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RIASSUNTO 

Introduzione 

Lo studio della vulnerabilità degli acquiferi rappresenta uno degli aspetti di più 

stretta attualità nell’ambito della protezione del territorio. 

Il lavoro presentato, in questa tesi di ricerca, verte sullo studio della 

contaminazione delle risorse idriche sotterranee. Le acque sotterranee rappresentano la 

maggior parte delle riserve d’acqua potabile sulla terra. Generalmente la loro qualità è 

maggiore di quella delle acque superficiali, grazie alle proprietà filtranti del sottosuolo. 

Tuttavia, le acque sotterranee sono esposte a inquinamenti generati dall’uomo che 

rendono questa importante risorsa sempre più vulnerabile. 

Quando le acque sotterranee sono inquinate, il ripristino della loro qualità e la 

rimozione degli inquinanti richiede tempi molto lunghi, ed è, talvolta, un processo 

praticamente irrealizzabile. 

Nel campo della contaminazione delle risorse idriche sotterranee è opportuno 

sottolineare che, in alcuni casi, i fenomeni di inquinamento possono derivare da 

contaminazioni le cui origini provengono da eventi generati in luoghi e tempi diversi da 

quelli in cui si è riscontrata l’effettiva contaminazione. Tali situazioni rendono 

necessaria la ricerca di tecniche che permettano l’individuazione delle coordinate 

spazio-temporali di sorgenti contaminanti incognite. 

In generale, l'individuazione e la delimitazione della fonte di un pennacchio 

contaminante appare di notevole importanza ai fini della definizione delle migliori 

politiche di gestione del sito contaminato e della pianificazione degli opportuni 

interventi di bonifica del sottosuolo. 

La determinazione delle condizioni iniziali dell'inquinamento appare di notevole 

interesse anche ai fini dell’applicazione della Direttiva dell’Unione Europea 2004/35/CE 

in materia di responsabilità ambientale, di prevenzione e risarcimento dei danni 

ambientali basata sull’affermazione del principio secondo cui: “chi inquina paga”. La 

Direttiva 2004/35/CE è stata recepita nella normativa italiana con il D. Lgs 152/2006 

(Parte VI - "Norme in materia di tutela risarcitoria contro i danni all'ambiente") e nella 

normativa francese con la legge 2008 – 757 (Titre 1er – “Dispositions relatives a la 

prévention et a la réparation de certains dommages causes a l'environnement”). 
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Alcune caratteristiche idrogeologiche e qualitative delle acque sotterranee, in 

molti casi, non sono direttamente misurabili e fisicamente devono essere valutate in 

funzione di altri parametri direttamente misurabili. Il problema di determinare i 

parametri sconosciuti del modello è abitualmente definito come "problema inverso". La 

risoluzione del problema inverso per la modellazione del flusso e del trasporto dei 

contaminanti nelle acque sotterranee è l'obiettivo principale di questo lavoro di ricerca. 

In riguardo alla risoluzione del problema inverso, in questo lavoro, ci si pone 

l’obiettivo di individuare una metodologia atta a identificare le caratteristiche spazio 

temporali di sorgenti di contaminazione incognite. In questo caso il problema inverso è 

risolto sulla base delle misurazioni di concentrazione del contaminante nei pozzi di 

monitoraggio situati nel dominio di interesse. Noto l’effetto generato da un determinato 

fenomeno si cerca di ricostruirne la causa. 

La ricerca, si è sviluppata sui seguenti temi: 

 Modellazione della contaminazione delle acque sotterranee mediante l’utilizzo 

di un software non commerciale per la modellazione del flusso e trasporto del 

contaminante nei mezzi porosi (TRACES - Transport or RadioActiver 

Elements in the Subsurface) sviluppato da Hoteit e Ackerer (2003). Il software 

TRACES combina gli elementi finiti ibridi misti ad elementi finiti discontinui 

per la risoluzione dello stato idrodinamico e del trasferimento di massa nei 

mezzi porosi. 

 Modellazione delle relazioni causa-effetto nella contaminazione delle acque 

sotterranee mediante le Reti Neurali Artificiali (RNA). Le RNA sono realizzate 

utilizzando il Neural Network Toolbox di Matlab 7.1. 

 Applicazione delle RNA per la risoluzione del problema inverso su due casi di 

contaminazione delle falde acquifere. 

Negli ultimi decenni, le RNA sono diventate sempre più popolari come strumento 

di soluzione dei problemi e di previsione in molte discipline. 

Una RNA è costituita dall’interconnessione di una serie di processori elementari 

chiamati neuroni (Perceptron), i quali, sono logicamente disposti in due o più strati ed 

interagiscono tra loro attraverso connessioni pesate. In particolare, mediante le reti di 

tipo Multi Layer Perceptron (MLP), utilizzate in questo lavoro, è possibile creare il 

modello di un sistema semplicemente sulla base di un opportuno insieme di coppie 
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input/output di pattern di esempi. Le caratteristiche delle RNA sviluppate in questo 

lavoro dipendono dalla natura dei problemi analizzati e non esistono linee guida teoriche 

per stabilire il modo migliore di operare. Il modello è specifico per il sistema in esame e 

non può essere costruito a priori. 

L’addestramento di una RNA consiste in una regola di apprendimento che 

modifica i pesi delle connessioni in base alla differenza tra l'uscita calcolata della rete e 

il modello desiderato (target). L'obiettivo, di questa fase, è quello di rendere la RNA in 

grado di generalizzare le informazioni acquisite: fornendo alla rete un input, proveniente 

da un esempio non incluso nell’insieme dei pattern di addestramento, la rete deve 

determinare l'output corretto. 

Per sviluppare la metodologia precedentemente citata, in questo lavoro, sono stati 

considerati due casi diversi di sorgenti di contaminazione puntuali e continue: un caso di 

inquinamento di un acquifero teorico e un caso reale (sorgente di inquinamento 

incognita dell’acquifero alsaziano in Francia). 

Nel caso teorico, esaminato in questo studio, ci si è proposti di definire le 

coordinate spazio-temporali (X,Y,T) della sorgente contaminante incognita sulla base di 

poche misure di concentrazione del contaminante acquisite nei pozzi di monitoraggio in 

un certo tempo t. 

Nel caso reale ci si è proposti di definire il comportamento di una sorgente di 

inquinamento incognita che, a causa di un incidente nel 1970, ha inquinato con 

tetracloruro di carbonio (CCl4), uno dei più grandi acquiferi dell’Europa Occidentale: la 

falda acquifera Alsaziana (Regione Alsazia - Francia). Il comportamento della sorgente 

di inquinamento nel luogo dell'incidente non è noto. L'obiettivo è stato quello di 

individuare, sulla base delle simulazioni delle concentrazioni del contaminante nei 

pozzi, le caratteristiche della sorgente di inquinamento sconosciuta in termini di 

variazione spazio-temporale del tasso di iniezione del contaminante nel luogo 

dell’incidente. 

Per risolvere il problema inverso, in entrambi i due casi in esame, è stata messa a 

punto una metodologia basata sull'applicazione della tecnologia delle RNA. In 

particolare sono state addestrate diverse RNA per la risoluzione del problema diretto. Lo 

scopo è stato quello di associare i pattern di ingresso (rappresentati dalle caratteristiche 

della sorgente) con i pattern di uscita (rappresentati dalle concentrazioni del 

contaminante nei pozzi di monitoraggio). Al fine di risolvere il problema inverso e di 
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identificare le caratteristiche incognite della sorgente di inquinamento, la RNA 

addestrata è stata invertita. Fissando il pattern di uscita si è potuto ricostruire l'ingresso 

corrispondente. 

Ai fini della formazione del consistente pattern di esempi necessari 

all’addestramento, alla validazione ed al test della RNA, sono stati generati vari scenari 

idrogeologici caratterizzati da differenti sorgenti di contaminazione. 

La tesi è organizzata come segue: nel primo capitolo sono riportate le equazioni 

classiche dell’idrodinamica e del trasporto dei contaminanti per convezione, diffusione e 

dispersione nel saturo. Nel secondo capitolo vengono descritte le reti neurali artificiali 

ed i modelli matematici alla base delle architetture utilizzate nella parte sperimentale. Il 

terzo capitolo è dedicato alla parte sperimentale inerente la contaminazione di un 

acquifero teorico: è descritto l’iter della metodologia adottato e risultati ottenuti. Il 

quarto capitolo è rivolto alla parte sperimentale ed ai risultati conseguiti per il caso reale 

di contaminazione dell’acquifero alsaziano. L’ultimo capitolo è dedicato alle 

conclusioni. 

Capitolo 1: modellazione del flusso e del trasporto dei contaminanti 

In questo capitolo è presentato il modello matematico utilizzato per la 

modellazione del flusso e trasporto dei contaminanti nelle falde acquifere. 

Il moto delle acque attraverso i mezzi porosi, come possono essere assimilati gli 

acquiferi, viene governato, essenzialmente, da due parametri fondamentali: la 

conducibilità idraulica che rappresenta la quantità d’acqua che attraversa l’unità di 

superficie ad un gradiente unitario e dal gradiente idraulico che rappresenta la variazione 

del carico idraulico per unità di distanza percorsa. 

La migrazione del contaminante negli acquiferi è espressa dalle equazioni di 

flusso e trasporto. L’equazione di flusso è data dalla legge di Darcy e l’equazione di 

continuità. La legge di Darcy descrive il moto di un fluido in un mezzo poroso. 

L’equazione di continuità esprime il principio della conservazione della massa di un 

fluido in movimento in un dato volume di controllo. 

I meccanismi legati al trasporto di un contaminante in un mezzo poroso sono 

collegabili ai fenomeni di convezione, diffusione e dispersione. 
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Capitolo 2: Reti Neurali Artificiali 

In questo capitolo viene descritto il concetto di rete neurale artificiale e delle sue 

più importanti caratteristiche che rendono questa tecnologia attraente nella ricerca 

idrogeologica. Sono dettagliate le componenti, la struttura e l’architettura delle RNA 

utilizzate in questo lavoro di ricerca. In particolare viene descritto l’iter per la 

progettazione di una rete Multilayer Perceptron e il problema dell’apprendimento. In 

fine, un paragrafo è dedicato al raffronto tra l’approccio classico e l’approccio neurale 

alla modellazione. 

Le RNA sono dei modelli capaci di elaborare le informazioni in modo simile al 

cervello umano, in quanto, esse hanno la capacità di adattarsi a situazioni nuove 

utilizzando la conoscenza su situazioni simili. La caratteristica peculiare delle RNA 

risiede nella loro capacità di apprendimento, di generalizzazione e di approssimazione. 

In generale l’approccio di studio ha visto il susseguirsi delle seguenti fasi: 

 Pre-processing: analisi descrittiva dei dati, loro trasformazione e codifica a 

seconda delle esigenze del modello neurale, eventuale riduzione delle variabili 

attraverso diverse tecniche. 

 Selezione dell’architettura, delle regole di apprendimento e della funzione 

di errore: scelta del numero di unità e degli strati nascosti sulla base 

dell’individuazione del tasso di errore più basso fra le varie architetture 

individuate. Questa fase è fondamentale in quanto ad essa è legata la capacità o 

meno di generalizzazione delle RNA elaborate. In questa fase vengono, anche, 

scelte della funzione di errore e l’algoritmo di ottimizzazione. 

 Addestramento: fase relativa al problema della stima dei parametri, assegnato 

un certo pattern di esempi. In questo lavoro si è utilizzato esclusivamente 

l’addestramento supervisionato, dove l’apprendimento viene guidato 

dall’esterno fornendo alla rete l’insieme di pattern di esempi costituiti 

dall’ingresso e l’uscita del sistema. La rete, in questa fase, attribuisce le 

migliori coppie di pesi in base ai dati sperimentali in modo da ricostruire la 

relazione ingresso/uscita del sistema e ottenere partendo dall’input un output il 

più vicino possibile all’output esibito. 

 Verifica della stabilità: fase necessaria per valutare il funzionamento della 

rete, la sua capacità di generalizzazione e, quindi, verificare la stabilità dei 
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risultati ottenuti. La stabilità della rete è influenzata da diversi fattori, quali: 

l’architettura selezionata, l’inizializzazione dei pesi, il campione utilizzato per 

l’apprendimento (pattern di esempi). 

 Post-processing: fase dedicata alla valutazione dell’interpretabilità dei risultati 

ottenuti. I dati di partenza che a seconda delle esigenze del modello neurale 

erano stati ridotti e trasformati, in questa fase vengono riportati attraverso 

tecniche di inversione allo stato originario. 

Capitolo 3: Applicazione delle RNA allo studio di un acquifero 

inquinato 

Questo capitolo è dedicato alla definizione di una metodologia atta 

all’identificazione delle coordinate spazio-temporali di sorgenti contaminanti incognite 

sulla base di pochi valori della concentrazione del contaminante rilevati nei pozzi di 

monitoraggio in un certo tempo t. In particolare, l’obiettivo è quello di valutare la 

capacità delle Reti Neurali Artificiali di ricostruire le condizioni iniziali e, quindi, di 

localizzare, nello spazio e nel tempo, le sorgenti di fenomeni di contaminazione 

dell’acquifero esaminato. 

In una prima fase, si è andati ad individuare un bacino idrogeologico da utilizzare 

come caso di prova e conseguentemente si è creato un modello di flusso e di trasporto 

dello stesso. È stata, quindi, studiata la contaminazione di un acquifero omogeneo 

isotropo confinato con un unico strato, per il quale si è simulato, mediante 

l’applicazione del software TRACES, l’andamento della piezometrica e delle 

isoconcentrazioni in una situazione stazionaria di partenza, in presenza di un pozzo di 

assorbimento. Il fenomeno è stato studiato supponendo che i parametri iniziali del 

modello non variassero nell’intervallo temporale della simulazione. Inoltre, è stata 

considerata l’ipotesi restrittiva che la contaminazione avvenisse con un solo generico 

contaminante a partire da una sola cella del modello a rilascio costante durante tutto il 

periodo della simulazione. 

Il pattern di esempi è stato costruito considerando 40 sorgenti di contaminazione 

posizionate in diverse zone del dominio con tempi di attività variabili di 10, 20 e 30 

anni. In totale sono stati considerati 120 scenari idrogeologici. I campioni ricavati dalla 

simulazione sono rappresentati dalle matrici delle concentrazioni del contaminante 

acquisite in 50 maglie distribuite uniformemente nel dominio. 
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Nello studio di un acquifero contaminato le curve di concentrazione del 

contaminante misurate nei pozzi di monitoraggio possono essere utilizzate per 

identificare le caratteristiche della sorgente contaminante che le ha determinate. 

Tuttavia, l’identificazione di sorgenti di contaminazione incognite diventa più difficile 

nel caso della mancanza di serie storiche delle curve di concentrazione del contaminante 

nel dominio. Per questi motivi in questo studio ci si è posti nella situazione peggiore, 

prendendo in considerazione, in particolare, il caso in cui si abbia la totale assenza di 

serie storiche della contaminazione, bensì un solo valore di concentrazione del 

contaminante per ogni pozzo di monitoraggio. In particolare si considera il caso della 

scoperta di una contaminazione per la prima volta in un dato dominio. 

Sono stati presi in considerazione solo gli ultimi valori delle curve di 

concentrazione del contaminante ottenute attraverso le simulazioni per le 50 maglie del 

dominio. Queste 50 maglie corrispondevano a 50 ipotetici pozzi di monitoraggio. Una 

metodologia basata sull’applicazione delle reti neurali artificiali è stata sviluppata al fine 

di ridurre il numero di queste maglie e scegliere, tra le 50 posizioni delle maglie, quella 

più conveniente per l’eventuale realizzazione dei pozzi di monitoraggio. Alla fine della 

procedura, delle 50 maglie di partenza, sono state tenute solo 8 maglie. 

A questo punto si è potuto valutare l’architettura della rete più adatta alla 

soluzione del problema dell’individuazione delle coordinate spazio-temporali delle 

sorgenti contaminanti incognite. 

Le reti elaborate sono di tipo Multi Layer Perceptron, con un unico strato 

nascosto. L’algoritmo di apprendimento scelto è stato quello di Levenberg-Marquardt, 

in quanto produce i migliori risultati in termini di errore e di velocità di addestramento. 

Il modello neurale prevedeva: 3 neuroni nello strato in ingresso, un unico strato 

nascosto di 8 neuroni e 8 neuroni nello strato in uscita. I neuroni nello strato in ingresso 

erano: 2 per le coordinate spaziali (X,Y) e 1 per il tempo di attività della sorgente e 

poteva avere valore di 10, 20 and 30 anni. I neuroni in uscita rappresentavano gli 8 

valori della concentrazione del contaminante per gli 8 pozzi di monitoraggio. 

I risultati ottenuti nelle prime elaborazioni neurali erano influenzati dalla non 

elevata numerosità del campione, per cui si è dimostrato necessario l’utilizzo della 

regola del “Leave One Out Cross Validation”(LOO). In questo caso il data set non viene 

più suddiviso in training, validation e test set, bensì un esempio alla volta viene escluso 

dal training per essere utilizzato come test set. In questo modo training set e test set sono 
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sempre diversi e a rotazione tutti i casi fanno parte del test. Sulla base di questa regola 

sono state addestrate 120 reti. 

In questo caso la regola del LOO non è utilizzata per addestrare una rete che verrà 

utilizzata per risolvere un particolare caso, ma solo per stimare la capacità di estrapolare 

l’informazione delle 120 reti applicandola all'esempio, di volta in volta, rimasto fuori. 

Nel caso in cui si voglia individuare una nuova sorgente non compresa nelle 120, tutti i 

120 pattern verranno usati per l’addestramento e la nuova sorgente fungerà da test. La 

metodologia sviluppata ci permette di avere la ragionevole presunzione che l'errore sul 

caso in esame non sarà maggiore di quello riscontrato nelle reti precedentemente 

addestrate col LOO. 

Le 120 reti sono state inizialmente addestrate per la risoluzione del problema 

diretto. Una volta completata la fase di addestramento le reti sono state invertite per la 

risoluzione del problema inverso. Note le misurazioni delle concentrazioni del 

contaminante nei pozzi di monitoraggio le coordinate spazio-temporali delle sorgenti 

sono state determinate. 

In generale, i risultati mostrano una buona capacità della rete nella localizzazione 

della sorgente. Nella maggior parte dei casi l’errore nell’identificazione delle coordinate 

spaziali è stato minore della dimensione di una maglia e l’errore massimo commesso è 

minore della dimensione di due maglie del dominio. 

Meno soddisfacente è il risultato ottenuto per l’individuazione della durata 

dell’attività della sorgente contaminante. Solo il 76% delle reti sono state in grado di 

fornire una risposta al 100% corretta. In particolare, le reti in cui l’attività della sorgente 

era di 10 e 30 anni si è avuto rispettivamente su 40 casi un solo errore. Per le reti che 

consideravano un’attività della sorgente di 20 anni si sono avuti, su un totale di 40, 26 

casi in cui in cui l’errore minimo era di 6 mesi e l’errore massimo era di 5 anni e 3 mesi. 

Capitolo 4: RNA per la stima della sorgente inquinante dell’acquifero 

Alsaziano 

Questo capitolo è dedicato all’elaborazione, sulla base dell’applicazione delle Reti 

Neurali Artificiali (RNA), di una metodologia innovativa per l’identificazione 

dell’evoluzione temporale della sorgente contaminate incognita dell’acquifero alsaziano 

(Benfeld -Francia). 
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Nella prima parte del capitolo è stata introdotta la problematica inerente la 

contaminazione della falda acquifera alsaziana e il modello di acquifero utilizzato per la 

realizzazione della RNA. 

Nel 1970 a Benfeld (villaggio a 35km da Strasburgo), a seguito di un incidente, un 

autobotte riversò una quantità non nota di tetracloruro di carbonio (CCl4) e contaminò 

parte del più grande acquifero dell’Europa occidentale. Noti i dati di concentrazione del 

contaminante nei pozzi di monitoraggio si è cercato di individuare le curve di 

concentrazione nei quattro fronti stratigrafici della sorgente contaminante incognita che 

li ha determinati. 

Lo studio dell’inquinamento dell’acquifero alsaziano è di difficile realizzazione, in 

quanto, la quantità di tetracloruro di carbonio infiltrata al momento dell’incidente è 

incognita: una parte di volume di tetracloruro di carbonio contenuta nella cisterna del 

camion è stata recupera, una parte è evaporata e la restante si è infiltrata nell’insaturo 

per poi raggiungere l’acquifero. Il comportamento della sorgente nello spazio e nel 

tempo è incognito: per via della sua bassa solubilità in acqua il composto si comporta da 

sorgente di contaminazione a rilascio continuo, le cui dinamiche possono essere solo 

ipotizzate. 

Oggigiorno, l’acquifero alsaziano, nonostante i continui trattamenti di bonifica, 

verte in una situazione di contaminazione ancora elevata ed essendo incognita la 

quantità del contaminate diffusa nel sottosuolo non si possono attuare stime sui tempi 

necessari alla decontaminazione. Conoscere le reali caratteristiche della sorgente è di 

fondamentale importanza ai fini della progettazione e della scelta delle più adatte 

tecniche di bonifica da mettere in opera. 

Le fasi operative, in questa parte della ricerca, sono state le seguenti: 

 realizzazione del pattern di esempi rappresentati dalla simulazione di diversi 

scenari di attività della sorgente sulla base di un modello numerico di flusso e 

trasporto della contaminazione dell’acquifero alsaziano derivante da un 

precedente lavoro (Aswed, 2008). Il pattern di esempi, in totale, è costituito da 

104 diversi scenari della sorgente contaminante, 

 pre-processing dei dati, implementazione e addestramento della RNA, 

 inversione della RNA addestrata al fine della risoluzione del problema inverso. 
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A seguito di varie prove la tipologia di rete neurale scelta, in quanto meglio si 

adatta al problema in esame, è di tipo: Multi Layer Perceptron (MLP) implementata in 

back-propagation mediante l’algoritmo di Levenberg-Marquardt. 

I campioni ottenuti dallo studio del modello erano costituiti da due matrici in cui 

le colonne erano riferite alle curve di concentrazione del contaminante rispettivamente 

nei 4 fronti stratigrafici della sorgente e in 45 pozzi di monitoraggio diversamente 

distribuiti nel dominio. In entrambe le matrici le righe rappresentavano il tempo. Queste 

matrici avevano dimensioni troppo elevate per poter essere successivamente elaborate 

tramite le RNA, richiedendo un numero troppo grande di esempi di input e, quindi, una 

rete di grandi dimensioni di difficile gestione, perdendo, in tal modo, una peculiarità 

dell’applicazione delle RNA consistente nella velocità di calcolo. Per questi motivi si è 

resa necessaria una fase di pre-processing finalizzata alla riduzione della dimensione dei 

dati, pratica, del resto, comunemente utilizzata nell’applicazione delle RNA. 

I due gruppi di matrici di ingresso (sorgenti) e uscita (pozzi), durate la fase di pre-

processing, sono stati considerati separatamente. Ad ogni matrice sono state applicate 

Trasformate di Fourier del secondo ordine (FTT-2D), in questo modo, il dato veniva 

traslato dal dominio del tempo al dominio della frequenza. Le matrici, in seguito, sono 

state convertite in vettori, dove: la prima metà era rappresentata dalle componenti 

relative alle ampiezze e la seconda metà dalle componenti relative alle fasi. I vettori 

sono stati, in seguito, riuniti a formare un’unica matrice dove ogni colonna 

rappresentava un esempio. In totale si avevano 2 matrici: una per gli ingressi e una per 

le uscite della RNA. 

Il secondo passo è rappresentato dalla riduzione attraverso l’Analisi delle 

Componenti Principali (ACP). Questa metodologia presenta il vantaggio di eliminare le 

componenti principali che contribuiscono a meno di un valore predefinito λ, espresso 

come percentuale della totale variazione nell’insieme di dati a disposizione, in questo 

modo risulta possibile definire a priori l’ordine di approssimazione dovuta alla perdita di 

informazione. Questa applicazione presenta, tuttavia, un inconveniente legato alla 

numerosità dei campioni, infatti il numero dei campioni relativi a ciascun esempio deve 

essere minore o uguale al numero di esempi. Come conseguenza dell’applicazione di 

questa metodologia era necessario un numero di esempi molto elevato. 

Per questo motivo, si è proceduto ad un’ulteriore riduzione della dimensione delle 

matrici sulla base di una soglia delle sole ampiezze in modo da tenere solo le 
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componenti significative. Le componenti delle ampiezze al di fuori della soglia sono 

state poste uguali a zero e con esse anche le rispettive fasi. Alle nuove matrici è stata 

applicata la ACP preceduta dalla normalizzazione nell’intervallo [-1,+1]. 

La rete elaborata è composta da 11 neuroni nello strato di ingresso, un unico strato 

nascosto da 11 neuroni ed uno strato di uscita da 36 neuroni. L’interruzione della fase di 

allenamento era basata sulla metodologia “Stopped training”, per cui pattern di 104 

esempi è stato suddiviso in: un training set di 74 esempi, un validation set di 19 ed un 

test set di 11 esempi. 

