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Frédo JEAN-BAPTISTE

Essays on the Econometric

Evaluation of Monetary Business

Cycle Models

JURY

Frédéric DUFOURT Professeur, Université de Strasbourg Directeur de Thèse
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Chapter 1Introdu
tion
Contents1.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 From Real Business Cy
le to Monetary Business Cy
letheories . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.2 Taking the models to the data . . . . . . . . . . . . . 61.1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . 7
1.1. Introdu
tionIn re
ent years, the a
ademi
 resear
h on monetary business 
y
les has beenqui
kly expanding. One reason for this expansion is that monetary Dynami
Sto
hasti
 General Equilibrium (DSGE) models have made de
isive progressin a

ounting for observed business 
y
le, and in explaining the real e�e
ts ofmonetary sho
ks. Today, many 
entral banks and poli
y-making institutionsgive more and more 
reden
e to the predi
tions of monetary DSGE models,as these models are 
urrently used for poli
y analysis. Thus, data 
onfronta-tion has always been a �rst-order issue in the su

ess of these models. Data
onfrontation is the main fo
us of this thesis.This dissertation 
onsists of two parts, ea
h part being subdivided into two
hapters. The �rst part is related to the traditional "frequentist" e
onomet-



2 Chapter 1. Introdu
tionri
 approa
h. It presents two essays that investigate the empiri
al propertiesof the New Keynesian Phillips 
urve (
hapters 2 and 3). The se
ond part isrelated to the "Bayesian" e
onometri
 approa
h that has re
ently be
ome pop-ular in the ma
roe
onomi
 literature. Chapter 4 surveys Bayesian inferen
etools used to estimate and evaluate dynami
 sto
hasti
 general equilibriummodels in the presen
e of regime swit
hes in parameters or in sho
k varian
es.Chapter 5 applies these tools to a state-of-the-art medium s
ale DSGE modelwith regime swit
hes, and uses the estimated model to shed new light on theissue of identifying the sour
es of the �Great Moderation�. This expressionrefers to the de
line in ma
roe
onomi
 volatility observed in most industrial-ized e
onomies during the 80's until the re
ent �nan
ial 
risis.A 
ommon denominator of the four 
hapters is the systemati
 use of empiri
almethods that take monetary business 
y
le models to the data. A

ordingly,this introdu
tion provides a short histori
al ba
kground where we 
ontrast realversus monetary models of the business 
y
le. Then, we brie�y present thee
onometri
 tools that have been developed over the years to take these modelsto the data. Finally, we outline the 
ontent of the thesis by summarizing ourmain �ndings.1.1.1. From Real Business Cy
le to Monetary BusinessCy
le theoriesA 
entral issue of modern ma
roe
onomi
s has been to identify the sour
es ofthe volatility in ma
roe
onomi
 time series. Over the years, ma
roe
onomi
theory has been divided between two 
on�i
ting views on this issue: the �rstview attributes to monetary fa
tors a dominant role, and emphasizes the im-portan
e of monetary poli
y as a powerful stabilization tool. The se
ond viewattributes to real fa
tors the leading 
ause of business 
y
les, and underlinesthe potentially destabilizing role of a
tive monetary poli
ies through their



1.1. Introdu
tion 3e�e
ts on long-run in�ation.The publi
ation in 1971 of Friedman and S
hwartz's essay, A Monetary historyof the United States, 
onstitutes a landmark day in our understanding of busi-ness 
y
les. By observing that periods of deep re
essions in the US e
onomyusually 
oin
ide with periods where the sto
k of money de
lines, the authorsprovide narrative eviden
e that money is an important fa
tor of observed�u
tuations. This narrative eviden
e oriented the ma
roe
onomi
 resear
htoward models where money plays an important role. A

ordingly, during the70's and the early 80's, two main theories of money non-neutrality were devel-oped. In the �rst one, formulated in two 
ontributions by Lu
as (1972) andLu
as (1975), money is important be
ause monetary sho
ks are treated �as asour
e of 
onfusion that makes it di�
ult for agents to separate relative pri
e
hanges from aggregate pri
e 
hanges� (Cooley and Hansen, 1995). In these
ond strand, money matters be
ause nominal pri
es and wages are sti
ky inthe short-run (Fis
her, 1977; Taylor, 1979).Shortly after this, the publi
ation in 1982 of Kydland and Pres
ott's seminalarti
le, "Time to build and aggregate �u
tuations", 
ame as another land-mark day for the development of modern ma
roe
onomi
 theory. This paper,whi
h led to the emergen
e of the Real Business Cy
le (RBC) theory, stronglyrevived the proposition that e
onomi
 �u
tuations are mostly the result ofnon-monetary for
es.1 In the 
anoni
al RBC model (see King et al. (1988),for a presentation), business 
y
les are viewed as the out
ome of an e
on-omy submitted to exogenous te
hnologi
al sho
ks. In this e
onomy, rationalagents 
ontinuously adjust their de
isions to exogenous variations in the envi-ronment. Thus, the theory 
onveys two new important messages: (i) business
y
les do not ne
essarily re�e
t ine�
ien
ies in the allo
ation of resour
es ;(ii) monetary fa
tors su
h as, for example, variations in the sto
k of money,1The term 'Real Business Cy
le' was �rst used by Long and Plosser (1983)



4 Chapter 1. Introdu
tiondo not ne
essarily play a signi�
ant role in observed business 
y
les, sin
e amodel submitted to te
hnologi
al sho
ks alone 
an a

ount for a signi�
antfra
tion of the volatility of output and of other ma
roe
onomi
 variables.As emphasized by Galí (2008), a se
ond reason why the RBC theory was
onsidered a "revolution" for ma
roe
onomi
 analysis is in its methodologi
al
ontribution. The RBC theory is the �rst approa
h to 
ombine, within thesame model, three de
isive ingredients: First, the use of dynami
 sto
hasti
general equilibrium theory, whi
h gives strong mi
roe
onomi
 foundations tothe behavioral equations used to des
ribe the aggregate variables in the large-s
ale ma
roe
onometri
 models of the 70's. Se
ond, agents in these modelsform rational expe
tations, i.e. expe
tations 
onsistent with the informationthey have. Third, the methodology aims to provide quantitative (as opposedto qualitative) predi
tions, by simulating the model and generating time seriesfor the main variables than 
an be 
ompared to their empiri
al 
ounterpart.Based on this 
omparison, models may be validated or reje
ted.While de
isive in terms of methodology, the Real Business Cy
le theory (atleast in its initial form) did not really survive the data 
onfrontation stepit advo
ated. Indeed, the predi
tions of the 
anoni
al RBC model on therole of money and on the 
ovariations between real and monetary variableswere qui
kly shown to be at odds with the large body of empiri
al eviden
eanalyzing this question. For instan
e, Cooley and Hansen (1995) show thatin the data, there is a positive 
orrelation between monetary aggregates andoutput, while the 
anoni
al RBC model augmented with a 
ash-in-advan
e
onstraint predi
ts a negative 
orrelation. More re
ently, Christiano et al.(1999, 2005) provide empiri
al eviden
e that an expansionary monetary sho
kin
reases output in the short run, with a peak o

urring after a few periods,while in�ation adjusts very little at the time of the sho
k. Su
h eviden
e is
learly in
onsistent with the predi
tions of the augmented RBC model.



1.1. Introdu
tion 5Fa
ing these di�
ulties, resear
hers have gradually started to in
lude some"Keynesian" features into the model, leading to the progressive developmentof what is known today as the New Keynesian model of the business 
y
le.There are three main ingredients at the heart of the New Keynesian model:The �rst one is the introdu
tion of monopolisti
ally 
ompetitive �rms, whoendogenously set their pri
e in order to maximize pro�ts. The se
ond oneis the assumption of nominal rigidities. This means that, for some reason,�rms 
annot reset their pri
e optimally in any period. For example, in thetraditional Calvo (1983) pri
e-setting framework, �rms are only given (in ea
hperiod) a 
onstant probability of resetting their pri
e optimally. The thirdingredient is the spe
i�
ation of a monetary poli
y rule su
h as, for example, aTaylor rule, whi
h des
ribes the rea
tion of the monetary authority to 
hangesin the e
onomi
 environment.In addition to these ingredients, the New Keynesian model also features animportant 
on
ept whi
h will be our main resear
h interest in the �rst two
hapters of this thesis. This 
on
ept is the so-
alled New Keynesian Phillips
urve. The New Keynesian Phillips 
urve (NKPC) is derived from the log-linearization of the optimal pri
ing de
ision of �rms in the Calvo framework.In its simplest form, the 
urve relates 
urrent and expe
ted in�ation to ameasure of real a
tivity (average marginal 
ost). Yet, as we will see, therealso exist hybrid versions of the NKPC, whi
h usually in
lude past in�ationin the equation. A signi�
ant part of our resear
h program has been to developor to test hybrid versions of the NKPC.The New Keynesian model is also important be
ause it gives a key role tomonetary fa
tors in the business 
y
le. Re
ently, Christiano et al. (2005) andSmets and Wouters (2007) have illustrated the ability of medium s
ale New-keynesian DSGE models to a

ount for the real e�e
ts of monetary sho
ks. Forthis reason, the New Keynesian model of Christiano et al. (2005) and Smets



6 Chapter 1. Introdu
tionand Wouters (2007) has be
ome the referen
e model used to investigate thesour
es of empiri
al business 
y
les. The Smets and Wouters (2007) model isthe ben
hmark model we use in the se
ond part of the thesis, when estimatingregime-swit
hing medium s
ale DSGE models.1.1.2. Taking the models to the dataSimultaneously with the development of DSGE models, the empiri
al methodsused to assess the �t of these models have undergone a rapid evolution. The�rst empiri
al method, advo
ated by Kydland and Pres
ott (1982), is termed"
alibration". DeJong and Dave (2007) de�ne the 
alibration step as �an exer-
ise under whi
h a set of empiri
al targets is used to pin down the parametersof the model under investigation, and a se
ond set of targets is used to judgethe model's empiri
al performan
e�. Thus, a

ording to this de�nition, theDSGE model is not 
onsidered as a data generating pro
ess. For proponentsof the 
alibration methodology, the main reason is that any DSGE model, be-ing highly stylized, is de fa
to false. Thus, any formal statisti
al test shouldreje
t it. Hen
e, it is preferable to judge the empiri
al performan
e of thismodel relatively to the set of quantitative fa
ts it is supposed to explain.Despite its numerous advantages, the main short
oming of the 
alibrationapproa
h is that it does not atta
h any measure of un
ertainty to the predi
-tions of the model. To address this problem, the next empiri
al method thathas been 
onsidered in the literature is the Generalized methods of moments(GMM), due to Hansen (1982). Like 
alibration, the GMM methodology fo-
uses on mat
hing only a limited set of empiri
al targets, 
alled moments.But unlike 
alibration, GMM takes un
ertainty seriously sin
e it implies thatthe model 
ould be interpreted as a data generating pro
ess from whi
h themoments were obtained.22For an early example of appli
ation of GMM to ma
roe
onomi
 time series, see ?. For



1.1. Introdu
tion 7Other empiri
al methods in the same family of GMM has also been used to es-timate DSGE models. Among them, we 
an mention the Simulated Methodsof Moments (SMM), the method of Indire
t Inferen
e (II), and the method ofMinimum Distan
e Estimation (MDE). In the late 80's and during the 90's,Maximum Likelihood has been at the 
entre of the estimation pro
edure. Anearly referen
e is Altug (1989). In 
ontrast to the 
alibration and momentmat
hing pro
edures, Maximum Likelihood is a full-information method un-der whi
h the DSGE model is assumed to provide a 
omplete 
hara
terizationof the data. Hen
e, in theory, ML should deliver more reliable estimates.However, misspe
i�
ation remains a 
on
ern sin
e maximum likelihood es-timation requires some assumption about the distribution of the sto
hasti

omponents of the model.Over re
ent years, several resear
hers have preferred to favor a Bayesian ap-proa
h to estimating DSGE models (an early example is S
horfheide (2000)).This 
hoi
e partly re�e
ts the willingness to avoid some traditional di�
ul-ties en
ountered with the frequentist approa
h. But the main advantage ofBayesian inferen
e is that it allows resear
hers to in
orporate prior informa-tion into the model. This is important be
ause forming prior opinions is anatural devi
e among e
onomists. Be
ause of its in
reasing importan
e in thema
roe
onomi
 literature, the Bayesian approa
h is the 
entral theme of these
ond part of our thesis.1.1.3. Outline of the thesisThis thesis follows 
losely the 
hronology of empiri
al methods that have beenused in re
ent de
ades to �t DSGE models to the data. Chapter 2, Fore
astingwith the New Keynesian Phillips 
urve: Eviden
e from survey data estimatesan appli
ation of the GMM approa
h to a DSGE model, see e.g. Christiano and Ei
henbaum(1992).



8 Chapter 1. Introdu
tionthe New Keynesian Phillips Curve developed in Galí and Gertler (1999) andassesses the fore
asting performan
e of that 
urve. Despite the su

ess of theNew Keynesian Phillips Curve in explaining the dynami
s of in�ation, manyempiri
al studies do
ument its weakness by showing that purely statisti
almodels, like ARIMA models, do a better job in fore
asting in�ation. This
hapter tries to revisit this empiri
al �nding. Spe
i�
ally, I �nd that a plau-sible explanation for the poor fore
asting performan
e of the NKPC is dueto the way in�ation expe
tations are measured. Following Galí and Gertler(1999), a large body of empiri
al studies estimate the NKPC, assuming ratio-nal expe
tations. Under the rational expe
tations assumption, the error in thefore
ast of expe
ted in�ation is un
orrelated with information in the 
urrentand past periods. Hen
e, provided the existen
e of a ve
tor of variables (
alledinstruments) in the 
urrent or earlier periods, the NKPC 
an be estimatedvia GMM. However, if agents do not make (fully) rational fore
asts, estimates
ould be seriously biased. Thus, I 
onsider an alternative methodology, whi
h
onsists in 
onstru
ting an expe
ted in�ation series using qualitative surveydata. The survey data 
olle
t qualitative answers of 
onsumers on their ex-pe
tation about the evolution of pri
es for the 
oming year in Great Britain.Two important results are in order. First, the estimates obtained with thealternative measure of in�ation expe
tations are better than those obtainedwith the traditional rational expe
tations assumptions. Se
ond, survey fore-
asts on in�ation expe
tations greatly improve the fore
asting performan
e ofthe NKPC.Chapter 3, Time-varying in�ation target and the New Keynesian PhillipsCurve also fo
uses on the NKPC but with a di�erent perspe
tive. Our start-ing point is the two empiri
al �ndings do
umented in Cogley and Sbordone(2008). The authors �rst argue that on
e trend in�ation is taken into a

ount,the New Keynesian Phillips Curve 
an repli
ate the amount of in�ation per-



1.1. Introdu
tion 9sisten
e found in the data without requiring the in
lusion of ad ho
 ba
kward-looking terms. Se
ond, they show that the resulting redu
ed-form NKPC hastime-varying 
oe�
ients.We 
onsider the 
onsequen
es of introdu
ing a time-varying in�ation targetin the spe
i�
ation of the New Keynesian Phillips Curve. Spe
i�
ally, weassume that when �rms 
annot adjust their pri
e, they follow an indexationrule whi
h 
onsists in indexing their pri
e on an in�ation rate whi
h is di�er-ent from the long-run in�ation rate. Our main idea is that, in order to limitrelative pri
e distortions, �rms should index their pri
e on a target whi
h is
lose to the expe
ted in�ation rate prevailing during the average duration ofthe pri
e 
ontra
t. In the presen
e of trend in�ation, this target is likely to be(i) signi�
antly di�erent from the sample mean of the in�ation rate and (ii)time-varying. We derive a new spe
i�
ation for the NKPC that follows fromthis assumption, and we take it to the data. Compared to Cogley and Sbor-done (2008), the 
hapter provides three main 
on
lusions. First, in 
ontrastwith their paper, our spe
i�
ation of the NKPC features 
onstant 
oe�
ients.This enables us to relate more easily the redu
ed form NKPC to the deep(stru
tural) parameters. Se
ond, as in Cogley and Sbordone (2008), our spe
-i�
ation of the NKPC leads to non-signi�
ant ba
kward looking 
oe�
ients.Third, using identi�
ation-robust methods, our alternative NKPC slightly im-proves the estimated value of the degree of pri
e rigidity in the Calvo pri
esetting me
hanism.While our resear
h in the �rst two 
hapters was using frequentist estimationmethods, the next two 
hapters deal with the Bayesian approa
h. Chapter 4,A review of Bayesian analysis of DSGE models, surveys Bayesian e
onometri
methods that have re
ently been used to estimate DSGE models. We showhow su
h methods 
an be modi�ed to a

ount for the presen
e of regimeswit
hes in DSGE models. Farmer et al. (2009b) o�er an ex
ellent treatment



10 Chapter 1. Introdu
tionof forward-looking Markov-Swit
hing DSGE models.Chapter 5, Great Moderation and endogenous monetary poli
y swit
hes ap-plies these tools to address an important ma
roe
onomi
 question: what arethe sour
es of the Great moderation that the US and the Euro e
onomies haveexperien
ed in the period spanning the mid 80's until the re
ent �nan
ial 
ri-sis? The literature suggests two main explanations that have not rea
hed a
onsensus. For some e
onomists, e.g. (Sto
k and Watson, 2003b; ?), the GreatModeration is mainly the out
ome of good lu
k. By lu
k, we mean smallersho
ks fa
ed by these e
onomies during this period. For others, the GreatModeration is due to the virtues of monetary authorities in their 
ondu
tof monetary poli
y. E
onomists have observed that the redu
tion in outputvolatility was a

ompanied by a similar redu
tion in the volatility of in�ation,as do
umented in Blan
hard and Simon (2001). Given the broad 
onsensusthat monetary poli
y is a 
ru
ial determinant of in�ation, a redu
tion in thevolatility of output may have been the result of better monetary poli
y. Pro-ponents of this viewed are, inter alia, Bernanke (2004), Lubik and S
horfheide(2004) and Clarida et al. (2000).To take a

ount of these explanations, we modify the state-of-the-art Smetsand Wouters (2007) medium-s
ale DSGE model to in
orporate the possibil-ity of regime swit
hes in the varian
e of sho
ks and in the 
oe�
ients of themonetary poli
y rule. We use this model to 
onsider three alternative spe
-i�
ations: The �rst one only introdu
es 
hanges in the varian
e of sho
ks.The se
ond one allows for regime swit
hes in both the varian
e of sho
ks andthe poli
y rule 
oe�
ients, but assumes that these 
hanges are independent(i.e., 
hanges in the monetary poli
y regime are independent of the 
urrentstate of the e
onomy). Finally, the third spe
i�
ation introdu
es syn
hronized
hanges in sho
ks varian
e and in monetary poli
y.We estimate the three versions of the model with Bayesian methods, and use



1.1. Introdu
tion 11the estimation results to shed new lights on the following questions: (i) Whatare the sour
es of the Great Moderation ; (ii) Are regime swit
hes in monetarypoli
y exogenous, or does the 
ondu
t of monetary poli
y 
hange a

ordingto the e
onomi
 situation ? The possibility of endogenous monetary poli
yregime 
hanges has been re
ently emphasized by Davig and Leeper (2008).We perform this exer
ise for the US and the Euro Area e
onomies and obtainthe following �ndings: �rst, we �nd strong eviden
e in favor of regime swit
hesin both poli
y parameters and sho
k varian
es, whether these swit
hes areassumed to be syn
hronized or independent. This �nding holds true for boththe US and the Euro Area. Se
ond, for both e
onomies, the spe
i�
ation withsyn
hronized regime shifts �ts the data equally well as the spe
i�
ation withindependent 
hanges in regime. Third, our �ndings do not support the viewthat the US monetary poli
y has been endogenous. A

ording to our results,the 
ondu
t of monetary poli
y in the US was more strongly determined bythe 
hairmen in o�
e than by the ongoing e
onomi
 situation. However, thisresult does not hold true for the Euro Area, and we do �nd strong eviden
eof endogeneity of monetary poli
y in Europe.Summarizing, the 
ontents of thesis are organized as follows: Chapter 2 esti-mates the New Keynesian Phillips Curve using survey data and 
ompares itsfore
asting performan
e to an AR(1) model. Chapter 3 
onsiders the 
onse-quen
es of introdu
ing a time-varying in�ation target in the New KeynesianPhillips Curve. Chapter 4 provides a survey of Bayesian analysis of DSGEmodels, while 
hapter 5 estimates a Markov-swit
hing DSGE models and usesthe estimated model to shed new lights on the sour
es of the Great modera-tion and on the endogeneity of monetary poli
y in the US and the Euro Area.Finally, a te
hni
al appendix for 
hapters 3 and 5 is provided.





