sociales et d’affaires sont une source d’information (fiable) et entretien-
nent les normes comportementales (Gulati, 1998).

La recherche empirique sur la formation d’alliances s’est focalisée sur les effets soci-
aux du réseau d’alliances antérieures. (Gulati and Gargiulo, 1999; Powell et al., 2005,
sont probablement les plus représentatifs). L’argument sous-jacent est que même si
le réseau d’alliances antérieures n’est pas l’environnement social complet, il en forme
néanmoins une part importante. La méthode standard est de construire le réseau
des alliances antérieures parmi un échantillon d’acteurs, de mesurer les statistiques de
réseau spécifiques aux paires d’entreprises, et d’introduire ces statistiques comme vari-
ables indépendantes dans une régression dont la variable dépendante est la formation
ou non d’une alliance. Les résultats empiriques suggèrent par exemple que la confi-
ance, la réputation et le degré d’interconnexion des acteurs influencent la formation
d’alliances (Gulati and Gargiulo, 1999). Bien que cette littérature reconnaisse pleine-
ment le rôle des incitations et des opportunités, les facteurs incitatifs sont généralement
traités comme de simples variables de contrôle. Les incitations stratégiques à la for-
mation d’alliance sont ainsi prises en compte à travers des proxys généraux tels que,
par exemple, le secteur industriel (Gulati and Gargiulo, 1999). La limite de cette
littérature provient de ce qu’elle dérive le capital social de l’entreprise de la structure
du réseau tout en approximant le premier par la seconde. Par exemple, la confiance
mutuelle entre entreprises est à la fois supposée générée par la répétition des alliances
et mesurée par le nombre d’alliances antérieures. Cette approche s’expose donc à des
relations de causalité fallacieuses car des facteurs exogènes sont tout aussi susceptibles
de générer des structures de réseau stables.
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Les études empiriques sur la formation des alliances de recherche s’intéressent prin-
cipalement à l’influence des dotations technologiques de deux entreprises sur leur
décision de former une alliance. Pour ce faire il est d’abord nécessaire de savoir quelles
combinaisons technologiques sont économiquement pertinentes. La plupart des études
portant sur cette question sont parties du principe que le bénéfice de l’alliance dépend
du rapport entre les connaissances des entreprises (see e.g. Cantwell and Colombo,
2000; Mowery et al., 1998; Rothaermel and Boeker, 2008). D’une part, les entreprises
s’alliant pour accéder à des connaissances complémentaires, les bases de connaissances
des entreprises partenaires doivent être différentes. Autrement dit, les nouvelles con-
naissances sont générées par la recombinaison de connaissances antérieures, et les
nouvelles combinaisons ne sont possibles que dans la mesure où les bases de con-
naissances des entreprises sont différentes. D’autre part, les bases de connaissances
doivent présenter certaines similarités car les capacités d’absorption des entreprises
doivent être suffisamment élevées pour leur permettre d’évaluer leurs connaissances
respectives et d’exploiter commercialement le résultat de la coopération (Cohen and
Levinthal, 1990). Ainsi, les bases de connaissances des deux partenaires ne doivent
être ni trop différentes ni trop similaires. La base de connaissances d’une entreprise est
souvent mesurée à l’aide de son portefeuille de brevets. La proximité cognitive (tech-
nologique) est ensuite évaluée selon la proximité des portefeuilles de brevets. Cette
proximité est par exemple révélée par un chevauchement des citations de brevets ou
par des similarités dans les fréquences de dépôt de brevets dans certains domaines.
Les résultats de ces études indiquent pour la plupart que la proximité technologique
influence la formation d’alliances. A industrie, forme d’alliance (joint venture, accord
de recherche) et mesure de distance données, ces études concluent que les entreprises
qui sont à distance technologique proche ou intermédiaire sont les plus susceptibles
de former une alliance (Mowery et al., 1998; Cantwell and Colombo, 2000, respec-
tivement). Ces études ne tiennent cependant pas compte de l’influence du réseau
d’alliances antérieures sur l’accès à l’information privée et la confiance.

