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Chapter 1Introdution
Contents1.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 From Real Business Cyle to Monetary Business Cyletheories . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.2 Taking the models to the data . . . . . . . . . . . . . 61.1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . 7
1.1. IntrodutionIn reent years, the aademi researh on monetary business yles has beenquikly expanding. One reason for this expansion is that monetary DynamiStohasti General Equilibrium (DSGE) models have made deisive progressin aounting for observed business yle, and in explaining the real e�ets ofmonetary shoks. Today, many entral banks and poliy-making institutionsgive more and more redene to the preditions of monetary DSGE models,as these models are urrently used for poliy analysis. Thus, data onfronta-tion has always been a �rst-order issue in the suess of these models. Dataonfrontation is the main fous of this thesis.This dissertation onsists of two parts, eah part being subdivided into twohapters. The �rst part is related to the traditional "frequentist" eonomet-



2 Chapter 1. Introdutionri approah. It presents two essays that investigate the empirial propertiesof the New Keynesian Phillips urve (hapters 2 and 3). The seond part isrelated to the "Bayesian" eonometri approah that has reently beome pop-ular in the maroeonomi literature. Chapter 4 surveys Bayesian inferenetools used to estimate and evaluate dynami stohasti general equilibriummodels in the presene of regime swithes in parameters or in shok varianes.Chapter 5 applies these tools to a state-of-the-art medium sale DSGE modelwith regime swithes, and uses the estimated model to shed new light on theissue of identifying the soures of the �Great Moderation�. This expressionrefers to the deline in maroeonomi volatility observed in most industrial-ized eonomies during the 80's until the reent �nanial risis.A ommon denominator of the four hapters is the systemati use of empirialmethods that take monetary business yle models to the data. Aordingly,this introdution provides a short historial bakground where we ontrast realversus monetary models of the business yle. Then, we brie�y present theeonometri tools that have been developed over the years to take these modelsto the data. Finally, we outline the ontent of the thesis by summarizing ourmain �ndings.1.1.1. From Real Business Cyle to Monetary BusinessCyle theoriesA entral issue of modern maroeonomis has been to identify the soures ofthe volatility in maroeonomi time series. Over the years, maroeonomitheory has been divided between two on�iting views on this issue: the �rstview attributes to monetary fators a dominant role, and emphasizes the im-portane of monetary poliy as a powerful stabilization tool. The seond viewattributes to real fators the leading ause of business yles, and underlinesthe potentially destabilizing role of ative monetary poliies through their



1.1. Introdution 3e�ets on long-run in�ation.The publiation in 1971 of Friedman and Shwartz's essay, A Monetary historyof the United States, onstitutes a landmark day in our understanding of busi-ness yles. By observing that periods of deep reessions in the US eonomyusually oinide with periods where the stok of money delines, the authorsprovide narrative evidene that money is an important fator of observed�utuations. This narrative evidene oriented the maroeonomi researhtoward models where money plays an important role. Aordingly, during the70's and the early 80's, two main theories of money non-neutrality were devel-oped. In the �rst one, formulated in two ontributions by Luas (1972) andLuas (1975), money is important beause monetary shoks are treated �as asoure of onfusion that makes it di�ult for agents to separate relative priehanges from aggregate prie hanges� (Cooley and Hansen, 1995). In theseond strand, money matters beause nominal pries and wages are stiky inthe short-run (Fisher, 1977; Taylor, 1979).Shortly after this, the publiation in 1982 of Kydland and Presott's seminalartile, "Time to build and aggregate �utuations", ame as another land-mark day for the development of modern maroeonomi theory. This paper,whih led to the emergene of the Real Business Cyle (RBC) theory, stronglyrevived the proposition that eonomi �utuations are mostly the result ofnon-monetary fores.1 In the anonial RBC model (see King et al. (1988),for a presentation), business yles are viewed as the outome of an eon-omy submitted to exogenous tehnologial shoks. In this eonomy, rationalagents ontinuously adjust their deisions to exogenous variations in the envi-ronment. Thus, the theory onveys two new important messages: (i) businessyles do not neessarily re�et ine�ienies in the alloation of resoures ;(ii) monetary fators suh as, for example, variations in the stok of money,1The term 'Real Business Cyle' was �rst used by Long and Plosser (1983)



4 Chapter 1. Introdutiondo not neessarily play a signi�ant role in observed business yles, sine amodel submitted to tehnologial shoks alone an aount for a signi�antfration of the volatility of output and of other maroeonomi variables.As emphasized by Galí (2008), a seond reason why the RBC theory wasonsidered a "revolution" for maroeonomi analysis is in its methodologialontribution. The RBC theory is the �rst approah to ombine, within thesame model, three deisive ingredients: First, the use of dynami stohastigeneral equilibrium theory, whih gives strong miroeonomi foundations tothe behavioral equations used to desribe the aggregate variables in the large-sale maroeonometri models of the 70's. Seond, agents in these modelsform rational expetations, i.e. expetations onsistent with the informationthey have. Third, the methodology aims to provide quantitative (as opposedto qualitative) preditions, by simulating the model and generating time seriesfor the main variables than an be ompared to their empirial ounterpart.Based on this omparison, models may be validated or rejeted.While deisive in terms of methodology, the Real Business Cyle theory (atleast in its initial form) did not really survive the data onfrontation stepit advoated. Indeed, the preditions of the anonial RBC model on therole of money and on the ovariations between real and monetary variableswere quikly shown to be at odds with the large body of empirial evideneanalyzing this question. For instane, Cooley and Hansen (1995) show thatin the data, there is a positive orrelation between monetary aggregates andoutput, while the anonial RBC model augmented with a ash-in-advaneonstraint predits a negative orrelation. More reently, Christiano et al.(1999, 2005) provide empirial evidene that an expansionary monetary shokinreases output in the short run, with a peak ourring after a few periods,while in�ation adjusts very little at the time of the shok. Suh evidene islearly inonsistent with the preditions of the augmented RBC model.



1.1. Introdution 5Faing these di�ulties, researhers have gradually started to inlude some"Keynesian" features into the model, leading to the progressive developmentof what is known today as the New Keynesian model of the business yle.There are three main ingredients at the heart of the New Keynesian model:The �rst one is the introdution of monopolistially ompetitive �rms, whoendogenously set their prie in order to maximize pro�ts. The seond oneis the assumption of nominal rigidities. This means that, for some reason,�rms annot reset their prie optimally in any period. For example, in thetraditional Calvo (1983) prie-setting framework, �rms are only given (in eahperiod) a onstant probability of resetting their prie optimally. The thirdingredient is the spei�ation of a monetary poliy rule suh as, for example, aTaylor rule, whih desribes the reation of the monetary authority to hangesin the eonomi environment.In addition to these ingredients, the New Keynesian model also features animportant onept whih will be our main researh interest in the �rst twohapters of this thesis. This onept is the so-alled New Keynesian Phillipsurve. The New Keynesian Phillips urve (NKPC) is derived from the log-linearization of the optimal priing deision of �rms in the Calvo framework.In its simplest form, the urve relates urrent and expeted in�ation to ameasure of real ativity (average marginal ost). Yet, as we will see, therealso exist hybrid versions of the NKPC, whih usually inlude past in�ationin the equation. A signi�ant part of our researh program has been to developor to test hybrid versions of the NKPC.The New Keynesian model is also important beause it gives a key role tomonetary fators in the business yle. Reently, Christiano et al. (2005) andSmets and Wouters (2007) have illustrated the ability of medium sale New-keynesian DSGE models to aount for the real e�ets of monetary shoks. Forthis reason, the New Keynesian model of Christiano et al. (2005) and Smets



6 Chapter 1. Introdutionand Wouters (2007) has beome the referene model used to investigate thesoures of empirial business yles. The Smets and Wouters (2007) model isthe benhmark model we use in the seond part of the thesis, when estimatingregime-swithing medium sale DSGE models.1.1.2. Taking the models to the dataSimultaneously with the development of DSGE models, the empirial methodsused to assess the �t of these models have undergone a rapid evolution. The�rst empirial method, advoated by Kydland and Presott (1982), is termed"alibration". DeJong and Dave (2007) de�ne the alibration step as �an exer-ise under whih a set of empirial targets is used to pin down the parametersof the model under investigation, and a seond set of targets is used to judgethe model's empirial performane�. Thus, aording to this de�nition, theDSGE model is not onsidered as a data generating proess. For proponentsof the alibration methodology, the main reason is that any DSGE model, be-ing highly stylized, is de fato false. Thus, any formal statistial test shouldrejet it. Hene, it is preferable to judge the empirial performane of thismodel relatively to the set of quantitative fats it is supposed to explain.Despite its numerous advantages, the main shortoming of the alibrationapproah is that it does not attah any measure of unertainty to the predi-tions of the model. To address this problem, the next empirial method thathas been onsidered in the literature is the Generalized methods of moments(GMM), due to Hansen (1982). Like alibration, the GMM methodology fo-uses on mathing only a limited set of empirial targets, alled moments.But unlike alibration, GMM takes unertainty seriously sine it implies thatthe model ould be interpreted as a data generating proess from whih themoments were obtained.22For an early example of appliation of GMM to maroeonomi time series, see ?. For



1.1. Introdution 7Other empirial methods in the same family of GMM has also been used to es-timate DSGE models. Among them, we an mention the Simulated Methodsof Moments (SMM), the method of Indiret Inferene (II), and the method ofMinimum Distane Estimation (MDE). In the late 80's and during the 90's,Maximum Likelihood has been at the entre of the estimation proedure. Anearly referene is Altug (1989). In ontrast to the alibration and momentmathing proedures, Maximum Likelihood is a full-information method un-der whih the DSGE model is assumed to provide a omplete haraterizationof the data. Hene, in theory, ML should deliver more reliable estimates.However, misspei�ation remains a onern sine maximum likelihood es-timation requires some assumption about the distribution of the stohastiomponents of the model.Over reent years, several researhers have preferred to favor a Bayesian ap-proah to estimating DSGE models (an early example is Shorfheide (2000)).This hoie partly re�ets the willingness to avoid some traditional di�ul-ties enountered with the frequentist approah. But the main advantage ofBayesian inferene is that it allows researhers to inorporate prior informa-tion into the model. This is important beause forming prior opinions is anatural devie among eonomists. Beause of its inreasing importane in themaroeonomi literature, the Bayesian approah is the entral theme of theseond part of our thesis.1.1.3. Outline of the thesisThis thesis follows losely the hronology of empirial methods that have beenused in reent deades to �t DSGE models to the data. Chapter 2, Foreastingwith the New Keynesian Phillips urve: Evidene from survey data estimatesan appliation of the GMM approah to a DSGE model, see e.g. Christiano and Eihenbaum(1992).



8 Chapter 1. Introdutionthe New Keynesian Phillips Curve developed in Galí and Gertler (1999) andassesses the foreasting performane of that urve. Despite the suess of theNew Keynesian Phillips Curve in explaining the dynamis of in�ation, manyempirial studies doument its weakness by showing that purely statistialmodels, like ARIMA models, do a better job in foreasting in�ation. Thishapter tries to revisit this empirial �nding. Spei�ally, I �nd that a plau-sible explanation for the poor foreasting performane of the NKPC is dueto the way in�ation expetations are measured. Following Galí and Gertler(1999), a large body of empirial studies estimate the NKPC, assuming ratio-nal expetations. Under the rational expetations assumption, the error in theforeast of expeted in�ation is unorrelated with information in the urrentand past periods. Hene, provided the existene of a vetor of variables (alledinstruments) in the urrent or earlier periods, the NKPC an be estimatedvia GMM. However, if agents do not make (fully) rational foreasts, estimatesould be seriously biased. Thus, I onsider an alternative methodology, whihonsists in onstruting an expeted in�ation series using qualitative surveydata. The survey data ollet qualitative answers of onsumers on their ex-petation about the evolution of pries for the oming year in Great Britain.Two important results are in order. First, the estimates obtained with thealternative measure of in�ation expetations are better than those obtainedwith the traditional rational expetations assumptions. Seond, survey fore-asts on in�ation expetations greatly improve the foreasting performane ofthe NKPC.Chapter 3, Time-varying in�ation target and the New Keynesian PhillipsCurve also fouses on the NKPC but with a di�erent perspetive. Our start-ing point is the two empirial �ndings doumented in Cogley and Sbordone(2008). The authors �rst argue that one trend in�ation is taken into aount,the New Keynesian Phillips Curve an repliate the amount of in�ation per-



1.1. Introdution 9sistene found in the data without requiring the inlusion of ad ho bakward-looking terms. Seond, they show that the resulting redued-form NKPC hastime-varying oe�ients.We onsider the onsequenes of introduing a time-varying in�ation targetin the spei�ation of the New Keynesian Phillips Curve. Spei�ally, weassume that when �rms annot adjust their prie, they follow an indexationrule whih onsists in indexing their prie on an in�ation rate whih is di�er-ent from the long-run in�ation rate. Our main idea is that, in order to limitrelative prie distortions, �rms should index their prie on a target whih islose to the expeted in�ation rate prevailing during the average duration ofthe prie ontrat. In the presene of trend in�ation, this target is likely to be(i) signi�antly di�erent from the sample mean of the in�ation rate and (ii)time-varying. We derive a new spei�ation for the NKPC that follows fromthis assumption, and we take it to the data. Compared to Cogley and Sbor-done (2008), the hapter provides three main onlusions. First, in ontrastwith their paper, our spei�ation of the NKPC features onstant oe�ients.This enables us to relate more easily the redued form NKPC to the deep(strutural) parameters. Seond, as in Cogley and Sbordone (2008), our spe-i�ation of the NKPC leads to non-signi�ant bakward looking oe�ients.Third, using identi�ation-robust methods, our alternative NKPC slightly im-proves the estimated value of the degree of prie rigidity in the Calvo priesetting mehanism.While our researh in the �rst two hapters was using frequentist estimationmethods, the next two hapters deal with the Bayesian approah. Chapter 4,A review of Bayesian analysis of DSGE models, surveys Bayesian eonometrimethods that have reently been used to estimate DSGE models. We showhow suh methods an be modi�ed to aount for the presene of regimeswithes in DSGE models. Farmer et al. (2009b) o�er an exellent treatment



10 Chapter 1. Introdutionof forward-looking Markov-Swithing DSGE models.Chapter 5, Great Moderation and endogenous monetary poliy swithes ap-plies these tools to address an important maroeonomi question: what arethe soures of the Great moderation that the US and the Euro eonomies haveexperiened in the period spanning the mid 80's until the reent �nanial ri-sis? The literature suggests two main explanations that have not reahed aonsensus. For some eonomists, e.g. (Stok and Watson, 2003b; ?), the GreatModeration is mainly the outome of good luk. By luk, we mean smallershoks faed by these eonomies during this period. For others, the GreatModeration is due to the virtues of monetary authorities in their ondutof monetary poliy. Eonomists have observed that the redution in outputvolatility was aompanied by a similar redution in the volatility of in�ation,as doumented in Blanhard and Simon (2001). Given the broad onsensusthat monetary poliy is a ruial determinant of in�ation, a redution in thevolatility of output may have been the result of better monetary poliy. Pro-ponents of this viewed are, inter alia, Bernanke (2004), Lubik and Shorfheide(2004) and Clarida et al. (2000).To take aount of these explanations, we modify the state-of-the-art Smetsand Wouters (2007) medium-sale DSGE model to inorporate the possibil-ity of regime swithes in the variane of shoks and in the oe�ients of themonetary poliy rule. We use this model to onsider three alternative spe-i�ations: The �rst one only introdues hanges in the variane of shoks.The seond one allows for regime swithes in both the variane of shoks andthe poliy rule oe�ients, but assumes that these hanges are independent(i.e., hanges in the monetary poliy regime are independent of the urrentstate of the eonomy). Finally, the third spei�ation introdues synhronizedhanges in shoks variane and in monetary poliy.We estimate the three versions of the model with Bayesian methods, and use



1.1. Introdution 11the estimation results to shed new lights on the following questions: (i) Whatare the soures of the Great Moderation ; (ii) Are regime swithes in monetarypoliy exogenous, or does the ondut of monetary poliy hange aordingto the eonomi situation ? The possibility of endogenous monetary poliyregime hanges has been reently emphasized by Davig and Leeper (2008).We perform this exerise for the US and the Euro Area eonomies and obtainthe following �ndings: �rst, we �nd strong evidene in favor of regime swithesin both poliy parameters and shok varianes, whether these swithes areassumed to be synhronized or independent. This �nding holds true for boththe US and the Euro Area. Seond, for both eonomies, the spei�ation withsynhronized regime shifts �ts the data equally well as the spei�ation withindependent hanges in regime. Third, our �ndings do not support the viewthat the US monetary poliy has been endogenous. Aording to our results,the ondut of monetary poliy in the US was more strongly determined bythe hairmen in o�e than by the ongoing eonomi situation. However, thisresult does not hold true for the Euro Area, and we do �nd strong evideneof endogeneity of monetary poliy in Europe.Summarizing, the ontents of thesis are organized as follows: Chapter 2 esti-mates the New Keynesian Phillips Curve using survey data and ompares itsforeasting performane to an AR(1) model. Chapter 3 onsiders the onse-quenes of introduing a time-varying in�ation target in the New KeynesianPhillips Curve. Chapter 4 provides a survey of Bayesian analysis of DSGEmodels, while hapter 5 estimates a Markov-swithing DSGE models and usesthe estimated model to shed new lights on the soures of the Great modera-tion and on the endogeneity of monetary poliy in the US and the Euro Area.Finally, a tehnial appendix for hapters 3 and 5 is provided.





Chapter 2Foreasting with the NewKeynesian Phillips urve:Evidene from survey data
Contents2.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . 132.2 The hybrid New-Keynesian Phillips urve . . . . . . . 142.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 152.3.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . 162.3.2 Estimation results . . . . . . . . . . . . . . . . . . . . 172.4 Foreasting experiments . . . . . . . . . . . . . . . . . 192.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1. IntrodutionThis hapter is based on my forthoming paper, Jean-Baptiste (2011). It esti-mates the New Keynesian Phillips Curve version derived in Galí and Gertler(1999) and assesses the foreasting performane of that urve.Our motivation is the following. Empirial studies often �nd that the hybridNew Keynesian Phillips urve developed by Galí and Gertler (1999), while



14Chapter 2. Foreasting with the New Keynesian Phillips urve:Evidene from survey datatheoretially justi�ed, has a poor preditive ontent of in�ation, ompared tothe variety of ARIMA models.1 In this hapter, I estimate the hybrid NKPCand use the estimation results to foreast in�ation. I follow two estimationmethods. First, I impose the rational expetations assumption of agents asGalí and Gertler (1999) and estimate the Phillips urve by GMM. Seond,I use in�ation foreasts obtained from survey data and estimate the Phillipsurve by OLS.The results are the following. First, estimation with survey data performs wellin quantifying the bakward and forward oe�ients of the hybrid NKPC.Seond, output gap is not signi�ant and enters the hybrid NKPC with anegative sign On the ontrary, output gap is found to be signi�ant and entersthe NKPC positively when survey-based in�ation foreasts are used. Third,the foreasting performane of the hybrid NKPC is superior to the benhmarkAR(1) model when output gap and survey-based in�ation foreasts are used.The rest of the paper is organized as follow. The seond setion brie�y presentsthe hybrid NKPC. The third setion desribes the data and presents the es-timation results. The fourth setion presents the results of the foreastingexperiments and the last setion onludes.
2.2. The hybrid New-Keynesian Phillips urveTo derive the hybrid NKPC, Galí and Gertler (1999) use a staggered prie-setting sheme à la Calvo (1983), where a fration of �rms, 1 − θ, hangepries in a given period. In ontrast to the original Calvo (1983) model, Galíand Gertler (1999) assume that among �rms being able to hange pries in agiven period, only a fration 1 − ω sets prie optimally in a forward-looking1The literature uses the term hybrid in opposition to the pure forward-looking NewKeynesian Phillips urve.



2.3. Estimation 15manner. The remaining part sets pries by simply augmenting last period'saverage prie by the in�ation rate of that period. This assumption leads tothe following form of the hybrid NKPC:
πt = λxt + γbπt−1 + γfEtπt+1 + ut, (2.2.1)where πt is the in�ation rate, Etπt+1 the expeted in�ation rate of the nextperiod, xt the real marginal ost and ut a ost-push shok. The redued formin (2.2.1) is related to the strutural form of the NKPC by the followingombination of parameters:

γf =
βθ

φ
,

γb =
ω

φ
,

λ =
(1− ω)(1− θ)(1− βθ)

φwhere β is a disount rate and φ = θ+ω[1−θ(1−β)]. Sine the redued form ofthe hybrid NKPC in (2.2.1) is onsistent with various priing shemes, inlud-ing the Calvo (1983) sheme, estimation and foreasting results are reportedonly for the redued form.2.3. EstimationIn (2.2.1), the term Etπt+1 is not diretly observed. This is a fundamentalhallenge with estimating the hybrid NKPC parameters. There are two solu-tions to irumvent this hallenge. The �rst one, whih is the most standard,is to use the law of iterated expetations to obtain a foreast of Etπt+1
2. Re-plaing Etπt+1 by πt+1 − ηt+1, with ηt+1 being the one-step-ahead foreasterror in πt+1, I obtain the new equation πt = λxt+γbπt−1+γfπt+1+et, where

et = ut − γfηt+1. From Et(ut) = 0, it follows that Et(et) = 0 so that the2The law of iterated expetations is a priniple of rational expetations.



16Chapter 2. Foreasting with the New Keynesian Phillips urve:Evidene from survey dataequation an be estimated by GMM. The seond solution is to use in�ationforeasts from survey data, obtained by asking eonomi agents at one periodwhat are their expetations of prie for the next period. Sine these expeta-tions do not neessarily math in�ation expetations, I assume that they aregiven by Etπt+1 = πst+1 + ηst where πst+1 is the in�ation foreast provided bythe survey and ηst is an error term unorrelated with πst+1. Finally, I estimateby OLS the resulting equation πt = λxt+γbπt−1+γfπ
s
t+1+ǫt where ǫt = γfη

s
t .

2.3.1. The dataSurvey data ome from the European Commission website from 1987:1 to2007:12. The European Commission onduts a monthly survey about thegeneral eonomi situation, unemployment and prie expetations for the Eu-ropean eonomy, the Euro area and the single European ountries. For thepurpose of the paper, I fous on prie expetations. The survey partiipantsare asked to give qualitative expetations about the evolution of pries in thenext year. As a onsequene, qualitative expetations are quanti�ed with theCarlson and Parkin (1975) approah, also alled the �probability approah�,and the results are onverted to quarterly frequeny, in order to �t a quarterlyhybrid NKPC.3 To save spae, I refer the reader to Carlson and Parkin (1975)and Nielsen (2003) for a detailed explanation of that approah. Data on othervariables are provided by the OECD Eonomi Outlook database. Atualin�ation is measured as 100 times log di�erene of quarterly onsumer prieindex (CPI), from 1987:1 to 2007:4. I onsider two proxies for real marginal3The survey asks the following question to the partiipants:�By omparison with thepast 12 months, how do you expet onsumer pries will develop in the next 12 months?They will: 1) inrease more rapidly 2) inrease at the same rate 3) inrease at a slower rate4) stay about the same 5) fall 6) do not know."