Chapter 2Fore
asting with the NewKeynesian Phillips 
urve:Eviden
e from survey data
Contents2.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . 132.2 The hybrid New-Keynesian Phillips 
urve . . . . . . . 142.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 152.3.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . 162.3.2 Estimation results . . . . . . . . . . . . . . . . . . . . 172.4 Fore
asting experiments . . . . . . . . . . . . . . . . . 192.5 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1. Introdu
tionThis 
hapter is based on my forth
oming paper, Jean-Baptiste (2011). It esti-mates the New Keynesian Phillips Curve version derived in Galí and Gertler(1999) and assesses the fore
asting performan
e of that 
urve.Our motivation is the following. Empiri
al studies often �nd that the hybridNew Keynesian Phillips 
urve developed by Galí and Gertler (1999), while



14Chapter 2. Fore
asting with the New Keynesian Phillips 
urve:Eviden
e from survey datatheoreti
ally justi�ed, has a poor predi
tive 
ontent of in�ation, 
ompared tothe variety of ARIMA models.1 In this 
hapter, I estimate the hybrid NKPCand use the estimation results to fore
ast in�ation. I follow two estimationmethods. First, I impose the rational expe
tations assumption of agents asGalí and Gertler (1999) and estimate the Phillips 
urve by GMM. Se
ond,I use in�ation fore
asts obtained from survey data and estimate the Phillips
urve by OLS.The results are the following. First, estimation with survey data performs wellin quantifying the ba
kward and forward 
oe�
ients of the hybrid NKPC.Se
ond, output gap is not signi�
ant and enters the hybrid NKPC with anegative sign On the 
ontrary, output gap is found to be signi�
ant and entersthe NKPC positively when survey-based in�ation fore
asts are used. Third,the fore
asting performan
e of the hybrid NKPC is superior to the ben
hmarkAR(1) model when output gap and survey-based in�ation fore
asts are used.The rest of the paper is organized as follow. The se
ond se
tion brie�y presentsthe hybrid NKPC. The third se
tion des
ribes the data and presents the es-timation results. The fourth se
tion presents the results of the fore
astingexperiments and the last se
tion 
on
ludes.
2.2. The hybrid New-Keynesian Phillips 
urveTo derive the hybrid NKPC, Galí and Gertler (1999) use a staggered pri
e-setting s
heme à la Calvo (1983), where a fra
tion of �rms, 1 − θ, 
hangepri
es in a given period. In 
ontrast to the original Calvo (1983) model, Galíand Gertler (1999) assume that among �rms being able to 
hange pri
es in agiven period, only a fra
tion 1 − ω sets pri
e optimally in a forward-looking1The literature uses the term hybrid in opposition to the pure forward-looking NewKeynesian Phillips 
urve.



2.3. Estimation 15manner. The remaining part sets pri
es by simply augmenting last period'saverage pri
e by the in�ation rate of that period. This assumption leads tothe following form of the hybrid NKPC:
πt = λxt + γbπt−1 + γfEtπt+1 + ut, (2.2.1)where πt is the in�ation rate, Etπt+1 the expe
ted in�ation rate of the nextperiod, xt the real marginal 
ost and ut a 
ost-push sho
k. The redu
ed formin (2.2.1) is related to the stru
tural form of the NKPC by the following
ombination of parameters:

γf =
βθ

φ
,

γb =
ω

φ
,

λ =
(1− ω)(1− θ)(1− βθ)

φwhere β is a dis
ount rate and φ = θ+ω[1−θ(1−β)]. Sin
e the redu
ed form ofthe hybrid NKPC in (2.2.1) is 
onsistent with various pri
ing s
hemes, in
lud-ing the Calvo (1983) s
heme, estimation and fore
asting results are reportedonly for the redu
ed form.2.3. EstimationIn (2.2.1), the term Etπt+1 is not dire
tly observed. This is a fundamental
hallenge with estimating the hybrid NKPC parameters. There are two solu-tions to 
ir
umvent this 
hallenge. The �rst one, whi
h is the most standard,is to use the law of iterated expe
tations to obtain a fore
ast of Etπt+1
2. Re-pla
ing Etπt+1 by πt+1 − ηt+1, with ηt+1 being the one-step-ahead fore
asterror in πt+1, I obtain the new equation πt = λxt+γbπt−1+γfπt+1+et, where

et = ut − γfηt+1. From Et(ut) = 0, it follows that Et(et) = 0 so that the2The law of iterated expe
tations is a prin
iple of rational expe
tations.



16Chapter 2. Fore
asting with the New Keynesian Phillips 
urve:Eviden
e from survey dataequation 
an be estimated by GMM. The se
ond solution is to use in�ationfore
asts from survey data, obtained by asking e
onomi
 agents at one periodwhat are their expe
tations of pri
e for the next period. Sin
e these expe
ta-tions do not ne
essarily mat
h in�ation expe
tations, I assume that they aregiven by Etπt+1 = πst+1 + ηst where πst+1 is the in�ation fore
ast provided bythe survey and ηst is an error term un
orrelated with πst+1. Finally, I estimateby OLS the resulting equation πt = λxt+γbπt−1+γfπ
s
t+1+ǫt where ǫt = γfη

s
t .

2.3.1. The dataSurvey data 
ome from the European Commission website from 1987:1 to2007:12. The European Commission 
ondu
ts a monthly survey about thegeneral e
onomi
 situation, unemployment and pri
e expe
tations for the Eu-ropean e
onomy, the Euro area and the single European 
ountries. For thepurpose of the paper, I fo
us on pri
e expe
tations. The survey parti
ipantsare asked to give qualitative expe
tations about the evolution of pri
es in thenext year. As a 
onsequen
e, qualitative expe
tations are quanti�ed with theCarlson and Parkin (1975) approa
h, also 
alled the �probability approa
h�,and the results are 
onverted to quarterly frequen
y, in order to �t a quarterlyhybrid NKPC.3 To save spa
e, I refer the reader to Carlson and Parkin (1975)and Nielsen (2003) for a detailed explanation of that approa
h. Data on othervariables are provided by the OECD E
onomi
 Outlook database. A
tualin�ation is measured as 100 times log di�eren
e of quarterly 
onsumer pri
eindex (CPI), from 1987:1 to 2007:4. I 
onsider two proxies for real marginal3The survey asks the following question to the parti
ipants:�By 
omparison with thepast 12 months, how do you expe
t 
onsumer pri
es will develop in the next 12 months?They will: 1) in
rease more rapidly 2) in
rease at the same rate 3) in
rease at a slower rate4) stay about the same 5) fall 6) do not know."



2.3. Estimation 17Table 2.1: OLS estimation of the hybrid NKPCParameters Unrestri
ted Restri
tedGap ULC Gap ULC
γb 0.236 0.120 � �(0.001) (0.061)
γf 0.726 0.876 0.779 0.880(0.000) (0.000) (0.000) (0.000)
λ 0.131 � 0.096 �(0.008) (0.031)
λ′ � -0.022 � -0.024(0.378) (0.318)Notes: p-values are given in bra
kets.
ost: CPI-de�ated unit labour 
ost of the total e
onomy and the output gap.4I report empiri
al results for the United Kingdom. Figure (2.1) plots the a
-tual in�ation versus the mean expe
ted in�ation and the detrended real unitlabour 
ost versus the output gap.2.3.2. Estimation resultsWhile the paper fo
uses on estimates using survey data, I report, for 
ompar-ison purpose, estimates based on the traditional iterated expe
tations estima-tion for 
omparison.Table (2.1) reports OLS estimates of the hybrid NKPC. The unrestri
ted
oe�
ients γf and γb are positive and signi�
ant. Thus, both forward andba
kward looking 
omponents are important in the dynami
s of in�ation. Ir-respe
tive of the proxy used for real marginal 
ost, the degree of forwardness is4Galí and Gertler (1999) 
ompute output gap as the di�eren
e of real gross domesti
produ
t and its linear trend. In this paper, I use dire
tly the output gap published bythe OECD. The OECD output gap is measured as the per
entage di�eren
e between GDP(
onstant pri
es) and potential GDP.



18Chapter 2. Fore
asting with the New Keynesian Phillips 
urve:Eviden
e from survey dataTable 2.2: GMM estimation of the hybrid NKPCParameters Unrestri
tedGap ULC
γb 0.275 0.391(0.069) (0.055)
γf 0.735 0.616(0.006) (0.011)
λ -0.028 �(0.325)
λ′ � 0.0003(0.0001)Hansen's J test 1.36 1.17(0.56) (0.51)Notes: Instruments in
lude three lags of in�ation and two lagsof output gap and real unit labour 
ost. p-values are given inbra
kets.more important than the degree of ba
kwardness. This �nding is in line withGalí et al. (2005) who �nd that the forward-looking 
omponent of in�ationis very important, using IV estimation. The estimates indi
ate that real unitlabour 
osts are not signi�
ant for the dynami
s of in�ation, at least in thesample 
onsidered here. Furthermore, sin
e the slope λ is negative, real unitlabour 
osts enters the hybrid NKPC with the wrong sign, whi
h is possiblya result from an errors-in-variable problem asso
iated with the expe
ted in-�ation.5 The Output gap is signi�
ant and enters the hybrid NKPC with the
orre
t sign. Thus, the estimates indi
ate that the output gap is a good proxyfor marginal 
ost. Under the theoreti
al restri
tion β ≈ 0.99, whi
h implies5Nason and Smith (2008) using survey data obtained from the Survey of ProfessionalFore
asters (SPF), �nd a similar result for the US e
onomy and Henzel andWollmershaeuser(2008) �nd a similar result for Italy, using survey data from the CESifo World E
onomi
Survey.
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γf+γb = 1, Table (2.1) shows that more weight is given to the forward looking
omponent. The slope remains positive and signi�
ant when the output gap isused as proxy, negative and insigni�
ant when real unit labor 
osts are used.These �ndings 
ontradi
t the widespread view that a 
ost-based formulationof in�ation is better than output gap-based formulation of in�ation (Galí andGertler, 1999).Table (2.2) reports estimates based on the 
ontinuous updating GMM esti-mator (CUE-GMM) of Hansen et al. (1996) where the 
ovarian
e matrix is
orre
ted with a bandwidth of 12 lags. p-values for the Hansen test provideno eviden
e against the validity of the instruments. The forward looking
omponent 
ontinue to play the predominant role. However, there are somedi�eren
es in magnitude with estimates based on survey fore
asts. In parti
-ular, more weight is atta
hed to the ba
kward 
omponent. The output gap
oe�
ient, while not signi�
ant, is negative. When using survey fore
asts, Iobtain the 
orre
t sign and the 
oe�
ient is signi�
ant.6 The results suggestthat survey-based estimates perform better than estimation methods basedon rational expe
tations of agents.
2.4. Fore
asting experimentsThis se
tion is motivated by empiri
al eviden
e reported by Ang et al. (2007).Using four fore
asting models based on ma
ro, asset markets variables and in-�ation surveys data, Ang et al. (2007) �nd that in terms of in�ation fore
asts,the fore
asting model with survey data outperforms the other models for theUS e
onomy. I use the hybrid NKPC to fore
ast annual in�ation and 
om-pare the fore
asting results with those of a ben
hmark autoregressive modelof order one, AR(1). The spe
i�
ation of the AR(1) is standard and is given6See Nunes (2010) for similar �ndings.



20Chapter 2. Fore
asting with the New Keynesian Phillips 
urve:Eviden
e from survey databy the following equation:
πt = µ+ απt−1 + νtwhere νt is an error term and µ a drift.Table 2.3: Out-of-sample per
ent rmses : AR(1) vs NKPCfore
ast horizon2 4 8United Kingdom AR 0.610 0.706 0.896RULC 0.727 0.806 0.995GAP 0.564 0.636 0.821Note: Fore
ast of annual in�ation, out-of-sample from2000:Q1 to 2007:Q4. RULC and GAP refer to the hybridNKPC estimated with real unit labor 
ost and output gap.The root mean squared error fore
asts are reported in per-
entage terms.I 
onsider pseudo out-of-sample fore
ast of in�ation, from 2000:Q1 onwards.Table (2.3) reports the root mean squared error (RMSE) statisti
s in per
ent-age terms for the AR(1) model and the hybrid NKPC model. Fore
astingperforman
e of the hybrid NKPC depends on the proxy used to measure realmarginal 
ost. At all fore
ast horizons, the autoregressive model beats thehybrid NKPC estimated with real unit labour 
ost. Using the output gapas proxy for real marginal 
ost 
onsiderably improves the fore
asting perfor-man
e of the hybrid NKPC. Compared to the AR(1) model, all the RMSE arelower at all fore
ast horizons. This result is en
ouraging sin
e empiri
al stud-ies (see for instan
e Sto
k and Watson (2003a)) have found that the NKPC,while theoreti
ally justi�ed, has a poor predi
tive 
ontent, 
ompared to thevariety of ARIMA models.
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Figure 2.1: (a): A
tual in�ation (solid) and expe
ted in�ation (dashed). (b):Output gap (solid) and real unit labour 
ost (dashed).2.5. Con
lusionsIn this paper, I have found that survey-based in�ation fore
asts make thePhillips 
urve predominantly forward looking. The output gap enters posi-tively and signi�
antly, while methods based on traditional rational expe
ta-tions deliver a negative and insigni�
ant role to the output gap. Furthermore,the root mean squared errors of the Phillips 
urve are inferior to those of anAR(1) model when in�ation fore
asts and output gap are used.





Chapter 3Time-varying in�ation target andthe New Keynesian Phillips 
urve
Contents3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . 233.2 The generalized NKPC . . . . . . . . . . . . . . . . . . 253.3 E
onometri
 methodology . . . . . . . . . . . . . . . . 283.3.1 Minimum distan
e . . . . . . . . . . . . . . . . . . . . 283.3.2 Identi�
ation robust tests . . . . . . . . . . . . . . . . 303.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 363.4.3 Robustness 
he
k . . . . . . . . . . . . . . . . . . . . . 393.5 Con
luding remarks . . . . . . . . . . . . . . . . . . . . 40
3.1. Introdu
tionThe aim of this 
hapter is to propose and to estimate an alternative spe
i�-
ation for the New Keynesian Phillips Curve.