Durante la fase di training i pesi delle connessioni sono modificati in modo da 

minimizzare l’errore tra l’output calcolato e il target (output desiderato). L’obiettivo è 

quello di ricostruire la relazione ingresso/uscita del sistema e ottenere partendo 

dall’input un output il più vicino possibile all’output esibito. Allo stesso tempo, viene 

calcolato l’errore negli esempi del validation set e quando questo inizia a crescere 

l’addestramento viene interrotto. Il test set viene utilizzato esclusivamente per valutare 

la capacità di generalizzazione della rete su esempi non noti che non hanno partecipato 

all’addestramento. 

In questo modo, la rete è stata addestrata per la risoluzione del problema diretto. 

Al termine dell’addestramento i pesi vengono congelati e la rete è stata invertita per la 

risoluzione del problema inverso. 

Conoscendo le misure di concentrazione nei pozzi di monitoraggio le 

corrispondenti curve di concentrazione del contaminante della sorgente per i quattro 

fronti stratigrafici sono state determinate. 

Conclusioni 

Nel lavoro di ricerca presentato in questa tesi si è considerato un nuovo approccio, 

basato sull’applicazione delle RNA, per la risoluzione del problema inverso nel caso di 

acquiferi contaminati.  

Per quanto riguarda l’applicazione descritta nel capitolo tre, discende che la 

metodologia applicata può risultare utile non solo per l’identificazione delle coordinate 

spazio temporali delle sorgenti incognite, bensì, anche come metodica per circoscrivere 

delle aree in cui effettuare delle analisi più approfondite, in modo da minimizzare i costi 

di eventuali sondaggi nei domini contaminati. 
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Sulla base dell’applicazione descritta nel capitolo quattro appare evidente che le 

RNA rappresentano una nuova tecnologia il cui potenziale per la risoluzione di problemi 

non lineari come quello studiato nel caso della contaminazione dell’acquifero alsaziano. 

È chiaro che le RNA rappresentano una tecnologia emergente grazie alla loro 

principale proprietà rappresentata dalla capacità di essere approssimatori universali. 

Appare ovvio che il pieno potenziale delle RNA per la risoluzione di problemi non 

lineari, tenendo in considerazione l’assenza e l’effetto delle incertezze nei parametri, 

deve essere maggiormente esplorato. 

La metodologia sviluppata potrebbe offrire, in tempi di elaborazione relativamente 

brevi e costi bassi, soluzioni concrete atte a proteggere le risorse idriche sotterranee. A 

riguardo, si ritiene, a seguito del presente lavoro di ricerca, che tecniche di indagine 

basate sull’applicazione delle RNA dovrebbero essere ulteriormente esaminate, in 

quanto, in grado di offrire un valido contributo al campo delle soluzioni esistenti in 

materia di inquinamento delle acque sotterranee. 
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RESUME 

Introduction 

L'étude de vulnérabilité des eaux souterraines est l'un des problèmes les plus 

actuels de la protection du territoire. 

Le travail présenté dans cette thèse, porte sur l'étude de la contamination des 

ressources hydriques souterraines. Les eaux souterraines constituent la plus grande 

partie des réserves d'eau potable de la Terre. En règle générale, leur qualité est 

supérieure à celle des eaux de surface, grâce aux propriétés filtrantes du sous-sol. 

Cependant, les eaux souterraines sont exposées à des pollutions générées par l'Homme 

qui rendent cette importante ressource de plus en plus périssable. 

Lorsque les eaux souterraines sont contaminées, la restauration de leur qualité et 

l'élimination des polluants requièrent beaucoup de temps, et, parfois, il s’agit des 

processus quasi-impossibles. 

Dans le domaine de la contamination des eaux souterraines, dans certains cas, la 

pollution peut résulter d'une contamination dont la localisation et les origines sont 

inconnues. De telles situations nécessitent la recherche de techniques qui permettent 

l'identification des caractéristiques de ces sources contaminantes inconnues. 

En général, l'identification et la délimitation de la source d'un panache de 

contamination est d'une grande importance dans la définition des politiques appropriées 

pour la gestion des sites contaminés et la planification de l'assainissement du sous-sol. 

La détermination des conditions initiales de la pollution est, encore, d'un intérêt 

considérable dans  l'application de la Directive Européenne 2004/35/CE sur la 

responsabilité, la prévention et l'indemnisation des dommages environnementaux. La 

Directive est fondée sur l'affirmation du principe «pollueur-payeur» et a été transposée 

en droit italien par le Décret Législatif 152/2006 (Partie VI - «Norme in materia di 

tutela risarcitoria contro i danni all'ambiente») et en droit français par la loi 2008-757 

(Titre 1er – “Dispositions relatives à la prévention et à la réparation de certains 

dommages causés à l'environnement”). 

Certaines caractéristiques concernant  la qualité et l’hydrogéologie des eaux 

souterraines, dans de nombreux cas, ne sont pas directement mesurables et doivent être 

évaluées en fonction d'autres paramètres directement mesurables. Le problème de la 
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détermination des paramètres inconnus du modèle est généralement dénommé 

"problème inverse". 

La résolution du problème inverse pour la modélisation de l'écoulement et le 

transport des contaminants dans les eaux souterraines est l'objectif principal de ce 

travail de recherche. 

Quant à la résolution du problème inverse, dans le présent document, nous avons 

pour objectif la définition d’une méthodologie qui permette l’identification des 

caractéristiques dans l’espace et le temps des sources inconnues de contaminations. 

Dans ce travail de recherche, le problème inverse est résolu sur la base de mesures de 

concentrations du contaminant dans les puits de surveillance situés dans un domaine 

d'intérêt. Une fois connu l’effet d’un certain phénomène, nous cherchons à reconstruire 

la cause qui l’a généré. 

Ainsi, la recherche a-t-elle été élaborée  selon les points suivants : 

 Modélisation de la contamination des eaux souterraines par l'utilisation d'un 

logiciel non-commercial pour la modélisation des flux et le transport des 

contaminants dans les milieux poreux (TRACES - Transport dans le sous-sol 

ou RadioActiver Elements - développé par Hoteit Ackerer (2003)). 

 Modélisation des relations cause-effet de la contamination des eaux 

souterraines par les Réseaux de Neurones Artificiels (RNA). Les RNA ont été 

créés en utilisant le Neural Network Toolbox de Matlab 7.1. 

 Application des RNA pour la résolution du problème inverse dans deux cas de 

contamination des eaux souterraines étudiés. 

Le model numérique TRACES est un code numérique (2D-3D) développé au sein 

du LHyGes qui permet de simuler l’écoulement et le transport réactif dans un milieu 

poreux saturé. 

Depuis les dernières décennies, les RNA sont devenus de plus en plus utilisés 

comme outil de résolution de problèmes et de prévision dans de nombreuses disciplines. 

Un RNA est réalisé par l'interconnexion d'un nombre de processeurs élémentaires 

appelés neurones (Perceptron). Les neurones sont logiquement disposées en deux ou en 

plusieurs couches et peuvent interagir les uns avec les autres par des connexions. En 

particulier, à travers les réseaux de neurones Multi Layer Perceptron (MLPS), utilisés 
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dans ce travail, il est possible de créer un modèle d'un système uniquement sur la base 

d’un ensemble approprié de couples d'exemples d’entrées/sorties du système étudié. Les 

caractéristiques des RNA, développées dans ce travail, sont fonction de la nature des 

problèmes analysés. Il n'existe pas de lignes directrices théoriques pour déterminer la 

meilleure approche pour la création des RNA. En règle générale, le modèle est 

spécifique pour le système étudié et ne peut être construit de manière générale. 

L’apprentissage d’un RNA est constitué d'une règle qui modifie les poids de 

connexions sur la base de la différence entre la sortie calculée par le réseau et la sortie 

réelle du système (objectif). Le but de la formation est de permettre au RNA de 

généraliser les informations obtenues au cours de l’entrainement et de fournir la sortie 

correcte pour des exemples non compris dans l’ensemble des exemples utilisés pendant 

l’apprentissage. 

Dans ce travail, afin d’élaborer la méthodologie mentionnée ci-dessus, deux cas 

différents de sources ponctuelles et continues de la pollution ont été considérés, en 

particulier : un cas de pollution d'un aquifère théorique et un cas réel (source inconnue 

de la pollution de l'aquifère d'Alsace en France). 

Dans le cas théorique, l’objectif était de définir les coordonnées spatio-

temporelles (X, Y, T) de la source contaminant inconnue sur la base de mesures de la 

concentration du contaminant acquis dans le puits de surveillance à un certain moment t. 

Dans le cas réel, le but est de définir le comportement d'une source de pollution 

inconnue qui suite à un d'un accident en 1970, a contaminé par le tétrachlorure de 

carbone (CCl4), l'un des plus grands aquifères en Europe occidentale. Le comportement 

de la source de la pollution dans le lieu de l'accident n'est pas connu. L'objectif est 

d'identifier, à partir de simulations des concentrations du contaminant, obtenues dans 

des puits, les caractéristiques de la source de la pollution inconnue en termes de 

variations spatiales et temporelles (lieu et évolution des flux). 

Une méthodologie fondée sur l'application de la technologie des RNA a été mise 

au point pour les deux cas étudiés. En particulier, des RNA ont été créés pour résoudre 

le problème direct. L'objectif était d’associer les entrées au système (représentées par les 

caractéristiques de la source) avec les sorties du système (représentées par les mesures 

acquises dans les puits distribués dans le domaine). Pour résoudre le problème inverse 

et identifier les caractéristiques de la source de la pollution inconnue, les RNA formés 
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ont été inversés. Fixant les caractéristiques des sorties du système, les entrées 

correspondantes peuvent être reconstruites. 

Afin de construire des exemples nécessaires à l’apprentissage du RNA, plusieurs 

scénarios caractérisés par différentes sources de contamination ont été calculés à l’aide 

du logiciel TRACES. 

Le travail  est organisé de la manière suivante : dans le premier chapitre, nous 

rappelons les équations classiques de l’hydrodynamique et du transport par convection 

et dispersion d’un soluté en milieu poreux saturé. Le deuxième chapitre décrit les 

réseaux de neurones artificiels ainsi que les modèles mathématiques de base utilisés 

dans la partie expérimentale. Le troisième chapitre est consacré à la partie 

expérimentale concernant de contamination réelle de la nappe d’Alsace et les résultats 

ainsi obtenus. Le quatrième chapitre s’attache, quant à lui, à la partie expérimentale de 

la contamination d’un l'aquifère théorique. 

Chapitre 1: Modélation du flux et du transport du contaminant 

Dans ce chapitre, le modèle mathématique utilisé pour modéliser le mouvement 

contaminant dans les eaux souterraines est présenté. La migration du contaminant est 

décrite par l’équation de l’écoulement et l’équation de transport. L’équation de 

l’écoulement est régie par deux équations principales qui sont la  loi de Darcy et 

l’équation de continuité. La loi de Darcy exprime la vitesse de filtration en fonction du 

gradient de charge. L'équation de continuité exprime le principe de la conservation de la 

masse d'un fluide en mouvement. Dans un volume élémentaire, la masse du fluide 

prélevé ou injecté est égale à la somme de la variation de la masse du fluide durant un 

intervalle de temps élémentaire et des flux massiques traversant la surface de ce volume. 

Le transport de polluant est décrit par l’équation de convection-dispersion. 

Chapitre 2: Réseaux de Neurones Artificiels 

Dans ce chapitre, le concept de réseaux de neurones artificiels et ses 

caractéristiques les plus importantes sont est décrits. Les composants, la structure et 

l'architecture des RNA utilisés dans cette recherche sont également détaillés. Plus 

particulièrement dans cette partie sont exposés le processus pour la construction d'un 

réseau multicouche Perceptron et le problème de l'apprentissage. Un paragraphe est 
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consacré à la comparaison entre l'approche classique et l'approche neuronale de la 

modélisation d’un phénomène. 

Les RNA sont capables de traiter les informations d'une manière similaire au 

cerveau humain, car ils ont la capacité de s'adapter aux nouvelles situations en utilisant 

la connaissance des situations similaires. Le trait distinctif du RNA réside dans leur 

capacité de généralisation, d'apprentissage et d’approximation. 

En général, l’approche fondée sur des réseaux neuronaux artificiels utilisé suivi 

dans ce travail de recherche, se compose des phases suivantes : 

 Pré-traitement des données : analyse descriptive des données, leur traitement et 

le codage en fonction des besoins du modèle neuronal parmi la réduction des 

variables à travers différentes techniques. 

 Sélection de l'architecture, les règles d'apprentissage et des fonctions d'erreur : 

choix du nombre d'unités élémentaires (neurones) et des couches cachées, sur 

la base du plus bas taux d'erreur calculé parmi les différentes architectures. La 

capacité de généralisation du RNA est liée strictement à cette phase. Dans cette 

étape sont aussi choisis l'algorithme d'optimisation et la fonction d'erreur. 

 Apprentissage: cette phase concerne l'estimation des poids des connections du 

réseau. Dans ce travail, nous n'avons utilisé que la formation supervisée, où 

l'apprentissage est piloté de l'extérieur du réseau en fournissant un ensemble 

d'exemples d'entrée et de sortie du système étudié. Le réseau attribue les 

meilleures paires de poids sur la base des données expérimentales, en vue de 

reconstruire la relation entrée/sortie du système et d'obtenir, en fonction de 

l'entrée, une sortie la plus proche possible de la sortie désirée. 

 Évaluation de la stabilité: étape nécessaire pour évaluer le fonctionnement du 

réseau, sa capacité de généralisation et, par conséquent, d'assurer la stabilité 

des résultats. La stabilité du réseau est influencée par plusieurs facteurs, 

notamment: l'architecture sélectionnée, l'initialisation des poids et l'échantillon 

utilisé pour l'apprentissage (couples d’exemples entrées/sorties du système). 

 Post-traitement: cette phase est consacrée à l'évaluation des résultats. Les 

données, qui avaient été réduites et transformées selon les besoins du réseau de 

neurones, sont signalées par des techniques d'inversion dans le même état. 
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Chapitre 3: Application des RNA à l’étude d’un aquifère pollué 

Ce chapitre est consacré à la définition d'une méthodologie pour identifier la 

position et la durée de l’activité des sources polluantes inconnues en utilisant quelques 

valeurs de concentration du polluant mesurées dans les puits à un certain moment t. 

L’objectif est d'évaluer la capacité des RNA à identifier les caractéristiques mentionnées 

ci-dessus d’une source contaminant. Dans la première phase de cette partie de la 

recherche un cas théorique de pollution est etudié et un modèle d’écoulement et de 

transport a été créé  à l’aide du logiciel TRACES. L’aquifère étudié est un aquifère 

mono couche confiné homogène et isotrope. De plus, une hypothèse restrictive d’une 

source contaminant générique diffusée par une seule maille du domaine a été étudiée. 

Les exemples utiles pour les RNA ont été construits en prenant en compte 40 

sources de contamination situées dans les  différentes parties du domaine. Le temps 

d’activité des 40 sources sont de 10, 20 et 30 ans. Ainsi, 120 différents  scénarios 

hydrogéologiques ont été calculés. Les échantillons sortant de TRACES sont 

représentés par des matrices de la concentration des contaminants obtenue dans 50 

mailles uniformément réparties dans le domaine. 

Dans l'étude d'un aquifère contaminé, les courbes de concentration des 

contaminants mesurées dans les puits peuvent être utilisées pour identifier les 

caractéristiques de la source contaminant. Toutefois, l'identification des sources de 

contamination devient plus difficile eu l'absence de courbes de séries chronologiques de 

la concentration du contaminant dans le domaine. Pour ces raisons, cette étude a pris en 

compte la situation la plus extrême, en particulier le cas d’une absence totale de séries 

chronologiques de la concentration du contaminant : en fait, le cas de la découverte de 

la contamination pour la première fois dans un domaine donné. 

Dans cette optique, seule les dernières valeurs de concentration obtenues avec les 

simulations pour les 50 mailles du domaine ont été prises en compte.  

Une méthodologie basée sur des réseaux neuronaux artificiels a été développée 

pour réduire le nombre et choisir parmi ces 50 mailles les plus appropriées pour la 

réalisation éventuelle du réseau suivi. A l’issu de la procédure, seulement 8 des 50 

mailles ont été retenues. 
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À ce stade, l'architecture du réseau le mieux adapté pour résoudre le problème de 

l'identification des coordonnées spatio-temporelles des sources polluantes inconnues a 

été choisie. 

Les réseaux constitués sont de type multi-couches Perceptron avec une couche 

cachée, l'algorithme d'apprentissage retenu est celui de Levenberg-Marquardt 

Le modèle neuronal inclus : 3 neurones dans la couche d'entrée, une couche 

cachée de 8 neurones et 8 neurones dans la couche de sortie. Les neurones de la couche 

d'entrée sont les suivants : 2 pour les coordonnées spatiales (X, Y) et 1 pour  le temps 

d'activité de la source pour 10, 20 et 30 années. Les neurones de sortie représentent les 8 

valeurs de la concentration du contaminant pour les 8 puits de surveillance. 

Le nombre réduit d’exemples après  divers essais a imposé l’utilisation de la règle 

d’apprentissage Leave-One-Out Cross Validation (LOO). Dans ce cas, l'ensemble des 

données est divisé en deux : un ensemble pour l’apprentissage composé par 119 

exemples et un ensemble pour le test composé d’un exemple. 120 RNA ont été formés 

avec différents ensembles d’apprentissage; les 120 exemples ont  tous été utilisés un par 

un dans l’ensemble test.  

De cette façon, les ensembles d'apprentissage et de test sont toujours différents. 

Cette règle permet d’acquérir le plus possible d’informations des couples d’exemples. 

Dans ce cas, LOO n'est pas utilisé pour la formation d'un réseau qui sera utilisé 

pour résoudre un cas particulier, mais uniquement pour évaluer  l'habileté du réseau à 

retrouver les caractéristiques de la source inconnue pour l’exemple test. 

Les 120 réseaux ont été formés pour résoudre le problème direct. Après la phase 

de formation, les réseaux ont été inversés pour résoudre le problème inverse. Quand on 

veut trouver une nouvelle source qui n'est pas incluse dans les 120, les 120 modèles 

peuvent être utilisés pour l’apprentissage et la nouvelle source servira de test. La 

méthodologie développée nous permet d'avoir une présomption raisonnable un l'erreur 

de la nouvelle RNA qui ne sera pas plus élevée que celle trouvée avec les 120 réseaux 

formés avec le LOO. 

En général, les résultats montrent une bonne capacité du réseau à localiser la 

source. Dans la plupart des cas, l'erreur sur l'identification des coordonnées spatiales a 

été inférieure à la taille d'une maille et l'erreur maximale commise est inférieure à la 

taille de deux mailles du domaine. 
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Moins satisfaisant est le résultat obtenu par l’évaluation de la durée de la source 

de contamination. Seulement 71% des réseaux ont été en mesure de fournir à 100% de 

réponses correctes. En particulier, les réseaux pour lesquels la durée de l'activité de la 

source était de 10 et 30 ans respectivement, il y a eu une seule erreur sur les 40 cas. 

Quant aux réseaux pour une durée d’activité de 20 ans, 21 sont erronés, avec une erreur 

minimum de 6 mois et un maximum de 5 ans, sur un total de 40 cas. 

Chapitre 4: RNA pour l’estimation de la source polluante de l’aquifère 

alsacien 

Ce chapitre est consacré à l’élaboration d’une méthodologie innovante pour 

l'identification de l'évolution temporelle de la source contaminant inconnue de 

l’aquifère Alsacien fondée sur l'application des réseaux neuronaux artificiels. 

Dans la première partie du chapitre est introduite la problématique liée à la 

contamination de la nappe alsacienne et le modèle de l'aquifère alsacien utilisé pour la 

construction du RNA. 

En 1970, à BENFELD (village situé à 35 km de STRASBOURG), suite à un 

accident, un camion-citerne a  renversé une quantité inconnue de tétrachlorure de 

carbone (CCl4) et contaminé une partie du plus grand aquifère en Europe occidentale. 

L’étude de la pollution de l’aquifère alsacien est compliquée, car la quantité de 

tétrachlorure de carbone infiltré au moment de l'accident est inconnue. En particulier  le 

volume de tétrachlorure de carbone contenue dans le camion-citerne est estimé à 4000l 

dont une partie a été récupérée, une  autre partie s’est évaporée et le reste s'est infiltré 

dans le sous-sol avant d'atteindre la nappe. Le comportement de la source dans l'espace 

et le temps est inconnu : en raison de sa faible solubilité dans l'eau, ce contaminant se 

comporte comme une source de contamination continue, dont la dynamique ne peut être 

que supposée. 

Aujourd'hui, malgré les traitements de dépollution, l'aquifère d'Alsace reste dans 

une situation de contamination. Connaître les caractéristiques précises de la source est 

d'une importance fondamentale pour l’estimation des temps et des techniques de 

dépollution à mettre en ouvre. 

Les étapes opérationnelles, pour cette partie du travail, sont décrites ci-dessous : 



RESUME 

 31 

 le modèle numérique tridimensionnel de la pollution de la nappe, développé 

par Aswed (2008), a été utilisé comme base pour créer les exemples 

nécessaires à l’apprentissage du RNA. Au total,  104 scénarios différents de la 

source de contamination ont été pris en compte. 

 pré-traitement destiné à réduire  la taille des données sortant de TRACES pour 

les rendre utiles à l’apprentissage du RNA, 

 inversion du RNA formé en vue de la résolution du problème inverse. 

Après différents tests, le RNA qui s'adapte le mieux  au problème étudié est le 

multi-couches Perceptron mise en œuvre avec l’algorithme rétro-propagation utilisant 

l'algorithme de Levenberg-Marquardt. 

Les échantillons sortant du modèle numérique se composait de deux matrices :  

 l’une composée de quatre colonnes correspondant aux quatre niveaux de 

contaminations (mailles sur quatre couches du modèle numérique), 

 l’autre composée de 45 colonnes correspondant aux 45 courbes des 

concentrations du contaminant dans les 45 puits. 

Dans ces deux matrices les lignes représentent le temps.  

Ces matrices étant trop grandes pour être traitées avec les RNA avec un temps de 

calcul acceptable, elles ont été réduites. 

Pendant le pré-traitement les deux groupes des matrices d'entrée (source) et de 

sortie (puits) ont été examinés séparément. A chaque matrice ont été appliquées les 

transformées de Fourier du second ordre (FFT-2D). De cette façon, les données ont été 

transférées du domaine du temps au domaine de la fréquence. Les matrices ont été 

réduites pour former des vecteurs où la première moitié représente les composantes 

relatives aux amplitudes et la seconde moitié les composants relatives aux phases. Les 

vecteurs concernant les 104 entrées et les 104 sorties ont ensuite été réunis pour former 

deux matrices où chaque colonne représente un exemple. Les deux matrices étaient 

encore trop grandes, une ultime réduction a été réalisée par la technique  de l’analyse en 

composantes principales (ACP). 

L’application de cette technique, cependant, comporte un problème lié au nombre 

d'échantillons; en effet, le nombre d'échantillons pour chaque exemple doit être inférieur 

ou égal au nombre d'exemples. Dans ce cas, les matrices ont été normalisées dans 



RESUME 

 32 

l’intervalle [-1,1] avant d’appliquer la dernière réduction basée sur l’application de 

l’ACP. Les matrices ainsi réduites sont prêtes à être utilisées pour l’apprentissage du 

RNA. 

Le RNA créé est composé de 11 neurones dans la couche d'entrée, une couche 

cachée de 11 neurones et une couche de sortie de 36 neurones. Pour la formation, les 

deux matrices entrée/sortie composées des 104 exemples ont  été divisées en : 74 

exemples pour l’ensemble d’apprentissage, 19 pour l’ensemble de validation et 11 

exemples pour l’ensemble de test. 

Au cours de la phase de formation, les poids des connexions sont modifiés de 

façon à minimiser l'erreur entre la valeur calculée et la sortie désirée. Durant 

l’apprentissage, l’erreur est calculée sur les exemples de l’ensemble d’apprentissage. 

Dans le même temps, l'erreur est calculée avec les exemples de l'ensemble de validation. 

Lorsque cette erreur commence à augmenter, la formation est arrêtée. L’ensemble test 

est utilisé exclusivement pour évaluer la capacité de généralisation du réseau sur des 

exemples qui n’ont pas été utilisés lors de l’apprentissage. 

Le RNA a été formé pour résoudre le problème direct. À la fin de la formation, les 

poids sont congelés et le réseau a été inversé pour résoudre le problème inverse. 

Conclusions 

Le travail de recherche présenté est fondé sur l'application de l’approche du RNA 

pour la résolution du problème inverse dans le cas des aquifères contaminés. 

En ce qui concerne l'application théorique décrite dans le chapitre 3, il semble que 

la méthode peut être utile non seulement pour l'identification de l'espace-temps 

coordonnées des sources inconnues, mais aussi comme une méthode pour identifier les 

zones dans lesquelles une analyse plus approfondie est nécessaire, cette  technique peut 

permettre une importante réduction des coûts pour la sourveillance. 

