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Chapter 1 — Introduction

Section 1.1. Introduction: Version frangaise

La présence et le devenir des pesticides commeagml organiques persistant dans
I'environnement, principalement les sols, est unéopcupation permanente des politiques
publiques ou privées en charge du contrble de &itguenvironnementale; ceci au vu de
nombreux travaux publiés qui ont bénéficié d’'ungofaou d’une autre de soutiens financiers.
Le devenir des pesticides dans I'environnement ¢oren compte des processus qui
déterminent leur persistance et mobilité, le transple transfert et les processus de
transformation. Ces processus sont affectés paprigsriétés physigues et chimiques des
pesticides, les caractéristiques du sol, des dondilocales du climat et de I'hnumidité, de la
population biologique et des pratiques de manuierdies utilisateurs. En outre, la variance
de la structure chimique des pesticides est uncatelir de leur comportement dans
'environnement, sachant que la dégradation oustommation d’'un pesticide induit un
changement de structure et donc de comportement BRace risque avéré de pollution
environnementale, la communauté scientifique et desfessionnels de l'assainissement
redoublent d’ardeur pour une compréhension finepdesessus impliqués dans le devenir des
pesticides ainsi que pour le développement desépésc concourant a la réduction de la
pollution diffuse generée.

Des études récentes ont souligné la capacité desszioumides artificielles a la
réduction des pesticides issus du ruissellementedag de surface [Gregoire et al., 2009 ;
2010]. La modélisation des processus dominantsigugs dans le devenir des pesticides au
sein des massifs poreux constituant les zones asnaidificielles est I'objet de ces travaux de
recherche.

Tout d’abord, dans une premiére partie, nous expodeétat d’avancement de la
recherche dans ce domaine. Aprés un point biblpdggaie sur les différentes études traitant
des capacités des zones humides artificielles aadég les pesticides, une revue des
généralités sur les processus d’écoulement des, ehuxransport des polluants et les
phénomenes de biodégradation a été effectuée.pbotitulierement, les processus dans une

zone humide artificielle.




Chapter 1 - Introduction 2

Cette partie s’achéve par I'état de l'art des diffés modéles numériques existant
pour simuler le couplage entre hydrodynamique dieax poreux et transport réactif.

Dans une seconde partie, nous abordons le dévelgmped'un nouvel outil
numérique de simulation pour comprendre le devées pesticides dans une zone humide
artificielle. Tous les processus affectant la dyimaa des pesticides ne sont pas connus et la
description quantitative des processus connus n&gours pas possible [Rao et Jessup,
1982]. Ce constat émerge d’'une revue bibliographiqui recense et analyse les difficultés
rencontrées par les modeles de simulation du dewdes pesticides lors d’essais de
vérification. La vérification ou I'usage de ces retabs est généralement difficile du fait des
méthodes inadéquates pour la mesure et I'estimderparametres d’entrée.

Le modéle développé est fondé sur la méthodeistaétisation des éléments finis
mixtes hybrides. Il représente une contribution eméthodes numériques employées pour la
simulation d’écoulement des eaux souterraines dtahsport des polluants dans les milieux
poreux a saturation variable. La formulation uiisest basée sur les propriétés de I'espace de
Raviart-Thomas, considérant un domaine bidimengbulivisé en éléments triangulaires.
Cette technique a été particulierement bien adgmigela simulation d’écoulement en milieu
poreux saturé hétérogéne lors des études anté&rielme milieu poreux non saturé,
I'hétérogénéité est liee a la fois a I'nétérogéndies massifs filtrants et a une distribution non
uniforme de la teneur en eau dans la zone humidieiatle. L’originalité ici est I'application
des éléments finis mixtes hybrides pour un miliemepx a saturation variable tant pour
simuler 'hydrodynamique que pour le transport.

L’équation de Richards qui gouverne I'hydrodynaneiglu modéle a été modifiée par
I'addition d’une variable de transformation de gien. Cette méthode présentée par Pan et
Wierenga [1995] est numériquement robuste pour legisas en milieux poreux hétérogénes
a saturation variable, et avec des conditions auitels de type Dirichlet ou Neumann. La
technique de condensation de la masse proposé@effart [2006] été utilisée pour limiter
I'apparition d'oscillations, problemes liés a I'exgsion discréte du terme exprimant la
variation de la masse dans le volume. En outadgadrithme de gestion des conditions aux
limites proposé par Van Dam et Feddes [2000] pas $cénarios d'infiltration et
d’évaporation est repris afin d’éviter 'apparitide résultats sans réalité physique.

Pour I'équation de transport une formulation orééna été utilisée. L’approximation
du flux de transport convectif et dispersif eseeftiee par un unique vecteur. Il n’est donc pas
fait usage de la technigque de séparation d’opé&satgui introduit des biais propres a chaque

opérateur.
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Afin de contréler les oscillations non physiquesiagi la convection est le processus
dominant, un outil pour limiter le flux est présént’outil suggéré limitant le flux permet de
préserver la précision et la stabilité pour ungdagamme des nombres de Peclet.

Différents modéles de cinétiques de biodégradatepesticide, spécifiquement liés a
I'environnement des sols sont implémentés a la sigit’hydrodynamique et du transport.

La solution numérique s’obtient aprés résolutionsgsteme d’équations linéaires, ou
les inconnues sont les traces de pression de peau I'hydrodynamique et les traces de
concentration pour le transport. La matrice assoca systeme d’équations pour
I’'hnydrodynamique est symétrique et définie positiar conséquent, elle peut effectivement
étre résolue par la méthode du gradient conjug@&opditionné avec une décomposition de
Cholesky incompléte en utilisant la procédure Essan[Eisenstat, 1981]. En revanche, la
matrice associée au transport est non symétriqdaitddu limiteur de flux. Ainsi, la méthode
itérative du gradient conjugué, préconditionné cdeeprocédure de Eisenstat ILU est utilisée
pour résoudre ce systéme algébrique.

La discrétisation en temps joue également un rfrtant au cours de la simulation.
Une sélection inadéquate du pas de temps peut ter@wne mauvaise approximation de
I'hnydrodynamique et de transport de polluant. Poette raison, I'incrément temporel est
automatiquement adapté a chaque itération.

Dans une troisiéme partie, la vérification du medgdrodynamique est effectuée par
la comparaison entre les résultats de réféerenseedsde la littérature et ceux du modele
développé. Plusieurs problémes en mono et bidiraenel sont traités. L'infiltration au sein
de sols initialement trés secs, induisant de foréglients de teneur en eau est simulés avec
succes. Une comparaison entre les résultats obteracsle modéle numérique commercial
HYDRUS (dans le cas d'infiltration dans une colomigesol), des solutions analytiques et le
modele développé a permis de valider I'efficacitdichiteur de flux proposeé.

La quatriéme partie concerne I'application du med@imérique aux conditions de
terrain via des sites expérimentaux. L'usage dedates est généralement difficile du fait des
méthodes inadéquates pour la mesure et I'estimdgsrparametres d’entrée des modéles. En
outre, les méthodes de mesures des parametreség’ardg sont parfois pas disponibles. Par
ailleurs, leur utilisation a I'échelle de terraist eonfrontée a des probléemes majeurs. Nous en
dénombrons ici quelques-uns:

- les propriétés physiques, chimiques et biologiqde sol varient spatialement et

temporellement.
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- le comportement des pesticides est déterminé yver multitude de processus
dynamiques qui ont lieu simultanément.

- les modeles mathématiques de transformation diipl@ sont en général issus des
relations développées par la description des gués microbiennes en batch ou cultures
continues. La flore microbienne est restreinte phase aqueuse qui peut étre comparée a un
réacteur biologique ou différentes substances surduites [Soulas et Fournier, 1981].
Cette approche, aussi intéressante soit-elle, ¢raav limitation du fait de la tres grande
complexité des sols. Alexander et Scow [1989] mtéwvjue la composition physico-chimique
des sols est hautement complexe, la communautéolieome assez hétérogene et les
constituants abiotiqgues sont couramment réactiiscdhséquence, I'application des modeéles
cinétiques de biodégradation est sujette a caufoar cette raison, nous n’aborderons pas la
validation des processus biologiques dans cetteepar

Nous proposons un usage du modéle numérique pdimisgr le fonctionnement
hydraulique de sites réels construits dans le cddrerojet européen ARTWET (LIFE 06
ENV/F/000133).

Le premier site est situé a l'interface rural/urbaur la commune de Rouffach
(Alsace, France). C'est un bassin d'orage constouiginalement pour la régulation
hydraulique. Le bassin d’orage constitue I'ouvrageepteur des flux ruisselants générés
majoritairement sur les parcelles et chemins Miéigo Apres un stockage transitoire, les
volumes collectés dans le bassin d’orage sont &svagrs les collecteurs d’assainissement
aval, attention deconnecté de la station d’épunaicant d’étre rejetés vers le milieu naturel.
Des mesures ont montré la présence de produitsogdmnitaires en concentration non

négligeable dans les eaux superficielles, allargldgieurs centaines deg/ &ux parcelles a
quelques g/ ldans les rivieres de plaine. Par ailleurs, le Ibasborage présente une

potentialité de bio et phyto-remédiation de paxiSeence d’'une accumulation de sédiments
transportés depuis les parcelles et de la coloorsate ce milieu par une végétation. Par
conséquent, il devient un élément de traitemerdrni@ de la charge polluante, qu’il est alors
intéressant d’optimiser.

L'optimisation de la conception de bassins d’orageeffectuée par la construction
d'une zone humide artificielle d’écoulement horitmn(HFCW dans la terminologie
anglosaxonne), dans le but de réduire la concéntrat le flux des pesticides dans les eaux
qui y transitent. Afin d'optimiser la gestion hgdlique du HFCW, des expériences de

traceurs numériques sont effectuées pour simulesiqirs scénarios. Des charges
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hydrauliques réalistes sont simulées et les diftér@rofils de pression sont examinés. Les
courbes de percée sont exploitées pour calculdistebution du temps de séjour de polluant
dissous dans le HFCW, ainsi que la capacité dekagec Les effets induits par une

hétérogénéité d’adsorption dans le milieu sont ya@sl. Nous donnons une expression
empirique pour calculer la capacité de stockagebdssin ne pouvant traiter que la pollution
stockée, nous proposons par le biais de la motiélisdes choix opérationnels optimisant les
capacités de stockage du bassin. Ainsi une gebiidrauligue du HFCW est suggérée en

relation avec les temps de retention et de dégoaddes pesticides.
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Section 1.2. Introduction: English version

The presence and fate of pesticides, as persisteganic pollutants in the
environment, especially in soil, are a permanemtcem of public or private policies on
environmental quality control. This is confirmed llye existence of several published
research works, which have been benefited in ong avaanother from financial support.
Pesticides fate in the environment takes into agtdhe processes that determine their
persistence, mobility, transport, transfer and dfammation. These processes are affected by
physical and chemical properties of the pesticicdesl, characteristics, local conditions of
climate and humidity, biologic population and usehandling practices. In addition, the
variance of the chemical structure of pesticidesansindicator of their behavior in the
environment, knowing that the degradation or tramsftion of a pesticide induces a
structural change and therefore a change in itsavdeh Face to this proven risk of
environmental pollution, the scientific communitydasanitation professionals redouble their
efforts for a better understanding of the procegg®eaerning the fate of pesticides, for the
development of processes that contribute to theatézh of this diffuse pollution.

Recent studies have emphasized the ability of oectsd wetlands to retain runoff-
related pesticide pollution [Gregoire et al., 20@®10]. The objective of these research
studies is to model the dominant processes tha&trmdaete the fate of pesticides within the
porous medium that constitutes the artificial weadls.

In the first part of the present work, we outlihe progress in this research domain. A
literature review was carried out on the differstutdies dealing with the capacity of artificial
wetlands to degrade pesticides, the processes tef Waw and transport of pollutants, and
the degradation phenomena; particularly, the pseEsesn an artificial wetland. This part is
completed by the state of the art of the differexisting numerical models to simulate the
coupling between hydrodynamics in porous mediaraadtive transport.

In the second part, we approach the developmeatr@w numerical simulation tool
to understand the fate of pesticides in an ardfigietland. Not all the processes affecting the
dynamics of pesticides are known and the quamntéadescription of the known processes is
still not possible [Rao and Jessup, 1982]. Thidifig emerges from a literature review that
identifies and analyzes the difficulties encounddog the simulation models of pesticides fate
during verification tests. Verification or use dfese models is usually difficult, due to the

inadequate methods for measuring and estimatinop g parameters.
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The model developed is based on mixed hybrid findiement method of
discretization. It represents a contribution to mioenerical methods used to the simulation of
groundwater flow and transport of contaminantsariably saturated porous media.

The formulation used is based on Raviart-Thomasicspproperties, considering a
two-dimensional domain divided into triangular etts. This technique is particularly well
adapted to the simulation of heterogeneous flovd.fidt has been applied in previous works
concerned mainly with the flow in heterogeneousirsaiéd porous medium. In unsaturated
porous medium, the heterogeneity is due to bothéterogeneous sediment distribution and
the non-uniform water content in the constructedamel. The originality here is to simulate
both, flow and solute transport, with the applicatiof the mixed hybrid finite element
method for a variably saturated porous medium.

The hydrodynamic model governed by the Richardsiaign has been modified by
the addition of a variable of pressure transforomatiThis method presented by Pan and
Wierenga [1995] is numerically robust for all theses in variably saturated, heterogeneous
porous media and with Dirichlet or Neumann type rmary conditions. The mass
condensation scheme proposed by Belfort [2006] usedd in order to avoid oscillation
problems related to the discrete expression ofténe representing mass variation in the
volume. Moreover, the algorithm for the managenwnboundary conditions proposed by
Van Dam and Feddes [2000] and applied to simuldi#ration and evaporation scenarios
has been implemented in order to avoid resultsowitiphysical meaning.

For the transport equation, an original formulatimas used. A unique vector
approximated the advective-dispersive transporx. fllihus, it does not make use of the
operator splitting technique, which introduces ithe solution an intrinsic error associated
with each operator. In order to control the nongitgl oscillations when convection is the
dominant process, a flux-limiting tool was introedc The suggested flux-limiting tool makes
it possible to preserve precision and unconditiostability for a large range of Peclet
numbers.

Following the hydrodynamic and transport modellinglifferent pesticide
biodegradation kinetic models have been implemergeecifically related to the environment
of soils.

The numerical solution is obtained after the resmfuof a system of linear equations,
where the unknowns are the water pressure trageshé hydrodynamics and traces of
concentration for the transport. The matrix assted with the hydrodynamics equations

system is symmetric and definite positive. Therefdt can be effectively solved by the



Chapter 1 - Introduction 8

conjugate gradient method, preconditioned withrenoimplete Cholesky decomposition using
the Eisenstat procedure [Eisenstat, 1981]. Inreshtthe matrix associated with the transport
is nonsymmetric. Thus, the conjugate gradient sglaerative method with the Eisenstat
ILU preconditioning procedure will be used to sollies algebraic system.

Time discretization also plays an important roleimty the simulation. An inadequate
time step selection may lead to an inaccurate aqmpatdion for the hydrodynamics and solute
transport calculations. For this reason, the tinbeement is automatically adjusted at each
time level.

In the third part, hydrodynamic model verificatiovas performed by comparison
between reference results from the literature dudd computed by the model developed.
Several problems in one and two dimensions weegdédde The infiltration in soils that were
initially very dry, led to strong gradients in wateontent being simulated successfully.
Besides, a comparison among the results calcullayethe commercial numerical model
HYDRUS (in the case of infiltration into a columhsawil), analytical solutions and the model
developed permitted the validation of the effeate®s of the proposed flux-limiter.

The fourth part is concerned with the applicatidnttee numerical model to field
conditions via experimental sites. Model use isallgudifficult because of inadequate
methods for measuring and estimating the inputmpaters of the models. Furthermore, the
methods to measure the input parameters sometireesoa available or their use on field
conditions is confronted with many issues. Wedigw of them here:

The physical, chemical and biological propertiesaf vary spatially and temporally.
Pesticides behavior is determined by a multitudedyiamic processes, which take place
simultaneously.

Mathematical models of biological transformatiosui¢ in general from the relations
developed by the description of microbial kinetios batch or continuous cultures. The
microbial flora is restricted to the aqueous phas¢ can be compared to a biological reactor
where various substances are introduced [SoulasFandier, 1981]. Although it is very
interesting, this approach has limitations becaokdhe large complexity of the soils.
Alexander and Scow [1989] indicate that the phydiemical composition of the soils is
highly complex; the microbial community is heterngeus enough; and the abiotic
constituents are usually reactive. In consequetiee application of the kinetic models of
biodegradation is subject to question. For thiseeawe will not approach the validation of

the biological processes in this part.
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We propose the use of the numerical model to opénthe hydraulic functioning of
real sites constructed under the frame of the Haopproject ARTWET (LIFE 06
ENV/F/000133).

The first site is located in the rural/urban inéed in Rouffach (Alsace, France). Itis a
stormwater basin, originally constructed for floggulation purposes.

It receives streaming flows generated mainly over toads and vineyard parcels.
After transitory storage, the volumes collected seet towards a downstream collector. Then
they are conducted to a water treatment station) famally, they are released to the natural
environment. Measurements have shown the presefcgesticides at considerable
concentrations upstream and downstream of theostafihis station is not, indeed, designed
to treat pesticides. The stormwater basin has tbeenpality of biodegradation and
phytodegradation, derived from the existence ai@umulation of the sediments transported
from the parcels and the colonization of this medhy vegetation. Therefore, it becomes an
element of potential treatment of the pollutingdpahich is interesting to optimize.

The optimization of the stormwater basin designb&ing carried out by the
construction of a horizontal-flow constructed watdaHFCW), which improves its biological
potentialities with the aim of reducing pesticidecentration in the in-transit water. In order
to optimize the HFCW'’s hydraulic management, nuoartracer experiments were carried
out to simulate several scenarios. Realistic hyldrdoads were simulated and different
pressure profiles were examined. Breakthrough auhae been exploited to calculate the
solute residence time distribution in the HFCW waedl as the storage capacity. The effects
induced by adsorption heterogeneity in the mediusnevanalyzed. An empirical expression
to calculate the storage capacity has been comsttru€he HFCW can only treat the stored
pollution. Thus, we propose operational alternatit@ optimize the storage capacity of the
HFCW through the application of the model. Henckydraulic management of the HFCW is

suggested in relation to the times of retention pesticide degradation.
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Chapter 2 - State of the art

This chapter includes a state-of-the-art review pasticides and their effects on
environment and human health, followed by a shedndew of the European Pesticide
Legislation. Different methods of pesticide riskluetion were approached from the point of
view of management and the development of remediagchniques. The use of constructed
wetlands is then proposed. Then, a brief histoqualthe utilization of constructed wetlands
in water treatment is given. The next section camcéhe application of constructed wetlands
for the treatment of pesticide non-point sourcdydimin. A subsequent section contains an
extended description of the different processesumityy in constructed wetlands
(hydrodynamics, transport, and fate of pesticidég)ally, this chapter presents a literature

review on numerical modeling techniques.

11
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Section 2.1. Pesticides, environment and human heal th

Pesticide is a general term that includes sevgpaist of chemicals, such as herbicides,
insecticides, fungicides, rodenticides, among @heesigned to stop unwanted growth. Over
the years, the use of pesticides has greatly iseckavith the evolution of the intensive
agriculture. Based on the World Environmental Datdb 2008/2009 [Euromonitor
international, 2009], United States was the countityh higher total pesticide consumption
(370,993 tonnes) in 2007, followed by France (136,%onnes). The increase in their
pesticide consumption in comparison to 2001 wakdridor France (17.18%) than for United
States (2.82%). In France, the presence of pessidiuthe environment has been confirmed
by several studies: in surface water [Garmoumal.et2801; Irace-Guigand et al., 2004;
Comoretto et al., 2007; Pesce et al., 2008, Bdtta.e2009], groundwater [Morvan et al.,
2006; Baran et al., 2007, Baran et al., 2008; Guetzeand Baran, 2009], soil [Duquenne et al.,
1996; Mamy et al., 2008a; Schreck et al., 2008f) atmosphere [Chevreuil et al., 1996;
Khalil Granier and Chevreuil, 1997; Sanusi et2000; Bedos et al., 2002; Briand et al, 2002;
Scheyer et al., 2005, Scheyer et al., 2007]. Adogrdo the French Institute for the
Environment [IFEN, 2006], in a survey performed®04, pesticides residues were detected
in 96% of the measurement points of superficialewanhd 61% of groundwater.

Particular interest is given to water contaminatiespecially when impacted water
bodies are used for drinking water supply or whextewdischarges are close to a sensitive
habitat. Risk assessment and effects on wildligulteng from pesticide contamination of
aquatic ecosystems was the subject of differerttiesu[Belfroid et al., 1998; Cuppen et al.,
2000; Van den Brink et al., 2000; Hanson et alQZ20ramaguchi et al., 2003; Wendt-Rasch
et al., 2004; Altinok et al., 2006; Capkin et &Q06; Boesten et al., 2007; Houdart et al.,
2009; Van den Brink et al., 2009]. Different apprioes to estimate the environmental impact
of pesticide use have been developed [Van der VI866; Levitan, 2000; Falconer, 2002;
Bues et al., 2004], as well as procedures or indisafor environmental risk assessment of
pesticides [Reus et al., 2002; Finizio and Villap2; Sanchez-Bayo et al., 2002; Padovani et
al., 2004; De Schampheleire et al., 2007; Mamy.e2808b; Centofanti et al., 2008; Sala and
Vighi, 2008; Guérit et al, 2008]. As an alternatimethod for risk assessment, bioassays are
early-warning systems that can be effectively useddetect the presence of pesticides
[Hansen, 2007].
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In some instances, transformation products havelssirtoxicity than their parent
compounds. Thus, there is a need to consider theing the environmental risk-assessment
process [Kolpin et al., 1998 and 2000; Andreu aicd,R2004].

Concern is increasing for the determination whethere is a potential human health
risk associated with pesticide exposure. Sevenadliet have examined the relationship
between the exposure to pesticides and the rislevelop cancer [O’Leary et al., 2004; De
Brito S& Stoppelli and Cretana, 2005], an incraasgenotoxic damage [Bolognesi, 2003],
chromosomal aberrations [Carbonell et al., 1998oerine disruption [McKinlay et al.,
2008], damage in the reproductive system [Peteglti Mantovani, 2002], depression as a
major risk factor for suicide [Parrén et al., 1996 problems in the central nervous system
[Hogberg et al., 2009]. Although positive associas are difficult to establish, convincing
connections support the cause-effect hypothesis.

The hazard of a pesticide on humans depends upotoxicity of the pesticide, the
magnitude of the dose received and the length pbsxre time. Acute toxicity of a pesticide
refers to the effects from a single dose or regkeatgosure over a short time. Chronic
toxicology refers to the effects of long-term opeated lower level exposures. Important
criteria have been established to help in the pvasen of public health, such as the
maximum residue level (MRL) that is legally permdtin specific food items and animal
feed; as well as the amount of a pesticide, in gddy weight, which can be ingested, on
daily basis, during lifetime (refered as ADI), atite concept of the acute reference dose
(ARfd). The mean dietary intake should not excdesl ADI over a considerable period of
time, while short-term excursions in intakes shontd exceed the ArfD [Nasreddine and
Parent-Massin, 2002]. Human toxicity is generaBjireated based on data on the toxicity of
pesticides to rats and other animals. Test anim@sexamined for a wide variety of toxic
effects [Durham and Williams, 1972], such as cargénicity, mutagenicity, teratogenicity,
liver damage, reproductive disorders, nerve damagd, allergenic sensitization. However,
dose-response data in experimental animals cansemiye as a guide to the probable human
toxicity of a pesticide.

In order to protect human health, the environmemnt wildlife, different regulatory
agencies or organizations have established guetelor standards values for maximum
residue levels in food, soil, atmosphere, and wiad1O, 1997; US EPA, 2002; Hamilton et
al., 2003; Adriaens, 2008; Menard et al., 2008].
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Section 2.2. European Pesticide Legislation

A harmonized framework for the regulation of plgmtection products in the
European Community was set up through the adoptio€ouncil Directive 91/414/EEC
[Conseil de I'Europe, 1991] concerning the placiofgplant protection products on the
market. Regulation EC No 396/2005 of the Europeanmlidment and of the Council
[European Commission, 2005] has harmonized theelsiglevel of a pesticide residue that is
legally tolerated in or on food and feed of plamidaanimal origin, amending Council
Directive 91/414/EEC. In France, the Ministries p@ssible for consumption, health,
agriculture, and ecology have implemented an int@sterial plan [PIRRP, 2006] intended to
reduce the risk that pesticide use can generakteailth, the environment and biodiversity.

The Water Framework Directive (Directive 2000/60jJE€@mmits European Union
member states to achieve a good qualitative andtdatve status of all water bodies by
2015 [European Commission, 2000]. As a responsehdu monitoring programs were
established. Directive 2008/105/EC [European Cossian, 2008] sets the environmental
quality standards to be accomplished for a listpabrity substances, including several
pesticides. The registration, evaluation, authéiopaand restriction of these substances are
dealt through the application of the Regulation E@07/2006 [European Community
Council, 2007]. European Water Framework Direciildines a frame for the management
and the protection of waters, organized along lainggr basins, which are naturally defined
by the catchment divides. The French Law on Watet Aquatic Environments of 30
December 2006 [LEMA, 2006] has set up action plagainst diffuse pollution to be
implemented in sensitive sectors as catchmentsimfidg-water wells, diffuse erosion areas,
and wetlands of particular interest.

The Drinking Water Directive 98/83/EC in the Eurape Union [European
Community Council, 1998] established regulatory suees on the quality of water intended

for human consumption, fixing a maximum threshadth@entration limit of 0.1Qug L™ for

each individual pesticide (except for aldrin, dieigd heptachlor and heptachlor epoxide) and

0.5 g L™ for the total pesticides (sum of all individualstieides detected and quantified in

the monitoring procedure).
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Section 2.3. Pesticide Risk Reduction

Pesticide risk reduction can be approached fragnptint of view of management or
the development of remediation techniques. Theiegmn of both approaches leads to the

minimization of the environmental impact causedbsticide contamination.
2.3.1. Management approach

Pesticide entry into water can be originated frampor non-point sources [Barriuso
et al., 1996; Mduller et al., 2002; US EPA, 2003grisultural non-point sources of pollution
are a major cause of water quality impairment [Datval., 2008]. Farmers, regulators, and
other stakeholders face political, budgetary anchrial barriers in order to achieve
environmental outcomes. Henle et al. [2008] offer approach of identification and
evaluation to reconciliation strategies for the fiots between agriculture and biodiversity
conservation in Europe.

Some of these strategies include the establishofamtional programs, which enable
the revision of approval schemes in accordance mgtln knowledge for the minimization of
hazards and risks to health and environment fraenutle of pesticides. These programs can
improve controls on the use and distributions dftipedes. In addition, the implementation of
pesticides registration programs permits the eliam of undesirable pesticides, or
reduction in the levels of harmful active substanead the registration of safer products.

The utilization of integrated crop and pest manag@nis also suggested in order to
encourage the use of low-input or pesticide-frem darming [European Commission, 2002
and 2009]. In addition, the promotion of codes 0bd practices for handling, storage, use
and disposal of pesticides are recommended, as agelthe consideration of possible
application of financial instruments. Significanbanges in farming practices have been
achieved as a result of negotiation between farnsrd water suppliers through the
establishiment of co-operative agreements [Heinalgt2002]. The improvement in the
efficiency of the application process is also intpot, because of the influence in the toxicant
distribution [Ebert and Downer, 2006]. An increaeethe number of farmers using such
approaches reduces the dependence on, and risk gasticide use.

Moreover, the establishment of environmental maimtpprograms can result in the
application of tighter controls and restrictions mmoduct use. Besides, the monitoring and
investigation of non-target impacts upon wildlifg jpesticides may lead to the identification

of responsible pesticides for review and the ingasibn of use patterns or compliance
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actions, such as the installation of unsprayedusieb zones in the agriculture to reduce the
risks to wild life [European Crop Protection Assaimn, 2008].

The collection of information on suspected adversactions from the use of
pesticides will also improve health monitoring. fhermore, a review of trends in a
transparent monitoring system provides a clear rataieding of what and where pesticides
are used. It permits the identification of pricggtiand the development of suitable indicators.
It may also provide statistical evidence to testgtgnificance of site and chemical factors and
their interactions concerning to pesticide envirental contamination and site vulnerability
[Worral et al., 2002; Loague and Corwin, 2005].

2.3.2. Remediation techniques

Carter [2000] presents a list of methods develdpa@duce pesticide entry into water
(Table 1). These methods can be considered as gahysingineering and educational
solutions.

Adsorption is a physical process effective for ¢ removal [Carrizosa et al., 2000;
Aslan and Turkman, 2004; De Wilde et al., 2009]BBkouri et al. [2009] propose the use of
natural organic substances to prevent the mobdftypesticides from agricultural soil to
groundwater resources. A removal efficiency of mahan 90% was obtained in an
application for chlorinated pesticides included Baropean Water Framework Directive.
Other methods include the possibility of using gettes for the retention of pesticides in
agricultural watersheds. In a study performed butBm et al. [2009], pesticide adsorption
on geotextile fibres was larger than for sedimemis it was lower than for dead leaves.

Another potential decontamination technique isllebed. The main function of the
biobed is to reduce environmental pesticide comagoh due to the strong adsorption of the
pesticide on the organic components and rapid datjom by the active microbiological
component. The use of biobeds has been proposedtam spilled pesticides especially
during filling or cleaning of agricultural sprayireguipment [von Wirén-Lehr et al., 2001,
Torstensson, 2000; Spliid et al.,, 2006]. A modifiebbed system technique based on
biological reactors has proved to be efficient floe cleaning of water contaminated with
persistent pesticides and it was suggested forcnegypoint-source contamination at farm
level [Vischetti et al., 2004].
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Table 1. Methods to reduce pesticide entry into wa  ter [Carter, 2000]

Entry Route

Methods to reduce pesticide entry weiter

DIFFUSE
Drainflow and
interflow

Surface flow

Base seepage
Leaching

Precipitation
Spray drift

POINT
Tank filling

Spillages

Faulty equipment

Washing and waste

disposal

Restrict flow when peak losses are anticipateddosiase time for degradation and

sorption (which may result in localized waterlogg)in

Manage soil structure e.g. create fine tilth wéase sorption and water retention

(which may reduce infiltration, increase runoffusa poor drainage and cause
increased root disease pressures, etc.)

Incorporate additives to soil surface e.g. orgamiterial or stabilizers
Restricted application areas e.g. protection zones

Reduce drain intensity

Optimization of application rates
Target timing of applications to avoid potentiass periods

Buffer zones with various surface tmgnts e.g. grass strips

Contour cultivations

Manage soil surface e.g. reservoir tillage, miditilage

No specific measures

Restricted application areas

Restrict application to products with appropripteperties to minimize leaching
manage soil structure e.g. create fine tilth tséase sorption and retention
incorporate additives to soil surface e.g. orgaméderial or stabilizers

No specific measure

No-spray zones e.g. LERAPS

Manage vegetation adjacent to water e.g. hedgesception plants

low drift application technology

Education of operator to choose optimal conditions

Container modifications e.g. anti-glngcks, pack size, returnable packs
Add container rinsate to the tank mix
Engineering solutions e.g. tank full alarm, diriagéction
Remove operations from drained impermeable areas
Biobeds
Interception areas drained to waste collectian sit
Education of operator
Remove operations from drained imperngeatdas
Biobeds
Interception areas drained to waste collectian sit
Use of sorbent pads/ material and materials &rdept spills or clean up
Use of licensed hazardous waste contractors

Immediate incineration of empty containers if pittaal or storage under cover before

return or disposal
Education of operator
Regular maintenance and servigirsprayer
Sprayer testing
Biobeds

Other on farm treatment systems e.g. Sentineésyst
Authorized waste disposal
Dispose of tank sump contents appropriately

Sumps, soakaways andRequirement for licensing

drainage

Diversion from direct discharge to water

Direct entry including Avoidance

overspray

Consented discharges

Education of operator

Requirement for licensingcamgpliance with Environmental Quality Standards
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Moreover, the use of several microorganisms incgdbacteria and fungi for
biosorption has been studied for the degradaticspofe pesticides [Ju et al., 1997; Benoit et
al., 1998; Esposito et al., 1998; Lievremont et &b98; Cullington and Walker, 1999;
Khadrani et al., 1999; Hong et al., 2000; Tixieakt 2002; Aksu, 2005; Castillo et al., 2006;
Barragan-Huerta et al., 2007; Ghosh et al., 2009].

Bioremediation is the use of living organisms, @rity microorganisms, to degrade
the environmental contaminants into less toxic ®ridali, 2001]. Supplying nutrients,
carbon sources or electron donors to these micanisms, the rate of natural microbial
degradation of contaminants is enhanced [Fraza®0]20With the aim to examine the
bioremediation’s efficacy under more realistic citiods, studies in open soil microcosms
were performed for atrazine-contaminated soils e al., 2009].

Futhermore, bioturbation refers to the biologi@lorking of soils and sediments by
inhabiting organisms such as plant roots and bungwanimals. Soil bioturbation by
earthworms may change the distribution and degi@adaf pesticides [Monard et al., 2008].

Phytoremediation is another technology that carafyglied to remediate pesticide-
contaminated sites [Arthur et al., 2000]. Phytordiaton is defined by Susarla et al. [2002]
as an emerging technology that uses plants and then associated rhizosphere
microorganisms to remove, transform, or containc@kemicals located in soils, sediments,
groundwater, surface water and even the atmosptiigtoremediation as a tool for
contaminant mitigation is not a new concept [Salale, 1998; Dietz and Schnoor, 2001,
Pivetz, 2001; Trapp and Ulrich, 2001; Singh andh, JaD03; Pilon-Smits, 2005; Ahalya and
Ramachandra, 2006]. The mechanisms of phytoremedliatclude the following processes
(Figure 1)

* Phytoextraction (also called phytoaccumulation)ths process used by plants to
accumulate contaminants into the roots and leaves.

* Phytostimulation (also called rhizodegradation)he Bolil in the root zone, also called
rhizosphere soil usually consists of 10-100 timeesater number of indigenous
microorganisms than in bulk soil. Degradation ofmgopesticides due to microbial
activity in this soil has been found to be effeet[$ingh et al., 2004; Sun et al., 2004;
Plangklang and Reungsang, 2008]. Microbial activian be improved using the
technique of bioaugmentation, which involves thditoh of microorganisms that are
capable of degrading pesticide [Dams et al., 2007].

» Phytodegradation. Breakdown of pollutants via erayenactivities, usually inside

tissues.
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» Phytovolatilization. In this process, plants talgewater containing the pollutant and
release the contaminant into the atmosphere thrtheghleaves.

» Phytostabilization — isolation and containment ohtaminants within soil through
the prevention of erosion and leaching. This prece$fectively reduces the
bioavailability of the harmful contaminants.

* Hydraulic Control. In this process, trees indirgcttemediate by controlling

groundwater movement.

Lo
Phytodegredation

s
Phytovolatilization

*® wtoextraction
w

@ Pollutant e
e
S
Phytostabilization

i
AV
Phytostimulation

Fig. 1. Phytoremediation mechanisms [Pilon-Smits,dD5]

Past research indicates significant differenceth@ntolerance of plants to pesticides
present in soil and water, and that some plantsremee effective than others for pesticide
remediation proposes. Karthikeyan et al. [20045en¢ a review on the potential remediation
of soil and water contaminated with pesticide, gsnontarget plants such as trees, shrubs,
and grasses.

Phytoremediation of herbicides using conventioni@nis has been well studied.
Investigations have demonstrated herbicide degmdby wetland riparian soils [Entry et al.,
1995; Entry and Emmingham, 1996] and prairie gsgBelden et al., 2004]. But, recent
investigations propose the use of transgenic phaiitsimproved potential of degradation of
pesticides [Eapen et al., 2007; Kawahigashi, 2008;ek et al., 2000].

According to Schnoor et al. [1995] phytoremediatignbest suited to sites with
shallow contamination (< 5 m depth) and those animg@ moderately hydrophobic pollutants
(log Kow = 0.5-3), short-chain aliphatic chemicals, or esscautrients. Because of their root
lengths, phytoremediation is usually limited to apth of ten feet for groundwater
remediation, and for soil or sediment remediatiorttte top three feet of the soil [Frazar,
2000]. Selection of the appropriate plants is tegsential and the plants must be resistant to

the pollutant to be removed.
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In a study performed in The Netherlands, the coeadf a 3-m buffer zone adjacent to
a ditch decreased drift deposition in the ditchalaypinimum of 95%, and only four of the 17
pesticides investigated posed a minor risk to aquaganisms. With a 6-m buffer zone no
drift deposition in the ditch could be measured [Bleoo and de Wit, 1998]. Another
investigation also resulted in a very high reductd the spray drift and the ecotoxicological
risk for aquatic ecosystem, due to the presenaegétative buffer strips and a tree row in a
vineyard situated near Piacenza (Northen Italypfotecting the water body in the middle of
the agricultural field [Vischetti et al 2008]. Bdss, an experiment carried out on the low
plains of the Veneto Region (Italy) tested the @erfance of buffer strips to reduce
concentration of herbicides (terbuthylazine, allmgmicosulfuron, pendimethalin, linuron) in
subsurface water. A grass strip 5m wide and 1 dewow of trees achieved abatement in
concentration between 60 and 90%, depending onclieenical and time elapsed since
application. Even if the buffer showed good degtiamh potential, it was not sufficient to
satisfy the EU limit for environmental and drinkimgater. The authors mention as a possible
reason for this the insufficient buffer width [Boret al., 2004]. Dabrowski et al. [2005] stated
that emergent aquatic vegetation may be as effeativeducing spray deposition in surface
waters as increasing buffer zone width.