L’alliance peut être considérée comme l’unité élémentaire du processus de formation
de réseau. Un réseau est habituellement défini par un ensemble d’acteurs et de liens
entre ces acteurs. La matrice d’adjacence contient toute ces informations. La matrice
d’adjacence est une matrice binaire dont le nombre de lignes et de colonnes est égal au
nombre d’acteurs. Une cellule de la matrice contient le chiffre un si une alliance existe
entre les deux acteurs, zéro sinon.2 Toutes les structures de réseau de niveau supérieur
peuvent être extraites de la matrice d’adjacence. Le nombre d’alliances de l’entreprise
correspond à la somme en ligne et en colonne. Le portefeuille d’alliances de l’entreprise

2Ceci est valable pour les réseaux ”simples” avec un seul type de lien présent ou non et un ensemble
d’acteurs qui ont formé des alliances pendant une période donnée. Des liens de types différents
peuvent être représentés par plusieurs matrices, des liens de différentes valeurs par des cellules
à entrées numériques, et la dynamique temporelle par l’empilement de matrices d’adjacence de
différentes périodes.
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est entièrement décrit en ligne et en colonne. Le réseau particulier d’une entreprise
comprend l’ensemble de ses partenaires mais aussi les liens entre ces partenaires. Tous
ces niveaux ont fait l’objet d’études empiriques, tant sur les alliances que les alliances
de recherche.

Le nombre d’alliances d’une entreprise (ou taux de formation d’alliances) est l’in-
dicateur le plus étudié(Ahuja, 2000; Powell et al., 1996; Shan et al., 1994; Walker
et al., 1997; Zhang et al., 2007). Les entreprises dont le capital social ou le capital
technologique est le plus développé sont aussi celles qui dont le nombre d’alliances est
le plus élevé, ce qui confirme les résultats sur la formation d’alliances.3 Le nombre
d’alliances d’une entreprise est aussi positivement corrélé avec la densité des liens du
voisinage social local et l’étendue de sa base de connaissances (Walker et al., 1997;
Zhang et al., 2007, respectivement). On peut remarquer que, bien que les différents
niveaux d’un réseau (alliance, réseau particulier d’une entreprise, etc...) soient con-
nectés, les études empiriques se situent en général à l’un de ces niveaux d’analyse (voir
chapitres 3 et 4). Une exception notoire est l’étude de Stuart (1998), qui porte sur
l’influence de la dotation technologique d’une entreprise sur la formation d’alliances
et sur le nombre d’alliances de l’entreprise. Il serait donc intéressant de savoir dans
quelle mesure les résultats d’études portant sur différents niveaux peuvent être com-
parés. Par exemple, une étude empirique sur la formation d’alliances apporte-t-elle
des éléments pertinents sur la façon dont la structure du réseau se forme?

Dans cette thèse, nous étudions la formation des réseaux de recherche industriels.
Nous nous focalisons sur l’influence de l’hétérogénéité des capacités technologiques
des entreprises sur leurs décisions de former des alliances, et par conséquent sur
la structure du réseau. L’explication technologique de la formation de réseaux est
complétée par la prise en compte des effets de la structure sociale héritée du réseau
d’alliances antérieures. Nous faisons principalement appel à la littérature sur la for-
mation d’alliances, à la théorie de l’entreprise basée sur les ressources, et à l’analyse
des réseaux sociaux.

Le point de départ de cette thèse (chapitre 2) est un modèle théorique qui mon-
tre comment la dotation technologique des entreprises peut influencer la structure du
réseau. L’hypothèse fondamentale de ce modèle est que le profit généré par la forma-