Sur la base de l'application décrite dans le chapitre 4, il est clair que le RNA 

représente une nouvelle technologie dont le potentiel pour résoudre les problèmes non 

linéaires (comme celle étudiée dans le cas de la contamination de l'aquifère d'Alsace), 

devrait être approfondie. 

Il s’agit là d’une technologie émergente qui pourrait apporter avec un temps de 

traitement relativement court et de faible coût, des solutions pratiques pour protéger les 



RESUME 

 33 

ressources en eaux souterraines. À cet égard, d’après les résultats de ce travail de 

recherche, il apparait que l'application des RNA peut être une contribution précieuse à 

l’ensemble des solutions existantes dans le domaine de la pollution des eaux 

souterraines. 
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INTRODUCTION 

Only a small percentage of water present on earth is useful for human use and 

98% of this water is represented by water reserves contained in aquifers. Therefore 

groundwater represents an important resource for the production of drinking water. 

Groundwater has generally a higher quality than surface water because of the filtering 

properties of the ground. 

However, groundwater is exposed to man-made pollution. One of the major issues 

for groundwater specialists is the effective management of the groundwater quality 

because contamination of groundwater may prevent its use for drinking as well as for 

other domestic, industrial and agricultural purposes. Due to increased pollution 

phenomena, groundwater has become increasingly vulnerable and its sustainable 

management is nowadays extremely important to protect global health. 

When groundwater is polluted, the restoration of quality and removal of pollutants 

is a very slow, hence, lengthy, and, sometimes, a practically impossible process. In 

consequence a management aimed at protecting the groundwater quality and at 

safeguarding the groundwater resources has consequently a vital importance for life 

support systems. 

This work focuses on groundwater resources contaminations. In this field, it 

should be underlined that in some cases, pollution may result from contaminations 

whose origins are generated in different times and places where these contaminations 

have been actually found. To address such situations of pollution, it is necessary to 

develop specific techniques that allow to identify in time and space the behaviour of 

unknown contaminant sources. In general, the identification and delineation of the 

source of a contaminant plume is of utmost importance regarding both the improvement 

of management policies and the planning of subsurface remediation in the polluted site.  

The determination of the initial conditions of pollution is of considerable interest 

in the framework of the implementation of the European Union Directive 2004/35/EC: 

this directive concerns environmental liability with regard to the prevention and 

compensation of environmental damages, based on the affirmation of the principle of 

polluter-payer. Directive 2004/35/EC is transposed into Italian law by the “Legislative 

Decree 152/2006” (Parte VI – “Norme in materia di tutela risarcitoria contro i danni 

all’ambiente”) and into French legislation by “Loi numéro 2008-757 (Titre 1er – 
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“Dispositions relatives à la prévention et à la réparation de certains dommages causés à 

l'environnement”). 

State of groundwater pollution implies the necessary development of an effective 

protection and monitoring of key zones, especially in those areas where the geological 

characteristics of the soils strata allow relatively easy penetration of anthropogenic 

pollution into groundwater. To protect the aquifers, the quantification of parameters that 

governs the groundwater flow has become imperative an key requirement. Due to the 

complexity of the hydrogeological processes, attention should be paid to the variations 

of the domain characteristics in space and time, the interaction between ground and 

water and a large number of physical parameters, mainly hydrodynamic and structural. 

Finally one should underline that in certain formation, pollutant may travel long 

distances in an aquifer without being attenuated. Representing all these parameters in a 

model can be very useful in terms of development and management of water resources 

for environmental studies. Unfortunately, in some cases, the model parameters are 

highly uncertain. These uncertainties regarding the parameters must be taken into 

account to ensure a better modeling of the aquifer pollution. 

In many cases, some hydrogeological and groundwater quality characteristics, are 

not directly measurable and must be physically assessed in function of directly 

measurable parameters. The problem of determining the unknown model parameters is 

usually identified as "inverse problem". Solving the inverse problem is the main goal of 

modeling groundwater flow and contaminant transport. The validity of an aquifer 

forecasting model is closely related to the reliability and accuracy of the parameters 

assessment. With respect to the resolution of the inverse problem, this work aims at 

defining a methodology that allows to identify the features in space and time of 

unknown contamination sources. In our case, the inverse problem is solved on the basis 

of measurements of contaminant concentrations in monitoring wells located in the 

studied areas. 

In the framework of this thesis, the research is developed under the following 

themes: 

 groundwater contamination modeling using a non-commercial software for the 

flux and transport model in porous media (TRACES - Transport or 

RadioActiver Elements in the Subsurface); 
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 modeling of the cause and effect relationships in groundwater contamination 

with Artificial Neural Networks (ANN) technology; 

 application of ANN to solve the inverse problem in two cases of groundwater 

contamination. 

Over the past decades, Artificial Neural Networks (ANN) have become 

increasingly popular as a problem solving tool and have been extensively used as a 

forecasting tool in many disciplines. 

An ANN consists of a number of interconnected processing elements 

(Perceptrons) called neurons, which are logically arranged in two or more layers and 

interact with each other through weighted connections. In particular, the networks Multi 

Layer Perceptrons (MLPs) used in this work can create a model of a system only on the 

basis of a suitable set of input/output pairs of example patterns. Several algorithms have 

been proposed in the literature, allowing one to obtain the desired accuracy of the model 

in any kind of engineering problem. The features of the developed ANN depend on the 

nature of the problems analyzed and there are no theoretical guidelines for determining 

the best way out. The model is specific to the system under consideration and cannot be 

built a priori.  

The training of the ANN consists in a learning rule that modifies the weights of 

the connections on the basis of the difference between the calculated output of the 

network and the desired pattern. The aim of the training is to make the ANN able to 

generalize the acquired information, i.e. to give the correct output even for examples not 

included in the patterns of the training set. This aspect is crucial for the application 

described in this work, because the assumption is to reconstruct the input by inverting 

the trained ANN. In practice, the network is trained through an input-output 

relationship. After that, the network is inverted to solve the inverse problem by 

reconstructing the output-input relationship. In other words, once the output of the 

system is known, the input is reconstructed by inverting the trained ANN. 

To develop the methodology previously cited, this work consider two different 

cases of continuous point contamination sources: a theoretical case and a real case 

(unknown pollution source of the Alsatian aquifer in France). 
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In the theoretical case addressed in this study, we aim to define the time-space 

coordinates (X, Y, T) of the unknown contaminant source based on the measures of 

contaminant concentration acquired in the monitoring wells at a certain time t. 

In the real case considered in this study, we aim to define the behaviour of an 

unknown pollution source that – following an accident in 1970 - has polluted with 

carbon tetrachloride (CCl4) one of the largest aquifers in Western Europe and the main 

sources of drinking water in the Alsace Region (France), i.e. the Alsatian aquifer. The 

pollution source behaviour at the accident location is unknown. The objective has been 

to identify this unknown pollution source in terms of temporal variations, injection rates 

and duration of the source activity based on the measures of the contaminant 

concentration curves acquired in the monitoring wells. 

To solve the inverse problem for both studied cases, an innovative methodology 

based on the application of ANN technology has been developed. In particular, different 

ANNs were trained to solve the direct problem. The objective was to combine the input 

patterns (which represent the pollution source characteristics) with the output patterns 

(which represent the measures acquired in the monitoring wells). In order to solve the 

inverse problem and to identify the unknown pollution source characteristics, the 

trained ANN has been inverted. By fixing the output pattern, the ANN has been able to 

reconstruct the corresponding input. The inverse problem solution method developed 

during this research allow us to solve the problem  

Various scenarios of the two contamination sources behaviour have been 

generated in order to form a consistent pattern of examples necessary for training, 

validation and testing of the ANN. 

The patterns have been constructed using TRACES that combines the mixed-

hybrid finite element and discontinuous finite element to solve the hydrodynamic state 

and mass transfer in the porous media. 

For making the problem handy for the ANNs applications, for  both the two 

studied cases, different feature extraction pre-processing techniques have been applied. 

The input/output patterns dimension have been drastically reduced to a very manageable 

size in order to limit the number of free parameters of the neural networks.  

Data reduction and ANN implementation have been carried out with the Neural 

Network toolbox of Matlab 7.1. 
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The results of the research work that are described in this thesis show how ANNs 

can be used as efficient tools to describe unknown pollution sources characteristics on 

the basis of the contaminant concentration measures acquired in the monitoring wells.  
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STATE OF THE ART 

The identification and remediation of polluted aquifers represent nowadays an 

important challenge in groundwater resource management. In order to efficiently 

manage the groundwater quality, it is fundamental to know pollution source 

characteristics such as location, magnitude, duration of the activity. 

Inaccuracies/inadequacies in determining the pollution sources may result an inefficient 

or unsuccessful management/remediation efforts. Information regarding the pollution 

sources is also necessary and useful for addressing the judicial issues of responsibility 

and compensation for environmental damage. 

In the field of hydrogeological studies, the literature, starting from the late '80s, 

but especially in the mid '90s, contains many examples of implementation of different 

applications of ANN related to various issues. The last decade, there has been seen a 

significant activity in ANN applied to various hydrogeological problems such as 

groundwater modeling, modeling of hydrogeological parameters, modeling of various 

kinds of aquifers contamination, water quality modeling. It is clear that ANNs represent 

an emerging new technology and their full potential for solving hydrogeological 

problems must be further explored. This is due to the main properties of ANN, 

represented by the ability to be universal approximators. Several studies are dedicated to 

the development of different models for solving the inverse problem, however works 

using the ANN approach are less popular. 

In the following paragraph, some works that address an approach to solve the 

inverse problem in hydrogeology are presented, although not all of these are based on 

ANN application. Each technology requires a groundwater flow and contaminant 

transport model to simulate the physical processes in the aquifer system. 

Examples of inverse problem solution 

Rizzo and Dougherty (1994), developed a method for pattern completion based on 

the application of ANNs possessing many operational objectives of the neural kriging 

approach. A neural kriging (NK) network is implemented in a parallelized algorithm, 

and applied to develop maps of discrete spatially distributed fields (e.g., log hydraulic 

conductivity). 
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Zio (1997) investigated the feasibility of solving the inverse problem by using 

artificial neural networks. He considered a simple analytic model of contaminant 

transport due to a point source in stationary flow field to generate simulated 

concentration histories for various values of the dispersion coefficient. The simulated 

observations have been used to train the ANN to identify the value of the associated 

dispersion coefficient. The approach seems to offer a versatile and efficient tool for 

parameter identification. However no high expectations should be attached to this 

method in regards of the instability and non unique of the inverse problem solution, 

since these inherent difficulties are mainly due to the insufficiency and inaccuracy of 

the available observations and this method will suffer from it as well as the other 

methods. 

Schwarz et al. (1998) proposed a new investigation approach for the assessment 

of groundwater contamination based on the inversion of concentration time series 

measured within pumping wells. Using the inversion approach, it is possible to 

investigate the mean pollutant concentration and the concentration distribution over a 

control plane perpendicular to the groundwater flow direction downstream of a pollutant 

source, as well as the mass flux over this control plane. 

Holder et al. (1998) tested the method proposed by Schwarz (1998) in the 

abandoned industrial site Neckar Valley in Stuttgart. They try to reconstruct the best 

description of the catchment area with the lowest number of wells and shortest pumping 

time. 

Gümrah et al. (1999) described an ANN approach that can be used to forecast the 

future pollutant concentrations and hydraulic heads of a groundwater source. In order to 

check the validity of the approach, a hypothetical field data as well as a case study were 

produced by using groundwater simulator with the method of characteristics (MOC). 

Hydraulic heads and chlorine concentrations were obtained from groundwater 

simulations. ANN was trained by using the historical data of the last two years. The 

chlorine concentrations and hydraulic heads were estimated by applying both the long-

term and the short-term ANN predictions. In long-term predictions, the chlorine 

concentrations and heads were estimated for the future eight years by using the 

historical data of two years for each well. The short-term approach was applied for the 

wells where the higher errors have been obtained during the application of long-term 

predictions (in total two wells). 
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Mahar & Datta (2000) proposed a methodology based on nonlinear optimization 

model for estimating unknown magnitude, location and duration of groundwater 

pollution sources by using measured values of pollutant concentration at selected 

locations. The performance of the developed model is evaluated for a transient flow and 

transport of a conservative pollutant in an hypothetical confined homogeneous and 

isotropic aquifer system. Different scenarios are considered, such as: concentration 

measurement errors, missing measurements, location of observation wells vis-à-vis 

actual source locations, and non-uniqueness of solutions in terms of local or global 

optimal solutions. In total, 8 monitoring wells were considerate. The total study time of 

five years is divided into twenty equal time steps of three months each. It is assumed 

that the potential sources are active only during the first four time steps of the solution 

time horizon. The nonlinear programming formulation minimizes the weighted sum of 

the squares of the differences between the model estimated and observed 

concentrations. The results were validated by comparing the results of the proposed 

model with those obtained by using the USGS-Method of characteristics (USGS-MOC) 

computer code. 

Bockelmann et al. (2001) proposed a new integral groundwater investigation 

approach to quantify natural attenuation rates at field scale. In this approach, pumping 

wells positioned along two control planes downstream of a contaminant source. Flux 

through these plans is calculated using an analytical solution derived by Schwarz 

(1998). With this technique the spatial-temporal distribution of the contaminant may be 

reconstructed according to a few concentration data.  

Fanni et al. (2002) proposed the use of the neural network paradigm in an 

innovative way. A neural network is trained to capture the functional relationship 

between geometrical and chemical properties of the contaminants and the hydrological 

map of the basin in prefixed measurement points. The network is then use to solve the 

inverse problem of locating the source of the pollutant, and how many time steps before 

the event occurred under the restricted hypothesis of groundwater contaminated by a 

single pollutant injected in a single point. 

Rajanayaka et al (2002) utilize a hybrid approach based on a combination of two 

types of ANN models to solve the groundwater inverse problem. Supervised Multi 

Layer Perceptron (MLP) ANN and Self-Organising Network (SON) were amalgamated 

to estimate parameters reasonably accurately by using solute concentration observations 
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that were obtained from a two-dimensional groundwater transport numerical model. A 

three layers MLP network was used to find the complex relationship of output, K, and 

the associated concentration values.  

Singh and Datta (2006) proposed an ANN based methodology to identify 

unknown groundwater pollution sources, when a portion of the concentration 

observation data is missing. The source characteristics and the corresponding 

concentration measurements at time steps for which it is not missing, constitute a 

pattern for training the ANN. A groundwater flow and transport numerical simulation 

model is utilized to generate the necessary patterns for training the ANN. Performance 

evaluation results show that the back-propagation based ANN model is essentially 

capable of extracting hidden relationship between patterns of available concentration 

measurement values, and the corresponding sources characteristics, resulting in 

identification of unknown groundwater pollution sources. The performance of the 

methodology is also evaluated for different levels of noise (or measurement errors) in 

concentration measurement data at available time steps. 

Zhiqiang et al. (2006) presented a novel technique utilizing ANN to backtrack 

source location and earlier plume concentrations from recent plume information. For 

proof-of-concept, two tracer tests (a non-point-source and a point-source) were 

performed in a large-scale (10’×14’×6’) groundwater physical model. The physics-

based flow and transport model (MODFLOW 2000 and MT3DMS) was calibrated 

using the data from the non-point-source tracer test and validated using the point source 

tracer test data. ANN was trained using the calibrated model predictions and compared 

to actual data. The ANN developed is capable of approximating results quickly, which 

is important for real-time modeling and long-time monitoring optimization design. The 

ANN can also back out the earlier plumes to better identify the contaminant source. 

Bashi-Azghadi et al. (2010) presented a new methodology for estimating location 

and amount of leakage from an unknown pollution source using groundwater quality 

monitoring data. The proposed methodology includes a multi-objective optimization 

model, namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) which is 

linked with MODFLOW and MT3D groundwater quantity and quality simulation 

models. The main characteristics of an unknown groundwater pollution source are 

estimated using two probabilistic simulation models, namely Probabilistic Support 

Vector Machines (PSVMs) and Probabilistic Neural Networks (PNNs). In real-time 



STATE OF THE ART 

 43 

groundwater monitoring, these trained probabilistic simulation models can present the 

probability mass function of an unknown pollution source location and the relative error 

in estimating the amount of leakage based on the observed concentrations of water 

quality indicator at the monitoring wells. 

Aswed (2008) worked on an accident happened in north-eastern of France on 

1970. The goal was to model and simulate the transfer in the aquifer of contaminant 

(chlorinated solvent). They determined the source term at the accident location. To 

estimate the contaminant concentration at the source, the travel time between the source 

and measurement-wells is calculated by the method of moments. 

Conclusion and comments 

In this chapter presents an overview of the studies in the research area treated in 

this work.  
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THESIS’S STRUCTURE 

Chapter 1: modeling groundwater flow and contaminant transport 

In chapter 1, we briefly present the basic definitions of the porous-medium 

properties, the governing equations of single-phase flow and transport of solute in 

saturated porous media. The water flow is described by Darcy’s law and the continuity 

equation that governs the volumetric balance equations. The solute transport is 

described by a convection-diffusion-dispersion equation. 

Chapter 2: Artificial Neural Networks 

In chapter 2, the concept of artificial neural networks and the most important 

features that make this technology attractive in hydrogeology research are explained. 

Structure, components and architecture models of artificial neural networks are detailed. 

In particular, the supervising learning problems and the useful tools are discussed. In 

addition, the classical modeling approach is compared with artificial neural network 

modeling. The design and training of a Multilayer Perceptron Network is also 

addressed. 

Chapter 3: ANN applied to study a polluted aquifer 

Chapter 3 is dedicated to the inverse problem in order to identify the spatial 

location (X,Y) and the duration of the activity (T) of a theoretical case of groundwater 

pollution. This chapter provides a description of the theoretical aquifer and its numerical 

model. Various source scenarios are applied to the theoretical aquifer hydrogeological 

model in order to generate the examples patterns used for training and testing of the 

ANN. The patterns elaboration and reduction are detailed. Finally, the ANN 

development and the inversion procedure are explained. 

 

Chapter 4: ANN for estimating Alsatian aquifer pollution source 

Chapter 4 proposes a new methodology that aims at solving the inverse problem 

in order to reconstruct the behaviour in time and space of the carbon tetrachloride 

unknown pollution source of the Alsatian aquifer (France). The chapter provides a 

description of the Alsatian aquifer, the carbon tetrachloride tanker accident occurred in 
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1970, as well as of the physical characteristics of this dangerous chemical. The 

numerical model of the Alsatian aquifer is described in order to explain the model 

produced example patterns for the ANN. Various source scenarios are applied in order 

to generate the examples patterns used for training, validating and testing the ANN. The 

patterns elaboration and reduction are detailed. Finally, the ANN development and the 

inversion procedure are explained. 
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1 MODELING GROUNDWATER FLOW AND 

CONTAMINANT TRANSPORT 

In this chapter, we briefly present the basic definitions of the porous-medium 

properties, the governing equations of single-phase flow and transport of solute in 

saturated porous media. The water flow is described by Darcy’s law and the continuity 

equation that governs the volumetric balance equations. The solute transport is 

described by a convection-diffusion-dispersion equation. 

1.1 Flux and transport phenomena 

1.1.1 Properties of saturated porous media 

A porous medium consists of a solid matrix with interconnected void spaces. The 

void spaces can be completely or partly filled with water and/or other fluids like oil or 

gas. The pores are the spaces that are not filled by solid material. In this thesis, only 

water saturated porous media are considered. The saturated zone is, therefore, formed of 

porous material whose pores are filled with water. The main parameters that 

characterize a porous medium are the porosity and permeability. 

Porosity 

The Porosity of the medium is represented by the void space distributed in the 

solid matrix. It is a dimensionless parameter expressed by the volume of void spaces per 

unit volume of the aquifer material. Since the isolated or disconnected pores do not 

account for the flow, the concept of effective porosity is introduced, which is the ratio 

of volume of the interconnected pores to the total volume of the soil or the rock. In 

granular porous media, such as the alluvial aquifer, the effective porosity is typically 

almost equal to the total or bulk porosity. 

Permeability 

The Permeability is a measure of the medium ability to transmit a fluid flow under 

the influence of a driving pressure. This parameter depends on the size, shape and 

interconnectness of pores spaces. Finer-grained material exhibits low permeability, 

while coarser-grained material generally exhibits higher permeability. The intrinsic 

permeability is expressed, as follows: 
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where, 

Q: the volumetric flow rate, [L3T-1]; 

 : the dynamic viscosity of the fluid, [ML-1T-1]; 

A: the cross–sectional area of the flowing fluid, [L2]; 

sp  / : the applied head difference across the length, [-]. 

The permeability is a function of the medium. For a medium saturated with water, 

it is customary to define the hydraulic conductivity. Unlike the permeability, the 

hydraulic conductivity takes into account the particular fluid that is present in the 

medium. The hydraulic conductivity is defined as: 


gk

K     (1.2) 

where, 

K: is the hydraulic conductivity, [LT-1]; 

k: is the intrinsic permeability of the medium, [L2]; 

ρ: is the fluid density, [ML-3]; 

g: is the acceleration of gravity, [LT-2]; 

μ: is the fluid viscosity, [ML-1T-1]. 

It is clear from equation (1.2) that K incorporates the medium permeability k, and 

the fluid properties   and  . 

Many geological formations are anisotropic where the permeability in the 

direction of the geological layers is greater than in the perpendicular direction. 

Moreover, in heterogeneous media, the permeability varies in space. The permeability 

in natural soils may vary from 10-8 m2 for very conducting to 10-16 m2 for poorly 

conducting aquifers [Bear, 1988]. The permeability depends on the micro scale 

geometry of the medium, i.e., the grain sizes and the interconnectedness and the 

orientation of pores. Several empirical and theoretical relationships relate the 

permeability to the porosity, the effective grain diameter, and other medium parameters. 
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1.1.2 Groundwater flow equations 

In order to model groundwater flow in complicated large scale media, the 

governing equations are solved numerically and given by Darcy’s law and the 

conservation equations. 

Darcy’s law 

The fundamental law of fluid flow in a porous medium is the Darcy’s law. The 

basic concept is that the groundwater flows from levels of higher energy to the levels of 

lower energy. This energy is essentially the results of the height and the pressure. 

Darcy’s law in the porous media expresses the filtration velocity in a steady state or 

transient state as a function of the pressure gradient and the gravity. The Darcy’s law is 

written by the general formula [Bear, 1979], as follows: 

 zgp
k

q  


   (1.3) 

where, 

q: is the Darcy’s velocity or specific discharge, [LT-1]; 

μ: is the dynamic fluid viscosity, [ML-1T-1]; 

p: is the fluid pressure, [ML-1T-2]; 

z: is the elevation above some arbitrary datum (is the vertical coordinate), [L]. 

If the density is assumed to be constant, the Darcy’s law (1.3) can then be 

simplified as: 
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where, 

z
g

p
h 


  represents the groundwater head (the piezometeric head), [L]; 


gk

K   is the hydraulic conductivity coefficient or the permeability, [LT-1]. 

Remark: q is not the true velocity, as it assumes flow through an open pipe and 

does not take into account the fact that water is only able to flow through the pores 
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between solid grains. To find the actual groundwater velocity (average velocity), the 

Darcy velocity is divided by effective porosity : w

w

q
u   

In an isotropic medium, the hydraulic conductivity K, or similarly the intrinsic 

permeability k is a scalar. However, if the porous medium in three-dimensional space is 

anisotropic, the hydraulic conductivity is defined as a symmetric tensor of the form: 
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The hydraulic conductivity tensor can be diagonalized introducing three mutually 

orthogonal axes called principal directions of anisotropy. In the following, we suppose 

that the principal axes are aligned with the x, y, z directions. The tensor K is therefore 

diagonal, that is: 
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In practice, two permeabilities are distinguished: the vertical permeability Kzz and 

the horizontal permeability Kxx=Kyy [De Marsily, 1981]. 

The continuity equation 

The continuity equation is based on the principle of the conservation of mass of 

water. In a control volume, the mass flux due to the sources and sinks is equal to the 

temporal change of mass and the mass flux across the volume boundaries [Bear, 1979]: 

fq
t
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  (1.5) 

where, f represents the sink/source term for the fluid, [T-1]. 

The porosity is generally slightly pressure-dependent [Kinzelbach, 1986]. 

However, this aspect is neglected in this work, i.e., the matrix is considered 

incompressible. The density  depends only on the pressure p at a constant temperature. 

One can then write: 
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where, 
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, [L-1], is the specific storage coefficient which gives the mass 

of fluid added to storage (or released from it) in a unit volume of porous medium per 

unit rise (or decline) of the pressure head )/( gp  . 

