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Abstract

In this thesis I applied bioinformatics techniques to three open problems
on ncRNA studies: (i) how to compare meaningfully three-dimensional
RNA models; (ii) how to automate the annotation of ncRNA in eukaryotic
genomes in an accurate fashion and (iii) how to detect structural ncRNA
modules using sequence information alone.

I developed two new structural comparison metrics that take into ac-
count the structural specificities of structured ncRNAs: The Deformation
Index (DI) and the the Deformation Profile (DP ). The DP enriches the
Root Mean Square Deviation (RMSD) with base pair prediction accuracy
measurements. The DP provides multi-scale information on the differences
between target and reference models at local, intra and inter-domain scales.
These metrics can be used to evaluate the quality of predicted ncRNA mod-
els and can help to improve structure prediction tools. Following this work
on structural comparison the first ncRNA structure prediction assessment
experiment was developed: RNAPuzzles. Three first rounds of evaluation
with the participation of seven research groups representative of the RNA
structure prediction community were performed.

To answer the need for a fast and reliable ncRNA annotation in the
context of large scale genome sequencing projects (Génolevures and Dikary-
ome projects), I implemented two automatic annotation pipelines, integrat-
ing publicly available tools, for homology and de novo ncRNA search in
genomes. Both pipelines were applied to 15 yeast genomes and 1051 ncRNA
genes were found, corresponding to more than 80% of the expected ncRNAs
(assuming the number of ncRNAs from S. cerevisiae (86) as reference). Ad-
ditionally I identified: (i) several new potential ncRNAs; (ii) several new
synteny relationships between ncRNA loci; and (iii) new examples of ex-
tended structural domains in well known essential ncRNAs. These results
show the feasibility of automatic search for ncRNAs in full genomes and the
utility of such approaches in large genome annotation projects.

Finally, I developed a new algorithm to detect structural RNA mod-
ules in sequences: RMDetect. It was designed to identify 3D structural
modules in RNA sequences. It uses a Bayesian Network to represent the
searched modules and the joint base pair probability estimation to select
candidates. Four modules can be searched for: G-bulges, Kink-turns, C-
loop and Tandem-GAs. In test sequences all of the known modules were
found with a false discovery rate of 0.23. In 1444 publicly available align-
ments 21 yet unreported and 141 known modules were identified. RMDetect
is a step to bridge the gap between sequence analysis and 3D RNA studies.
It can be used in the refinement of RNA 2D structures, the assembly of
RNA 3D models, and the search of structured ncRNAs in genomic data.



Résumé étendu en Français

Introduction

Les acides ribonucléiques (ARN) sont des biopolymères essentiels présents
dans toutes les formes de vie. Jusqu’à très récemment, on pensait que les
ARN étaient presque exclusivement liés à la synthèse des protéines, puisque,
d’un côté, l’ARN messager, l’ARN de transfert et l’ARN ribosomal jouent
un rôle essentiel dans l’expression génétique, et que les ARN nucléaires sont
essentiels pour l’épissage des gènes eucaryotes. Ce point de vue restreint
de l’ARN, en tant que transporteur passif de l’information génétique, a
commencé à changer avec la découverte de ses propriétés catalytiques et de
son rôle de régulateur génétique par le biais de l’interférence génétique. Le
fait que les molécules catalytiques et régulatrices de l’ARN ne codent pas de
protéines – contrairement à l’ARN messager – a conduit à la notion d’“ARN
non codant” (ARNnc) pour désigner de manière générique cette classe de
molécules.

L’ARNnc participe à de nombreuses fonctions cellulaires aussi diverses
que la synthèse des protéines, l’épissage des gènes, l’élongation des télomères,
la régulation de l’expression génique (riboswitches et miARN) ou l’ inacti-
vation des gènes (inactivation des chromosomes), parmi beaucoup d’autres.
Bien que la proportion précise des transcrits fonctionnels dans la cellule soit
encore une question ouverte, il a été montré qu’au moins 93% du génome
humain (et un pourcentage similaire chez la souris et d’autres eucaryotes)
est transcrit. Comme moins de 2% de celui-ci correspond à de la séquence
codante, le nombre potentiel d’ARNnc fonctionnel est vaste, même si l’on
considère une partie de ces transcrits comme le résultat du bruit de tran-
scription. Trouver des gènes d’ARNnc dans des génomes représente un défi
en soi. Les régions non codantes sont souvent mal conservées au niveau de
la séquence, à l’inverse des régions codantes qui présentent pour leur part
une conservation de séquence importante; des substitutions synonymes de
codons et biais de codons, en raison de leur potentiel de codage de protéines.
L’annotation des gènes d’ARNnc exige d’importants efforts humains dans
les phases de recherche et de validation du processus d’annotation. Ainsi,
des outils pour accélérer et simplifier l’effort d’annotation sont indispens-
ables, principalement pour les projets de séquençage génomique à grande

ii
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échelle.

Les molécules d’ARNnc structurées présentent une structure tridimen-
sionnelle formée par des hélices double brin et des régions en simple brin
qui se combinent en une architecture complexe par des interactions à dis-
tance et des empilements d’hélices. La structure tertiaire fait toujours in-
tervenir des appariements non-Watson-Crick entre des nucléotides non con-
tigus de la séquence. Les axes de rotation dans les liaisons covalentes du
squelette sucre-phosphate donnent également une grande flexibilité lors du
repliement. Toutes les combinaisons valides de rotations et de paires de
base, pour une séquence donnée peuvent générer un nombre incalculable
de structures tridimensionnelles potentielles. Dans la quantité de structures
géométriquement possibles, comment détecter celles qui présentent des fonc-
tions biologiques observables? La prédiction de la structure tridimension-
nelle d’ARN est par conséquence un domaine de recherche en expansion dans
lequel plusieurs outils prometteurs, récemment publiés, visent à produire des
modèles tridimensionnels d’ARN à partir d’information de séquences et ceci
de façon plus ou moins automatique. Aujourd’hui, aucun modèle ou outil
de prédiction n’est capable de produire des modèles d’ARN suffisamment
précis par rapport aux structures natives. Ainsi plusieurs questions sont
ouvertes: Qu’est-ce qu’une prédiction de structure biologiquement significa-
tive? Comment évaluer un modèle prédit? Comment savoir si un outil ou
une approche de prédiction est efficace de façon consistante? Ces outils
produisent-ils des échantillonnages de l’espace de tous les repliements sig-
nificatifs? Dans quels scénarios (type de molécule, taille, complexité, . . . ),
réussissent ou échouent-ils ? Une façon pratique de répondre à ces questions
est de comparer systématiquement les modèles prédits avec des structures à
la résolution atomique obtenus par cristallographie rayons X et d’étudier les
similitudes et les différences observées. Avoir des méthodes et des outils ap-
propriés pour évaluer les modèles prédits et comparer les outils de prédiction
est un besoin pressant de ce champ de recherche.

L’étude des structures d’ARNnc révèle de nombreuses sous structures
récurrentes, nommés “modules structuraux”, avec des fonctions structurales
très spécifiques comme la boucle en épingle à cheveux, les tétraboucles, la
boucle “G-bulged”, les motifs en A-mineur ou le “Kink-Turn”. L’ identifica-
tion des modules structuraux donne des indices importants pour découvrir
un ordre derrière les très complexes structures tridimensionnelles d’ARN.

Dans la présente thèse, nous avons appliqué l’approche informatique et
bioinformatique à trois questions ouvertes dans l’étude de l’ARNnc: (i) com-
ment comparer des modèles tridimensionnels d’ARN, (ii) comment automa-
tiser l’annotation de gènes d’ARNnc dans les génomes eucaryotes de façon
aussi précise que possible, (iii) comment détecter des modules structuraux
d’ARN en utilisant uniquement des informations de séquence.
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Comparaison des modèles tridimensionnels d’ARN

La métrique la plus couramment utilisée, pour comparer des structures tridi-
mensionnelles de molécules, tant pour les protéines que pour les ARNnc,
est l’écart quadratique moyen (RMDS). Bien que le RMSD soit simple à
formuler et à calculer, il lui manque une interprétation fonctionnelle claire.
Pour fournir une mesure significative de similarité des structures, la métrique
de comparaison structurale devrait prendre en compte la nature des molécules
comparées et leurs caractéristiques structurales les plus pertinentes. Elle
devrait également fournir des indications sur les caractéristiques qui con-
tribuent ou qui pénalisent la valeur de similarité. Beaucoup de mesures de
comparaison structurale ont été proposées pour les structures des protéines.
Malheureusement, les outils spécifiquement développés pour la comparaison
des protéines ne s’adaptent pas à comparaison de l’ARN et la quantité de
travail développé par la communauté de l’ARN est nettement plus faible.
Une motivation supplémentaire pour rechercher des bonnes métriques de
comparaison est que les outils automatiques de prédiction de structures ont
tendance à produire des centaines voire des milliers de modèles qui sont im-
possibles à analyser manuellement un par un, nécessitant ainsi des méthodes
de comparaison automatique.

Nous avons développé deux nouveaux indicateurs de comparaison struc-
turale qui prennent en compte les spécificités structurales des molécules
d’ARN: l’indice de déformation (ID) et le profil de déformation (PD). L’ID
enrichit le RMSD avec des mesures de précision de la prédiction de paires de
bases. Le PD vise à fournir des informations multi-échelles sur les différences
entre la cible et les modèles prédits au niveau local, intra-domaine et inter-
domaine. Ces métriques peuvent être utilisées pour évaluer les modèles
prédits d’ARN contre les structures d’ARN observées et aider la commu-
nauté de prédiction de structures à évaluer la qualité de leurs modèles et
améliorer ses outils. Suite à notre travail sur la comparaison structurale,
nous avons développé la première expérience d’évaluation de prédiction de
structures d’ARN: RNAPuzzles. Nous avons effectué les trois premières
rondes de l’évaluation de prévisions avec la participation de sept groupes
de recherche représentatifs de la communauté de prédiction de structures
d’ARN. Une poursuite immédiate de ces travaux de comparaison structurale
serait d’analyser comment les mesures ID et PD se comportent dans l’espace
conformationnel de l’ARN. Cette ligne de travail bénéficierait grandement de
nouveaux modèles d’échantillonnage aléatoire de structure d’ARN qui serait
une contribution essentielle à la compréhension théorique de l’espace confor-
mationnel de l’ARN. Après RNAPuzzles, des nouveaux défis de prédiction de
structures devraient être publiés dans un futur proche. L’effort de traitement
et de comparaison de structures sera considérablement simplifié dans ces
prochaines étapes grâce aux développements déjà accomplis. L’amélioration
de la mécanique de fonctionnement de RNAPuzzles, à savoir avec des outils
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d’évaluation meilleurs et plus complets, devrait aussi faire partie de l’évolution
future.

Annotation d’ARNnc

Pour répondre à la nécessité d’un pipeline d’annotation d’ARNnc rapide et
fiable dans le contexte des projets de séquençage génomique de grand enver-
gure, tels que les projets Génolevures et Dikaryome, nous avons mis au point
deux pipelines d’annotation automatique, intégrant des outils disponibles
publiquement, de recherche d’ARNnc par homologie et de novo. Les deux
pipelines ont été appliqués à 15 génomes de levures et ont permis de trou-
ver et d’annoter 1051 gènes d’ARNnc, correspondant à plus de 80% des
ARNnc attendus pour ces génomes si on prend comme référence le nombre
d’ARNnc chez S. cerevisiae (86). En outre, plusieurs nouveaux ARNnc,
encore inconnus chez les Saccharomycotinae, ont été détectés. De plus, nous
avons mis en évidence un ensemble de nouvelles observations sur la synténie
de gènes d’ARNnc et de nouveaux exemples de domaines supplémentaires
dans certains ARNnc essentiels. Les résultats montrent la faisabilité de la
recherche automatique des ARNnc dans les génomes complets et l’utilité
de telles approches dans les grands projets de séquençage et d’annotation
génomique. L’intégration complète, dans le pipeline de développement, de
nouveaux outils tels que ceux de prédiction de gènes d’ARNnc de novo
ainsi que la possibilité de traiter des données provenant d’autres sources,
comme les expériences de séquençage profond, sont les prochains défis à
court terme dans cette ligne de travail. La confirmation expérimentale de
ces observations, qui est au-delà de l’approche bioinformatique, doit être
le prolongement naturel du projet d’annotation. Dans le strict domaine
bioinformatique, le développement de nouvelles approches pour détecter les
gènes d’ARNnc insaisissables tels que la composante ARN de la télomerase
seraient des ajouts utiles à notre pipeline.

Détection de modules structuraux d’ARN

Enfin, j’ai développé un algorithme original pour détecter les modules struc-
turaux d’ARN uniquement à partir des informations de séquence (RMDe-
tect). L’algorithme a été conçu pour identifier les modules structuraux con-
nus dans les séquences simples et dans les alignements multiples en l’absence
de toute autre information. L’algorithme utilise un réseau bayésien pour
la représentation des modules couplé à l’estimation de la probabilité con-
jointe des paires de bases Watson-Crick participant à des modules. Actuelle-
ment, quatre modules peuvent être recherchés: la boucle “G-bulge”, le“Kink
Turn”, la boucle C et la boucle “tandem GA”. Dans des séquences de test
de contrôle, nous avons trouvé l’ensemble des modules connus avec un taux
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de fausse découverte de 0.23. En cherchant les 1444 alignements publique-
ment disponibles, nous avons identifié 21 modules encore non détectés et 141
modules connus. RMDetect est une étape utile pour combler le fossé entre
l’analyse pure de séquences et l’étude structurale de l’ARN. De plus, il peut
être utilisé dans l’affinement des structures 2D d’ARN, dans l’assemblage de
modèles 3D, et dans la recherche et l’annotation de gènes d’ARN structurés
dans les génomes. Nous espérons améliorer l’approche actuelle par l’ajout
de nouveaux modèles structuraux. La recherche de modules structuraux
dans des génomes complets serait la prochaine étape dans cette ligne de
recherche.
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Chapter 1

Introduction

Ribonucleic acids (RNAs) are essential biopolymers present in all forms
of life. Until very recently RNAs were thought to be almost exclusively
related with protein synthesis. The messenger, transfer and ribosomal RNAs
participate in the core pathways of gene expression and the small nuclear
RNAs in the splicing pathway of eukaryotes. This restricted view of RNAs
as passive carriers of genetic information started to change less than 30
years ago with the discovery of the catalytic property of RNAs by Cech and
Altman (Kruger et al., 1982; Guerrier-Takada et al., 1983). It became clear
that RNA was not only a simple intermediate between DNA and proteins.
In fact, RNA shares both characteristics: like DNA, RNA is able to code
genetic information and, like proteins, RNA is able to catalyze chemical
reactions. This double role prompted the “RNA World” theory proposing
that autonomous RNA molecules would have been the precursors of the DNA
and proteins in ancient life forms (Gilbert, 1986). A not less surprising
finding was the gene regulation role of RNA through genetic interference
(Fire et al., 1998). The fact that small RNA sequences could silence genes
by hybridizing with complementary regions of the mRNA genes was a major
perspective change and paved the way for the discovery of a plethora of
RNA mediated regulatory mechanisms (Waters and Storz, 2009; Carthew
and Sontheimer, 2009).

The fact that the newly discovered catalytic and regulatory RNA mol-
ecules do not code for proteins, contrary to the more abundant and well
known mRNAs, led to the term of “non coding RNAs” (ncRNA) as a gen-
eral designation of this class of molecules and this term will be used to
generally refer to this class of molecules here.

Our knowledge of the number and variety of RNA roles in the cell still
continues to grow (Ponting et al., 2009), as well as the number of long
RNAs that are found to be transcribed in a tightly regulated fashion but for
which no function is known (Jung et al., 2010). In reality the total number
of ncRNA genes in either eukaryote or prokaryote genomes is still a rough

1



2 CHAPTER 1. INTRODUCTION

estimate and the discovery of new ncRNA genes as well as of known ncRNAs
in newly sequenced genomes is an active research topic.

Many of the diverse biological functions performed by ncRNAs depend on
its intricate three-dimensional shape and determining the precise structure
of ncRNAs is an important research subject.

It is important to notice that although some ncRNA molecules corre-
spond to self contained structured molecules – like the ribosome, the RNase
P, the tRNAs, . . . – many other ncRNAs correspond to parts of larger tran-
scripts and, in some cases, like the riboswitches, co-occur with protein coding
regions in the same transcript.

The work presented in this thesis is at the intersection of the two re-
search topics described above: ncRNA gene discovery and ncRNA structure
determination.

This first chapter presents a short introduction on ncRNA functions
and structure emphasizing the ncRNA families more relevant to this thesis.
The following chapters describe, each, a self-contained part of the devel-
oped work. The development of a set of metrics for three-dimensional RNA
structures comparison (Chapter 2) and the application of these metrics in a
newly developed RNA structure prediction benchmark: RNAPuzzles (Chap-
ter 3). The implementation of an annotation pipeline for ncRNA genes in
yeast (Chapter 4) and the application of this pipeline to the annotation of
yeast genomes from the Génolevure’s consortium (Chapter 5). Finally, in a
first attempt to close the gap between pure sequence analysis and structural
RNA studies, I developed an algorithm for structural modules detection
based on sequence information (Chapter 6). Finally, Chapter 7 presents a
general conclusion and some future perspectives for future work.

1.1 RNA Structure

RNAs consist of long chains made of four nucleotides (adenine, cytosine,
guanine and uracil) joined along a sugar phosphate backbone formed by co-
valent bonds between the O3’ atom of the ribose moiety and the P atom
of the phosphate group of the subsequent nucleotide. RNA is chemically
very close to deoxyribonucleic acid (DNA). The differences between RNA
and DNA are: The additional oxygen atom O2’ on the sugar group (ribose
instead of deoxyribose) and the presence of the uracil instead of the thymine
nucleotide (Saenger, 1984). Figure 1.1 illustrates some of the concepts dis-
cussed in this section.

The chemical differences between RNA and DNA are accompanied by
large differences in properties, structure and function. Contrary to DNA
which is present in the cell nucleus1 as a, chemically stable, long (from a
few thousands to many millions of base pairs) double stranded helix, RNA

1In eukaryotic cells.
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is present in all cellular compartments in the form of short or very long
(from tens to several thousands of bases) single stranded molecule that can
fold on itself forming shorter helical regions2 organized in intricate three-
dimensional architectures.

Each of the four nucleobases that constitute a RNA chain consists of one
(for the pyrimidines, cytosine and uracil) or two (for the purines, adenine
and guanine) planar cyclic rings their three edges exposed for base-base
interaction through hydrogen bonds: the Watson-Crick edge, the Sugar edge
and the Hoogsteen edge.

RNA helices are formed by stacks of G=C, A–U and (wobble) G◦U base
pairs commonly known as Watson-Crick (WC) or canonical base pairs as
they involve the WC edges of the intervening bases. Base pairs involving
other combinations of edges are also common and are generically known as
non Watson-Crick (non WC) or non canonical pairs (see Appendix B). Long
range base-base interactions through non WC base pairs play key roles in
RNA architecture as they help to stabilize the three-dimensional RNA fold.

On the RNA backbone, two contiguous phosphate groups are connected
through six covalent bonds between sugar atoms (5’ –P–O5’–C5’–C4’–C3’–
O3’–P– 3’). Each of these covalent bonds establishes a torsion angle pivot
which allows the full rotation of the connected atoms (except for the C4’–
C3’ bond which allows only a partial rotation that changes the puckering
of the sugar ring). The freedom of rotation of these six bonds confers a
great flexibility to the backbone and contributes to the huge conformational
space of possible RNA structures. This conformational space, however, is
constrained by some well known phenomena:

• Backbone conformers: It has been observed that backbone torsion
angles tend to occupy some discrete positions of the potentially in-
finite angle space (Yathindra and Sundaralingam, 1973). Recently,
Richardson and co-authors (Richardson et al., 2008) published a set
of 46 torsion angle combinations (conformers) as the most commonly
observed torsion angle values clusters.

• Hydrogen bonds: Hydrogen bonds between nucleotide groups are
responsible for base pairing. The length and directionality of H-bonds
are one of the main constraints for RNA base pairing.

• Base stacking: Weaker, but much more numerous, than H-bonds,
Van der Waals interactions between the aromatic rings of the nu-
cleotides contribute to the stability of helices and are often observed
in extra helical stacking of either contiguous nucleotides (as in single
stranded regions) or long range staking interactions.

2The geometry of the RNA and DNA helices is, generally, not the same. Naturally
occurring DNA normally presents the B-DNA geometry, while naturally occurring RNA
helices present the A-DNA geometry (Saenger, 1984).
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The RNA structure description is usually systematized according to an
hierarchical model that sets up three structural levels:

• Primary structure: The linear sequence of nucleotides as they are
transcribed from the template DNA.

• Secondary structure: The set of Watson-Crick base pairs forming
helical regions connected by single stranded regions.

• Tertiary structure: The three-dimensional structure of the RNA
molecule, which comprises the set of non Watson-Crick base pairs, the
co-axial stacking of helices, and the architecture of the N-way helical
junctions.

In this model each level describes a specific degree of structural complex-
ity and reorganizes the features at the level immediately below at a higher
dimension – e.g. the secondary structure organizes the complementary se-
quences described in the primary structure in helical regions and the tertiary
structure organizes the relative position of helices in space.

The conceptual separation between secondary and tertiary structures is
supported by a number of observations: The secondary structure prediction
is a more tractable problem than tertiary structure prediction; Covariation
analysis of sequence alignments allows the prediction of secondary structure
elements; The data provided by experimental techniques, such as chemical
probing or UV-melting, can be interpreted as stemming either from sec-
ondary structure or tertiary structure depending on the conditions (presence
or absence of divalent ions, temperature, . . . ).

1.2 The RNA Folding Problem

Most of the RNA structure prediction tools (with few exceptions) (Xayaphoum-
mine et al., 2005) deal exclusively with the “final” or “native” conformation
of the RNA molecule. They assume that the “native” conformation rep-
resents a thermodynamic equilibrium of the molecule corresponding to the
most energetically favorable folding state (McCaskill, 1990).

Currently, the most reliable way of determining the structure of biomole-
cules at atomic scale is through X-ray crystallography. Although invaluable
for the information it conveys and the insight it provides about the molec-
ular function, a crystallographic structure of an RNA molecule remains a
static snapshot of a dynamic reality and provides little information on how
the newly transcribed, linear chain of nucleotides folds into a fully functional
3D architecture.

The kinetic perspective of the RNA folding assumes that a linear RNA
transcript will follow several pathways on the conformational space but also
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Figure 1.1: RNA structural hierarchy. (A) Primary structure: sequence.
(B) Secondary structure: helical and single stranded regions. (C) Tertiary
structure: three-dimensional coordinates of atoms (PDB: 3JQ4). In crystal-
lographic model are depicted some structural components: (i) A non WC
base pair (A◦G sugar-sugar in trans); (ii) Three stacked bases; (iii) The
backbone torsion angles and (iv) An helical region.
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that the final state depends on the speed of transcription compared with
the folding rate. The thermodynamic perspective assumes that the more
energetically favorable conformations will be always proportionally more
frequently occupied. At present there is no complete model of RNA folding
which could predict either the folding pathways or the equilibrium confor-
mations, but it is well known that the native conformation observed through
crystallography is often one among many possible conformations and that
many factors affect the folding of an RNA model such as:

• Ions: The electrostatic environment induced by positively charged
ions plays a major role in RNA folding by counteracting the repulsive
force of the negatively charged backbone. Monovalent ions only are
required to stabilize the secondary structure while divalent ions, like
magnesium, are necessary for stabilizing the three-dimensional struc-
ture.

• Co-transcriptional folding: RNA folds at a higher rate than it is
transcribed and the emerging strand of RNA can start immediately to
establish base pair interactions. Thus, all factors affecting transcrip-
tion order, speed, pauses. . . will have a potential effect on the final
structure (Wong et al., 2007; Nechooshtan et al., 2009).

• Induced fit: In several cases of RNA molecules, with catalytic ac-
tivity, the active conformation is achieved by structural adjustments
induced by conformational changes in domains distant from the active
site (Martick and Scott, 2006; Toor et al., 2008)

• Ligands: The presence of ligands can drastically change the final
outcame of the folding. Riboswitches are good examples of alternative
conformations arising depending on the presence of small metabolites
(Breaker, 2008).

• Proteins and chaperones: The presence of interacting proteins dur-
ing the folding modulates the folding process. For example, in the
ribosome the RNA bases that firstly interact with proteins are those
involved in three way junctions organization(Adilakshmi et al., 2008).
Additionally, several RNA chaperones are known to unfold and target
to degradation misfolded RNAs.

• Quasi hierarchical folding: Most of the folding models assume a
strict hierarchical folding in which secondary structure folds first and
tertiary interactions form after that to organize the secondary struc-
tures in the final three-dimensional shape (Tinoco and Bustamante,
1999). New data suggests that tertiary interactions participate early
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in the folding process and guides the folding process along the confor-
mational space (Greenleaf et al., 2008; Noeske et al., 2007; Chauhan
and Woodson, 2008).

In (Cruz and Westhof, 2009) we present an overview of the many factors
affecting RNA folding and the current theoretical models and experimental
techniques used to approach the problem. This review can be found at
section 1.5.

1.3 Non Coding RNAs

As referred in the introduction, ncRNAs are generically defined as RNA ele-
ments that do not code for proteins. This apophatic designation of ncRNA,
naming it not for what it is, but for what it is not, is a disturbing choice
and, in this case, it is also reductionist – ncRNAs do not constitute an
homogeneous group of molecules but a rather diverse set of families of dif-
ferent functions, sizes and structures – and somehow misleading – certain
ncRNAs are not complete molecules by themselves but are parts of coding
RNA molecules (mRNAs) outside the coding sequence (5’ and 3’ UTRs)
usually with regulatory functions such as the riboswitches (Breaker, 2008).
In this work when I refer to ncRNAs I mean all RNA molecules or part of
molecules that do not code for proteins and which function depends on its
three-dimensional structure.

The big number of annotated ncRNA families (Gardner et al., 2009) and
their very diverse functions make it difficult to present a complete picture
of the role of ncRNAs in the cell. In this section we enumerate, from the
currently known ncRNAs families, those with particular importance for our
work. Figure 1.2 represents the classic “Central Dogma of Molecular Biol-
ogy” with the respective ncRNA families roles annotated and Table 1.1 lists
these families with a short description.

1.4 ncRNA Evolution

Part of the difficulty in the bioinformatics study of ncRNAs is due to the
particular evolutionary constraints of ncRNA molecules and their effects on
ncRNA sequences. Non coding structural RNAs are subject to structural
constraints characterized by:

• Ability to sustain compensatory mutations in helical regions by the
permutation between AU, CG, GC, GU, UA and UG base pairs.
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Name1 Occur.2 Function3

rRNA Ribosomal RNA all Protein synthesis in all cellular life
forms.

tRNA Transfer RNA all Transport of amino acids to protein
synthesis in the ribosome.

RNase P Ribonuclease P all tRNA maturation by cleaving the 5’
leader sequence of the pre tRNA.

RNase MRP Ribonuclease mi-
tochondrial RNA
processing

E rRNA maturation by cleaving the
pre rRNA. Initiation of mitochon-
drial DNA replication.

snRNA Small nuclear
RNA

E Participate in the spliceosome com-
plex.

snoRNA Small nucleolar
RNA

E rRNA maturation through position
specific metilation (C/D Box) and
pseudouridylation (H/ACA box).

Group I and II introns all Self splicing ribozymes. Mobile el-
ements with no known biological
function in the host.

Riboswitches all Gene expression regulation by tran-
scription, translation and splicing
modulation through ligand recogni-
tion.

TLC RNA component
of Telomerase

E Elongation of telomeres.

Table 1.1: List of ncRNA families. This table displays the most relevant
ncRNA families to our work. A generally complete and updated list of ncR-
NAs can be found in (Gardner et al., 2009).1 Name and current abbreviation
of the ncRNA family. 2 Indicates if the family is observed in eukaryotes (E)
or in all domains of life (all). 3 Known function of the family.
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Figure 1.2: The major roles of ncRNAs. Freely inspired from:
http://en.wikipedia.org/wiki/Non-coding RNA

• Strong sequence conservation in short regions that play the role of
guide sequences (e.g. snoRNAs). These regions tend to be conserved
as they need to recognize the target sequence by sequence complemen-
tarity.

• Strong conservation in very short regions important for RNA-protein
contacts.

• Ability to sustain large insertions in peripheral regions with small
structural impact on the catalytic core of the molecule.

Figure 1.3 displays some examples of the evolutionary restrictions that
constrain ncRNAs observed in some highly conserved ncRNA molecules in
hemyascomycetous yeasts.

The fact that many sequences can assume conformations that are com-
patible with the structural and functional constraints of native ncRNA
(Schultes and Bartel, 2000) suggests a possible “sequence neutrality” that
allows a faster evolution in sequence space. The telomerase ncRNA is an ex-
treme example of it. Figure 1.4 presents the histogram of pairwise sequence
identities between 24 telomerase RNAs from closely related ciliates genes.
It is striking that an essential gene occurring in all eukaryotes with, it is
believed, the same function, presents a mean pair-wise sequence identity of
only 54%, i.e., way beyond the capabilities of any sequence alignment tool.
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Figure 1.3: ncRNAs evolutionary constraints. Conservation profile of five
snRNAs from 20 yeast species. Blue curves indicate sequence conserva-
tion measured as the entropy of the alignment column. Colored horizontal
bars indicate regions responsible for inter molecular interaction with other
ncRNAs (red), proteins (green) or introns (orange). Higher conservation is
observed in regions involved in intermolecular interaction, with significant
sequence variation outside these regions. Large indels are found mainly in
Saccharomyces. Some of these indels, like those present in the U1 variable
regions, are not essential for yeast survival. This conservation pattern is
evidence for a noticeable sequence flexibility of ncRNAs: the positions not
involved in intermolecular interactions are allowed to change drastically as
long as structural features (mainly helical domains) are preserved.
Figure adapted from:
Cruz JA, Westhof E. Evolution of RNA Structure and Sequence in Hemias-
comycetes. Darwin09 – Trends in Complex Systems, November 23th-27th,
2009, Palma de Mallorca, Spain
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Figure 1.4: Telomerase ncRNA conservation. Histogram of the sequence
identities of 276 pairs of 24 ciliate Telomerase ncRNA genes.
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1.5 Article – The Dynamic Landscapes of RNA
Architecture

The review referred in section 1.2 was published in the following article:
Cruz, J. A. and Westhof, E. (2009). The Dynamic Landscapes of RNA

Architecture. Cell 136, 604-609.
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Although only 2% of the human genome 
codes for proteins, it is now realized that 
almost all of the genome is transcribed 
and new biological functions for RNA 
transcripts are frequently being discov-
ered (Amaral et al., 2008). The biological 
roles performed by noncoding RNAs (see 
Review by C.P. Ponting, P.L. Oliver, and 
W. Reik in this issue of Cell) depend on 
the native three-dimensional structures 
that they form, both by themselves and 
in complexes with ligands and proteins. 
Most of our current knowledge about 
RNA structures comes from X-ray crystal-
lography or nuclear magnetic resonance 
(NMR). Although these techniques reveal 
snapshots of a dynamic reality, they con-
vey little information about the steps taken 
by a linear chain of nucleotides to fold into 
complex and intricate three-dimensional 
arrangements. Beginning to fill this gap 
are increasingly sophisticated biophysi-
cal tools, such as single-molecule optical 
traps, time-resolved fluorescent resonance 
energy transfer (FRET), and hydroxyl radi-
cal footprinting. With these tools, it is pos-
sible to monitor conformational changes 
undergone by RNA molecules during their 
folding and during assembly of ribonu-
cleoproteins (RNPs). Here, we examine 
our present understanding of RNA archi-
tecture and RNP assembly, which is built 
upon a foundation of static structures, in 
the light of the insights gained through 
analysis with biophysical tools.

RNA Architecture Is Modular and 
Hierarchical
Three-dimensional structures reveal that 
RNAs have a hierarchical organization 
in which secondary structural elements, 

such as double-stranded helices, hair-
pins, and single-stranded loops, are 
connected by tertiary interactions. 
Although double-stranded helices are 
maintained by Watson-Crick base pairs 
and require only monovalent ions, the 
tertiary contacts are dominated by non-
Watson-Crick base pairs and generally 
require the presence of divalent ions, 
especially magnesium ions (Tinoco and 
Bustamante, 1999).

There are also many recurrent struc-
tural assemblies that can best be 
described as modules given that they 
have only a minor dependence on the 
surrounding sequences or contacts. 
Such modules formed by non-Watson-
Crick interactions organize internal loops 
or helical junctions and are found embed-
ded within or between regular helices. 
Some of the most frequent modules are 
the sarcin-ricin loop, the K-turn, or the 
C-loop. Although they are often associ-
ated with a similar structural role (a kink 
in a helical domain or variations in helical 
twist), they generally bind to a great vari-
ety of ligands or proteins (Lescoute and 
Westhof, 2006).

To begin, we describe some of the 
static features of RNA assembly as 
deduced from folded architectures. They 
reveal complex networks of interactions, 
most of which are weak, that coopera-
tively stabilize the fold.

RNA-RNA Self-Assembly Motifs
RNA architecture is dominated by con-
tinuous base stacking leading to co-axial 
stacks of helical domains packed paral-
lel or orthogonal to one another as beau-
tifully displayed by the recent structure 

of a group II self-splicing intron (Toor et 
al., 2008) (Figure 1). The pack of stacks 
is maintained by an intricate network of 
contacts, which are either further Wat-
son-Crick base pairs (as in kissing loops 
or pseudoknots) or non-Watson-Crick 
pairs (Lescoute and Westhof, 2006). 
The latter belong overwhelmingly to the 
A-minor interactions in which two con-
secutive adenine nucleotides interact via 
their sugar edges with the sugar edges 
of Watson-Crick paired nucleotides. The 
sequence specificities of these contacts 
vary from complete absence (as in ribose 
zippers) to exquisitely precise contacts 
(such as those between a GAAA tetra-
loop and an 11 nt motif). The lack of a 
strong link between specific sequences 
and many of the forms of A-minor inter-
actions (meaning that sequence varia-
tions are neutral for RNA-RNA interac-
tions) imply that further constraints must 
exist to guarantee specific and native 
folding of structured RNAs. This begs 
the question—how is specificity of fold-
ing achieved?

The Central Role of Junctions in 
RNA Architecture
Helical junctions are the point of con-
nection between a group of helical seg-
ments. They are particularly important 
for RNA folding given their role in pro-
moting the correct co-axial stacking of 
helical domains and thus the correct 
positioning in space of the RNA-RNA 
assembly motifs (Lescoute and Westhof, 
2006). Junctions are often organized 
by sets of non-Watson-Crick pairs (for 
instance a sarcin-ricin module) in many 
structured RNAs including ribosomal 

The Dynamic Landscapes of RNA 
Architecture
José Almeida Cruz1 and Eric Westhof1,*
1Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, 
France
*Correspondence: e.westhof@ibmc.u-strasbg.fr
DOI 10.1016/j.cell.2009.02.003

A wealth of information on RNA folding and ribonucleoprotein assembly has emerged from analyses 
of structures and from the use of innovative biophysical tools. Although integrating data obtained 
from static structures with dynamic measurements presents major challenges, such efforts are 
opening new vistas on the RNA folding landscape.
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RNAs. Junctions allow for conforma-
tional diversity that can be modulated by 
either RNA-RNA or RNA-ligand interac-
tions. The hammerhead ribozyme pro-
vides a clear illustration of this trait. Its 
active site consists of a three-way helical 
junction containing a central core with 15 
highly conserved nucleotides, which are 
essential for catalytic activity (see Essay 
by T. Cech in this issue of Cell). Its activ-
ity, however, is strongly dependent on 
loop-bulge or loop-loop tertiary interac-
tions in nonconserved regions far away 
from the active site (Martick and Scott, 
2006). These long-range tertiary interac-
tions stabilize the active conformation 
of the junction positioning the relevant 
nucleotides in the exact positions for 
catalysis. Likewise, in riboswitches, heli-
cal junctions often form the binding site 
for the ligand that regulates its activity 

(Montange and Batey, 2008). In the 30S 
ribosome, the primary assembly proteins 
(S4, S15, and S7) bind to key junctions 
of the 16S ribosomal RNA (16S rRNA) 
(Brodersen et al., 2002), which are pre-
organized by sets of non-Watson-Crick 
base pairs.

Preorganization and Quasi-
hierarchical Folding
Compared to tertiary interactions, base 
stacking interactions and Watson-Crick 
base pairs have a greater contribution to 
the energetic stability of RNA structures. 
This difference in relative contribution 
underlies the hierarchical model for RNA 
architecture in which preorganized sec-
ondary structural domains fold indepen-
dently and simultaneously in the initial 
stage of folding, followed by the forma-
tion of tertiary interactions (Tinoco and 

Bustamante, 1999). However, it is now 
appreciated that the hierarchical view 
of folding is a first-order approximation 
in that tertiary structure formation can 
also lead to secondary structure rear-
rangements or precede formation of 
a helical domain as recently shown for 
the adenine riboswitch (Greenleaf et 
al., 2008; Noeske et al., 2007). Further-
more, data from time-resolved hydroxyl 
radical footprinting have shown that the 
overall folding of group I introns relies 
strongly on specific tertiary interactions 
that assist in the formation of native-
like intermediate structures that rapidly 
fold into the native conformation. Sin-
gle mutations affecting the interaction 
between a GAAA tetraloop and an 11 nt 
motif alter folding speed and accuracy 
as they produce non-native intermediate 
structures prone to becoming trapped 

Figure 1. Bridging the 2D and 3D Worlds
Architecture of the self-spliced product of a group II intron ribozyme (Toor et al., 2008; PDB code 3BWP). (A) RNA compaction occurs through helical pack-
ing. (B) A conventional representation of the secondary structure indicating the co-axial stacks of helices and the long-range tertiary contacts through either 
Watson-Crick base pairs, as in the α−α′ loop-loop interaction, or non-Watson-Crick base pairs, as in the θ-θ′ GNRA tetraloop/helix contact. In (A) and (B), the 
catalytically active helix is shown in red. (C) The tertiary contacts are represented on a simplified 3D representation in the same orientation as in (A).
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in metastable conformations (Chauhan 
and Woodson, 2008). Thus, when ter-
tiary interactions form cooperatively with 
helices, kinetic traps, which can lead to 
metastable conformations, are more 
easily avoided. In this way, quasi-hier-
archical folding guides an RNA through 
the conformational space into the native 
conformation. However, in addition to 
the internal RNA interaction networks, 

ligand or protein binding leads to exter-
nal interaction networks that contribute 
to the final RNA structure.
Protein Binding
A recent examination of assembly of 
the 30S ribosome in vitro using time-
resolved X-ray hydroxyl radical footprint-
ing (Adilakshmi et al., 2008) led to the 
following conclusions (Figure 2): (1) the 
three main domains fold simultaneously 

and autonomously; (2) in agreement with 
pulse-chase experiments using quanti-
tative mass spectrometry (Talkington et 
al., 2005), the primary binding proteins 
bind very early in the folding process; (3) 
assembly is nucleated at various loca-
tions of the 16S rRNA secondary struc-
ture at the same time, leading to parallel 
routes of folding to the native fold; (4) and 
finally, the binding sites for protein on the 

Figure 2. Tracking the Dynamics of Folding
(A) (Left) A standard representation of a part of the secondary structure of E. coli 16S ribosomal RNA showing the co-axial stacking. Only helices h28 to h30 and 
h41 to h43 are represented. (Right) A three-dimensional view of the same elements with colors corresponding to the co-axial stacks (PDB code 1FJG). 
(B) The local 16S tertiary interaction network, which incorporates co-axial stacking and non-Watson-Crick contacts (Lescoute and Westhof, 2006). The nucle-
otide protection data of E. coli 16S rRNA, obtained by time-resolved X-ray hydroxyl radical footprinting (Adilakshmi et al., 2008), are superimposed. The protec-
tion rate of bases is indicated by the color code: bases with higher protection rate form tertiary RNA-RNA or protein-RNA interactions first. Stars and boldface 
nucleotides represent the binding sites of the protein S7. The code for the non-Watson-Crick pairs is as follows: Watson-Crick edge, circle; Hoogsteen edge, 
square; sugar edge, triangle. The symbols are darkened when the two nucleotides approach in the trans orientation. 
(C) The three-dimensional representation of the 16S rRNA backbone with S7 protein (yellow) (PDB code 1FJG).
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RNA are not protected at the same rates. 
Those protected fastest belong to sets of 
non-Watson-Crick base pairs that orga-
nize helical junctions, whereas those 
protected more slowly are the result of 
slow reorganization and induced fit of 
the RNA-protein complexes (Figure 2). 
The assembly of the Tetrahymena telom-
erase RNP, which is induced by p65 
binding to an evolutionarily conserved 
GA bulge, is also hierarchical, as shown 
by a single-molecule FRET approach 
(Stone et al., 2007).
Ligand Binding
Riboswitches, regions of mRNAs respon-
sible for gene regulation in bacteria, 
plants, and fungi, are able to change 
conformation in the presence of specific 
small metabolites (see Review by L.S. 
Waters and G. Storz in this issue of Cell). 
Metabolite binding can repress gene 
expression either by folding the riboswitch 
with a transcription termination structure 
or by sequestering the Shine-Dalgarno 
translation initiation sequence (Breaker, 
2008). Alternatively, the presence of the 
metabolite can lead to activation of tran-
scription (by formation of an antitermina-
tor structure) or initiate translation (by 
releasing the Shine-Dalgarno region). 
Riboswitches prefold into a ligand rec-
ognition domain that typically forms 
around a multihelical junction. In one 
class of riboswitches (which includes 
purine, glmS, and SAM-II), ligand bind-
ing to the pocket stabilizes the fold. 
Ligand binding induces mainly local 
adjustments to the prefolded confor-
mation. NMR spectroscopy and X-ray 
experiments show that both free and 
ligand-bound riboswitches share heli-
cal domains and even tertiary loop-loop 
interactions. The ligand-free riboswitch, 
however, has a dynamic and unstruc-
tured binding site (Noeske et al., 2007). 
In a second class of riboswitches (which 
includes TPP, SAM-I, and M-Box), the 
ligand brings together two domains of 
the binding pocket that are far apart in 
the preorganized structure (Montange 
and Batey, 2008). The above examples 
show that hierarchical folding is far from 
being a straightforward and general 
model applicable to any length RNA and 
at all timescales. Several recent papers 
convey the diversity in folding processes 
noting that hierarchical folding can differ 
in folding speed, specificity of the initial 

tertiary assembly, existence of misfolded 
intermediates, and occurrence of local 
rearrangements of the native structure 
(Russell et al., 2006; Pereira et al., 2008; 
Waldsich and Pyle, 2008).