The ability of aquatic plants to accumulate pedécand their influence on the fate of
pesticides had been demonstrated in several stiikhesn et al., 1998; Hand et al., 2001].

Previous studies have also supported the benéfaguatic vegetation within drainage
ditches for mitigation of pesticides [Bouldin et,a&004; Herzon and Helenius, 2008]. In
natural ditches, sorption is critically influencéy bottom substratum nature but also by
hydrodyamic conditions such as water flow and hejiyfargoum et al., 2006]. In a study
carried out by Moore et al. [2001b], one hour faliog a simulated storm runoff event, mean
percentage concentrations of the herbicide atraaimm the insecticide lambda-cyhalothrin
associated with plant material were 61% and 87%heftotal measured, respectively. In
another study Cooper et al. [2004] found that axipnately 99% of the measured pyrethroid
insecticide esfenvalerate was associated with diggietation three hours following initiation
of the simulated storm runoff. Therefore, it wasmdastrated that plants serve as an
important site for pesticide sorption during runevents.

Burrows and Edwards [2002] proposed the use ofgrated soil microcosm as
terrestrial model ecosystems to assess simultalyethgsoverall effects of a single pesticide,

on a range of representative soil organisms, et@syprocesses, and environmental fate.
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Bennet [2005] confirmed the importance of vegetabedfers zones. His study
suggests that vegetated wetlands have the potéat@intribute to aqueous-phase pesticide
risk mitigation. Sherrard et al. [2004] conductedrf experiments using constructed wetland
mesocosms to determine if chlorothalonil and chiofps in simulated runoff could be
efficiently decreased, resulting in a potentiallohecin mortality in receiving aquatic system
organisms. The study demonstrated the feasibifitgamstructed wetlands to retain runoff-
related pesticide pollution.

Reichenberger et al. [2007] presented a review dgation strategies to reduce
pesticide inputs into water bodies. The effectigsnef the strategies with respect to their
practicability was evaluated. Some of these stresegere grassed buffer strips located at
lower edges of fields, riparian buffer strips, doasted wetlands, subsurface drains, pesticide
application rate reduction, product substitutiord ashift of the application date. In his
conclusion he stated: “constructed wetlands arenjziag tools for mitigating pesticides via
runoff/erosion and drift into surface waters, heit effectiveness still has to be demonstrated
for weakly and moderately sorbing compounds”. Basedhis knowledge, the present work
is focused on constructed wetlands to reduce pestiwon-point source pollution. A detailed

description and examples of application are givetne following sections.

Section 2.4. Wetlands treatment history

Over the last decades, the interest in the opttmizaf the biological, physical, and
chemical processes that occur in natural wetlastesys as an option for water treatment has
significantly increased [Mitsch, 1995; Bavor et, d995; Mitchell et al., 1995; Gopal and
Mitsch, 1995; Shutes, 2001]. Constructed wetlan@s emgineered, man-made ecosystems
that have been designed to utilize the naturalgs®es involving wetland vegetation, soils,
and their associated microbial assemblages totassigater treating [Zakova, 1996; Haber,
1999; Vymazal, 1996a, 1996b, 2002, 2005 and 20@&ngchul et al., 2006; Babatunde et
al., 2008]. Constructed wetlands are being comstlas a sustainable and promising option,
whose performance, cost and resources utilizateon complement or replace conventional
water treatment [Griffith, 1992; Tack et al., 200&jas and Brown, 2009; Zhang et al.,
2009].

Kadlec and Knight [1996] gave a good historicalcactt of the use of natural and
constructed wetlands. Constructed wetlands werengpiy used to treat municipal or
domestic waters. Research studies on the use efrocted wetland for wastewater treatment
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began in Europe in the 1950’s and in the UnitedeStan the 1960’s. However, they can be
used to treat different kinds of wastewaters: mipaic wastewater, especially in small
communities [Brix, 1994a; US EPA 2000, Kivaisi, 20@hou et al., 2009]; urban stormwater
runoff [Shutes et al., 1997; Koob et al., 1999;cBirt al., 2004; Revitt et al., 2004]; farm
dairy, swine or agricultural wastewater [Cronk, @98Iguyen, 2000; Hunt and Poach, 2001,
Borin et al., 2001b; Dunne et al., 2005]; aquaceltwastewater [Lin et al., 2002 and 2005;
Schulz et al., 2003a; Sindilariu et al., 2009];dfiihleachate [Bulc, 2006; Nivala et al., 2007;
Yalcuk and Ugurlu, 2009]; mine drainage [Tarutis &lr al., 1999; Brenner, 2001; Sheoran
and Sheoran, 2006]; and other effluents such atewesters from food processing industries
[VrhovSek et al.,1996or textile industries [Davies et al., 2005; Bualod Ojstéek, 2008
The use of constructed wetlands effluents in thespeetive of reclamation and water reuse
has been the subject of different studies [Greenaval Simpson, 1996; House et al., 1999;
Greenway, 2005; Ghermandi et al., 2007; Rousseaal.et2008]. Another function of
constructed wetlands is to retain surface wateichvhelps to decrease floods and pollution
associated with floods [Sim et al., 2008].

Vymazal and Kropfelova [2008] presented a list xdraples of the use of constructed
wetlands for the treatment of different types olygon. The abilities of constructed wetlands
to improve water quality are widely recognized, ahdir efficiency reducing suspended
solids, biological oxygen demand (BOD), nitrogehpgphorus, trace metal, toxic organic
compounds, pathogens and other pollutants hasepented in several studies [Gersberg et
al., 1983; Yang et al., 1995; Magmedov et al., 1¥8fprasert et al., 1996; Drizo et al., 1997;
Ottova et al., 1997; Scholes et al., 1998; Naird Btitsch, 2000; Luederitz et al., 2001; Jing
et al.,, 2001; Ye et al., 2001; Lim et al., 2003rd&thanasis et al., 2003; Huett et al., 2005;
Vymazal, 2007; Vymazal and Kropfelova, 2009, Kharale 2009; Krépfelova et al., 2009;
Tang et al., 2009]. However, evaluating potentfidats in wildlife should be an integral part
of the planning stage for treatment wetlands [Learlg Ohlendorf, 2002].

Numerous international conferences have been cewaveéa present findings on
wetlands research. An annotated chronology of sointieese conferences from the year 1976
to 2007 was presented by Kadlec and Wallace, [Kaaltel Wallace, 2008: Table 1.2, p12] .
Recent conferences to be included in this chronolinclude the 11 International
Conference on Wetland Systems for Water Pollutiomt@l, held in Indore, India in 2008
and the % International Symposium on Wetland Pollutant Dyienand Control (WETPOL
2009) held in Barcelona, Spain in 2009.
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Constructed wetlands consist of four main compaits: plants, sediment and soil,
microbial biomass and aqueous phase loaded witlecltBmicals, and typically include beds
filed with poorly drained graded medium and aquafilants [Imfeld et al.,, 2009].
Constructed wetlands for water treatment can bssifiad, according to their basic design
into subsurface-flow and surface flow. Water floa®ove the substrate in surface wetlands,
whereas in subsurface-flow wetlands water flowsrigomtally or vertically) through the
matrix and out of the system.

Research has shown that constructed or restorddnalstmay help to control non-
point sources of pollution. Nutrients, pesticidasd sediments are the main detrimental non-
point source constituents [Kao et al., 2001b].

Nutrient enrichment is the primary contributor tgpbxia, which is the condition in
which dissolved oxygen is below the level necessagustain most animal life.

Therefore, the creation and restoration of wetldralse been proposed as a solution to
this problem [Mitsch et al., 2005; Mitsch and Day 2006; Kovacic et al., 2006]. In order to
preserve and restore wetlands, Crumpton [2001] dstrated the need for a landscape
approach. It was shown that wetlands could impneater quality at the watershed scale if
they are sited and designed to intercept a sigmfiportion of the subsurface water moving
through a watershed.

MacDonald et al. [1998] proposed a methodology $tinreate the environmental
benefits associated with the use of constructedand$ to control agricultural non-point
source pollution.  Nutrient reduction differs degemy on factors such as nutrient
concentration, seasonality, hydraulic loading, waesidence time, soil type, plant species,
and water chemistry [Moreno et al., 2007]. Theigbdf constructed or restored wetlands to
remove nutrients and organic loads from water cgnfiam the farming areas has been well
demonstrated [Romero et al., 1999; Kovacic e8l00; Borin et al., 2001a, 2001b; Koskiaho
et al., 2003; Jordan et al., 2003; Fink and Mis@®04; Braskerud, 2002a; O’'Geen et al.,
2007; Borin and Tocchetto, 2007; Blankenberg et 2008]. Phosphorus is given special
attention, because it is often the limiting nuttiéor algal growth in freshwater ecosystems
[Correll, 1999; Braskerud, 2002b; Liikanen et aD04;Braskerud et al., 2005; Scholz et al.,
2007; Tang et al., 2008]. Moreover, the creatiop&manently flooded wetlands using run-
off from irrigated fields was suggested as an gffittool to restore or improve salinized soils
[Moreno-Mateos et al., 2008 and 2010]. Howevergaesh concerning the treatment of
pesticides in constructed wetlands is more limithtk in part to the fact that these organic

compounds and their transformation products afecdif to analyze [Runes, 2003].
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Section 2.5. Constructed wetlands and pesticides

Analytical results presented by several authorsehdemonstrated, with different
grades of success, the capability of constructet rextural wetlands to remove agricultural
pesticide runoff-related non-point source pollutipom surface water [Kao et al., 2001a;
Runes et al., 2001a; Runes et al., 2001b; Moo#gd. eP002; Schulz et al., 2003b, Schulz et
al., 2003c; Schulz, 2004; Moore et al., 2007; Bergeal., 2009]. The potential of constructed
wetlands to reduce the environmental risk origidafeom spray drift-related pesticide
pollution has also been highlighted [Schulz et2003d].

In order to decrease the risk to aquatic receiagstems is necessary to decrease
exposure [Moore et al., 2002]. This can be achidgwedecreasing concentration, frequency
of exposure, duration, or altering the form of esyo@ (bioavailable vs bound).

Different remediation pathways such as rhizo-mi@btiegradation, soil and sediment
interactions, and macrophyte-specific pesticideakpthave been investigated as a single
component of the dynamic process occurring in canstd wetlands for the removal of non-
point source pesticide contamination.

One reason for the effectiveness of constructethnes lies in the presence of aquatic
plants. The larger aquatic plants growing in wetkamre often called macrophytes [Brix
1994b and 1997]. The importance of macrophytgeesticide mitigation has been proved by
several investigations contrasting vegetated amyegetated wetland systems [Schulz et al.,
2003c; Milam et al., 2004; Bouldin et al., 2005; &fe et al., 2006]. However, in a study
comparing four types of macrophytes and nonvegetaystems, no statistically significant
difference was noted in the efficiency to removenpethrin in water. The authors [Moore et
al., 2009a] mention the relative short pesticidg@dence time (4-h) as a possible cause for
seeing no significant difference between vegetaied unvegetated mesocosms. Even with
longer ditch residence time (nearly 8-h) no sigaifit differences were found [Moore et al.,
2008]. But plant samples following a 12-h experimigdicate vegetation’s potential role in
cleaning water impacted by pesticide runoff, sutiggsthe need to examinate increased
hydraulic retention times and mixed plant communiter more effective permethrin
remediation.

McKinlay and Kasperek [1999] tested in the labanatfour species of macrophyte
(Common Club-rush, Bulrush, Yellow Iris and Commieaed). A vertical subsurface flow
test system was built for each of the macrophyezigg in a glasshouse. Results showed the

ability to decontaminate water polluted with thetheide, atrazine.
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The capacity of macrophytes to remove pesticides wkso confirmed by a
comparison of five aquatic macrophytes to assesis tapacity to remove two fungicides
(dimethomorph and pyrimethanil), commonly detectedhe Champagne area in France.
Among these macrophytes, duckweeds (Lemna minoSairddela polyrhiza) resulted as the
best species for the removal of the selected fushggc{Dosnon-Olette et al, 2009].

Another comparison of the remediation attributes w&getatives species was
performed between Juncus effesus and Ludwigia miggpcommon to agricultural drainages
in the Mississippi Delta, USA. Their remediatiorpaaity was assessed using atrazine and
lambda-cyhalothrin. While greater atrazine uptales wneasured in Juncus effessus, greater
lambda-cyhalothrin uptake occurred in Ludwigia pés [Bouldin et al., 2006]. An
investigation performed by Olette et al. [2008] destrated the uptake capacity of selected
aquatic plants (Lemna minor, Elodea CanadensisCarmbmba aquatica) on three pesticides:
copper sulphate (fungicide), flazasulfuron (her#¢i and dimethomorph (fungicide).
Removal percentages of the pesticide loads fospaties tested ranged from 2.5 % to 50%
during four days of incubation.

Macrophytes provide an increased surface areadigutisn as well as for microbial
activity. According to Luckeydoo et al. [2002], tiagal role of vegetation in processing water
passing through wetlands is accomplished througimass nutrient storage, sedimentation,
and by providing unique microhabitats for benefioracroorganisms. Macrophytes serve as
filters by allowing contaminants to flow into planand stems, which are then sorbed to
macrophyte biofilms [Kadlec and Knight, 1996]. Eietlata shows that plants accelerate
pesticide dissipation from aquatic systems by iasiry sedimentation, biofilm contact and
photolysis [Rose et al., 2008]. In constructed amds for phytoremediation, a variety of
emergent, submerged, and floating aquatic spectgeased [Pilon-Smits, 2005]. Brisson and
Chazarenc [2009] provide an approach that coulg Ihbetter guide macrophyte species
selection for constructed wetland. ITRC [2009]garets a database of different plants used in
the remediation of pesticides.

Cheng et al. [2002] presented results showing tbesticides, parathion and
omethoate, were completely removed from water ¢orsstructed wetland after a four-month
period of application. However, it was observedw femoval of herbicides, 36% for MCPA
and no significant removal efficiency for dicamb&. multifunctionality of constructed
wetlands in tropical and subtropical areas was alsdenced. The wetland area can be used
for earning high yields of biomass as a sourceenéwable energy supply. Pesticide removal

efficiency was also confirmed in constructed wedkion cotton farms. Results demonstrate
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that macrophytes and algae can reduce the perststa@npesticides in on-farm water and
provide some data for modeling [Rose et al., 2006].

Pesticides residues, especially those that aresidebappear to be effectively broken
down and rendered inactive in constructed wetlarel&en after short retention times.
Braskerud and Haarstad [2003] reported a > 65%ctexuin the detection of 13 agricultural
pesticides (including MCPA, Mecoprop, Dicamba amdpRchlor) in a small constructed
wetland, less than 0.04% of catchment area withvamage hydraulic loading >0.8 meters per
day. Further research by Stearman et al. [20033 R-year study of 14 planted and clear
water constructed wetland, reported 82% and 77%vahof the pesticides metalachlor and
simazine, respectively, in runoff water from a @neér nursery. In clear ponds the removal
rates were less effective (63% and 64%). They aetswluded that SSF wetlands were the
best performing design for pesticide removal.

However, it should be considered that the potenfialetlands to reduce toxicants can
also lead to unwanted long-term accumulation ofnubals, as documented for natural
wetland areas [Donald et al., 1999].

The capacity of constructed wetlands to retain ipidsts is achieved through the
process of sorption to either plant or sedimentenet Numerous studies attempted to
quantify insecticide retention in wetlands by moriitg input and output measurements. In
South Africa, Schulz and Peall [2001] investigatbe retention of the organophosfate
insecticides azinphosmethyl (AZP) and chlorpyrifasd the organochlorine insecticide
endosulfan introduced during a heavy rainfall evetiowed by edge-of-field runoff from a
400-ha fruit orchards area into a 0.44 ha wetldrgk constructed wetland is located along
one of the tributaries shortly before its entryoirthe Lourens River. A toxicological
evaluation employing midge larvae (Chironomus sgcbioassays in situ at the wetland
inlet and outlet revealed an 89% reduction in tibxibelow the wetland during runoff. A
retention rate between 77 and 93% of water-dilud&dP was found. Chlorpyriphos and
endosulfan were undetectable in the outlet watenpsss, suggesting a retention rate of
almost 100%. Retention was also assessed for asppd@mse AZP input following drift
during application in orchards. The reduction ofFAlbad was 54.1+ 3.8% and the bioassays
revealed a significant reduction of toxicity [Schuét al., 2001]. In a further study
demonstrated retention of approximately 55 and 25%hlorpyrifos by sediments and plants,
respectively, in wetland mesocosms (59-73 m intl@niop Oxford, Mississippi, as well as a
more than 90% reduction in concentrations andtuntsiicity of chlorpyrifos in the wetland
in South Africa [Moore et al., 2002].
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Aqueous and sediment bioassays with freshwateramgstinisms had been used to
examine the use of constructed wetlands to mitighée ecological impacts of pesticide
contamination from agricultural fields into receigiaquatic systems [Smith, Jr. et al., 2007].

Concerning the effectiveness of constructed wetlaadd the determination of
appropriate wetland design parameters for pestioidigation, Moore et al. [2000 and 2001a]
presented results from monitoring transport and ifiaio constructed wetland for atrazine and
metolachlor associated runoff mitigation. When oheplspecifically with herbicides, many
factors must be considered during the design pspcts example: intended threshold
concentration of the wetland, size necessary fiecgve mitigation, potential impacts to the
wetland itself and effects to aquatic receivingteys. Economical and ecological benefits
and risks must be thoroughly considered before emehting constructed wetlands as sole
best management practices in agricultural systéhesie et al., 2000].

The use of a constructed wetland system in theidsiggpi Delta, USA (180m x 30m)
was evaluated for the mitigation of lamba-cyhalmtland cyfluthrin concentration associated
with a simulated storm runoff event [Moore et &009b]. Based on conservative effects
concentrations for invertebrates and regressionysisaof maximum observated wetland
agueous concentrations, new design specificatienpraposed (215 m x 30m). The results of
this experiment could be used to model future despgecificiations for constructed wetland

mitigation of pyrethroid insecticides.

2.5.1. Design parameters

In addition to a hydrologic analysis, chemical Hd# and hydraulic retention time are

key parameters in designing constructed wetlandsdn-point source pollution control.

2.5.1.1. Hydrologic analysis

There is evidence about the strong influence thatrdlogy may have on the
environmental fate of pesticides. In a laboratosgessment of fluometuron degradation in
soil from a constructed wetland, fluometuron wasgrdded rapidly under saturated
conditions, but was very persistent under floodeddations [Weaver et al., 2004]. Wetland
performance has been observed to be seasonalBbigricontrolled by hydrological inputs
[Dunne et al., 2005]. Changes in concentrationgesticides in groundwater have been

observed to be much slower than in streams, anmbmnees of groundwater to changing use
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can be delayed for years or decades in some systdiSs Geological Survey, 1999].
Continuous hydrologic modeling provides a rich seurof information that can be
manipulated to evaluate annual and monthly watkmisas, flood frequency distributions and

other indicators [Konyha et al., 1995].

2.5.1.2. Chemical Half-life

The half-life is a measure of the persistence pésticide in soil. Chemical half-lives
are first order disappearance coefficients. Th@yasent the time required for a pesticide to
degrade in soil to one-half its original amountstiedes can be categorized as non-persistent
(half life is less than 30 days); moderately peesis (half-life between 30 to 100 days); or
persistant (if taking longer than 100 days to ddgrto half of the orginal concentration)
[Poissant et al., 2008]. Experimental studies irlamels can be conducted to provide half-

lives for specific chemicals and wetland charastis.

2.5.1.3. Hydraulic retention time

The hydraulic residence time (HRT) is the basishigairaulic design. It represents the
average time required for a parcel of water to phssugh a wetland. An optimal hydraulic
residence time will allow pesticide fixation in tis®il, so pesticide concentration can be
reduced according to the various degradation psases

Section 2.6. Processes

The unsaturated zone is, by definition, a multighagstem with at least two fluid
phases present: air and water. Interest in theturadad zone is related to the growing
concern about the adverse effects on the qualithe@Eubsurface environnement caused from
agricultural, industrial, and municipal activitie3o prevent continued contamination of
receiving environments and to develop more effectileaning methods, it is necessary to
have reliable mathematical models. The first stgp Mmodelling is the conceptual
understanding of the physical problem. Once theepts are formulated, the physical system
is translated into a mathematical framework resglin equations that describe the process
[Mercer and Faust, 1980].
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2.6.1. Hydrodynamics

Richards’ equation represents the movement of water variably saturated, rigid,
isothermal porous media with incompressible watel @ continuous air phase. An important
assumption in deriving the Richards’ equation [Rics, 1931] is to assume that the air
present in the unsaturated zone has infinite mgbil other words, the air-phase pressure is
assumed constant and equal to the atmosphericupgessd air moves without interfering
with water and/or contaminant. This assumptioneiasonable in most cases because the
mobility of the air phase is much larger than thiathe water, due to the viscosity difference
between the two fluids. Tegnander [2001] has fotimat in order to obtain equivalence
between the fractional flow model and the Richardsdel, the mobility ratio should at least
be 100. Other assumptions in deriving Richards’aéiqu are constant water density and
negligible porosity changes. Including the air aseparate phase gives the fractional flow
approach [Vauclin, 1989].

Constructed wetland hydrodynamics modelling hasnbeenducted in Curienne
(France). The hydraulic residence time distribugioof the subsurface horizontal flow
constructed wetland were estimated [Chazarenc et2803]. A simulation was also
performed for a subsurface flow wetland using tbmmercial computational fluid dynamic
(CFD) code and the hydraulic residence time distidm was obtained. Their results
indicated that the hydraulic performance of thelavet was predominantly affected by the
wetland configuration [Fan et al., 2008].

2.6.2. Transport

The pesticide transport is described by a classidaéction-dispersion equation with
the presence of sink/source term, which takes mtoount the pesticide degradation.
Advective transport occurs when dissolved chemi@aks moving with the water flow.
Dispersion refers to the spreading and mixing adusepart by molecular diffusion and
microscopic variation in velocities within individlu pores [Anderson, 1979]. Molecular
diffusion occurs as species move from higher toelowoncentrations. Mechanical dispersion
is caused by flow and presence of a pore systemsaindthe direction of groundwater flow.
Thus, this component is directly related to theeation properties of the system and it is the
predominant transport mechanism at high velocjtidslifa, 2003]. The combined effect of

molecular diffusion and mechanical dispersion femred as hydrodynamic dispersion.
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2.6.3. Pesticides fate in the environment

The fate of pesticides in the environment is inficed by many factors that determine
their persistence and mobility [Gavrilescu, 200%). understanding of the fate processes can
help to prevent soil and water contamination. fpateesses can be beneficial if they move to
the target area or destroy its potentially harmégidues. But, inappropriate or poorly planned
use of pesticides can result in an environmentatagdge or injury of nontarget plants and

animals.

2.6.3.1. Sorption

Sorption is defined as the transfer of a solutevben a fluid and a solid phase.
Sorption includes both adsorption and absorptidnysieal adsorption refers to the attraction
caused by the surface tension of a solid that canmsgecules to be held at the surface of the
solid. Chemical adsorption involves actual chemitanding at the solid’'s surface.
Absorption is a process in which the molecules toma of one phase penetrate those of
another phase [Reddy and DelLaune, 2008].

Due to the different physical and chemical propsrtof both the sorbate and the
sorbent, there are several possible sorption méahansuch as functional groups, acid-base
character, polarity and polarizability, charge wlsttion, water solubility, hydrophobicity,
configuration and conformation [Hapeman, 2003].

Sorption occurs when a pesticide molecule comesoimact with soil constituents
establishing a pseudo-equilibrium with these comstits Caceres et al., 20L.0Pesticides
can also be released from soil and affect the enment, this process is called desorption.

Dordio et al. [2007] state that “the efficiency adnstructed wetlands systems in the
removal of pollutants can be significantly enhanbgdusing a support matrix with a greater
capacity to retain contaminants by sorption pherm@néonic exchange or other physico-

chemical processes”.
2.6.3.1.1. Adsorption
Some of the factors affecting adsorption include type of pesticide, and properties

of the soil such as moisture, pH, organic matt@etand content, clay mineralogy, cation

exchange capacities, and Eh [Schwab et al., 20@@jeneral adsorption of pesticides in soils
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is more closely related to the organic matter auirttean any other single property [Spark and
Swift, 2002; Coquet, 2002].
Sorption isotherms are used to quantify the amo@ichemical sorbed onto the solid

phase. The most common sorption isotherm used éstigides is represented by the
Freundlich equationS=K,CY". Where S is the sorbed concentration; C is thetisol
concentration, andk; and 1/nare empirical constants. If n=1, a linegmagion results:
S=K4C. Where K,is better known as distribution or partitioning efficient and it

represents the ratio of the concentration of thieiteobetween the solid matrix and the
solution phase. When organic carbon is assumee tihd» dominant sorbent in soil, the soil

organic carbon sorption coefficiett . is used.K 4. is calculated by dividing a measured

K4 in a specific soil by the organic carbon fractigg. of the soil:K 5 = F—d
ocC

Koc values are usually seen as an universal constsed to measure the relative

potential mobility of pesticides in soils, howetbere is evidence that it is not [Wauchope et

al., 2002]. For example, when soils of very lowamig matter content are studield,-can
vary more tharkK ;.

Adsorption is one of the key factors to determime inobility and availability for bio-

and chemical degradatioK o~ describes the tendency of a pesticide to binsbibparticles.

The binding forces and the types of mechanismsabiper in the adsorption processes of
pesticides onto the soil humic substances incluaec hydrogen and covalent bonding,

charge-transfer or electron donor = acceptor mashes van der Waal forces, ligand

exchange, and hydrophobic bonding or partitionifigo or more mechanisms may occur

simultaneously depending on the nature of the fanat group and the acidity of the system

[Gevao et al., 2000]. Adsorption coefficient valggsater than 1000 indicate a pesticide that
is very strongly attached to soil, values less tB@d-500 indicate the pesticide tend to move
with water [Gavrilescu, 2005].

In a constructed wetland located within Stanisl@asinty, California, sedimentation
of pesticide-laden particles was the main mecharfimmpyrethroid removal, which was
influenced by hydraulic residence time and vegetatdensity. Decreases in sediment
concentration of pyrethroids suggested that thdawds were efficient at trapping particles
with adsorbed pyrethroids after the tailwater pdgbeough the sediment basin [Budd et al.,
2009].
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2.6.3.1.2 Absorption

Plants, animals, humans or microorganisms can hbgesticides. Once absorbed,
pesticides may be broken down or stored insideotiganism. Pesticides residues may be
release back into the environment when the anineslar as the plant decays.

Uptake of pesticides into plant foliage varies wilants and chemicals. It can be
influenced by adjuvants and environmental condgipiWvang and Liu, 2007]. The lipophilic
nature of pesticides is a determining factor affiecttheir uptake into plants. It can be
characterized by the octanol water partition coedfit (Kow). Cheng et al. [2009] results
suggest that the effect of plant growth on contaminmemoval in constructed wetlands was

different specifically in plants and contaminants.

2.6.3.2. Runoff

Runoff is the movement of pesticides in water cwvesloping surface. The pesticides
are either mixed in the water or bound to erodioity Runoff can occur when water is added
to a field faster than it can be absorbed intosthie

A pesticide molecule can exist either in the dissth phase or associated with a
particle or colloid. The transport will be governeg water flow for the dissolved phase and
by the movement of the particle for the associgikdse. The amount of pesticide runoff
depends on the slope, soil texture, moisture aodilafity, the amount and timing of a rain-
event (irrigation or rainfall) and the type of peste used. Pesticides with solubilities greater
than 30 ppm are more likely to move with water.

Runoff is one of the most important pesticide emaghways in surface waters. In a
study under field conditions, runoff by rainfall dhe pesticides acetochlor, atrazine,
chlorpyrifos, and propisochlor during a five-monpleriod at normal weather conditions
caused losses that were primarily dependent orfatvolume and intensity [Konda and
Pasztor, 2001].

2.6.3.3. Leaching

Leaching is the movement of pesticides in wateoufh the soil. The factors
influencing the pesticide leaching into groundwateiude characteristics of the soil and

pesticide, and their interaction with water fromam-event such as irrigation or rainfall.
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Leaching of a pesticide through the soil profilesieongly influenced by preferential
flow. Preferential flow is the process in which eftnd solute rapidly move through soil
macropores, bypassing much of the soil matrix. &vactors such as size, geometry, and
distribution of macropores affect preferential flddesticide leaching below the root zone has

been demonstrated in sandy and loamy soil [FIL®96].
2.6.3.4. Volatilization

Volatilization (or vapour drift) is the process sdlids or liquids converting into gas,
which can move with air currents away from theiahiapplication site.

The potential for a pesticide to volatilize, orcbme a gas, is expressed terms of the
Henry’'s Law constant:

_ vaporpressure
solubility

A high value for the constant H indicates a tengdncthe pesticide to volatilize.

Volatilization is dependant on several factors udaohg temperature, humidity, air
movement, soil characteristics, and the mode dfigpds applications. Several investigations
have been conducted in the field using a pestietdatilization-modeling tool [Ferrari et al.,
2003; Bedos et al., 2009]. Pesticides volatilizesmeeadily from sandy and wet soils.
Volatilization is also increased by hot, dry or dynweather. Even though changes in ambient
temperature and/or the effect of micrometeoroldgamanditions had been often neglected

when predicting pesticide volatilization from fislflyates et al., 2002].

2.6.3.5. Wind transfer

Pesticides can be carried in the wind during apibo. They can also be transported
on small particulates such as soil or on largeedjlike leaves that are caught up by wind.

Spray-drift occurs when the wind is strong enouglpick up and carry fine spray
droplets. Granular and powder pesticide formutaiwill also drift. Some factors affecting
spray-drift are the dropet size, wind speed, teatpee and humidity. Gil and Sinfort [2005]
presented a bibliographic review about the impatanf spray drift on emission of pesticides
and air quality.

In an agricultural area in the Western Cape, Sdditica, it was found that wind was
an important factor to explain most of the orgaragghate pesticide azinphos methyl transfer

to adjacent nontarget areas, after spraying eyReisecke and Reinecke, 2007].
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Results from Dabrowski et al. [2006] suggest thatag —drift-derived azinphos-
methyl concentrations are more effectively mitigabyy aquatic macrophytes than those of
runoff.

A review of bibliography on the occurrence of pesis in the atmosphere (in
Europe) and the subsequent deposition gave ad eesidssification of pesticides according
to their deposition pattern [Dubus et al., 200Q@].shows that wet deposition has been
particulary monitored as dry deposition contributesonly a minor extent to the total

deposition.

2.6.3.6. Soil erosion

Soil erosion occurs when a soil surface is wornyama water or wind. Pesticides
adsorbed to soil particles will also be picked nd aarried by the wind or water.

Small constructed wetlands are found to be moieiefit as sedimentation basins for
eroded soil material than expected from calculatt@sed on detention time. Braskerud
[2001] results show that macrophytes stimulate rsedt retention by decreasing the
resuspension of constructed wetland sediment. Bradi{2003] found that clay retention was
higher than predicted, suggesting that the increasige settling velocity is the result of clay
and fine silt having transported and settled aseggges. Sveistrup et al. [2008] supports this
hypothesis. However, the round shape of the agtgsga the wetlands shows that they have
undergone erosion on the way from the agricultsital to the wetland, where sedimentation
takes place. Therefore, it is suggested to cortstvetiands as close to the source of erosion

as possible, to minimize the risk of breakdowngigragates.

2.6.3.7. Chemical degradation

Chemical degradation is the breakdown of pesticlweshemical reactions, such as
photolysis, hydrolysis, oxidation and reduction yBan et al., 2003]. The rate and type of
chemical reactions that occur are influenced by limeling of pesticides to the soil, soil
temperatures, pH levels and moisture.

Since natural water pH oscille between 5 and 9,rdlydis is a process of less
importance in superficial water, even if it candeimportant via of pesticide degradation in
groundwaters, where photodegradation seldom takes.p
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2.6.3.8. Phytodegradation

Phytodegradation is defined as a breakdown otifasits by plant enzymes or enzyme
cofactors [Susarla et al., 2002]. Typical consedctvetland plants such as common reed
(Phragmites australis) have shown the capabilifegradate organic compounds.

2.6.3.9. Microbial degradation

Microbial degradation is the breakdown of chemidslsnicroorganisms such as fungi
and bacteria [Nawab et al., 2003]. It tends toease when temperature is warm, soil pH is
favorable, soil moisture and oxygen are adequatk sml fertility is good. Soulas and
Lagacherie [2001] described the main microbial psses, which contribute to the
transformation of pesticides in the soil and theathematical expressions. Heterogeneity in
the special distribution of the degradation miioraf was found as a probably significant
source of uncertainty in the predictive capacitymfdelling.

Lin et al. [2008] studied the effect of salinity dhe degradation of atrazine in
subsurface flow constructed wetland. Salinity imipdan the growth of bacteria, resulting in

a switch of the microbial community.

2.6.3.10. Photodegradation

Photodegradation is the breakdown of a compoundethlby the adsorption of
ultraviolet, visible or infrared radiation (light)All pesticides are susceptible to
photodegradation to some extent. The rate of bmakds influenced by the intensity and
spectrum of sunlight, length of exposure, and tlop@rties of the pesticide.

Burrows et al. [2002] presented a review of the maacsms of photodegradation of

pesticides. Photodegradation studies were cladsiiiéour categories:

¢ direct photodegradation (photoreactivity under kswtar and ultraviolet irradiation),

« photosensitized degradation, based on the absorpfidight by a molecule it can
involve redox processes such as the photo-Fentactioa [Paterlini and Nogueira,
2005],

+ photocatalized degradation, cyclic photoprocessee pesticide photodegrade, but
spontaneous regeneration of the catalyst occumlldev the sequence to continue
indefinitely until all the substrate is destroyddirjcapié et al., 2005; Phanikrishna
Sharma et al., 2008]

% and degradation by reaction with hydroxyl radical.
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Lanyi and Dinya [2005] outlined the photodegradatimattern of some N-containing
herbicides that belong to the groups of triazinatragine, cyanazine, terbuthylazine,
terbutryn) and ureas (choloroxuron, methabenztihtagzudiuron, fenuron), as well as
thiolcarbamates (butylate, cycloate, EPTC, molinatéenolat).

Recent research [Arafia et al., 2008] studied tigeadation of two commercial pesticides
(Ronstar and Folimat) and two fungicides (pyrimathand triadimenol) treated by means of
TiO,-photocatalysis and wetland reactors. The photbtetanethods were very efficient at
the degradation and toxicity reduction of pyrimeithariadimenol and Folimat. The toxicity
of Ronstar was reduced by 78% but the componerdiazan was not degraded. Best results
regarding toxicity reduction were achieved by camry photocatalytic and biological

methods and the continuous dosage of the sample.

Section 2.7. Pesticide dynamics modelling

According to Rao and Jessup [1982], a model to lsitapesticide dynamics in a soll
profile must include at least the following threeykprocesses: water and solute transport,
adsorption-desorption, and degradation.

Siimes and Kamari [2003] carried out an inventamere there were identified 82
solute transport and pesticide models availablelefailed description of these models was
provided, in addition to a comparative analysismpoed databases such as CAMASE
[1996], REM [2006], or papers such as Vink et 4897], Vanclooster et al. [2000], FOCUS
[1995, 1997, 2000], Jones and Russell [2001], Duftual. [2002], Garratt et al. [2002],
Mouvet [2004], Kbhne et al. [2009], provide notyudlescription, but information concerning
the application and validation of pesticide fatedels, as well as a comparison of capacity
and performance among them. Vanclooster et al.JRGthd the papers referred to therein,
gave a detailed description of different modelsitoulate pesticide leaching.

Parametrization and testing of sophisticated ma#itiead models and the
corresponding computer simulation programs had beetied to pesticides and had been the
subject for several publications: CREAMS [Knised80]; HYDRUS 2D [Pang et al., 2000;
Géardenas et al 2006; Toscano et al.,, 200RZM / PRZM-2 /| PRZM-3 [Trevisan et al.,
2000a; Farenhorst et al., 2009; Luo and Zhang, RMARLEACH [Trevisan et al., 2000b],
PELMO [Klein et al., 2000; Ferrari et al., 2005]L.EAMS [Leonard et al., 1987; Cryer and
Havens, 1999; Rekolainen et al., 2000], CRACK-NIMjétrong et al., 2000], OPUS [Smith,
1995], PEARL [Leistra et al, 2001], PESTLA [Bosestand Gottesburen, 2000], RZWQM
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[RZWQM Development Team, 1998; Cameira et al., 20@8lone et al., 2003; Bayless et
al., 2008], MACRO [Jarvis, 1995; Jarvis 1997; Jaret al., 2000], LEACHM/LEACHP,
[Dust et al., 2000; Spurlock et al.,, 2006; Klier a&t, 2008], SIMULAT [Aden and
Diekkruiger, 2000], and PESTFADE [Clemente et aP98]. Some models employ the
fugacity concept and require information on chemigaroperties, for example
CHEMFRANCE [Devillers and Bintein, 1995; Bintein carDevillers, 1996a and 1996b],
CLFUG [Ares et al., 1998]. Fugacity is a propesfya substance that describes its tendency
to abandon a phase.