By substituting Eq.  (1.6) into Eq.  (1.5), the continuity equation is obtained 

in terms of the pressure. If the spatial variation of density is negligible, the continuity 

equation becomes: 
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The relation between the hydraulic head and the pressure is given by [Bear, 1979]: 
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It follows that, 
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In particle, the quantity   h z s   is negligible with respect to 1 [Banton & 

Bangoy 1997]. Then: 
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By replacing Eq. (1.9) in Eq.  (1.7), the mass balance equation of an 

incompressible fluid in the non-deformable porous medium is written in the general 

form: 

 50 



MODELING GROUNDWATER FLOW AND CONTAMINANT TRANSPORT 

hhK
t

h
s 



)(    (1.10) 

In steady-state, the piezometric head is constant over time. Equation  (1.10) 

reduces to the following form: 

fq     (1.11) 

Initial and boundary conditions 

The transitory flow problem described by the continuity equation and Darcy’s law 

(1.4) requires knowledge of the initial and boundary conditions. Initial conditions 

provide the necessary set of primary variables in the computational domain at the 

beginning of the simulation. Additionally boundary conditions (BC) have to be supplied 

at the margins of the model domain. These boundary conditions represent the 

interaction between the domain and the surrounding environment. Various types of 

boundary conditions are the following: 

 Dirichlet-BC: has fixed value of the head at the boundary of the domain. 

),(),( txhtxh D  

where hD is a known function. 

In the steady state, this type of boundary conditions is necessary to guarantee the 

uniqueness of the solution. The conditions of prescribed head value can be, for example, 

the contact of the aquifer with a river, rivers/lakes, etc. 

 Neumann-BC: describes the flux of a quantity perpendicular to the boundary 

of the domain. It is expressed by: 

),(),( txqtx
n
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where, n is the outward normal vector on the boundary and qN is a known 

function. 

A condition for prescribed flux can be the impermeable boundaries where the flux 

is zero, inflow or outflow through the boundaries. 

 Cauchy or Fourier-BC: is a combination of Dirichlet and Neumann boundary 

conditions. The flow across the boundary is calculated from a given value of 

the head, such that: 
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where fF and gF are known functions. 

An example of this case is the interactions of an aquifer with a river. 

1.1.3 Porous medium transport equations 

Water, in its movement, can carry materials in dissolved form. The transport of 

such pollutants is a process which takes into account several physical mechanisms such 

as convection, hydrodynamic dispersion, molecular diffusion, and chemicals 

mechanisms such as adsorption, radioactive decay/filiations, and 

precipitation/dissolution. The fluid-medium interaction may fasten or reduce the 

spreading of the pollutant in the porous medium. 

Convection 

The convection is the movement of the pollutant dissolved in the groundwater in 

the direction of the flow. The convection is derived by the mean velocity of the 

groundwater. Thus, an increase in groundwater velocity will result in farther travel of 

the contaminant. 

The convection is, generally, the dominant mass transport process in groundwater 

flow system [Domenico et al., 1990]. The migration of a contaminant owing to 

convection is significantly influenced by the aquifer hydraulic conductivity, effective 

porosity, and hydraulic gradient [Wiedemeier et al. 1999]. 

In a uniform porous media, water will travel vertically downward until it hits the 

water table and then move in the down gradient direction of the aquifer [Wolfe et al., 

1997]. 

The convection equation is given by: 
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  (1.12) 

where, 

C: is the concentration of solute, [ML-3]; 

u: is the actual groundwater velocity, [LT-1]. 
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Dispersion and diffusion 

These mechanisms may lead the contaminant to spread in directions different 

from the water flow paths. The molecular diffusion is due to concentration gradients 

within the liquid phase. This mechanism is independent of the flow velocity. It produces 

a flux of particles from region of high contaminant concentration to regions of low 

concentration. The mechanical dispersion is a phenomenon of spreading caused by 

fluctuations in the velocity field and heterogeneities at the microscopic scale. Reactive 

and non-reactive solutes may spread due to dispersion both along and perpendicular to 

the groundwater flow. The dispersion increases in heterogeneous material due to non-

uniform groundwater flow paths. 

The equation of dispersion-diffusion is given by: 
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  (1.13) 

where D is the dispersion-diffusion tensor which represents the contribution of the 

mechanical dispersion and of molecular diffusion in porous media. This tensor, in the 

three-dimensional space, takes the form: 

mc DDD   

where D is the dispersion-diffusion tensor which represents the contribution of the 

mechanical dispersion and of molecular diffusion in porous media. This tensor, in the 

three-dimensional space, takes the form: 

where, 

Dc: is the mechanical dispersion tensor [Bear, 1979]: 
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with, 

2, )(
u

uu
uE ji

ji   i,j=1,….3;  

Dm: is the diagonal tensor of the molecular diffusion in porous medium [L2T-1]; 

l : is the longitudinal dispersivity, [L]; 

t :is the transversal dispersivity, [L]. 
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Unlike the dispersion, the diffusion can occur both in the absence or presence of 

convective flow. It is generally less significant than dispersion in most groundwater 

flow problems. 

The three mechanisms mentioned above (convection, dispersion, and diffusion) 

cause the contaminant to spread in the direction of flow both longitudinally and 

transversally. The combined processes of advection and dispersion result in a reduced 

concentration of the dissolved solute (dilution) as well as plume spreading. Dispersion 

generally causes contaminants to migrate 10 to 20 percent further than migration created 

by advection alone. The processes of advection, dispersion, and diffusion control the 

movement of the contaminant [Clement et al. 2004]. 

The equation convection-diffusion-dispersion 

In the case of conservative and non-reactive transport, the integration processes of 

convection, molecular diffusion and mechanical dispersion are given by the following 

equation: 
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In the presence of an instantaneous and linear adsorption, the relation between the 

solute concentration C and the sorbed concentration in the solid Cs, is given by Eq. 

(1.15). The total mass of solute per unity of volume can be written as: 

  ss CC   1   (1.15) 

Where s  represents the density of solid, [ML-3]. 

Assuming instantaneous linear adsorption, and constant porosity the retardation 

factor R is defined by: 
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By taking into account the spatial immobility of sorbed solute due to the 

convection or to the dispersion, the equation of transport becomes: 
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With, R   1, this term decreases the transport velocity of the solute with respect 

to the velocity of the groundwater.  

In the case of a degradation mechanism of first order (decrease radioactive) and in 

the present of source/sink function, the equation of transport becomes: 
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where, 

λ: is the degradation coefficient, [T-1]; 

fc: is the sink/source term which describes the outlet/inlet in the domain,[ML-3T-1]. 

In addition to the initial conditions given for C at t=0, the boundary conditions, 

related to the transport problem, can be: 

 Dirichlet type: prescribed concentration: ),( , ),( txCtxC D

 Neumann type: prescribed hydraulic head value: ),(),( txqtx
n

C
D N

c 



 ,  

 Fourier conditions: a combination of hydraulic head and concentration; 

1.2 Summary 

In this first chapter, we have provide a definition of the porous-medium properties 

and the governing equations of single-phase flow and transport of solute in saturated 

porous media has also been given. The water flow is described by the Darcy law and the 

continuity equation that governs the volumetric balance equations. The solute transport 

is described by a convection-diffusion-dispersion equation. 
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2 ARTIFICIAL NEURAL NETWORKS 

Before discussing the artificial neural network application developed to solve the 

hydrogeological inverse problem, this chapter aims at presenting the key features of 

artificial neural networks technologies as well as the biological origin of artificial neural 

networks research. 

2.1 Introduction 

The first studies on Artificial Neural Networks (ANNs) were prompted by a desire 

to have computers mimic human learning. The initial attempt was to reproduce the 

neural structure of the brain tissue on computational tools. ANNs possess the unique 

attribute of universal approximation, ability to learn from examples without the need of 

explicit physics, and the capability of processing large data volumes at high speeds. 

The basic notion of ANNs was first formalized by McCulloch and Pitts (1943) in 

their model of an artificial neuron. Attention to research in this field remained 

somewhat dormant in their early years due to the unknown/undiscovered capabilities of 

this method and of its potential use. However, interest in this area picked up momentum 

in a dramatic fashion with the work of Hopfield (1982) and Rumelhart (1986). Not only 

did these studies place ANN on a firmer mathematical footing, but also opened the door 

to a host of potential applications for this computational tool. Consequently, ANN 

computing has progressed rapidly on different fronts such as theoretical development of 

different learning algorithms and computing capabilities [Govindaraju et al., 2000]. 

Over the past decade, ANNs have become increasingly popular in many 

disciplines as a problem solving tool. This technology was developed in many different 

fields always characterized by a high degree of interdisciplinary. ANNs have the ability 

to solve extremely complex problems with highly non-linear relationships. ANNs have 

a flexible structure that are capable of approximating almost any input-output 

relationships. 

Complex and heterogeneous hydrogeology systems are extremely difficult to 

model. However, it has been proved that ANN’s flexible structure can provide simple 

and reasonable solutions to various problems in hydrogeology. ANNs have been 

successfully employed in hydrogeology research [Morshed et al., 1998; ASCE Task 

Committee on Application of ANN in Hydrology, 2000; Maier et al., 2000]. 
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In this work, the ANN has been developed with version 7.1 of the Neural 

Networks Toolbox of Matlab. 

2.2 Natural Neural Network 

Before describing the technical side of ANN, it would be useful to briefly discuss 

the Natural Neural Networks (NNN) and the cognition of living organisms. This brief 

summary explained the few elements of biological neural networks we want to take 

over into the ANN. 

A natural neuron is comparable to a switch with information input and output. In 

the switch, called soma, weighted information are accumulated. It is activated if there 

are enough stimuli from other neurons hitting the information input. Incoming signals, 

from other neurons, are received by neuron dendrites and then transferred to the neuron 

by special connections: the synapses. In the soma, as soon as the accumulated signal 

exceeds a certain value, an electrical pulse is activated. The inputs are summarized to a 

pulse according to the chemical change. The pulse represents the output information 

that is transmitted to the others connected neurons. Outgoing pulses are transferred by 

the axons. The axon is a long slender extension of the soma and it is electrically isolated 

in order to achieve a better conduction of the electrical signal. 

Depending on how the neuron is stimulated by the cumulated input, the neuron 

itself emits a pulse or not. The output is non-linear and not proportional to the 

cumulated input. 

Input and output of an Artificial Neuron (AN) may be vectors or scalars. In the 

ANN, the inputs are multiplied by a number: the weight. The set of such weights 

represents the information storage of the ANN. The weights of the inputs are variable, 

similar to the chemical processes at the synaptic cleft. This adds a great dynamic to the 

network because a large part of the ”knowledge” of an ANN is saved in the weights. 

2.3 Structure and components of Artificial Neural Networks 

2.3.1 Definition of Artificial Neural Network 

There are many definitions of artificial neural networks (ANNs). We will use a 

pragmatic definition that emphasizes the key features of the technology. ANNs are 
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distributed, adaptive, generally nonlinear learning machines built from many different 

Processing Elements (PEs) [Principe, 2002].  

The ANN is symbolized like a graph where patterns are represented in terms of 

numerical values attached to the nodes of the graph (PEs or neurons), and 

transformations between patterns achieved via simple message passing algorithms 

(Figure 2.1). 

input outputinput output

 

Figure 2.1: graph scheme of an Artificial Neural Network. 

PEs, also called AN, are logically arranged in two or more layers and interact with 

each other through the weighted connections The interconnectivity of the AN defines 

the ANN topology. 

The input value and the corresponding set of desired target (output value used to 

train, validate and test an ANN) is called pattern. ANN may be trained to perform a 

particular function by adjusting the values of the connections (weights) between 

elements. Commonly ANN are adjusted, or trained, so that a particular input leads to a 

specific target output. Such a situation is shown in Figure 2.2 below. 

compare

Target

Output

Adjust
weights

Neural Network
including 
connections weights 
between neurons

input
compare

Target

Output

Adjust
weights

Neural Network
including 
connections weights 
between neurons

input

 

Figure 2.2: Adjust weight between neurons. 

The network weights are adjusted, based on a comparison of the output (output 

calculated by the network) and the target (desired output that correspond to the output 

pattern), until the network output matches the target. [The mathworks, 2005]. 
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2.3.2 Mc-Culloch-Pitts Processing Element 

The Mc-Culloch-Pitts (M-P) PE make simply a sum-of-products followed by a 

threshold nonlinearity (Figure 2.3). Its input-output equation is: 

 bxWfnetfy
D

i ii   1
)(   (2.1) 

Where D is the number of inputs, xi are the inputs, Wi are the input connection 

weights, x0 is the bias, W0 is bias weight and y is the output. The activation function ƒ is 

a threshold function defined by: 
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which is commonly called the signum function. 
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Figure 2.3: Two inputs, one output McCulloch-Pitts PE. 

The McCulloch-Pitts PE is created by the concatenation of a synapse and an axon. 

The synapse contains the weights Wi, and performs the sum-of-products. The synapse 

shows that the element has 2 inputs and one output. The number of inputs xi is set by the 

input axon. 

2.3.3 The Perceptron 

The perceptron is a pattern-recognition machine composed by multiple inputs 

fully connected to an output layer with multiple McCulloch-Pitts PEs. The Perceptron 

produce a simply sum of the product between inputs and connection weights (2.3). Each 

input xj is multiplied by an adjustable constant Wij (the weight) before being fed to the 

ith processing element in the output layer, yielding [Principe, 2000]. 

Perceptron input-output equation is: 

 001
WxxWfy

D

i ii   
  (2.3) 
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Where D is the number of inputs, xi are the inputs, Wi are the input connection 

weights, x0 is the bias, W0 is bias weight and y is the output [Principe, 2000]. 
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Figure 2.4: Perceptron with D inputs and 1 output. 

The PEs sum all these contributions and produce an output that is a nonlinear 

(static) function of the sum. The PEs' outputs become either system outputs or are sent 

to the same or other PEs depending to the ANN architecture. Each PE in the ANN 

receives connections from other PEs and/or itself. The interconnectivity defines the 

topology. The signals flowing on the connections are scaled by adjustable parameters 

called weights, wij. A weight is associated with every connection [Principe, 2000].  
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Figure 2.5: Two layer perceptron with D inputs and M outputs (D-M). 

The number of outputs is normally determined by the number of classes in the 

data (Figure 2.5). These PEs add the individual scaled contributions and respond to the 

entire input space. 

There are different Perceptron models and the following ones can be considered 

as the most significant and consolidated : 

 Hopfield model, based on associative memory; 
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 Rumelhart model, based on Backpropagation networks; 

 Kohonen model, based on self-organizing networks. 

Connection weights and transfer function 

The signals flowing in the connections are scaled by adjustable connection 

weights Wij. A connection weight is associated with every connection and can have: 

 positive value: excitatory connections; 

 negative value: inhibitory connections;  

 zero: no connection.  

Following, taking into consideration an ANN composed by N interconnected 

neurons, connection weights and activation state of an ANN are briefly described. In the 

ANN, the neuron i receives input, from the neuron j. This input is composed by the 

output Oj (a real number) multiplied the correspondent connection weight Wij. 

Each neuron receives simultaneously a series of signals which can activate or not 

the neuron producing an output signal. The signal received by the neuron i is WijOj. In 

particular, depending on the value of the signal we can distinguish three situations: 

 0 < WijOj < 1 attenuate function, 

 WijOj > 1  amplifier function, 

 WijOj < 0  inhibitor function. 

Considering all the neurons, the total input signal for the neuron i is the sum of the 

product of each input associated weight by its output: 

j
j

ijij OWI   

The correspondent neuron i output Oi is influenced by the transfer function T, that 

describes the output behaviour of the neuron [Mazzetti A, 1991]: 

 ii ITO    

The weights can be implemented in a square weight matrix or in a weight vector. 
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Activation function 

A trained ANN has to be able to generalise, in other terms, it should produce the 

correct output for given inputs, that belong to the same class, but were not used for 

training. The input-output relationship is reconstructed by the activation function A. The 

input-output relationship can be described as follows: 

 XAY     (2.4) 

Where X and Y are respectively the input and output network and A is the 

activation function. 

Before the training of the network is tested, the neuron i is not activated and its 

output Oi is zero. During the training phase, the network is submitted to the presentation 

of a casual sequence of the training patterns. One complete presentation of the pattern to 

the network is called epoch. In this phase, connection weights Wij are modified. Each 

neuron is then activate in different ways and can propagate signals to other neurons. The 

output Y correspondent to the input X is finally determined by the activation function A 

of the network [Mazzetti A, 1991]. 

The activation function controls the amplitude of the output of the neuron. The 

choice of the activation function can considerably change the behaviour of the network. 

The most popular activation functions for perceptron are described below: 

 Hard Limit activation function: it limits the output of the neuron to either 0, if 

the net input argument n is less than 0; or 1, if n is greater or equal to 0. This 

function is used in Perceptrons, to create neurons that make classification 

decisions. In the Neural Networks Toolbox of Matlab 7.1, the hardlim function 

realizes the mathematical hard-limit activation function. Graph (Figure 2.6) 

and algorithm (2.5) are expressed below:  
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Figure 2.6: Hard Limit activation function. 
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 Linear activation function: the neurons activated with a linear activation 

function are used as linear approximators in Linear Filters. In the Neural 

Networks Toolbox of Matlab 7.1, the purelin function realizes the 

mathematical Linear activation function. Graph (Figure 2.7) and algorithm 

(2.6) are expressed below: 

net
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   netnetf     (2.6) 

Figure 2.7: Linear activation function. 

The linear activation function is used in the framework of this work. 

 Logarithmic sigmoid activation function: this function takes the input, which 

can have any value between plus and minus infinity, and squashes the output 

into the range 0 to 1. This activation function is commonly used in 

Backpropagation networks because it is differentiable and continue. In the 

Neural Networks Toolbox of Matlab 7.1, the logsig function realizes the 

mathematical logarithmic sigmoid activation function. Graph (Figure 2.8) and 

algorithm (2.7) are expressed below: 
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Figure 2.8: Logarithmic sigmoid activation function. 

 

 Hyperbolic tangent sigmoid activation function: it takes the input, which can 

have any value between plus and minus infinity, and squashes the output into 

the range -1 to +1. This activation function is commonly used in 

Backpropagation networks because it is differentiable and continue. In the 

Neural Networks Toolbox of Matlab 7.1, the tansig function realizes the 

mathematical tangent sigmoid activation function. Graph (Figure 2.9) and 

algorithm (2.8) are expressed below: 
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Figure 2.9: Hyperbolic tangent sigmoid activation function. 

The hyperbolic tangent sigmoid activation function is used in this work, where the 

range of activation function values was between [−1, 1]. In fact, input and output data 

were normalized in order to take in consideration such limits. This procedure allows the 

control of the signals transmitted into the ANN. 

2.4 Multi Layer Perceptron (MLP) 

The single layer perceptron can only classify linearly separable problems. For 

non-separable problems, it is necessary to use more layers. The Multi-Layer Perceptron 

neural network is the most widely known and used neural network architecture in 

hydrogeology problems. Conceptually, a Multi-Layer Perceptron (MLP) is a 

Feedforward neural network with is a cascade of Perceptrons. 

bias bias
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Figure 2.10: Multi layer perceptron (MLP). 

A Feedforward MLP is a kind of neural network where neuron can be numbered, 

in such a way that each neuron has weighted connections. The neurons are partitioned 

into layers and those can be numbered in such a way that the nodes in each layer are 

connected only to nodes in the next layer.  

The partition of layers consists in three or more layers: an input layer, an output 

layer and one or more hidden layers with non linear PEs. The hidden layers are not 

directly connected to the outside world. 
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2.4.1 How does a Multi Layer Perceptron work? 

This paragraph explains the functioning of a MLP. The MLP networks are used in 

this work. 

Taken into consideration N interconnected neurons, X and Y respectively input 

and output of the examples patterns (composed by real numbers). The best set of 

connection weights are those that ensure a low error between output calculated and 

output desired. In this work, the cost function used is the mean squared error 

performance function (2.9). 
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Where: 

 Y=(y1, y2, … , yP) are the calculated output; 

 T=(t1, t2, …, tP) are the desired output called target. 

From a mathematical point of view, ae MLP network realizes a non-linear 

combination of the components of the inputs vector: 
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Where:  

 yk are the kth value of the neuron in the output layer; 

 m = number of the neurons in the hidden layer; 

 n = number of the neurons in the input layer; 

 xj: = jth component of the input vector; 

 wki are the connection weight in the hidden layer; 

 vij are the connection weight in the input layer; 

 θi and θk are the bias values; 

 f and g are the activation functions. 

The construction of a network can be made on the basis of Cybenko's theorem 

[Cybenko, 1989]. 

 65 



ARTIFICIAL NEURAL NETWORKS 

The Cybenko's universal approximation theorem states that a MLP network 

(composed of single hidden layer containing finite number of hidden neurons with 

sigmoid activation functions) is a universal approximator. In other words, a MLP can 

approximate any continuous function arbitrarily if the number of hidden neurons is 

sufficiently large. One hidden layer MLP can create local regions in the input space. 

Another layer with several PEs can be thought of as combining bumps in disjoint 

regions of the space. This is a very important property, because in the theory of function 

approximation there are well established theorems that state that a linear combination of 

localized bumps can approximate any reasonable function. Therefore an MLP with two 

hidden layers is also a universal approximator, which means that it can realize any 

input-output map, just as the one hidden layer MLP can [Principe, 2000]. 

2.5 Artificial Neural Network learning rules 

Learning methods can be described in two different categories: 

 supervised learning; 

 unsupervised learning. 

In the case of supervised learning, the network is trained by providing it with 

couples of input and target patterns. This input-target pairs can be provided by an 

external teacher, or by the system which contains the neural network (self-supervised). 

This kind of learning is also called learning with a teacher, since a control process 

knows the correct answer for the set of selected input patterns. During the supervised 

train, the connection weights are changed in order to minimize the error between the 

target and the network output. Figure 2.11 represents the scheme of supervised learning. 
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Figure 2.11: scheme of supervised learning. 
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Unsupervised learning is used when, for a given input, the exact numerical output 

that the network should produce is unknown [Rojas, 1996]. In unsupervised learning an 

output unit is trained to respond to clusters of input patterns. In this paradigm the 

system is supposed to discover statistically salient features of the input population. 

Unlike the supervised learning paradigm, there is no a priori set of categories into 

which the patterns are to be classified; on the contrary the system must develop its own 

representation of the input stimuli. This kind of network is usually used when it is not 

possible to apply supervised learning. Figure 2.12 shows the scheme of unsupervised 

learning. 
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Figure 2.12: scheme of supervised learning. 

The main difference between these methods is that in the unsupervised learning 

the network finds itself the relationship between the input, while in the case of 

supervised learning, the network is trained to learn the input-output relationship. 

2.6 The supervised learning problem 

The learning problem consists of finding the optimal combination of weights 

accordingly that the network function f approximates a given function F as closely as 

possible. However, we are not given the function F explicitly but only implicitly 

through some couples of input-output examples [Rojas, 1996]. 

To consider the learning problem, the attention have to focus on the choice of 

[Ingrassia S. and Davino C., 2002]: 

 the error function: called also the cost function, it measures how far away a 

particular solution is from an optimal solution to the problem to be solved. 
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 the learning algorithm: it is the algorithm that minimizes the error function. 

Learning algorithms search through the solution space to find a function that 

has the smallest possible cost. 

In this work have been chosen the mean squared error performance function cost 

and the Levenberg-Marquardt learning algorithm. 

2.6.1 Supervised learning algorithms 

Error Back Propagation (EBP), or propagation of error, is the most common 

learning algorithm for training MLP networks. In this work the Error Back Propagation 

algorithm is used. 

The EBP algorithm looks for the minimum of the error function in weight space, 

that is used to find a local minimum of the error function. The combination of weights 

which minimizes the error function is considered to be a solution of the supervised 

learning problem. Since this method requires computation of the gradient of the error 

function at each iteration step, the continuity and differentiability of the error function 

must be guaranteed. The network is initialized with randomly chosen weights. The 

gradient of the error function is computed and used to correct the initial weights 

(connection weights are adjustable in the training phase) [Rojas, 1996]. 

Every time the network makes an error, during the training phase, this error is 

propagated through the synaptic connections and summed for each unit from which they 

receive the signal (from input to output layer by layer). In EBP algorithm practice, the 

error between the calculated output and the desired output, for a particular input state, is 

propagated backwards through the weights of the hidden layers, until it reaches the 

input layer (from output to input). The goal is to isolate the influence of each connection 

weight in the error between calculated output and target (desired output). 

This approach allows high efficiency in the achievement of results and a 

generalization of the solution for unknown new examples. This algorithm may be used 

for MLP network, with any number of connections and different structures. 

In order to minimize the error function, different algorithms may be used: 

 the Gradient Descent method; 

 the Levenberg-Marquardt method. 
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Gradient Descent method 

The Gradient Descent method is a first-order optimization algorithm. Following is 

explained the detailed features [Ingrassia, 2002]. 

Supposed to have an MLP network with logarithmic sigmoid activation function 
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According to the Gradient Descent method, in order to improve the network 

performance, the parameters vary along the surface of the error in the direction of 

gradient maximum negative slope. 
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Where  is the learning rate that determines the speed by which the network 

learns. High values of learning rate speed up the learning process but, at the same time, 

may provoke convergence problems and generate instability. 

The 2.10 can be further simplified by placing the product of the sum equal to: 

    iiii netfyt     that becomes:    
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For the lower connections, the variation between intern units must be considered 

with regard to the synaptic weights : 
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that becomes: 
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Observing these relationships, it is possible to remark that in the activation 

function of each unit hi, the sum of products between the upper layer elements  and 

the corresponding synaptic weights wij  is required. In other words, the error is 

propagated backwards from a layer to the previous layer. 

i

The disadvantage of this the method is due to the fact that it is not very fast, and 

that it requires a lot of computing power. In addition, the nonlinear activation of the 

nodes (as described above, a logarithmic sigmoid activation function is used) 

determines a complicated error function. The surface is associated to the error function 

can have several local minima (that can trap the net function during the training phases) 

and flat surfaces (that can slow down the speed of learning). 