3Cette question a aussi été étudiée par Eisenhardt and Schoonhoven (1996). Cette étude est excep-
tionnelle à maints égards. Premièrement, tout comme Ahuja (2000), Eisenhardt and Schoonhoven
(1996) étudient conjointement les facteurs sociaux et technologiques de la formation d’alliances.
Deuxièmement, le capital social n’est pas mesuré selon le réseau d’alliances antérieures mais ap-
proximée par l’historique de carrière de l’équipe dirigeante. Troisièmement, cette étude n’évalue
pas les compétences technologiques de l’entreprise selon son portefeuille de brevets mais selon sa
stratégie technologique en s’appuyant sur des questionnaires et sur les caractéristiques des produits.
Le problème de l’endogénéité du réseau est ainsi évité et la stratégie technologique de l’entreprise
explicitement incluse.
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tion d’une alliance entre deux entreprises est une fonction en forme de U inversé de
leur distance technologique. La signification micro-économiques de cette hypothèse
est l’arbitrage entre les capacités d’absorption et le potentiel de création de connais-
sances (Cohen and Levinthal, 1990; Nooteboom et al., 2007). Pour qu’une alliance
soit rentable les deux doivent avoir des valeurs élevées mais les capacités d’absorption
sont négativement corrélées avec la distance technologique, le potentiel de création de
connaissance positivement. Ainsi, les bénéfices attendus d’une alliance sont selon toute
vraisemblance les plus élevés à un point intermédiaire de la distance technologique. Le
lien en forme de U inversé entre la distance et bénéfices retirés a été validé empirique-
ment par Mowery et al. (1998) et Nooteboom et al. (2007). Ces études montrent
que les paires d’entreprises présentant une distance technologique intermédiaire sont
les plus susceptibles de s’associer pour leurs activités de R&D. Notre modèle décrit
comment la relation bénéfices-distance entre les entreprises paires façonne le réseau
particulier des entreprises et la structure globale du réseau.

Le modèle repose sur l’hypothèse que les entreprises sont uniformément distribuées
dans un espace technologique borné. Les entreprises maximisent leur profit en for-
mant des alliances bilatérales. Le profit est supposé être une fonction en forme de
U inversé de la distance technologique entre les firmes paires. Nous faisons de plus
l’hypothèse que la formation d’une alliance génère un cot fixe. La spécification des
profits et des cots implique que la formation d’une alliance n’est rentable que pour
les paires d’entreprises séparées par un certain intervalle de distance, l’intervalle de
distance rentable. Toutes les paires de firmes séparées par un intervalle de distance
rentable forment une alliance. Ainsi, le réseau est complètement spécifié par la po-
sition des entreprises dans l’espace technologique et l’intervalle de distance rentable.
Nous analysons comment les variations de l’intervalle de distance rentable génèrent
différentes structures de réseau.

Notre modèle s’apparente au modèle de portefeuille de connaissances de Cowan and
Jonard (2009) et au modèle de réseau social spatial de Gilles and Johnson (2000).
Le modèle de portefeuille de connaissances applique la relation en forme de U inversé
entre distance et les bénéfices dans un modèle évolutionniste. Les entreprises forment
des alliances si leurs bases de connaissance se chevauchent suffisamment. En formant
une alliance elles apprennent et accroissent le chevauchement de leurs bases. Cowan
and Jonard (2009) montrent que pour certains intervalles de paramètres ce processus
aboutit à des structures de réseau couramment observées empiriquement. Dans le
modèle de réseau social spatial de Gilles and Johnson (2000), les agents sont distribués
dans un espace social. Les agents retirent du profit des liens directs et indirects. Les
cots de formation d’un lien sont fonction de la distance sociale entre deux agents.
Carayol and Roux (2009) ont montré que le modèle de réseau social spatial, à l’instar
du modèle de portefeuille de connaissances, peut produire des structures de réseaux
comparables aux structures rélles observées.

La valeur ajoutée du modèle théorique proposé dans cette thèse est de déplacer
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l’analyse, de la structure globale du réseau vers le réseau particulier de l’entreprise.
Notre analyse montre comment la position de l’entreprise au sein du réseau devient une
fonction de la position de l’entreprise dans l’espace technologique. Le résultat central
est que nous observons deux régimes différents selon la spécification de l’intervalle de
distance rentable. Si les distances technologiques courtes (longues) sont propices à
la formation d’alliances, alors les agents situés au centre (à la frontière) de l’espace
technologique occupent une position centrale dans le réseau.

Le résultat du modèle est une illustration d’un principe plus général: l’hétérogénéité
des dotations technologiques des entreprises implique une variabilité du nombre et de
l’identité de leurs partenaires potentiels. Les différences en termes d’incitations à la
formation d’alliances devraient selon toute vraisemblance se retrouver dans le réseau
particulier des entreprises tout comme dans la structure globale du réseau. Le modèle
théorique propose d’expliquer ce résultat par la dotation technologique des entreprises
et la rentabilité des nouvelles combinaisons de connaissances.

