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CHAPTER 1

Introduction

Contents

1.1 Introduction . . . . . . . . @ i i i i v v i v v v 1

1.1.1  From Real Business Cycle to Monetary Business Cycle

theories . . . . . . . . .. 2
1.1.2 Taking the models to thedata . ... ... ... ... 6
1.1.3 Outline of the thesis . . . . . . . . . . . .. ... ... 7

1.1. Introduction

In recent years, the academic research on monetary business cycles has been
quickly expanding. One reason for this expansion is that monetary Dynamic
Stochastic General Equilibrium (DSGE) models have made decisive progress
in accounting for observed business cycle, and in explaining the real effects of
monetary shocks. Today, many central banks and policy-making institutions
give more and more credence to the predictions of monetary DSGE models,
as these models are currently used for policy analysis. Thus, data confronta-
tion has always been a first-order issue in the success of these models. Data

confrontation is the main focus of this thesis.

This dissertation consists of two parts, each part being subdivided into two

chapters. The first part is related to the traditional "frequentist" economet-
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ric approach. It presents two essays that investigate the empirical properties
of the New Keynesian Phillips curve (chapters 2 and 3). The second part is
related to the "Bayesian" econometric approach that has recently become pop-
ular in the macroeconomic literature. Chapter 4 surveys Bayesian inference
tools used to estimate and evaluate dynamic stochastic general equilibrium
models in the presence of regime switches in parameters or in shock variances.
Chapter 5 applies these tools to a state-of-the-art medium scale DSGE model
with regime switches, and uses the estimated model to shed new light on the
issue of identifying the sources of the “Great Moderation”. This expression
refers to the decline in macroeconomic volatility observed in most industrial-

ized economies during the 80’s until the recent financial crisis.

A common denominator of the four chapters is the systematic use of empirical
methods that take monetary business cycle models to the data. Accordingly,
this introduction provides a short historical background where we contrast real
versus monetary models of the business cycle. Then, we briefly present the
econometric tools that have been developed over the years to take these models
to the data. Finally, we outline the content of the thesis by summarizing our

main findings.

1.1.1. From Real Business Cycle to Monetary Business

Cycle theories

A central issue of modern macroeconomics has been to identify the sources of
the volatility in macroeconomic time series. Over the years, macroeconomic
theory has been divided between two conflicting views on this issue: the first
view attributes to monetary factors a dominant role, and emphasizes the im-
portance of monetary policy as a powerful stabilization tool. The second view
attributes to real factors the leading cause of business cycles, and underlines

the potentially destabilizing role of active monetary policies through their
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effects on long-run inflation.

The publication in 1971 of Friedman and Schwartz’s essay, A Monetary history
of the United States, constitutes a landmark day in our understanding of busi-
ness cycles. By observing that periods of deep recessions in the US economy
usually coincide with periods where the stock of money declines, the authors
provide narrative evidence that money is an important factor of observed
fluctuations. This narrative evidence oriented the macroeconomic research
toward models where money plays an important role. Accordingly, during the
70’s and the early 80’s, two main theories of money non-neutrality were devel-
oped. In the first one, formulated in two contributions by Lucas (1972) and
Lucas (1975), money is important because monetary shocks are treated “as a
source of confusion that makes it difficult for agents to separate relative price
changes from aggregate price changes” (Cooley and Hansen, 1995). In the
second strand, money matters because nominal prices and wages are sticky in

the short-run (Fischer, 1977; Taylor, 1979).

Shortly after this, the publication in 1982 of Kydland and Prescott’s seminal
article, "Time to build and aggregate fluctuations", came as another land-
mark day for the development of modern macroeconomic theory. This paper,
which led to the emergence of the Real Business Cycle (RBC) theory, strongly
revived the proposition that economic fluctuations are mostly the result of
non-monetary forces.! In the canonical RBC model (see King et al. (1988),
for a presentation), business cycles are viewed as the outcome of an econ-
omy submitted to exogenous technological shocks. In this economy, rational
agents continuously adjust their decisions to exogenous variations in the envi-
ronment. Thus, the theory conveys two new important messages: (i) business
cycles do not necessarily reflect inefficiencies in the allocation of resources ;

(ii) monetary factors such as, for example, variations in the stock of money,

!The term 'Real Business Cycle’ was first used by Long and Plosser (1983)
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do not necessarily play a significant role in observed business cycles, since a
model submitted to technological shocks alone can account for a significant

fraction of the volatility of output and of other macroeconomic variables.

As emphasized by Gali (2008), a second reason why the RBC theory was
considered a "revolution" for macroeconomic analysis is in its methodological
contribution. The RBC theory is the first approach to combine, within the
same model, three decisive ingredients: First, the use of dynamic stochastic
general equilibrium theory, which gives strong microeconomic foundations to
the behavioral equations used to describe the aggregate variables in the large-
scale macroeconometric models of the 70’s. Second, agents in these models
form rational expectations, i.e. expectations consistent with the information
they have. Third, the methodology aims to provide quantitative (as opposed
to qualitative) predictions, by simulating the model and generating time series
for the main variables than can be compared to their empirical counterpart.

Based on this comparison, models may be validated or rejected.

While decisive in terms of methodology, the Real Business Cycle theory (at
least in its initial form) did not really survive the data confrontation step
it advocated. Indeed, the predictions of the canonical RBC model on the
role of money and on the covariations between real and monetary variables
were quickly shown to be at odds with the large body of empirical evidence
analyzing this question. For instance, Cooley and Hansen (1995) show that
in the data, there is a positive correlation between monetary aggregates and
output, while the canonical RBC model augmented with a cash-in-advance
constraint predicts a negative correlation. More recently, Christiano et al.
(1999, 2005) provide empirical evidence that an expansionary monetary shock
increases output in the short run, with a peak occurring after a few periods,
while inflation adjusts very little at the time of the shock. Such evidence is

clearly inconsistent with the predictions of the augmented RBC model.
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Facing these difficulties, researchers have gradually started to include some
"Keynesian" features into the model, leading to the progressive development
of what is known today as the New Keynesian model of the business cycle.
There are three main ingredients at the heart of the New Keynesian model:
The first one is the introduction of monopolistically competitive firms, who
endogenously set their price in order to maximize profits. The second one
is the assumption of nominal rigidities. This means that, for some reason,
firms cannot reset their price optimally in any period. For example, in the
traditional Calvo (1983) price-setting framework, firms are only given (in each
period) a constant probability of resetting their price optimally. The third
ingredient is the specification of a monetary policy rule such as, for example, a
Taylor rule, which describes the reaction of the monetary authority to changes

in the economic environment.

In addition to these ingredients, the New Keynesian model also features an
important concept which will be our main research interest in the first two
chapters of this thesis. This concept is the so-called New Keynesian Phillips
curve. The New Keynesian Phillips curve (NKPC) is derived from the log-
linearization of the optimal pricing decision of firms in the Calvo framework.
In its simplest form, the curve relates current and expected inflation to a
measure of real activity (average marginal cost). Yet, as we will see, there
also exist hybrid versions of the NKPC, which usually include past inflation
in the equation. A significant part of our research program has been to develop

or to test hybrid versions of the NKPC.

The New Keynesian model is also important because it gives a key role to
monetary factors in the business cycle. Recently, Christiano et al. (2005) and
Smets and Wouters (2007) have illustrated the ability of medium scale New-
keynesian DSGE models to account for the real effects of monetary shocks. For

this reason, the New Keynesian model of Christiano et al. (2005) and Smets



6 Chapter 1. Introduction

and Wouters (2007) has become the reference model used to investigate the
sources of empirical business cycles. The Smets and Wouters (2007) model is
the benchmark model we use in the second part of the thesis, when estimating

regime-switching medium scale DSGE models.

1.1.2. Taking the models to the data

Simultaneously with the development of DSGE models, the empirical methods
used to assess the fit of these models have undergone a rapid evolution. The
first empirical method, advocated by Kydland and Prescott (1982), is termed
"calibration". DeJong and Dave (2007) define the calibration step as “an exer-
cise under which a set of empirical targets is used to pin down the parameters
of the model under investigation, and a second set of targets is used to judge
the model’s empirical performance”. Thus, according to this definition, the
DSGE model is not considered as a data generating process. For proponents
of the calibration methodology, the main reason is that any DSGE model, be-
ing highly stylized, is de facto false. Thus, any formal statistical test should
reject it. Hence, it is preferable to judge the empirical performance of this

model relatively to the set of quantitative facts it is supposed to explain.

Despite its numerous advantages, the main shortcoming of the calibration
approach is that it does not attach any measure of uncertainty to the predic-
tions of the model. To address this problem, the next empirical method that
has been considered in the literature is the Generalized methods of moments
(GMM), due to Hansen (1982). Like calibration, the GMM methodology fo-
cuses on matching only a limited set of empirical targets, called moments.
But unlike calibration, GMM takes uncertainty seriously since it implies that
the model could be interpreted as a data generating process from which the

moments were obtained.?

2For an early example of application of GMM to macroeconomic time series, see 7. For
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Other empirical methods in the same family of GMM has also been used to es-
timate DSGE models. Among them, we can mention the Simulated Methods
of Moments (SMM), the method of Indirect Inference (II), and the method of
Minimum Distance Estimation (MDE). In the late 80’s and during the 90’s,
Maximum Likelihood has been at the centre of the estimation procedure. An
early reference is Altug (1989). In contrast to the calibration and moment
matching procedures, Maximum Likelihood is a full-information method un-
der which the DSGE model is assumed to provide a complete characterization
of the data. Hence, in theory, ML should deliver more reliable estimates.
However, misspecification remains a concern since maximum likelihood es-
timation requires some assumption about the distribution of the stochastic

components of the model.

Over recent years, several researchers have preferred to favor a Bayesian ap-
proach to estimating DSGE models (an early example is Schorfheide (2000)).
This choice partly reflects the willingness to avoid some traditional difficul-
ties encountered with the frequentist approach. But the main advantage of
Bayesian inference is that it allows researchers to incorporate prior informa-
tion into the model. This is important because forming prior opinions is a
natural device among economists. Because of its increasing importance in the
macroeconomic literature, the Bayesian approach is the central theme of the

second part of our thesis.

1.1.3. Outline of the thesis

This thesis follows closely the chronology of empirical methods that have been
used in recent decades to fit DSGE models to the data. Chapter 2, Forecasting

with the New Keynesian Phillips curve: Evidence from survey data estimates

an application of the GMM approach to a DSGE model, see e.g. Christiano and Eichenbaum
(1992).
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the New Keynesian Phillips Curve developed in Gali and Gertler (1999) and
assesses the forecasting performance of that curve. Despite the success of the
New Keynesian Phillips Curve in explaining the dynamics of inflation, many
empirical studies document its weakness by showing that purely statistical
models, like ARIMA models, do a better job in forecasting inflation. This
chapter tries to revisit this empirical finding. Specifically, I find that a plau-
sible explanation for the poor forecasting performance of the NKPC is due
to the way inflation expectations are measured. Following Gali and Gertler
(1999), a large body of empirical studies estimate the NKPC, assuming ratio-
nal expectations. Under the rational expectations assumption, the error in the
forecast of expected inflation is uncorrelated with information in the current
and past periods. Hence, provided the existence of a vector of variables (called
instruments) in the current or earlier periods, the NKPC can be estimated
via GMM. However, if agents do not make (fully) rational forecasts, estimates
could be seriously biased. Thus, I consider an alternative methodology, which
consists in constructing an expected inflation series using qualitative survey
data. The survey data collect qualitative answers of consumers on their ex-
pectation about the evolution of prices for the coming year in Great Britain.
Two important results are in order. First, the estimates obtained with the
alternative measure of inflation expectations are better than those obtained
with the traditional rational expectations assumptions. Second, survey fore-

casts on inflation expectations greatly improve the forecasting performance of

the NKPC.

Chapter 3, Time-varying inflation target and the New Keynesian Phillips
Curve also focuses on the NKPC but with a different perspective. Our start-
ing point is the two empirical findings documented in Cogley and Sbordone
(2008). The authors first argue that once trend inflation is taken into account,

the New Keynesian Phillips Curve can replicate the amount of inflation per-
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sistence found in the data without requiring the inclusion of ad hoc backward-
looking terms. Second, they show that the resulting reduced-form NKPC has

time-varying coefficients.

We consider the consequences of introducing a time-varying inflation target
in the specification of the New Keynesian Phillips Curve. Specifically, we
assume that when firms cannot adjust their price, they follow an indexation
rule which consists in indexing their price on an inflation rate which is differ-
ent from the long-run inflation rate. Our main idea is that, in order to limit
relative price distortions, firms should index their price on a target which is
close to the expected inflation rate prevailing during the average duration of
the price contract. In the presence of trend inflation, this target is likely to be
(i) significantly different from the sample mean of the inflation rate and (ii)
time-varying. We derive a new specification for the NKPC that follows from
this assumption, and we take it to the data. Compared to Cogley and Sbor-
done (2008), the chapter provides three main conclusions. First, in contrast
with their paper, our specification of the NKPC features constant coefficients.
This enables us to relate more easily the reduced form NKPC to the deep
(structural) parameters. Second, as in Cogley and Sbordone (2008), our spec-
ification of the NKPC leads to non-significant backward looking coefficients.
Third, using identification-robust methods, our alternative NKPC slightly im-
proves the estimated value of the degree of price rigidity in the Calvo price

setting mechanism.

While our research in the first two chapters was using frequentist estimation
methods, the next two chapters deal with the Bayesian approach. Chapter 4,
A review of Bayesian analysis of DSGE models, surveys Bayesian econometric
methods that have recently been used to estimate DSGE models. We show
how such methods can be modified to account for the presence of regime

switches in DSGE models. Farmer et al. (2009b) offer an excellent treatment
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of forward-looking Markov-Switching DSGE models.

Chapter 5, Great Moderation and endogenous monetary policy switches ap-
plies these tools to address an important macroeconomic question: what are
the sources of the Great moderation that the US and the Euro economies have
experienced in the period spanning the mid 80’s until the recent financial cri-
sis? The literature suggests two main explanations that have not reached a
consensus. For some economists, e.g. (Stock and Watson, 2003b; ?), the Great
Moderation is mainly the outcome of good luck. By luck, we mean smaller
shocks faced by these economies during this period. For others, the Great
Moderation is due to the virtues of monetary authorities in their conduct
of monetary policy. Economists have observed that the reduction in output
volatility was accompanied by a similar reduction in the volatility of inflation,
as documented in Blanchard and Simon (2001). Given the broad consensus
that monetary policy is a crucial determinant of inflation, a reduction in the
volatility of output may have been the result of better monetary policy. Pro-
ponents of this viewed are, inter alia, Bernanke (2004), Lubik and Schorfheide
(2004) and Clarida et al. (2000).

To take account of these explanations, we modify the state-of-the-art Smets
and Wouters (2007) medium-scale DSGE model to incorporate the possibil-
ity of regime switches in the variance of shocks and in the coefficients of the
monetary policy rule. We use this model to consider three alternative spec-
ifications: The first one only introduces changes in the variance of shocks.
The second one allows for regime switches in both the variance of shocks and
the policy rule coefficients, but assumes that these changes are independent
(i.e., changes in the monetary policy regime are independent of the current
state of the economy). Finally, the third specification introduces synchronized

changes in shocks variance and in monetary policy.

We estimate the three versions of the model with Bayesian methods, and use
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the estimation results to shed new lights on the following questions: (i) What
are the sources of the Great Moderation ; (ii) Are regime switches in monetary
policy exogenous, or does the conduct of monetary policy change according
to the economic situation ? The possibility of endogenous monetary policy

regime changes has been recently emphasized by Davig and Leeper (2008).

We perform this exercise for the US and the Euro Area economies and obtain
the following findings: first, we find strong evidence in favor of regime switches
in both policy parameters and shock variances, whether these switches are
assumed to be synchronized or independent. This finding holds true for both
the US and the Euro Area. Second, for both economies, the specification with
synchronized regime shifts fits the data equally well as the specification with
independent changes in regime. Third, our findings do not support the view
that the US monetary policy has been endogenous. According to our results,
the conduct of monetary policy in the US was more strongly determined by
the chairmen in office than by the ongoing economic situation. However, this
result does not hold true for the Euro Area, and we do find strong evidence

of endogeneity of monetary policy in Europe.

Summarizing, the contents of thesis are organized as follows: Chapter 2 esti-
mates the New Keynesian Phillips Curve using survey data and compares its
forecasting performance to an AR(1) model. Chapter 3 considers the conse-
quences of introducing a time-varying inflation target in the New Keynesian
Phillips Curve. Chapter 4 provides a survey of Bayesian analysis of DSGE
models, while chapter 5 estimates a Markov-switching DSGE models and uses
the estimated model to shed new lights on the sources of the Great modera-
tion and on the endogeneity of monetary policy in the US and the Euro Area.

Finally, a technical appendix for chapters 3 and 5 is provided.
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2.1. Introduction

This chapter is based on my forthcoming paper, Jean-Baptiste (2011). It esti-
mates the New Keynesian Phillips Curve version derived in Gali and Gertler

(1999) and assesses the forecasting performance of that curve.

Our motivation is the following. Empirical studies often find that the hybrid
New Keynesian Phillips curve developed by Gali and Gertler (1999), while
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theoretically justified, has a poor predictive content of inflation, compared to
the variety of ARIMA models.! In this chapter, I estimate the hybrid NKPC
and use the estimation results to forecast inflation. I follow two estimation
methods. First, I impose the rational expectations assumption of agents as
Gali and Gertler (1999) and estimate the Phillips curve by GMM. Second,
I use inflation forecasts obtained from survey data and estimate the Phillips

curve by OLS.

The results are the following. First, estimation with survey data performs well
in quantifying the backward and forward coefficients of the hybrid NKPC.
Second, output gap is not significant and enters the hybrid NKPC with a
negative sign On the contrary, output gap is found to be significant and enters
the NKPC positively when survey-based inflation forecasts are used. Third,
the forecasting performance of the hybrid NKPC is superior to the benchmark

AR(1) model when output gap and survey-based inflation forecasts are used.

The rest of the paper is organized as follow. The second section briefly presents
the hybrid NKPC. The third section describes the data and presents the es-
timation results. The fourth section presents the results of the forecasting

experiments and the last section concludes.

2.2. The hybrid New-Keynesian Phillips curve

To derive the hybrid NKPC, Gali and Gertler (1999) use a staggered price-
setting scheme & la Calvo (1983), where a fraction of firms, 1 — 6, change
prices in a given period. In contrast to the original Calvo (1983) model, Gali
and Gertler (1999) assume that among firms being able to change prices in a

given period, only a fraction 1 — w sets price optimally in a forward-looking

!The literature uses the term hybrid in opposition to the pure forward-looking New

Keynesian Phillips curve.
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manner. The remaining part sets prices by simply augmenting last period’s
average price by the inflation rate of that period. This assumption leads to

the following form of the hybrid NKPC:

Ty = A$t + ’Ybﬂ't_l + ’YfEtﬂ-t-f—l + Uy, (221)

where 7, is the inflation rate, E;m;,; the expected inflation rate of the next
period, x; the real marginal cost and wu; a cost-push shock. The reduced form
in (2.2.1) is related to the structural form of the NKPC by the following

combination of parameters:

_ B
Vf_ga
W
’Yb—ga
L (=W -6)1-89)
)

where £ is a discount rate and ¢ = 0+w[1—60(1—7)]. Since the reduced form of
the hybrid NKPC in (2.2.1) is consistent with various pricing schemes, includ-
ing the Calvo (1983) scheme, estimation and forecasting results are reported

only for the reduced form.

2.3. Estimation

In (2.2.1), the term E;m;.; is not directly observed. This is a fundamental
challenge with estimating the hybrid NKPC parameters. There are two solu-
tions to circumvent this challenge. The first one, which is the most standard,
is to use the law of iterated expectations to obtain a forecast of Fym, 2. Re-
placing Fym 1 by mip1 — 1,4, With 1., being the one-step-ahead forecast
error in 741, I obtain the new equation m; = A\zy 4+, 71 +7 i1 e, where

er = Uy — VyNpyq- From Ei(u,) = 0, it follows that Ey(e;) = 0 so that the

2The law of iterated expectations is a principle of rational expectations.
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equation can be estimated by GMM. The second solution is to use inflation
forecasts from survey data, obtained by asking economic agents at one period
what are their expectations of price for the next period. Since these expecta-
tions do not necessarily match inflation expectations, I assume that they are
given by ;w1 = mj +n; where 77, is the inflation forecast provided by
the survey and 7; is an error term uncorrelated with 77, ;. Finally, I estimate

by OLS the resulting equation m; = Az +7,m—1+7,7 +€ where ¢, = v,n;.