24Chapter 3. Time-varying in�ation target and the New KeynesianPhillips 
urveThe main idea underlying our approa
h is that, in the traditional spe
i�
a-tion of the hybrid NKPC (with partial indexation and positive steady-statein�ation), the indexing rule of �rms that are not allowed to reset their pri
edoes not �t well with the observation that in�ation in the short run may sub-stantially di�er from its long-run (average) value. This is notably the 
ase,for example, if the in�ation target of the 
entral bank o

asionally swit
hesbetween a high and a low value (as do
umented in S
horfheide (2005)), orif there is a trend in the evolution of in�ation. Indeed, under su
h 
ir
um-stan
es, using the long-run in�ation level to index non-resetted pri
es maygenerate substantial pri
e distortions that are ultimately 
ostly to �rms.In the presen
e of varying trend in�ation, a better indexing rule would indexpri
es on an in�ation target that does not di�er too mu
h from the impli
itin�ation rate applied by reoptimizing �rms to their former pri
e. In the pres-en
e of trend in�ation, this target is likely to be (i) signi�
antly di�erent fromthe sample mean of the in�ation rate and (ii) time-varying. We derive a newspe
i�
ation for the NKPC that follows from this assumption, and we estimateit with the minimum distan
e estimation do
umented in ?. Following a re
entliterature on the issue that NKPC might be poorly identi�ed (Ma, 2002; Du-four et al., 2010; Kleibergen and Mavroeidis, 2009), we estimate our NKPCwith methods that are robust to identi�
ation problem with the approa
hdo
umented in Magnusson and Mavroeidis (2010). To 
he
k the robustnessof our 
on
lusions, we also estimate the NKPC with the Generalized methodof moments (GMM).Our work also relates to re
ent empiri
al results by Cogley and Sbordone(2008), who emphasized the importan
e of taking trend in�ation into a
-
ount for the empiri
al su

ess of the NKPC. The authors 
riti
ize the 
om-mon pra
ti
e of introdu
ing ba
kward-looking terms in the NKPC to improveits empiri
al performan
e, sin
e in its initial formulation the 
urve is purely



3.2. The generalized NKPC 25forward-looking. Cogley and Sbordone (2008) �nd that on
e drifting trend in-�ation is taken into a

ount in the Calvo pri
e setting me
hanism, ba
kward-looking terms are no longer ne
essary to a

ount for in�ation persisten
e.They also show that the introdu
tion of drifting trend in�ation results in aNew Keynesian Phillips Curve whi
h has the 
hara
teristi
 that its redu
edform 
oe�
ients are time-varying.Compared to Cogley and Sbordone (2008), our approa
h leads to three main
on
lusions. First, in 
ontrast with Cogley and Sbordone (2008), the redu
edform 
oe�
ients of our modi�ed NKPC are 
onstant. This enables us to re-late more easily the redu
ed form NKPC to the deep (stru
tural) parameters.Se
ond, similarly to Cogley and Sbordone (2008), estimation of our modi�edNKPC leads to non-signi�
ant ba
kward looking 
oe�
ients. This 
on
lusionis 
on�rmed, using both non-robust and robust methods to identi�
ation is-sues. Third, time-varying in�ation target is a key variable for the evolutionof in�ation.The remaining of the 
hapter is organized as follow. Se
tion (3.2) derivesthe NKPC, se
tion (3.3) presents the e
onometri
 methodology, while se
tion(3.4) presents the results. The last se
tion 
on
ludes the 
hapter.
3.2. The generalized NKPCThe NKPC is derived using the Calvo (1983) pri
ing me
hanism a

ording towhi
h, in ea
h and every period, a �rm fa
es a 
onstant probability 1− ξp toreset its pri
e optimally. In the traditional spe
i�
ation of the hybrid NKPCwith partial indexation and positive long run in�ation, a �rm who 
annotreset its pri
e optimally is assumed to apply the following indexation rule (seee.g. Smets and Wouters (2007)):
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urve
pit = (πt−1)

γp (π)1−γp pit−1where π is the long-run in�ation fa
tor. As mentioned above, if the in�ationtarget of the 
entral bank is 
hanging through time, or if there is a trendin the evolution of in�ation, the 
urrent in�ation level may be signi�
antlydi�erent from its sample-mean level π. In this 
ase, the indexing rule is likelyto generate substantial pri
e distortions between �rms who reset their pri
eoptimally and �rms who do not.To avoid this 
riti
ism, we 
onsider the following alternative rule:
pit = (πt−1)

γp (π∗
t )

1−γp pit−1where π∗
t is the impli
it measure of trend in�ation used by indexing �rms.Clearly, if π∗

t = π, we re
over the traditional spe
i�
ation. But alternativemeasures are likely to generate less pri
e distortions. For example, π∗
t 
ouldbe the expe
ted in�ation rate of "naive" fore
asters at date t (as 
onsidered in
hapter 2), or be any statisti
al measure obtained from the data. Of 
ourse,in general, π∗

t is likely to be a�e
ted by the 
urrent e
onomi
 situation. Thus,generally speaking, π∗
t should be 
onsidered as time-varying.Let Xp

t,k be an indexation fa
tor, de�ned by
Xp
t,k =





1 for i = 0
k

Π
l=1

(
(πt+l−1)

γp
(
π∗
t+l

)1−γp) for i = 1, ...,∞



This indexation rule implies that

pit+k = Xp
t,kp̃

i
twhere p̃it is the initial pri
e.In this 
ontext, the optimal pri
e p̃it 
hosen by an optimizing �rm in t is thesolution of the following program:
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p̃it

E
t

∞∑

k=0

(
βξp
)k λt+k

λt

(
p̃itX

p
t,k

pt+k
−mct+k

)
yit+ksubje
t to

yit+k =

(
p̃itX

p
t,k

pt+k

)−θ

yt+k,where Etβ
kλt+k/λt is a sto
hasti
 dis
ount fa
tor, with β the subje
tivedis
ount fa
tor, λt the marginal utility of 
onsumption and mct the �rm'smarginal 
ost.The �rst-order 
ondition asso
iated with the above program leads to the fol-lowing optimal pri
ing rule:

p̃it
pt

= µp

E
t

∑∞
k=0

(
βξp
)k
λt+kmct+ky

i
t+k

E
t

∑∞
k=0

(
βξp
)k pt

pt+k
Xp
t,kλt+ky

i
t+k

, (3.2.1)where µp = θ/(θ−1) is the steady-state markup, with θ > 1 the pri
e-elasti
ityof se
toral demand.The aggregate pri
e index is given by
pt =

(∫ 1

0

(
pit
)1−θ

) 1
1−θ (3.2.2)Log linearization of (3.2.1) 
ombined with the de�nition for the aggregatepri
e index (3.2.2) leads to the following New Keynesian Phillips Curve:

π̂t =

(
1− ξp

) (
1− βξp

)

ξp(1 + βγp)
m̂ct

+
γp

(1 + βγp)
π̂t−1 +

β

(1 + βγp)
Etπ̂t+1

+

(
1− γp

)

(1 + βγp)
π̂∗
t −

β
(
1− γp

)

(1 + βγp)
Etπ̂

∗
t+1 (3.2.3)



28Chapter 3. Time-varying in�ation target and the New KeynesianPhillips 
urveAs expe
ted, our generalized NKPC shows that 
urrent in�ation depends, inaddition to the traditional terms, on the 
urrent and expe
ted value of thein�ation target, whi
h is generally time-varying. Note also that the NKPCresults in redu
ed form 
oe�
ients that are time-invariant. This is the maindi�eren
e with the Cogley and Sbordone (2008)'s NKPC.For the purpose of the next subse
tion, we express the NKPC as a redu
edform relation given by
πt = γbπt−1 + γfEtπt+1 + λmct + λ2π

∗
t + λ3Etπ

∗
t+1, (3.2.4)where

λ =
(1− ξp)(1− βξp)

ξp(1 + βγp)
,

γb =
γp

1 + βγp
,

γf =
β

1 + βγp
,

λ2 =
1− γp
1 + βγp

,

λ3 = −β
1− γp
1 + βγp

.3.3. E
onometri
 methodologyThis se
tion des
ribes the methodology that we shall use to test the NKPC.Given that the methodology is re
ent, we �nd it useful to des
ribe it beforeestimating the NKPC.3.3.1. Minimum distan
eMagnusson and Mavroeidis (2010) 
onsider the minimum distan
e estimationof the NKPC originated from Sbordone (2002) and Sbordone (2005). In our
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ontext, the minimum distan
e estimation of the NKPC tries to minimizethe distan
e between two dynami
s of in�ation. The �rst dynami
s modelsin�ation, marginal 
ost (proxied by labor share) and trend in�ation as a VARpro
ess of order p, while the se
ond dynami
 is the relation provided by theNKPC. In other words, the approa
h uses information 
oming from redu
ed-form models to estimate a stru
tural model of in�ation.The approa
h is implemented as follows. Let Zt ≡ [πt π
∗
t mct] and assumethat Zt is determined by a VAR(p) pro
ess:

Zt = Φ1Zt−1 + · · ·+ ΦpZt−p + ǫz,t (3.3.1)where E(ǫz,t) = 0 and E(ǫz,tǫ′z,t) = Ω.It is 
onvenient to rewrite the VAR(p) in its 
ompanion form:
zt = Φzt−1 + Qǫz,t (3.3.2)where zt = [zt zt−1 zt−2 · · · zt−p+1]

′,
k is the number of variables in the VAR so that Φ is of dimension kp×kp andit 
ontains k2p unknown parameters, denoted by ϕ.Let eπ, eπ∗ , emc be appropriate sele
tion ve
tors su
h that πt = e′πzt, π

∗
t =

e′π∗zt, mct = e′mczt.Next, we link the redu
ed-form parameters ϕ to the stru
tural parameters
ϑ of the NKPC. We use the identifying restri
tion that Et−1ε

p
t = 0. Takingexpe
tations with respe
t to information in t − 1 on both sides of equation3.2.4, it follows that

Et−1πt = γbπt−1+ γfEt−1πt+1+λ1Et−1mct+λ2Et−1π
∗
t +λ3Et−1π

∗
t+1. (3.3.3)From the VAR representation of the NKPC, we have Et−1πt+1 = e′πΦ(ϕ)

2zt−1,
Et−1π

∗
t+1 = e′π∗Φ(ϕ)2zt−1, Et−1πt = e′πΦ(ϕ)zt−1, Et−1mct = e′mcΦ(ϕ)zt−1 and
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πt−1 = e′πzt−1. Substituting them in (3.3.3) and transposing the resultingexpression leads to a set of restri
tions, g(ϕ, ϑ), where
g(ϕ, ϑ) = Φ(ϕ)′

{
e′π[I−γfΦ(ϕ)]−λ1e

′
mc−e

′
π∗ [λ2I+λ3Φ(ϕ)]

}′

−γbeπ. (3.3.4)The estimation strategy pro
eeds in two steps. First, we estimate the unre-stri
ted VAR to obtain ϕ̂ and an estimate of its varian
e, V̂ϕ. The se
ond steptakesϕ̂ as given and 
hooses the value ϑ that makes the empiri
al value of thefun
tion g(ϕ, ϑ) as 
lose as possible to zero.3.3.2. Identi�
ation robust testsLet ϕ̂ denote a 
onsistent and asymptoti
ally normal estimator of ϕ, withasymptoti
 varian
e Vϕ, and let V̂ϕ be a 
onsistent estimator of Vϕ. Bythe Delta method, the asymptoti
 varian
e of g(ϕ̂, ϑ) is Gϕ(ϕ, ϑ)
′VϕGϕ(ϕ, ϑ)where Gϕ(ϕ, ϑ) ≡

∂g(ϕ,ϑ)
∂ϕ′

. E�
ient minimum distan
e estimation is based onthe 
riterion fun
tion
Q(ϑ) = g(ϕ̂, ϑ)′V̂gg(ϑ)

−1g(ϕ̂, ϑ) (3.3.5)where V̂gg(ϑ) = Gϕ(ϕ̂, ϑ)
′V̂ϕGϕ(ϕ̂, ϑ) and ϑ being a preliminary estimator of ϑthat 
ould be ine�
ient. When ϑ = ϑ, the 
riterion (3.3.5) is the 
ontinuousupdating 
riterion provided in Hansen et al. (1996).Under the assumption that the Ja
obian matrix Gϕ(ϕ, ϑ) has a full rank,

ϑ̂ is asymptoti
ally normal and standard test statisti
s like the Wald andLagrange Multiplier (LM) for hypotheses on ϑ are asymptoti
ally 
hi-squareddistributed. Consequently, inferen
es based on those statisti
 are reliable.However, when the Ja
obian matrix is nearly of redu
ed or zero rank, i.ethe NKPC is weakly identi�ed, inferen
es based on the Wald or the the LM
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s are unreliable be
ause these statisti
s are not asymptoti
ally 
hi-squared distributed.1 Thus, it is important to 
onsider test statisti
s thatdo not involve asymptoti
ally the Ja
obian matrix under the null hypothesis.All the tests are based on the 
ontinuous updating estimator (CUE) of the
riterion (3.3.5), in whi
h 
ase the weighting matrix is 
ontinuously evaluatedat the values of the stru
tural parameters, i.e ϑ = ϑ.2 Inferen
es obtainedfrom the test are robust to weak identi�
ation.The �rst test statisti
 is the minimum distan
e version of the test proposedAnderson and Rubin (1949):
MD.AR(ϑ0) = Tg(ϕ̂, ϑ0)

′V̂gg(ϑ)
−1g(ϕ̂, ϑ0), (3.3.6)where T is the sample size, ϑ0 is the hypothesized value of the parameters.The MD.AR is robust to weak identi�
ation issue sin
e it does not involvethe Ja
obian matrix.This test 
an be interpreted as a Wald test of the validity of the restri
tionsin (3.3.4) at ϑ0.The se
ond statisti
 is the minimum distan
e version of the K statisti
 pro-posed by Kleibergen (2005):

MD.K(ϑ0) = Tg(ϕ̂, ϑ0)
′V̂gg(ϑ0)

−1D̂(ϑ0)[D̂(ϑ0)V̂gg(ϑ0)
−1D̂(ϑ0)]

−1

× (g(ϕ̂, ϑ0)
′V̂gg(ϑ0)

−1D̂(ϑ0))
′.

(3.3.7)1In the framework of GMM estimation, Kleibergen (2005) shows that the asymptoti
distribution of the LM statisti
 is not 
hi-squared sin
e the average moment ve
tor and theJa
obian estimator are 
orrelated, thus adding nuisan
e parameters.2Hansen et al. (1996) shows that, in the 
ontext of GMM, one advantage of the CU-GMM estimator relative to the two-step estimator is that the former is invariant to howthe moment 
onditions are s
aled. More importantly, Monte-Carlo experiments suggestthat the CU-GMM estimator outperforms the traditional two-step GMM and the test foridentifying restri
tions is more reliable in many 
ases.
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urveSin
e ∂Q
∂ϑ

= 2g(ϕ̂, ϑ0)
′V̂gg(ϑ0)

−1D̂(ϑ0) where D̂(ϑ0) is an estimator of the Ja-
obian matrix, the minimum distan
e version of the K statisti
 is a quadrati
form of the derivative of obje
tive fun
tion in (3.3.5) with respe
t to its asymp-toti
 varian
e [D̂(ϑ0)V̂gg(ϑ0)
i−1D̂(ϑ0)]

−1.3 It resembles the Lagrange Multiplier(LM) statisti
. However, the key di�eren
e is that it does not depend on theJa
obian matrix (unlike the LM statisti
), but on an estimated value of theJa
obian matrix. A
tually, the appendix of Magnusson and Mavroeidis (2010)shows that, asymptoti
ally, D̂(ϑ0) is independent of the ve
tor of restri
tions
g(ϕ̂, ϑ0). It is this independen
e that makes the MD.K statisti
 robust toidenti�
ation: 
onditional on D̂(ϑ0), i.e treating D̂(ϑ0) as a �xed matrix, thestatisti
MD.K is asymptoti
ally 
hi-squared sin
e the independen
e between
D and g(ϕ̂, ϑ0) does not involve additional nuisan
e parameters.Details on the derivation of the matrix D̂(ϑ0) 
an be found in Kleibergen(2005).The MD.K(ϑ0) tests the null H : ϑ = ϑ0, assuming that the identifying re-stri
tions in (3.3.4) hold. Sin
e the 
ontinuous updating estimator, whi
h isthe basis of all the test statisti
s, provides values for ϑ where the obje
tivefun
tion is minimal, the identifying restri
tions are violated around values of
ϑ that maximize the obje
tive fun
tion. Consequently, the MDK statisti
provides spurious inferen
e around values of ϑ that maximize the obje
tivefun
tion. Therefore, Magnusson and Mavroeidis (2010) propose a third statis-ti
 that tests the identifying restri
tions under the null. It is de�ned as

MD.J (ϑ0) = AR−MD.K. (3.3.8)The joint test, i.e the test of the null H : ϑ = ϑ0 and the validity of therestri
tions, denoted MD.KJ (ϑ0), is 
onstru
ted su
h that, given a signi�-
an
e level of α, the tested hypothesis is either reje
ted by an α1 level MD.K3For a proof, see Kleibergen (2005).



3.4. Results 33test or by an α2 level MD.J (ϑ0) test, where α1 +α2 = α. As our fo
us is on
H , α1 must be higher than α2. Following Magnusson and Mavroeidis (2010),we 
hoose α1 = .8α and α2 = .2α.Proposition 1 of Magnusson and Mavroeidis (2010) shows that the three statis-ti
s are asymptoti
ally 
hi-square distributed under fairly general regularity
onditions. Identi�
ation robust (1 − α) 
on�den
e sets are obtained by 
ol-le
ting all values of ϑ that are not reje
ted by the tests at the α level ofsigni�
an
e.
3.4. ResultsThis se
tion begins with the des
ription of the data used to estimate thePhillips 
uve. Then, we present estimates based on both non-robust androbust methods to identi�
ation for the redu
ed form and stru
tural NKPC.Finally, we 
he
k the robustness of our results by estimating the NKPC byGMM.43.4.1. DataIn�ation is measured as the quarter to quarter per
ent 
hange in the log GDPde�ator. We use the labor share of Nonfarm Business se
tor as proxy formarginal 
ost. All data are obtained from the Fred Database. We restri
t thesample to the period 1984:I-2008:III.Various alternative measures for π∗

t 
ould be 
onsidered. In this paper, we fol-low a two-step approa
h, whi
h is in the same spirit of Aruoba and S
horfheide(2011). In the �rst step, we use a one-sided Hodri
k-Pres
ott �lter des
ribedfor instan
e in Sto
k and Watson (1999), to extra
t the trend 
omponent of4We thank Patri
k Fève for this suggestion.
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urvein�ation with the smoothing parameter �xed to 1600.5 In the se
ond step,we assume that π∗
t partly results as medium-run in�ation expe
tation and we
ombine the trend 
omponent of in�ation with a measure of medium-run in-�ation expe
tation. Our measure of medium-run in�ation expe
tation is theone-year ahead in�ation expe
tation provided by the Federal Reserve Bankof Philadelphia. The two series are 
ombined in order to extra
t 
ommoninformation they 
ontain with respe
t to π∗

t . Typi
ally, we estimate a state-spa
e model with Bayesian methods and we use the Kalman �lter to extra
t
ommon fa
tor between the two series.In our state spa
e model, the measurement equations are as follows: πHPt =

π∗
t+0.25ǫ1,t and π1y

t = π∗
t+ǫ2,t, where πHPt is the trend 
omponent of in�ation,

π1y
t the (observable) one-year in�ation expe
tation. ǫ1,t and ǫ2,t are measure-ment errors. As in Aruoba and S
horfheide (2011), we �x the standard errorof the �rst measurement error to 0.25 per
ent to 
ontrol the weight of thetrend 
omponent of in�ation in the 
ombined series.The transitions equations write π∗

t−1 = ρππ
∗
t−1+σπǫπ,t and ǫ2,t,= ρ2ǫ2,t−1+νt,where ǫ2,t and νt are i.i.d sho
ks. We assume that π∗

t is a stationary pro
ess, i.e
0 < ρπ < 1. This assumption 
omes from the fa
t that the sample 
onsideredin our estimation spans 1984:I to 2008:III, a period where key ma
roe
onomi
variables of the US e
onomy have been parti
ularly stable.On
e an estimate of ρπ is available, the expe
ted value of the in�ation target
an be straightforwardly 
omputed, i.e Etπ∗

t+1 = ρππ
∗
t . Furthermore, for thepurpose of the estimation, we add a 
ost-push sho
k, εpt to the NKPC. Thus,we estimate the following spe
i�
ation of the NKPC:

πt = γbπt−1 + γfEtπt+1 + λmct + λ4π
∗
t + εpt (3.4.1)5We thank Patri
k for having pointed to us that the two-sided HP �lter we have usedin a previous version of this 
hapter 
ould deliver spurious results.