Induced Fit and Catalysis
Most structures of RNP complexes reveal 
that recognition for the RNA component 
involves an induced fit. RNP complexes 
display high cooperativity in contacts 
and mutual induced fits between the 
components, much of which is not seen 
in either the isolated components or in 
partially assembled complexes. Similarly, 
in catalytic RNAs, loop-loop interactions 
between peripheral domains produce 
local conformational rearrangements in 
the active site, thereby exerting a mas-
sive influence on catalytic activities and 
on the requirement of Mg2+ ions for activ-
ity. This is exemplified by the recent crys-
tal structures of hammerhead ribozymes 
(Martick and Scott, 2006). The recent 
crystal structure of a group II intron frag-
ment (Toor et al., 2008) displays a distor-
tion in the helical domain constituting the 
active site that is induced by the close 
packing of neighboring interconnected 
helices (Figure 1). Such structural distor-
tion and stabilization of local networks 
propagated at a distance by multiple 
tertiary contacts between RNA domains 
are far beyond the reach of computa-
tional simulations currently available.

Coupling between Electrostatic and 
Architectural Hierarchies
RNA molecules are very negatively 
charged and thus their assembly is 
strongly coupled to the electrostatic 
environment. The majority of folding 
data have been obtained by in vitro 
experiments, which are affected by ionic 
and temperature conditions. Cations 
promote folding by creating an ionic 
atmosphere around the RNA molecule 
that counteracts the repulsive force of 
the negatively charged backbone and 
allows helix packing. In addition to this 
nonspecific effect on folding, cations 
also have specific roles, such as bind-
ing directly after partial dehydration to 
particular pockets of the structure. Dif-
ferences in ion types and in ionic con-
centrations in vitro can drastically affect 
folding speed and rates of misfolding, 
suggesting that the energy landscape 

of folding is rugged, with many possible 
pathways (and kinetic traps) on the way 
to the final fold (Chauhan and Woodson, 
2008). As discussed above, in vitro fold-
ing is very susceptible to misfolding due 
to the high energy content of the helical 
elements as observed recently by single-
molecule unfolding experiments (Wood-
side et al., 2008). Starting from folded 
RNAs, pulling leads to the breakdown of 
tertiary structures followed by unfolding 
of the helices (Greenleaf et al., 2008). In 
contrast, with high Mg2+ concentration 
and high temperature, a group II intron 
folds after a slow step into on-pathway 
intermediate states leading rapidly to the 
native conformation (Waldsich and Pyle, 
2008; Steiner et al., 2008). During in vivo 
folding, the coupling between electro-
statics and architecture is monitored by 
the polymerization process itself and by 
binding of protein factors. In vitro, higher 
ionic concentrations can compensate for 
the lack of in vivo folding factors.

Cotranscriptional Folding
Because the folding of RNA helices is 
2–3 orders of magnitude faster than the 
rate of transcription, base-base recogni-
tion takes place as soon as the emerging 
strand of RNA reaches sufficient length 
to allow folding. Transcription speed, 
modulated by the elongation speed of 
RNA polymerase and sequence-specific 
pauses, can thus influence the RNA 
folding dynamics in diverse ways. The 
early transcribed regions can start to 
fold, potentially privileging locally stable 
structures and competing with more 
stable global structures that would form 
with a longer transcript. Thus, transcrip-
tion speed can drastically affect the pro-
pensity of group I introns to fold properly 
or misfold (Jackson et al., 2006). Poly-
merase pausing is important for efficient 
folding of some noncoding RNAs in E. 
coli (such as RNase P, signal recognition 
particle [SRP], and transfer-messenger 
RNA [tmRNA]) by allowing for tempo-
rary sequestration of non-native helices 
that late in the transcription process will 
form the native structure more efficiently 
(Wong et al., 2007). Force-dependent 
kinetic measurements using single-
molecule techniques beautifully dem-
onstrate the multiple pathways present 
in transcription termination by bacterial 
RNA polymerase. They show how tran-



608 Cell 136, February 20, 2009 ©2009 Elsevier Inc.

scription termination is fine tuned by 
energetic competition between anti-
termination hairpin formation and clo-
sure, alternative pairing with upstream 
sequence, and the stability of the DNA-
RNA hybrid (Larson, et al., 2008). In the 
case of the adenine riboswitch, FRET 
experiments show that the ligand binds 
the riboswitch after the transcription of 
the binding domain but before the com-
plete transcription of the expression 
platform, highlighting the dependence 
on the order of transcription (Lemay et 
al., 2006). In the flavin mononucleotide 
(FMN) riboswitch the ligand concentra-
tion necessary to switch off transcription 
is higher than the apparent dissociation 
constant. If the FMN concentration is 
not sufficiently high, transcription will be 
completed before ligand binding reaches 
thermodynamic equilibrium (Wickiser et 
al., 2005). This last observation suggests 
ways by which evolution can fine tune 
responses to a given concentration of a 
metabolite by changing the binding affin-
ity (through sequence variations) or by 
changing transcription speed (Breaker, 
2008).

RNA Chaperones
Beyond the evidence concerning cotran-
scriptional folding, many other observa-
tions can only be explained by posttran-
scriptional effects on RNA conformation. 
Hairpin ribozymes consist of four helices 
H1 to H4. Mahen et al. (2005) inserted 
complementary sequences that pre-
vented catalysis by impeding the for-
mation of H1 in the 5′ and 3′ ends of 
the ribozyme, obtaining two variants of 
the molecule. In vitro experiments have 
shown that catalytic activity of the 3′-end 
variant is less impaired than that of the 
5′-end variant. This was expected given 
that helix H1, which is transcribed first, 
has time to fold in the case of the 3′-end 
variant but not in the 5′-end variant. Sur-
prisingly, in vivo, both variants lose the 
ability to self-cleave. This result strongly 
suggests that cotranscriptional folding is 
not sufficient for guaranteeing native fold-
ing and, thus, that cellular factors affect 
in vivo folding. One mechanism could be 
the ability to recruit proteins participat-
ing in folding during or after transcription 
(Mahen et al., 2005). RNA chaperone 
activity is generally understood as result-
ing from nonspecific unfolding mecha-

nisms acting on the folded/misfolded 
equilibria, thereby promoting the native 
structures. Recently, Bhaskaran and 
Russell (2007) showed that the CYT-19 
protein, a DExD/H-box helicase, unfolds 
both native and misfolded helices of the 
group I intron ribozyme of Tetrahymena 
thermophila but has a preference for less 
stable structures lacking tertiary interac-
tions.

Folding Robustness and Evolvability
The explicit relations between sequence, 
structure, and function make the study 
of RNA a source of insights into under-
standing mutational robustness in bio-
logical macromolecules, defined as the 
ability to maintain structure or function 
upon mutation (Wagner, 2008). For struc-
tured RNAs, the most obvious way muta-
tions can affect function is by provoking 
alterations in the native structure or in 
its stability. Due to compensatory muta-
tions and base-pair isostericity (struc-
tural similarity), RNA molecules can sus-
tain a fair number of mutations without 
dramatic variation to the structure or loss 
of function (Leontis et al., 2002). Another, 
more subtle way by which mutations can 
affect RNA function is by changing the 
folding pathways and the local helical 
stabilities (Larson, et al., 2008; Wood-
side et al., 2008). Multiple sequence 
alignments of homologous RNAs yield a 
rich display of the sequence space or the 
range of variation accessible to a family 
of structured RNAs. It is, however, strik-
ing to observe in structured RNAs that 
invariant residues are infrequent. This 
observation, together with the frequent 
structural neutrality of RNA-RNA interac-
tions, offers a solid basis for understand-
ing the robustness of RNA architecture. 
Further, the observed robustness of RNA 
molecules is compatible with their abil-
ity to evolve in form and function. Recent 
theoretical work on RNA secondary 
structures explains this apparent contra-
diction by exploring the concept of neu-
tral networks in sequence space. A neu-
tral network connects sequences with 
similar structure and purportedly similar 
function. A molecule that is structurally 
robust will have a larger neutral net-
work, increasing the number of reach-
able neighbor structures from other 
networks (Wagner, 2008). This model is 
in accordance with experimental results 

obtained by Schultes and Bartel (2000) 
who artificially evolved two ribozymes 
with distinct sequences and functions, 
one single mutation at a time, until con-
verging into a unique common sequence 
at the frontier of both neutral networks. 
This experiment shows, at least in vitro, 
that two functionally distinct molecules 
can be separated by only a handful of 
mutations such that a small number of 
evolutionary events are enough to pro-
duce distinct functions (Schultes and 
Bartel, 2000).

Predictions of Folding Models and 
Pathways
The many factors involved in RNA folding 
confound our ability to make predictions 
for how the linear nucleotide chain of an 
RNA molecule achieves its native struc-
ture and which (and how many) inter-
mediate conformations exist. The early 
secondary structure prediction tools 
were based on maximizing the number 
of stacked Watson-Crick base pairs 
and the assumption that the energy of 
tertiary interactions could be treated as 
perturbations (Tinoco and Bustamante, 
1999). However, those algorithms can-
not easily take into account cotranscrip-
tional constraints to the folding process 
but, rather, produce a set of candidate 
native structures without providing any 
insight regarding the folding pathways. 
Kinetic folding is an alternative approach 
that simulates the folding process, 
either directly or indirectly, reproduc-
ing the conformation pathway of RNA 
molecules. Unfortunately, the number 
of possible alternative conformations at 
each step of the folding process grows 
exponentially with sequence length, 
rendering any exhaustive or systematic 
exploration of the folding space compu-
tationally infeasible for medium or large 
RNAs. One way to circumvent the com-
binatorial explosion of alternatives is to 
use known data about folding dynamics 
to restrict the search space. A recent 
algorithm (Geis et al., 2008) attempts 
to combine both approaches, relying 
on the observation that locally optimal 
substructures or combinations of such 
structures are important folding interme-
diates. It progresses stepwise through 
sets of subintervals of the full sequence. 
The most stable structures inside each 
subinterval are generated using a 
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dynamic programming algorithm, and 
the folding path is retrieved if the gener-
ated substructure was selected as part 
of the global structure. This algorithm is 
able to make predictions for RNAs of up 
to 1500 nt, showing that the integration 
of qualitative knowledge about the fold-
ing process is a promising approach to 
tackling this computationally demanding 
task. Yet, this approach has its limitations 
given that three-dimensional information 
is not considered. For example, it would 
not be possible using this approach to 
predict the stabilization of a riboswitch in 
the presence of a ligand.

Computational Challenges
Biophysical measurements show that 
conformational rearrangements, which 
are stabilized or induced during the hier-
archical assembly process, drive RNA 
architecture or RNP complex formation 
cooperatively and through multiple path-
ways. Integrating data from such dynamic 
views with the static folded architectures 
presents new computational challenges 
for modeling and simulations. Induced fit 
changes in conformation or distortions 
propagated at a distance either by ter-
tiary interactions or as a result of protein 
binding cannot yet be adequately simu-
lated. Similarly, the simulation of folding 
kinetics with various concentrations of 
ligands is currently out of reach.

Could the new biophysical insights 
contribute to bioinformatics? In other 
words, how can we integrate genomic 
data and sequence alignments with the 
biophysical data? Conversely, how can 
we exploit the emerging wealth of struc-
tural knowledge to search genomes and 
identify new functional RNAs?

Perspectives
The study of the kinetics of the folding 
processes leading to native RNA archi-
tectures has made huge progress in 
recent years following the recognition 
of the regulatory roles of RNAs and the 
application of single-molecule and new 
fluorescence techniques. Since the 
early work of Yanofsky on transcrip-
tional attenuation (Merino and Yanofsky, 
2005), it has been accepted that alter-
native pairings between RNA segments 
play key roles in biological regulation. 

The deeply rooted biological functions of 
riboswitches (Breaker, 2008) forced upon 
us the realization that static structures, 
though central and key for our molecular 
understanding, do not give the complete 
picture or framework. Furthermore, the 
diversity in interactions and functions 
of sense/antisense RNA complexes is 
now appreciated, not only in bacteria 
but also in eukaryotic cells. Thus, in the 
years to come, the molecular biophys-
ics of intermolecular complex forma-
tion between RNA strands as well as 
between RNAs and proteins will remain 
a frontier for research. Single-molecule 
studies, together with molecular simu-
lations, have brought RNA folding into 
the realm of statistical mechanics by 
revealing the intrinsic molecular dynam-
ics. This comes amidst a shifting view 
of biological systems that puts a greater 
emphasis on the uniqueness of single 
cells in space and time, a trend that is 
coming about from a combination of 
deep sequencing, the view of stochastic 
gene expression, and a growing appre-
ciation of cell-to-cell variability. Making 
measurements of RNA at biologically rel-
evant time and space granularity is more 
urgent than ever.
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Chapter 2

RNA Structure Comparison

Comparison between the atomic structure of biological macromolecules is
a recurrent operation with particular importance for several biological do-
mains such as the analysis of evolutionary and functional relationship be-
tween homologous molecules, the automatic search in structural databases,
the discovery of structural modules in experimental structures, the evalu-
ation of structure prediction tools, among others. In its simplest terms,
structure comparison is about determining how similar (or different) two
molecular structures are at the atomic scale. This simple definition hides a
complex problem: How to quantify the structural divergence between two
models of the same molecule? Which domains of the comparing structures
most contribute to the quantified divergence? How to interpret the diver-
gence value in a biologically meaningful way?

In the present work we are interested in a particular structure comparison
problem: Finding appropriate metrics to evaluate predicted RNA models of
a molecule of known structure.

Three-dimensional RNA structure prediction is an expanding field of
research. A number of recently published tools aim to produce complete
and biologically significant three-dimensional RNA models from sequence
information in a more or less automatic fashion (Ding et al., 2008; Martinez
et al., 2008; Parisien et al., 2009; Sharma et al., 2008; Das et al., 2010;
Jossinet et al., 2010; Cao and Chen, 2011; Rother et al., 2011). Having
appropriate methods and tools to evaluate predicted models and to compare
prediction tools is a pressing need of the field (Parisien et al., 2009; Hajdin
et al., 2010).

What is a biologically significant structure prediction? How to evaluate
a given predicted model? How to know if a given prediction tool or approach
is consistently effective? How do those tools sample the space of solutions?
In which particular scenarios (molecule type, size, complexity, . . . ) they
perform better or worse? A practical way to address these questions is to
systematically compare the predicted models against known, atomic reso-
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lution, native structures, obtained by X-Ray crystallography and study the
observed similarities and differences.

An additional motivation to search for good comparison metrics is that
automatic structure prediction tools tend to produce hundreds or even thou-
sands of models which are impossible to manually analyze one-by-one, thus
requiring some sort of automatic comparison methodologies.

The most commonly used comparison metric, both for proteins as for
RNAs, is the Root Mean Square Deviation (RMSD). Although RMSD
is simple to formulate and to compute, it lacks a clear interpretation. To
provide a meaningful measure of structure similarity, a comparison metric
should take into account the nature of the molecules being compared and
their most relevant structural features. It should also provide indications on
the features that contribute or penalize the similarity value. Many struc-
ture comparison metrics have been proposed for protein structures (Holm
and Sander, 1993; Falicov and Cohen, 1996; Gerstein and Levitt, 1998; Ei-
dhammer et al., 2000; Siew et al., 2000; Yang and Honig, 2000; Lancia
and Istrail, 2003; Betancourt and Skolnick, 2001; Carugo, 2003; Zhang and
Skolnick, 2004; Mamidipally et al., 2009). Unfortunately, tools specifically
developed for protein structure comparison do not adapt to RNA compari-
son and the amount of work developed by the RNA structure community is
significantly smaller. In the present chapter we propose two RNA specific
comparison metrics that address some of the enumerated issues.

2.1 Structure Comparison

The pairwise comparison of RNA structures1requires (i) an alignment, i.e.
some method to establish a correspondence between the comparing elements
of each structure and (ii) a metric, i.e. a measure of similarity between the
aligned structures.

We start with a formal definition of pairwise comparison between two
RNA structures defined by the coordinates of their atoms in R3. Let R be
the reference structure, S a predicted model of R and ri, sj their respective
elements2. Let A represent an alignment between R and S:

A(R,S) = [(ri1 , sj1), (ri2 , sj2), ..., (rin , sjn)],

with
ix 6= iy and jx 6= jy,∀x 6= y

1Although we discuss specifically the RNA structure comparison problem, it is worth
to bear in mind that most of the generic concepts also apply to proteins with minimal
adaptations.

2When comparing RNA sequences the compared elements are the sequence nucleotides.
When compared structures the compared elements can be the corresponding atoms of each
comparing structure or some representation of them (e.g. the center of mass of the atoms
of a nucleotide, a specific atom of each base, . . . ).
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and M a similarity measure between R and S given the alignment A
such as:

MA(R,S) =

{
0 if R is structurally identical to S.
> 0 otherwise.

By “structurally identical” we mean that there is a rigid body transfor-
mation T , i.e. a sequence of translations and rotations applied to the atomic
coordinates of S such as:

TS = R.

The problem of defining the alignment A is a classic bioinformatics prob-
lem of sequence alignment. When the nucleotide sequences of R and S differ
by insertions or deletions finding the optimal alignment A can be far from
trivial. In our case, however, we are interested in comparing predicted RNA
models with native structures, therefore the alignment is reduced to a one-
to-one correspondence between each ri and sj

3. Thus, we will concentrate
on the search for meaningful measures of M .

2.1.1 Root Mean Square Deviation

The RMSD is the most commonly used molecular structure comparison
metric. More generally, the RMSD can be used to compare any set of
predicted values with the actual set of observed values. It is a measure of
prediction precision. A formal generic definition of RMSD can be given as
follows: LetX be a set ofN observed values generated by a given phenomena
and Y a list of N predicted values produced by some model of the same
phenomena. The RMSD between X and Y is:

RMSD(X,Y ) =

√∑N
i=1 (xi − yi)2

N
,

where xi and yi are the individual values of X and Y respectively.

To compute the RMSD between two molecular structures R and S the
definition is similar4:

RMSD(R,S) =

√∑N
i=1 d(ri, tsi)

2

N
,

3Sometimes, for technical reasons, the sequences from R and S can differ (e.g. when the
predicted model corresponds to part of the native structure or when prediction programs
are unable to deal with RNA dimers and a small sequence must be added to the model to
transform it into a single stranded). In all such cases, however, the alignments are fairly
easy to obtain.

4In the discussion that follows all comparison between R and S implicitly assumes an
alignment A. For simplicity sake we will use RMSD(X,Y ) instead of RMSDA(X,Y )
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In which ri represents the atom coordinates5of R; tsi the atom coordi-
nates of TS, a rigid body transformation of S that minimizes the RMSD
between R and S (Kabsch, 1976); and d the euclidean distance on R3.

Another definition ofRMSD, also calledRMSDD (for “distance” RMSD),
does not require the rigid body transformation:

RMSDD(R,S) =

√√√√∑N−1
i=1

∑N
j=i+1 (d(ri, rj)− d(si, sj))

2

N(N−1)
2

.

Although more simpler to compute than the RMSD, the RMSDD has
a time complexity of O(N2) which is harder to compute for large molecules
than the linear RMSD (Kabsch, 1978). Additionally, the RMSDD fails to
distinguish between mirror images of the molecule, which is not the case of
the RMSD (Maiorov and Crippen, 1994).

Most of the studies on RMSD approach the problem by randomly sam-
pling the conformation space and analyzing the obtained RMSD distribu-
tion. The major difficulty of this sampling approach (other than the compu-
tational challenge posed by the huge size of the structure space) is to find a
random model of the molecular structure that would allow a representative
sampling of the huge conformation space. While protein structures can be
roughly approximated by a self avoiding chain on a three-dimensional cubic
lattice (Shakhnovich and Gutin, 1990), there is no such simple model for
RNA structures.

An interesting, recently published, work applied a similar approach to
the study of RNA (Hajdin et al., 2010). The authors used discrete molecular
dynamic simulation to sample the conformation space with coarse-grained
RNA models. The RMSD distributions are then related with the sequence
length of the models. From the RMSD distributions for the several studied
models the authors established a P-value for successful predictions of P <
0.01. A model is considered a successful prediction if its RMSD is lower
than:

RMSDP<0.01 < 5.1×N0.41 − 19.8,

for model predictions based on imposed secondary structure and:

RMSDP<0.01 < 6.4×N0.41 − 16.9,

for model predictions with no imposed secondary structure.
Although these values could be useful references, they are still short of

a structural interpretation of RMSD. If one can usually agree that for a

5The choice of the atoms to use depends on the type of molecules being compared. In
proteins is frequent to use the Cα atoms. In RNA the use of all heavy atoms is an usual
practice but also the center of mass of nucleotides or the phosphates from the backbone
can be used.
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RMSD(R,S) < RMSDP<0.01, S will be structurally close to R and, at the
other extreme, for an RMSD(R,S) >= Rg(R)6, S will be too distinct from
R to be significant (Maiorov and Crippen, 1994). What can one say about
the intermediate values?

2.2 Deformation Index

A metric specific for RNA should take into account the particular structural
features of RNAs, such as secondary structure and base-base interactions.
As seen before (see 1.1), RNA molecules present a hierarchical architec-
ture formed by secondary structure elements – helices – organized by long-
range tertiary interactions – mainly non Watson-Crick pairs (Leontis et al.,
2002). Through the analysis of the available X-Ray structures one can eas-
ily observe that, on average, 88%, 63% and 17% of all bases of a structured
RNA participate in stacking interactions, Watson-Crick pairs (WC) and non
Watson-Crick pairs (non WC) respectively (see Figure 2.1).

From these numbers it is clear that the correct prediction of the WC
base pairs would contribute to the similarity of the predicted model against
the reference structure. A subtler effect, but no less important, is achieved
by the non Watson Crick interactions (non WC). Even if, on average, only
17% of all bases are involved in non WC interactions, they occur in key re-
gions for the structural organization: helical junctions; long range loop-loop
and loop-helix interactions; and in recurrent structural modules. Therefore,
the correct prediction of a few non WC bases would play a major role in
the predicted model quality. Similarly, the correct prediction of stacking
interactions, in particular those that occur outside the helical stacks, would
be important to model the single stranded regions of the molecule which
are, as we will see in the next chapter, the most challenging regions in RNA
structure prediction.

In summary, the importance of WC base pairs for a correct secondary
structure prediction follows from the significant proportion of bases involved,
the importance of non WC pairs, key for establishing the correct interactions
and orientations between the secondary structure elements and base stack-
ing, can be important for the correct prediction of certain single stranded
regions. The complete set of base-base interactions establishes an “inter-
action network” and it is not possible to produce a biologically meaningful
model of an RNA molecule without correctly predicting it.

Thus, an alternative way of measuring the quality of a modeled structure
is to evaluate how well the interaction network of the native structure is
predicted. This evaluation can be achieved by computing the Matthews
Correlation Coefficient (MCC) (Matthews, 1975) of the predicted base-base
interactions against the interactions present in the native structure.

6Rg(R) represents the radius of gyration of R (see Appendix A).
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Figure 2.1: Proportion of bases participating in base stacking interactions:
88%±7% (magenta); Watson-Crick base pairs: 64%±10% (green); and non
Watson-Crick base pairs: 17%± 8% (blue). Solid horizontal lines represent
the mean for each type of interactions and gray shaded regions the respective
standard deviation. Results for 481 non redundant structured RNA crystal
structures.
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In general, the MCC between a set A of predicted and a set B native
values can be estimated by:

MCC(A,B) =

√(
TP

TP + FP

)
×
(

TP

TP + FN

)
,

where TP (True Positives) is the number of correctly predicted interac-
tions, FP (False Positives) is the number of incorrect predictions and FN
(False Negative) is the number of interactions present in the native structure
but not predicted in the model. The MCC varies from 0, for a model in
which no interaction was predicted, to 1, for a model in which all interactions
were correctly predicted.

Replacing A and B by the interactions in the predicted model IS and
the native structure IR we can establish the Interaction Network Fidelity
(INF) measure:

INF (IS , IR) = MCC(IS , IR).

Comparing the INF and RMSD values obtained for different predicted
models of the same native molecule – in this case 9847 models of the rat 28S
rRNA loop E produced with the MC-Sym 3D RNA prediction tool (Parisien
and Major, 2008) – we observe that, even if some correlation between INF
and RMSD exists (Pearson correlation coefficient P = 0.6), for a given high
value of INF many RMSD values are observed. On the other hand for small
values of RMSD a wide range of INF is observed (see Figure 2.2).

To obtain the RMSD weighted by the INF value of the predicted model
we propose the “Deformation Index” (DI) metric defined as:

DI(S,R) =
RMSD(S,R)

INF (IS , IR)
.

This way the RMSD assumes its own value for predicted models in which
all interactions were correctly predicted (INF = 1) and is infinite if no
interaction was correctly predicted (INF = 0).

To investigate in more detail the effect of DI in the structure compar-
ison we randomly selected three of the predicted models with the RMSD
and INF values shown in Table 2.1. These modules are depicted in Fig-
ure 2.3. We observe that: model A – with low RMSD and high INF –
closely reproduces the key structural features of the native model; model B
– with high RMSD and INF – is largely penalized by the badly predicted
nucleotides A14-G15 in the loop and the shifted backbone even though the
interaction network is as well predicted as in model A; and, finally, model C
– with low RMSD and lower INF – fails to predict more than the double
of interactions than models A and B.

Notice that the RMSDs for all three models are much higher than what
would be considered a successful prediction based on the criteria of (Hajdin
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Figure 2.2: Distribution of RMSD vs. INF values. Each point corre-
sponds to an individual structure generated with MC-Sym (Parisien and Ma-
jor, 2008). RMSD and INF values were computed by comparison with
the crystallographic structure. The oblique line is the linear regression (P
= 0.6), the horizontal line corresponds to an INF of 0.85, and the vertical
line to an RMSD of 2.0 ÅRMSD. Adapted from (Parisien et al., 2009)

Model RMSD INF DI

A 1.64Å 0.88 1.86
B 3.76Å 0.88 4.30
C 2.03Å 0.71 2.85

Table 2.1: RMSD, INF and DI values for three predicted models of rat
28S E-loop

et al., 2010) for molecules of this size with imposed secondary structure,
which should be zero:

RMSDP<0.01 < 5.1× 270.41 − 19.8 = −0.1,

This example shows the need for considering the specific RNA features
(provided by INF and DI) when evaluating predicted models.

2.3 Deformation Profile

A comparison metric should also provide meaningful indications about the
domains of the predicted model that most contribute to the discrepancy in
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Figure 2.3: Native and predicted models of rat 28S E-loop. (A) The leftmost
structure is the crystal structure. The predicted models are shown in colors
and the crystal structure in gray (PDB: 1Q9A). Well modeled regions are
in blue (RMSD < 0.5 Å) and badly modeled regions in red (RMSD > 3.0
Å). Model A presents a good INF (0.88; TP=29; FP=6; FN=2), a good
RMSD (1.64 Å) and a DI of 1.86. Model B has a good INF (0.88; TP=28;
FP=5; FN=3), but a bad RMSD (3.76 Å) and a DI of 4.3. Although the
geometry of the base pairs is well modeled, the thread through the phosphate
atoms is shifted. Model C has a bad INF (0.71; TP=21; FP=7; FN=10),
but a good RMSD (2.03 Å) and a DI of 2.85. The thread through the
phosphate atoms is well superimposed, but the base-pairing geometry is
wrong. (B) Interaction networks for each of the modules. Interactions in
black are True Positives (TP) and in red are False Positives (FP). Red
starts correspond to False Negatives (FN). Adapted from Figures 2 and 4
of (Parisien et al., 2009).
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respect to the native structure. It is clear that the full complexity of such
a comparison cannot be reduced to a “single value” metric. To convey this
information we devised the “Deformation Profile” (DP ) matrix, which is a
2D grid that provides, for each base of the molecule, how well it is predicted
in respect to the overall structure.

The formal definition of DP is:

DP (S,R)i,j = AV G DIST (T(Si,Ri)Sj , Rj),

in which S, R are, respectively, the predicted model and the reference
structure, Si, Ri are the ith base of the respective structure, T(Si,Ri) is the
solid body transformation on S that superimposes the bases Si and Ri min-
imizing their RMSD and AV G DIST is given by:

AV G DIST (A,B) =

∑N
i=1 d(Ai, Bi)

N
,

in which A and B are two bases, Ai and Bi are the ith atom of each
base7, d is the euclidean distance on R3 and N is the number of common
atoms between A and B. The steps to compute DP are illustrated in figure
2.4.

An example of the applicability of the DP is given by comparing two
predicted models of the hammerhead ribozyme (Dunham et al., 2003) S1
and S2 with the reference crystal structure R of the ribozyme (PDB: 1NYI)
(see Figure 2.5). The models S1 and S2 were produced by the 3D prediction
tool MC-Sym (Parisien and Major, 2008) and the two structures present very
distinct values of RMSD: RMSDS1 = 3.4 and RMSDS2 = 12.2.

Applying the DP to both molecules we obtain the matrices from Figures
2.6 and 2.7 and the average values for the main domains of R and S2 in table
2.2.

Surprisingly, the large RMSD difference between S1 and S2 given by:

RMSD(S2, R)/RMSD(S1, R) = 3.58

does not verify for any of the individual domains with a maximum ratio
of 1.32 for helices H1 and H2 and even the case of Loop L1 that is better
predicted in model S2 than in model S1 (0.87). The structural discrepancy
between S2 and R that justifies such an important RMSD difference comes
from the interdomain scale as we notice that it is the geometrical relationship
between helices H1xH2 and H1xH3 that presents the biggest ratios (2.46 and
3.36 respectively), in the same order of the RMSD ratio. The difference

7In practice we assume that both bases are of the same nature and compare the atoms
of the same name of both bases.
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Figure 2.4: Building steps of the deformation profile. (A) The predicted
model S is compared with the native model R. After superimposing S on R
minimizing the RMSD between bases 2 (B) and 4 (C), the average distances
between all atoms of the corresponding bases is recorded in the DP matrix
(D). Figure adapted from (Parisien et al., 2009).
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Figure 2.5: (A) Native hammerhead ribozyme (PDB: 1NYI) and its (B)
interaction network. (C) Predicted model S1. (D) Predicted model S2.
Superposition of (E) S1 and (F) S2 over R. Figure adapted from (Parisien
et al., 2009)

.
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Figure 2.6: Deformation Profile matrix for model S1.
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Figure 2.7: Deformation Profile matrix for model S2.
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Intradomain S1 S2 ratio

Helix H1 2.31 3.04 1.32
Helix H2 2.79 3.67 1.32
Helix H3 1.68 2.08 1.24
Loop L1 4.92 4.28 0.87
Loop L2 4.43 4.46 1.01

Interdomain S1 S2 ratio

H1 x H2 8.88 21.85 2.46
H1 x H3 7.59 25.47 3.36
H2 x H3 3.85 5.85 1.52
L1 x L3 20.26 30.54 1.51

Table 2.2: Deformation Profile (DP ) values and ratios for several intra and
interdomain regions of S1 and S2 models in comparison with the native
structure R. The intradomain value of a given domain D is the average of
all DP values of all bases belonging to D. The interdomain value between
two domains D1 and D2 is the average of all DP values of all bases from
D1 with respect to the bases of D2.

between both models is due to a rotation of nearly 180◦ degrees of the axis
of helix H1. All other domains and interdomain regions are reasonably well
predicted in both models – helices H2 and H3 are coaxial (DP ratio 1.52) –
or equally badly predicted – L1 x L3 (DP ratio 1.51). This interpretation
would be clear from the direct analysis of the structure for a trained eye
(see figure 2.5). However, recalling what was already said, it is not possible
to analyze by hand the thousands of models generated by the automatic
structural prediction.

We believe that both DI and DP , provide reliable structural comparison
for RNA molecules at all scales – nucleotide level, single domain and inter
domain – and, as we will try to show in the next chapter, can play a useful
role in the validation and study of prediction tools and techniques.
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2.4 Article – New metrics for comparing and as-
sessing discrepancies between RNA 3D struc-
tures and models

This chapter is an extended summary of the following article:
Parisien*, M., Cruz*, J. A., Westhof, E., and Major, F. (2009). New

metrics for comparing and assessing discrepancies between RNA 3D struc-
tures and models. RNA 15(10):1875-1885. (* equal contribution)
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ABSTRACT

To benchmark progress made in RNA three-dimensional modeling and assess newly developed techniques, reliable and
meaningful comparison metrics and associated tools are necessary. Generally, the average root-mean-square deviations
(RMSDs) are quoted. However, RMSD can be misleading since errors are spread over the whole molecule and do not account
for the specificity of RNA base interactions. Here, we introduce two new metrics that are particularly suitable to RNAs: the
deformation index and deformation profile. The deformation index is calibrated by the interaction network fidelity, which
considers base–base-stacking and base–base-pairing interactions within the target structure. The deformation profile highlights
dissimilarities between structures at the nucleotide scale for both intradomain and interdomain interactions. Our results show
that there is little correlation between RMSD and interaction network fidelity. The deformation profile is a tool that allows for
rapid assessment of the origins of discrepancies.

Keywords: RNA; structure; comparative analysis; three-dimensional modeling; RMSD

INTRODUCTION

Determining RNA three-dimensional (3D) structures is key
in studying RNA function (Gesteland et al. 2006). Physical
methods such as X-ray crystallography and nuclear mag-
netic resonance (NMR) spectroscopy are the most common
ways for determining RNA 3D structures at high resolu-
tion. However, these methods cannot be applied to all
RNAs and RNA systems. Alternative methods include
interactive modeling (Michel and Westhof 1990; Massire
and Westhof 1998; Martinez et al. 2008) and conforma-
tional space searching (Das and Baker 2007; Ding et al.
2008; Parisien and Major 2008; Jonikas et al. 2009).

The development and improvement of alternative meth-
ods are highly dependent on what we learn from experi-

mentally resolved structures. In particular, close inspection
of rRNA structures revealed the presence of structural
motifs that we can recognize from sequence (Lescoute
et al. 2005). To assist the production of new knowledge,
systematic methods to annotate RNA 3D structures (Gendron
et al. 2001; Lemieux and Major 2002; Yang et al. 2003;
Djelloul and Denise 2008), discover and analyze structural
motifs (Huang et al. 2005; Lemieux and Major 2006; Lisi
and Major 2007; Abraham et al. 2008; Xin et al. 2008), and
formally represent RNA structures (Dowell and Eddy 2004;
St-Onge et al. 2007) have been developed. This systemati-
zation of knowledge generation and integration in ever-
improving predictive methods is typical of the post-
ribosomal X-ray crystallographic era. A problem that has
been largely neglected, however, is how one can measure
quantitatively the improvements brought by new ap-
proaches or methods.

The classical index for comparing predictive methods is
to benchmark with the average root-mean-square devia-
tions (RMSDs) after optimal superimposition between the
modeled RNA 3D structures they produce and their cor-
responding experimental structures. RMSDs are extremely
useful, and obtaining models close to experimental struc-
tures is a noble exercise. RMSDs capture the general 3D
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Reprint requests to: Francxois Major, Institute for Research in Immu-
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shape of an RNA, but give little information about its base-
pairing and base-stacking patterns, local deviations of the
structure, intradomain deformation, or interdomain devia-
tions. Most importantly, RMSDs spread errors over the
whole molecule to obtain the best global superimposition
so that it is very difficult to localize the origins of the
modeling defects and thus to improve the modeling process
(Yang and Honig 2000; Gendron et al. 2001; Shatsky et al.
2002). RNA molecules have specific structural features,
such as a modular and hierarchical architecture of struc-
tural elements like helices, hairpins, and single-stranded
loops connected by tertiary interactions. In addition, RNA
bases associate in well-defined patterns of pairings that
usually stack on each other. As modeling and predictive
methods are getting increasingly accurate, it is now desir-
able that their results could be compared based on the
reproducibility of these important and specific RNA struc-
tural features rather than on global average measurements.

Here, we introduce two new RNA 3D structure compar-
ison tools: (1) an RNA 3D structure comparison index, the
deformation index (DI), which evaluates and indicates the
deviations between two RNA 3D structures with both
RMSDs and base interactions; and (2) a deformation pro-
file (DP), which depicts the conformation differences be-
tween two models at local, interdomain, and intradomain
scales. These new tools provide quantitative measures to
compare the accuracy in reproducing the base–base inter-
action networks of different 3D models, as well as the
ability to evaluate the local and global prediction precision
and quality of RNA molecules.

RESULTS

Deformation index

We define the DI as the RMSD between two optimally
aligned 3D structures (general shape) divided by the base
interaction network fidelity (INF). The INF is computed
from the base-stacking and base-pairing annotations of
both structures. For practical reasons, we use two auto-
mated annotation procedures that have been proposed
recently: MC-Annotate (Gendron et al. 2001; Lemieux
and Major 2002) and RNAview (Yang et al. 2003). Note
that the index uses, but is not related to, the annotation
programs, which are obviously prone to the quality of the
reference structures.

Base-stacking and base-pairing interactions

MC-Annotate detects that two bases stack using the Gabb
et al. (1996) method. The base-stacking annotation results
are described using the Major and Thibault (2007) nomen-
clature, which indicates the relative orientation of the two
bases. The relative orientation is determined by comparing
the direction of the normal vectors of each base, i.e., the

rotational vector obtained by a right-handed axis system
defined by atoms N1 to N6 around the pyrimidine ring
(Fig. 1A).

Two possible relative orientations in each base result in
four base-stacking types: upward (>>), downward (<<),
outward (<>), and inward (><) (see Fig.1B). Two vectors
pointing in the same direction (upward and downward)
corresponds to the base-stacking type in canonical A-RNA
double helices. Upward or downward is chosen depending
on which base is referred to first (i.e., A>>B means B is
stacked upward of A, or A is stacked downward of B). The
two other types are, respectively, inward (A><B; A or B is
stacked inward of, respectively, B or A) and outward
(A<>B; A or B is stacked outward of, respectively, B or A).

MC-Annotate uses an unsupervised machine-learning
approach to detect H-bonds and H-bonding patterns
(Lemieux and Major 2002), and RNAview uses geometrical
constraints (Yang et al. 2003). Both programs describe their
base-pairing annotations using the Leontis and Westhof
nomenclature. Each type describes the interacting edge of
the two bases. Three interacting edges are defined: the Watson–
Crick edge: d (cis), s (trans); the Hoogsteen edge: j (cis),
u (trans); and the sugar edge: b (cis), 9 (trans) (Fig. 1C;
Leontis and Westhof 2001). The cis/trans notation reflects
the relative orientation of the backbone according to the
median of the plane formed by the two bases. In Figure 1C,
the base pair is cis since the riboses are positioned on the
same side of the base-pair plane. When two bases interact by
the same edge, only one symbol is used. For instance, a trans
X–Y Hoogsteen base pair is either written ‘‘H/H trans’’ or
XuY. Figure 1D lists all possible base-pairing types that are
described by this nomenclature.