2.3.1. The data

Survey data come from the European Commission website from 1987:1 to
2007:12. The European Commission conducts a monthly survey about the
general economic situation, unemployment and price expectations for the Eu-
ropean economy, the Euro area and the single European countries. For the
purpose of the paper, I focus on price expectations. The survey participants
are asked to give qualitative expectations about the evolution of prices in the
next year. As a consequence, qualitative expectations are quantified with the
Carlson and Parkin (1975) approach, also called the "probability approach”,
and the results are converted to quarterly frequency, in order to fit a quarterly
hybrid NKPC.? To save space, I refer the reader to Carlson and Parkin (1975)
and Nielsen (2003) for a detailed explanation of that approach. Data on other
variables are provided by the OECD Economic Outlook database. Actual
inflation is measured as 100 times log difference of quarterly consumer price

index (CPI), from 1987:1 to 2007:4. I consider two proxies for real marginal

3The survey asks the following question to the participants:‘By comparison with the
past 12 months, how do you expect consumer prices will develop in the next 12 months?
They will: 1) increase more rapidly 2) increase at the same rate 3) increase at a slower rate

4) stay about the same 5) fall 6) do not know."
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Table 2.1: OLS estimation of the hybrid NKPC

Parameters Unrestricted Restricted

Gap ULC Gap ULC

Y 0.236  0.120 - -
(0.001) (0.061)

o 0.726  0.876  0.779  0.880
(0.000) (0.000) (0.000) (0.000)

A 0.131 - 0.096 -
(0.008) (0.031)

N - -0.022 - -0.024

(0.378) (0.318)

Notes: p-values are given in brackets.

cost: CPI-deflated unit labour cost of the total economy and the output gap.*
I report empirical results for the United Kingdom. Figure (2.1) plots the ac-
tual inflation versus the mean expected inflation and the detrended real unit

labour cost versus the output gap.

2.3.2. Estimation results

While the paper focuses on estimates using survey data, I report, for compar-
ison purpose, estimates based on the traditional iterated expectations estima-

tion for comparison.

Table (2.1) reports OLS estimates of the hybrid NKPC. The unrestricted
coefficients v, and v, are positive and significant. Thus, both forward and
backward looking components are important in the dynamics of inflation. Ir-

respective of the proxy used for real marginal cost, the degree of forwardness is

4Gali and Gertler (1999) compute output gap as the difference of real gross domestic
product and its linear trend. In this paper, I use directly the output gap published by
the OECD. The OECD output gap is measured as the percentage difference between GDP
(constant prices) and potential GDP.
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Table 2.2: GMM estimation of the hybrid NKPC

Parameters Unrestricted
Gap ULC
Y 0.275 0.391
(0.069) (0.055)
o7 0.735 0.616
(0.006) (0.011)
A -0.028 -
(0.325)
N\ — 0.0003
(0.0001)
Hansen’s J test 1.36 1.17
(0.56) (0.51)

Notes: Instruments include three lags of inflation and two lags
of output gap and real unit labour cost. p-values are given in

brackets.

more important than the degree of backwardness. This finding is in line with
Gali et al. (2005) who find that the forward-looking component of inflation
is very important, using IV estimation. The estimates indicate that real unit
labour costs are not significant for the dynamics of inflation, at least in the
sample considered here. Furthermore, since the slope A is negative, real unit
labour costs enters the hybrid NKPC with the wrong sign, which is possibly
a result from an errors-in-variable problem associated with the expected in-
flation.> The Output gap is significant and enters the hybrid NKPC with the
correct sign. Thus, the estimates indicate that the output gap is a good proxy

for marginal cost. Under the theoretical restriction § ~ 0.99, which implies

®Nason and Smith (2008) using survey data obtained from the Survey of Professional
Forecasters (SPF), find a similar result for the US economy and Henzel and Wollmershaeuser
(2008) find a similar result for Italy, using survey data from the CESifo World Economic

Survey.
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v¢+7, = 1, Table (2.1) shows that more weight is given to the forward looking
component. The slope remains positive and significant when the output gap is
used as proxy, negative and insignificant when real unit labor costs are used.
These findings contradict the widespread view that a cost-based formulation
of inflation is better than output gap-based formulation of inflation (Gali and

Gertler, 1999).

Table (2.2) reports estimates based on the continuous updating GMM esti-
mator (CUE-GMM) of Hansen et al. (1996) where the covariance matrix is
corrected with a bandwidth of 12 lags. p-values for the Hansen test provide
no evidence against the validity of the instruments. The forward looking
component continue to play the predominant role. However, there are some
differences in magnitude with estimates based on survey forecasts. In partic-
ular, more weight is attached to the backward component. The output gap
coefficient, while not significant, is negative. When using survey forecasts, I
obtain the correct sign and the coefficient is significant. The results suggest
that survey-based estimates perform better than estimation methods based

on rational expectations of agents.

2.4. Forecasting experiments

This section is motivated by empirical evidence reported by Ang et al. (2007).
Using four forecasting models based on macro, asset markets variables and in-
flation surveys data, Ang et al. (2007) find that in terms of inflation forecasts,
the forecasting model with survey data outperforms the other models for the
US economy. I use the hybrid NKPC to forecast annual inflation and com-
pare the forecasting results with those of a benchmark autoregressive model

of order one, AR(1). The specification of the AR(1) is standard and is given

6See Nunes (2010) for similar findings.
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by the following equation:

T = W+ Qi1 + Uy

where v, is an error term and p a drift.

Table 2.3: Out-of-sample percent rmses : AR(1) vs NKPC

forecast, horizon
2 4 8

United Kingdom AR 0.610 0.706  0.896
RULC 0.727 0.806  0.995

GAP 0.564 0.636  0.821

Note: Forecast of annual inflation, out-of-sample from
2000:Q1 to 2007:Q4. RULC and GAP refer to the hybrid
NKPC estimated with real unit labor cost and output gap.
The root mean squared error forecasts are reported in per-

centage terms.

I consider pseudo out-of-sample forecast of inflation, from 2000:QQ1 onwards.
Table (2.3) reports the root mean squared error (RMSE) statistics in percent-
age terms for the AR(1) model and the hybrid NKPC model. Forecasting
performance of the hybrid NKPC depends on the proxy used to measure real
marginal cost. At all forecast horizons, the autoregressive model beats the
hybrid NKPC estimated with real unit labour cost. Using the output gap
as proxy for real marginal cost considerably improves the forecasting perfor-
mance of the hybrid NKPC. Compared to the AR(1) model, all the RMSE are
lower at all forecast horizons. This result is encouraging since empirical stud-
ies (see for instance Stock and Watson (2003a)) have found that the NKPC,
while theoretically justified, has a poor predictive content, compared to the

variety of ARIMA models.
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Figure 2.1: (a): Actual inflation (solid) and expected inflation (dashed). (b):
Output gap (solid) and real unit labour cost (dashed).

2.5. Conclusions

In this paper, I have found that survey-based inflation forecasts make the
Phillips curve predominantly forward looking. The output gap enters posi-
tively and significantly, while methods based on traditional rational expecta-
tions deliver a negative and insignificant role to the output gap. Furthermore,
the root mean squared errors of the Phillips curve are inferior to those of an

AR(1) model when inflation forecasts and output gap are used.






CHAPTER 3
Time-varying inflation target and

the New Keynesian Phillips curve

Contents
3.1 Introduction . .. ............ ... 23
3.2 The generalized NKPC . ... ... ........... 25
3.3 Econometric methodology . . ... ... ........ 28
3.3.1 Minimum distance . . ... .. .. ... ... ... 28
3.3.2 Identification robust tests . . . . . . . ... ... ... 30
34 Results. ... ... ... .. i il e e 33
341 Data . .. ... 33
342 Estimates . . . ... ... oo 36
3.4.3 Robustnesscheck . . . ... ... oL 39
3.5 Concluding remarks . . . ... ... .. ... ..., 40

3.1. Introduction

The aim of this chapter is to propose and to estimate an alternative specifi-

cation for the New Keynesian Phillips Curve.
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The main idea underlying our approach is that, in the traditional specifica-
tion of the hybrid NKPC (with partial indexation and positive steady-state
inflation), the indexing rule of firms that are not allowed to reset their price
does not fit well with the observation that inflation in the short run may sub-
stantially differ from its long-run (average) value. This is notably the case,
for example, if the inflation target of the central bank occasionally switches
between a high and a low value (as documented in Schorfheide (2005)), or
if there is a trend in the evolution of inflation. Indeed, under such circum-
stances, using the long-run inflation level to index non-resetted prices may

generate substantial price distortions that are ultimately costly to firms.

In the presence of varying trend inflation, a better indexing rule would index
prices on an inflation target that does not differ too much from the implicit
inflation rate applied by reoptimizing firms to their former price. In the pres-
ence of trend inflation, this target is likely to be (i) significantly different from
the sample mean of the inflation rate and (ii) time-varying. We derive a new
specification for the NKPC that follows from this assumption, and we estimate
it with the minimum distance estimation documented in ?. Following a recent
literature on the issue that NKPC might be poorly identified (Ma, 2002; Du-
four et al., 2010; Kleibergen and Mavroeidis, 2009), we estimate our NKPC
with methods that are robust to identification problem with the approach
documented in Magnusson and Mavroeidis (2010). To check the robustness
of our conclusions, we also estimate the NKPC with the Generalized method

of moments (GMM).

Our work also relates to recent empirical results by Cogley and Sbordone
(2008), who emphasized the importance of taking trend inflation into ac-
count for the empirical success of the NKPC. The authors criticize the com-
mon practice of introducing backward-looking terms in the NKPC to improve

its empirical performance, since in its initial formulation the curve is purely
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forward-looking. Cogley and Sbordone (2008) find that once drifting trend in-
flation is taken into account in the Calvo price setting mechanism, backward-
looking terms are no longer necessary to account for inflation persistence.
They also show that the introduction of drifting trend inflation results in a
New Keynesian Phillips Curve which has the characteristic that its reduced

form coefficients are time-varying.

Compared to Cogley and Sbordone (2008), our approach leads to three main
conclusions. First, in contrast with Cogley and Sbordone (2008), the reduced
form coefficients of our modified NKPC are constant. This enables us to re-
late more easily the reduced form NKPC to the deep (structural) parameters.
Second, similarly to Cogley and Sbordone (2008), estimation of our modified
NKPC leads to non-significant backward looking coefficients. This conclusion
is confirmed, using both non-robust and robust methods to identification is-
sues. Third, time-varying inflation target is a key variable for the evolution

of inflation.

The remaining of the chapter is organized as follow. Section (3.2) derives
the NKPC, section (3.3) presents the econometric methodology, while section

(3.4) presents the results. The last section concludes the chapter.

3.2. The generalized NKPC

The NKPC is derived using the Calvo (1983) pricing mechanism according to
which, in each and every period, a firm faces a constant probability 1 — ¢, to
reset its price optimally. In the traditional specification of the hybrid NKPC
with partial indexation and positive long run inflation, a firm who cannot
reset its price optimally is assumed to apply the following indexation rule (see

e.g. Smets and Wouters (2007)):
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P = (men) (1) )y
where 7 is the long-run inflation factor. As mentioned above, if the inflation
target of the central bank is changing through time, or if there is a trend
in the evolution of inflation, the current inflation level may be significantly
different from its sample-mean level 7. In this case, the indexing rule is likely
to generate substantial price distortions between firms who reset their price

optimally and firms who do not.

To avoid this criticism, we consider the following alternative rule:

Py = (memn) ™ () )y
where 7} is the implicit measure of trend inflation used by indexing firms.
Clearly, if m; = 7, we recover the traditional specification. But alternative
measures are likely to generate less price distortions. For example, 7} could
be the expected inflation rate of "naive" forecasters at date ¢ (as considered in
chapter 2), or be any statistical measure obtained from the data. Of course,
in general, 7} is likely to be affected by the current economic situation. Thus,

generally speaking, 7; should be considered as time-varying.

Let X/} be an indexation factor, defined by

1fori=20
Xp — k 1—
ok lg <<7Tt+l—1)% (WIH) %) fori=1,..,00

This indexation rule implies that

pi+k = ngpé
where ;Eg is the initial price.
In this context, the optimal price 1;@ chosen by an optimizing firm in ¢ is the

solution of the following program:
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where Etﬁk)\Hk/)\t is a stochastic discount factor, with S the subjective
discount factor, A; the marginal utility of consumption and mc; the firm’s

marginal cost.

The first-order condition associated with the above program leads to the fol-

lowing optimal pricing rule:

Pl ?Zk:o (55;;) AerMC kY4 (3.2.1)
— =i, s ra— — 2.
b EE >izo (B) pf+k Xy pMskYi

where p,, = 0/(0—1) is the steady-state markup, with § > 1 the price-elasticity

of sectoral demand.

The aggregate price index is given by

= (/01 (pi)le) - (3.2.2)

Log linearization of (3.2.1) combined with the definition for the aggregate
price index (3.2.2) leads to the following New Keynesian Phillips Curve:

(1 — gp) (1 — ng) —

T = mc
' £,(1+ B7,) '
Yo o . ~
+—m 4+ —FE7
1+8y,) T (A+py,)

(1 — pr) B (1 - pr) ~x%

(1+8y,) " (4B, o (3:23)
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As expected, our generalized NKPC shows that current inflation depends, in
addition to the traditional terms, on the current and expected value of the
inflation target, which is generally time-varying. Note also that the NKPC
results in reduced form coefficients that are time-invariant. This is the main

difference with the Cogley and Sbordone (2008)’s NKPC.

For the purpose of the next subsection, we express the NKPC as a reduced

form relation given by

T = VMo + Y pEimern + Amey + Aomy + A3Eymy g, (3.2.4)
where
L+ pBy,)
W
’Yb - 1 +/nyp7
V= b
77148y,
1 _
N = — 2
1+ B,
1 -~
_ —5 p
’ L+ By,

3.3. Econometric methodology

This section describes the methodology that we shall use to test the NKPC.
Given that the methodology is recent, we find it useful to describe it before

estimating the NKPC.

3.3.1. Minimum distance

Magnusson and Mavroeidis (2010) consider the minimum distance estimation

of the NKPC originated from Sbhordone (2002) and Sbordone (2005). In our
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context, the minimum distance estimation of the NKPC tries to minimize
the distance between two dynamics of inflation. The first dynamics models
inflation, marginal cost (proxied by labor share) and trend inflation as a VAR
process of order p, while the second dynamic is the relation provided by the
NKPC. In other words, the approach uses information coming from reduced-

form models to estimate a structural model of inflation.

The approach is implemented as follows. Let Z, = [m; 7 me¢;] and assume

that Z; is determined by a VAR(p) process:

Zt == (I)Ithl + -+ (I)pthp + €zt (331)

where E(e.;) = 0 and E(e, € ;) = .

It is convenient to rewrite the VAR(p) in its companion form:

2 =Pz + Qe (3.3.2)
where 2, = [z 2¢-1 2t-2 -+ Zt—pt1),
k is the number of variables in the VAR so that ® is of dimension kp X kp and
it contains k%p unknown parameters, denoted by ¢.
Let ey, eq+, eme be appropriate selection vectors such that m, = ez, 7} =
ez, Mey = € 2.
Next, we link the reduced-form parameters ¢ to the structural parameters
¥ of the NKPC. We use the identifying restriction that F;_ e} = 0. Taking
expectations with respect to information in ¢ — 1 on both sides of equation

3.2.4, it follows that
Ei_m = yymi +’YfEt—17Tt+1 + M Eiymes+ N By + )\3Et—17T:+1~ (3.3.3)

From the VAR representation of the NKPC, we have F; 7,1 = €. ®(¢)%z_1,

Ey 7y = e ®(0) 21, Eroime = e ®(0)zi1, Eroime, = €], P(p)z—1 and
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Ty_1 = €hz; 1. Substituting them in (3.3.3) and transposing the resulting

expression leads to a set of restrictions, g(p, ), where

M%ﬁ)=¢@W{¢U—vﬂM@kﬂhdw—¢4MI+&®@M}—vwm(33®

The estimation strategy proceeds in two steps. First, we estimate the unre-
stricted VAR to obtain » and an estimate of its variance, I7¢. The second step
takesp as given and chooses the value ¥ that makes the empirical value of the

function g(y, ) as close as possible to zero.

3.3.2. Identification robust tests

Let © denote a consistent and asymptotically normal estimator of ¢, with
asymptotic variance V,,, and let XA/QO be a consistent estimator of V. By
the Delta method, the asymptotic variance of g($,9) is G, (v, V)" V,G,(p, V)
where G,(p,v) = %:‘;;’9). Efficient minimum distance estimation is based on

the criterion function

QM) = g(3,0) Ve (9) "' g(3,0) (3.3.5)

where 1799(19) =G, (9, 19)’17¢G¢(®, ) and U being a preliminary estimator of 9
that could be inefficient. When ¥ = o, the criterion (3.3.5) is the continuous

updating criterion provided in Hansen et al. (1996).

Under the assumption that the Jacobian matrix G,(p,?) has a full rank,
J is asymptotically normal and standard test statistics like the Wald and
Lagrange Multiplier (LM) for hypotheses on ¢ are asymptotically chi-squared
distributed. Consequently, inferences based on those statistic are reliable.

However, when the Jacobian matrix is nearly of reduced or zero rank, i.e

the NKPC is weakly identified, inferences based on the Wald or the the LM
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statistics are unreliable because these statistics are not asymptotically chi-
squared distributed.! Thus, it is important to consider test statistics that
do not involve asymptotically the Jacobian matrix under the null hypothesis.
All the tests are based on the continuous updating estimator (CUE) of the
criterion (3.3.5), in which case the weighting matrix is continuously evaluated
at the values of the structural parameters, i.e ¥ = 0.2 Inferences obtained

from the test are robust to weak identification.

The first test statistic is the minimum distance version of the test proposed

Anderson and Rubin (1949):

MD.AR() = Tg(@,90) Vg (D) 9(3, Do), (3.3.6)

where T is the sample size, 1 is the hypothesized value of the parameters.
The MD.AR is robust to weak identification issue since it does not involve

the Jacobian matrix.

This test can be interpreted as a Wald test of the validity of the restrictions
in (334) at 190.
The second statistic is the minimum distance version of the K statistic pro-

posed by Kleibergen (2005):

MD.K(90) = Tg(3,90) Vg (00) " D(90)[D(9o) Vg (96) " D ()] ~*
X (9(3,00) Vyy(96) " D(0p))'-

In the framework of GMM estimation, Kleibergen (2005) shows that the asymptotic

(3.3.7)

distribution of the LM statistic is not chi-squared since the average moment vector and the

Jacobian estimator are correlated, thus adding nuisance parameters.
2Hansen et al. (1996) shows that, in the context of GMM, one advantage of the CU-

GMM estimator relative to the two-step estimator is that the former is invariant to how
the moment conditions are scaled. More importantly, Monte-Carlo experiments suggest
that the CU-GMM estimator outperforms the traditional two-step GMM and the test for

identifying restrictions is more reliable in many cases.
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Since 92 = 2g(@,190)"7gg(190)’1l3(190) where D() is an estimator of the Ja-
cobian matrix, the minimum distance version of the K statistic is a quadratic
form of the derivative of objective function in (3.3.5) with respect to its asymp-
totic variance [D(99)V,, (%) "D (1)) 1.3 It resembles the Lagrange Multiplier
(LM) statistic. However, the key difference is that it does not depend on the
Jacobian matrix (unlike the LM statistic), but on an estimated value of the
Jacobian matrix. Actually, the appendix of Magnusson and Mavroeidis (2010)
shows that, asymptotically, 5(190) is independent of the vector of restrictions
9(p,0). It is this independence that makes the MD.K statistic robust to
identification: conditional on 13(190), i.e treating 13(190) as a fixed matrix, the
statistic MD.K is asymptotically chi-squared since the independence between

D and g(®,v) does not involve additional nuisance parameters.

Details on the derivation of the matrix 13(190) can be found in Kleibergen
(2005).

The MD.K(Jy) tests the null H : ¥ = 9y, assuming that the identifying re-
strictions in (3.3.4) hold. Since the continuous updating estimator, which is
the basis of all the test statistics, provides values for 9 where the objective
function is minimal, the identifying restrictions are violated around values of
¥ that maximize the objective function. Consequently, the MDIC statistic
provides spurious inference around values of ¥ that maximize the objective
function. Therefore, Magnusson and Mavroeidis (2010) propose a third statis-

tic that tests the identifying restrictions under the null. It is defined as

MD.J(0y) = AR — MD.K. (3.3.8)

The joint test, i.e the test of the null H : ¥ = 9y and the validity of the
restrictions, denoted MD.KLT(Yy), is constructed such that, given a signifi-
cance level of «, the tested hypothesis is either rejected by an oy level MD.KC

3For a proof, see Kleibergen (2005).
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test or by an as level MD.J () test, where oy + ay = a.. As our focus is on
H, a; must be higher than ay. Following Magnusson and Mavroeidis (2010),

we choose a; = .8 and oy = .20

Proposition 1 of Magnusson and Mavroeidis (2010) shows that the three statis-
tics are asymptotically chi-square distributed under fairly general regularity
conditions. Identification robust (1 — «) confidence sets are obtained by col-
lecting all values of ¥ that are not rejected by the tests at the « level of

significance.

3.4. Results

This section begins with the description of the data used to estimate the
Phillips cuve. Then, we present estimates based on both non-robust and
robust methods to identification for the reduced form and structural NKPC.
Finally, we check the robustness of our results by estimating the NKPC by
GMM.*

3.4.1. Data

Inflation is measured as the quarter to quarter percent change in the log GDP
deflator. We use the labor share of Nonfarm Business sector as proxy for
marginal cost. All data are obtained from the Fred Database. We restrict the
sample to the period 1984:1-2008:111.