2.3. Estimation 17Table 2.1: OLS estimation of the hybrid NKPCParameters Unrestrited RestritedGap ULC Gap ULC
γb 0.236 0.120 � �(0.001) (0.061)
γf 0.726 0.876 0.779 0.880(0.000) (0.000) (0.000) (0.000)
λ 0.131 � 0.096 �(0.008) (0.031)
λ′ � -0.022 � -0.024(0.378) (0.318)Notes: p-values are given in brakets.ost: CPI-de�ated unit labour ost of the total eonomy and the output gap.4I report empirial results for the United Kingdom. Figure (2.1) plots the a-tual in�ation versus the mean expeted in�ation and the detrended real unitlabour ost versus the output gap.2.3.2. Estimation resultsWhile the paper fouses on estimates using survey data, I report, for ompar-ison purpose, estimates based on the traditional iterated expetations estima-tion for omparison.Table (2.1) reports OLS estimates of the hybrid NKPC. The unrestritedoe�ients γf and γb are positive and signi�ant. Thus, both forward andbakward looking omponents are important in the dynamis of in�ation. Ir-respetive of the proxy used for real marginal ost, the degree of forwardness is4Galí and Gertler (1999) ompute output gap as the di�erene of real gross domestiprodut and its linear trend. In this paper, I use diretly the output gap published bythe OECD. The OECD output gap is measured as the perentage di�erene between GDP(onstant pries) and potential GDP.



18Chapter 2. Foreasting with the New Keynesian Phillips urve:Evidene from survey dataTable 2.2: GMM estimation of the hybrid NKPCParameters UnrestritedGap ULC
γb 0.275 0.391(0.069) (0.055)
γf 0.735 0.616(0.006) (0.011)
λ -0.028 �(0.325)
λ′ � 0.0003(0.0001)Hansen's J test 1.36 1.17(0.56) (0.51)Notes: Instruments inlude three lags of in�ation and two lagsof output gap and real unit labour ost. p-values are given inbrakets.more important than the degree of bakwardness. This �nding is in line withGalí et al. (2005) who �nd that the forward-looking omponent of in�ationis very important, using IV estimation. The estimates indiate that real unitlabour osts are not signi�ant for the dynamis of in�ation, at least in thesample onsidered here. Furthermore, sine the slope λ is negative, real unitlabour osts enters the hybrid NKPC with the wrong sign, whih is possiblya result from an errors-in-variable problem assoiated with the expeted in-�ation.5 The Output gap is signi�ant and enters the hybrid NKPC with theorret sign. Thus, the estimates indiate that the output gap is a good proxyfor marginal ost. Under the theoretial restrition β ≈ 0.99, whih implies5Nason and Smith (2008) using survey data obtained from the Survey of ProfessionalForeasters (SPF), �nd a similar result for the US eonomy and Henzel andWollmershaeuser(2008) �nd a similar result for Italy, using survey data from the CESifo World EonomiSurvey.



2.4. Foreasting experiments 19
γf+γb = 1, Table (2.1) shows that more weight is given to the forward lookingomponent. The slope remains positive and signi�ant when the output gap isused as proxy, negative and insigni�ant when real unit labor osts are used.These �ndings ontradit the widespread view that a ost-based formulationof in�ation is better than output gap-based formulation of in�ation (Galí andGertler, 1999).Table (2.2) reports estimates based on the ontinuous updating GMM esti-mator (CUE-GMM) of Hansen et al. (1996) where the ovariane matrix isorreted with a bandwidth of 12 lags. p-values for the Hansen test provideno evidene against the validity of the instruments. The forward lookingomponent ontinue to play the predominant role. However, there are somedi�erenes in magnitude with estimates based on survey foreasts. In parti-ular, more weight is attahed to the bakward omponent. The output gapoe�ient, while not signi�ant, is negative. When using survey foreasts, Iobtain the orret sign and the oe�ient is signi�ant.6 The results suggestthat survey-based estimates perform better than estimation methods basedon rational expetations of agents.
2.4. Foreasting experimentsThis setion is motivated by empirial evidene reported by Ang et al. (2007).Using four foreasting models based on maro, asset markets variables and in-�ation surveys data, Ang et al. (2007) �nd that in terms of in�ation foreasts,the foreasting model with survey data outperforms the other models for theUS eonomy. I use the hybrid NKPC to foreast annual in�ation and om-pare the foreasting results with those of a benhmark autoregressive modelof order one, AR(1). The spei�ation of the AR(1) is standard and is given6See Nunes (2010) for similar �ndings.



20Chapter 2. Foreasting with the New Keynesian Phillips urve:Evidene from survey databy the following equation:
πt = µ+ απt−1 + νtwhere νt is an error term and µ a drift.Table 2.3: Out-of-sample perent rmses : AR(1) vs NKPCforeast horizon2 4 8United Kingdom AR 0.610 0.706 0.896RULC 0.727 0.806 0.995GAP 0.564 0.636 0.821Note: Foreast of annual in�ation, out-of-sample from2000:Q1 to 2007:Q4. RULC and GAP refer to the hybridNKPC estimated with real unit labor ost and output gap.The root mean squared error foreasts are reported in per-entage terms.I onsider pseudo out-of-sample foreast of in�ation, from 2000:Q1 onwards.Table (2.3) reports the root mean squared error (RMSE) statistis in perent-age terms for the AR(1) model and the hybrid NKPC model. Foreastingperformane of the hybrid NKPC depends on the proxy used to measure realmarginal ost. At all foreast horizons, the autoregressive model beats thehybrid NKPC estimated with real unit labour ost. Using the output gapas proxy for real marginal ost onsiderably improves the foreasting perfor-mane of the hybrid NKPC. Compared to the AR(1) model, all the RMSE arelower at all foreast horizons. This result is enouraging sine empirial stud-ies (see for instane Stok and Watson (2003a)) have found that the NKPC,while theoretially justi�ed, has a poor preditive ontent, ompared to thevariety of ARIMA models.
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Figure 2.1: (a): Atual in�ation (solid) and expeted in�ation (dashed). (b):Output gap (solid) and real unit labour ost (dashed).2.5. ConlusionsIn this paper, I have found that survey-based in�ation foreasts make thePhillips urve predominantly forward looking. The output gap enters posi-tively and signi�antly, while methods based on traditional rational expeta-tions deliver a negative and insigni�ant role to the output gap. Furthermore,the root mean squared errors of the Phillips urve are inferior to those of anAR(1) model when in�ation foreasts and output gap are used.





Chapter 3Time-varying in�ation target andthe New Keynesian Phillips urve
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3.1. IntrodutionThe aim of this hapter is to propose and to estimate an alternative spei�-ation for the New Keynesian Phillips Curve.



24Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urveThe main idea underlying our approah is that, in the traditional spei�a-tion of the hybrid NKPC (with partial indexation and positive steady-statein�ation), the indexing rule of �rms that are not allowed to reset their priedoes not �t well with the observation that in�ation in the short run may sub-stantially di�er from its long-run (average) value. This is notably the ase,for example, if the in�ation target of the entral bank oasionally swithesbetween a high and a low value (as doumented in Shorfheide (2005)), orif there is a trend in the evolution of in�ation. Indeed, under suh irum-stanes, using the long-run in�ation level to index non-resetted pries maygenerate substantial prie distortions that are ultimately ostly to �rms.In the presene of varying trend in�ation, a better indexing rule would indexpries on an in�ation target that does not di�er too muh from the impliitin�ation rate applied by reoptimizing �rms to their former prie. In the pres-ene of trend in�ation, this target is likely to be (i) signi�antly di�erent fromthe sample mean of the in�ation rate and (ii) time-varying. We derive a newspei�ation for the NKPC that follows from this assumption, and we estimateit with the minimum distane estimation doumented in ?. Following a reentliterature on the issue that NKPC might be poorly identi�ed (Ma, 2002; Du-four et al., 2010; Kleibergen and Mavroeidis, 2009), we estimate our NKPCwith methods that are robust to identi�ation problem with the approahdoumented in Magnusson and Mavroeidis (2010). To hek the robustnessof our onlusions, we also estimate the NKPC with the Generalized methodof moments (GMM).Our work also relates to reent empirial results by Cogley and Sbordone(2008), who emphasized the importane of taking trend in�ation into a-ount for the empirial suess of the NKPC. The authors ritiize the om-mon pratie of introduing bakward-looking terms in the NKPC to improveits empirial performane, sine in its initial formulation the urve is purely



3.2. The generalized NKPC 25forward-looking. Cogley and Sbordone (2008) �nd that one drifting trend in-�ation is taken into aount in the Calvo prie setting mehanism, bakward-looking terms are no longer neessary to aount for in�ation persistene.They also show that the introdution of drifting trend in�ation results in aNew Keynesian Phillips Curve whih has the harateristi that its reduedform oe�ients are time-varying.Compared to Cogley and Sbordone (2008), our approah leads to three mainonlusions. First, in ontrast with Cogley and Sbordone (2008), the reduedform oe�ients of our modi�ed NKPC are onstant. This enables us to re-late more easily the redued form NKPC to the deep (strutural) parameters.Seond, similarly to Cogley and Sbordone (2008), estimation of our modi�edNKPC leads to non-signi�ant bakward looking oe�ients. This onlusionis on�rmed, using both non-robust and robust methods to identi�ation is-sues. Third, time-varying in�ation target is a key variable for the evolutionof in�ation.The remaining of the hapter is organized as follow. Setion (3.2) derivesthe NKPC, setion (3.3) presents the eonometri methodology, while setion(3.4) presents the results. The last setion onludes the hapter.
3.2. The generalized NKPCThe NKPC is derived using the Calvo (1983) priing mehanism aording towhih, in eah and every period, a �rm faes a onstant probability 1− ξp toreset its prie optimally. In the traditional spei�ation of the hybrid NKPCwith partial indexation and positive long run in�ation, a �rm who annotreset its prie optimally is assumed to apply the following indexation rule (seee.g. Smets and Wouters (2007)):



26Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urve
pit = (πt−1)

γp (π)1−γp pit−1where π is the long-run in�ation fator. As mentioned above, if the in�ationtarget of the entral bank is hanging through time, or if there is a trendin the evolution of in�ation, the urrent in�ation level may be signi�antlydi�erent from its sample-mean level π. In this ase, the indexing rule is likelyto generate substantial prie distortions between �rms who reset their prieoptimally and �rms who do not.To avoid this ritiism, we onsider the following alternative rule:
pit = (πt−1)

γp (π∗
t )

1−γp pit−1where π∗
t is the impliit measure of trend in�ation used by indexing �rms.Clearly, if π∗

t = π, we reover the traditional spei�ation. But alternativemeasures are likely to generate less prie distortions. For example, π∗
t ouldbe the expeted in�ation rate of "naive" foreasters at date t (as onsidered inhapter 2), or be any statistial measure obtained from the data. Of ourse,in general, π∗

t is likely to be a�eted by the urrent eonomi situation. Thus,generally speaking, π∗
t should be onsidered as time-varying.Let Xp

t,k be an indexation fator, de�ned by
Xp
t,k =





1 for i = 0
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)1−γp) for i = 1, ...,∞



This indexation rule implies that

pit+k = Xp
t,kp̃

i
twhere p̃it is the initial prie.In this ontext, the optimal prie p̃it hosen by an optimizing �rm in t is thesolution of the following program:
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kλt+k/λt is a stohasti disount fator, with β the subjetivedisount fator, λt the marginal utility of onsumption and mct the �rm'smarginal ost.The �rst-order ondition assoiated with the above program leads to the fol-lowing optimal priing rule:
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, (3.2.1)where µp = θ/(θ−1) is the steady-state markup, with θ > 1 the prie-elastiityof setoral demand.The aggregate prie index is given by
pt =
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) 1
1−θ (3.2.2)Log linearization of (3.2.1) ombined with the de�nition for the aggregateprie index (3.2.2) leads to the following New Keynesian Phillips Curve:
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ξp(1 + βγp)
m̂ct

+
γp

(1 + βγp)
π̂t−1 +

β

(1 + βγp)
Etπ̂t+1

+

(
1− γp

)

(1 + βγp)
π̂∗
t −

β
(
1− γp

)

(1 + βγp)
Etπ̂

∗
t+1 (3.2.3)



28Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urveAs expeted, our generalized NKPC shows that urrent in�ation depends, inaddition to the traditional terms, on the urrent and expeted value of thein�ation target, whih is generally time-varying. Note also that the NKPCresults in redued form oe�ients that are time-invariant. This is the maindi�erene with the Cogley and Sbordone (2008)'s NKPC.For the purpose of the next subsetion, we express the NKPC as a reduedform relation given by
πt = γbπt−1 + γfEtπt+1 + λmct + λ2π

∗
t + λ3Etπ

∗
t+1, (3.2.4)where

λ =
(1− ξp)(1− βξp)

ξp(1 + βγp)
,

γb =
γp

1 + βγp
,

γf =
β

1 + βγp
,

λ2 =
1− γp
1 + βγp

,

λ3 = −β
1− γp
1 + βγp

.3.3. Eonometri methodologyThis setion desribes the methodology that we shall use to test the NKPC.Given that the methodology is reent, we �nd it useful to desribe it beforeestimating the NKPC.3.3.1. Minimum distaneMagnusson and Mavroeidis (2010) onsider the minimum distane estimationof the NKPC originated from Sbordone (2002) and Sbordone (2005). In our



3.3. Eonometri methodology 29ontext, the minimum distane estimation of the NKPC tries to minimizethe distane between two dynamis of in�ation. The �rst dynamis modelsin�ation, marginal ost (proxied by labor share) and trend in�ation as a VARproess of order p, while the seond dynami is the relation provided by theNKPC. In other words, the approah uses information oming from redued-form models to estimate a strutural model of in�ation.The approah is implemented as follows. Let Zt ≡ [πt π
∗
t mct] and assumethat Zt is determined by a VAR(p) proess:

Zt = Φ1Zt−1 + · · ·+ ΦpZt−p + ǫz,t (3.3.1)where E(ǫz,t) = 0 and E(ǫz,tǫ′z,t) = Ω.It is onvenient to rewrite the VAR(p) in its ompanion form:
zt = Φzt−1 + Qǫz,t (3.3.2)where zt = [zt zt−1 zt−2 · · · zt−p+1]

′,
k is the number of variables in the VAR so that Φ is of dimension kp×kp andit ontains k2p unknown parameters, denoted by ϕ.Let eπ, eπ∗ , emc be appropriate seletion vetors suh that πt = e′πzt, π

∗
t =

e′π∗zt, mct = e′mczt.Next, we link the redued-form parameters ϕ to the strutural parameters
ϑ of the NKPC. We use the identifying restrition that Et−1ε

p
t = 0. Takingexpetations with respet to information in t − 1 on both sides of equation3.2.4, it follows that

Et−1πt = γbπt−1+ γfEt−1πt+1+λ1Et−1mct+λ2Et−1π
∗
t +λ3Et−1π

∗
t+1. (3.3.3)From the VAR representation of the NKPC, we have Et−1πt+1 = e′πΦ(ϕ)

2zt−1,
Et−1π

∗
t+1 = e′π∗Φ(ϕ)2zt−1, Et−1πt = e′πΦ(ϕ)zt−1, Et−1mct = e′mcΦ(ϕ)zt−1 and



30Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urve
πt−1 = e′πzt−1. Substituting them in (3.3.3) and transposing the resultingexpression leads to a set of restritions, g(ϕ, ϑ), where
g(ϕ, ϑ) = Φ(ϕ)′

{
e′π[I−γfΦ(ϕ)]−λ1e

′
mc−e

′
π∗ [λ2I+λ3Φ(ϕ)]

}′

−γbeπ. (3.3.4)The estimation strategy proeeds in two steps. First, we estimate the unre-strited VAR to obtain ϕ̂ and an estimate of its variane, V̂ϕ. The seond steptakesϕ̂ as given and hooses the value ϑ that makes the empirial value of thefuntion g(ϕ, ϑ) as lose as possible to zero.3.3.2. Identi�ation robust testsLet ϕ̂ denote a onsistent and asymptotially normal estimator of ϕ, withasymptoti variane Vϕ, and let V̂ϕ be a onsistent estimator of Vϕ. Bythe Delta method, the asymptoti variane of g(ϕ̂, ϑ) is Gϕ(ϕ, ϑ)
′VϕGϕ(ϕ, ϑ)where Gϕ(ϕ, ϑ) ≡

∂g(ϕ,ϑ)
∂ϕ′

. E�ient minimum distane estimation is based onthe riterion funtion
Q(ϑ) = g(ϕ̂, ϑ)′V̂gg(ϑ)

−1g(ϕ̂, ϑ) (3.3.5)where V̂gg(ϑ) = Gϕ(ϕ̂, ϑ)
′V̂ϕGϕ(ϕ̂, ϑ) and ϑ being a preliminary estimator of ϑthat ould be ine�ient. When ϑ = ϑ, the riterion (3.3.5) is the ontinuousupdating riterion provided in Hansen et al. (1996).Under the assumption that the Jaobian matrix Gϕ(ϕ, ϑ) has a full rank,

ϑ̂ is asymptotially normal and standard test statistis like the Wald andLagrange Multiplier (LM) for hypotheses on ϑ are asymptotially hi-squareddistributed. Consequently, inferenes based on those statisti are reliable.However, when the Jaobian matrix is nearly of redued or zero rank, i.ethe NKPC is weakly identi�ed, inferenes based on the Wald or the the LM



3.3. Eonometri methodology 31statistis are unreliable beause these statistis are not asymptotially hi-squared distributed.1 Thus, it is important to onsider test statistis thatdo not involve asymptotially the Jaobian matrix under the null hypothesis.All the tests are based on the ontinuous updating estimator (CUE) of theriterion (3.3.5), in whih ase the weighting matrix is ontinuously evaluatedat the values of the strutural parameters, i.e ϑ = ϑ.2 Inferenes obtainedfrom the test are robust to weak identi�ation.The �rst test statisti is the minimum distane version of the test proposedAnderson and Rubin (1949):
MD.AR(ϑ0) = Tg(ϕ̂, ϑ0)

′V̂gg(ϑ)
−1g(ϕ̂, ϑ0), (3.3.6)where T is the sample size, ϑ0 is the hypothesized value of the parameters.The MD.AR is robust to weak identi�ation issue sine it does not involvethe Jaobian matrix.This test an be interpreted as a Wald test of the validity of the restritionsin (3.3.4) at ϑ0.The seond statisti is the minimum distane version of the K statisti pro-posed by Kleibergen (2005):

MD.K(ϑ0) = Tg(ϕ̂, ϑ0)
′V̂gg(ϑ0)

−1D̂(ϑ0)[D̂(ϑ0)V̂gg(ϑ0)
−1D̂(ϑ0)]

−1

× (g(ϕ̂, ϑ0)
′V̂gg(ϑ0)

−1D̂(ϑ0))
′.

(3.3.7)1In the framework of GMM estimation, Kleibergen (2005) shows that the asymptotidistribution of the LM statisti is not hi-squared sine the average moment vetor and theJaobian estimator are orrelated, thus adding nuisane parameters.2Hansen et al. (1996) shows that, in the ontext of GMM, one advantage of the CU-GMM estimator relative to the two-step estimator is that the former is invariant to howthe moment onditions are saled. More importantly, Monte-Carlo experiments suggestthat the CU-GMM estimator outperforms the traditional two-step GMM and the test foridentifying restritions is more reliable in many ases.



32Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urveSine ∂Q
∂ϑ

= 2g(ϕ̂, ϑ0)
′V̂gg(ϑ0)

−1D̂(ϑ0) where D̂(ϑ0) is an estimator of the Ja-obian matrix, the minimum distane version of the K statisti is a quadratiform of the derivative of objetive funtion in (3.3.5) with respet to its asymp-toti variane [D̂(ϑ0)V̂gg(ϑ0)
i−1D̂(ϑ0)]

−1.3 It resembles the Lagrange Multiplier(LM) statisti. However, the key di�erene is that it does not depend on theJaobian matrix (unlike the LM statisti), but on an estimated value of theJaobian matrix. Atually, the appendix of Magnusson and Mavroeidis (2010)shows that, asymptotially, D̂(ϑ0) is independent of the vetor of restritions
g(ϕ̂, ϑ0). It is this independene that makes the MD.K statisti robust toidenti�ation: onditional on D̂(ϑ0), i.e treating D̂(ϑ0) as a �xed matrix, thestatistiMD.K is asymptotially hi-squared sine the independene between
D and g(ϕ̂, ϑ0) does not involve additional nuisane parameters.Details on the derivation of the matrix D̂(ϑ0) an be found in Kleibergen(2005).The MD.K(ϑ0) tests the null H : ϑ = ϑ0, assuming that the identifying re-stritions in (3.3.4) hold. Sine the ontinuous updating estimator, whih isthe basis of all the test statistis, provides values for ϑ where the objetivefuntion is minimal, the identifying restritions are violated around values of
ϑ that maximize the objetive funtion. Consequently, the MDK statistiprovides spurious inferene around values of ϑ that maximize the objetivefuntion. Therefore, Magnusson and Mavroeidis (2010) propose a third statis-ti that tests the identifying restritions under the null. It is de�ned as

MD.J (ϑ0) = AR−MD.K. (3.3.8)The joint test, i.e the test of the null H : ϑ = ϑ0 and the validity of therestritions, denoted MD.KJ (ϑ0), is onstruted suh that, given a signi�-ane level of α, the tested hypothesis is either rejeted by an α1 level MD.K3For a proof, see Kleibergen (2005).



3.4. Results 33test or by an α2 level MD.J (ϑ0) test, where α1 +α2 = α. As our fous is on
H , α1 must be higher than α2. Following Magnusson and Mavroeidis (2010),we hoose α1 = .8α and α2 = .2α.Proposition 1 of Magnusson and Mavroeidis (2010) shows that the three statis-tis are asymptotially hi-square distributed under fairly general regularityonditions. Identi�ation robust (1 − α) on�dene sets are obtained by ol-leting all values of ϑ that are not rejeted by the tests at the α level ofsigni�ane.
3.4. ResultsThis setion begins with the desription of the data used to estimate thePhillips uve. Then, we present estimates based on both non-robust androbust methods to identi�ation for the redued form and strutural NKPC.Finally, we hek the robustness of our results by estimating the NKPC byGMM.43.4.1. DataIn�ation is measured as the quarter to quarter perent hange in the log GDPde�ator. We use the labor share of Nonfarm Business setor as proxy formarginal ost. All data are obtained from the Fred Database. We restrit thesample to the period 1984:I-2008:III.Various alternative measures for π∗

t ould be onsidered. In this paper, we fol-low a two-step approah, whih is in the same spirit of Aruoba and Shorfheide(2011). In the �rst step, we use a one-sided Hodrik-Presott �lter desribedfor instane in Stok and Watson (1999), to extrat the trend omponent of4We thank Patrik Fève for this suggestion.



34Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urvein�ation with the smoothing parameter �xed to 1600.5 In the seond step,we assume that π∗
t partly results as medium-run in�ation expetation and weombine the trend omponent of in�ation with a measure of medium-run in-�ation expetation. Our measure of medium-run in�ation expetation is theone-year ahead in�ation expetation provided by the Federal Reserve Bankof Philadelphia. The two series are ombined in order to extrat ommoninformation they ontain with respet to π∗

t . Typially, we estimate a state-spae model with Bayesian methods and we use the Kalman �lter to extratommon fator between the two series.In our state spae model, the measurement equations are as follows: πHPt =

π∗
t+0.25ǫ1,t and π1y

t = π∗
t+ǫ2,t, where πHPt is the trend omponent of in�ation,

π1y
t the (observable) one-year in�ation expetation. ǫ1,t and ǫ2,t are measure-ment errors. As in Aruoba and Shorfheide (2011), we �x the standard errorof the �rst measurement error to 0.25 perent to ontrol the weight of thetrend omponent of in�ation in the ombined series.The transitions equations write π∗

t−1 = ρππ
∗
t−1+σπǫπ,t and ǫ2,t,= ρ2ǫ2,t−1+νt,where ǫ2,t and νt are i.i.d shoks. We assume that π∗

t is a stationary proess, i.e
0 < ρπ < 1. This assumption omes from the fat that the sample onsideredin our estimation spans 1984:I to 2008:III, a period where key maroeonomivariables of the US eonomy have been partiularly stable.One an estimate of ρπ is available, the expeted value of the in�ation targetan be straightforwardly omputed, i.e Etπ∗

t+1 = ρππ
∗
t . Furthermore, for thepurpose of the estimation, we add a ost-push shok, εpt to the NKPC. Thus,we estimate the following spei�ation of the NKPC:

πt = γbπt−1 + γfEtπt+1 + λmct + λ4π
∗
t + εpt (3.4.1)5We thank Patrik for having pointed to us that the two-sided HP �lter we have usedin a previous version of this hapter ould deliver spurious results.



3.4. Results 35Table 3.1: Estimates of the state spae modelPrior PosteriorParameters Distribution para(1) para(2) Estimates 5% 95%

ρπ Beta 0.8 0.025 0.963 0.940 0.987
ρ2 Beta 0.8 0.025 0.936 0.893 0.983
σπ Invgamma 0.1 2 0.191 0.168 0.213
σ2 Invgamma 0.1 2 0.188 0.166 0.213Notes: para(1) and para(2) list the means and the standard deviations for Betadistribution; the shape s and and the sale ν parameters for the Inverse Gammadistribution, where pIG(σ|ν, s) ∝ σ−ν−1

exp(−νs2/2σ2
). Posterior estimates are ob-tained with the Metropolis algorithm, where a Markov hain of size 100000 has beensimulate, with the �rst 30000 being disarded.
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Figure 3.1: In�ation and time-varying in�ation target.where λ4 = λ2 + ρπλ3.We plot the time-varying in�ation target in 3.2. The graph suggests a similarevolution of time-varying in�ation target and in�ation itself.



36Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urveTable 3.2: Non-robust minimum distane estimation of the NKPCModi�ed NKPC Baseline NKPCParameters Estimates Std.err Estimates Std.err
γp 0.032 0.098 0.534 0.116
ξp 0.894 0.044 0.876 0.070
γb 0.031 0.092 0.349 0.050
γf 0.959 0.091 0.648 0.049
λ 0.013 0.011 0.012 0.014
λ4 0.044 0.009Notes : Standard deviations for γp and ξp are omputed by bootstrap.We use the delta method to ompute standard deviation of redued formparameters.3.4.2. EstimatesThis subsetion begins with the disussion of (point) estimates obtained withnon-robust minimum distane estimation methods. We then disuss our (on-�dene sets) estimates based on robust methods and show their onsequenesfor the strutural parameters of the NKPC. For eah method, the disussionontrasts estimates obtained from both the baseline and the modi�ed versionsof the NKPC.3.4.2.1. Non-robust methods: point estimatesWe report the point estimates in Table 3.2. They are based on a VAR(3) forin�ation and marginal ost for the baseline NKPC. For the modi�ed NKPC,we also onsider a VAR(3) for in�ation, marginal ost and the time-varyingin�ation target.6For the baseline NKPC, we note that the strutural parameters γp and ξpare all signi�antly di�erent from zero. The estimate of the degree of prie6The results are virtually the same when we onsider four lags in the VAR.



3.4. Results 37stikiness, ξp = 0.876, implying that the duration of the prie ontrat isabout eight quarters. Suh an impliation seems inonsistent with evidenefrom miroeonomi studies about the duration of the prie ontrat, whihreport that prie ontrats last one to two quarters on average (see for instaneBils and Klenow (2004)). The indexation parameter, γp = 0.534, translatesinto an estimate of the bakward-looking oe�ient (γb = 0.349), broadly inline with results from other studies. For instane, Galí et al. (2005)'s estimatefor the orresponding parameter is about 0.35 (see Table 1 in (Galí et al.,2005)).Introduing a time-varying in�ation target in the NKPC leads to two threemain onlusions. First, estimate of the degree of prie stikiness slightlyinreases (ξp = 0.894). Seond, we annot rejet at the 5% level, the nullthat the indexation parameter is zero, a �nding that is onsistent with Cogleyand Sbordone (2008) or with Ireland (2007). Not surprisingly, the estimateof the indexation parameter leads to a bakward-looking term that is alsonot signi�ant, again at 5% level (γb = 0.031). Third, the parameter λ4,whih assesses the role of the time-varying in�ation target in the Phillipsurve, is highly signi�ant. Setting λ4 = 0 in the modi�ed NKPC leads to thebaseline one. That is, our modi�ed NKPC nests the baseline one. Thus, bothspei�ation should deliver similar results when the time-varying in�ationtarget is not important in explaining the in�ation dynamis. The fat λ4 ishighly signi�ant tends to on�rm our motivation in deriving the modi�edPhillips urve.Estimates of λ, whih takes into aount the e�et of marginal ost on in�a-tion, are non signi�antly di�erent from zero. This is in line with �ndings inRudd and Whelan (2005), aording to whih empirial evidene on the roleof the marginal ost, proxied by the labor share, is weak. By ontrast, otherstudies, like Galí et al. (2005), do �nd that labor share is a key driver for



38Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urvein�ation.Summarizing, Table 3.2 suggests the following onlusions: (i) the modi�edNKPC implies a muh higher duration for the prie ontrat than the baselineone, (ii) bakward-looking omponent in the NKPC is not signi�ant in themodi�ed NKPC, while it is highly signi�ant in the baseline one, (iii) time-varying in�ation target is an important variable in explaining in�ation.To what extent are suh onlusions reliable? In what follows, we provideanswers based on estimates obtained with identi�ation robust methods de-sribed in setion 3.3.3.4.2.2. Robust methods: on�dene setsFollowing Magnusson and Mavroeidis (2010), we ompute on�dene sets forthe degree of prie stikiness and the indexation parameter by grid searhwithin the parameter spae ξp ∈]0, 1] and γp ∈ [0, 1].Given that theMD.K test ould deliver spurious inferene, as stated in setion(3.3), we will report only the results based on the MD.AR and MD.KJFigure 3.2 reports the 90% and 95% for the MD.K test.Con�dene sets for the baseline NKPC of ξp and γp (Figure 3.2, top panel)suggest two onlusions. First, the indexation parameter γp lies roughly be-tween 0.26 and 0.65. Thus, this parameter appears to be signi�antly di�erentfrom zero. Seond, the degree of prie stikiness is signi�antly di�erent fromzero and lies between .8 and 1.Turning to the modi�ed NKPC, we note �rst that on�dene sets for thedegree of prie stikiness are slightly wider than their ounterpart in the base-line NKPC. In partiular, they show that ξp lies between 0.7 and 1 for the
MD.AR test statisti and 0.78 for the MD.KJ , while in the baseline ase,the orresponding oe�ient lies between 0.8 and 1 for the two test statistis.This suggests that, introduing time-varying in�ation target in the NKPC



3.4. Results 39and estimating it with identi�ation-robust methods, deliver an estimate ofthe degree of prie stikiness that is more reliable. For instane, we annotrejet at 5% level that ξp = 0.7. In partiular, suh an estimate is onsistentwith estimate of that parameter from DSGE models (see hapter 5). Seond,both tests suggest that we annot rule out the possibility that γp = 0, i.e thebakward-looking term still appears to be insigni�antly di�erent from zero.However, the wide on�dene set around γp under the MD.AR test statistifor the modi�ed NKPC suggests that it is impreisely estimated.3.4.3. Robustness hekIn this setion, we provide point estimates of the baseline and modi�ed spe-i�ations of the NKPC based on GMM. Our intention is to hek our mainonlusion about the indexation parameter γp, using alternative methods.Furthermore, this makes our results readily omparative to other studies,given that an important part of the literature uses the GMM methodologyin estimating the Phillips urve.Overall, results from the GMM estimation reported in Table 3.3 are in linewith those from the minimum distane estimation. For instane, the indexa-tion parameter, estimated from the modi�ed NKPC, is not signi�antly dif-ferent from zero (γp = 0.058 with a standard error of 0.05), whereas the sameparameter is signi�antly di�erent from zero under the baseline NKPC. La-bor share does not drive in�ation, while the forward-looking omponent in theNKPC is predominant.The main di�erene between Table 3.2 and Table 3.3 is in the magnitude ofthe estimates. In partiular, we estimate λ4 to be 0.209 with a standard errorof 0.07 while the same parameter is about 0.044, using minimum distane esti-mation. Thus, given that both estimates are signi�antly di�erent from zero,our onlusion about the importane of the trend in�ation for the dynamis



40Chapter 3. Time-varying in�ation target and the New KeynesianPhillips urveTable 3.3: GMM estimates of the new-Keynesian Phillips urveModi�ed NKPC Baseline NKPCParameters Estimates Std.err Estimates Std.err
γp 0.068 0.050 0.161 0.047
ξp 0.866 0.075 0.795 0.072
γf 0.725 0.084 0.869 0.037
γb 0.064 0.041 0.134 0.035
λ 0.052 0.122 0.039 0.032
λ1 0.209 0.070Notes : Point estimates are derived using the CUE-GMM with Newey and West (1987)weighting matrix. Instrument are: a onstant, three lags of in�ation and marginalost for the baseline NKPC while for the modi�ed NKPC, we use additional threelags of the time-varying in�ation target.of in�ation is not altered.3.5. Conluding remarksIn this hapter, we onsider the onsequenes of introduing time-varyingin�ation target in the New Keynesian Phillips urve. Our estimates leadto two main onlusions. First, the resulting NKPC is not time-varying,unlike in Cogley and Sbordone (2008). Seond, ad ho bakward looking termdoes not matter (at least statistially). The seond onlusion is found to berobust to weak identi�ation issue. Third, time-varying in�ation target isan important variable in explaining in�ation dynamis, more important thanlabor share advoated by many empirial studies. Though these �ndings areenouraging, unertainty assoiated with the way the time-varying in�ationtarget is derived remains a onern. It is quite possible that other methodsto extrat time-varying in�ation target ould deliver di�erent results. Hene,a fruitful avenue for future researh is to estimate our NKPC for ountries for



3.5. Conluding remarks 41whih time-varying in�ation target is observed.
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Figure 3.2: MD-AR 90% (gray) and 95% (dark) on�dene sets for the baselineNKPC (top panel) and the modi�ed NKPC (bottom panel).
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Figure 3.3: MD-KJ 90% (gray) and 95% (dark) on�dene sets for the baselineNKPC (top panel) and the modi�ed NKPC (bottom panel).
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46 Chapter 4. A Review of Bayesian Analysis of DSGE models4.1. IntrodutionDynami Stohasti General Equilibrium (DSGE) models refer to miro-founded maroeonomi models that are used to address substantive eonomitopis. Two examples of suh topis are: what is the propagation mehanismof a monetary poliy shok? What shoks are mainly responsible for businessyle �utuations? The usefulness of DSGE models for poliy analysis is theprimary reason for their reent di�usion in entral bank and poliy-makinginstitutions.A quik look at the di�erent onepts forming the name "DSGE" should bet-ter larify the struture of these models. First, these models are �dynami�beause they speify intertemporal onstraints faed by agents. For instane,agents might hoose to onsume more today or to save more for tomorrow.Seond, they are �stohasti� beause they aount for unertainty in the eon-omy. Thus, unertainty is modelled as the ourrene of exogenous shoks,i.e deviations of some exogenous variables from their long run value that areunantiipated by agents. Finally, the onept �general equilibrium� mean thataggregate endogenous variables, suh as onsumption, output or prie levels,are investigated within a whole eonomy.Empirial properties of DSGE models have been studied using several eono-metri tools. The �rst of them was alibration, advoated by Kydland andPresott (1982). A alibration exerise requires the following steps: �rst, re-searhers ollet a set of stylized fats that the DSGE model is supposed toaount for. Seond, the model is parametrized (or alibrated) in order toaount for a subset of these stylized fats. Conditional on the parametersvalue, the model is judged redible if it an aount for the remaining stylizedfats. The main shortoming of a alibration exerise is that it does not at-tah any probabilisti measures of unertainty to the quantitative statements



4.1. Introdution 47it generates (Shorfheide, 2006). To partially address this shortoming, formalstatistial tools have been onsidered. The generalized method of moments(GMM) (Hansen, 1982; Hansen and Singleton, 1982) and maximum likelihoodestimation (Leeper and Sims, 1994) were among the �rst tools that researhershave used to estimate DSGE models.However, the last deade has experiened an explosion in the number of papersusing Bayesian methods. There are several reasons for this. First, Bayesianinferene failitates the inorporation of beliefs about the values of some stru-tural parameters through the �prior�. Seond, medium sale DSGE are rihlyparametrized, while data used to estimate them are short (e.g. sixty years ofUS data, forty years of European data). Consequently, lak of data leads toimpreise estimates and quantitative statements generated with the estimatedmodel. Bayesian inferene helps to inorporate additional information, whihleads to better estimation provided that suh information omes from non-sample data, i.e data that are not used to ompute the likelihood funtion.Another reason is the development of the so-alled Markov Chain Monte Carlo(MCMC) methods in the 90's and after. Problems that were very di�ult toaddress due to lak of mathematial tools and omputer power are now easyto address, by means of MCMC.In what follows, I give an overview of Bayesian analysis, where the fous is onDSGE models. This survey is far from exhaustive. My ultimate objetive isto familiarize the non-versed reader in Bayesian eonometris with the maintools in the Bayesian analysis of DSGE models, beause they are applied inChapter 5.The literature provides exellent surveys of Bayesian analysis of DSGE mod-els. Frank Shorfheide, who was among the �rst to apply Bayesian analyis toDSGE model, o�ers with his oauthor An Sungbae one of the most ited pa-pers in the �eld (An and Shorfheide, 2007). Fernández-Villaverde (2010)



48 Chapter 4. A Review of Bayesian Analysis of DSGE modelsfous on the history of the DSGE models both on a theoretial and em-pirial perspetives. More reently, Del Negro and Shorfheide (2010) dis-uss Bayesian methods applied to maroeonomis model beyond the DSGEframework. However, these surveys provide little (if any) information aboutMarkov-Swihing DSGE models. Thus, my survey extends the previous oneto inlude this reent development.The remainder of the survey proeeds as follow. Setion 4.2 provides the basiideas of Bayesian eonometris and disusses the onepts of prior, likelihoodand posterior. Setion 4.3 presents the steps in the estimation proedure. Inpartiular, we disuss how prior information is eliited. Then tools to omputethe likelihood and summarize the posterior are presented. In setion 4.4, Idisuss tools to assess the model �t. Setion 4.5 extends the DSGE model tofeature Markov-swithing proess. In partiular, I present how the steps in theestimation proedure are modi�ed, due to the presene of Markov-Swithes inthe values of strutural parameters. Setion 4.6 disusses a reent alternativemethodology to assess the model �t for Markov-Swithing DSGE models,while setion (4.7) brie�y desribes some onvergene diagnostis, whih aimto assess whether results obtained in the estimation steps are reliable. Thelast setion brie�y onludes the survey.
4.2. Basi ideas of Bayesian eonometrisBayes's theorem is the entral part of Bayesian eonometris. Before explain-ing this theorem, it is onvenient to introdue some notations. Let Y T ∈ Rbe the olletion of data, Yt the data at the period t, and M a model whihis designed to explain some properties of the data. The model is omposedof three ingredients: �rst, a parameter set, Θ, de�ning the admissible valueof the parameters of the model. Seond, a likelihood funtion p(Y T |θ,M)



4.3. The steps in the estimation proedure 49whih gives the density that the model assigns to data given some parametervalues and third, a prior distribution π(θ|M) that aptures information notontained in the sample used for estimation. Suh information an be pre-sample beliefs, results from other studies or intuition about the sign and themagnitude of the parameters values. Bayes' theorem simply tells us that theposterior distribution of the parameters is given by:
π(θ|Y T ,M) =

p(Y T |θ,M)π(θ|M)

p(Y T )
. (4.2.1)where p(Y T ) =

∫
p(Y T |θ,M)π(θ|M)dθ.In words, this result tells us how we should update our beliefs about parametervalues after observing the data: ombining our prior beliefs π(θ|M) with thesample information given by the likelihood funtion, we obtain a new set ofposterior beliefs, π(θ|Y T ,M).In (4.2.1), the quantity p(YT ) denotes the marginal data density. In thebody of the paper, we will interhangeably use the terms marginal likelihood,marginal data density or marginal distribution of the data to refer to p(Y T ).4.3. The steps in the estimation proedureBayesian estimation of DSGE models requires �ve steps. Roughly speak-ing, these steps involve the �model preparation� and �data preparation�. Themodel preparation requires that one spei�es and solves the model, while thedata preparation step implies the de�nition of the data that the model is sup-posed to math, transforming them in a way that is onsistent to the model.For instane, a model where endogenous variables are stationary requires thatwe stationarize the data prior to the estimation stage. Following Smets andWouters (2005), we summarize the steps in the Bayesian estimation of DSGEmodels as follow. The �rst step requires that we solve the model. Tehnially



50 Chapter 4. A Review of Bayesian Analysis of DSGE modelsspeaking, a DSGE model is a non-linear system of expetational di�ereneequations. The approah that is mostly used in the literature is to onstruta linear approximation of the non-linear system around its well-de�ned steadystate. Solving the model is no more than expressing endogenous variables asa (linear) funtion of their lagged values and some exogenous proesses (typ-ially the shoks). In the seond step, the model solution is transformed ina state spae representation. The third step exploits the state spae repre-sentation to ompute the likelihood funtion. Step four is devoted to prioreliitation. In the �fth step, prior and likelihood are ombined to form theposterior, whih is summarized using Markov Chain Monte Carlo (MCMC)tools. In what follows, I brie�y desribe eah of these steps.4.3.1. Model solutionsA DSGE model is a non linear rational expetations model system, whih hasthe following form:
Et(F (Xt+1, Xt, ǫt) = 0, (4.3.1)where Et denotes the expetation onditional on a set of information availablein period t, Xt is a vetor of endogenous variables of the model and ǫt is avetor of exogenous variables, typially the shoks of the DSGE model.This rational expetation model has to be solved prior to estimation. Theommon pratie is to onsider a linear approximation of (4.3.1). The reasonis that linear approximation methods lead to a state-spae representation ofthe DSGE models, that is easy to analyse with �ltering tehniques.1The solution of the rational expetations system takes the form1The literature also o�ers non linear approximation methods suh as projetion methods,value-funtion iterations. However, I did not explored these alternative approximations inmy researh. Readers interested in those methods should refer to DeJong and Dave (2007).



4.3. The steps in the estimation proedure 51
Xt = Φ(Xt−1, ǫt; θ) (4.3.2)where θ denotes the parameters of the model.There exists a variety of numerial proedures that lead to (4.3.2). A nonexhaustive list inludes Blanhard and Kahn (1980), Sims (2002) and Uhlig(1997). The struture of the solution strongly depends on the parameteriza-tion adopted by the researher: depending on the hosen parameterization,there may be ases where (i) the solution does not exist, (ii) the solution existsand is unique and stable (whih is the determinay ase), (iii) multiple stablesolutions exist (the indeterminay ase).In what follows, I fous on the determinay ase in whih there exists a uniqueand stable solution to 4.3.2.4.3.2. State spae representationFor ease of exposition, I assume that (4.3.2) is given by
Xt = ΦXt−1 +Rǫt (4.3.3)where the dependene on θ is dropped to simplify the notations. In the statespae literature, equation (4.3.3) is alled a transition equation.Some variables inXt are latent, i.e. they are not observable. Hene, estimating(4.3.3) diretly is not possible. Instead, at time t, the researher has anobservable vetor Yt and links this vetor with the state vetor Xt through aset of measurement equations, i.e
Yt = AXt +D (4.3.4)where A is a seletion matrix and D a vetor of onstants, whih depends on



52 Chapter 4. A Review of Bayesian Analysis of DSGE modelsthe model steady-state.The transition and measurement equations form the state spae representationof the DSGE model, whih has to be estimated:



Xt = ΦXt−1 +Rǫt

Yt = AXt +D

(4.3.5)
4.3.3. The likelihood funtion: Kalman �lterSine these observables are dependent, the likelihood funtion, whih is fun-tionally equivalent to the joint density of the observables, is given by
ℓ(θ|YT ) ≡ p(YT |θ) = p(Y1|θ)

T∏

t=2

p(Yt|Y
t−1, θ)

=

∫
p(Y1|X1, θ)dX1

T∏

t=2

∫
p(Yt|Xt, θ)p(Xt|Y

t−1, θ)dXt.(4.3.6)An examination of equation (4.3.6) shows that we will need to ompute theonditional densities p(Xt|Y t−1, θ), p(Yt|Y t−1, θ) and p(Xt|Y t, θ). All the den-sities require the knowledge of the initial distribution p(X1). The densities anbe omputed iteratively, using the following algorithm:Computation of onditional densities1. Initialize the density p(X1).2. Given the onditional density at period t− 1, ompute
p(Xt|Y

t−1) =

∫
p(Xt|Xt−1)p(Xt−1Y

T−1)dXt−1.3. Compute the density of the observables as
p(Yt|Y

t−1) =

∫
p(Yt|Xt)p(XtY

t−1)dXt.