Levenberg-Marquardt method 

Levenberg-Marquardt algorithm is used in this work because it is better adapt at 

the studied cases. 

Levenberg-Marquardt is a method that provides a numerical solution to the 

problem of minimizing a function, generally nonlinear, over a space of parameters of 

the function. These minimization problems arise especially in least squares curve fitting 

and nonlinear programming, therefore a sufficient low number of iterations is required 

[Ingrassia, 2002]. 

The performance index that has to be optimized is represented by the following 

equation: 
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Where w is the vector of all the N weights of the network,  and  are 

respectively the desired output value and the real output value for the kth output and for 

the pth input pattern, P and K represent respectively the number of output network 

patterns and the number of the input network patterns of the ANN. In matrix notation it 

can be express by the equation as: 

kpd kpo

  EEwF T  

Where E represents the matrix of the error for all the patterns. 

The weights are commutated through the following equation: 

  t
T
ttt

T
ttt EJIJJww

1

1



    

Where   represents a parameter that governs the step size, J is the Jacobian 

matrix of the m errors in regard to the n network weights. The Levenberg-Marquardt 

algorithm consequently requires the calculation of the Jacobian matrix of errors at each 

iteration step. 

From a practical point of view, one selection criteria of the learning algorithms 

can be based on the number of parameters of the error function. Levenberg-Marquardt 

algorithm is useful if the number of the error function parameters is low. Otherwise 

expressed algorithms are related to conjugate gradient. In the opposite case, gradient 

descended algorithms are preferred. 

2.6.2 The Overfitting problem and training stop techniques 

The critical issue in developing a neural network is generalization. In fact, the 

loss of the generalization capacity rend an artificial neural network unusable. Such 

situation may be generated by an exasperate training. To avoid such risks, it is useful to 

find rules that permit the evaluation of the best duration of the training phase.  

Learning rules that allow to establish a limit of the training phase assume a key 

role in order to safeguard the generalization capacity. Typically a threshold value of the 

error that determines once reached the training stop is established. 

Depending on the choice of the threshold, the overfitting event may arise. The 

overfitting determines an excessive specialization of the network on training examples 

creating a disadvantage in the generalization ability. 

Three useful methods for the training interruption are represented by: 
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 the cross validation; 

 the Leave-One-Out cross-validation (LOO); 

 the stopped training. 

In this work, the Leave-One-Out cross-validation is used to train an ANN 

specialized in finding the spatial and temporal coordinates of an unknown source of 

contamination. The stopped training rule is used for the training of the ANN used to 

reconstruct the Alsatian aquifer pollution source behaviour. 

Each method is explained below. 

Cross validation 

In the cross validation method, the patterns are divided in two different parts. The 

first part is used to train and build the artificial neural network. The second part is used 

to verify the performance of the network and for error evaluation. When the error on the 

second set begins to increase, the training process is interrupted. During the training 

phase, the training is stopped even if the number of epochs is not reached. 

Leave-one-out cross validation 

The simplest and commonly used method of cross validation is the LOO method. 

This method is applied especially when the available set of patterns are not very 

numerous. In the Leave-one-out procedure, the examples pattern is divided in p sets, 

where p is the number of the couple input/output.  

Each set is divided by two subsets:  

 one set composed by p-1 examples: used for training the network; 

 one set composed by 1 example: used for validating or testing the network. 

This subdivision is repeated during p steps: in each steps one different example is 

left out of the training set (p-1) until all the p are used both for training and validation or 

test. 

If the LOO is used for training and validation during training phase, the training is 

stopped although the number of epochs provided is not reached. During the training, the 

error is calculated on the training set; at the same time the error is calculated also on the 
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validation set, independently from the training set. When the validation error begins to 

rise, the training process is interrupted. 

In this work, as it will be explained in chapter 4, the LOO rule is used for training 

and testing. As a consequence, during the training phase, the set number of epochs is 

totally reached. In this case, the LOO is used because the examples pattern is too small. 

This method allows to extract a maximum of information from all the patterns. 

Stopped training 

The "Stopped training" method derives from the need of finding a compromise 

between the attempt to identify as accurately as possible all the examples presented and 

the generalization ability of the network. This method is used, especially when a large 

number of examples is available. 

The initial pattern is divided in three sets: 

 Training set: it is a set of data used in the training phase. During this phase, 

connection weights are adjusted in order to minimize the error function. The 

network is trained by the interactive presentation of the couples input/output. 

 Validation set: it is a set of data used in the validation phase. During this phase 

the connection weights are already adjusted. Consequently, the validation set 

are used to calculate the error function between calculated output and desired 

output. The network is validated by the interactive presentation of the 

examples of the couples input/output. When the validation error begins to rise, 

the training process is interrupted; 

 Test set: it is a set of data used in the test phase. During this phase, the 

connection weights are already adjusted and validated. The test set is used to 

evaluate the error function value between the calculated output and the desired 

output. The performance of the network is tested by the presentation of new 

input examples: the difference between the calculate output and the target is 

assessed. The goal is to evaluate the generalization capacity of the network 

considering new examples. 

In other words, during the training phase, the connection weights are modified and 

the error is calculated in order to minimize the error on the training set, but at the same 
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time the error is calculated also on a validation set, independently from the training set, 

and as the validation error begins to rise, the training process is interrupted. 

In this work, as it will explained in chapter 3, the stopped training rule is used for 

training, validating and testing. During the training phase, when the validation error 

begun to rise, although the number of epochs provided were not reached, the training 

was stopped. After that, the weights were frozen and the network was tested with the 

unknown example. 

2.6.3 Convergence criteria 

There are no general convergence criteria to assess the learning capacity of the 

network. However two simple rules may be adopted: 

 evaluate the learning rate for the training patterns by considering the 

overfitting phenomena, the connection weights and the average error 

committed; 

 evaluate the learning rate for the validation patterns by considering the average 

error committed for the validation patterns. 

2.7 Artificial Neural Network architecture models 

Neural networks are composed by a number of interconnected neurons. Based on 

the network architecture that is structured and on the type of connections, different 

models may be found. A list of the most popular models is available below: 

 Recurrent networks: some of the outputs are taken and feed them back to the 

inputs or to hidden layer neurones;  

 Non-Recurrent networks: the connection weights have an unique direction 

from the input to the output (Figure 2.13 - a);  

 completely connected networks: each neuron is connected with all the over 

neurons (Figure 2.13 - b); 
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Figure 2.13: Non-Recurrent network (a), completely connected network (b). 

 layered networks: neurons are organized on speared layers (Figure 2.14 - a); 

 Symmetric networks: the connection between each two neurons is the same in 

the two senses (Figure 2.14 - b); 

 auto-associative networks: input units and output units are the same (Figure 

2.14 –c ); 
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Figure 2.14: layered network (a); symmetric network (b); auto-associative network (c). 

 stochastic networks: into the network are introduced random variations either 

by giving the network's neurons stochastic transfer functions, or by giving 

them stochastic weights. There is some probability that a unit is not activated 

even when it receives a stimulus; 

 asynchrony networks: neurons are activated casually one by one. 

2.8 ANN modeling approach 

In general, in the classical modeling approach, a model is defined as a simplified 

version of a real system and phenomena. The system is a "transparent box" where 

internal components and their operation are known. The constitutive laws are used to 

implement the model of the system and to solve the problem. The classical approach 

needs precise governing equations and the assumption of hypothetical simplification.  
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A complex model may yield more accurate results if it describes the real situation 

thoroughly. However, a complex model usually involves more computation time, makes 

the analysis more difficult, and often requires more information for its construction. 

Such situations require more simplifying assumption in order to obtain a manageable 

solution of the problem. Simplified assumptions and not available governing equations 

may, in some cases, render the model not reliable.  

In other words, ANN modeling approach allows to model a complex 

environmental phenomena without precise governing equations and with no simplifying 

assumption. The model device is considered as a “black box” where the internal 

structure is unknown or inaccessible. Only experimental data are used to derive the 

system model. 

Disadvantages associated to ANN modeling is that the model is specific for the 

system under consideration and cannot be built a priori.  

ANNs allow to analyze a physical system where mathematical models are 

complex or not existent. ANN dissociates itself from the system physical model, i.e. the 

physical meaning of parameters is totally lost. Based on external data, ANNs are able to 

build simple algebraic equations that can reproduce the cause-effect relationship of the 

studied phenomena. 

In practice, the main feature of an ANN is the “Generalization Propriety”. The 

ANN, based on a given data set (examples of the phenomena), called training set, tries 

to build a statistical model able to reproduce the process that has generated the data set. 

This kind of technology is not programmed but just trained. During the training, the 

ANN learns to build inside the knowledge necessary to perform the requested task: 

reproduce the studied phenomena. In this way, the information is processed in a 

distributed manner by the elementary units, reaching a resistance to noise. In fact, the 

network is able to operate despite the presence of uncertain data, incomplete or slightly 

erroneous.  

The learning ability is a function of various factors, including the topology of the 

network itself, the number of neurons, the learning rules and the training patterns. 

It is possible to summarize the ANN actions in basic steps: 

 learning: phase in which connections weights are calculated based on training 

patterns (examples of the system or phenomena that we want to model); 
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 execution: phase during which the ANN trained network calculates the output, 

taking into account the values of inputs and weights obtained in the previous 

phase. The ANN is executed with new examples that are not used during the 

training in order to reproduce the modelled phenomena. 

The networks can be implemented in both hardware and software level, by means 

of special mathematical and statistical computational models. The ANNs models used 

in this work are developed with the Neural Network Toolbox of MATLAB 7.1. 

In the framework of ANN technologies, information are processed in parallel, and 

input is distributed in a number of different neurons, which contribute at the same time 

to output production. This parallelism reduces the risk to have irreparable damage in the 

case of neuron loss when we have architecture with many neutrons and complex ANNs. 

It may seem strange to simulate parallel networks on sequential computer, however, the 

use of parallel simulators appear advantageous in terms of computation time during the 

training phase. 

2.9 Designing and training of a Multilayer Perceptron Network 

The issues involved in designing and training a MLP are: 

 the problem of "mapping": it deals with the identification of the n input 

variables; 

 problem of the "threshold": it concerns the identification of the m output 

variables; 

In order to design a MLP architecture, it is necessary to define the following 

parameters: 

 choose the architecture model; 

 decide how many neurons should be use in input and output layer on the basis 

of the n input variables and m output variables; 

 choose the number of hidden layers to be use in the network: for almost all 

problems, one hidden layer is sufficient. Two hidden layers are required for 

modeling data with discontinuities. Using two hidden layers rarely improves 

the model, and it may introduce a greater risk of converging to a local minima. 

There is no theoretical reason for using more than two hidden layers; 
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 decide how many neurons should be used in each hidden layer: one of the most 

important features of a perceptron network is the number of neurons in the 

hidden layer(s). If an inadequate number of neurons is used, the network will 

be unable to model complex data, and the resulting fit will be poor. If too 

many neurons are used, the training time may become excessively long, and 

the network may over fit the data. When overfitting occurs, the network will 

begin to model random noise in the data. The result is that the model fits the 

training data extremely well, but it generalizes poorly new and unseen data. 

Validation must be used to test this; 

 choose the activation function for each layer: the activation function controls 

the amplitude of the neuron output. The choice of the activation function may 

significantly impact the performance of the ANN network; 

 choose the learning rules; 

 choose the training stop technique and convergence criteria. 

The goal of the training process is to find the set of weight values that reconstruct 

the input-output relationship. In particular, the weights that may generate the output 

from the neural network have to match the target values as closely as possible. 

During the training phases, it is important to find and converge in an optimal 

solution that avoids local minima in a reasonable period of time. The last steps before 

“freezing the weights” (save the trained network) consist in validating the neural 

network and test it regarding overfitting. 

2.10  Summary 

In this chapter, the concept of artificial neural networks and the most important 

features that render this technology attractive in hydrogeology research have been 

explained. Structure, components and architecture models of artificial neural networks 

have been detailed. In particular, the supervising learning problems and the useful tools 

to solve or mitigate them have been discussed. Classical modeling approach is 

compared with artificial neural network modeling. The designing and training of a 

Multilayer Perceptron Network has also been addressed. 
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3 ANN APPLIED TO STUDY A POLLUTED 

AQUIFER 

This chapter is dedicated to a theoretical case of pollution. In particular, this work 

aims to define a method to identify the spatial location (X,Y) and the duration of the 

activity (T) for an unknown pollution source based on the measures of contaminant 

concentration acquired in the monitoring wells at a certain time t, which represents the 

current time. 

Groundwater contaminations, in some cases, may result from pollutions whose 

origins are at times and places different than where the contaminations have been 

actually found. Such situations require the development of techniques that allow the 

identification of these unknown pollution sources. 

In this chapter we propose the use of the neural network paradigm in an 

innovative way in order to identify unknown pollution sources. Artificial neural 

networks are used as a tool to locate the source of a contamination process in a 

homogeneous and isotropic two dimensional domains. This case takes under 

consideration the restricted hypothesis of groundwater contaminated by a single 

pollutant injected in a single point. Training patterns are constructed by simulating 

hydrogeological scenarios through the use of a non commercial software for flux and 

contamination transport modelling.  

The huge amount of data carried out by each time step of simulation of the 

domain is not suitable to be inputted in an artificial neural network. Feature extraction 

techniques have been therefore implemented to reduce data dimensionality. A neural 

network is trained to capture the functional relationship between the contaminant 

concentration measured in pumping wells and the position and duration of the pollution 

source that generated these contaminations. The network is then used to solve the 

inverse problem consisting in locating the pollutant source, and how many time steps 

before the event occurred. Results of the study have shown the suitability of the neural 

approach for extracting hidden relationship between patterns and monitor groundwater 

resources. 

This part of the research is carried out to improve in a innovative way the results 

of two previous works [Scintu, 2004; Fanni et al., 2002], aimed at analysing if the 
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ANNs were able to identify the geological domain, the position of a contaminant source 

and known concentrations of contaminants in the monitoring network.  

In Fanni (2002) and Scintu (2004) works, different traditional feedforward, 

MultiLayer Perceptron (MLP) networks are trained to predict the coordinates of the 

pollutant source and the time the pollution occurred. In particular three ANNs were 

trained: one for the time step concerning the duration of the activity (T) and two for 

geometrical coordinates (X,Y). The inverse problem approach, applied in both works, 

consists of presenting as input to the neural model the knowledge of the distribution 

map of the contaminant at different time steps and associating them, as desired output, 

the geometrical coordinates of the injection wells and the time step before the injection 

occurred. Therefore the inverse problem is directly solved using the ANNs. These 

previous works showed very good performances in locating the pollutant source, 

however worse results have been obtained with time step prediction network (see 

paragraph 3.5).  

In this work, in order to improve these results, a new approach is applied. One 

ANN is trained to solve the direct problem: presenting as input to the neural model the 

spatial location (X,Y) and the duration of the activity (T) for the unknown pollution 

sources and associating them, as desired output, to the measures of contaminant 

concentration acquired in the monitoring wells at the final time t of the numerical 

simulation, which represents the current time. After the training phases, the trained 

ANN is inverted in order to solve the inverse problem. Starting from the contaminant 

concentration in monitoring wells, the unknown contaminant source characteristics have 

been found. The approach, presented in this chapter, thanks to a drastically reduction of 

the input/output data to a very manageable size allows a strong computational time 

reduction. Moreover the implemented method is useful not only to identify the location 

and duration activity of unknown pollution sources, but also to bound the study area 

defining best location of the monitoring wells in the domain and optimize the 

investigation costs. 

3.1 Introduction to the implemented methodology 

Groundwater pollution sources are characterized by varying spatial location, 

injection rates and duration of activity. Concentration measurement data from 

monitoring wells may be utilized to identify these unknown pollution sources in terms 
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of spatial location and duration of the activity. Therefore, the identification of an 

unknown groundwater pollution source becomes more difficult in the lack of complete 

breakthrough curves of historical concentration. If concentration observations are 

missing over a length of time after an unknown source has become active, it is even 

more difficult to correctly identify the unknown pollution source.  

An artificial neural networks based methodology has been developed to solve the 

inverse problem for such a missing data scenario when concentration measurement data 

is not available for the entire duration of the pollutant source activity. In the studied case 

the worst situation is taken into consideration: in particular, one single value of 

concentration measurement at the current time t is available.  

Data for training the ANN are simulated using a groundwater flow and 

contaminant transport numerical simulation model. A generic conservative pollutant is 

considered. Contamination observed in monitoring wells result from a single source 

with a constant injection rate and different release periods. 

The model implemented has been chosen to be very simple: the purpose of this 

research is to explore the potentialities of the artificial neural network methodology for 

solving the inverse problem of unknown pollution source position estimation and not to 

actually apply this methodology to address a given real problem. 

In a first step, an artificial neural network was trained to solve the direct problem. 

In this part of the application, the networks were trained, by means of examples, to 

recognize the pollution sources position and duration of activity corresponding to the 

output contaminant concentration in monitoring wells. The input patterns were made of 

the pollution source features in terms of spatial position and activity duration. The 

output patterns were contaminant concentration observation data at given monitoring 

wells. After the training, the network's generalization properties can be exploited to 

estimate the contaminant concentration data in monitoring wells corresponding to new 

pollution sources. 

In a second time, the trained network was inverted in order to solve the inverse 

problem. On the basis of the known contaminant concentration data in monitoring 

wells, the pollution sources position and the duration of the activity can be identified. 

In order to train the ANNs, it is necessary to generate a consistent data set of 

patterns for training and test. To generate the patterns, the numerical flux and 
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contaminant transport simulation software TRACES (Transport of Radio ACtive 

Elements in the Subsurface) has been used. 

As documented by Hoteit et al.(2004), TRACES is a computer program for the 

simulation of flow and reactive transport in saturated porous media. It is written in 

FORTRAN 95 and is portable to different platforms. TRACES handles transient and 

steady state computations in 2D and 3D heterogeneous domains. It is based on mixed 

and discontinuous finite element methods for solving the hydrodynamic state and mass 

transfer problems. The code is flexible in describing complicated geometries by using 

triangles or quadrangles in 2D, and tetrahedrons, prisms or hexahedrons in 3D. 

Boundary conditions and almost all parameter values can vary in space. A material 

property index is assigned to each grid element. Boundary conditions, source terms, 

fluid and porous matrix properties can change with time, based on a user-specified 

tabular function. 

ANN patterns were constructed through a coherent number of hydrogeological 

scenarios, based on a simple 2D geometry. 

The data provided by the model were treated by feature extraction techniques in 

order to significantly reduce the size so that they could be processed by the ANN. 

3.2 Flux an transport model of the studied aquifer 

To train and test the ANN, it is necessary to construct a consistent set of training 

patterns. These training patterns are generated by simulating hydrogeological scenarios 

using flow and contaminant transport model. 

The first step in the modeling procedure consisted in defining the appropriate 

conceptual model. In a second time, the conceptual model has been expressed in the 

form of a mathematical model by using TRACES. 

The modeling procedure is explained in the following paragraphs. 

3.2.1 Conceptual model of the theoretical aquifer 

To study the phenomena generated in aquifers contaminations, it has been 

necessary to build a conceptual model to organize field data and assess how these data 

are translated into a physical or mathematical model. The construction of the conceptual 

model implies a number of simplifying assumptions such as the definition of the basin 
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boundaries, initial conditions, boundary conditions, recharge and discharge sources, 

pollution sources, hydraulic heads and the hydrochemical patterns. 

The theoretical hydrogeological basin and its principal features have been defined 

as reported in Table 3.1. 

THEORETICAL AQUIFER 

Aquifer type: confined and isotropic aquifer system composed by one horizontal 
layer characterized by only one stratigraphic unit whit a constant thickness. 

It is delimited by no-flow boundaries on the North and South sides. 

Domain dimension 1000* 1000m2 

Hydraulic head on the west boundary 9 m 

Hydraulic head on the east boundary 8 m 

Horizontal hydraulic conductivity [ko] 0.0001 m/s 

Effective porosity 10% 

Pumping well 1  

Pumping rate of the well (the pumping starts from the 
beginning of the simulation) 

0.0012 m3/s 

Constant punctual pollution source concentration 100 μg/m3. 

Table 3.1: theoretical aquifer features. 

No recharge rate is applied to the aquifer. The initial contaminant concentration, 

in the domain, is assumed equal to zero. 

Totally, 40 constant punctual pollution sources with a concentration of 100 μg/m3 

were considered. Each pollution source has different position in the domain. 

3.2.2 Numerical model 

In order to solve the partial differential equation by the numerical model 

TRACES, a grid is superimposed over the studied area. 

The grid consists of a set of consecutive cells, for which it is necessary to specify 

the input parameters. The size of the grid can be different to allow a less approximate 

study of the most significant resolutions and more detailed in areas where greater 

accuracy is required. The development of the grid, therefore, represents one of the most 

critical part of modeling because it strongly impacts the numerical solutions obtained. In 
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this case, a regular quadrangular two-dimensional mesh is imposed in the whole domain 

(Figure 3.1). The adopted model discretization may provide a sufficient geometric 

configuration to reproduce the best possible hydrodynamic conditions of the aquifer. In 

Table 3.2, the model discretization has been summed up. 

Model discretization 

Number of X cells 50 

Number of Y cells 50 

Dimensions of the X and Y cells 20*20m2 

Table 3.2: model discretization. 

X [m]

Y [m]

X [m]

Y [m]

 

Figure 3.1: two dimensional quadrangular mesh. 

Thanks to TRACES software, it is possible to assign in the numerical model the 

aquifer input features to each cell or cell edge of the grid. Mixed and discontinuous 

finite elements methods, used by TRACES, ensure exact local mass balance, handle 

high parameter discontinuities between adjacent elements, and treat full tensors without 

approximation. The mathematical model describing the flow in the porous material is 

solved by the mixed hybrid finite element method. The transport equation is split in 2 

parts, where the advective part is solved by discontinuous finite element and the rest by 
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the mixed hybrid finite element method. Discontinuous Galerkin finite element can 

solve advective dominant transport without oscillations and with very limited numerical 

diffusion [Hoteit et al, 2004]. 

Through the application of the code, the trend of the piezometric head and 

contaminant concentration in the domain in stationary state was developed. The 

phenomenon has been studied assuming that the contamination happened from a single 

cell (pollutant source) with a single generic contaminant. It is also assumed the presence 

of a pumping well with a constant pumping rate and no variation of the initial 

parameters of the model during the simulation time. 

Figure 3.2 shows hydraulic head and contaminant concentration distribution for a 

generic pollutant source after 10 years activity at the top of the aquifer domain. 

X [m]

Y [m]

X [m]

Y [m]

[m][m] [μg/l][μg/l]

X [m]

Y [m]

X [m]

Y [m]

[m][m] [μg/l][μg/l]

 

Figure 3.2: hydraulic head and solute concentration in the domain. 

3.3 ANN pattern construction: elaboration and reduction 

The main source of information about the contaminant movement and 

accumulation in aquifers comes from measurements of solute concentrations in 
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monitoring wells. In fact, these are the parameters used in this work to solve the inverse 

problem in order to identify the unknown pollution sources. 

The ANN patterns have been constructed by the simulation of 40 different 

hydrogeological scenarios. In order to uniformly cover the entire basin area, the 40 

sources were located at different positions of the domain (Figure 3.3). For all 40 

sources, three activity source duration have been considered. In particular the timing of 

activity of the sources were 10, 20 and 30 years. So for each of the 40 scenarios, three 

different durations of the activity have been considered. 

 

Figure 3.3: distribution of the 40 sources in the domain. 

In total, 40 different initial source locations for the 3 durations were considered, 

resulting in 40*3=120 sample maps of contaminant distributions. Each source of 

pollution has been assigned 100 μg/m3 of contaminant concentration. 

The samples obtained from the simulation model are the matrix of contaminant 

concentration for 50 cells distributed in order to cover the entire basin area in the 

domain (Figure 3.4). 

X [m]

Y [m]

X [m]

Y [m]
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X [m]
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Figure 3.4: distribution of the 50 cells for the contaminant concentration in the domain. 

In the matrices, rows represent the time and columns represent the value of 

concentration in the 50 cells.  

Matrices were too large to be processed through ANN, requiring too many 

examples of inputs and thus a large network quite difficult to handle. For these reasons, 

it has been necessary to perform a data pre-processing aimed at reducing the matrices 

size. Feature extraction is a practice commonly used in ANN applications. 

Different neural models have been developed depending on data reduction used in 

order to choose the best feature extraction procedure. 

In the following paragraph, the feature extraction techniques needed to reduce the 

data dimensionality and to limit the number of free parameters of the ANN are detailed. 