Various alternative measures for 7; could be considered. In this paper, we fol-
low a two-step approach, which is in the same spirit of Aruoba and Schorfheide
(2011). In the first step, we use a one-sided Hodrick-Prescott filter described

for instance in Stock and Watson (1999), to extract the trend component of

4We thank Patrick Féve for this suggestion.
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inflation with the smoothing parameter fixed to 1600. In the second step,
we assume that 7 partly results as medium-run inflation expectation and we
combine the trend component of inflation with a measure of medium-run in-
flation expectation. Our measure of medium-run inflation expectation is the
one-year ahead inflation expectation provided by the Federal Reserve Bank
of Philadelphia. The two series are combined in order to extract common
information they contain with respect to ;. Typically, we estimate a state-
space model with Bayesian methods and we use the Kalman filter to extract
common factor between the two series.

In our state space model, the measurement equations are as follows: 7/ =
75 +0.25€, ; and 7, = ¥ + €9, where 777 is the trend component of inflation,
¥ the (observable) one-year inflation expectation. €;; and e, are measure-
ment errors. As in Aruoba and Schorfheide (2011), we fix the standard error
of the first measurement error to 0.25 percent to control the weight of the
trend component of inflation in the combined series.

The transitions equations write m;_; = p, 7} _; +0r€r; and €z, = py€a 1 + V4,
where €5, and v, are i.i.d shocks. We assume that 7 is a stationary process, i.e
0 < p, < 1. This assumption comes from the fact that the sample considered
in our estimation spans 1984:I to 2008:I1I, a period where key macroeconomic

variables of the US economy have been particularly stable.

Once an estimate of p_ is available, the expected value of the inflation target
can be straightforwardly computed, i.e Eywf, ; = p,7;. Furthermore, for the
purpose of the estimation, we add a cost-push shock, £ to the NKPC. Thus,
we estimate the following specification of the NKPC:

T = VpTe—1 + Ve Eemipr + Ame + My + €f (3.4.1)

®We thank Patrick for having pointed to us that the two-sided HP filter we have used

in a previous version of this chapter could deliver spurious results.
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Table 3.1: Estimates of the state space model

Prior Posterior

Parameters  Distribution  para(l) para(2) Estimates 5% 95%

Or Beta 0.8 0.025 0.963 0.940  0.987
P Beta 0.8 0.025 0.936 0.893  0.983
Or Invgamma 0.1 2 0.191 0.168 0.213
09 Invgamma 0.1 2 0.188 0.166  0.213

Notes: para(l) and para(2) list the means and the standard deviations for Beta
distribution; the shape s and and the scale v parameters for the Inverse Gamma
distribution, where prg(c|v,s) oc 07"~ exp(—vs?/20?). Posterior estimates are ob-
tained with the Metropolis algorithm, where a Markov chain of size 100000 has been
simulate, with the first 30000 being discarded.

Time-varying target|
Inflation

0.5~
%
0.4
0.3
02
I I I I I
1985 1990 1995 2000 2005

Figure 3.1: Inflation and time-varying inflation target.

where Ay = Ao + p 3.

We plot the time-varying inflation target in 3.2. The graph suggests a similar

evolution of time-varying inflation target and inflation itself.
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Table 3.2: Non-robust minimum distance estimation of the NKPC
Modified NKPC Baseline NKPC

Parameters Estimates Std.err Estimates  Std.err

Yp 0.032 0.098 0.534 0.116
&y 0.894 0.044 0.876 0.070
Y 0.031 0.092 0.349 0.050
T 0.959 0.091 0.648 0.049
A 0.013 0.011 0.012 0.014
A4 0.044 0.009

Notes: Standard deviations for v, and &, are computed by bootstrap.
We use the delta method to compute standard deviation of reduced form

parameters.

3.4.2. Estimates

This subsection begins with the discussion of (point) estimates obtained with
non-robust minimum distance estimation methods. We then discuss our (con-
fidence sets) estimates based on robust methods and show their consequences
for the structural parameters of the NKPC. For each method, the discussion
contrasts estimates obtained from both the baseline and the modified versions

of the NKPC.

3.4.2.1. Non-robust methods: point estimates

We report the point estimates in Table 3.2. They are based on a VAR(3) for
inflation and marginal cost for the baseline NKPC. For the modified NKPC,
we also consider a VAR(3) for inflation, marginal cost and the time-varying

inflation target.®

For the baseline NKPC, we note that the structural parameters v, and ¢,

are all significantly different from zero. The estimate of the degree of price

6The results are virtually the same when we consider four lags in the VAR.



3.4. Results 37

stickiness, £, = 0.876, implying that the duration of the price contract is
about eight quarters. Such an implication seems inconsistent with evidence
from microeconomic studies about the duration of the price contract, which
report that price contracts last one to two quarters on average (see for instance
Bils and Klenow (2004)). The indexation parameter, v, = 0.534, translates
into an estimate of the backward-looking coefficient (7, = 0.349), broadly in
line with results from other studies. For instance, Gali et al. (2005)’s estimate

for the corresponding parameter is about 0.35 (see Table 1 in (Gali et al.,

2005)).

Introducing a time-varying inflation target in the NKPC leads to two three
main conclusions. First, estimate of the degree of price stickiness slightly

increases (£, = 0.894). Second, we cannot reject at the 5% level, the null

p
that the indexation parameter is zero, a finding that is consistent with Cogley
and Sbordone (2008) or with Ireland (2007). Not surprisingly, the estimate
of the indexation parameter leads to a backward-looking term that is also
not significant, again at 5% level (y, = 0.031). Third, the parameter A4,
which assesses the role of the time-varying inflation target in the Phillips
curve, is highly significant. Setting Ay = 0 in the modified NKPC leads to the
baseline one. That is, our modified NKPC nests the baseline one. Thus, both
specification should deliver similar results when the time-varying inflation
target is not important in explaining the inflation dynamics. The fact A\, is

highly significant tends to confirm our motivation in deriving the modified

Phillips curve.

Estimates of A\, which takes into account the effect of marginal cost on infla-
tion, are non significantly different from zero. This is in line with findings in
Rudd and Whelan (2005), according to which empirical evidence on the role
of the marginal cost, proxied by the labor share, is weak. By contrast, other

studies, like Gali et al. (2005), do find that labor share is a key driver for
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inflation.

Summarizing, Table 3.2 suggests the following conclusions: (i) the modified
NKPC implies a much higher duration for the price contract than the baseline
one, (ii) backward-looking component in the NKPC is not significant in the
modified NKPC, while it is highly significant in the baseline one, (iii) time-

varying inflation target is an important variable in explaining inflation.

To what extent are such conclusions reliable? In what follows, we provide
answers based on estimates obtained with identification robust methods de-

scribed in section 3.3.

3.4.2.2. Robust methods: confidence sets

Following Magnusson and Mavroeidis (2010), we compute confidence sets for
the degree of price stickiness and the indexation parameter by grid search
within the parameter space &, €]0, 1] and v, € [0, 1].

Given that the MD.IC test could deliver spurious inference, as stated in section
(3.3), we will report only the results based on the MD.AR and MD.KLJ
Figure 3.2 reports the 90% and 95% for the MD.K test.

Confidence sets for the baseline NKPC of £, and v, (Figure 3.2, top panel)
suggest two conclusions. First, the indexation parameter 7, lies roughly be-
tween 0.26 and 0.65. Thus, this parameter appears to be significantly different
from zero. Second, the degree of price stickiness is significantly different from

zero and lies between .8 and 1.

Turning to the modified NKPC, we note first that confidence sets for the
degree of price stickiness are slightly wider than their counterpart in the base-
line NKPC. In particular, they show that ¢, lies between 0.7 and 1 for the
MD.AR test statistic and 0.78 for the MD.K.7, while in the baseline case,
the corresponding coefficient lies between 0.8 and 1 for the two test statistics.

This suggests that, introducing time-varying inflation target in the NKPC
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and estimating it with identification-robust methods, deliver an estimate of
the degree of price stickiness that is more reliable. For instance, we cannot
reject at 5% level that £, = 0.7. In particular, such an estimate is consistent
with estimate of that parameter from DSGE models (see chapter 5). Second,
both tests suggest that we cannot rule out the possibility that v, = 0, i.e the
backward-looking term still appears to be insignificantly different from zero.
However, the wide confidence set around v, under the MD.AR test statistic
for the modified NKPC suggests that it is imprecisely estimated.

3.4.3. Robustness check

In this section, we provide point estimates of the baseline and modified spec-
ifications of the NKPC based on GMM. Our intention is to check our main
conclusion about the indexation parameter 7,, using alternative methods.
Furthermore, this makes our results readily comparative to other studies,
given that an important part of the literature uses the GMM methodology

in estimating the Phillips curve.

Overall, results from the GMM estimation reported in Table 3.3 are in line
with those from the minimum distance estimation. For instance, the indexa-
tion parameter, estimated from the modified NKPC, is not significantly dif-
ferent from zero (v, = 0.058 with a standard error of 0.05), whereas the same
parameter is significantly different from zero under the baseline NKPC. La-
bor share does not drive inflation, while the forward-looking component in the

NKPC is predominant.

The main difference between Table 3.2 and Table 3.3 is in the magnitude of
the estimates. In particular, we estimate A4 to be 0.209 with a standard error
of 0.07 while the same parameter is about 0.044, using minimum distance esti-
mation. Thus, given that both estimates are significantly different from zero,

our conclusion about the importance of the trend inflation for the dynamics
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Table 3.3: GMM estimates of the new-Keynesian Phillips curve
Modified NKPC Baseline NKPC

Parameters Estimates Std.err Estimates  Std.err

Vp 0.068 0.050 0.161 0.047
&y 0.866 0.075 0.795 0.072
of 0.725 0.084 0.869 0.037
Y 0.064 0.041 0.134 0.035
A 0.052 0.122 0.039 0.032
A1 0.209 0.070

Notes: Point estimates are derived using the CUE-GMM with Newey and West (1987)
weighting matrix. Instrument are: a constant, three lags of inflation and marginal
cost for the baseline NKPC while for the modified NKPC, we use additional three

lags of the time-varying inflation target.

of inflation is not altered.

3.5. Concluding remarks

In this chapter, we consider the consequences of introducing time-varying
inflation target in the New Keynesian Phillips curve. Our estimates lead
to two main conclusions. First, the resulting NKPC is not time-varying,
unlike in Cogley and Sbordone (2008). Second, ad hoc backward looking term
does not matter (at least statistically). The second conclusion is found to be
robust to weak identification issue. Third, time-varying inflation target is
an important variable in explaining inflation dynamics, more important than
labor share advocated by many empirical studies. Though these findings are
encouraging, uncertainty associated with the way the time-varying inflation
target is derived remains a concern. It is quite possible that other methods
to extract time-varying inflation target could deliver different results. Hence,

a fruitful avenue for future research is to estimate our NKPC for countries for
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which time-varying inflation target is observed.
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Time-varying inflation target and the New Keynesian

Phillips curve
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Figure 3.2: MD-AR 90% (gray) and 95% (dark) confidence sets for the baseline

NKPC (top panel) and the modified NKPC (bottom panel).
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Figure 3.3: MD-KJ 90% (gray) and 95% (dark) confidence sets for the baseline
NKPC (top panel) and the modified NKPC (bottom panel).
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4.1. Introduction

Dynamic Stochastic General Equilibrium (DSGE) models refer to micro-
founded macroeconomic models that are used to address substantive economic
topics. Two examples of such topics are: what is the propagation mechanism
of a monetary policy shock? What shocks are mainly responsible for business
cycle fluctuations? The usefulness of DSGE models for policy analysis is the
primary reason for their recent diffusion in central bank and policy-making

institutions.

A quick look at the different concepts forming the name "DSGE" should bet-
ter clarify the structure of these models. First, these models are “dynamic”
because they specify intertemporal constraints faced by agents. For instance,
agents might choose to consume more today or to save more for tomorrow.
Second, they are “stochastic” because they account for uncertainty in the econ-
omy. Thus, uncertainty is modelled as the occurrence of exogenous shocks,
i.e deviations of some exogenous variables from their long run value that are
unanticipated by agents. Finally, the concept “general equilibrium” mean that
aggregate endogenous variables, such as consumption, output or price levels,

are investigated within a whole economy.

Empirical properties of DSGE models have been studied using several econo-
metric tools. The first of them was calibration, advocated by Kydland and
Prescott (1982). A calibration exercise requires the following steps: first, re-
searchers collect a set of stylized facts that the DSGE model is supposed to
account for. Second, the model is parametrized (or calibrated) in order to
account, for a subset of these stylized facts. Conditional on the parameters
value, the model is judged credible if it can account for the remaining stylized
facts. The main shortcoming of a calibration exercise is that it does not at-

tach any probabilistic measures of uncertainty to the quantitative statements
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it generates (Schorfheide, 2006). To partially address this shortcoming, formal
statistical tools have been considered. The generalized method of moments
(GMM) (Hansen, 1982; Hansen and Singleton, 1982) and maximum likelihood
estimation (Leeper and Sims, 1994) were among the first tools that researchers

have used to estimate DSGE models.

However, the last decade has experienced an explosion in the number of papers
using Bayesian methods. There are several reasons for this. First, Bayesian
inference facilitates the incorporation of beliefs about the values of some struc-
tural parameters through the "prior”. Second, medium scale DSGE are richly
parametrized, while data used to estimate them are short (e.g. sixty years of
US data, forty years of European data). Consequently, lack of data leads to
imprecise estimates and quantitative statements generated with the estimated
model. Bayesian inference helps to incorporate additional information, which
leads to better estimation provided that such information comes from non-
sample data, i.e data that are not used to compute the likelihood function.
Another reason is the development of the so-called Markov Chain Monte Carlo
(MCMC) methods in the 90’s and after. Problems that were very difficult to
address due to lack of mathematical tools and computer power are now easy

to address, by means of MCMC.

In what follows, I give an overview of Bayesian analysis, where the focus is on
DSGE models. This survey is far from exhaustive. My ultimate objective is
to familiarize the non-versed reader in Bayesian econometrics with the main
tools in the Bayesian analysis of DSGE models, because they are applied in

Chapter 5.

The literature provides excellent surveys of Bayesian analysis of DSGE mod-
els. Frank Schortheide, who was among the first to apply Bayesian analyis to
DSGE model, offers with his coauthor An Sungbae one of the most cited pa-
pers in the field (An and Schorfheide, 2007). Fernandez-Villaverde (2010)
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focus on the history of the DSGE models both on a theoretical and em-
pirical perspectives. More recently, Del Negro and Schorfheide (2010) dis-
cuss Bayesian methods applied to macroeconomics model beyond the DSGE
framework. However, these surveys provide little (if any) information about
Markov-Swiching DSGE models. Thus, my survey extends the previous one

to include this recent development.

The remainder of the survey proceeds as follow. Section 4.2 provides the basic
ideas of Bayesian econometrics and discusses the concepts of prior, likelihood
and posterior. Section 4.3 presents the steps in the estimation procedure. In
particular, we discuss how prior information is elicited. Then tools to compute
the likelihood and summarize the posterior are presented. In section 4.4, I
discuss tools to assess the model fit. Section 4.5 extends the DSGE model to
feature Markov-switching process. In particular, I present how the steps in the
estimation procedure are modified, due to the presence of Markov-Switches in
the values of structural parameters. Section 4.6 discusses a recent alternative
methodology to assess the model fit for Markov-Switching DSGE models,
while section (4.7) briefly describes some convergence diagnostics, which aim
to assess whether results obtained in the estimation steps are reliable. The

last section briefly concludes the survey.

4.2. Basic ideas of Bayesian econometrics

Bayes’s theorem is the central part of Bayesian econometrics. Before explain-
ing this theorem, it is convenient to introduce some notations. Let Y7 € R
be the collection of data, Y; the data at the period ¢, and M a model which
is designed to explain some properties of the data. The model is composed
of three ingredients: first, a parameter set, ©, defining the admissible value

of the parameters of the model. Second, a likelihood function p(Y7T|0, M)
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which gives the density that the model assigns to data given some parameter
values and third, a prior distribution 7(6#|M) that captures information not
contained in the sample used for estimation. Such information can be pre-
sample beliefs, results from other studies or intuition about the sign and the
magnitude of the parameters values. Bayes’ theorem simply tells us that the
posterior distribution of the parameters is given by:

T g PO M)T(O|M)
O]y, M) = p(YT)

(4.2.1)

where p(Y7T) = [ p(YT|0, M)m (0| M)db.

In words, this result tells us how we should update our beliefs about parameter
values after observing the data: combining our prior beliefs 7w(6| M) with the
sample information given by the likelihood function, we obtain a new set of
posterior beliefs, 7(0]Y, M).

In (4.2.1), the quantity p(Yr) denotes the marginal data density. In the
body of the paper, we will interchangeably use the terms marginal likelihood,

marginal data density or marginal distribution of the data to refer to p(Y'T).

4.3. The steps in the estimation procedure

Bayesian estimation of DSGE models requires five steps. Roughly speak-
ing, these steps involve the “model preparation” and “data preparation”. The
model preparation requires that one specifies and solves the model, while the
data preparation step implies the definition of the data that the model is sup-
posed to match, transforming them in a way that is consistent to the model.
For instance, a model where endogenous variables are stationary requires that
we stationarize the data prior to the estimation stage. Following Smets and
Wouters (2005), we summarize the steps in the Bayesian estimation of DSGE

models as follow. The first step requires that we solve the model. Technically
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speaking, a DSGE model is a non-linear system of expectational difference
equations. The approach that is mostly used in the literature is to construct
a linear approximation of the non-linear system around its well-defined steady
state. Solving the model is no more than expressing endogenous variables as
a (linear) function of their lagged values and some exogenous processes (typ-
ically the shocks). In the second step, the model solution is transformed in
a state space representation. The third step exploits the state space repre-
sentation to compute the likelihood function. Step four is devoted to prior
elicitation. In the fifth step, prior and likelihood are combined to form the
posterior, which is summarized using Markov Chain Monte Carlo (MCMC)

tools. In what follows, I briefly describe each of these steps.

4.3.1. Model solutions

A DSGE model is a non linear rational expectations model system, which has

the following form:

Et(F(Xt+1,Xt, Et) = 0, (431)

where F; denotes the expectation conditional on a set of information available
in period ¢, X; is a vector of endogenous variables of the model and ¢; is a

vector of exogenous variables, typically the shocks of the DSGE model.

This rational expectation model has to be solved prior to estimation. The
common practice is to consider a linear approximation of (4.3.1). The reason
is that linear approximation methods lead to a state-space representation of

the DSGE models, that is easy to analyse with filtering techniques."

The solution of the rational expectations system takes the form

! The literature also offers non linear approximation methods such as projection methods,
value-function iterations. However, I did not explored these alternative approximations in

my research. Readers interested in those methods should refer to DeJong and Dave (2007).
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Xt = @(Xt_l,et;e) (432)

where 0 denotes the parameters of the model.

There exists a variety of numerical procedures that lead to (4.3.2). A non
exhaustive list includes Blanchard and Kahn (1980), Sims (2002) and Uhlig
(1997). The structure of the solution strongly depends on the parameteriza-
tion adopted by the researcher: depending on the chosen parameterization,
there may be cases where (i) the solution does not exist, (ii) the solution exists
and is unique and stable (which is the determinacy case), (iii) multiple stable

solutions exist (the indeterminacy case).

In what follows, I focus on the determinacy case in which there exists a unique

and stable solution to 4.3.2.

4.3.2. State space representation

For ease of exposition, I assume that (4.3.2) is given by

Xt = (I)Xt,1 + RGt (433)

where the dependence on @ is dropped to simplify the notations. In the state

space literature, equation (4.3.3) is called a transition equation.

Some variables in X; are latent, i.e. they are not observable. Hence, estimating
(4.3.3) directly is not possible. Instead, at time ¢, the researcher has an
observable vector Y; and links this vector with the state vector X; through a

set of measurement equations, i.e

Y, = AX,+ D (4.3.4)

where A is a selection matrix and D a vector of constants, which depends on
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the model steady-state.

The transition and measurement equations form the state space representation

of the DSGE model, which has to be estimated:

Xt = @Xt_l + REt
(4.3.5)

Y, = AX;+D

4.3.3. The likelihood function: Kalman filter

Since these observables are dependent, the likelihood function, which is func-

tionally equivalent to the joint density of the observables, is given by

T
((0]Yr) = p(Yrl0) = p(v1|0) [ p(¥el Y, )
t=2

:/p(}/1|X1,0)dX1H/p(}/”Xt,e)p(Xt|Yt_1,0)dXt
t=2

(4.3.6)

An examination of equation (4.3.6) shows that we will need to compute the
conditional densities p(X;|Y*1,0), p(Y;|[Y*"1,0) and p(X;|Y?,0). All the den-
sities require the knowledge of the initial distribution p(X;). The densities can

be computed iteratively, using the following algorithm:
Computation of conditional densities
1. Initialize the demnsity p(X).

2. Given the conditional density at period ¢ — 1, compute

PO = [ XY X,
3. Compute the density of the observables as

pYY' ) = [ BN (XY X,
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4. Update the density p(X;|X; 1) with Bayes’s rule, when a new
series of observales is available:

p(Ye| Xo)p(X, Y1)

P =Ty

5. Repeat the steps 2-4 until the end of the sample size has

been reached.

Fortunately, when the state space representation of the model solution is linear
and Gaussian, all these conditional densities are normal and the Kalman filter
provides us with their means and variances at each iteration. Hence, to derive
the Kalman filter, T assume that ¢; is normally distributed, with zero mean
and variance X, . Define the linear projections X;;—1 = E(X;[Y*') and
Xy = E(Xy|Y?"), where, as before, the notation Y* = {¥7,Y5,---,Y;} collects
the data from the first period to the period ¢. Hence, X;;_; is the conditional
expectations based on data available until period ¢ — 1. In the same way,
define the variance matrices P11 = E(X—1 — Xooqj—1)(Xem1 — Xymqp—1)'
and Pt|t—1 = E(Xt - Xt\t—l)(Xt - Xt\t—l)/-

At each iteration, the following computations are executed.