4.3. The steps in the estimation proedure 534. Update the density p(Xt|Xt−1) with Bayes's rule, when a newseries of observales is available:
p(Xt|Y

t) =
p(Yt|Xt)p(XtY

t−1)

p(Yt|Y t−1)
.5. Repeat the steps 2-4 until the end of the sample size hasbeen reahed.Fortunately, when the state spae representation of the model solution is linearand Gaussian, all these onditional densities are normal and the Kalman �lterprovides us with their means and varianes at eah iteration. Hene, to derivethe Kalman �lter, I assume that ǫt is normally distributed, with zero meanand variane Σǫ . De�ne the linear projetions Xt|t−1 = E(Xt|Y t−1) and

Xt|t = E(Xt|Y t), where, as before, the notation Y t = {Y1, Y2, · · · , Yt} olletsthe data from the �rst period to the period t. Hene, Xt|t−1 is the onditionalexpetations based on data available until period t − 1. In the same way,de�ne the variane matries Pt−1|t−1 = E(Xt−1 − Xt−1|t−1)(Xt−1 − Xt−1|t−1)
′and Pt|t−1 = E(Xt −Xt|t−1)(Xt −Xt|t−1)

′.At eah iteration, the following omputations are exeuted.First, we ompute a foreast of Xt:
Xt|t−1 = ΦXt−1|t−1, (4.3.7)and the variane of the foreast error:

Pt|t−1 = ΦPt−1|t−1Φ
′ +RΣǫR

′. (4.3.8)De�ne the one-step ahead foreast error by
νt|t−1 = Yt − Yt|t−1 = Yt − A− BXt



54 Chapter 4. A Review of Bayesian Analysis of DSGE modelsand its variane matrix by
Ft|t−1 = BPt|t−1B

′.The loglikelihood is already available at this step and reads
log(ℓ(Yt|θ) = −

n

2
log 2π −

1

2
log |Ft|t−1| −

1

2
ν ′tF

−1
t|t−1νt. (4.3.9)Next, we update the foreast of Xt, denoted by Xt|t. Hamilton (1994) showsthat the updating foreast of Xt is given by

Xt|t = Xt|t−1 +Kνt|t−1, (4.3.10)where the matrix K is the Kalman gain and reads
K = Pt|t−1B

′(Ft|t−1)
−1.The updated variane of the foreast error reads

Pt|t = Pt|t−1 −KBPt|t−1.This ompletes one iteration. Doing these omputations until the end of thesample size delivers the log likelihood funtion.4.3.4. Prior eliitationPriors play a key role in the Bayesian estimation of DSGE models. The in-orporation of prior information is perhaps the main point of disagreementbetween the frequentist and Bayesian approah. As emphasized by Del Negroand Shorfheide (2010), the use of fairly informative priors should not be in-terpreted as �ooking up desired results based on almost dogmati prior�. As



4.3. The steps in the estimation proedure 55emphasized in the introdution, the philosophy behind the inorporation ofprior information into the analysis is to use other soures of information notontained in the likelihood funtion. Thus, preise information is translatedinto fairly tight priors on the parameters. This has nothing to do with im-posing dogmati priors in order to produe results that math the analyst'sdesire.However, as priors may a�et the posterior estimates and model omparison,their spei�ation requires some are and has to be preisely doumented.Three soures of extraneous information are exploited when forming priors inthe literature on DSGE models. The �rst is to use maroeonomi series toextrat information, not ontained in the likelihood, that the researher �ndsuseful given the empirial fats the model is supposed to math. For instane,if the model is �tted to data on, say, output growth, in�ation and interestrate, data on labor share ould be use to estimate the labor share of inomein the model if one is interested in estimating suh a parameter. Seond,information from miro-eonomi studies an be used to shape the prior. Forinstane, there is miroeonomi evidene that �rms adjust their prie everyone to two quarters (Bils and Klenow, 2004). Suh information ould be usedto form a prior on the probability for �rms to adjust their prie, under theCalvo prie setting. Third, maroeonomi data, inluding those entering thelikelihood funtion, an be used to shape the prior provided they ome froma presample. For instane, if the researher thinks that US monetary poliyis well haraterized by a Taylor-type rule and she wants to estimate a DSGEmodel based on post-1982 data, she an use pre-1982 data to form prior for theparameters of the Taylor-type rule. This is also true for parameters relatedto shok proesses: those parameters an be hosen suh that the implieddynami of the model mathes those of the presample data.



56 Chapter 4. A Review of Bayesian Analysis of DSGE models4.3.5. Posterior distributionOne we ompute the likelihood funtion and speify the prior, we an applyBayes' theorem to ompute the posterior. We will onsider an algorithm togenerate draws from the (non-normalized) posterior distribution of θ. Fromequation (4.2.1), we know that the posterior is given by
π(θ|Y T ) =

p(Y T |θ)π(θ)∫
p(Y T |θ)π(θ)dθ

∝ p(Y T |θ)π(θ), (4.3.11)where the denominator is an integrating onstant. This algorithm requires theevaluation of the likelihood times the prior, whih is omputed aording tomethods in setions (4.3.4) and (4.3.3). Beause it is di�ult to analytiallythe denominator in 4.3.11, so is the posterior. Thus, the best we an do is toproeed by simulations. It is ahieved using a powerful tool known as Markovhain Monte Carlo (MCMC) methods. The aim of these methods onsistsin generating a Markov hain with ergodi distribution π(θ|Y T ). There aremany alternatives for doing so. Following the literature, we will use a RandomWalk Metropolis Algorithms, based on Shorfheide (2000).I will omit deep and tehnial details about MCMC methods. The interestedreader should have a look at Shorfheide (2000) or An and Shorfheide (2007)or any Bayesian eonometris textbook. In the following, I follow the exellentintuitive desription found in Fernández-Villaverde (2010). We do not knowwhat the whole posterior π(θ|yT ) is but we want to simulate from a Markovhain and approximate the whole posterior by the empirial distribution gen-erated by the hain. Put in another way, we want to produe a Markov hainwhose stationary distribution is π(θ|yT ). To do so, we require tools whihallow us to onstrut a Markov hain. The Metropolis algorithm is one ofthe tools we have for doing so. Roughly speaking, this algorithm spei�es anew proposed value of the parameter and evaluates whether it inreases the



4.3. The steps in the estimation proedure 57posterior, i.e if the posterior density evaluated at this new proposed value isgreater than the posterior evaluated at the urrent value of θ. If it does, weaept it with probability one, and with some probability less than one if itdoes not. This allows us to go towards the higher regions of the posteriorbut we also travel with some probability, towards the lower regions. In doingso, all the parameter spae is explored, thus avoiding getting �stuk� aroundspei� values of the parameters. For the illustration, I will use the followingimplementation of the random walk version of this algorithm, whih an befound in Shorfheide (2000) or more reently in An and Shorfheide (2007)2.One-blok Random Walk Metropolis Algorithm1. Find the posterior mode of ln p(θ|yT ) + ln π(θ)via a numerial optimization routine and denote it by θ̃.2. Let Σ̃ be the inverse of the Hessian omputed at theposterior mode θ̃.3. Draw θ0 from N (θ̃
0
, c20Σ̃) or diretly speify a starting valuewhere c0 is a sale parameter.4. For s = 1, · · · , nsim, draw ϑ from the proposal density

N (θ(s−1), c2Σ̃), with c2 being a sale parameter.The jump from θ(s−1) is aepted (θ(s) = ϑ) with probability
min{1, r(θ(s−1), ϑ|yT )}. Here,

r(θ(s−1), ϑ|yT ) =
p(ϑ|yT )π(ϑ)

p(θ(s−1)|yT )π(θ(s−1))
.Under general regularity onditions, the posterior of θ will be asymptoti-ally normal. Therefore, this algorithm onstruts a Gaussian approximation2The random walk denomination of this algorithm omes from the fat that the proposaldensity is spei�ed as a random walk.



58 Chapter 4. A Review of Bayesian Analysis of DSGE modelsaround the posterior mode θ̃ where a saled negative inverse Hessian is usedas the ovariane for the proposal distribution. As the RWMH algorithm re-quires maximization of the posterior, we an fae the problems inherent topure maximum likelihood estimation if data are not informative. Hene steps1 and 2 of the algorithm, although often useful, are not neessary sine the al-gorithm an be initialized with values that would be retained for a alibrationexerise.3The draws generated from the posterior are used to obtain point estimatessuh as mean, variane, median and so on.
3Most of the empirial literature on Bayesian estimation of DSGE model uses the one-blok RWMH algorithm. But this version of the algorithm is not always e�ient : forinstane, An and Shorfheide (2007) �nds that when posterior distribution is bimodal,say a low and high mode, the RWMH algorithm is unable to jump from one mode tothe another one. Chib and Ramamurthy (2010) proposes a new MCMC methods alledTailored-Randomized blok Metropolis-Hastings algorithm, to estimate DSGE models. Themotivation of this method is that the single blok Metropolis-Hastings algorithm fae di�-ulty to ahieve onvergene when the dimension of the vetor of parameters is large. Thepaper proposes to luster the DSGE model parameters in a random number of bloks ateah iteration. Then, eah blok of parameters is updated with a tailored proposal densitythat mimis the target density of that blok. One �nding of the paper is that with this algo-rithm, jumping between low and high mode is possible, unlike with the RWMH algorithm.However, the approah is time-onsuming. For a six equations model as the one estimatedby An and Shorfheide (2007), it takes around 30 hours in an ordinary omputer and �only"3 hours with the RWMH algorithm (where the posterior mode is obtained after 24 hours).If the researher has good reasons to start the RWMH algorithm in partiular values otherthan the posterior mode, as aforementioned, investment in the TaRB-MH algorithm willbe somewhat unneessary.



4.4. Model evaluation 594.4. Model evaluationBy model evaluation, we mean the assessment of the model �t. It an bedone using measures of absolute �t suh as posterior preditive heks, or themeasure of �t relative to another model, either DSGE or VAR model. Themeasure of relative �t is done by either enlarging or restriting a model in somedimensions and assessing whether the data prefers or not suh modi�ationwith respet to a benhmark ase. Methods for doing so are presented in thenext setion.Bayesian model omparison is onduted as follows. We assign prior probabil-ities to two ompeting models Mi and Mj and update the prior probabilitiesthrough the marginal likelihood ratios, aording to
Pr(Mi|Y T )

Pr(Mj|Y T )
=
p(Y T |Mi)

p(Y T |Mj)

Pr(Mi)

Pr(Mj)
. (4.4.1)where Pr(Mx|Y T ), p(Y T |Mx) and Pr(Mx), x = i, j are respetively the pos-terior model probability, the marginal data density and the prior model prob-ability. When equal prior probability is assigned to the ompeting models,the ondut of model omparison redues to the omputation of the marginallikelihood ratio, also alled the Bayes fator.Computing the marginal data density is very hallenging, given that it in-volves high-dimensional integral. There are various methods to approximateit. Throughout my researh, I have used the modi�ed harmoni mean (MHM)method proposed by Geweke (1999) and the Laplae approximation.The method by Geweke (1999) relies on the harmoni mean to approximatethe marginal likelihood:

p(Y T |Mi)
−1 =

∫
h(θ(i)

p(Y T |θ(i),Mi)p(θ(i))
p(θ(i)|Y

T )dθ(i) (4.4.2)



60 Chapter 4. A Review of Bayesian Analysis of DSGE modelswhere h(θ) is a weighting funtion whose support has to be ontained in thesupport of the posterior distribution. Geweke (1999) proposes the use thedensity of a trunated multivariate Gaussian distribution:
h(θ) =

1

p
(2π)−n/2|Σθ| exp(−

1

2
(θ − θ)′Σ−1

θ (θ − θ))

× Pr[(θ − θ)′Σ−1
θ (θ − θ) ≤ F−1

χ2
n
(p)]

(4.4.3)where p ∈ (0, 1), Σθ is the posterior variane matrix obtained with theMetropolis algorithm, θ is the posterior mean of θ and F−1
χ2
n
is the umula-tive density of a χ2 distribution with n degree of freedom, where n is thedimension of θ.Denote

m(θ(i)) =
h(θ(i)

p(Y T |θ(i),Mi)p(θ(i))
.A numerial evaluation of the integral is ahieved through Monte Carlo inte-gration:

p(Y T |Mi)
−1 =

1

N

N∑

i=1

m(θ(i)) (4.4.4)where N is the number of simulations.An alternative and straightforward way to approximate the marginal likeli-hood is the Laplae approximation. This approah is followed, for instane,by Shorfheide (2000). It is only valid when the likelihood funtion peaksat value around the posterior mode. Thus, the density kernel an be loallyapproximated by a multivariate Gaussian density:
log p(θ(i))p(θ(i)|Y

T ) ≈ log p(θ̂(i))p(θ̂(i)|Y
T )

+
1

2
(θ(i) − θ̂(i))

′Σθ̂(i)
(θ(i) − θ̂(i))

′
(4.4.5)The estimator of the marginal likelihood is obtained by integration:
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p(Y T |Mi) = (2πn/2|Σθ̂(i)|

1/2p(θ̂(i))p(θ̂(i)|Y
T ). (4.4.6)4.5. An extension: Markov-Swithing DSGEmodelsThere is a reent and growing literature on Markov-Swithing DSGE (MS-DSGE) models, estimated with Bayesian methods. In this literature, a keypaper that greatly improves our understanding of Markov-Swithing DSGEmodels is Farmer et al. (2009b). The aim of Markov-Swithing models is toapture sudden hanges in the time-series dynamis of the data beause �theworld is hanging� (Farmer et al., 2010). For instane, it is well known that thevolatility of US maroeonomi series, typially in�ation, output growth andinterest rate have experiened dramati deline during the post-Volker era.This striking phenomenon is termed �Great Moderation� by eonomists andit is the objet of hapter 5 of the thesis. A non exhaustive list of papers thatestimate MS DSGE models with Bayesian methods are Shorfheide (2005),Bianhi (2011), Liu et al. (2011), Davig and Doh (2009) and Liu and Mumtaz(2010).In the presene of Markov-Swithing proess, the steps outlined in estimat-ing the DSGE models are still valid. However, in general the solution of themodel is not straightforward and the omputation of the likelihood funtionrequires modi�ations of the standard Kalman �lter. The number of papersthat propose algorithms to solve these model is also growing. Farmer et al.(2008) onsider a method to solve MS-DSGE model, whih onsists in rewrit-ing the DSGE model into a �xed oe�ient model. The advantage of theirmethod is that with little modi�ation, it an be solved with standard numer-ial proedures along the lines of Sims (2002). Furthermore, they show that



62 Chapter 4. A Review of Bayesian Analysis of DSGE modelswhen a minimal state variable (MSV) solution to the new system exists, it isalso a MSV solution to the original system. Farmer et al. (2010) propose arather di�erent algorithm, ompared to previous versions of their paper. Theirmethod is able to �nd all the solutions of the MS DSGE models, while, asthey emphasize, other methods proposed by the literature (Davig and Leeper,2007; Svensson and Williams, 2007) are not able to do so. We have tried to es-timate the in�uential Smets and Wouters (2007) with the algorithm proposedby Farmer et al. (2010). Our experiene suggests that the time taken by thealgorithm to solve the model is reasonable when the model to be estimated isthe standard three equations DSGE model doumented in Woodford (2003)'stextbook. For a model of the kind of Smets and Wouters (2007), the algo-rithm is very time onsuming. Consequently, I used an algorithm proposedby Dufourt (2011), whih an be viewed as a generalization of the Svenssonand Williams (2007) algorithm. The algorithm writes the model solution as
Xt = G1(st)Xt−1 +Π(st)ǫt + L(st) (4.5.1)where L(st) is a regime-swithing onstant and st denotes a Markov-Swithingstate. The main di�erene with (4.3.3) is that the matries in (4.5.1) dependon the ative regime st, whih is de�ned through a probability transitionmatrix.4.5.1. Kim's approximation of the likelihoodThe monograph by Kim and Nelson (1999) provides the main tools I haveused to estimate MS-DSGE models. To ompute the likelihood, I adopt thealgorithm of Kim and Nelson (1999) designed to ope with the presene ofregime swithing state st.The preise reason for using this algorithm is that the number of trajetories toonsider in a framework of regime-swithing grows exponentially with time.



4.5. An extension: Markov-Swithing DSGE models 63To understand why the standard Kalman �lter annot be used, onsider atwo regime DSGE models, i.e st = 1, 2. At the next iteration of the Kalman�lter, eah of the Gaussians will be propagated through 2 other Gaussians.Thus, at the next iteration, the distribution of Xt is a mixture of 4 = 22Gaussians. In general, at the tth iteration, the distribution of Xt is a mixtureof 2t Gaussians. For instane, when t = 10, the distribution of Xt is a mixtureof more than 1000 Gaussians, making the Kalman �lter inoperable. To dealwith this exponential growth, the literature suggests various approximatingmehods: ollapsing some mixture omponents at the end of eah operation orusing a �nite mixture omponents. In this paper, I mainly use Kim (1994)'sapproximation desribed in details in Kim and Nelson (1999). To hek therobustness of the results, we also use a �nite mixture approximation. For thelatter method, please refer to Shorfheide (2005).The Kim algorithm works as follow. First, we ompute the Kalman �lter forevery regime ombination, aording to setion (4.3.3). That is, we run thefollowing reursion:1. Run the Kalman �lter as follows:
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64 Chapter 4. A Review of Bayesian Analysis of DSGE modelsabilities Pr(st, st−1|Yt) and Pr(st|Yt), for i, j = 1, 2.:
Pr(st, st−1|Yt−1) = Pr(st|st−1) Pr(st−1|Yt−1)
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∑
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Pr(st, st−1|Yt)In words, we ompute the �ltered probabilities given the transition ma-trix and the initial probabilities Pr(st−1|Yt−1). The marginal density of
Yt (or the likelihood value at the the tth iteration) is given by f(Yt|Yt−1).Next, we ompute the joint probability of the regime using the Baye'srule, whih is then used to update the �ltered probabilities when a newrealization of Yt is available.3. Run the ollapsing proedure. The likelihood approximation appears atthis step. Use the probabilities in the previous steps to ollapse 2 × 2posteriors X(i,j)
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Pr(st = j|Yt)One the model is estimated, quantities suh as smoothed and �ltered prob-abilities are readily available.
4.6. Alternative methods to ompute marginaldata densitySims et al. (2008) modify the method proposed by Geweke (1999) when it



4.7. Convergene diagnostis 65is applied to Markov-Swithing DSGE models. They point out that whenthe model parameters are time-varying, as it is the ase here, the posteriordistribution tends to be non Gaussian. They distinguish three aspets hara-terizing the non Gaussian shape of the posterior. First, when the posterior hasmultiple peaks, the density at the posterior mean an be very low. Seond,the trunated weighting funtion used by Geweke (1999) tends to be a poorloal approximation of the posterior density. Third, the posterior tends to bevery lose to zero in the interior points of the parameter spae. To addressthese problems, Sims et al. (2008) propose a family of elliptial distributionsas weighting funtion. Liu et al. (2011) also ontain new methods to estimatethe marginal data density.
4.7. Convergene diagnostisIt is important to verify that the posterior simulator onverges to its ergodidistribution in order to ensure that the results obtained are reliable. Fordoing so, the literature o�ers both formal and informal methods. Formalmethods we have used inlude the potential sale redution fator (PSRF)proposed by Brooks and Gelman (1998), an the numerial standard error(NSE) and relative numerial e�ieny (RNE) of Geweke (1992). Amonginformal methods, researhers typially run the MCMC with di�erent startingvalues, leading to di�erent hains and verify that eah hain onverges to thesame distribution. It is of ommon pratie to onsider graphial methods,inluding the plot of the MCMC draws and the omputation of reursivemeans.



66 Chapter 4. A Review of Bayesian Analysis of DSGE models4.8. ConlusionThis survey gives an overview of Bayesian methods used to estimate onstantand regime swithing DSGE models. The next hapter applies these methodsto estimate a MS-DSGE model.
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68Chapter 5. Great Moderation and endogenous monetary poliyswithes5.6.1 Diagnosis test: U.S. eonomy . . . . . . . . . . . . . . 1085.6.2 Diagnosis test: Euro Area . . . . . . . . . . . . . . . . 1105.7 Conluding remarks . . . . . . . . . . . . . . . . . . . . 111
5.1. IntrodutionFrom the mid-80s until the reent �nanial risis, there has been a substantialdeline in the volatility of various maroeonomi series, partiularly in�ationand output growth, both in the US and in other major industrial ountries(inluding European ountries). The literature has employed the speial term�Great Moderation� to desribe this striking phenomenon.Eonomists have suggested three explanations of the Great Moderation. The�rst type suggests that strutural hanges in the eonomy, suh as hangesin eonomi institutions and in tehnology, have improved the ability of theeonomy to absorb shoks (Stok and Watson, 2003b), hene ontributing tomoderate eonomi �utuations.The seond type relies on the so-alled �Good poliy� view aording to whihimproved poliy, partiularly monetary poliy, is the primary soure of theGreat Moderation. Proponents of this view observe that a redution in volatil-ity of in�ation ourred simultaneously with a redution in the volatility ofoutput. Sine there is a broad onsensus that monetary poliy plays a ru-ial role in stabilizing in�ation, a redution in the volatility of output mayhave been the result of better monetary poliy (Bernanke, 2004; Lubik andShorfheide, 2004; Clarida et al., 2000).The third view argues that smaller exogenous shoks in the 80's might havehelped the eonomy to beome more stable. Aording to this view, theGreat moderation is mainly the result of �Goood luk� rather than the result



5.1. Introdution 69of strutural hanges or improved poliy (Stok and Watson, 2003b; Sims andZha, 2006; Justiniano and Primieri, 2008).While eah explanation ontains elements of truth, as noted in Bernanke(2004), the �Good poliy� hypothesis has been onsidered for a long timeas the best explanation of the Great Moderation. Studies that support thisview argue that during the 1960's and 1970's � The Great In�ation �, mon-etary poliy has been insu�iently aggressive against in�ation, while it hasbeome more aggressive with the appointment of Volker as Chairman at theFed (Lubik and Shorfheide, 2004; Clarida et al., 2000). A monetary poliythat is insu�iently aggressive leads to multiple equilibria, where some ofthese equilibria are haraterized by large �sunspot� shoks, i.e, shoks thatare unrelated to eonomi fundamentals. Large �sunspot� shoks lead to highvarianes of in�ation and output. By ontrast, when the monetary poliyis su�iently aggressive, rational agents understand that in response to anin�ationary shok, the monetary authority will at aggressively to dampenits onsequenes on the eonomy. Thus, a diret onsequene of the �Goodpoliy� view is that the deline in volatility should persist as long as monetarypoliy ontinues to be �good�.However, besides the reent �nanial risis that asts some doubts on the�Good poliy� explanation, several reent papers, ranging from purely empir-ial (Sims and Zha, 2006) to more strutural (DSGE) papers (Justiniano andPrimieri, 2008; Liu et al., 2011), have provided empirial evidene in favourof the �Good luk� hypothesis. For instane, Sims and Zha (2006) �nd noregime hanges in US monetary poliy. They onlude that the soure of theGreat Moderation is mainly the outome of a redution in the variane ofshoks. They reah this onlusion using strutural VAR. Unlike Sims andZha (2006), Shorfheide (2005) onsiders the DSGE framework and reportsonsiderable hanges in US monetary poliy. Shorfheide obtains suh results



70Chapter 5. Great Moderation and endogenous monetary poliyswithesusing a small sale DSGE model.More reently, three papers have tried to address the sale e�et problem inShorfheide (2005). The �rst one is the paper by Liu et al. (2011). Theyonsider a medium sale DSGE model along the lines of Christiano et al.(2005) and Smets and Wouters (2007), where monetary poliy swithes regimethrough the in�ation targeted by the Fed. By means of ounterfatual exper-iments, the authors �nd little evidene that hange in the in�ation target isthe main driving fore of the rise and fall in in�ation. On the ontrary, therole played by shoks proesses is substantial. They onlude that �the shoksproesses are more likely to be the main driving fore of the rise and fallin in�ation than hanges in the in�ation target�. The seond one is Bianhi(2011). He uses a model along the line of Christiano et al. (2005) and Jus-tiniano et al. (2011), where both poliy and variane parameters evolve asa Markov-swithing proess. His �ndings suggest, inter alia, that the 'Goodpoliy' explanation is likely to be preferred by the data. Finally, Fernández-Villaverde et al. (2010) �t a non-linear medium sale DSGE model to U.S.data, where they seek to understand the role of stohasti volatility versusthe role of hanges in monetary poliy rule in aounting for the Great Mod-eration in the U.S. aggregate data. They report strong evidene of hangesin US monetary poliy but suh hanges do not matter muh for the GreatModeration. However, the time-onsuming nature of their methodology foresresearhers to estimate linearized instead of non-linear DSGE models.This hapter proposes an alternative strategy, whih is also developed in Du-fourt and Jean-Baptiste (2011a,b).We onsider a medium-sale DSGE model along the lines of Smets andWouters (2007), where poliy and shok variane parameters swith regimes.In this sense, our strategy is similar to Bianhi (2011) and Liu et al. (2011).However, we emphasize some key di�erenes. First, Liu et al. (2011) model