3.3.1 Input data reduction 

The input data for the ANN were the positions (X,Y) and the duration of the 

activity (T) of the pollution sources for the 120 hydrological scenarios developed. In 

particular, 40 couples of coordinates for a total of 120 simulations. The three input 

parameter (X,Y,T) have been pre-processed by normalizing so that they fall in the 

 87 



ANN APPLIED TO STUDY A POLLUTED AQUIFER 

interval [-1,+1]. In the Matlab neural network toolbox, input data are normalized 

through the command premnmx. The algorithm is presented in Equation 3.1. 

 
  1minmax

min2





pp

pp
pn    3.1 

Where: 

pn  is the matrix of normalized input vectors, 

p is the matrix of input (column) vectors, 

pmax is the vector containing maximums for each p , 

pmin is the vector containing minimums for each p . 

The pre-processed input pattern matrix had size 3*120. 

3.3.2 Output data reduction 

TRACES simulation samples have been saved as an ASCII matrix file. We have 

one file for each examined scenario. Each matrix component, ai,j, represents j 

concentration value of the contaminant for time i. 

In total, the output data consist of 120 matrices regarding the concentrations of the 

contaminant in the domain associated with 120 different sources. The 120 matrices had 

size [m,n], where the rows represent the time and columns represent the value of 

concentration in the 50 cells. In order to make these data useful for the ANN, it is 

necessary to reorganize the 120 matrices to form one big unique matrix for all the ANN 

output. 

Several data pre-processing may be used in such reduction cases. The choice is 

strictly linked to the chosen ANN approach. In our case, the total absence of complete 

breakthrough curves of concentration time series at all the time steps was hypothesized. 

So, for each one of the 50 cells, only one concentration observation data are taken into 

consideration, in particular the concentration of the final time t was taken. 

The following scheme (Figure 3.5) present the pre-processing to select the most 

significant components for the monitoring wells selection procedure used for the output 

pattern matrix construction. 
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Contaminant concentration matrix 
measured in the 50 mesh cells at the time t

Correlation between input and output:
reduction to 15 mesh cells
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8 mesh cells = 8 monitoring wells

Contaminant concentration matrix 
measured in the 50 mesh cells at the time t

Correlation between input and output:
reduction to 15 mesh cells

ANNs trainings: 
reduction to 8 mesh cells

ANNs trainings: 
reduction to 8 mesh cells

8 mesh cells = 8 monitoring wells
 

Figure 3.5: schema of the monitoring wells selection procedure. 

For the output data reduction, the restricted hypothesis of the total absence of 

historical data concerning the aquifer pollution was taken into consideration, in 

particular, the case of a contamination detection for the first time in a generic domain. 

Only the last value of contaminant concentration in the time, obtained through 

simulations, were considered for the 50 cells. These 50 cells may correspond to 50 

hypothetical monitoring wells. At this point, the matrices became vectors composed by 

50 elements. The 120 vectors were joined to make an unique matrix of output patterns. 

This matrix had dimension 50*120. 

However, these vectors were too large to be subsequently processed through the 

ANN, requiring too many examples and a large network with a lot of hidden neurons. In 

this way, the ANN becomes too big and it may loose its specific feature consisting in 

the calculation speed. Moreover, the number of 50 hypothetical wells was too large for a 

small domain such as that taken into account. 

To reduce the number of hypothetical wells, a procedure has been developed that 

permits to identify the minimum number of monitoring wells needed to solve the 

problem directly using the ANN. 

Firstly, it was determined which of the 50 cells/wells were less related to the 

sources. In practice, it was calculated the correlation coefficient between the 120 

sources and the corresponding 120 concentrations vectors for the 50 cells. The 120 

cases were considered one by one and the matrix of correlation coefficients between the 
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sources and the 50 cells were calculated. For each source a classification have been 

drawn and just the first five cells better correlated for each sources were kept into 

consideration. 

Based on this initial reduction, 15 cells were kept (Figure 3.6). So the output 

patterns matrix size becomes 15*120. 

X [m]

Y [m]

X [m]

Y [m]

 

Figure 3.6: distribution of the 15 cells or hypothetical monitoring wells. 

The number of wells was still too large determining high investigation costs. In 

order to further reduce this number, an interactive procedure based on the application of 

a ANN was developed. 

ANNs have been over-trained with the sole training set composed by the all 

patterns. After each session, the cell (hypothetical monitoring well) that was less linked 

to the sources was removed from the output patterns. So the matrix became smaller. 

The neural network trained for the additional reduction of the number of wells 

was a traditional feedforward Multi Layer Perceptron (MLP) composed by 3 layers:  

 input layer composed of 3 neurons corresponding to coordinates XYT, 

 hidden layer composed of 15 neurons  
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 output layer composed of 15 neurons corresponding to the 15 cells. 

The number of the hidden neurons is determined by means of a trial and error 

procedure performing several trainings assuming a growing number of neurons in the 

hidden layer. 

Once defined the network features, it was over-trained in order to reduce the error 

between calculated output and desired output, evaluating at the same time the gradient 

evolution (using the method of gradient descent paying attention to local minima). The 

network is trained with the iterative presentation of a whole set of patterns called 

“epoch” (input and output pairs). During the training the consecutive steps of 100 

epochs were exercised until the error stop to decrease. At the end of the training phase, 

the calculated outputs and desired outputs have been compared. The worst results were 

removed from the output pattern matrix. 

For each training phase, the output pattern matrix became smaller, reducing the 

number of hidden and output neurons. At the same time, the number of hidden neuron is 

reduced for keeping the same number of hidden and output neurons. 

The ANN was trained in order to assess and preserve the learning capacity of the 

network. This procedure was carried out until the minimum number of monitoring wells 

necessary to solve the direct problem was found.  

Finally, the minimum number of monitoring wells has been set to 8 (Figure 3.7). 

A further reduction of the number may cause a deterioration of learning ability and 

generalization capacity of the network. 
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Figure 3.7: distribution of the 8 cells or monitoring wells. 

As a consequence, the output pattern matrix is composed of contaminant 

concentrations at 8 monitoring wells for the 120 simulations. This matrix has been pre-

processes by normalizing so that the components fall in the interval [-1,+1] (see 

Equation 3.1). The pre-processed output pattern matrix has size 8x120. 

3.4 MLP networks development and inverse problem solution 

The ANN was initially trained to solve the direct problem: starting from the time-

space coordinates of the pollutant source, the value of the contaminants concentration in 

monitoring wells has been reconstruct. The trained network was subsequently inverted 

to solve the inverse problem: starting from the measurement of contaminants 

concentration in monitoring wells, the time-space coordinates of the unknown pollutant 

source have been found. Figure 3.8 shows the scheme of the ANN implementation. 
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Pre-processing

ANN construction and training
for the direct problem solution

Unknown pollution sources identification

Inversion of the trained ANN 
for the inverse problem solution

OUTPUT PATTERNS
Monitoring wells contaminant 

concentration matrices 

INPUT PATTERNS
Source position and duration 

of the activity matrices

 

Figure 3.8: schema of the applied procedure. 

3.4.1 MLP networks development 

The most important features that should be defined for the artificial neural 

networks construction are: the learning method, the network architecture, the activation 

functions for each layer, the learning algorithm and the learning rule. 

A 3 Layer Perceptron (MLP) architecture was trained with the supervised learning 

by furnishing couples of input and target patterns (desired output). The network was 

formed of one input layer, one hidden layer and one output layer. The input layer is 

composed of 3 neurons corresponding to the two spatial coordinates X, Y and time T. 

The output layer is composed of 8 neurons corresponding to the contaminant 

concentrations in the 8 monitoring wells. Once the input and output layer dimension has 

been defined, it is necessary to set the number of hidden neurons. Usually, this number 

is determined by means of a trial and error procedure, so that several trainings are 

performed assuming a growing number of neurons in the hidden layer. In our case, we 

have taken the same number of neurons for the output layer in the hidden layer. As a 

result, the hidden layer is made of 8 neurons. 

The functional dependence between input and output is defined by hyperbolic 

tangent activation function for the hidden layer and linear activation function for the 

output layer. 
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The learning algorithm chosen is the Error Back Propagation (EBP) algorithm 

optimized by the Levenberg-Marquardt (LM) algorithm. The LM algorithm gave the 

best performances in terms of Mean Square Error (MSE). 

To ensure satisfying sample generalization performances, we have used a Leave 

one Out Cross Validation (LOO) learning rule. 

The training of the ANN is a critical part of the proposed process. In fact, a 

special attention has been dedicated to train the ANN in such a way that it is able to 

generalize the information contained in the training set. To this end, during the training 

phase the connection weights were modified in order to minimize the error of the 

training set. 

Once the above-mentioned key features of the artificial neural network are 

selected, it may be trained. During supervised training, in our case, the connection 

weights are changed in order to minimize the error between the target and the network 

output. It is proceeded with the presentation of a whole set of patterns (input and output 

pairs). The set of patterns is called “epoch”. The training is based on the iterative 

presentation of the epochs according to a random sequence of the patterns.  

During the training, thanks to the EBP algorithm, the error between the calculated 

output and the desired output, for a particular input state, is propagated backwards 

through the weights of the hidden layers, until it reaches the input layer (from output to 

input). The goal is to isolate the influence of each connection weight in the error 

between calculated and target. 

On the basis of the results obtained during all the training trials, the appropriate 

number of training iterations (epochs) is assumed at 100. 

The LOO learning rule is generally applied when the available number of 

examples patterns is limited. In this procedure, the examples pattern is divided in p sets, 

where p is the number of the couple input/output patterns. Each set is divided in two 

subsets: one composed of p-1 examples is used for the training and the other one 

composed of 1 example that may be used for validation or test. In our case, the training 

set is made of 119 couples of input-output patterns and the test set is composed of one 

couple of input-output patterns. One by one, each couple is part of the training set and 

of the test set. In this procedure, the validation set was not considered because we 
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wanted to exclude the stop training process during the training procedure. This method 

allows to extract a maximum of information from all the patterns. 

A consequence of the validation set absence is that a number of epochs have to be 

set. The selected epochs are totally reached during the training phase. Accordingly, in a 

preliminary training, an increasing number of epochs have been considered by taking 

steps of 100 epochs for each trial. These trials allowed to understand that 100 epochs 

were enough. An additional number of epochs did not improve the ANN. In addition, 

this arrangement was successful in terms of reducing computation time. A further 

increase of the epochs generated a negative cost-benefit ratio, in fact, the overall 

improvement of the results was not sufficient to justify an increase of computing time. 

Totally, 100 epochs have been set for the training phase. 

A consequence of using the LOO learning rule is the need of training a number of 

networks equal to the number of examples couples, allowing a coherent comparison 

between the results.  

In total 120 networks, based on the application of the LOO learning rule, were 

trained with different training set and test set. Each network was trained with 120 

examples and tested with one example (kept out from the original training set). The test 

example allows us to estimate the network generalization capacity. 

In our case, the LOO procedure is not used to train the network that will be used 

in a particular case, but only to estimate the generalization ability of the 120 trained 

networks. If one wants to consider a new source not included in the 120 patterns, all the 

patterns will be used for the training set and the new case will be used for the test set.  

The developed methodology allows us to reach the reasonable presumption that 

the error for the new case will not be greater than the errors experienced in the 120 

networks already trained. 

3.4.2 Solution of the inverse problem with the MLP networks 

The networks were initially trained to solve the direct problem, as explained 

before. The connection weights have been frozen after the end of each training session. 

For each case, during the training the mean square error and the gradient progress were 

considered. 
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Figure 3.9: generic artificial neural network trained with the LOO. 

Figure 3.9 show one or the ANNs trained that calculate the a relationship between 

input and output patterns. 

The ANNs trained demonstrate a relationship between input and output patterns 

described by the following algebraic equations systems: 
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      (3.2) 

Where: 

x  is the input of the network, 

1
W is the weights matrix of the input layer, 

1b  is the bias vector of the input layer, 

y is the input of the hidden layer, 

h is the output of the hidden layer, 

)( is the hidden neurons logistic activation function, 

u  is the output of the network, 

2
W  is the weights matrix of the output layer, 
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2b  is the bias vector of the output layer. 

Once the training phase is completed, meaning that all the weights have been 

determined, the inversion of the network can be performed. The trained networks were 

inverted to solve the inverse problem. On the basis of the known output of the system, 

which derives from a set of measurements in the monitoring wells at a certain time t , 

the corresponding input can be calculated exploiting the method described in 

[Carcangiu et al, 2007; Fanni et al, 2003]. 

During the inversion process, explained below, the difference between the 

calculated input and the desired input was considered. 

On the basis of the third equation described in (3.2), starting from the output u, the 

vector h can be determined. 

Provided that the matrix 
2

W  is full rank, the solution corresponding to the 

minimum sum squared error can be found as: 

 2
1

2
buWh     (3.3) 

The second equation in (3.2) states a biunivocal relation between y and h, 

therefore the vector y can be calculated as: 

 hy 1    (3.4) 

Finally, provided that the matrix 
1

W is full rank, the input pattern x can be 

calculated as: 

)( 1
1

1
byWx  

  (3.5) 

The desired source position and duration of activity have been obtained by 

applying backward the pre-processing of the input data obtained from the inversion of 

the ANN. In the following paragraph results of the ANN inversion are explained. 

3.5 Performance evaluation and conclusions 

In general, the results showed very good performances in locating the pollutant 

source. Less satisfying results have been obtained with time step prediction. 

The error made by all the networks has been calculated considering the difference 

between the real position and the simulated position of the pollutant sources. 
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Figure 3.10, Figure 3.11 and Figure 3.12 show the hydrogeological domain with 

spatial coordinates X and Y corresponding to the 40 pollution sources positions. The 

blue circle represents the input patterns corresponding to the pollution sources position 

used during the training and the red x represents the simulated input patterns 

corresponding to the pollution sources position after the inversion of the 120 trained 

ANNs. Each of the three figures shows the results of the inversion of the 40 networks 

for the three time steps (10, 20 and 30 years).  

 

Figure 3.10: real (red x) and simulated position (blue circle) of the 10 years activity pollutant 

sources. 
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Figure 3.11: real (red x) and simulated position (blue circle) of the 20 years activity pollutant 

sources. 

 

Figure 3.12: real (red x) and simulated position (blue circle) of the 30 years activity pollutant 

sources. 
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Table 3.3 illustrates the percentages of success of identifying the unknown 

pollution sources recognition of the artificial neural networks. Concerning the pollution 

sources position we decided to divide the results between the error smaller and largest 

than one domain cell size. For the time of activity of the pollution sources we consider 

the case where time was 100% correct and the cases where it was smaller than 6 years, 

because 5,26 years was the maximum error committed in time estimation.  

Patterns results examples % 

X,Y,T 100% correct 14 

T 100% correct / X,Y error < 20m 40 

T 100% correct / X,Y error > 20m 17 

T error < 6 years / X,Y error < 20m 23 

T error < 6 years / X,Y error > 20m 6 

Table 3.3: performance of the inversion of the artificial neural networks. 

The final results as per Table 3.4 are expressed not as a percentage of error, but as 

the average mean and maximum error for the results. This way is considered more 

interesting to show how the network could fail in the pollution sources features 

approximation. 

 X  [m] Y  [m] Time  [years] 

Em – mean error 14.19 14.33 0.70 

EM – maximum error 39.17 39.82 5.26 

Table 3.4: results related to the identification of the pollution sources features. 

Concerning the positions of the unknown sources, the results show that most of 

the time the identification error is less than the size of one cell, in fact the cell size is 

equal to 20*20 m2. At the same time the maximum error, which represents the worst 

case, is less than the size of two cells (Table 3.4). 

In Table 3.5, the results obtained in this part of the research have been compared 

with the results of Scintu (2004) and Fanni (2002). 
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Test set prediction  X Y Time 

Thesis results 67% 59% 76% 

Scintu (2004) and Fanni (2002) results 100% 76% 54% 

Table 3.5 : percentage of correct prediction of the neural models Test set for the thesis 

results and the previous works results (Scintu (2004) and Fanni (2002)). 

As one can see in Table 3.5, the results of this work are determined by a good 

improvement of the duration of the activity approximation. In terms of percentage, 

worse results for the source position approximation are obtained, therefore it is 

important to underline that in Scintu (2004) and Fanni (2002) works curves of 

contaminants concentration in monitoring wells were used while in this work only one 

single value of contaminant concentration for each well is used. 

The results achieved in this work shows that in most of the cases, the 

identification error is less than one cell size and the maximum error is less than two 

cells size (Table 3.4). 

Figure 3.13 represents the error made by the artificial neural networks for time 

steps approximation.  

Regarding the identification of contamination time, in most cases the network is 

able to detect 100% of the duration of the pollution activity. This is probably due to the 

different dynamics of the pollutant processes depending on the distance of the source 

from the boundaries and from the pumping well. 
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Figure 3.13: duration activity approximation of the artificial neural networks. 

Figure 3.13 shows the duration activity approximation of the artificial neural 

networks. As one can see for the sources duration activity of 10 and 30 years, only one 

case time approximation is wrong. 

For the 20 years sources duration activity, the wrong cases have been higher than 

the correct cases with 26 wrong cases out of a total of 40 cases. Nevertheless the mean 

error was of 2.66 years. The minimum and maximum errors were respectively of 6 

months and 5 years and 3 months. Various trials performed to improve these results 

have shown that these results are strongly influenced by the instability of the ANNs. 

Figure 3.14 show the position of the pollutant sauces where the ANN calculate 

duration activity for the 10, 20 and 30 years is wrong. 

 

Figure 3.14: position of pollutant sources with ANN activity wrong 

3.6 Summary 

This chapter describes in details the estimation of the source behaviour in terms of 

spatial location (X,Y) and the duration of the activity (T). Various source scenarios have 
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been constructed in order to generate the examples patterns used for training and testing 

the ANNs able to solve the inverse problem. These scenarios have been performed by 

varying the pollutant source position and the duration of the source activity in the 

domain. An inverse method based on ANN technology has been used to identify 

unknown pollution sources. In particular, the inverse problem has been solved using 

measurements of contaminant concentration acquired in the monitoring wells at a 

certain time t. 
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4 ANN FOR ESTIMATING ALSATIAN AQUIFER 

POLLUTION SOURCE 

This chapter proposes a new methodology that aims at solving the inverse 

problem in order to reconstruct the behaviour in time and space of the carbon 

tetrachloride unknown pollution source of the Alsatian aquifer (France). 

The chapter provides a brief description of the Alsatian aquifer, the carbon 

tetrachloride tanker accident occurred in 1970 as well as the physical characteristics of 

this dangerous chemical. The numerical model of the Alsatian aquifer is described in 

order to explain the pattern construction and the ANN development. 

The Alsatian aquifer flux and transport model used in this thesis is based on the 

work carried out by Taef Aswed in 2008 for his PhD thesis at the Institut de Mécanique 

des Fluides et Solides (IMFS) of Strasbourg. 

4.1 Introduction 

The purpose of this part of the research is to study the spreading of a dangerous 

chemical - carbon tetrachloride (CCl4) - that contaminated, after a tanker accident in 

1970, part of the largest aquifer in Western Europe: the Alsatian aquifer located in 

France.  

The exact quantity of the chemical infiltrated is unknown and this constitutes the 

main issue for its location and remediation. Therefore, the objective is to reconstruct the 

temporal evolution of the Alsatian aquifer unknown contaminant source, determining 

whether or not ANNs are able to reconstruct the behaviour of the unknown contaminant 

source in the hydrological domain based on measurement of the contamination 

concentration curves in monitoring wells. 

This task has been carried out on the basis of a previous study [Aswed, 2008] that 

focused on solving the inverse problem for the carbon tetrachloride Alsatian aquifer 

contamination. Aswed’s work aims at modeling and simulating the transfer in the 

aquifer of contaminant and the determination of the source terms at the accident 

location. The pollution source was reconstructed based on the measurements of 

contaminants concentrations in the monitoring wells of the domain. The created model 

was calibrated using measured data of carbon tetrachloride concentration that were 
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collected during 12 years (from 1992 to 2004). Simulations were performed for a period 

of 54 years from 1970 to 2024. 

4.1.1 Operative steps 

The operational steps of this work can be described as follows: 

 study of the flow and transport model of the Alsatian aquifer, 

 creation of the examples patterns necessary for ANN development based on 

the Alsatian aquifer model, 

 implementation of an ANN suitable to address the Alsatian aquifer pollution 

inverse problem. 

The numerical model used to build the patterns for training, validating and testing 

the ANN are coming from Aswed’s work (2008). The examples of patterns were created 

by developing different hydrological scenarios of the Alsatian aquifer pollution source. 

4.2 Description of the Alsatian aquifer characteristics 

4.2.1 General description of the Alsatian aquifer and the Upper Rhine Valley 

The Alsatian aquifer is located North-East France in the southern part of the 

Upper Rhine Valley, part of Alsace region. A map of the aquifer area is available in 

Figure 4.1. 
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Figure 4.1: Alsace region and Alsatian aquifer in France. 

The Upper Rhine Valley is a segment of the European Cenozoic rift system that 

develops in the north-western forelands of the Alps. It extends over 300 km, from Basel 

(Switzerland) in the south to Frankfurt (Germany) in the north with an average width of 

approximately 40 km. Upper Rhine Valley is flanked by the Vosges and Black Forest 

(Schwarzwald) mountains, respectively, to the west and the east [Bertrand et al, 2006]. 

Figure 4.2 provides a map of the Upper Rhine Valley. 
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Figure 4.2: The Rhine valley. 

The groundwater of the Rhine valley between Basel and Mainz is an essential 

compartment of the Upper Rhine hydrosystem that contains a volume of alluvial about 

250 billion m3, which makes this large alluvial aquifer the largest fresh water reserves in 

Europe [Guilley F., 2004]. 

The Alsatian aquifer forms an integral part of this immense hydrogeological 

system. It extends to the border between France and Germany. It is surrounded by the 

Jura Mountains in the south, the Vosges Mountains in the west, the Rhine in the east, 

and the Haguenau-Pechelbronn basin in the north-west [Hamond, 1995]. 
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The aquifer surface is over 3000 km2. It has a length of 160 km and a maximum 

width of 20 km. This permeable alluvial has a thickness of a few meters at the Vosgean 

edge, and 150 m to 200 m in the centre of the Rhine plain. In Strasbourg region, it has 

an average thickness of around 80m [Hamond, 1995]. 

The groundwater reservoir contains about 50 billion m3 of water, with an annual 

renewal of 1.3 billion m3. The exploitation of the aquifer for collectives, industry and 

agriculture is almost the third of renewal volume, which is about 0.5 billion m3. This 

large aquifer has a vital importance since it supplies to 75% of the drinking water 

requirements, 50% of the industrial water needs and 90% of the irrigation water needs 

in Alsace. 

The numbers reported in this paragraph are extracted from the note of CIENPPA 

(1984), which highlights the importance of the phreatic aquifer and its economic role in 

the Alsace region. 

4.2.2 Hydrodynamic and hydrographic system of the Alsace plain 

The Alsatian aquifer is a phreatic aquifer filled by tertiary and quaternary 

sediments, mainly fluvial gravels and sands deposited from various origins and drained 

mainly by rivers and human activity. It is defined as an extensive alluvial aquifer with a 

layered structure composed by a random superposition of different alluviums (clay, 

sand fine to rough, gravels, coarse). 

The groundwater in the aquifer flows mostly from south to north and with some 

local variations mainly due to heterogeneity in the permeable formation. The hydraulic 

gradient, however, is not uniform over the aquifer. It is about 0.7% to 0.9% in the centre 

of the plain and is higher at the edge of the aquifer, where the sediments are less thick 

[Hamond, 1995]. 

The Rhine valley is dominated by two main rivers: the Rhine and the Ill River. 

The channelled Rhine has a flow rate typically between 700 and 1500 m3/s. The Ill 

River starts in Jura and runs northward through the Alsace. It has a discharge flow rate 

ranging between 5 and 10 m3/s at Strasbourg. The flow direction of the Ill River is 

almost parallel to the Rhine. Before joining the Rhine aquifer at the north of Strasbourg, 

all the smaller rivers carrying the discharge water from the Vosges mountains flow 

directly into it [Eikenberg et al., 2001]. Figure 4.7 contains a map of the studied area 

where these rivers are represented. 
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These rivers have a classic hydraulic system. The precipitation of the basins 

varied with time: high water level in winter and spring, and low water level at the end of 

summer. The groundwater reservoir is part of a complex hydrographical system, which 

includes frequent exchanges between the rivers and the aquifer which vary with the 

seasons due to the proximity between the surface and the groundwater. The Alsatian 

aquifer is highly exposed to contamination from the neighbouring rivers ad their 

tributaries. The river-aquifer interactions are governed by the fluctuating water level of 

the rivers and it may be quantified in two ways [Aswed, 2008]: 

 discharge of groundwater to surface water when the groundwater level is 

higher than the river stage, 

 recharge of groundwater by surface water when the elevation of river stage is 

higher than groundwater level. 

The interaction between the rivers and the aquifer at the Alsace region has been 

studied by the SEMA/DIREN. The exchange coefficient of the Rhine has been 

estimated to about 10-6 m/s by taking into account the discharge of the Rhine contra-

cannel. The canalization of the Rhine in Alsace was established to maintain a constant 

water level of the river and for agriculture purposes. 