Dans le chapitre 3, nous testons empiriquement l’effet de la distance technologique
sur la formation de réseaux, dans le cas d’un réseau de recherche de l’industrie pharma-
ceutique. La révolution des biotechnologies a fragmenté l’espace cognitif de l’industrie
pharmaceutique. Cela signifie que les entreprises ont des capacités technologiques
hétérogènes et associent fréquemment leurs connaissances technologiques dans des al-
liances de recherche commune. De plus, l’utilisation généralisée du brevet dans cette
industrie permet de mesurer facilement les connaissances technologiques d’une en-
treprise. L’industrie pharmaceutique est donc un domaine particulièrement intéressant
pour tester notre modèle.

Le modèle théorique est testé en trois étapes. Tout d’abord, l’hypothèse fonda-
mentale du modèle est validée en estimant l’effet de la distance technologique sur la
formation d’alliances entre paires. L’estimateur assigne à chaque entreprise une prob-
abilité de former une alliance. Suivant une approche Monte Carlo, les probabilités
estimées sont ensuite utilisées pour simuler des réseaux dont sont extraites les valeurs
espérées des statistiques de réseau. Les valeurs espérées et observées dans les réseaux
particuliers des entreprises sont ensuite comparées. Enfin, nous comparons les valeurs
espérées et observées du réseau global.4

Dans la première étape, la formation d’alliance entre paires d’entreprises est estimée
avec un modèle logit. Le modèle contrôle l’interdépendance dyadique en introduisant
des effets non observés spécifiques à l’entreprise. Une spécification à effets aléatoires
(Hoff, 2003) est comparée à une spécification à effets fixes (Stuart, 1998) basée sur un
test de Hausman simplifié. Au vu du résultat du test de Hausman, l’interprétation et
les analyses suivantes sont basées sur la spécification à effets aléatoires.

4La simulation de réseaux basée sur les probabilités estimées des liens visant à comparer les statis-
tiques du réseau global a été originellement proposée par Goodreau et al. (2007). A notre connais-
sance cette méthode est utilisée ici pour la première fois pour des réseaux d’alliances. De plus,
nous étudions à la fois les réseaux particuliers et la structure globale du réseau.
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La position technologique de l’entreprise est mesurée à l’aide de son portefeuille
de brevets. Le portefeuille de brevets fournit l’information structurelle, les classes
technologiques des brevets dans lesquelles l’entreprise brevète, et l’information quanti-
tative, le nombre de brevets de l’entreprise. Ces informations sont utilisées pour indi-
quer la position technologique relative propre à chaque paire d’entreprise. La taille du
portefeuille de brevets fournit deux variables: la taille conjointe et la différence de taille
entre les portefeuilles de brevets des deux entreprises. La distance technologique est
mesurée par le chevauchement, qui indique la mesure dans laquelle les deux entreprises
brevètent dans les mêmes classes de brevets.

Les valeurs estimées suggèrent que la distance technologique a une relation en forme
de U inversé avec la probabilité de formation d’alliance. La distance technologique op-
timale, distance à laquelle la formation d’une alliance est la plus probable, est relative-
ment courte. Ce résultat renforce les conclusions de Mowery et al. (1998). L’analyse
de sensibilité du modèle montre cependant que différentes mesures de la distance tech-
nologique génèrent des résultats différents. Nous avons construit deux mesures alter-
natives à la mesure basée sur le chevauchement: la corrélation non centrée et l’avantage
technologique corrélé révélé. En utilisant l’avantage technologique corrélé révélé, les
entreprises formant des alliances sont les entreprises les plus proches technologique-
ment, ce qui a aussi été observé par Stuart (1998). La corrélation non centrée des
vecteurs de classes de brevets se révèle par contre non significative. Une interprétation
possible de ce dernier résultat est que ces mesures reflètent des aspects différents de la
distance technologique. Ces différents aspects n’étant pas tous également intéressants
pour les entreprises, les différentes mesures de la distance technologique ne sont pas
censés générer les mêmes résultats. On peut remarquer que si l’arbitrage entre les
capacités d’absorption et le potentiel de création de connaissances implique le lien en
forme de U inversé entre la distance et les bénéfices retirés il n’en est pas nécessairement
la cause. Le même résultat peut par exemple être observé si la similarité entre porte-
feuilles de brevet indique simplement un intérêt commun pour certains domaines tech-
nologiques, ainsi que le suggèrent Zhang et al. (2007).