As an extension of the HYDRUS-2D variably saturatedter flow and solute
transport software package, the multicomponent tisgactransport model CW2D was
developed to describe the biochemical transformaditd degradation processes in subsurface
flow constructed wetlands Langergraber 2003; Langergraber and Simunek, 2005;
Langergraber 2008; Langergraber et al., 2009

Dubus et al. [2003] carried out a review of thefad#nt sources of uncertainty in
pesticides fate modelling. Many field data wouldrnseessary to validate the precision of the
predictions of these models. According to Aubeetibal. [2005], only a few data about flow
and solute transport in heterogeneous artificiallamel systems are available. The lack of
good modelling practice can induce user subjegtivitthe estimation of model parameters,
which have an impact in the modelling results [Eeanglia et al., 2000]. Therefore, it is
difficult to find a model that gives at the sammdi complete satisfaction to the users on the
approximation of the hydrodynamics and on the prartsand the degradation of the substrate.
On this subject, certain authors think that the lenpentation of an important biochemical
process may very well override the disadvantage ©mple water flow concept [Van der Zee
and Boesten, 1991; Gottesbiren et al., 1994, ik ¥tral., 1997]. Holvoet et al. [2004] don’t
share this affirmation. According to this authdre ffirst stage in pesticide fate modelling is
the development of a reliable hydrodynamic modeir this reason, we have chosen to
optimize the calculation of the hydrodynamics bg thixed hybrid finite element method
(described in detail in chapter 3) and to implenragarously the transport and the biological
processes, in order to conserve the physical ablddical senses of the phenomena, while
avoiding a very great complexity. Simple modelgihg a minimum of variable of entry may
provide sufficiently accurate description of thesfi@de dynamics in an agricultural

ecosystem [Rao and Jessup, 1982].
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Chapter 3 — Model development

This chapter describes in detail the governing #gus, and the development of the
model to simulate the hydrodynamics, transport fael of pesticides. In the first section, an
explanation about the use of the mixed hybrid éinllement method is given, which is
followed by a definition of the space discretizatemd boundary conditions applied. The next
section, describes the different techniques thaewsed in the hydrodynamic modelling,
such as the transformation of the primary variaBlemixed-hybrid formulation for the
approximation of flux and average pressure wasitdtabased on the continuity and mass
conservation equations. For a better convergenbavi@, it was applied a technique that
switches between the mixed-form and the pressumd-Heased form of the Richards’
equation. Special attention was given to the tagnblary conditions dealing with ponding or
evaporation problems. In order to avoid oscillagowablems related to the discrete expression
of the term representing mass variation in the m@ua mass condensation scheme was used.
Afterward, a new global approach to solve the fpansequation was presented. This method
uses a MHFEM approximation for both advection amgpersion terms. It includes a flux
limiting tool to control oscillation for advectiotiominant problem. Concentration and solute
transport flux approximation equations are intraetycas well as the equations for residence
time distribution estimation. The subsequent sactiontains a schematique representation of
several models that have been proposed for thdid¢snef biodegradation in soil. Then, a
brief description of the techniques used to sohe resulting systems of equations and the
convergence criteria are presented, followed byptibeedure used for temporal discretization
and ajuste of the temporal increments at each lewed. Finally, a short explanation about the
modelling code structure, the pre- and post pracgss results is provided.

54



Chapter 3 — Model development 55

Section 3.1. Mixed Hybrid Finite Elements

In order to find approximate solutions for problewis unsaturated water flow or
contaminant transport in soil, when there are nalydic solutions describing the result,
different numerical methods can be used. Time grates discretization of the Richards
equation usually is performed using a finite défiece method [Romano et al., 1998; van Dam
and Feddes, 2000; Brunone et al., 2003], a filegment method [Ju and Kung, 1997; Prasad
et al., 2001; Qi et al., 2008], a finite volume huat [Manzini and Ferraris, 2004] or a mixed
finite element method [Chavent and Roberts, 19%tgBmaschi et Putti, 1999]. Some studies
to establish a comparison between methods incladhifg et al. [2003], Rees et al. [2004],
Belfort and Lehmann [2005]. The use of any of th@sthods leads to a nonlinear system of
algebraic equations. These equations are most liftearized and solved using the Newton-
Raphson or Picard iteration methods.

The formulation and solution of unsaturated flowolgems often require the use of
indirect methods of analysis, based on approximatior numerical thecniques. However,
based on different assumptions, several analytaggbroximations to the solutions of
Richards’s equation have been obtained [Tracy, 12996, 2007; Parlange et al., 1999;
Hogarth and Parlange, 2000]. Vanderborght et 200%] gives an overview of analytical
solutions that can be found for simple initial abdundary conditions and to define
benchmark scenarios to check the accuracy of noalegolutions of the flow and transport
equations.

Analytical solutions for the transport equation afeo available [van Genuchten and
Alves, 1982; Liu et al., 1998, Leij and Dane, 199@ij et al., 1991; Wexler, 1992;
Tartakovsky, 2000; Kumar et al., 2009; Kumar et 2010]. Freijer et al. [1998] presented
analytical solutions to describe leaching and daaian of pesticides in soil columns.

Lagrangian methods were also developed to solverdmsport equation. Under this
approach, the solute concentrations are not asedorth fixed points or volumes, but with
moving “parcels” of water associated with a masscafitaminant. This category includes
random walk [Salamon et al., 2006] and finite ceithods [Sun, 1999]. Another alternative
are the Eulerian-Lagrangian methods, which is lesstrictive in space and time
discretization. The most popular are the methodhafracteristics [Zheng, 1993] and those
based upon the localized adjoint method [Binning @elia, 2002; Younes, 2005].

Finite-differece methods approximate the first datives (both in space and time) in

the partial differential equations as differencesaeen values of variables at adjacent nodes,
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with respect to the interval between those adjanedes. This method is relatively simple,
but it needs uniform rectilinear grids.

Finite volume methods have the ability to handiegularly-shaped boundaries more
accurately than finite difference methods. Infinge volume method the domain is divided
into control volumes. The primary variable is appnoated only as the average values within
the control volumes. The partial differential eqoas are integrated over each control
volume.

When finite-element method is used, the domairtefgroblem is divided into a set of
elements. Therefore, it is able to handle comgkaxmetries. The corners or vertices of these
elements are nodes, where point values of the depénvariable are calculated. The
calculation of the dependant variable within thengtnt is performed associating a simple
equation, called basis function, to each nodeighpart of an element. An equivalent integral
formulation of the partial differential equationtisen evaluated.

The term mixed method is used in problems wheredwmore physical variables are
involved. In mixed finite element methods both streand displacement fields are
approximated as primary variables. For fluid dynaspithe Raviart-Thomas mixed finite
element method of lowest order allows us to compat@pproximation of pressure head and
velocity field simultaneously (with the same ordéiconvergence). The mixed finite element
method is more robust, but it presents numeridétdities related to the size and form of the
linear system of equations to solve. In order ttaimba positive definite matrix, hybridization
is applied. The hybridization technique is appllealvhen the computational domain can be
represented as a union of a finite number of smalédomains. In the mixed hybrid
formulation the pressure and velocity are calcdlaby solving an equivalent symmetric
positive definite linear system. This techniquevidies more information since pressure on
the edges is computed as well.

The numerical tool used to solve flow and solusns$port equations in the present
work is the mixed hybrid finite element method (MENA). This technique is particularly
well adapted to the simulation of heterogeneouw field [Mosé et al, 1994; Younes et al.,
1999;Nayagum, 2001]. It has been applied in previouske@oncerning mainly to the flow
in heterogeneous saturated porous medium. In uasatbiporous medium, the heterogeneity
is due to both the heterogeneous sediment distritbaind the non-uniform water content in
the storm basin. The originality here is to simailabth, flow and solute transport, with the

application of MHFEM for a variably saturated posauedium.
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Section 3.2. Space discretization and boundary cond  itions

A two-dimensional (2D) flow domaiQ is defined, and it is space-discretized into
triangular elements G. Boundary conditions to beliag at domain boundaries are of

Dirichlet (Qp), or Neumann Q) types (including free-drainage type).

The boundary of each element G is denoted@s Since the elements are triangles,

it is composed of three edges denomindted Ui = 12.3).

Section 3.3. 2D Hydrodynamic modelling

Richards’ equation is obtained by combining Buckiag-Darcy’s Law (equation 3.1)

with the Continuity Equation.

q =-KO(h+2) (3.1)
Where: a denotes the discharge per unit areaf],T
K is the unsaturated hydraulic conductivity [HT
h isthe pressure head [L],
z is the elevation head [L] (elevation above someumiqt The vertical

coordinate is defined positive upward.

Pressure head is negative in the unsaturated 2omiee water table, the pressure head
is zero and equals the atmospheric pressure. Bilewvater table (saturated zone), pressure

head is positive and increases with depth.
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3.3.1. Variable transformation

Some researches have attributed convergence difito the presence of sharp
wetting fronts [Diersch and Perrochet 1999; Willaand Miller, 1999]. To smear the wetting

front and to improve the convergence, the presiseagl variableh is transformed into a new

dependent variabla [Pan and Wierenga, 1995].

h={T+xh (3.2)

Where: K is a constant (-0.05 ® < -0.01 cn?) independent of both thK(h) and
C(h) relationship [Pan and Wierenga, 1995].

h s transformed pressure head [L].

Then equation (3.1) can be rewriting as

a:_K_aa_D(m )_—K—D]]h KOz (3.3)

Using the inverse equation of the transformed éeia

A

h ~
_ | /= h<he
h= 1-kh

h (3.4)
h h=he

A transformed hydraulic conductivity is defined &S
ah K h<he

K = [1 Kh] (3-5)
h=>he

Or in terms of the variablé, it can be expressed as:

. {K[1+ kh2 h<he 6)

K
K h = he

Thus equation (3.3) can be represented as: a - _KOh=-K0Oz (3.7)
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3.3.2. Darcy flux approximation over an element

The hydraulic conductivity tensdf is assumed invertible. Then, integrating over the

element G, using the base functiorg , equation (3.7) can be expressed as

IGG(R"laj:—jaGDﬁ—jaGR_lKDz (3.8)
G G G

An approximation can be obtained under the appdinaif the product rule of divergence:
J.GG(R_l aj = —J{D{F\ GGJ—I:]D GG} - jk_lK{D[zan -z0 GG:I (3.9
G G G

Applying the divergence-Gauss theorem and consigd€iconstant over the element

IUG[R_qu:IﬁD ug — _[ﬁuG naG+RélKG_[zD uG —RélKG IzuG noc  (3.10)
G G G G 0G

Where 0 G is the frontier of the element G, which is compbssf three edgesk;

(0j=123)
Based on the mixed hybrid formulation presentedAbyold and Brezzi [1985] and
Chavent and Jaffé [1986], the average piezometnarge by edge was chosen as the

unknown of the system. The Darcy flux is approximated over each element by a vector

aG belonging to the lowest order Raviart-Thomas spBesiart and Thomas, 1977].

On each element the vector functiamg has the following propertiest] qg is

-

constant over the element Gqg nGEg; is constant over the edgg; of the triangle,

0i = 1,23, whereng,g; is the normal unit vector exterior to the edge. qg is perfectly

determined by knowing the flux through the edgdsg¥ent and Roberts, 1989].
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Given the replacement ofy, h, z, and K1 by their approximations over the

element G:

j(kéqu]uGI'[I:lGD uG - J-TI:‘G,Ei UG NG,E;
G G i00G
| 0i=123 (3.11)

+K(_31KGIZGD uG —K{;lKG IZG’Ei UG NG,E;
G idoG

Where: TF‘G . s the approximation of the mean of transformecsguee head at the
B

edgeE; of the triangular element G [L],

is the normal unit vector exterior to the edge

is a base function,

ZG,E; Is the elevation head at the centre of the €figél],

Zg is the elevation head at the centroid of the elén&riL],

is the approximation of the mean of transformedsuee head at the
element G [L],

qz; is the approximation of the velocity fieaj over the element [LT],

Kg is the approximation of the mean hydraulic condusgti in the
element G [LTY,

RG is the approximation of the mean transformed hyldrawnductivity

in the element G [LT],
Kg, s the approximation of the mean hydraulic condusgtiat the edge
Ei [LT™],
is the approximation of the mean transformed hyldrawnductivity

at the edgeg; [LT™.

KG,E;
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Moreover, with the MHFEM, the normal component@g; is continuous from G to

the adjacent element G' arEpIG is calculated with the help of the vector fieldssis v;i ,

used as basis functions over each element G. Tkestor fields are defined by

- - _ _ & ;=1 if i=j _
é[.Wj [(hGEg; =9 , whereg; j is the Kronecker symbot{ai’j —0 it Q%] Oi = 1,23.
{

Figure 2 summarizes the notation used and destirdoenixed hybrid finite element
method. Appendix | presents the details about fandtasis and the development of elements
using mapping from the simple geometry of a refeeeelement to the geometry of the real

element.

—=
Qgg, NG Ey
—
k- B w1
W3
R E
[ ] 3
0 / . Q
:ThG”', Eg
T‘}IG’I, E2 Tth’ E"Z
O O

Fig. 2. Schematic representation of the mixed hyhudli finite element method
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Therefore, with the use of these basis functionsmign 3.12 can be represented as:

j(kgqejwi - [AeOwi= [Thog wi noe,
G G i00G
| 0i=123 (3.12)

+kélKGIZGDWi—RélKG IZG'Ei Wi nG,Ei
G i00G
So that, these functions correspond to a veqgigr having a unitary flux through the

edgeE;, and null flux through the other edges:
- 3 -
aG = ZQG,EJ- W (3.13)
=1

with Qg ; the water flux over the edgg; belonging to the element G Y.

Consequently, with the use of expression 3.13randlering terms in equation 3.12,
we get:
3 N R A oo
ZQG.EJ'I[KG Wiji :hGIDWi _ThG,Ei jWi nG,Ei
j=1 G G i00G _
Ui=123 (3.14)

+K(_31KGZGIDWi —K{;lKGzG'Ei Iwi NGE;
G i00G

Based on the divergence-Gauss theorem:

[Ow; = [wingg =1 (3.15)
G 0G

And defining an auxiliary variable

Bg,ij = I(Rélejwi (3.16)
G

Equation (3.14) can be represented as:

3

5 b _Th -1 s -1 .
> QcEBgij =he ~Thg g +KeKazg ~KgKazgg,  0i=123 (317)
=1
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Or in a matrix form:

Qe eBg =heDIV{ +KgKgzgDIVE ~The e -K 2K gzg e (3.18)
Where: Th
QG E, 1 G.E;
QcE =|QGE, | DIVE =|1], The e =|ThgE, |
QG,E3 1 ThG,E3
2G5 i Bour Bciz Beuas
ZGE | ZG,Ey | B =|Bc21 Bgp22 Bgpes
ZG Eg Bc31 Bc32 Bcg3a3s

-1

3
Since Bg is an invertible matrix, an auxiliary variabﬁ/G,Ei = ZBG ij can be defined
j=1

3
_ A - 5-1 -1
QG =0gE NG +ng,i,jKG Kezg
j=1 _
Ni=123 (3.19)
SN .0 s
_ZBG,i,jThG’Ej _ZBG,i,jKG KGZG,EJ'
j=1 j=1

3.3.3. Continuity of fluxes and pressure

The continuity of fluxes between two adjacent eletaés given by
QG tQa\g =0 (3.20)
where E; is the common edge between two elements, G andT@Iis equation is valid for

all the interior edge&; (Ui = 1,23) of the domainQ .

The continuity of pressure is represented by

ThG,Ei :ThG',Ei (3.21)
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3.3.4. Boundary conditions

Boundary conditions to be applied at domain bouedaare of Dirichlet Qp ), or

Neumann Q) types (including the case of unit hydraulic geadiboundary condition).

3.3.4.1. Dirichlet boundary conditions

The variable of water pressure at the edge is pbestat the boundary as a constant
value. This boundary condition is represented Iﬂ:ytdalnmIGEi , Which is defined by
lcg = 2 Bg: J[The e, *KaKazg EJ Oi =123 (3.22)
Ej0oQp
Therefore equation 3.19 can be rewritten as
N 0 & A1 -1
Qs =Ggghe+) Bgi KeKaze - > Bgi,The, Ej
j=1 Ej00Qp
=123 (3.23)

- Z BGIJK KGZGEJ lGE|
Ej0oQp

3.3.4.2. Neumann boundary conditions

Neumann boundary conditions are used when a pbestcflow across the bounding

edges is known. This constant flux boundary coaditian be represented by the equality

Qe g = QNG OE 0dQyN (3.24)
~ F 3.0 o
Where: QNG,Ei :aG,Ei hG +ZBG,i,jKG KgzZg
=1
OE; 00QyN (3.25)
1 -
- 2 GlJThGEJ 2 BG|JKGKGZGEJ Iy=
Ej00Qp Ej06Qp

3.3.4.3. Unit hydraulic gradient boundary condition

Or for the assumption of a flux equal to the hyticaconductivity for any particular
pressure head at given time, also known as unitawyid gradient boundary condition

Qng g =Ko (3.26)
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3.3.5. Matrix form of the continuity of flux

Dh+DL-RTh-RJ-1-V =0

Where: f)—[f) }
E'an,nn

*lRee) g
V=[]

P =[ie]

3= (%l o
C=[te]m
h=[Ac]lom

Th=[The] ¢

nm

nf

2

G D(E and E')

2

GUE

EOJG

- _[bacE if
EOJG

D =
EG 0 if

Rep = > éal,f,E'

GD(E and E'

Lc =KgKsza
F]G = F]G
TF\E ZTF]G,E

is the number of elements Gh.

(3.27)

UE00Qp, DE'0 QR

OE 00Qp

OE 00Qp

ucuQ

ucuQ

OE 00Qp

is the number of edges over the dom@Qirwhere the pressure

has not been imposed.

is the sum over the elements G containing the settefnal

edgeskE andE'

is the sum over the elements G containing the dfige
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3.3.6. Soil properties

Spatial variability of soil properties has to benswlered in order to provide reliable
simulation results. Presented below is a detaikstidption of these properties.

3.3.6.1. Hydraulic conductivity

In a heterogeneous soil (e.g. layered soil), thdrdulic conductivity varies with

respect to location. The estimation of the conditgtican be represented by the

relationshiK = KsKrk”
Where: Ks is the saturated hydraulic conductivity [E]T

KA is a dimensionless anisotropy tensor,

Kr is the relative hydraulic conductivity function.

The anisotropy tensor has an array of 4 coeffisiemtitten in the form of a square

KXX KXZ

matrix: KA :{
KZX KZZ

] Under the assumption that the principal dirediasf the

hydraulic conductivity tensor coincide with the odioate axis x and z, then all the

0

K
coefficients of the tensor reduce to zero exceptdiagonal onesk” :[ OX K
V4

] The

relationship between the components of this terssdefined by an anisotropy rat'm:%.
X

If the two components are identica £ ), the medium is said to be isotropic. In isotoopi

10
case, the tensor is equal to the identity tengdr =1 :{O 1] Values of a# lindicate

anisotropy K, # K, ) due to a pore structure with a preferred oriéoain the plane.

The relative hydraulic conductivity function is demsionless and it is given by the
modified Mualem-van Genuchten expression [Ippidcil.e 2006]:

2
od 1—(1—(Se8<)1/mv )”‘V Soet
1—([—Sc1”“V )mv

1

Kr = (3.28)

Se>1
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Where: Se is the effective saturation, which isgiby the function
1 ny |~V
Se=lgg Ltlav™ | h<ne
1 h=hg
Sc is the saturation at the cut-off poiht in the classical van Genuchten
model
Sc=|L+[ayhg™ |
ay is a free parameter related to the mean pore $itesoil [,
ny is a free parameter related to the uniformity ef $bil pore-size [-],
T is an empirical parameter for tortuosity [-].
he is a free parameter, referred as the air entnyevgl]
my, is a parameter in the modified Mualem-van Genuch&pression

given bym,, :1—i [-]
ny

Estimations ofh, can be derived from the maximal pore size indbi¢ or from inverse
modelling with h, as free parameter. The introduction of an airyewnélue h, in the van
Genuchten model or the use of a different modeh wit-entry value is obligatory i, < 2
ora,hy >1.

Where: ha is the real air-entry value of the sdil, =20, / p\wIRmax

Rmax IS the maximal pore radius,

Ow is the surface tension at the air-water interface,
Pw is the density of water at the reference tempegatur
g is the gravity constant.

In the development of the model, the estimatiomwadrage hydraulic conductivity in
the elementK  is carried out by using the values of pressute,dk the edges belonging to

this element. The maximum value obtained from ttieege hydraulic conductivity values at

the edges is considered as the average in the mleme
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3.3.6.2. Effective Saturation

The dimensionless value Se, referred as effectataration, was defined by van
Genuchten [1980] as a normalized water content:

6-6
Se= L 3.29
8.8, (3.29)
Where: 8 is the volumetric water content3L,
0, is the residual water content’["%], defined as the water content for

which the gradientj—ﬁ becomes zero,

O is the saturated water contenfl[[?).

3.3.6.3. Water content

Volumetric water content (also referred as moistostent), is the quantity of water
contained in the soil. It can be expressed in teohsvolumetric saturation, defined

_ watervolume
mathematically a§=—————.
total volume

Where total volume = soil volume + water volumeotdvspace.

From the effective saturation expression, the velim water content is given by
0=Sdb,—6,)+8; (3.30)

The volumetric water content will be equal to @ity in a saturated porous medium,

and less than porosity for unsaturated soils.
3.3.6.4. Total Porosity
Total porosity is ratio of the pore volume to treat volume of a representative

sample of the medium. Assuming that the soil sysiermomposed of three phases: solid

liquid (water) and gas (air).
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__ VitV
VetV +V, (3.31)
Where: ] is total porosity
Vg is the volume of the solid phase
V| is the volume of the liquid phase
Vg is the olume of the gaseous phase

3.3.6.5. Effective Porosity

Effective porosityn, is generally defined as the portion of the soifack through

which chemicals move, or that portion of the metat contributes to flow [Fetter, 1993].

-9
Ne =— 3.32
= (3:32)
Where: q is the specific discharge
v is the mean velocity of a conservative tracer (ageprelocity).

Estimation of effective porosity is best obtainedléboratory or field tracer test, but often
they are relatively expensive and time consumirigdBens et al., 1998]

3.3.6.6. Specific water capacity

The specific water (or moisture) capacity is dedirees the slope of the soil moisture
characteristic curve at given pressure hdﬁ(h)=$, where h is the pressure head #&ds

the volumetric water content. Therefore, speaifter capacity can be expressed as

aymyny (65 - elr)|0(\,h|nV_1
my -+ (3.33)

d(SE[GS—Gr] + er) —

C(h) = ah Sc{1+ (th)nvl
0




Chapter 3 — Model development 70

3.3.7. Mass conservation
When using the standard pressure based form dRitieards’ equation [Hillel, 1980],
the equation of mass conservation is given by egudt34, which is valid in each element of

discretization G.

0J0G over a domain

jc jsts qu jfxzt QfortooT]  (3.34)
Where:  C(h) is the specific water (or moisture) capacity'TL
h is the pressure head [L],
Ss is the specific storage Ti]. It represents the volume of water

released per unit volume of porous medium per dedrease in the
hydraulic head.
Sw is the degree of saturation, which can be repredey the ratio of

. . G
the volumetric water contert and the porosity , S, ZE ,

f(x,z, t) is the source /sink term which represents the veloimwater added

/ removed per unit time to/ from a unit volume ofl $L°L T,

a is flow rate per unit are@.T ™,

X is the spatial coordinates [L],

z is the vertical spatial coordinate [L],
t is time [T].

Applying the chain rule to equation 3.34,

0 oh oh G over a domain

ah 6h -
Ss——=—+[0q=[f(xyt) 3.35
5 “onat J ¢ oh ot i !; for t 0]0,T] (599
with the use of the substitution variabl@sand é,
" h 2
c-coh_ Cli+kh]* h<he (3.36)
oh C h>he
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(3.37)
oh 0 h>he

2

5_goh _ {e[1+ kh|> h<he

and the approximation of variables over the eleptéetfollowing expresion is obtained:
0G over a domaim

for t 0]0,T[

Ce alle G|+ eG ahG G +0 g/l =Fs (3.38)
ot <I>G

with Fg = jf (x,y,t)=|Glfg , and|G| is the area of the element G .

Recalling that based on Raviart-Thomas properties, chosen approximationEG and

qg satisfy: ﬁG andqg = ZQG E; are constant over the element G.

[CHrTN

.. ohg G ohg 3 0G over a domainQ
G/C +|G +>» Qg =|Gff 3.39
6Ce =5 ] |¢GSSG ot E cE; =[Cfe for t 00,7 (3.39)
Balance equation when using the standard pressgegldorm of the Richards’ equation

Stability problems and mass balance errors candre pronounced for sharp wetting
fronts in soils with very dry initial conditions dnat material interfaces for layered soil
profiles. The standard pressure based form oRilbards’ equation can lead to large mass
balance errors; while the mixed form [Richards, 1[93as improved properties with respect
to accurate mass conservative solutions (equatid®)3but it can have convergence

difficulties for dry initial conditions.

G over a domaim

j i j for t O ]O,T[ ( )
Using the approximations over the element this ggudeads to:
69G ahG UG over a domairQ)
+G + Gff 3.41
| | | | leG Ej ~ | | G for t [ ]O,T[ (

Balance equation when using the mixed form of tleh&ds’ equatio
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3.3.8. Time discretization

The resulting mass balance equation can be timeretigated using different
discretization schemes. Shahraiyni and AshtianD9@erformed a comparison of implicit
finite difference schemes for water flow in unsatad soils. Their conclusion was that fully
implicit was a better scheme than Crank-Nicolsod BRunge-Kutta schemes for numerical
solution of h-based Richards equation. Howeverabell algorithms usually require small
time steps in order to maintain stability and mizentruncation errors for problems that
involve steep wetting fronts into initially dry $®i

h-based formulation and a backward Euler time diszation has shown to produce
mass balance errors in several cases. The reaspodr mass balance has been explained by
the manner in which the time derivativ®/0 ig approximated a€oh/0 .tEven if these
terms are mathematically equivalent in the contisugartial differential equation, their
discrete analogues are not equivalent. This ind@gual aggravated by the highly nonlinear
nature of C.

Solutions with poor mass balance and associated gmouracy can be improved by
the numerical approach proposed by Celia et al9QL9This method is based on a fully
implicit (backward Euler) time approximation appli¢o the mixed form of the Richards’
equation.

Kirkland et al. [1992] found that the use of a Ge-dicholson scheme on the closely
related mixed form of Richard’s equation fails gmluce truncation error, producing potential
instabilities. Thus, he also recommended the usleeofully implicit formulation.

Therefore, the numerical scheme that we use ig fuliplicit, resulting in the

following equations for the h-based and the mixedmf of the Richards equation,

respectively:
cnet | 08 et |t At" 1o i
e NS A BT siohed 3.42)
; o (e g%
G =1
n+l _ an é?;+1 n+ifpn+1  pn)_ At" n+1 3 n+1
TS —eG+E e hd™ -hg :H GIf& —ZQG,Ei (3.43)
i=1

The superindex n represents that the variableslefieed at nth time step, which is defined

by At" =t"1 ",
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3.3.9. Linearization

Richards’ equation is nonlinear in nature, sin€e and C are functions of the
dependent variable. The Picard iterative procedmeérization is based on the theorem of
existence and uniqueness of a solution to a ceitaiial value problem. It consists of
constructing a sequence of functions, which wilt glwser to the desired solution. This
method is frequently used because of its ease pleimmentation, and because it preserves
symmetry of the final system of matrix equations.

If the primary variable is pressure head then eqna.42 is linearized

A gn+im - - n 3 _n+lm+l
[Cgﬂ,m + (;) Ssgﬂ,m (hg+lm+1 _ hg ) = ALOGF 8+lm+1 _ ile j (3.44)

G HE 5" CH

When the mixed form of the Richards equation edugquation 3.43 is linearized

AN+lm
eG

n+Lm [~ ~ n 3  n+lm+l
oM - ol + Ss (h“*lm+1 - hg):AL(Gf e J (3.45)

G _ .
G G 2 GE

Where m is defined as the iteration index.
Celia’s approach [Celia et al., 1990] eliminates thass balance problem by directly

approximating the temporal terd®/0 wiith its algebraic analog [Clement, 1994]. The kéy
the method is the expansion eg'lmﬂ in a truncated Taylor serie with respect o
Neglecting all terms higher than linear, Celia’adtion can be representated as:

n+lm(

n+lm+1l _ qn+lm aeG n+lm+1 _ n+lm)
e =0 o he hg

dhg

n+lm+l _ An+lm n+lim|,n+lm+1 _, n+lm
e =07 +Cq (hG he )

Or using the transformed variables

n+lim+l _ qn+lm , An+lm{sn+lm+1l .~ n+lm

The substitution of this term in equation 3.45 give
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n+lm _ Aqn ~n+lm(rn+lm+1l _ ~n+lm 9?;+lm n+lm(pn+lm+1l _/°n
B~ —6c+Cq 7 hg hg + = ™ ——S5 7 \hg h
(3.47)
3 n+lm+1
an+Lm+1 . j
lergrm-£olt

The flux term is deduced from the expression alyedutained in terms of traces of pressure:

3 3 ~_
Z Qn+],m+1 =3 5 BGJ,InJ+lmhn+lm+1
i=1j=1

B ],n+],mK Ln+lmKn+lm 2

+zz ol

i=1j=1
=123 (3.48)

3
_ ¥ B ],In+],m-|-hg+|]£m+1
i=1E;00Qp J j

3
> BG];TL”‘K Ln+lm arlmg £~ z 6.

i=1Ej00Qp i=1

3.3.10. Switching technique

The primary variable switching technique has provedbe an effective solution
strategy for unsaturated flow problems [Diersch Bedrochet, 1999; Hao et al., 2005]. It is
unconditionally mass conservative. Better convergebehavior is achieved using this
technique, compared to both the mixed-form andspreshead based form of the Richards

equation.

The primary variable is switched at each iteratiosing the following criterion: if

en+],m
G >tols then pressure head is used as primary variabhatithen a mixed-form of the

Richards equation is used. The tolerance for thitching procedurefols , is predefined by

the user Q< tol; <1).
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3.3.11. Average pressure calculation

An expression of average pressure for each elemeoibtained by multiplying the

o - gt
linearized equation by the terh€L™™ + ™ —G___ggrm
Mg 5 g-ln+lmopn+lm+l
. 9 i=1e; doop O GE;
hn+lm+1= J
° ~n+lm en+],m n+lm A" n+im
C Ss Og
G
¢G "g e
z z B(—}ln+LmK—Ln+LmK n+Lm ZGE.
ij :
|G| i=LEi 000D :
+ | (3.49)
en+Lm
Cn+lm Ssn+lm At - n+im
o © Gl ¢
A" | an+lm+1 B—],n+],mK ln+lmKn+lm
|G| Z GE | | ZZ Gii,j e
i=]j=1 +F10n+lm+1
An+Lm G
chlm  7G n+lm+ALnan+lm
G ¢G |G| G
where:
~Nn+lm _ ~n+lm
ale _ZGG Ej
1 og 1
~Nn+lm G n+lm
e i Je] 56 °n e?;lm
hG if > tolf
ey BT ANg AT 0
C?;J,m+ G SS?;J,m+ G
F‘O?;+lm+1= (n¥e} |G|
An+1lm
én+lmﬁn+lm_ en+J,m_en +eG - S n+lmﬁn +
G "G G G)" e G G IS |
<tolf
An+1lm
én+lm+eG s n+lm+£an+1m be
G 0g G Ig G
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3.3.12. Matrix form of the average pressure

ANFEMHL _ Qran+im+l_ Qn+lm _ppntlmel gindm g (=g (3.50)
Where: A" naam
_ Gl ¢
Be = An+lm At
~n+ G + g0+
bg e
BGa n+lm
N:[N } . Anf]fn if E0JG
GE nmnf G.E ¥e
0 if EOOG
X Pe f G=G

_ 5 A _|Be if G=G
B‘[BGG]nmm Pe.c '{ 0 if GzG

Bed?;ém(ThG,E +KGK GZG,E)

H =[HG]nm He = Z gn+Lm
EO(0GnaQp) G
. grim
(1-Bg ) if >tok
G G
An+lm
~ _[r Ue = én+lm‘n+lm_ n+lm _4n eG n+lmen
oG if O <tok
én+1,m Atné(n+1,m e -
clm "G %g+lm+ G
G oG [

[7G]m e =[G GOQ

T
1
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3.3.13. Hydrodynamics system of equations using sidard MHFEM

A system of linear equations representing the stahdixed hybrid formulation for
the Richard’s equation can be obtained by coumgations 3.27 and 3.50.

(§n+lm _ f)n+],mN)Tﬁn+lm+1 — f)n+lm0 _ f)n+lm[3|:n+],m + f)n+],mNjn+lm

(3.52)
+ f)n+lm|5f:n+],m+1+ bn+lm|:| + f)n+lm|:n+lm _ §n+lmjn+lm _Tn+lm _\7
This system of equations can be rewritten as:
[M]nf,nf{Thn+lm+l}nf ={Y} s (3.52)

with Th"*2M*1as the unknown of the system. The hybridization sigia in
introducing the trace of pressure on the boundaresach cell, ensuring the continuity of
flux across these interior edges.

The diagonal coefficients of the matrix [M] are idef as:

Mee= 2, |Beee - S - OE 00Qp
GOE Cg+lm+ G Ssg+lm+|c;|d?3+lm

and the non diagonal coefficients:

At" gn+lmgn+im
ee= Y |Bdee- 9 |
E,E G,E,E én+lm n ,
GD(E and E') en+im 96 n+im . At gn+Lm OE'00Qp
G ¢G SSG |G| G

Unphysical oscillation problems might be presentdien using this formulation.
These difficulties had been related to the timeetielent terms in the mass matrix [M], since

they appear not only in the diagonal coefficierftthe matrix.
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3.3.14. Mass condensation scheme (Mass lumping)

A common measure to eliminate unphysical osciltetion the numerical solution is
the employment of mass lumping techniques. A masslensation scheme was used here, as

described by Belfort [2006]. An expression of flakeach edg€g g, is defined in terms of

stationary and transitory flow regimes, see Youwstes. [2006] for details.

Using pressure-head based form of the Richardstieqqé'eg'éim Idg > tols):

— G G
Qe g =Qa g +%fe _%[TCG,Ei +Sg

0i =123 (3.53)

TGG,Ei aThG’Ei
b ot

Using the mixed form of the Richards equatid'reg+é*im Idg <tols):

_ G G GTGG,E. TGG,E. 6ThG,E.
QG =Qag +%fe ‘u( - +Sg ' '

o Ve ] Oi = 123 (3.54)

Whereﬁe,Ei is the flux corresponding to the stationary peobMithout the sink/source term
over the element G (of are|é§| ) and Thg g, TCgEg;, TOgE; represents traces of

pression, specific water capacity and water contespectively, over the edds .

In order to calculatef_QG,Ei , the average pressure over the eleni?qptis obtained as

a function of traces of pressure (from equation93aBd 3.25), When%=0 (stationary

problem) and without the sink /source term overdleenent G.

>, GegTheg + 2 OdcgTheg,
~ E;i00Qp E;00Qp
Re = J J
G =

g .
0j=123 (3.55)

3
A A
ZGG,EJ' Kg KGZG,EJ-
= > -1
+ _KG KGZG

A

ag
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The term@G,Ei can be then obtained as follows:

2. OcgThgg;+ 2 Ggg;Thag,

— A Ei00Qp E;i00Qp
QG.E =0GE; . 6a .
3. -4 0i =123 (3.56)
> GaE KgKazag R
A j=1 o
+aG,Ei aG - D%Q BG,i,jThG:Ej
E.
| D

5-1 -l
- > Bgi,jkc Koz g ~lGE
Ej0oQp

Transitory flow regime terms are described by tiWing approximations

SSG TeG,Ei aTh GE _ TeG,Ei oTh GE;j dTh GE _ TéG,Ei aTh GE; (3.57)
oG ot s aTh GE, ot b ot '
. SIS o Mor Mo _ TCq Mo, (3.58)
SIEF S oTh ot S |
G Ej
~ ~N+lm+l _—+fn
daTh G,Ej _ ThG,Ei ThG,Ei (3.59)
ot At
n+l,m+l n n+lm n+lm ( n+L,m+1 n+lm ) n
OTOGE _ g ~Togg _ TOGE +TCE \Thge ~ ~Thgg |~ Togg
ot At A (3.60)

n+lim ~An+lmf+pn+lm+l _ +~on+lm|_+AQn
_TeG,Ei +TCG,Ei (ThG,Ei ThG,Ei ) TeG,Ei

- At
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Therefore, the flux at each edge can be represehitgt

¥ dn+1man+lm
E;doQp OF  ©F]
n+im+1 _| 5j D _ ~-1n+lm |an+im+1, |G
QE h+im R Bcii |[M"eg; t3f
(3.61)
an+lm
_lel TCHLIM 4 g n+im O E ThN+Lm+l +Y +Y
3t G,Ej G ¢—G G,Ej 0GEj 1GE; 2G,Ej
Where:
~n+lmzn+lm
E'DZOQ YcE “GE;
YO = | b - > BG]"n-+l'm TF]G E
G,E;j ~Nn+lm . i) ]
! g Ej00Qp D
3
Zan+LmAn+Lm
= G,Ej G,Ej 3
| )= _ c-Ln+lm |z -Ln+lm n+lm
YlG,Ei - ~n+lm ZB ij KG KG ZG,EJ'
GG J:l
‘q AN+lm Ten+1
A GE Lo . GE;
L penm g nrm Th". _ if >tok
At GH G bg GEi G
YZG,E@ = ‘q An+lm T9n+1
GEH ~nHlmonndlm | GE
L Mg g Mm_ 25 pn | _pohmppnm ) <tok
| GE GE G b GE GE ~GH bg
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3.3.15. Hydrodynamics system of equations using nesondensation scheme

Incorporating the flux continuity and boundary cthimhs, the following system of

linear equations representing the hydrodynamicdiained:

MThn+l'm+1:\7 - '\1_?2 (362)
Where:
I\A/I=[I\A/I } - Geel . ol . TON+FLm
EE nf,nf M EE - ( E;,E) _BG].‘E’E _‘7 Tcg+ém +Ssg+lm G.,E
cie| Y%c 3At ’ T DE0AQp,
A OgpelgEe' A_ OE'00Q
Mge= X {Gg ek _BGl,E,E} P
GO and ). Y9G
v = | ~ G
Yl = [Y]-E]nf Y]-E = Z (YOG,E +Y1G,E +3ij O O aQD
GOE
o b Yoe= Y Y
Y2 —[YzE]nf 2E G%E 2GE OE00Qp

As it can be seen, the terms issues from the migssetizaton appears only in the

diagonal coefficients of the matrix [M], avoidingttvthis oscillation problems.