First, we compute a forecast of X;:

Xt\tfl - (I)Xt71|t717 (437)

and the variance of the forecast error:

Pt|t—1 = q)Pt_l‘t_lq)/ + REERI. (438)

Define the one-step ahead forecast error by

Vit—1 = Y; — Yt\t—l =Y, - A-DBX,
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and its variance matrix by

Fy4_1 = BPy_1B'.

The loglikelihood is already available at this step and reads

oy

log(£(¥il6) =

1 1,
og2m — 3 log | Fyi—1| — §V;Ft\t171’/t' (4.3.9)

Next, we update the forecast of X;, denoted by X;;. Hamilton (1994) shows

that the updating forecast of X, is given by

Xt|t = Xt|t—1 + Ktht_l’ (4310)

where the matrix K is the Kalman gain and reads

K = Pt\t—lB/(Ft\t—l)_l-

The updated variance of the forecast error reads

Py = Pyy—1 — KBPy_.

This completes one iteration. Doing these computations until the end of the

sample size delivers the log likelihood function.

4.3.4. Prior elicitation

Priors play a key role in the Bayesian estimation of DSGE models. The in-
corporation of prior information is perhaps the main point of disagreement
between the frequentist and Bayesian approach. As emphasized by Del Negro
and Schorfheide (2010), the use of fairly informative priors should not be in-

terpreted as “cooking up desired results based on almost dogmatic prior”. As
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emphasized in the introduction, the philosophy behind the incorporation of
prior information into the analysis is to use other sources of information not
contained in the likelihood function. Thus, precise information is translated
into fairly tight priors on the parameters. This has nothing to do with im-
posing dogmatic priors in order to produce results that match the analyst’s

desire.

However, as priors may affect the posterior estimates and model comparison,
their specification requires some care and has to be precisely documented.
Three sources of extraneous information are exploited when forming priors in
the literature on DSGE models. The first is to use macroeconomic series to
extract information, not contained in the likelihood, that the researcher finds
useful given the empirical facts the model is supposed to match. For instance,
if the model is fitted to data on, say, output growth, inflation and interest
rate, data on labor share could be use to estimate the labor share of income
in the model if one is interested in estimating such a parameter. Second,
information from micro-economic studies can be used to shape the prior. For
instance, there is microeconomic evidence that firms adjust their price every
one to two quarters (Bils and Klenow, 2004). Such information could be used
to form a prior on the probability for firms to adjust their price, under the
Calvo price setting. Third, macroeconomic data, including those entering the
likelihood function, can be used to shape the prior provided they come from
a presample. For instance, if the researcher thinks that US monetary policy
is well characterized by a Taylor-type rule and she wants to estimate a DSGE
model based on post-1982 data, she can use pre-1982 data to form prior for the
parameters of the Taylor-type rule. This is also true for parameters related
to shock processes: those parameters can be chosen such that the implied

dynamic of the model matches those of the presample data.
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4.3.5. Posterior distribution

Once we compute the likelihood function and specify the prior, we can apply
Bayes’ theorem to compute the posterior. We will consider an algorithm to
generate draws from the (non-normalized) posterior distribution of §. From

equation (4.2.1), we know that the posterior is given by

TO)YT) = 7 ﬁ((;\'g)):((g)) 5 o p(YT|6)(6), (4.3.11)

where the denominator is an integrating constant. This algorithm requires the
evaluation of the likelihood times the prior, which is computed according to
methods in sections (4.3.4) and (4.3.3). Because it is difficult to analytically
the denominator in 4.3.11, so is the posterior. Thus, the best we can do is to
proceed by simulations. It is achieved using a powerful tool known as Markov
chain Monte Carlo (MCMC) methods. The aim of these methods consists
in generating a Markov chain with ergodic distribution 7(6|Y 7). There are
many alternatives for doing so. Following the literature, we will use a Random

Walk Metropolis Algorithms, based on Schorfheide (2000).

I will omit deep and technical details about MCMC methods. The interested
reader should have a look at Schorfheide (2000) or An and Schorfheide (2007)
or any Bayesian econometrics textbook. In the following, I follow the excellent
intuitive description found in Fernandez-Villaverde (2010). We do not know
what the whole posterior 7(0|y”) is but we want to simulate from a Markov
chain and approximate the whole posterior by the empirical distribution gen-
erated by the chain. Put in another way, we want to produce a Markov chain
whose stationary distribution is 7(f|y”). To do so, we require tools which
allow us to construct a Markov chain. The Metropolis algorithm is one of
the tools we have for doing so. Roughly speaking, this algorithm specifies a

new proposed value of the parameter and evaluates whether it increases the
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posterior, i.e if the posterior density evaluated at this new proposed value is
greater than the posterior evaluated at the current value of 4. If it does, we
accept it with probability one, and with some probability less than one if it
does not. This allows us to go towards the higher regions of the posterior
but we also travel with some probability, towards the lower regions. In doing
so, all the parameter space is explored, thus avoiding getting “stuck” around
specific values of the parameters. For the illustration, I will use the following
implementation of the random walk version of this algorithm, which can be

found in Schorfheide (2000) or more recently in An and Schorfheide (2007)2.

One-block Random Walk Metropolis Algorithm

1. Find the posterior mode of Inp(fly?) + Inn(0)

via a numerical optimization routine and denote it by 6.

2. Let ¥ be the inverse of the Hessian computed at the

posterior mode 6.

,-vO ~
3. Draw 6" from N(0,c2Y) or directly specify a starting value

where ¢y is a scale parameter.

4. For s = 1,-++ ,Ngim, draw ¢ from the proposal density
N (65D 25), with ¢, being a scale parameter.
The jump from #“ Y is accepted (0*) =) with probability
min{1,(0¢~Y, 9|yT)}. Here,

o p(0ly")m (¥
7“(9( 1)a'l9|yT) = (3(1)| ) ( ()51) .
p(0* 7 yT)m(07)

Under general regularity conditions, the posterior of 6 will be asymptoti-

cally normal. Therefore, this algorithm constructs a Gaussian approximation

2The random walk denomination of this algorithm comes from the fact that the proposal

density is specified as a random walk.
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around the posterior mode 0 where a scaled negative inverse Hessian is used
as the covariance for the proposal distribution. As the RWMH algorithm re-
quires maximization of the posterior, we can face the problems inherent to
pure maximum likelihood estimation if data are not informative. Hence steps
1 and 2 of the algorithm, although often useful, are not necessary since the al-
gorithm can be initialized with values that would be retained for a calibration

exercise.?

The draws generated from the posterior are used to obtain point estimates

such as mean, variance, median and so on.

3Most of the empirical literature on Bayesian estimation of DSGE model uses the one-
block RWMH algorithm. But this version of the algorithm is not always efficient : for
instance, An and Schorfheide (2007) finds that when posterior distribution is bimodal,
say a low and high mode, the RWMH algorithm is unable to jump from one mode to
the another one. Chib and Ramamurthy (2010) proposes a new MCMC methods called
Tailored-Randomized block Metropolis-Hastings algorithm, to estimate DSGE models. The
motivation of this method is that the single block Metropolis-Hastings algorithm face diffi-
culty to achieve convergence when the dimension of the vector of parameters is large. The
paper proposes to cluster the DSGE model parameters in a random number of blocks at
each iteration. Then, each block of parameters is updated with a tailored proposal density
that mimics the target density of that block. One finding of the paper is that with this algo-
rithm, jumping between low and high mode is possible, unlike with the RWMH algorithm.
However, the approach is time-consuming. For a six equations model as the one estimated
by An and Schorfheide (2007), it takes around 30 hours in an ordinary computer and “only"
3 hours with the RWMH algorithm (where the posterior mode is obtained after 24 hours).
If the researcher has good reasons to start the RWMH algorithm in particular values other
than the posterior mode, as aforementioned, investment in the TaRB-MH algorithm will

be somewhat unnecessary.
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4.4. Model evaluation

By model evaluation, we mean the assessment of the model fit. It can be
done using measures of absolute fit such as posterior predictive checks, or the
measure of fit relative to another model, either DSGE or VAR model. The
measure of relative fit is done by either enlarging or restricting a model in some
dimensions and assessing whether the data prefers or not such modification
with respect to a benchmark case. Methods for doing so are presented in the

next section.

Bayesian model comparison is conducted as follows. We assign prior probabil-
ities to two competing models M, and M; and update the prior probabilities

through the marginal likelihood ratios, according to

Pr(Mz‘|YT) _ P(YT|M1) Pr(M;)
Pr(M;|[YT)  p(YT|IM;) Pr(M;)

(4.4.1)

where Pr(M,|YT), p(YT|M,) and Pr(M,),x =i, j are respectively the pos-
terior model probability, the marginal data density and the prior model prob-
ability. When equal prior probability is assigned to the competing models,
the conduct of model comparison reduces to the computation of the marginal

likelihood ratio, also called the Bayes factor.

Computing the marginal data density is very challenging, given that it in-
volves high-dimensional integral. There are various methods to approximate
it. Throughout my research, I have used the modified harmonic mean (MHM)
method proposed by Geweke (1999) and the Laplace approximation.

The method by Geweke (1999) relies on the harmonic mean to approximate

the marginal likelihood:

h(0

VTIM )L — YT, 4.4.2
p(YTIM;) /p(YT|9(i>,Mi)p(ﬁ(@)p(e(’)‘ )dbi) (4.4.2)
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where h(0) is a weighting function whose support has to be contained in the
support of the posterior distribution. Geweke (1999) proposes the use the

density of a truncated multivariate Gaussian distribution:

h(6) = (2m) 2 g exp(—5 (0 — D)% (6 D)

(4.4.3)
x Pr[(0 — 0)'S; (0 - 0) < F3'(p)]

where p € (0,1), ¥y is the posterior variance matrix obtained with the
Metropolis algorithm, 6 is the posterior mean of 6 and FX_Q1 is the cumula-
tive density of a x? distribution with n degree of freedom, where n is the

dimension of 4.

Denote
i — h(Q(i)
O0) = 00, MopO)

A numerical evaluation of the integral is achieved through Monte Carlo inte-

gration:

N
1
p(YT M)~ _NZ B) (4.4.4)

where N is the number of simulations.

An alternative and straightforward way to approximate the marginal likeli-
hood is the Laplace approximation. This approach is followed, for instance,
by Schorfheide (2000). It is only valid when the likelihood function peaks
at value around the posterior mode. Thus, the density kernel can be locally

approximated by a multivariate Gaussian density:

log p(0i))p(0i|Y") ~log p@(z‘) )p@(z‘) Y7)

) (4.4.5)
+ 500 — ) S5, () — O

The estimator of the marginal likelihood is obtained by integration:
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p(YT|My) = 27255 [Y2p(00) )p(0) Y. (4.4.6)

4.5. An extension: Markov-Switching DSGE

models

There is a recent and growing literature on Markov-Switching DSGE (MS-
DSGE) models, estimated with Bayesian methods. In this literature, a key
paper that greatly improves our understanding of Markov-Switching DSGE
models is Farmer et al. (2009b). The aim of Markov-Switching models is to
capture sudden changes in the time-series dynamics of the data because “the
world is changing” (Farmer et al., 2010). For instance, it is well known that the
volatility of US macroeconomic series, typically inflation, output growth and
interest rate have experienced dramatic decline during the post-Volcker era.
This striking phenomenon is termed “Great Moderation” by economists and
it is the object of chapter 5 of the thesis. A non exhaustive list of papers that
estimate MS DSGE models with Bayesian methods are Schorfheide (2005),
Bianchi (2011), Liu et al. (2011), Davig and Doh (2009) and Liu and Mumtaz
(2010).

In the presence of Markov-Switching process, the steps outlined in estimat-
ing the DSGE models are still valid. However, in general the solution of the
model is not straightforward and the computation of the likelihood function
requires modifications of the standard Kalman filter. The number of papers
that propose algorithms to solve these model is also growing. Farmer et al.
(2008) consider a method to solve MS-DSGE model, which consists in rewrit-
ing the DSGE model into a fixed coefficient model. The advantage of their
method is that with little modification, it can be solved with standard numer-

ical procedures along the lines of Sims (2002). Furthermore, they show that
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when a minimal state variable (MSV) solution to the new system exists, it is
also a MSV solution to the original system. Farmer et al. (2010) propose a
rather different algorithm, compared to previous versions of their paper. Their
method is able to find all the solutions of the MS DSGE models, while, as
they emphasize, other methods proposed by the literature (Davig and Leeper,
2007; Svensson and Williams, 2007) are not able to do so. We have tried to es-
timate the influential Smets and Wouters (2007) with the algorithm proposed
by Farmer et al. (2010). Our experience suggests that the time taken by the
algorithm to solve the model is reasonable when the model to be estimated is
the standard three equations DSGE model documented in Woodford (2003)’s
textbook. For a model of the kind of Smets and Wouters (2007), the algo-
rithm is very time consuming. Consequently, T used an algorithm proposed
by Dufourt (2011), which can be viewed as a generalization of the Svensson

and Williams (2007) algorithm. The algorithm writes the model solution as
Xt = Gl(st)Xt—l + H(St)et + L(St) (451)

where L(s;) is a regime-switching constant and s; denotes a Markov-Switching
state. The main difference with (4.3.3) is that the matrices in (4.5.1) depend
on the active regime s;, which is defined through a probability transition

matrix.

4.5.1. Kim’s approximation of the likelihood

The monograph by Kim and Nelson (1999) provides the main tools I have
used to estimate MS-DSGE models. To compute the likelihood, I adopt the
algorithm of Kim and Nelson (1999) designed to cope with the presence of

regime switching state s;.

The precise reason for using this algorithm is that the number of trajectories to

consider in a framework of regime-switching grows exponentially with time.
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To understand why the standard Kalman filter cannot be used, consider a
two regime DSGE models, i.e s, = 1,2. At the next iteration of the Kalman
filter, each of the Gaussians will be propagated through 2 other Gaussians.
Thus, at the next iteration, the distribution of X, is a mixture of 4 = 22
Gaussians. In general, at the tth iteration, the distribution of X, is a mixture
of 2! Gaussians. For instance, when ¢ = 10, the distribution of X is a mixture
of more than 1000 Gaussians, making the Kalman filter inoperable. To deal
with this exponential growth, the literature suggests various approximating
mehods: collapsing some mixture components at the end of each operation or
using a finite mixture components. In this paper, I mainly use Kim (1994)’s
approximation described in details in Kim and Nelson (1999). To check the
robustness of the results, we also use a finite mixture approximation. For the

latter method, please refer to Schorfheide (2005).

The Kim algorithm works as follow. First, we compute the Kalman filter for
every regime combination, according to section (4.3.3). That is, we run the

following recursion:

1. Run the Kalman filter as follows:

Xt(\it’i)l = O()X{ 1+ L()

Pyly = 20()P 1 ®(0) + RG)R;()
VE\ZtJf)l = Y- D - AXt(\it{)l

3 t(\ii)l - AXt(f{i)l A’

Xt(\i’j) = Xt(\i’ﬂ + D t(\i’z)1A/<F tﬁi’f)l)’lvif;ﬂ
P = PRl - PR AFED) T AL,

2. Run the Hamilton filter. This requires the computation of filtered prob-
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abilities Pr(s;, s;—1|Y:) and Pr(s:|Y;), for i,5 =1,2.:

Pl‘(SuStq‘Yiq) = PI'(St‘Stfl)Pr(Stfl‘nfl)

f(Y;f|Y;f—1) = ZZf(YHStaSt—la)/t—l)Pr(stast—luft—l)

St St—1

f(Y;s’ St, 82&71)‘5@71 . f(Y;t‘Sm St71), Yg%l) PT(Su StfﬂY;eq)

Pr(ss, 501]Y;) = FYi Y1) - F(YelYio1)

Pr(si|;) = > Pr(sy, s1[Y})

St—1

In words, we compute the filtered probabilities given the transition ma-
trix and the initial probabilities Pr(s;_1|Y;_1). The marginal density of
Y; (or the likelihood value at the the ¢th iteration) is given by f(Y;|Y;_1).
Next, we compute the joint probability of the regime using the Baye’s
rule, which is then used to update the filtered probabilities when a new

realization of Y; is available.

3. Run the collapsing procedure. The likelihood approximation appears at
this step. Use the probabilities in the previous steps to collapse 2 x 2

posteriors X t(ﬁ;j ) and Pt(ﬁ’j ) into 2 x 1 with the following equations:

Z?:l Pr(s;_1 =1,8 = j|Y})X(i’j)

Xj _ t|t

te Pr(s, = j|Y2)

pi S2 L Pr(sio =15, = j|Y)(X), — X)), — X5
e Pr(s, = j|Y1)

Once the model is estimated, quantities such as smoothed and filtered prob-

abilities are readily available.

4.6. Alternative methods to compute marginal

data density

Sims et al. (2008) modify the method proposed by Geweke (1999) when it
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is applied to Markov-Switching DSGE models. They point out that when
the model parameters are time-varying, as it is the case here, the posterior
distribution tends to be non Gaussian. They distinguish three aspects charac-
terizing the non Gaussian shape of the posterior. First, when the posterior has
multiple peaks, the density at the posterior mean can be very low. Second,
the truncated weighting function used by Geweke (1999) tends to be a poor
local approximation of the posterior density. Third, the posterior tends to be
very close to zero in the interior points of the parameter space. To address
these problems, Sims et al. (2008) propose a family of elliptical distributions
as weighting function. Liu et al. (2011) also contain new methods to estimate

the marginal data density.

4.7. Convergence diagnostics

It is important to verify that the posterior simulator converges to its ergodic
distribution in order to ensure that the results obtained are reliable. For
doing so, the literature offers both formal and informal methods. Formal
methods we have used include the potential scale reduction factor (PSRF)
proposed by Brooks and Gelman (1998), an the numerical standard error
(NSE) and relative numerical efficiency (RNE) of Geweke (1992). Among
informal methods, researchers typically run the MCMC with different starting
values, leading to different chains and verify that each chain converges to the
same distribution. It is of common practice to consider graphical methods,
including the plot of the MCMC draws and the computation of recursive

means.
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4.8. Conclusion

This survey gives an overview of Bayesian methods used to estimate constant
and regime switching DSGE models. The next chapter applies these methods
to estimate a MS-DSGE model.
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5.1. Introduction

From the mid-80s until the recent financial crisis, there has been a substantial
decline in the volatility of various macroeconomic series, particularly inflation
and output growth, both in the US and in other major industrial countries
(including European countries). The literature has employed the special term

“Great Moderation” to describe this striking phenomenon.

Economists have suggested three explanations of the Great Moderation. The
first type suggests that structural changes in the economy, such as changes
in economic institutions and in technology, have improved the ability of the
economy to absorb shocks (Stock and Watson, 2003b), hence contributing to

moderate economic fluctuations.

The second type relies on the so-called “Good policy” view according to which
improved policy, particularly monetary policy, is the primary source of the
Great Moderation. Proponents of this view observe that a reduction in volatil-
ity of inflation occurred simultaneously with a reduction in the volatility of
output. Since there is a broad consensus that monetary policy plays a cru-
cial role in stabilizing inflation, a reduction in the volatility of output may
have been the result of better monetary policy (Bernanke, 2004; Lubik and
Schorfheide, 2004; Clarida et al., 2000).

The third view argues that smaller exogenous shocks in the 80’s might have
helped the economy to become more stable. According to this view, the

Great moderation is mainly the result of “Goood luck” rather than the result
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of structural changes or improved policy (Stock and Watson, 2003b; Sims and
Zha, 2006; Justiniano and Primiceri, 2008).

While each explanation contains elements of truth, as noted in Bernanke
(2004), the “Good policy” hypothesis has been considered for a long time
as the best explanation of the Great Moderation. Studies that support this
view argue that during the 1960’s and 1970’s — The Great Inflation —, mon-
etary policy has been insufficiently aggressive against inflation, while it has
become more aggressive with the appointment of Volcker as Chairman at the
Fed (Lubik and Schorfheide, 2004; Clarida et al., 2000). A monetary policy
that is insufficiently aggressive leads to multiple equilibria, where some of
these equilibria are characterized by large “sunspot” shocks, i.e, shocks that
are unrelated to economic fundamentals. Large “sunspot” shocks lead to high
variances of inflation and output. By contrast, when the monetary policy
is sufficiently aggressive, rational agents understand that in response to an
inflationary shock, the monetary authority will act aggressively to dampen
its consequences on the economy. Thus, a direct consequence of the “Good
policy” view is that the decline in volatility should persist as long as monetary

policy continues to be “good”.

However, besides the recent financial crisis that casts some doubts on the
“Good policy” explanation, several recent papers, ranging from purely empir-
ical (Sims and Zha, 2006) to more structural (DSGE) papers (Justiniano and
Primiceri, 2008; Liu et al., 2011), have provided empirical evidence in favour
of the “Good luck” hypothesis. For instance, Sims and Zha (2006) find no
regime changes in US monetary policy. They conclude that the source of the
Great Moderation is mainly the outcome of a reduction in the variance of
shocks. They reach this conclusion using structural VAR. Unlike Sims and
Zha (2006), Schorfheide (2005) considers the DSGE framework and reports

considerable changes in US monetary policy. Schorfheide obtains such results
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using a small scale DSGE model.