Dans les étapes suivantes de l’analyse nous avons utilisé les valeurs estimées avec
la mesure de distance technologique basée sur le chevauchement. Pour cette mesure
nous avons trouvé que la formation d’alliances est plus probable si la distance est
relativement courte. Le modèle théorique implique que dans ce cas, les entreprises
qui occupent une position centrale dans l’espace technologique occupent aussi une
position centrale dans le réseau d’alliances. Les statistiques descriptives montrent
que c’est le cas pour notre échantillon. Le modèle de formation d’alliances incluant
les informations sur la position technologique de l’entreprise donne des résultats très
proches des observations réelles sur les réseaux particuliers des entreprises. Cependant,
la comparaison montre que le modèle incluant seulement les informations sur la taille
du portefeuille de brevets donne des résultats presque aussi pertinents que le modèle de
formation d’alliances incorporant les informations structurelles sur le chevauchement
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en plus des informations sur la taille. L’influence majeure observée ici de la taille
du portefeuille de brevets d’une entreprise sur sa position dans le réseau corrobore
les résultats de Ahuja (2000). En utilisant le nombre de brevets comme proxy pour
le capital technologique de l’entreprise, Ahuja (2000) observe en effet une corrélation
positive entre celui-ci et le nombre d’alliances de l’entreprise.

Au niveau du réseau, le modèle de formation d’alliances incluant la position tech-
nologique des entreprises n’améliore pas significativement les prédictions du modèle
de base incluant seulement les informations sur la taille du portefeuille de brevets. Le
modèle de base est suffisant pour générer des réseaux présentant une distribution du
nombre d’alliances dans le réseau très proche de la distribution réelle observée. Con-
cernant les distributions des autres statistiques de réseau, le modèle de base n’est que
peu pertinent, au sens où les distributions observées et estimées des statistiques de
réseau sont très différentes. Cependant, les informations sur la position technologique
de l’entreprise n’améliorent pas significativement les prédictions du modèle de base.

Au total, la prise en compte de la position technologique de l’entreprise dans un
modèle de formation d’alliances est pertinente pour estimer la position relative des
entreprises dans le réseau. Par exemple, le classement simulé des entreprises selon leur
proximité moyenne se rapproche du classement observé si la position technologique
est prise en compte. Elle n’est cependant pas pertinente pour estimer la distribution
des statistiques du réseau entier. Par exemple, la distribution simulée de la prox-
imité moyenne n’est pas plus proche de la distribution observée lorsque la position
technologique des entreprises est prise en compte. Autrement dit, le modèle de forma-
tion d’alliances incluant la position technologique des entreprises assigne correctement
les entreprises à leur positions relatives dans un réseau spécifié de façon légèrement
incorrecte.

Dans le chapitre 4 nous élargissons notre modèle pour y inclure l’intégration sociale
(social embeddedness) de l’entreprise dans le réseau antérieur. L’analyse suit les mêmes
étapes que celles du chapitre précédent. Les objectifs principaux de la comparaison
sont de distinguer les effets des facteurs technologiques et sociaux de la formation
d’alliances, et de savoir dans quelle mesure la prédiction des structures de réseau de
niveau supérieur peut être améliorée par l’incorporation de mesures de l’intégration
sociale dans les facteurs explicatifs de la formation d’alliances.

Nous nous référons à l’étude empirique de Gulati and Gargiulo (1999), qui a parti-
culièrement influencé ce domaine. Gulati and Gargiulo (1999) distinguent trois types
d’intégration sociale: deux entreprises ont développé une intégration relationnelle si
elles ont un historique commun. L’intégration structurelle décrit la relation de deux
entreprises avec leur environnement social commun. Enfin, l’intégration ”position-
nelle” relie l’entreprise au réseau social global. Pour chaque type d’intégration une
variable est mesurée dans le réseau d’alliances antérieur. Il s’agit respectivement du
nombre d’interactions passées (pour l’intégration relationnelle), du nombre de parte-
naires communs (pour l’intégration structurelle) et du nombre d’alliances passées (pour
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l’intégration positionnelle). Chaque entreprise est représentée par le nombre de ses al-
liances, un indicateur de ”centralité de position”. Cette information est utilisée pour
associer à chaque paire d’entreprises les variables de ”degré de centralité conjointe” et
de ”différence de degré de centralité”.