The DI considers the full set of interactions, i.e., base-
stacking and base-pairing interactions defined by the
classical two-dimensional (2D) structure (A–U and G–C
Watson–Crick and G–U Wobble base pairs that form in the
stems); extended 2D structures (the noncanonical base
pairs, but that can be represented in the dot–bracket
notation); and tertiary structure interactions, such as non-
helical stacking and long-range base pairs. Note that z40%
of the interactions in crystallized ribosomal RNAs enter the
latter category (Stombaugh et al. 2009).

Interaction network fidelity

A stacking or pairing interaction, I, involves two distinct
nucleotides, Ni and Nj, i < j, to form an interaction (Ni, Nj,
I), where I is one of the above base-pairing or base-stacking
types. The annotation of a 3D structure produces a set, S, of
such interactions. Given the two sets of interactions in two
distinct RNA structures, we can then compare them using
simple set theory operations.

Let Sr be the set of interactions in a reference structure
(usually an experimentally resolved structure) and Sm the
set of interactions of a modeled structure. The interactions
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found in the intersection of both sets are true positives,
TP = Sr \ Sm. The interactions in Sm that are not present in
Sr are false positives, FP = Sm\Sr. The interactions absent in
Sm but present in Sr are false negatives, FN = Sr\Sm.

The Matthews correlation coefficient (MCC) is estimated
by:

MCC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PPV 3 STY
p

;

where PPV specificityð Þ ¼ TPj j
TPj j+ FPj j ;

and STY sensitivityð Þ ¼ TPj j
TPj j+ FNj j ;

(Gorodkin et al. 2001). When the model reproduces ex-
actly the base interactions of the reference, then | FP | =
| FN | = 0, | TP | > 0, and thus MCC = 1. When the model
does not reproduce any of the interactions of the reference
structure, then MCC = 0, since | TP | = 0.

We define the interaction network fidelity (INF) between
structures A and B as the MCC, INF(A,B) = MCC(A,B).
We propose a new measure of the resemblance between two
structures A and B (for example, a model and its corre-
sponding experimental structure), which is quantified by a
deviation index,

DI A;Bð Þ ¼ RMSD A;Bð Þ INF A;Bð Þ:=

Not having an INF, the DI would simply be the RMSD.
However, given an INF from 0 to 1, then the RMSD

FIGURE 1. Base-stacking and base-pairing nomenclature. (A) Normal vectors in pyrimidines and purines. Using a right-handed axis system, the
normal vector in the pyrimidine (left) comes out of the paper plane (atom numbers counterclockwise), whereas it is reversed in the pyrimidine
ring of the purine (atom numbers clockwise). (B) The four base-stacking types. Using the normal vectors (represented by arrows), we can
distinguish three types of base stacking. If base A is below base B, the normal vector of A points to B, and both normal vectors point in the same
direction (left), then base B is stacked upward of A (or symmetrically base A is stacked downward of B). If the normal vectors of A and B point
toward each other (middle), then bases A and B stack inward. If the normal vectors flee each other (right), then bases A and B stack outward. (C)
Base edges. Each base is divided into three edges: the Watson–Crick (W) edge is at the tip of the base and where the chemical groups involved in
Watson–Crick base pairs interact; the Hoogsteen (H) edge is on the opposite side of the ribose; and the sugar (S) edge is on the side of the ribose.
Here is a cis A–U Watson–Crick base pair, and we write W/W cis and represent it using the black dot. The fact that any edge in any base can
interact with any other edge in a partner results in six different base–base interactions: W/W, W/H, W/S, H/H, H/S, and S/S. Since there are two
possible relative orientations of the ribose according to the place formed by the two bases of a base pair, then this nomenclature describes 12
different base-pairing patterns. (D) The 12 base-pairing patterns, or types, and their associated symbols.
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between A and B could either have a large (and even
infinite) DI if the two structures share no common
interactions (INF = 0), or meaningful RMSD as INF
approaches 1 (i.e., the majority of the interactions in A
are reproduced in B).

Example: Modeling the rat 28S rRNA loop E 3D
structure

Consider the crystal structure of the rat 28S rRNA loop E
(PDB code 1Q9A; resolution 1.04 Å; Correll et al. 2003)
shown in Figure 2A. MC-Annotate (Fig. 2B) and RNAview
(Fig. 2C) were used to compute the base-pairing network of
this structure. Since RNA structure annotation is subject to
interpretation and small geometrical variations—for in-
stance, MC-Annotate is stricter than RNAview—we there-
fore take the intersection of both programs. MC-Annotate
also computes the base-stacking network (see Fig. 2D).

To illustrate the benchmarking of RNA 3D structure
modeling results, we generated loop E 3D structures using
MC-Sym (Parisien and Major 2008; see Materials and
Methods). We generated a decoy of 9847 3D structures,
where each structure is at least at 1 Å RMSD from each
other. The RMSDs (all atoms but H) between these struc-
tures and the crystal structure range from 1.6 Å to 7.8 Å,
whereas the INF values range from 0.49 to 0.89 (Fig. 3). We
note that for a given RMSD threshold, we have a wide
range of INF values, and for a given INF threshold, we have
a wide range of RMSDs. However, as RMSDs worsen, the
INF values also worsen. We note an absence of population
in the upper right corner (i.e., high RMSD and high INF
values). The Pearson correlation coefficient between RMSD
and INF values is P = 0.60 for this particular decoy.

For further analyses, we randomly selected three of the
MC-Sym-generated structures. Structure A is located in the
upper-left corner of Figure 3 and is shown in Figure 4A. This
structure has good RMSDs (1.64 Å) with the crystal structure,
and good INF and DI values, 0.88 and 1.86, respectively.
Since RMSDs are averaged values, they do not inform about
the maximum modeling error. Therefore, we also report the
max RMSD(i,j) (j > i), i.e., the maximum RMSD over any
sequence fragment defined by i and j; j > i. If we exclude
from the analysis the dangling nucleotide U1 in the crystal
structure, the fragment that has maximum RMSD with the
crystal structure is C20–C21 with 1.7 Å. This is shown by
the fact that C20 and C21 are base paired in the generated
structures, as annotated by RNAview, but they have
problematic geometries in the crystal structure, as indicated
by the absence of annotation by MC-Annotate (Fig. 2B).

Structure A contains 29 TP, i.e., 29 of the 30 base
interactions (10 base pairs and 20 base stacks) in the crystal
structure. Six FP are made: (1, 2) two upward stacking
between C3–U4 and C5–C6. Note that in principle these
base-stacking interactions make sense since they are located
in a stem. They were not detected in the crystal structure by
MC-Annotate; (3) a flip of the C20 base around the
glycosidic bond creates an inward stacking A19–C20; (4)
as assumed in the modeling, A8–C20 now form a base pair
(H/W trans); (5) the dangling nucleotide U1 in the models is
base paired to G27 as a canonical W/W cis type; and (6) as
assumed in the modeling, U7–C21 now form a base pair
(S/H trans). Due to the C20 base flip, the upward stacking
A19–C20 and C20–C21 are not reproduced, making two FN.

Structure B was selected in the upper right section of
Figure 3, i.e., it has a good INF (0.88), but a bad RMSD with
the crystal structure (3.76 Å). It is shown in Figure 4B. If we
remove U1, the worst fragment is G2–C20 (19-nucleotides
[nt] long) with 3.66 Å. This is shown in Figure 4B by a
shifted backbone in almost all nucleotide positions. Struc-
ture B contains 28 of the 30 base interactions (10 base pairs
and 20 base stacks) in the crystal structure. Five FP are
made. They are the same as in structure A, but the upward
stacking between C5–C6 is absent as in the crystal structure.

FIGURE 2. The rat 28S rRNA loop E structure. (A) Stereoview of the
crystal structure (PDB code 1Q9A). (Green) Adenosines, (yellow)
cytosines, (violet) guanosines, (red) uracils. The thread through the
phosphate atoms is shown using a cylinder. Each base ring is filled and
highlighted by thick covalent bonds. The H-bonded bases of the
characteristic loop E structure, here the G9-U10-A19 base triple, are
linked with dotted lines. Note that U1 in this crystal structure is
not paired with G27. The image was generated using Pymol.
(B) Secondary structure annotated by MC-Annotate. (C) Secondary
structure annotated by RNAview. (D) Stacking annotation.
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The two FN due to the C20 base flip are also present in
structure B. In addition, no inward base stacking is detected
between G9 and G18.

Finally, structure C (Fig. 4C) was selected in the lower
left region of Figure 3, i.e., bad INF (0.71), but relatively
good RMSD (2.03 Å). Again, the worst fragment is G2–
C20, but its RMSD is now 2 Å. What hurts the RMSD of
this model is related to difficulties to reproduce the base
triple and the A8–C20 base pair of the crystal structure;
typical errors in RNA modeling. In our particular case, it is
noteworthy that the bases in the generated base triple have
a more planar geometry than those observed in the crystal
structure (Fig. 4D). As for the A8–C20 base pair, its H/W
trans type now makes a consensus between MC-Annotate
and RNAview. Structure C contains 21 of the 30 base inter-
actions in the crystal structure. Seven FP are made: (1–5)
are the same as in structure A; but, in addition, (6) an
upward stacking between A16–G17 is detected that was not
detected in the crystal structure; (7) the flanking base pair
of the GAGA tetraloop, which is changed to a W/H trans
(S/H trans in the crystal). The three FN of structure B are
also made in structure C (two are due to the C20 base flip)
(Fig. 4E). In addition, four upward stackings are not
detected between A11–C12, C12–G13, A14–G15, and U4–
C5. The outward stacking between G13–G17 and the G9–
U10 S/H cis base pair are also not detected. The tenth FN is
the absence of the S/H trans G13–A16 base pair.

Deformation profile

The DP is a distance matrix representing the average dis-
tance between a predicted model (PM) and reference model

(RM). The DP matrix is obtained by (1) computing all 1-nt
superimposition of PM over RM and then (2) for each
superimposition, computing the average distance between
each base in RM and the corresponding base in PM. Let
RMi and PMi represent the ith nucleotides of RM and PM
respectively, let SUP(Ai,Bi) be the model that results from
the superposition of model B over the reference model A,
minimizing the RMSDs between all the atoms of the nucleo-
tides Ai and Bi, and let AVG_DIST(Ai,Bi) be the average dis-
tance between all atoms of the nucleotides Ai and Bi. Thus,
the deformation profile of PM regarding RM is defined as:

DPi;j ¼ AVG DIST SUP RMi;PMið Þj;RMj

h i
:

FIGURE 3. Distribution of (RMSD, INF) values. For each MC-Sym
generated structure, the RMSD and INF values when compared with
the crystal structure are plotted. The oblique line is the linear
regression (P = 0.6). The horizontal line is at an INF of 0.85, and
the vertical line at 2.0 Å RMSD.

FIGURE 4. Three models of the rat 28S rRNA loop E. The models are
shown colored and the crystal structure in gray (PDB code 1Q9A). (Blue)
Well modeled regions (RMSD < 0.5 Å), (red) badly modeled regions
(RMSD > 3.0 Å). The models were optimally aligned (all atoms but
H) with the crystal structure. (A) Model with a good INF (0.88; TP 29;
FP 6; FN 2) and a good RMSD (1.64 Å); DI = 1.86. (B) Model with a
good INF (0.88; TP 28; FP 5; FN 3), but a bad RMSD (3.76 Å); DI =
4.30. Although the geometry of the base pairs is well conserved,
the thread through the phosphate atoms is shifted. (C) Model with a
bad INF (0.71; TP 21; FP 7; FN 10), but a good RMSD (2.03 Å); DI =
2.85. The thread through the phosphate atoms is well superimposed,
but the base-pairing geometry is wrong. Structural features that
lead to a bad INF include: (D) base-stacking parameters that differ
between the crystal (yellow) and model (blue) structures, such as G9,
which shows a high rise in the crystal structure when compared with
the model, and A19, for which a tilt can be observed between the
crystal and model structures; and (E) base-pairing parameters that dif-
fer between the crystal and model structures, such as C20, which flips
(propeller twist of 180°) between the crystal and model structures.
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Figure 5 illustrates the process of computing a DP
matrix.

Once a pair of nucleotides (PMi, RMi) is superimposed,
every other pair of nucleotides will be closer or farther
depending on how well PMi predicts RMi. Those average
distances are represented in the ith row of the matrix. Thus,
the row average provides information about local similarity
regarding the ith nucleotide. For example, an individual
row with higher values than the rest of the matrix (Figs.
6, 7, represented as yellow/red rows in the DP matrices)
usually means a particularly poorly predicted nucleotide.
The jth column of the matrix contains the average atomic
distances between the jth nucleotides of PM and RM, for
each superimposition. Thus, the column average indicates
how the distance between PMj and RMj depends on the
overall prediction of all nucleotides. Finally, the main
diagonal contains the average atomic distance of each
nucleotide, allowing a perspective of individual nucleotide
conformation similarity.

An interesting property of DP is the ability to reveal
similarity information at several structural scales. The
rectangles corresponding to the intersection of two strands
indicate the relative similarity between those strands. This
way, one can easily apprehend the structural similarity at
intradomain (such as between both strands of a helix or the
nucleotides of a loop) and interdomain scales (such as
between two helices or two loops).

It is worth noticing that values in a DP are not nor-
malized across the whole matrix. Values close to the main
diagonal tend to be smaller than values farther away. This is
because nucleotide pairs closer from the superimposing
pair tend to have smaller average atomic distances than
those farther away. Consequently, one should only com-
pare DP values from regions at similar distances to the
main diagonal or, obviously, values from DPs of distinct
models.

Example: The hammerhead ribozyme

To exemplify the deformation profile, we compared three
predicted models of a hammerhead ribozyme with the
reference crystal structure (PDB: 1NYI) (Dunham et al.
2003). We generated a decoy of 9999 3D structures, where
each structure is at least at 1 Å RMSD from each other. The
RMSDs (all atoms but H) between these structures and the
crystal structure range from 2.5 Å to 15.8 Å. Selecting
models from decoys is a thorny question. Here, we limited
our analysis to a series of structural properties offered by
the MC-Pipeline website (see Materials and Methods). We
reduced the decoy by performing a five-clustering of the
10,000 models, and selecting one model per cluster that
has a small volume (<25,000), a good P-Score (<�15),
and to either be bipolar or coplanar (at the >0.7 level)
(Laederach et al. 2007). The ‘‘thresholds’’ were established
by comparing each structural property with RMSDs to the
crystal structure (Supplemental Fig. S1). The selected
models and their properties are shown in Table 1.

From the modeling results, we further analyzed models
553, 633, and 2698, the resulting DPs of which are pictured
in Figures 6 and 7, and Supplemental Figure S2, respec-
tively. The models share 3.4, 12.2, and 4.9 Å RMSDs with
the crystal structure, respectively. The helical regions of the
models score fairly well and much better than interhelical
and interloop regions (Table 2). Not surprisingly, nucleo-
tides involved in canonical WC base pairing are better
predicted than nucleotides involved in noncanonical base
pairs or in loops. The 3- and 2-nt-long single-stranded
regions (L1 and L3) present the worst deformation score of
all short (<5-nt) contiguous regions (Supplemental Fig.
S3), except for L3 in model 2698, which was particularly
well predicted. The difficulty in predicting L1 and L3 also
reflects in the poor prediction of the relative positions of L1
and L3. The main difference between prediction quality
among the three models is due to the relative position of
helix H1 with respect to the other two helices. Noticeably,
the coaxial stacking of helices H2 and H3 was reasonably
well predicted in all three models. While model 553 scored
well in all helix–helix relative positions, models 633 and
2698 present a displacement of helix H1 regarding H2 and
H3. In model 2698, helix H1 is slightly twisted, which
significantly penalizes H13H2 and, to a lesser extent,

FIGURE 5. Building steps of the deformation profile. (A) A predicted
model (PM) will be compared with the reference model (RM). After
superimposing PM over RM, minimizing the RMSD between nucleo-
tides 2 (B) and 4 (C), the average distances between all atoms of corre-
sponding nucleotides is calculated and recorded in DP matrix (D).
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H13H3. In model 633, helix H1 has its double-helical axis
rotated by half a turn, pointing in the opposite direction of
H1 in the reference molecule, which is reflected in the high
values of H13H2 and H13H3.

DISCUSSION

So far, the field of 3D structural modeling has been driven
by RMSD comparisons. In particular, GDT-TS (global
distance test) is a measure that accounts for the number
of atoms that are within 1, 2, 4, and 8 Å of the RMSD from
a reference structure (Zemla et al. 1999; Ginalski et al.
2005). A perfect model scores 1.0. Recently, optimal GDT-
TS scores of z0.35 for a tRNA (z75 nt) and 0.20 for the

P4–P6 domain of a group I intron (z150 nt) have been
reported (Jonikas et al. 2009). In our study, the optimal
score for the hammerhead ribozyme (z40 nt) is 0.68.
However, when objectively selecting models from decoys by
applying K-clustering, GDT-TS scores of 0.20, 0.06, and
0.60 are obtained, respectively. In comparison, protein
structure predictions now reach GDT-TS scores as high
as 0.75 on average (Zhang 2008). These results highlight the
fact that there is a need for improved RNA model selection
and generation methods.

RMSD-based measures might be a sufficient criterion for
modeling protein structures since the backbone trace is
indicative of the structure and correct positioning of the
side chains (Dunbrack and Cohen 1997). However, RNA

FIGURE 6. Deformation Profile between predicted model 553 and the hammerhead ribozyme crystal structure. (A) DP matrix. Blue and pink
squares inside the matrix correspond to intra- and interdomain similarity relationships, respectively. Numbers in the left top corner of each square
are the average value of all positions inside the square. Color scale goes from 0 Å (white) to (but not including) 20 Å (dark green) in 10 equal steps
and from 20 Å (yellow) to 80 Å (red) in five equal steps. (B) Average values of rows (green), columns (black), and main diagonal (red) of the
matrix. (Shaded green regions) Helical strands. (C) 3D structure of the model. Each nucleotide is colored according to the respective row average
value, from minimum (white) to maximum deformation (red) value. (D) Superimposition of the model and reference 3D structures. (E)
Interaction network of the original molecule.
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structures contain specific patterns of interacting side
chains that are characteristic of folded modules and typical
to each overall architecture (Lescoute and Westhof 2006).
To evaluate adequately the accuracy of a predicted model, it
is key to assess how well such tertiary modules and the non-
Watson–Crick base pairs have been reproduced. We show
that, in the context of the modeling example we used, the
Pearson coefficient between RMSD and INF values (P = 0.6)
presents little correlation between the two indexes. Our
results further show that RMSDs do not provide informa-
tion about the quality and fidelity of the base interaction
network. Besides, the Pearson coefficient for structures with
RMSD $3.0 Å (P = 0.2) is even weaker. These results point
to the potential risk of using averaged values such as RMSD
in evaluating the quality of RNA 3D models and, thus, the
structure prediction methods that generate them. Besides, if
the correlation on a small hairpin RNA example is already
low, then it is expected to be even lower on larger RNAs.

Besides, the INF is less subject to variations than RMSD
for an RNA under thermal motion (Grishaev et al. 2008).
Intrahelical distortions include: collective atomic motion
resulting in slight helix twisting that rarely affect base–base
interactions (Fig. 4B), and relative atomic motion that is
handled by discretizing the base–base interactions using
symbolic annotation (Gendron et al. 2001; Leontis and
Westhof 2001; Lemieux and Major 2002; Yang et al. 2003).
Interhelical disposition from thermal motion affects the
angle between helices, which greatly affects atomic dis-
tances and thus RMSD. However, such changes in general
concern only a small fraction of the base–base interactions,
and thus do not affect much the INF (Table 1).

In the structure prediction field, models <3 Å of RMSD
from an experimental structure are considered accurate.
Our results suggest extreme prudence at this particular
value, since in our test case the INF value of such models
can be as low as 0.7. In our example, structure C has an INF

FIGURE 7. Same as Figure 6 but for model 633.

Parisien et al.

1882 RNA, Vol. 15, No. 10

 Cold Spring Harbor Laboratory Press on August 2, 2010 - Published by rnajournal.cshlp.orgDownloaded from 



of 0.71. This structure, despite 21 TP, also had seven FP and
10 FN. If we look between 3 and 5 Å of RMSD, then INF
values can be as low as 0.5; with a wider range of INF values
(0.5–0.9) located at or near 4 Å of RMSD. Clearly, assessing
the quality and accuracy of any given RNA 3D model needs
both the RMSD and INF values.

Capturing the dissimilarity between two structures in a
single value, as does RMSD, is a practical way of assessing the
accuracy of predicted models. However, a single value can-
not provide enough information about the shape of the ac-
tual structure and the local dissimilarities. Understanding
the contribution of individual domain—nucleotides, helices,
single-stranded regions—to an overall dissimilarity score
demands the intervention of a human expert, which is not
compatible with the analysis of dozens or hundreds of
candidate models produced by automatic prediction tools.
The proposed deformation profile provides a compact repre-
sentation of RNA model dissimilarities from nucleotide
length to intradomain scales and can be used in complement
to the DI to fully assess the quality of predicted models.

Consequently, a full quantification of the comparison
between two RNA 3D structures should include the overall
RMSD, max RMSD(i,j), INF, as well as the DI. If only one
value is to be used, then the DI is the most significant one
since it reflects the overall features encoded by the RMSD
calibrated by the quality of the reproduced interaction
network, which is encoded by the INF value. As the size of
modeled RNAs increases, the importance of using both
quantifiers increases as well since the correlation between
RMSD and INF values is expected to decrease. Finally,
phosphate or backbone atom-only, as well as canonical
base-paired region-only RMSD, should be avoided since
they are not indicative of the quality of the produced
models, and the field has now made sufficient progress in
RNA 3D modeling and prediction methods so that all-atom
models are now the gold standard.

MATERIALS AND METHODS

Generating MC-Sym decoys

To generate a decoy for the Loop E, we produced an MC-Sym
script from the dot-bracket notation supported by the RNAview
annotated secondary structure, ‘‘((((((((.((((..)))))))))))).’’ The
Dot2Sym program is an MC-Tool to generate MC-Sym input
scripts from dot-bracket notations (see Supplemental Informa-
tion). Note that no base-pairing type information is used, and
MC-Sym in such a case attempts all consistent base-pairing types.

For the hammerhead ribozyme, we also obtained a first
script from Dot2Sym using the following dot-bracket input:
‘‘((((((. . .((((((((..))))))))(((((..))))))))))).’’ The script was man-
ually edited and can be found in the provided Supplemental
Information. We reduced the 10,000 structure decoys to a list of
five models using the five-clustering and the following SQL query:

TABLE 1. Structural parameter values for five models of the hammerhead ribozyme

Modela Bipolb Coplb Randb RMSD P-Scc Vold INFall e INFbp e GDT-TSf Cluster

553 0.83 0.05 0.11 3.4 �23.6 23,635 0.82 0.90 0.60 2
633 0.80 0.12 0.08 12.2 �26.0 23,861 0.87 0.94 0.15 1
2698 0.81 0.12 0.07 4.9 �21.0 24,900 0.84 0.89 0.38 4
3778 0.84 0.05 0.12 12.2 �20.6 24,338 0.86 0.92 0.15 3
6870 0.76 0.08 0.16 13.9 �16.5 23,599 0.79 0.89 0.09 5

a‘‘Model’’ represents one model per cluster (Cluster) selected from the results of a ‘‘five-clustering.’’
bBipolar (Bipol), coplanar (Copl), and random (Rand) are measurements against the RMSD. These parameters describe the field of nucleobase
normal vectors, which have been shown to be highly organized in solved RNA structures (Laederach et al. 2007). A threshold at 0.7 for the
bipolar scores corresponds to a low RMSD (see Supplemental Fig. S1).
cThe P-Score (P-Sc) against the RMSD measures the A-RNA likeliness of the phosphate chain—measured using the probabilities of valence
angles of three consecutive atoms and the torsion angles of four consecutive atoms. The probabilities, P, are converted in pseudo-energies, E,
using the Boltzmann relation: E = �RT log(P).
dApproximated ellipsoidal volume (Vol) against the RMSD. The volume is computed as described by Hao et al. (1992). A threshold at 25,000
corresponds to a low RMSD (see Supplemental Fig. S1).
eThe INF values over base pairing and base stacking (INFall) and base-pairing interactions alone (INFbp).
fGlobal distance test (GDT-TS) values measure the average percentage of atoms within 1, 2, 4, and 8 Å from the target structure (Zemla et al.
1999; Ginalski et al. 2005). The higher the value, the better the model compared with the target structure.

TABLE 2. Intradomain and interdomain scores for all helices,
loops, helix–helix, and loop–loop combinations

Intradomain Model 553 Model 633 Model 2698

Helix H1 2.31 3.04 3.04
Helix H2 2.79 3.67 3.89
Helix H3 1.68 2.08 2.03
Loop L1 4.92 4.28 4.72
Loop L3 4.43 4.46 1.18

Interdomain Model 553 Model 633 Model 2698

H1 3 H2 8.88 21.85 13.25
H1 3 H3 7.59 25.47 9.10
H2 3 H3 3.85 5.85 6.49
L1 3 L3 20.26 34.54 13.13

The intradomain score of domain D is the average of all positions
(i, j ) of the Deformation Profile where both nucleotides i and j
belong to D. The interdomain score of domains D13D2 is the
average of all positions (i,j ) and (k, l) of the deformation profile
where nucleotides i and k belong to D1 and j and 1 belong to D2.
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SELECT * FROM BKOiY0dM2m T1 INNER JOIN (SELECT
MIN(PScore) AS minP, Cluster FROM BKOiY0dM2m WHERE
((Bipolar >= 0.7) OR (Coplanar >= 0.7)) and Volume <= 25000
and PScore <= -15 GROUP BY Cluster) T2 ON T1.PScore =
T2.minP and T1.Cluster = T2.Cluster WHERE T1.Volume <=
25000

See the MC-Sym FAQ (http://www.major.iric.ca/MC-Sym/
faq.html), commands.html page generated by MC-Sym, and
the MC-Pipeline website for details (http://www.major.iric.ca/
MC-Pipeline). The 3D structures were visualized and rendered
using Pymol (DeLano 2002).

RMSD

RMSD values were for all-atom but H, as computed using the
MC-RMSD program. MC-RMSD is part of the MC-Tools, which
are available from the authors.

Deformation profile

All the data processing, PDB file manipulation, and superimpo-
sition used to compute the Deformation Profile were done in
Python using Bio.PDB (http://biopython.org) and NumPy (http://
numpy.scipy.org/). The script to produce DP matrices is available
from the authors.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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Chapter 3

RNA Puzzles

Since the publication of the first complete atomic resolution of an RNA struc-
ture – the X-Ray Crystal structure of the yeast tRNAPhe at 2.7 Å(Sussman
et al., 1978) – X-Ray crystallography remains today the single method to
determine the structure of full RNA molecules at atomic resolution (less
than 3 Å). The lengthy process required to obtain the structure of an RNA
molecule by the crystallographic process and the importance of those struc-
tures to the understanding of the molecular function motivate the search
for alternative ways of structure determination. Experimentally RNA folds
can also be obtained using NMR (Nuclear Magnetic Resonance) and Cryo-
electron microscopy, although in both cases the resolution has not the same
meaning as the crystallographic resolution. The ability to predict the ter-
tiary structure of an RNA molecule based only on its sequence information is
a long time appealing goal. The illusory simplicity of this goal is eloquently
expressed in the provocative statement of Tinoco and Bustamante:

“(. . . ) If 10% of protein fold reseacher[s] switched to RNA,
the problem [of RNA folding prediction] could be solved in one
or two years (. . . )” (Tinoco and Bustamante, 1999)

Even if fully automatic RNA structure prediction is still a hope, impor-
tant theoretical advances in the last decades took us closest to it:

• The development of predictive models for RNA secondary structure
(Tinoco et al., 1973) currently available in a number of tools (Hofacker
et al., 1994; Zuker, 2003; Reuter and Mathews, 2010).

• The comparative sequence analysis modeling (Michel and Westhof,
1990).

• The systematization of the knowledge about RNA architecture and
interactions (Leontis and Westhof, 2001).
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• The rapid increase in the number of RNA structures (Berman et al.,
2000). and sequence alignments (Gardner et al., 2009) available in
public databases.

Today, the acknowledged importance of ncRNAs in molecular processes
pushed a number of research groups to approach the RNA structure predic-
tion problem. The current RNA prediction methodologies start to produce
the first practical results for molecules larger than a few nucleotides and
several recent results foreshadow exciting developments in this field.

As it was true for the protein structure field 17 years ago (Moult et al.,
1995), the RNA structure prediction community needs now an independent
and continuous comparison of the different methodologies and their obtained
results. In order to fulfill this need we developed RNAPuzzles, a collective ex-
periment of de novo RNA structure prediction as a first approach to compare
RNA structure prediction algorithms in a blind and independent fashion.

3.1 RNA Tertiary Structure Prediction

Tertiary structure prediction of RNA molecules consists in determining the
3D atomic coordinates of an RNA molecule from its sequence. The native
structure – most often unknown — is commonly referred to as the “target”
structure and the predicted structure as the “model”. A number of pre-
diction approaches have been proposed. They can be characterized by the
following factors:

• Degree of automatism: Prediction tools automatism ranges from
the computer assisted RNA modeling to the fully automatic prediction.
In the lower end of automatism the model is built by the human expert
assisted, in a more or less intelligent way, by the computational tool.
In the opposite end, fully automatic tools produce an RNA model
with no human intervention other than the input data and parameter
settings.

• Homology information: Some prediction tools can take advantage
of available homologous structures to predict new models. In these
cases the tool will replace mutated nucleotides and propose new struc-
tures for the additional domains not present at the homologous struc-
ture. This approach can be particularly effective if sequence divergence
is limited or if an important number of homologous structures is avail-
able (e.g. tRNAs,rRNAs) which is still, unfortunately, a rare case.

• Additional input information: Beyond the sequence information,
some prediction tools can incorporate additional information to the
prediction process such as: the known (or expected) secondary struc-
ture, chemical probing data, single molecule kinetic data, the expected
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positions of structural models, . . . Again, these data are not always
available or fully reliable.

• Resolution: Although the produced models represent the atomic co-
ordinates of the RNA molecule, these atomic coordinates are some
times deduced from lower resolution models also known as coarse
grained models. Coarse grain models are useful simplifications that
avoid the full complexity of an atomic detail model presenting, how-
ever, a lower fidelity representation of the reality.

No current algorithm or methodology is able to single handedly predict
with full accuracy an RNA structure. Because of that each prediction tool
combines a set of different techniques hopping to take the most out of each
one and to complement their shortcomings. The following techniques are
some of the most commonly used:

• Fragment assembly: Combines known RNA fragments to build a
full model. The choice of the fragments to use depends on sequence
similarity and local structural compatibility such as known local con-
formation, recurrent structural models, or base-pair isosteric substitu-
tions. The fragment database needs to be as large as possible in order
to be representative of the conformational space. Fragment assembly
works well for small molecules or localized structure prediction, but it
has difficulties in predicting long-range interactions.

• Conformation sampling: Samples the RNA conformation space of
the target sequence in order to find the “best” model (e.g. the most
energetically favorable, the one with no steric clashes, the one that
better fits some previous structural constrains, . . . ). This technique
can be very useful to improve a pre-computed model by searching the
nearest conformations for “better” models. The huge size of the RNA
conformational space, however, renders impractical any systematic use
of it without added information.

• Molecular dynamics (MD): Simulates the expected behavior of
the nucleotide chain in its physicochemical context – solvation, ionic
context, partner molecules, ligands, . . . – It requires force field models
derived from experimental work. MD can be an effective approach for
de novo prediction (e.g. starting from a linear nucleotide chain and
with no additional information), but it is computationally intensive,
and it strongly depends on the accuracy of the force field and, as any
other numerical simulation, is subject to numerical instability.

• Reduced chain representation: Uses a simplified model of the nu-
cleotide chain, such as, one bead per nucleotide or a three beads model
(each bead representing the backbone, sugar and residue atoms).
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• Discrete molecular dynamics (DMD): Similar to MD but uses
the reduced chain representation approach to represent the molecule.

• Modular Fragments Assembly: This is a computer assisted model
building technique that consists in identifying the structural modules
possibly present in the molecule and assembling them in a final model.
The regions of the molecule for which no module could be predicted,
usually single stranded regions, should be defined by the user. A
modular fragments assembly software will help the user in producing
the automatically predicted models, assembling them in a coherent 3D
structure, refining the coordinates in order to avoid stereo chemical
clashes.

Table 3.1 on page 55 presents a list of currently available 3D prediction
tools with some of their characteristics.

3.2 RNA Puzzles

An independent comparison between existing prediction methods can be
useful to potential users as it provide information regarding the most ap-
propriate methods for each class of problems, but also to the prediction
community as it helps to establish the state-of-the-art on prediction meth-
ods and motivates new developments by direct comparison of the strengths
and shortcomings of each method.

The protein community has a long history on such type of compari-
son. Since 1994 and every two years the “Critical Assessment of protein
Structure Prediction” (CASP) experiment (Moult et al., 1995) gathers the
protein structure prediction community. In the last CASP experiment CASP9
2010, 129 targets were released and more than 61000 prediction models were
received1.

Although the RNA structure prediction community is much smaller than
the protein homologue, the current number of research groups, their enthu-
siasm and the significant advances in their obtained results convinced us of
the opportunity and importance of organizing a CASP-like experiment for
RNA prediction: the RNAPuzzles.

Another very important aspect is the sharp increase on the number of
solved crystal structures in the few last years (Figure 3.1). Without the
efforts and kind collaboration of the crystallography groups this experiment
would not be possible.

The mechanics of RNAPuzzles is pretty straightforward:

1Data collected from http://www.predictioncenter.org/casp9/numbers.cgi.
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Figure 3.1: The picture shows the sharp increase on the number of newly
published X-Ray structures (source: www.pdb.org).
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1. Target release: The complete nucleotide sequences of unpublished
X-Ray structures from a RNA molecule (kindly provided by an exper-
imental group) is released to all of the interested groups;

2. Prediction: The participants submit their predicted models until a
predefined date;

3. Evaluation: The predicted models are evaluated and compared with
the target structures;

4. Publication: After the publication of the original X-ray structures
the predicted models and comparison data are published.

The model evaluation is done in terms of stereochemical correctness and
geometrical similarity with the experimental structure. The stereochemical
correctness evaluation indicates if the atomic distances implied by the pre-
dicted model are compatible with the known H-bonds and van der Waals
contact distances. It is measured as the clash-score given by the stereo-
chemical evaluation tool MolProbity (Davis et al., 2007). To evaluate the
geometrical similarity we computed the usual RNA structure comparison
metrics RMSD, Deformation Index, Deformation Profile and P-value as
described in the previous chapter (see Chapter 2).

3.2.1 Structure Comparison Pipeline

Despite of the conceptual simplicity of the RNAPuzzles mechanics, a number
of technical issues had to be solved to allow for the automatic treatment of
the predicted models and the publication of the results. In the first place
all processes must be automatized as it would be impractical to manually
treat all of the submitted models, the number of which we expect to grow
in future rounds. As a result of this automatic process, the submitted data
must be normalized in order to be processed by the different evaluation and
visualization tools.

To solve this problem we developed a validation pipeline that performs
all normalization, evaluation and data visualization steps with a minimal
human intervention. The figure 3.2 depicts the developed pipeline.

3.2.2 RNA Puzzles Web Site

Finally, all the effort invested in this project only makes sense if the re-
sults are published and available to the public. We prepared a public web
site (http://paradise-ibmc.u-strasbg.fr/rnapuzzles/) where all the
information regarding the challenges, solutions, predicted models, respective
evaluations and participants can be freely accessed. Figure 3.3 summarizes
the published web site.
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Figure 3.2: RNAPuzzles processing pipeline.
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Figure 3.3: RNAPuzzles web site.The web site is available at
(http://paradise-ibmc.u-strasbg.fr/rnapuzzles/)
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3.3 Conclusions

At the moment of writing the first round of experiments was concluded
with 3 target RNA sequences released, 7 participating research groups and
39 submitted models.

We believe that this first round of the RNAPuzzles successfully showed
the current state of the RNA structure prediction field: The quality of the
best predicted structures was remarkably good; The ability to predict the
correct local conformation of the most common structures was patent (e.g.,
for a fairly complex riboswitch target the correct 3 way junction architecture
correctly predicted). Some of the still open challenges on RNA structure pre-
diction were clearly pinpointed such as the prediction of (i) single stranded
regions, (ii) long range interactions, (iii) global architecture of the molecule
and (iv) non WC interactions.

The complete description of the results and its detailed analysis can be
found in (Cruz et al., ).

Twelve years separate us from the motivational article from Tinoco and
Bustamante. The RNA structure community is still probably less than 10%
of the protein structure community, nevertheless, the understanding of the
RNA folding and the structure prediction capabilities are steadily progress-
ing. We hope RNAPuzzles could contribute somehow to this progress.
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3.4 Article – A CASP-like Evaluation of de novo
structure predictions

This chapter is an extended summary of the following article:
Cruz JA, Boniecki M, Bujnick JM, Chen SJ, Cao S, Das R, Ding F,

Dokholyan NV, Flores SC, Lavender CA, Major F, Mikolajczak K, Philips A,
Puton T, Santalucia J, Hermann T, Rother K, Rother M, Serganov A, Sko-
rupski M, Soltysinski T, Sripakdeevong P, Tuszynska I, Weeks KM, Waldsich
C, Wildauer M, Leontis NB, Westhof E (2011). A CASP-like evaluation of
RNA 3D structure predictions. in preparation.
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Abstract

We report  the  results  of  a  first,  collective,  blind  experiment  in  RNA three-dimensional  structure 

prediction. The goals is to assess the leading edge of RNA structure prediction techniques, compare 

existing methods and tools, and evaluate their relative strengths, weaknesses, and limitations in terms 

of sequence length and structural complexity. The results should give potential users insight into the 

suitability of available methods for different applications and facilitate efforts in the RNA structure 

prediction  community  in  their  efforts  to  improve  their  tools.  We  also  report  the  creation  of  an 

automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises.
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Introduction

The determination of the atomic structure of any biological macromolecule, RNA molecules being no 

exception, contributes regularly towards the molecular understanding of the molecular basis of the 

underlying biological process. Each of the current experimental methods for determining the three 

dimensional  (3D)  structure  of  an  RNA molecule,  X-ray  crystallography,  NMR and  cryo-electron 

microscopy,  require  great  expertise  and  substantial  technical  resources.  Therefore,  the  ability  to 

reliably predict accurate structures of RNA molecules based solely on their sequences, on in concert 

with efficiently obtained biochemical information, is an important problem and constitutes a major 

intellectual challenge [Tinoco 1999]. Recent decades have seen a number of significant theoretical 

advances towards this goal and include: (i) The development of predictive models for RNA secondary 

structure,  pioneered  by  the  seminal  work  of  Tinoco  and  co-workers  [Tinoco  1973]  and  made 

commonly available in a number of tools that perform reasonably well for sequences of moderate size 

[Hofacker 1994, Zuker 2003, Reuter and Mathews 2010]. (ii) The ability to meaningfully deduce RNA 

structures  through  comparative  sequence  analysis  [Michel  and  Westhof  1990].  (iii)  The 

systematization of the knowledge about RNA architecture and interactions [Leontis and Westhof 2001] 

to gain a handle on the rapid increase in the number and size of RNA molecules with published 

structures  available  in  public  databases  [Berman  2000].  (iv)  The  availability  of  comprehensive 

sequence alignments [Gardner 2009] permitting the study of the relationship between structure and 

sequence. (v) The development of improved molecular dynamics force fields and techniques [Ditzler 

2010]. Finally, (vi) the increasing availability of inexpensive computing power and data storage. As a 

consequence, exciting developments in the field of de novo structure prediction have occurred in the 

last  few years:  Computer-assisted  modeling  tools  [Martinez  2008,  Jossinet  2010],  conformational 

space search [Parisien and Major 2008], discrete molecular dynamics [Ding 2008], knowledge-based, 

coarse grained refinement [Jonikas 2009], template-based [Flores 2010, Rother 2011] and force field 

based approaches [Das 2010] inspired by proven protein folding techniques adapted to the RNA field 

(review: [Rother 2011b]). All these new approaches are pushing the limits of automatic RNA structure 

prediction from short sequences of a few nucleotides to medium sized molecules with several dozens. 