5.1. Introdution 71hanges in poliy as hanges in the in�ation target in the poliy rule, while weallow both in�ation target and reation oe�ients in the poliy rule to swithregimes. Seond, the model onsidered in Bianhi (2011) is a simpli�ed versionof the model we onsider, where wage is �exible and there are no swithes inin�ation target. A third key di�erene with respet to Bianhi (2011) is thatwe onsider synhronized as well as independent regimes in poliy and thevariane of shoks, while Bianhi (2011) onsiders only independent regimes.This onsideration allows us to study to what extent hanges in monetarypoliy in the U.S. and in the Euro Area are endogenous.We estimate three spei�ations of our baseline DSGE model, with U.S. andEuro data. The �rst one onsiders only hanges in the variane of shoks.The seond one onsiders synhronized hanges in both poliy and shok vari-anes. This means that, in periods of low volatility, the monetary authorityis onstrained to reat strongly to deviations of in�ation from its long runtarget level. We label this regime �the hawkish regime�. On the ontrary, aperiod of high volatility fores the monetary authority to ondut an �in�ationaommodating� poliy, whih we all �the dovish regime�. Finally, the thirdspei�ation allows hanges in poliy and shok varianes to be independent.That is, hanges in poliy regimes are independent of the urrent state ofthe eonomy. We de�ne three riteria for hanges in monetary poliy regimesto be endogenous. First, the independent regimes and synhronized regimesspei�ations have similar �ts. Seond, hanges in monetary poliy our (ap-proximately) simultaneously with hanges in the variane of shoks. Third,in the independent regimes spei�ation, the following two regimes should al-most never our: (i) the hawkish regime in the presene of high volatilityand (ii) the dovish regime in the presene of low volatility.Our �ndings are the following. First, in terms of �t, the spei�ation wherepoliy parameters are allowed to swith regimes dominates the spei�ation



72Chapter 5. Great Moderation and endogenous monetary poliyswitheswhere only shok varianes swith regimes. This �nding holds for both theU.S. and the Euro Area. Seond, the spei�ation with synhronized regimeshifts in poliy and shoks variane better �ts the data than the independentregime shifts spei�ation, again for both eonomies. Third, with respet tothe question of endogenous monetary poliy, only the �rst riterion is sat-is�ed for the U.S., sine the independent and synhronized regimes produesimilar �ts (see Table 5.3). Smoothed estimates of regime probabilities sug-gest that hanges in U.S. monetary poliy seem to be losely related to thepersonality of the Chairman, and not to the urrent state of the eonomy.That is, under the Martin era, the U.S. monetary poliy has been hawkishagainst in�ation, while the period under the Burns-Miller hairmanship hasbeen a dovish regime. Finally, the Volker-Greenspan-Bernanke era had beenhawkish. We do �nd that, for the U.S. eonomy, the �hawkish-high volatilityregime� ourred frequently in the 60's and the mid-80's, whereas the �dovish-low volatility� ourred in the 70's and the early 80's.For the Euro Area, the same annot be said. Our three riteria are satis�ed.Spei�ally, in periods of low volatility we �nd that the Euro Area mone-tary poliy is always hawkish. Inversely, the monetary poliy is dovish whenvolatility is high. We thus onlude that the Euro Area monetary poliy isendogenous.The remainder of the hapter is organized as follows. In Setion 5.2, webrie�y present the model and disuss the solution in the presene of regimeswithing while additional details are provided in the Appendix. In Setion5.3, we present the eonometri tools used to estimate the model. Setion5.4 presents the parameter estimates and their eonomi impliations throughimpulse responses, variane deompositions and regime probabilities. Setion5.5 presents results for the Euro Area. Setion 5.6 summarizes our results onthe issue of monetary poliy endogeneity . Finally, the last Setion onludes.



5.2. The model 73In Appendix A.2, we provide additional results that are not reported in themain text due to spae onsiderations.5.2. The modelThe model we onsider is adapted from Smets and Wouters (2007) but ex-tended to feature regime swithes in the variane of shoks and in monetarypoliy. The model inorporates various nominal and real fritions suh as mo-nopolisti ompetition in goods and labor markets, stiky pries and wages,partial indexation of prie and wages, habit persistene, investment adjust-ment osts, variable apaity utilization. We deviate from Smets and Wouters(2007) by letting the in�ation target depend on the regime in plae in the ur-rent period. This departure has some impliations for the dynami equationsgoverning in�ation, real wages and monetary poliy.In what follows, we present the log-linearised version of the model wherewe desribe the aggregate demand side, the aggregate supply side and themonetary poliy. Hatted variables denote perentage deviations with respetto steady state. Details of the model derivation are provided in appendix A.2(see also (Smets and Wouters, 2007)).5.2.1. The log-linearized modelThe aggregate resoure onstraint is given by
Ŷt − cyĈt − iyÎt − ryr̂t − ε̂gt = 0 (5.2.1)with iy = (γz − 1 + δ) ky, cy = (1 − iy − gy) and ry = rkkyz1, where ky isthe steady-state apital to output ratio, rk is the steady-state real rental rateof apital, z1 = (1 − ψ)/ψ, where ψ is a positive funtion of the elastiity



74Chapter 5. Great Moderation and endogenous monetary poliyswithesof the apital utilization adjustment ost funtion. Output, onsumption,investment, apital-utilization rate and exogenous spending shok are denotedby Ŷt, Ĉt,Ît, ẑt and ε̂gt ., respetively.The law of motion for the exogenous spending shok as well as for other shoksis de�ned later on.The seond equation desribes the dynamis of onsumption and is given by
Ĉt = c1Ĉt−1 + (1− c1)EtĈt+1 + c2

[
L̂t −EtL̂t+1

] (5.2.2)
−c3

[
R̂t −Etπ̂t+1 + ε̂bt

]
,where

c1 = [h/γz] / [1 + h/γz] ,

c2 = [(σc − 1)wl/((1 + λw)c)] / [σc (1 + h/γz)] ,

c3 = [1− h/γz] / [σc (1 + h/γz)] ,with h denoting an external habit formation, γz the steady-state growth rate,
σc the elastiity of intertemporal substitution between labour and onsump-tion, λw the steady-state wage mark-up, w, l, c, the steady states of wage (ŵt),hours worked (L̂t) and onsumption. R̂t, π̂t and ε̂bt are the nominal interestrate, in�ation rate and a risk-premium shok.The dynamis of investment are given by

Ît = i1Ît−1 + (1− i1)EtÎt+1 + i2Q̂t + ε̂it, (5.2.3)with i1 =
(
1/1 + β (γz)

1−σc
) and i2 =

(
1/
(
1 + β (γz)

1−σc
)
(γz)

2 ϕ
)
, where ϕis the steady-state elastiity of the apital adjustment ost funtion, β is thedisount fator applied to households and ε̂it is an investment-spei� shok.The Tobin's Q-equation is given by

Q̂t = q1EtQ̂t+1 + (1− q1)Etr̂t+1 −
(
R̂t −Etπ̂t+1 + ε̂bt

)
, (5.2.4)



5.2. The model 75with q1 = (1− δ) /
(
1− δ + rk

)
, where δ is the depreiation rate of apital.Turning to the supply side, the aggregate prodution funtion is given by

Ŷt =

(
1 +

φ

Y

)(
α
(
K̂t−1 + z1r̂t

)
+ (1− α)L̂t + ε̂At

)
, (5.2.5)where φ/Y is the share of �xed-osts in prodution, α aptures the share ofapital in prodution and ε̂At is the total fator produtivity.The aumulation of apital K̂t is given by

K̂t = k1K̂t−1 + (1− k1) Ît + k2ε̂
i
t (5.2.6)with k1 = (1− δ) /γz and k2 = (1− (1− δ) /γz) (1 + βγ1−σc
z ) γ2zϕ.The prie mark-up µ̂pt , orresponding to the di�erene between the averageprie and the nominal marginal ost, is given by

µ̂pt = α
(
K̂t−1 + z1r̂t − L̂t

)
− ŵt + ε̂At . (5.2.7)Pro�t maximization by prie-setting �rms gives rise to the following New-Keynesian Phillips urve (NKPC):
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, where γp is the degree of indexation topast in�ation, and π2 =
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]. The oe�ient
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/
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)]aptures the role of real marginal ost in driving in�ation. Here ξp is thedegree of prie stikiness, µp the steady-state prie mark-up fator and ςp isthe urvature of the Kimball goods market aggregator, due to the fat thatSmets and Wouters (2007) use the Kimball aggregator instead of the om-mon Dixit-Stiglitz aggregator, as the former allows a more reasonable degreeof prie and wage stikiness. The term ε̂pt an be interpreted as a ost-pushshok or as a prie mark-up shok. Thus, when the in�ation target swithes



76Chapter 5. Great Moderation and endogenous monetary poliyswithesregimes, the dynamis of in�ation inlude the additional terms (1−γp)π̂∗
t and

(1 − γp)Et(π̂
∗
t+1), that are absent in the Smets-Wouters model.1 We assumethat the in�ation target osillates between high and low target.Using the fat that the rental rate of apital is a positive funtion of the degreeof apital utilization and is negatively related to the apital-labor ratio, asimplied by ost minimization, we obtain the following equation

(1 + z1) r̂t + K̂t−1 − ŵt − L̂t = 0. (5.2.9)The wage mark-up is given by
µ̂wt = ŵt − σLL̂t −

1

1− h/γz
Ĉt +

h/γz
1− h/γz

Ĉt−1 (5.2.10)while, due to nominal wage stikiness, the real wage dynamis reads
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],where γw is the degree of wage indexation to lagged in�ation and
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,where ξw is the degree of wage stikiness, ςw is the urvature of the Kimballgoods market aggregator and ε̂wt is a wage mark-up shok. The dynamisof real wages, as in the in�ation equations, inludes the additional terms

(1− γw)π
∗
t and (1− γw)Etπ

∗
t+1.1In a related paper, ? onsider a time-varying in�ation target, where in�ation tar-get evolves as a random walk without drift. This assumption implies that Etπ̂

∗

t+1 = π̂∗

t .Therefore, our approah turns out to be more general.



5.2. The model 77The poliy blok of the model is desribed by the following monetary poliyreation funtion:
R̂t = ρr(st)R̂t−1 + (1− ρr(st))

[
rπ(st)(π̂t − π̂∗

t (st)) + ry(st)
(
Ŷt − Ŷ f

t

)]

+r∆y(st)
[(
Ŷt − Ŷ f

t

)
−
(
Ŷt−1 − Ŷ f

t−1

)]
+ ε̂rt (5.2.12)This is a generalized Taylor rule where the monetary authorities graduallyadjust the poliy rate (R̂t) in response of in�ation deviations from its targetedlevel, to the spread between atual and potential output (Ŷt − Ŷ f

t ), to thehange in the output gap (Ŷt − Ŷ f
t )− (Ŷt−1 − Ŷ f

t−1). The potential output isthe output that would prevail in the absene of prie and wage stikiness andof the two mark-up shoks. Parameter ρr aptures the degree of interest ratesmoothing, ε̂rt is a monetary poliy shok and st is a dihotomous variable thataptures the monetary poliy regime in plae at time t. It evolves aordingto the transition matrix P = [pij] where pij = Pr [st = i|st−1 = j].Finally, we lose the model by speifying the law of motion for various shoksthat are onsidered in the paper:
ε̂at = ρaε̂
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t (5.2.16)

ε̂pt = ρpε̂
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p
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ε̂wt = ρwε̂
w
t−1 + σw(vt)η

w
t − υwη̃

w
t−1 (5.2.18)

ε̂rt = ρrε̂
r
t−1 + σr(vt)η

r
t (5.2.19)Those shoks are shoks to total fator produtivity, government spending,risk-premium, investment-spei�, prie mark-up, wage mark-up and mone-



78Chapter 5. Great Moderation and endogenous monetary poliyswithestary poliy, respetively . The wage-markup and prie-markup disturbanesare assumed to follow an ARMA(1,1), as in Smets and Wouters (2007), inorder for the model to reprodue some of the high-frequeny �utuations inpries and wages. Finally, vt is an unobservable dihotomous variable ap-turing heteroskedastiity in the shoks. It evolves aording to the transi-tion matrix Q = [qij ] where qij = Pr [vt = i|vt−1 = j] , i = 1, 2; j = 1, 2. Weonsider ases where the regimes st and vt are synhronized or independent.When st and vt are independent, we onsider a new state variable s∗, whihindexes both regimes st and vt. Thus, s∗ is four-state variable whose transi-tion matrix is P ∗ = P ⊗Q. The onsideration of synhronized regime shifts isanother key di�erene between our paper and Bianhi (2011), who onsidersonly a spei�ation where regimes in poliy and the variane of shoks evolveindependently.Next, we solve the model using an iterative algorithm proposed by Dufourt(2011). As mentioned in Chapter 4, the main advantage of this algorithm isit eonomizes on omputational time.5.3. Estimation approahThis setion begins with the desription of the data used for the estimation.We then derive the state spae representation of the model solution in orderthe ompute to likelihood with the methods provided in Chapter 4. Finally,we desribe the prior distribution of the parameters, whih is ombined withthe likelihood to form the posterior distribution.5.3.1. The dataWe estimate the model using seven quarterly series for the U.S.eonomy and Euro area. The vetor of observables is obst =
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[∆ log Yt,∆ logCt,∆ log It,∆ log Wt

Pt
, logHt, πt, Rt] where ∆ is the �rst di�er-ene operator. We �rst present the data for the US eonomy. The samplespans 1954:III to 2009:I, where 1954:III is the �rst quarter where the Federalfunds rate is available, while the end of our sample is the �rst period where theFederal funds rate hits a zero bound. All data ome from the Fred Database.Per apita real GDP is onstruted by dividing the nominal GDP by the USworking age population and the GDP de�ator.Real series for onsumption and investment are obtained in the same manner,where in ontrast to Smets and Wouters (2007), investment is the sum of �xedprivate investment and durable onsumptions, and onsumption is the sum ofnon-durables and servies.2 Real wage is de�ned as the hourly ompensationin the Nonfarm Business setor divided by the GDP de�ator. Our measure oflabor is the log of hours of all persons in the Nonfarm business setor dividedby the working-age population. We measure in�ation as the quarterly logdi�erene in the GDP de�ator. Finally, our measure for the nominal interestrate is the quarterly e�etive Federal funds rate.Exept the series on population, all data for the Euro Area (EU-15) omefrom the syntheti Area Wide Model (AWM) dataset, �rst issued by Faganet al. (2005). The dataset is publily available from the Euro Area BusinessCyle Network (EABCN). Series on the population ome from the OECD.The AWM dataset laks series on hours and no reliable measure of hours isavailable for the Euro Area. Following the literature, we use the employmentseries divided by the working-age population to express it in per apita terms.The estimation period spans 1970:I to 2009:IV, whih is the period wheremost of the data is available.We link the observables to the model variables by the following measurement2In Smets and Wouters (2007), investment measured by the �xed private investmentonly, while onsumption is measured as the sum of non-durables, durables and servies.



80Chapter 5. Great Moderation and endogenous monetary poliyswithesequation
obst = D + ZX̃t (5.3.1)with D =

[
γ, γ, γ, γ, l, π∗, R

]
, where γ is the ommon quarterly trend growthrate of real GDP, onsumption, investment and wages, π∗ is the quarterlysteady-state in�ation rate, R is the steady-state nominal interest rate and l isthe steady-state hours (or employment) per apita.5.3.2. Prior distributionOur prior follows losely the Smets and Wouters (2007) prior. We �x someparameters that are not identi�ed or impreisely estimated.These parameters are: δ = 0.025, gy = 0.18, λw = 1.5, ςp = 10, ςw = 10.As noted by Smets and Wouters (2007), the �rst two parameters would bedi�ult to estimate unless investment and exogenous spending are used inthe measurement equations, while the last three parameters are not identi-�ed. Several attempts to estimate the steady state log hours reveal that thisparameter is impreisely estimated. Hene, we hoose l = 0.The prior distribution for the reation oe�ients to hange in in�ation areGamma entered around Taylor (1993)'s values for both regimes. We alsoonsider an alternative prior, whih is onsistent with the view that the GreatIn�ation of the 70's was the onsequene of loose monetary poliy. Spei�ally,we allow the Fed's reation oe�ients to hanges in in�ation relative to itstarget to be lower during the Great In�ation era and higher during the GreatModeration era. The reation oe�ients to both the output gap and thehange in the output gap follow a Gaussian distribution, with mean 0.12 andstandard deviation 0.05. The prior for the interest rate smoothing parameterfollows the Beta distribution, with mean 0.5 and standard deviation 0.2. These



5.3. Estimation approah 81Table 5.1: Prior distribution of strutural parameters for the synhronizedand independent regimes models.Parameters Distr Para (1) Para (2) .
ϕ Normal 4 1.5
σc Normal 1.5 0.375
h Beta 0.7 0.1
θw Beta 0.5 0.1
σL Normal 2 0.75
θp Beta 0.5 0.1
γw Beta 0.5 0.15
γp Beta 0.5 0.15
ψ Beta 0.5 0.15
µP Normal 1.25 0.125
rπ,1 Gamma 1.5 0.25
rπ,2 Gamma 1.5 0.25
ρr,1 Beta 0.75 0.1
ρr,2 Beta 0.75 0.1
ry,1 Gamma 0.12 0.05
ry,2 Gamma 0.12 0.05
r∆y,1 Gamma 0.12 0.05
r∆y,2 Gamma 0.12 0.05
100(1/β − 1) Gamma 0.25 0.1
100γ Normal 0.4 0.1
α Beta 0.3 0.05
100π∗(1) Gamma 0.62 0.1
100∆π∗ Gamma 0.5 0.1Notes: Para(1) and Para(2) list the means and the standard devi-ations for Beta distribution; the shape s and and the sale ν pa-rameters for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝

σ−ν−1
exp(−νs2/2σ2

).prior values are idential aross regimes and follow losely Smets and Wouters(2007).The prior for the in�ation target follows Shorfheide (2005). Instead of esti-



82Chapter 5. Great Moderation and endogenous monetary poliyswithesmating low and high targets, we estimate the low target π∗(1) and the dif-ferene between low and high target ∆π∗. This strategy allows us to assesswhether the di�erene in the two targets is signi�ant or not. The prior dis-tributions for the low and high in�ation targets are suh that the annual lowand high targets are 3% and 6%, respetively.The priors for the transition probabilities are hosen to ensure that the regimesare persistent. Spei�ally, we assume a Beta distribution for the transitionprobabilities, with mean 0.9 and standard deviation 0.05.The prior on the stohasti proess follows losely Smets and Wouters (2007).The standard errors of all innovation follow an Inverse-Gamma distributionwith mean 0.1 and standard deviation 2. The persistene oe�ients of theshoks proesses follows a Beta distribution with mean 0.5 and standard de-viation 0.2. Additional details are available in Tables 5.1 and 5.2.



5.3. Estimation approah 83Table 5.2: Prior distribution of shoks proesses parameters for the synhro-nized and independent regimes models.Parameters Distr Para (1) Para (2).
ρa Beta 0.5 0.2
ρg Beta 0.5 0.2
ρb Beta 0.5 0.2
ρi Beta 0.5 0.2
ρep Beta 0.5 0.2
ρw Beta 0.5 0.2
ρr Beta 0.5 0.2
µw Beta 0.5 0.2
µp Beta 0.5 0.2
ρga Beta 0.5 0.2
100σa,1 Inverse gamma 0.1 2
100σg,1 Inverse gamma 0.1 2
100σb,1 Inverse gamma 0.1 2
100σi,1 Inverse gamma 0.1 2
100σp,1 Inverse gamma 0.1 2
100σw,1 Inverse gamma 0.1 2
100σR,1 Inverse gamma 0.1 2
100σa,2 Inverse gamma 0.1 2
100σg,2 Inverse gamma 0.1 2
100σb,2 Inverse gamma 0.1 2
100σi,2 Inverse gamma 0.1 2
100σp,2 Inverse gamma 0.1 2
100σw,2 Inverse gamma 0.1 2
100σR,2 Inverse gamma 0.1 2
p11 Beta 0.9 0.05
p22 Beta 0.9 0.05
q11 Beta 0.9 0.05
q22 Beta 0.9 0.05Notes: Para(1) and Para(2) list the means and the standard devi-ations for Beta distribution; the shape s and and the sale ν pa-rameters for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝
σ−ν−1

exp(−νs2/2σ2
).



84Chapter 5. Great Moderation and endogenous monetary poliyswithes5.4. Empirial results: U.S.This setion presents our results for the US eonomy. We �rst present themodel �t. Then we omment the estimates of the strutural parameters andtheir eonomi impliations through variane deomposition, impulse responseanalysis and the smoothed estimates of regime probabilities.5.4.1. Model FitTable (5.3) reports measures for four spei�ations of our DSGE model. Toassess the model �t, we ompute the modi�ed harmoni mean estimation of themarginal likelihood de�ned in Chapter 4. Several observations an be madefrom Table 5.3. First, the spei�ations where poliy and variane swithregimes learly dominate the other. Thus, our model �ts better than thebenhmark Smets and Wouters (2007) model, where poliy and shok varianeparameters are onstant. This translates into a Bayes fator of exp(86) in favorof our model. Our model also �ts better relative to Liu et al. (2011), whereonly regime shifts in varianes and in in�ation target are onsidered. Seond,the two spei�ations where poliy parameters swith regimes deliver a rathersimilar �t. Thus, this �nding raises the issue about the endogeneity of regimeswithes in monetary poliy.5.4.2. Estimates of strutural parameters and regimeprobabilitiesIn this setion, we disuss the estimates of the best �t model. Posteriorsummary statistis for the best �t model (Posterior-Syn), suh as the mean,the mode and on�dene bands are obtained with the Metropolis-Hastingsalgorithm. We also report the posterior mode for the independent regime



5.4. Empirial results: U.S. 85Table 5.3: Model �t: (Log) Marginal Data DensitySpei�ation Modi�ed harmoni mean1.Constant parameters model -1325.982.Swithing variane only -1240.103.Swithing in�ation target,poliy rule and shok varianes -1222.204.Independent swithing in in�ation target,poliy rule and shok varianes -1223.4Notes: Log Marginal Data Density (MDD) omputed for di�erent spei�ations, withthe modi�ed harmoni mean estimator and the Laplae approximation.spei�ation (Posterior-Ind).Table 5.4 and 5.5 report estimates of the best-�t model. Observing prior infor-mation and posterior summary statistis, we note that the data are informa-tive about almost all parameters. Our estimates for the strutural parametersfall within the range reported by the literature. The median estimate for ϕ,the steady-state elastiity of the apital adjustment ost is 5.03. This esti-mate lies on the error band reported by Smets and Wouters (2007)'s estimatefor this parameter while it is higher than estimates by Liu et al. (2011) orJustiniano et al. (2010). Our estimate for σc, the intertemporal elastiity ofsubstitution is 1.19, whih is in line with the literature. The habit parame-ter is 0.90, muh higher than estimates obtained in the literature. The laborelastiity is estimated to be 2.90. We estimate the share of �xed osts in theprodution funtion (µP − 1) to be 0.425, somewhat lowerr than the value0.60 obtained by Smets and Wouters (2007).