3.4. Results 35Table 3.1: Estimates of the state spa
e modelPrior PosteriorParameters Distribution para(1) para(2) Estimates 5% 95%

ρπ Beta 0.8 0.025 0.963 0.940 0.987
ρ2 Beta 0.8 0.025 0.936 0.893 0.983
σπ Invgamma 0.1 2 0.191 0.168 0.213
σ2 Invgamma 0.1 2 0.188 0.166 0.213Notes: para(1) and para(2) list the means and the standard deviations for Betadistribution; the shape s and and the s
ale ν parameters for the Inverse Gammadistribution, where pIG(σ|ν, s) ∝ σ−ν−1

exp(−νs2/2σ2
). Posterior estimates are ob-tained with the Metropolis algorithm, where a Markov 
hain of size 100000 has beensimulate, with the �rst 30000 being dis
arded.
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Figure 3.1: In�ation and time-varying in�ation target.where λ4 = λ2 + ρπλ3.We plot the time-varying in�ation target in 3.2. The graph suggests a similarevolution of time-varying in�ation target and in�ation itself.
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urveTable 3.2: Non-robust minimum distan
e estimation of the NKPCModi�ed NKPC Baseline NKPCParameters Estimates Std.err Estimates Std.err
γp 0.032 0.098 0.534 0.116
ξp 0.894 0.044 0.876 0.070
γb 0.031 0.092 0.349 0.050
γf 0.959 0.091 0.648 0.049
λ 0.013 0.011 0.012 0.014
λ4 0.044 0.009Notes : Standard deviations for γp and ξp are 
omputed by bootstrap.We use the delta method to 
ompute standard deviation of redu
ed formparameters.3.4.2. EstimatesThis subse
tion begins with the dis
ussion of (point) estimates obtained withnon-robust minimum distan
e estimation methods. We then dis
uss our (
on-�den
e sets) estimates based on robust methods and show their 
onsequen
esfor the stru
tural parameters of the NKPC. For ea
h method, the dis
ussion
ontrasts estimates obtained from both the baseline and the modi�ed versionsof the NKPC.3.4.2.1. Non-robust methods: point estimatesWe report the point estimates in Table 3.2. They are based on a VAR(3) forin�ation and marginal 
ost for the baseline NKPC. For the modi�ed NKPC,we also 
onsider a VAR(3) for in�ation, marginal 
ost and the time-varyingin�ation target.6For the baseline NKPC, we note that the stru
tural parameters γp and ξpare all signi�
antly di�erent from zero. The estimate of the degree of pri
e6The results are virtually the same when we 
onsider four lags in the VAR.
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kiness, ξp = 0.876, implying that the duration of the pri
e 
ontra
t isabout eight quarters. Su
h an impli
ation seems in
onsistent with eviden
efrom mi
roe
onomi
 studies about the duration of the pri
e 
ontra
t, whi
hreport that pri
e 
ontra
ts last one to two quarters on average (see for instan
eBils and Klenow (2004)). The indexation parameter, γp = 0.534, translatesinto an estimate of the ba
kward-looking 
oe�
ient (γb = 0.349), broadly inline with results from other studies. For instan
e, Galí et al. (2005)'s estimatefor the 
orresponding parameter is about 0.35 (see Table 1 in (Galí et al.,2005)).Introdu
ing a time-varying in�ation target in the NKPC leads to two threemain 
on
lusions. First, estimate of the degree of pri
e sti
kiness slightlyin
reases (ξp = 0.894). Se
ond, we 
annot reje
t at the 5% level, the nullthat the indexation parameter is zero, a �nding that is 
onsistent with Cogleyand Sbordone (2008) or with Ireland (2007). Not surprisingly, the estimateof the indexation parameter leads to a ba
kward-looking term that is alsonot signi�
ant, again at 5% level (γb = 0.031). Third, the parameter λ4,whi
h assesses the role of the time-varying in�ation target in the Phillips
urve, is highly signi�
ant. Setting λ4 = 0 in the modi�ed NKPC leads to thebaseline one. That is, our modi�ed NKPC nests the baseline one. Thus, bothspe
i�
ation should deliver similar results when the time-varying in�ationtarget is not important in explaining the in�ation dynami
s. The fa
t λ4 ishighly signi�
ant tends to 
on�rm our motivation in deriving the modi�edPhillips 
urve.Estimates of λ, whi
h takes into a

ount the e�e
t of marginal 
ost on in�a-tion, are non signi�
antly di�erent from zero. This is in line with �ndings inRudd and Whelan (2005), a

ording to whi
h empiri
al eviden
e on the roleof the marginal 
ost, proxied by the labor share, is weak. By 
ontrast, otherstudies, like Galí et al. (2005), do �nd that labor share is a key driver for
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urvein�ation.Summarizing, Table 3.2 suggests the following 
on
lusions: (i) the modi�edNKPC implies a mu
h higher duration for the pri
e 
ontra
t than the baselineone, (ii) ba
kward-looking 
omponent in the NKPC is not signi�
ant in themodi�ed NKPC, while it is highly signi�
ant in the baseline one, (iii) time-varying in�ation target is an important variable in explaining in�ation.To what extent are su
h 
on
lusions reliable? In what follows, we provideanswers based on estimates obtained with identi�
ation robust methods de-s
ribed in se
tion 3.3.3.4.2.2. Robust methods: 
on�den
e setsFollowing Magnusson and Mavroeidis (2010), we 
ompute 
on�den
e sets forthe degree of pri
e sti
kiness and the indexation parameter by grid sear
hwithin the parameter spa
e ξp ∈]0, 1] and γp ∈ [0, 1].Given that theMD.K test 
ould deliver spurious inferen
e, as stated in se
tion(3.3), we will report only the results based on the MD.AR and MD.KJFigure 3.2 reports the 90% and 95% for the MD.K test.Con�den
e sets for the baseline NKPC of ξp and γp (Figure 3.2, top panel)suggest two 
on
lusions. First, the indexation parameter γp lies roughly be-tween 0.26 and 0.65. Thus, this parameter appears to be signi�
antly di�erentfrom zero. Se
ond, the degree of pri
e sti
kiness is signi�
antly di�erent fromzero and lies between .8 and 1.Turning to the modi�ed NKPC, we note �rst that 
on�den
e sets for thedegree of pri
e sti
kiness are slightly wider than their 
ounterpart in the base-line NKPC. In parti
ular, they show that ξp lies between 0.7 and 1 for the
MD.AR test statisti
 and 0.78 for the MD.KJ , while in the baseline 
ase,the 
orresponding 
oe�
ient lies between 0.8 and 1 for the two test statisti
s.This suggests that, introdu
ing time-varying in�ation target in the NKPC



3.4. Results 39and estimating it with identi�
ation-robust methods, deliver an estimate ofthe degree of pri
e sti
kiness that is more reliable. For instan
e, we 
annotreje
t at 5% level that ξp = 0.7. In parti
ular, su
h an estimate is 
onsistentwith estimate of that parameter from DSGE models (see 
hapter 5). Se
ond,both tests suggest that we 
annot rule out the possibility that γp = 0, i.e theba
kward-looking term still appears to be insigni�
antly di�erent from zero.However, the wide 
on�den
e set around γp under the MD.AR test statisti
for the modi�ed NKPC suggests that it is impre
isely estimated.3.4.3. Robustness 
he
kIn this se
tion, we provide point estimates of the baseline and modi�ed spe
-i�
ations of the NKPC based on GMM. Our intention is to 
he
k our main
on
lusion about the indexation parameter γp, using alternative methods.Furthermore, this makes our results readily 
omparative to other studies,given that an important part of the literature uses the GMM methodologyin estimating the Phillips 
urve.Overall, results from the GMM estimation reported in Table 3.3 are in linewith those from the minimum distan
e estimation. For instan
e, the indexa-tion parameter, estimated from the modi�ed NKPC, is not signi�
antly dif-ferent from zero (γp = 0.058 with a standard error of 0.05), whereas the sameparameter is signi�
antly di�erent from zero under the baseline NKPC. La-bor share does not drive in�ation, while the forward-looking 
omponent in theNKPC is predominant.The main di�eren
e between Table 3.2 and Table 3.3 is in the magnitude ofthe estimates. In parti
ular, we estimate λ4 to be 0.209 with a standard errorof 0.07 while the same parameter is about 0.044, using minimum distan
e esti-mation. Thus, given that both estimates are signi�
antly di�erent from zero,our 
on
lusion about the importan
e of the trend in�ation for the dynami
s



40Chapter 3. Time-varying in�ation target and the New KeynesianPhillips 
urveTable 3.3: GMM estimates of the new-Keynesian Phillips 
urveModi�ed NKPC Baseline NKPCParameters Estimates Std.err Estimates Std.err
γp 0.068 0.050 0.161 0.047
ξp 0.866 0.075 0.795 0.072
γf 0.725 0.084 0.869 0.037
γb 0.064 0.041 0.134 0.035
λ 0.052 0.122 0.039 0.032
λ1 0.209 0.070Notes : Point estimates are derived using the CUE-GMM with Newey and West (1987)weighting matrix. Instrument are: a 
onstant, three lags of in�ation and marginal
ost for the baseline NKPC while for the modi�ed NKPC, we use additional threelags of the time-varying in�ation target.of in�ation is not altered.3.5. Con
luding remarksIn this 
hapter, we 
onsider the 
onsequen
es of introdu
ing time-varyingin�ation target in the New Keynesian Phillips 
urve. Our estimates leadto two main 
on
lusions. First, the resulting NKPC is not time-varying,unlike in Cogley and Sbordone (2008). Se
ond, ad ho
 ba
kward looking termdoes not matter (at least statisti
ally). The se
ond 
on
lusion is found to berobust to weak identi�
ation issue. Third, time-varying in�ation target isan important variable in explaining in�ation dynami
s, more important thanlabor share advo
ated by many empiri
al studies. Though these �ndings areen
ouraging, un
ertainty asso
iated with the way the time-varying in�ationtarget is derived remains a 
on
ern. It is quite possible that other methodsto extra
t time-varying in�ation target 
ould deliver di�erent results. Hen
e,a fruitful avenue for future resear
h is to estimate our NKPC for 
ountries for
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h time-varying in�ation target is observed.
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Figure 3.2: MD-AR 90% (gray) and 95% (dark) 
on�den
e sets for the baselineNKPC (top panel) and the modi�ed NKPC (bottom panel).
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Figure 3.3: MD-KJ 90% (gray) and 95% (dark) 
on�den
e sets for the baselineNKPC (top panel) and the modi�ed NKPC (bottom panel).
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46 Chapter 4. A Review of Bayesian Analysis of DSGE models4.1. Introdu
tionDynami
 Sto
hasti
 General Equilibrium (DSGE) models refer to mi
ro-founded ma
roe
onomi
 models that are used to address substantive e
onomi
topi
s. Two examples of su
h topi
s are: what is the propagation me
hanismof a monetary poli
y sho
k? What sho
ks are mainly responsible for business
y
le �u
tuations? The usefulness of DSGE models for poli
y analysis is theprimary reason for their re
ent di�usion in 
entral bank and poli
y-makinginstitutions.A qui
k look at the di�erent 
on
epts forming the name "DSGE" should bet-ter 
larify the stru
ture of these models. First, these models are �dynami
�be
ause they spe
ify intertemporal 
onstraints fa
ed by agents. For instan
e,agents might 
hoose to 
onsume more today or to save more for tomorrow.Se
ond, they are �sto
hasti
� be
ause they a

ount for un
ertainty in the e
on-omy. Thus, un
ertainty is modelled as the o

urren
e of exogenous sho
ks,i.e deviations of some exogenous variables from their long run value that areunanti
ipated by agents. Finally, the 
on
ept �general equilibrium� mean thataggregate endogenous variables, su
h as 
onsumption, output or pri
e levels,are investigated within a whole e
onomy.Empiri
al properties of DSGE models have been studied using several e
ono-metri
 tools. The �rst of them was 
alibration, advo
ated by Kydland andPres
ott (1982). A 
alibration exer
ise requires the following steps: �rst, re-sear
hers 
olle
t a set of stylized fa
ts that the DSGE model is supposed toa

ount for. Se
ond, the model is parametrized (or 
alibrated) in order toa

ount for a subset of these stylized fa
ts. Conditional on the parametersvalue, the model is judged 
redible if it 
an a

ount for the remaining stylizedfa
ts. The main short
oming of a 
alibration exer
ise is that it does not at-ta
h any probabilisti
 measures of un
ertainty to the quantitative statements



4.1. Introdu
tion 47it generates (S
horfheide, 2006). To partially address this short
oming, formalstatisti
al tools have been 
onsidered. The generalized method of moments(GMM) (Hansen, 1982; Hansen and Singleton, 1982) and maximum likelihoodestimation (Leeper and Sims, 1994) were among the �rst tools that resear
hershave used to estimate DSGE models.However, the last de
ade has experien
ed an explosion in the number of papersusing Bayesian methods. There are several reasons for this. First, Bayesianinferen
e fa
ilitates the in
orporation of beliefs about the values of some stru
-tural parameters through the �prior�. Se
ond, medium s
ale DSGE are ri
hlyparametrized, while data used to estimate them are short (e.g. sixty years ofUS data, forty years of European data). Consequently, la
k of data leads toimpre
ise estimates and quantitative statements generated with the estimatedmodel. Bayesian inferen
e helps to in
orporate additional information, whi
hleads to better estimation provided that su
h information 
omes from non-sample data, i.e data that are not used to 
ompute the likelihood fun
tion.Another reason is the development of the so-
alled Markov Chain Monte Carlo(MCMC) methods in the 90's and after. Problems that were very di�
ult toaddress due to la
k of mathemati
al tools and 
omputer power are now easyto address, by means of MCMC.In what follows, I give an overview of Bayesian analysis, where the fo
us is onDSGE models. This survey is far from exhaustive. My ultimate obje
tive isto familiarize the non-versed reader in Bayesian e
onometri
s with the maintools in the Bayesian analysis of DSGE models, be
ause they are applied inChapter 5.The literature provides ex
ellent surveys of Bayesian analysis of DSGE mod-els. Frank S
horfheide, who was among the �rst to apply Bayesian analyis toDSGE model, o�ers with his 
oauthor An Sungbae one of the most 
ited pa-pers in the �eld (An and S
horfheide, 2007). Fernández-Villaverde (2010)



48 Chapter 4. A Review of Bayesian Analysis of DSGE modelsfo
us on the history of the DSGE models both on a theoreti
al and em-piri
al perspe
tives. More re
ently, Del Negro and S
horfheide (2010) dis-
uss Bayesian methods applied to ma
roe
onomi
s model beyond the DSGEframework. However, these surveys provide little (if any) information aboutMarkov-Swi
hing DSGE models. Thus, my survey extends the previous oneto in
lude this re
ent development.The remainder of the survey pro
eeds as follow. Se
tion 4.2 provides the basi
ideas of Bayesian e
onometri
s and dis
usses the 
on
epts of prior, likelihoodand posterior. Se
tion 4.3 presents the steps in the estimation pro
edure. Inparti
ular, we dis
uss how prior information is eli
ited. Then tools to 
omputethe likelihood and summarize the posterior are presented. In se
tion 4.4, Idis
uss tools to assess the model �t. Se
tion 4.5 extends the DSGE model tofeature Markov-swit
hing pro
ess. In parti
ular, I present how the steps in theestimation pro
edure are modi�ed, due to the presen
e of Markov-Swit
hes inthe values of stru
tural parameters. Se
tion 4.6 dis
usses a re
ent alternativemethodology to assess the model �t for Markov-Swit
hing DSGE models,while se
tion (4.7) brie�y des
ribes some 
onvergen
e diagnosti
s, whi
h aimto assess whether results obtained in the estimation steps are reliable. Thelast se
tion brie�y 
on
ludes the survey.
4.2. Basi
 ideas of Bayesian e
onometri
sBayes's theorem is the 
entral part of Bayesian e
onometri
s. Before explain-ing this theorem, it is 
onvenient to introdu
e some notations. Let Y T ∈ Rbe the 
olle
tion of data, Yt the data at the period t, and M a model whi
his designed to explain some properties of the data. The model is 
omposedof three ingredients: �rst, a parameter set, Θ, de�ning the admissible valueof the parameters of the model. Se
ond, a likelihood fun
tion p(Y T |θ,M)



4.3. The steps in the estimation pro
edure 49whi
h gives the density that the model assigns to data given some parametervalues and third, a prior distribution π(θ|M) that 
aptures information not
ontained in the sample used for estimation. Su
h information 
an be pre-sample beliefs, results from other studies or intuition about the sign and themagnitude of the parameters values. Bayes' theorem simply tells us that theposterior distribution of the parameters is given by:
π(θ|Y T ,M) =

p(Y T |θ,M)π(θ|M)

p(Y T )
. (4.2.1)where p(Y T ) =

∫
p(Y T |θ,M)π(θ|M)dθ.In words, this result tells us how we should update our beliefs about parametervalues after observing the data: 
ombining our prior beliefs π(θ|M) with thesample information given by the likelihood fun
tion, we obtain a new set ofposterior beliefs, π(θ|Y T ,M).In (4.2.1), the quantity p(YT ) denotes the marginal data density. In thebody of the paper, we will inter
hangeably use the terms marginal likelihood,marginal data density or marginal distribution of the data to refer to p(Y T ).4.3. The steps in the estimation pro
edureBayesian estimation of DSGE models requires �ve steps. Roughly speak-ing, these steps involve the �model preparation� and �data preparation�. Themodel preparation requires that one spe
i�es and solves the model, while thedata preparation step implies the de�nition of the data that the model is sup-posed to mat
h, transforming them in a way that is 
onsistent to the model.For instan
e, a model where endogenous variables are stationary requires thatwe stationarize the data prior to the estimation stage. Following Smets andWouters (2005), we summarize the steps in the Bayesian estimation of DSGEmodels as follow. The �rst step requires that we solve the model. Te
hni
ally