This system of equations can be rewritten in teophghe increment in iteration
ATﬁ?;ém :Thgfémﬂ—ThgTém, as the modified Picard iteration technique prepoby
Celia et al. [1990]. Only the definition of thesi@ue will change, giving as result a matrix

system in the form:

['\7' ]nf,nf {ATh“+lm}nf :{>‘<}m (3.63)

With X =V =Yy +Xq+Xp - XgThMHLm
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An+lm
7 =% o _ ‘G‘ n+lm G,E (An+],m on )
OE

n+l
HTé”‘”““(Tﬁ”*lm ~Th" ) if ek > tol
~ ~ ~ 3AL G,E G,E GE nG f
X2 :[XZE]nf XKog = X il DED0Qp
°E (T@”*lm -Tep ) 1 LGE g
3at\ UGE GE o sk
G
~ ~ ~ _ dG’EdG’EI A_l I:lE I:I aQD
x3=[x3E E} Xsgge= , 2 {d - BG,E,E}
= -nf,nf GOE and E) G OE'00Qp

In the present work the Picard linearization scheras kept to solve the system of equations

in terms of traces of pressure.

3.3.16. Top boundary conditions (Evaporation / Inftration)

Van Dam and Feddes [2000] developed a procedurgédomodels that gives special
attention to the top boundary condition, whichngportant for simulations with ponded water
layers or with fluctuating water levels close te #voil surface. This procedure switches from
head to flux controlled boundary condition and wegsa (Figure3). Depending on the case,

hg,r the soil surface pressure head [L],ag[, the soil surface flux [LTis prescribed.

The first criterion determines if the soil colunmgaturated. If it is saturated a second
criterion determines wheater at the end of the step, the soil column will be still saturated

or it becomes unsaturated. The infl@y, into the soil column [L] is calculated considering
the fluxes positive when they are directed upwa&g,. includes the flux [LT at soil profile

bottom gy, the potential flux at the soil surfacgyy, root water extractiom oo, and the

total lateral flux to drains or ditchegyain during the time step. IfQ;, is positive, more

water enters than leaves the profile. The sollilereemains saturated and a head condition is

applied. IfQ;, is negative, the soil profile becomes unsaturatetieaflux condition is used.
When the soil column is unsaturated, a comparisiwédenQ;, and V;, (the total

air volume in the soil profile at the start of ttime step [L]) determines whether the soil

column will remain unsaturated or becomes saturdieithg the time step.
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Saturated ?

yes no
Qin>07? Qin > Vair ?
yes no yes no
' ' : '
hsur = Qin Qsur = Atop hsur = Qin —Vair Otop >0 ?
yes no
Evaporation ¥Y___ Infiltration
\ 4 Gtop < I max
Qtop > Emax ? and
Orop < ~Ks?
yes no yes no
. .
hsur = hatm Qsur = Atop hsur = Npond Osur = Qtop

Fig. 3. Procedure to select head or flux top boundasg condition
[Van Dam and Feddes, 2000]

If the soil becomes saturated a head conditiorséslu If the soil remains unsaturated,
the procedure distingueshes between evaporatiomnétichtion. The evaporation is limited
toEmax, @ maximum soil evaporation [T, which is in relationship withh ¢, the soil
water pressure head in equilibrium with the air ity [L]: hom =133X10°In(€ct /€sat) -

and egy; are the actual

€act and saturated vapour

pressurgeateely [kPa].
hatm = ~275x10°cm [Kroes and van Dam, 2003]. In the case of irtion, if the potential
flux dop exceedsl pay(the maximum infiltration flux at the soil surfadeT™]) and K gy
(the top soil saturaturated hydraulic conductivityr *]), a head boundary condition is
prescribed ad1p4ng, the height of water ponding on the soil surface/ fl.

This procedure was adapted to be used in a 2D doaral using the mixed hybrid
formulation of flux.
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3.3.17. Mass balance error

Following the approach of Celia et al., [1990], as® balance measure MB is defined

in order to test the ability of the model to conmgemass. The accuracy of the numerical

scheme is evaluated by computing a global massitalerrore g :

_|tota| additionalmassin the domainT (3.64)
_‘ total net flux into the domain ‘
evg =1-MB (3.65)

Where: nm
Total additional mass in the domamz‘,- Y Massg

n=1G=1

nt nm
Total net flux into the domain= ¥ Fluxg
n=1G=1
nt is the total number of time steps and

nm is the total number of elements in the domain.

With
1m
G pn+im n+im |f~ " ot
19 S (hg+1m+1—hg) it Lol
_ At" bc bg
Masgs = i
AN+lm
|G| n+lm+1 n |G| eG n+lm An+Lm+l _ ©n . eG,E i
A" At“ bo bc
FquG C1r1+1,m(hn+],m+1_'_K Ln+LmKn+1m G)

n+lm n+lm+1 -1n+lm,, n+lm _ n+1
ZO‘GE. (hG E| +Kg Ka ZG.Ei) Gif

Additionally, a mass balance ratio can be comptibeceach time stepMB", with

their corresponding errang" =1-mMB".

n

nm
> Masgg
MBI’I = G=1 SMBn :1_MBn (366)
nm
> Fluxg
G=1
Locally, mass balance error can be computed as:
3 3
ot > Q?;élmﬂ foM" + 3 Eig, (3.67)

E
16 ~ |G| i= i=1
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. TONIMY, . TOE
, G , ’ G
With E]-Gi = A
n+Lm ntl
L pgntmi _qgn g nHm e (Tﬁn“‘lm*l—Tﬁ” ) if Tas <tok
3| GE GEj GFEi GE bg

n
Eog = ‘AL(MassG +Fluxg)

S|

A low mass balance error is a necessary but natfficisnt condition to ensure
accuracy to the solution. Mass balance error caaredise even if the solutions do not
converge [Tocci and Kelley, 1997, Kosugi, 2008].

Kosugi [2008] concluded that is important to chebk mass balance and solution
convergence at each time step when using the tizatien scheme of Celia et al., [1990] to

simulate unsaturated water flow.
3.3.18. Maximal convergence errors for pressure heaand water content

Maximal convergence errors for pressukbaxand water contenhoyaxare calculated at

the end of each time step as follows:

AR o = ma{hgﬂ*mﬂ —h?;lmD (3.69)
2O,y = ma>< g+l _ ep;lmD (3.70)

where max is the generator of the maximal valu&énentire spatial domain.

3.3.19. Discrepancy between average pressure andtlametic mean of edge pressures

Ahg o represents a measure of disagreement or discrefimtaieen the average pressure
calculated in the element using the mixed hybridnidation (equation 3.49) and the

arithmetic mean of the three edge pressures belgrigithis element.
hg+],m+1 _} g Thn+1m+1

ANgmax = ma){ 3j=; GEi

where max is the generator of the maximal valu&énentire spatial domain.

] (3.71)
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3.3.20. Numerical solution and convergence criteria

This method will lead to a system of linear equadiowhere the unknowns are the

water pressure traces (Th). The number of unknasvegual to the number of edges to which

the pressure has not been imposed. The matrixiasso with the hydrodynamics equations

system is symmetric and definite positive. Therefdt can be effectively solved by the

conjugate gradient method, preconditioned withrenoimplete Cholesky decomposition using

the Eisenstat procedure [Eisenstat, 1981]. Thatite process for the hydrodydamics when

using the mass condensation scheme is stoppedtivddollowing conditions are met:

The difference between the calculated values ofeefdgessure head between two
successive iteration levels is smaller than an labesateration convergence tolerance
predetermined by the user. More accurate solw#mbe obtained with smaller values of
tolerance, but computational time increases. \&lnghe range of 0.001 cm to 1 cm are
often used [Shahraiyni and Ashtiani, 2009].

The'g™ -ThL'E™ < tol, (3.72)

The iteration convergence test, which involveshbabsolute and relative error, is
satisfied. Values adopted for the relative toleeagenerally are in the range of® 10°
depending upon the desired accuracy [Kavetski.et2@01]. This mixed criterion will
serve to reduce the number of iterations, in paldicwhen the pressure head changes
significantly but not the water content.

-I-hn+:|,m+1_-I-hn+iLm‘_to|r -tol, <0 (3.73)

G,Ej G,Ej

n+lm+1
The €.

The difference between the calculated values oemebntent between two sucessive
iteration levels is smaller than a tolerance preadeined by the user. Huang, [1996]
suggests a value of 0.0001 for this tolerancerasite which is interesting for cases where
water content changes dramatically with small cleang the pressure head.

‘Ten+lm+1 _ Te?;éim < tol, (3.74)

G,Ej

For the standard MHFEM formulation, the iteratiprocess is stopped when the

relative residual norm is smaller than a relatolerance predetermined by the user.

2
nf

_ V=1
HTh”'mJ’ﬂ = < toly (3.75)

(Efrmf
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3.3.21. Hydrodynamics modelling outline

Numerical method

Mixed hybrid finite element method

Variable Transformation

The pressure head variable h is transformed irealépendent variablg [Pan and
Wierenga, 1995]

Continuity

Flux and Pressure head

Boundary conditions

Dirichlet and Neumann condgiorSpecial attention is given to the top bound

conditions: infiltration/evaporation [Van Dam aRdddes, 2000].

ary

Mass conservation

h-based and mixed form of theh&ds equation (using Celia et al, [19¢
approach).

)0]

Switching technique

If the ratio water content fusation water is bigger or equal to the tolera
specified by the user, then pressure head is uspdraary variable,

if not then a mixed-form of the Richards equati®ised.

nce

Temporal discretization

Fully implicit (backward IEf) method

Linearization

Picard iterative process

Hydraulic conductivity

Modified Mualem-van Genuchtexpression [Ippisch et al., 2006]

Oscillation control

Mass lumping: mass condensasici.eme [Younes et al., 2006]

Iteration  convergenc

criteria

6 MHFEM using mass condensation scheme:
- Test involving only absolute edge pressure error
- Test involving both absolute and relative edgespure errors
- Test involving edge water content error

Standard MHFEM

-Test involving only relative edge pressure error

Simulation Results

Profiles in time and space:
-Pressure head [L] and water contenit[[’]. Average approximations by edpg
and elements.

- Darcy Flux approximation over the elements [L Chmponents of the vector,

-Water flux over the edges (]

Computation of errors

Mass balance error using the mixed hybrid formatati
-Global mass balance error computed based on tfigamhl mass measure
with respect to the initial mass in the system.
-Maximum mass balance error computed locally fartheelement and eac
time step

Maximal convergence errors:
-Pressure and water content errors computed aslitfegence of iterative
solutions at the end of each time step.

Discrepancy between average pressure and arithmetio of edge pressures

Cumulative infiltration/evaporation

je

Maximum and minimum adimensional numbers (Co, g, F




Chapter 3 — Model development 88

Section 3.4. 2D Transport modelling

The pesticide transport is described by a classidaéction-dispersion equation with

the presence of sink/source term, which takesantmunt the pesticide degradation.

,9bs) O(epoc) - D(a c] +f(C,t) 4.1)

Where: f(C,t) is the net rate of reaction (sink/source terms) WL,
C is solution concentration [ME],
S is the concentration of the species adsorbabeosolid (mass of
solute/ mass of solid) [M M,
p is soil bulk density [ML?],

~+

is time [T],
is flow rate per unit area [L],

is the dispersion tensor 1LY,

© g o

is soil volumetric water content L.

The first term on the right side of the equatiopresents the change in concentration
due to hydrodynamic dispersion. The second tepresents the advective transport. The
third term represents the effects of mixing withsaurce fluid that has a different
concentration and all the chemical and biologieactions that cause mass transfer between

the liquid and solid phases or conversion of disstbichemical species.

3.4.1. New approach to solve transport equation

Several flow and transport approximation modelparntially or completely saturated
porous media have faced a difficulty when the atlgacis dominant. Hereby, unstable
oscillations are raised. Many researchers have ¢Rkptoited the operator splitting technique
(OST) for solving this problem [Herrera and Valogc&@006].

The MHFEM has been used by several authors to $odtehe dispersion term of the
transport equation, whereas a discontinuous fieilEment method was applied for the

advection term, followed by a slope limiting toolreduce possible oscillations [Siegel et al.,
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1997; Ackerer et al., 1999; Oltean and Bues, 200tgit et al., 2002; Mazzia et al., 2002;
Hoteit et al., 2004]. According to Carrayrou et f004], each method used in OST

introduces an intrinsic error into the solution.

A new formulation to solve the transport equatienhere introduced. A global
approach that includes both, advection and dispersierms (with the MHFEM

approximation) is used:

—

q advectiondispersion™ 6b0C+qC 4.2)

New formulation to solve the transport equation usig a global approach

An invertible matrix represents the dispersion ¢er3, so we can write:

-1 _l_' _ -1 _1—>
6D qadvectior,ldispersion_ -UC+86 D "qC (4.3)

This equation is valid for each element of the fldemain Q. Therefore it can be

approximated with the use of integral equations lzamsk functionsﬂe .

-

u =-[({0C)uc+j6 D qCuc (4.4)
G

advectiondispersion &

1871
G

According to the product rule of divergence

j(DC)aesz[CaGJ—jC(DGGJ (4.5)

G G G

Based on the Gauss-Divergence Theorem, the cotytiom concentration C, and

taking in account that the frontier of the elem@nt composed by three edges:

ID[C qu: I Cug ngsc = ITCGiEi NGE UG (46)
G 0G i00G

WhereTCg ; is the average concentration at the eigef the triangular element G
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Substituting the equation (4.6) in equation (4.8)get:

—

-1~-1
Cjae D ™ d advectiondispersionY G
4.7)

== TCG,Ei ;G,Ei GG+jC(DaGJ+je‘1D‘1aCaG
i00G G G

The advective and dispersive fltiqyeciondispersion IS @PProximated over each element
by a unique vectorq, 4, belonging to the lowest order Raviart-Thomas space
Therefore,[] 4,4, gisp, 1S CONStant over the element G, aqg,, 4, No g is constant over

the edge E i = 1,23. E]adv_dispe can be perfectly determined by knowing the transfiax

through the edges:

-

3
9 adv-dispg = _ZlQadv—dispG 3 W (4.8)
= '

-

with Qagv-dispc gjthe advective-dispersive flux over the edge Epbeging to the element.G

Using the approximations over each element, and Hase vectors w; defined
bijj [hG; =9, whereéij is the Kronecker symbol, equation (4.7) can be tieanitten as:
i

1~-1 o - o
.[eG DG C]adv—dispG Wij =-— I TCG,Ei nG,Ei Wi
G i00G )
0i=123  (4.9)

+ JCG[DWi} J6GDG dg Co Wi
G G

Applying the approximations of flux through the eddgrom equation (4.8)

3 g — — —
-1~-1 - .
[6cDg (_Z Qadv—dispG E. WjJWI == TCG,Ei NG,E; Wi
G j=1 ) i00G _
0i=123 (4.10)
— _ _ 3 — —
+ jCG[DWi]+ jCGeelDel[ QG,Ej Wj]Wi
G G =1
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Rearranging terms:

3 — — — —
-1~-1 .- .
Z‘iQadv—dispG'Ej'[(GG D¢g WjJWI —_TCG,Ei '[nG,Ei Wi
= G i00G .

Ui =123 (4.11)

- 3 I
+CG I(DWiJ'FCG z QG,EJ' J.{BGlDGlejWi
G j=1 G

Under the application of the divergence theo;‘@nﬁi = Ivgi n;Ei =1
G 0G

3 — —
-1 -1 .
Z:Qadv—dispG'Ej I[GG Blele Wj]Wl
j:_']_ G .
Ui=123 (4.12)
3 — —
— -1~-1,,,. .
= _TCG,Ei +CG +CG ZQG’Ej I(GG DG WJ]WI
=1 G

3.4.2. Advective-dispersive flux

The formulation for the advective-dispersive flsxhen given by:

3 0i =123 (4.13)
—_ _l ) .
Qadv—dispG'Ei = _ZBG,i,jTCG,Ej +CGYG g
=

Where:
Cs Is the average concentration at the element G.
TCo, is the average concentration at the edge E
3
Yo E; is an auxiliary variable defined g g, = > Béi,j +QG E;
j=1
Bg is a symmetric and invertible 3 x 3 matrix, defirmd

_ —ila L. lw:
Bg _I.BGJ,J']3,3 Bg,i,j _é{ee Dg WijI (4.14)
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The coefficients of the hydrodynamic dispersiorstarare defined as [Bear, 1979]:

oD j = (o, —aT)%+(GTDm+aT|q|)6i,j (4.15)

With:

o, the longitudinal dispersivity of the porous medi{lch

o5 the transversal dispersivity of the porous mediflj

0, g the components of Darcy flux q [C'T,

0 the soil volumetric water contentjL,

Dm the molecular diffusion coefficient fL.T],

T is the tortuosity factor [-],

o the Kronecker’s symbol [-].

See Appendix Il for detailed information about ttenputation of the vector components of

the flux approximation.

3.4.3. Continuity equation

The continuity equation is provided for all theenor edges E([i = 1,23) of the

domainQ. The edgeE; is common to the frontiers of the elements G ahd G

Qadv-dispg g, * Qadv-dispg:g, =0 (4.16)

3.4.4. Boundary conditions

Neumann boundary condition, is defined by

QG =Qadv—dispNG,Ei O 00QN  (4.17)

Where Qadv_dispNG E is the imposed value of flux.
=l

For Dirichlet boundary conditions, the ted g, is defined by

_ ~-1
g = Z BG,i,jTCG.Ej 0i =123 (4.18)
Ej0oQp
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3.4.5. Matrix form of the continuity equation

DC-RTC-V-1=0 (4.19)

Where:

if EOOG
Deg= {VG E

D:[DEG]nft,nm 0 if EDOG

R:[R J Reg = Bdce 0E00Qp, OE'D0Q
EE nftnft =F GD(EZand g) CFF 9Qp, 9Qp
Qadv—disp 0 EO aQN
_ _ N
V =[Vel VGE = GE
0 0 EDAQy
_ lg= >
1 =]i E GE DED4Q
el GUE D
C=[Cslhm Cg =Cg 0GO0Q
TC =[TCl, % TCE =TCg g DE 00Qp

Nft Is the number of edges over the dom@rwhere the concentration has
not been imposed.

3.4.6. Advection-diffusion equation

Recalling the advection-diffusion equation, ancégnating over the element G, using

a test functionvg = constant over G:

joec), oS,

G Ot G ot G over a domairQ

for t 0]0,T] #.20)

+ CIE[D q advectior,ldispersionJVG = f(X,y,t)VG

]
G
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Assuming ¢ = 1, an analogous equation using the approximatawer the element
can be obtained. It can be expressed in terms dhdRretardation factor (dimensionless),

pPS
which is given byR=1+=—
g yR TR

3.4.7. Time discretization

Time discretization was carried out applying ayfuthplicit (backward Euler) method.

6n+1R n+1Cn+1 en R Cn _ n+l
G 'G 1
At |G| +Uq adv—d|spG|G| jf (X y, " ) (4.21)

3.4.8. Linear-sorption reaction

Considering a linear-sorption reaction, the coneiuoin of solute sorbed to the porous
medium is directly proportional to the concentrataf the solute in the pore fluid. The ratio

of the concentration of the solute between thedsaotiatrix and the solution phase is

representated by the isotherm linear adsorptiofficat [L3M™], Kdg =Ci.
G
1
(9?;1 +kgap n+1)Cn+l (GG +KggPG )CE; - +1
A G+ 0 4 agy-dispg |Gl ~FE =0 (4.22)

with R = [f (C[‘;+1,tn+1).
G

3.4.9. Average concentration in the element

Recalling that based on Raviart-Thomas propeltigg,, . is constant over the

element G:
n+l 3
q _1 n+l n+l -1 n+l (4.23)
b A adv-dispg ~ G ileadv—dispG’ |G| Ce ZVG Ei %EB& jTCG Ei

Substituting equation (4.23) in (4.22), an exp@ssio estimate the average

concentration in the element G is obtained:
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(GG +depG)CG +| | ZZB(_Bll JTCn+1 +Fn+1
i=1j=1

Cg““l = (4.24)
Gn+1+k n+1 n+1
dG |G| ZVG E;
At
3 EVG
Using the auxiliary variablesy/g ZZVG g. and Bg = , the
o : 9n+1+k n+l n+l At
dg PG YG
e
expression of average concentration in the elenvastrewritten:
B z z Bai, TC”+1
ST, R P S = = NN -
en+1 + kOIn+1p&+1 Vo Yo (4.25)
3.4.10. Matrix form of the average concentration
c™=Mc" +NTC" 1+ GF" 4+ H (4.26)
Where:
a
N:[N ] N o PeOGE it Epsc
GE nmnft G,E - yG
0 if EOOG
n n
G+t deP ( . .
- | =25 1-Bg) if G=G
M [MGG}nmnm MG’GI - {Gg+1+k n+ PJ
0 if GzG'
Bc
_ _|—= if G=CG
G‘[Gee}nmnm Gee =1Ye
0 if G#£G
BcogE
HG = Z TCG E

H=[Hg]m E0(0GnaQp) Y6
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3.4.11. Mixed hybrid formulation for the transport equation
(R-DN)TC"! =DMC" + DGF™1 + DH -V - | (4.27)

3.4.12. Oscillation control for advection dominanproblem- a new flux limiter

The difficulties originated when advection is thmmdnant process are controlled by a
flux limiting tool, which is specific to this mixedpproach.

The equation (4.13) expressing the flux by edgehes result of a second order
discretization since it is centered on the mestrodlucing a constant), we decrease the
order of the discretization scheme for the termdfection, in function of the direction of the
flux through the edge. The new flux expressioretlge is given below. Besides, it will allow
obtaining a stable discretization scheme for d#fén constants.

If QG,Ei <0
3 a1 3 o1
Qadv-dispg g, = -ZlBG,i, iTCcE;*Ca. lBG,i, j
! IE J=
(4.283)
1
+§[(1—H)QG,EiCG +{1+n)Qg g, TCq ;
If QG,Ei >0
3 3
Qadv—dispG'Ei = __g BG,i,jTCG,Ej +Cg jngG’i'j
(4.28b)

1
+§[(1+ n)Qc g;Cc *(L1-n)Qc g, TCq,£;

All the equations involving a flux expression neéedeplace this term according to equation
(4.28).

Defining the auxiliary variablesyg; (g 0g,; andyg

3
_ -1 .
Qadv-disng g, = —_ZlBG,i, iTCcgj +Co (ve.i)+ (GiQcg TCog  Li=123 (4.29)
1 J:
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%(1—r]) if Qg <O %(1+r]) if Qgg <O
Where: WG,i =91 . (Gi =11 .
E(1+r]) it Qgg, 20 E(1—r1) i Qgg 20
31
aGj = leBG" YG,i =0g,i +®G,iQgii

Recalling that based on Raviart-Thomas properigg;, 4, IS constant over the element

n+l
- -1 n+l
Uq adv-dispg ~ |G| ZiZ:lBG i, JTC +
|
. (4.30)
n+1 n+1
|G| ZVG Ej |G|ZZKIQG Ej CG,Ei
The average concentration over the element canfiressed as:
A Z Z BG; Cn+1
Cn+1 (eG + depG kn + yi —1J—1 I J J \
en+1 kdn+1pn+1+)\G yG (eG kdn+1pn+1+)\G)
(4.31)

Ac ZZG Qe TCq 1
/ i=1 ! ! \ + AGF&.F \

yG (en'i'l kdn+1pn+1+)\G) y (en+1+ kd?3+lpn+1+)\G)

Ac

+ kdg+1pn+l )\

Or defining the auxiliary variableg = , this equation can be

en+1

rewritten as:

Be Z Z BGI JTCn+1J

en +k n_.n
n+l _ G T KdgPG _ n i=1j=1
Ce (eml K n+1pn+1J( Ba)Cd +

Yo
(4.32)

TCR! N
i alchG E;  BoF 1
G

YG YG
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3.4.13. Matrix form of the average concentration usg the flux limiting tool

c™ =mc" + NTC™ + GF™ +H (4.33)
Where:
S
ol . BG( G,E ZG,EQE) ¢ E00G
_[ G-E}nmnﬁ NG’E B e f P
0 [ E oG

06 +Kgap .
M=|M~ ~ BERACERRA Ly (g =G

0 if GzG
Be -
_ = if G=G
G_[GG’GJnmnm Ge,6 =\ Vo
’ 0 if GzG
Beloge ~ (G eQ
H=[HG]nm HG= z G( G,E G,E G,E)TCG'E
ED(OGNnQp) YG

3.4.14. Matrix form of the continuity equation usirg the flux limiting tool

Applying the continuity of flux and the boundaryndiitions equation 4.19 can be rewritten as

DC-RTC-V-1=0 (4.34)
Where:
_ Vg if EDOG
D=|D D = '
[ EG]nft,nm &G { 0 if EODIG

> Boer -{ceQep if E=FE

RZ[R J Rep = GUE and E'
EE hnfinft ’ > Baee if EE
GOE and FE

Where the Neumann boundary condition is represeshtay the term:

3
_ - .
Qadv-dispy E _.leG,i,jTCG,Ej +CoY¥G,i t(GiQc g TCoE  0i0QN (4.35)
3 J:
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3.4.15. Residence Time Distribution

A distribution of times that parcels of water speémc constructed wetland is known
as a residence time distribution [Werner and Kadl2800]. RTD is obtained as a
breakthrough curve of a non-reactive tracer, and iepresented by an exit age distribution
E(t). The function E(t) has units fT

E(t) = &

Tyt (4.36)
0

Where C(t) is the concentration of a tracer meabkate¢he overflow at time t.

The cumulative residence time distribution functib(t), is obtained integrating E(t)
t
F(t) = jE(t)dt (4.37)
0

Tracer techniques consisting in a conservativesprart of a solute are then a valuable
tool in the verification of the flow model, as itaw performed in constructed wetlands by
Ojeda et al. [2008] and Ronkanen and Klgve [2008].

Holland et al., [2004] investigated hydrologic farst affecting RTD characteristics.
Their results indicate that flow rates did not havsignificant effect on RTD characteristics,
while water level can have a direct impact on tHdRf a wetland, suggesting that more

than RTD may be necessary for analyzing a wetlabgest to changing water levels.

The mean residence time is given by the first mdroéthe age distribution

t= ZtE(t)dt (4.38)
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3.4.16. Numerical solution and convergence critero

For the transport, the unknowns are traces of caratgon. The number of unknows
is equal to the number of edges to which tracesootentration has not been imposed. In
contrast to the hydrodynamics, the matrix assodiatéh the transport is nonsymmetric.
Thus, the conjugate gradient squared iterative atetiith the Eisenstat ILU preconditioning
procedure will be used to solve this algebraicesyst

The iteration process for the transport is stoppéen the relative residual norm of

concentration is smaller than a tolerance predetexiby the user

nf

2
n+lim+1l _ n+lim
HTCn+lm+1_TCn+lmH \/El(TCGin TCG,Ei )

- > <TT
n n+],m+1)
\/igl(TCG’Ei

(4.39)

HTCn+L m+1

Where: nf isthe number of edges in the flow dortj
Th is a vector that contains trace pressureseatifferent edges ove® ,
TC is a vector that contains trace concentrationseatifferent edges ove
n represents a temporal index,

m IS an iteration index,

T, is the tolerance criterion for the transport.

3.4.17. Maximal convergence errors for concentratio

Maximal convergence errors for concentratib@ 5 are calculated at the end of each time

step as follows:

AC oy = ma{‘cgﬂm*l - cgﬂmD (4.40)
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3.4.18. Transport modelling outline

Transport Equation Classical advection-dispersignadon with the presence of sink/ source

term, which takes into account the pesticide degfiad

Numerical method A new formulation to solve thensport equation is introduced. A glohbal
approach that includes both, advection and dispergrms (approximated

with the mixed hybrid finite element method) is dse

Continuity Advective-dispersive Flux and Concetitna

Boundary conditions Dirichlet and Neumann condigion

Temporal discretization Fully implicit (backward [Et) method

Linearization Picard iterative process

Oscillation control Difficulties originated when agttion is the dominant process are controlled

by a flux limiting tool, which is specific to thimixed approach.

Iteration convergence criteria Relative residualmof edge concentration

Simulation Results Profiles in time and space:

-Concentration [M []]. Average approximations by edge and element

4

-Advective-dispersive Flux approximation over tHereents [M L*T.
Components of the vector.
-Transport flux over the edges [M'T™].
Residence time distribution
-E(t) Function [T']
-Cumulative residence time distribution functior)F(
-Mean residence time
Maximal convergence errors:
-Concentration error computed as the differencéevétive solutions
at the end of each time step.

Maximum and minimum adimensional numbers calculé@a Pe, and Fn)
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Section 3.5. Pesticide Degradation

Several models have been proposed to represekinttigcs of biodegradation in soil (Figure
4). An understanding of when to use these modelsadry they may fail is well explained in
Alexander and Scow [1989].

So~ Kn Two compartment
Michaelis-Menten,  (Diffusion/adsorption;

No growth ([enzyme first-order) “Second order”

constant)
for soil
S~ Km So<<Km Three half order
Monod, no growth First order No growtl
enzyme] increases
([enzyme] i ) COMETABOLISM :
So<<Km
SO >>Km SO"’Km
Zero order. BIODEGRADATION (So>>Kp) [Growth on
No growtt B No growth — | one substrate,
metabolism of
BIODEGRADATION another]

So >>Ks / With growth
Zero order. \

(Logarithmic) /

S~ Ks

Cubic kinetics
(cubic root of
Three biomass/time=

Monod, with growth ~ 0<<Ks haéf linear kinetics)
([biomass] or Flrst_or_der order for fung
[enzyme] increases) (LOgIStic)
| “Second
order”

Two compartment
(Diffusion/adsorption;
first-order)

>
Substrate concentration [S] in the environmene&reasing

>

Biodegradation rate (v) is declining

So, initial concentration of substrate;,KMichaelis constant (substrate concentration dthvthe rate of
enzymatic reaction is half the maximum rate); Monod constant (substrate concentration at wtiietrate of
growth is half the maximum rate).

Fig. 4. Kinetics analysis of microbigll biodegradatn/ a variety of models for growing
and nongrowing microorganisms[Cetkauskaité et al., 1998];
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Mathematical formulations have been developedHerkinetics of biodegradation of
one organic chemical when the transformations cefieth the metabolisms of that substrate
and the simultaneous growth of bacteria on a secoganic compound. These formulations
are based on coupling of Monod growth kinetics Bhchaelis-Menten kinetics. These nine
models reflect linear, logistic and exponentialvgito on one substrate and concentration of
the second substrate [Alexander and Scow, 198%p&hof substrate disappearance curves
have been proposed only in function of time. Sitlee 2D mixed hybrid finite element
approximation permits observing the spatial vahgbof pesticides/substrate concentrations
and takes into account the different heterogersitieis possible to purpose carbon and
pesticides disappearance curves according to thpreble.

Some limitations for modelling chemical kinetice aelated to the influence in many
transport and transformation process by the presaicother chemicals in a mixture.
Modelling chemical interactions in a mixture re@sir the development of scientific

understanding.

Section 3.6. Time Control

The temporal spach,Ts[ is discretized in temporal increments\t), which are
automatically adjusted at each time level (Figyracgording to the following rules:
1. There is a minimum and a maximum time st&pnjin and A tmax) that are specified
by the user. So thentmin< At< Atmax.
2. A maximum temporal increment allowed for theng@ort equation is estimated by
setting as a maximum value 0.5 for the dimensi@nl€surier number (Fn),

represented by a ratio of the Courant-Friedricheat 6Co) and Peclet (Pe) numbers.

Fn=0c1 6.1)
Pe 2

\/(VX]Z (ijz

- +| —

- A \Az (6.2)
Dxx | Dzz _ Dxz
AXZ AZZ AxAz

2 2
Co= At\/ (ﬂj ; [Ej 6.3)
AX Az

Pe
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Where:

Vx, Vz  are the pore water velocity in x and eedtions, respectively (L),
Ax, Az are the grid spacing in the x and z directionpeesively (L),

Dxx,

Dzz, are the dispersion coefficients*(L?).

Dxz

Hereby, for each element G, a maximum temporakment is given by
05
<
DG, xx + DG 2z + DG xz (6.4)
(AX)Z (AZ)Z JAVYAVA

At

maxg trans

The maximum allowedA ffor the transport £t maXianspor) Will be the minimum

value At maxg 4, IN the entire spatial domain.
Analogously, a maximum temporal increment allowedthe hydrodynamics
(At maXyydrodynarics) 1S determined using a similar rule by replacimgome hand the

dispersion coefficient by a parameter D(h) knowrnhassoil moisture diffusivity, and

on the other hand the pore water velocity by thiemsoisture velocity v(h). They are

]y e oK)

given by the functions D(u)_C[h(u)]’ _C[h(u)] dh

WhereC(h)=% is the soil moisture capacity and u is a variatddined by the

and

Kirchhoff transformation [El-Kadi and Ling, 1993].

If the soil profile is not saturated or it has metich a specified index of
. O : L : :
saturation (m ¢— < tolihgsap, the following approximations for the adimensibna
G

numbers will be used:

1( 1 dK
J|G|(Cedh

vd = 1 Kg
G| Ce

Pe, Gj (6.5)
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1( 1 dK

2
Co, 4 = At |—| —— 6.6
hyd \/|G|[CG dh Gj (6.6)

If the soil profile is saturated or it has reach #ipecified index of saturation, then Co

—

will be computed using the components of the v&yooectorv =9 The Darcy flux
Ne

a is calculated from the mixed hybrid approximatioassd water content might be a

good approximation of effective porosity, .

_ 2 Y
qG,x + qG,z
SPYAV 04z

Co=At (6.7)

The maximal temporal increment for the hydrodynamwid! be then computed as:

C . 0
OHG|K—G if ma{—Gj < tolindsat
G fe
2 2
Atmaxg hyd — N - (6.8)
T max -—— | 2 Wlindsat
egAX eGAZ (I)G

The maximum allowedA for the hydrodynamicsAt Maxqydrodynarics) Will be the
minimum vaIueAtmaxGhyd in the entire spatial domain.

The temporal increment must then not exceed theinmim value between
At maXyydrodynarics aNd At MaXiransport

3. The initial time stepA twil be equal to the minimum value between

At ma%ydrodynarics @Nd At MaXyansport If this value is larger than the time of

simulation T, then a smaller default initial value should tsedi QAt;,i;). For the

next time levels, a heuristic method [Belfort, 208@minek et al., 2005] will be used

but always respecting the rules 1 and 2.

The rate equations describing the degradation iksmetre integrated over a time step
by a fourth order Runge_Kutta method. The keyhaf method is the use of intermediate
time-steps to improve accuracy.
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Fig. 5. Adjusted time stepping procedure
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Section 3.7. Modelling code, pre- and post processi  ng of results

The modelling code was written using the computeogmmming language
FORTRAN. It makes use of text files for the inpditdata concerning to the mesh, temporal
discretization, and boundary conditions. Thesesfare given by a pre-processor developed
specially for the mixed hybrid approximation. Ré&sare printed using text files with a given

format for facilitating a visual display using othsoftwares, such as MATLAB.
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Chapter 4 — Verification of the model

This chapter contains the results of several strais, for one and two-dimensional
test cases, performed in order to verificate thel@hoComparison of the model results and
those from the literature was carried out. Verifima was also performed using analytical

solutions or other well-known models, such as HYDRU

112
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Section 4.1. Infiltration — Comparison with HYDRUS 1D

In order to test the ability of the model to handlélux boundary condition, a one-
dimensional example was designed. It consistafdfration into a homogeneous unsaturated
soil column of length L=100 cm. The specific qmrameters used in the modified Mualem-
van Genuchten model are reported in Annexe Il émat C). Boundary and initial
conditions for the hydrodynamics and transport nedee shown in Table 2. It was assigned

a value of 3 cm to the longitudinal and transvedssppersivities.

Table 2. Initial and boundary conditions for the on e-dimensional test case

Condition Hydrodynamics Transport
Initial h(0<z<10cmt=0)=-20cm C(z#0,t=0)=01g/|
Boundary q(z=0,t>0) = 864cm/d C(z=0,t20)=10g/

In Figure 6, the hydrodynamics results obtained rwhéeme increments are
automatically adjusted are compared to those aetiehen a constant time step is used. The
simulation time was 0.25 d. As it can be seenethe a good approximation between the
curves obtained applying HYDRUS [Simek et al., 2005] with an initial time step
1.1974x10 d and the MHFEM using adjusted time steps (311@ titeps: 1.1974x10d
> At > 1.7029x10d). There is also a good agreement of the curb&sred using a constant
time step with a length similar to the time rangival used by the adjusted time algorithm
(250 time stepsiAt = 1x10°d). However, if the time step selection is doné afithis range
we can observe slight differences in the hydrodyinarapproximation (10 time stepAt =
2.5x10%d ) , see Figure 6a.