More recently, three papers have tried to address the scale effect problem in
Schorfheide (2005). The first one is the paper by Liu et al. (2011). They
consider a medium scale DSGE model along the lines of Christiano et al.
(2005) and Smets and Wouters (2007), where monetary policy switches regime
through the inflation targeted by the Fed. By means of counterfactual exper-
iments, the authors find little evidence that change in the inflation target is
the main driving force of the rise and fall in inflation. On the contrary, the
role played by shocks processes is substantial. They conclude that “the shocks
processes are more likely to be the main driving force of the rise and fall
in inflation than changes in the inflation target”. The second one is Bianchi
(2011). He uses a model along the line of Christiano et al. (2005) and Jus-
tiniano et al. (2011), where both policy and variance parameters evolve as
a Markov-switching process. His findings suggest, inter alia, that the 'Good
policy’ explanation is likely to be preferred by the data. Finally, Fernandez-
Villaverde et al. (2010) fit a non-linear medium scale DSGE model to U.S.
data, where they seek to understand the role of stochastic volatility versus
the role of changes in monetary policy rule in accounting for the Great Mod-
eration in the U.S. aggregate data. They report strong evidence of changes
in US monetary policy but such changes do not matter much for the Great
Moderation. However, the time-consuming nature of their methodology forces

researchers to estimate linearized instead of non-linear DSGE models.

This chapter proposes an alternative strategy, which is also developed in Du-

fourt and Jean-Baptiste (2011a,b).

We consider a medium-scale DSGE model along the lines of Smets and
Wouters (2007), where policy and shock variance parameters switch regimes.
In this sense, our strategy is similar to Bianchi (2011) and Liu et al. (2011).

However, we emphasize some key differences. First, Liu et al. (2011) model
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changes in policy as changes in the inflation target in the policy rule, while we
allow both inflation target and reaction coefficients in the policy rule to switch
regimes. Second, the model considered in Bianchi (2011) is a simplified version
of the model we consider, where wage is flexible and there are no switches in
inflation target. A third key difference with respect to Bianchi (2011) is that
we consider synchronized as well as independent regimes in policy and the
variance of shocks, while Bianchi (2011) considers only independent regimes.
This consideration allows us to study to what extent changes in monetary

policy in the U.S. and in the Euro Area are endogenous.

We estimate three specifications of our baseline DSGE model, with U.S. and
Euro data. The first one considers only changes in the variance of shocks.
The second one considers synchronized changes in both policy and shock vari-
ances. This means that, in periods of low volatility, the monetary authority
is constrained to react strongly to deviations of inflation from its long run
target level. We label this regime “the hawkish regime”. On the contrary, a
period of high volatility forces the monetary authority to conduct an “inflation
accommodating” policy, which we call “the dovish regime”. Finally, the third
specification allows changes in policy and shock variances to be independent.
That is, changes in policy regimes are independent of the current state of
the economy. We define three criteria for changes in monetary policy regimes
to be endogenous. First, the independent regimes and synchronized regimes
specifications have similar fits. Second, changes in monetary policy occur (ap-
proximately) simultaneously with changes in the variance of shocks. Third,
in the independent regimes specification, the following two regimes should al-
most never occur: (i) the hawkish regime in the presence of high volatility

and (ii) the dovish regime in the presence of low volatility.

Our findings are the following. First, in terms of fit, the specification where

policy parameters are allowed to switch regimes dominates the specification
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where only shock variances switch regimes. This finding holds for both the
U.S. and the Euro Area. Second, the specification with synchronized regime
shifts in policy and shocks variance better fits the data than the independent
regime shifts specification, again for both economies. Third, with respect to
the question of endogenous monetary policy, only the first criterion is sat-
isfied for the U.S., since the independent and synchronized regimes produce
similar fits (see Table 5.3). Smoothed estimates of regime probabilities sug-
gest that changes in U.S. monetary policy seem to be closely related to the
personality of the Chairman, and not to the current state of the economy.
That is, under the Martin era, the U.S. monetary policy has been hawkish
against inflation, while the period under the Burns-Miller chairmanship has
been a dovish regime. Finally, the Volcker-Greenspan-Bernanke era had been
hawkish. We do find that, for the U.S. economy, the “hawkish-high volatility
regime” occurred frequently in the 60’s and the mid-80’s, whereas the “dovish-

low volatility” occurred in the 70’s and the early 80’s.

For the Euro Area, the same cannot be said. Our three criteria are satisfied.
Specifically, in periods of low volatility we find that the Euro Area mone-
tary policy is always hawkish. Inversely, the monetary policy is dovish when
volatility is high. We thus conclude that the Euro Area monetary policy is

endogenous.

The remainder of the chapter is organized as follows. In Section 5.2, we
briefly present the model and discuss the solution in the presence of regime
switching while additional details are provided in the Appendix. In Section
5.3, we present the econometric tools used to estimate the model. Section
5.4 presents the parameter estimates and their economic implications through
impulse responses, variance decompositions and regime probabilities. Section
5.5 presents results for the Euro Area. Section 5.6 summarizes our results on

the issue of monetary policy endogeneity . Finally, the last Section concludes.
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In Appendix A.2, we provide additional results that are not reported in the

main text due to space considerations.

5.2. The model

The model we consider is adapted from Smets and Wouters (2007) but ex-
tended to feature regime switches in the variance of shocks and in monetary
policy. The model incorporates various nominal and real frictions such as mo-
nopolistic competition in goods and labor markets, sticky prices and wages,
partial indexation of price and wages, habit persistence, investment adjust-
ment costs, variable capacity utilization. We deviate from Smets and Wouters
(2007) by letting the inflation target depend on the regime in place in the cur-
rent period. This departure has some implications for the dynamic equations

governing inflation, real wages and monetary policy.

In what follows, we present the log-linearised version of the model where
we describe the aggregate demand side, the aggregate supply side and the
monetary policy. Hatted variables denote percentage deviations with respect
to steady state. Details of the model derivation are provided in appendix A.2

(see also (Smets and Wouters, 2007)).

5.2.1. The log-linearized model

The aggregate resource constraint is given by

Y, — ¢,Cy — iy, — 17, — €9 = 0 (5.2.1)

with i, = (v, =14+ 8)ky, ¢, = (1 — i, — g,) and r, = r*k,2;, where k, is
the steady-state capital to output ratio, r* is the steady-state real rental rate

of capital, z; = (1 — v)/4, where 1 is a positive function of the elasticity
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of the capital utilization adjustment cost function. Output, consumption,
investment, capital-utilization rate and exogenous spending shock are denoted
by 37,5, @,E, Z; and €Y., respectively.

The law of motion for the exogenous spending shock as well as for other shocks

is defined later on.

The second equation describes the dynamics of consumption and is given by

C, = cléH +(1—¢) E@H + ¢ [Et — EtZt+1:| (5.2.2)
—c3 [_ﬁt — BT +§g] ,
where
a1 = [h/7.]/ L+ h/v.],
¢ = [(oc =D wl/((1+ Aw)e)] /[oe (L+h/7.)],
cs=[L=h/v.]/loc(1+h/7,)],

with h denoting an external habit formation, v, the steady-state growth rate,
o. the elasticity of intertemporal substitution between labour and consump-
tion, A, the steady-state wage mark-up, w, [, ¢, the steady states of wage (),

hours worked (L;) and consumption. Ry, 7; and & are the nominal interest

rate, inflation rate and a risk-premium shock.

The dynamics of investment are given by

L =iliy + (1 —i1) By +320Q, +E, (5.2.3)

with iy = (1/14 5 (7,)" ") and iy = (1/ (14 8(7.)""7) (1.)"¢) , where ¢
is the steady-state elasticity of the capital adjustment cost function, (3 is the

discount factor applied to households and Ei is an investment-specific shock.

The Tobin’s Q-equation is given by

@t = QIEt©t+1 + (1= q) Eirypq — <§t — BT +/§It)) ) (5.2.4)
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with ¢; = (1 =9)/ (1 -0+ rk) , where § is the depreciation rate of capital.

Turning to the supply side, the aggregate production function is given by

v, — (1 + %) (a (f{t_l n zla) +(1- o) +§§‘) , (5.2.5)

where ¢/Y is the share of fixed-costs in production, « captures the share of

capital in production and th is the total factor productivity.

The accumulation of capital IAQ is given by
Ky =k Ky 4 (1= k) T, + kot (5.2.6)

with k1 = (1 —0) /v, and ke = (1 — (1 = 0) /7,) (1 + B7177°) 2.

The price mark-up 7i?, corresponding to the difference between the average

price and the nominal marginal cost, is given by
/IL\L? =« (I?t,1 + zl?t — /Et) — ’l/l}t +/é}24 (527)

Profit maximization by price-setting firms gives rise to the following New-

Keynesian Phillips curve (NKPC):

T = ('yp/ﬁt_l + (1 — vp) ﬁ;‘) + Ty (Et/ﬂ\-t+1 — (1 — 'yp) Eﬁ;l) — Tyl + €Y,

(5.2.8)
with m = 1/[(1 + B () 7,)] , where v, is the degree of indexation to
past inflation, and 7, = [8(7,)" 7]/ [(1+ B8 (7.)'77,)]. The coefficient
mo= [(1-6)(1=80.)"")] /& +80)" %) (1 —1) ¢ +1)]
captures the role of real marginal cost in driving inflation. Here &, is the
degree of price stickiness, i, the steady-state price mark-up factor and ¢, is
the curvature of the Kimball goods market aggregator, due to the fact that
Smets and Wouters (2007) use the Kimball aggregator instead of the com-
mon Dixit-Stiglitz aggregator, as the former allows a more reasonable degree
of price and wage stickiness. The term €7 can be interpreted as a cost-push

shock or as a price mark-up shock. Thus, when the inflation target switches
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regimes, the dynamics of inflation include the additional terms (1 —+,)7; and
(1 —7,)E(7;,,), that are absent in the Smets-Wouters model." We assume

that the inflation target oscillates between high and low target.

Using the fact that the rental rate of capital is a positive function of the degree
of capital utilization and is negatively related to the capital-labor ratio, as

implied by cost minimization, we obtain the following equation

(14 2)7 + K,y — @, — L, = 0. (5.2.9)

The wage mark-up is given by

My = Wy — O'LLt — 11— h/”yZCt + 1 _ h/’yZCtil (5210)

while, due to nominal wage stickiness, the real wage dynamics reads

Wy = wy (W1 + 7, Te-1 + (1 —7,)77)
+ (1 = wy) (B + Bt — (1 — 7, Ei7y)

with wy = 1/ [148(7.)77], wa = 1+8(3.)" ")/ [1+8(.)"77],
where 7, is the degree of wage indexation to lagged inflation and

Wy = [(1 - gw) (1 - B (fyz)lioc éw)} / [gw (1 + B (,yz)1*00) ((:uw - 1) Sw T 1)] )
where £, is the degree of wage stickiness, ¢, is the curvature of the Kimball
goods market aggregator and ;" is a wage mark-up shock. The dynamics

of real wages, as in the inflation equations, includes the additional terms

(1 - 711})71-: and (1 - wa)Et’]r;Ll'

'In a related paper, ? consider a time-varying inflation target, where inflation tar-
get evolves as a random walk without drift. This assumption implies that F,7, , = 7.

Therefore, our approach turns out to be more general.
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The policy block of the model is described by the following monetary policy

reaction function:

B = pols) Byt (U= po(s0) [rels)Gr = 77 (s0) -, (s0) (Vi = V)
Fray(s:) [(fft - ?tf) - (ffH - fft’il)] +2 (5.2.12)

This is a generalized Taylor rule where the monetary authorities gradually
adjust the policy rate (ﬁt) in response of inflation deviations from its targeted
level, to the spread between actual and potential output (3//\; — }//\;f), to the
change in the output gap (lA/t - f/tf) - (?t_l — 2{1) The potential output is
the output that would prevail in the absence of price and wage stickiness and
of the two mark-up shocks. Parameter p, captures the degree of interest rate
smoothing, ; is a monetary policy shock and s; is a dichotomous variable that
captures the monetary policy regime in place at time t. It evolves according
to the transition matrix P = [p;;] where p;; = Pr[s; = i|s;_1 = j].

Finally, we close the model by specifying the law of motion for various shocks

that are considered in the paper:

o
Il
>
«Q
02
|
+
Q
«

& = L o — vt 5.2.17
g = putio1 0 (v)n = vul 5.2.18

g = pEq o (vn;

Those shocks are shocks to total factor productivity, government spending,

risk-premium, investment-specific, price mark-up, wage mark-up and mone-
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tary policy, respectively . The wage-markup and price-markup disturbances
are assumed to follow an ARMA(1,1), as in Smets and Wouters (2007), in
order for the model to reproduce some of the high-frequency fluctuations in
prices and wages. Finally, v; is an unobservable dichotomous variable cap-
turing heteroskedasticity in the shocks. It evolves according to the transi-
tion matrix @) = [¢;;] where ¢;; = Priv, =ilv,.y =j],i = 1,2;5 = 1,2. We
consider cases where the regimes s; and v; are synchronized or independent.
When s; and v; are independent, we consider a new state variable s*, which
indexes both regimes s; and v;. Thus, s* is four-state variable whose transi-
tion matrix is P* = P® (). The consideration of synchronized regime shifts is
another key difference between our paper and Bianchi (2011), who considers
only a specification where regimes in policy and the variance of shocks evolve

independently.

Next, we solve the model using an iterative algorithm proposed by Dufourt
(2011). As mentioned in Chapter 4, the main advantage of this algorithm is

it economizes on computational time.

5.3. Estimation approach

This section begins with the description of the data used for the estimation.
We then derive the state space representation of the model solution in order
the compute to likelihood with the methods provided in Chapter 4. Finally,
we describe the prior distribution of the parameters, which is combined with

the likelihood to form the posterior distribution.

5.3.1. The data

We estimate the model using seven quarterly series for the U.S.

economy and Euro area. The vector of observables is obs; =
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[Alog Yy, Alog Cy, Alog I, Alog %t,log Hy, 7, Ry] where A is the first differ-
ence operator. We first present the data for the US economy. The sample
spans 1954:111 to 2009:1, where 1954:111 is the first quarter where the Federal
funds rate is available, while the end of our sample is the first period where the
Federal funds rate hits a zero bound. All data come from the Fred Database.
Per capita real GDP is constructed by dividing the nominal GDP by the US

working age population and the GDP deflator.

Real series for consumption and investment are obtained in the same manner,
where in contrast to Smets and Wouters (2007), investment is the sum of fixed
private investment and durable consumptions, and consumption is the sum of
non-durables and services.? Real wage is defined as the hourly compensation
in the Nonfarm Business sector divided by the GDP deflator. Our measure of
labor is the log of hours of all persons in the Nonfarm business sector divided
by the working-age population. We measure inflation as the quarterly log
difference in the GDP deflator. Finally, our measure for the nominal interest

rate is the quarterly effective Federal funds rate.

Except, the series on population, all data for the Euro Area (EU-15) come
from the synthetic Area Wide Model (AWM) dataset, first issued by Fagan
et al. (2005). The dataset is publicly available from the Euro Area Business
Cycle Network (EABCN). Series on the population come from the OECD.
The AWM dataset lacks series on hours and no reliable measure of hours is
available for the Euro Area. Following the literature, we use the employment
series divided by the working-age population to express it in per capita terms.
The estimation period spans 1970:1 to 2009:1V, which is the period where

most of the data is available.

We link the observables to the model variables by the following measurement

2In Smets and Wouters (2007), investment measured by the fixed private investment

only, while consumption is measured as the sum of non-durables, durables and services.
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equation

obs, = D+ ZX, (5.3.1)

with D = [7, ~, 7.7, 1, w*,m , where 7 is the common quarterly trend growth
rate of real GDP, consumption, investment and wages, 7* is the quarterly
steady-state inflation rate, R is the steady-state nominal interest rate and [ is

the steady-state hours (or employment) per capita.

5.3.2. Prior distribution

Our prior follows closely the Smets and Wouters (2007) prior. We fix some

parameters that are not identified or imprecisely estimated.

These parameters are: 6 = 0.025,g9, = 0.18,\, = 1.5,5, = 10,¢, = 10.
As noted by Smets and Wouters (2007), the first two parameters would be
difficult to estimate unless investment and exogenous spending are used in
the measurement equations, while the last three parameters are not identi-
fied. Several attempts to estimate the steady state log hours reveal that this

parameter is imprecisely estimated. Hence, we choose { = 0.

The prior distribution for the reaction coefficients to change in inflation are
Gamma centered around Taylor (1993)’s values for both regimes. We also
consider an alternative prior, which is consistent with the view that the Great
Inflation of the 70’s was the consequence of loose monetary policy. Specifically,
we allow the Fed’s reaction coefficients to changes in inflation relative to its
target to be lower during the Great Inflation era and higher during the Great
Moderation era. The reaction coefficients to both the output gap and the
change in the output gap follow a Gaussian distribution, with mean 0.12 and
standard deviation 0.05. The prior for the interest rate smoothing parameter

follows the Beta distribution, with mean 0.5 and standard deviation 0.2. These
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Table 5.1: Prior distribution of structural parameters for the synchronized

and independent regimes models.

Parameters Distr Para (1) Para (2) .
% Normal 4 1.5
Oc Normal 1.5 0.375
h Beta 0.7 0.1
0. Beta 0.5 0.1
or, Normal 2 0.75
7 Beta 0.5 0.1
Y Beta 0.5 0.15
Vp Beta 0.5 0.15
P Beta 0.5 0.15
Up Normal  1.25 0.125
Trl Gamma 1.5 0.25
Tr2 Gamma 1.5 0.25
Pra Beta 0.75 0.1
Pr2 Beta 0.75 0.1
Tyl Gamma  0.12 0.05
Ty.2 Gamma  0.12 0.05
TAy1 Gamma  0.12 0.05
TAy,2 Gamma  0.12 0.05
100(1/—1) Gamma 0.25 0.1
1007 Normal 0.4 0.1
o} Beta 0.3 0.05
1007*(1) Gamma  0.62 0.1
100A7* Gamma 0.5 0.1

Notes: Para(1) and Para(2) list the means and the standard devi-
ations for Beta distribution; the shape s and and the scale v pa-
rameters for the Inverse Gamma distribution, where p;g(o|v, )

o " Lexp(—vs?/20?).

prior values are identical across regimes and follow closely Smets and Wouters

(2007).

The prior for the inflation target follows Schorfheide (2005). Instead of esti-
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mating low and high targets, we estimate the low target 7%(1) and the dif-
ference between low and high target Azn*. This strategy allows us to assess
whether the difference in the two targets is significant or not. The prior dis-
tributions for the low and high inflation targets are such that the annual low

and high targets are 3% and 6%, respectively.

The priors for the transition probabilities are chosen to ensure that the regimes
are persistent. Specifically, we assume a Beta distribution for the transition

probabilities, with mean 0.9 and standard deviation 0.05.

The prior on the stochastic process follows closely Smets and Wouters (2007).
The standard errors of all innovation follow an Inverse-Gamma distribution
with mean 0.1 and standard deviation 2. The persistence coefficients of the
shocks processes follows a Beta distribution with mean 0.5 and standard de-

viation 0.2. Additional details are available in Tables 5.1 and 5.2.
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Table 5.2: Prior distribution of shocks processes parameters for the synchro-

nized and independent regimes models.

Parameters  Distr Para (1) Para (2).
Pa Beta 0.5 0.2
Py Beta 0.5 0.2
Py Beta 0.5 0.2
Pi Beta 0.5 0.2
Pep Beta 0.5 0.2
Puw Beta 0.5 0.2
Py Beta 0.5 0.2
I Beta 0.5 0.2
s Beta 0.5 0.2
Pya Beta 0.5 0.2
10001 Inverse gamma 0.1 2
100041 Inverse gamma 0.1 2
10001 Inverse gamma 0.1 2
10001 Inverse gamma 0.1 2
1000, 1 Inverse gamma 0.1 2
100041 Inverse gamma 0.1 2
1000 g1 Inverse gamma 0.1 2
100042 Inverse gamma 0.1 2
10002 Inverse gamma 0.1 2
100074 2 Inverse gamma 0.1 2
1000 2 Inverse gamma 0.1 2
100072 Inverse gamma 0.1 2
1000, 2 Inverse gamma 0.1 2
1000 g2 Inverse gamma 0.1 2
P11 Beta 0.9 0.05
Pao Beta 0.9 0.05
q11 Beta 0.9 0.05
G220 Beta 0.9 0.05

Notes: Para(1) and Para(2) list the means and the standard devi-
ations for Beta distribution; the shape s and and the scale v pa-

rameters for the Inverse Gamma distribution, where p;g(o|v, )

o " Lexp(—vs?/20?).
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5.4. Empirical results: U.S.

This section presents our results for the US economy. We first present the
model fit. Then we comment the estimates of the structural parameters and
their economic implications through variance decomposition, impulse response

analysis and the smoothed estimates of regime probabilities.

5.4.1. Model Fit

Table (5.3) reports measures for four specifications of our DSGE model. To
assess the model fit, we compute the modified harmonic mean estimation of the
marginal likelihood defined in Chapter 4. Several observations can be made
from Table 5.3. First, the specifications where policy and variance switch
regimes clearly dominate the other. Thus, our model fits better than the
benchmark Smets and Wouters (2007) model, where policy and shock variance
parameters are constant. This translates into a Bayes factor of exp(86) in favor
of our model. Our model also fits better relative to Liu et al. (2011), where
only regime shifts in variances and in inflation target are considered. Second,
the two specifications where policy parameters switch regimes deliver a rather
similar fit. Thus, this finding raises the issue about the endogeneity of regime

switches in monetary policy.