86Chapter 5. Great Moderation and endogenous monetary poliyswithesTable 5.4: Posterior distribution of strutural parameters for the synhronizedand independent regimes modelsPosterior-Syn Posterior-IndParameters Mode Mean 5% 95% Mode
ϕ 5.0350 5.3152 3.7941 7.1853 5.0333
σc 1.1899 1.1885 1.1089 1.2723 1.1688
h 0.9092 0.9085 0.8764 0.9426 0.9158
θw 0.8514 0.8489 0.7984 0.8969 0.8550
σL 2.8995 2.9578 1.7948 4.1466 3.3043
θp 0.6947 0.7034 0.6294 0.7854 0.7096
γw 0.5018 0.4928 0.2974 0.7065 0.4679
γp 0.1836 0.2013 0.0762 0.3519 0.1804
ψ 0.4366 0.4860 0.3165 0.6592 0.5146
µP 1.4253 1.4338 1.2865 1.5786 1.4271
rπ,1 1.8748 1.9299 1.5958 2.3002 1.8095
rπ,2 1.5592 1.6320 1.2121 2.0836 1.5202
ρr,1 0.8855 0.8895 0.8624 0.9187 0.8819
ρr,2 0.7900 0.7770 0.6919 0.8572 0.7105
ry,1 0.0463 0.0552 0.0242 0.0892 0.0342
ry,2 0.1091 0.1176 0.0536 0.1920 0.1624
r∆y,1 0.1124 0.1213 0.0843 0.1540 0.1145
r∆y,2 0.1582 0.1645 0.0828 0.2461 0.1601
100(1/β − 1) 0.1187 0.1415 0.0519 0.2346 0.0873
100γ 0.3770 0.3645 0.3081 0.4126 0.3543
α 0.2022 0.2055 0.1906 0.2203 0.2023
100π∗(1) 0.6862 0.6972 0.5125 0.8620 0.6331
100∆π∗ 0.5189 0.5250 0.3414 0.7432 0.4646Turning to the wage and prie settings parameter, our estimates for the Calvoprobabilities imply an average length of the wage ontrats of six quarters andabout three quarters for the prie ontrat. These estimates are higher thanthe values reported in some papers (e.g (Liu et al., 2011)). The .95 error bandestimates for the wage and prie indexation suggest that they are preiselyestimated and are very lose to estimates reported by Smets and Wouters



5.4. Empirial results: U.S. 87(2007).The shok proesses suggest that produtivity, spending, prie markup andwage markup shoks are highly persistent. Investment shoks exhibit impor-tant persistene while preferene and poliy shoks exhibit low persistene.These �ndings are onsistent with those of Smets and Wouters (2007).Estimates of the standard deviations of shoks learly indiate that shoksvarianes are e�etively swithing between regimes. Exept for the wagemarkup shok, the seond regime is the high volatility regime and it is slightlyless persistent, as suggested by the transition probabilities (p11 = 0.9461,
p22 = 0.8904) and Figure 5.1. Standard deviations for all shoks show drastihanges aross regimes. In line with results reported in Justiniano and Prim-ieri (2008), monetary poliy shok is the exogenous disturbane showing thelargest degree of stohasti volatility when one ompares the standard devi-ations for this shok in eah regime: the ratio of the standard deviation forthe monetary poliy shok in regime 1 to the standard deviation in regime 2is more than 350 perent. We �nd that the wage markup shok is relativelystable while the prie markup shok has the smallest variane, with a stan-dard deviation of this shok of 0.10 in the �rst regime and 0.20 in the seondregime. The spending shok exhibits moderate variation while the produtiv-ity shok has the largest variane in absolute terms. Investment shok showssigni�ant degree of variation aross regime, muh lower than variation formonetary poliy shok. While our �ndings are in line with Justiniano andPrimieri (2008) about the patterns of monetary poliy shoks, they are insharp ontrast with those reported in Liu et al. (2011), who �nd that monetarypoliy and tehnology shoks have the smallest variane.



88Chapter 5. Great Moderation and endogenous monetary poliyswithesTable 5.5: Posterior estimates of shok proesses parameters.Posterior-Syn Posterior-IndParameters Mode Mean 5% 95% Mode
ρa 0.9862 0.9853 0.9771 0.9940 0.9824
ρg 0.9848 0.9844 0.9727 0.9956 0.9837
ρb 0.3404 0.3563 0.2221 0.4896 0.3381
ρi 0.6820 0.6862 0.5733 0.7907 0.6743
ρep 0.9718 0.9607 0.9230 0.9921 0.9469
ρw 0.9656 0.9600 0.9325 0.9868 0.9528
ρr 0.2359 0.2797 0.1600 0.4075 0.1747
µw 0.9362 0.9248 0.8803 0.9657 0.9173
µp 0.8557 0.8343 0.7222 0.9387 0.8334
ρga 0.2793 0.2740 0.2115 0.3460 0.2784
100σa,1 0.4993 0.4968 0.4362 0.5625 0.4903
100σg,1 0.2746 0.2842 0.2421 0.3309 0.2739
100σb,1 0.1203 0.1204 0.0959 0.1440 0.1157
100σi,1 0.5367 0.5771 0.4435 0.7220 0.5211
100σp,1 0.1548 0.1581 0.1246 0.1899 0.1566
100σw,1 0.2660 0.2635 0.2290 0.2954 0.2641
100σR,1 0.0912 0.0980 0.0819 0.1144 0.0850
100σa,2 0.7444 0.7918 0.6504 0.9612 0.7531
100σg,2 0.3611 0.3696 0.2834 0.4499 0.3578
100σb,2 0.1819 0.1909 0.1367 0.2433 0.1898
100σi,2 1.4398 1.5307 1.1460 1.9232 1.4376
100σp,2 0.2474 0.2607 0.1880 0.3398 0.2592
100σw,2 0.2284 0.2225 0.1715 0.2748 0.2125
100σR,2 0.3344 0.3696 0.3029 0.4531 0.3012
p11 0.9461 0.9383 0.8962 0.9762 0.9614
p22 0.9110 0.8904 0.8148 0.9583 0.8991
q11 0.9415
q22 0.9037Turning to the monetary poliy rule, we note that the estimates of the o-e�ients response to hanges in in�ation exhibit signi�ant variations arossregimes. In the �rst regime (the hawkish regime), the response to hanges
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Figure 5.1: US: Posterior probabilities of the (synhronized) more hawkish-low volatility regime for the best �t model. Shaded bands in panel (b), ()and (d) are the NBER reession and expansion dates. Vertial lines in panel(a) denote the appointment of the Chairmen.in in�ation is quite high (rπ,1 = 1.87), and is in line with the one estimatedby Smets and Wouters (2007). In the dovish regime, the same parameter issomewhat lower (rπ,2 = 1.55). While there is signi�ant di�erene between thereation oe�ients of the two regimes, our results do not support evidene re-ported in Clarida et al. (2000) or Lubik and Shorfheide (2004). These papers�nd that in the dovish regime, rπ < 1. In the dovish regime, posterior andprior modes for rπ are quite similar (1.55 and 1.5). However, one should notinterpret this �nding as re�eting the fat that data are uninformative aboutthis parameter. Using an alternative prior that would imply indeterminayin a onstant oe�ient model, we estimate posterior mode of rπ,2 to be 1.52,quite similar to the prior.33In a onstant DSGE model, indeterminay arises when the interest rate does not rise



90Chapter 5. Great Moderation and endogenous monetary poliyswithesEstimates of the interest rate smoothing oe�ients suggest that the Fedstrongly responds to the lagged interest rate in both regimes, though theresponse is higher in the hawkish regime (0.88) than in the seond regime(0.77). Responses to output gap and hanges in output gap are in line withthe orresponding estimates by Smets and Wouters (2007), whih suggestthat the Fed responds more strongly to hanges in the growth rate of outputgap (0.1091) than in the output gap itself (0.0463). Finally, estimates of thein�ation target imply that in the hawkish regime, the annual in�ation targetis about 2.7%, while it is about 5% in the dovish regime. Our estimates aresomewhat lower than those of Shorfheide (2005), who estimates the in�ationtargets to be 2.8% and 8%, respetively.Figure 5.1 depits the smoothed posterior probabilities for the hawkish regime,as well as the series on output growth, in�ation and interest rate.4 The graphis onsistent with the view that during muh of the time in the 60's, the Fedwas very hawkish against in�ation, while it was dovish in the 70's. In themid 80's until the reent �nanial risis, the Fed was very hawkish againstin�ation. We note that these �ndings ontrast those in Clarida et al. (2000),sine their estimates suggest that pre-Volker period was essentially a doveregime.more than one for one in response to a hange in in�ation. In this ase, the Taylor prinipleis violated and this violation an produe undesirable outomes, suh as large �utuationsin output and in�ation, multiple equilibria where those variables respond to sunspot shoks,i.e. shoks that are unrelated to fundamentals of the eonomy but are the results of thebeliefs of agents. For Markov Swithing DSGE models of the kind we onsider in this paper,however, there is no theoretial result for the existene of indeterminay. Davig and Leeper(2007), Farmer et al. (2009b) and Farmer et al. (2009a) provide theoretial results for theindeterminay/determinay issue for forward-looking Markov-Swithing DSGE models.4Smoothed posterior probabilities are omputed using methods provided in Kim andNelson (1999).



5.4. Empirial results: U.S. 915.4.3. Variane deompositionThis subsetion seeks to understand what are the main driving fores of keymaroeonomi variables of the model. Tables 5.6 and 5.7 show the varianedeomposition for the best �t model omputed at the posterior mode, whereshoks are reported in olumn.As one an see, under the two regimes, the main driving fore of output�utuations is the investment-spei� shok. In the �rst regime, this shokaounts for more than 50 perent of the foreast error variane of outputirrespetive to the horizon onsidered. In the seond regime, the result is evenstronger, sine more than 70 perent of the variane of output is explained bythe this shok. In Smets and Wouters (2007), the investment-spei� shokexplains only about 20 perent of the variane of output. The role of invest-ment shoks for the business yle is doumented in Justiniano et al. (2010),Justiniano and Primieri (2008), Justiniano et al. (2011). Our �nding is inline with their. Justiniano et al. (2010) ritiize Smets and Wouters (2007) byshowing that investment shoks are the main driving fores behind investmentand output �utuations when the de�nition of investment inludes inventoriesand durables, or the observables inlude the relative prie of investment.5 Asexpeted, investment shok is the main driving fore behind investment �u-tuations of. Flutuations in hours are mostly explained by investment shok,while this shok explains an important part of �utuations in nominal interestrate.To some extent, spending shoks also explain an important part of the �u-tuations. Prie markup shoks, wage markup shoks and monetary poliy5We have estimated the Smets and Wouters (2007) model aording to their de�nitionof investment and onsumption. Results not reported on�rm the ritiism of Justinianoet al. (2010). Furthermore, we have found that with the Smets-Wouters dataset, the mainexplanation of the Great Moderation is rather the Good luk hypothesis.



92Chapter 5. Great Moderation and endogenous monetary poliyswithesshoks play a very limited role in explaining output �utuations.As expeted, the risk premium shok explains the largest part of the �utu-ations in onsumption, though this part is dereasing with the length of theforeast horizon. In the short run (up to one quarter), this shok explains asizeable part of the nominal interest rate �utuations. Otherwise, this shokis unimportant in explaining �utuations for the other observables.Prie markup and wage markup shoks explain the largest part of �utuationsin in�ation and real wages. Together, they aount for more than 70 perentof the foreast variane of these series.It is worth noting that the monetary poliy shok plays a very limited rolefor series other than the interest rate. In the short run, the monetary poliyshok explains a big part of nominal interest rate �utuations. However, as thehorizon lengthens, investment beomes the main driving fore behind nominalinterest rate �utuations.Summarizing, �utuations in output, investment and hours are mostly dueto investment shoks. Flutuations in in�ation are mostly explained by priemarkup and wage markup shoks, while �utuations in nominal interest rateare mostly due to monetary poliy and investment shoks.



5.4. Empirial results: U.S. 93Table 5.6: Variane deomposition for the best �t model (Regime 1)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 9.45 21.00 9.82 54.92 2.18 0.17 2.46
4Q 13.00 14.74 7.54 51.43 5.35 4.63 3.31
8Q 12.73 14.09 7.32 51.62 5.25 5.66 3.34
24Q 12.64 13.47 7.03 50.85 5.91 6.49 3.61Consumption
1Q 0.72 0.06 96.07 0.57 0.09 0.11 2.38
4Q 8.08 0.52 69.57 6.52 3.85 6.76 4.70
8Q 9.78 0.66 64.11 6.20 4.62 10.35 4.28
24Q 10.27 0.76 59.51 6.11 5.18 13.47 4.69Investment
1Q 2.99 0.16 0.78 92.43 1.54 0.34 1.76
4Q 6.45 0.36 0.87 84.08 3.67 2.62 1.94
8Q 6.13 0.34 0.83 84.39 3.53 2.70 2.07
24Q 6.43 0.36 0.90 82.51 4.13 3.50 2.18Real Wage
1Q 2.23 0.00 0.21 0.49 27.82 69.20 0.05
4Q 5.37 0.01 0.24 2.13 28.71 63.21 0.33
8Q 5.80 0.02 0.25 2.11 28.48 63.01 0.33
24Q 5.90 0.03 0.27 2.31 28.83 62.26 0.41Hours
1Q 44.96 13.13 5.91 33.64 0.40 0.48 1.49
4Q 12.36 6.21 4.23 51.23 8.77 10.59 6.61
8Q 9.12 5.21 3.28 41.09 13.29 21.35 6.66
24Q 4.98 3.62 1.70 21.92 14.10 49.86 3.82In�ation
1Q 5.16 0.12 0.28 1.17 75.54 16.91 0.81
4Q 8.08 0.33 0.71 2.86 43.90 41.19 2.94
8Q 7.77 0.37 0.75 2.81 41.09 43.84 3.36
24Q 7.53 0.49 0.78 3.15 39.11 45.44 3.50Nominal interest rate
1Q 11.27 0.72 15.88 6.75 14.53 6.04 44.82
4Q 15.02 1.24 6.70 25.44 14.50 24.47 12.63
8Q 14.12 1.31 5.79 25.32 13.25 30.08 10.13
24Q 13.13 1.74 5.14 23.45 11.88 36.08 8.59



94Chapter 5. Great Moderation and endogenous monetary poliyswithesTable 5.7: Variane deomposition for the best �t model (Regime 2)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 6.30 7.58 4.67 76.14 1.70 0.02 3.60
4Q 8.62 5.68 3.79 73.95 3.11 0.69 4.17
8Q 8.37 5.47 3.69 74.42 3.01 0.73 4.31
24Q 8.36 5.32 3.60 74.21 3.31 0.80 4.40Consumption
1Q 1.35 0.08 90.46 0.59 0.36 0.11 7.06
4Q 9.22 0.46 64.54 11.41 3.18 1.95 9.23
8Q 10.52 0.55 62.13 11.95 3.32 2.50 9.03
24Q 10.86 0.61 59.99 12.47 3.62 2.89 9.55Investment
1Q 1.52 0.06 0.44 95.37 0.81 0.07 1.72
4Q 3.05 0.12 0.51 92.66 1.53 0.29 1.84
8Q 2.90 0.12 0.49 92.80 1.49 0.28 1.93
24Q 3.03 0.12 0.52 92.39 1.66 0.35 1.93Real wage
1Q 4.48 0.00 0.33 2.16 56.38 36.41 0.25
4Q 9.50 0.01 0.33 8.09 51.40 29.83 0.85
8Q 10.08 0.01 0.35 8.05 50.94 29.69 0.88
24Q 10.06 0.02 0.35 8.65 50.99 28.93 0.99Hours
1Q 29.24 5.86 3.50 58.08 0.45 0.16 2.70
4Q 6.86 2.47 2.06 74.75 5.29 2.17 6.41
8Q 6.03 2.49 1.90 70.67 7.99 4.34 6.59
24Q 5.47 3.06 1.65 62.21 10.37 11.53 5.71In�ation
1Q 5.22 0.07 0.20 2.49 85.16 5.08 1.78
4Q 9.75 0.21 0.62 6.33 62.69 15.68 4.72
8Q 9.64 0.25 0.68 6.29 60.38 17.83 4.92
24Q 9.25 0.39 0.74 7.33 56.72 21.01 4.56Nominal interest rate
1Q 6.25 0.24 8.49 8.51 11.79 1.07 63.64
4Q 10.59 0.53 4.87 43.07 12.76 5.01 23.18
8Q 10.45 0.58 4.54 45.16 12.20 6.17 20.89
24Q 10.46 0.79 4.36 45.10 12.02 7.91 19.36



5.4. Empirial results: U.S. 955.4.4. Impulse responsesIn this setion, we analyse the model's transmission mehanisms through theimpulse responses. Following Smets and Wouters (2007), we report impulseresponse for output, hours, in�ation and interest rate.
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5.4. Empirial results: U.S. 97implies that the nominal interest rate inreases (through the poliy rule) whileaggregate output and hours fall.Finally, following a monetary poliy shok, the nominal interest rises whileoutput, hours and in�ation fall. This is depited in Figure (5.4). The on-�dene bands show that there are important di�erene in the transmissionmehanism aross regimes.
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98Chapter 5. Great Moderation and endogenous monetary poliyswithes5.5. Empirial results: Euro AreaThis setion presents the results for Euro Area. As for the US, we �rst as-sess the model �t, then the posterior summaries are analysed. Through thevariane deomposition, we doument what shoks are most important inexplaining European business yles. We then ompute and interpret theimpulse responses. Finally, we desribe the regimes that the data lead to.5.5.1. Model �tWhile Euro Area and U.S. eonomies present important di�erenes, we havefound that suh di�erenes do not matter for the prior eliitation. That is,using the same prior as in Smets and Wouters (2003) and the prior used inSetion 5.3.2 leads essentially to the same results. Thus, we omment ourresults with respet to prior information in setion 5.3.2.The model ranking is the same as for the US, as suggested in Table 5.8.The best �t model is the one where both poliy and shoks variane swithregime. Note that our results stand in ontrast with those of Rubio-Ramirezet al. (2005). Aording to their results, lower maroeonomi volatility ob-served in the Euro Area in the early 90's and after is due to smaller shoksto interest rate and in�ation. They �nd little (if any) evidene about hangein monetary poliy. They obtain suh a onlusion using Markov-SwithingVetor autoregressive models. This might explain why our results are di�erentfrom their.5.5.2. Strutural parameters and regime probabilitiesTable 5.9 and 5.10 report estimates of the best-�t model. We fous on pa-rameters haraterizing prie and wage stikiness, shoks proesses and poliy.



5.5. Empirial results: Euro Area 99Table 5.8: Model �t: (Log) Marginal Data Density: Euro AreaSpei�ation Modi�ed harmoni mean1.Constant parameters model -733.23012.Swithing variane only -694.04813.Swithing in�ation target,poliy rule and shok varianes -672.41674.Independent swithing in in�ation target,poliy rule and shok varianes -673.6352Notes: Log Marginal Data Density (MDD) omputed for di�erent spei�ations, withthe modi�ed harmoni mean estimator and the Laplae approximationThe estimated prie indexation γp is estimated to be 0.09. Suh estimationomes with great unertainty, as suggested by the large error band aroundthis parameter. This implies that the bakward looking omponent in theNew Phillips urve is lose to zero. For omparison, Smets and Wouters(2003)'s estimates is γp = 0.46.We estimate the wage indexation losely to Smets and Wouters (2003). Es-timates of the degree of prie and wage stikiness suggest that prie andwage ontrats last three-and-a-half and four-and-a-half quarters, respetively.Suh estimates are onsistent with �ndings based on miroeonomi studies.Our estimates of poliy parameters suggest that in the �rst regime, Euro Areamonetary poliy tends to be more aggressive against in�ation than in the se-ond regime. In partiular, the estimates of the posterior mode for the seondregime would imply indeterminay in a onstant parameter DSGE model sinewe estimate rπ,2 = 0.98. However, suh estimates should be interpreted witha bit of aution. Prior of 1999, the monetary poliy in the Euro area was notunique. It ould be the ase that while some single eonomies would have hada monetary poliy that leads to indeterminay, the monetary poliy followedby others may have implied determinay. Both regimes exhibit onsiderableinterest rate smoothing (ρr,1 = 0.90, ρr,2 = 0.83). Reation to output gap is



100Chapter 5. Great Moderation and endogenous monetary poliyswithesslightly lower in the �rst regime (ry,1 = 0.8, ry,2 = 0.9). Estimates of thein�ation target imply that in the �rst regime, the annual in�ation target is
2.5% while it is 4.5% in the seond regime.Fousing on parameters haraterizing the shok proess, two remarks arein order. First, produtivity, government spending, wage markup and priemarkup shoks are very persistent. Their autoregressive parameters are loseto one. Smets and Wouters (2003) �nd a similar results. Seond, estimatesof standard deviations suggest that regime one is a regime of lower maroe-onomi volatility. In fat, unlike the US ase, the standard deviations ofall shoks in the �rst regime are lower than their ounterpart in the seondregime.