Assuming the continuation of a steady progress, one could expect, in the near-to-medium future, that 

de novo prediction of RNA 3D structures will  become as common and useful as RNA secondary 

structure prediction is today.
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These promising results  and the increasing number of available  tools raise  the need for objective 

evaluation and comparison. Indeed, the establishment of a benchmark for RNA structure prediction 

has become essential in order to optimize and improve the current methods and tools for structural 

prediction. Here, we present the results of a blind exercise in RNA structure prediction. Sequences of 

RNA structures solved by crystallographers  were submitted,  before publication,  to  active research 

groups that develop new methods and perform RNA 3D structure prediction. Comparisons between 

predicted and experimental x-ray structures were undertaken once the structures were published. The 

resulting benchmarks function as a snapshot of the current status of this field. On the basis of this 

successful  first  round,  we  would  like  to  extend  the  idea  established  from  the  protein  structure 

prediction  community  [Moult  2006]  to  RNA and  to  propose  a  continuous,  open  and  collective 

structure prediction experiment, with the essential active participation of experimentalists.

RNA Puzzles

RNAPuzzles is a collective blind experiment for  de novo RNA structure prediction evaluation. With 

this  initiative,  we hope to (i)  assess the cutting edge of RNA structure prediction techniques; (ii)  

compare the different methods and tools, elucidate their relative strengths and weaknesses, make clear 

their limits in terms of sequence length and structure complexity; (iii) determine what has still to be 

done to achieve an ultimate solution to the structure prediction problem; (iv) promote the available 

methods  and guide  potential  users  in  the  choice  of  suitable  tools  for  different  problems;  (v)  and 

encourage the RNA structure prediction community in their efforts to improve the current tools.

The procedure that governs  RNAPuzzles is straightforward. Based on the successful first round, we 

propose the following steps:

 Complete nucleotide sequences will be periodically released to all those interested and who agree 

to  keep  sequence  information  confidential.  These  target  sequences  correspond  to  experimentally 

determined crystallographic structures, kindly provided by experimental groups, and not yet published 

in any form. Confidentiality of RNA sequence information is essential to protect the target selection 

done by the  crystallographers  and the  molecular  engineering  construction strategies  necessary  for 

crystallogenesis.
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 The interested groups will have a specified length of time (usually 4 to 6 weeks) to submit their  

predicted models on a  web site in a  standard pdb format  that  respect atom naming and accepted 

nomenclature.

 The predicted models will be evaluated with regard to stereochemical correctness, topology and 

geometrical similarity with the experimental structure.

 After the publication of the original X-ray structures, all the predicted models, experimental results 

and comparison data will be made publicly available.

To set up and automate these steps, the RNAPuzzles team has put together a public web site in which 

the announcements relative to the experiments and their results will be published, and a processing 

pipeline to carry out model evaluation. The web site is publicly accessible at http://paradise-ibmc.u-

strasbg.fr/rnapuzzles/.

Structure Analysis and Comparison

The evaluation of the biological value of a structural model raises many questions. How to determine 

if a given model is a meaningful prediction? What is a biologically meaningful prediction? Which 

questions should a structural model answer? Although a 5 Å resolution model is useless for the fine 

details of a catalytic process,  such a model can help to understand the overall  architecture or the 

interplay between partners in a complex. Thus, while some questions require very high precision (1 Å 

or below), others may be answered with residue-level or domain level precision. Very high precision 

models cannot be addressed by contemporary modeling methods. However, lower-level biochemical 

understanding or  a  general  architectural  level  can be usefully  addressed by present-day modeling 

tools. 

To evaluate the predictive success of the proposed models we established two general criteria:

(i) The predicted model must be geometrically and topologically as close as possible to the 

experimentally determined structure, used as the reference. It is assumed that the crystal structure or 

the NMR structure is correct within the limitations of the experimental methods.

(ii) The predicted model must be stereo-chemically correct (bond distances and intermolecular 

contacts are close to the experimentally observed values);
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To geometrically compare the predicted models against the experimental structures we used the Root 

Mean  Square  Deviation  (RMSD)  measure  and  the  Deformation  Index  (DI)  [Parisien  2009].  The 

RMSD is the usual measure of distance between two superimposed structures defined by the formula:

,

in which A and B are the structures and (ai – bi) represents the distance between the ith atoms of both 

structures. The DI is given by:

,

in which MCC is the Matthews Correlation Coefficient [Matthews 1975] computed on the individual 

base pair and base stacking predictions. The reason for this choice is that the RMSD, as a measure of 

similarity, does not account for specific RNA features such as the correctness of base pair and stacking 

interactions. The DI score complements the RMSD values by introducing those specific features in the 

metric.  Using the  DI  value,  the  quality  of  two models  with  close  RMSDs,  can  be  discriminated 

according to the accuracy of their  predictions of the base pairing and stacking interactions of the 

experimental structure. As we observed in the first experiments, the ranking of the models is sensitive 

to  the  chosen  metric  (see  Tables  1-3).  Such  observations  were  also  made  during  the  CASP 

competitions  (see [Marti-Renom 2002]).  This  can be expected  since  the  various  methods  rely  on 

different approximations with different consequences. The metrics can however help the design of 

improved treatments of the approximations and methods.

In a recent work, Weeks, Dokholyan and co-workers showed that when sampling the conformational 

space  of  an  RNA molecule  using discrete  molecular  dynamics,  the  RMSD values  are  distributed 

normally with a mean related to the length of the molecule by the power law:

where N is the number of nucleotides and a and b are constants that depend on whether secondary 

structure information is provided as input to the molecular dynamic simulation. From this observation 

it is possible to compute the significance level (P-value) of a prediction with a given RMSD with 

respect to an accepted structure.  This P-value corresponds to the probability hat a given structure 
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prediction is better than that expected by chance [Hajdin 2010].  Structure models with P-values less 

than 0.01 represent, in general, successful predictions.

The stereo-chemical correctness of the predicted models was evaluated with MolProbity [Davis 2007], 

which provides quality validation for 3D structures of nucleic acids. MolProbity performs a number of 

automatic analyses, from checking the lengths of the H-bonds present in the model to validating the 

compliance with the rotameric nature of the RNA backbone [Murray 2003]. The reduce-build script of 

MolProbity was used  for  adding hydrogen atoms to the heavy atoms of  the  models.  As a  single 

measure of stereo-chemical correctness, we chose the clash score, i.e. the number of steric clashes per 

thousand residues [Word 1999].

All  the computed  values  are  showed in  a  comparison summary page,  which  ranks the submitted 

models  according  to  each  of  the  computed  metrics.  In  addition  to  the  comparison  summary,  we 

provide a report for each of the predicted models. The report presents the structural superposition 

between predicted model  and experimental  structure,  the analysis  of  the predicted base pairs,  i.e. 

correctly predicted (true positives), wrongly predicted (false positives) and missed (false negatives) 

and  a  complete  Deformation  Profile  matrix  (DP)  which  provides  an  evaluation  of  the  predictive 

quality of a model at multiple scales as described in [Parisien 2009].

The problems

Two crystallography laboratories sent coordinates for the prediction contest: the laboratory of Thomas 

Hermann at UC San Diego and that of Dinshaw Patel and Alexander Serganov at the memorial Sloan-

Kettering Cancer Center. The three trial experiments were the following.

Problem 1: Dimer.

What is the structure of the following sequence:

5’ CCG CCG CGC CAU GCC UGU GGC GG 3’,

knowing that the crystal structure shows a homodimer that contains two strands of the sequence. The 

strands hybridize with blunt ends (C-G closing base pairs). The solution structure corresponds to the 

regulatory element from human thymidylate synthase mRNA [Dibrov 2010] which, in the crystal, 

forms a dimer with two asymmetrical internal loops despite perfect sequence symmetry (Figure 1a and 
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1b).  The crystal  structure was resolved to  1.97Å resolution.  A total of  14 predicted models  were 

submitted with a RMSD ranging from 3.4 Å to 6.9 Å (mean RMSD of 4.7 Å) (Table 1). 

Problem 2 : Square.

The crystal  structure,  which  was  resolved  to  2.2Å resolution,  shows a  100 nt  square  of  double-

stranded RNA that self-assembles from four identical inner and four identical outer strands [Dibrov 

2011]. The secondary structure shown was used for the design of the square. Actual base pairing in the 

crystal may deviate. 3D coordinates of the nucleotides in the inner strands (B, D, F, H) were provided. 

What are the structures of the outer strands (A, C, E, G)?

The square is formed by 4 helices connected by 4 single stranded loops. All the helices are identical 

identical at sequence level and so are all the loops (Figure 3). 

Problem 3 : A riboswitch domain.

A domain of a riboswitch was crystallized. The sequence is the following: 

5' CUC UGG AGA GAA CCG UUU AAU CGG UCG CCG AAG GAG CAA GCU

  CUG CGC AUA UGC AGA GUG AAA CUC UCA GGC AAA AGG ACA GAG 3'

The crystallized sequence was slightly different (an apical loop was replaced by a GAAA loop) but 

this detail of RNA crystal engineering was not disclosed to modelers to protect the crystallographers 

(Figures 6a, 6b) [Huang 2010].

Results

Eight research groups participated in the first  three RNAPuzzles experiments. The Bujnicki group 

used  a  hybrid  strategy  previously  developed  for  protein  modeling  in  the  course  of  the  CASP 

experiment  [Kosinski  2003].  The  Chen  lab  used  a  multiscale  free  energy  landscape-based  RNA 

folding model (Vfold model)  [Cao and Chen 2011, Chen 2008]. The Das group used the stepwise 

assembly (SWA) method for recursively constructing atomic-detail biomolecular structures in small 

building steps [Sripakdeevong and Das 2011]. The Dokholyan group adopted a multiscale molecular 

dynamics approach as described in [Ding 2011]. The Flores group used the RNABuilder program, a 

computer assisted RNA modeling tool [Flores 2010]. For a more detailed description of particular 

methods see Supplementary Information.

The amount of time required to produce the models and the degree of automation varied sensibly with 
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the different approaches. These descriptions can be found in the supplementary material. One point 

should  be  emphasized.  Compared  to  CASP protein  targets,  with  RNA molecules,  a  RNA puzzle 

typically involves multiple ‘mini-puzzles’ such as separate tertiary modules and non-Watson-Crick 

pairs. There are several examples of this from this first round, e.g.,  the four corners and the four 

helices of the nanosquare. Thus, even a single puzzle is powerful for testing modeling methods.

Problem 1: Dimer.

Fourteen predicted models were submitted.  The RMSDs range from 3.4 Å to 6.9 Å (with a mean of  

4.7 Å). The base pair interactions are correctly predicted in almost all models with more than 85% of 

WC base pairs correctly predicted in all but two models and more than 75% of stacking interaction 

predicted in all but one model. Contrary to the X-ray structure, most of the proposed models present a 

symmetric structure.  The only exceptions are the models from the Das’s laboratory (see Table 1). 

From the analysis of the Deformation Profile values (Figure 2) it is clear the internal loops were the 

domains most difficult to predict (Figure 1c and 1d) and that helix H2, probably because of its location 

between the loops, presents a particularly large interval of DP values. Several models present high 

values for the Clash Score, which could reflect the need for up-dated dictionaries of distances and 

angles or stronger constraints towards the dictionary values. 

Problem 2 : Square.

Thirteen predicted models were submitted with RMSDs ranging 2.3 Å from 3.7 Å (mean RMSD of 

2.9 Å) (Table 2).  The standard deviation is the least of all three problems. Such values of RMSDs 

constitute significant predictions for molecules of this  size (P-value < 5x10-15 for all  models).  As 

expected the helical regions are better predicted than loops with mean DP values between 5 and 10 for 

all loops and less than 5 for 3 of the helices (Figure 3c, 3d and 4) with the exception of helix 1 in  

which the three base pairs close to loop 4 deviate slightly from the canonical Watson-Crick geometry 

(Figure 5). As for Problem 1, the base pairing and stacking were essentially well predicted but, again, 

there are a couple of very high values of Clash Scores with most models giving values below that of 

the X-ray structure.
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Problem 3 : A riboswitch domain.

This was the most complex case to model with the most intricate tertiary structure. Twelve predicted 

models were submitted with RMSDs ranging from 7.2 Å to 23.0 Å (mean RMSD of 14.4 Å) (Table 3). 

The P-values are accordingly very high (except maybe for the first model). Although any model with 

an RMSD higher than 7 Å is at the limit of any useful prediction the overall molecule architecture was 

reasonably predicted by at least the two models with the lowest RMSD values. The inter-domain DP 

values for the 10 pairwise helix-helix predictions (Figure 7) shows that the Chen’s model presents the 

lowest DP for the three way junction (P1-P2, P1-P3 and P2-P3) and a consistently lower than average 

DP for the coaxial stacking of P2-P3-P3a-P3b. This coaxial stacking was also reasonably predicted 

(DP < 15) by five of the models (Table 4). Finally, the active site, present in a 13 nucleotide internal  

loop between domains P3 and P3a, was predicted with an RMSD < 6 Å in all except one model (Table 

5, Figure 6c). The non-Watson-crick base pairs are not well predicted.

Discussion

Here we presented RNAPuzzles, a collective blind experiment for de novo RNA structure prediction 

evaluation. We hope that this initiative will function as an open forum where the members of the RNA 

modeling community can compare their methods, tools and results and newcomers to the field can get 

a  head start.  The success  of  RNAPuzzle will  greatly  depend on the engagement  of the prediction 

community as well as the generosity of the experimental community. Most importantly, this work will 

hopefully convince more structural biologists to offer problems to the modeling community in the 

future. 

This first contest had clear limitations and several improvements can be already planned. (1) As in 

CASP,  ask  the  modelers  to  predict  the  deviation  of  their  own models  to  the  native  structure,  in 

particular in terms of per-residue (or per-atom) deviations (in A) from the unknown native structure. 

This could be encoded in the B-factor field. The number of submissions should be limited and the 

submissions should be ranked by the authors. (2) Further along those lines, it would be worthwhile to 

improve model scoring and ranking so that an absolute ranking of all models, taking into account local 

and global model quality, is produced. (3) Because the RNA structure database grows, template-based 

methods are  becoming increasingly important  and,  consequently,  future RNA puzzles  should  also 

include structures of homologs of existing folds (e.g. a riboswitch with an alternative ligand or a 

mutation). (4) The extension of the contest to include structures of RNA-protein complexes.
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The assessment of model accuracy requires reliable and meaningful metrics for comparisons between 

the models and the experimentally determined structures used as a “gold standard”. In addition to the 

metrics currently used (generic to all macromolecules or specific for RNA), it may be worthwhile to 

include metrics that have been shown to perform very well at both global and local level for the very 

wide range of model qualities (from very inaccurate to very accurate), have been generally accepted in 

the protein structure prediction field and are used by assessors in the CASP experiment. In particular,  

the  GDT_TS  score  [Zemla  2003]  is  defined  as  the  average  coverage  (fraction  of  superimposed 

residues)  of  one  structure  by  another  in  superpositions  carried  out  with  four  different  distance 

thresholds (for proteins these are typically 1, 2, 4, and 8 Å). The exact per-residue deviation values are 

ignored  (e.g.  residues  with  deviations  ranging  from  4.1  to  8  Å  from  the  native  have  identical 

contributions to the score). The GDT_TS score is unfortunately dependent on the molecule size. The 

TM-score [Zhang 2004] attempts to eliminate the dependence on protein size by taking into account 

the radii of gyration of compared structures. The value of the TM-score always lies in range (0, 1], 

with better templates having higher TM-scores.

Materials and Methods

A brief description of the methodology used by the modeling groups together with comments follow 

for each group.

Bujnicki Group

The Bujnicki group used a hybrid strategy previously developed for protein modeling in the course of 

the CASP experiment  [Kisinski  2003].  Briefly,  initial  models were constructed by template-based 

modeling and fragments assembly with a comparative RNA modeling tool ModeRNA [Rother 2011], 

using constraints  on secondary structure.  For RNA Puzzle Problem 2 the secondary structure was 

provided by the organizers, while for Problem 3 it was calculated as a consensus of >20 methods using 

RNA metaserver  (http://genesilico.pl/rnametaserver/).  The initial  models  were  expected to  possess 

approximately correct Watson-Crick base-pairing and stacking interactions within individual structural 

elements but their mutual orientation and tertiary contacts required optimization.
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The initial  models  were  subjected  to  global  refinement  using  SimRNA, a  de  novo RNA folding 

method  [Rother  2011],  which  has  been  inspired  by  the  REFINER  method  for  protein  folding 

[Boniecki 2003]. SimRNA uses a coarse-grained representation, with only three centers of interaction 

per nucleotide residue. The backbone is represented by atoms P of the phosphate group and C4' of the 

ribose moiety, whereas the base is represented by just one nitrogen atom of the glycosidic bond (N9 

for  purines  or  N1  for  pyrimidines).  The  remaining  atoms  are  neglected.  Such  a  simplistic 

representation allows to retain the main characteristics of the RNA molecule such as base pairing and 

stacking, and a spiral shape of the backbone in helices), while it significantly lowers the computational 

cost for conformational transitions and energy calculation. As an "energy" function, SimRNA employs 

a  statistical  potential  derived from frequency distributions  of  geometrical  parameters  observed  in 

experimentally determined RNA structures. Terms of the SimRNA energy function (for the virtual 

bond  lengths,  flat  and  torsion  angles,  pairwise  interactions  between  the  three  atom  types)  were 

generated  using  reverse  Boltzmann  statistics.  For  searching  the  conformational  space,  SimRNA 

employs Monte Carlo dynamics controlled by an asymmetric Metropolis method [Metropolis 1949] 

that  accepts  or  rejects  new  conformations  depending  on  the  energy  change  associated  with  the 

conformational  change,  with  the  probablility  of  acceptance  depending  on  the  temperature  of  the 

system. Simulations can be run in the isothermal or energy minimization (simulated anealing) mode, 

or in the conformation space search mode (replica exchange). While SimRNA allows for simulations 

that employ only the sequence information, starting from an extended structure, it can use user-defined 

starting structures and restraints  that specify distances or allowed distance ranges for user-defined 

atom pairs. For RNA Puzzles, the Bujnicki group used restraints on secondary structure that allowed 

the predicted base pairs to be maintained. Following a series of simulations, lowest-energy structures 

were selected for the final refinement.

The final models were built by first reconstructing the full-atom representation using RebuildRNA 

(Lukasz P,  Boniecki  M, Bujnicki  JM, unpublished)  and then optimizing atomic detail  of  selected 

residues  with  SCULPT [Surles  1994]  and HyperChem 8.0  (Hypercube Inc.).  For  Problem 2,  the 

known coordinates  of  four  strands  were  used  as  provided  by the  organizers  and  "frozen"  at  the 

optimization stage.
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The computer calculation time (on a single processor) was as follows: ModeRNA: <2 h; SimRNA and 

RebuildRNA: ~150h; SCULPT <1h; HyperChem: ~12h.

In the case of the Bujnicki group the proportion of human vs computer time was relatively large 

(approximately equal), as the RNA Puzzles experiment was regarded as an opportunity for training in 

the use of various modeling methods, in a spirit very similar to the collective work of that group 

during the CASP5 modeling season [Kosinski 2003]. Consequently, a large fraction of human time 

involved discussions and communication between the two parts of the team physically located in two 

different  cities  (Poznan  and  Warsaw).  The  human  time  devoted  to  interactions  with  software 

(preparation of input files, setting up simulations,  analyses of output files, and manual refinement 

using the graphical user interfaces of SCULPT and HyperChem) summed up to about 30h, with the 

majority of time devoted to Problems 2 and 3.

Chen Group

We used a multiscale approach to predict RNA 3D structure from the sequence (Cao and Chen 2011). 

For a given RNA sequence, we first predict the 2D structure from the free energy landscape using the 

Vfold model (Cao and Chen 2005, 2006a, 2006b, 2009; Chen 2008). The Vfold model allows us to 

compute the free energies for the different RNA secondary structures and pseudoknotted structures, 

from which we can predict the (low-free energy) folds. Distinguished from other existing models, the 

Vfold model is based on the virtual bond (coarse-grained) structural model and hence it enables direct 

evaluation of the entropy parameters for the different RNA motifs, especially for the pseudoknotted 

structure. Such a physics-based approach to the evaluation of the entropy and the free energy may lead 

to more reliable 2D structure prediction. In our calculation for the 2D structures, the base stacking 

energies are adopted from the Turner energy rules (Serra and Turner 1995). Second, based on the 

predicted 2D structure, we construct a 3D coarse-grained scaffold. In the coarse-grained structure, we 

use three atoms (P, C4, N1 or N9) to represent a nucleotide. To construct a 3D scaffold, we model the 

predicted helix  stems by A-form helices.  For  the  loops/junctions,  we use the fragments  from the 

known  PDB  database.  Specifically,  we  build  a  structural  template  database  by  classifying  the 

structures  according to  the different  motifs  such as  hairpin loops and internal/bulge loops,  3-way 

junctions, 4-way junctions, pseudoknots, etc. We then search the optimal structural templates for the 
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predicted loops/junctions from the structural template database. Third, we build the all-atom model 

from the coarse-grained scaffold by adding the bases to the virtual bond backbone. In the final step, 

we  refine  the  all-atom  structure  by  using  AMBER  energy  minimization.  We  run  2000  steps 

minimization  with  500.0  kcal/mol  restraints  for  all  the  residues,  followed  by another  2000 steps 

minimization without restraints. 

The computation involves two steps: (a) the prediction of the 2D structure and the construction of the 

coarse-grained 3D structure and (b) AMBER energy minimization. The computer times (Ta, Tb) for 

the two steps are (<1, 53) minutes, (<1, 81) minutes, and (26, 143) minutes, for the predictions of the 

dimer, the square, and the riboswitch domain, respectively. The first step calculation was performed on 

a  desktop  PC  with  Intel(R) Core(TM)  2  Duo  CPU  E8400  @  3.00  GHz  and  the  second  step 

computation was carried out on a Dell EM64T cluster (Intel (R) Xeon(R) 5150 @ 2.66 GHz). 

For predicting the dimer and a riboswitch structure (problems 1 and 3), we only relied on the sequence 

information and the 3D structures were generated by computer. No human interference was involved 

in the process. For the prediction of the square structure (problem 2), we used the experimentally 

determined structure for one strand to refine the other strand. The loops and the secondary structure of 

the square were predicted by the computer through the Vfold model (Cao and Chen 2011).

Das Group

The Das lab  employed a newly developed  ab initio method called  stepwise  assembly (SWA) for 

recursively  constructing  atomic-detail  biomolecular  structures  in  small  building  steps.  Each  step 

involved enumerating several million conformations for each monomer, and we covered all step-by-

step build-up paths in polynomial computational time. The method is implemented in Rosetta and uses 

the physically  realistic Rosetta all-atom energy function [Das 2010, Das 2008].  We have recently 

benchmarked SWA on small RNA loop-modeling problems [Sripakdeevong and Das 2011]. We also 

applied  de  novo fragment  assembly  with  full-atom  refinement  (FARFAR,  also  implemented  in 

Rosetta), but did not submit those solutions as they either agreed with the SWA models (Problem 1; 

parts of Problems 2 and 3) or did not give converged solutions (other parts of Problems 2 and 3) [Das  

2010].
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Due to the deterministic and enumerative nature of SWA, the computational expense is high relative to 

stochastic and knowledge-based methods. The computational expense ranged from 20,000 (Problem 

1) to 50,000 CPU-hours (Problems 2 and 3). Also, as we were developing code 'on-the-fly', we did not 

have time to fully optimize the run-time, but are doing so now.

The SWA modeling runs were fully automated. Manual input was used near the beginning to setup the 

runs, and near the end to ensure that models presented a diversity of base pairing patterns -- both of 

these steps could be easily automated, but the Stepwise Assembly method was still under development 

during the course of this community-wide RNA blind prediction experiment. 

The lessons learned from the three models are the following.

Problem #1:  SWA models  1  and 3 (out  of five submitted)  performed reasonably well  on the 46-

nucleotide  homo-dimer,  especially  at  the  9-nt  L1  region  (see  Fig.  1C).   Both  models  correctly 

predicted the non-canonical cis W.C/W.C C9-C37 base pair and the extra-helical bulge at U39. This 

accuracy was aided by a strategy that gave entropic bonuses to bulged nucleotides that make no other 

interactions; the bulges are ‘virtualized’ within Rosetta [Sripakdeevong and Das 2011]. In this L1 

region, both models gave 1.0 Å all-heavy-atom RMSD to the crystallographic model, excluding the 

U39 extra-helical  bulge.  In  contrast,  none of  five  SWA models  achieved  atomic  accuracy  in  the 

sequence-identical  9-nt  L2 loop (see Fig.  1D; greater  than 3.0  Å RMSD).  Model  3 did correctly 

predict  C14 to be an extra-helical bulge and C15 and C32 to be base-paired.  However,  the exact 

geometry of the predicted C15-C32 base pair and an additional U16-G31 base pair were incorrect. In 

the crystallographic model, the base of U16 bulged out and its phosphate formed hydrogen-bonding 

interactions with the base of G31; in our implementation at the time, we ‘virtualized’ the phosphates of 

any bulged nucleotides along with their bases. Partial virtualization of bulged bases and more rigorous 

modeling of conformational entropy are under investigation.

Problem #2: The SWA models performed well in the regions of the 100-nt “Self-assembling RNA 

square” within putatively regular secondary structure. We did not assume these to be ideal A-form 

helices, but modeled them from scratch. These regions are composed mainly of Watson-Crick base 

pairs but also included a non-canonical cis W.C/W.C base pair at corner E/F (see Fig. 3c) that SWA 
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model 1 correctly predicted. In contrast, the SWA models did not reach atomic accuracy for any of the 

5-nt loops at each of the four corners of the square RNA. We partly expected this because the ‘corners’ 

of the nanosquare originated from a 5-nt bulge in HCV IRES domain IIa [PDB number:2PN4] [Zhao 

2008], which happened to be part of our comprehensive SWA benchmark [Sripakdeevong and Das 

2011]. There, it was possible to sample the crystallographic loop conformation but not to select it as 

the lowest-energy structure; the loop forms direct hydrogen bonds to metal ions, and these interactions 

are not yet modeled in Rosetta. 

With this result in mind, after the nanosquare crystal structure was released, we compared it to the full 

ensemble of models generated by SWA. Loops in corner C/D and G/H were engaged in significant 

crystal  contacts;  but  loops  A/B and  E/F  should  have  been  amenable  to  high-accuracy  modeling. 

Indeed, for both of these loops, SWA sampled the crystallographic conformation of these loop regions 

with <1.0 Å RMSD, but these models had significantly worse Rosetta energy than our submissions. 

Again, these corners (and indeed all four corners) involved the binding of either divalent metal ions or 

cobalt hexamine (III). The lesson learned (or verified) from this puzzle is that approximations in the 

Rosetta all-atom energy function, especially with regards to metal ions, still remain too inaccurate to 

permit atomic-resolution RNA modeling on a consistent basis. This puzzle has inspired us to develop 

approaches to include metal ions during the de novo build-up of models. 

Problem #3: Our recent research has focused on the prediction of high-resolution motifs as a stepping 

stone to modeling larger RNAs. This glycine riboswitch puzzle was thus currently out of range – its 

core 3-way junction and glycine binding site form an intricate noncanonical pairing network involving 

more than a dozen residues. Further, interactions across a dimer interface appear crucial for stabilizing 

the riboswitch conformation, but this information was not available to us. Our models were based on 

generating low-energy Rosetta SWA models for individual loops, two-way junctions, and three-way 

junctions, and then connecting them with ideal helices. Surprisingly, this basic approach, ignorant of 

higher order interactions, gave the best base pair recoveries (INF all, INF wc, INF nwc; see models 1 

and 2 in Table 3) amongst submitted models. Other models of ours (models 4 and 5) gave the best 

RMSDs for the glycine-binding site. However, these were very far from atomic accuracy (2.8 Å and 

2.9 Å). Most critically, the global structure of the RNA was not recapitulated (RMSD and DI, Table 3). 

The  helices  formed  the  correct  tuning-fork-like  rearrangement  but  were  twisted  relative  to  the 
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crystallographic model (Tables 4 and 5). Globally correct solutions require global optimization, and 

this puzzle has motivated us to develop iterative hybrid high-resolution/low-resolution approaches to 

RNA modeling, analogous to the rebuild-and-refine method used in Rosetta template-based modeling 

[Qian 2007]. As a final note, in the paper describing this puzzle’s crystal structure, a striking structural 

similarity of the glycine riboswitch core to a previously solved SAM-I riboswitch [$$6] was noted. If 

such similarities could be inferred from sequence or multiple sequence alignments (analogous to fold 

recognition methods in protein modeling), we expect that substantially more accurate models could be 

built.  We  are  therefore  hopeful  about  by  further  development  of  RNA structural  bioinformatics 

approaches such as Rmdetect [Cruz 2011] and FR3D [Sarver 2008].

Dokholyan group:

The  Dokholyan  group  adopted  a  multiscale  molecular  dynamics  approach  [Ding  2011].  Briefly, 

coarse-grained  discrete  molecular  dynamics  (DMD)  simulations  are  used  to  sample  the  vast 

conformational space of RNA molecules. The representative structures are selected from the coarse-

grained  simulations  based  on  energies  and/or  additional  filters  (i.e.,  radius  of  gyration  and other 

experimentally  known parameters).  In  the coarse-grained DMD simulations,  RNA nucleotides  are 

represented by three pseudo-atoms corresponding to the base,  sugar,  and phosphate groups [Ding 

2008]. The neighboring beads along the sequence are constrained to mimic the chain connectivity and 

local chain geometry, including covalent bonds, bond angles, and dihedral angles. The parameters for 

bonded  interactions  mimic  the  folded  RNA structure  and  are  derived  from high-resolution  RNA 

structures.  Non-bonded  interactions  include  base-pairing,  base-stacking,  short-range  phosphate-

phosphate repulsion, and hydrophobic interactions. The interaction parameters are derived form the 

sequence-dependent free energy parameters of the individual nearest-neighbor hydrogen bond model 

(INN-HB) [Mathews 2009]. Given a coarse-grained RNA model, the corresponding all-atom model is 

reconstructed  and  further  optimized  with  all-atom  DMD  simulations  [Ding  and  Dokholyan, 

unpublished]. The all-atom DMD model of RNAs is the extension of the all-atom DMD model of 

proteins [Ding 2008b]. In DMD simulations the structural information of a given RNA, such as base  

pairs and distances between specific nucleotides, can be incorporated as constraints to guide the RNA 

folding [Gherghe 2009, Lavender 2010].
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The CPU time for DMD simulations depends on RNA length. For the coarse-grained simulations, 

previously benchmark suggests a near linear dependence to RNA length [Ding 2008]. For example, for 

a RNA of ~80 nt (such as the 3rd puzzle) the total computational time for the coarse-grained DMD 

simulation  is  ~12  hours.  The  procedure  to  identify  the  representative  structures  using  clustering 

algorithm is usually less than 1 hour. The CPU time of the all-atom DMD simulation also depends on 

RNA length,  n, with the computational complexity of ~nln(n). For the 84 nt RNA (problem 3), the 

CPU time was approximately 18 h; and the CPU time for 100 nt RNA (problem) was approximately 

24 h.

In the current three RNA puzzles, we included base-pairs either from previous knowledge (input from 

the experimentalists  in  puzzle  2;  RNA secondary  structure prediction  combined with biochemical 

validates in the puzzle 3) or with biochemical intuition (puzzle 1). Once the structural information is 

gathered and prepared for the refinement simulations, the rest of the computational efforts are fully 

automated.

Our lesson is that inclusion of experimentally validated structure information as much as possible will 

help improve the prediction. In the case of uncertainties, it is better not to include them as constraints,  

but rather let the DMD simulations sample allowed conformational space, since the errors of the input 

constraints can bias the simulations toward unphysical structures. In our case of puzzle 1, we over-

estimated the base-pairs in the middle of the monomer sequence based on the apparent knowledge of 

the “hybridize with blunt ends (C=G closing base pairs)”. As the result, our predicted structure of 

puzzle 1 had the highest RMSD among all the predictions. In a control simulation post priori, where 

only the GC pairs in the ends are constrained to form base pairs, the predicted model structure had a 

much smaller RMSD.

Flores Group

For our 3D structure prediction we used RNABuilder (named MMB in a subsequent  release),  an 

internal coordinate mechanics code which allows the user to specify the flexibility, forces, constraints, 

and full or partial structural coordinates to model the structure and/or dynamics of an RNA molecule 

[Flores 2010]. Working in internal coordinates has the advantage that regions of the molecule whose 
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structure  is  known can be rigidified  turning many atoms into a  single  body,  eliminating  the cost 

associated with solving the equations of motion for its internal degrees of freedom [Flores 2011]. 

Steric  exclusion  can  be  accounted  for  economically  using  collision-detecting  spheres  which  are 

applied to a subset of atoms in user-specified residues. Any canonical or non-canonical base pairing 

interaction catalogued in [Leontis 2002], plus stacking and a “Superimpose” threading force can be 

enforced between any and all pairs of residues specified by the user. These features have been used for 

RNA threading [Flores 2010b] and for generating an all-atoms trajectory of ribosomal hybridization 

using structural and biochemical information [Flores 2011].

The processing time on a single core of an 3.0 GHz Intel processor was about 94 minutes. We note 

that this run was not optimized for speed, and also that a newer version of RNABuilder (named MMB) 

is at least 2X faster due to improvements in the underlying Simbody internal coordinate dynamics 

engine [Michael A. Sherman, Ajay Seth, Scott L. Delp. Simbody: multibody dynamics for biomedical 

research. Procedia IUTAM 2, 241-261 (2011)].

RNABuilder is intended to be easy to use, and this goal is supported by the use of a single free-format 

command file that is prepared using a relatively intuitive syntax using terms which may be recognized 

by a biologist. However the package also intends to give the user control over the flexibility, forces, 

and parameters of the model in order to be useful for a wide variety of applications, hence it is not 

automated. The human time required for preparing a run is thus dependent on the experience of the 

user and the complexity of the task. RNABuilder is designed to enable fast runtimes; most tasks we 

undertake require minutes to hours again dependent on the task. A trained user can also reduce the 

degrees  of  freedom and  structure  the  problem  to  allow  larger  integration  time  steps  for  greater 

efficiency. Also in practice most users will do multiple calculations prior to coming to a biological 

conclusion. In our experience the human/computer time ratio is typically much greater than unity.

SantaLucia Group

The details are as follow:

CASE 1 Prediction

a. The machine calculation time ~ 25 Minutes on a 2.2GHz laptop that runs on windows vista.
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b. What was the manual input if any and at what stages of the process – No manual input

c. How many people were involved (man-hours) – 1hr

 

CASE 2 Prediction

a.  The machine  calculation  time ~ 20  Minutes  on a  2.2GHz laptop to  construct  one of  the  four 

“building blocks”. 10 Minutes to run Optimization algorithm to seal the daggling ends

b. What was the manual input if any and at what stages of the process – Manual Input in aligning the  

building blocks onto the provided inner strand.

c. How many people were involved (man-hours) – 1hr.

 

CASE 3 Prediction

We will not be submitting our prediction for this case. Our software is currently being developed to 

address multiloop predictions and as such it is not ready for this task.

PDB file normalization

Both solution files and predicted model files, submitted in the PDB format, were normalized in order 

to  comply with a  common standard.  Only the first  model  present  in  the file  was considered.  All 

records except for the 'ATOM' and 'TER' records were ignored. Only the four nucleotides A, C, U and 

G were considered. Modified nucleotides were treated as unmodified bases and extra atoms discarded 

(e.g. a 5-Bromouracil is treated as a normal Uracil and the extra bromine atom is discarded). The only 

atoms kept are the base ones (C2, C4, C6, C8, N1, N2, N3, N4, N6, N7, N9, O2, O4 and O6) and the 

sugar-phosphate backbone (C1´, C2´, C3´, C4´, C5´, O2´, O3´, O4´, O5´, OP1, OP2 and P).

Stereochemical evaluation

The stereochemical evaluation is performed using the MolProbity [Davis 2007] tool. In a first step 

hydrogen atoms are added to the model using the “reduce-build” command line utility, then, the clash 

score value is computed using the “oneline-analysis -nocbeta -norota -norama” command.

RMSD computation

The RMSD is computed using the “Superimposer” class from the “Bio.PDB” package [Hamelryck 

2003]. The “Superimposer” class translates and rotates the comparing model in order to minimize its 
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RMSD  in  respect  to  the  reference  model.  It  uses  a  singular  value  decomposition  algorithm  as 

described in [Golub and Van Loan 1989].

Deformation Index and Deformation Profile computations

The base-base interactions (BBI) of both solution and predicted models are extracted using the “MC-

Annotate” [Gendron 2001] tool. The Interaction Network Fidelity (INF) value is computed as:

,

where TP is  the number of  correctly  predicted BBI,  FP is  the number of  predicted BBI with no 

correspondence in the solution model and FN is the number of BBI in the solution model not present 

in the predicted model. The Deformation Index is then computed as:

.

Several partial INF (and respective DI) can be computed if one considers only the Watson-Crick (WC) 

base pairs (INFWC), the non Watson-Crick (NWC) base pairs (INFNWC), both WC and NWC base pairs 

(INFBPS) or the stacking interactions (INFSTACK).

The Deformation Profile is computed using the “dp.py” command from the “SIMINDEX” package 

[Parisien 2009].

P-value computation

The P-value is computed as described in [Hajdin 2010] using:

, with .

the constants a and b depend on whether the secondary structure base pairing information is provided 

(a=5.1 and b=15.8) or not (a=6.4 and b=12.7).

Graphics

Interactive  molecular  module  images  in  the  RNAPuzzles  web  site  are  produced  with  Jmol 

(http://www.jmol.org) and the secondary structures with VARNA [Darty 2009].
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Legends for Figures

Figure 1

Problem 1 - (a) Secondary structure of the reference RNA molecule. X-ray structures of the reference 

RNA molecule (green) and the predicted models of lowest RMSD (blue) for (b) the full molecule of 

Das model 3, (c) details of loop L1 of Das model 1 and (d) details of loop L2 of Das model 3.

Figure 2

Problem 1 - Deformation Profile values for each of the 5 domains of the homodimer. Color lines 

represent the DP values for the two predicted models with lowest RMSD, Das model 3 (dark red) and 

Das model 1 (dark green), and for the predicted model with higher RMSD, Dokholyan model 1 (dark 

blue). Radial red lines indicate the minimum, maximum and mean DP values for each domain.

Figure 3

Problem 2 - (a) Secondary structure of the reference RNA molecule. X-ray structures of the reference 

RNA molecules (green) and the predicted models of lowest RMSD (blue) for (b) the full molecule and 

Bujnicki model 2, (c) details of helices H1, H2 and H4 of Das model 1 and helix H3 of Bujnicki 

model 2 and (d) details of loops L1 and L2 of Santalucia model 1, loop L3 of Dokholyan model 1 and 

loop L4 of Bujnicki model 3.

Figure 4

Problem 2 - Deformation Profile values for the three predicted models with lowest RMSD: Bujnicki 

model 2 (dark red), Bujnicki model 3 (dark green) and Das model 1 (dark blue). Radial red lines 

indicate the minimum, maximum and mean DP values for each domain.

Figure 5

Problem 2 - Detail of the helix H1of the X-ray structure (green) and of the lowest RMSD model, Das 

model 1 (blue).
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Figure 6

Problem 3  -  (a)  Secondary  structure  of  the  reference  RNA molecule.  (b)  X-ray  structure  of  the 

reference RNA molecule (P1 red, P2 orange, P3, P3a, P3b yellow, active site green) and the predicted 

model of lowest RMSD Chen model 1 (blue). (c) Detail of the active site for the X-ray structure 

(green) and the predicted model of lowest RMSD Chen model 1 (blue).

Figure 7

Problem 3 - Deformation Profile values of the pairwise helical interdomains (P1, P2, P3, P3a and P3b) 

for the three predicted models with lowest RMSD: Chen model 1 (dark red), Dokholyan model 2 (dark 

green) and Das model 5 (dark blue). Radial red lines indicate the minimum, maximum and mean DP 

values for each intradomain pair.
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NOTE: Image resolutions and table aspect will be upgraded in the final version!

Figures

Figure 1

Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6
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Figure 7

32



Legends for Tables

Table 1

Summary of the results of problem 1. Values in each row correspond to a predicted model. a) Name of 

the research group that submitted the model; b) number of the model among all the models of the 

same group;  c)  RMSD of  the  model  compared  with  the  reference  crystal  structure;  d)  Columns 

signaled with “#” indicate the rank of the model in respect to the left hand column metric; e) DIall – 

Deformation  Index  taking  into  account  all  interactions  (stacking,  Watson-Crick  and  non Watson-

Crick);  f)  INFall –  Interaction  Network  Fidelity  taking  into  account  all   interactions;  g)  INFwc – 

Interaction  Network  Fidelity  taking  into  account  only  Watson-Crick  interactions;  h)  INFstack – 

Interaction  Network  Fidelity  taking  into  account  only  Stacking  interactions;  i)  Clash  score  as 

computed by the MolProbity suite [Davis 2007]; j) Significance of the predicted model.