5.4.2. Estimates of structural parameters and regime

probabilities

In this section, we discuss the estimates of the best fit model. Posterior
summary statistics for the best fit model (Posterior-Sync), such as the mean,
the mode and confidence bands are obtained with the Metropolis-Hastings

algorithm. We also report the posterior mode for the independent regime
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Table 5.3: Model fit: (Log) Marginal Data Density

Specification Modified harmonic mean
1.Constant parameters model -1325.98
2.Switching variance only -1240.10

3.Switching inflation target,

policy rule and shock variances -1222.20
4.Independent switching in inflation target,

policy rule and shock variances -1223.4

Notes: Log Marginal Data Density (MDD) computed for different specifications, with

the modified harmonic mean estimator and the Laplace approximation.

specification (Posterior-Ind).

Table 5.4 and 5.5 report estimates of the best-fit model. Observing prior infor-
mation and posterior summary statistics, we note that the data are informa-
tive about almost all parameters. Our estimates for the structural parameters
fall within the range reported by the literature. The median estimate for ¢,
the steady-state elasticity of the capital adjustment cost is 5.03. This esti-
mate lies on the error band reported by Smets and Wouters (2007)’s estimate
for this parameter while it is higher than estimates by Liu et al. (2011) or
Justiniano et al. (2010). Our estimate for o., the intertemporal elasticity of
substitution is 1.19, which is in line with the literature. The habit parame-
ter is 0.90, much higher than estimates obtained in the literature. The labor
elasticity is estimated to be 2.90. We estimate the share of fixed costs in the
production function (up — 1) to be 0.425, somewhat lowerr than the value

0.60 obtained by Smets and Wouters (2007).
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Table 5.4: Posterior distribution of structural parameters for the synchronized

and independent regimes models

Posterior-Sync

Posterior-Ind

Parameters Mode  Mean 5% 95% Mode
%) 5.0350 5.3152  3.7941  7.1853 5.0333
o 1.1899 1.1885 1.1089 1.2723 1.1688
h 0.9092 0.9085 0.8764 0.9426 0.9158
0., 0.8514 0.8489 0.7984  0.8969 0.8550
o, 2.8095 2.9578  1.7948  4.1466 3.3043
0, 0.6947 0.7034 0.6294 0.7854 0.7096
Yo 0.5018 0.4928 0.2974 0.7065 0.4679
Vp 0.1836  0.2013 0.0762 0.3519 0.1804
WY 0.4366 0.4860 0.3165 0.6592 0.5146
Wp 1.4253 1.4338 1.2865 1.5786 1.4271
Trl 1.8748  1.9299 1.5958  2.3002 1.8095
T'r2 1.5592 1.6320 1.2121 2.0836 1.5202
Pra 0.8855 0.8895 0.8624  0.9187 0.8819
Pr2 0.7900 0.7770 0.6919 0.8572 0.7105
Ty.1 0.0463 0.0552 0.0242 0.0892 0.0342
Ty.2 0.1091 0.1176 0.0536  0.1920 0.1624
TAy,1 0.1124 0.1213 0.0843 0.1540 0.1145
T'Ay,2 0.1582 0.1645 0.0828 0.2461 0.1601
100(1/5 —1) 0.1187 0.1415 0.0519  0.2346 0.0873
10075 0.3770 0.3645 0.3081 0.4126 0.3543
o 0.2022 0.2055 0.1906  0.2203 0.2023
1007*(1) 0.6862 0.6972 0.5125 0.8620 0.6331
100A7* 0.5189  0.5250 0.3414 0.7432 0.4646

Turning to the wage and price settings parameter, our estimates for the Calvo

probabilities imply an average length of the wage contracts of six quarters and

about three quarters for the price contract. These estimates are higher than

the values reported in some papers (e.g (Liu et al., 2011)). The .95 error band

estimates for the wage and price indexation suggest that they are precisely

estimated and are very close to estimates reported by Smets and Wouters
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(2007).

The shock processes suggest that productivity, spending, price markup and
wage markup shocks are highly persistent. Investment shocks exhibit impor-
tant persistence while preference and policy shocks exhibit low persistence.

These findings are consistent with those of Smets and Wouters (2007).

Estimates of the standard deviations of shocks clearly indicate that shocks
variances are effectively switching between regimes. Except for the wage
markup shock, the second regime is the high volatility regime and it is slightly
less persistent, as suggested by the transition probabilities (p;; = 0.9461,
pa2 = 0.8904) and Figure 5.1. Standard deviations for all shocks show drastic
changes across regimes. In line with results reported in Justiniano and Prim-
iceri (2008), monetary policy shock is the exogenous disturbance showing the
largest degree of stochastic volatility when one compares the standard devi-
ations for this shock in each regime: the ratio of the standard deviation for
the monetary policy shock in regime 1 to the standard deviation in regime 2
is more than 350 percent. We find that the wage markup shock is relatively
stable while the price markup shock has the smallest variance, with a stan-
dard deviation of this shock of 0.10 in the first regime and 0.20 in the second
regime. The spending shock exhibits moderate variation while the productiv-
ity shock has the largest variance in absolute terms. Investment shock shows
significant degree of variation across regime, much lower than variation for
monetary policy shock. While our findings are in line with Justiniano and
Primiceri (2008) about the patterns of monetary policy shocks, they are in
sharp contrast with those reported in Liu et al. (2011), who find that monetary

policy and technology shocks have the smallest variance.



Chapter 5. Great Moderation and endogenous monetary policy

88 switches
Table 5.5: Posterior estimates of shock processes parameters.
Posterior-Sync Posterior-Ind
Parameters Mode  Mean 5% 95% Mode
Pa 0.9862 0.9853 0.9771  0.9940 0.9824
Py 0.9848 0.9844  0.9727  0.9956 0.9837
O 0.3404 0.3563 0.2221  0.4896 0.3381
0; 0.6820 0.6862 0.5733  0.7907 0.6743
Pep 0.9718 0.9607 0.9230 0.9921 0.9469
Puw 0.9656  0.9600 0.9325  0.9868 0.9528
Or 0.2359  0.2797  0.1600  0.4075 0.1747
Ly 0.9362 0.9248 0.8803  0.9657 0.9173
Hy 0.8557 0.8343 0.7222  0.9387 0.8334
Pya 0.2793  0.2740 0.2115  0.3460 0.2784
10001 0.4993  0.4968 0.4362 0.5625 0.4903
100041 0.2746  0.2842  0.2421  0.3309 0.2739
1000y, 0.1203  0.1204 0.0959  0.1440 0.1157
1000 1 0.5367  0.5771  0.4435 0.7220 0.5211
1000, 4 0.1548  0.1581 0.1246  0.1899 0.1566
10001 0.2660 0.2635 0.2290  0.2954 0.2641
1000 g1 0.0912  0.0980 0.0819 0.1144 0.0850
100042 0.7444  0.7918 0.6504 0.9612 0.7531
10009 0.3611  0.3696  0.2834  0.4499 0.3578
10002 0.1819  0.1909 0.1367 0.2433 0.1898
1000 2 1.4398 1.5307 1.1460 1.9232 1.4376
1000, 2 0.2474  0.2607  0.1880  0.3398 0.2592
1000, 2 0.2284 0.2225 0.1715  0.2748 0.2125
1000 g2 0.3344 0.3696  0.3029 0.4531 0.3012
P11 0.9461 0.9383 0.8962 0.9762 0.9614
Do 0.9110 0.8904 0.8148 0.9583 0.8991
q11 0.9415
22 0.9037

Turning to the monetary policy rule, we note that the estimates of the co-

efficients response to changes in inflation exhibit significant variations across

regimes. In the first regime (the hawkish regime), the response to changes
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(a) Hawkish and low volatility regime (b) Output growth
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Figure 5.1: US: Posterior probabilities of the (synchronized) more hawkish-
low volatility regime for the best fit model. Shaded bands in panel (b), (c)
and (d) are the NBER recession and expansion dates. Vertical lines in panel

(a) denote the appointment of the Chairmen.

in inflation is quite high (r,; = 1.87), and is in line with the one estimated
by Smets and Wouters (2007). In the dovish regime, the same parameter is
somewhat lower (7, = 1.55). While there is significant difference between the
reaction coefficients of the two regimes, our results do not support evidence re-
ported in Clarida et al. (2000) or Lubik and Schorfheide (2004). These papers
find that in the dovish regime, r, < 1. In the dovish regime, posterior and
prior modes for r, are quite similar (1.55 and 1.5). However, one should not
interpret this finding as reflecting the fact that data are uninformative about
this parameter. Using an alternative prior that would imply indeterminacy
in a constant coefficient model, we estimate posterior mode of r, 5 to be 1.52,

quite similar to the prior.3

3In a constant DSGE model, indeterminacy arises when the interest rate does not rise
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Estimates of the interest rate smoothing coefficients suggest that the Fed
strongly responds to the lagged interest rate in both regimes, though the
response is higher in the hawkish regime (0.88) than in the second regime
(0.77). Responses to output gap and changes in output gap are in line with
the corresponding estimates by Smets and Wouters (2007), which suggest
that the Fed responds more strongly to changes in the growth rate of output
gap (0.1091) than in the output gap itself (0.0463). Finally, estimates of the
inflation target imply that in the hawkish regime, the annual inflation target
is about 2.7%, while it is about 5% in the dovish regime. Our estimates are
somewhat lower than those of Schorfheide (2005), who estimates the inflation

targets to be 2.8% and 8%, respectively.

Figure 5.1 depicts the smoothed posterior probabilities for the hawkish regime,
as well as the series on output growth, inflation and interest rate.* The graph
is consistent with the view that during much of the time in the 60’s, the Fed
was very hawkish against inflation, while it was dovish in the 70’s. In the
mid 80’s until the recent financial crisis, the Fed was very hawkish against
inflation. We note that these findings contrast those in Clarida et al. (2000),
since their estimates suggest that pre-Volcker period was essentially a dove

regime.

more than one for one in response to a change in inflation. In this case, the Taylor principle
is violated and this violation can produce undesirable outcomes, such as large fluctuations
in output and inflation, multiple equilibria where those variables respond to sunspot shocks,
i.e. shocks that are unrelated to fundamentals of the economy but are the results of the
beliefs of agents. For Markov Switching DSGE models of the kind we consider in this paper,
however, there is no theoretical result for the existence of indeterminacy. Davig and Leeper
(2007), Farmer et al. (2009b) and Farmer et al. (2009a) provide theoretical results for the

indeterminacy/determinacy issue for forward-looking Markov-Switching DSGE models.
4Smoothed posterior probabilities are computed using methods provided in Kim and

Nelson (1999).
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5.4.3. Variance decomposition

This subsection seeks to understand what are the main driving forces of key
macroeconomic variables of the model. Tables 5.6 and 5.7 show the variance
decomposition for the best fit model computed at the posterior mode, where

shocks are reported in column.

As one can see, under the two regimes, the main driving force of output
fluctuations is the investment-specific shock. In the first regime, this shock
accounts for more than 50 percent of the forecast error variance of output
irrespective to the horizon considered. In the second regime, the result is even
stronger, since more than 70 percent of the variance of output is explained by
the this shock. In Smets and Wouters (2007), the investment-specific shock
explains only about 20 percent of the variance of output. The role of invest-
ment shocks for the business cycle is documented in Justiniano et al. (2010),
Justiniano and Primiceri (2008), Justiniano et al. (2011). Our finding is in
line with their. Justiniano et al. (2010) criticize Smets and Wouters (2007) by
showing that investment shocks are the main driving forces behind investment
and output fluctuations when the definition of investment includes inventories
and durables, or the observables include the relative price of investment.? As
expected, investment shock is the main driving force behind investment fluc-
tuations of. Fluctuations in hours are mostly explained by investment shock,
while this shock explains an important part of fluctuations in nominal interest

rate.

To some extent, spending shocks also explain an important part of the fluc-

tuations. Price markup shocks, wage markup shocks and monetary policy

®We have estimated the Smets and Wouters (2007) model according to their definition
of investment and consumption. Results not reported confirm the criticism of Justiniano
et al. (2010). Furthermore, we have found that with the Smets-Wouters dataset, the main

explanation of the Great Moderation is rather the Good luck hypothesis.



Chapter 5. Great Moderation and endogenous monetary policy
92 switches

shocks play a very limited role in explaining output fluctuations.

As expected, the risk premium shock explains the largest part of the fluctu-
ations in consumption, though this part is decreasing with the length of the
forecast horizon. In the short run (up to one quarter), this shock explains a
sizeable part of the nominal interest rate fluctuations. Otherwise, this shock

is unimportant in explaining fluctuations for the other observables.

Price markup and wage markup shocks explain the largest part of fluctuations
in inflation and real wages. Together, they account for more than 70 percent

of the forecast variance of these series.

It is worth noting that the monetary policy shock plays a very limited role
for series other than the interest rate. In the short run, the monetary policy
shock explains a big part of nominal interest rate fluctuations. However, as the
horizon lengthens, investment becomes the main driving force behind nominal

interest rate fluctuations.

Summarizing, fluctuations in output, investment and hours are mostly due
to investment shocks. Fluctuations in inflation are mostly explained by price
markup and wage markup shocks, while fluctuations in nominal interest rate

are mostly due to monetary policy and investment shocks.
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Table 5.6: Variance decomposition for the best fit model (Regime 1)
Horizon ¢, €g €p €; €p €w €
Output
1Q 9.45 21.00 9.82 54.92 2.18 0.17 2.46
40Q) 13.00 14.74 7.54 51.43 5.35 4.63 3.31
8Q 12.73  14.09 7.32 51.62 5.25 5.66 3.34
240) 12.64 13.47 7.03 50.85 591 6.49 3.61
Consumption
1Q 0.72 0.06 96.07  0.57 0.09 0.11 2.38
40 8.08 0.52 69.57  6.52 3.85 6.76 4.70
8Q) 9.78 0.66 64.11  6.20 4.62 10.35  4.28
240) 10.27  0.76 59.51  6.11 5.18 13.47  4.69
Investment
1Q 2.99 0.16 0.78 92.43 1.54 0.34 1.76
40 6.45 0.36 0.87 84.08 3.67 2.62 1.94
8Q 6.13 0.34 0.83 84.39 3.53 2.70 2.07
240Q) 6.43 0.36 0.90 82.51 4.13 3.50 2.18
Real Wage
1Q 2.23 0.00 0.21 0.49 27.82  69.20 0.05
40Q) 5.37 0.01 0.24 2.13 28.71  63.21 0.33
8Q) 5.80 0.02 0.25 2.11 28.48 63.01 0.33
240Q) 5.90 0.03 0.27 2.31 28.83  62.26 0.41
Hours
1Q 44.96  13.13 591 33.64 0.40 0.48 1.49
40Q) 12.36  6.21 4.23 51.23 8.77 10.59  6.61
8Q 9.12 5.21 3.28 41.09 13.29  21.35 6.66
24Q) 4.98 3.62 1.70 21.92 14.10  49.86  3.82
Inflation
1Q 5.16 0.12 0.28 1.17 75.54  16.91 0.81
40 8.08 0.33 0.71 2.86 43.90  41.19 2.94
8Q 7.77 0.37 0.75 2.81 41.09 43.84 3.36
240Q) 7.53 0.49 0.78 3.15 39.11 4544  3.50
Nominal interest rate

1Q 11.27  0.72 15.88  6.75 14.53  6.04 44.82
40Q) 15.02 1.24 6.70 25.44 14.50  24.47 12.63
8Q 14.12  1.31 5.79 25.32 13.25  30.08 10.13
24Q) 13.13 1.74 5.14 23.45 11.88  36.08 8.59
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Table 5.7: Variance decomposition for the best fit model (Regime 2)

Horizon ¢, €g €p € €p €w €,
Output
1Q 6.30 7.58  4.67 76.14 1.70 0.02 3.60
40Q) 8.62 5.68  3.79 73.95 3.11 0.69 4.17
8Q 8.37 5.47  3.69 74.42 3.01 0.73 4.31
240) 8.36 5.32  3.60 74.21 3.31 0.80 4.40
Consumption
1Q 1.35 0.08 90.46 0.59 0.36 0.11 7.06
40Q) 9.22 0.46 64.54 11.41 3.18 1.95 9.23
8Q 10.52 0.55 62.13 11.95 3.32 2.50 9.03
240) 10.86 0.61 59.99 12.47 3.62 2.89 9.55
Investment
1Q 1.52 0.06 0.44 95.37 0.81 0.07 1.72
40Q) 3.05 0.12 0.51 92.66 1.53 0.29 1.84
8Q 2.90 0.12 0.49 92.80 1.49 0.28 1.93
24Q) 3.03 0.12  0.52 92.39 1.66 0.35 1.93
Real wage
1Q 4.48 0.00 0.33 2.16 56.38 36.41 0.25
40Q) 9.50 0.01  0.33 8.09 51.40 29.83 0.85
8Q 10.08 0.01 0.35 8.05 50.94 29.69 0.88
240) 10.06 0.02 0.35 8.65 50.99 2893 0.99
Hours
1Q 29.24 5.86 3.50 58.08 0.45 0.16 2.70
40Q) 6.86 2.47  2.06 74.75 5.29 2.17 6.41
8Q 6.03 2.49 1.90 70.67 7.99 4.34 6.59
24Q) 5.47 3.06 1.65 62.21 10.37  11.53 5.71
Inflation
1Q 5.22 0.07  0.20 2.49 85.16  5.08 1.78
40Q) 9.75 0.21  0.62 6.33 62.69 15.68 4.72
8Q 9.64 0.25 0.68 6.29 60.38 17.83 4.92
240) 9.25 0.39 0.74 7.33 56.72 21.01 4.56
Nominal interest rate

1Q 6.25 0.24 8.49 8.51 11.79  1.07 63.64
40Q) 10.59 0.3  4.87 43.07 12.76  5.01 23.18
8Q 10.45 0.58 4.54 45.16 12.20  6.17 20.89
24Q) 10.46  0.79  4.36 45.10 12.02 7.91 19.36
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5.4.4. Impulse responses

In this section, we analyse the model’s transmission mechanisms through the
impulse responses. Following Smets and Wouters (2007), we report impulse

response for output, hours, inflation and interest rate.
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Figure 5.2: Impulse responses (median) to a investment shock. Left panels are
impulse responses for the two regimes; right panels are the difference between

impulse responses associated with their 90 percent credible intervals.

Table 5.6 and Table 5.7 clearly suggest that the main driving forces of fluctu-
ations in output, inflation and interest rate are the investment shocks), price
and markup shocks and monetary policy shocks, respectively. Thus, we report

impulse responses to these shocks.

Figure 5.2 depicts the posterior median impulse responses to a one standard

deviation investment shock. On impact, output, hours, inflation and interest
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Figure 5.3: Impulse responses (median) to a price markup shock. Left panels
are impulse responses for the two regimes; right panels are the difference

between impulse responses associated with their 90 percent credible intervals

rate increase. The difference in magnitude between regimes is significant, as
suggested by the error bands around the difference of impulse responses for
the two regimes (right panels). The transmission mechanism works as follow:
investment rises while consumption declines (not reported). The increase in
investment rises hours, which leads to a rise in output since firms are able to
produce more. The rise in demand raises inflation to rise, so that the nominal

interest rate increases (through the policy rule).
Figure 5.3 depicts the responses to a one standard deviation shock to the
price shock. A positive price markup shock leads optimizing firms to increase

their price. Consequently, inflation rises and output falls. The rise in inflation
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implies that the nominal interest rate increases (through the policy rule) while

aggregate output and hours fall.

Finally, following a monetary policy shock, the nominal interest rises while
output, hours and inflation fall. This is depicted in Figure (5.4). The con-
fidence bands show that there are important difference in the transmission

mechanism across regimes.
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Figure 5.4: Impulse responses (median) to a monetary policy shock. Left
panels are impulse responses for the two regimes; right panels are the difference

between impulse responses associated with their 90 percent credible intervals.
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5.5. Empirical results: Euro Area

This section presents the results for Euro Area. As for the US, we first as-
sess the model fit, then the posterior summaries are analysed. Through the
variance decomposition, we document what shocks are most important in
explaining European business cycles. We then compute and interpret the

impulse responses. Finally, we describe the regimes that the data lead to.

5.5.1. Model fit

While Euro Area and U.S. economies present important differences, we have
found that such differences do not matter for the prior elicitation. That is,
using the same prior as in Smets and Wouters (2003) and the prior used in
Section 5.3.2 leads essentially to the same results. Thus, we comment our

results with respect to prior information in section 5.3.2.

The model ranking is the same as for the US, as suggested in Table 5.8.
The best fit model is the one where both policy and shocks variance switch
regime. Note that our results stand in contrast with those of Rubio-Ramirez
et al. (2005). According to their results, lower macroeconomic volatility ob-
served in the Euro Area in the early 90’s and after is due to smaller shocks
to interest rate and inflation. They find little (if any) evidence about change
in monetary policy. They obtain such a conclusion using Markov-Switching
Vector autoregressive models. This might explain why our results are different

from their.