The hydrodynamics criterion for the time step s#becis predominant for small
Peclet number, consequently no effect had been nadsein the solute transport
approximations by using constant time steps (Figlme As it was expected, the increase of

the Peclet number induces a deviation in the cungexy constant time step.
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Even though the number of time steps and the CR¥g 6f simulation can be large,
we decided to use an adjusted time step rather ghaonstant time step, because an
inadequate time step selection may lead to an umatxz approximation for the

hydrodynamics and solute transport calculationgufé 6).
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Section 4.2. Transport verification: 1D test case - HYDRUS 1D

A difficulty solving the transport equation is #ttited to the change in the nature of
the equation from parabolic to almost hyperbolic the advective transport becomes

prominent in relation to the dispersive transplantge Peclet number).

The model was tested using different values of afigpity (o, =a;). The

requirement of the flux limiter, when advectiorthe dominant process (high Peclet number),

iIs being confirmed through the Figure 7. For thésst cases a value af=0.5 was

considered. The effect of increasing the Pecletbar is evident over both, mesh and edge
concentrations. In addition, the correction madelevusing the suggested flux limiter are

obvious.

For low Peclet numbers (Figure 7a), the resultsaiobd by the MHFEM in the
calculation of mesh or edge concentration show edgagreement to those obtained by
HYDRUS. In this case, concentration results agependent of the implementation of the

flux limiting tool.

At high Peclet numbers (Figure 7b), oscillationgd@ge concentration calculations are
observed using HYDRUS or MHFEM without flux limiteNon-precise mesh concentrations
are also reached. It is remarkable that there str@ang difference between the value of
concentration calculated at the baricenter of theshmand the edge concentration values
surrounding this mesh. This behavior is noticeadtlehe Dirichlet boundary condition.
Moreover for the cas®e - « (Figure 7c), the mesh concentration approximaioains

relatively constant and equal to the initial corication value.

Nevertheless, oscillations were inhibited with tiedp of the flux limiting tool in all
cases. Therefore, the suggested flux limiting taakes it possible to preserve precision and
unconditional stability at low and very high Peakeimbers. A sensitivity analysis has been

then performed to evaluate the influence of theupatern .
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4.2.1. Flux Limiter Sensitivity Analysis

n is a ponderation parameter for the advective aispedsive parts of flux
through an edge. Therefore, it ranges betweendOlanAs stated before, at low Peclet
numbers concentration results are independenteofitlt limiter implementation (Figure
7a). Thus, the effect of the flux limiter applicat over the edge concentration calculation
is also in relation to the Peclet number. Figursh®ws a comparison among edge
concentration results obtained for different valoéthe parametern, when max Pe =

12.2, max Pe = 1.22x10and max Pe = 1.22x3,aespectively.

Edge concentration results remain relatively ingmes to the variation of the
ponderation parameter for 0.5 and 1.0 values. |&taid relative identical solutions are then
provided. Whem = 0 the diffusion effect highly increase with tReclet number. In fact,
according to equation (4.28), the transport fluxeath mesh and its forward edge are

pondered by the same weight wherr 0, otherwise the forward edge have a higher kteig
than the mesh.
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Section 4.3. Transport verification: 2D test case —  Analytical solution

A two-dimensional test case for the transport itursded media was carried out. The
initial condition is zero initial concentration. &domain discretization and the boundary

conditions are presented through the scheme iné&igu
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Fig. 9. Two dimensional convection-dispersion prokim (left) and regular mesh (right)

With the aim of testing the performance of the nipttes problem was solved for
various values of the dimensionless Peclet humb&he solution was displayed at the
simulation time equal to 20 d. The parameters uselthe different cases are reported in
Table 3. The results are compared to the anadgiation given by Leij Feike and Dane
[1990] in Siegel et al. [1997].

Table 3. Parameters used in various cases

Case Vx Vz oL ar AX Az Pe
(md)  (md) (@d) @d) (m) (m)
0.0 1.0 1.0 0.1 1.0 1.0 0.91
0.0 1.0 0.1 0.01 0.5 1.0 7.14

0.0 1.0 1x19 1x10° 0.5 1.0 7.14x1b
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Concentration profiles are numerically approximatedthe centre of the meshes for
the MHFEM, while analytical solutions are calcuthten the nodes. For this reason, iso-
concentration lines are presented instead of sedtigoints, in order to provide a better way
of comparison between results.

The first two-dimensional test case considers allshexlet number (Pe < 2). The
iIso-concentration lines obtained by the applicabbthe MHFEM without flux limiter are in

good agreement with the analytical solution (FigL@g
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Fig. 10. Iso-concentration lines: first test case

In the second test case Peclet number was incrg@sed 7.1). While using the
MHFEM without flux limiting, unstable and less acate results were obtained (Figure 11a).
The MHFEM approximation, in comparison to the atiefl solution, is visibly improved

when applying the flux limiter (Fig 11b).
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Iso-concentration lines
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Fig. 11. Iso-concentration lines: second test case

For a very high Peclet number (Pe=7.14}1the results obtained with the application
of the flux limiter were stable and matched up velthe analytical solution (Figure 12).
The two-dimensional transport verification has shaWwat the developed model is a good
numerical tool for 2D transport approximation iriusated porous media. In addition, it was

observed a satisfactory flux limiter performance.
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Section 4.4. Variable Transformation 1D [Panand W ierenga, 1995]

Several one-dimensional cases were simulated Uasysged or uniform soil profiles
(Figure 13). Soil properties listed in Appendix Il

—— A [(E—
10em4  [Sol1
Soil 2
30 cm _
A 100cm | [Soil 3
60cm | 1Soil 1
Y \An
a) Layered soil profile b) Uniform Soil Profile

Fig. 13. Soil profiles for Pan and Wierenga [1995Fst cases

Initial pressure and boundary conditions appliedanh case are described in Table 4.

Table 4. Initial pressure and boundary conditions

Test Initial Upper boundary Lower Simulation  Profile
case Pressure, Boundary Time, TsS Type
cm

1-1 -50000  3.4722xIbcm ¢ ocmég 21600 Layered
1-2 -1000  3.4722xIbcm s* Ocmé 1800 Layered
1-3 -200  3.4722x1bcm s Ocmé 13680 Layered
2-1 -50000  8.3333x10cm s Ocms 43200 Layered
2-2 -1000  8.3333xIbcm s Ocms 28800 Layered
2-3 -200  8.3333x1bcm ¢ Ocms 14400 Layered
3-1 -50000 + 100 cm + 100 cm 180 Uniform
3-2 -1000 + 100 cm + 100 cm 180 Uniform
3-3 -200 + 100 cm + 100 cm 180 Uniform
4-1 -50000 -75cm  -75c¢cm 18000 Uniform
4-2 -1000 -75¢cm -75¢cm 18000 Uniform
4-3 -200 -75cm -75¢cm 18000 Uniform

Pressure head and water content distributions wenelated using the parameters
shown in Table 5. Calculations were performed usiggRichards equation on their h-based
form, mixed-form or using a switching method betweabese two forms. A transformed
pressure was introduced as the dependent variatllesgults were compared to those without

using transformation of variable.
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Table 5. Simulation parameters

tol, tol 4 tol tolindsat ~ Atjpt Maximum number  Factor Factor
iterations in a time  greater smaller
step than 1 than 1

1x10° 1x10" 1x10° 0.95 1x10° 10 0.9 1.1

4.4.1. Pressure head and water content distributian

Results show that the method is numerically rolbarsall cases of variably saturated,
heterogeneous media, and first or second type l@wynwbnditions. For all test cases the
mixed hybrid formulation with mass condensationesoh was applied (using the different
forms of the Richard equation, and transformingnot the variable of pressure). Pressure

head and water content distributions were in gagréeament with Pan and Wierenga [1995]

results (Figure 14).

Initial Pressure -50000 cm

Testcase 2.1

Depth(cm)

-60000 -40000 20000 0 20000
Average pressure head (cm)

Depth(cm)

0
-10¢ 1
)
Test case 2.
_20, q :ég i
)
-307 Testcase 1.1 8

01 02 03 04
Water content (cm3 cm-3)

0.5

J  Reference [Pan and Wierenga, 1995]

MHFE h-based form RE, non-transformed h
<& MHFE h-based form RE, transformed h
MHFE mixed-form RE, non-transformed h
MHFE mixed-form RE, transformed h
MHFE switching method, non-transformed h
*+  MHFE switching method, transformed h

Reference [Pan and Wierenga, 1995]

MHFE h-based form RE, non-transformed h
MHFE h-based form RE, transformed h
MHFE mixed-form RE, non-transformed h
MHFE mixed-form RE, transformed h
MHFE switching method, non-transformed h
MHFE switching method, transformed h
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Fig. 14. Pressure head and water content distributns - Pan and Wierenga [1995] test
cases.

4.4.2. Indicator parameters definition

Appendix IV presents information about the indicgbarameters related to the time
stepping size procedure and the computation offgrmehen the mixed hybrid formulation
with mass condensation scheme is implemented. eTallists these parameters and gives a

reference to find the parameter definition withirsttext document.

Table 6. Parameters description

Discrete information

Parameter Definition Reference
Richards Equation form: Standard pressure baseu, fimixed Section 3.3.7.

RE form form, or the primary variable switching technique -3.3.10

tolf Tolerance for the switching procedure Section 3.3.10

constant used in the transformation of the varighbéssure headSection 3.3.1.

K (cm) h into a new dependent variale Ea.(3.2)
Time indicator parameters
Parameter Definition Reference

NI Total number of iterations during the simulation
Time steps  Total number of time steps during theutation
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At av Average time step size Section 3.6
At max Maximum time step size Section 3.6
Atmin Minumum time step size Section 3.6
Pemax Maximum value during all the simulation for the,d@umber  Section 3.6
Comax Maximum value for the Courant-Friedrichs-Lewy numbe Section 3.6
Error indicator parameters
Parameter Definition Reference
Global mass balance error Section 3.3.17
€MB Eq. 3.65
Error from the mass balance (difference) computeadlly for Eq.3.67
one element G in a given time steit"using the variable
Eig Max  approximations by edge
Error from the mass balance (difference) computeally for Eq. 3.68
one element G in a given time steit"using the variable
Eog Max  approximations by element
Maximum value for the mass balance error computedaah Eq. 3.66
ems"Max  time step from the mass balance raa "
Minimum for the mass balance error computed at ¢aoh step Eq. 3.66
eMg"MIin  from the mass balance ratidB"
Maximal convergence error found during all the dation for Eg. 3.69
Ah max average element mean pressure
Maximal convergence error found during all the dation for Eg.3.70
A8 max water content in the element
Measure of disagreement or discrepancy betweeravkeage Eq. 3.71
pressure calculated in the element and the aritbnretan of the
Ahgmax  three edge pressures belonging to this element

4.4 .3. Indicator Parameters correlations

In this section, we discuss significant correlasidyetween the indicator parameters.
The analysis was performed case by case. Appeéndiantains the results from the cross-
input correlations. The correlation coefficientisra number between —1 and 1 that measures
the degree to which two variables are linearly teela We have chosen to discuss the
mathematical relationships between the parametess have an absolute value of the

correlation coefficient|r| > 086.

In the following comments, two groups of parametans distinguished: parameters
that are explicitly indicators of the time, and $kdhat are indicators of the error. We remind
the reader that the 12 cases tested differ by #heren of the porous media, the initial and
boundary conditions. Indeed, the test cases (1-2, 1-3, 2-1, 2-2, 2-3) concern
heterogeneous medium and a Neumann boundary aamditihile the tests cases (3-1, 3-2, 3-

3, 4-1, 4-2, 4-3) concern homogeneous medium aridHilat boundary condition.
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4.4.3.1. Correlations between time-indicator paraers

As it was expected, for all test cases there tsamg negative correlation between the
total number of time steps (Time steps) and theameetime step sizea(av). In the same
way, the correlation between the total numberergiions (NI) and the average time step size
(atav) is also negative, but not for all the cases {#0.0337 for test case 4.2). A strong
correlation positive between the total number efations (NI) and the total number of time
steps (Time steps) is also observed, except focése 4.2 (r = 0.0474).

The correlation coefficient betweePemax andComax is positive and consistently
superior to 0.9 for the test cases simulating aniNsawn condition. It is the same for the
coefficient of correlation betweetomax andat max for the test cases simulating Dirichlet

conditions (with exception of test case 3.3, wherd.126).

4.4.3.2. Correlations between error-indicator paraters

For the test cases simulating a negative pressyesed as Dirichlet condition:

- the global mass balance errgyg has on the one hand a strong negative correlation
with the local mass balance errdgg; max andE,; max, and on the other hand it
has a strong positive correlation with the minimeror calculated at each time step
emB ' Min;

- the local mass balance errors have on the ond hastrong positive correlation
between them and on the other hand a strong negativelation withey;g" min;

- gvB" max is correlated negatively with the local err@sd positively to the global

mass balance error, but the correlation coeffidenbt superior to 0.9 for all cases.
Ahmax has a positive correlation witt® max for all test cases with a Dirichlet conditituit

not in all these cases the correlation coefficigsuperior to 0.9.

4.4.3.3. Correlations between time-indicator andarindicator parameters

For the test cases simulating a negative pressupmsed as Dirichlet condition,
Atmin is on the one hand correlated negativelyyg , and " min, and on the other hand

is positively correlated to the local mass balareeors Ejomax and Epg max.
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Ahgy max has a positive correlation with the total nembf iterations and time steps for the

test cases 2-1, 2-2, and 2-3.
After case by case analysis, the following analysia global approach merging all

cases.

4.4.4. Agglomerative Hierarchical Clustering (AHC)

The Agglomerative Hierarchical Clustering (AHC) pedure is used to make up
homogeneous groups of objects (classes) on the biieir description by a set of variables.
AHC was applied here to classify in homogeneousiggoon the one hand all the indicator
parameters included in Table 6, on the other hhedlifferent numerical methods or choice
of models. The statistical analysis was performetth the software XLSTAT, which is

compatible with Excel.

4.4.4.1. Advantages and disadvantages of AHC

The AHC classification method has the following antages:

- The objects are grouped together based on tkerdiarities between them. A type of
dissimilarity can be chosen which is suited togbbject studied and the nature of the
data.

- As a result, a dendrogram represents the pragesgsouping of the data. It is then
possible to gain an idea of a suitable number a$sds into which the data can be
grouped.

The disadvantage of this method is that it is slBurthermore, the dendrogram can become

unreadable if too much data are used, which igheotase in this study.

4.4.4.2. Principle of AHC

The principle of AHC is simple. The iterative pess of classification starts by
calculating the dissimilarity between the N objec®en two objects which when clustered
together minimize a given agglomeration criteriare clustered together thus creating a class
comprising these two objects. Then the dissimyabietween this class and the N-2 other
objects is calculated using the agglomeration reoite The two objects or classes of objects
whose clustering together minimizes the agglomenatriterion are then clustered together.

This process continues until all the objects haaenlclustered.
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These successive clustering operations produceamybclustering tree (dendrogram),
whose root is the class that contains all the ofasens. This dendrogram represents a
hierarchy of partitions. Depending upon eitherrwgefined constraints or more objective
criteria, it is possible to choose a partition hyntating the tree at a given level. A detailed
description about similarities, dissimilarities aagglomeration methods, is available using
the help tool of XLSTAT 2010.

4.4.5. AHC Variables definition

For this statistical analysis, two types of vargshivere defined:

4.45.1. Discrete variables

According to the following definitions (Table 7)jsdrete variables describing the
choice of the model is composed by 5 alphanumehigraters identifying: the type of
boundary condition (N or D), the specified top badary condition (1, 2, 3 or 4), the initial
condition on pressure (A, I, or W), the toleransedifor the switching procedure representing
the type of the Richards equation used (H, M ora8Yl the type of primary variable used (T
or P).

Table 7. Discrete variables definition

Neumann condition

Neumann condition : high flux imposed (1.25 cm/h)
Neumann condition : low flux imposed (0.3 cm/h)
Dirichlet condition

Dirichlet condition : positive pressure imposed@0 cm)
Dirichlet condition : negative pressure imposedy cm)

> A WO O DN PP Z

Arid soil (very dry) : initial pressure =50000 cm

Intermediate soil : initial pressure —1000 cm
Wet soil : initial pressure -200 cm
h-based form of the Richards equatidgal{ = 0.0)

Mixed form of the Richards equatioto{s =1.0)

w T I S

Switching technique between h-based and mixed f¢toilg = 0.9)



Chapter 4 — Verification of the model 130

T Transformed pressure head is usee ¢0.04 cn)
P Transformed pressure head is not used .00 cnit)

For example: N1IAHT means the simulation results @bé&ained by setting a Neumann
boundary condition (N), with a high flux imposed,(arid soil (A), the Richards equation was
solved using the h-based form (H) and the primanyable used was a transformed pressure

head (T). There are in total 72 discrete variables.

4.4.5.1. Continuous variables

Continuous variables carry the quantitative infdiora obtained after simulation.

Fifteen continuous variables (time and error intlicg) were defined in Appendix IV.

4.4.6. Summary statistics

Table 8 summarize the general statistical anabfsise data:

Table 8. Statistical analysis of the data

Variable Observations Minimum Maximum Mean Std. deviation
NI 72 2.09E+03  3.12E+04  1.06E+04  7.83E+03
Time steps 72 9.20E+02 7.59E+03 3.00E+03 1.62E+03
At av 72 2.37E-02  1.57E+01  6.84E+00  5.01E+00
At max 72 5.34E-02  2.16E+02  2.66E+01  4.19E+01
At min 72 3.94E-13  6.95E+00 8.58E-01  1.37E+00
Pe max 72 6.36E-05 5.83E-02 3.91E-02 1.56E-02
Co max 72 5.66E-03 2.42E-01 3.62E-02 4.53E-02
EMB 72 -8.54E-08 3.69E-07 2.95E-10 5.22E-08
Eig max 72 3.85E-16  6.15E-07  3.69E-08  1.27E-07
Ezg max 72 6.85E-16  2.05E-06  545E-08  2.55E-07
emp T Max 72 -1.44E-10 1.00E+00 1.34E-01 2.95E-01
emp" min 72 -1.38E+06  -1.11E-12  -3.22E+04 1.68E+05
Ah max 72 4.63E-03  1.11E+01 7.90E-01  2.31E+00
AB max 72 1.76E-07 1.03E-03 6.15E-05 1.81E-04
Ahg max 72 2.92E+00  3.33E+04  5.85E+03  8.62E+03
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4.4.7. Clustering results

Data analysis enabled the re-grouping of discratgables (choice of the model), or

continuous variables, in homogeneous groups.

4.4.7.1. Re-grouping of discrete variables

In order to re-group the discrete variables, f#gut5 shows the dendrogram
representing the hierarchy obtained using an esmfiddistance as the dissimilarity metric
between points and the Ward Agglomeration methodhree class centroids were
distinguished (Table 9).

Table 9. Class centroids

Continuous
variables

1

Class
2

3

NI

20008.1667

Time steps4980.04167

At av
At max
Atmin
Pemax
Comax

EMB
Ejg max

Eog max
emp " Max
gm" Min
Ah max

AB max
Ahd max

4.73970669
10.3895763
0.00050247
0.03917482
0.01916639
-5.6503E-11

2.9632E-08
1.7244E-08
0.40334453

-96505.1929
1.07293852
2.8189E-05

17295.0341

4570.58333
1862.5
10.4850808
46.2545702
1.71656628
0.04635188
0.05240829
-1.3807E-08

1.9424E-08
7.9371E-09
1.7667E-06

-6.8357E-07
0.07612148
7.1564E-06

95.3805578

9837.58333
2456.33333
0.07669958
0.20896371
0.00014006
0.01728739
0.02144732
4.3304E-08

1.037E-07
2.6855E-07
2.1555E-05

-2.1985E-07
2.36799893
0.00029123

229.470986

The highest Total number of iterations during timauation (NI) was obtained for

class 1 follwed by class 3 and class 2. Concertliegocal mass balance errof§; ¢ max
and E>5 max) the highest value was obtained for clasdl8vied by class 1 and class 2, the
same order was obtained fah max, 46 max. Hence, class 2 has the minimum B

max, Exg max, Ah max, 46 max and also the minimuedhy max (Table 9).
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The central objects for classl, class2 and &las® representated by discrete
variables D3AHT, N1WST and D3WSP, respectively. tBat it is possible to make link
between the choice of models (discrete variables) their advantageous characteristics.
Distances between the centroids of class 1 toldes @ and class 3 are in the same order of
magnitude (9.9x19. The distance between the centroids of class® class 3 is shorter
(5.3x10). Table 10 summarize the results by class.

Table 10. AHC Results by class (re-grouping discre  te variable)

Class
1 2 3

N1AHP N1IHP D3IHP
N1AHT N1IHT D3IHT
N1AMP N1IMP D3IMP
N1AMT N1IMT D3IMT
N1ASP N1ISP D3ISP
N1AST N1IST D3IST
N2AHP N1IWHP D3WHP
N2AHT NIWHT D3WHT
N2AMP N1WMP D3WMP
N2AMT NIWMT D3WMT
N2ASP N1WSP D3WSP
N2AST N1IWST D3WST
D3AHP N2IHP
D3AHT N2IHT
D3AMP N2IMP
D3AMT N2IMT
D3ASP N2ISP
D3AST N2IST
D4AHP N2WHP
D4AHT N2WHT
D4AMP N2WMP
DAAMT N2WMT
D4ASP N2WSP
D4AST N2WST

D4IHP

D4IHT

D4IMP

D4IMT

D4ISP

D4IST

D4AWHP

DAWHT

D4AWMP

DAWMT

D4WSP

DAWST
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From the results above it can be deduced that:

- The first class is distinguished by arid soiltisdi conditions. All simulations
concerning this type of initial pressure conditiae in this group, regardless of the
boundary conditions that were imposed, the fornthaf equation to solve, or the
primary variable used.

- The third class is characterized by Dirichlet bhdary conditions with a positive
pressure imposed, except for soil arid initial daods.

- The second class deals on the one hand with Neuilmaundary conditions except for
arid soll initial conditions, and on the other hamh Dirichlet boundary conditions
with negative pressure imposed, except for arit$ soitial conditions.

- The three classes are regardless of the forrheoktjuation to solve and the primary

variable used.
4.4.7.2. Re-grouping of continuous variables

In order to re-group the continuous variablesurgg 16 shows the dendrogram
representing the hierarchy obtained using an esmfiddistance as the dissimilarity metric
between points and the Ward Agglomeration methodhree class centroids were
distinguished. The central objects for classl,sdaand class3 are representated by discrete

variables Time steps) niin, and E;g max, respectively. Distances between the centraids

class 2 to the class 1 and class 3 are in the sadee of magnitude (2.5x3)0 The distance
between the centroids of class 1 and class 3 igesh(8.7x10). Table 11 summarize the

results by class.

Table 11. AHC Results by class (re-grouping contin ~ uous variables)

Class
1 2 3
NI At av EMB
Time steps At max Eig max
emp " Max Atmin E>g max
Ah max Pemax
AB max Comax

Ahd max sMB”min
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From the results by class it can be deduced that:

- The third class represents only global and loca$s balance errors. Therefore, it can
be considered as an indicator of mass conservation.

- Pe max andCo max humbers are numerical parameters involved inithe stepping
size procedure. As it was expected, they are tireelated with explicit time

parametersft,y, Atmin, Atmax) » and they were group together in class 2.
- The parameterfhqax, A0max, and Ahymax are indicators of precision, which are

directly related with the total number of iteratoand time steps. They were grouped
in class 1.

- The previous comments associated with the faat tihe shortest distance between
centroids was found between class 1 and classggestithat the global and the local
mass balance errors have more proximity to theigoecparameters (class 3) than to

the time controlling parameters (class 2).

4.4.8. Selection of appropriate models

The re-grouping of the quatitative variables byssks enable to define centers of
gravity for each class. In the following paragrap¥e propose which simulations are the best
suited for each test case.

The choice of the models was performed by sortimgascending order with a
progressive constraint the observation values etlthee quantitave variables constituting the
centers of gravity of each class (defined in sectigl.7.2). That is to say, a number of time

steps minimum, & rhin maximum and the smalle&;z max. Thus, for each test case, we

propose in Appendix VI, a table that identifies @hhiform of the Richards equation is best
suited, the relevance of the switching techniquevelt as the utility of the transformation of
the primary variable.

The test cases 1.1 and 2.1 simulate the infilimatro an arid soil with a Neumann
condition, by imposing low and high flux, respeeti The best adapted model proposes the
mixed form of the Richards equation with transfotiora of the variable of pressure. It
should be noted in both cases, that the first timest relevant models use the variable

transformation technique.
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The test cases 1.2 and 2.2 simulate the infiltnatio an intermediate soil with a
Neumann condition, by imposing low and high flugspectively. The best adapted model
proposes the application of the variable transfoionatechnique for both cases and the
application of the switching technique for testecds?2 and h based form of the Richards
equation for test case 2.2.

The test cases 1.3 and 2.3 simulate the infilnatro an wet soil with a Neumann
condition, by imposing low and high flux, respeetiz The best adapted model proposes for
test case 1.3 to not transform the variable ofunesand to apply the switching technique.
For test case 2.3, transformation of variable &edhtbased form of the Richards equation is
proposed.

The test cases 3.1 and 4.1 simulate the infiltnatio an arid soil with a Dirichlet
boundary condition, by imposing positive and nagatpressures, respectively. The best
adapted model proposes the transformation of th@ahla of pressure coupled to the
switching technique for test case 3.1 and the namsformation of pressure coupled to the
mixed-form of the Richards equation for test cade 4

The test cases 3.2 and 4.2 simulate the infilinatio an intermediate soil with a
Dirichlet boundary condition, by imposing positimad negative pressures, respectively. The
best adapted model proposes the mixed-form of ticeaRls equation for both cases, the
transformation of pressure for test case 3.2, drd rton-transformation of the primary
variable for testcase 4.2.

The test cases 3.3 and 4.3 simulate the infiltnatro a wet soil with a Dirichlet
boundary condition, by imposing positive and negatpressures, respectively. The best
adapted model proposes the mixed-form of the Rashaguation and the transformation of
the primary variable for both test cases.

From this analysis, it is deduced that the lesscatdd models, according to the
established criteria of selection, are those applyhe non-transformation of the primary
variable coupled to the mixed-form or the h-basamunfof the Richards equation, with two
exceptions (NIWMT, D4AWHT). In particular, the mégleoupling the h-based form of the
Richards equation and the non-transformation ofpiti@ary variable are the less indicated
for the problems applying Neumann boundary condgiwith a low flux imposed. H-based
form of the Richards equation is less indicated govblems applying Dirichlet boundary
conditions with a negative pressure imposed, wthike non-transformation of the primary
variable are the less indicated for problems applyDirichlet boundary conditions with a

positive pressure imposed .
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Section 4.5. Standard MHFEM formulation

As mention in section 3.3.13, convergence mightdifcult due to non-physical
oscillations, when solving the hydrodynamics systdnequations using the standard mixed
hybrid formulation. Solution for test case 1.3 [Rard Wierenga, 1995] was obtained using a

convergence tolerance criterianl, =3x10°. Even if the pressure head distribution at the

final time of simulation might have a good agreeteith the reference curve (Figure 17),
oscillations in the solution are seen at intermedienes, for the top boundary edge pressure
(Figure 19). These oscillations have been assatiatth time-dependent terms. Figure 18
show the time step size as a function of timeait be seen that the time when disagreement
between the pressure curves at the top boundargitmon are present (Figure 19),
corresponds to the time when the standard MHFEMatetses higher time step sizes than

the MHFEM with mass condensation scheme.

Initial Pressure -200 cm

0 5
500+ ]
-10} j
w400+ .
—~ D *
g -20r N
O 7 | +
C 300 y
= ) *
o -30 17 *
o)
a Testcase 1.3 £
401 =
-250-200-150 -100 -50 O 50 0 5000 10000
Average pressure head (cm) Time (s)
0 Reference [Pan and Wierenga, 1995] A MHFE with mass condensation scheme
A MHFE with mass condensation scheme *  standard MHFE

*  standard MHFE

Fig. 17. Pressure distribution when using  Fig. 18. Time step size as a function of time
standard mixed hybrid formulation
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Fig. 19. Top boundary pressure head evolution wheasing standard mixed hybrid

formulation

Section 4.6. Infiltration under Dirichlet condition

This test represents an infiltration in a homogeseporous medium (Material A,
Appendix Ill). The 1D example was presented byiaCel al., [1990] and it was used in other
numerical studies [El Kadi and Ling, 1993; Mitchafid Mayer, 1998; Lehmann and Ackerer,
1998; Babajimopoulos, 2000]. Pressure-controlledniolary conditions were applied on the
top (-75 cm) and the bottom of the column (-100Qaridh an initial pressure head of —1000
cm along the entire column. Figure 20 shows tiselte for a time of simulation of 1 day,
using a nodal spacing of 0.25 cm, 1.00 cm, 2.5 nch®0 cm compared to the dense grid

solution obtained by Celia et al., [1990], whichshaeen adopted as reference solution.

[Celia et al., 1990]

Simulations were performed using the absolute afative pressure tolerancesl, = 1x10*

cm tol, = 1x10*, respectively and an absolute water content toterariteriontol . = 1x10%,
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Fig. 20. Pressure head profile as a function of dépafter 1 day of simulation. Celia et al.

[1990] infiltration test case.

El Kadi and Ling, [1993] concluded in their studhat errors in the solutions obtained
by Celia et al. [1990] are associated with the n&sls and in a greater extent to time step
size. In this case, an efficient solution was ot#diwith a grid size of 0.25 cm and a variable

time step. Figure 21 shows the maximum valuesheradimensional numbers reached over

the entire time of simulation. Figure 22 showsdlm of A tas a function of time.
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Fig. 21. Peclet and CFL number variation

As it can be seen, the mass conservative schenueadtie influence of truncation
errors. Consequently, the mass balance ratid 8Ba function of time step is near the unity,
except for a grid size 5.0 cm where the effecth&f time step size is bigger (Figure 23).
Figure 24 shows the maximum value for the local snhalance errorsE and Eg,
respectively, as a function of time step. Evethé local mass balance errors are so small to

be appreciable, global mass balance error mighthdwe important (Figure 25). Moreover,

the mass balance error calculated for a single stepeg" =1-MB" might be higher than

the global mass balance error, as it is the casgri size of 5.0 cm (Figure 26) .
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Section 4.7. Top boundary conditions [Van Dam and F  eddes, 2000]

The ability of the model to deal with problems tethwith the top boundary condition
was tested for two cases of extremes conditiosarad soil (Material B in Appendix Il1).
Transitions from unsaturated to saturated soihaceversa were simulated. The performance
of the model to calculate cummulative infiltrationevaporation was verified. Results are

compared with the refence case denoted R [Van Dahiaddes, 2000], for a nodal distance

Az;=0.1 cm and a convergence criterior*&ffﬂm —e{‘*lm‘l <0.0001
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4.7.1. Ponded conditions: Infiltration under intensve rain at a dry soil.

The rainfall rate was 1000 mni‘d The initial conditions on water content were &qu
to 0.1. At the reference case, the hydraulic lggadient at the soil surface is large enough to
absorb the infiltration rate of 1000 mn,duntil a time of simultation t= 0.008 d. At this
moment, the flux boundary condition is replacedabfiead condition ¢& = hyondmax= 0.0
mm), and the infiltration rate starts to graduatlgcrease. The cummulative amount of
infiltration obtained in the refence case was 39.mm

We use the mixed hybrid finite element method ttvesdhe mixed-form of the
Richards’ equation, with a tolerance criteria, tollx10* mm. to} and to} were set equal to
1x10*. The infiltration rate started decreasing atnaetiof simulation of 9.2xI0d (Figure
27). Table 12 shows the different values calcula®adumulative amount of infiltration and

time parameters for each simulation.

Table 12. Cummulative amount of infiltration

Method K Total Time Ot gy AMtmax  Atmin EMB Cumulative
(cm™)  iteration Step ¥10° 10" ¥10° amount of
number  number,
infiltration
Nt

MC  h-based 0.0 7509 2084 4.7 2.6 0.7 2.14Xf0  40.2499
MC  h-based -0.04 6419 1468 6.8 45 1.8 -7.51%10 39.9316
MC  mixed 0.0 7042 1948 5.1 2.3 1.7 -7.81%10 40.1229
MC  mixed -0.04 6468 1404 7.1 4.9 2.0 5.53%10 40.0576
MC  switch 0.0 6669 1818 5.5 2.4 2.8 -7.59%10 40.1192
MC  switch -0.4 6336 1405 7.1 4.9 0.3 3.38%10 40.0487

MC= MHFEM with mass condensation scheme

The number of iterations needed to get the soluexreases when using the method

of transformed pressure. Cumulative amount dftiafion is nearly the same for all the
methods.
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4.7.2. High evaporation at a wet soil

The potential evaporation rate was 5 mf dhe initial pressure was —2000 mm. At
the reference case, the top flux boundary condisaeplaced by a head-controlled condition
(hsur= hatm= -1377 m) at a time of simulation of 1.1 d (Fig@®. The cummulative actual
evaporation obtained in a period of 5 days at #ference case was 11 mm. Table 13 shows

the different values calculated as the cumulativeunt of evaporation and time parameters
for each simulation.

Table 13. Cumulative amount of evaporation

Method K Total Time Atgy Atmax  Atmin EMB Cumulative
(cm™) iteration  step «10* «10* «10° amount of
number  number )
evaporation, mm
MC h-based 0.0 18675 7477 6.6 6.6 9.6 -5.13xf0 10.9155
MC  h-based -0.04 35577 7477 6.6 6.6 9.5 -4.37%10 10.2422
MC  mixed 0.0 19156 7477 6.6 6.6 9.6 -3.445¥40 10.9192
MC  mixed -0.04 35475 7477 6.6 6.6 9.6 -8.65%X10 10.2401
MC switch 0.0 19156 7477 6.6 6.6 9.6 -3.44540 10.9192
MC  switch -0.04 35475 7477 6.6 6.6 9.6 -8.65%X10 10.2401

MC= MHFEM with mass condensation scheme

The selection of an appropriate equivalent consglitgtwhen simulating infiltration in
dry soil or high evaporation from wet soils is innfamt. Geometric, weighted and integrated
formulations produce better solutions than a tranitl scheme using a mean conductivity
calculated with a mean pressure head [Belfort agtthiann, 2005]. However, the use of the
geometric mean to estimate the hydraulic condugtivhderestimates the water fluxes or
leads to convergence problems. The method proplosexito estimate the mean hydraulic
conductivity for an element consists in assignimg maximum value calculated with the edge
pressure heads. As it can be seen, results sh@gragnt with those presented by Van Dam

and Feddes [2000]. Smaller estimations of evapmratate were observed when using
transformed pressure heads.
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Fig. 28. Evaporation rate



Chapter 4 — Verification of the model 147

Section 4.8. References fourth chapter

Babajimopoulos, C., 2000. Revisiting the Douglases method for modelling unsaturated flow in dicated
soil. Environmental Modelling and Software, 15(303-312.

Belfort, B., Lehmann, F., 2005. Comparison of eqléwnt conductivities for numerical simulation ofesn
dimensional unsaturated flow. Vadose Zone Jou#{d),: 1191-1200.

Celia, M.A., Bouloutas, E.T., Zarba, R.L., 1990. gkneral mass-conservative numerical solution fa th
unsaturated flow equation. Water Resources Rdse26¢7): 1483-1496.

El-Kadi, A.l,, Ling, G., 1993. The Courant and Reaiumber criteria for the numerical solution of fRichards
equation. Water Resources Research, 29(10): 3485-34

Kirkland, M.R., Hills, R.G., Wierenga, P.J., 199RIgorithms for solving Richards’ equation for varlg

saturated soils. Water Resour. Res. 28, 2049-2058.

Lehmann, F., Ackerer, Ph., 1998. Comparison ahitee methods for improved solutions of the fldidw
equation in partially saturated porous media. 3jpant in porous media, 31(3): 276-292.

Leij, F.J., Dane, J.H., 1990. Analytical solutiarfsthe one-dimensional advection equation and tercthree-
dimensional dispersion equation. Water Resour. B&s1475-1482.

Mitchell, R.J., Mayer, A.S., 1998. A numerical nebdor transient-hysteretic flow and solute transpa
unsaturated porous media. Journal of Contamingdtdfiogy, 30(3-4): 243-264.

Pan L., Wierenga, P.J., 1995. A transformed prest@ad-based approach to solve Richard’'s equation f
variably saturated soils. Water Resources Reseaigh): 925-931.

Rabe-Hesket, S., Everitt, B. 2004. A handbooktafigtical analysis using stata. Third edition. afiman &
Hall/ CRC , Boca Raton, Florida, USA, xiii + 308.pp

Siegel, P., Mosé, R., Ackerer, Ph., Jaffre, J.,71990lution of the advection-diffusion equation ngsia
combination of discontinuous and mixed finite eletse International Journal for Numerical Methods
in Fluids, 24(6): 595-613.

Simanek, J., van Genuchten, M.Th., Sejna, M., 2005. IN®RUS-1D Software package for simulating the

movement of water, heat, and multiple solutes inialdy saturated media, Version 3.0, HYDRUS
Software Series 1, Department of Environmental ri&as, University of California Riverside, Riverside
California, USA. 240 pp.