Table 2

Summary of the results of problem 2. Values in each row correspond to a predicted model. a) Name of 

the research group that submitted the model; b) number of the model among all the models of the 

same group;  c)  RMSD of  the  model  compared  with  the  reference  crystal  structure;  d)  Columns 

signaled with “#” indicate the rank of the model in respect to the left hand column metric; e) DIall – 

Deformation Index taking into account  all   interactions  (stacking,  Watson-Crick and non Watson-

Crick);  f)  INFall –  Interaction  Network  Fidelity  taking  into  account  all   interactions;  g)  INFwc – 

Interaction  Network  Fidelity  taking  into  account  only  Watson-Crick  interactions;  h)  INFnwc – 

Interaction  Network Fidelity  taking into account  only  non Watson-Crick interactions;  i)  INFstack – 

Interaction  Network  Fidelity  taking  into  account  only  Stacking  interactions;  j)  Clash  score  as 

computed by the MolProbity suite [Davis 2007]; k) Significance of the predicted model.

Table 3

Summary of the results of problem 3. Values in each row correspond to a predicted model. a) Name of 

the research group that submitted the model; b) number of the model among all the models of the 

same group;  c)  RMSD of  the  model  compared  with  the  reference  crystal  structure;  d)  Columns 

signaled with “#” indicate the rank of the model in respect to the left hand column metric; e) DIall – 

Deformation  Index  taking  into  account  all  interactions  (stacking,  Watson-Crick  and  non Watson-

Crick);  f)  INFall –  Interaction  Network  Fidelity  taking  into  account  all   interactions;  g)  INFwc – 
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Interaction  Network  Fidelity  taking  into  account  only  Watson-Crick  interactions;  h)  INFnwc – 

Interaction  Network Fidelity  taking into account  only  non Watson-Crick interactions;  i)  INFstack – 

Interaction  Network  Fidelity  taking  into  account  only  Stacking  interactions;  j)  Clash  score  as 

computed by the MolProbity suite [Davis 2007]; k) Significance of the predicted model.

Table 4

Pairwise interdomain Deformation Profile values for the helical domains P1, P2, P3, P3a and P3b 

from problem 3. In red are all DP values less then 15.

Table 5

The RMSD values between the active site of the X-ray model and each predicted model of problem 3.

34



Tables

Table 1

Problem 1

Groupa Numb RMSDc #d
DI 

alle
#

INF 

allf
#

INF 

wcg
#

INF 

stackh
#

Clash 

Scorei
# P-valuej #

Das 3 3.41 1 3.66 1 0.93 1 0.95 2 0.92 1 0.00 5 2.22E-016 1

Das 1 3.58 2 3.89 2 0.92 3 0.95 1 0.91 2 0.00 3 4.44E-016 2

Das 4 3.91 3 4.31 3 0.91 4 0.91 8 0.91 4 0.00 4 1.94E-015 3

Major 1 4.06 4 4.57 4 0.89 5 0.95 6 0.87 5 66.40 11 3.83E-015 4

Chen 1 4.11 5 5.01 6 0.82 9 0.87 11 0.80 8 0.68 6 4.77E-015 5

Das 2 4.34 6 4.70 5 0.92 2 0.95 4 0.91 3 1.36 7 1.28E-014 6

Das 5 4.56 7 5.36 7 0.85 7 0.88 10 0.84 7 0.00 2 3.31E-014 7

Bujnicki 3 4.66 8 5.75 9 0.81 11 0.95 3 0.74 14 54.73 10 4.99E-014 8

Bujnicki 4 4.74 9 6.59 11 0.72 14 0.65 14 0.75 13 83.33 14 6.87E-014 9

Bujnicki 5 4.89 10 6.26 10 0.78 13 0.78 13 0.80 9 81.98 13 1.30E-013 10

Bujnicki 1 5.07 11 5.75 8 0.88 6 0.93 7 0.86 6 0.00 1 2.76E-013 11

Bujnicki 2 5.43 12 6.75 12 0.80 12 0.90 9 0.77 12 71.57 12 1.15E-012 12

Santalucia 1 5.69 13 6.75 13 0.84 8 0.95 5 0.79 11 39.86 9 3.20E-012 13

Dokholyan 1 6.94 14 8.55 14 0.81 10 0.86 12 0.79 10 31.74 8 3.31E-010 14

Mean 4.67 5.56 0.85 0.89 0.83

Standard deviation 0.93 1.34 0.06 N 0.09 0.07

X-Ray 

Model 1.35
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Table 2

Problem 2

Groupa
Num

b

RMSD
c

#d DI alle # INF allf #
INF 

wcg
#

INF 

nwc
h

#
INF 

stacki
#

Clash 

Scorej
# P-valuek #

Bujnicki 2 2.3 1 2.83 1 0.81 8 0.92 9 0 13 0.79 7 14.54 2 0.00E+000 4

Bujnicki 3 2.33 2 2.9 3 0.8 10 0.91 10 0 2 0.77 9 0.62 1 0.00E+000 2

Das 1 2.5 3 2.9 2 0.86 2 0.96 5 0 8 0.85 2 19.8 5 0.00E+000 3

Dokholyan 1 2.54 4 3.09 5 0.82 6 0.9 11 0 1 0.8 5 19.85 6 0.00E+000 1

Bujnicki 1 2.65 5 2.99 4 0.89 1 0.96 4 0 3 0.86 1 15.47 3 5.55E-017 5

Chen 1 2.83 6 3.74 9 0.76 13 0.9 12 0 9 0.69 13 18.66 4 1.11E-016 6

Das 4 2.83 7 3.46 6 0.82 7 0.97 3 0 12 0.78 8 23.82 8 1.11E-016 7

Major 1 2.98 8 3.82 10 0.78 12 0.95 7 0 10 0.71 12 134.26 12 2.22E-016 8

Das 3 3.03 9 3.67 7 0.83 5 0.97 1 0 6 0.8 6 25.37 10 2.78E-016 9

Das 2 3.05 10 3.69 8 0.83 4 0.97 2 0 7 0.81 3 23.51 7 2.78E-016 10

Das 5 3.46 11 4.18 11 0.83 3 0.96 6 0 11 0.81 4 24.75 9 1.89E-015 11

Flores 1 3.48 12 4.4 12 0.79 11 0.89 13 0 5 0.77 10 165.57 13 2.00E-015 12

Santalucia 1 3.65 13 4.54 13 0.81 9 0.92 8 0 4 0.75 11 25.73 11 4.27E-015 13

Mean 2.90 3.55 0.82 0.94 0.00 0.78

Standard 

deviation
0.44 0.59 0.03 0.03 0.00 0.05

X-Ray 

Model 36.10
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Table 3

Problem 3

Groupa
Nu

mb
RMSDc #d DI alle #

INF 

allf
#

INF 

wcg
#

INF 

nwch
#

INF 

stacki
#

Clash 

Scorej
# P-valuek #

Chen 1 7.24 1 9.84 1 0.74 2 0.86 5 0 6 0.73 1 1.1 3 2.01E-05 1

Dokholyan 2 11.46 2 16.1 2 0.71 6 0.82 9 0 9 0.71 6 41.21 10 3.90E-02 2

Das 5 11.97 3 16.42 3 0.73 5 0.9 1 0.36 5 0.71 3 1.1 4 6.92E-02 3

Bujnicki 1 12.19 4 17.49 5 0.7 7 0.82 10 0 10 0.7 7 14.72 8 8.71E-02 4

Das 2 12.2 5 16.6 4 0.74 3 0.86 6 0.4 2 0.73 2 0.74 2 8.83E-02 5

Major 2 13.7 6 23.33 10 0.59 11 0.67 11 0 8 0.61 10 93.52 12 3.03E-01 6

Bujnicki 2 14.06 7 22.51 7 0.62 10 0.83 8 0 7 0.59 11 5.15 7 3.75E-01 7

Das 1 15.48 8 20.9 6 0.74 1 0.87 4 0.57 1 0.71 5 0 1 6.81E-01 8

Dokholyan 1 15.92 9 23.28 9 0.68 9 0.9 2 0 12 0.66 9 39.37 9 7.629E-01 9

Das 3 16.95 10 23.17 8 0.73 4 0.89 3 0.4 3 0.71 4 1.47 5 9.02E-01 10

Das 4 18.3 11 26.55 11 0.69 8 0.85 7 0.38 4 0.67 8 2.21 6 9.79E-01 11

Major 1 22.99 12 45.27 12 0.51 12 0.39 12 0 11 0.59 12 75.11 11 1.00E+00 12

Mean 14.37 21.79 0.68 0.80 0.18 0.68

Standard 

deviation
3.99 8.69 0.07 0.14 0.22 0.05

X-Ray 

Model 1.83
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Table 4

P1xP2 P1xP3 P1xP3a P1xP3b P2xP3 P2xP3a P2xP3b P3xP3a P3xP3b P3axP3b

3_bujnicki_1.dat 19.8 22.5 37.6 46.2 7.0 22.2 41.2 11.2 27.2 17.7

3_bujnicki_2.dat 27.3 37.3 49.4 68.2 20.1 32.3 47.4 8.1 21.5 16.0

3_chen_1.dat 11.3 8.7 26.0 28.3 5.1 18.6 26.8 12.0 14.6 14.8

3_das_1.dat 31.7 36.6 48.9 71.2 18.3 35.6 65.1 11.9 30.1 18.9

3_das_2.dat 30.7 32.9 34.1 34.0 24.9 32.9 27.0 10.4 12.6 13.4

3_das_3.dat 29.9 33.7 43.9 59.1 23.2 35.9 45.1 13.3 21.9 13.5

3_das_4.dat 33.1 36.5 54.0 71.3 13.1 22.9 37.9 9.1 13.6 10.8

3_das_5.dat 30.4 34.2 39.1 45.6 25.9 35.1 43.4 8.9 13.5 11.8

3_dokholyan_1.dat 34.9 21.5 32.9 59.4 12.1 28.3 32.9 14.7 26.8 25.9

3_dokholyan_2.dat 29.0 16.8 21.2 45.5 13.8 24.8 35.0 10.1 20.9 23.8

3_major_1.dat 23.0 40.3 44.4 46.4 27.5 43.3 56.5 27.9 53.4 48.2

3_major_2.dat 27.6 26.8 44.2 66.1 9.6 25.1 37.9 10.4 19.4 18.5

Table 5

Problem 3

3_das_5 2.842888

3_das_4 2.928573

3_bujnicki_2 3.042605

3_chen_1 3.703777

3_das_2 3.915769

3_dokholyan_2 4.138209

3_bujnicki_1 4.253633

3_major_2 4.447882

3_das_1 4.554707

3_das_3 4.681876

3_dokholyan_1 5.821877

3_major_1 17.289223
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Chapter 4

Annotation of ncRNA genes

Genome annotation, i.e., the process of attributing a function to a DNA seg-
ment localized in a genome1, is a major task of any full genome sequencing
project. The annotation process consists of localizing the precise genomic
location of each gene, classifying them by family and function, and identi-
fying their products by homology with closely related species. The accurate
and comprehensive annotation of a genome is an invaluable resource to the
research community as it provides the data to support posterior studies,
e.g., the presence or absence of a single gene can provide useful hints about
the cell lifestyle, its metabolic pathways and functioning mechanisms; the
evolutionary history of a species – its origins, genome dynamic and relation-
ship with other species – can be largely informed by the order of genes in
synteny groups and their distribution across chromosomes.

The concept of gene has been changing over time (Noble, 2008) and the
annotation process has followed this change. A gene is no longer – if it
ever was – a strict synonym of “protein coding region”, thus, annotation
projects, must do more than locating the coding components of the genome.
They must identify a plethora of other components such as, non coding tran-
scripts, transposable elements, repetitive elements, introns and so on. The
changes in the gene concepts must be accompanied by changes in annotation
tools and methodologies. While automatic protein coding gene finding is a
well established field (Harrow et al., 2009), reliable tools to discover other
types of genes – in particular ncRNA genes – are relatively recent and their
integration in full genome annotation pipelines is not yet a common place.

This chapter describes a pipeline for ncRNA gene discovery that in-
tegrates publicly available tools in order to improve genome annotation
projects with homology and de novo gene discovery capabilities. The pro-
posed pipeline was applied to 15 yeast genomes in the context of the Génolevures

1Here I deliberately simplified the definition of annotation as many other significant
genomic features are localized during the annotation process (e.g., centromeres, telomeres,
regulatory elements and other genomic structures). Those features, however, are beyond
the scope of the present work.
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96 CHAPTER 4. ANNOTATION OF NCRNA GENES

project (Souciet et al., 2000) and the corresponding results will be described
in Chapter 5.

4.1 Introduction

In recent years several new specific ncRNA discovery tools became available.
As I will describe in this chapter, each of these tools focuses either on a
particular discovery approach or on a specific ncRNA family. If, on one
hand, this “approach vs. family” specialization improves the performance
of each tool, on the other hand, it narrows their domain of application.
As whole genome annotation projects require the discovery of as many as
possible genes, the practical solution is to combine several available tools in
order to maximize the gene discovery.

Another important issue to be addressed in whole genome annotation
projects has to do with the total human effort spent on the process. Auto-
matic tools usually produce many thousands of candidates, a number much
larger than the real number of genes to be found. The classification of each
candidate as a bona fide gene or a false positive prediction will be, at the
very end, an human expert decision. Therefore, automation becomes es-
sential to reduce the human effort. Some examples of tasks amenable to
automation include: batch running of the available search tools; parsing
the results and collecting the produced candidates; filtering and selecting
the best among those candidates; and summarizing all the results in a hu-
man readable fashion, allowing the curator to take a quick, yet informed,
decision. This chaining of automatic tasks is commonly known as an “anno-
tation pipeline” (in the remaining of the text, for economy sake, I will refer
to it simply as “pipeline”).

Although several ncRNA discovery pipelines have been proposed before
(Yao et al., 2007; Noirot et al., 2008), the following particularities of the
present project led us to explore a specific approach:

(i) From the start of the project 10 yeast genomes were available (to which
5 new ones were added) and more than 30 new genomes are being
sequenced. Consequently I was interested in applying some newly
developed de novo search techniques (Washietl et al., 2005) that take
advantage of multiple sequence alignments of related species;

(ii) It is known that some yeast ncRNAs present particularly large ex-
tended domains (Kretzner et al., 1990; Kachouri et al., 2005). A par-
ticular treatment of the candidate genes is required in order to avoid
missing those sequences and detecting their correct limits;

(iii) Previous knowledge about the organization of ncRNA genes on yeasts
– synteny relationships and polycistronic gene clusters (Souciet et al.,
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2009) – should be incorporated in the validation part of the pipeline
in order to improve the automatic selection of candidates.

4.2 The Pipeline

The developed pipeline consists of five main components (see Figure 4.1):

• Data collection: Retrieves, from external sources, the available data
required for the annotation, e.g., previously existing annotations, ncRNA
alignments, taxonomic information, . . . ;

• Homology search: Performs ncRNA gene search based on homolo-
gous sequence information;

• de novo search: Performs ncRNA gene search based on characteristic
features of ncRNA sequence, with no homolog sequence comparisons;

• Hit processing and candidate generation: Collects all the pro-
duced hits, join them in candidates;

• Candidate validation: Performs an automatic validation preparing
the candidates for the final manual validation.

In the following sections I will describe each of the enumerated compo-
nents.

4.2.1 Terminology

At this point a terminology remark is necessary. In the present text some
terms are used with a specifc meaning that can, eventually, differ from the
common language meaning of these words.

Contig: Continuous sequence of nucleotides resulting, usually, from genome
sequencing. A whole genome is composed by several contigs. Ideally each
contig will correspond to a chromosome, but in many cases, for technical
reasons of the assemblage process, a chromosome is broken into several con-
tigs.

Hit: Genome location identified by a search tool as an eventual ncRNA
gene (or part of a gene). Hits are characterized by: (i) the name of the
tool that produced it; (ii) the name of the contig, strand, start and end
coordinates in which the hit was found; (iii) a score and/or an expected
value of the occurrence which are statistical measures of the “quality” of
the hit (see Appendix A).
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Figure 4.1: The five main components of the annotation pipeline.
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Candidate: Set of hits corresponding to the same ncRNA gene that occur
close together in the same region of the genome. Like a hit, a candidate is
defined by: (i) the name of the contig, strand, start and end coordinates
corresponding to the region where the contained hits were found; (ii) an
E-value that corresponds to the highest E-value of all of the contained hits.
It is frequent for a candidate to contain a single hit.

Valid candidate: A candidate that was considered a bona fide gene at
the end of the validation process.

Target sequence: A sequence in which ncRNAs gene will be searched.
In particular, the target genome is the genome being annotated.

Query: a model of a ncRNA gene (e.g., homologous sequence, covariation
model, . . . ) that will be searched for in the target sequence.

4.2.2 Data Collection

The main goal of the data collection component is to obtain and keep up-
to-date all the data required for posterior phases of the pipeline such as the
homology search and candidate validation. The main data sources, for the
proposed pipeline, are the Rfam database (Gardner et al., 2009) and the
Génolevures Consortium database (Sherman et al., 2004) from which the
following data is retrieved:

• Rfam database:

– ncRNA sequence alignments and sequence information;

– Taxonomic information about the sequences in the alignments;

– Updated versions of the covariance models available at Rfam.
These models will be used for homology search with INFERNAL

(Nawrocki et al., 2009).

• Génolevures Consortium database:

– Genome files;

– Coordinates of ncRNA genes resulting from previous annotations;

– Raw ncRNA sequences of yeast genomes to be used in for homol-
ogy search with BLAST (Altschul et al., 1990);

– Open reading frame coordinates in order to improve the gene
validation process (see Section 4.2.6).
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4.2.3 Homology search

Homology search is a type of gene discovery strategy that uses the infor-
mation from homologous genes (the query) to search the genome of interest
(the target) for possible candidates, e.g., The BLAST sequence search tool
(Altschul et al., 1990) is arguably the best known example of an homology
search tool. When using BLAST the queries are sequences of homologous
genes. In some other cases different kind of models can be used as queries,
such as covariance models (Eddy and Durbin, 1994) that rely on homologous
structural information to perform the search.

A general advantage of the homology search approach is that if the E-
value of a candidate is low enough one can be quite sure that the candidate
belongs to the family of the query model. Although this statement seems
obvious, it does not stands for the de novo approach where the nature of
a candidate is frequently not obvious and requires experimental validation.
On the other hand, the drawback of the homology search is that one will
only found what one is looking for, i.e., no new ncRNA family can ever be
found with this approach. As expected, this is precisely the advantage of
the de novo search.

As described in the introduction, ncRNA genes, present a number of
specific features that render the homology search particularly difficult:

(i) Low sequence conservation between homologous ncRNAs: ncRNA
conservation is constrained mainly by structural requirements allowing an
important sequence variation even between homologous genes in closely re-
lated species. Pure sequence comparison based homology search will fail if
sequence conservation is too low.

A number of specific search tools for ncRNA search has been developed
to address this issue (see Table 4.1). Family specific tools resort to explicit
sequence and secondary structure knowledge, about each ncRNA family, in
addition to sequence information, to find genes of that particular family.
General purpose tools use covariation information, gathered from multiple
sequence alignments, to infer covariance models (Eddy and Durbin, 1994)
that are used as queries to search the target genomes. Although any partic-
ular covariance model is also family specific, the tool can be used to search
for any ncRNA given the appropriate model.

An extreme example of such a low sequence conservation, for which no
family specific tool is available at the moment, is the telomerase ncRNA (see
Section 5.5.1)

(ii) Strong sequence conservation limited to short regions: In
many ncRNAs a strong sequence conservation occurs only in very short
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Class Tool Purpose /
Approach

Family specific

tRNAScan-SE (Lowe and Eddy, 1997) tRNA
snoScan (Lowe, 1999) snoRNA C/D
snoGPS (Schattner et al., 2004) snoRNA H/ACA
snoReport (Hertel et al., 2008) snoRNA both
SRPScan (Regalia et al., 2002) SRP

General purpose INFERNAL (Nawrocki et al., 2009) Covariation Models

Table 4.1: ncRNA homology search tools.

regions related to inter molecular interactions. If the conserved region is too
small, the produced hits will also have a small E-value and risk to be dis-
carded by the filtering steps of the algorithm. A good example are snoRNAs
in which the guide sequence presents more than 90% of conservation in a
region of a few bases (see Table 4.2).

Several approaches can be combined to address this issue: use ncRNA
specific tools as in the previous point; use a generic sequence search tool but
establish families specific E-value thresholds; incorporate synteny informa-
tion whenever possible.

(iii) Large sequence insertions/deletions in homologous molecules:
Some ncRNA molecules have the ability to conserve a core three dimen-
sional structure in spite of large sequence insertions/deletions (see Section
5.6). Searching target sequences, which contain those large insertions, using
queries from homologous genes without those insertions, will produce – in
the best cases – a series of relatively low E-value hits scattered along a much
larger extension than the query itself. Simple hit clustering techniques that
will group those scattered hits in single candidates can be used to overcome
this problem (see Section 4.2.5).

4.2.4 de novo Search

As mentioned in the previous section, the homology search strategy will
discover genes from ncRNA families for which at least one homologous gene
is already known. On the other hand, the goal of the de novo search strategy
is to search for ncRNAs for which no homologous gene or family are given.

In the field of de novo protein gene discovery, the search tools resort to a
series of statistical features of protein coding genes to discriminate between
coding and non-coding regions (Harrow et al., 2009). Those signals can be:
the occurrence of long open reading frames between start and stop codons;
a significant statistical bias in the codon usage; differences on nucleotide
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Organism Seq. id. 100% BLAST INFERNAL

(%) length E-value E-value

Candida glabrata 45% 14 n/a 9.0 x 10-19

Zygosaccharomyces rouxii 62% 17 n/a 3.0 x 10-34

Saccharomyces kluyveri 64% 20 1.8 x 10-3 2.1 x 10-47

Kluyveromyces thermotolerans 63% 18 n/a 2.8 x 10-41

Eremothecium gossypii 60% 18 n/a 8.9 x 10-39

Kluyveromyces lactis 63% 19 2.7 x 10-2 6.6 x 10-45

Debariomyces hansenii 59% 19 7.6 x 10-3 1.0 x 10-41

Pichia sorbitophila 59% 16 1.8 x 10-1 2.3 x 10-36

Arxula adeninovorans 55% 18 1.1 x 10-1 2.7 x 10-25

Yarrowia lipolytica 53% 18 2.0 x 10-1 4.1 x 10-19

Table 4.2: Low homology example: Result of BLAST and INFERNAL searches
for snR43 snoRNA gene. The snR43 presents low overall pairwise sequence
identity between S. cerevisiae and each of the other buddying yeasts. Al-
though the guide sequence is strongly conserved it is not enough to produce
significant BLAST hits. For 4 of the yeasts BLAST will not return any hit, while
for another 3 the E-value is to high to be selected (>10 -1). INFERNAL search,
on its turn, will find the snoRNA in all genomes (Columns – “Organism”:
name of the buddying yeast being compared; “Seq. id (%)”: percentage of
sequence identity between the organism and S. cerevisiae; “100% length”:
length of the longest 100% conserved sequence; “BLAST E-value”: E-value of
best true positive hit from BLAST; “INFERNAL E-value: E-value of best true
positive hit from INFERNAL.)



4.2. THE PIPELINE 103

composition between coding and non-coding regions. Unfortunately, ncRNA
genes do not present those types of features.

To tackle this problem de novo ncRNA search tools rely on some obser-
vations and assumptions:

(i) ncRNA belonging to the same family will share the same core sec-
ondary structure;

(ii) Due to compensatory mutations in helical regions of the molecule, the
alignment of homologous ncRNAs sequences will reveal co-variation
between the column of the alignment corresponding to canonical base
pairs of the helical regions, which, consequently, allows the inference
of the secondary structure of the molecule;

(iii) The minimum free energy (MFE) obtained by folding an ncRNA se-
quence with standard secondary structure folding algorithms will be
lower than the average MFE obtained by folding random sequences
with the same nucleotide composition.

Notice that none of these assumptions is an absolute truth, in particular,
the third one has been the motivation for an interesting debate (Rivas and
Eddy, 2000; Clote et al., 2005). However, when used together they can be
good indicators of the occurrence of a ncRNA in a given region of the target
genome. The first tool to approach this problem, QRNA (Rivas and Eddy,
2001), uses the observed pattern of covariance in pair-wise alignments to
classify the alignment as “coding”, “structural RNA” or “something else”.
A more recent tool, RNAz (Washietl et al., 2005), also uses covariance in-
formation, but instead of a pair-wise comparison it uses multiple sequence
alignments. In addition, RNAz computes the MFE Z-score (see Appendix A)
of a given alignment in comparison with the MFE distribution of random
sequences of the same nucleotide composition and relies in a support vector
machine to discriminate between coding and non-coding sequences.

The proposed pipeline performs a whole genome multiple sequence align-
ment, on all available related species, using the Threaded Blockset Aligner
(Blanchette et al., 2004), and use the resulting multiple sequence alignments
to feed the RNAz tool. The obtained candidates are filtered in order to ex-
clude:

• Candidates with an RNAz score <50%;

• Candidates totally contained in known protein coding regions.

4.2.5 Hit processing and candidate generation

After collecting all the hits produced in the search stage one has to filter
and cluster them to obtain the final candidates for validation. The filtering
step consists in discarding all the hits that:
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• Present an E-value smaller than a determined threshold;

• Have a genome location that overlaps an annotated open reading frame
(ORF).

The E-value threshold depends on the tool that produced the hit (in
Chapter 5 we present the analysis of the E-value thresholds for both BLAST

and INFERNAL with real world data). The ORF overlapping criteria was
imposed as it is not expected that a ncRNA would occur in a protein-coding
region. Notice that only the hits overlapping the region between the start
and stop codons are discarded. This way, the hits that overlap the 5’ and
3’ UTR regions are kept for they can correspond to regulatory regions of
protein coding genes and, eventually, to bona fide candidates according to
our definition of ncRNA (see 1.3). Notice that hits that overlap an ORF,
but at the same time present a particularly low e-value, e.g., e-value <10-5,
must be analyzed manually in order to detect eventual annotation errors.
The hits that survive the filtering step are clustered according to Algorithm
1.

Algorithm 1 Hit clustering

# Assigns to each hit its own individual cluster;
for hiti IN hitlist do

# clusteri will assume the gene family and coordinates of hiti
clusteri ← hiti

end for
# Performs a pairwise comparison between all clusters:
repeat
merge = false
for clusteri IN clusterlist do

for clusterj IN clusterlist do
# Both clusters have the same family, contig and strand properties?
# Clusters are less than 2048 bases apart?
if Properties(clusteri) == Properties(clusterj) AND
Distance(clusteri, clusterj) < 2048 then
merge = true
clusteri ← clusterj
clusterj ← ∅

end if
end for

end for
until merge == false

Each cluster that results from this procedure will constitute a candidate
gene. This way, hits corresponding to conserved regions of a gene, separated
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by big insertions (or deletions in the query gene), can be correctly assigned
to the same candidate, simplifying the validation procedure and largely im-
proving the determination of the flanking coordinates of the gene (see Figure
4.2).

4.2.6 Automatic Candidate Validation

Once all of the hits, produced by the search tools, have been filtered and
clustered in their respective candidate genes it is time to choose which of
the candidates will constitute the genome annotation as bona fide genes
and which of them will be discarded by lack of support. The complete
validation process occurs in two steps, a first automatic validation process
and a final manual verification of the remaining candidates. Here I describe
the automatic validation, while the manual validation is described in the
next section.

The automatic candidate validation applies a number of knowledge-based
criteria to perform a last filtering step before manual validation. In short, I
try to discard clearly negative candidates according to some previous knowl-
edge about these genes in order to ease the manual validation step. The
acceptance criteria used in this step depends strongly on the species and
type of genome being annotated and should be adapted accordingly.

Strong conservation in local short regions: Many ncRNA molecules
have at the same time a overall low sequence conservation and local high con-
servation in very short regions. Those regions are essential to the molecule
function and it is highly unlikely that they would diverge significantly in a
single specie. Thus, the selected candidates must display a strong conserva-
tion in those regions.

Conservation in complementary regions: Some important classes of
ncRNAs interact by base pairing, in trans, with other RNA molecules, e.g.
snoRNAs and rRNAs; U2 and U6 snRNAs. Those interaction sequences are
usually conserved in closely related species but can diverge in a longer time
span. These sequences, however, tend to co-evolve in order to maintain the
base pairing. Thus, if the target sequence is known (which is frequently the
case as most of the targets are located in rRNAs and other easily found
genes) the guide sequence must be complementary and easily validated.

Synteny and Polycistronic Clusters: Synteny, i.e., the co-localization
of genes in the same region of a genome can be conserved across closing
species. Although the precise reason for this co-localization is unknown,
polycistronyc genes, i.e., genes expressed in the same transcript (Souciet
et al., 2009) or genes participating in the same interaction network (Teich-
mann and Veitia, 2004) are known to be syntenic. When synteny is con-
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served across many species belonging to the same clade it can be used as an
additional support to candidate validation and missing gene identification
by narrowing the region of search to the syntenic region.

4.3 Manual candidate validation

In every scientific field experimental data is absolutely required as the defini-
tive validation of any prediction. This premise also applies to genome an-
notation in the sense that all annotated genes are no more than “mere”
predictions, until an eventual posterior experimental validation. Given the
huge difference between the rate of new gene annotations and the ability to
experimentally validate them, most of this annotations will remain “exper-
imentally unvalidated” for long periods of time, although available to the
community in public databases. If this is not a problem for the majority of
the annotations (that are statistically very likely to represent real genes), in
some cases errors occur. Thus, the help of an human expert (or curator) is
essential for the quality of the final annotation in two ways: First, it reduces
the number of incorrect annotations, and second, it allows the detection of
errors in the steps upstream to the validation phase, e.g., pipeline software
errors, sequencing errors, genome assemblage problems . . .

The manual validation of candidates is the last step of the annotation
pipeline. Manual validation implies a one-by-one verification of all candi-
dates and requires a significant human effort.

Two broad types of validation are addressed by the curator in this phase:

• Validate the selected candidates as bona fide ncRNA genes;

• Verify if there are any expected/obvious ncRNAs genes (e.g., an es-
sential and highly conserved gene, . . . ) missing and why.

As it is not possible to specify a detailed and objective recipe for manual
candidate validation (otherwise it would possible to implement it as an au-
tomatic procedure), the pipeline generates two data views to ease and speed
up the validation process:

• Hit location maps;

• Multiple sequence alignments with structural information.

The hit location maps provide a simple view on how the hits that con-
stitute a candidate are distributed along the sequence (see Figure 4.3). The
curator can easily assess how many hits support the candidate and which
are their E-values, scores and which regions of the candidate are more or
less supported by hits.
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Figure 4.3: Example of a hit location map. The K. delphensis RNaseP
candidate is shown. Each hit is identified by the source species, E-value and
search tool. The colors of the hits indicate the E-value (red: lower; orange:
medium; green: higher).

The multiple sequence alignments allow the curator to compare the can-
didate sequence with all available homologous sequences. The comparison
is done in terms of sequence conservation and structure compatibility (see
Figure 4.4). Although sometimes a manual realignment is required, in most
cases the provided automatic alignment is enough to confirm or discard a
candidate.

4.4 Technical implementation

The annotation pipeline was implemented as a series of Python scripts serv-
ing as logical glue between: the external data sources; the internally de-
veloped algorithms; and the third-party tools. The developed scripts are
organized in seven functional modules according to their responsibilities. In
this section I enumerate each of these modules.

Raw data retrieval and preprocessing: As referred in Section 4.2.2,
almost all of the data used in the pipeline originates from two major data
sources: the Rfam database and the Génolevures consortium. While some
of the data is ready for use immediately after download, some other data
needs to be processed before it can be used. Downloading the data and
preprocessing it are the main tasks of this module.

Sequence alignments: Sequence alignments are a basic resource for se-
quence comparison and analysis. In order to be analyzed and accepted as
a bona fide gene, all candidate sequences must be included in a sequence
alignment with their respective homologues. The most complete source of
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Figure 4.4: Show an example of the same alignment in sequence and struc-
ture views. Snapshots of the Ralee alignment editor (Griffiths-Jones, 2005).

ncRNA sequence alignments is the Rfam database (Gardner et al., 2009).
The Rfam provides comprehensive sequence alignments for all known fam-
ilies of ncRNAs2. Browsing the Rfam web site, the user can explore the
available alignments in many different views and formats. An automatic
pipeline, however, will require local copies of the alignments to speed up its
tasks. Rfam provides the full set of alignments in a single compressed text
file (“Rfam.full.gz”) that must be broken into individual files – one for
each family – and normalized – one sequence per line – to be of use.

Covariance models: Covariance models for all Rfam families are available
for download from the Rfam web site. The INFERNAL package provides
tools to build (cmbuild) and calibrate (cmcalibrate) new models directly
from structural alignments. While the building process is fast even for big
alignments, users should be aware that the calibration process (required to
produce hit E-values in search results) is particularly time consuming.

Genome files: The genome files can be downloaded from the Génolevures
web site. The target genomes are not usually available for download and
must be obtained separately. Genomes are simple fasta files with one se-
quence per contig.

ncRNA and Open Reading Frames coordinates: Any previous annotation
information is key to obtain search queries and validation data. This data
can be downloaded from the Génolevures web site in gff format3.

2The role of Rfam as a reference for ncRNA families is such that I usually use the
“Rfam family code” as a synonym of the family name. The Rfam code has the following
format: RFNNNNN (RF followed by 5 digits), e.g., RF00004: U2 snRNA; RF0127: small
nucleolar RNA snRN37.

3See http://genome.ucsc.edu/FAQ/FAQformat.html for details on the GFF format.



110 CHAPTER 4. ANNOTATION OF NCRNA GENES

Figure 4.5: Complete flow of the annotation pipeline
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Any additional data sources can be easily integrated in the pipeline as
long as they could provide data on either stockholm, gff or fasta formats.

Data and script setup: The search and validation processes require a
number of data files and scripts that must be prepared case by case de-
pending on the actual query models being searched. As part of the search
is performed in a cluster4 running the Sun Grid Engine5(SGE) workload
management solution, a number of SGE scripts must be built to execute the
INFERNAL searches. Those scripts are produced on demand according to the
genomes to search and the available covariance models.

Another setup task perfomed by this module is to produce filtered align-
ments containing sequences only from phylogeneticaly related species (from
the Dikarya subkingdom in the present case). These filtered alignments will
be used to compare the obtained candidates for validation.

Hit parsing: Each search tool produces hit data in its own format. This
data must be parsed and converted to an homogeneous format so it can be
further processed. The currently supported hit data formats are: BLAST,
INFERNAL and RNAz.

Hit processing: This module performs all the tasks described in detail
on Section 4.2.5. The goal is to produce, from the initial hits, the final
candidates and the hit location maps in HTML for user validation.

Candidate processing: The step immediately before human interven-
tion is to align each candidate with its respective homologues. This module
will produce, for each ncRNA family, a sequence alignment containing the
homologue sequences from closely related sequences (the closest one can ob-
tain from Rfam) and the candidates for that family. User can then evaluate
each candidate in the context of the appropriate alignment.

Annotation update: After human validation, the last step of the pipeline
is to produce the ncRNA annotation data in a format that could be inte-
grated in the databases for future use. The candidates validated by the
human curator are stored in a GFF file with their coordinates and relevant
information and sent back to the Génolevures consortium so it can be part
of the next annotation phases.

4Cluster time was kindly provided by LABRI – Laboratoire Bordelais de Recherche en
Informatique (http://www.labri.fr).

5See http://www.oracle.com/technetwork/oem/grid-engine-166852.html for more
information on SGE.



Chapter 5

Annotation of ncRNAs in
Budding Yeasts

The previous chapter sets the stage for the effective usage of a ncRNA anno-
tation pipeline, describing its motivations, functioning and technical details.
The present chapter will describe the application of the pipeline to the an-
notation of several yeast genomes in the context of the Génolevures project.
The Génolevures consortium (Sherman et al., 2004) brings together experts
in genomics, yeast and bioinformatics with the goal of providing the biol-
ogy community with annotated sequence data and annotation for a number
of species of Hemiascomycetous yeasts. The consortium web site provides:
“(. . . ) genetic element pages, orthologs defined by syntenic homology, pro-
tein families, a genome browser for interspecies comparison, and data sets
for downloading.”1.

At the moment, the consortium is concluding its activities. Started in
2000 the Génolevures gives now place to a new yeast sequencing project –
the Dikaryome – which aims to sequence and annotate thirty new genomes
of the Dikarya sub kingdom using the latest sequencing and high throughput
techniques.

As members of the Génolevures consortium, our main responsibility was
the discovery and annotation of ncRNAs. Due to the different delivery dates
of each group of genomes, the annotation occurred in two phases: First I
performed the annotation of the ten budding yeasts from Génolevures 2,
Génolevures 3, and E. gossypii. Second I annotated five additional yeasts of
the Nakaseomycetes clade sequenced in a separate sequencing program led
by a Génolevures consortium member, C. Fairhead (Universitè Paris-Sud
11).

1Quoted from http://genolevures.org.

112
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Organism Year Institution

Saccharomyces cerevisiae 1996
Ashbya gossypii 2004 Biozentrum, Basel, Switzerland
Candida glabrata 2004 Génolevures
Debaryomyces hansenii 2004 Génolevures
Kluyveromyces lactis 2004 Génolevures
Yarrowia lipolytica 2004 Génolevures
Lodderomyces elongisporus 2007 Broad Institute
Meyerozyma guilliermondii 2007 Broad Institute
Scheffersomyces stipitis 2007 DOE Joint Genome Institute
Vanderwaltozyma polyspora 2007 Trinity College, Dublin, Ireland
Candida tropicalis 2009 Broad Institute
Clavispora lusitaniae 2009 Broad Institute
Candida dubliniensis 2009 U. of Aberdeen, Scotland
Kluyveromyces thermotolerans 2009 Génolevures
Zygosaccharomyces rouxii 2009 Génolevures
Pichia pastoris 2009 U of Gent, Belgium
Candida albicans 2009 Stanford Genome Technology Center

Table 5.1: Publicly available complete genomes of budding yeast (as of
March 2011).

5.1 Budding yeasts

Budding yeasts are unicellular eukaryotes classified in the Fungi kingdom
that constitute an important group of species from the scientific, economical
and health care perspectives (Kurtzman and Fell, 2006). Budding yeasts be-
long to the Saccharomycotina subphylum (also known as Hemiascomycetes).

Yeasts are easily cultured in laboratory and offer a number of powerful
manipulation and analysis techniques. Their small and compact genomes
make them ideal models for comparative and evolutionary genomic studies
(Souciet et al., 2000; Dujon, 2010). Since ancient times yeasts have been es-
sential to the manufacturing of bread, bear and wine. Today, they are used
in the industrial synthesis of many product (e.g. vitamins, ethanol, lipids,
. . . ) (Sherman et al., 2004). Some yeast species are opportunistic human
pathogens. For example, invasive candidiasis, caused by several species of
the genus Candida, is a serious threat for hospitalized and immunocompro-
mised patients (Pfaller and Diekema, 2007; Butler et al., 2009).

It is therefore not surprising that Saccharomyces cerevisiae was the first
eukaryotic organism to be completely sequenced back in 1996 (Goffeau et al.,
1996). To this day 17 budding yeast complete genomes are publicly available
in the NCBI GenBank Database (Benson et al., 2008) (see Table 5.1).
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5.2 The Annotated Genomes

During the ten years period of the Génolevures consortium, seven complete
genomes were sequenced, annotated and made publicly available; two other
genomes are about to be published. The Nakaseomyces species C. glabrata
was sequenced and annotated by the Génolevures consortium and more re-
cently five new Nakaseomyces species have been sequenced and annotated
in a separate program (see Figure 5.1).

The sequenced species were chosen based on their phylogenetic repre-
sentativeness, industrial interest, biomedical importance and the existence
of significant genetic and molecular studies regarding them (Souciet et al.,
2000). From an evolutionary point of view, the Saccharomycotina separated
from the Pezyzomicotina (another Ascomycetes subphylum) between 400
Myr and 1000 Myr ago (Dujon, 2010), which makes them an interesting
model for comparative genomic studies.