5.5.2. Structural parameters and regime probabilities

Table 5.9 and 5.10 report estimates of the best-fit model. We focus on pa-

rameters characterizing price and wage stickiness, shocks processes and policy.
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Table 5.8: Model fit: (Log) Marginal Data Density: Euro Area

Specification Modified harmonic mean
1.Constant parameters model -733.2301
2.Switching variance only -694.0481

3.Switching inflation target,

policy rule and shock variances -672.4167
4.Independent switching in inflation target,

policy rule and shock variances -673.6352

Notes: Log Marginal Data Density (MDD) computed for different specifications, with

the modified harmonic mean estimator and the Laplace approximation

The estimated price indexation v, is estimated to be 0.09. Such estimation
comes with great uncertainty, as suggested by the large error band around
this parameter. This implies that the backward looking component in the
New Phillips curve is close to zero. For comparison, Smets and Wouters

(2003)’s estimates is 7, = 0.46.

We estimate the wage indexation closely to Smets and Wouters (2003). Es-
timates of the degree of price and wage stickiness suggest that price and
wage contracts last three-and-a-half and four-and-a-half quarters, respectively.

Such estimates are consistent with findings based on microeconomic studies.

Our estimates of policy parameters suggest that in the first regime, Euro Area
monetary policy tends to be more aggressive against inflation than in the sec-
ond regime. In particular, the estimates of the posterior mode for the second
regime would imply indeterminacy in a constant parameter DSGE model since
we estimate 7, 9 = 0.98. However, such estimates should be interpreted with
a bit of caution. Prior of 1999, the monetary policy in the Euro area was not
unique. It could be the case that while some single economies would have had
a monetary policy that leads to indeterminacy, the monetary policy followed
by others may have implied determinacy. Both regimes exhibit considerable

interest rate smoothing (p,,; = 0.90, p,, = 0.83). Reaction to output gap is



Chapter 5. Great Moderation and endogenous monetary policy
100 switches

slightly lower in the first regime (r,; = 0.8, r,» = 0.9). Estimates of the
inflation target imply that in the first regime, the annual inflation target is

2.5% while it is 4.5% in the second regime.

Focusing on parameters characterizing the shock process, two remarks are
in order. First, productivity, government spending, wage markup and price
markup shocks are very persistent. Their autoregressive parameters are close
to one. Smets and Wouters (2003) find a similar results. Second, estimates
of standard deviations suggest that regime one is a regime of lower macroe-
conomic volatility. In fact, unlike the US case, the standard deviations of
all shocks in the first regime are lower than their counterpart in the second

regime.
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Table 5.9: Posterior of Structural Parameters

Posterior-Sync Posterior-Ind
Parameters Mode  Mean 5% 95% Mode
%) 6.4280 6.5644 4.8020 8.2231 7.0427
o 1.4128 1.4282 1.1538 1.7623 1.6704
h 0.8180 0.7932 0.7101  0.8696 0.4967
2 0.7332 0.7275 0.6716 0.7842 0.6712
o 2.6401 2.8212 1.8572 4.0339 2.5227
0, 0.7876  0.7757  0.7176  0.8289 0.7564
Yo 0.2152  0.2515 0.0850 0.4350 0.1864
Vp 0.0900 0.1108 0.0288  0.2091 0.0915
WY 0.5013 0.5899 0.3748  0.7980 0.7702
Wp 1.7921 1.7633 1.6163 1.9483 1.7246
Tr 1 1.3901 1.3255 0.9948 1.7128 1.6074
T2 0.9878 1.0729 0.7980 1.3226 1.2201
Pra 0.9097 0.8907 0.8288  0.9461 0.9011
Pr2 0.8320 0.8430 0.7744  0.9060 0.5773
Ty.1 0.0801  0.0819 0.0285 0.1412 0.0778
Ty.2 0.0923 0.1353 0.0585 0.2131 0.1215
TAy1 0.1713 0.2014 0.1261  0.3029 0.2709
TAy,2 0.1205 0.1327 0.0657 0.2073 0.0899
100(1/5—1) 0.1555 0.1563  0.0562 0.2584 0.1058
10075 0.2964 0.3029 0.2420 0.3601 0.3331
o 0.1859 0.1802 0.1474 0.2093 0.1877
1007*(1) 0.6205 0.6190 0.4388 0.8081 0.6228

100AT* 0.4884  0.4941 0.3200 0.6624 0.4260
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Table 5.10: Posterior of Structural Parameters
Posterior-Sync Posterior-Ind
Parameters Mode  Mean 5% 95% Mode
P 0.9974  0.9960 0.9928  0.9988 0.9932
Py 0.9988 0.9974 0.9936  0.9999 0.9982
P 0.1372  0.2511  0.0640  0.4970 0.7976
0i 0.5490  0.5063 0.3665 0.6435 0.4785
Pep 0.7574  0.7461  0.5780  0.9064 0.7889
Puw 0.9798 0.9751 0.9645 0.9855 0.9735
Py 0.4282 0.4298 0.3006 0.5743 0.3596
Ly 0.8575 0.8332 0.7546  0.8993 0.7963
Hy 0.6314  0.5900 0.3497  0.8070 0.6750
Pya 0.4723  0.4507 0.3198  0.5982 0.4454
100041 0.2451  0.2496  0.2109  0.2904 0.2586
1000 0.2420 0.2431  0.2115 0.2802 0.2361
1000y 4 0.1428 0.1393  0.1007 0.1767 0.0540
1000, 4 0.3020 0.3686  0.2678  0.4617 0.4082
1000, 1 0.1154 0.1148 0.0839 0.1452 0.1260
1000, 1 0.0752  0.0852 0.0612 0.1124 0.0938
1000 R 1 0.0934 0.1079 0.0835 0.1355 0.1106
10002 0.3847 0.4226 0.3381  0.5192 0.4160
100072 0.3560 0.3885 0.3096 0.4764 0.3934
1000742 0.2296 0.2188  0.1468  0.2801 0.0838
1000 2 0.5712  0.6265 0.4799  0.7840 0.6280
10002 0.2352 0.2438 0.1806  0.3101 0.2692
1000, 2 0.1927  0.2093  0.1547  0.2687 0.2296
1000 R 2 0.2326  0.2563 0.2104  0.3057 0.2436
P11 0.8993 0.9016 0.8453  0.9555 0.9411
P29 0.9382 0.9141 0.8573  0.9672 0.9271
di1 0.9462
G2 0.9170

Figure 5.5 depicts the smoothed posterior estimates of regimes as well as

the series on output growth, inflation and interest rate. The hawkish regime

exhibits much of its persistence after 1993, which is the second important date
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Figure 5.5: EU: Posterior probabilities of the (synchronized) hawkish-low
volatility regime for the best fit model.

in the creation of the European Monetary Union (EMU). The dovish regime
mainly occurs in the 70’s, the early 80’s and 90’s. The high volatility regime in
the early 90’s can be explained by the German reunification as an exogenous
shock. The creation of the German economic monetary union (GEMU) and
the massive injection of money that followed are important factors behind the

increase in inflation.

5.5.3. Variance decomposition

Table 5.11 and 5.12 report the contribution of the structural shocks to the fore-
cast error variance for selected endogenous variables. Fluctuations in output

are mainly driven by spending, preference, investment and monetary policy
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shocks. Together, these shocks account for more than 70 percent of the out-
put variation. Smets and Wouters (2003) find similar results for the role of
monetary policy in contributing to output variations. They argue that such
a role of monetary policy shocks is due to the disinflation period in the early
1980s and the ERM crisis. Unlike the US, the investment shock does not
play a preponderant role. It only mainly contributes to investment varia-
tions. As expected, variations in consumption are mainly due to preference
shocks. Note that monetary policy contributes importantly to consumption
fluctuations. Price markup and wage markup shocks are the main drivers for
variation in real wages, but monetary policy shocks still play an important
role. Turning to inflation, we note that its variations are mainly due to price
and wage markup shocks. However, as horizon lengthens, wage markup shocks
become the main contributor. Finally, fluctuations in nominal interest rate
are mainly determined by the wage markup shock and the monetary policy
shock. In the very short term, the monetary policy shock mainly determines

interest rate variations.
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Table 5.11: Variance decomposition for the best fit model (Regime 1)

Horizon ¢, €g €p €; €p €w €
Output
1Q 12.38  28.87 23.16 21.60 0.35 1.84 11.80
40Q) 13.02  23.54 20.34 2047 1.01 2.40 19.23
8Q 12.91  23.05 20.02 20.55 1.01 3.04 19.41
240) 12.49 22.22  19.32 20.14 1.19 3.85 20.80
Consumption
1Q 2.47 0.79 83.49  0.41 0.05 0.54 12.25
40Q) 6.66 1.97 67.97 1.55 0.69 1.34 19.83
8Q 6.88 2.02 66.92 1.55 0.72 2.16 19.76
240) 6.78 1.98 64.80  1.63 0.81 3.02 20.97
Investment
1Q 0.72 0.01 0.87 87.27 0.37 1.67 9.09
40Q) 1.62 0.03 0.90 81.27 1.00 2.22 12.97
8Q 1.59 0.03 0.92 80.94 0.99 2.46 13.07
24Q) 1.55 0.03 0.92 79.32 1.18 2.89 14.09
Real Wage
1Q 0.48 0.13 2.94 1.75 30.42 56.67 7.60
40Q) 2.48 0.18 2.54 3.06 22.75 50.86 18.13
8Q 3.00 0.18 2.58 3.09 22.58 50.55 18.01
240) 3.02 0.19 2.44 3.20 21.40  50.19 19.56
Employment
1Q 35.37 22.60 17.25 16.27 0.03 0.37 8.11
40Q) 14.73  14.31 9.34 14.43 1.73 1.02 44.44
8Q 12.23  13.98  7.57 11.66 2.63 2.35 49.58
24Q) 8.71 15.92  4.36 7.35 2.28 26.02  35.36
Inflation
1Q 0.94 0.17 0.21 0.03 72.29 2248 3.88
40Q) 1.67 0.45 0.47 0.05 29.58 57.63 10.15
8Q 1.64 0.49 0.46 0.07 24.30  62.49 10.53
240) 1.98 0.70 0.40 0.43 17.76  69.72 9.02
Nominal interest rate

1Q 5.57 1.00 30.19 2.71 4.26 6.66 49.61
40Q) 6.37 1.62 13.31  6.43 3.44 44.31  24.51
8Q 5.38 1.53 10.29 5.13 2.67 56.19  18.80
24Q) 4.24 1.57 6.27 4.42 1.65 70.24 11.61
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Table 5.12: Variance decomposition for the best fit model (Regime 2)

Horizon ¢, €g €p €; €p €w €
Output
1Q 11.12  24.07 19.61 21.04 0.67 3.51 19.97
40Q) 11.35 18.67 16.69 19.24 1.51 4.30 28.24
8Q 11.04 17.90 16.11 19.08 1.53 5.03 29.30
240) 10.63 17.16 1547 18.64 1.81 5.52 30.77
Consumption
1Q 2.14 0.62 73.03  0.55 0.10 1.07 22.49
40Q) 6.06 1.56 56.52  1.55 0.96 2.57 30.77
8Q 6.19 1.57 54.62 1.51 0.97 3.68 31.45
240) 6.04 1.53 52.41  1.57 1.13 4.36 32.95
Investment
1Q 0.59 0.01 0.55 80.80 0.66 3.09 14.30
40Q) 1.47 0.02 0.58 74.09 1.48 3.90 18.47
8Q 1.42 0.02 0.57 73.07 1.52 4.09 19.30
24Q) 1.41 0.02 0.60 71.59 1.80 4.29 20.29
Real Wages
1Q 0.23 0.07 1.45 1.02 26.37 63.83 7.03
40Q) 1.46 0.10 1.34 1.82 20.79 59.83 14.65
8Q 1.79 0.11 1.39 1.89 20.75 59.09 14.98
240) 1.82 0.11 1.33 2.04 20.28 57.65 16.77
Employment
1Q 34.21 19.36  15.03 16.35 0.07 0.72 14.25
40Q) 12.39  10.72 6.75 12.76 2.33 1.79 53.26
8Q 10.74 10.98 5.61 10.76 3.10 3.99 54.81
24Q) 8.65 13.91  3.45 8.03 2.31 27.30  36.36
Inflation
1Q 0.58 0.10 0.12 0.02 67.53 28.18 3.48
40Q) 0.89 0.24 0.18 0.03 25.61 66.37 6.69
8Q 0.85 0.25 0.16 0.07 20.77 71.76  6.14
240) 1.01 0.35 0.11 0.33 13.76  80.07 4.36
Nominal interest rate
1Q 2.23 0.37 9.23 1.04 6.46 7.93 72.74
40Q) 2.98 0.72 4.43 2.71 4.40 52.15  32.61
8Q 2.51 0.69 3.32 2.12 3.28 64.06  24.01
24Q) 2.00 0.73 1.91 1.92 1.94 77.65  13.87
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5.6. Endogenous monetary policy

In this section, we use our estimation results to shed new light on the following
question: Are changes in monetary policy regime endogenous? More precisely,
to what extent do changes in the conduct of monetary policy reflect the current

state of the economy?

We provide insights to this question by jointly analyzing the estimates from
the synchronized and independent regimes specifications. The fact that both
versions fit the data equally well is interesting, given that the synchronized
regimes specification is actually nested in the independent regimes specifica-

tion.

To understand this point, assume for instance that the true data generating
process features independent regime changes, and we estimate both versions of
the model. Then, the specification with independent regime switches should
clearly dominate. Assume now that the true Data Generating Process features
synchronized regime changes. Because the synchronized version is nested in
the independent regimes specification, both version should deliver roughly

similar fits (at least, asymptotically).

In practice, things are complicated by the fact that there are additional pa-
rameters to estimate in the independent regime specification,® and that the
number of observations is limited. But the finding of a similar fit for both
versions of the model clearly points toward investigating the potential endo-

geneity of monetary policy regime changes.

In order to address this issue while taking into account the data limitation

problem, we will consider a stricter diagnosis test for concluding that monetary

6For example, the specification with independent regime switches requires the estimation
of four transition probabilities, while the version with synchronized regimes only requires

2.
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policy is indeed endogenous. Specifically, we require that the following three
criteria be roughly satisfied: (i) the "independent regimes" and "synchronized
regimes" specifications produce similar fits ; (ii) in the "independent regimes"
specification, changes in monetary policy occur (roughly) simultaneously with
changes in the variance of shocks ; (iii) in the "independent regimes" specifi-
cation, two of the four configurations possible ez-ante almost never occur. In
particular, the "hawkish monetary policy — high volatility" and the "dovish

monetary policy — low volatility" regimes should almost never occur.

5.6.1. Diagnosis test: U.S. economy

As mentioned above, the first criterion required for the conclusion that the US
monetary policy has been endogenous is satisfied (see Table 5.3). However,

the other two criteria remain far from being fulfilled.

Consider for example the smoothed regime probabilities for the US economy,
depicted in Figure 5.6. The figure indicates that two switches in monetary
policy occurred. The first switch, from the hawkish to the dovish regime,
occurred roughly in the year 1970. The second switch, from the dovish to the
hawkish regime, occurred in the early 80s. This timing does not concord well

with the timing of switches in volatility regimes.

Consider now the smoothed probabilities associated with being in any of the
four conceivable configurations in the independent regimes specification (see
5.7). Clearly, the figure indicates that the configuration of a high volatility
regime associated with a hawkish monetary policy occurred quite frequently,
especially during the late 50s — early 60s, and during the mid-80s. It also
suggests that monetary policy has been dovish while volatility was low in the
late 70s. Thus our criteria (ii) and (iii) are clearly not satisfied, and we cannot

conclude that the US monetary policy has been endogenous.

This conclusion tends to be confirmed by another observation. Figure 5.6 sug-
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gests, quite strikingly, that changes in monetary policy regimes are strongly
related to the appointments of a new Chairman at the Federal Reserve. In
particular, while the hawkish regime was prevailing in the Martin era, mone-
tary policy apparently switched to the dovish regime with the appointment of
Burns, and remained dovish under Miller. Then, according to the figure, a re-
turn to the hawkish regime occurred shortly after the appointment of Volcker
as the Fed’s Chairman. This hawkish regime continued to prevail during the
Greenspan and Bernanke chairmanships. Thus, the personality of the Chair-
man in office appears to be a good indicator of the type of monetary policy
conducted. This tends to confirm that monetary policy did not systematically

change in response to changes in the economic situation.

(a) Hawkish

0
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(b) Low volatility

0
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Figure 5.6: Posterior probabilities for the Hawkish regime, computed at the
posterior mode estimates of the independent regime switching model. Vertical

bars mark the chairmen appointment.
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Figure 5.7: Posterior probabilities computed at the posterior mode estimates

of the independent regime switching model switching model.

5.6.2. Diagnosis test: Euro Area

In contrast to the US, our results suggest that for the Euro Area monetary
policy has been endogenous. Consider first the smoothed regime probabilities
depicted in Figure 5.8. Clearly, periods during which the European monetary
policy has been hawkish tend to correspond with periods of low volatility,
and vice versa. Similarly, looking at the smoothed probability associated
with being in any of the 4 conceivable situations ex-ante (see Figure 5.9),
one clearly sees that the "hawkish monetary policy — high volatility" and the
"dovish monetary policy — low volatility" regimes almost never occurred. The
only exception is the period of the early 80s, where monetary policy remained

hawkish while the Euro Area was experiencing a severe recession.
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(a) Hawkish

1975 1980 1985 1990 1995 2000 2005
(b) Low volatility

1975 1980 1985 1990 1995 2000 2005

Figure 5.8: Posterior probabilities for the Hawkish regime, computed at the
posterior mode estimates of the independent regime switching model. Vertical
bars mark the three stages dates in the creation of the European Economic

Union.

5.7. Concluding remarks

In this chapter, we have estimated the Smets and Wouters (2007) model in
the presence of regime switches in both monetary policy and the shocks vari-
ance parameters. We have used the estimated model to shed new lights on
the sources of the Great Moderation and the on issue related to the endogene-
ity of monetary policy. We find strong evidence in favor of regime switches,
both in policy parameters and shock variances. Imposing synchronized regime
switches in our model does not deteriorate its fit, as this version fits equally

well than the version where regime switches are independent. Our last impor-
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(a) Hawkish, low volatility (b) Hawkish, high volatility
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Figure 5.9: Posterior probabilities computed at the posterior mode estimates

of the independent regime switching model switching model.

tant finding is the strong evidence that changes in European monetary policy

had been endogenous, while for the US economy, changes in monetary policy

are closely related to the personality of the Chairman in place.

The current version of the chapter lacks counterfactual experiments that would

more deeply document the sources of the Great Moderation. Also, it will be

useful to contrast our results with facts based on the European economy. We

leave these two considerations for future research.
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6.1. Conclusion

Nowadays, dynamic stochastic general equilibrium models provide a new mod-
eling framework for policy analysis, both in academic and policy-making
spheres. There are several theoretical arguments that could explain the suc-
cess of these models. In this thesis, we have focused instead on empirical
rather than theoretical arguments. To do so, we have used recent economet-
rics tools, which have allowed us to provide a systematic confrontation of these

models to the data.

6.1.1. Summary

Our econometric work has tried to evaluate DSGE models with respect to the
data in three dimensions. Such dimensions are inflation forecasting perfor-

mance, inflation persistence and the Great Moderation.
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To study the predictions of DSGE models with respect to forecasting inflation,
we have estimated the new-Keynesian Phillips curve, a key equation shared
by every DSGE models featuring Keynesian ingredients. The key result from
that estimation is that once direct observations from survey data on infla-
tion expectations are used, the new-Keynesian Phillips curve helps to forecast

inflation quite well.

With respect to the inflation persistence, we provide new results in the lit-
erature dealing with the fit of the new-Keynesian Phillips curve in matching
inflation dynamics. We show that including a time-varying inflation target
of the central bank in the new-Keynesian Phillips curve does not necessary
lead to a time-varying new-Keynesian Phillips curve, unlike in studies such
as Cogley and Sbordone (2008). However, like the authors, we do find that
the introduction of a time-varying inflation target is sufficient to account for
inflation persistence, instead of ad hoc backward-looking component in the

new-Keynesian Phillips curve.

The last dimension of the data to which we have confronted the model is the
Great Moderation, the idea that economic data before the mid 1980 are more
stable than before. The model proves to be useful in replicating the Great
Moderation both for the U.S. and for the Euro Area economies. Furthermore,
the estimated model provides an interesting source of the Great Moderation:
both the variance of the shocks and improved monetary policies are plausible
explanations for the decline in macroeconomic data observed since the mid of

80’s until the recent financial crisis.

Evidence of changes in monetary policy regime naturally raises the question
of whether such changes are endogenous or exogenous. This question makes
sense because the central bank is supposed a priori to react to the current state
of the economy by adjusting its policy instrument, i.e. the nominal interest

rate in the model. We have found that for the Euro Area economy, changes
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in monetary policy regimes are endogenous precisely because the central bank
sets its policy instrument with respect to the volatility of the economy. In
particular, periods of low volatility coincide with those where the European
monetary policy is aggressive towards inflation. On the contrary, changes in
the U.S. monetary policy cannot be said to be endogenous, but appear to be
closely connected to the personality of the Chairman in place, reflecting the
“conservative central banker” view of the conduct of monetary policy (Rogoff,

1985).

6.1.2. Extensions

Despite the success of the DSGE models in matching interesting dimensions
of the data, a number of recent papers have pointed out several limitations of

the DSGE approach. Here, we focus on two of them.