Notre estimation tend à attribuer une importance égale aux facteurs sociaux et tech-
nologiques pour la formation des alliances. La distance technologique (chevauchement)
et le nombre d’interactions passées influencent au même degré la formation d’alliances.
Le degré de centralité conjointe et la différence en terme de nombre de brevets ont des
effets marginaux de moindre amplitude. L’influence observée des variables de réseau
sur la formation d’alliances est en accord avec les conclusions de plusieurs études em-
piriques (voir Gulati and Gargiulo, 1999; Hallen, 2008; Rosenkopf and Padula, 2008,
par exmple). Un résultat complémentaire est que proximité technologique et proximité
sociale ne s’annulent ni ne s’additionnent. Elles n’ont pas d’effet combiné.

De même que dans le chapitre précédent, nous avons ensuite utilisé les modèles
estimés de formation d’alliances pour prédire les statistiques du réseau particulier de
l’entreprise ainsi que la structure globale du réseau. En ce qui concerne le réseau
particulier de l’entreprise, le modèle social et le modèle technologique donnent tous
deux de bons résultats, le premier approchant sensiblement mieux les données réelles.
Le modèle conjoint qui intègre les effets sociaux et technologiques améliore encore
légèrement la qualité des prédictions. Le modèle de formation d’alliances intégrant
les facteurs sociaux ne permet cependant pas d’améliorer la qualité de prédiction du
modèle technologique en termes de distribution des statistiques du réseau global.

Le problème est que les variables de réseau sociales sont introduites dans la régression
parce qu’elles sont censées être importantes dans le processus réel. La stratégie
habituelle est d’intégrer le réseau dans le modèle sous la forme réduite de régresseurs. Il
semble que cela ne soit pas suffisant pour obtenir un modèle cohérent avec la situation
réelle (dont le réseau est un élément). Cet argument a déjà été souligné par Snijders
et al. (2006), qui proposent de dépasser le problème en introduisant les statistiques
de réseau suffisantes comme régresseurs supplémentaires dans un modèle de graphe
aléatoire exponentiel. Cette approche est devenue possible seulement récemment
pour des réseau de grande taille, et nous avons rencontré des problèmes majeurs de
dégénérescence lorsque nous avons tenté de l’appliquer à notre modèle. Nos résultats
soulignent cependant que les modèles de formation d’alliances ne sont pas de la même
nature que les modèles de formation de réseaux, quels que soient les régresseurs entrant
dans le modèle.

L’interprétation de nos résultats doit tenir compte de l’analyse de sensibilité, qui se
heurte à un obstacle d’importance. L’analyse de sensibilité montre que l’effet estimé
de l’une des statistiques de réseau, le degré de centralité conjointe, est fallacieux. Les
variables de réseau sociales ne contiennent pas seulement l’effet du réseau (causalité
réelle) mais aussi les effets de facteurs stables et exogènes (causalité fallacieuse). Ceci
remet aussi en question l’effet estimé significatif des interactions antérieures, qui est
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un indicateur de la confiance entre les partenaires (Gulati, 1995a). Cette question
de causalité fallacieuse se pose pour la plupart des études réalisées dans ce domaine,
y compris dans des travaux très souvent cités portant par exemple sur les effets des
réseaux sociaux sur la formation d’alliances (Gulati and Gargiulo, 1999), sur le choix de
partenaire (Powell et al., 2005), ou encore sur le taux de formation d’alliances (Ahuja,
2000). Les travaux à venir devront donc s’attacher à intégrer des variables de contrôle
pour les structures stables, exogènes, qui sous-tendent la formation de réseaux. Ces
structures stables sous-jacentes peuvent être l’espace technologique, mais aussi des
caractéristiques économiques structurelles à l’origine de causalités non observées dans
la formation de réseaux.