Infiltration of rainwater is the major source of recharge for the Alsatian aquifer. A 

study of the mean precipitation in the modelled area that was carried out by the CEREG 

under the PIREN-Eau/Alsace program of the CNRS, showed that approximately 620 

ML/yr of water recharges the groundwater at the centre of the Alsatian aquifer and that 

680-740 ML/yr recharges the north-eastern margin of the aquifer. They generated a map 

of mean rainfall using five rainfall gauging stations. The groundwater recharge can be 

estimated to 5-10% of the precipitation. 

4.3 History of the pollution by CCl4 in the aquifer 

The information contained in this paragraph are based on the report of Hamond 

(1995). 

4.3.1 The accident of 1970 and pollution discovery 

On December 11th 1970, a tanker truck - property of a Dutch company -  

containing carbon tetrachloride (CCl4) capsized in the north of Benfeld, a small town 

located about 35 km south of Strasbourg (Figure 4.1). In spite of the efforts of the 



ANN FOR ESTIMATING ALSATIAN AQUIFER POLLUTION SOURCE 

 110 

firemen to control the spilling of the chemical, an important quantity of it could not be 

recovered (CCl4 is an extremely volatile product). 

The SGAL, however, shortly after the accident, hypothesized that the spill could 

reach the phreatic aquifer and described the probable migration mechanisms of CCl4. 

According to a note of SGAL of December 21th1971, about 4000 litres of CCl4 were 

spread in the area of the accident, infiltrating into the ground or disappearing by 

evaporation. 

At first, the pollutant infiltration was contemplated into non-saturated medium, 

taking into consideration the optimistic hypothesis that the loess layers, present in the 

accident area, could act as a barrier between non-saturated and saturated aquifer. In a 

second moment, because of its high density, the amount of CCl4 could reach the water 

table and quickly migrate into the aquifer. In the end, it was hypothesized the formation 

of a pollution plume of the aquifer of about 21 000 m3 due to the phenomenon of 

convection, diffusion, dispersion, and solubility of the product. 

However, no dynamic analysis to assess the propagation speed of such pollution 

was established. The migration of the pollutant downstream seemed not predictable due 

to the uncertainties about its behaviour. The idea, at the time, was that the pollution 

would be relatively limited, and that over time the pollutant may disperse, dilute and 

degrade before reaching the downstream Erstein’s drinking water supplies. Erstein is a 

small town located downstream of Benfeld (Figure 4.1). 

However, SGAL gave some recommendations concerning the installation of 

piezometers for monitoring the water quality and the plume spread in the accident area. 

These suggestions were transmitted to Mine Services and to the Direction department of 

agriculture (DDA) but without getting much attention, since they assumed that the 

chemical would be removed before being able to damage the supplies of water 

downstream. 

After 20 years, in 1991, was carried out the first analysis in the drinking water 

wells by the BRGM. The analysis showed quantities of CCl4 (about 15.6 μg/l) in the 

supplies of drinking water located in Erstein [Beyou, 1999]. Regular analyses of the 

drinking water wells showed that the level of CCl4 has always been exceeding the safe 

limits recommended by the World Health Organization (WHO) (2 μg/l). In 1992, the 

pollution was confirmed with CCl4 levels between 62.4 μg/l and 56.2 μg/l. This high 

level of CCl4 concentrations has caused serious problem in the region by contaminating 
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an important drinking water source in the area. On July 10th 1992, the Ministry of 

Health orders to the public not to consume groundwater for drinking usage [Beyou, 

1999]. 

4.3.2 Physical and chemical properties of CCl4 

CCl4 is a man made volatile organic chemical (VOC) that can be classified as a 

dense non-aqueous phase liquid (DNAPL). CCl4 has a density higher than water, 

implying that it has a tendency to penetrate the water table and move deeper into the 

aquifer. Plumes developing from these sources often travel large distances to eventually 

impact water supplies. 

Decomposition of CCl4 may produce phosgene, carbon dioxide, hydrochloric 

acid, methane tetrachloride, perchloromethane, tetrachloroethane, and benziform [HSG 

108, 1998]. 

Some of the physical and chemical properties of CCl4 are reported in Table 4.1. 

Property Value or Information References 

Molecular weight 153.84 g/mol CPHF, 1998 

Color Colorless NIOSH, 1994 

Phase state Liquid NIOSH, 1994 

Odor Sweet, ether-like odor NIOSH, 1994 

Odor threshold (in water) 0.52 mg/l U.S.EPA, 1998 

Boiling point 76.7°C CPHF, 1998 

Melting point -23°C U.S.EPA, 1998 

Solubility at 25°C 1160 mg/l  CPHF, 1998 

Solubility at 20°C 800 mg/l  CPHF, 1998 

Density 1.59 g/ml at 20°C NIOSH, 1994 

Log Kow 2.64 CPHF, 1998 

Soil Sorption Coefficient 

Koc 

Koc = 71 (moves readily through 
soil) 

U.S.EPA, 1998 

Bioconcentration Factor 
Log BCF = 1.24-1.48, not 
significant 

U.S.EPA, 1998 
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Vapor Pressure 91.3 mm Hg at 20°C CPHF, 1998 

Henry’s Law Constant 3.04 x 10-2 atm-m3/mol at 24.8°C U.S.EPA, 1998 

Henry’s Law Constant 
(dimensionless) 

1.25 at 24.8 U.S.EPA, 1998 

Table 4.1: Physical and chemical properties of carbon tetrachloride [Aswed (2008)]. 

Usage 

Carbon tetrachloride is a synthetic chemical compound that has been widely used 

in different activities during the 20th century. Moreover, the product is often discharged 

without further precautions. 

In 1910, it was used to extinguish fires [U.S. Patent 1,010,870]. The liquid 

vaporized extinguished the flames by inhibiting the chemical chain reaction of the 

combustion process. The carbon tetrachloride fire extinguishers were commonly used 

until the mid-20th century [U.S. Patent 1,105,263]. 

It is widely used in the production of refrigeration fluid (trichlorofluoromethane 

and dichlorodifluoromethane), in propellants for aerosol cans, in fabricating nylon, 

grain fumigant, to made petrol additives and semi-conductors. It is used as a solvent for 

fats, oils, and greases, for dry cleaning and for degreasing metals [U.S.EPA, 1998].  

Carbon tetrachloride properties has made it readily usable in industrial chemical 

processes, since it is not dangerous in terms of handling accident (no risk of explosion 

or fire). Smaller amounts of this solvent can also be used in laboratories or for domestic 

activities DIY (Do-It-Yourself) and as a spot remover for clothing.  

It was also used in agriculture through the mid-1980s as a fumigant to kill insects 

in grain. Its use as a pesticide was stopped in 1986. 

All these uses are now banned and its usage is limited to some industrial 

applications because of its toxicity and its effect on the ozone layer [ATSDR, 1995]. 

The Montreal Protocol on substances that deplete the Ozone layer (1987) and its 

amendments (1990 and 1992) established a timetable for the phase out of the production 

and consumption of carbon tetrachloride. The manufacture of CCl4 has, therefore, 

dropped and will continue to drop [UNEP, 1996; IPCS, 1999]. 
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Regulation and recommendation 

For about 15 to 20 years, Carbon Tetrachloride as well as Trichloroethylene and 

Tetrachloroethylene was a chlorinated solvent widely used and its use was not regulated 

at all. When the accident occurred in Benfeld, the French law did not contain any 

specific regulations on the matter. 

The Public Health Code revised in 1989, provides the quality standard for the 

waters on 1 μg/l; if CCl4 exceeds the limit, water monitoring should be strengthened. 

The World Health Organization, in 1999, recommended the level of 2 μg/l in the water 

and in air the CCl4 have to be less than 0.11 part per million (ppm). Humans cannot 

smell CCl4 if its level is less than 10 ppm. 

The Environmental Protection Agency (EPA) has set a Maximum Contaminant 

Level Goals (MCLG) for carbon tetrachloride at zero parts par billion (ppb) of drinking 

water. Based on this MCLG, EPA has set an enforceable standard called a Maximum 

Contaminant Level (MCL). The MCL has been set at 5 ppb for general water usage. 

Toxicity 

The EPA has determined that carbon tetrachloride is a probable human 

carcinogen. CCl4 and some of its degradation products are considered carcinogens or 

suspected carcinogens. Exposure to high concentrations of carbon tetrachloride may 

cause liver, kidney, and central nervous system damage [ATSDR, 1995]. The 

biotransformation of CCl4 in the body is initiated by enzymatic reactions that transform 

it into trichloromethy radicals (CCl3). CCl3 is the active product responsible for liver 

cell damage [Macdonald, 1982].  

Indeed, the CCl4 works at the cellular metabolism level, causing an excessive 

production of water. This results in an increase in whole body fluid volume and an 

increase in blood pressure. These reactions cause oedema of the lung and brain that can 

be fatal. Moreover, chronic damage are carried in the blood (anaemia), skin, peripheral 

nerves (paralysis of the legs). Neuropsychological consequences, such as emotional and 

behaviour are also possible. The injection of 5 ml of this product provokes an acute 

intoxication that causes human death. Toxic effects of CCl4 can occur after ingestion or 

breathing, and possibly from exposure to the skin. [Aswed (2008), Beyou, 1999]. 
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Environmental impact 

The high Henry’s constant of CCl4 indicates that it is extremely volatile. Because 

carbon tetrachloride evaporates easily, most of the compound released to the 

environment during its production and use reaches the air. It can remain in air for 

several years before it is broken down to other chemicals (from 30 to 100 years). In the 

air, it may react with other chemicals that have the potential to destroy upper 

atmosphere ozone layer. Small amounts of carbon tetrachloride are found in surface 

water. Evaporation from water is a significant removal process. Based upon field 

monitoring data, the estimated half-life in rivers is 3-30 days and in lakes and 

groundwater is 3-300 days. 

If carbon tetrachloride spills onto the ground much of it will evaporate to the air. 

Some of it may be trapped into groundwater, where it can remain for months before it is 

broken down to other chemicals. Only a small amount sticks to soil particles; the rest 

evaporates or moves into the groundwater. 

4.3.3 CCl4 migration in the aquifer 

In the Alsatian aquifer, CCl4 and its toxic constituents behaviour are strongly 

influenced by aquifer heterogeneity that produce high uncertainty in the CCl4 migration. 

CCl4 has low solubility in water, once it reaches the aquifer it migrates in two 

different phases: dissolved in water (aqueous) and liquid (non-aqueous phase). In the 

Alsatian aquifer carbon tetrachloride represents a long term source of contamination. It 

penetrates in the water table and continues to move vertically downward until 

gravitational movement is retained. Some of the contaminant is booked in the porous 

media by capillary forces. The trapped CCl4 release miscible quantities of contaminant 

due to the contact with the groundwater flow. 

The study site has complex heterogeneous and anisotropic hydrogeological 

conditions. In the groundwater system, carbon tetrachloride and its toxic constituents 

have actions of convection, dispersion, and diffusion. Volatilization of the CCl4 at the 

site saturated zone is insignificant. The sorption can be neglected due to the low organic 

matter content in the ground. The chemical properties such as the solubility in water, 

diffusion, volatilization, and degradation coefficients are uncertain. 

The exact amount of the chemical infiltrated and the source behaviour and how 

the pollutant feeds the contamination are unknown. 
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4.3.4 Cleanup approach 

The information contained in this paragraph are from the report of Beyou (1999). 

Since 1992, after the discovery of abnormal quantities of CCl4, public authorities 

have worked to educate the community and recommended to stop drinking water from 

wells. To meet the urgency of the problem, a water supply decontamination was 

considered. A remediation system plant was installed in one residential well 

(Negerdorf) in Erstein town. To remove CCl4 from groundwater, the remediation 

treatments include: air stripping and granular activated carbon absorption. 

In a first moment, ground water is pumped through two packed towers for air-

stripping. The towers are a forced draft system with air blown at up to 1700 m3/h. This 

blown air is used to separate CCl4 from water by evaporating. The removal efficiency of 

CCl4 at this stage of treatment is about 91%. Stripping towers also have the effect of 

removing 85% of the CO2 content in water drawn from the aquifer. 

In a second moment, the stripped ground water is filtered by granular activated 

carbon (GAC). GAC is installed on a bed where the contaminated water is pumped 

through. During this process contaminant gets absorbed by GAC and 100% of CCl4 is 

removed from ground water. 

The final processing step, before distributing water to consumers, is the 

disinfection with Chlorine. 

Figure 4.3 shows a schematic diagram of the treatment plant installed on 

Negerdorf well in Erstein. This scheme is taken from the report of Aswed (2008). 
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Figure 4.3: Schematic diagram of the treatment plant installed on Negerdorf well in Erstein. 

4.4 The model of the CCl4 pollution in the Alsatian aquifer 

The CCl4 Alsatian aquifer pollution has been the subject of several studies that 

address the hydrodynamic state of the aquifer and the pollution migration. Vigouroux et 

al. (1983) studied some cases of pollution in the aquifer of the Rhine Graben by using a 

2D numerical model taking into account convection, dispersion and retention. Hamond 

(1995) presented a numerical model that approximated the hydraulic head and transport 

problems. His study was based on data measured between 1970 and 1993. Beyou (1999) 

completed the study by adding measured data during the period between 1993 and 

1999. 

None of the mentioned works showed satisfactory matching of the measured data. 

Aswed (2008) developed a new 3 dimension (3D) numerical model of the CCl4 

pollution to simulate the concentration in the accident location. In particular the travel 

time between the source and measurement-wells was calculated by the method of 

moments. This numerical model was made on the basis of data measured in monitoring 

wells between 1999 and 2004. Aswed (2008) numerical models were constructed using 

the non commercial software “Transport of RadioACtiver Elements in the Subsurface” 

(TRACES) developed by Hoteit et al. (2004) at the IMFS. It was calibrated using 
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measured data of carbon tetrachloride concentration that were collected during 12 years 

(from 1992 to 2004). Simulations were performed from 1970 to 2024. 

In this work, we try to solve the inverse problem for the Alsatian aquifer pollution 

using ANN technologies. In order to model the CCl4 pollution behaviour with ANN, a 

model of groundwater flow and contaminant transport is necessary. To this end, Aswed 

(2008) model has been used. 

4.4.1 Difficulties for solving the inverse problem for the CCl4 pollution 

Based on Aswed’s work (2008), the main difficulties for solving the inverse 

problem for the pollution of the Alsatian aquifer are described below: 

 The exact amount of the chemical infiltrated in the underground is unknown 

since some of the tanker volume was recovered and another part could have 

disappeared by vaporization. 

 Carbon tetrachloride has low solubility in water. Some of the chemical could 

be trapped underneath of the accident site because of several physical and 

chemical mechanisms such as gravity, capillarity, and adsorption. The trapped 

CCl4 may continue to release miscible quantities due to the rain or the contact 

with the underground water flow. Therefore, the initially trapped CCl4 may act 

as a continuous source of contamination for the underground water. 

 The source contaminant behaviour that continued to feed the contamination 

and, which is space and time dependent, is unknown. 

 High uncertainty in the aquifer formation properties such as porosity and 

permeability. The aquifer is heterogeneous and has different permeable layers. 

 Uncertainty in the chemical properties such as the solubility in water, 

diffusion, volatilization, and degradation coefficients. 

 Complexity in defining a proper coupling between the water flow and pollutant 

transfer in the permeable medium and the corresponding boundary conditions. 

4.4.2 Numerical solution of the flow and transport problems 

Several types of numerical methods can be used to solve the groundwater flow 

and solute transport equations. Numerical simulators that are based on conventional 

finite difference (FD) of finite volume (FV) methods may not be ideal to solve the 
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Alsatian aquifer pollution. The aquifer geometry is complex and cannot be properly 

modelled by conventional finite difference method on structured (Cartesian) gridding. 

Conventional methods that intend to approximate the velocity by deriving the pressure 

head in a post-processing step may not be accurate in heterogeneous media. The 

accuracy of the predicted velocity field is thus crucial. The transport problem is 

dominated by convection. It is also known that first order approximation methods have 

poor convergence near chocks or sharp fronts of convection dominated problems. Fine 

gridding are thus required to reduce the numerical diffusion. To model the CCl4 

pollution, Aswed (2008) used the numerical model TRACES because it combines the 

mixed hybrid finite element (MHFE) and discontinuous Galerkin (DG) methods to 

solve the hydrodynamic state and mass transfer problems. 

4.4.3 Characteristics of the flux and transport model of the Alsatian aquifer 

The domain is highly heterogeneous due to the sedimentation effect, which 

provides anisotropic flow properties. The behaviour of the pollutant plume is strongly 

influenced by the contrast of permeability within the alluvial aquifer. 

Several studies were preformed at IMFS to numerically model the subsurface 

water flow and contaminant migration in the Alsatian aquifer [Hamond (1995); Beyou, 

(1999)]. 

The aquifer structure between Benfeld and Erstein could be clearly visualized due 

to geological profiles carried out during the installation of 34 wells and piezometers. 

These data have been obtained from the BRGM database. 

Hamond (1995) estimated the hydraulic head and water-flow velocity in the area 

between Kogenheim and Strasbourg by using a 2D steady-state model. A sketch of the 

domain is shown in Figure 4.4 (green polygon). 

The accuracy of his model was validated using the average values of measured 

head data during the period between 1970 and 1994. He also analyzed the flow 

trajectories and the travel times of water particles between Benfeld and Strasbourg. The 

2D model was calibrated with 34 points of measurement head, where the maximum 

difference between the measured and predicted piezometers was less than 10 cm for 31 

points and 16 cm for the 3 other measurements. 

The measurements in the aquifer showed that the contaminated zone is located 

approximately in the groundwater between Benfeld and Erstein, South-West/North-
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East. The contaminated zone is confined within a rectangle domain of 6 km width and 

20 km length. The contaminated domain is located between upstream of Benfeld and 

downstream of Erstein (see Figure 4.4). 

 

Figure 4.4: 2D and 3D domain with the related boundary conditions [Hamond, 1995]. 

In the work of Aswed (2008), the flow and contaminant transport problem are 

solved in the contaminated aquifer described by a three dimensional (3D) computational 

domain. In the 3D model, the aquifer is represented by layers of variable thickness and 

zones division of different hydrodynamic properties such as hydraulic conductivity and 

porosity. To be able to solve the water flow problem, the boundary conditions that 

involve the hydraulic head and water flow rates at the vertical boundaries of the 3D 

domain are based on the above mentioned 2D model. In the planer cross-section in 
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Figure 4.4, the contaminated domain (dashed rectangular zone) of the Alsatian aquifer is 

represented. 

The planar area of the simulation domain is 20x6 km2 with a depth of about 110 

m. The simulation domain is discretized into a non uniform mesh with 25388 nodes and 

45460 irregular prismatic elements (see Figure 4.5). The domain is divided into 10 

successive layers according to the estimated geometry of the cross sections (the landfill 

site was divided into 8 zones by soil type). The layers have different depths (numbered 

from bottom to top) between 5 and 15 m. 

 

Figure 4.5: computational mesh of the 3D domain. 

Figure 4.6 represents the hydraulic head in the top of the 3D domain. In the 3D 

domain, the upstream hydraulic head is 155 m and the downstream hydraulic head is 

139 m. Hydraulic heads is constant along the depth of the aquifer at the vertical 

boundaries because water flow is essentially horizontal. 
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Figure 4.6: hydraulic head in the top of the domain. 

Aswed (2008) interpreted the geological profiles of the domain. In total seven 

lithological units were identified that depend on the percentage of sands, the proportion 

of pebbles and gravels or their argillaceous characteristic. The entire thickness of the 

aquifer is about 80 m. The categories are classified below: 

 loess, loam and clay 

 compacted clay, 

 sandy clay or clayey sand, 

 fine sand to very fine (sand content > 70%), 

 sandy alluvial (sand content between 50% and 70%, with 20% to 40% of 

pebbles or gravels), 

 medium alluvial (sand content between 30% and 50% (coarse sand), medium 

gravels and pebbles), 

 coarse alluvial (sand content < 20%, with medium to coarse gravels and 

pebbles (80% to 100%)). 

The discrimination of the seven alluvial classes agrees fairly well with the 

assumed hydraulic conductivities in the different layers. From lithological profiles, 
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thirty cross-sections have been set according to this classification. The model area is 

divided into a number of zones such that a maximum and a minimum hydraulic 

conductivity coefficients are assigned to each zone. 

Table 4.2 represents the categories of the hydraulic conductivity and their 

compatibility with the lithology of the aquifer formation between Benfeld and Erstein. 

Lithology Hydraulic conductivity 
(m/s) 

Marly substratum: clay, sandy clay, clayey sand 10-8 to 2.5*10-6 

Loess 2.5*10-6 to 2.5*10-5 

Fine sand to very fine (sand content > 70%) 2.5*10-5 to 1*10-4 

Sandy alluvial (50%< sand content>70%) 1*10-4 to 5.5*10-4 

Medium alluvial containing clay lens or high content of sand 5.5*10-4 to 1.5*10-3 

Medium alluvial (30% < sand content>50%) 1.5*10-3 to 3.5*10-3 

Coarse alluvial containing sandy lens or clayey 3.5*10-3 to 1*10-2 

Coarse alluvial (sand content <=20%) 1*10-2 to 2*10-2 

Table 4.2: categories of permeabilities considered in the model 

In Aswed’s work (2008), Monte-Carlo method is used to estimate the hydraulic 

conductivity for each grid block in the domain. 

As it can be evinced from Table 4.2, the Alsatian aquifer consists essentially of 

sands and gravels. The estimated porosity varies slightly between 10% and 20% 

(Hamond, 1995; Beyou, 1999). The values of the porosity in the 3D model were 

estimated by Aswed (2008) through trial and error within the above provided range. 

Aswed’s work (2008) also consider initial longitudinal and transverse 

dispersivities based on prior information from similar geological formations (Gelhar et 

al., 1992). The dispersivity coefficient is estimated by trial and error technique using the 

software TRACES. The longitudinal dispersivity is between 10 and 20 m and the 

transverse horizontal and vertical dispersivity is between 0.5 and 3 m. 
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Field wells and source location 

A groundwater monitoring network was installed in the domain to monitor water 

quality. Figure 4.7 shows a map of the studied domain with the piezometric wells where 

the red stars are monitoring wells and the blue triangle are pumping wells. 
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Figure 4.7: rivers and location of observation (stars) and pumping wells (triangles) 

Three wells were constructed to supply the city of Erstein in drinking water: the 

Château d’eau, the Postal, and the Negerdorf wells. These wells are located in the south 

of Erstein. In particular: 

 The old well Château d’eau, which was drilled in 1922, collected water at a 

depth between 12 and 26 m. This well was only used in necessary situations. 
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 The Postal well was used to supply water to the city. It was constructed in 

1972 and collected water at a depth between 26 and 59 m. 

 The Negerdorf well was constructed in 1991 to replace the Postal well. The 

Negerdorf well is located downstream of the pollution source and collects 

water at a depth between 49 and 79 m. It consists of three pumps with a 

pumping rate of 300 m3/h each (BRGM, 1992). The analysis of the samples 

collected from the Negerdorf well is very important since it is representative of 

what is happening for all the piezometers and pumping wells. 

The groundwater monitoring network is also composed of 12 pumping wells for 

home and industrial usage. 

In 1996, three piezometers were installed and equipped with multi-level samplers 

that take samples from many small discrete zones in the aquifer in order to provide 

accurate vertical contaminant concentration profiles. Depth profiles were considered a 

necessity for groundwater-quality monitoring because contaminant concentrations can 

vary significantly in the vertical direction and, in some location, the entire zone of 

contamination may occupy only a small part of the total aquifer thickness. 

Figure 4.9 shows the above mentioned multi-level piezometers located in Benfeld, 

Sand, between Erstein and Nordhouse. These multi-level piezometers are defined as 

follows, [Report of Alsace Region, 1997]: 

 The piezometer PZ1 is located in Benfeld. The multi-level well reaches about 

85 m in depth with 8 multi-level samplings, which are: 1.76-6.76 m, 7.76-

12.76 m, 16.26-21.26 m, 28.26-33.26 m, 40.26-45.26 m, 52.26-57.26 m, 

64.26-69.26 m, and 79.76-84.76 m below the surface. 

 The piezometer PZ2 is located in Sand. The multi-level well reaches about 80 

m in depth with 7 multi-level samplings, which are: 2.91-7.91 m, 14.91-19.91 

m, 26.91-31.91 m, 38.91-43.91 m, 50.91-55.91 m, 62.91-67.91 m, and 74.91-

79.91 m below the surface. 

 The piezometer PZ3 is located between Erstein and Nordhouse. The multi-

level well reaches about 78 m in depth with 8 multi-level samplings, which 

are: 1.71-6.71 m, 10.21-15.21 m, 22.21-27.21 m, 34.21-39.21 m, 42.71-47.71 

m, 52.21-57.21 m, 64.21-69.21 m, and 72.71-77.71 m below the surface. 
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Besides an industrial piezometer the PZ4, which is 15 m deep, is located in 

Benfeld near piezometer PZ1. This is the nearest piezometer to the accident location 

that has been monitored for several years. 

 

Figure 4.8: location of multi-level piezometers and water supply wells. 