5.5. Empirial results: Euro Area 101Table 5.9: Posterior of Strutural ParametersPosterior-Syn Posterior-IndParameters Mode Mean 5% 95% Mode
ϕ 6.4280 6.5644 4.8020 8.2231 7.0427
σc 1.4128 1.4282 1.1538 1.7623 1.6704
h 0.8180 0.7932 0.7101 0.8696 0.4967
θw 0.7332 0.7275 0.6716 0.7842 0.6712
σL 2.6401 2.8212 1.8572 4.0339 2.5227
θp 0.7876 0.7757 0.7176 0.8289 0.7564
γw 0.2152 0.2515 0.0850 0.4350 0.1864
γp 0.0900 0.1108 0.0288 0.2091 0.0915
ψ 0.5013 0.5899 0.3748 0.7980 0.7702
µP 1.7921 1.7633 1.6163 1.9483 1.7246
rπ,1 1.3901 1.3255 0.9948 1.7128 1.6074
rπ,2 0.9878 1.0729 0.7980 1.3226 1.2201
ρr,1 0.9097 0.8907 0.8288 0.9461 0.9011
ρr,2 0.8320 0.8430 0.7744 0.9060 0.5773
ry,1 0.0801 0.0819 0.0285 0.1412 0.0778
ry,2 0.0923 0.1353 0.0585 0.2131 0.1215
r∆y,1 0.1713 0.2014 0.1261 0.3029 0.2709
r∆y,2 0.1205 0.1327 0.0657 0.2073 0.0899
100(1/β − 1) 0.1555 0.1563 0.0562 0.2584 0.1058
100γ 0.2964 0.3029 0.2420 0.3601 0.3331
α 0.1859 0.1802 0.1474 0.2093 0.1877
100π∗(1) 0.6205 0.6190 0.4388 0.8081 0.6228
100∆π∗ 0.4884 0.4941 0.3200 0.6624 0.4260



102Chapter 5. Great Moderation and endogenous monetary poliyswithesTable 5.10: Posterior of Strutural ParametersPosterior-Syn Posterior-IndParameters Mode Mean 5% 95% Mode
ρa 0.9974 0.9960 0.9928 0.9988 0.9932
ρg 0.9988 0.9974 0.9936 0.9999 0.9982
ρb 0.1372 0.2511 0.0640 0.4970 0.7976
ρi 0.5490 0.5063 0.3665 0.6435 0.4785
ρep 0.7574 0.7461 0.5780 0.9064 0.7889
ρw 0.9798 0.9751 0.9645 0.9855 0.9735
ρr 0.4282 0.4298 0.3006 0.5743 0.3596
µw 0.8575 0.8332 0.7546 0.8993 0.7963
µp 0.6314 0.5900 0.3497 0.8070 0.6750
ρga 0.4723 0.4507 0.3198 0.5982 0.4454
100σa,1 0.2451 0.2496 0.2109 0.2904 0.2586
100σg,1 0.2420 0.2431 0.2115 0.2802 0.2361
100σb,1 0.1428 0.1393 0.1007 0.1767 0.0540
100σi,1 0.3020 0.3686 0.2678 0.4617 0.4082
100σp,1 0.1154 0.1148 0.0839 0.1452 0.1260
100σw,1 0.0752 0.0852 0.0612 0.1124 0.0938
100σR,1 0.0934 0.1079 0.0835 0.1355 0.1106
100σa,2 0.3847 0.4226 0.3381 0.5192 0.4160
100σg,2 0.3560 0.3885 0.3096 0.4764 0.3934
100σb,2 0.2296 0.2188 0.1468 0.2801 0.0838
100σi,2 0.5712 0.6265 0.4799 0.7840 0.6280
100σp,2 0.2352 0.2438 0.1806 0.3101 0.2692
100σw,2 0.1927 0.2093 0.1547 0.2687 0.2296
100σR,2 0.2326 0.2563 0.2104 0.3057 0.2436
p11 0.8993 0.9016 0.8453 0.9555 0.9411
p22 0.9382 0.9141 0.8573 0.9672 0.9271
q11 0.9462
q22 0.9170Figure 5.5 depits the smoothed posterior estimates of regimes as well asthe series on output growth, in�ation and interest rate. The hawkish regimeexhibits muh of its persistene after 1993, whih is the seond important date
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Figure 5.5: EU: Posterior probabilities of the (synhronized) hawkish-lowvolatility regime for the best �t model.in the reation of the European Monetary Union (EMU). The dovish regimemainly ours in the 70's, the early 80's and 90's. The high volatility regime inthe early 90's an be explained by the German reuni�ation as an exogenousshok. The reation of the German eonomi monetary union (GEMU) andthe massive injetion of money that followed are important fators behind theinrease in in�ation.5.5.3. Variane deompositionTable 5.11 and 5.12 report the ontribution of the strutural shoks to the fore-ast error variane for seleted endogenous variables. Flutuations in outputare mainly driven by spending, preferene, investment and monetary poliy



104Chapter 5. Great Moderation and endogenous monetary poliyswithesshoks. Together, these shoks aount for more than 70 perent of the out-put variation. Smets and Wouters (2003) �nd similar results for the role ofmonetary poliy in ontributing to output variations. They argue that suha role of monetary poliy shoks is due to the disin�ation period in the early1980s and the ERM risis. Unlike the US, the investment shok does notplay a preponderant role. It only mainly ontributes to investment varia-tions. As expeted, variations in onsumption are mainly due to prefereneshoks. Note that monetary poliy ontributes importantly to onsumption�utuations. Prie markup and wage markup shoks are the main drivers forvariation in real wages, but monetary poliy shoks still play an importantrole. Turning to in�ation, we note that its variations are mainly due to prieand wage markup shoks. However, as horizon lengthens, wage markup shoksbeome the main ontributor. Finally, �utuations in nominal interest rateare mainly determined by the wage markup shok and the monetary poliyshok. In the very short term, the monetary poliy shok mainly determinesinterest rate variations.



5.5. Empirial results: Euro Area 105Table 5.11: Variane deomposition for the best �t model (Regime 1)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 12.38 28.87 23.16 21.60 0.35 1.84 11.80
4Q 13.02 23.54 20.34 20.47 1.01 2.40 19.23
8Q 12.91 23.05 20.02 20.55 1.01 3.04 19.41
24Q 12.49 22.22 19.32 20.14 1.19 3.85 20.80Consumption
1Q 2.47 0.79 83.49 0.41 0.05 0.54 12.25
4Q 6.66 1.97 67.97 1.55 0.69 1.34 19.83
8Q 6.88 2.02 66.92 1.55 0.72 2.16 19.76
24Q 6.78 1.98 64.80 1.63 0.81 3.02 20.97Investment
1Q 0.72 0.01 0.87 87.27 0.37 1.67 9.09
4Q 1.62 0.03 0.90 81.27 1.00 2.22 12.97
8Q 1.59 0.03 0.92 80.94 0.99 2.46 13.07
24Q 1.55 0.03 0.92 79.32 1.18 2.89 14.09Real Wage
1Q 0.48 0.13 2.94 1.75 30.42 56.67 7.60
4Q 2.48 0.18 2.54 3.06 22.75 50.86 18.13
8Q 3.00 0.18 2.58 3.09 22.58 50.55 18.01
24Q 3.02 0.19 2.44 3.20 21.40 50.19 19.56Employment
1Q 35.37 22.60 17.25 16.27 0.03 0.37 8.11
4Q 14.73 14.31 9.34 14.43 1.73 1.02 44.44
8Q 12.23 13.98 7.57 11.66 2.63 2.35 49.58
24Q 8.71 15.92 4.36 7.35 2.28 26.02 35.36In�ation
1Q 0.94 0.17 0.21 0.03 72.29 22.48 3.88
4Q 1.67 0.45 0.47 0.05 29.58 57.63 10.15
8Q 1.64 0.49 0.46 0.07 24.30 62.49 10.53
24Q 1.98 0.70 0.40 0.43 17.76 69.72 9.02Nominal interest rate
1Q 5.57 1.00 30.19 2.71 4.26 6.66 49.61
4Q 6.37 1.62 13.31 6.43 3.44 44.31 24.51
8Q 5.38 1.53 10.29 5.13 2.67 56.19 18.80
24Q 4.24 1.57 6.27 4.42 1.65 70.24 11.61



106Chapter 5. Great Moderation and endogenous monetary poliyswithesTable 5.12: Variane deomposition for the best �t model (Regime 2)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 11.12 24.07 19.61 21.04 0.67 3.51 19.97
4Q 11.35 18.67 16.69 19.24 1.51 4.30 28.24
8Q 11.04 17.90 16.11 19.08 1.53 5.03 29.30
24Q 10.63 17.16 15.47 18.64 1.81 5.52 30.77Consumption
1Q 2.14 0.62 73.03 0.55 0.10 1.07 22.49
4Q 6.06 1.56 56.52 1.55 0.96 2.57 30.77
8Q 6.19 1.57 54.62 1.51 0.97 3.68 31.45
24Q 6.04 1.53 52.41 1.57 1.13 4.36 32.95Investment
1Q 0.59 0.01 0.55 80.80 0.66 3.09 14.30
4Q 1.47 0.02 0.58 74.09 1.48 3.90 18.47
8Q 1.42 0.02 0.57 73.07 1.52 4.09 19.30
24Q 1.41 0.02 0.60 71.59 1.80 4.29 20.29Real Wages
1Q 0.23 0.07 1.45 1.02 26.37 63.83 7.03
4Q 1.46 0.10 1.34 1.82 20.79 59.83 14.65
8Q 1.79 0.11 1.39 1.89 20.75 59.09 14.98
24Q 1.82 0.11 1.33 2.04 20.28 57.65 16.77Employment
1Q 34.21 19.36 15.03 16.35 0.07 0.72 14.25
4Q 12.39 10.72 6.75 12.76 2.33 1.79 53.26
8Q 10.74 10.98 5.61 10.76 3.10 3.99 54.81
24Q 8.65 13.91 3.45 8.03 2.31 27.30 36.36In�ation
1Q 0.58 0.10 0.12 0.02 67.53 28.18 3.48
4Q 0.89 0.24 0.18 0.03 25.61 66.37 6.69
8Q 0.85 0.25 0.16 0.07 20.77 71.76 6.14
24Q 1.01 0.35 0.11 0.33 13.76 80.07 4.36Nominal interest rate
1Q 2.23 0.37 9.23 1.04 6.46 7.93 72.74
4Q 2.98 0.72 4.43 2.71 4.40 52.15 32.61
8Q 2.51 0.69 3.32 2.12 3.28 64.06 24.01
24Q 2.00 0.73 1.91 1.92 1.94 77.65 13.87



5.6. Endogenous monetary poliy 1075.6. Endogenous monetary poliyIn this setion, we use our estimation results to shed new light on the followingquestion: Are hanges in monetary poliy regime endogenous? More preisely,to what extent do hanges in the ondut of monetary poliy re�et the urrentstate of the eonomy?We provide insights to this question by jointly analyzing the estimates fromthe synhronized and independent regimes spei�ations. The fat that bothversions �t the data equally well is interesting, given that the synhronizedregimes spei�ation is atually nested in the independent regimes spei�a-tion.To understand this point, assume for instane that the true data generatingproess features independent regime hanges, and we estimate both versions ofthe model. Then, the spei�ation with independent regime swithes shouldlearly dominate. Assume now that the true Data Generating Proess featuressynhronized regime hanges. Beause the synhronized version is nested inthe independent regimes spei�ation, both version should deliver roughlysimilar �ts (at least, asymptotially).In pratie, things are ompliated by the fat that there are additional pa-rameters to estimate in the independent regime spei�ation,6 and that thenumber of observations is limited. But the �nding of a similar �t for bothversions of the model learly points toward investigating the potential endo-geneity of monetary poliy regime hanges.In order to address this issue while taking into aount the data limitationproblem, we will onsider a striter diagnosis test for onluding that monetary6For example, the spei�ation with independent regime swithes requires the estimationof four transition probabilities, while the version with synhronized regimes only requires2.



108Chapter 5. Great Moderation and endogenous monetary poliyswithespoliy is indeed endogenous. Spei�ally, we require that the following threeriteria be roughly satis�ed: (i) the "independent regimes" and "synhronizedregimes" spei�ations produe similar �ts ; (ii) in the "independent regimes"spei�ation, hanges in monetary poliy our (roughly) simultaneously withhanges in the variane of shoks ; (iii) in the "independent regimes" spei�-ation, two of the four on�gurations possible ex-ante almost never our. Inpartiular, the "hawkish monetary poliy � high volatility" and the "dovishmonetary poliy � low volatility" regimes should almost never our.5.6.1. Diagnosis test: U.S. eonomyAs mentioned above, the �rst riterion required for the onlusion that the USmonetary poliy has been endogenous is satis�ed (see Table 5.3). However,the other two riteria remain far from being ful�lled.Consider for example the smoothed regime probabilities for the US eonomy,depited in Figure 5.6. The �gure indiates that two swithes in monetarypoliy ourred. The �rst swith, from the hawkish to the dovish regime,ourred roughly in the year 1970. The seond swith, from the dovish to thehawkish regime, ourred in the early 80s. This timing does not onord wellwith the timing of swithes in volatility regimes.Consider now the smoothed probabilities assoiated with being in any of thefour oneivable on�gurations in the independent regimes spei�ation (see5.7). Clearly, the �gure indiates that the on�guration of a high volatilityregime assoiated with a hawkish monetary poliy ourred quite frequently,espeially during the late 50s � early 60s, and during the mid-80s. It alsosuggests that monetary poliy has been dovish while volatility was low in thelate 70s. Thus our riteria (ii) and (iii) are learly not satis�ed, and we annotonlude that the US monetary poliy has been endogenous.This onlusion tends to be on�rmed by another observation. Figure 5.6 sug-



5.6. Endogenous monetary poliy 109gests, quite strikingly, that hanges in monetary poliy regimes are stronglyrelated to the appointments of a new Chairman at the Federal Reserve. Inpartiular, while the hawkish regime was prevailing in the Martin era, mone-tary poliy apparently swithed to the dovish regime with the appointment ofBurns, and remained dovish under Miller. Then, aording to the �gure, a re-turn to the hawkish regime ourred shortly after the appointment of Volkeras the Fed's Chairman. This hawkish regime ontinued to prevail during theGreenspan and Bernanke hairmanships. Thus, the personality of the Chair-man in o�e appears to be a good indiator of the type of monetary poliyonduted. This tends to on�rm that monetary poliy did not systematiallyhange in response to hanges in the eonomi situation.
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Figure 5.6: Posterior probabilities for the Hawkish regime, omputed at theposterior mode estimates of the independent regime swithing model. Vertialbars mark the hairmen appointment.
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Figure 5.7: Posterior probabilities omputed at the posterior mode estimatesof the independent regime swithing model swithing model.5.6.2. Diagnosis test: Euro AreaIn ontrast to the US, our results suggest that for the Euro Area monetarypoliy has been endogenous. Consider �rst the smoothed regime probabilitiesdepited in Figure 5.8. Clearly, periods during whih the European monetarypoliy has been hawkish tend to orrespond with periods of low volatility,and vie versa. Similarly, looking at the smoothed probability assoiatedwith being in any of the 4 oneivable situations ex-ante (see Figure 5.9),one learly sees that the "hawkish monetary poliy � high volatility" and the"dovish monetary poliy � low volatility" regimes almost never ourred. Theonly exeption is the period of the early 80s, where monetary poliy remainedhawkish while the Euro Area was experiening a severe reession.
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Figure 5.8: Posterior probabilities for the Hawkish regime, omputed at theposterior mode estimates of the independent regime swithing model. Vertialbars mark the three stages dates in the reation of the European EonomiUnion.5.7. Conluding remarksIn this hapter, we have estimated the Smets and Wouters (2007) model inthe presene of regime swithes in both monetary poliy and the shoks vari-ane parameters. We have used the estimated model to shed new lights onthe soures of the Great Moderation and the on issue related to the endogene-ity of monetary poliy. We �nd strong evidene in favor of regime swithes,both in poliy parameters and shok varianes. Imposing synhronized regimeswithes in our model does not deteriorate its �t, as this version �ts equallywell than the version where regime swithes are independent. Our last impor-
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Figure 5.9: Posterior probabilities omputed at the posterior mode estimatesof the independent regime swithing model swithing model.tant �nding is the strong evidene that hanges in European monetary poliyhad been endogenous, while for the US eonomy, hanges in monetary poliyare losely related to the personality of the Chairman in plae.The urrent version of the hapter laks ounterfatual experiments that wouldmore deeply doument the soures of the Great Moderation. Also, it will beuseful to ontrast our results with fats based on the European eonomy. Weleave these two onsiderations for future researh.
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6.1. ConlusionNowadays, dynami stohasti general equilibriummodels provide a new mod-eling framework for poliy analysis, both in aademi and poliy-makingspheres. There are several theoretial arguments that ould explain the su-ess of these models. In this thesis, we have foused instead on empirialrather than theoretial arguments. To do so, we have used reent eonomet-ris tools, whih have allowed us to provide a systemati onfrontation of thesemodels to the data.6.1.1. SummaryOur eonometri work has tried to evaluate DSGE models with respet to thedata in three dimensions. Suh dimensions are in�ation foreasting perfor-mane, in�ation persistene and the Great Moderation.



114 Chapter 6. ConlusionTo study the preditions of DSGE models with respet to foreasting in�ation,we have estimated the new-Keynesian Phillips urve, a key equation sharedby every DSGE models featuring Keynesian ingredients. The key result fromthat estimation is that one diret observations from survey data on in�a-tion expetations are used, the new-Keynesian Phillips urve helps to foreastin�ation quite well.With respet to the in�ation persistene, we provide new results in the lit-erature dealing with the �t of the new-Keynesian Phillips urve in mathingin�ation dynamis. We show that inluding a time-varying in�ation targetof the entral bank in the new-Keynesian Phillips urve does not neessarylead to a time-varying new-Keynesian Phillips urve, unlike in studies suhas Cogley and Sbordone (2008). However, like the authors, we do �nd thatthe introdution of a time-varying in�ation target is su�ient to aount forin�ation persistene, instead of ad ho bakward-looking omponent in thenew-Keynesian Phillips urve.The last dimension of the data to whih we have onfronted the model is theGreat Moderation, the idea that eonomi data before the mid 1980 are morestable than before. The model proves to be useful in repliating the GreatModeration both for the U.S. and for the Euro Area eonomies. Furthermore,the estimated model provides an interesting soure of the Great Moderation:both the variane of the shoks and improved monetary poliies are plausibleexplanations for the deline in maroeonomi data observed sine the mid of80's until the reent �nanial risis.Evidene of hanges in monetary poliy regime naturally raises the questionof whether suh hanges are endogenous or exogenous. This question makessense beause the entral bank is supposed a priori to reat to the urrent stateof the eonomy by adjusting its poliy instrument, i.e. the nominal interestrate in the model. We have found that for the Euro Area eonomy, hanges



6.1. Conlusion 115in monetary poliy regimes are endogenous preisely beause the entral banksets its poliy instrument with respet to the volatility of the eonomy. Inpartiular, periods of low volatility oinide with those where the Europeanmonetary poliy is aggressive towards in�ation. On the ontrary, hanges inthe U.S. monetary poliy annot be said to be endogenous, but appear to belosely onneted to the personality of the Chairman in plae, re�eting the�onservative entral banker� view of the ondut of monetary poliy (Rogo�,1985).6.1.2. ExtensionsDespite the suess of the DSGE models in mathing interesting dimensionsof the data, a number of reent papers have pointed out several limitations ofthe DSGE approah. Here, we fous on two of them.The �rst one is the inability of DSGE models to take into aount high andpersistent unemployment found in the data. Suh a limitation ould poten-tially redued the ability of the new-Keynesian to take into aount somemonetary phenomena. Indeed, Galí et al. (2011) show that the Smets andWouters (2007) model an be reformulated to inorporate unemployment.Their results suggest that the model is able to reprodue observed unemploy-ment �utuations when it is estimated with data on unemployment, insteadof data on hours worked, as we have done in the thesis. Thus, it remainsinteresting to see whether our main onlusions are robust with respet tothis reformulations.The seond limitation has to do with the reent �nanial risis. To model themonetary poliy, we have onsidered a �onventional monetary poliy�, i.e. apoliy where the Federal Reserve manipulates the Federal Funds rate in orderto a�et markets interest rates. However, the reent �nanial risis startedin August 2007 dramatially hanges the environment, as it has led the Fed



116 Chapter 6. Conlusionto injet redit into private markets. In this sense, suh a poliy is termed�unonventional�. Most of DSGE models onsidered in the literature speify amonetary poliy in whih the Federal Reserve ats onventionally. Thus, theyare not truly useful to make preditions in risis time where the entral bankats unonventionally.There is a burgeoning literature trying to introdue the �nanial setor intoDSGE models. The most representative paper of that literature is a paper pro-vided by Gertler and Karadi (2011). The authors develop a quantitative mon-etary DSGE model that allows for a role for the �nanial setor through the�nanial intermediaries faing endogenous balane sheet onstraints. Whiletheir model is not intended to model the sub-prime risis, it tries to aount forsome key elements relevant to analyzing the unonventional monetary poliyonduted by the Fed sine August 2007 and partiularly after the LehmanBrothers ollapse. Hene, we see the Gertler and Karadi (2011) model asa good starting point to extend our work. The methodology developed inChapters 4 and 5 ould be used to estimate suh a model.



Appendix A
A.1. Appendix to Chapter 3A.1.1. The New Keynesian Phillips CurveThe �rst-order ondition assoiated to the program of the �rms is given by
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t+1. (A.1.1)A.1.2. The Jaobian MatrixWe derive the Jaobian matrix following the appendix of Magnusson andMavroeidis (2010). Note that the ompanion matrix Φ(ϕ) an be written as

Φ(ϕ) = BA + Cwhere B = (Ik, 0, · · · , 0)′ is a (kp) × k matrix, A = (Φ1, · · · ,Φp)′ is k × (kp)matrix of the VAR oe�ients, and C = (0, 0; Ikp−1, 0) is a (kp)×(kp) matrix.



A.1. Appendix to Chapter 3 119Hene, Φ(ϕ) is linear in ϕ and the distane funtion is di�erentiable withrespet to ϕ.Sine Φ(ϕ)′ = A′B′ +C ′, its derivative w.r.t ϕ is given by Ikp⊗B. Using thislast result and the properties of the Kroneker produt, it is easy to show that
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A.1.3. DerivativesWe transform our HNKPC to failitate the omputation of the derivatives.The vetor of restritions writes
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The robust tests require the following derivatives:
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B. (A.1.8)A.2. Appendix to Chapter 5The appendix reports a variant from the Smets and Wouters (2007) modelwith regime swithing in shoks varianes and in monetary poliy.



A.2. Appendix to Chapter 5 121A.2.1. HouseholdsThe representative household determines {ct, Bt, Kt, It, zt, lt}
∞
t=0 and its nom-inal wage W̃0 when it optimizes it, aording to the indexation rule, whih isde�ned in Setion 2.2. In setion 2.1, we derive how the household determines

{ct, Bt, Kt, It, zt, lt}
∞
t=0 whereas the determination of wage is derived in setion2.2.A.2.2. Standard problemTo determine the evolution of {ct, Bt, Kt, It, zt, lt}
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]
− 1

= −β (γz)
−σc Et

{
λ̃t+1

λ̃t
Qt+1ε

i
t+1

(
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 .This rule implies that
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,with
w̃Nt = Et

∞∑

i=0

(
β (γz)

1−σc ξw
)i
UL(c̃t+i, lt+i)lt+i,and

w̃Dt = Et

∞∑

i=0

(
β (γz)

1−σc ξw
)i Pt
Pt+i

U c(c̃t+i, lt+i)lt+iX̃
w
t,i.Expressing w̃Nt and w̃Dt reursively, we have

w̃Dt = U c(c̃t, lt)lt + β (γz)
1−σc ξwEt

X̃w
t,1

πt+1

w̃Dt+1.