5.2.1 Data sources

The genome sequences of Candida glabrata, Debariomyces hansenii, Kluyveromyces
lactis, Kluyveromyces thermotolerans, Saccharomyces kluyveri, Yarrowia lipoly-
tica, Zygosaccharomyces rouxii and their respective annotations were ob-
tained from the Génolevures web site (Sherman et al., 2004).

The annotations for the Eremothecium gossypii were obtained from the
“Ashbya Genome Database” web site (http://agd.vital-it.ch) (Gattiker
et al., 2007) and its complete genome is available at the NCBI GenBank
(http://www.ncbi.nlm.nih.gov) (Benson et al., 2008) with the accessions
NC 005782 to NC 005788.

The genome sequence of Pichia sorbitophila was provided as a personal
communication from Veronique Leh Louis (Université de Strasbourg).

The genome sequence of Arxula adeninovorans was provided as a per-
sonal communication from Cécile Neuvéglise (INRA - AgroParisTech).

The genome sequences of Candida bracarensis, Candida castelii, Candida
nivariensis, Kluyveromyces bacillisporus, Kluyveromyces delphensis were pro-
vided as a personal communication from Cécile Fairhead (Université Paris-
Sud 11).

5.3 Saccharomyces cerevisiae – Reference Genome

Before starting an annotation project it is legitimate to ask the following –
somehow naive – question “How many ncRNAs exist in a genome?”. The
answer to this question should be the reference value to evaluate the success
of any annotation. Unfortunately, this is an increasingly difficult question.

Estimates made for several higher eukaryotes indicate that the ratio be-
tween non-coding2and coding regions goes from 27:1 in human to 1.1:1 in
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Figure 5.1: Annotated genomes. Phylogenetic relationship between the
annotated genomes. “Code” is the working abbreviation of the genome,
“Phase” is the Génolevures project phase in which the genome was avail-
able, “Previous Annotation” is the annotation status before the application
of the pipeline and “Genome Size” is the size in millions of base pairs of
each genome.
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nematode (Frith et al., 2005). Additionally, the ENCODE project (EN-
CODE, 2007), estimates that 4.9% of the human genome is under selective
pressure and 40% of it do not have any known function associated. Fur-
ther experimental work with mice showed that some of those sequences are
expressed in the brain and are regulated in a tissue-specific fashion during
development (Mehler and Mattick, 2006; Dinger et al., 2008; Mercer et al.,
2008; Amaral et al., 2009), raising interesting questions about possible func-
tions of large, transcribed, non-coding regions of higher eukaryotic genomes.

In the absence of a definitive answer I chose a pragmatic approach and
took the set of annotated ncRNAs from S. cerevisiae as reference. The
relative success of the annotation pipeline was then measured as the pro-
portion of S. cerevisiae ncRNA homologues found in each genome. This
option is justified by the fact that the S. cerevisiae genome is small (two
hundred times smaller than the human genome), very compact (about 3/4
of it corresponds to annotated protein genes) and, arguably, the most stud-
ied and well annotated buddy yeast (if not eukaryote) genome. Thus the
current number of annotated ncRNAs in S. cerevisiae could be considered
a reasonable proxy for the real number of ncRNAs in yeast in general.

It is important to remember that not all of S. cerevisiae ncRNAs would
inevitably have an homologue in all studied species and, as will be shown,
that some ncRNA with no known homologue in S. cerevisiae are indeed
found in other species. Those cases, though, are restricted in number.

5.4 The annotation process

I separately describe the two annotation phases as the pipeline described
in Chapter 4 was applied in a slightly different fashion between them. In
the first phase I annotated the genomes from Génolevures 2, Génolevures 3,
and E. gossypii and I performed a ROC (Brown and Davis, 2006) analysis
of the obtained E-value in this phase. In the second phase I annotated
five yeasts of the Nakaseomycetes clade and applied the hit clustering step.
Additionally, the computer resources and time for the analysis in the second
phase allowed us to extend the homology search to all Rfam (Gardner et al.,
2009) families.

5.4.1 Phase 1: Génolevures 2, Génolevures 3 and E. gossypii

As referred above some of the species of our study have been partially
annotated for ncRNA genes. While the rRNA, tRNA and snRNAs families
were fully annotated in all genomes the coverage of the remaining families

2By “non-coding region”, Frith et al. (Frith et al., 2005) mean all non-repetitive,
transcribed genomic regions that do not code for proteins.
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RNase P 1 1 1 1 1 1 1 1 1
RNase MRP 1 - - - - - - - -
SRP 1 1 1 1 1 1 1 1 1
Telomerase 1 1 1 - 1 - 1 - -
snRNA 5 5 5 5 5 5 5 5 5
snoRNA C/D 45 42 1 1 42 42 42 1 41
snoRNA H/ACA 28 26 - - - - - - -
S. cerevisiae spec. 4 - - - - - - - -

Total 86 75 9 8 50 49 50 8 48

Table 5.2: Number of ncRNAs annotated in S. cerevisiae and Génolevures
genomes, grouped by families.

differed between species (see Table 5.2). We applied the pipeline on the
genomes from Génolevures 2 and 3 phases and E. gossypii with the following
results described below:

1. BLAST homology search: The 383 sequences used as queries for the
BLAST search correspond to all annotated ncRNAs3. The search produced
1540 hits with E-values <0.1. After validation 554 of the hits were selected
as ncRNA genes.

2. INFERNAL homology search I: A first INFERNAL search was performed
using 83 covariance models corresponding to all Rfam families for which
at least one budding yeast annotated homologue was found. The search
produced 1250 hits with E-values <0.5. After validation 602 of the hits
were selected as ncRNA genes.

3. ROC analysis: Given the hits resulting from the two previous steps
I performed a simple ROC analysis (see A) of the obtained results in order
to better understand the role of the E-value as a discriminator of hits.

As can be seen from Figure 5.2, INFERNAL’s E-values are better discrim-
inant than BLAST ones. For a given True Positive Rate (TPR) the False
Positive Rate (FPR) of BLAST is higher. A TPR of 99% is achieved for
E-values of 0.07 for INFERNAL and 0.08 for BLAST (which is a quite similar
result). The FPR however is of 0.35 for INFERNAL and 0.61 for BLAST which
means that:

3In this section, the term “all annotated ncRNAs” refers to the annotated ncRNAs in
the 10 species considered with exception of tRNA and rRNAs.
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Figure 5.2: ROC analysis of the INFERNAL and BLAST E-values. Figure
extracted from (Cruz and Westhof, 2011a).
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1. If one is willing to loose up to 1% of all genes in order to save manual
validation time a E-value cutoff of 0.1 for both INFERNAL and BLAST

can be applied;

2. Assuming this E-value cutoff 35% of INFERNAL hits and 61% of BLAST
hits are expected to be False Positives.

4. INFERNAL homology search II: A second INFERNAL search was per-
formed using the remaining 719 covariance models from Rfam. This number
corresponds to all Rfam families except the viral ncRNAs, the miRNAs (and,
of course, the 83 from the first search). 1360 hits were obtained applying an
E-value cutoff of 0.1 (a cutoff of 0.5 would produce 5578 hits). From these
hits only 41 were selected as ncRNA genes. This low number should not
surprise if one takes into account that the great majority of the searched
families do not have homologues in yeast, thus most of the hits are False
Positives with high E-value.

5. de novo search I results: The de novo search was performed as
described in Chapter 4. Specific selection criteria were applied to de novo
candidates:

• Candidates must occur in intergenic regions with no previous annota-
tions or, at most, with a small overlap with annotated genes;

• The pairwise similarity between all candidate sequences must be higher
than 50%;

• Candidates must display potential secondary structure shared between
sequences. This secondary structure should be supported by co-variation
(or, at least, by some compensatory mutations).

The 630 selected candidates were distributed as shown in Table 5.3. The
difficult task of de novo gene finding is obvious if one considers that just
a minor fraction of the existent ncRNAs were found. The de novo search,
however, is far from a futile exercise for I was able to find a few ncRNAs that
escaped the homology search and some interesting totally new candidates.

Final results: Applying the pipeline to the 10 genomes indicated above
allowed us to find, in overall, 81% of the reference ncRNA genes, even though
the coverage varies greatly from species to species (see Table 5.4).
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Type of ncRNA Found %

Previously annotated tRNAs or rRNAs 273 43%
Previously annotated ncRNAs from other families 103 16%
ncRNAs with homologues in yeasts not found in the
previous searches

25 4%

False positives (e.g. repetitive elements wrongly clas-
sified as ncRNAs by RNAz)

210 33%

Candidates selected as new putative ncRNA genes 19 3%

Table 5.3: de novo search results.

Genome snRNAs snoRNA snoRNA Other Total %
C/D Box H/ACA Box

CAGL 5 42 24 3 † 74 87%
ZYRO 5 43 23 3 † 74 86%
SAKL 5 44 25 3 † 77 91%
KLTH 5 44 24 3 † 76 90%
KLLA 5 44 24 3 † 76 91%
ERGO 5 42 24 3 † 74 86%
DEHA 5 39 17 1 ∗ 62 77%
PISO 5 35 17 2 § 59 73%
YALI 5 32 13 2 § 53 62%
ARAD 5 33 14 3 † 55 64%

Table 5.4: Phase 1 ncRNA annotations. Legend: †(RNaseP + RNase MRP
+ SRP); §(RNaseP + RNase MRP); ∗(RNaseP).
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Genome snRNAs snoRNA snoRNA Other Total %
C/D Box H/ACA Box

CABR 5 42 23 3 † 74 89%
CACA 5 40 26 4 ‡ 74 89%
CANI 5 40 24 3 † 73 88%
KLBA 5 38 23 4 ‡ 69 83%
KLDE 5 41 21 3 † 71 86%

Table 5.5: Phase 2 ncRNA annotations (Nakaseomycetes genomes). Legend:
‡(RNaseP + SRP + RNase MRP + Telomerase RNA); †(RNaseP + SRP
+ RNase MRP). (Table from C. Fairhead et al., in preparation)

5.4.2 Phase 2: Nakaseomycetes

In phase 2 I applied the annotation pipeline, as described in Chapter 4,
to the five nakaseomycetes genomes. The BLAST search, using 814 query
sequences, produced 16892 hits of E-value <1.0 and the INFERNAL search,
using the full 1362 Rfam families, produced 66282 hits of E-value <1.0. All
hits were clustered in the respective candidates and only the 3113 clusters
with E-value <0.1 were kept for analysis. Of those 1041 correspond to
tRNAs and 1152 correspond to miRNAs and were not included in further
analysis. The remaining 1020 candidates were aligned in their respective
families and after manual validation I obtained 358 ncRNA annotations
corresponding to 83% of the reference ncRNAs.

5.5 Some Noticeable Annotation Results

5.5.1 The telomerase ncRNA

The RNA component of the telomerase complex (TER) is a ncRNA par-
ticularly difficult to annotate in yeasts due to its poor sequence conser-
vation – e.g., 7 aligned saccharomyces TERs present a mean pairwise se-
quence identity of 65%4. The longest hit obtained by BLAST, using the four
known TER sequences as queries, had 20 nts long and an E-value of 0.01,
which was not enough to produce a reliable alignment of the candidate –
together with long insertions or deletions between conserved structural do-
mains (Kachouri-Lafond et al., 2009). Our annotation pipeline was able to
find the TER ncRNA only in three Nakaseomycetes genomes (C. bracaren-
sis, C. nivariensis and K. delphensis) whose Telomeric Repeat Sequence
(TRS) were identical to the TRS of C. glabrata. In all other cases classical
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sequence comparison approaches are helpless.
Although out of reach for the pipeline some observations could contribute

to build an effective approach to find TERs (in yeast genomes at least).
It is known from structural and comparative studies that TER have some

secondary structure features conserved across all known yeast homologues
(Gunisova et al., 2009):

• A template region complementary to the TERS;

• A pseudknot with two uridine-rich and a adenine-rich strands;

• The yKu complex binding site (helical region);

• The EST1 complex binding site (helical region);

• Sm complex binding site (uridine-rich region);

I expect that the genome wide search for any of those features using
available bioinformatics approaches (e.g., BLAST, position weight matrices,
secondary motif searches, covariance model) will yield an enormous amount
of noise. However, the conjugation of the individual candidates or each fea-
ture search, in the correct order and in a limited regions of the genome could
filter part of the noise providing a reasonable small number of exploitable
candidates. Unfortunately, testing all possible combinations of candidates
at the genomic scale is computationally prohibitive.

A possible way around could be to reduce the search space from a full
genome to a sub set of sequences. After analyzing the regions flanking
the known TER genes I noticed a recurrent synteny between TER and the
snR161 H/ACA Box snoRNA:

The synteny between TER and snR161 is striking. If one assumes it to
be conserved across all yeasts one could define a relatively short region to
apply the combinatorial search approach.

5.5.2 The synteny between RNase MRP and snR66

In budding yeast genomes five polycistronic ncRNA clusters (i.e., a unique
transcript region containing several distinct ncRNA genes) have been identi-
fied (Souciet et al., 2009). Those clusters are characterized by the occurrence
of 2 to 7 ncRNAs in a short region. The intervening genes, their relative
order and the short distance between them are conserved across all yeasts
with some minor exceptions (e.g., a few clusters lack one gene which can be

4Aligned sequences of S. cerevisiae, S. paradoxus, S. kudriavzevii, S. cariocanus, S.
bayanus, S. pastorianus and S. mkatae obtained from (Podlevsky et al., 2008)
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Genome Contig Strand TER intergenic snR161

SACE II – 307587 < 307185 >
ERGO A – 678331 > DAD1 677570 >
CAGL I + 420932 < 421748 >
KLLA B – 611456 < tRNA(Ile) – DAD1 609614 >
SAKL D – 349043 < tRNA(Ile) – DAD1 345294 >
PISO I + ? DAD1 577256 >
ARAD D – ? 3199765 >
KLTH C – ? tRNA(Ile) – DAD1 699940 >
YALI F – ? 2693200 >
ZYRO A – ? DAD1 295835 >
CABR 37 – 587451 > n/a 585926 <
KLDE 3 + 363531 < n/a 364450 >
KLBA 29 – ? n/a 320229 >
CANI 19 + 694447 > n/a 693152 <
CACA 36 + ? n/a 486116 >

Table 5.6: Telomerase (TER) vs. snR161 syntenic region

due to incomplete annotation). From our annotation I observed a syntenic
cluster containing the RNase MRP and the snR66 snoRNA, which occur to-
gether in all genomes where they where identified at a maximum distance of
230 nts. The conserved synteny and the short distance between those gene
suggests a potential new polycistronic cluster. An interesting particularity
of this potential cluster is that the genes involved are from different families,
contrary to all other known clusters in which all genes are snoRNAs.

5.5.3 The TPP riboswitch

Riboswitches are regulatory domains present in the 5’ UTR, 3’ UTR and
introns of mRNAs that regulate gene expression by binding to a specific lig-
and and changing the normal processing of the mRNA (Nahvi et al., 2002;
Mironov et al., 2002). Particularly common in bacteria where they regu-
late gene expression by transcription terminating or translation inhibition,
riboswitches are rarer in fungi and plants where they are present in introns
and modulate the alternative splicing of the pre mRNA (Bocobza et al.,
2007; Kubodera et al., 2003; Cheah et al., 2007).

Riboswitches are beautiful examples of RNA structure modularity: The
three-dimensional structure of the aptamer domain is responsible for bind-
ing the metabolite. Each specific aptamer structure recognizes a particular
ligand and many ligands are known to be recognized by riboswitches, such as
adenosylcobalamin (AdoCbl), flavin mononucleotide (FMN); glucosamine-6-
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Genome Contig Strand RNase MRP - snR66

SACE II + 64
KLLA E + 230
SAKL E + 122
PISO F + 94
ARAD D – 100
KLTH G – 143
YALI D – 85
ZYRO A – 117
CABR 29 + 157
KLDE 27 - 175
KLBA 23 + 109
CANI 17 – 162
CACA 5 + 148

Table 5.7: RNase MRP vs. snR66 syntenyc region

phosphate (GlcN6P), S-adenosylmethionine(SAM), thiamin pyrophosphate
(TPP) and many others (Barrick and Breaker, 2007). The presence/absence
of the ligand causes a change in conformation allowing an interaction be-
tween the aptamer and an expression platform which activates/inactivates
the gene expression. In bacteria, virtually all combinations of aptamers and
expression platforms can be observed. On the contrary, in eukaryotes, only
TPP riboswitches are observed either in plants (Bocobza et al., 2007) as in
filamentous fungi (Kubodera et al., 2003). In budding yeasts, as far as I
know, no riboswitch has been reported up to this day.

Five genes containing a TPP riboswitch were found by the pipeline in A.
adeninovorans (3 genes), D. hansenii (1 gene) and Y. lypolitica (2 genes).
The alignment against the crystal structures of the TPP riboswitches from
E. coli (Edwards and Ferré-D’Amaré, 2006) and A. thaliana (Thore et al.,
2006) revealed a striking similarity of the key structural nucleotides (see
Figure 5.3 A).

All of those newly found riboswitches occur in the 5’ UTR of their re-
spective genes. Determining how they function, however, is beyond the
bioinformatic approach and will require direct experimentation.

The distribution of this regulatory domain across the Saccharomycotina
phylogeny (see Figure 5.3 B), that is totally absent in the S. cerevisiae
branch, raises interesting questions about the evolution of this type of reg-
ulatory mechanisms, and shows the utility of extending homology search
beyond the closest group of species.
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Figure 5.3: TPP riboswitches found in the searched genomes. (A) Secondary
structure. (B) Taxonomic distribution of the found candidates (starts in-
dicated the number of candidates found for each specie). (C) Sequence
alignment of the found genes and the E. coli reference TTP genes. Figure
adapted from (Cruz and Westhof, 2011a).



126CHAPTER 5. ANNOTATION OF NCRNAS IN BUDDING YEASTS

5.5.4 A snoRNA candidate in Yarrowia lipolytica

A curious snoRNA candidate was found in the genome of Y. lipolytica using
the covariance model of an archaeal snoRNA from the Pyroccocus family
(Rfam code RF00095). The lack of similarity between the candidate and
the Pyroccocus guide sequences (and even among the different Pyroccocus
sequences themselves) clearly excludes the hypothesis of homology. In fact
I believe that the RF00095 family, in contrast with other snoRNA families,
includes several different Pyroccocus snoRNAs that were grouped together
because of the length and the C/D boxes conservation.

Several arguments support the Y. lipolytica as a snoRNA candidate (see
Figure 5.4):

• The length, Box C/D sequences and the distance between them are
compatible with a snoRNA;

• Both putative guide sequences are complementary with the ribosome
sequences on 10 base pairs.

I aligned both Y. lipolytica and S. cerevisiae ribosomal sequences in or-
der to determine which S. cerevisiae nucleotides are the homologues of the
Y. lipolytica nucleotides potentially modified by this snoRNA. No modifica-
tions are reported in the “The Yeast snoRNA Database” (Piekna-Przybylska
et al., 2007) in either S. cerevisiae nucleotide. This absence raises doubts
that only experimental validation would clarify.

5.5.5 de novo Candidates

Most of the ncRNA candidates found by the de novo search are short align-
ments of only two sequences which prevents further considerations on con-
servation and potential function. The genomic location of the candidates,
however, suggests potential regulatory roles as 14 of the 19 genes occur less
than 200 from the 5’ or 3’ UTR of known genes. Some of those genes are
homologues of ribosomal related S. cerevisiae genes. Figure 5.5 shows three
examples of the found ncRNAs (for a complete list of all de novo candidates
found in this search see (Cruz and Westhof, 2011a)).

5.6 The extremely large ncRNAs in the Nakaseomycetes
family

Structural ncRNAs present the ability to accept large sequence insertions
/ deletions at specific structural domains without compromising the overall
three dimensional structure of the molecule. The U1 and U2 snRNAs of
S. cerevisiae are striking examples of it. The yeast U1 snRNA presents
three yeast specific domains adding up to 568 nts (compared to 164 nts
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Figure 5.4: Y. lipolytica snoRNA candidate. Sequence alignment and sec-
ondary structure. Figure extracted from (Cruz and Westhof, 2011a).
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Figure 5.5: Examples of three de novo candidates
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in H. sapiens) (Kretzner et al., 1987; Kretzner et al., 1990). The yeast
U2 snRNA (1175 nts), on its turn, is six times longer than the H. sapiens
one (187 nts) (Igel and Ares, 1988). Surprisingly, those additional yeast
domains were shown to be non essential (Kretzner et al., 1987; Liao et al.,
1990). More recently, the RNaseP C. glabrata was also shown to contain
particularly large extra domains (Kachouri et al., 2005).

The nakaseomycetes yeasts add new examples to this list of particularly
large molecules with an extremely large RNaseP, such as the one from K.
delphensis that exceeds C. glabrata RNAse P by more than 200 nucleotides.
(see Figure 5.6) and U1 snRNA from C. nivariensis that extends the three
additional domains present in Budding Yeasts in more than 1100 nucleotides
and presents a curious new additional domain on an extremely conserved
helix. This new extension domain replaces a single bulged nucleotide that
is conserved across eukaryotes (see Figure 5.7).

Figure 5.8 depicts the distribution and the length of the additional do-
mains across the budding yeast genomes.

5.7 Conclusions

Here I described the work done on the development of an ncRNA annota-
tion pipeline and its application to 15 yeast genomes. With this pipeline I
was able to discover and annotate 83% of the ncRNA genes expected from
comparison with the S. cerevisiae genome and a number of few other genes
with no new homologue in S. cerevisiae. As expected, evolutionary distance
between species is a key factor to the annotation success, and the availability
of new, close species will surely contribute to better and denser annotation
in the future.

These results show that the available tools make the automatic anno-
tation of ncRNAs in yeast genomes a practical approach to be included
in the global annotation pipelines of the next sequencing projects like the
Dikaryome project.

Our original goal in the beginning of this work was to discover, using
solely bioinformatics techniques, the maximum number of ncRNAs present
in the Genolevures genomes. This goal has a clearly subjective aspect as
one cannot evaluate “the maximum number” without an idea about the real
number. As a practical reference I chose the best annotated yeast genome
to compare our results with. The question, however, remains (see Section
5.3): “How many ncRNAs are there?” Recent observations from S. cere-
visiae studies, such as the existence of transcribed intergenic regions with no
annotated functions [Nagalakshmi 2008] and the detection of long ncRNAs
of unknown function [Kavanaugh 2009], show how pertinent this question is.
The correct identification of possible new ncRNAs will surely require the syn-
ergy between pure sequence analysis methods, high-throughput techniques
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Figure 5.6: RNase P extensions. The sequence corresponds to the S. cere-
visiae RNase P. Conserved positions are signaled with red (> 90%) and
yellow (> 75%) squares. Yeast specific extensions are represented as shaded
blue areas. Numbers close to the extensions indicate the species with the
largest and smallest extension and the respective sizes (Figure from C. Fair-
head et al.,in preparation).
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Figure 5.7: U1 snRNA extensions. The sequence corresponds to the S.
cerevisiae U1 snRNA. Conserved positions are signaled with red (> 90%)
and yellow (> 75%) squares. Yeast specific extensions are represented as
shaded blue areas. Numbers close to the extensions indicate the species with
the largest and smallest extension and the respective sizes. The gray shaded
area corresponds to domains not present in D. hansenii, P. sorbitophila,
A. adeninovorans and Y. lypolitica. Orange squares correspond to positions
conserved in> 90% of the species that present the extension domains (Figure
from C. Fairhead et al.,in preparation).
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of sequencing [Wang 2009] as well as the application of structural knowledge
to ncRNA search.
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5.8 Article – Identification and Annotation of Non-
Coding RNAs in Saccharomycotina

The present chapter and the previous one are extended summaries of the
following article:

Cruz, J. A. and Westhof, E. (2011). Identification and annotation of
non-coding RNAs in Saccharomycotina. Comptes rendus – Biologies 334,
671-678.
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Identification and annotation of noncoding RNAs in Saccharomycotina

José Almeida Cruz *, Eric Westhof

Architecture et réactivité de l’ARN, institut de biologie moléculaire et cellulaire du CNRS, université de Strasbourg, 15, rue René-Descartes, 67084 Strasbourg cedex,

France

1. Introduction

Noncoding RNAs (ncRNAs) form an important class of
macromolecules participating in key cellular mechanisms
such as protein synthesis, gene splicing, telomere elonga-
tion, regulation of gene expression (e.g., riboswitches,
miRNAs, and other small regulatory RNAs), and gene
silencing. In general, ncRNAs are specific transcripts that
often participate in complex regulatory mechanisms [1–3].

Finding ncRNAs in genomes is far from trivial. First, the
ncRNA genes lack the characteristic features of protein
genes such as start and stop codons, splicing sites, codon
frequency bias [4]. Second, structured ncRNAs are, in
general, more conserved in structure than in sequence
due to base covariations in helices and neutral substitutions
in tertiary interactions [5,6]. Third, insertions of long
sequences occur frequently [7–9]. These characteristics
reduce the effectiveness of searches based on pure sequence
comparison. Finally, the curation of ncRNA gene predictions

is time consuming and demand expertise. In spite of these
difficulties, the increasing recognition of the importance of
ncRNAs in biological processes makes their annotation an
essential component of any genome sequencing project.

To guarantee a timely and effective annotation of
ncRNAs, multi-genome sequencing projects, such as the
Génolevures project [10], require, as far as possible,
automatic gene annotation and a set of simplifying
procedures and tools for fast and accurate manual curation.

The problem of genomic ncRNA annotation has been
tackled by several authors [11–21]. However, the specifi-
cities of each project, such as the differences in ncRNA
biology between species, genome size, sequence and
structure divergence, demand a careful analysis before
applying any known method.

Here, we present our approach of ncRNA annotation in
the context of the Génolevures consortium. We assembled
a pipeline integrating publicly available tools for ncRNA
search in sequences and applied it to the annotation of 9
budding yeast genomes from the Génolevures Database
[22] and the Ashbya Genome Database [23]. We were able
to annotate automatically, with a relatively small human
validation effort, 693 ncRNAs that correspond to 81% of
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what we would expect taking the 86 annotated ncRNAs of
the Saccharomyces cerevisiae genome as a reference.

2. Results

2.1. Homology pipeline

Homology search consists in searching for new
members of known ncRNAs families. The important, and
increasing, number of publicly available ncRNA annota-
tions makes homology search the first step in any ncRNA
annotation process.

Search tools based on sequence alignment, such as
BLAST [24], allow for very fast searches of sequences
(query sequences) in genomes (target sequences). The
sequence similarity between query and target sequences
plays a major role in the success rate of BLAST searches.
Significant candidates (i.e. those with E-values< 0.1) will
present sequence similarities above 84% with a minimum
length of 16 nts. Thus, the use of BLAST for homology
search becomes more effective for ncRNA families with
large conserved sequences, such as rRNA or snRNAs, or
when searching within closely related species. When the
target and query sequences come from distant species, or
present low sequence conservation, with potentially large
insertions, pure sequence alignment methods loose
efficiency. A way to get around this limitation is to explore
the statistical signals imprinted on the sequence by the
RNA structural constraints.

ncRNAs present complex three-dimensional structures
of packed double-stranded helical regions connected by
tertiary interactions that are generally mediated by single-
stranded regions [25]. The set of double-stranded and

single-stranded regions is called secondary structure. RNA
helices consist of stacks of A–U; G–C and G–U base pairs.
Those base pairs are structurally equivalent, and the
substitution of one base pair by another one has,
frequently, minimal or no impact on the molecular
structure. The accumulation of base pair substitutions in
a RNA sequence can render two homologous sequences
very dissimilar. However, when observed from the point of
view of a multiple sequence structural alignment, it
generates a pattern of covariation between the base-
paired positions that can be detected in the respective
columns of the sequence alignment [26,27]. This depen-
dency between paired positions in alignments is used to
build covariance models, used by ncRNA search tools such
as INFERNAL [28], to search for ncRNAs in large sequences.
Additionally, if sufficiently diverse sequences are included
in the alignments, the known positions of insertions can
also be included into the models. Covariance models, for
most of the known ncRNAs families, are curated and
maintained in the RFam database [29] and could be readily
applied in our search.

The results produced by any search tool must be
automatically filtered in order to exclude candidates less
likely to be real ncRNAs. Candidates conflicting with
known annotations or with low score should be discarded
from the candidate list. Additionally, all retained candi-
dates should be structurally aligned with known homo-
logues in order to facilitate human validation, required as
the last step of the annotation process (Fig. 1A).

The Génolevures database [22] contains 9 budding yeast
genomes in which only tRNAs and rRNAs were fully
annotated and were not considered in this work. Some
other ncRNA families were partially annotated (see Table 1,

[(Fig._1)TD$FIG]

Fig. 1. Workflow of the two pipelines for the ncRNA search and annotation. The pipelines integrate external sources of data (round white squares), external

tools (ellipsis), automatic (white squares) and manual (shaded squares) processing steps to produce final ncRNA predictions and annotations (round shaded

squares). A. Homology search pipeline. B. De novo search pipeline.

J.A. Cruz, E. Westhof / C. R. Biologies 334 (2011) 671–678672
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column ‘‘Original Annotation’’). The Ashbya Genome Data-
base [23] contains the fully annotated genome of the Ashbya

Gossypii (also known as Eremothecium gossypii) yeast.
We performed a BLAST search on those 10 genomes

using as queries the S. cerevisiae ncRNAs and all the
originally annotated ncRNAs from the original databases.
This set of query sequences corresponds to the closest
species for which we had reliable and ready to use ncRNA
annotations. We believe that using a larger and more
distant set of ncRNA sequences would increase the low
score candidates with little improvement on the amount of
genes found (e.g. of the 86 S. cerevisiae query sequences
37% produced true positive candidates when BLASTed
against Candida glabrata, but only 6% when BLASTed
against the more distant Debaryomyces hansenii and
Yarrowia lypolitica–see Table SI 1). The BLAST search
produced 1540 candidates with E-values< 0.1. A first
INFERNAL search, using the 83 covariance models corre-
sponding to the ncRNA families present in S. cerevisiae

genome, produced 1250 candidates with E-values< 0.5.
The candidates were included in the structural alignment
of the corresponding family and manually validated
according to the criteria described in the section ‘‘Candi-
date Validation’’. After validation we retained 554 BLAST
candidates and 602 INFERNAL candidates as ncRNAs.

We were interested on how E-values behave as
classifiers in this specific data set. Fig. 2 shows the ROC
curve [30], after the manual classification of True and False
positives (TP and FP), for both tools. INFERNAL E-values
were slightly better discriminators than the E-values of
BLAST. While both tools will achieve 99% of True Positive
Rates (TPR) at similar E-values (0.07 and 0.08 for INFERNAL
and BLAST, respectively), the False Discovery Rates (i.e., the
proportion of FPs in selected candidates) is significantly
lower for INFERNAL (0.35) than for BLAST (0.61).

A second INFERNAL search was performed including all
the remaining RFam families with exception of viral and
miRNA families (719 Rfam families). According to the
sensitivity analysis performed previously (Fig. 2), we
reduced the expected value cutoff to < 0.1 obtaining
1360 candidates (applying the less restrictive cutoff, E-
values< 0.5, we would have obtained 5578 candidates).
From this search, only 41 candidates were selected. This

surprisingly low number can be explained by the fact that
most of the 719 Rfam families do not have homologues in
yeasts, thus the resulting candidates are mostly FPs with
high E-values (see Supplementary material SI 1). Curiously,
all except two of the selected candidates correspond to
homologous ncRNAs not found in the first search. A
representative example is the box C/D snoRNA snR47 that
was identified in Y. lypolitica, D. hansenii, K. thermotolerans

and Z. rouxii with the covariance model of the snoRNA
SNORD36 that is the mammalian ortholog of snR47. The
remaining two candidates were, until now, unknown in the
Saccharomycotina clade: a Box C/D snoRNA found in
Y. lypolitica (Fig. 3) and a TPP riboswitch found in the 5’

Table 1

Number of ncRNAs found with the homology pipeline. Rows contain species numbers, columns contain numbers for each ncRNA family. First row (sace)

displays the reference number of annotated ncRNA in the Saccharomyces cerevisiae genome. Original annotation column refers to ncRNAs annotated

previously to the present work. ‘‘Sace specific’’ column refers to 4 ncRNA annotated in the S. cerevisiae genome.

Species Original Annotation Rnase P SRP Rnase MRP Telomerase snRNA snoRNA C/D snoRNA H/ACA Sace specific TOTAL

sace 86 1 1 1 1 5 44 29 4 86

Number of found ncRNAs

cagl 9 1 1 1 0 5 42 24 0 74

zyro 48 1 1 1 0 5 43 23 0 74

sakl 50 1 1 1 0 5 44 25 0 77

klth 49 1 1 1 0 5 44 24 0 76

klla 50 1 1 1 0 5 44 24 0 76

ergo 75 1 1 1 0 5 42 24 0 74

deha 8 1 0 0 0 5 39 17 0 62

piso 0 1 0 1 0 5 35 17 0 59

yali 8 1 0 1 0 5 32 13 1 53

arad 0 1 1 1 0 5 33 14 0 55

Total 297 10 7 9 0 50 398 205 1 680

[(Fig._2)TD$FIG]

Fig. 2. Receiver Operating Characteristic (ROC) curves for INFERNAL

(dashed curve) and BLAST (dotted curve) E-values. INFERNAL E-values are

slightly better discriminants (Area Under the Curve [AUC] = 0.98) than

BLAST E-values (AUC = 0.92). A True Positive Rate (TPR) of 0.99 implies a

False Positive Rate (FPR) of 0.34 for INFERNAL (E-Value = 0.07) and 0.87

for BLAST (E-Value = 0.08).

J.A. Cruz, E. Westhof / C. R. Biologies 334 (2011) 671–678 673
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UTR of protein coding genes in three different species
(Fig. 4). The snoRNA candidate was found by INFERNAL
using a covariance model of an archaeal snoRNA from the
Pyroccocus family. The conservation of the characteristics
Box C/D, and the complementarity of the putative guide
sequences with the ribosome prevent a rapid exclusion of
this candidate. On the other hand, the fact that the
homologues of the putative ribosomal target sites are not
modified in S. cerevisiae raises doubts about the nature of
this candidate that only experimental validation could
confirm. The TPP riboswitches are the only riboswitches
found in eukaryotes [31,32] and the structural alignment

with the crystal structures of the bacterial (Escherichia coli)
[33] and plant (A. thaliana) [34] TPP riboswitches reveals a
striking similarity of key structural nucleotides. The
distribution of this regulatory domain across the Sacchar-

omycotina phylogeny (Fig. 4B), totally absent in the
S. cerevisiae branch, while present in D. hansenii,
A. adeninovorans. and Y. lypolitica, raises interesting
questions about the evolution of this type of mechanisms,
and show the utility of extending homology search beyond
the close group of species.

Table 1 presents the results of the homology pipeline
distributed by species and ncRNAs families. The total
retained candidates correspond to 79% of all ncRNAs that
were expected assuming the S. cerevisiae database as the
reference for the ncRNA families present on yeast. At least
60% of the expected ncRNAs were found in all species.
Unsurprisingly the homology search was much more
effective in the species from the upper branch (from
S. cerevisiae to A. gossypii), as 90% of the sequences used as
queries came from that branch. Comparing the proportion
of ncRNAs found by INFERNAL and BLAST for each species
(Fig. 5B), we can observe that BLAST was as sensitive as
INFERNAL as long as the searched genomes were close
enough. In more distant species, while both tools loose
performance, INFERNAL is much more sensitive.

Finally, it was not possible to find the RNA component
of the Telomerase complex with any of the used tools. This
ncRNA presents a challenge to automatic search programs
due to minimal sequence and secondary structure
conservation, extensive insertions/deletions and variable
size between species [9,35,36]. The telomerase ncRNAs
contains some structural features that are common to most
known yeasts [36] such as the template region comple-
mentary to the Telomeric Repeat Sequence (TRS), a
characteristic uridine-rich pseudoknot, two helical regions
known to be the binding sites of the yKu and EST1
complexes, and a uridine-rich Sm binding domain. The
template region can be detected with a simple BLAST using
the TRS of the organism as a BLAST query if this TRS is long
enough to produce meaningful hits [9]. If the TRS is too
short or unknown, there is no simple way to find the
telomerase ncRNA with bioinformatics analysis alone. In
this case, the combined search for all structural features
occurring in the correct order in the same region of the
genome could, eventually, be an alternative approach.

2.2. De novo pipeline

Contrary to the homology search pipeline, a de novo

search involves looking for what we do not know, i.e.,
ncRNAs for which no homologous are available a priori.
One of the limitations of the de novo searches is that even
the most promising candidates will require experimental
evidence to be validated as bona fide ncRNAs. In general,
de novo ncRNA search tools [37,38] rely on the same set of
assumptions: (i) the homologous sequences of a ncRNA
share the same overall secondary structure; (ii) align-
ments of ncRNAs reveal the covariation patterns result-
ing from compensatory mutations and, consequently,
allow the inference of the secondary structure; (iii) when
applying standard folding algorithms to the alignment,

[(Fig._3)TD$FIG]

Fig. 3. Secondary structure of the C/D box snoRNA candidate found in

Y. lypolitica. The size, sequence and position of the putative C/D and C’/D’

boxes are compatible with a typical C/D snoRNA (black arrow points to a

deviation from a canonical C’ Box). The putative guide sequences are

complementary to two regions of the Ribosomal Large Subunit of

Y. lypolitica (with pairs missing Watson-Crick complementarity indicated

by small ‘x’). The predicted modified positions (white nucleotides in black

circles) are not known to be modified in yeast.

J.A. Cruz, E. Westhof / C. R. Biologies 334 (2011) 671–678674
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the resulting minimum free energy (MFE) will be lower
than the average MFE obtained by folding random
sequences with the same nucleotide composition. Al-
though none of these assumptions is always true–in
particular the third one [39,40], together they can be
considered as good indicators for the acceptance of a
predicted candidate as a ncRNA.

In the present de novo search pipeline, we performed a
whole genome Multiple Sequence Alignment (MSA)
between the ten budding yeast genomes, which resulted
in a set of local MSAs. The MSAs were filtered to discard too
small or known protein coding regions. We then applied
RNAz [37] to select the MSAs with higher probability of
belonging to a ncRNA. Each selected MSA was then
evaluated within its genomic context. Unannotated
sequences, belonging to selected MSAs for which at least
one of the sequences fall into an annotated region, are
automatically given the same annotation. MSAs with no
known annotation (those falling in intergenic regions for
example) must be manually validated and will, eventually,
represent new ncRNAs (Fig. 1B).

The automatic steps of the de novo pipeline, applied to
the 10 genomes, produced 630 candidates distributed in
the following way: 376 (60%) previously annotated ncRNA

genes (273 of which correspond to rRNAs or tRNAs), 13
(2%) new ncRNA annotations of expected genes not found
with the homology pipeline and 210 (33%) repetitive
elements wrongly classified as ncRNA. The remaining 19
(3%) candidates were considered putative new ncRNA
genes. Those candidates occur in intergenic regions with
no previous annotations, they have a pairwise similarity
higher than 50% between all sequences and display
potential secondary structures supported by covariation
or, at least, some compensatory mutations. The genomic
location of some candidates suggests a potential regulato-
ry role, 14 of the 19 genes occur less than 200 from the 5’
or 3’ UTR of known genes. Notice that all, except one of the
candidates, were identified in only two species, a fact
which prevents a more detailed analysis of the sequence
variation (see Supplementary File SI 1).

Confirmation of the candidates requires experimental
validation. However, the fact that 64% of the candidates
could be confirmed as real ncRNA supports the assumption
that, at least, some of the putative candidates correspond
to real ncRNAs genes or regulatory elements. Curiously, the
immediate utility of the de novo pipeline was the discovery
of genes of already known families, functioning as a
complement to the homology pipeline.

[(Fig._4)TD$FIG]

Fig. 4. TPP riboswitch candidates found by homology. A. Multiple structural sequence alignment of the seven predicted candidates. The ‘ + ’ and ‘*’ indicate

columns conserved in at least 90 and 99% of known sequences respectively. In bold are the nucleotides deviating from the consensus. The last row

represents the secondary structure in bracket notation. Candidate sequences are compatible with the observed sequence conservation and secondary

structure. B. Phylogenetic tree of the searched species. Stars represent the number of TPP ncRNAs found in each organism.

[(Fig._5)TD$FIG]

Fig. 5. Number of ncRNAs found using each of the tools. A. The numbers beside each tool name correspond to ncRNAs found exclusively by that tool.