Le chapitre 5 étudie la division du travail dans le processus d’innovation de l’industrie
des vaccins. Ce chapitre se démarque doublement de l’approche suivie dans les chapitres
précédents. Premièrement, les connaissances technologiques des entreprises sont repré-
sentées différemment. Les vaccins étant des produits presque modulaires composés
d’éléments distincts, les entreprises sont classifiées selon les éléments pour lesquels
elles possèdent des compétences technologiques. Deuxièmement, le chapitre 5 ne
s’intéresse pas au réseau constitué par les entreprises individuellement mais aux flux
technologiques entre différents types d’entreprises. Les flux technologiques sont mesurés
selon le réseau d’alliances entre entreprises. La question principale reste cependant la
même que dans les chapitres précédents: comment la spécialisation technologique de
l’entreprise affecte-t-elle la formation d’alliances et, à travers celle-ci, les phénomènes
de réseau de niveau supérieur. Dans ce cinquième chapitre, le phénomène de niveau
supérieur considéré est la structure des flux technologiques entre les entreprises. L’ana-
lyse empirique a mis en évidence des flux technologiques particulièrement importants
des entreprises de biotechnologies spécialisées vers les entreprises pharmaceutiques
intégrées. Ce recours intensif aux technologies disponibles à l’extérieur de l’entreprise
s’explique en partie par l’architecture modulaire des vaccins. L’étude d’une entreprise
pharmaceutique suggère que les entreprises possédant un portefeuille de vaccins étendu
peuvent tirer parti de cette architecture modulaire en se procurant des composants de
vaccins pour améliorer les vaccins existants et en développer de nouveaux. Les flux
technologiques entre les entreprises de biotechnologies spécialisées n’apparaissent pas
clairement orientés par le type d’entreprise. L’argument selon lequel les entreprises
spécialisées dans des composants de vaccin moins substituables ont un pouvoir de
négociation plus élevé, et attirent donc davantage la technologie, n’est que très par-
tiellement confirmé. L’argument selon lequel l’interdépendance concurrentielle entre
les entreprises spécialisées dans les même domaines résulterait dans des flux tech-
nologiques faibles, et l’interdépendance symbiotique entre les entreprises spécialisées
dans des domaines complémentaires résulterait dans des flux technologiques forts n’est
pas confirmé par les données. Afin de mieux comprendre ce résultat, l’analyse em-
pirique est complétée par une étude de cas portant sur l’entreprise de biotechnologies
Crucell. Le succès obtenu par Crucell dans la commercialisation sous licence de sa tech-
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nologie transversale lui a permis de se lancer dans le développement de produits, puis
d’acquérir des ressources complémentaires en marketing et distribution. L’étude de
cas a montré que la spécialisation technologique de l’entreprise ne permet de présager
ni de sa stratégie ni du rôle qu’elle peut être amenée à jouer dans l’industrie.
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Résumé

La généralisation rapide des alliances d’entreprises a généré de nombreux travaux de
recherche visant à comprendre les causes et les effets de ce phénomène, alors que l’étude
théorique et empirique de la formation des réseaux ne s’est développée que récemment.
Cette thèse s’intéresse au rôle de la dotation technologique et sociale des entreprises
dans leurs décisions de formation d’alliances bilatérales, et étudie comment les con-
naissances actuelles sur la formation d’alliances bilatérales peuvent aider à expliquer
la structure du réseau d’alliances. Notre modèle théorique apporte un éclairage sur la
façon dont la dotation technologique des entreprises affecte à la fois la structure glob-
ale du réseau et la position relative des entreprises au sein du réseau. Notre analyse
empirique s’attache à estimer les effets de réseau technologiques et sociaux sur la for-
mation d’alliances. Le pouvoir prédictif du modèle estimé s’avère élevé concernant la
position de l’entreprise dans le réseau mais relativement faible concernant la structure
globale du réseau.

Mots clés: alliances, formations des réseaux, ressources des firmes , réseaux
sociaux.

Codes JEL: D21, D74, D85.
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Abstract

The dramatic increase in alliances among firms has led to a large, and growing litera-
ture attempting to understand its causes and effects, whereas theoretical and empirical
research on network formation is just at its beginnings. This thesis considers how the
technological and social endowment of firms affect their decisions to form bilateral
alliances, and investigates to what extent our knowledge on the formation of bilat-
eral alliances helps to explain the structure of the alliance network. A theoretical
model yields insights into how the technological endowment of firms may affect both
the global network structure and the position of firms in the network. An empirical
analysis estimates technological and social network effects on alliance formation. The
estimated model is shown to be rather informative with respect to the firm’s position
in the network but not very informative with respect to the global network structure.

Keywords: Alliance formation, Network formation, Resource based view,
Social networks.

JEL: D21, D74, D85.
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