50 Chapter 4. A Review of Bayesian Analysis of DSGE modelsspeaking, a DSGE model is a non-linear system of expe
tational di�eren
eequations. The approa
h that is mostly used in the literature is to 
onstru
ta linear approximation of the non-linear system around its well-de�ned steadystate. Solving the model is no more than expressing endogenous variables asa (linear) fun
tion of their lagged values and some exogenous pro
esses (typ-i
ally the sho
ks). In the se
ond step, the model solution is transformed ina state spa
e representation. The third step exploits the state spa
e repre-sentation to 
ompute the likelihood fun
tion. Step four is devoted to prioreli
itation. In the �fth step, prior and likelihood are 
ombined to form theposterior, whi
h is summarized using Markov Chain Monte Carlo (MCMC)tools. In what follows, I brie�y des
ribe ea
h of these steps.4.3.1. Model solutionsA DSGE model is a non linear rational expe
tations model system, whi
h hasthe following form:
Et(F (Xt+1, Xt, ǫt) = 0, (4.3.1)where Et denotes the expe
tation 
onditional on a set of information availablein period t, Xt is a ve
tor of endogenous variables of the model and ǫt is ave
tor of exogenous variables, typi
ally the sho
ks of the DSGE model.This rational expe
tation model has to be solved prior to estimation. The
ommon pra
ti
e is to 
onsider a linear approximation of (4.3.1). The reasonis that linear approximation methods lead to a state-spa
e representation ofthe DSGE models, that is easy to analyse with �ltering te
hniques.1The solution of the rational expe
tations system takes the form1The literature also o�ers non linear approximation methods su
h as proje
tion methods,value-fun
tion iterations. However, I did not explored these alternative approximations inmy resear
h. Readers interested in those methods should refer to DeJong and Dave (2007).
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edure 51
Xt = Φ(Xt−1, ǫt; θ) (4.3.2)where θ denotes the parameters of the model.There exists a variety of numeri
al pro
edures that lead to (4.3.2). A nonexhaustive list in
ludes Blan
hard and Kahn (1980), Sims (2002) and Uhlig(1997). The stru
ture of the solution strongly depends on the parameteriza-tion adopted by the resear
her: depending on the 
hosen parameterization,there may be 
ases where (i) the solution does not exist, (ii) the solution existsand is unique and stable (whi
h is the determina
y 
ase), (iii) multiple stablesolutions exist (the indetermina
y 
ase).In what follows, I fo
us on the determina
y 
ase in whi
h there exists a uniqueand stable solution to 4.3.2.4.3.2. State spa
e representationFor ease of exposition, I assume that (4.3.2) is given by
Xt = ΦXt−1 +Rǫt (4.3.3)where the dependen
e on θ is dropped to simplify the notations. In the statespa
e literature, equation (4.3.3) is 
alled a transition equation.Some variables inXt are latent, i.e. they are not observable. Hen
e, estimating(4.3.3) dire
tly is not possible. Instead, at time t, the resear
her has anobservable ve
tor Yt and links this ve
tor with the state ve
tor Xt through aset of measurement equations, i.e
Yt = AXt +D (4.3.4)where A is a sele
tion matrix and D a ve
tor of 
onstants, whi
h depends on



52 Chapter 4. A Review of Bayesian Analysis of DSGE modelsthe model steady-state.The transition and measurement equations form the state spa
e representationof the DSGE model, whi
h has to be estimated:



Xt = ΦXt−1 +Rǫt

Yt = AXt +D

(4.3.5)
4.3.3. The likelihood fun
tion: Kalman �lterSin
e these observables are dependent, the likelihood fun
tion, whi
h is fun
-tionally equivalent to the joint density of the observables, is given by
ℓ(θ|YT ) ≡ p(YT |θ) = p(Y1|θ)

T∏

t=2

p(Yt|Y
t−1, θ)

=

∫
p(Y1|X1, θ)dX1

T∏

t=2

∫
p(Yt|Xt, θ)p(Xt|Y

t−1, θ)dXt.(4.3.6)An examination of equation (4.3.6) shows that we will need to 
ompute the
onditional densities p(Xt|Y t−1, θ), p(Yt|Y t−1, θ) and p(Xt|Y t, θ). All the den-sities require the knowledge of the initial distribution p(X1). The densities 
anbe 
omputed iteratively, using the following algorithm:Computation of 
onditional densities1. Initialize the density p(X1).2. Given the 
onditional density at period t− 1, 
ompute
p(Xt|Y

t−1) =

∫
p(Xt|Xt−1)p(Xt−1Y

T−1)dXt−1.3. Compute the density of the observables as
p(Yt|Y

t−1) =

∫
p(Yt|Xt)p(XtY

t−1)dXt.



4.3. The steps in the estimation pro
edure 534. Update the density p(Xt|Xt−1) with Bayes's rule, when a newseries of observales is available:
p(Xt|Y

t) =
p(Yt|Xt)p(XtY

t−1)

p(Yt|Y t−1)
.5. Repeat the steps 2-4 until the end of the sample size hasbeen rea
hed.Fortunately, when the state spa
e representation of the model solution is linearand Gaussian, all these 
onditional densities are normal and the Kalman �lterprovides us with their means and varian
es at ea
h iteration. Hen
e, to derivethe Kalman �lter, I assume that ǫt is normally distributed, with zero meanand varian
e Σǫ . De�ne the linear proje
tions Xt|t−1 = E(Xt|Y t−1) and

Xt|t = E(Xt|Y t), where, as before, the notation Y t = {Y1, Y2, · · · , Yt} 
olle
tsthe data from the �rst period to the period t. Hen
e, Xt|t−1 is the 
onditionalexpe
tations based on data available until period t − 1. In the same way,de�ne the varian
e matri
es Pt−1|t−1 = E(Xt−1 − Xt−1|t−1)(Xt−1 − Xt−1|t−1)
′and Pt|t−1 = E(Xt −Xt|t−1)(Xt −Xt|t−1)

′.At ea
h iteration, the following 
omputations are exe
uted.First, we 
ompute a fore
ast of Xt:
Xt|t−1 = ΦXt−1|t−1, (4.3.7)and the varian
e of the fore
ast error:

Pt|t−1 = ΦPt−1|t−1Φ
′ +RΣǫR

′. (4.3.8)De�ne the one-step ahead fore
ast error by
νt|t−1 = Yt − Yt|t−1 = Yt − A− BXt
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e matrix by
Ft|t−1 = BPt|t−1B

′.The loglikelihood is already available at this step and reads
log(ℓ(Yt|θ) = −

n

2
log 2π −

1

2
log |Ft|t−1| −

1

2
ν ′tF

−1
t|t−1νt. (4.3.9)Next, we update the fore
ast of Xt, denoted by Xt|t. Hamilton (1994) showsthat the updating fore
ast of Xt is given by

Xt|t = Xt|t−1 +Kνt|t−1, (4.3.10)where the matrix K is the Kalman gain and reads
K = Pt|t−1B

′(Ft|t−1)
−1.The updated varian
e of the fore
ast error reads

Pt|t = Pt|t−1 −KBPt|t−1.This 
ompletes one iteration. Doing these 
omputations until the end of thesample size delivers the log likelihood fun
tion.4.3.4. Prior eli
itationPriors play a key role in the Bayesian estimation of DSGE models. The in-
orporation of prior information is perhaps the main point of disagreementbetween the frequentist and Bayesian approa
h. As emphasized by Del Negroand S
horfheide (2010), the use of fairly informative priors should not be in-terpreted as �
ooking up desired results based on almost dogmati
 prior�. As
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edure 55emphasized in the introdu
tion, the philosophy behind the in
orporation ofprior information into the analysis is to use other sour
es of information not
ontained in the likelihood fun
tion. Thus, pre
ise information is translatedinto fairly tight priors on the parameters. This has nothing to do with im-posing dogmati
 priors in order to produ
e results that mat
h the analyst'sdesire.However, as priors may a�e
t the posterior estimates and model 
omparison,their spe
i�
ation requires some 
are and has to be pre
isely do
umented.Three sour
es of extraneous information are exploited when forming priors inthe literature on DSGE models. The �rst is to use ma
roe
onomi
 series toextra
t information, not 
ontained in the likelihood, that the resear
her �ndsuseful given the empiri
al fa
ts the model is supposed to mat
h. For instan
e,if the model is �tted to data on, say, output growth, in�ation and interestrate, data on labor share 
ould be use to estimate the labor share of in
omein the model if one is interested in estimating su
h a parameter. Se
ond,information from mi
ro-e
onomi
 studies 
an be used to shape the prior. Forinstan
e, there is mi
roe
onomi
 eviden
e that �rms adjust their pri
e everyone to two quarters (Bils and Klenow, 2004). Su
h information 
ould be usedto form a prior on the probability for �rms to adjust their pri
e, under theCalvo pri
e setting. Third, ma
roe
onomi
 data, in
luding those entering thelikelihood fun
tion, 
an be used to shape the prior provided they 
ome froma presample. For instan
e, if the resear
her thinks that US monetary poli
yis well 
hara
terized by a Taylor-type rule and she wants to estimate a DSGEmodel based on post-1982 data, she 
an use pre-1982 data to form prior for theparameters of the Taylor-type rule. This is also true for parameters relatedto sho
k pro
esses: those parameters 
an be 
hosen su
h that the implieddynami
 of the model mat
hes those of the presample data.



56 Chapter 4. A Review of Bayesian Analysis of DSGE models4.3.5. Posterior distributionOn
e we 
ompute the likelihood fun
tion and spe
ify the prior, we 
an applyBayes' theorem to 
ompute the posterior. We will 
onsider an algorithm togenerate draws from the (non-normalized) posterior distribution of θ. Fromequation (4.2.1), we know that the posterior is given by
π(θ|Y T ) =

p(Y T |θ)π(θ)∫
p(Y T |θ)π(θ)dθ

∝ p(Y T |θ)π(θ), (4.3.11)where the denominator is an integrating 
onstant. This algorithm requires theevaluation of the likelihood times the prior, whi
h is 
omputed a

ording tomethods in se
tions (4.3.4) and (4.3.3). Be
ause it is di�
ult to analyti
allythe denominator in 4.3.11, so is the posterior. Thus, the best we 
an do is topro
eed by simulations. It is a
hieved using a powerful tool known as Markov
hain Monte Carlo (MCMC) methods. The aim of these methods 
onsistsin generating a Markov 
hain with ergodi
 distribution π(θ|Y T ). There aremany alternatives for doing so. Following the literature, we will use a RandomWalk Metropolis Algorithms, based on S
horfheide (2000).I will omit deep and te
hni
al details about MCMC methods. The interestedreader should have a look at S
horfheide (2000) or An and S
horfheide (2007)or any Bayesian e
onometri
s textbook. In the following, I follow the ex
ellentintuitive des
ription found in Fernández-Villaverde (2010). We do not knowwhat the whole posterior π(θ|yT ) is but we want to simulate from a Markov
hain and approximate the whole posterior by the empiri
al distribution gen-erated by the 
hain. Put in another way, we want to produ
e a Markov 
hainwhose stationary distribution is π(θ|yT ). To do so, we require tools whi
hallow us to 
onstru
t a Markov 
hain. The Metropolis algorithm is one ofthe tools we have for doing so. Roughly speaking, this algorithm spe
i�es anew proposed value of the parameter and evaluates whether it in
reases the
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edure 57posterior, i.e if the posterior density evaluated at this new proposed value isgreater than the posterior evaluated at the 
urrent value of θ. If it does, wea

ept it with probability one, and with some probability less than one if itdoes not. This allows us to go towards the higher regions of the posteriorbut we also travel with some probability, towards the lower regions. In doingso, all the parameter spa
e is explored, thus avoiding getting �stu
k� aroundspe
i�
 values of the parameters. For the illustration, I will use the followingimplementation of the random walk version of this algorithm, whi
h 
an befound in S
horfheide (2000) or more re
ently in An and S
horfheide (2007)2.One-blo
k Random Walk Metropolis Algorithm1. Find the posterior mode of ln p(θ|yT ) + ln π(θ)via a numeri
al optimization routine and denote it by θ̃.2. Let Σ̃ be the inverse of the Hessian 
omputed at theposterior mode θ̃.3. Draw θ0 from N (θ̃
0
, c20Σ̃) or dire
tly spe
ify a starting valuewhere c0 is a s
ale parameter.4. For s = 1, · · · , nsim, draw ϑ from the proposal density

N (θ(s−1), c2Σ̃), with c2 being a s
ale parameter.The jump from θ(s−1) is a

epted (θ(s) = ϑ) with probability
min{1, r(θ(s−1), ϑ|yT )}. Here,

r(θ(s−1), ϑ|yT ) =
p(ϑ|yT )π(ϑ)

p(θ(s−1)|yT )π(θ(s−1))
.Under general regularity 
onditions, the posterior of θ will be asymptoti-
ally normal. Therefore, this algorithm 
onstru
ts a Gaussian approximation2The random walk denomination of this algorithm 
omes from the fa
t that the proposaldensity is spe
i�ed as a random walk.
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aled negative inverse Hessian is usedas the 
ovarian
e for the proposal distribution. As the RWMH algorithm re-quires maximization of the posterior, we 
an fa
e the problems inherent topure maximum likelihood estimation if data are not informative. Hen
e steps1 and 2 of the algorithm, although often useful, are not ne
essary sin
e the al-gorithm 
an be initialized with values that would be retained for a 
alibrationexer
ise.3The draws generated from the posterior are used to obtain point estimatessu
h as mean, varian
e, median and so on.
3Most of the empiri
al literature on Bayesian estimation of DSGE model uses the one-blo
k RWMH algorithm. But this version of the algorithm is not always e�
ient : forinstan
e, An and S
horfheide (2007) �nds that when posterior distribution is bimodal,say a low and high mode, the RWMH algorithm is unable to jump from one mode tothe another one. Chib and Ramamurthy (2010) proposes a new MCMC methods 
alledTailored-Randomized blo
k Metropolis-Hastings algorithm, to estimate DSGE models. Themotivation of this method is that the single blo
k Metropolis-Hastings algorithm fa
e di�-
ulty to a
hieve 
onvergen
e when the dimension of the ve
tor of parameters is large. Thepaper proposes to 
luster the DSGE model parameters in a random number of blo
ks atea
h iteration. Then, ea
h blo
k of parameters is updated with a tailored proposal densitythat mimi
s the target density of that blo
k. One �nding of the paper is that with this algo-rithm, jumping between low and high mode is possible, unlike with the RWMH algorithm.However, the approa
h is time-
onsuming. For a six equations model as the one estimatedby An and S
horfheide (2007), it takes around 30 hours in an ordinary 
omputer and �only"3 hours with the RWMH algorithm (where the posterior mode is obtained after 24 hours).If the resear
her has good reasons to start the RWMH algorithm in parti
ular values otherthan the posterior mode, as aforementioned, investment in the TaRB-MH algorithm willbe somewhat unne
essary.



4.4. Model evaluation 594.4. Model evaluationBy model evaluation, we mean the assessment of the model �t. It 
an bedone using measures of absolute �t su
h as posterior predi
tive 
he
ks, or themeasure of �t relative to another model, either DSGE or VAR model. Themeasure of relative �t is done by either enlarging or restri
ting a model in somedimensions and assessing whether the data prefers or not su
h modi�
ationwith respe
t to a ben
hmark 
ase. Methods for doing so are presented in thenext se
tion.Bayesian model 
omparison is 
ondu
ted as follows. We assign prior probabil-ities to two 
ompeting models Mi and Mj and update the prior probabilitiesthrough the marginal likelihood ratios, a

ording to
Pr(Mi|Y T )

Pr(Mj|Y T )
=
p(Y T |Mi)

p(Y T |Mj)

Pr(Mi)

Pr(Mj)
. (4.4.1)where Pr(Mx|Y T ), p(Y T |Mx) and Pr(Mx), x = i, j are respe
tively the pos-terior model probability, the marginal data density and the prior model prob-ability. When equal prior probability is assigned to the 
ompeting models,the 
ondu
t of model 
omparison redu
es to the 
omputation of the marginallikelihood ratio, also 
alled the Bayes fa
tor.Computing the marginal data density is very 
hallenging, given that it in-volves high-dimensional integral. There are various methods to approximateit. Throughout my resear
h, I have used the modi�ed harmoni
 mean (MHM)method proposed by Geweke (1999) and the Lapla
e approximation.The method by Geweke (1999) relies on the harmoni
 mean to approximatethe marginal likelihood:

p(Y T |Mi)
−1 =

∫
h(θ(i)

p(Y T |θ(i),Mi)p(θ(i))
p(θ(i)|Y

T )dθ(i) (4.4.2)
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tion whose support has to be 
ontained in thesupport of the posterior distribution. Geweke (1999) proposes the use thedensity of a trun
ated multivariate Gaussian distribution:
h(θ) =

1

p
(2π)−n/2|Σθ| exp(−

1

2
(θ − θ)′Σ−1

θ (θ − θ))

× Pr[(θ − θ)′Σ−1
θ (θ − θ) ≤ F−1

χ2
n
(p)]

(4.4.3)where p ∈ (0, 1), Σθ is the posterior varian
e matrix obtained with theMetropolis algorithm, θ is the posterior mean of θ and F−1
χ2
n
is the 
umula-tive density of a χ2 distribution with n degree of freedom, where n is thedimension of θ.Denote

m(θ(i)) =
h(θ(i)

p(Y T |θ(i),Mi)p(θ(i))
.A numeri
al evaluation of the integral is a
hieved through Monte Carlo inte-gration:

p(Y T |Mi)
−1 =

1

N

N∑

i=1

m(θ(i)) (4.4.4)where N is the number of simulations.An alternative and straightforward way to approximate the marginal likeli-hood is the Lapla
e approximation. This approa
h is followed, for instan
e,by S
horfheide (2000). It is only valid when the likelihood fun
tion peaksat value around the posterior mode. Thus, the density kernel 
an be lo
allyapproximated by a multivariate Gaussian density:
log p(θ(i))p(θ(i)|Y

T ) ≈ log p(θ̂(i))p(θ̂(i)|Y
T )

+
1

2
(θ(i) − θ̂(i))

′Σθ̂(i)
(θ(i) − θ̂(i))

′
(4.4.5)The estimator of the marginal likelihood is obtained by integration:
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p(Y T |Mi) = (2πn/2|Σθ̂(i)|

1/2p(θ̂(i))p(θ̂(i)|Y
T ). (4.4.6)4.5. An extension: Markov-Swit
hing DSGEmodelsThere is a re
ent and growing literature on Markov-Swit
hing DSGE (MS-DSGE) models, estimated with Bayesian methods. In this literature, a keypaper that greatly improves our understanding of Markov-Swit
hing DSGEmodels is Farmer et al. (2009b). The aim of Markov-Swit
hing models is to
apture sudden 
hanges in the time-series dynami
s of the data be
ause �theworld is 
hanging� (Farmer et al., 2010). For instan
e, it is well known that thevolatility of US ma
roe
onomi
 series, typi
ally in�ation, output growth andinterest rate have experien
ed dramati
 de
line during the post-Vol
ker era.This striking phenomenon is termed �Great Moderation� by e
onomists andit is the obje
t of 
hapter 5 of the thesis. A non exhaustive list of papers thatestimate MS DSGE models with Bayesian methods are S
horfheide (2005),Bian
hi (2011), Liu et al. (2011), Davig and Doh (2009) and Liu and Mumtaz(2010).In the presen
e of Markov-Swit
hing pro
ess, the steps outlined in estimat-ing the DSGE models are still valid. However, in general the solution of themodel is not straightforward and the 
omputation of the likelihood fun
tionrequires modi�
ations of the standard Kalman �lter. The number of papersthat propose algorithms to solve these model is also growing. Farmer et al.(2008) 
onsider a method to solve MS-DSGE model, whi
h 
onsists in rewrit-ing the DSGE model into a �xed 
oe�
ient model. The advantage of theirmethod is that with little modi�
ation, it 
an be solved with standard numer-i
al pro
edures along the lines of Sims (2002). Furthermore, they show that



62 Chapter 4. A Review of Bayesian Analysis of DSGE modelswhen a minimal state variable (MSV) solution to the new system exists, it isalso a MSV solution to the original system. Farmer et al. (2010) propose arather di�erent algorithm, 
ompared to previous versions of their paper. Theirmethod is able to �nd all the solutions of the MS DSGE models, while, asthey emphasize, other methods proposed by the literature (Davig and Leeper,2007; Svensson and Williams, 2007) are not able to do so. We have tried to es-timate the in�uential Smets and Wouters (2007) with the algorithm proposedby Farmer et al. (2010). Our experien
e suggests that the time taken by thealgorithm to solve the model is reasonable when the model to be estimated isthe standard three equations DSGE model do
umented in Woodford (2003)'stextbook. For a model of the kind of Smets and Wouters (2007), the algo-rithm is very time 
onsuming. Consequently, I used an algorithm proposedby Dufourt (2011), whi
h 
an be viewed as a generalization of the Svenssonand Williams (2007) algorithm. The algorithm writes the model solution as
Xt = G1(st)Xt−1 +Π(st)ǫt + L(st) (4.5.1)where L(st) is a regime-swit
hing 
onstant and st denotes a Markov-Swit
hingstate. The main di�eren
e with (4.3.3) is that the matri
es in (4.5.1) dependon the a
tive regime st, whi
h is de�ned through a probability transitionmatrix.4.5.1. Kim's approximation of the likelihoodThe monograph by Kim and Nelson (1999) provides the main tools I haveused to estimate MS-DSGE models. To 
ompute the likelihood, I adopt thealgorithm of Kim and Nelson (1999) designed to 
ope with the presen
e ofregime swit
hing state st.The pre
ise reason for using this algorithm is that the number of traje
tories to
onsider in a framework of regime-swit
hing grows exponentially with time.