The first one is the inability of DSGE models to take into account high and
persistent unemployment found in the data. Such a limitation could poten-
tially reduced the ability of the new-Keynesian to take into account some
monetary phenomena. Indeed, Gali et al. (2011) show that the Smets and
Wouters (2007) model can be reformulated to incorporate unemployment.
Their results suggest that the model is able to reproduce observed unemploy-
ment fluctuations when it is estimated with data on unemployment, instead
of data on hours worked, as we have done in the thesis. Thus, it remains
interesting to see whether our main conclusions are robust with respect to

this reformulations.

The second limitation has to do with the recent financial crisis. To model the
monetary policy, we have considered a “conventional monetary policy”, i.e. a
policy where the Federal Reserve manipulates the Federal Funds rate in order
to affect markets interest rates. However, the recent financial crisis started

in August 2007 dramatically changes the environment, as it has led the Fed
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to inject credit into private markets. In this sense, such a policy is termed
“unconventional”. Most of DSGE models considered in the literature specify a
monetary policy in which the Federal Reserve acts conventionally. Thus, they
are not truly useful to make predictions in crisis time where the central bank

acts unconventionally.

There is a burgeoning literature trying to introduce the financial sector into
DSGE models. The most representative paper of that literature is a paper pro-
vided by Gertler and Karadi (2011). The authors develop a quantitative mon-
etary DSGE model that allows for a role for the financial sector through the
financial intermediaries facing endogenous balance sheet constraints. While
their model is not intended to model the sub-prime crisis, it tries to account for
some key elements relevant to analyzing the unconventional monetary policy
conducted by the Fed since August 2007 and particularly after the Lehman
Brothers collapse. Hence, we see the Gertler and Karadi (2011) model as
a good starting point to extend our work. The methodology developed in

Chapters 4 and 5 could be used to estimate such a model.
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A.1. Appendix to Chapter 3

A.1.1. The New Keynesian Phillips Curve

The first-order condition associated to the program of the firms is given by
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and
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Log linearization of pP and pY yields
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From the definition of price index, we have
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Equating the two previous expressions and solving for 7; reads
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A.1.2. The Jacobian Matrix

We derive the Jacobian matrix following the appendix of Magnusson and

Mavroeidis (2010). Note that the companion matrix ®(¢) can be written as
P(p) =BA+C

where B = (I;,0,---,0)" is a (kp) x k matrix, A = (®y,---,P,) is k x (kp)
matrix of the VAR coefficients, and C' = (0, 0; Ix,—1,0) is a (kp) x (kp) matrix.
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Hence, ®(¢p) is linear in ¢ and the distance function is differentiable with
respect to .
Since ®(p) = A'B'+ (", its derivative w.r.t ¢ is given by I, ® B. Using this

last result and the properties of the Kronecker product, it is easy to show that

@&%@:J@®{U—WQWﬂ%—AmeB
D0 (A.1.2)

—7[P(p) @ €. B].

A.1.3. Derivatives

We transform our HNKPC to facilitate the computation of the derivatives.

The vector of restrictions writes
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The robust tests require the following derivatives:
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A.2. Appendix to Chapter 5

The appendix reports a variant from the Smets and Wouters (2007) model

with regime switching in shocks variances and in monetary policy.
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A.2.1. Households

The representative household determines {c;, By, Ky, I+, 2, l; },—, and its nom-
inal wage WO when it optimizes it, according to the indexation rule, which is
defined in Section 2.2. In section 2.1, we derive how the household determines

{ct, By, Ky, Iy, 2, lt}fio whereas the determination of wage is derived in section

2.2.

A.2.2. Standard problem

To determine the evolution of {c¢;, By, K, I, 2, l; },—, the household solves

max Ey Z BU (e, 1)
t=0

{ct,Bt,Ki,11,2e,li 1=

subject to
By W . 1 B
— - K, D, — ¢ — I, — — =0
2 + 2 ¢+ (reze — ¥ (%)) Kioy + Divy — ¢ — I coi RuP,

K, —e(1-S(L/L,_ ) —(1—-8)K,.;, = 0

- *(1+)\w,t)/)\w,t

Wi
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and to the preference and investment shocks (whith € = loge?, x = b, 1) :

~b ~b b, b
€ = P& Oy,
~ o~ i

€ = Pyt oy,

where, for x = b,i, n7 ~ N(0,1) and the standard deviation o} is regime

dependent.
The FOC write:
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Following Smets and Wouters (2007), we specify

1

1—o0,

Ule, ly) = (¢, — hCy_1) 7 exp (

Oc

1

- 1l1+0L)
t )
+oy

(A.2.6)

where C}_q is the aggregate consumption level of the previous period. Thus,
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—o O¢c — 1 o
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which we stationarize as
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Define the marginal utility of leisure (with £, =1 —[;) as:
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which we stationarize as:
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Then, the marginal rate of substitution between consumption and leisure is:
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z

Linearizing it, we have

L -k
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%t:Uth‘l“

A.2.3. The determination of wage

For each period ¢, the wage, which cannot be optimized, is adjusted according

to the rule

Wisi =7, (7)™ (mh) " W, (A.2.8)
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where 7} is the inflation target decided in period ¢ by the central bank. Let

the inflation factor be

1fori=0
Xw. = . v _
12 i Bigi—1 w * * * 1= . )
v, < jo ) (7rt+i7rt+i_1...7rt+1) fori=1,...,00

or, equivalently:
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This rule implies that

Wips = X2 W, (A.2.9)

From the previous rule, we note that the wage is indexed on technological

progress.

The wage optimizing household solves the following problem:

max F; Z (ﬁéw)i U (Coyislevi) s
Wi i=0
subject to
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and to the indexation rule (A.2.8).

The FOC writes
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Expressing w)' and w? recursively, we have
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Linearizing w”, we have

aP = (1-8(1.) "¢, (@+E>
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In the same way, we have
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Linearizing W', we have
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Linearization of w; writes
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From the definition of the wage index:
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we deduce the stationarized real wage w, = W, /z, P, as
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Thus, w; and w; evolve at the same rate. Linearizing w;, we obtain:
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from which we have:

w
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Inserting (A.2.10) and (A.2.12) in (A.2.11), we have:

ﬁ}t = (]- - gw) (]- - 6 (’Yz)lioc gw) (Utﬁ - UE)
+6 (Vz)l_ac gw (Etﬁ}t-f—l - gwﬁ}t - KYw/ﬂ\-t - (]' - ’Yw)Et;T\:Jrl + Et/ﬂ\-t-l—l)

€, (B + YTt + (1= 7,)7 = 7).

or

l—0c _ - 1—0.¢
'&J\t _ (]' - gw) (1 - ?_(:/z) . gw) (Utﬁ N Uf) . (1 + ﬁ (72)1_0 Vw)iw%t
T+ 5 (v.) 7 (€w) 1+ 8(v.) 7 (&)
€u L
TR gy e )
1—0c¢
L B _ € i
1+ 8(v.) 7 (€w)

(Etﬁl%kl — (1 — 7w)Et%;k+l —+ Et%t+1) (A213)

Smets and Wouters (2007) define the wage markup as the ratio between the
real wage and the marginal rate of substitution between consumption and

leisure: py’ = wy/mrs;. Following them, we have

—

mrsy = Wy — My (A.2.14)

with mrs; = UF — ﬁ;c Substituting this expression in (A.2.13) and factorizing

terms in w;, we have:
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Using the Kimball aggregator instead, we obtain
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where p, =1+ \y.

A.2.4. Firms

The firm’s program is described in two steps. First, for a given level of produc-
tion, the firm determines the quantities of capital and labour that minimize

its variable total cost 72/k!_, + w;Li, subject to the production constraint

a

?/Z = Ay (szifl)a ((%)t int)l_ - (%)téb- (A.2.17)

Here ¢ > 0 is a fixed cost, A; is an exogenous technological progress, following

a known stochastic process given by :

At = f (At—la GA’t) s (A218)
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where €4, is an i.i.d technological shock . The FOC writes:
o l—« w l—«
igi t i t
RpRp_1 = (1 _ Oé) (T_t) (yt + (fyz) (b) ) (A219)
and
. o @ Wy @ . "
L= — ! . A.2.20
t (1—a> (’Ft) (yt"‘(”Yz) (25) ( )
From the FOC, we deduce the total variable cost (for yi > 0):
iy i T?wtlia i t
rizpkiq Hwlly = T A, (¥ + (7.) 9) (A.2.21)
= (i +0) (A.2.22)

where s; = s (14, wy, Ay) is the marginal cost of production and T = a~%(1 —

o)1=,

Second, in each and every period, each firm faces a constant probability 1—¢,

of being able to optimize its price pi . Otherwise, it determines its price

according to the rule

1—y

piﬂc = (Ter-1)"" (ﬂ-:;i’k) ppiqtkflv

where ;1 is the past inflation factor and 7, , is the inflation target.

Define the indexation factor as

lfor k=0

P __
Xt,k - Piig_1 Tp ( * * * )1_’Yp for k =1 00
—F=t T kT k1T o4 =1,..,

or, equivalently:

1fori=0
Xﬁk: k

=1

11 ((ﬁﬂ—l)yﬂ (W:H)l_yp) fori=1,..,00

3
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This rule implies

Do = X7 ph, (A.2.23)

In this context, the optimal price pi chosen by an optimizing firm at ¢ is the

solution to the following program:

= k Ak [ DEXT -
max FE B¢ — — Sk | Yp
P} ¢ kz%( p) At ( Dt+k " bk

subject to

~ —0
i pffng
Yivr = Yt+k
Ptk

wherep, is the aggregate price index and y, is the aggregate output.

The FOC writes

FI=

NE

E D
? (5§ ) ptt Xt lc)\tJrkytJrk - NpEZ Bf )\t+k5’t+kyt+k

0 k=0

b
Il

or

7

Py (5,)* () (ﬂ)”_g)xt+kyt+k:

=0 Dt+k

o) 7]

-0 [ Pt+k

'up Z ka <—p ) )‘t+k5t+k?/t+ka
k=0 t

?

or

e} k —0 t o
53& ? Ekzo (ﬂfp) (ng) (p—ptk) Ntk Stk Ytk
il /’Lp

o 6—1
P B (06) ()T (2) Ak

where p, = 0/(0 — 1) . Stationarizing it, we have

Y
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00 —c k —0 . 0~ _
ﬁé ?Zk:o (6 (72)1 gp) (Xﬁk) (pptk> Ntk Stk Yt+k
Ly

) - 0—1 ’
EYy (801 6)" (x) (2)

Atk Yttk
or

B, o
De pptD 7

where p¥ and pP are expressed recursively as

0
. s
P = Nese+ 8 (1) €, {piil (—;;1) }
t,1
and

0-1
pf) = Ny + 8 (’Vz)lia fpﬁ(l_yp)(l_e)Et {pD (E) } .

Linearizing them, we have

o —

by

_ﬁ (72’)170 gpf)/p%t - /8 (72)1*0 gp (1 - fyp) Et%:—l—l
From the definition of the price index, we have

o —

ﬁ% _ SP ~ =~ _ _ ok
(B) = 22y G = (-2 7)

where:

m (T = o1 — (1 —7,) ) =

1—0 2
(1-B() &) 5+ (7(21)_ g(f 2 (Bt — 70— (1= 7,) B

+ /8 (72)1_0— é-p (Et%t-i-l - ’yp%t - (]- - ’Yp) Et%:+1) s

(pi) = (1-B8(1.)"7&) s+ B(1.) " &E <p]%:> +8(7.) 7 EF
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i.e.

(1-¢,)(1-B(.)" &) -
&1+80)" 7,

1
At (1= 7
NIETToA s M
Bly)™

AT B0y iR = (=) Bfiy) - (4224

Smets et Wouters (2007) define the price markup as as the ratio between
marginla productivity of labour and real wage: py = mpl; /w;.Following them,

we have

= le\t+a</k?t—1+2—1_ft)_@t
= A —ar —(1— )@,

~

—= _St

Substituting this in (A.2.24), we have:

T — =

(1 B gp) (1 —f (Vz)lia 5p) ﬁp
EA+8() 7y

1
Rt (1—n) 7
M AGy)  T )
()7

(1+ 87" ,) (Bt = (1= ) Bifiy) - (A-2.25)

Using the Kimball aggregator, we have (with p, =1+ X,) :
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- :_< (1-&)(1-80.)"78) )Ap

i &80 ) (gD epr1) ) 1
+ ! (v, 71+ (L—1,) 7))
L+ B8() ) P v
By)’

B ) 7oy e = (L= ) Efi) - (A220)

A.2.5. Monetary policy

As in Smets and Wouters (2007), the central bank adjusts the nominal interest

rate according to the rule

St rr(St ry (st 1=p(st) Tay(st)
B _ (RH)“ ) (_) ) (i) o /Y \ T
R} Ry 7 y;f Y;f/yil ¢t

(A.2.27)

where Rf = (1/pv~7°)n; and m; = 7*(s;) is the inflation target when the
current regime is s;. Unlike in Smets and Wouters (2007), the inflation target
and the coefficients of the rule (p(s;),7:(s¢),ry(s¢),7ay(s¢)) depend upon the
regime in place. Using the fact that R} = 77, log-linearization of (A.2.27)

leads to

(R —7) = P(St)(ﬁt—l —7) (A.2.28)
(1 = pls)ra(se) (Fe = 77) + 1y (s) (Ve = V)]

tra, (s)(Y = V) — (Vi = V)] + e,

where 7} = In(7} /7), © denoting the long run inflation factor.

Practically, we assume as Schorfheide (2005) that the inflation target is com-

puted from an annualized inflation rate In(7(s;)) and evolves according to:
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Inml if s, =1,
In(7y (s:) =

H : —
Inm, if s, =2,

where 7% (s;) is the annualized inflation factor. With the transition matrix P,

we can easily show that the annualized long run inflation rate is

1-— 1-—
Tq = €XP (¢1nw£+ ¢lnﬂf).
2 —pu — p2 2 —pu — P2

We express the 7, to a quarterly basis as in the model.

A.2.6. Steady State

(1+ %) ::uP7

Lo 1=py(1-9)

Bry—oe ’
K [« =
L \rup ’
_1—aK
w= o TL’
Y 1 (K\°
L pup\L) "’
G Y
L~ M
I K
Lo (v—1a8)
C Y I G

. From household’s optimization program, we have

(1-3) e = e
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which is a condition used to derive the linearized consumption dynamics.

IT

R =
Byee

A.3. Log linearization of other equations

A= B(v.) " en Ry {ii—i}

/):t - Et/):tJrl + ﬁt - Et%tJrl +g€ (A31)

= U@, 1= 1) = (@ — h/7.Co) " expl(oe — 1)/(1 + 1) (1)),

Here, tilded variables refers to their stationarized values.

W ha 1=h/r~  (—=h/y) (0. — DI
G =g, - 1Ny, U)o m DTGy 5

z Oc O¢

from which we deduce

N Oc ~ h/’}/ Oc & 1 T
_ z C,_ . — 1)1 +oLl )
)\t 1_h’//720t+1_h/7z tl_'_(a ) '
Then,
~ h/v,00 =~ Oc ~ o
Et)\tJrl = /”Yz EtCtJrl -+ (O’c — 1) l1+ LEtlt+1. (A33)

Inserting (A.3.3) and (A.3.1) in (A.3.2), we get:

~ hvy., = 1 ~ (1 —h/y.) (o =170 o
C, = ———=2-C,_ —FEC + - I, — Byl
t T+ /7. t1+1+h/% tCr1 o (L R/ |:t tt+1}
(1—-nh/7.) T3 ~ ~b
— 2 R, —F ) A.34
T+ e e~ B 21 .
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Since at the steady state (1 — h/v,) "™t = wi/((1 + A\y)c), we obtain the

dynamics of consumption as

~ h/v, A 1 ~ (0 — D) wl/((1+ Ay)c) [~ ~
c, = ——=2-C,_ —F,C, I, — Byl
t Ty t1+1+h/% tCre1 + o (Lt /7)) [t tt+1}
(1 - h’/Vz) D -~ ~b
_m |:Rt — Et7rt+1 —+ Et] . (A35)

Qi =B(7,)" By {Ai—tl (rev12e01 — ¥ (ze01) + (1 = 5)Qt+1)}

At the steady state, we have z =1, Q = 1, ¥ = ¢’ (1) and ¢ (z) = ¢ (1) = 0.

1=8(7.) " (F+1-0),ier"=(1=p(1.) " (1=68)/(B(.)").
Then,

~

Qr = A+ B+ B(1.) 7 (Bifs + EiZent) — B(1.) 7 r* B

+6(7,) 7 (1 - 5)Et@t+1-

Using (A.3.1) and making some simplifications, we have:

~ rk 1—-96

- Qi [(1 -5 (%E/E—l) —%E/E_lS/ (7225/25—1)] -1

=—0(v,) 7" F; {Xi—:thHE%H (%EH/EY S’ (%EH/E)}

Assumptions: S(v,) = 0; 5'(7.) = 0; 5”(7.) = ¢

We have:

Qi+ = (008" (1) [T = T = =)™ (0.)* 8" (02) | BT = 1]
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Then,
~ 1 A I BT L4
Iy = — Qi+ —r—agm 1+ — Bl
L+B8(1.)77) (1) L+B(y) 1+ 8(7,)
1 i
E;r (A.3.7)

i (14+8(7.)77) (1)

Note that Smets and Wouters (2007) normalize the investment shock: 2/ =

g/ (1480 77) (1)) -
Tt = @// (Zt)

We have

Zt = 21T,

where 2z, = ¢’ (1) /4" (1) is the inverse of the elasticity of adjustment cost

function.
' I?t = (1 - 5)/72’[?15*1 + gi/f}/z [1 - S (fyz[t/[tfl)] Zf

We have :

i =t _5&_1 + {1 _a _5)] 1, + {1 _a _5>]§§. (A.3.8)

Y, =Ci+ G+ L+ (2) Ky

We have :

YY, = CC,+ GG, + IT, + v()KE,_, + ¢/ (1) K%,

Since ¢ (1) = 0, ¢' (1) = ¥ and 2, = (1/ey )7,

Y, = (1= (v, =148 ky—g,)Ci+9,Ge+ (v, — 1L+ 8) ky I, + ¥k, 217, (A.3.9)
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Note that Smets and Wouters (2007) normalize spending shock as ¢,; = gy@t.
. Zthfl/Lt = ﬁwt/'r’t.

We have

7“\15"—254‘}?1&71—@15—@:0-

.Using z; = 2173, we obtain

(14 2)7 + K;1 — @ — Ly = 0. (A.3.10)

Yy = /iy (se) (At(Zth—l)aLz}ia - At¢)

Aggregating individual productions, we obtain

~ Y4~ Y+
P Y¢At+a ch

Y+ ¢~
> °T.. (A.3.11)

(fct_l + zla) 4 (1—a)
A.3.1. Final system

by= (7. —14+0)ky, cy=(1—1iy—gy), 1y = rkkyzl,

ey = [h/v]/[L+h/7.], ca=[(oc = D) wl/((1+ A)c)] / [oc (1 +1/7,)],
c3=[1—h/v,]/loc(1+h/7,)],

= [1/14B8(1.)"""], o= [1/ (1+8(7.)77) (v.)% ¢ ,
G=[1-0/[1-6+rk,
ki=(1=0) /v ka=(1—(1=0)/7.) 1+ B(1.)"") (1),

=1/ [1+80.)" 7)) m=[801.)"]/[(1+B(v.)"7,)],
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m=[(1-¢&) (1=80.)""7&)] /&0 +80.) ) ((k,—1) s+ 1)],

wi =1/ (145 (1) 7] we = [14+5(0) ] / 14+ 8(1)7]

wy = [(1=6,) (1=B01)"""€)]/ [6w (148 (1)) (o — Dsw+ 1] .

We have:

3//\} — cyé\t — iyj; — 1,y — &) =0, (Eq. 1)

@ = clag,l +(1—¢) E@H + ¢ [/L\t — Etftﬂ}
—C3 [ﬁt — B +/5\§] ; (Eq. 2)
L=ihiy+ (1 =) BTy +020; + 2, (Eq. 3)
Q= 1 EQuir + (1 —q1) EiTea — (ﬁt — BT +/5f> ; (Eq. 4)
Y, = (1 + %) <a (I?H + zﬁ*}) +(1— )L +E{‘> : (Eq. 5)
Ky = k1K + (1= ky) I + ko2l (Eq. 6)

i =a (R + =i - L) - @+ 2, (Bq. 7)
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%t =T (’}/p%tfl + (1 — ’)/p) ;T\;k) + 7o (Et%tJrl — (1 — ’}/p) Et%;_l) - Wgﬁf +gf,

(Eq. 8)
(14 2)7 + K,y — @ — L, =0, (Eq. 9)
W=y —oply — ————Cy + —EC,_ Eq. 10
My = Wy —orly [y t+1_h/ th 15 (Eq. 10)
Wy = wi (W1 + YoTe-1 + (1 = 7)7)
+ (1 = wy) (By@Wr + BT — (1 — v, BTy, y)
—wy Ty — Wyl + EY, (Eq. 11)

RBe = pu(s)Bios+ (1= py(s0) [re(sn) Ge = 70) 47y () (Vi = 7))
+7ay(5¢) [(ﬁ — i/?c) — (271 — 2{1” +E, (Eq. 12)

where ?;f is potential output, defined by the same model but assuming flexible

prices and wages.
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