Van Dam, J.C., Feddes, R.A., 2000. Numerical sitimh of infiltration, evaporation and shallow grmwater
levels with the Richards equation. Journal of Hyolgy, 223(1-4): 72-85.



Chapter 5 — Application of the model

The model was applied to perform a numerical traests on an experimental site.
The residence time distribution of a horizontalflaconstructed wetland (HFCW) was
estimated using different boundary conditions. Trhpact that soil and pollutant properties

have on the residence time distribution was andljseseveral test cases.

14¢
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SECTION 5.1. Adsorption distribution impact on pref  erential transport within
Horizontal Flow Constructed Wetland (HFCW)

Adrien wankd?® Gabriela TapiaRobert Mos&Caroline Gregoire

& Urban Hydraulic SystemsIMFS - UdS / CNRS

2 rue Boussingault 67000 STRASBOURG

®*UMR7517/LyGes Laboratoire d'Hydrologie et de Géathkide Strasbourg — UdS/CNRS
1 rue Blessig 67084 STRASBOURG CEDEX

Abstract

Predicting preferential water flow and solute tr@or$ in soils is in the interest of scientists
and engineers in the fields afjricultural soil, forest hydrology, soil physicsdawastewater
treatment by constructed wetland.artificial wetlands, any preferential pathwayuces an
insufficient residence time of pollutants in thal,smaking an incomplete and unfinished
biodegradation processes, a wrong evaluation ohyaeaulic residence time of the system
which would hinder its management in a completeéesygswith several entities of treatment
and a non-homogeneous growth of the biofilm in #odid filter mass. This paper is a
contribution in tracer experiment data analysishmita horizontal flow constructed wetland
built in a storm water basin. A two dimensional riwal model was used to simulate flow
and reactive solute transport. The flow model wascassfully calibrated in very dry soil
conditions. The adsorption profiles used in thectiga transport modeling are those of five
molecules: Metolachlor, Atrazine, Deethylatrazifi@EA), deisopropylatrazine (DIA), and
hydroxyatrazine (HA). We show that the adsorptigstrdbution is an internal factor of sall
which is responsible to the “preferential” pathwiegnsport in a homogeneous gravel texture.
The mean residence time of pollutants within titerfis strongly correlated with the average
value of the adsorption coefficient. Moreover weena lack of significant impact of the
heterogeneity of the medium on the statistical mumief breakthrough curve. It appears that
a uni-modal breakthrough curve is not significamthe absence of preferential flow in the
medium and at least a two-dimensional display cewvige sufficient evidence on the
presence or absence of preferential pathways.|Finsing a PLS regression, it is possible to
perfectly discriminate the number of peaks of com@ion and the asymmetry of the
breakthrough curve.

Key words : Constructed Wetland; Modeling; Pesticides; Reefal transport; tracer
experiment

! Corresponding author : awanko@engees.u-strasBglfr,00 (33) 88 24 82 87, Fax : 00 (33) 88 2482
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5.1.1. Introduction

Preferential flow is not only a theoretical chafilenbut it has a significant importance
in enhancing leaching of pollutants from the swféx deeper layers up to groundwater. The
contamination danger of groundwater is increases tduthis phenomenon [Coppath al,
2009]. In fact, rapid movement of agricultural cheats through soil to groundwater via
preferential flow pathways is one of the leadingses of water contamination [Jayregsal.,
2001; Leeet al., 2001]. Furthermore, the presence of preferentahyways may cause
significant losses of water and nutrients to thenfd [Bouma and Dekker, 1978; Kosneds
al., 1991 in Ohrstronet al., 2004]. According to Mosaddegleit al. [2008], experimental
observations indicated that preferential flow ig ttule rather than the exception in most
structured soils, and continuous pores, which averal times larger than a bacterium allow
bacterial transport over significant distances. iiThesults revealed that soil water and
bacterial velocities were higher in the silt loamil.sThey attributed the difference to
aggregation, structural stability and macropordsaening preferential flow in the soil with
the greater clay content. Scientific literature haken the measure of this phenomenon
through numerous publications on the subject. Matiorts are still necessary to get
gualitative but also rigorous description: moreowerneed to improve quantitative indicators
of preferential flow and transport processes thhosigils. Coppola [2009] emphasis the fact
that local-scale heterogeneities and non-equilibriype of preferential flow are obviously
expected to be highly related, but quantificatibthcs relationship remains a great challenge.
Predicting preferential water flow and solute tgors in soils is in the interest of scientists
and engineers in the fields agricultural soil, forest hydrology, soil physiasdawastewater
treatment by constructed wetlarid artificial wetlands, any preferential pathwaguces:

1. Aninsufficient residence time of pollutantsie soil, making an incomplete and

unfinished biodegradation process,
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2. A wrong evaluation of the hydraulic residencediof the system which would hinder
its management in a complete system with sevetaie=nof treatment,

3. A non-homogeneous growth of the biofilm in thdid filter mass, leading to a
predominating biomass activity located around trefguential pathway. This process
would cause a weak effectiveness of the system size
In wastewater treatment through a vertical or twnial sand filter, a well done tracer
experiments give information in most cases aboet type of flow (plug flow,
dispersive or diffusive flow, etc...) as well as thesidence time in the artificial
wetland. This last parameter has to be at leagjebithan the degradation time of the
pollutants within the porous structure.

With the aim of better locating the preferentiathyeays and of identifying the factors
influencing it, Malmstronet al.,[2008] show that the existence of preferentiaiflzaths can
cause temporally separated concentration peakgsponse to a single chemical reaction
chain, even in a geochemically homogeneous donmaeking the interpretation of the
concentration curves non-trivial. Although an undab log-normal distribution in many
cases may accurately describe the flow situatiomg clear that preferential flow may be
responsible for a large part of the total massspart [Guptaet al., 1999; Simic and
Destouni,1999]. To investigate the potential effe€tpreferential flow paths, a bimodal
distribution, which is the sum of two weighted uoial distribution (one representing the
slower/normal flow paths, and the other representine faster/preferential flow paths), has
been considered [Rosqvigt al., 200Q Malmstrom et al., 2008]. This mathematical
decomposition is made possible due to a steadg-statde within the vertical flow filter.
Although this approach is not possible in our stbégause of horizontal flow constructed
wetland, we retain the fact that, the presenceimbbal breakthrough curves is a physical

interpretation of preferential pathways.
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Many authors have used dye patterns in order teateand to visualize preferential flows in
field experiments [Yasud&t al., 2001; Ohrstromet al., 2002]. Conservative dyes like
Brilliant Blue FCF and Bromide (Br2) have been usada tracer to determine preferential
flows in various experiments [e.g. Smith and Dai874; Hillset al., 1991; Jabrcet al.,
1991; Reichenbergaat al., 2002; Ohrstromet al., 2003; Suliman etal., 2006]. Ohrstromet
al., [2003] conclude that the solute movement with gneiftial flow implies that small scale
differences in soil texture can not be the onlyseaof the preferential flow in the studied soil.
By studying quantitative indices to characterize #xtent of preferential flows in soils,
Kamraet al.[2005] conclude that the breakthrough curves (BTaanined with the leakage
data of individual columns, exhibited different pka including some with early breakthrough
and increased tailing, which qualitatively indic#tte presence of preferential flows.

Studies with non-conservative dyes like pesticided herbicides have also highlighted the
preferential flow in soils [Jaynest al., 2001;Reichenbergeet al, 2002]. According to
Reichenbergeet al.,[2002], the knowledge concerning the contribution of preftial flows

to pesticide leaching under field conditions idl carce. After working about pesticide
displacement along preferential flow pathways, Refbergeet al.,[2002] achieved to very
important conclusions summed up in the followingis| so, not possible to quantitatively
determine the portion of total pesticide displacetneaused by preferential flows.
Nevertheless, beyond the main tracer front at tdae depth, transport along preferential
flow pathways was obviously responsible of the mppgrt of the total pesticide displacement.
This part was about two to five times higher fa tftonpolar than for the polar pesticides.
The polar or nonpolar behavior of pesticides inusoh is an important factor in the
adsorption process in soils. Moreover soil can leixhiifferent adsorption coefficient at
different depths. The big issue of this paper iobserve the impact of an heterogeneous

adsorption distribution coefficient within a singéxture soil on preferential pathways.
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The paper contributes in the tracer experiment da#dysis in porous media by highlighting
the influence of homogeneous and heterogeneouspaidso coefficient distribution on the
HFCW residence time distribution.
Numerical transport experiments are conducted dfjeirodynamic calibration within the
porous medium. Using a two dimensional numericatiehavhich simulates solute transport
in porous media, three numerical test modalitiesparformed:

» Experiments without adsorption, allowing the hydiatesidence time determination;

> Experiments with an homogeneous distribution oflitear adsorption coefficient;

> And finally experiments with a heterogeneous disttion of the linear adsorption

coefficient.

5.1.2. Material and methods

In order to study treatment potentialities to gate non-point source pesticide
pollution in constructed wetland systems, the Eeawvp LIFE ENVIRONMENT Project
Artwet (LIFE 06 ENV/F/000133) implement mitigati®olutions at six demonstration and
experimental sites. The project includes a storrteiaasin located in Alsace, France. This
hydraulic structure is placed at the rural/urbaeriiace, and at the bottom of vineyard hills. It
concentrates all the contaminated hydrologicalaméfflows, and it allows the accumulation
of the sediments that are transported from thegtmrdVith the objective of increasing the
retention capacities of pollutants in storm watasib, an horizontal flow constructed wetland

(HFCW) was built inside the storm water basin (Siggire 29 below).
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Fig. 29. An HFCW within a storm water basin

To have a better understanding of the hydrodynanang transport in this
experimental site, a two-dimensional numerical nhodas developed. The use of a two-
dimensional model is justified by the need of tgkinto account the heterogeneities of the
medium and the initial conditions, like heterogéneof water content and high local

concentrations on the infiltration surface.

The hydrodynamic system is simulated by the apgptinaof the Richards’ equation
(2). This formulation physically describes the flowa variably saturated porous medium.

C(h)% =0[kO(h +z)] + W(x,z t) (1)

Where:  W(x,z,t)s the sink/source terms T,
x and z (depth) are the spatial coordinates [L],
tis time [T],
C(h) is the soil moisture capacity ],
K is the unsaturated hydraulic conductivity [HT

h is the soil water pressure head [L].
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The solute transport is described by a classicatettbn-dispersion equation (2) with

the presence of sink/source term which takes iotownt the pesticide degradation.

_n(ep0c) + D(acj - t(x2.1) 2

Where: f(x,z,t) is the sink/source terms [N},
C is solution concentration [Mi],
S is absorbed concentration [M].

p is soil bulk density [ML[],

tis time [T],

q is volumetric flux [LTY,

D is the dispersion tensor L],

and 0 is soil volumetric water content {L].

The numerical tool used to solve these equatiorteasmixed hybrid finite element
method (MHFEM). This technique is particularly Wweldapted to the simulation of
heterogeneous flow field [Mosét al., 1994; Youneset al., 1999]. It has been applied in
previous works concerning mainly to the flow indregeneous saturated porous medium.

The originality here is to simulate both, flow asmlute transport, with the application

of MHFEM for a variably saturated porous medium.

5.1.2.1. 2D Hydrodynamic modelling

A two-dimensional (2D) flow domaim is defined, and is space-discretized into

triangular element&. The Darcy quxE] =-KO(h+ 2z)is approximated over each element

by a vector6|K belonging to the lowest order Raviart-Thomas sg&awiart and Thomas,
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1977]. On each element this vector function hasféfiewing properties:DE]K is constant
over the elemenk, aK F]K,Ei is constant over the edge Bf the triangle, i = 123

whererﬂlK,Ei is the normal unit vector exterior to the edgeq::( is perfectly determined by

knowing the flux through the edges [Chavent and éRighb 1991]. Moreover, with the

MHFEM, the normal component cffK is continuous fronk to the adjacent elemeKt and
E]K is calculated with the help of the vector fielcﬁi:w;i , used as basis functions over each

elementK. These vector fields are defined ySyGJ DHK,Ei =0
Ei

Oi = 123. Whered; is the

ij !

Kronecker symbol. So that, these functions cooedpo a vect0|qqK having a unitary flux

through the edgeiEand null flux through the other edges:

.3 .

qK :ZQK,EJ'W] (3)

j=1

with Qx g the water flux over the edge Ej belonging to tleenentK.
The estimation of the conductivity can be represeéry the relationshig, :kK(KQ).
Where, over each elemeKt k, is the unsaturated hydraulic conductivity functiaT 1
given by the modified Mualem-van Genuchten expaes$ippischet al., 2006], K¢ is a

dimensionless anisotropy tensor.

5.1.2.2. 2D Transport modelling (a new approach)

For the transport equation, we use an original tdaton,

—

——GDDC+E]C Wherea is the volumetric flux [LT], given by (3). The

q advectiondispersion —

convective and dispersive flux is approximated oeech element by a unique vector
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aadwdispK belonging to the lowest order Raviart-Thomasx:e;paTherefore,D(ﬁqadwIiSpK is
constant over the elemeHit, and aadwdispK F\K,Ei is constant over the edge, Eli = 1,23.

aadwdispK can be perfectly determined by knowing the transfhax through the edges (4).

—

N 3
qadv—dispK = ZQadv—dispK'Ej Wi (4)
j=1

with Qagv-dispk,gjthe advective-dispersive flux over the edge Epbging to the elemeiit.

Following a similar procedure to that well descdbespecifically for the
hydrodynamics by several authors [Mosé et al., 19¢yagum, 2001; Belfort 2006] we

developed the below formulation for the advectiispdrsive flux :

adv—dlspK Ei _ZBK i jTCK Ej +C (ZBM j +QK Ei ] i = 1.2,3 (5)

=

Where:  C, is the average concentration at the elerfent

TCy g, is the average concentration at the edge E

B, is a symmetric and invertible 3 x 3 matrix, detir®y

B, =[By,,l,, By = j(eK DK‘lijjvT/i (6)

k

D, is the dispersion tensor where its componentgiasn by:

6D, ; =(a, _GT)%"'(GD”H'GTMDSH (7)
with: Dm the molecular diffusion coefficient{I™],

o, the longitudinal dispersivity of solid matrix [L],

o, the transversal dispersivity of solid matrix [L],
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g;, q; the components of Darcy flux g [CT,

0 the soil volumetric water content’|L].

g, ; the Kronecker's symbol [-]

5.1.2.2. Numerical Solution

Time discretization was carried out applying thigyfumplicit (backward Euler)

method to the equation (2), and using the appratkoms over the element K,

{(en+1+kn+1pn+1)cn+1 (GE +kn pK)CnJ n+l

At |K| +0 qadv—d|SpK |K| Fn+l 0 OKOQ (8)

with F{™ = jf (C’,l*l,t”ﬂ) andk,, = S the isotherm linear adsorption coefficient.
K CK

Then, from the expressions (4) and (5) we can dedgaation (9) below :

N+l 3 3
[l qadv—dispK |K| ZQZ;:\L/—diSpK'E |K| |: zz B;ll ]TCn+1 Cn+1zl{z BK i + QT:]I-E j:| (9)

i=1 j=1

Substituting (9) in (8) and multiplying the resaliiequation by)\—K, we get the expression:
K

3 3

R SRR R

n+l
i=1 j=1 )\ F

Cn+l n+1 n+l n+l + n+l n+l n+l n+1 n+l . n+l
B G A v B+ KITPE + A ) v B kd PR+ A )

(10)

where: y, —Z(Z B +Qr|‘<+llj andA _ Ykt

=1

n+l n+l . n+l
A B+ kg Pk

Denotin = : thenl-B, =
gBK e:lﬂ knﬂpEﬂ )\ BK erllﬂ kn+1pn+1+)\

we obtain an expression to estimate the averageeatmation in the element K.
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3 3
-1 n+l
0] + i, P} B2 2BaTC g o
Cyt= anlnﬂ (-, )cy + ] + K (11)
K dk Pk Yk Yk

The continuity equation (12) is provided for aktimterior edges;E i = 1,23) of the

domainQ . The edge Hs common to the frontiers of the elements K and K

(12)

Qadv—dispK Ej + Qadv—dispK"Ei =0

Following a similar procedure to that well descdlapecifically for the hydrodynamics by
several authors [Mosét al., 1994; Nayagum, 2001; Belfort, 2006] equations (Adjl (12)
allow the mixed hybrid formulation for transportuagion. The readers are referred in these
articles for the matrix transformations.

This method will lead for the hydrodynamics to atsyn of linear equations, where
the unknowns are the water pressure traces (The.nlimber of unknowns is equal to the
number of edges to which the pressure has not iog@rsed. Analogously, for the transport
the unknowns are traces of concentration. Theixnagsociated with the hydrodynamics
equations system is symmetric and definite posifivierefore, it can be effectively solved by
the conjugate gradient method, preconditioned arthincomplete Cholesky decomposition
using the Eisenstat procedure. In contrast, thé&rixnassociated with the transport is
nonsymmetric. Thus, the conjugate gradient squaeeative method with the Eisenstat ILU

preconditioning procedure will be used to solve #igebraic system.

5.1.2.4. Numerical experiences

With the aim of studying the influence of the agigimm coefficient on the flow in a single

texture gravel, 7 numerical tracer experimentsuadertaken (see Table 14).



Chapter 5 — Application of the model

16C

Table 14. Numerical experiences

Experiences

Linear adsorption  Adsorption distriditi

pollutants

Case 1l

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

No

Yes

Yes

Yes

Yes

Yes

Yes

Homogeneous
Heterogeneous
Heterogeneous
Heterogeneous
Heterogeneous

Heterogeneous

Atrazine

Atrazine

DEA

DIA

HA

Metolachlor

The adsorption profiles used are those of the Woilg molecules: metolachlor, atrazine and

the conversion products (deethylatrazine (DEA)saleiopylatrazine (DIA), hydroxyatrazine

(HA)). These adsorption parameters come from Vryetasal., [2007], who conduct an

experimental study in the soil profile of a riveadn. The graph below (Figure 30) showing

the adsorption parameter along the soil profiledsobtained thanks to Vryzas$ al. [2007]

experimental data.

3.57

254"

Linear adsorption 2

coefficient, Kd

(tretg) 151

054"

0_

34"

14

Atrazine

@ Oto 10 cm
m10to 20 cm
020 to 40 cm
,,,,,,,, O40toB0em |

Metolachlor DEA DIA
Molecules

Fig. 30. Adsorption coefficients in soil profile
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5.1.2.5. Time moments analysis

Time moments analysis was applied to charactehieeshapes of experimental BTCs in
term of mean breakthrough time, degree of spreaalugasymmetry, which was also used to
estimate the transport parameters. A residence distabution (RTD) can be evaluated by
adding a tracer pulse into the system and themgetie tracer concentration at the outlet as a
function of time. Then the outlet concentration)@¢s plotted as a function of time, where t
is more precisely the elapsed time since the trangection. The residence time distribution

function, commonly notated by E(t$ given by:

E(t) = % (13)

where Q(t) is the flow rate of the system,idthe total mass of tracer injected in the HFCW.

The temporal moments around the origin are defased

0

n, = [tE(t ot n=01.23,.. (14)

0
where t is, again, the elapsed time since theitiag@ction and the subscript n is the order of
the moment. The zeroth momepg, is equal to the mass of solute eluted throughotiiket.
The first momentpy, characterizes the mean of the BTCs or the mesidamce time of the
solute in the reactor. In addition to the absotatements defined above, the central moments,
W, are often used:

W =T(t ~wEQ)@E n=0,1,2,3,.. (15)

0

In particular,p, =, —pZis the variance of the distribution and characesviits spreading out

around the averageL, characterizes the asymmetry of the distribution ayits flatness.
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5.1.3. Results and discussions

5.1.3.1. Hydrodynamic verification : The perched tgatable problem

Kirkland et al., [1992] presented a two-dimensional problem of @eltging perched water

table surrounded by very dry unsaturated conditiths a good test problem to show the

variable switching ability in both unsaturated asadurated zones. The problem is described

in Figure 31. Water infiltrates with a very largee into a very dry soil at the initial pressure

y° =-500 m and encounters a clay barrier which alléavghe formation of a perched water

table. Again this exercise is a very difficult tdsicause of the value of the initial pressure,

which induces very sharp pressure gradients. Alinbaries are no flow except where the

infiltration is imposed. The material propertiestioé problem are summarized in Table 15 for

the Van Genuchten -Mualem parametric model, wheref4(;, Ores. are the hydraulic

conductivity, the saturated water content, andréisedual water content respectivetyand n

are the form parameters.

S m/d

YITIeY

n

!

=
[ |
- j=]

1

Sand

Im

W =-500 m Clay

Sand

4m |
5m : |

Fig. 31. Perched water table problem

Table 15: Material properties for the perched water problem
Material K (m/s) Osat. Ores. 0(1/m) n

Sand 6.261® 0.36 0.08 2.80 2.24

Clay 15210 047 023 1.04 1.39
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A comparison of the model pressure contours (caesfines) at 1-day with Kirkland
et al's results (dispersed marks) reveals a good agreemsedisplayed in Figure 32 below.
All pressure contours agree well. The developed ehadcluding the mathematical
formulation, the mixed hybrid finite element nunoati method and the variable switching
technique allows a very good approximation of tiigrbdynamic within the porous medium.

Contour Pressures (cm)

T

-50+

Sk
w
-100 ; 1
— +
:
S **:10
£ 1501 O 4000 1
joR
(9]
a)
-200 1
_250 4

Mixed Hybrid Finite Element Method
O Kirkland etal., 1992
T T T

-300 ‘
-250 -200 -150 -100 -50 0 50 100 150 200 250
Horizontal position (cm)

Fig. 32. Simulated pressure contours at t =1 daypressure head contours in (cm).

5.1.3.2. The steady state condition within the HFCW

Below are presented the studied area (Figure 3Bjrendomain mesh (Figure 34).

Fig. 33. VieW of the studied area
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Two dimensional irre gular mesh

-15 H;

Depth {cm)

H;

SARAAAANASAAAAA AR

50 250 450 650 700 B0
Width {cm)

Fig. 34. Domain and boundary conditions.
Inlet : imposed flux (Q = 0.031cm/s);

Outlet : Along H, free drainage (if unsaturated
condition) then hydrostatic condition (if fully
saturated ); along $1 zero flux condition. Initial
pressure within all the domain : -60cm

The following Table 16 presents the flow parametershe analytical expression of
the piezometric head and the specific flow rateliersteady state.

Table 16. The analytical expression of the piezome tric head and the specific

flow rate
Hy: height of the inlet-HFCW
Ho: height of the outlet-HFCW
S: HFCW cross section
X : position along the width
L: HFCW width
K: saturated hydraulic conductivity
Q: Hi - H

specific flow rate : =K.
P Q 2.L.S

H(X) :
*) piezometric head H(x) = \/Hf —(Hl2 - Hi)gz—

The material properties of the problem are sumredria Table 17 for the Van Genuchten -

Mualem parametric model.
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Table 17. Material properties for the HFCW media

Material K (cm/s)  0Ogy Bres. Oa(l/cm) n

gravel 1.0 0.290 0.026 14.10 1.8

Figure 35-a shows the evolution of the saturatiathinv the porous media toward the steady
state. At each time, the fully saturated conditawe reached in the filter below the 0 cm
pressure isoline while the unsaturated conditioprésent above this isoline. As that can be
observed, steady state condition is reached afteowss of infiltration. At this time, the

numerical simulation reveals a very good agreemahtthe analytical solution.

The flow direction in the filter for the steadyt&@&ondition can be observed in figure 35-b.
The developed model including the mathematical tdation for fully saturated and
unsaturated conditions , and the switching techeigetween these conditions allows a very

good approximation of the hydrodynamic within tleequs medium.

Pressure (cm) Flow velocity cm/s
Ot 0 : ‘ : ; ; ;
iy o
+++++++H_ Pressure isolines = 0 cm o
4 . +  Analytical Solution
10 Ty,
“_5hr
=T
e 15w +
-20- ey R
= ec1hr T = !
) - JrJrJr £ 371 31N Y 7 T 39 e e emmmme——
= 30 .y < IR EREER RN
2 Hry £ ° R R —
8 .05 hr =N g_ ‘‘‘‘‘‘ 339 \\w eenn]
[a]

1 PRIt S
T T EEERYTS
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-50 E I 394399
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Figure 35-a: Isolines up to the steady state Figure 35-b: Flow velocity for the steady state

Fig. 35. Simulated pressure isolines up to the stiyastate (a) and flow velocity for the
steady state (b)
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5.1.3.3. Preferentiel pathway within homogeneousttee

a) Qualitative indicators

* One dimensional representation of preferential pativays

Figures 36 below shows the breakthrough curvedch pesticide and for the five cells of

the HFCW outlet (boundary H2 in the mesh, see &@#).

From these curves, three main characteristics doeilobserved:

- Symmetric and unimodal BTCs when the porous masli@onsidered either
without adsorption or with an uniform adsorptiostdbution. It is seldom the case
in field conditions.

- Asymmetric and unimodal BTCs for DIA and HA pesles.

- Asymmetric and bimodal BTCs for Atrazine, DEA aviétolachlor pesticides.

The non-monotonic behavior (concentrations first@éased, then decreased before continuing
to increase) common to all chemical solutes reptsseansport along common preferential
flow paths [Jaynegt al. 2001]. So that, we are in presence of preferefital within the
HFCW. Preferential flows are due to the heterogasemdsorption distribution within the
porous medium. Moreover, the existence of pref@akfiow paths can cause temporally
separated concentration peaks in response to & sthgmical reaction chain, even in a
geochemically homogeneous domain, making the irgeapon of the concentration curves
non-trivial [Mamltrom et al, 2008]. Our results are in agreement with Mamitret al
statement. For all the simulated cases, indeedHEFEW gravel texture is homogeneous.

Regarding Chengt al.[2007] results with their experimental tracer seste factors affecting
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preferential flows include internal and externattfas. Internal factors are related to soil
characteristics such as soil particle constitutaond soil types. External factors include
farming methods, irrigation methods and preciptatcharacteristicSNe show in this study

the fact that the adsorption distribution is areinal factor which is responsible to the

preferential pathway transport in a homogeneougejjtaxture.

* Two dimensional representation of preferential pathvays

For each pesticide the figure 37 below highlighis $patial concentration distribution in the
longitudinal section of the horizontal filter. Foon-zero adsorption cases, two states are
represented: the first state at time t = 2h atter injection and the second state when one

concentration peak gets out of the filter.

At time t = 2 hours, at least two spots (peakshwigh concentrations have been formed in
the cases where the porous media has a varietysof@tion coefficient. This observation is
remarkable even for the case of HA and DIA whicksent uni-modal breakthrough curves at
the output (See Figures 36-e and 36-f and correpgririgures 37-e and 37-f). Hence, a uni-
modal curve is not significant to the absence oéfgrential flows in the medium.
Consequently, two-dimensional display can at lgasivide sufficient evidence on the

presence or absence of preferential pathways.
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Figure 36-e): DIA BTCs
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Figure 36-g): Metolachlor BTCs
Fig. 36. The adsorption distribution influence on he Breakthrough Curves (BTCs)

When adsorption is heterogeneous, there is a wptdead of concentration at the
bottom of the filter (see figure 37). This facteused by a low adsorption in depth, leading to
variable mean residence times of pollutant dependimthe depth: it is the retardation factor
impact on the transport.

The tail of concentration reaches the output wittniech more important dilution in
the deepest cells (see figures 37). Hence, thendgoeak of concentration is the weakest at
the bottom. This trend is exactly reversed for fingt peak. These results are of special

importance for horizontal filters instrumentation.
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Figure 37-a): No adsorption (2D display)
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Figure 37-b): Uniform adsorption (2D display)
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Figure 37-c): Atrazine (2D display)
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Figure 37-d): DEA (2D display)
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Figure 37-f): Metolachlor (2D display)
Fig. 37. Iso-concentrations - Two dimensional re@sentation of preferential transport
left(at time t=2h), right (when the last peak is giing out)

b) Quantitative indices to characterize the extenof preferential flow in soils:

the moment analysis

Temporal moments of individual BTC numerical testsre computed to characterize the
mean breakthrough time, variance and asymmetrgsgactive pesticide curves. Preferential
pathways are therefore characterized in terms ohemts of pesticide BTCs.

The table 18 below shows some physical charadtistlated to the adsorption and

statistical parameters from the analysis of braakith curves.

Table 18. Adsorption parameters and statistical mom ents

Cases Mean_KdCV Mean_RT J7A Hs H, PeakAsymmetri¢
No adsorp. 0 0 55296 1 1 1 1 0
Uniform adsorp. 1,37 0 53241 1062174 20888 1 0
Atrazine 1,26 0,47 46019 508 5440 111046 2 1
DEA 0,4 0,5 18480 70 1471 17962 2 1
DIA 0,88 0,49 30843 1906014 54846 1 1
HA 2,09 0,28 72056 54017164181246 1 1
Metolachlor 1,93 0,36 67265 74814269 240871 2 1

CV is the variation coefficient reflecting the hetgeneous distribution of adsorption coefficient étdthe depth

of the bed.

20 for symmetric BTC and 1 for asymmetric BTC
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* Precision of numerical calculation

The HFCW dimensions, the specific volume (V) of evadaturation when the steady state is
reached and the feeding rate (Q) allow the themaketalculation of the hydraulic residence
time (To).

V = 176.4 cm (specific volume) ang ¥ V/Q is then equal to 1 hour 35 min.

Regarding case 1, the average residence time @fwab529.6 seconds i.e. 1 hour 32 min,

which is indeed very close to the theoretical daliton (with a precision of around 97%).

C) Correlation study : the Partial Least Square (PLS) regression

PLS is a predictive technigue which can handle madgpendent variables, even when there
are more predictors than cases and even when feddisplay multicollinearity.

The X variables (the predictors) are reduced tagyal components, as are the Y variables
(the dependents). The components of X are usedettigy the scores on the Y components,
and the predicted Y component scores are usecetbgpthe actual values of the Y variables.
In constructing the principal components of X, BIeS algorithm iteratively maximizes the
strength of the relation of successive pairs ofnd & component scores by maximizing the

covariance of each X-score with the Y variables.

In the following analysis, the endogenous or depeatsl variables (Y) are the statistical
moments of BTC: Mean_RTi,, 4, 4,. And the exogenous or the predictors variables (X)

are either measured variables or observable vasaklV, Mean_Kd, Mode, asymmetry. The
number of factors or axis was determined by theRh& selection in Tanagra (a free statistic

software: http://eric.univ-lyon2.fr/~ricco/tanadgréanagra.html) using the Predicted Residual
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Sum of Squares and the Residual Sum of Squaresmbog information the reader could

have a look on (Tenenhaus, 1998)

The coefficients of the table 19 above will asdbgscontribution of each exogenous variable
in explaining the values of the endogenous variahénce, if the exogenous for any pesticide

are known, the statistic moments of the BTC coddletermined.

Table 19. The PLS regression coefficients
XIY Mean RT L L,

Mean_Kd 1.059 0.461 0.176 0.280
CVv 0.043 -0.837 -1.552 -1.353
Peak 0.066 0.714 -0.101 0.606
Asymmetric -0.298 2.054 4126 3.228

Constant 0.118 -2.488 -2.803 -3.172

However, there is a great difficulty of interpregithe loadings of the exogenous variables
because they are based on crossproduct relatighstiva response variables, which are not
based as in conventional factor analysis on cdrogls among the independent variables.
However, in the first column, we note that the messidence time is mostly explained by the
average value of the adsorption coefficient. thisrefore appropriate to investigate the linear
correlation between the mean residence time iInHREW and predictors (see table 20
below).

Table 20. The determination coefficient betweenth e Mean_RT and the
predictors
Mean RT  Mean_Kd CVv Peak Asymmetric

R? 0.9969 0.0717 0.0755 0.3452
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It appears, in particular, a strong correlationdaetin the mean residence time and adsorption
coefficient (see figure 38 below). Although thisateonship is useful, there is no explanation
for the presence of preferential flows. We note thek of significant impact of the

heterogeneity of the medium (CV value) on the stiaill moments of BTC.

o

;
W HA
1 Metolachlor &
0.5+ linear correlation: r = 0.99 o Uniform i
- adsorption
on
= m Atrazine
o 0
=
0.5 B DA
[
-1 DEA
.4 sl Noadsorption : ;
1.5 «1 0.5 Q Q.5 1 1.8

?\«1:&2&3}1 Kd

Fig. 38. Linear correlation between the mean RT anthe Mean Kd.

The PLS regression also provides orthogonal faataries optimized for the explanation of
the predicted variables. They are of decreasingjfgigtion. The choice of the first 2 axes is
relevant and sufficient.

The graph 36 below allows the visualization of greximities or oppositions between the
observable ones and the axes of regression. THe f£db gives the contribution of the
exogenous variables in the explanation of the eawogs ones. Hence the importance of the
predicted variables (X) in projection are deterrdine

The variable of adsorption (more precisely the meadvalue) is very different from the other

variables and has an identical contribution ontteefactorial axes (see table 21).
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Table 21. Variable importance in the projection

Predictors Axis_1 Axis_2

Mean_Kd 1.6233 1.5137
Cv 0.4697 0.7268
Mode 0.4319 0.5634

Asymmetry 0.9786 0.9290

Consequently, the simulated case in absence oftdso (No adsorption in the figure 39) is

opposed to HA and METOLACHLOR molecules, that hdte highest coefficient of

adsorption.
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Fig. 39. Biplot for observable distributions on PLSregression axes 1 and 2.

In addition it is notable to note that all the pades being located below the (D)-axis induced
a bimodal distribution. So that, the study makesspae to perfectly discriminate the number

of peaks of concentration, which is related to @rexfitial flows.
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5.1.4. Conclusion

Preferential flow is not only a theoretical chafien but it has a significant importance in
enhancing leaching of pollutants from the surfazelé¢eper layers up to groundwater. The
danger of groundwater contamination is increasezltduthis phenomenon. After successful
hydrodynamic calibration within the porous mediumumerical transport experiments are
conducted in the context of an horizontal flow doansted wetland. Using a two dimensional
solute transport in porous media model based on igednhybrid finite element
approximation, three test modalities are performed:
» Experiment without adsorption, allowing the hydrauksidence time determination
(the breakthrough curves are symmetrical with amg mode),
» Experiment with an homogeneous distribution oflthear adsorption coefficient (the
breakthrough curves are almost symmetrical witly onle mode),
» Experiments with heterogeneous distribution oflthear adsorption coefficient (the
breakthrough curves are asymmetrical with either @antwo modes according to the

rate of the adsorption coefficient dispersion).

The adsorption profiles used are those of five ipésts : Metolachlor, Atrazine and the
conversion products (deethylatrazine (DEA), deispplatrazine (DIA), hydroxyatrazine
(HA)).

The numerical model used to simulate the solutesfrart was successfully calibrated in a
very dry soil. The developed model including thetmeanatical formulation for fully saturated
and unsaturated conditions and the switching teglnibetween these conditions allows a
very good approximation of hydrodynamic within tpberous medium. These numerical
experiments allow us to obtain the following maasults. First, the adsorption distribution is

a soil internal factor, which is responsible to treferential pathway transport even in a
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homogeneous sand texture. Secondly, a uni-modal &P is not significant to the absence
of preferential flow in the medium. Solely, the tgdonensional display can provide very
precisely evidence on the presence of preferepigdhways. Third, it appears a strong
correlation between the mean residence time anchdan value of the adsorption coefficient
and it is remarkable that the variation coefficieas not a bigger influence on the transport
pathway. Finally, the PLS regression allows to mismate the number of peaks of
concentration of the distribution and confirms ttie mean value of Kd is the most influent
parameter in this transport problem. The next stdp be to confront the results of our

analyses with the data collected with the rain &vahthe Rouffach storm water basin.
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Section 5.2. A new empirical law to accurately pred ict solute retention capacity
within horizontal flow constructed wetlands (HFCW)
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Abstract
Constructed wetlands are being considered as aisalBle and promising option, whose
performance, cost and resources utilization canptemment or replace conventional water
treatment. The literature reported the fact thatranfficient residence time of pollutants in
soils induces an incomplete and unfinished biod#ggran process. In this work, engineering
solutions are proposed with the objective of sigaiitly increasing the solute retention
capacity in the horizontal flow constructed wetldrdFCW). Using several numerical tracers
experiments with different operating scenarioshsag the HFCW physical configuration, the
flow rate, the boundary conditions, the adsorplayer thickness, practical methods and a
new empirical law are suggested in order to sulisthnincrease the adsorption ability in the
HFCW, and hence the pollutant removal. Furthermiosgpears that there is no impact of the
adsorbent layer thickness on the solute mean mesedéme with high values of adsorption
coefficient (Ky). For smaller I values, the deeper the adsorption layer thickrtésshigher
the retention time.

Key words : Adsorption layer; Constructed wetland; Empirilzal; Modeling; Pollutant;
Tracer experiment

5.2.1. Introduction

Over the last decades, interest in the optimizatbrthe biological, physical, and
chemical processes that occur in natural wetlanstesys as an option for wastewater
treatment has significantly increased [Mitsch, 198&vor et al., 1995; Mitchell et al., 1995;
Gopal and Mitsch, 1995; Shutes, 2001]. Construatetiands (CWs) are engineered systems
that have been designed and constructed to uttigenatural processes involving wetland
vegetation, soils, and the associated microbiatrabtages to assist in treating wastewaters
[Vymazal et.al., 2006]. Constructed wetlands are being consideredustainable and
promising option, whose performance, cost and megsuutilization can complement or

replace conventional water treatment [Tack et28lQ7; Arias and Brown, 2009; Zhang et al.,

% Corresponding author : awanko@engees.u-strasbelfr,00 (33) 88 24 82 87, Fax : 00 (33) 88 24882
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2009]. Vymazal and Kropfelova [2008] presentedstidi examples of the use of constructed
wetlands for the treatment of different types ofygmn. The abilities of constructed wetlands
to improve water quality are widely recognized, ahdir efficiency reducing suspended
solids, biological oxygen demand, nitrogen, phospso trace metal, toxic organic
compounds, pathogens and other pollutants has lepented in several studies [Jing et al.,
2001; Ye et al., 2001; Lim et al., 2003; Karathamas al., 2003; Huett et al., 2005; Vymazal,
2007; Vymazal and Krépfelova, 2009, Khan et alQ2ropfelova et al., 2009; Tang et al.,
2009].