4.5. An extension: Markov-Swit
hing DSGE models 63To understand why the standard Kalman �lter 
annot be used, 
onsider atwo regime DSGE models, i.e st = 1, 2. At the next iteration of the Kalman�lter, ea
h of the Gaussians will be propagated through 2 other Gaussians.Thus, at the next iteration, the distribution of Xt is a mixture of 4 = 22Gaussians. In general, at the tth iteration, the distribution of Xt is a mixtureof 2t Gaussians. For instan
e, when t = 10, the distribution of Xt is a mixtureof more than 1000 Gaussians, making the Kalman �lter inoperable. To dealwith this exponential growth, the literature suggests various approximatingmehods: 
ollapsing some mixture 
omponents at the end of ea
h operation orusing a �nite mixture 
omponents. In this paper, I mainly use Kim (1994)'sapproximation des
ribed in details in Kim and Nelson (1999). To 
he
k therobustness of the results, we also use a �nite mixture approximation. For thelatter method, please refer to S
horfheide (2005).The Kim algorithm works as follow. First, we 
ompute the Kalman �lter forevery regime 
ombination, a

ording to se
tion (4.3.3). That is, we run thefollowing re
ursion:1. Run the Kalman �lter as follows:
X

(i,j)
t|t−1 = Φ(j)X i

t−1|t−1 + L(j)

P
(i,j)
t|t−1 = Φ0(j)P

(i)
t−1|t−1Φ

′
0(j) +R(j)RΣ′

j(j)

ν
(i,j)
t|t−1 = Yt −D −AX

(i,j)
t|t−1

F
(i,j)
t|t−1 = AX

(i,j)
t|t−1A

′

X
(i,j)
t|t = X

(i,j)
t|t−1 + P

(i,j)
t|t−1A

′(F
(i,j)
t|t−1)

−1ν
(i,j)
t|t−1

P
(i,j)
t|t = P

(i,j)
t|t−1 − P

(i,j)
t|t−1A

′(F
(i,j)
t|t−1)

−1A′ν
(i,j)
t|t−1.2. Run the Hamilton �lter. This requires the 
omputation of �ltered prob-



64 Chapter 4. A Review of Bayesian Analysis of DSGE modelsabilities Pr(st, st−1|Yt) and Pr(st|Yt), for i, j = 1, 2.:
Pr(st, st−1|Yt−1) = Pr(st|st−1) Pr(st−1|Yt−1)

f(Yt|Yt−1) =
∑

st

∑

st−1

f(Yt|st, st−1, Yt−1) Pr(st, st−1|Yt−1)

Pr(st, st−1|Yt) =
f(Yt, st, st−1)|Yt−1

f(Yt|Yt−1)
=
f(Yt|st, st−1), Yt−1) Pr(st, st−1|Yt−1)

f(Yt|Yt−1)

Pr(st|Yt) =
∑

st−1

Pr(st, st−1|Yt)In words, we 
ompute the �ltered probabilities given the transition ma-trix and the initial probabilities Pr(st−1|Yt−1). The marginal density of
Yt (or the likelihood value at the the tth iteration) is given by f(Yt|Yt−1).Next, we 
ompute the joint probability of the regime using the Baye'srule, whi
h is then used to update the �ltered probabilities when a newrealization of Yt is available.3. Run the 
ollapsing pro
edure. The likelihood approximation appears atthis step. Use the probabilities in the previous steps to 
ollapse 2 × 2posteriors X(i,j)

t|t and P (i,j)
t|t into 2× 1 with the following equations:

Xj
t|t =

∑2
i=1 Pr(st−1 = i, st = j|Yt)X

(i,j)
t|t

Pr(st = j|Yt)

P j
t|t =

∑2
i=1 Pr(st−1 = i, st = j|Yt)(X

j
t|t −X

(i,j)
t|t )(Xj

t|t −X
(i,j)
t|t )′

Pr(st = j|Yt)On
e the model is estimated, quantities su
h as smoothed and �ltered prob-abilities are readily available.
4.6. Alternative methods to 
ompute marginaldata densitySims et al. (2008) modify the method proposed by Geweke (1999) when it



4.7. Convergen
e diagnosti
s 65is applied to Markov-Swit
hing DSGE models. They point out that whenthe model parameters are time-varying, as it is the 
ase here, the posteriordistribution tends to be non Gaussian. They distinguish three aspe
ts 
hara
-terizing the non Gaussian shape of the posterior. First, when the posterior hasmultiple peaks, the density at the posterior mean 
an be very low. Se
ond,the trun
ated weighting fun
tion used by Geweke (1999) tends to be a poorlo
al approximation of the posterior density. Third, the posterior tends to bevery 
lose to zero in the interior points of the parameter spa
e. To addressthese problems, Sims et al. (2008) propose a family of ellipti
al distributionsas weighting fun
tion. Liu et al. (2011) also 
ontain new methods to estimatethe marginal data density.
4.7. Convergen
e diagnosti
sIt is important to verify that the posterior simulator 
onverges to its ergodi
distribution in order to ensure that the results obtained are reliable. Fordoing so, the literature o�ers both formal and informal methods. Formalmethods we have used in
lude the potential s
ale redu
tion fa
tor (PSRF)proposed by Brooks and Gelman (1998), an the numeri
al standard error(NSE) and relative numeri
al e�
ien
y (RNE) of Geweke (1992). Amonginformal methods, resear
hers typi
ally run the MCMC with di�erent startingvalues, leading to di�erent 
hains and verify that ea
h 
hain 
onverges to thesame distribution. It is of 
ommon pra
ti
e to 
onsider graphi
al methods,in
luding the plot of the MCMC draws and the 
omputation of re
ursivemeans.



66 Chapter 4. A Review of Bayesian Analysis of DSGE models4.8. Con
lusionThis survey gives an overview of Bayesian methods used to estimate 
onstantand regime swit
hing DSGE models. The next 
hapter applies these methodsto estimate a MS-DSGE model.
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5.1. Introdu
tionFrom the mid-80s until the re
ent �nan
ial 
risis, there has been a substantialde
line in the volatility of various ma
roe
onomi
 series, parti
ularly in�ationand output growth, both in the US and in other major industrial 
ountries(in
luding European 
ountries). The literature has employed the spe
ial term�Great Moderation� to des
ribe this striking phenomenon.E
onomists have suggested three explanations of the Great Moderation. The�rst type suggests that stru
tural 
hanges in the e
onomy, su
h as 
hangesin e
onomi
 institutions and in te
hnology, have improved the ability of thee
onomy to absorb sho
ks (Sto
k and Watson, 2003b), hen
e 
ontributing tomoderate e
onomi
 �u
tuations.The se
ond type relies on the so-
alled �Good poli
y� view a

ording to whi
himproved poli
y, parti
ularly monetary poli
y, is the primary sour
e of theGreat Moderation. Proponents of this view observe that a redu
tion in volatil-ity of in�ation o

urred simultaneously with a redu
tion in the volatility ofoutput. Sin
e there is a broad 
onsensus that monetary poli
y plays a 
ru-
ial role in stabilizing in�ation, a redu
tion in the volatility of output mayhave been the result of better monetary poli
y (Bernanke, 2004; Lubik andS
horfheide, 2004; Clarida et al., 2000).The third view argues that smaller exogenous sho
ks in the 80's might havehelped the e
onomy to be
ome more stable. A

ording to this view, theGreat moderation is mainly the result of �Goood lu
k� rather than the result
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tion 69of stru
tural 
hanges or improved poli
y (Sto
k and Watson, 2003b; Sims andZha, 2006; Justiniano and Primi
eri, 2008).While ea
h explanation 
ontains elements of truth, as noted in Bernanke(2004), the �Good poli
y� hypothesis has been 
onsidered for a long timeas the best explanation of the Great Moderation. Studies that support thisview argue that during the 1960's and 1970's � The Great In�ation �, mon-etary poli
y has been insu�
iently aggressive against in�ation, while it hasbe
ome more aggressive with the appointment of Vol
ker as Chairman at theFed (Lubik and S
horfheide, 2004; Clarida et al., 2000). A monetary poli
ythat is insu�
iently aggressive leads to multiple equilibria, where some ofthese equilibria are 
hara
terized by large �sunspot� sho
ks, i.e, sho
ks thatare unrelated to e
onomi
 fundamentals. Large �sunspot� sho
ks lead to highvarian
es of in�ation and output. By 
ontrast, when the monetary poli
yis su�
iently aggressive, rational agents understand that in response to anin�ationary sho
k, the monetary authority will a
t aggressively to dampenits 
onsequen
es on the e
onomy. Thus, a dire
t 
onsequen
e of the �Goodpoli
y� view is that the de
line in volatility should persist as long as monetarypoli
y 
ontinues to be �good�.However, besides the re
ent �nan
ial 
risis that 
asts some doubts on the�Good poli
y� explanation, several re
ent papers, ranging from purely empir-i
al (Sims and Zha, 2006) to more stru
tural (DSGE) papers (Justiniano andPrimi
eri, 2008; Liu et al., 2011), have provided empiri
al eviden
e in favourof the �Good lu
k� hypothesis. For instan
e, Sims and Zha (2006) �nd noregime 
hanges in US monetary poli
y. They 
on
lude that the sour
e of theGreat Moderation is mainly the out
ome of a redu
tion in the varian
e ofsho
ks. They rea
h this 
on
lusion using stru
tural VAR. Unlike Sims andZha (2006), S
horfheide (2005) 
onsiders the DSGE framework and reports
onsiderable 
hanges in US monetary poli
y. S
horfheide obtains su
h results
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yswit
hesusing a small s
ale DSGE model.More re
ently, three papers have tried to address the s
ale e�e
t problem inS
horfheide (2005). The �rst one is the paper by Liu et al. (2011). They
onsider a medium s
ale DSGE model along the lines of Christiano et al.(2005) and Smets and Wouters (2007), where monetary poli
y swit
hes regimethrough the in�ation targeted by the Fed. By means of 
ounterfa
tual exper-iments, the authors �nd little eviden
e that 
hange in the in�ation target isthe main driving for
e of the rise and fall in in�ation. On the 
ontrary, therole played by sho
ks pro
esses is substantial. They 
on
lude that �the sho
kspro
esses are more likely to be the main driving for
e of the rise and fallin in�ation than 
hanges in the in�ation target�. The se
ond one is Bian
hi(2011). He uses a model along the line of Christiano et al. (2005) and Jus-tiniano et al. (2011), where both poli
y and varian
e parameters evolve asa Markov-swit
hing pro
ess. His �ndings suggest, inter alia, that the 'Goodpoli
y' explanation is likely to be preferred by the data. Finally, Fernández-Villaverde et al. (2010) �t a non-linear medium s
ale DSGE model to U.S.data, where they seek to understand the role of sto
hasti
 volatility versusthe role of 
hanges in monetary poli
y rule in a

ounting for the Great Mod-eration in the U.S. aggregate data. They report strong eviden
e of 
hangesin US monetary poli
y but su
h 
hanges do not matter mu
h for the GreatModeration. However, the time-
onsuming nature of their methodology for
esresear
hers to estimate linearized instead of non-linear DSGE models.This 
hapter proposes an alternative strategy, whi
h is also developed in Du-fourt and Jean-Baptiste (2011a,b).We 
onsider a medium-s
ale DSGE model along the lines of Smets andWouters (2007), where poli
y and sho
k varian
e parameters swit
h regimes.In this sense, our strategy is similar to Bian
hi (2011) and Liu et al. (2011).However, we emphasize some key di�eren
es. First, Liu et al. (2011) model
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hanges in poli
y as 
hanges in the in�ation target in the poli
y rule, while weallow both in�ation target and rea
tion 
oe�
ients in the poli
y rule to swit
hregimes. Se
ond, the model 
onsidered in Bian
hi (2011) is a simpli�ed versionof the model we 
onsider, where wage is �exible and there are no swit
hes inin�ation target. A third key di�eren
e with respe
t to Bian
hi (2011) is thatwe 
onsider syn
hronized as well as independent regimes in poli
y and thevarian
e of sho
ks, while Bian
hi (2011) 
onsiders only independent regimes.This 
onsideration allows us to study to what extent 
hanges in monetarypoli
y in the U.S. and in the Euro Area are endogenous.We estimate three spe
i�
ations of our baseline DSGE model, with U.S. andEuro data. The �rst one 
onsiders only 
hanges in the varian
e of sho
ks.The se
ond one 
onsiders syn
hronized 
hanges in both poli
y and sho
k vari-an
es. This means that, in periods of low volatility, the monetary authorityis 
onstrained to rea
t strongly to deviations of in�ation from its long runtarget level. We label this regime �the hawkish regime�. On the 
ontrary, aperiod of high volatility for
es the monetary authority to 
ondu
t an �in�ationa

ommodating� poli
y, whi
h we 
all �the dovish regime�. Finally, the thirdspe
i�
ation allows 
hanges in poli
y and sho
k varian
es to be independent.That is, 
hanges in poli
y regimes are independent of the 
urrent state ofthe e
onomy. We de�ne three 
riteria for 
hanges in monetary poli
y regimesto be endogenous. First, the independent regimes and syn
hronized regimesspe
i�
ations have similar �ts. Se
ond, 
hanges in monetary poli
y o

ur (ap-proximately) simultaneously with 
hanges in the varian
e of sho
ks. Third,in the independent regimes spe
i�
ation, the following two regimes should al-most never o

ur: (i) the hawkish regime in the presen
e of high volatilityand (ii) the dovish regime in the presen
e of low volatility.Our �ndings are the following. First, in terms of �t, the spe
i�
ation wherepoli
y parameters are allowed to swit
h regimes dominates the spe
i�
ation
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yswit
heswhere only sho
k varian
es swit
h regimes. This �nding holds for both theU.S. and the Euro Area. Se
ond, the spe
i�
ation with syn
hronized regimeshifts in poli
y and sho
ks varian
e better �ts the data than the independentregime shifts spe
i�
ation, again for both e
onomies. Third, with respe
t tothe question of endogenous monetary poli
y, only the �rst 
riterion is sat-is�ed for the U.S., sin
e the independent and syn
hronized regimes produ
esimilar �ts (see Table 5.3). Smoothed estimates of regime probabilities sug-gest that 
hanges in U.S. monetary poli
y seem to be 
losely related to thepersonality of the Chairman, and not to the 
urrent state of the e
onomy.That is, under the Martin era, the U.S. monetary poli
y has been hawkishagainst in�ation, while the period under the Burns-Miller 
hairmanship hasbeen a dovish regime. Finally, the Vol
ker-Greenspan-Bernanke era had beenhawkish. We do �nd that, for the U.S. e
onomy, the �hawkish-high volatilityregime� o

urred frequently in the 60's and the mid-80's, whereas the �dovish-low volatility� o

urred in the 70's and the early 80's.For the Euro Area, the same 
annot be said. Our three 
riteria are satis�ed.Spe
i�
ally, in periods of low volatility we �nd that the Euro Area mone-tary poli
y is always hawkish. Inversely, the monetary poli
y is dovish whenvolatility is high. We thus 
on
lude that the Euro Area monetary poli
y isendogenous.The remainder of the 
hapter is organized as follows. In Se
tion 5.2, webrie�y present the model and dis
uss the solution in the presen
e of regimeswit
hing while additional details are provided in the Appendix. In Se
tion5.3, we present the e
onometri
 tools used to estimate the model. Se
tion5.4 presents the parameter estimates and their e
onomi
 impli
ations throughimpulse responses, varian
e de
ompositions and regime probabilities. Se
tion5.5 presents results for the Euro Area. Se
tion 5.6 summarizes our results onthe issue of monetary poli
y endogeneity . Finally, the last Se
tion 
on
ludes.