Numbers between two arrows are ncRNAs found by both tools. The number of ncRNAs found by the three tools is at the center. In parenthesis are the found

ncRNAs with no homologue in Saccharomyces cerevisiae. B. Proportion of ncRNA found in each genome by INFERNAL and BLAST. While both tools decrease

performance with increasing evolutionary distance, INFERNAL is less affected than BLAST. Numbers in parenthesis indicate the number of ncRNAs originally

annotated and used in the homology search. Dotted squares and numbers correspond to the total proportion and absolute number of found ncRNAs after

running both pipelines.
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3. Candidate validation

Both search strategies produce many more candidates
than expected. Many of the candidates (mainly those with
low scores) are FPs that display some sequence or secondary
structure resemblance to bona fide ncRNAs. Search tools
usually assign, to each candidate, a log likelihood score that
measures the ratio between the probability of obtaining the
candidate using a specific model and the probability of
obtaining the same candidate just by chance:

score ¼ log2
P candidatejModelncRNAð Þ
P candidatejModelrandomð Þ

� �

Additionally, some tools provide also an E-value for the
candidate; it corresponds to the number of candidates with
a score better than one would expect to obtain by chance in
a sequence with the same characteristics (length and
nucleotide, or di-nucleotide, composition).

Scores and E-values provide general guidance to accept
or reject a candidate in a first approximation. However,
they are not perfect discriminators in the sense that one
cannot find a specific value of score or E-value that totally
separates FP from TP candidates. In real world applications,
any chosen cutoff values of score or E-value will imply a
number of FP and FN. It is easy to see that the choice of
cutoff value is of great importance. Choosing too high a
cutoff value will discard too many positive candidates,
while choosing a low value will produce a large number of
FPs that will have to be manually validated one-by-one.

The final decision about each candidate must be taken
over by the human curator on the basis of a combination of
candidate features analysis and experience, a task often
difficult or impossible to automate. To systematize the
process of human validation of candidates, we established
a list of acceptance criteria that must be checked: (i)
Extensive sequence similarity on known conserved
sequences; (ii) Candidates of families with known guide
sequences (such as snoRNAs) should also present the guide
sequences compatible with the targets in the same
genomes; (iii) Conserved homologous synteny should be
observed (similarly, known polycistronic genes should be

occurring together); (iv) Known (or predicted) secondary
structures should be supported by covariation and
compensatory mutations in the structural alignments.
The failure to comply with one or more of the above criteria
would not discard a candidate per se, but it would demand
stronger evidence for its acceptance.

4. Conclusions

Here we described the assembly and application of two
automatic ncRNA annotation pipelines to 10 complete
genomes of Saccharomycotina yeasts. Two annotation
strategies were followed, a homologous search and a de

novo search of ncRNAs. The assembled pipelines are based
on publicly available tools and information obtained from
ncRNA sequence databases. In total, we were able to find
81% of the expected ncNRAs (693 unique ncRNAs) on the
searched genomes, more than doubling the 297 originally
annotated ncRNAs, and 26 new candidates with no
homologues in the reference species S. cerevisiae (Table 2).

The analysis of the ncRNA annotation coverage, species-
by-species (Fig. 5B), reveals that the less covered species
are those more distant from the S. cerevisiae group. This
observation shows the importance of close related species
queries for homology search and suggests the need for a
denser taxonomic sampling in regions of the phylogeny
less represented in future genomic sequencing projects
[41,42]. As an alternative hypothesis we cannot exclude
that some of the ncRNAs that were not found do not exist at
all. However, this hypothesis does not allow a direct
bioinformatic validation. Comparing the ncRNAs found by
each tool (Fig. 5A) we observe that 158 (23%) candidates
are found by only one search tool, stressing the comple-
mentarity between the used methods.

Although manual validation is still needed, the human
effort involved in the annotation process was strongly
reduced and focused only on the validation of the
automatically selected candidates and not on the search
itself.

The real number of ncRNAs present in genomes is an
open question [43]. In particular, data from human studies
indicate that the number of potential ncRNAs could be much

Table 2

Proportion of ncRNAs found with both homology and de novo pipelines, assuming the ncRNAs present in the reference genome Saccharomyces cerevisiae as

100%. Rows contain numbers of species, columns contain the percentages of ncRNA found for each family. Rows and columns legends have the same

meaning as in Table 1.

Original

Annotation

Rnase P SRP Rnase MRP telomerase snRNA snoRNA C/D snoRNA

H/ACA

Sace

specific

TOTAL

(count)

TOTAL

sace 86 1 1 1 1 5 44 29 4

Fraction of found ncRNAs

cagl 0.10 1.00 1.00 1.00 0.00 1.00 0.95 0.86 0.00 75 0.87

zyro 0.56 1.00 1.00 1.00 0.00 1.00 0.98 0.79 0.00 74 0.86

sakl 0.58 1.00 1.00 1.00 0.00 1.00 1.00 0.90 0.00 78 0.91

klth 0.57 1.00 1.00 1.00 0.00 1.00 1.00 0.86 0.00 77 0.90

klla 0.58 1.00 1.00 1.00 0.00 1.00 1.00 0.90 0.00 78 0.91

ergo 0.87 1.00 1.00 1.00 0.00 1.00 0.95 0.83 0.00 74 0.86

deha 0.09 1.00 1.00 1.00 0.00 1.00 0.89 0.66 0.00 66 0.77

piso 0.00 1.00 1.00 1.00 0.00 1.00 0.82 0.66 0.00 63 0.73

yali 0.09 1.00 0.00 1.00 0.00 1.00 0.73 0.45 0.25 53 0.62

arad 0.00 1.00 1.00 1.00 0.00 1.00 0.75 0.48 0.00 55 0.64

Total 1.00 0.90 1.00 0.00 1.00 0.91 0.74 0.03 693 0.81
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bigger than the currently annotated ones [44]. Although
yeasts have very compact genomes (72% of the genomic
sequence corresponds to protein genes) that are, on average,
two hundred times smaller than the human genome, the
possible existence of a number of yet unidentified ncRNAs
cannot be discarded. Several recent observations such as the
existence of expressed intergenic regions with no annotated
function [45], the detection of several long ncRNAs of
unknown function in the S. cerevisiae [16] and the extreme
difficulty in identifying some elusive ncRNAs (e.g. the RNA
component of the Telomerase), raise the question of how
many ncRNAs are still to be found. The correct identification
of possible new ncRNAs will surely require synergy between
pure sequence analysis methods, high throughput techni-
ques of sequencing [46] as well as the application of
structural knowledge to ncRNA search.

5. Materials and methods

5.1. Data sources

The A. gossypii genome was obtained from the Ashbya

Genome Database (agd.vital-it.ch) [23]. The A. adeninovorans

genome was obtained from (C. Neuvéglise, personal commu-
nication) and the P. sorbitophila from (V. Leh, personal
communication). All other genomes and the original annota-
tions corresponding to 297 ncRNA sequences that were used
as BLAST queries are from the Génolevures Database
(www.genolevures.org) [22]. From the yeast genome data-
base (www.yeastgenome.org) [47] we obtained 86
S. cerevisiae ncRNAs also used as BLAST queries. From the
RFam–ncRNA families database (rfam.sanger.ac.uk) [29]
(version 9.1) we downloaded 802 covariance models for
INFERNAL search.

5.2. Homology pipeline BLAST search

The 383 query sequences were BLASTed against each
one of the 10 genomes using the ‘‘blastall -p blastn’’
command (version 2.2.21) with default parameters. No
query sequence was BLASTed against its own genome. The
obtained candidates with E-Values< 0.1 were retained.

5.3. Homology pipeline INFERNAL search

The homology search using INFERNAL (version 1.0) was
performed in two steps. First, 83 RFam covariance models,
corresponding to the ncRNAs families already known in
yeasts were searched and the obtained candidates with E-
Values< 0.5 were retained. Second, 719 of the remaining
RFam families (corresponding to all the remaining families
with exception of the viral and miRNAs families) were
searched and the obtained candidates with E-Values< 0.1
were retained. All INFERNAL homology searches were
performed using the ‘‘cmsearch’’ command with default
parameters.

5.4. Candidate selection

The retained candidates were automatically aligned
with the known homologous fungal sequences using the

‘‘cmbuild’’ and ‘‘cmalign’’ commands from the INFERNAL
package. Each alignment was manually validated accord-
ing to the criteria described in the ‘‘Candidate Validation’’
section above.

5.5. De novo search

For the de novo search, a whole genome MSA was
performed using the TBA tool [48] according to the
protocol described in ‘‘A Practical Guide to Using TBA’’
(www.bx.psu.edu/miller_lab) with the following tree:
‘‘((((((sace cagl) zyro) (sakl klth)) (klla ergo)) (deha piso))
(yali arad))’’. The MSAs smaller than 50 nts or overlapping
coding regions were discarded. The remaining MSAs were
split using a sliding window of 120 nts with a step of 40 nts.
We searched the resulting MSAs with RNAz and retained
all candidates with reported probability higher than 0.5.
Retained candidates were evaluated according to sequence
conservation, secondary structure prediction, possible
secondary structure signals such as covariation and
compensatory mutations and genomic location with
respect to neighboring genes.
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Chapter 6

Detection of Structural
Modules

An important characteristic of structured ncRNAs is the existence of iden-
tifiable three dimensional modules recurrently found in many evolutionary
and functionally distinct molecules. Apart from the helices and hairpins
that constitute the basic framework of an RNA architecture and are, by far,
the most common of these recurrent elements, a number of other, more spe-
cific, recurrent modules occur in key structural and functional regions. They
play important architectural and functional roles as they are often protein
binding sites and structural organizers of the molecules. These modules are
usually known as structural modules (or structural motifs) and their impor-
tance is evidenced by the number of tools and approaches recently proposed
for module discovery on atomic resolution structures (Duarte et al., 2003;
Hershkovitz, 2003; Wadley and Pyle, 2004; Wang et al., 2007; Djelloul and
Denise, 2008; Sarver et al., 2008; Apostolico et al., 2009; Zhong et al., 2010).
Remarkably, despite all the efforts put into module discovery in three dimen-
sional structures, the discovery of modules in sequences was until now an
almost unexplored subject.

In the present chapter I describe a novel approach for structural mod-
ules discovery in RNA sequences based on bayesian networks, joint base
pair probability estimation and positional candidates clustering. I will also
present several promising results obtained by applying this approach to pub-
licly available ncRNA alignments.

6.1 Introduction to Structural Modules

Non coding RNA structural modules can be defined as:

“(. . . )directed and ordered stacked arrays of non-Watson-
Crick base pairs forming distinctive foldings of the phospho-
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diester backbones of the interacting RNA strands. They cor-
respond to the ’loops’ – hairpin, internal and junction – that
intersperse the Watson-Crick two-dimensional helices as seen in
two-dimensional representations of RNA structure(. . . )” (Leon-
tis and Westhof, 2003b).

In other words, RNA structural modules are recurrent RNA elements
that occur in phylogenetically and functionally unrelated molecules and
present similar three-dimensional shapes independently of the surrounding
structural context.

RNA structural modules are also known as RNA motifs, especially when
reference is made to sequence. Here I prefer the term “structural modules”
to distinguish from the different, although closely related, concepts such as
sequence motifs – sequential patterns of nucleotides – and RNA motifs –
sets of secondary structure elements. In the following I will refer to RNA
structural modules simply as modules.

Although no complete catalog of structural modules is available at present,
many modules can be found in the literature and some of them are consen-
sual among the RNA structure community. The following list mentions the
most commonly referred structural modules.

• A-minor: Formed by two consecutive adenines that form sugar-sugar
base pairs with bases at the codon and anticodon positions during the
translation process (Lescoute and Westhof, 2006).

• AA-platform: Occurs in three different positions at group I introns
(Cate et al., 1996).

• Bulge-helix-bulge: Occurs in archaea introns in protein binding
sites. It is recognized by spliceosomal protein complex (Diener and
Moore, 1998).

• C-loop: Structural motif occurring in internal loops at several differ-
ent positions of the ribosome (Lescoute et al., 2005).

• G-bulged: Found in many RNAs, specially the ribosomal subunits
and some riboswitches. Stabilizes the structure and occurs at protein
binding sites (Szewczak et al., 1993).

• Kink-turn: Found in many RNAs, U4 snRNA, some riboswitches
and probably in snoRNAs. It provokes a sharp bend in the backbone
and, in the ribosome, commonly occurs at protein binding sites (Klein
et al., 2001).

• Loop E: Presents some similarities with the G-bulged. It is present in
the bacterial 5S ribosomal RNA (Wimberly et al., 1993; Correll et al.,
1997; Leontis and Westhof, 2003a).
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• Loop-helix interaction: Is a tertiary interaction between a tetraloop
and an helical region from distant regions of the secondary structure
(Michel and Westhof, 1990).

• Reverse Kink-turn: Strikingly similar to the kink-turn but it bends
to the opposite direction. It is only known to occur in group I introns
(Antonioli et al., 2010).

• Tandem GA: Tandem GA-AG sugar-Hoogsteen base pairs that stack
between regular WC base pairs (Gautheret et al., 1994).

• Tetraloop: Common four nucleotides terminal loops presenting the
common sequence motifs UNCG or GNRA (Tuerk et al., 1988;
Woese et al., 1990).

• U Turn: Terminal loop motif found in the anticodon loop of tRNAs
(Schweisguth and Moore, 1997).

Most of the listed motifs are described in depth in the following papers
(Moore, 1999; Leontis and Westhof, 2003b; Hendrix et al., 2005; Lescoute
et al., 2005).

In this work I selected four modules that are among the most common
of the observed motifs: G-bulged, kink-turn, C-loop and Tandem GA.

6.2 Search for Structural Modules

As it has been seen in the introduction, a number of tools is available for
structural modules search within RNA atomic structures. No tool, how-
ever, is available to search for modules in sequences alone. The functional
importance of modules and the fact that the number of ncRNAs for which
atomic structures are available is still small in comparison with the number
of available sequences was our main motivation for the development of such
an approach.

6.2.1 Interaction Networks

Atomic structure models provide us with information about the three di-
mensional shape of modules. This structural information can be summarized
with enough fidelity1by the set of base-base interactions of the module. This
set of interactions is commonly known as the Interaction Network (IN) of
the module. The IN derived from a crystal structure (see Figure 6.1) repre-
sents a single instance of the all the possible module instances and, even if
one collects all the available crystal structures of the module, one would still
obtain a very limited sample of the possible variations of those modules.

1By “enough fidelity” I mean that the set of base-base interactions provide sufficient
information to rebuild a meaningful three dimensional representation of the module.
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Figure 6.1: Atomic structure of a kink-turn and the respective Interaction
network.

A way to increase the information contained on an IN is to improve it
with the nucleotide frequencies for each position of the network by collecting
data from high quality sequence alignments in which the module region
can be well identified and aligned. If one compiles all the available INs in
a “consensus” network one can obtain a reasonable representation of the
possible sequence and structural diversity of a module and a good starting
point to build a search model for structural modules (see Figure 6.2).

6.2.2 Position Weight Matrices

It is obvious from the displayed INs (see Figures 6.1 and 6.2) that each
strand of the motif can be characterized by a sequence motif. A classic way
to represent sequence motifs is to build a position weight matrix (PWM).

In a PWM, each row corresponds to a symbol of the sequence alphabet
(in our case, the four nucleotides A, C, U and G), each column corresponds to
a position of the motif and each individual position of the PWM corresponds
to the log likelihood of observing the symbol i in position j:

PWMi,j = log2

(
P (aj = ri|Model)

P (aj = ri|Null)

)
,

in which P (aj = ri|Model) represents the probability of observing the
nucleotide ri in the jth position of the motif and P (aj = ri|Null) the prob-
ability of observing ri in that same position just by chance2

The score of a given sequence s can be computed as:

score(s) =

|s|∑
i=1

PWM sj ,j .

Notice that the positions of the PWM can be summed due to the as-
sumption of independence between the positions of the sequence motif. This

2Usually this corresponds to the probability of observing ri in a random sequence with
the same nucleotide distribution as the original sequences, i.e., with the same GC content.
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independence assumption is important to simplify the training and the use
of the PWM. However, usually it does not apply, either in typical DNA mo-
tifs (Ben-Gal et al., 2005) or in structured RNAs where the WC base pairs
present a strong dependency between bases normally.

To test the result of the use of a position independent model to search
for a kink-turn model in a ribosomal sequence, I built the most stringent
kink-turn model and went through the large ribosomal subunit of Acidulipro-
fundum boonei. Figure 6.3 shows the result of the search. Notice that 3 out
of 5 kink-turns are found by the search. However, more than 30 false posi-
tive hits are also found making it particularly difficult to select the real from
the false candidates.

6.3 RMDetect Approach

From the previous example it is clear that position independent models are
not enough to discriminate the modules from the background noise within
a long sequence. To do that one needs to obtain more information on the
structural context of the model. Thus, I developed a module search strategy
based on the following assumptions:

• The nucleotides present in the different positions of a module are not
independent of each other and sometimes (as in the WC base pair
case) are strongly correlated;

• Structural modules are usually flanked by secondary structure ele-
ments such as helices and loops;

• Modules are conserved across species.

Then I combined the information obtained by applying each of these
assumptions to module search in a single search approach.

6.3.1 Modeling with Bayesian Networks

To model the dependency between the positions of a module I resorted to
the Bayesian Network formalism. Bayesian Networks have been applied to
transcription factor binding site identification and proved a simple yet useful
model to describe dependency between sequence sites (Barash et al., 2003).

A Bayesian Network (BN) is a probabilistic graphical model represented
as a directed acyclic graph in which the nodes represent variables and the
edges represent the dependency between them. A probability distribution
is associated to each node of the BN and this probability is conditioned by
the parent nodes.

Formally, a BN can be defined as:
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Figure 6.3: Kink-turn search using a simple position independent model.
From the 5 existing kink turns 3 where correctly predicted (large green
dots) and 2 were missed (large orange dots). False positives are represented
as small red dots.
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Figure 6.4: Simple Bayesian Network

BN = (N,E),

in which N is the set of nodes and E the set of edges. An edge (e ∈ E)
in its turn is defined as an ordered pair:

e = (a, b) : a, b ∈ N.

The set Pax of the parent nodes of x can be defined as:

Pax = y : ∃e ∈ E, e(y, x).

The joint probability density function of a BN is given by:

P (X1 = x1, ..., Xn = xn) =
i=n∏
i=1

P (Xi = xi|Xj = xj , ∀Xj ∈ Paxi)

Figure 6.4 exemplifies a simple BN and the joint probability of all its
nodes.

To represent a module as a BN, first one has to establish the topology of
the network and then to compute the parameters describing the nucleotide
frequencies for each node. Inferring the topology of a BN is a NP-Hard
problem (Chickering et al., 1994) and several approaches and tools exist
to infer BN topologies (Hartemink et al., 2005; Shah and Woolf, 2009).
Here I adopted a conservative approach in which the edges of the network
correspond to the physical interactions between the bases such as base-base
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or stacking interactions. To each node I associate a multinomial distribution
corresponding to the relative frequency of each nucleotide in each given
position. Figure 6.5 depicts the derived BNs for the studied modules.

6.3.2 Adding Base Pair Probability Information

Due to the short sequence signatures of modules – generally less than 30 nts –
searching with a BN in a long sequence will still produce many false positive
candidates occur just by chance. Real modules, however, are flanked by
WC base pairs that belong to secondary structure elements of the molecule.
False positive candidates, in general, are not forced to comply with the
secondary structure of the molecule, thus I can use the predicted lower base
pair probabilities to filter those false positive candidates. This prediction
can be made using publicly available secondary structure prediction tools
(Hofacker et al., 1994). Figure 6.6 shows the location of three modules
predicted in a lysine riboswitch sequence. Notice that the Tandem GA
candidate although very similar to a possible module is incompatible with
the predicted secondary structure.

6.3.3 Adding Alignment Information

If several homologous sequences are available – which is more and more the
case given the increasing availability of sequence databases – one can use the
multiple sequence alignment data to improve module predictions. Assuming
that modules are conserved across the homolog species – which is supported
by observations – one would expect to find them in close columns of the
alignment even if the alignment is not perfect for that region. Additionally,
if sequences are sufficiently divergent, the false positive candidates should
be distributed randomly across the alignment.

In the proposed approach I use this information to cluster the found can-
didates and select the clusters that most likely correspond to real modules.
Figure 6.7 shows this search strategy applied to an alignment of the lysine
riboswitch.

6.3.4 Automatic Construction of Models

To allow the search of other structural modules, beyond the four modules
initially considered in our work we developed RMBuild, a tool for automati-
cally building search models given training data. RMBuild requires as input
two pieces of information:

• The atom coordinates of the structural module to consider.

• A multiple sequence alignment containing a representative sample of
the module sequences.
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Figure 6.6: Predicted modules in the Lysine riboswitch secondary structure.

Based on this information RMBuild automatically generates a new BN
model for the module according to the following steps:

1. Identify all the base-base interactions occurring between the bases of
the module using automatic 3D annotation tools like MC-Annotate

(Gendron et al., 2001) or RNAView (Yang et al., 2003).

2. Infer a possible structure for the BN assuming as the edges of the
network the stacking, WC and non-WC base-base interactions, taking
care to avoid building a cycle graph, i.e. avoiding circular references
between nodes, (see Section 6.3.1).

3. Compute the multinomial distribution of the nodes probabilities from
the frequency of the nucleotides in the alignment. The conditional
probabilities are computed according the the BN defined in the previ-
ous step.

The result of this protocol is a model file, describing the BN and the
probabilities of each node, that can be used by RMDetect to search for
the new module. This definition file is a simple text file and users can
change it in order to fine tune the inferred BN. In this case RMBuild can be
used to recompute the nodes probabilities based on the new structure. It
corresponds to executing the steps 1 and 2 of the protocol manually letting
RMBuild to execute step 3.
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6.4 Search Algorithms

In this section I present the formal definition of each of the algorithms
informally described above.

6.4.1 Single Sequence Search Algorithm

For a formal definition of the algorithm for module search in single sequences
let:

• M be a structural RNA module;

• S be a nucleotide sequence to be searched for M ;

• MBN be a Bayesian Network model of M ;

• MGC be a null model in which all the positions are independent and
have the same nucleotide distribution of S;

• spij = (seqi, seqj) be a pair of non overlapping sub sequences of S
starting from positions i and j, corresponding to the strands of the
module;

• WCM be the set of all WC base pairs of M ;

• FEall be the free energy of a folding ensemble corresponding to the
folding of the unconstrained original sequence;

• FEij be the free energy of a folding ensemble corresponding to the
folding of the original sequence constrained by the base pairs of WCM
in the positions determined by spij .

For simplicity I will only describe modules formed by pairs of sub-
sequences, i.e., modules with two strands. The extension to modules formed
by more than two strands, like in n-way junctions, would simply require
redefinition of sp as a tuple spi1,...,in = (seqi1 , ..., seqin) and to include the
respective additional nested for loops in Algorithm 2.

6.4.2 Multiple Sequence Clustering Algorithm

As seen in the single sequence search algorithm each module candidate can
be defined as an ordered pair of alignment coordinates spij = (seqi, seqj). A
hierarchical clustering algorithm can be applied to the selected candidates
of the different sequences according to their distance. The algorithm goes
as follows:
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Algorithm 2 Single sequence search

selected = ∅
for i IN len(S) do

for j IN len(S) do
if i 6= j then

scoreij = log2

(
P (spij |MBN )
P (spij |MGC)

)
bppij = e

(
FEall−FEij

kT

)
if scoreij > limitscore AND bppij > limitbpp then
appendspij to selected

end if
end if

end for
end for

Algorithm 3 Multiple Sequence Clustering

# Remove from selected all overlapping candidates on the same sequence
# retaining only the one with the higher score.
for candij IN selected do

append candij to clusters
end for
repeat
exit = TRUE
for clusterij IN clusters do

for clusterkl IN clusters do
if i 6= k AND j 6= l AND max(|i− k|, |j − l|) ≤ DIST then
clusterij = MERGE (clusterij , clusterkl)
exit = FALSE

end if
end for

end for
until exit == TRUE
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6.4.3 Candidate Evaluation

At the end of the algorithm each candidate will be characterized by five
variables:

1. occur – the absolute number of the aligned sequences in which the
candidate occurs;

2. perc – the percentage of the aligned sequences in which the candidate
occurs (occurrence);

3. score – the mean score of all candidates (see 3);

4. bpp – the mean bpp of all candidates (see 3);

5. MI – the mutual information between the bases of each WC base pair
from WCM , measured along all candidates (see A).

For a candidate to be selected it must be sufficiently represented in the
alignment (occur and perc) must have a significant score and bpp and should
present some covariance between WC base pairs supporting the evolutionary
pressure on conservation of the secondary structure of the module (MI).
The actual values used as threshold for each decision are described in (Cruz
and Westhof, 2011b)

6.5 Results

I applied the described algorithms to 1444 alignments from public data-
bases: 1309 alignments from Rfam (Gardner et al., 2009), 14 alignments
from group I intron database (Zhou et al., 2008) and 121 bacterial ncRNA
alignments from recent metagenomic studies (Weinberg et al., 2009; Wein-
berg et al., 2010). RMDetect found 141 of known modules and predicted 21
yet unreported modules. Table 6.5 summarizes the results obtained in the
search. For a complete description of the results see (Cruz and Westhof,
2011b).

6.6 Conclusions

The present approach to detect RNA structural modules in sequences was
able to detect a number of already known modules and to propose several
yet undetected module instances. I hope that this approach and the tools
provided with it could be useful as is for biologists working with specific RNA
molecules for which no structural information is available. Additionally I
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Rfam (1309) total candidates 13 119 22 68
known modules 6 105† 0 21‡
new candidates 1 1 3 8
not confirmed 6 13 19 39

Group I Introns (14) total candidates 1 1 0 1
known modules 1 0 0 0
new candidates 0 0 0 1
not confirmed 0 1 0 0

Rfam (121) total candidates 4 4 1 16
known modules 3 0 0 5∗
new candidates 1 1 0 5
not confirmed 0 3 1 6

Table 6.1: Results of RMDetect on public database alignments. a)Number
of alignments searched in the database. b)Number of selected candi-
dates. c)Number of selected candidates corresponding to known modules.
d)Number of selected candidates corresponding to new putative modules.
e)Number of false positive candidates or candidates for which no confirma-
tion was possible. †99 snoRNAs. ‡20 kink-turns. ∗1 kink-turn.
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expect to extend RMDETECT in order to include the remaining well known
modules and several other less known for which just a few examples are
available.
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6.7 Article – Sequence-based Identification of 3D
Structural Modules in RNA with RMDetect

This chapter is an extended summary of the following article:
Cruz, J. A. and Westhof, E. (2011). Sequence-based Identification of 3D

Structural Modules in RNA with RMDetect. Nature Methods (8)6:513-519.



Articles

nAture methods  |  VOL.8  NO.6  |  JUNE 2011  |  513

structural rnA modules, sets of ordered non-Watson-crick 
base pairs embedded between Watson-crick pairs, have central 
roles as architectural organizers and sites of ligand binding in 
rnA molecules, and are recurrently observed in rnA families 
throughout the phylogeny. here we describe a computational 
tool, rnA three-dimensional (3d) modules detection, or 
rmdetect, for identifying known 3d structural modules in 
single and multiple rnA sequences in the absence of any other 
information. currently, four modules can be searched for:  
G-bulge loop, kink-turn, c-loop and tandem-GA loop. in control 
test sequences we found all of the known modules with a 
false discovery rate of 0.23. scanning through 1,444 publicly 
available alignments, we identified 21 yet unreported modules 
and 141 known modules. rmdetect can be used to refine 
rnA 2d structure, assemble rnA 3d models, and search and 
annotate structured rnAs in genomic data.

Structured RNAs present hierarchical architectures in which 
double-stranded helices and single-stranded loops are organ-
ized in three-dimensional (3D) space by tertiary interactions. 
The helices are formed by stacks of Watson-Crick base pairs and 
the tertiary interactions consist mainly of non-Watson-Crick base 
pairs1. Tertiary interactions occur either between nucleotides in 
the same domain (for example, internal loops and junctions) or 
between nucleotides from distant domains (for example, loop-
loop and loop-helix interactions, and pseudoknots). The tertiary 
interactions, by establishing local and specific contacts, build 
up 3D structural modules that are characterized by sets of non-
Watson-Crick base pairs organized in a precise order. Modules 
occur recurrently in different RNAs stemming from any phylo-
genetic branch and display similar 3D shapes independently of the 
surrounding structural context2. They have important functional 
roles in RNA molecules as protein and RNA binding sites3 and as 
local structural organizers in junctions or internal loops4.

Structural RNA modules are often referred to as RNA motifs. 
We favor the term ‘module’ to distinguish between closely related, 
although distinct, concepts: sequence motifs, which are patterns 
of nucleotides; RNA motifs, which are sets of secondary structure 
elements (helices, single strands, hairpins, loops and others)5,6; 
and structural RNA modules, which are ensembles of stacked 

sequence-based identification of 3d structural 
modules in rnA with rmdetect
José Almeida Cruz & Eric Westhof

arrays of ordered non-Watson-Crick base pairs3. This distinction 
separates ‘objects’ that exist in tertiary structure from those that 
exist only in sequence.

The identification of a module in a RNA sequence can provide 
key information about the secondary structure and the resulting 
tertiary fold7–9. Therefore, the identification of a structural RNA 
module lends support to the identification of a transcript as a 
structured RNA10, presents clues for the local function of the 
molecule11,12 and explains chemical probing data because mod-
ules present defined chemical probing signatures and mutational 
data4. Recent tools for module searching in structures13–16 illus-
trate the importance of module discovery. However, none of these 
tools have been designed to find modules in sequence alone.

Several RNA motif search tools are currently available. Some 
(RNAMotif5 or MilPat17) rely on user-defined descriptors of 
sequence and secondary structure. Others (CMFinder6) infer 
assemblies of secondary-structure elements from homologous 
sequences. These tools search for specific secondary structure 
elements that can span up to hundreds of nucleotides with exten-
sive helical regions and perform poorly when searching small 
sequence motifs with less than 20 nucleotides (Supplementary 
Note 1). The 3D structure prediction tools can, in theory, provide 
information about structural modules, but they require consider-
able amount of computer resources and expertise.

Here we present a computational tool for structural RNA mod-
ule searching based solely on sequence information, which we 
called RNA 3D modules detection (RMDetect). To capture all the 
possible variations of the allowed tertiary interactions and base 
pairs, RMDetect relies on Bayesian network models, base-pair 
probability prediction and positional clustering of candidates. 
We tested the performance of RMDetect on 1,444 noncoding 
(nc)RNA alignments for finding four recurrent modules:  
G-bulge loop (referred to as G-bulge)4, kink-turn2,12, C-loop2 
and tandem GA/AG loop (referred to as tandem GA)18. From the 
1,444 alignments, we identified 141 cases of known instances of 
the modules and 21 new candidates. RMDetect can be used on 
single sequences or on multiple sequence alignments and can be 
applied to any newly discovered module irrespective of the com-
plexity or number of strands involved. The use of RMDetect with 
2D structure algorithms can improve accuracy of predictions. 

Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, 
France. Correspondence should be addressed to E.W. (e.westhof@ibmc-cnrs.unistra.fr).
Received 8 NovembeR 2010; accepted 11 apRil 2011; published oNliNe 8 may 2011; doi:10.1038/Nmeth.1603
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Together with presently available modeling tools7–9, RMDetect 
can be used to build relevant RNA models and also to search and 
annotate ncRNAs in genomic data.

Other modules not covered by the current implementation of 
RMDetect exist and new modules are likely yet to be discovered. 
Some structured RNA may not contain any of the modules dis-
cussed here. Therefore we also provide a tool to build Bayesian 
network models corresponding to new modules based simply 
on 3D coordinates of the new module and sequence alignments 
representative of the module, called RNA 3D modules builder 
or RMBuild.

results
structural rnA modules and interaction networks
The most accurate way to characterize a module and its interaction 
network is to analyze crystal structures. The comparison of many 
instances of a given module conveys essential information about its 
structural regularity and variation. However, typically only a few of 
the possible sequences compatible with the given module are found 
in existing crystal structures. To obtain a larger sample of the range 
of possible sequence variation one must resort to carefully curated 
alignments of homologous sequences. Such alignments indicate 
the nucleotides that can occur at each position of a module.

Interaction networks represent both the sequential regularity 
and the variation present in structural modules without atomic 
details. They depict the nucleotide frequencies and base-base 
interactions for each module instance. After merging the inter-
action networks of all instances, one obtains an integrated inter-
action network that captures the full sequential regularity and 
variation of that module, irrespective to the specific molecule in 
which it is embedded and of the module location. We selected 
four known recurrent modules because they have key roles in 
many types of RNAs (Fig. 1).

descriptions of modules
The G-bulge module is observed in the three rRNAs19, in the 
lysine riboswitch20, in the group I intron P7.1/P7.2 domain21 
and in the T-box leader22. G-bulge modules are formed by four 
stacked non-Watson-Crick base pairs (Fig. 1a) with a charac-
teristic bulging G that participates in a triple interaction with 
the flanking base pair. The G-bulge module organizes internal 
loops and junctions, and often forms binding platforms  
for proteins4,19.

The kink-turn module, an asymmetric internal loop, leads to 
a sharp bend between two helical regions12 (Fig. 1b). One of 
the helices contains exclusively Watson-Crick base pairs, and the 

three base pairs of second helical region, 
closest to the internal loop, usually form 
a GAA/GGA Hoogsteen-Sugar edge plat-
form2. The kink-turn modules bind sev-
eral ribosomal proteins. The U4 small 
nuclear (sn)RNA and small nucleolar 
(sno)RNAs bind the 15.5 kDa protein in 
eukaryotes and the homologous archaeal 
protein L7 (ref. 23).

The C-loop module is an asymmetri-
cal internal loop between two canonical 
helices. C-loops increase the helical twist 
between the helices2 (Fig. 1c). C-loop mod-
ules have been observed in rRNAs and in a 
synthetase mRNA regulatory element24.

The tandem-GA module is a small 
module formed by two consecutive 
Hoogsteen/sugar edge base pairs, A-G 
and G-A18. They are frequently observed 
within regular helices. We considered 
tandem GAs with four stacked base 

a G-bulge

Kink-turn

C-loop

Tandem GA

5′ 3′

3′ 5′

5′ 3′

3′ 5′

5′ 3′

3′ 5′

5′ 3′

3′ 5′

b

c

d

Figure 1 | Details of the analyzed RNA structural 
modules. (a) The G-bulge from the lysine 
riboswitch (Protein Data Bank (PDB) code 
3DIG)20. (b) The kink-turn from the helix 46 of 
the bacterial large subunit (PDB code 2WRJ)40. 
(c) The C-loop from the helix 38 of the bacterial 
large subunit (PDB code 2WRJ)40. (d) A tandem 
GA from a synthetic RNA octamer (PDB code 
1SA9)41. For each module, a detailed structure 
(center), the position in the original molecule 
(left) and the interaction network (right) are 
shown. The underlined bases in the interaction 
network correspond to the nucleotides present 
in the crystal structure. Numbers next to the 
bases indicate the observed percentages of each 
nucleotide in the alignment.
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pairs: Watson-Crick, G-A, A-G and Watson-Crick. The module 
contains two sequences of four nucleotides, NGAN (in which 
N is any nucleotide), which can occur, by chance, once in each 
16 random bases. This short sequence makes it difficult to 
distinguish tandem GAs from background. However, the con-
servation of the GA nucleotides across homologous sequences 
is usually distinguishable in sequence alignments (Fig. 1d).

structural modules as Bayesian networks
The direct use of nucleotide distributions, observed in the inter-
action networks, to search for modules in sequences, presents 
the limitation of assuming statistical independence between 
the positions of the module. This independence is generally 
not verified. For example, Watson-Crick base pairs present a 
strong correlation between the bases. Sometimes, the same base 
pair can adopt more than one interaction type depending on 
the particular instance of a module, which imposes a depend-
ency between bases even if, in some of the instances, one of the 
bases is fixed. Such a situation occurs in the kink-turn module 
in which the first base pair of the noncanonical stem usually 
adopts a Hoogsteen/Sugar edge interaction with an invariant A, 
but it can also adopt a Watson-Crick interaction, which imposes 
the corresponding isostericity constraints. Other dependencies 
can also occur between edge-interacting or stacking-interacting 
nucleotides. A way to overcome this limitation is to interpret an 
interaction network as a Bayesian network and explicitly model 
all the dependencies between the bases of the module observed 
in systematic structural alignments.

Bayesian networks are probabilistic models in which random 
variables and the dependency between them are represented as 
an acyclic directed graph. The nodes of the graph correspond to 
the random variables and the edges to the dependencies. Bayesian 
networks have been applied to sequence-analysis problems, for 

example, for detection of transcription factors25. For modeling 
RNA modules as Bayesian networks, the nodes represent indi-
vidual bases occupying a defined structural position, and the 
edges represent the dependencies between them.

single sequence search
When searching for structural modules in single sequences, 
RMDetect computes, for all subsequences, the log-likelihood 
score corresponding to the likelihood that the given subsequence 
was generated by the Bayesian network of the module. Owing to 
the small size of Bayesian networks and the short (four-letter) 
alphabet of nucleotides, this scan will normally produce a large 
number of medium to high score hits, many of them false posi-
tives. To reduce the number of false positives RMDetect uses the 
predicted joint base-pair probability of the module’s Watson-
Crick base pairs to select the subsequences for which a compatible 
secondary structure is likely to be observed (Fig. 2a).

To evaluate RMDetect for single sequence search we built 15 test 
cases, corresponding to the molecules in which the modules had 
been identified in crystal structures and for which we obtained 
reliable sequence alignments (Supplementary Table 1 and Online 
Methods). We obtained Matthews correlation coefficient values 
of individual test cases26, with fixed parameters, which varied 
between 0.93 for the kink-turn model and 0.13 for the tandem-
GA model. We calculated the true positive rates to be above 0.5 for 
all but the tandem-GA module, indicating that RMDetect consist-
ently found more than half of the positive candidates. However, 
false discovery rates higher than 0.5 for the three tandem-GAs 
confirmed the difficulty in discarding false positive candidates 
for small modules with few non-Watson-Crick interactions using 
single sequence information (Table 1). The diversity of the train-
ing set should be as complete as possible to obtain a representative 
model of a module. For example, a G-bulge model trained only 

Figure 2 | Steps of single- and multiple-
sequence search algorithms. (a) In step 1 
of the single-sequence search algorithm, 
first the Bayesian network model is applied 
to the target sequence to obtain potential 
candidates and their respective scores. Step 2  
is to fold the target sequence and compute 
the proportion of the ensemble (set of all 
possible folds for that sequence) compatible 
with the candidates found in the previous 
step. This proportion is referred to as base-
pair probability (BPP). In step 3, candidates 
are filtered using predefined score and BPP 
thresholds. (b) In the multiple sequence 
search algorithm used with multiple 
homologous sequences, step 4 is to apply 
the previous algorithm to each individual 
sequence of the target alignment to obtain 
the candidates for all sequences (seq1–seq5). 
Step 5 is to represent each candidate, in 
a matrix, using the starting column of 
the candidate strands in the alignment 
as coordinates. Cluster the candidates 
according to their location in the matrix and 
compute the frequency of each cluster in the 
alignment (occur). Overlapping candidates are discarded. Step 6 is to compute the average mutual information (MI) of each cluster as a measure of variation 
between positions. The MI of the cluster is the mean of the individual MI of expected Watson-Crick base pair positions, and it is normalized by the maximum 
possible MI (2 bits per base pair). In step 7, heuristic rules are used to filter candidates based on score, BPP, occur, count and MI values.
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with 16S rRNA and 23S rRNA did not identify most of the lysine 
riboswitch G-bulge instances (Supplementary Note 2).

multiple sequence alignment search
The increasing availability of databases of homologous, or 
related, sequences for many RNA molecules27 and the existence 
of effective RNA sequence alignment tools for close sequences28 
provides powerful sources of information for module discov-
ery. When searching for modules in aligned RNA sequences, 
even if the positions where the modules occur are misaligned, 
we expect that the true positive candidates would be located in 
columns relatively close to each other. When sequences are suffi-
ciently divergent, which is the case of many RNA sequences, false 
positive candidates should be distributed across the alignment. 
Based on these assumptions, we devised a clustering strategy 
to exploit multiple sequence alignment information for module 
searching. We clustered candidates according to the distance on 
the column space of the alignment and selected the most rep-
resented clusters, with higher score candidates and covariation 
signals between bases of Watson-Crick base pairs, as potential 
hits (Fig. 2b).