As plant and microorganism efficiency is incongistérough the seasons, residence
time within constructed wetland is sometimes toe@rsho achieve organic compounds
breakdown by micro-organisms or metal uptake bwyitsldHuguenot et al., 2010]. Hence,
most of the time, pollutants are not properly mdi in constructed wetland because the
adsorption kinetic is usually to slow comparedhe hydraulic retention time. An insufficient
residence time of pollutants in soils induces acomplete and unfinished biodegradation
process [Wanko et al., 2009]. To alleviate thisrmenon, a potentially relevant method
related to the addition of sorbing materials [Alkand Dogan, 2001; Shen and Duvnjak,
2005; Altundogan et al., 2007; Veli and Alyuz, 20@hmaruzzaman, 2008, in Huguenot et
al. 2010] could be used. The sorbing material shodrease the solute retention capacity on
the top of the constructed wetland, hence promdtiegpollutant transfer from the liquid to
the solid phase, thus avoiding the discharge dufeal water. Increased pesticide residence
time in constructed wetland is then expected tosbeable for biological treatment. An
optimal residence time distribution will allow pefénts fixation in the soil, so their
concentration could be reduced according to varegradation processes. Therefore, an
hydraulic management of the constructed wetlandbsasuggested in relation with the time
of pollutant degradation.

The aim of this paper, in order to optimize theusslretention capacity in CWs,
particularly in horizontal flow constructed wetlan(HFCWSs), is to identify key performance
parameters and provide engineering solutions. Usliiegmodel, numerical tracer tests to
simulate several HFCW operation scenarios wereopagd. After working on the adsorption
distribution impact on preferential flow in HFCWe/anko et al., 2009], practical methods
and a new empirical law are suggested in ordeigfeantly increase the solute retention
capacity in HFCWs.
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5.2.2. Material and methods
5.2.2.1. Description of the study area

In order to study treatment potentialities to natg non-point source pesticide
pollution in constructed wetland systems, the Eeawmp LIFE ENVIRONMENT Project
Artwet (LIFE 06 ENV/F/000133) implement mitigati®olutions at six demonstration and
experimental sites. The project includes a storrteiasin located in Alsace, France. This
hydraulic structure is placed at the rural/urbaeriiace, and at the bottom of vineyard hills. It
concentrates all the contaminated hydrologicalasméfflows, and it allows the accumulation
of the sediments that are transported from thegtgrtnitially the stormwater basin was used
for regulation flow proposes. In order to optimgdhe pesticides mitigation processes, an

HFCW was constructed inside the stormwater basia figure 40).

o

4

Fig. 4. An HFCW within a storm water basin

Pesticide mitigation has already been observed, éfiigictiveness still has to be
demonstrated for weakly and moderately sorbing @amgs [Reichenberger et al., 2007].
Hence pesticides are frequently detected at stasmb outlet.

Pesticide sorption on storm basin sediments waaadyr demonstrated with atrazine
[Tao and Tang, 2004]. Low cost mineral and orgaoidbents for metals [Bailey et al., 1999;
Kurniawan et al., 2006] and organic compounds [Atunzaman, 2008] are required for such
rustic treatment plants. Recently, attention hasnbpaid to agricultural waste materials
[Swami and Buddhi, 2006; Sud et al., 2008]. Sevstadies have been carried out on copper
[Kurniawan et al., 2006], fewer on herbicides sashglyphosate [Akhtar et al., 2007] diuron

[Fernandez-Bayo et al., 2008].
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5.2.2.2. The governing equations

To have a better understanding of the hydrodynanang transport in this
experimental site, a 2D numerical model was deezlophe use of a two-dimensional model
is justified by the need to take into account tkeehogeneities of the medium and the initial
conditions, like heterogeneity of water content amgh local concentrations on the
infiltration surface.

The hydrodynamic system is simulated by the apiptinaof Richards’ equation (1).
This formulation physically describes the flow ivariably saturated porous medium.

C(h)% =0[kO(h+z)]+ W(x,zt) (1)
Where: W(x,z,t)s the sink/source terms T,

x and z (depth) are the spatial coordinates [L],
tis time [T],

C(h) is the soil moisture capacity ],

K is the unsaturated hydraulic conductivity [HT

h is the soil water pressure head [L].

The solute transport is described by a classicatettbn-dispersion equation (2) with

the presence of sink/source term, which takesantmunt the pesticide degradation.

@+@—D(GDDC)+D(&C):f(x,z,t) (2)

Where:  f(x,z,t) is the sink/source terms [ML],
C is solution concentration [Mi],
S is absorbed concentration [M}
p is soil bulk density [M[?],
tis time [T],

q is volumetric flux [LTY,

D is the dispersion tensor L],

and 0 is soil volumetric water content L.

The numerical tool used to solve these equationlseigmixed hybrid finite element method
(MHFEM). The readers who are interested by the 2idehdevelopment and verification, the
mixed hybrid finite element used as numerical métaond the time moment analysis should

read the previous article Wankobal.[2009].
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5.2.3. Results and discussion

5.2.3.1. The steady state condition within the HFCW

a)- Hydrodynamic verification: 2D heterogeneous (1@ block) and dry soll

Model verification was performed by comparing theference results with those
computed for two-dimensional flow cases in variaddyurated porous media. The test region
was 500 cm wide by 30 cm deep, and it was divigkal mine alternating blocks of clay and
sand (Materials C and D). A constant flux of 5 day" was applied to the top center 100 cm
of the domain and a non-flux boundary condition \@pplied elsewhere (Figure 41). Figure
42 shows a comparison between the reference [Kidkla992] and calculated results for an
infiltration problem in heterogeneous (nine bloc&syl very drying soil (Initial pressure: -500
m).

The good match obtained not only confirms the wglidf the numerical method
applied, but it also shows the robustness of théhogeto give a solution for heterogeneous

soils with abruptly changing wetness conditions.
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b)- Study cases: Initial and boundaries conditions

The hydraulic load is added to the system as a Meuarboundary condition on all left
side edges. The output of the system is locatethénbase-right side edges. Zero flux
condition is considered in all the rest of boundaaiges. Below are presented the studied area
(Figure 43) and the domain mesh (Figure 44). Fbcades, hydrodynamic simulation was

performed until the system reaches the steady. state

Two dimensional irre gular mesh

-

AN A A

CATERPILLAR

H

Depth (cm)
d
=

a0 250 450
Width (cm)

Fig. 44. Domain and boundary conditions
Inlet : imposed flux (Q);

Fig. 43. View of the studied area Outlet : Along H, free drainage (if unsaturated
condition) then hydrostatic condition (if fully
saturated ); along #1 zero flux condition. Initial

pressure within all the domain : -60cm

Table 22 presents the flow parameters as the arallg@xpression of the piezometric

head and the specific flow rate for the steadyestat

Table 22. The analytical expression of the piezome tric head and the specific

flow rate
Hy: Height of the inlet-HFCW
Hy: Height of the outlet-HFCW
S: HFCW cross section

X : Position along the width
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L: HFCW width
K= saturated hydraulic conductivity

: )
0 specific flow rate : Q= K_K%)
H(X) :

piezometric head H(x) = \/Hf ~(H2- Hg)ETE—

The material properties of the problem are sumradria Table 23 for the Van Genuchten -
Mualem parametric model. Where 85, Ores are the hydraulic conductivity, the saturated

water content, and the residual water contente@sgely;a and n are the form parameters.

Table 23. Material properties for the HF CW media

Material K (cm/s)  0Og, Bres. O(l/cm) N
gravel 1.0 0.290 0.026 14.10 1.8
C)- Steady state conditions for different hydraubbonditions

Hydrodynamic simulations were performed using défe hydraulic loads in order to
achieve steady state for output length of 25, Ib%3em. These different heights correspond
to different opening possibilities at the outlettioé experimental site (see figure 44). Figure
45 shows the hydrodynamic evolution through timéilsteady state is reached. For each
case, the fully saturated condition are reachethénfilter below the 0 cm pressure isoline
while the unsaturated condition is present aboigisioline. In general, for all the cases, the
steady state condition is reached after 5 hourgfifration. At this time, the numerical
simulation reveals a very good agreement with tieyaical solution. The developed model
including the mathematical formulation for fullyteeated and unsaturated conditions, and the
switching technique between these conditions all@avsery good approximation of the

hydrodynamic within the porous medium.
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5.2.3.2. Choosing a suitable operation conditiomms the HFCW

Once that hydrodynamic steady state conditionsr@aehed in the system, several
constructed wetland operation scenarios were steulilasing numerical conservative tracer
experiments. The residence time distribution s fystem response to an instantaneous
injection of a concentrated inert tracer. To rejoice this condition in the model, simulations
of the solute transport were performed consideairzgro initial concentration. The tracer is
injected during the first 10 time steps of simwatas a Neumann boundary condition in all
left boundary edges. Wanko et al [2009] presenés dhuations allow the time moment
analysis calculations.

Table 24 compares mean residence times calculatedifferent cases with the same
tracer mass input at different flow rates and outpeight hence pressure profiles. These

cases consider no adsorption in soil.
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Table 24. Mean Residence time for different cases  considering no adsorption

Output Flow rate Q Mean
height Residence
Time
25¢cm 0.031 cm/s 5512 sec
15cm 0.035 cm/s 4586 sec
15cm 0.031 cm/s 4924 sec
5cm 0.037 cm/s 4198 sec
5cm 0.031 cm/s 4199 sec
a)- Fixed flow rate for different output height

In the cases where the same flow rate (0.031 ank)racer mass input were used for
different output height (25cm, 15cm, 5cm), we obedrthat contrary to what would be
expected, the mean residence time is larger wherotiput height is bigger not when it is
smaller. When the output height is the smallds, é¢ffective flow volume below the zero
isoline pressure is the smallest (see figure 4&)ch the solute is less diluted, giving as result

a smaller mean residence time.

b)- Fixed output height for different flow rates

In the cases with same output height but diffeteydraulic load a shorter mean
residence time distribution was observed when amirgy the hydraulic load as it was
expected. However, the output height becomes &idgnfactor when it is small and
hydraulic load has no more effect in the mean egid time (see case of 5 cm).

Optimal operation conditions for the artificial Waetd are those that allow a mean residence
time of the pollutant higher than its half live.h& higher mean residence time for the test
cases was obtained when the output height is 2&nththe hydraulic load (flow rate) is 0.031
cm/s. If the residence time is not sufficient,talbie additional materials could be added in
HFCW in order to increase it. Thus, it would beenessting to test for the chosen hydraulic
condition (figure 45 a), what would be the impaettbe residence time due to the localization
of an adsorption layer.
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5.2.3.3. Improving solute storage capacities withi-CWs — the adsorption layer location

A sensibility analysis was performed in order téed@inate the feasibility to locate a

vertical or horizontal adsorption layer (Figure 46)

Horizontal
adsorption layer
(5to 20 cm)

Degth ferny

Vertical
adsorption layer
(10to 30 cm )

] -~ 450 B&0 700 B0
Horizontal distance (cm)

Fig. 46. Adsorption layer localization

The parameter observed to determine the impactteohdisorption layer was the percentage of

retention given by the following equation:

) Input tracer mass- Qqutput | Coutout
% retention= OUptt ~OUPE x

100 3)
Input tracer mass

where Quput and Gupue are the flow rate and the solute concentrationthat output

respectively.

Table 25. Feasibility in the localization of an ad  sorption layer

Localization ~ Adsorption layer % Mass Mean Residence
thickness retention Time ()
Horizontal 10 cm 4 10853
20 cm 27 12964
10 cm 0.0 8620
Vertical 20 cm 0.0 11698

30cm 0.0 14777
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Results shown in Table 25 above were calculatedguan adsorption coefficient
(K&=S/C) equal to 5.3 L kjand a soil bulk densitgs equal to 1.80 g cth According to
these results the mean residence time increasesllygvhen increasing the adsorption layer
thickness. However, for a vertical adsorption layee percentage of retention remains
constant and equal to zero, in contrast to theratlea layer located horizontally. Indeed, for
vertical layer, almost all the adsorbent layerosated below the hydrostatic water level (0
pressure iso-line see figure 45) in the gravekfilt In this case, as g Kis associated a
reversible adsorption, there is no retention fa thses. This layer will simply introduce a
retardation in the mass transfer. For the horeldalyer, the situation is different because in
this case, the sorbent layer is partly locatedhm Yadose zone, associated with very low
velocities and hence contributes to the creatiometéntion. Due to no retention for the
vertical sorbent layers, we will in the followingmsider the horizontal sorbent layer cases.

5.2.3.4. A Law for solute retention capacity

Using the model, forty numerical tracer experimdrdase been performed in order to
propose a new law for solute retention capacitighi’vHFCW. For the same flow rate and
output height, four different adsorption layers tthe20cm, 15cm, 10cm, 5cm) were tested.
For each adsorption layer, ten different adsorptoefficient (Ky) values were used (0.0 to
810 L/kg, the high values of#allow to obtain the trend).

a)- The adsorption layer thickness effect on thesigence time

First of all, it is important to explain the fadtat in general the residence time is
defined for conservative tracers, that means foo selute retention within the constructed
wetland. In this numerical study, non conservatraeers were used, hence the residence time
distribution was considered only for the solute fl@v out the filter. The figure 47 shows the

mean residence time depending on both the adsorayer thickness and the;Kalues.
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Fig. 47. Mean Residence Time distribution in an hazontal adsorption layer

Three important behaviors could be highlighted ftbese tested cases:

For the different adsorption layer tested, the mesidence times are similar when
the Ky values are very high. Hence, there is no impacthef adsorption layer
thickness with high Kvalues. Indeed, higher they Kalue is, the more readily the
species are sorbed to the soil surface. A highvélue provides an estimate of the
maximum concentration of a solute sorbed to thé €hie to the saturated water
contentBs,;, the solute sorbed mass is limited. Hence thenmesidence time will
become constant for highykKalue.

For smaller K values, we observe that the deeper the adsoratyens’ thickness is,
the higher the retention time is. This is physicalinderstandable; in fact the
adsorption site will increase with the thicknesss hoticeable that the retention times
growth with the K values, reach their maximum and then decreaseseThehaviors
are present for 5 cm and 10 cm adsorption layektigiss. In fact smaller&alues
assume that the soil has little or no ability towslsolute movement. Consequently,
the solute would travel in the direction and atrie of the water. The zerg Kalue
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corresponds to the most conservative solute, hir@ecminimum mean residence time
distribution.

* For 15 cm and 20 cm adsorption layer thicknessjiban retention times appear to
be strictly decreasing on the figure for the chokgrvalues. In fact there is also a

maximum, which is in this case obtained for venysel to zero Kvalues.

When performing the treatment of wastewater ingite HFCW, there is a significant
interaction effect between the different adsorpti@yer thicknesses and the retention time.
Moreover there is no significant impact of the kmess for high Kvalues.

b)- Solute retention capacities (SRC) and adsorptlayer thickness
Figure 48 shows the trend of the retention capecitivhen Kd varies for each

adsorption layer thickness. The simulations weriiobd with an output height of 25 cm.

The empirical law constructed below was deriveagisinly the data from this case.

25 cm output height

60
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Fig. 48. Solute retention capacity — 25cm output hght
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We observe an exponential growth of the retenteyacity with a maximum reached
for each thickness. As it was expected, the higieradsorption layer thickness is, the higher
the maximum retention capacity value gets. Henceameable to propose a new empirical
law for retention capacities within HFCW that take® account the flow rate, the output
height, the adsorption layer thickness, and thaeratdd water volume inside the wetland. The
solute retention capacity curves for each of tHeedint adsorption layer thickness have a
similar profile that can be obtained using thedaiing equation using an exponential decay

fitting:
SRC =A; +B; [expt—Kd/Cj) 4)

Where Ai, Bi are constants related with the laygckness L[L] and Cj [-] is a constant
related to the fixed hydraulic conditions (the floate Q [L2T™Y] and the outlet height iL]).
This empirical equation allow the calculation oftlsolute retention capacity within an
HFCW, for a given layer thickness, lfixed hydraulic conditions (Qh) and any adsorption
coefficient K.

Using a statistical analysis with the above cortstand the simulation data, equation (4) is

rewritten as follow:

L.
SRC :156,67[€ﬁ' -exp(-K 4/C;) 5)
where :
Li The thickness of the adsorption layer [L],
H The total height of the HFCW [L],
1/G Coefficient strongly correlated with the total watontent (y) under the water

table level (zero pressure line) within the HFCW;

Vj W=8m
V| =Bgyt] (J)Hj(x)mx (6)
1
o= 52490V | )+ 764 (7)

J

where Hj(x) is the water table level (zero pressure isolirejoaiated to the

fixed hydraulic conditions (Qh). W [L] is the width of the domain. ,-\/[Lz]
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depends on the hydraulic conditions (Qj, hj). Diéiet (Qj, hj) couples allow to
fit Eq. (7) with a determination coefficient?R 0.99

C)- Empirical law interpretation

Knowing the thickness of the adsorption layer, ahd physical and hydraulic
parameter of the HFCW, the purpose mathematicatioel makes possible the calculation of
the solute retention capacity (SRC) for any adsanptoefficient. This empirical law should
have a great importance for waste water treatmerfact, the treatment capacity inside the
HFCW will always be smaller than the solute ret@mitapacity.

5.2.3.5. Empirical law verification and validation

Using numerical tracers experiments with diffedeydraulic conditions (flow rate and
outlet height), the solute retention capacitiesaeulated using Eq. (3) and the results are

compared with those obtained by the proposed ecapiaw (Fig. 49).
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Figure a): empirical law validation — 25 cm outpeight
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Chapter 5 — Application of the model 19¢€

Outputs heights of 15 cm and 5cm, respectively regl® b and ¢ have been tested.
This law met the expectd values computed by theemodherefore, it is possible to estimate
the solute retention capacity within the HFCW fdifestent conditions using this empirical
law.

This empirical law allows to well configure HFCW kgstimating the pollutant
retention capacity. This is possible if the hydiaabnditions are well known and the order of
magnitude of the adsorption coefficient well estiatia The fact that the remediation capacity
is smaller than the retention capacity is clearths the purpose of this empirical relation is
to design the filter in order to achieve high leeélpollutant retention and hence pollutant
remediation.

However, the choice of a sorbing material for aggon layer needs to be seriously
investigated. Low cost mineral and organic sorbefois metals [Bailey et al., 1999;
Kurniawan et al., 2006] and organic compounds [Alunzaman, 2008] are required for such
rustic treatment plants. Several studies have lm@gried out on this subject. Recently,
Huguenotet al. [2010] have tested experimentally different sotbdn study their ability to
sorb copper and herbicides in liquid and sedimertg. sorbents were perlite (0.6mm up to
6mm in diameter), vermiculite (diameter less thamy, sediment (collected in a vineyard
storm basin), dried sugar beet pulp (from sugameey) and corncob upplied by local
farmers. All sorbents were used without pre-treatime
The major result of their study is that severabsats requiring no preliminary treatment, i.e.,
sugar beet pulp for Cu and sand for diuron and>84, were able to sorb more than 50% of
the corresponding pollutant at the studied conegiotr.

Moreover, natural substrates such as grass, deagde decaying vegetation, straw and
sediments could be used as adsorbent layer. Stutlyeninfluence of hydrodynamics on the
transfer of pesticides in agricultural ditches, Boo [2000] used the hemp fibres as a
simplified model of natural substrates. He alsoppsed some criteria for the selection of
adsorbent layer. The use of adsorbent materiatomstructed wetland associated with the

proposed empirical law for the filter design woelthance the effectiveness of retention.
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5.2.4. Conclusion

Constructed wetlands are being considered a sablaimnd promising option, whose
performance, cost and resources utilization canptement or replace conventional water
treatment. This technology for wastewater treatmenustic and the design always needs
some improvements in order to enhance the pollutanbval performances. In this study, we
test horizontal and vertical adsorbent layer camfigjon. Due to no retention for the vertical
adsorbent layer configurations, we study only tleizontal one. Hence by using these
horizontal adsorbent layers, we propose methods ameew empirical law in order to
significantly increase the solute retention capgacit HFCW. Testing the impact of these
horizontal adsorbent layers on the solute resideime distribution three important
behaviors have been highlighted:

* For the different adsorption layers tested, themreaidence times are similar when
the Ky values are very high. There is no impact of theogation layer thickness with
high adsorption coefficient (Kd) values.

* For smaller K values, we observe that the deeper the adsorlatyens’ thickness is,
the higher the retention time is.

* For 15 cm and 20 cm adsorption layer thicknessyiban retention times appear to

be strictly decreasing withddalues.

Knowing the thickness of the adsorption layer, Hredphysical and hydraulic parameters
of the HFCW, the purposed mathematical relationesglossible the calculation of the solute
retention capacity (SRC) for any adsorption coédfit Using the different experimental tests
related to sorbing materials in the literature #r&purpose empirical law, the experimentally

constructed wetland has to be performed for vetion and validation.
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Chapter 6 — Conclusions and perspectives

Concern is increasing about the effects of pelgion the environment and human
health. Several methods are being consideredefstigide risk reduction. These methods are
approached from the point of view of management dedelopment of remediation
techniques. One of these techniques, considerea @mising option, are constructed
wetlands. Constructed wetlands have been widedg urs water treatment. Recently, their
use in the treatment of pesticide non-point sopadiition has aroused intense interest. Their
potentialities to mitigate agricultural non-poirttusce pesticide pollution are currently being
studied. The different processes that ocurrs mstracted wetlands includes: hydrodynamics,
transport and fate of pesticides. A model to siteufgesticide dynamics in a soil profile must
be then included for the study of these procesEestefore, the present thesis work has a
primary interest in developping a numerical moaesimulate the hydrodynamics, transport
and fate of pesticides.

Firstly, the mixed hybrid finite element was usedabtain a new formulation in a
global approach to simulate water flow and solussgport in variably saturated porous
medium. This formulation is based on Raviart-Themspace properties. The two-
dimensional flow domain was divided into rectangutéangles. Different techniques were
used in the hydrodynamic modelling, such as thestoamation of the primary variable of
pressure. For a better convergence behavior,haitpe that switches between the mixed-
form and the pressure-head based form of the Rithaguation was applied. Special
attention was given to the top boundary conditidesling with ponding or evaporation
problems. In order to avoid non-physical oscitiatproblems, a mass condensation scheme

was implemented in the model.

20C
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For solving the transport equation, a new globaragch was presented. This method
uses a MHFEM approximation for both advection amspetsion terms. It includes a flux
limting tool to control oscillation originated wheconvection is the dominant process.
Different models for the kinectis of biodegradatimnsoil were also implemented. Time
discretization plays an important role during thedation. Thus, time discretization was
made in variable time steps. An inadequate timp stdection may lead to an inaccurate
approximation for the hydrodynamics and solutegpamt calculations.

Later, after the development of all the equatiohthe model and the implementation
in the programming code, using Fortran Language,niedel was validated by performing
several simulations and the comparision of the migale approximations obtained with
reference results found in the literature. Vaiwmlatwas also carried out by comparison of
results with analytical solutions, or the applioatiof the well-known commercial model
(HYDRUS) for one-dimensional test cases within tusded porous media. In all cases,
good agreement of results was obtained.

Once the validation of the model was performed,itierpretation of results became
important. For the hydrodynamics a set of tesesasere simulated by using differents
model options (depending upon the primary variaisied, the form of the equation to solve,
and the initial and boundary conditions applied)s simulation result, a group of time and
error indicator parameters was defined. Obsematiof these parameters were analysed
statistically, and re-grouped according to thesanilarities. The interpretation of the
correlation between parameters and their re-grgupiccording to dissimilarities gave as
result information that could be very useful foe telection of the most suitable option-model
to apply, depending on the initial and boundaryditbons to simulate. For the transport
model, the help of the flux limiter made it possilbb get accuracy and unconditional stability
in the results for low and very high Peclet numbers

After the model validation, the model was appliegerform numerical tracer tests on
an experimental site. Literature has reportel ftt that insufficient residence time of
pollutants in soils induces an incomplete and usifiad biodegradation process. Therefore,
with the objective to increase the solute retentiapacity in horizontal flow constructed
wetlands (HFCW), several operations scenarios wsneulated, in order to propose
engineering solutions that permit the optimizatioh the HFCW. The influence of
homogeneous and heterogeneous adsorption coeffaignibution on the HFCW residence
time distribution was studied. It was shown ttieg adsorption distribution is an internal

factor of soil, which is responsible to the prefei@ pathway transport in a homogeneous
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gravel texture. Additionally, other optimizationanameters related to the boundary
conditions, flow rate, physical configuration, andsorbent layer thickness were studied.
Moreover, a new empirical law was developped ireotd increase the adsorption ability in
the HFCW. An important conclusion from this optation study was that no impact was
observed when changing the adsorbent layer thiskmdsen high values of adsorption
coefficient values were applied. For smallef ¥alues, we observe that the deeper the
adsorbent layer thickness is, the higher is thentein time is. A strong correlation between
the mean residence time and the mean value ofdbergation coefficient was numerically
confirmed for the experimental case. The meanevaiu Ky was also found as the most
influent parameter in this transport problem.

Further work, will be the analysis with data colegt from the experimental site.
Degradation kinetics models were already implentemehe simulation programming code,

however their validation and experimental applmatvill be the objective of future studies.
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Appendix |. Reference Transformation

1. Transformation from an element of reference to m element in the physical space

FZD GG
Ulu x(u,v)
M - M

v z(u,v)

Reference ElementG Element G in the physical space

V Z

A A

I
1 3
R L1 E Ls
A Fop:G - G
Es — 1 *C
B L]
0O
~ W1 =
E2
v=1/3 G L,
=
W>
|;|_ Dﬂ
W3 E |2 u
0 L > pX
0 1
>
u=1/3

The system represents a functiosp Rhat maps a point (u,v) in an uv-coordinate
system into a point (X,y) in a Xy-coordinate system

110008 - Lyfx, 20,)
1,000 - Lok, 20 ,)
|3(O,1)D @B — L3(X|_3 ’ZLS)

The analytic expressions afu,v) and z(u,v) are:
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X4 2Ly
x(u,v):(N|1,N|2,N|3 XL, z(u,v):(N|1,N|2,N|3 7.,
X|_3 Z|_3

Where the base functions of interpolation are etjuiie geometric transformation functions:

N|1:mé,|1:1—u—v Nj, =mg,, =u Nj3 =m

Gl =V

é,lg

So then the nodal coordinateéu, v) and z(u,v) can be expressed as:
x(u,v)=(1-u —v)x|_1 + (u)x,_2 + (v)x|_3 =X, tuatvb

z(u,v) = (1—u—v)z|_1 +(u)z|_2 +(v)z|_3 =2z, tuc+vd

where @= X, =X, b=XL 5 =XLq,

C=ZL, =74, d=z ,-7,

A vector transformation can be written as:

-

g
N JWi ,
w(xz) = 2 )

The Jacobian matrix J associated with the transitiom Fp is defined by:

a_x a_x Xy, —X X, —X
% % Z|_2 —Z|_1 Z|_3 —ZLl c d
ou ov

And its determinant, denoted dstJ = ad- bc

The base functions associated with the edgaseKlefined ovels:

— — -

el B A
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Therefore, the vector transformation can be wrigsn

0 0
J1Wiu+JppWiv
Wi (x,z) — . detJ .
J21Wiu + Jpp Wiv
detJ

where { is the ij component of the Jacobian matrix J

(O 0
Wiy Jpg + Wiy Jpo ua+bv-b
= detJ —| ad-bc
Wi=lg O “ | uc+vd-d
Wi Jp1+ Wiy Iz Tad-bo
detJ
. . _
WauJig+way Jio (u-1)a+bv
e = detJ —| , ad-bc
W2 =g 0 (u-1)c+vd
W2u Jo1+ Wav Jo2 ad-bc
detJ
. . _
W3y i1+ w3y Jip ua+bv
e — detJ —| ad—bc
W3=n 0 ~ | uc+vd
W3y Jpg twav Joo ad—be
detJ

2. Transformation from an element in the physical gace to an element of reference

The transformation from an element in the physsmce to an element of reference

by an integral of a scalar function can be expisse

jf (x,z)dxdz: J:f (x(u,v),z(u,v))detJdvdu
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Thus, the components of the matBy can be calculated as

Bjj = |

w Wi
(iwjx iwszdxdz
G LXX LZZ

0 0 0 u 0 u u u
iu+ iv | J11Wiju+Jowj iu+ iv | J21Wiju+JooWj
- [ Jia Wi+ JpWiv | aWjutdioWiv || JpgWin +JppWiv | JorWiu+JoaWiv || 0500,
3 L «x detJ detJ L, det] detJ

1 1-u
= j I Wi WjX + & sz detJdvdu
kx kz
u=0v=0

Bll_ujovjo(( j (ka jwlzjdetJdvdu

1 32k, + 3%k, —3abk, —3cdk, +a’k, +c%k,

1= k ,k (ad— bc)

1 1-u

_ Wix Wiz
Bys = —= Wy +| —= |W,, |detddvdu
2= | j((kxj ” (kzj 22}

u=0v=0
5 1 b%k, +d?k, —3abk, - 3cdky +a’k, +c2ky
12~ "5

12 kky (ad-cb)

By = | j Ovj 0(( ) (%jw&jdetJdvdu

a.o 1 b2k, +d?k, +abk, +cdk, —a’k, —c?Ky
137 12 k,ky (ad—cb)

By = j J' WZX | X2z | detddvdu
kz
u=0v=0

5 _ 1 b%k, +d%k, —3abk, —3cdk, +a%k, +c%ky
27 12 k,ky (ad—ch)

By, = J' j WZX | 2zl |detadvdu
kz
u=0v=0

1 b%k, +d?k, —3abk, - 3cdk, + 3%k, + 32k,

Bon = —
27715 kK (ad—ch)
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B,g = j J' (( ij ( kizjw&JdetJdvdu
u=0v=0

1 b%k, +d%k, —abk, - cdk, —a’k, - c2ky

20¢

23712 Kk, (ad-ch)
1 1-u
Bai= | | ((ngj (V\ng )WIZJdetJdvdu
u=0v=0 z
g o1 b2k, +dk, +abk, +cdk, —a’k, —c?Ky
31- 75

12 kky (ad—ch)

B3, = J' j W3X W—3ZW22 detJdvdu
kz
u=0v=0

5. = 1 bk, +d%ky —abk, —cdky -2k, —c%ky
2712 k,ky (ad— cb)

1 1-u
533— j j ((ngj (V\{(—&Jw&jdet\]dvdu
Z
u=0v=0

5. = L b?ks +d%ky +abk, +cdky +a’k, +c?ky
38712 k,ky (ad— cb)

And the matrix inverse &'

deno= (azkz ~ abk, +d?k, —cdk, +b?k, +c2kx)(ad— be)
5l - —abk,? +c2d%k, 2 - c3dk, 2 +ab?k,2 + B2k k, + 3%d%k  k, deng
K11 ™
+ 222¢Kk k, +a%k,? + ¢k, 2 - dabedk k, - abcPk k, —a’cdkyk,

gl 2a%bk,2 - c?d?k, 2 + c3dk, 2 - a2bk, +abk,2 +cd3k, 2 - 2b%c%k K,  deno
K12 —
~ 222d%k 4k, + b2cdk, Kk, +abd’k,k, + 2abcdk k, +abcPkk, +aZcdkyk,

— 23%bk,? + 2c2d%k, 2 - 2c3dk, % + 22%b2k,2 - ab’k,? - cdk, 2
Braa=—2 —b%c?kyk, —a?d’kyk, + 2a%ckyk, +a'k,% +c?ky? —bPcdkyk, |/ deno
—abd?k .k, +6abcdk k, — 2abck ,k, — 2a%cdkyk,
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Byh; =2 - 2b%c?kyk, — 2a%d%kk, + bZcdkyk,, +abd2k Ky

a%bk,? - c?d%ky® +c3dky? —a%b?k, % +ab’k,” +cdky
/deno
+ 2abcdk k, +abc?k vk, +a’cdk,

. c?d?k,” +a’b%k,? —ab’k,? —cd’k > + 2b%d %k k, + 30%c?k Kk,
Bro =2 . / deno
+3a%d?k k, +b*k,? +d*k,” —b?cdk k, — abd?k k, — 4abcdkk,

B, = 2 — 202dkxk, +c?b?k k, +a%d’k k, —b*k,? —d*k 2 + 2b%cdk K,

a’bk,’ - 2c?d?k ? +cdk, * - 2a’bk,” + 2ab’k > + 2cd’k 2
/deno
+2abd’k k, —6abcdk k, + abc’k k, +a’cdk k,

-2a%k,’ +2c?d?k,? - 2cdk,” + 2a’b’k,” — ab’k,? —cd’k,’
B, = -2 —b%c?k k, —a’d?k k, + 2a’c?k k, +a’k,’ +c*k,’ —b’cdk k, |/den
—abd’k k, +6abcdk k, — 2abc’k, k, — 2a’cdk k,

B, = 2 - 2b%d2kxk, +c2b’k k, +ad’k k, —b*k,? —d*k 2 + 2b%cdk k,

a’bk,” —2c?d’k > +cdk, * - 2a’b?k,” + 2ab’k,* + 2cd’k 2
/deno
+2abd’k k, —6abcdk k, + abc’k k, +a’cdk Kk,

-3a’bk,? +4c?d’k * - 3c%dk,” + 4a’b’k,” - 3& b’k,* —3cd’k 2
Bis = 2 +2b°d?k k, +4b’c’k Kk, +4a’d’k k, + 2a’c’k,k, + b“kZ +d*k? |/deno
+c’k,” —3b%cdk k, —3abd’k k, —3abc’k k, — 3a’cdk k,
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Appendix Il. Vector components of the Darcy flux ap proximation

—

3 =
dc = X~ QG,E; Wj
=

The vectorwj is computed using the coordinates at the cenwbithe reference element
(u=1/3, and v=1/3. See Appendix | for more detailed informationoab the
transformation vector.

ua+bv-Db @/3a- (2/3)b

\7\,1: ad-bc |- ad-bc
uc+vd-d |~ | @3- (2/3)d
ad-bc ad-bc
[(u-L)a+bv] [ @/3)b- (2/3a
. —| ad-bc |- ad-bc
W2 = (u-2c+vd | 7| w3d- (2/3c
ad-bc ad-bc
fua+bv] [(1/3)a+(1/3)b
. —| ad=bc | = d-bc
W3l uc+vd |~ (1/33C+F1/3)d
L ad—bc ad-bc

Therefore, the components of the vector functmpp belonging to the lowest order Raviart-

Thomas space are computed as:

- (/3a- (2/3)b (1/3)b-(2/3)a (1/3)a+(1/3)b
Gex = ac—he QeE * ac - bc QeEs * ac—bc QG E3
- (/3)c- (2/3)d (1/3)d-(2/3)c (1/3)c + (1/3)d
96z 7" ac—he Qeey * ac —bc QeEp * ac—bc Qe

Or expressed in terms @rota) = Qg £y + Qs E, +Qa,E3
a _ (1/ 3)aQTotaI + (1/ 3)bQTotaI - bQG,El - aQG,EZ
Gx ac-hc

- (1/ 3)CQTotaI + (1/ 3)dQTotaI —dQg = cQg E2

96, = ac—bc
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Appendix Ill. Soil parameters used in the modified Mualem-van Genuchten
model
Material Ks 0 6, o n T he Reference
(cm s?) (cmi?) (cm)
Soil 1 0.006262 0.3658 0.0286 0.0280 2.2390 0.5 0 [Pan and
Wierenga,
1995]
Soil 2 0.0001516  0.4686 0.1060 0.0104 1.3954 0.5 0 Panfnd
Wierenga,
1995]
Soil 3 0.00922 0.3680 0.1020 0.0335 2.0000 0.5 0 n fPal
Wierenga,
1995]
A 0.922x10° 0.368 0.102 0.0335 2 0.5 0 Celia et al.,
2000
B Sand 2.025x1H 0.43 0.01 0.0249 1.507 -0.140 0 [Van Dam
and Feddes,
2000]
C Glendale 1.516x10° 0.4686 0.1060 0.0104 1.3954 0.5 0 [Kirkland et
clay loam al., 1992]
D Berino 6.262x10°  0.3658 0.0286 0.0280 2.2390 0.5 0 [Kirkland et
loamy al., 1992]

fine sand
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Appendix IV. Test case results
Test REform tolf K NI Time At av At At Pe Co ¢ n Ah JACS)
case f (cmt) steps max min max max MB ElG EZG EMB SMBn max max Ahd
X107 x1C? max max max min max