5.2. The model 73In Appendix A.2, we provide additional results that are not reported in themain text due to spa
e 
onsiderations.5.2. The modelThe model we 
onsider is adapted from Smets and Wouters (2007) but ex-tended to feature regime swit
hes in the varian
e of sho
ks and in monetarypoli
y. The model in
orporates various nominal and real fri
tions su
h as mo-nopolisti
 
ompetition in goods and labor markets, sti
ky pri
es and wages,partial indexation of pri
e and wages, habit persisten
e, investment adjust-ment 
osts, variable 
apa
ity utilization. We deviate from Smets and Wouters(2007) by letting the in�ation target depend on the regime in pla
e in the 
ur-rent period. This departure has some impli
ations for the dynami
 equationsgoverning in�ation, real wages and monetary poli
y.In what follows, we present the log-linearised version of the model wherewe des
ribe the aggregate demand side, the aggregate supply side and themonetary poli
y. Hatted variables denote per
entage deviations with respe
tto steady state. Details of the model derivation are provided in appendix A.2(see also (Smets and Wouters, 2007)).5.2.1. The log-linearized modelThe aggregate resour
e 
onstraint is given by
Ŷt − cyĈt − iyÎt − ryr̂t − ε̂gt = 0 (5.2.1)with iy = (γz − 1 + δ) ky, cy = (1 − iy − gy) and ry = rkkyz1, where ky isthe steady-state 
apital to output ratio, rk is the steady-state real rental rateof 
apital, z1 = (1 − ψ)/ψ, where ψ is a positive fun
tion of the elasti
ity
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yswit
hesof the 
apital utilization adjustment 
ost fun
tion. Output, 
onsumption,investment, 
apital-utilization rate and exogenous spending sho
k are denotedby Ŷt, Ĉt,Ît, ẑt and ε̂gt ., respe
tively.The law of motion for the exogenous spending sho
k as well as for other sho
ksis de�ned later on.The se
ond equation des
ribes the dynami
s of 
onsumption and is given by
Ĉt = c1Ĉt−1 + (1− c1)EtĈt+1 + c2

[
L̂t −EtL̂t+1

] (5.2.2)
−c3

[
R̂t −Etπ̂t+1 + ε̂bt

]
,where

c1 = [h/γz] / [1 + h/γz] ,

c2 = [(σc − 1)wl/((1 + λw)c)] / [σc (1 + h/γz)] ,

c3 = [1− h/γz] / [σc (1 + h/γz)] ,with h denoting an external habit formation, γz the steady-state growth rate,
σc the elasti
ity of intertemporal substitution between labour and 
onsump-tion, λw the steady-state wage mark-up, w, l, c, the steady states of wage (ŵt),hours worked (L̂t) and 
onsumption. R̂t, π̂t and ε̂bt are the nominal interestrate, in�ation rate and a risk-premium sho
k.The dynami
s of investment are given by

Ît = i1Ît−1 + (1− i1)EtÎt+1 + i2Q̂t + ε̂it, (5.2.3)with i1 =
(
1/1 + β (γz)

1−σc
) and i2 =

(
1/
(
1 + β (γz)

1−σc
)
(γz)

2 ϕ
)
, where ϕis the steady-state elasti
ity of the 
apital adjustment 
ost fun
tion, β is thedis
ount fa
tor applied to households and ε̂it is an investment-spe
i�
 sho
k.The Tobin's Q-equation is given by

Q̂t = q1EtQ̂t+1 + (1− q1)Etr̂t+1 −
(
R̂t −Etπ̂t+1 + ε̂bt

)
, (5.2.4)



5.2. The model 75with q1 = (1− δ) /
(
1− δ + rk

)
, where δ is the depre
iation rate of 
apital.Turning to the supply side, the aggregate produ
tion fun
tion is given by

Ŷt =

(
1 +

φ

Y

)(
α
(
K̂t−1 + z1r̂t

)
+ (1− α)L̂t + ε̂At

)
, (5.2.5)where φ/Y is the share of �xed-
osts in produ
tion, α 
aptures the share of
apital in produ
tion and ε̂At is the total fa
tor produ
tivity.The a

umulation of 
apital K̂t is given by

K̂t = k1K̂t−1 + (1− k1) Ît + k2ε̂
i
t (5.2.6)with k1 = (1− δ) /γz and k2 = (1− (1− δ) /γz) (1 + βγ1−σc
z ) γ2zϕ.The pri
e mark-up µ̂pt , 
orresponding to the di�eren
e between the averagepri
e and the nominal marginal 
ost, is given by

µ̂pt = α
(
K̂t−1 + z1r̂t − L̂t

)
− ŵt + ε̂At . (5.2.7)Pro�t maximization by pri
e-setting �rms gives rise to the following New-Keynesian Phillips 
urve (NKPC):

π̂t = π1

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)
+ π2

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
− π3µ̂

p
t + ε̂pt ,(5.2.8)with π1 = 1/

[
(1 + β (γz)

1−σc γp)
]
, where γp is the degree of indexation topast in�ation, and π2 =

[
β (γz)

1−σc
]
/
[
(1 + β (γz)

1−σ γp)
]. The 
oe�
ient

π3 =
[(
1− ξp

) (
1− β (γz)

1−σ ξp
)]
/
[
ξp(1 + β (γz)

1−σ γp)
((
µp − 1

)
ςp + 1

)]
aptures the role of real marginal 
ost in driving in�ation. Here ξp is thedegree of pri
e sti
kiness, µp the steady-state pri
e mark-up fa
tor and ςp isthe 
urvature of the Kimball goods market aggregator, due to the fa
t thatSmets and Wouters (2007) use the Kimball aggregator instead of the 
om-mon Dixit-Stiglitz aggregator, as the former allows a more reasonable degreeof pri
e and wage sti
kiness. The term ε̂pt 
an be interpreted as a 
ost-pushsho
k or as a pri
e mark-up sho
k. Thus, when the in�ation target swit
hes
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yswit
hesregimes, the dynami
s of in�ation in
lude the additional terms (1−γp)π̂∗
t and

(1 − γp)Et(π̂
∗
t+1), that are absent in the Smets-Wouters model.1 We assumethat the in�ation target os
illates between high and low target.Using the fa
t that the rental rate of 
apital is a positive fun
tion of the degreeof 
apital utilization and is negatively related to the 
apital-labor ratio, asimplied by 
ost minimization, we obtain the following equation

(1 + z1) r̂t + K̂t−1 − ŵt − L̂t = 0. (5.2.9)The wage mark-up is given by
µ̂wt = ŵt − σLL̂t −

1

1− h/γz
Ĉt +

h/γz
1− h/γz

Ĉt−1 (5.2.10)while, due to nominal wage sti
kiness, the real wage dynami
s reads
ŵt = w1 (ŵt−1 + γwπ̂t−1 + (1− γw)π̂

∗
t )

+ (1− w1)
(
Etŵt+1 + Etπ̂t+1 − (1− γw)Etπ̂

∗
t+1

)

−w2π̂t − w4µ̂
w
t + ε̂wt , (5.2.11)with w1 = 1/

[
1 + β (γz)

1−σc
], w2 =

[
1 + β (γz)

1−σc γw
]
/
[
1 + β (γz)

1−σc
],where γw is the degree of wage indexation to lagged in�ation and

w4 =
[
(1− ξw)

(
1− β (γz)

1−σc ξw
)]
/
[
ξw
(
1 + β (γz)

1−σc
)
((µw − 1) ςw + 1)

]
,where ξw is the degree of wage sti
kiness, ςw is the 
urvature of the Kimballgoods market aggregator and ε̂wt is a wage mark-up sho
k. The dynami
sof real wages, as in the in�ation equations, in
ludes the additional terms

(1− γw)π
∗
t and (1− γw)Etπ

∗
t+1.1In a related paper, ? 
onsider a time-varying in�ation target, where in�ation tar-get evolves as a random walk without drift. This assumption implies that Etπ̂

∗

t+1 = π̂∗

t .Therefore, our approa
h turns out to be more general.
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y blo
k of the model is des
ribed by the following monetary poli
yrea
tion fun
tion:
R̂t = ρr(st)R̂t−1 + (1− ρr(st))

[
rπ(st)(π̂t − π̂∗

t (st)) + ry(st)
(
Ŷt − Ŷ f

t

)]

+r∆y(st)
[(
Ŷt − Ŷ f

t

)
−
(
Ŷt−1 − Ŷ f

t−1

)]
+ ε̂rt (5.2.12)This is a generalized Taylor rule where the monetary authorities graduallyadjust the poli
y rate (R̂t) in response of in�ation deviations from its targetedlevel, to the spread between a
tual and potential output (Ŷt − Ŷ f

t ), to the
hange in the output gap (Ŷt − Ŷ f
t )− (Ŷt−1 − Ŷ f

t−1). The potential output isthe output that would prevail in the absen
e of pri
e and wage sti
kiness andof the two mark-up sho
ks. Parameter ρr 
aptures the degree of interest ratesmoothing, ε̂rt is a monetary poli
y sho
k and st is a di
hotomous variable that
aptures the monetary poli
y regime in pla
e at time t. It evolves a

ordingto the transition matrix P = [pij] where pij = Pr [st = i|st−1 = j].Finally, we 
lose the model by spe
ifying the law of motion for various sho
ksthat are 
onsidered in the paper:
ε̂at = ρaε̂

a
t−1 + σa(vt)η

a
t (5.2.13)

ε̂gt = ρgε̂
g
t−1 + σg(vt)η

g
t + ρgaσ

a(vt)η
a
t (5.2.14)

ε̂bt = ρbε̂
b
t−1 + σb(vt)η

b
t (5.2.15)

ε̂it = ρiε̂
i
t−1 + σi(vt)η

i
t (5.2.16)

ε̂pt = ρpε̂
p
t−1 + σp(vt)η

p
t − υpη̃

p
t−1 (5.2.17)

ε̂wt = ρwε̂
w
t−1 + σw(vt)η

w
t − υwη̃

w
t−1 (5.2.18)

ε̂rt = ρrε̂
r
t−1 + σr(vt)η

r
t (5.2.19)Those sho
ks are sho
ks to total fa
tor produ
tivity, government spending,risk-premium, investment-spe
i�
, pri
e mark-up, wage mark-up and mone-
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yswit
hestary poli
y, respe
tively . The wage-markup and pri
e-markup disturban
esare assumed to follow an ARMA(1,1), as in Smets and Wouters (2007), inorder for the model to reprodu
e some of the high-frequen
y �u
tuations inpri
es and wages. Finally, vt is an unobservable di
hotomous variable 
ap-turing heteroskedasti
ity in the sho
ks. It evolves a

ording to the transi-tion matrix Q = [qij ] where qij = Pr [vt = i|vt−1 = j] , i = 1, 2; j = 1, 2. We
onsider 
ases where the regimes st and vt are syn
hronized or independent.When st and vt are independent, we 
onsider a new state variable s∗, whi
hindexes both regimes st and vt. Thus, s∗ is four-state variable whose transi-tion matrix is P ∗ = P ⊗Q. The 
onsideration of syn
hronized regime shifts isanother key di�eren
e between our paper and Bian
hi (2011), who 
onsidersonly a spe
i�
ation where regimes in poli
y and the varian
e of sho
ks evolveindependently.Next, we solve the model using an iterative algorithm proposed by Dufourt(2011). As mentioned in Chapter 4, the main advantage of this algorithm isit e
onomizes on 
omputational time.5.3. Estimation approa
hThis se
tion begins with the des
ription of the data used for the estimation.We then derive the state spa
e representation of the model solution in orderthe 
ompute to likelihood with the methods provided in Chapter 4. Finally,we des
ribe the prior distribution of the parameters, whi
h is 
ombined withthe likelihood to form the posterior distribution.5.3.1. The dataWe estimate the model using seven quarterly series for the U.S.e
onomy and Euro area. The ve
tor of observables is obst =
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[∆ log Yt,∆ logCt,∆ log It,∆ log Wt

Pt
, logHt, πt, Rt] where ∆ is the �rst di�er-en
e operator. We �rst present the data for the US e
onomy. The samplespans 1954:III to 2009:I, where 1954:III is the �rst quarter where the Federalfunds rate is available, while the end of our sample is the �rst period where theFederal funds rate hits a zero bound. All data 
ome from the Fred Database.Per 
apita real GDP is 
onstru
ted by dividing the nominal GDP by the USworking age population and the GDP de�ator.Real series for 
onsumption and investment are obtained in the same manner,where in 
ontrast to Smets and Wouters (2007), investment is the sum of �xedprivate investment and durable 
onsumptions, and 
onsumption is the sum ofnon-durables and servi
es.2 Real wage is de�ned as the hourly 
ompensationin the Nonfarm Business se
tor divided by the GDP de�ator. Our measure oflabor is the log of hours of all persons in the Nonfarm business se
tor dividedby the working-age population. We measure in�ation as the quarterly logdi�eren
e in the GDP de�ator. Finally, our measure for the nominal interestrate is the quarterly e�e
tive Federal funds rate.Ex
ept the series on population, all data for the Euro Area (EU-15) 
omefrom the syntheti
 Area Wide Model (AWM) dataset, �rst issued by Faganet al. (2005). The dataset is publi
ly available from the Euro Area BusinessCy
le Network (EABCN). Series on the population 
ome from the OECD.The AWM dataset la
ks series on hours and no reliable measure of hours isavailable for the Euro Area. Following the literature, we use the employmentseries divided by the working-age population to express it in per 
apita terms.The estimation period spans 1970:I to 2009:IV, whi
h is the period wheremost of the data is available.We link the observables to the model variables by the following measurement2In Smets and Wouters (2007), investment measured by the �xed private investmentonly, while 
onsumption is measured as the sum of non-durables, durables and servi
es.
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yswit
hesequation
obst = D + ZX̃t (5.3.1)with D =

[
γ, γ, γ, γ, l, π∗, R

]
, where γ is the 
ommon quarterly trend growthrate of real GDP, 
onsumption, investment and wages, π∗ is the quarterlysteady-state in�ation rate, R is the steady-state nominal interest rate and l isthe steady-state hours (or employment) per 
apita.5.3.2. Prior distributionOur prior follows 
losely the Smets and Wouters (2007) prior. We �x someparameters that are not identi�ed or impre
isely estimated.These parameters are: δ = 0.025, gy = 0.18, λw = 1.5, ςp = 10, ςw = 10.As noted by Smets and Wouters (2007), the �rst two parameters would bedi�
ult to estimate unless investment and exogenous spending are used inthe measurement equations, while the last three parameters are not identi-�ed. Several attempts to estimate the steady state log hours reveal that thisparameter is impre
isely estimated. Hen
e, we 
hoose l = 0.The prior distribution for the rea
tion 
oe�
ients to 
hange in in�ation areGamma 
entered around Taylor (1993)'s values for both regimes. We also
onsider an alternative prior, whi
h is 
onsistent with the view that the GreatIn�ation of the 70's was the 
onsequen
e of loose monetary poli
y. Spe
i�
ally,we allow the Fed's rea
tion 
oe�
ients to 
hanges in in�ation relative to itstarget to be lower during the Great In�ation era and higher during the GreatModeration era. The rea
tion 
oe�
ients to both the output gap and the
hange in the output gap follow a Gaussian distribution, with mean 0.12 andstandard deviation 0.05. The prior for the interest rate smoothing parameterfollows the Beta distribution, with mean 0.5 and standard deviation 0.2. These
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h 81Table 5.1: Prior distribution of stru
tural parameters for the syn
hronizedand independent regimes models.Parameters Distr Para (1) Para (2) .
ϕ Normal 4 1.5
σc Normal 1.5 0.375
h Beta 0.7 0.1
θw Beta 0.5 0.1
σL Normal 2 0.75
θp Beta 0.5 0.1
γw Beta 0.5 0.15
γp Beta 0.5 0.15
ψ Beta 0.5 0.15
µP Normal 1.25 0.125
rπ,1 Gamma 1.5 0.25
rπ,2 Gamma 1.5 0.25
ρr,1 Beta 0.75 0.1
ρr,2 Beta 0.75 0.1
ry,1 Gamma 0.12 0.05
ry,2 Gamma 0.12 0.05
r∆y,1 Gamma 0.12 0.05
r∆y,2 Gamma 0.12 0.05
100(1/β − 1) Gamma 0.25 0.1
100γ Normal 0.4 0.1
α Beta 0.3 0.05
100π∗(1) Gamma 0.62 0.1
100∆π∗ Gamma 0.5 0.1Notes: Para(1) and Para(2) list the means and the standard devi-ations for Beta distribution; the shape s and and the s
ale ν pa-rameters for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝

σ−ν−1
exp(−νs2/2σ2

).prior values are identi
al a
ross regimes and follow 
losely Smets and Wouters(2007).The prior for the in�ation target follows S
horfheide (2005). Instead of esti-
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yswit
hesmating low and high targets, we estimate the low target π∗(1) and the dif-feren
e between low and high target ∆π∗. This strategy allows us to assesswhether the di�eren
e in the two targets is signi�
ant or not. The prior dis-tributions for the low and high in�ation targets are su
h that the annual lowand high targets are 3% and 6%, respe
tively.The priors for the transition probabilities are 
hosen to ensure that the regimesare persistent. Spe
i�
ally, we assume a Beta distribution for the transitionprobabilities, with mean 0.9 and standard deviation 0.05.The prior on the sto
hasti
 pro
ess follows 
losely Smets and Wouters (2007).The standard errors of all innovation follow an Inverse-Gamma distributionwith mean 0.1 and standard deviation 2. The persisten
e 
oe�
ients of thesho
ks pro
esses follows a Beta distribution with mean 0.5 and standard de-viation 0.2. Additional details are available in Tables 5.1 and 5.2.
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h 83Table 5.2: Prior distribution of sho
ks pro
esses parameters for the syn
hro-nized and independent regimes models.Parameters Distr Para (1) Para (2).
ρa Beta 0.5 0.2
ρg Beta 0.5 0.2
ρb Beta 0.5 0.2
ρi Beta 0.5 0.2
ρep Beta 0.5 0.2
ρw Beta 0.5 0.2
ρr Beta 0.5 0.2
µw Beta 0.5 0.2
µp Beta 0.5 0.2
ρga Beta 0.5 0.2
100σa,1 Inverse gamma 0.1 2
100σg,1 Inverse gamma 0.1 2
100σb,1 Inverse gamma 0.1 2
100σi,1 Inverse gamma 0.1 2
100σp,1 Inverse gamma 0.1 2
100σw,1 Inverse gamma 0.1 2
100σR,1 Inverse gamma 0.1 2
100σa,2 Inverse gamma 0.1 2
100σg,2 Inverse gamma 0.1 2
100σb,2 Inverse gamma 0.1 2
100σi,2 Inverse gamma 0.1 2
100σp,2 Inverse gamma 0.1 2
100σw,2 Inverse gamma 0.1 2
100σR,2 Inverse gamma 0.1 2
p11 Beta 0.9 0.05
p22 Beta 0.9 0.05
q11 Beta 0.9 0.05
q22 Beta 0.9 0.05Notes: Para(1) and Para(2) list the means and the standard devi-ations for Beta distribution; the shape s and and the s
ale ν pa-rameters for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝
σ−ν−1

exp(−νs2/2σ2
).
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yswit
hes5.4. Empiri
al results: U.S.This se
tion presents our results for the US e
onomy. We �rst present themodel �t. Then we 
omment the estimates of the stru
tural parameters andtheir e
onomi
 impli
ations through varian
e de
omposition, impulse responseanalysis and the smoothed estimates of regime probabilities.5.4.1. Model FitTable (5.3) reports measures for four spe
i�
ations of our DSGE model. Toassess the model �t, we 
ompute the modi�ed harmoni
 mean estimation of themarginal likelihood de�ned in Chapter 4. Several observations 
an be madefrom Table 5.3. First, the spe
i�
ations where poli
y and varian
e swit
hregimes 
learly dominate the other. Thus, our model �ts better than theben
hmark Smets and Wouters (2007) model, where poli
y and sho
k varian
eparameters are 
onstant. This translates into a Bayes fa
tor of exp(86) in favorof our model. Our model also �ts better relative to Liu et al. (2011), whereonly regime shifts in varian
es and in in�ation target are 
onsidered. Se
ond,the two spe
i�
ations where poli
y parameters swit
h regimes deliver a rathersimilar �t. Thus, this �nding raises the issue about the endogeneity of regimeswit
hes in monetary poli
y.5.4.2. Estimates of stru
tural parameters and regimeprobabilitiesIn this se
tion, we dis
uss the estimates of the best �t model. Posteriorsummary statisti
s for the best �t model (Posterior-Syn
), su
h as the mean,the mode and 
on�den
e bands are obtained with the Metropolis-Hastingsalgorithm. We also report the posterior mode for the independent regime



5.4. Empiri
al results: U.S. 85Table 5.3: Model �t: (Log) Marginal Data DensitySpe
i�
ation Modi�ed harmoni
 mean1.Constant parameters model -1325.982.Swit
hing varian
e only -1240.103.Swit
hing in�ation target,poli
y rule and sho
k varian
es -1222.204.Independent swit
hing in in�ation target,poli
y rule and sho
k varian
es -1223.4Notes: Log Marginal Data Density (MDD) 
omputed for di�erent spe
i�
ations, withthe modi�ed harmoni
 mean estimator and the Lapla
e approximation.spe
i�
ation (Posterior-Ind).Table 5.4 and 5.5 report estimates of the best-�t model. Observing prior infor-mation and posterior summary statisti
s, we note that the data are informa-tive about almost all parameters. Our estimates for the stru
tural parametersfall within the range reported by the literature. The median estimate for ϕ,the steady-state elasti
ity of the 
apital adjustment 
ost is 5.03. This esti-mate lies on the error band reported by Smets and Wouters (2007)'s estimatefor this parameter while it is higher than estimates by Liu et al. (2011) orJustiniano et al. (2010). Our estimate for σc, the intertemporal elasti
ity ofsubstitution is 1.19, whi
h is in line with the literature. The habit parame-ter is 0.90, mu
h higher than estimates obtained in the literature. The laborelasti
ity is estimated to be 2.90. We estimate the share of �xed 
osts in theprodu
tion fun
tion (µP − 1) to be 0.425, somewhat lowerr than the value0.60 obtained by Smets and Wouters (2007).