126 Appendix A.Linearizing w̃Dt , we have
̂̃wDt =

(
1− β (γz)

−σc ξw
) (
Û c
t + l̂t

)

+β (γz)
1−σc ξw

(
Et
̂̃wDt+1 + γwπ̂t + (1− γw)Etπ̂

∗
t+1 − Etπ̂t+1

)
.In the same way, we have

w̃Nt = UL(c̃t, lt)lt + β (γz)
1−σc ξwEtw̃

N
t+1.Linearizing w̃Nt , we have

̂̃wNt =
(
1− β (γz)

1−σc ξw
) (
ÛL
t + l̂t

)
+ β (γz)

1−σc ξwEt
̂̃wNt+1.Linearization of w̃t writes

̂̃wt = ̂̃wNt − ̂̃wDt
=

(
1− β (γz)

1−σc ξw
) (
ÛL
t − Û c

t

)
+ β (γz)

1−σc ξw

×
(
Et ̂̃wt+1 − γwπ̂t − (1− γw)Etπ̂

∗
t+1 + Etπ̂t+1

)
. (A.2.10)From the de�nition of the wage index:

Wt =

(∫ 1

0

(
W i
t

)−1/λw,r
di

)−λw,t

,we dedue the stationarized real wage wt =Wt/ztPt as
wt =


(1− ξw) (w̃t)

−1/λw,r + ξw

(
wt−1

π
γw
t−1 (π

∗
t )

1−γw

πt

)−1/λw,r




−λw,t

.Thus, wt and w̃t evolve at the same rate. Linearizing wt, we obtain:
ŵt = (1− ξw)

̂̃wt + ξw (ŵt−1 + γwπ̂t−1 + (1− γw)π̂
∗
t − π̂t) (A.2.11)
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Et ̂̃wt+1 =

1

(1− ξw)
Etŵt+1−

ξw
(1− ξw)

(
ŵt + γwπ̂t + (1− γw)Etπ̂

∗
t+1 − Etπ̂t+1

)
.(A.2.12)Inserting (A.2.10) and (A.2.12) in (A.2.11), we have:

ŵt = (1− ξw)
(
1− β (γz)

1−σc ξw
) (
ÛL
t − Û c

t

)

+β (γz)
1−σc ξw

(
Etŵt+1 − ξwŵt − γwπ̂t − (1− γw)Etπ̂

∗
t+1 + Etπ̂t+1

)

+ξw (ŵt−1 + γwπ̂t−1 + (1− γw)π̂
∗
t − π̂t) ,or

ŵt =
(1− ξw)

(
1− β (γz)

1−σc ξw
)

1 + β (γz)
1−σc (ξw)

2

(
ÛL
t − Û c

t

)
−

(1 + β (γz)
1−σc γw)ξw

1 + β (γz)
1−σc (ξw)

2 π̂t

+
ξw

1 + β (γz)
1−σc (ξw)

2 (ŵt−1 + γwπ̂t−1 + (1− γw)π̂
∗
t )

+
β (γz)

1−σc ξw

1 + β (γz)
1−σc (ξw)

2

(
Etŵt+1 − (1− γw)Etπ̂

∗
t+1 + Etπ̂t+1

)
.(A.2.13)Smets and Wouters (2007) de�ne the wage markup as the ratio between thereal wage and the marginal rate of substitution between onsumption andleisure: µwt ≡ wt/mrst. Following them, we have

m̂rst = ŵt − µ̂wt , (A.2.14)with m̂rst = ÛL
t − Û c

t . Substituting this expression in (A.2.13) and fatorizingterms in ŵt, we have:
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ŵt = −

(1− ξw)
(
1− β (γz)

1−σc ξw
)

ξw
(
1 + β (γz)

1−σc
) µ̂wt −

1 + β (γz)
1−σc γw

1 + β (γz)
1−σc

π̂t

+
1

1 + β (γz)
1−σc

(ŵt−1 + γwπ̂t−1 + (1− γw)π̂
∗
t )

+
β (γz)

1−σc

1 + β (γz)
1−σc

(
Etŵt+1 − (1− γw)Etπ̂

∗
t+1 + Etπ̂t+1

)
.(A.2.15)Using the Kimball aggregator instead, we obtain

ŵt = −
(1− ξw)

(
1− β (γz)

1−σc ξw
)

ξw
(
1 + β (γz)

1−σc
)
((µw − 1)ς + 1)

µ̂wt −
1 + β (γz)

1−σc γw
1 + β (γz)

1−σc
π̂t

+
1

1 + β (γz)
1−σc

(ŵt−1 + γwπ̂t−1 + (1− γw)π̂
∗
t )

+
β (γz)

1−σc

1 + β (γz)
1−σc

(
Etŵt+1 − (1− γw)Etπ̂

∗
t+1 + Etπ̂t+1

)
, (A.2.16)where µw ≡ 1 + λw.A.2.4. FirmsThe �rm's program is desribed in two steps. First, for a given level of produ-tion, the �rm determines the quantities of apital and labour that minimizeits variable total ost rtzitkit−1 + wtL

i
t, subjet to the prodution onstraint

yit = At
(
zitk

i
t−1

)α (
(γz)

t Lit
)1−α

− (γz)
t φ. (A.2.17)Here φ > 0 is a �xed ost, At is an exogenous tehnologial progress, followinga known stohasti proess given by :

At = f (At−1, ǫA,t) , (A.2.18)



A.2. Appendix to Chapter 5 129where ǫA,t is an i.i.d tehnologial shok . The FOC writes:
zitk

i
t−1 =

(
α

1− α

)1−α(
wt
rt

)1−α (
yit + (γz)

t φ
)
, (A.2.19)and

Lit =

(
α

1− α

)−α(
wt
rt

)−α (
yit + (γz)

t φ
) . (A.2.20)From the FOC, we dedue the total variable ost (for yit > 0):

rtz
i
tk
i
t−1 + wtL

i
t = Υ

rαt w
1−α
t

At
(yit + (γz)

t φ) (A.2.21)
≡ st(y

i
t + φ), (A.2.22)where st ≡ s (rt, wt, At) is the marginal ost of prodution and Υ = α−α(1 −

α)−(1−α) .Seond, in eah and every period, eah �rm faes a onstant probability 1−ξpof being able to optimize its prie p̃it . Otherwise, it determines its prieaording to the rule
pit+k = (πt+k−1)

γp
(
π∗
t+k

)1−γp pit+k−1,where πt+k−1 is the past in�ation fator and π∗
t+k is the in�ation target.De�ne the indexation fator as

Xp
t,k =

{
1 for k = 0(

Pt+k−1

Pt−1

)γp (
π∗
t+kπ

∗
t+k−1...π

∗
t+1

)1−γp for k = 1, ...,∞

}
,or, equivalently:

Xp
t,k =





1 for i = 0
k

Π
l=1

(
(πt+l−1)

γp
(
π∗
t+l

)1−γp) for i = 1, ...,∞



 .



130 Appendix A.This rule implies
pit+k = Xp

t,kp̃
i
t, (A.2.23)In this ontext, the optimal prie p̃it hosen by an optimizing �rm at t is thesolution to the following program:max

p̃it

E
t

∞∑

k=0

(
βξp
)k λt+k

λt

(
p̃itX

p
t,k

pt+k
− st+k

)
yit+ksubjet to

yit+k =

(
p̃itX

p
t,k

pt+k

)−θ

yt+kwherept is the aggregate prie index and yt is the aggregate output.The FOC writes
p̃it
pt
E
t

∞∑

k=0

(
βξp
)k pt
pt+k

Xp
t,kλt+ky

i
t+k = µpE

t

∞∑

k=0

(
βξp
)k
λt+kst+ky

i
t+kor

p̃it
pt
E
t

∞∑

k=0

(
βξp
)k (

Xp
t,k

)1−θ
(

pt
pt+k

)(1−θ)

λt+kyt+k =

µpE
t

∞∑

k=0

(
βξp
)k (

Xp
t,k

)−θ
(
pt+k
pt

)θ
λt+kst+kyt+k,or

p̃it
pt

= µp

E
t

∑∞
k=0

(
βξp
)k (

Xp
t,k

)−θ (pt+k

pt

)θ
λt+kst+kyt+k

E
t

∑∞
k=0

(
βξp
)k (

Xp
t,k

)1−θ (pt+k

pt

)θ−1

λt+kyt+k

,where µp ≡ θ/(θ − 1) . Stationarizing it, we have
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p̃it
pt

= µp

E
t

∑∞
k=0

(
β (γz)

1−σ ξp
)k (

Xp
t,k

)−θ (pt+k

pt

)θ
λ̃t+kst+kỹt+k

E
t

∑∞
k=0

(
β (γz)

1−σ ξp
)k (

Xp
t,k

)1−θ (pt+k

pt

)θ−1

λ̃t+kỹt+k

,or
p̃it
pt

= µp
pNt
pDt
,where pNt and pDt are expressed reursively as

pNt = λtstyt + β (γz)
1−σ ξpEt

{
pNt+1

(
πt+1

Xp
t,1

)θ}
,and

pDt = λtyt + β (γz)
1−σ ξpπ

(1−γp)(1−θ)Et

{
pDt+1

(
πt+1

Xp
t,1

)θ−1
}
.Linearizing them, we have

(̂
p̃it
pt

)
=

(
1− β (γz)

1−σ ξp
)
ŝt + β (γz)

1−σ ξpEt

(̂
p̃it+1

pt

)
+ β (γz)

1−σ ξpEtπ̂t+1

−β (γz)
1−σ ξpγpπ̂t − β (γz)

1−σ ξp
(
1− γp

)
Etπ̂

∗
t+1From the de�nition of the prie index, we have

(̂
p̃it
pt

)
=

ξp(
1− ξp

) (π̂t − γpπ̂t−1 −
(
1− γp

)
π̂∗
t

)where:
ξp(

1− ξp
) (π̂t − γpπ̂t−1 −

(
1− γp

)
π̂∗
t

)
=

(
1− β (γz)

1−σ ξp
)
ŝt +

β (γz)
1−σ (ξp

)2
(
1− ξp

) (
Etπ̂t+1 − γpπ̂t −

(
1− γp

)
Etπ̂

∗
t+1

)

+ β (γz)
1−σ ξp

(
Etπ̂t+1 − γpπ̂t −

(
1− γp

)
Etπ̂

∗
t+1

)
,
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π̂t =

(
1− ξp

) (
1− β (γz)

1−σ ξp
)

ξp(1 + β (γz)
1−σ γp)

ŝt

+
1

(1 + β (γz)
1−σ γp)

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)

+
β (γz)

1−σ

(1 + β (γz)
1−σ γp)

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
. (A.2.24)

Smets et Wouters (2007) de�ne the prie markup as as the ratio betweenmarginla produtivity of labour and real wage: µpt ≡ mplt/wt.Following them,we have
µ̂pt = Ât + α

(
k̂t−1 + ẑt−1 − L̂t

)
− ŵt

= Ât − αr̂t − (1− α)ŵt

= −ŝtSubstituting this in (A.2.24), we have:
π̂t = −

(
1− ξp

) (
1− β (γz)

1−σ ξp
)

ξp(1 + β (γz)
1−σ γp)

µ̂pt

+
1

(1 + β (γz)
1−σ γp)

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)

+
β (γz)

1−σ

(1 + β (γz)
1−σ γp)

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
. (A.2.25)Using the Kimball aggregator, we have (with µp ≡ 1 + λp) :
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π̂t = −

( (
1− ξp

) (
1− β (γz)

1−σ ξp
)

ξp(1 + β (γz)
1−σ γp)

((
µp − 1

)
ςp + 1

)
)
µ̂pt

+
1

(1 + β (γz)
1−σ γp)

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)

+
β (γz)

1−σ

(1 + β (γz)
1−σ γp)

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
. (A.2.26)A.2.5. Monetary poliyAs in Smets and Wouters (2007), the entral bank adjusts the nominal interestrate aording to the rule

Rt

R∗
t

=

(
Rt−1

R∗
t

)ρ(st) [(πt
π∗
t

)rπ(st)( Yt

Y f
t

)ry(st)]1−ρ(st)( Yt/Yt−1

Y f
t /Y

f
t−1

)r∆y(st)

εRt ,(A.2.27)where R∗
t ≡ (1/βγ−σc)π∗

t and π∗
t = π∗(st) is the in�ation target when theurrent regime is st. Unlike in Smets and Wouters (2007), the in�ation targetand the oe�ients of the rule (ρ(st), rπ(st), ry(st), r∆y(st)) depend upon theregime in plae. Using the fat that R̂∗

t = π̂∗
t , log-linearization of (A.2.27)leads to

(R̂t − π̂∗
t ) = ρ(st)(R̂t−1 − π̂∗

t ) (A.2.28)
+(1− ρ(st))[rπ(st)(π̂t − π̂∗

t ) + ry(st)(Ŷt − Ŷ f
t )]

+r∆y
(st)(Ŷt − Ŷ f

t )− (Ŷt−1 − Ŷ f
t−1)] + ǫrt ,where π̂∗

t ≡ ln(π∗
t/π), π denoting the long run in�ation fator.Pratially, we assume as Shorfheide (2005) that the in�ation target is om-puted from an annualized in�ation rate ln(π∗

a(st)) and evolves aording to:
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ln(π∗

a(st) =




ln πLa if st = 1,

ln πHa if st = 2,where π∗
a(st) is the annualized in�ation fator. With the transition matrix P ,we an easily show that the annualized long run in�ation rate is

πa = exp

(
1− p22

2− p11 − p22
ln πLa +

1− p11
2− p11 − p22

ln πHa

)
.We express the πa to a quarterly basis as in the model.A.2.6. Steady State

(
1 +

φ

Y

)
= µP ,

r =
1− βγ−σc(1− δ)

βγ−σc
,

K

L
=

(
α

rµP

) 1
1−α

,

w =
1− α

α
r
K

L
,

Y

L
=

1

µP

(
K

L

)α
,

G

L
= gy

Y

L
,

I

L
= (γ − 1 + δ)

K

L
,

C

L
=
Y

L
−
I

L
−
G

L
,. From household's optimization program, we have

(
1−

h

γ

)
L1+σL =

w

(1 + λw)(C/L)
.



A.3. Log linearization of other equations 135whih is a ondition used to derive the linearized onsumption dynamis.
R =

Π

βγ−σcA.3. Log linearization of other equations
· λ̃t= β (γz)

−σc εb,tRtEt

{
λ̃t+1

πt+1

}:
λ̂t = Etλ̂t+1 + R̂t − Etπ̂t+1 + ε̂bt (A.3.1)

· λ̃t = U c(c̃t, 1− lt) = (c̃t − h/γzCt−1)
−σc exp((σc − 1)/(1 + σL) (lt)

1+σL).Here, tilded variables refers to their stationarized values.
Ĉt =

h

γz
Ĉt−1 −

1− h/γz
σc

λ̂t +
(1− h/γz) (σc − 1) l1+σL

σc
l̂t, (A.3.2)from whih we dedue

λ̂t = −
σc

1− h/γz
Ĉt +

h/γzσc
1− h/γz

Ĉt−1 + (σc − 1) l1+σL l̂t.Then,
Etλ̂t+1 =

h/γzσc
1− h/γz

Ĉt −
σc

1− h/γz
EtĈt+1 + (σc − 1) l1+σLEt l̂t+1. (A.3.3)Inserting (A.3.3) and (A.3.1) in (A.3.2), we get:

Ĉt =
h/γz

1 + h/γz
Ĉt−1 +

1

1 + h/γz
EtĈt+1 +

(1− h/γz) (σc − 1) l1+σL

σc (1 + h/γz)

[
l̂t − Et l̂t+1

]

−
(1− h/γz)

σc (1 + h/γz)

[
R̂t − Etπ̂t+1 + ε̂bt

]
. (A.3.4)



136 Appendix A.Sine at the steady state (1− h/γz) l
1+σL = wl/((1 + λw)c), we obtain thedynamis of onsumption as

Ĉt =
h/γz

1 + h/γz
Ĉt−1 +

1

1 + h/γz
EtĈt+1 +

(σc − 1)wl/((1 + λw)c)

σc (1 + h/γz)

[
l̂t −Et l̂t+1

]

−
(1− h/γz)

σc (1 + h/γz)

[
R̂t − Etπ̂t+1 + ε̂bt

]
. (A.3.5)

· Qt = β (γz)
−σc Et

{
λ̃t+1

λ̃t
(rt+1zt+1 − ψ (zt+1) + (1− δ)Qt+1)

}At the steady state, we have z = 1, Q = 1, rk = ψ′ (1) and ψ (z) = ψ (1) = 0.

1 = β (γz)
−σc (rk + 1− δ), i.e rk = (1− β (γz)

−σc (1− δ)
)
/
(
β (γz)

−σc
)
.Then,

Q̂t = −λ̂t + Etλ̂t+1 + β (γz)
−σc rk (Etr̂t+1 + Etẑt+1)− β (γz)

−σc rkEtẑt+1

+β (γz)
−σc (1− δ)EtQ̂t+1.Using (A.3.1) and making some simpli�ations, we have:

Q̂t =
rk

1− δ + rk
Etr̂t+1 +

1− δ

1− δ + rk
EtQ̂t+1 −

(
R̂t − Etπ̂t+1 + ε̂bt

)
. (A.3.6)

· Qtε
i
t

[
(1− S

(
γz Ĩt/Ĩt−1

)
−γz Ĩt/Ĩt−1S

′
(
γz Ĩt/Ĩt−1

)]
− 1

= −β (γz)
−σc Et

{
λ̃t+1

λ̃t
Qt+1ε

i
t+1

(
γz Ĩt+1/Ĩt

)2
S ′
(
γz Ĩt+1/Ĩt

)}Assumptions: S(γz) = 0; S ′(γz) = 0; S ′′(γz) = ϕ.We have:
Q̂t + ε̂it − (γz)

2 S
′′

(γz)
[
Ît − Ît−1

]
= −β (γz)

−σc (γz)
2 S

′′

(γz)
[
EtÎt+1 − Ît

]
.
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Ît =

1(
1 + β (γz)

1−σc
)
(γz)

2 ϕ
Q̂t +

1

1 + β (γz)
1−σc

Ît−1 +
β (γz)

1−σc

1 + β (γz)
1−σc

EtÎt+1

+
1(

1 + β (γz)
1−σc

)
(γz)

2 ϕ
ε̂it. (A.3.7)Note that Smets and Wouters (2007) normalize the investment shok: ε̂i′t =

ε̂it/
((
1 + β (γz)

1−σc
)
(γz)

2 ϕ
)
.

· rt = ψ′ (zt)We have
ẑt = z1r̂t,where z1 ≡ ψ′ (1) /ψ′′ (1) is the inverse of the elastiity of adjustment ostfuntion.

· K̃t = (1− δ)/γzK̃t−1 + εit/γz [1− S (γzIt/It−1)] ĨtWe have :̂
Kt =

1− δ

γz
K̂t−1 +

[
1−

(1− δ)

γz

]
Ît +

[
1−

(1− δ)

γz

]
ε̂it. (A.3.8)

· Yt = Ct +Gt + It + ψ (zt)Kt−1We have :
Y Ŷt = CĈt +GĜt + IÎt + ψ(1)KK̂t−1 + ψ′(1)KẑtSine ψ (1) = 0, ψ′ (1) = rk and ẑt = (1/ǫψ′)r̂t,

Ŷt = (1− (γz − 1 + δ) ky−gy)Ĉt+gyĜt+(γz − 1 + δ) kyÎt+r
kkyz1r̂t (A.3.9)



138 Appendix A.Note that Smets and Wouters (2007) normalize spending shok as ǫg,t ≡ gyĜt.

· ztKt−1/Lt =
α

1−α
wt/rt.We have

r̂t + ẑt + K̂t−1 − ŵt − L̂t = 0..Using ẑt = z1r̂t, we obtain
(1 + z1) r̂t + K̂t−1 − ŵt − L̂t = 0. (A.3.10)

· Yt = µ̃t/µt (st)
(
At(ztKt−1)

αL1−α
t − Atφ

)Aggregating individual produtions, we obtain
Ŷt =

Y + φ

Y
Ât + α

Y + φ

Y

(
K̂t−1 + z1r̂t

)
+ (1− α)

Y + φ

Y
L̂t. (A.3.11)A.3.1. Final system

iy = (γz − 1 + δ) ky, cy = (1− iy − gy), ry = rkkyz1,

c1 = [h/γz] / [1 + h/γz] , c2 = [(σc − 1)wl/((1 + λw)c)] / [σc (1 + h/γz)],
c3 = [1− h/γz] / [σc (1 + h/γz)] ,

i1 =
[
1/1 + β (γz)

1−σc
], i2 = [1/ (1 + β (γz)

1−σc
)
(γz)

2 ϕ
]
,

q1 = [1− δ] /
[
1− δ + rk

]
,

k1 = (1− δ) /γz, k2 = (1− (1− δ) /γz)
(
1 + β (γz)

1−σc
)
(γz)

2 ϕ,

π1 = 1/
[
(1 + β (γz)

1−σ γp)
]
, π2 =

[
β (γz)

1−σ] /
[
(1 + β (γz)

1−σ γp)
],
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π3 =

[(
1− ξp

) (
1− β (γz)

1−σ ξp
)]
/
[
ξp(1 + β (γz)

1−σ γp)
((
µp − 1

)
ςp + 1

)]
,

w1 = 1/
[
1 + β (γz)

1−σc
], w2 =

[
1 + β (γz)

1−σc γw
]
/
[
1 + β (γz)

1−σc
]
,

w4 =
[
(1− ξw)

(
1− β (γz)

1−σc ξw
)]
/
[
ξw
(
1 + β (γz)

1−σc
)
((µw − 1) ςw + 1)

]
.We have:

Ŷt − cyĈt − iy Ît − ry r̂t − ε̂gt = 0, (Eq. 1)
Ĉt = c1Ĉt−1 + (1− c1)EtĈt+1 + c2

[
L̂t −EtL̂t+1

]

−c3
[
R̂t −Etπ̂t+1 + ε̂bt

]
, (Eq. 2)

Ît = i1Ît−1 + (1− i1)EtÎt+1 + i2Q̂t + ε̂it, (Eq. 3)
Q̂t = q1EtQ̂t+1 + (1− q1)Etr̂t+1 −

(
R̂t −Etπ̂t+1 + ε̂bt

)
, (Eq. 4)

Ŷt =

(
1 +

φ

Y

)(
α
(
K̂t−1 + z1r̂t

)
+ (1− α)L̂t + ε̂At

)
, (Eq. 5)

K̂t = k1K̂t−1 + (1− k1) Ît + k2ε̂
i
t, (Eq. 6)

µ̂pt = α
(
K̂t−1 + z1r̂t − L̂t

)
− ŵt + ε̂At , (Eq. 7)
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π̂t = π1

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)
+ π2

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
− π3µ̂

p
t + ε̂pt ,(Eq. 8)

(1 + z1) r̂t + K̂t−1 − ŵt − L̂t = 0, (Eq. 9)
µ̂wt = ŵt − σLL̂t −

1

1− h/γz
Ĉt +

h/γz
1− h/γz

Ĉt−1, (Eq. 10)
ŵt = w1 (ŵt−1 + γwπ̂t−1 + (1− γw)π̂

∗
t )

+ (1− w1)
(
Etŵt+1 + Etπ̂t+1 − (1− γw)Etπ̂

∗
t+1

)

−w2π̂t − w4µ̂
w
t + ε̂wt , (Eq. 11)

R̂t = ρr(st)R̂t−1 + (1− ρr(st))
[
rπ(st) (π̂t − π̂∗

t ) + ry(st)
(
Ŷt − Ŷ f

t

)]

+r∆y(st)
[(
Ŷt − Ŷ f

t

)
−
(
Ŷt−1 − Ŷ f

t−1

)]
+ ε̂rt , (Eq. 12)where Ŷ f

t is potential output, de�ned by the same model but assuming �exiblepries and wages.
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