At the source zone (Benfeld), an additional well and surface water samplings were 

installed in 2004 to monitor the concentration of CCl4 at the source area. 

From the groundwater monitoring network concentrations data of carbon 

tetrachloride have been spasmodically collected between 1992 and 2004. However, only 

16 piezometers were used for calibrating the developed model (BRGM, 1993). 

From the new and old concentration of CCl4 near the accident area (Benfeld) 

VILLIGER-Sytemtechnik (2004) expected two source zones, as sketched in Figure 4.9. 
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Figure 4.9: location of the source zones (VILLGER-Systemtechnik report, 2004). 

The location and depth of the pollutant source are not known or uncertain. 

Numerous water samples within the area near the location of the accident were taken 

and analyzed by VILLIGER-Sytemtechnik (2004) as shown in Figure 4.10. The 

pollution source location and depth has been estimated by Aswed (2008) using the 

measured concentration of carbon tetrachloride collected in 2004 by VILLIGER-

Sytemtechnik. 
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Figure 4.10: observed concentrations of CCl4 [μg/l] collected on 18/05/2004 (VILLGER-

Systemtechnik report, 2004). 

In porous media for DNAPL, the pollution depth and area of the infiltration was 

approximated by Aswed (2008) using the following equation: 

VSV TrHC     (4.1) 

where, 

HCV : the volume of the pollutant [M3];  

rS : the residual saturation [-]; 

 127 



ANN FOR ESTIMATING ALSATIAN AQUIFER POLLUTION SOURCE 

T : the porosity of the medium [-]; 

V : the volume of the contaminated aquifer, [M3]. 

Based on a note of the SGAL in 1971, the volume of the infiltrated CCl4 ( ) is 

about 4 m3. The parameters  and 

HCV

rS T  are approximately 2-5% and 15-35%, 

respectively. Therefore, the volume of the contaminated aquifer is about 230 m3 to 1300 

m3. To define the depth of the contaminant source, Aswed (2008) based the analysis on 

the results taken in 1997 from the multi-level piezometer PZ1 at Benfeld (EAT, 1997). 

These results showed that the concentration of CCl4 is very low under 35 m depth. 

Consequently the source is described by the first four layers of the 3D numerical model 

with two mesh elements per layer; the thicknesses of the layers are respectively, 16, 4, 

5, and 5 m from top to the bottom. The surface of infiltration is 7 to 37 m2 assuming that 

the pollution depth is 35 m. 

The three dimensional model is used by Aswed (2008) in order to estimate the 

behaviour of the contaminant source at different depths. At first, the concentration at the 

four layers of the source was fixed. Then, the code TRACES was used to calculate the 

concentration at each piezometer in the domain and for a given time. In order to find the 

concentration at the source, the calculated concentrations were matched with measured 

concentrations using the formula: 

     
 tC

tC
ttCttC

cal

mes
cinitcs   

Where: 

sC is the concentration at the cells representing the source, 

t  is the time of measurements, 

ct is travel time of the contaminant, 

initC  is the constant value (100  g/l) at the source, 

mesC is the concentration measured at the piezometers, 

calC is the concentration calculated with TRACES at the piezometers. 
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The travel time of the contaminant  between the source and the measurement-

wells is estimated by the temporal moments method. The time at the source  is given 

by: 

ct

st

cs ttt   

The travel time of the contaminant between the source and the measurement-wells 

is calculated by method of moment as follows: 
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Figure 4.11: technique used to estimate the source term. 

The approximated concentrations at the source term was very oscillatory. In order 

to have a smooth behavior of the source function in each layer, the predicted 

concentrations at the source are approached by using: the mean value interpolation and 
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a fitted exponential interpolation. The source functions in the four layers are depicted 

together in Figure 4.12 below: 

 

Figure 4.12: source function in the four layers. 

4.4.4 Flux and transport model of the Alsatian aquifer 

The following figures show the simulated CCl4 plume, at 1825, 3650, 8010, 

10200 and 20000 days after the accident occurred in 1970, performed by Aswed (2008) 

on the bases of the above mentioned estimated source. 
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Figure 4.13: distribution of CCl4 concentration [μg/l] after 1825 days of the accident. 
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Figure 4.14: distribution of CCl4 concentration[μg/l] after 3650 days of the accident. 
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Figure 4.15: distribution of CCl4 concentration [μg/l] after 8010 days of the accident. 

35

5

15

15

25

25

15

X

Y

395000 400000 405000 410000 415000

5.36E+06

5.365E+06

5.37E+06

5.375E+06

Conc

55
45
35
25
15
5

Measurement Points

Pollution Source

 

Figure 4.16: distribution of CCl4 concentration [μg/l] after 10200 days of the accident. 
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Figure 4.17: distribution of CCl4 concentration [μg/l] after 20000 days of the accident. 

4.5 ANN methodology to study the Alsatian aquifer pollution 

As mentioned above, the pollution source behaviour at the accident location is 

unknown. It is characterized by time varying fluxs in the vertical position. The objective 

of this part of the research is to identify this unknown pollution source behaviour. To 

this end, concentration measurement data from monitoring wells may be utilized. 

An artificial neural network based methodology has been developed to solve the 

inverse problem for the Alsatian aquifer contamination. Data for training the ANN are 

simulated using the groundwater flow and contaminant transport numerical model 

developed by Aswed (2008). 

In a first step, the artificial neural network was trained to solve the direct problem. 

In this part of the application, the network was trained by means of examples, to 

associate the pollution sources features with the corresponding output contaminant 

concentration at monitoring wells. The input patterns were made of the pollution source 

features in terms of the injection rates in the vertical. The output patterns were 

contaminant concentration observation data at 45 monitoring wells. Sources and 

monitoring wells are related by a biunivocal relationship. It means that to each 
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contaminant concentration behaviour in monitoring wells corresponds only one source 

contaminant behaviour. 

In a second time, the trained network was inverted in order to solve the inverse 

problem. On the basis of the known contaminant concentration data in monitoring 

wells, the pollution sources injection rates in the cross section have been identified. 

The data set of patterns for training, validation and test has been constructed 

through a coherent number of hydrogeological scenarios, based on the Aswed’s 3D 

model of the domain. Data pre-processing based on feature extraction techniques have 

been applied in order to reduce the size of the ANN patterns. 

The ANN approximation implies different issues in input and in output matrices. 

In fact, the aim of the proposed approach is to reconstruct the profiles of the pollutant 

source. Therefore a great precision is needed for the input, whereas the output has to be 

calculated on the basis of measurements, so that we only need outputs corresponding to 

different cases are distinguishable. On the other hand, while the input has only four 

time-varying concentrations, the output corresponds to 45 wells, therefore we can 

expect that a greater number of components are necessary to describe the output rather 

than the input. 

Figure 4.6 reported a schema of the applied methodology. 

Pre-processing

ANN construction and training
for the direct problem solution

Sources injection rates identification

Inversion of the trained ANN 
for the inverse problem solution

OUTPUT PATTERNS
Monitoring wells contaminant 

concentration matrices 

INPUT PATTERNS
Source contaminant 

concentration matrices

 

Figure 4.18: schema of the applied procedure. 
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4.6 ANN pattern construction: elaboration and reduction 

4.6.1 ANN input and output data elaboration 

Different scenarios of the contamination source behaviour have been constructed 

using the Alsatian aquifer 3D model developed by Aswed (2008). In other words, this 

model was the base for generating the ANN patterns. Various states of pollution sources 

have been constructed with Excel, adjusting the source characteristics in terms of 

injection rates over the vertical section. 104 examples were constructed. 

All the 104 sources have the same duration of activity of about 31 years (11520 

days) and were located in the same positions in the domain (accident site in Benfeld). 

So for each of the 104 sources, a different evolution of the contaminant concentration in 

the time for the 4 layer in the numerical domain has been considered. The total time of 

simulation is about 54 years (20000 days). 

TRACES simulation samples have been saved as an ASCII matrix file before 

being processed with Matlab 7.1. 

The sources scenarios provided to TRACES for the simulations were 

characterized by different injection rates and time intervals. In order to have uniform 

time intervals, it was considered appropriate to spread sources contaminant 

concentration evolution in the total time of the source activity duration (11520 days). 

From this process, we have one value a day of the CCl4 concentration in the source 

location. This method has allowed us to extract a maximum of information from the 

input patterns and to make coherent comparison between the results. 

The examples patterns obtained with TRACES consist of 208 matrices of 

contaminant concentration: 

 104 matrices correspondent to the pollution sources features. These had 

dimension of [11520x4]. 11520 represents the time (days) and 4 represents the 

layers in the source location, 

 104 matrices correspondent contaminant concentration in monitoring wells. 

These had dimension of [4000x45]. 4000 represents the time (one each five 

days) and 45 represents the monitoring wells in the domain. In this case it was 

taken only one value of contaminant concentration in monitoring wells each 
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five days, for computational needs: this time step could not be increased, due 

to numerical criterion. 

Input and Output matrices were too large to be processed through the ANN, so a 

data pre-processing has been performed in order to reduce their dimension. The feature 

extraction techniques, applied in this case, have been choice on the bases of preliminary 

neural models trials. The following paragraph describes the feature extraction 

techniques used in this case. 

4.6.2 ANN input and output data reduction 

Each ANN example pattern was composed by two matrices: one for the input and 

one for the output. In order to make this data useful for the training of the ANN, it is 

necessary to reorganize the 104 input matrices and the 104 output matrices to form two 

unique big matrices: one for the input and one for the output. Several data pre-

processing may be used in such cases. The chosen is strictly linked to the ANN 

approach selected. 

The two groups of input and output matrices were considered separately. The pre-

processing procedure used for each group is divided as follows: 

 the application of the two-dimensional discrete fast Fourier transform (2D-

FFT) to each matrices to the end of make the two input and output big 

matrices, 

 the reduction of the two big matrices by a fixed threshold, 

 the normalization and the application of the principal component analysis 

(PCA) to the two reduced matrices in order to further reduce their size. 

A scheme of the pre-processing for input and output data is presented in the 

Figure 4.19. 
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104 Output matrices in time domain

4000x45
104 Input matrices in time domain

11520x4

100x10499x104

FFT2

PCA

Reduction

104 patterns

Input matrix in frequency domain

46084x104
Output matrix in frequency domain

15774x104

36x10411x104
 

Figure 4.19: matrices reduction schema. 

For the first step, the 2D-FFT has been calculated for each matrix, using Matlab. 

In this way, the matrix is transformed from time domain into frequency domain 

representation. The matrix in frequency domain are characterized by replics of the same 

information, so only one replica for each matrix was considered. For the four columns 

have been identified the elements that are not repeated and were stacked to form a 

column vector. In a second step, the amplitudes and the phases of the column vector 

have been calculated and stacked to form a big column vector where the first half of the 

column is represented by the components relating to the amplitudes and the second half 

of the components is related to the phases. For each pattern we have two vectors: one 

for the input that has dimension of [46084] elements and one for the output that has 

dimension of [15774] elements. 

Vectors have been joined to form a big matrix where each column corresponds to 

one example. Consequently, the two groups of input and output matrices were 

reorganized to form two big matrices: one for the input patterns concerning of the 

sources features in frequency domain and one for the output patterns regarding the wells 

features in frequency domain. The big input matrix have dimension of [46084x104]. 

The big output matrix have dimension of [15774x104]. 

For the second step, the matrices frequency components of each matrix have been 

compared on the basis of their amplitude. For input and output matrices, a threshold has 

been set in order to select only the most significant 2D-FFT amplitude components. The 

remaining components and the corresponding phases components have been set to zero. 

The value of the threshold is determined by searching a crossover between the 
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approximation of the acquired data and the dimension of the input and output matrices. 

During this reduction it was necessary to push the reduction in order to have a number 

of the matrix row for the two matrices less or equal to the number of the examples. This 

dimension is the condition that we have to respect in order to apply the principal 

component analysis. As a result of this further reduction, the big input matrix has 

dimension of [99x104] and the big output matrix has dimension of [100x104]. 

For the third step, the last feature extraction based on normalization and principal 

component analysis was applied. Before applying the PCA, the matrix has been 

normalized so that they have means of zero and standard deviations of 1. 

Principal component analysis is a powerful technique used as a mathematical tool 

for analysing, classifying and reducing numerical datasets. By means of PCA, 

systematic information initially dispersed over a large matrix of variable input (often 

intercorrelated) is extracted and condensed in a few abstract variables. Typically, PCA 

decomposes the primary data matrix by projecting the multi-dimensional data set onto a 

new coordinates base formed by the orthogonal directions with data maximum variance. 

The eigenvector of the data matrix are called principal components and they are 

uncorrelated among them. The magnitude of each eigenvector is expressed by its own 

eigenvalue, which gives a measure of the variance related to that principal component. 

As a result of the coordinate change, a data dimensionally reduction to the most 

significant components and the elimination of the less important ones are possible to 

achieve without any considerable information loss. The advantage of the PCA 

application is that it allows the elimination of the principal components that contribute 

less than a default value λ (expressed as a percentage of total variation in the datasets), 

so it is possible to define a priori the order of approximation due to loss of information. 

After various trials, to define the minimum number of principal components necessary 

to allow a good ANN performance, the minimum fraction variance component to keep 

our case was: for the input 0.002 and for the output 0.0000001. 

The PCA application allowed an additional reduction with less loss of 

information. The big input matrix has a dimension of [11x104] and the big output 

matrix has a dimension of [36x104]. 
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4.7 MLP network development and inverse problem solution 

4.7.1 MLP networks development 

The ANN was trained with the supervised learning by presenting the couples of 

input (pollution sources scenarios) and target patterns (contaminant concentration for 

the 45 monitoring wells). 

The network architecture was a Multi Layer Perceptron (MLP) consisting in 3 

layers: input, hidden and output layer. The input layer is composed by 11 neurons 

corresponding to the principal components of the pollution sources contaminant 

concentration for the 4 layers in the domain. The output layer is composed by 36 

neurons corresponding to the principal components of the contaminant concentrations 

measured in the 45 monitoring wells. After the definition of the input and output layer 

dimension the number of hidden neurons have been defined. Several trainings are 

performed assuming a growing number of neurons in the hidden layer in order to 

identify the optimal number of hidden neurons. In our case, we have taken the same 

number of neurons of the input layer in the hidden layer. 

The activation functions define the functional dependence between input and 

output. These determine the type of response of each neuron. In this case, an hyperbolic 

tangent activation function was used for the hidden layer and linear activation function 

for the output layer. 

The learning algorithm selected is the Error Back Propagation (EBP) algorithm 

optimized by the Levenberg-Marquardt (LM) algorithm. 
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Figure 4.20: artificial neural network for the study of the Alsatian aquifer pollution source. 
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Figure 4.20 show the topology of the ANN generate for the Alsatian aquifer 

pollution source. 

The learning rule used in this case is the “stopped training”. Based on the above 

mentioned learning rule, the example patterns are divided in three sets: 

 The training set used during the training phase for adjusting the connection 

weights. It is composed of 74 examples. 

 The validation set used for stopping the training phase. It is composed of 19 

examples. 

 The test set used for testing the trained ANN. It is composed of 11 examples. 

Once the aforementioned key features are selected, the artificial neural network 

may be trained. The training of the ANN is the critical part of the proposed process. In 

fact, a particular attention has to be dedicated to train the ANN in such a way that it is 

able to generalize the information contained in the training set. The training is carried 

out with the presentation of a whole set of patterns: input and output pairs. The 

presentation of a whole set of patterns is called the epoch. The training is based on the 

iterative presentation of the epochs according to a random sequence of the patterns. 

During the training phase the connection weights are modified in order to 

minimize the error between the target and the network output of the training set 

examples. In the same time the error is calculated in the validation set. When the error 

starts increasing, the training is interrupted. 

Through the EBP algorithm, the error between the calculated output and the 

desired output, for a particular input state, is propagated backwards through the weights 

of the hidden layers, until it reaches the input layer (from output to input). The goal is to 

isolate the influence of each connection weight in the error between calculated and 

target. In a first step, on the basis of trainings trials, the number of epochs is assumed 

equal to 100. An additional number of epochs does not improve the ANN because after 

several trials, it has been observed that with the “stopped training” rule the number of 

100 epochs was never totally reached. 

Figure 4.21 shows the training (blue), validation (green) and test (red) error 

evolution of the ANN during the training phase after 19 epochs. 
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Figure 4.21: error representation during the training of the ANN. 

4.8 Solution of the direct and inverse problem with the ANN 

As in the case, presented in the chapter 3 of this work, the network was firstly 

trained to solve the direct problem. During the training phase all the connection weights 

have been determined and frozen. The trained network was inverted to solve the inverse 

problem and on the basis of the contaminant concentrations measured in the 45 

monitoring wells the corresponding contaminant concentrations of the pollution source 

have been determined. On the basis of the three equations described in (3.2), starting 

from the output u, the vectors y and x have been determined. During the inversion 

process, the difference between the calculated input and the desired input was 

considered in order to verify if the trained ANN allowed to generalize the information 

contained in the training set. 

In our case, the number of hidden neurons is lower than the number of output 

neurons therefore the system is overdetermined (see Figure 4.20). Provided that the 

matrix 
2

W  is full rank, the solution corresponding to the minimum sum squared error 

can be found as the equation (3.3). The second equation in (3.2), states a biunivocal 

relation between y and h, therefore the vector y can be calculated as in the equation 

(3.4). Finally, since we made the choice of having an equal number of neurons in the 

input and hidden layers, 
1

W is a square matrix, and if it is full rank, the input pattern x 

can be calculated as in the equation (3.5). 

The desired source injection rates for the 4 layers have been obtained by applying 

backward the pre-processing of the input data obtained from the inversion of the ANN. 
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In the Figure 4.22, Figure 4.23, Figure 4.24 and Figure 4.25 are showed the 

simulated (blue) and the inverted (green) ANN input patterns for the 4 layers. The 

simulated input pattern corresponds to the pollution source behaviour reconstructed 

during the inverse problem solution performed by Aswed (2008). As one can see in the 

following figures, the ANN approximated concentrations at the source term are very 

oscillatory due to the feature extraction. 

 

Figure 4.22: simulated (blue) and the inverted (green) pollution source behaviour of the first 

layer. 
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Figure 4.23: simulated (blue) and the inverted (green) pollution source behaviour of the 

second layer. 

 

Figure 4.24: simulated (blue) and the inverted (green) pollution source behaviour of the third 

layer. 
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Figure 4.25: simulated (blue) and the inverted (green) pollution source behaviour of the 

fourth layer. 

4.9 Summary 

This chapter proposes a methodology that aims at solving the inverse problem for 

the Alsatian aquifer pollution. Based on ANN technology, the inverse problem is solved 

through the measurements of contaminant concentrations acquired in monitoring wells 

during 12 years (from 1992 to 2004). The behaviour at the four layers of the carbon 

tetrachloride unknown pollution source is reconstructed by inverting the trained ANN. 
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CONCLUSIONS 

This work investigates the feasibility of a new approach for solving the inverse 

problem in aquifers contamination by using artificial neural networks. These 

computational tools have the ability to learn complex input-output relationships and 

have a very advantageous property of generalization. 

In the field of hydrogeological studies, the literature, starting from the late '80s, 

but especially in the mid '90s, contains many examples of implementation of different 

ANN applications related to various issues. In literature, several studies are dedicated to 

the development of different models for solving the inverse problem, however practical 

works using the ANN approach are less popular. 

In this thesis, data for training the ANNs have been simulated using the non- 

commercial software for modeling flow and contaminant transport TRACES. Neural 

networks have been implemented using the Neural Network Toolbox of Matlab 7.1. 

The methodology developed in this work is applied on two different cases of 

continuous point contamination sources: a theoretical case and a real case(unknown 

pollution source of the Alsatian aquifer in France). 

For the two studied cases, the operational steps are described as follows: 

 study of the flow and contaminant transport models used for developing the 

suitable hydrogeological scenarios; 

 creation of the ANN examples patterns based on the different hydrogeological 

scenarios; 

 realization of the data pre-processing aimed at reducing patterns’ size in order 

to make the patterns useful for ANNs; 

 implementation of the ANNs suitable to address the aquifers pollution inverse 

problems; 

 inverse problem solution. 

The first part of the research shows how artificial neural network can be used as 

an efficient tool to locate in time and space an unknown pollutant source for a simple 

theoretical case. 
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120 different hydrogeological scenarios have been designed by considering 40 

sources were located in different positions of the domain with a timing of activity of 10, 

20 and 30 years. The samples obtained from the simulation model were the contaminant 

concentration curves acquired in the 50 cells distributed uniformly in the domain. 

For output data reduction, the restricted hypothesis of the total absence of 

historical data concerning the aquifer pollution has been taken into consideration, in 

particular, the case of a contamination detection for the first time in a generic domain. 

Only the last value of contaminant concentration in time, obtained through simulations, 

was considered for the 50 cells. These 50 cells correspond to 50 hypothetical 

monitoring wells. An ANN based approach was applied in order to reduce the number 

and choose the best location of the monitoring wells in the domain: only 8 cells have 

been kept into consideration. 

Based on the “Leave one Out Cross Validation” (LOO) training learning rule, 120 

3-8-8 MLP networks have been trained through supervised learning in order to solve the 

direct problem. The learning algorithm chosen is the Error Back Propagation algorithm 

optimized by the Levenberg-Marquardt algorithm.  

Each network was trained with 120 examples and tested with one example (kept 

out from the original training set). The test example allows us to estimate the network 

generalization capacity. 

In our case, the LOO procedure is not used to train the network that will be 

applied to a particular case, but only to estimate the generalization ability of the 120 

trained networks. If one wants to consider a new source not included in the 120 patterns, 

all the patterns will be used for the training set and the new case will be used for the test 

set. The methodology developed for this theoretical case allows us to reach the 

reasonable presumption that the error for the new case will not be greater than the errors 

experienced in the 120 networks already trained. 

The 120 networks were firstly trained to solve the direct problem. Once the 

training phase is completed, each the trained networks were inverted using the test 

example to solve the inverse problem. On the basis of the measurements of the 

contaminant concentration acquired in the monitoring wells, the desired source 

characteristics have been found.  
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In general, the results show very good performances in locating the pollutant 

source. The results show that most of the time the identification error is less than the 

size of one cell, in fact the cell size is equal to 20*20 m2. At the same time, the 

maximum error, which represents the worst case, is less than the size of two cells. Less 

satisfying results have been obtained concerning time step prediction with the 76% of 

correct duration activity approximation. Concerning the sources duration activity of 10 

and 30 years, only one case time approximation was wrong. For the 20 years sources 

duration activity, the wrong cases were higher than the correct cases with 26 wrong 

cases out of a total of 40 cases. 

The methodology applied for the theoretical case, however, may be useful not 

only to identify the location and activity of unknown pollution sources, but also to 

delimitate the study area and optimize the investigation costs by determining the best 

monitoring wells location. 

In the real case considered in this study, the behaviour of the unknown pollution 

source, which following an accident in 1970 has polluted with carbon tetrachloride 

(CCl4) the Alsatian aquifer (France), has been defined. 104 different hydrological 

scenarios have been build in order to generate the patterns for training, validating and 

testing an 11-11-36 MLP network. The network has been firstly trained to solve the 

direct problem and, in a second moment, it has been inverted to solve the inverse 

problem. 

On basis of the measures of the contaminant concentration curves acquired in the 

monitoring wells from Aswed’s 3Dnumerical model (2008), the behaviour of the 

unknown pollution source for the 4 layer at the accident location was found. After the 

training procedure, the ANN has allowed to generalize the information contained in the 

training set. The research, however, is open to further developments, such as an 

improvement in the monitoring and implementation of training patterns scenarios based 

on few values of the real contaminant concentration in the monitoring wells in order to 

reconstruct the relationship between the source and the contaminant plume. 

It is clear that ANNs represent an emerging new technology due to these main 

properties represented by the ability to be universal approximators. It appear obvious 

that ANN full potential for solving non-linear hydrogeological problems taking into 

account the effects of uncertainty in parameters and multi phases flow must be further 

explored. 
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Groundwater has become an extremely fragile resource: limited availability 

contrasts with the increasing demand due to population growth, especially in developing 

countries. Access to safe water is part the United Nations Millennium Development 

Goals as a key driver towards poverty eradication and mortality reduction, eventually 

increasing the total population with sustainable access to an improved water source. 

These ambitious political goals set by the international community should be 

supported by technologies which offer concrete solutions and practical models to 

protect groundwater resources against pollution. In this regard, we believe that artificial 

neural network, even though a relatively new approach, should be further developed to 

timely and efficiently address pollution cases, reducing potential damages on 

groundwater resources. Together with an investment regarding the technical 

development of artificial neural network approach, attention should be paid to the public 

authorities and relevant water-sector stakeholders, making them aware of the potential 

applications of this technology in terms of detection of the source of groundwater 

pollution, contributing to the efficient mitigation of contaminated aquifers. 

As a final recommendation, provided that sustainable water management 

including protection of groundwater resources is a major challenge for ensuring long-

term social and economic development, artificial neural networks can offer a valuable 

contribution to the pool of existing solutions in the field of groundwater pollution. 
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