To test RMDetect on multiple sequence alignments, we 
applied it to the same 15 datasets of the single sequence search. 
RMDetect correctly found all of the 37 known module instances 

(true positive rate of 1) with 11 false positive candidates 
(false discovery rate of 0.23), five of them falsely identified as  
tandem-GA modules. These results show that RMDetect is effec-
tively improved by adding alignment information (Table 2 and 
Supplementary Data 1).

search in public databases
We applied RMDetect to multiple sequence alignments from the 
RFam database, the group I intron database29 and new bacte-
rial ncRNAs reported in references 30 and 31 (Supplementary 
Data 2). Using the same selection conditions as in previous tests, 
we selected 250 candidates. From those, 21 predictions correspond 
to presently unreported modules, 141 correspond to previously 
predicted or observed modules, and the remaining 88 were uncon-
firmed candidates (Table 3 and Supplementary Data 3).

rfam results
Searching 1,309 Rfam alignments resulted in 222 module candi-
dates, 132 of which were known modules and 77 of which cor-
responded to unconfirmed candidates. Not surprisingly, 99 of the 
known candidates corresponded to kink-turns in the snoRNAs 
C/D or C/D′ boxes. We found 13 previously undetected modules, 
including one kink-turn, one G-bulge, three C-loop and eight 
tandem GA modules (Supplementary Fig. 1).

table 1 | RMDetect analysis of the single-sequence test set
Best mccc Fixed parametersd

searched 
module moleculea instancesb mcc tPre Fdrf scoreg BPPh mcc tPre Fdrf scoreg BPPh

G-bulge 16S rRNA bacteria 2 × 250 0.73 0.70 0.22 12.3 0.001 0.58 0.71 0.53 8.0 0.001
G-bulge 23S rRNA archaea 6 × 100 0.68 0.55 0.15 13.8 0.001 0.61 0.64 0.42
G-bulge 23S rRNA bacteria 5 × 250 0.71 0.67 0.24 11.5 0.001 0.63 0.71 0.44
G-bulge Lysine riboswitch 1 × 150 0.66 0.48 0.09 8.3 0.010 0.64 0.51 0.20
Kink-turn 16S rRNA bacteria 1 × 250 0.97 0.96 0.01 17.2 0.041 0.67 0.97 0.53 11.0 0.001
Kink-turn 23S rRNA archaea 5 × 100 0.70 0.61 0.20 14.5 0.001 0.64 0.67 0.40
Kink-turn 23S rRNA bacteria 4 × 250 0.67 0.52 0.16 15.7 0.001 0.59 0.65 0.48
Kink-turn SAM riboswitchi 1 × 150 0.93 0.93 0.07 8.7 0.001 0.93 0.91 0.06
Kink-turn U4 snRNA 1 × 500 0.71 0.54 0.06 12.3 0.001 0.70 0.55 0.10
C-loop 16S rRNA bacteria 1 × 250 0.84 0.85 0.16 18.5 0.011 0.80 0.91 0.29 16.0 0.010
C-loop 23S rRNA archaea 3 × 100 0.66 0.50 0.11 22.4 0.001 0.48 0.54 0.57
C-loop 23S rRNA bacteria 3 × 250 0.62 0.56 0.32 15.9 0.021 0.60 0.58 0.38
Tandem GA 16S rRNA bacteria 1 × 250 0.42 0.66 0.74 9.6 0.161 0.36 0.67 0.81 9.0 0.100
Tandem GA 23S rRNA archaea 1 × 100 0.41 0.21 0.19 9.9 0.990 0.13 0.33 0.95
Tandem GA 23S rRNA bacteria 2 × 250 0.53 0.67 0.58 9.5 0.530 0.39 0.82 0.82
aSequence alignments searched. bNumber of (module) instances present in the alignment: module instances present in each sequence times the number of sequences. cSensitivity and specificity 
 analysis for the parameter that maximize the Matthews correlation coefficient (MCC). dSensitivity and specificity analysis for fixed score and bpp for all test sets of the same module. eTrue 
 positive rate (TPR) = TP / (TP + FN). fFalse discovery rate (FDR) = FP / (TP + FP). gThreshold score. hThreshold BPP values used to discriminate candidates. iSAM, S-adenosylmethionine.

table 2 | RMDetect analysis of the multiple-sequence test set
G-bulge Kink-turn c-loop tandem GA

Alignment searched tP (tPr)a FP (Fdr)b tP (tPr) FP (Fdr) tP (tPr) FP (Fdr) tP (tPr) FP (Fdr)

16S_P 2 (1.00) 0 (0.00) 1 (1.00) 2 (0.66) 1 (1.00) 0 (0%) 1 (1.00) 2 (0.66)
23S_A 6 (1.00) 0 (0.00) 5 (1.00) 1 (0.17) 3 (1.00) 3 (50%) 1 (1.00) 0 (0.00)
23S_P 5 (1.00) 0 (0.00) 4 (1.00) 0 (0.00) 3 (1.00) 0 (0%) 2 (1.00) 3 (0.60)
SamRS – – 1 (1.00) 0 (0.00) – – – –
LysRS 1 (1.00) 0 (0.00) – – – – – –
U4 snRNA – – 1 (1.00) 0 (0.00) – – – –
Total 14 (1.00) 0 (0.00) 12 (1.00) 3 (0.20) 7 (1.00) 3 (0.30) 4 (1.00) 5 (0.55)
–, not applicable.
aNumber of true positives (TP) and true positive rate (TPR = TP / (TP + FN)). bNumber of false positives (FP) and false discovery rate (FDR = FP / (TP + FP)).
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We detected the newly predicted kink-turn in 353 (16%) sequences 
in the variable region of the cobalamin riboswitch alignment32. With 
realignment, using the predicted kink-turn as an anchor, we estab-
lished the full conservation of the tandem-GA sequences as well as 
the perfect pairing of at least two Watson-Crick base pairs in both 
helical stems with strong covariation (Fig. 3a). Another strong can-
didate was a G-bulge found in 109 (11%) sequences of the Hepatitis 
C virus stem-loop SL-VII33. Unlike the cobalamin riboswitch candi-
date, this G-bulge is conserved, correctly aligned and stands out in 
the secondary structure derived from the full alignment (Fig. 3b). 
Although alternative folding is possible, in which the G-bulge 
region participates in a helix interrupted by 
two bulged adenines, the conservation of 
the AGUA-GA sequences and the covaria-
tion of the base pairs in the hairpin support 
the prediction of a G-bulge. We detected 
three potential C-loops in the c-mic inter-
nal ribosome entry site (IRES)34 (Fig. 3c), 
enterovirus cis-acting replication element 
(CRE)35 and QUAD bacterial ncRNA36 in 37 
(45%), 112 (54%) and 174 (49%) sequences 
respectively. In the first case, we found the 
candidate in a region flanking a pseudoknot 
in the structure of the IRES. The covaria-
tion of the helices and the conservation of 
the characteristic ‘CAC’ motif support the 
prediction. In the cases of the enterovirus 
CRE and QUAD RNA the candidates stand 
out from the originally proposed secondary 
structure with no rearrangement needed.

We detected a tandem GA in 157 
sequences (40%) of the rtT alignment, 
a bacterial ncRNA observed as a tran-
scription product of the tyrT operon of 
Escherichia coli37. The detected module 
suggests a rearrangement of one internal 
loop of the originally proposed struc-
ture. It is possible that the module is not 
present in all sequences. We detected 
a second tandem GA in 16 sequences 
(47%) of the 5′ untranslated region of the 
 voltage-gated potassium channel mRNA 
where the proposed secondary structure 

suggests the detected module. A tandem GA, predicted in  
20 (71%) sequences in the purD alignment38, stands at an 
internal loop compatible with a rare type of kink-turn with 
four nucleotides in the bulge (Fig. 3d). One can rearrange the 
 secondary structure to obtain the minimal tandem GA main-
taining the covariation, but we cannot discard the possibility of 
a more complex module. Notably, 21 of the identified tandem 
GAs correspond to kink-turns. This is not surprising because 
kink-turns contain a tandem GA and that the first base of the 
bulge can often be predicted as forming a base pair with the base 
in the opposite strand.

table 3 | RMDetect analysis of public database alignments
database (aligments searched) G-bulge Kink-turn c-loop tandem GA

Rfam (1,309 alignments) Total selected candidates 13 119 22 68
Known modulesa 6 105 (99 snoRNAs) 0 21 (20 kink-turns)
New candidatesb 1  1 3  8
Not confirmedc 6 13 19 39

Group I introns (14 alignments) Total selected candidates 1  1 0  1
Known modulesa 1  0 0  0
New candidatesb 0  0 0  1
Not confirmedc 0  1 0  0

Bacterial ncRNAs (121 alignments) Total selected candidates 4  4 1 16
Known modulesa 3  0 0 5 (1 kink-turn)
New candidatesb 1  1 0  5
Not confirmedc 0  3 1  6

aNumber of selected candidates corresponding to known modules. bNumber of selected candidates corresponding to new putative modules. cNumber of false positive candidates or candidates for 
which no confirmation was possible.
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Figure 3 | Examples of the newly predicted modules. (a) Kink-turn in the Cobalamin riboswitch.  
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RMDetect allowed the correct detection of the three modules 
(two G-bulges and one kink-turn) in the T-box riboswitch22, the two 
modules (one G-bulge and one kink-turn) in the lysine riboswitch20 
and the G-bulge module in the IRES of the Hepatitis C virus39.

Group i intron results
Searching the 14 alignments of the group I intron database, we 
detected the known G-bulge module present in the P7 domain 
of type IA2 introns, confirmed by the crystal structure of the 
phage Twort intron21. Additionally we detected a tandem GA 
in 12 (38%) sequences of type IC2 intron. This candidate was 
predicted in P5d domain (Supplementary Fig. 2).

Bacterial ncrnA results
Several modules had been originally identified on 121 alignments 
of structured ncRNAs from recently published metagenomic 
data30,31. We applied our algorithm to all of these alignments. 
We found a new kink-turn in the GEMM-II alignment, a new 
G-bulge in group-II-D1D4-1 molecule and five new tandem-
GA modules (Supplementary Fig. 2). The twoAYGGAY motif31 
bacterial RNA alignment is an interesting case: we detected two 
tandem GAs in the same hairpin stem, a distal one (10 base pairs 
(bp) from the loop) in 80 sequences (39%), and a proximal one 
(2 bp from the loop) in 28 sequences (14%). All combinations 
of one and both tandem GAs can be found in the alignment 
(Supplementary Fig. 3). Homologous sequences that do not 
contain the module instead have Watson-Crick base pairs at the 
positions corresponding to the module. This alignment raises 
interesting questions about how structural modules evolve and 
interchange and how this will affect the final 3D geometry of the 
molecule. However, RMDetect missed four of seven previously 
reported G-bulge in the dataset. One was that of GOLLD that 
differs slightly from the defined G-bulge model, putting it outside 
the scope of the Bayesian network model. Two others correspond 
to Dictyoglomi-1 G-bulges that spanned more than the sliding 
window length (150 nucleotides). We detected the missing mod-
ules by reapplying the algorithm with no window length limita-
tion. We discarded the final Dictyoglomi-1 G-bulge despite a high 
score (17.0) and occurrence (75%) owing to the small alignment  
(4 sequences) and total conservation in the module region (mutual 
information score of 0.0). This observation highlights the fact that 
the RMDetect parameters, although necessary owing to the large 
number of searched alignments, will not guarantee the exhaus-
tive search of sequence space. When searching a small number 
of alignments, different window lengths and steps together with 
more relaxed selection criteria should be applied.

discussion
In the single-sequence test set we detected more than half of the 
searched modules in molecules as complex as the ribosome. In 
multiple sequence alignment test sets, we identified all known 
modules with an overall false discovery rate of 0.23. We extended 
the search to 1,444 publicly available alignments used without 
realignment. We found most of the known modules in all major 
classes of structured ncRNAs and identified 21 new candidates. 
With the RMBuild tool (Supplementary Note 3), our approach 
can be extended to additional modules and newly discovered 
ones. The Bayesian network models can be further improved with 
new instances of known modules.

RMDetect is available as Supplementary Software and at 
http://sourceforge.net/projects/rmdetect/.

methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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Data sources. All crystal structures were obtained from the 
Protein Data Bank (PDB)42. The alignments of the bacterial ribo-
some (both subunits) are from ref. 2; archaeal ribosomal large 
subunit data were obtained both from ref. 2 and the compre-
hensive ribosomal RNA databases (Silva) version 102 (ref. 43), 
the later was manually corrected in the regions corresponding 
to the studied modules; Rfam alignments correspond to version 
Rfam 9.1 and were downloaded from http://rfam.sanger.ac.uk/27, 
group I intron alignments were downloaded from group I  
intron sequence and structure database (GISSD)29; and the new 
bacterial RNA alignments are from the supplementary informa-
tion in references 30,31. All 2D diagrams were produced using the 
visualization applet for RNA secondary structure (VARNA)44.

Design of the Bayesian networks. The design of a Bayesian net-
work is a two-step process. First, the network topology is estab-
lished, that is, the set of dependencies between all variables of 
the model is determined. Second, the parameters describing the 
probability distribution of each node based on the observed data 
and specified dependencies are computed.

In the present case the Bayesian network topology closely fol-
lows the established interaction networks. All Watson-Crick 
(WC) base pairs, most of the non-WC base pairs and some base 
stacking interactions will map to edges of the Bayesian network. 
Interactions involving a fully conserved nucleotide were not 
included because they would not add any information to the 
Bayesian network. Some additional edges were included that con-
nect structurally important but less conserved bases to bulged 
bases (Supplementary Fig. 4).

A multinomial distribution, corresponding to the occurrence 
probability of the four nucleotides and a gap, is associated to each 
node of the Bayesian network. In the case of dependent nodes, 
the local distribution is conditioned by the parent nodes distri-
butions. The parameters were estimated by maximum likelihood 
using the sequence alignments of each module as the observa-
tions (Supplementary Fig. 5). Given the high number of obser-
vations (5,735 observations for G-bulge, 7,677 observations for 
kink-turns and 3,545 observations for C-loops) the parameters 
correspond to the relative frequency of each nucleotide in the 
full sample45. As the different alignments have different sequence 
frequencies, counts were normalized so that all alignments would 
contribute equally to the final count. The tandem-GA module 
was an exception to the above method as the parameters were not 
computed from sequence alignment data but were defined based 
on an ideal tandem GA. For this module, the first base of each WC 
base pair has a distribution identical to the nucleotide content of 
the sequence, and the second base had a conditional probability 
of P(U|A) = P(G|C) = 1.0; P(A|U) = P(C|G) = 0.6; and P(G|U) = 
P(U|G) = 0.4. The two non-WC base pairs were invariant with 
probabilities P1(A) = P2(G) = 1.0.

Finally, each WC base pair was classified as mandatory or 
optional. This information is used to compute the base pair prob-
abilities and mutual information when filtering candidates.

Interaction networks analysis for parameter estimation. We 
analyzed 11 G-bulge modules. Computed nucleotide frequencies 
confirmed previous predictions by isostericity analysis4. Four base 
pairs were invariant in all occurrences of the module: the bulged 

G-U cis Hoogsteen/sugar edge, the A-G trans Hoogsteen/sugar 
edge, the U-A trans WC/Hoogsteen and the A-A trans Hoogsteen/
Hoogsteen. In the remaining positions some variation was allowed 
(Supplementary Fig. 6).

We analyzed 14 kink-turn instances and grouped them 
into families based on their interaction network similarities 
(Supplementary Fig. 7). To obtain a consensus interaction net-
work, we excluded the instances KT-16S-11-P, the interaction 
network of which is unique and too divergent from all other fami-
lies; and KT-23S-15-A and KT-23S-58-A, which present atypical 
nucleotide insertions in the short strand (in the abbreviations, KT 
is kink turn; 23S or 16S indicate large or small ribosomal subunit; 
11, 15 or 58 are helix 11, 15 or 58; and A or P indicate archaeal or 
bacterial rRNA alignment).

Seven analyzed C-loops revealed an invariant core formed by 
two crossing, noncanonical interactions pairing the first and last 
bases of the loop with the bases of the flanking base pairs in the 
opposite strand. Despite this interaction regularity the C-loop 
presents big sequence variation, except for the first base of the 
loop, invariably a C, and the third base of the loop, either a A or a 
C with the same frequency (Supplementary Fig. 8).

Single sequence search algorithm. A formal definition of the 
single sequence search algorithm used by RMDetect (Fig. 2) can 
be stated as: let M be a structural RNA module; S be a nucleotide 
sequence to be searched for M; MBN a Bayesian network model 
of M; MGC a null model in which all the bases are independent 
and have the same nucleotide distribution of S; spij = {seqi, seqj} 
a pair of non-overlapping subsequences of S starting from posi-
tions i and j, corresponding to the strands of the module; and 
WCM be the set of all WC base pairs from M. For simplicity, we 
will describe only modules formed by pairs of subsequences, that 
is, modules with two strands. The extension to modules formed 
by more than two strands, as in n-way junctions2, would simply 
require redefinition of sp as a tuple spi1,...,in= (seqi1, ..., seqin).

For each spij compute the corresponding scoreij:

score
BN

ij
ij

ij GC

P sp M

P sp M
=

( )
( )













log
|

|
;2

For each spij compute bppij, the corresponding joint base pair 
probability of all WC base pairs:

BPP

Ens. FE

Ens. FEallij

ij

=
e kT

e kT

−

−
,

in which Ens. FE stands for the free energy of a folding ensemble, 
Ens. FEall corresponds to the folding of the unconstrained original 
sequence, and Ens. FEij corresponds to the folding of the original 
sequence constrained by the base pairs of (WCM) in the positions 
determined by spij.

Select all spij with scoreij and bppij higher than a given threshold. 
These will be considered the candidates for the module considered.

The single sequence search was performed with a window 
length of 150 nt and a window step of 75 nt. All candidates scor-
ing less than the specified score and BPP values (Table 1) were 
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discarded, and the remaining ones were retained as candidates. 
We considered a candidate as true positive (TP) if it occurred 
in the same sequence positions as the known module instances 
(plus or minus two positions to account for unexpected gaps and 
alignment errors) all the other candidates are considered false 
positives (FP). The free energies of the ensembles were computed 
with ‘RNAfold -p’46 (-p to calculate the partition function) to 
obtain Ens. FEall (the unconstrained FE) and RNAfold -p –C’ 
(–C to calculate structures subject to constraints) to obtain 
Ens. FEmotif (the constrained FE). The parameters used to com-
pute the joint base pair probabilities where T = 274.5K and  
k = 1.98717 × 10−3 kcal mol−1 (from Vienna package source code). 
The algorithm performance scaled linearly with sequence length 
(for a fixed window length) and scaled quadratically with win-
dow length (Supplementary Notes 4 and 5 and Supplementary 
Figs. 9 and 10).

Multiple sequence search algorithm. As seen in the single 
sequence search algorithm, each module candidate can be defined 
by an ordered pair of alignment coordinates candij= (seqi, seqj). A 
hierarchical clustering algorithm was applied to group the candi-
dates of the different sequences according to their distance. The 
algorithm is as follows. (i) Remove all overlapping candidates on 
the same sequence retaining only the one with the higher score. 
(ii) Each candidate, candij, will be assigned to the cluster, clusterij, 
centered at the position (i,j). (iii) Merge all pairs of clusters for 
which dist (clusterij, clusterkl) < DLIMIT, where dist (clusterij, 
clusterkl) = max(|i – k|, |j – l|). Notice that i, j, k and l are columns 
of the alignment and DLIMIT is the maximum tolerated column 
distance between two candidates so that they can be considered 
to belong to the same cluster. (iv) Recompute the center of each 
cluster as the most represented position (i,j). (v) Repeat from  
(iii) until no more clusters are merged.

At the end, each cluster will correspond to a module candidate 
characterized by five measures: (i) absolute number of the aligned 
sequences in which the candidate occurs (sequence count);  
(ii) percentage of aligned sequences in which the candidate occurs 
(occurrence); (iii) mean score of all candidates; (iv) mean BPP 
of all candidates; and (v) mutual information (MI) between the 
bases of each WC base pair from WCM, measured as along all 
candidates47 (Supplementary Note 6). Thus, for a cluster to be 
considered it must be sufficiently represented in the alignment, 
must have a score and BPP higher than the defined threshold and 
should have covariance between WC base pairs, supporting the 
evolutionary pressure on conservation of the secondary structure 
of the module (Fig. 2b).

The multiple sequence search algorithm, described above, pro-
duced a set of clusters that was filtered according to the following 
conditions: (i) (sequence count > 2) and (occurrence ≥ 10%);  
(ii) MI > 0 or (occurrence > 33% and sequence_count > 10);  
(iii) score ≥ limit_score; and (iii) BPP ≥ limit_BPP.

Both limit_score and limit_BPP vary across the models. Limit_
score was 8.0 for G-bulge, 11.0 for kink-turn, 16.0 for C-loop and 
9.0 for tandem-GA. limit_bpp is 0.1 for the tandem GA, 0.01 for 
the C-loop and 0.001 for all other models. These values were cho-
sen as they allowed the detection of at least half of the modules in 
all but one single sequence search test case (Table 2). The DLIMIT 
distance, discussed above, was set to five columns.

At the end of this process each selected cluster corresponds to a 
module prediction that was manually validated according to the 
compatibility with published structure, sequence alignment or 
co-variation information obtained from the alignment.

Test cases for known modules. Fifteen test cases were gen-
erated each corresponding to one module and one alignment 
(Supplementary Table 1). For each test case, the original align-
ment was randomly split in one training set and one test set. 
The training set was used to compute model parameters, and 
the test set was used for the search. The training set was then 
augmented with sequences from the other alignments contain-
ing the searched module. As a negative control, each sequence 
of the test set was duplicated and shuffled to preserve the nucle-
otide composition of the sequence. Single sequence and multiple 
sequence search algorithms were performed in each test set as 
described above. For example, when searching for the G-bulge 
module in the 16S rRNA sequences, the training set was com-
posed by 523 randomly selected sequences of the 16S rRNA 
alignment plus all 6,956 sequences from 23S bacterial rRNA, 
23S archaea rRNA and lysine-riboswitch alignments. The test 
set included the remaining 250 sequences of the 16S rRNA align-
ment plus 250 shuffled sequences. Both algorithms were applied 
as described above.

Search in database alignments. We systematically searched 
1,309 RFam families, 14 group I intron alignments and 121 
alignments of structured ncRNAs from meta-genomic data30,31. 
The Rfam alignments with more than 7,000 sequences were 
reduced to shorter versions containing 500 randomly selected 
sequences from the original alignment. The group I intron 
alignments were converted to Stockholm format. All alignments 
were searched ’as-is’ with no realignment or manual adjust-
ments. The following alignments were excluded from the search: 
the U4 snRNA, all small and large subunit rRNAs (4 families) 
and the SAM riboswitch that were used for training; the group 
I intron alignment that were searched in specific databases; the 
tRNA familiy; And all the families with less than five sequences 
(56 families).

Implementation and software availability. The described algo-
rithms were implemented as a set of python scripts publicly 
available as open source from: http://sourceforge.net/projects/
rmdetect/. A user guide is provided (Supplementary Note 3).

42. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28,  
235–242 (2000).

43. Pruesse, E. et al. SILVA: a comprehensive online resource for quality 
checked and aligned ribosomal RNA sequence data compatible with ARB. 
Nucleic Acids Res. 35, 7188–7196 (2007).

44. Darty, K., Denise, A. & Ponty, Y. VARNA: Interactive drawing and  
editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 
(2009).

45. Durbin, R. et al. Biological Sequence Analysis: Probabilistic Models of 
Proteins and Nucleic Acids (Cambridge University Press, 1998).

46. Hofacker, I.L. et al. Fast folding and comparison of RNA secondary 
structures. Monatshefte für Chemie 125, 167–188 (1994).

47. Lindgreen, S., Gardner, P.P. & Krogh, A. Measuring covariation in RNA 
alignments: physical realism improves information measures. Bioinformatics 
22, 2988–2995 (2006).
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Chapter 7

Conclusions and Perspectives

In this thesis I applied computer science and bioinformatics techniques to
approach three open problems on ncRNA studies: (i) how to meaningfully
compare three-dimensional RNA models; (ii) how to annotate complete eu-
karyotic genomes for ncRNA in an accurate and as automatic as possible
fashion; and (iii) how to detect three-dimensional structural RNA modules
in sequences using no additional information.

(i) With the group of François Major in Montreal, we developed two new
structural comparison metrics that take into account the structural speci-
ficities of RNAs molecules: The Deformation Index enriches the Root Mean
Square Deviation (RMSD) with base pair prediction accuracy measure-
ments; and the Deformation Profile aims to provide multi-scale information
about the differences between target and reference models at local, intra-
domain and inter-domain scales. These metrics can be used to evaluate
predicted RNA models against the observed RNA structures and, I hope,
will help the structure prediction community in accessing the quality of their
models and improving their prediction models and tools.

An immediate continuation of this work should be to apply the RMSD
based model significance analysis proposed by (Hajdin et al., 2010) to the
Deformation Index and Deformation Profile metrics in order to understand
how both metrics behave in the RNA conformational space. One limita-
tion of the current RNA structure comparison approaches is the lack of a
good random model for RNA structure, i.e., a model that would describe
how “random” RNA structures could be distributed in the conformational
space. This model would allow us to obtain representative random sam-
ples of RNA structures against which to compare the decoys produced by
automatic prediction tools. I would also like to explore the application of
rotational invariant descriptors (such as 3D Zernike descriptors (Novotni
and Klein, 2004)) to RNA structure comparison. This approach as been
explored with relative success for protein-ligand docking by (Venkatraman
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et al., 2009). A fundamental difference, however, is that for protein-ligand
docking the comparison is done between the transforms of molecular sur-
faces while to compare RNA structures one would require a four dimensional
transformation in order to compare the internal domains of the RNA models.

Following our work on structural comparison metrics, together with sev-
eral members of the RNA community, we developed the first RNA prediction
assessment experiment: RNAPuzzles. We performed the three first rounds
of prediction evaluation with the participation of seven research groups,
representative of the RNA structure prediction community. New structure
prediction challenges should be published in the near future and I believe
that the effort to develop the comparison pipeline will greatly simplify the
future rounds of the experiment.

The improvement of the RNAPuzzles mechanism, namely with better
and more complete evaluation tools, is in our road map. An useful addition
to the RNAPuzzles would be the setup of a benchmark structure database
with a set of controlled and representative examples of different sizes and
complexities to allow a systematic comparison of new methods and a training
ground to newcomers to the RNA structure prediction field.

(ii) I implemented a ncRNA annotation pipeline, not only to answer the
immediate need for ncRNA annotation in the context of the Génolevures
consortium but also, and more importantly, to provide a fast and reliable
annotation protocol for the next sequencing projects of the Génolevures
consortium, as well as of its successor, the Dikaryome project.

The full integration, in the development pipeline of new tools, namely
the de novo ncRNA gene prediction tool CMFinder (Yao et al., 2007), as well
as the possibility to process data from other sources, such as deep sequencing
experiments, are the next short term challenges in this line of work.

By applying the developed annotation pipeline to the available fully se-
quenced yeast genomes from the Génolevures consortium and the Dikary-
ome project I was able to annotate an important proportion of the known
ncRNA families in yeast. Besides the practical utility of annotating and
publishing ncRNA gene information on new genomes, I also obtained a set
of observations: New potential ncRNA genes; New synteny relationships be-
tween ncRNA loci; New examples of extra domains in well known essential
ncRNAs.

The experimental confirmation of these observations, which is beyond
the bioinformatics approach, should be the natural continuation of the an-
notation project. In the strict bioinformatics domain, I would like to pursuit
the development of a specific approach to detect elusive ncRNA genes such
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as the telomerase RNA component taking advantage of the known structural
features and the recently obtained synteny data.

(iii) Finally, I developed a new algorithm, RMDetect, to identify structural
RNA modules from sequence information alone. This algorithm resorts on a
Bayesian network for module description and on joint base pair probability
estimation to candidate selection. Applying RMDetect to a set of available
ncRNA alignments I found a number of potential motifs not yet reported.
We believe the RMDetect is a an useful step to bridge the gap between pure
sequence analysis and 3D RNA studies.

I hope to improve the current approach by adding new models for struc-
tural modules collected from the current and the yet to come crystallographic
structures and structural alignments. The performance improvement of our
algorithm will be key to allow the effective search for structural modules in
full genomes. Until now the definition of the Bayesian network topology was
done either empirically or using a set of simple heuristic rules. Some prelim-
inary experiments, using automatic tools for Bayesian network prediction
(Hartemink et al., 2005), generated overly complex topologies with no sim-
ple structural interpretation and it is difficult to evaluate if those complex
topologies really improve on simpler ones or just correspond to the over fit
of the training data. Thus, it would be important to thoroughly explore the
correlations between the bases of the structural modules and, eventually,
the effects of the structural and sequence neighborhood on the nucleotides
frequencies. Finally, knowing that structural modules frequently correspond
to protein binding sites we would like to explore the relationship between
the protein and RNA sequences on those specific binding regions.



Appendix A

Useful Concepts

A.1 Score

In sequence analysis the score of a given alignment – also known as matching
score – is a value that quantifies the number (and type) of matches and mis-
matches of the alignment. The score is computed according to an empirical
scoring matrix that establishes correspondence values between nucleotides
or amino acids based on their evolutionary or chemical properties (Durbin
et al., 1998).

In decision theory a score – also known as log score – is a function
defined by a ratio of probabilities:

score = log

(
P (X|M)

P (X|Mnull)

)
,

where X is an observation, M is the model being tested and Mnull is the
null model against which we compare M . Informally the score tells us how
much the occurrence of X is better explained by the model M or just by
chance (i.e. by the model Mnull).

A.2 E-value

The expect value (E − value) of a hit with score S is the expected num-
ber of hits with scores equal or higher than S that one would expect to
find by chance in the same “experimental” conditions (e.g. sequence length,
nucleotide composition, . . . ). In some cases it is possible to obtain an an-
alytical formula for the E-value. For example, the E − value of the hits
obtained by the BLAST (Altschul et al., 1990) tool are of the form:

E = Ke−λS ,

where K and λ are scale parameters for, respectively, the search space
size and the scoring system and S is the hit’s score (Karlin and Altschul,
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1990).

For many models it is not possible (or it is too complex) to derive an
analytical expression for the E − value. For those model the E − value can
be computed numerically using sampling strategies.

A.3 Quantity of Information

The quantity of information, or self information, as defined in Shannon’s
information theory, is a measure of the information provided by the outcome
of a random variable. It is formally defined as:

I(X = xi) = log2

(
1

P (X = xi)

)
.

The information unit depends on the base of logarithm used. In this
case the this unit is the bit given that we use a logarithm of base 2.

The quantity of information will be important to the subsequent defini-
tions of entropy and mutual information.

A.4 Entropy

Entropy is the expected value of the quantity of information of a random
variable. It is formally defined as:

H(X) =

n∑
i=1

P (X = xi)× I(X = xi),

where X is a discrete random variable that can assume n values.

In sequence analysis entropy can be used as a rough measure of con-
servation of the individual columns of an alignment. For example, each
column of an alignment can be interpreted as a random variable C and the
corresponding rows as the outcomes of C. Thus, the relative frequency of
occurrence of nt can be described as P (C = nt) and the entropy of C as:

H(C) =
∑

nt∈[A,C,G,U ]

P (C = nt)× I(C = nt).

It is then easy to see that if C is conserved in all rows of the alignment we
will have H(C) = 0. Conversely in the extreme case where C can be any of
the four nucleotides with equal probability H(C) = 2. This way H(C) can
be used as a simple measure of conservation as it measures the variability
of the columns of an alignment.
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A.5 Mutual Information

The mutual information is a measure of correlation between two random
variables. It is given by:

MI(X,Y ) =

n∑
i=1

m∑
j=1

P (X = xi, Y = yj)× log2
(

P (X = xi, Y = yj)

P (X = xi)P (Y = yj)

)
.

Informally one can assume that the mutual information between X and
Y expresses the knowledge one obtains about the outcome of Y when the
outcome of X is known (and vice versa).

RNA helices consist on stacks of Watson-Crick base pairs formed by the
following combinations of the four bases: CG, GC, AU, UA, GU and UG.
When comparing homologous sequences corresponding to the same helical
regions one can often observe compensatory mutations between the base
pair position (e.g. a CG base pair becomes a CG or an AU base pair).
In multiple sequences alignments the columns corresponding to a base pair
will be statistically correlated if compensatory mutations occurred. Thus,
computing the mutual information of all pairs of columns in an alignment
will help us to detect potential paired bases. We can rewrite the mutual
information definition to deal with alignment columns Ci and Cj :

MI(Ci, Cj) =
∑

(nti,ntj)∈[A,C,G,U ]

P (Ci = nti, Cj = ntj)×log2
(

P (Ci = nti, Cj = ntj)

P (Ci = nti)P (Cj = ntj)

)

A good discussion on the different applications of mutual information
for measuring covariation between RNA alignment columns can be found in
(Lindgreen et al., 2006).

A.6 Radius of gyration

The radius of gyration Rg of a molecule M is a measure for the average
dimension of a molecule and it is given by:

Rg(M) =

∑N
i=1 (ri− < r >)2

N

where N is the number of “components” to consider (they can be the
atoms or the residues of the molecule), ri is the position of component i and
< r > is the mean position of all components.
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Candidate Score1 Score2 P/N

1 95 96 P
2 76 71 P
3 51 51 P
4 22 22 P
5 19 15 P
6 10 10 N
7 21 21 N
8 41 63 N
9 62 64 P
10 84 82 P

Table A.1: Example of a list of gene candidates produced by two gene dis-
covery systems with the respective scores. The rightmost column indicates
if the candidate is a real gene (“P”) or a wrong prediction (“N”).

A.7 Receiver Operating Characteristic

The receiver operating characteristic (ROC) curve is a method for evaluating
the performance of binary classifiers. The ROC curve is a plot of the False
Positive Rate (FPR)1 against the True Positive Rate (TPR)2 for the full
range of threshold values of a given discrimination quantity.

To exemplify the usage of the ROC curve in the context of gene discovery
let assume that two gene discovery systems produce, each, a list of gene
candidates. Table A.1 represents a fictitious list of candidates produced by
those systems and the respective scores. The rightmost column indicates
if the candidate is a real gene or a wrong prediction (remember that this
information is unknown previously to the gene discovery process).

Now let order the candidates according to Score1 (see Table A.2). Notice
that below a given score value (51) all candidates correspond to true genes. If
one assumes that all candidates below this value are true candidates and all
other are false predictions (binary classifier) one obtains a perfect specificity
(i.e., no false candidates are classified as true, FPR = 0.0). However, the
sensitivity will be less then perfect (i.e., several true candidates will be
classified as false, TPR < 1.0). It is easy to see from the values on the

1The FPR, also represented as 1-specificity, is defined as: FPR = FP
FP+TN

, where FP
and TN are, respectively, the number of False Positives and True Negatives for a given
discriminator threshold.

2The TPR, also known as sensitivity, is defined as: TPR = TP
TP+FN

, where TP and
FN are, respectively, the number of True Positives and False Negatives for a given dis-
criminator threshold.
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Cand. (Score1) T/F 100 80 60 40 20 0

1 (95) P FN TP TP TP TP TP
10 (84) P FN TP TP TP TP TP
2 (76) P FN FN TP TP TP TP
9 (62) P FN FN TP TP TP TP
3 (51) P FN FN FN TP TP TP
8 (41) N TN TN TN FP FP FP
4 (22) P FN FN FN FN TP TP
7 (21) N TN TN TN TN FP FP
5 (19) P FN FN FN FN FN TP
6 (10) N TN TN TN TN TN FP

TP 0 2 4 5 6 7

FN 7 5 3 2 1 0

TN 3 3 3 2 1 0

FP 0 0 0 1 2 3

TPR 0.0 0.28 0.57 0.71 0.86 1.0

FPR 0.0 0.0 0.0 0.33 0.67 1.0

Table A.2: List of gene candidates ordered by Score1 and respective TPR
and FPR values for several thresholds.

table that no threshold will produce a perfect classifier (i.e. FPR = 0.0 and
TPR = 1.0), which is almost always the case in real life applications.

Repeating the same exercise using the Score2 as the discriminator quan-
tity one obtains the values on table A.3.

A legitimate question would be: “Which of the scores, Score1 or Score2,
is the best discriminator?”. This is precisely the type of question that the
ROC curve is supposed to help answering. Figure A.1 displays the ROC
curves for both cases. The discriminator for which the area under the curve
is largest is, usually, considered a better discriminator (in our toy example
it would be Score1). Notice the ideal classifier would produce the dashed
green curve in the example, while a non discriminative, random classifier
would produce the green diagonal line).

For more information on ROC analysis please see (Brown and Davis,
2006).
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Figure A.1: Example of the ROC curve for Score1 (blue) and Score2 (ma-
genta). The dashed green curve corresponds to an, ideal, perfect classifier
and the diagonal green line to a random classifier.
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Cand. (Score2) P/N 100 80 60 40 20 0

1 (96) P FN TP TP TP TP TP
10 (82) P FN TP TP TP TP TP
2 (71) P FN FN TP TP TP TP
9 (64) P FN FN TP TP TP TP
8 (63) N TN TN FP TP FP FP
7 (56) N TN TN TN FP FP FP
3 (51) P FN FN FN FP TP TP
4 (22) P FN FN FN FN TP TP
5 (21) P FN FN FN FN TP TP
6 (10) N TN TN TN TN TN FP

TP 0 2 4 5 7 7

FN 7 5 3 2 0 0

TN 3 3 2 1 1 0

FP 0 0 1 2 2 3

TPR 0.0 0.29 0.57 0.71 1.0 1.0

FPR 0.0 0.0 0.33 0.67 0.67 1.0

Table A.3: List of gene candidates ordered by Score2 and respective TPR
and FPR values for several thresholds.

A.8 Z-Score

The Z-score is a dimensionless quantity that indicates how many standard
deviations a certain measured value diverges from the mean of the popula-
tion. The formal definition is given by:

Zscore =
x− µ
σ

Where x is the measured quantity, µ is the population mean and σ the
population variance.



Appendix B

Base Pairs

Nucleotide bases interact with each other through hydrogen bonds form-
ing “base pairs” which are the most ubiquitous structural features of RNA
molecules: More than three quarters of the bases in structured RNA mol-
ecules form a base pair with at least one other base. Base pairs are the
building blocks of the helices – stacks of Watson-Crick (WC) base pairs
– and of structural modules – stacks of non-Watson-Crick (non-WC) base
pairs. Base pairs (either WC or non-WC) stabilize the tertiary structure
of the molecule by establishing long range interactions between secondary
structure elements such as loop-loop and loop-helix interactions or between
structural modules. The study and classification of base pairs is an useful
tool for systematizing and understanding RNA structures.

RNA molecules are long chains of nucleotides each of which contains one
of four bases: Adenine, Cytosine, Guanine and Uracil. Each base presents
three edges: the Watson-Crick edge, the Sugar edge and the Hoogsteen
edge (see Figure B.1). A base pair is formed when the exposed atoms of one
base edge establish hydrogen bonds with the exposed atoms of another base
edge. Base pairs can, thus, be classified according to the edges involved in
the interaction.

Twelve types of base pairs can be observed (see Figure B.2): Each one of
the six edge-edge combinations can occur in either cis or trans conformations
depending on the relative positions of the respective sugar groups (see Figure
B.3). In order to represent the several base pair types in secondary struc-
ture diagrams the Leontis-Westhof notation (Leontis and Westhof, 2001)
establishes one unique symbol for each edge as depicted in figure B.2.

B.1 Isostericity

Two base pairs of the same type are said to be isosteric if they have the same
distance between the C1’ atoms of the respective nucleotides, irrespective of
the nature of the bases involved (see Figure B.4). Isostericity is an important
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Figure B.1: The four bases and their respective edges.
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Figure B.2: Leontis-Westhof classification of the twelve base pair types.
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Figure B.3: Example of a cis and trans base pairs. In the cis case (top), the
sugar moieties (red arrows) stand at the same side of the H-bonds (dashed
yellow lines). In the trans case (bottom) the sugar moieties (red arrows)
stand at opposite sides of the H-bonds (dashed yellow lines). Base pairs
from the PDB file 1JJ2 (Klein et al., 2001).
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Figure B.4: Examples of four isosteric base pairs. Four Hoogsteen-
Sugar base pair presenting similar C1’-C1’ distances: AA: 9.3 Å(top left,
PDB:1GID) (Cate et al., 1996), AC: 9.4 Å(top right, PDB 1JJ2) (Klein
et al., 2001), AG: 9.7 Å(bottom left, PDB 354D) (Correll et al., 1997) and
AU 9.6 Å(bottom right, PDB:1JJ2) (Klein et al., 2001).

property as isosteric base pairs can replace each other without changing
the local conformation of the molecule where they occur, thus allowing for
structurally synonymous substitutions. A complete list of isosteric base pairs
can be found in (Leontis et al., 2002).
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