1.1  h-based O 0.00 21278 5465 3.952 7.161 Ix1®.8 2.8 1.1x10% 6.9x10® 1.0x10** 0.89 -19.4 0.481 8.3x10 15801
1.1  h-based O -0.04 17069 4580  4.716 14.08 iIx1®.8 2.8 -1.3x10° 1.5x10%* 2.1x10%* 0.97 -41835.0 0.258 9.5xf0 15419
1.1 Mixed 1 0.00 18390 4910 4.399 12.69 1X105.8 2.8 2.7x19 9.8x10° 3.6x10®8 0.57 -1.3 0.198 7.0x10 15793
1.1 Mixed 1 -0.04 16705 4448  4.856 24.94 Ix105.8 2.8 1.4x18° 2.0x10° 2.0x10° 0.42 -52114.3 0.192 3.2xf0 15417
1.1  Switch 0.9 0.00 18390 4910 4399 12.69 11058 2.8 -6.4x18° 5.9x10%° 3.6x10° 0.57 -1.3 0.198 9.4x10 15793
1.1  Switch 0.9 -0.04 16723 4452 4851 2494 1%x1058 2.8 -1.8x18° 3.8x10* 3.5x10%" 0.42 -52114.3 0.192 4.9xf0 15417
21 h-based O 0.00 17835 4647 9.296 13.79 ixi1@.4 2.2 2.1x18? 4.6x10'® 7.2x10% 0.71 -94.6 0.286 7.2x10 15618
2.1 h-based O -0.04 15114 4266 10.12 18.03 ixim4 22 -1.1x18 3.5x10% 1.1x10*%* 0.82 -200319.8  0.686 2.9x10° 15191
2.1  Mixed 1 0.00 15716 4405 9.807 15,55 1%104.4 2.2  -45x10°  1.6x10'° 1.0x10* 0.79 -397.0 0.191 9.7x70 15609
2.1  Mixed 1 -0.04 15197 4244 10.17 15.15 1X104.4 2.2 -1.0x18 1.1x10t*  2.3x10% 0.33 -250445.4 0184 1.7xI0 15816
2.1  Switch 0.9 0.00 15716 4405 9.807 1555 11044 2.2 -45x18° 1.6x10%°° 1.0x10® 0.79 -397.0 0.191 9.7x70 15609
2.1  Switch 0.9 -0.04 15197 4244 1017 1515 1%X104.4 2.2  -1.0x18 1.1x10"  2.3x10%® 0.33 -250445.4  0.184 1.7xI10 15186
Test REform tols K NI Time At av At At Pe Co ¢ n n Ah JAC)

case f (cm‘l) steps max min max max MB ElG EZG MB SMB max max Ahd

X1 X1 max max max min max

1.2  h-based 0 0.00 6893 2662 6.761 65.83 0.475 585 -5.7x10® 5.0x10" 7.8x10* 2.2x10™° -1.6x10™° 0.092 9.8x16  189.5
1.2 h-based 0 -0.04 6544 2519 7.145 66.25 1426 581 -5.7x10° 5.7x10* 9.9x10"* 6.5x10%? -5.6x10'' 0.115 9.5x16 161.6
1.2 Mixed 1 0.00 6565 2587 6957 6581 1.759 5.8.5 8 -3.2x10° 2.6x10°  3.0x108 2.0x10°  -2.9x10° 0.174 9.7x16 182.2
1.2 Mixed 1 -0.04 6513 2515 7.157 7289 1585 5.8.1 8 7.0x10° 1.2x10°  1.2x10°  3.3x10°  -4.1x10° 0.124 9.7x16 1615
1.2 Switch 0.9 0.00 6459 2551 7.056 65.83 17608 5.85 -3.6x16 9.5x10%° 6.4x10'° 3.0x10%?  -4.6x10’ 0.158 9.1x16 173.0
1.2 Switch 0.9 -0.04 6516 2515 7.157 6023 15858 5.8.1 1.5x10 1.5x10*° 1.4x10'° 6.8x10°  -4.1x10° 0.124 7.0x16 1615
2.2 h-based 0 0.00 5288 2138 1347 2766 1585 431 1.1x10% 4.0x10'° 7.9x10%® 1.8x10°  -1.2x10%  0.086 5.2x16  162.6
2.2 h-based 0 -0.04 4866 2026 1421 3199 4557 431 4.0x1d4 1.6x10%° 2.5x10% 3.3x10*  -3.1x10'!  0.104 3.3x10 135.0
2.2 Mixed 1 0.00 5084 2092 13.76 2886 5.284 4.3.1 2 -3.8x10° 1.0x10°  4.7x10*° -1.4x10° -4.3x10° 0.138 6.7x10 155.6
2.2 Mixed 1 -0.04 4850 2026 1421 31.99 2.005 4.3.1 2 3.2x10° 1.7x10%° 4.2x10" 3.7x10®°  -6.3x10° 0.127 2.8x16 135.0
2.2 Switch 0.9 0.00 5001 2064 1395 2879 0.2523 4.21 -4.2x16 1.2x10°  4.7x10*° -1.3x10° -1.0x10° 0.127 6.7x16 144.8
2.2 Switch 0.9 -0.04 4850 2026 1421 3199 2.0053 4.2.1 3.2x10 1.7x10%°  4.2x10'* 3.7x10®°  -6.3x10° 0.127 2.8x16 135.0
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Test RE tolf K NI Time At av At At Pe Co ¢ n Ah JA\S)

case form f (Cm'l) steps max min max max MB E]'G EZG EMB EMBn max max Ahd

X1®  x1C max max max min max

1.3 h-based 0 0.00 4436 1764 7.755 215.7 0.972 53  -1.0x10"  1.5x10%® 1.8x10® 3.2x10% -5.0x10% 0.029 9.1x18 9.091
1.3 h-based 0 -0.04 4431 1773 7715 57.02 1844 577 -2.8x10%*  6.6x10%* 7.6x10%* 6.4x10? -5.3x10'? 0.021 7.0x18 6.610
1.3 Mixed 1 0.00 4376 1749 7.821 1959 1.836 5.81 22.2x10° 6.1x10° 5.0x10®8 1.5x10°  -7.4x108 0.034 9.4x16 7.354
1.3 Mixed 1 -0.04 4484 1789 7646 51.83 1.844 58.0 7 2.4x10° 3.1x10%  1.8x107 1.0x10°  -2.7x10° 0.020 7.8x16 6.612
1.3 Switch 0.9 0.00 4381 1749 7.821 1959 1.8368 5.22 6.9x10 5.9x10%° 4.3x10%° -3.7x10%® -7.5x10° 0.027 9.9x16 7.354
1.3 Switch 0.9 -0.04 4491 1788 7651 51.82 1.8448 5.7.0 7.0x1d° 2.4x10%° 9.3x10" 5.2x1080  -2.7x10° 0.076 6.8x10 6.612
2.3 h-based 0 0.00 2352 970 14.84 27.10 6.947 431 -2.0x10*%*  3.8x10* 6.8x10%® 1.1x10%? -1.1x10 0.004 4.8x1§ 4.375
2.3 h-based 0 -0.04 2094 920 1565 3449 2018 431 2.3x10% 1.4x10%°  2.4x10%° 4.7x10? -4.7x10'> 0.004 4.9x16 2.936
2.3 Mixed 1 0.00 2210 931 1546 3449 3759 431 2.-1.9x10° 6.4x10%° 1.8x10° -1.4x10%° -1.5x10’ 0.005 4.8x18 3.532
2.3 Mixed 1 -0.04 2092 921 1563 3449 1391 431 2.1.6x10° 2.2x10%° 2.2x10%° 1.6x10°  -2.6x108 0.011 7.4x16 2.920
2.3 Switch 0.9 0.00 2210 931 1546 3449 3759 4.2.1 -1.9x1CF 6.4x10%° 1.8x10%° -1.4x10%° -1.5x10’ 0.005 4.8x168 3.532
2.3 Switch 0.9 -0.04 2092 921 1563 3449 1391 4.2.1 1.6x10 2.2x10%°  2.2x10%° 1.6x10°  -2.6x10° 0.011 7.4x16 2.920
Test RE tols K NI Time At av At At Pe Co ¢ n n Ah A

case form f (cm) steps max min max max MB ElG EZG MB =MB max max Ahg

Y10 Y10 max max max min max

3.1 h-based O 0.00 30017 6443 0.027 0.069 7x102.4 0.6 -1.4x10"°  45x10® 1.7x10™® 1.4x10% -1.5x10% 9.367 1.4x10 16443
3.1 h-based O -0.04 29236 6588 0.027 0.071 $8x100.006 0.7 -2.7x1%  6.9x10%* 1.8x10° 1.0x10° -9.1x10* 0.191 6.1x150 33254
3.1  Mixed 1 0.00 31239 7590 0.023 0.053 8%10 2.4 05 1.1x18 45x10° 55x10° 9.4x10°  -1.8x10’ 0.183 2.9x10 16443
3.1  Mixed 1 -0.04 28507 6283 0.028 0.077 3%10 2.3 0.7 5.4x1%? 1.5x10° 3.1x10° 5.1x10°  -9.0x10%° 0.184 2.7x18 16435
3.1 Switch 09 0.00 31076 7549 0.023 0.053 &x102.4 0.6 -6.5x18°  4.7x10'° 6.9x10'° 5.1x10°  -2.5x107 11.10 2.9x1¢ 16443
3.1 Switch 09 -0.04 27127 5917 0.030 0.080 &x100.006 0.8 2.8x10%° 1.2x10%° 3.2x10° 1.0x10° -1.3x10° 0.196 6.0x18 33254
41 h-based O 0.00 19600 4784 3.762 9.675 2x103.7 1.8  -8.7x10*  4.7x10% 7.2x10% 1.8x10%? -1.7x10% 0.343 1.0x16 16172
41 h-based O -0.04 16640 4037 4.458 9.897 3x103.7 1.8 2.8x1d° 1.1x10% 2.0x10%® 1.9x10°  -1.2x10° 0.192 7.6x10 16081
41  Mixed 1 0.00 15144 3656 4.923 9.897  2%10 3.7 1.8 -3.3x18° 3.1x10* 3.8x10* 1.1x10%2  -4.7x108 0.178 8.0x10 16171
41  Mixed 1 -0.04 16568 4021 4.476 9.897 3%10 3.7 1.8  2.4x18° 1.3x10*? 1.2x10%? 2.2x10°  -1.3x10° 0.190 7.5x10 16081
41  Switch 0.9 0.00 15144 3656 4.923 9.897 103.7 1.8 -3.3x18° 3.1x10" 3.8x10* 1.1x10%2  -4.7x108 0.178 8.0x10 16171
41  Switch 0.9 -004 16568 4021 4.476 9.897 3%103.7 1.8  2.4x1%° 1.3x10%2 1.2x10%? 2.2x10°  -1.3x10° 0.190 7.5x10 16081
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Test RE tols+ K NI Time At av At At Pe Co ¢ n n Ah JAS]

case form f (cm?) steps max min max max MB ElG E2G *MB 8MB max max Ahd

XlOZ X102 max max max min max

3.2 h-based 0 0.00 13573 3401 0.052 0.139 ?2x1@.2 1.2 -3.0x10¥ 8.4x10® 2.9x10®° 1.4x10%? -1.4x10% 5.013 8.6x1d 291.3
32 h-based 0 -0.04 8667 2158 0.083 0.208 fTxi®.3 1.9 3.2x10° 1.3x10% 4.7x10%® 1.2x10° -7.0x108 0.163 5.9x10 598.3
3.2 Mixed 1 0.00 12538 3153 0.057 0.160 1I%102.2 15 3.6x10 4.9x10° 2.0x10° 1.2x10* -4.8x10’ 0.165 3.4x10 291.0
3.2 Mixed 1 -0.04 8592 2149 0.083 0.214 8%1024 19 -1.8x1C 8.1x10°  4.4x107  4.2x10° -4.5x10° 0.154  6.0x18  292.7
3.2 Switch 09 0.00 11930 2987 0.060 0.155 Zx102.2 1.5 -2.0x1C 1.1x10° 1.6x10°  4.0x10% -8.4x107 8.564 5.1x1¢ 291.0
3.2 Switch 09 -0.04 8707 2171 0.082 0.204 2%100.3 2.0 3.8x10 2.8x10%°  7.2x10° 1.2x10° -6.5x10° 0.140 7.5x10 598.1
42 h-based 0 0.00 5650 2052 8771 9.902 Ixi®.7 1.8 -1.2x10"  5.4x10'° 8.3x10'® 1.7x10%? -1.6x10*%  0.116  6.5x10 2315
42 h-based 0 -0.04 5248 2005 8.977 9.903 x1®.7 1.8 1.5x10° 1.4x10% 2.1x10%° 1.2x10% -1.4x10"  0.140 4.2x1§ 2285
42 Mixed 1 0.00 5580 1974 9.118 9.902 7%103.7 1.8 -8.5x1§ 1.9x10° 2.0x10° -5.9x10°  -9.9x10’ 0.139 8.1x16  230.6
42 Mixed 1 -0.04 5248 2004 8982 9903 7%103.7 18 -1.0x18 4.2x10"  4.1x10"*  1.9x10'? -3.7x108 0.125 4.0x168 2285
42 Switch 0.9 0.00 5580 1974 9.118 9.902 7A103.7 1.8 -8.5x1§ 1.9x10° 2.0x10° -5.9x10°  -9.9x10’ 0.139 8.1x16  230.6
4.2 Switch 09 -0.04 5248 2004 8982 9903 7%103.7 1.8 -1.0x18 4.2x10'  4.1x10"* 1.9x10% -3.7x108 0.125 4.0x16 2285
Test RE tols K NI Time At av At At Pe Co ¢ n n Ah JAGC)

case form f (cm'l) steps max min max max MB ElG EZG MB SMB max max Ahd

X1 x1C max max max min max

3.3 h-based O 0.00 10694 2667 0.067 0.196 2x1@.2 1.7 3.3x10%™ 1.1x10®  4.4x10"® 1.3x10%? -2.7x10% 9.679 1.0x18 69.09
3.3 h-based O -0.04 7430 1843 0.097 0272 fxia5 26 4.6x10* 2.4x10%  6.7x10% 4.7x10% -3.9x10" 9.643 7.0x180 86.32
3.3 Mixed 1 0.00 10979 2745 0.065 0.199 6%101.5 2.9 1.0x107 6.1x107 2.7x107  2.9x10° -4.1x107 8.885 4.2x10  46.28
3.3 Mixed 1 -0.04 7166 1784 0100 0.285 1X102.2 25 9.3x10° 5.6x10°  4.4x107  3.5x10° -7.7x108 7.965 5.7x180 57.60
3.3 Switch 09 0.00 10451 2606 0.069 0.195 21015 2.8 -1.0x1§ 8.5x10%° 1.2x10° 1.5x10° -5.0x10’ 4.181 6.0x1d  46.28
3.3  Switch 0.9 -004 7324 1812 0.099 0275 2%101.5 2.6 -50x18° 2.9x10'° 2.3x10*° 1.7x108 -1.2x107 0.088 8.0x18 85.45
43 h-based 0 0.00 3856 1857 9.693 9.927 1.222 3T8 -55x10° 57x10'° 8.4x10'® 2.6x10%? -2.0x10% 0.026 7.6x16 15.71
43 h-based 0 -0.04 3823 1857 9.693 9.928 0511 378 4.4x10° 1.2x10% 2.3x10%° 1.0x10% -1.0x10% 0.034 9.8x16 17.27
43 Mixed 1 0.00 3827 1852 9.719 9.927 1.704 3.7.8 1 -8.5x10° 1.6x10° 1.6x10° -3.0x10'  -1.7x10° 0.032 9.1x16 15.39
43 Mixed 1 -0.04 3788 1846 9.750 9.928 1.380 3.7.8 1 -6.6x10° 1.5x10%° 1.6x10° -8.1x10'? = -1.2x107 0.035 9.3x16  14.93
43 Switch 0.9 0.00 3827 1852 9.719 9.927 1.7047 3.1.8 -8.5x16 1.6x10° 1.6x10° -3.0x10%'  -1.7x10° 0.032 9.1x16 15.39
43 Switch 0.9 -0.04 3788 1846 9.750 9.928 1.380 7 3.1.8 -6.6x10 1.5x10%° 1.6x10° -8.1x10'?  -1.2x107 0.035 9.3x16  14.93
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21¢

Appendix V. Linear correlations

Correlation coefficient r

v X 1-1 1-2 1-3 21 2-2 2-3 3-1 3-2 33 4-1 42 4-3
NI Time steps  0.9¢ 0.8¢ 0.9¢ 0.97 1.0C 0.9% 0.9 1.0C 1.0C 1.0C 0.0% 0.89
NI At av -0.9€-0.87-0.9€-0.9€-1.0C -0.95-0.94-1.0C-1.0 -1.0C -0.0%-0.89
NI At max -0.8£-0.0£-0.7€-0.67-0.92-0.82-0.95-0.9€-0.9¢-0.9C-1.0C-0.77
NI At min 0.0C-0.9€-0.0Z 0.0C-0.0¢ 0.9¢ 0.1F-0.2% 0.1£-0.6F 0.7€-0.08
NI Pe max 0.82 0.3¢-0.82-0.92-0.4C-0.4Z 0.67 0.6 0.0C-0.56-0.75-0.82
NI Co max 0.82 0.32-0.7€-0.95-0.45-0.51-0.9€-0.9¢-0.12 -0.9C -0.9€ -0.80
NI EMB 0.0€ 0.3C 0.5¢ 0.8¢-0.2€-0.4¢ 0.0< 0.4C 0.0¢ 0.41-0.55-0.20
NI Eig Max  §0¢.0.17-0.56-0.0¢ 0.17 0.0f 0.4z 0.3Z 0.46-0.71 0.6 0.19
NI Eog max ¢ 0e.0.1¢ 0.35-0.0€ 0.1€-0.44-0.2 0.31-0.15-0.71 0.6C 0.18
NI eMB" Max  0.49-0.24-0.19 0.30-0.59-0.62-0.66 0.18-0.04-0.01-0.55 0.05
NI eMB"'Min  0.7¢ 0.1z 0.62 0.65-0.14-0.1€ 0.7€-0.42-0.5¢ 0.71-0.5¢-0.20
NI Ah max  0.8€-0.6z 0.41-0.12-0.4€-0.61 0.5z 0.61 0.6( 0.92-0.0%-0.88
NI A® max  0.47 0.35-0.7¢ 0.4% 0.6€-0.6z 0.47 0.7Z 0.61 0.82 0.91-0.69
NI Ahgmax  gc 0.7:-0.31 0.67 0.9¢ 1.0C-0.6€-0.6€-0.6€ 0.0z 0.9€ 0.43
Time steps At av -1.0C-1.0C-1.0C-1.0C-1.0C-1.0C -1.0C-1.0C-1.0C -1.0C -1.0C-1.00
Time steps At max -0.8€-0.07-0.87-0.6(-0.92-0.9€ -0.9¢-0.9¢-0.9¢ -0.9C -0.0€ -0.44
Time steps At min 0.0C-0.7¢ 0.14 0.0C-0.07 0.9€ 0.41-0.2% 0.12-0.65-0.61-0.49
Time steps Pe max 0.87 0.7€-0.91-0.82-0.3€-0.67 0.5¢ 0.6 0.01-0.5¢-0.6€-0.54
Time steps Co max 0.8€ 0.72-0.87-0.8£-0.3¢-0.72-0.95-0.9¢-0.12 -0.9C-0.24-0.47
Time steps EMB 0.12-0.1¢ 0.6% 0.97-0.2¢-0.21 0.0¢ 0.41 0.0 0.41 0.8C 0.02
Time steps Eig Max 41, 0.07-0.51 0.14 0.17-0.24 0.51 0.3¢ 0.46-0.72-0.77-0.03
Time steps Eog max (.12 0.0¢ 0.41 0.1€ 0.22-0.56-0.21 0.32-0.14-0.71-0.77-0.04
Time steps em" Max  0.50-0.21-0.13 0.49-0.58-0.46-0.54 0.19-0.03-0.01 0.19 0.34
Time steps eMB"'Min  0.85.0.25 0.61 0.82-0.1 0.1% 0.5¢-0.42-0.5¢ 0.7Z 0.7€ 0.01
Time steps Ah max  0.81-0.2C 0.3£-0.1E-0.42-0.4€ 0.3% 0.6C 0.6( 0.92-0.82-0.65
Time steps A® max  0.5Z 0.45-0.8€ 0.6€ 0.6€-0.4€ 0.4< 0.7z 0.6( 0.81-0.37-0.38
Time steps Ahgmax (gt 0.97-0.47 0.85 0.9¢ 0.9€-0.55-0.6€-0.6€ 0.0z 0.17 0.79
At av At max 0.9C 0.07 0.87 0.5¢ 0.92 0.9¢ 0.9¢ 0.9¢ 0.9¢ 0.8% 0.0F 0.44
At av Atmin 0.0C 0.7£-0.1% 0.0C 0.0€-0.9€-0.3¢ 0.1¢-0.1€ 0.7Z 0.6% 0.48
At av Pemax  -0.8¢-0.7¢ 0.91 0.81 0.3t 0.6€-0.55-0.62 0.0C 0.5C 0.67 0.54
At av Comax  -0.9C-0.7Z 0.87 0.8Z 0.3¢ 0.7Z 0.9€ 0.9¢ 0.1Z 0.8% 0.2 0.47
At av EMB -0.1% 0.2€-0.62-0.97 0.31 0.22-0.07-0.42-0.01-0.5C-0.81-0.02
At av Eig max 5 17.0.0¢ 0.5:-0.17-0.1€ 0.2%-0.4€-0.3€-0.4€ 0.7€ 0.7€ 0.03
At av Eog max 16.0.1¢-0.41-0.21-0.2 0.5¢ 0.2¢-0.32 0.17 0.77 0.7€ 0.03
At av eM" Max .0.50 0.21 0.14-0.50 0.59 0.46 0.54-0.21 0.06-0.08-0.20-0.34
At av eMB"'Min  _0.8¢ 0.2£-0.61-0.82 0.17-0.15-0.6¢ 0.4€ 0.5¢-0.7€-0.7€-0.01
At av Ah max  -0.7€ 0.1€-0.3Z 0.1F 0.4z 0.47-0.3€-0.62-0.61-0.9C 0.8% 0.65
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Correlation coefficient r

Y X

1-1 1-2 1-3 2-1 2-2 2-3 3-1 32 3-3 41 42 4-3
At av A® max  -0.57-0.4% 0.8€-0.6€-0.6¢ 0.47-0.4£-0.7C-0.62-0.7€ 0.3€ 0.38
At av Ahgmax 9 g¢-0.97 0.47-0.85-0.9¢-0.97 0.52 0.6¢ 0.6 0.07-0.1€-0.79
At max At min 0.0C 0.02-0.52 0.0 0.1¢-0.8€-0.4C 0.11-0.2¢ 0.25-0.75-0.57
At max Pe max  -0.7¢-0.1C 0.97 0.7% 0.0¢ 0.87-0.5€-0.5¢ 0.0z 0.8¢ 0.7€ 0.74
At max Comax  -0.7¢-0.0¢ 1.0C 0.7¢ 0.11 0.87 0.9€ 0.9¢ 0.1 1.0C 0.9€ 1.00
At max EMB -0.1€ 0.1€-0.51-0.6% 0.57-0.02-0.07-0.3C 0.0¢ 0.0Z 0.5Z 0.66
At max Ei1g max 2 0.32 0.3¢-0.01-0.4€ 0.4-0.45-0.2%-0.3¢ 0.32-0.5¢-0.66
At max E2g max 4 o¢ 0.2¢-0.35 0.01-0.5¢ 0.62 0.31-0.1¢ 0.25 0.32-0.5¢-0.65
At max emB"Max .0.73 0.74 0.08 0.35 0.68 0.32 0.55-0.05 0.15 0.45 0.53 0.56
At max eMB"'MIiN  _0.8¢ 0.05-0.45-0.3Z 0.4€-0.4C-0.5€ 0.47 0.5¢-0.3% 0.5¢ 0.66
At max Ah max  -0.6€-0.02-0.2% 0.7€ 0.2Z 0.32-0.45-0.71-0.65-1.0C 0.0% 0.74
At max A® max  -0.8% 0.7€ 0.93-0.22-0.87 0.32-0.51-0.7€-0.67-0.9¢-0.9C 0.66
At max Ahgmax g gc-0.0¢ 0.81-0.45-0.92-0.8€ 0.5 0.6% 0.6%-0.4€-0.9¢ 0.15
At min Pe max 0.0€-0.21-0.31 0.0C 0.12-0.52-0.4¢-0.6£-0.22-0.2£-0.15-0.16
At min Co max 0.0C-0.14-0.54 0.0C 0.15-0.5€-0.3Z 0.25-0.27 0.25-0.62-0.53
At min EMB 0.0C-0.4€ 0.1€ 0.0-0.0z-0.4€ 0.1€-0.0€-0.92-0.9¢-0.9¢-0.72
At min E1c max ¢ 0c 0.41 0.21 0.0C-0.06-0.04 0.0£-0.16-0.55 1.0C 0.9€ 0.72
At min E2g max 4 0¢ 0.4¢ 0.26 0.0 0.02-0.5£-0.62-0.22-0.9 1.0C 0.9€ 0.73
At min emB"Max  0.00 0.34 0.31 0.00-0.26-0.66 0.50-0.23-0.94-0.75-0.55-0.90
At min eMB"'Min  0.00-0.4C-0.4< 0.0C 0.31-0.0¢-0.32-0.4F 0.05-1.0C-0.97-0.72
At min Ah max 0.0C 0.8 0.14 0.0C 0.14-0.6€-0.1% 0.1F 0.51-0.32 0.5C-0.07
At min A® max  0.0C-0.2£-0.2€ 0.0C-0.02-0.67 0.1£-0.2% 0.5€-0.0¢ 0.9€-0.22
At min Ahgmax  (0c-0.5£-0.92 0.0C 0.0 1.0C 0.5C 0.61 0.4Z 0.7% 0.67-0.84
Pe max Co max 1.0C 1.0C 0.9¢ 1.0C 1.0C 1.0C-0.55-0.62-0.82 0.8¢ 0.87 0.79
Pe max EMB 0.32-0.75-0.5C-0.72-0.7€-0.3Z2-0.0Z 0.2 0.2C 0.5C-0.12-0.02
Pe max E1g Max 47 0.27 0.4¢ 0.3¢ 0.82 0.8 0.4% 0.3€-0.27-0.1% 0.07 0.02
Pe max E2g Max (.41 0.3c-0.2¢ 0.32 0.8z 0.8 0.3¢ 0.3¢ 0.37-0.1€ 0.07 0.03
Pe max em"mMmax  0.17-0.17 0.1¢ 0.01-0.0% 0.19-1.00 0.31 0.28 0.82 0.17-0.07
Pe max eMB"'Min  0.9¢.0.52-0.65-0.36-0.72-0.8C 0.66-0.3¢ 0.5% 0.1£-0.0€-0.01
Pe max Ah max 0.4z 0.4C-0.17 0.17 0.9C 0.2Z 0.51 0.4< 0.52-0.8% 0.5C 0.99
Pe max AB max  0.4S 0.4C 0.9€-0.1F 0.4C 0.1¢€ 0.37 0.41 0.47-0.95-0.4Z 0.98
Pe max Ahgmax 1 0¢ 0.9¢ 0.64-0.42-0.2€-0.47-1.0C-1.0C-0.07-0.82-0.8% 0.05
Co max EMB 0.32-0.8C-0.51-0.74-0.7£-0.27-0.27-0.3C 0.2€ 0.0Z 0.3€ 0.60
Co max E1g Max 41 0.2¢ 0.3¢ 0.35 0.87 0.82-0.5¢-0.2¢ 0.41 0.32-0.42-0.59
Co max E2g max (3¢ 0.32-0.35 0.32 0.8C 0.82 0.3€-0.22 0.1€ 0.32-0.42-0.59
Co max em"Max  0.17-0.1F 0.07 0.0C-0.0Z 0.2% 0.5£-0.0¢ 0.2Z 0.4% 0.4E 0.49
Co max eMB"'Min  0.96-0.5¢-0.42-0.3¢-0.71-0.7£-0.61 0.4C-0.67-0.3% 0.4Z 0.60
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X

Correlation coefficient r

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3

Ejg max
E1g max
E1g max
Ejg max
Ejg max
E1g max
Eog max
Eog max
Eog max
Eog max
Eog max
emp " max
emp " max
emB " max
eMB " max
em " min
emB " min
emB " min
Ah max

Ah max

AO max

Ah max
AD max
Ah g max

E1g max
Eog max
emp " max
em " min
Ah max

AB max
Ah g max

Eog max
emp " max
em " min
Ah max
AD max
Ah g max
emp M max
eMBn min
Ah max
AO max
Ah g max
eMBn min
Ah max
AD max
Ah g max
Ah max

AB max
Ah g max

AB max
Ah g max

Ah g max

0.44 0.4€-0.2% 0.1¢ 0.91 0.2€-0.3:-0.6€-0.7¢€-0.9¢ 0.1¢€ 0.79

0.4€ 0.3¢ 0.92
1.0C 0.87 0.81
0.9€-0.3¢ 0.0C

0.9€-0.41 0.9¢
-0.1% 0.1C 0.5¢

0.3< 0.6¢ 0.1¢
-0.17-0.85-0.2¢
-0.14-0.1£-0.31

0.3£-0.42-0.32
1.0C 1.0C 0.17
-0.1€ 0.7€ 0.81
0.4£-0.86-0.5¢
-0.2¢ 0.6€-0.0z
-0.02 0.37 0.4C
0.44 0.2¢ 0.0z
-0.1€ 0.71 0.6¢
0.42-0.9C-0.0¢
-0.2€ 0.67-0.3¢
-0.0% 0.3£-0.07
0.4Z 0.27-0.3%
0.2€-0.3£-0.4¢
0.6¢ 0.2¢-0.21
0.7F 0.3€ 0.2t
0.1€-0.1£-0.1¢
0.4C-0.7¢-0.0F
0.61-0.2£-0.62
0.9¢-0.4< 0.1F

-0.17 0.3¢ 0.24-0.32-0.7€-0.71-0.9€-0.81 0.72
-0.44-0.2€-0.54 0.5¢ 0.6€-0.2€-0.4€-1.0C 0.14
0.3€-0.9¢-0.6¢ 0.81 0.9¢ 0.74-0.9:-1.0C-1.00

0.3€-0.9¢ 0.1% 0.0t 0.97 0.94-0.9:-1.0C-1.00
0.4€ 0.5¢ 0.84 0.01. 0.94 0.98 0.90 0.55 0.93

0.91 0.9z 0.8(-0.14-0.3C-0.1¢ 0.9¢ 1.0C 1.00
-0.34-0.5z 0.81-0.64-0.32-0.4% 0.07-0.61-0.02
0.7€-0.8¢ 0.85-0.74-0.3%-0.51-0.1€-0.84-0.09

0.92-0.37-0.4€ 0.01-0.27-0.52-0.9(-0.44 0.25
1.0C 0.9€ 0.64 0.3z 1.0C 0.47 1.0C 1.0C 1.00
0.5C-0.3¢-0.17-0.43 0.98 0.62-0.69-0.50-0.94
0.67-0.92-0.9¢ 0.2¢-0.3(-0.5C-1.0C-1.0C-1.00
-0.41 0.6€-0.12-0.42-0.3£-0.31-0.4% 0.6Z 0.03
0.8 0.81-0.1€-0.4€-0.3¢-0.3¢-0.1¢ 0.8¢€ 0.10
0.67 0.2t 0.01-0.4:-0.3¢-0.5¢ 0.6¢ 0.4€-0.26
0.5£-0.4% 0.64-0.38 0.99 0.98-0.69-0.50-0.94
0.7C-0.9C-0.4¢ 0.2€-0.2€-0.07-1.0C-1.0C-1.00
-0.37 0.64 0.6€-0.3¢-0.37-0.4:-0.4z 0.65 0.03
0.8 0.84 0.64-0.4:-0.41-0.47-0.17 0.8€ 0.10
0.7C 0.31-0.4€-0.3€-0.3¢-0.4¢ 0.6€ 0.4€-0.26
0.74 0.4€ 0.35-0.6€-0.2C-0.1¢ 0.6€ 0.51 0.93
0.4% 0.3z 1.0C-0.5(-0.4¢-0.4£-0.3¢ 0.3C-0.12
0.74-0.7¢ 1.00-0.32-0.52-0.4¢€-0.5¢€-0.5€-0.08
0.64-0.6(-0.6C 1.0C-0.32-0.5¢-1.0C-0.5z 0.57
-0.22-0.4% 0.3C 0.34-0.61 0.1z 0.4:-0.65-0.02
0.97-0.7¢ 0.3€ 0.22-0.1C 0.0¢ 0.1€-0.87-0.09
0.9€-0.1¢€-0.12-0.6¢ 0.4z 0.7€-0.6€-0.4€ 0.24

0.37 0.01-0.4C-0.2¢ 0.1 1.0C 0.9z 0.8C 0.9¢ 0.97 0.3z 0.95

0.3€ 0.0€-0.2C-0.34-0.3:-0.6(-0.5(-0.4€-0.11 0.37-0.1€-0.08

0.51 0.4€ 0.61 0.9€ 0.7:-0.61-0.32-0.45-0.1¢ 0.6C 0.8t 0.20
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Appendix VI. Variable sorting for the selection of the appropiate model
Testcase 1.1 Test case 2.1
Models Time steps At min Eicmax Models Time steps At min Eigmax
N1AMT 4448 0.0010 2.0674E-09 N2AMT 4244 0.0010 1.1361E-11
N1AST 4452 0.0010 3.8268E-11 N2AST 4244 0.0010 1.1361E-11
N1AHT 4580 0.0010 1.5123E-14 N2AHT 4266 0.0010 3.5812E-15
N1ASP 4910 0.0010 5.9674E-10 N2AMP 4405 0.0010 1.6821E-10
N1AMP 4910 0.0010 9.8502E-08 N2ASP 4405 0.0010 1.6821E-10
N1AHP 5465 0.0010 6.9864E-15 N2AHP 4647 0.0010 4.6788E-16
Test case 1.2 Test case 2.2
Models Time steps At min Eic max Models Time steps At min Eic max
N1IST 2515 1.5855 1.5964E-10 N2IHT 2026 45575 1.6474E-15
N1IMT 2515 1.5855 1.2341E-08 N2IMT 2026 2.0056 1.7584E-10
N1IHT 2519 1.4269 5.7136E-14 N2IST 2026 2.0056 1.7584E-10
N1ISP 2551 1.7601 9.5124E-10 N2ISP 2064 0.2525 1.2221E-09
N1IMP 2587 1.7596 2.6254E-08 N2IMP 2092 5.2849 1.0521E-09
N1IHP 2662 0.4756 5.0304E-14 N2IHP 2138 1.5855 4.0731E-16
Test case 1.3 Test case 2.3
Models Time steps At min Eig max Models Time steps At min Eic max
N1WMP 1749 1.8366 6.1468E-07 N2WHT 920 2.0188 1.4045E-15
N1WSP 1749 1.8365 5.9060E-10 N2WMT 921 1.3913 2.2682E-10
N1WHP 1764 0.9729 1.5227E-13 N2WST 921 1.3913 2.2682E-10
NIWHT 1773 1.8446 6.6138E-14 N2WMP 931 3.7591 6.4892E-10
N1WST 1788 1.8440 2.4116E-10 N2WSP 931 3.7591 6.4892E-10
N1IWMT 1789 1.8443 3.1986E-08 N2WHP 970 6.9479 3.8489E-16
Test case 3.1 Testcase 4.1
Models Time steps  Atmin Eig max Models Time steps  Atmin Eig max
D3AST 5917 8.6120E-08 1.2738E-10 D4AMP 3656 2.8183E-053.1267E-11
D3AMT 6283 3.9378E-13 1.5880E-07 D4ASP 3656 2.8183E-053.1267E-11
D3AHP 6443 7.7508E-09 4.5190E-16 DAAMT 4021 3.1315E-09 1.3367E-12
D3AHT 6588 8.6120E-08 6.9689E-16 D4AST 4021 3.1315E-091.3367E-12
D3ASP 7549 8.6120E-08 4.7937E-10 DA4AHT 4037 3.1315E-09 1.1568E-15
D3AMP 7590 8.6120E-08 4.5015E-07 D4AHP 4784 2.5365E-064.7762E-16
Test case 3.2 Test case 4.2
Models Time steps  Atmin E;g max Models Time steps  Atmin E;g max
D3IMT 2149 8.8483E-08 8.1613E-08 D4IMP 1974 7.0364E-02 1.9907E-09
D3IHT 2158 1.8681E-04 1.3560E-15 D4ISP 1974 7.0364E-021.9907E-09
D3IST 2171 2.1501E-04 2.8800E-10 D4IMT 2004 7.8182E-04 4.2816E-11
D3ISP 2987 2.1497E-04 1.1051E-09 D4IST 2004 7.8182E-04 4.2816E-11
D3IMP 3153 1.0976E-04 4.9167E-07 D4IHT 2005 7.8182E-04 1.4254E-15
D3IHP 3401 2.3890E-05 8.4976E-16 D4IHP 2052 1.8998E-025.4635E-16
Test case 3.3 Test case 4.3
Models Time steps  Atmin E;g max Models Time steps  Atmin E;g max
D3WMT 1784 1.9287E-05 5.7000E-08 DAWMT 1846 1.38039 1.5213E-10
D3WST 1812 2.4908E-04 2.9426E-10 D4AWST 1846 1.38039 1.5213E-10
D3WHT 1843 1.5233E-04 2.4157E-15 DAWMP 1852 1.70419 1.6635E-09
D3WSP 2606 2.2080E-04 8.5402E-10 D4WSP 1852 1.70419 1.6635E-09
D3WHP 2667 2.2756E-04 1.1216E-15 D4AWHP 1857 1.22243 5.7262E-16
D3WMP 2745 6.1126E-05 6.1152E-07 DAWHT 1857 0.51126 1.2706E-15
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