86Chapter 5. Great Moderation and endogenous monetary poli
yswit
hesTable 5.4: Posterior distribution of stru
tural parameters for the syn
hronizedand independent regimes modelsPosterior-Syn
 Posterior-IndParameters Mode Mean 5% 95% Mode
ϕ 5.0350 5.3152 3.7941 7.1853 5.0333
σc 1.1899 1.1885 1.1089 1.2723 1.1688
h 0.9092 0.9085 0.8764 0.9426 0.9158
θw 0.8514 0.8489 0.7984 0.8969 0.8550
σL 2.8995 2.9578 1.7948 4.1466 3.3043
θp 0.6947 0.7034 0.6294 0.7854 0.7096
γw 0.5018 0.4928 0.2974 0.7065 0.4679
γp 0.1836 0.2013 0.0762 0.3519 0.1804
ψ 0.4366 0.4860 0.3165 0.6592 0.5146
µP 1.4253 1.4338 1.2865 1.5786 1.4271
rπ,1 1.8748 1.9299 1.5958 2.3002 1.8095
rπ,2 1.5592 1.6320 1.2121 2.0836 1.5202
ρr,1 0.8855 0.8895 0.8624 0.9187 0.8819
ρr,2 0.7900 0.7770 0.6919 0.8572 0.7105
ry,1 0.0463 0.0552 0.0242 0.0892 0.0342
ry,2 0.1091 0.1176 0.0536 0.1920 0.1624
r∆y,1 0.1124 0.1213 0.0843 0.1540 0.1145
r∆y,2 0.1582 0.1645 0.0828 0.2461 0.1601
100(1/β − 1) 0.1187 0.1415 0.0519 0.2346 0.0873
100γ 0.3770 0.3645 0.3081 0.4126 0.3543
α 0.2022 0.2055 0.1906 0.2203 0.2023
100π∗(1) 0.6862 0.6972 0.5125 0.8620 0.6331
100∆π∗ 0.5189 0.5250 0.3414 0.7432 0.4646Turning to the wage and pri
e settings parameter, our estimates for the Calvoprobabilities imply an average length of the wage 
ontra
ts of six quarters andabout three quarters for the pri
e 
ontra
t. These estimates are higher thanthe values reported in some papers (e.g (Liu et al., 2011)). The .95 error bandestimates for the wage and pri
e indexation suggest that they are pre
iselyestimated and are very 
lose to estimates reported by Smets and Wouters
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al results: U.S. 87(2007).The sho
k pro
esses suggest that produ
tivity, spending, pri
e markup andwage markup sho
ks are highly persistent. Investment sho
ks exhibit impor-tant persisten
e while preferen
e and poli
y sho
ks exhibit low persisten
e.These �ndings are 
onsistent with those of Smets and Wouters (2007).Estimates of the standard deviations of sho
ks 
learly indi
ate that sho
ksvarian
es are e�e
tively swit
hing between regimes. Ex
ept for the wagemarkup sho
k, the se
ond regime is the high volatility regime and it is slightlyless persistent, as suggested by the transition probabilities (p11 = 0.9461,
p22 = 0.8904) and Figure 5.1. Standard deviations for all sho
ks show drasti

hanges a
ross regimes. In line with results reported in Justiniano and Prim-i
eri (2008), monetary poli
y sho
k is the exogenous disturban
e showing thelargest degree of sto
hasti
 volatility when one 
ompares the standard devi-ations for this sho
k in ea
h regime: the ratio of the standard deviation forthe monetary poli
y sho
k in regime 1 to the standard deviation in regime 2is more than 350 per
ent. We �nd that the wage markup sho
k is relativelystable while the pri
e markup sho
k has the smallest varian
e, with a stan-dard deviation of this sho
k of 0.10 in the �rst regime and 0.20 in the se
ondregime. The spending sho
k exhibits moderate variation while the produ
tiv-ity sho
k has the largest varian
e in absolute terms. Investment sho
k showssigni�
ant degree of variation a
ross regime, mu
h lower than variation formonetary poli
y sho
k. While our �ndings are in line with Justiniano andPrimi
eri (2008) about the patterns of monetary poli
y sho
ks, they are insharp 
ontrast with those reported in Liu et al. (2011), who �nd that monetarypoli
y and te
hnology sho
ks have the smallest varian
e.
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yswit
hesTable 5.5: Posterior estimates of sho
k pro
esses parameters.Posterior-Syn
 Posterior-IndParameters Mode Mean 5% 95% Mode
ρa 0.9862 0.9853 0.9771 0.9940 0.9824
ρg 0.9848 0.9844 0.9727 0.9956 0.9837
ρb 0.3404 0.3563 0.2221 0.4896 0.3381
ρi 0.6820 0.6862 0.5733 0.7907 0.6743
ρep 0.9718 0.9607 0.9230 0.9921 0.9469
ρw 0.9656 0.9600 0.9325 0.9868 0.9528
ρr 0.2359 0.2797 0.1600 0.4075 0.1747
µw 0.9362 0.9248 0.8803 0.9657 0.9173
µp 0.8557 0.8343 0.7222 0.9387 0.8334
ρga 0.2793 0.2740 0.2115 0.3460 0.2784
100σa,1 0.4993 0.4968 0.4362 0.5625 0.4903
100σg,1 0.2746 0.2842 0.2421 0.3309 0.2739
100σb,1 0.1203 0.1204 0.0959 0.1440 0.1157
100σi,1 0.5367 0.5771 0.4435 0.7220 0.5211
100σp,1 0.1548 0.1581 0.1246 0.1899 0.1566
100σw,1 0.2660 0.2635 0.2290 0.2954 0.2641
100σR,1 0.0912 0.0980 0.0819 0.1144 0.0850
100σa,2 0.7444 0.7918 0.6504 0.9612 0.7531
100σg,2 0.3611 0.3696 0.2834 0.4499 0.3578
100σb,2 0.1819 0.1909 0.1367 0.2433 0.1898
100σi,2 1.4398 1.5307 1.1460 1.9232 1.4376
100σp,2 0.2474 0.2607 0.1880 0.3398 0.2592
100σw,2 0.2284 0.2225 0.1715 0.2748 0.2125
100σR,2 0.3344 0.3696 0.3029 0.4531 0.3012
p11 0.9461 0.9383 0.8962 0.9762 0.9614
p22 0.9110 0.8904 0.8148 0.9583 0.8991
q11 0.9415
q22 0.9037Turning to the monetary poli
y rule, we note that the estimates of the 
o-e�
ients response to 
hanges in in�ation exhibit signi�
ant variations a
rossregimes. In the �rst regime (the hawkish regime), the response to 
hanges
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Figure 5.1: US: Posterior probabilities of the (syn
hronized) more hawkish-low volatility regime for the best �t model. Shaded bands in panel (b), (
)and (d) are the NBER re
ession and expansion dates. Verti
al lines in panel(a) denote the appointment of the Chairmen.in in�ation is quite high (rπ,1 = 1.87), and is in line with the one estimatedby Smets and Wouters (2007). In the dovish regime, the same parameter issomewhat lower (rπ,2 = 1.55). While there is signi�
ant di�eren
e between therea
tion 
oe�
ients of the two regimes, our results do not support eviden
e re-ported in Clarida et al. (2000) or Lubik and S
horfheide (2004). These papers�nd that in the dovish regime, rπ < 1. In the dovish regime, posterior andprior modes for rπ are quite similar (1.55 and 1.5). However, one should notinterpret this �nding as re�e
ting the fa
t that data are uninformative aboutthis parameter. Using an alternative prior that would imply indetermina
yin a 
onstant 
oe�
ient model, we estimate posterior mode of rπ,2 to be 1.52,quite similar to the prior.33In a 
onstant DSGE model, indetermina
y arises when the interest rate does not rise
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yswit
hesEstimates of the interest rate smoothing 
oe�
ients suggest that the Fedstrongly responds to the lagged interest rate in both regimes, though theresponse is higher in the hawkish regime (0.88) than in the se
ond regime(0.77). Responses to output gap and 
hanges in output gap are in line withthe 
orresponding estimates by Smets and Wouters (2007), whi
h suggestthat the Fed responds more strongly to 
hanges in the growth rate of outputgap (0.1091) than in the output gap itself (0.0463). Finally, estimates of thein�ation target imply that in the hawkish regime, the annual in�ation targetis about 2.7%, while it is about 5% in the dovish regime. Our estimates aresomewhat lower than those of S
horfheide (2005), who estimates the in�ationtargets to be 2.8% and 8%, respe
tively.Figure 5.1 depi
ts the smoothed posterior probabilities for the hawkish regime,as well as the series on output growth, in�ation and interest rate.4 The graphis 
onsistent with the view that during mu
h of the time in the 60's, the Fedwas very hawkish against in�ation, while it was dovish in the 70's. In themid 80's until the re
ent �nan
ial 
risis, the Fed was very hawkish againstin�ation. We note that these �ndings 
ontrast those in Clarida et al. (2000),sin
e their estimates suggest that pre-Vol
ker period was essentially a doveregime.more than one for one in response to a 
hange in in�ation. In this 
ase, the Taylor prin
ipleis violated and this violation 
an produ
e undesirable out
omes, su
h as large �u
tuationsin output and in�ation, multiple equilibria where those variables respond to sunspot sho
ks,i.e. sho
ks that are unrelated to fundamentals of the e
onomy but are the results of thebeliefs of agents. For Markov Swit
hing DSGE models of the kind we 
onsider in this paper,however, there is no theoreti
al result for the existen
e of indetermina
y. Davig and Leeper(2007), Farmer et al. (2009b) and Farmer et al. (2009a) provide theoreti
al results for theindetermina
y/determina
y issue for forward-looking Markov-Swit
hing DSGE models.4Smoothed posterior probabilities are 
omputed using methods provided in Kim andNelson (1999).



5.4. Empiri
al results: U.S. 915.4.3. Varian
e de
ompositionThis subse
tion seeks to understand what are the main driving for
es of keyma
roe
onomi
 variables of the model. Tables 5.6 and 5.7 show the varian
ede
omposition for the best �t model 
omputed at the posterior mode, wheresho
ks are reported in 
olumn.As one 
an see, under the two regimes, the main driving for
e of output�u
tuations is the investment-spe
i�
 sho
k. In the �rst regime, this sho
ka

ounts for more than 50 per
ent of the fore
ast error varian
e of outputirrespe
tive to the horizon 
onsidered. In the se
ond regime, the result is evenstronger, sin
e more than 70 per
ent of the varian
e of output is explained bythe this sho
k. In Smets and Wouters (2007), the investment-spe
i�
 sho
kexplains only about 20 per
ent of the varian
e of output. The role of invest-ment sho
ks for the business 
y
le is do
umented in Justiniano et al. (2010),Justiniano and Primi
eri (2008), Justiniano et al. (2011). Our �nding is inline with their. Justiniano et al. (2010) 
riti
ize Smets and Wouters (2007) byshowing that investment sho
ks are the main driving for
es behind investmentand output �u
tuations when the de�nition of investment in
ludes inventoriesand durables, or the observables in
lude the relative pri
e of investment.5 Asexpe
ted, investment sho
k is the main driving for
e behind investment �u
-tuations of. Flu
tuations in hours are mostly explained by investment sho
k,while this sho
k explains an important part of �u
tuations in nominal interestrate.To some extent, spending sho
ks also explain an important part of the �u
-tuations. Pri
e markup sho
ks, wage markup sho
ks and monetary poli
y5We have estimated the Smets and Wouters (2007) model a

ording to their de�nitionof investment and 
onsumption. Results not reported 
on�rm the 
riti
ism of Justinianoet al. (2010). Furthermore, we have found that with the Smets-Wouters dataset, the mainexplanation of the Great Moderation is rather the Good lu
k hypothesis.



92Chapter 5. Great Moderation and endogenous monetary poli
yswit
hessho
ks play a very limited role in explaining output �u
tuations.As expe
ted, the risk premium sho
k explains the largest part of the �u
tu-ations in 
onsumption, though this part is de
reasing with the length of thefore
ast horizon. In the short run (up to one quarter), this sho
k explains asizeable part of the nominal interest rate �u
tuations. Otherwise, this sho
kis unimportant in explaining �u
tuations for the other observables.Pri
e markup and wage markup sho
ks explain the largest part of �u
tuationsin in�ation and real wages. Together, they a

ount for more than 70 per
entof the fore
ast varian
e of these series.It is worth noting that the monetary poli
y sho
k plays a very limited rolefor series other than the interest rate. In the short run, the monetary poli
ysho
k explains a big part of nominal interest rate �u
tuations. However, as thehorizon lengthens, investment be
omes the main driving for
e behind nominalinterest rate �u
tuations.Summarizing, �u
tuations in output, investment and hours are mostly dueto investment sho
ks. Flu
tuations in in�ation are mostly explained by pri
emarkup and wage markup sho
ks, while �u
tuations in nominal interest rateare mostly due to monetary poli
y and investment sho
ks.
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al results: U.S. 93Table 5.6: Varian
e de
omposition for the best �t model (Regime 1)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 9.45 21.00 9.82 54.92 2.18 0.17 2.46
4Q 13.00 14.74 7.54 51.43 5.35 4.63 3.31
8Q 12.73 14.09 7.32 51.62 5.25 5.66 3.34
24Q 12.64 13.47 7.03 50.85 5.91 6.49 3.61Consumption
1Q 0.72 0.06 96.07 0.57 0.09 0.11 2.38
4Q 8.08 0.52 69.57 6.52 3.85 6.76 4.70
8Q 9.78 0.66 64.11 6.20 4.62 10.35 4.28
24Q 10.27 0.76 59.51 6.11 5.18 13.47 4.69Investment
1Q 2.99 0.16 0.78 92.43 1.54 0.34 1.76
4Q 6.45 0.36 0.87 84.08 3.67 2.62 1.94
8Q 6.13 0.34 0.83 84.39 3.53 2.70 2.07
24Q 6.43 0.36 0.90 82.51 4.13 3.50 2.18Real Wage
1Q 2.23 0.00 0.21 0.49 27.82 69.20 0.05
4Q 5.37 0.01 0.24 2.13 28.71 63.21 0.33
8Q 5.80 0.02 0.25 2.11 28.48 63.01 0.33
24Q 5.90 0.03 0.27 2.31 28.83 62.26 0.41Hours
1Q 44.96 13.13 5.91 33.64 0.40 0.48 1.49
4Q 12.36 6.21 4.23 51.23 8.77 10.59 6.61
8Q 9.12 5.21 3.28 41.09 13.29 21.35 6.66
24Q 4.98 3.62 1.70 21.92 14.10 49.86 3.82In�ation
1Q 5.16 0.12 0.28 1.17 75.54 16.91 0.81
4Q 8.08 0.33 0.71 2.86 43.90 41.19 2.94
8Q 7.77 0.37 0.75 2.81 41.09 43.84 3.36
24Q 7.53 0.49 0.78 3.15 39.11 45.44 3.50Nominal interest rate
1Q 11.27 0.72 15.88 6.75 14.53 6.04 44.82
4Q 15.02 1.24 6.70 25.44 14.50 24.47 12.63
8Q 14.12 1.31 5.79 25.32 13.25 30.08 10.13
24Q 13.13 1.74 5.14 23.45 11.88 36.08 8.59
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yswit
hesTable 5.7: Varian
e de
omposition for the best �t model (Regime 2)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 6.30 7.58 4.67 76.14 1.70 0.02 3.60
4Q 8.62 5.68 3.79 73.95 3.11 0.69 4.17
8Q 8.37 5.47 3.69 74.42 3.01 0.73 4.31
24Q 8.36 5.32 3.60 74.21 3.31 0.80 4.40Consumption
1Q 1.35 0.08 90.46 0.59 0.36 0.11 7.06
4Q 9.22 0.46 64.54 11.41 3.18 1.95 9.23
8Q 10.52 0.55 62.13 11.95 3.32 2.50 9.03
24Q 10.86 0.61 59.99 12.47 3.62 2.89 9.55Investment
1Q 1.52 0.06 0.44 95.37 0.81 0.07 1.72
4Q 3.05 0.12 0.51 92.66 1.53 0.29 1.84
8Q 2.90 0.12 0.49 92.80 1.49 0.28 1.93
24Q 3.03 0.12 0.52 92.39 1.66 0.35 1.93Real wage
1Q 4.48 0.00 0.33 2.16 56.38 36.41 0.25
4Q 9.50 0.01 0.33 8.09 51.40 29.83 0.85
8Q 10.08 0.01 0.35 8.05 50.94 29.69 0.88
24Q 10.06 0.02 0.35 8.65 50.99 28.93 0.99Hours
1Q 29.24 5.86 3.50 58.08 0.45 0.16 2.70
4Q 6.86 2.47 2.06 74.75 5.29 2.17 6.41
8Q 6.03 2.49 1.90 70.67 7.99 4.34 6.59
24Q 5.47 3.06 1.65 62.21 10.37 11.53 5.71In�ation
1Q 5.22 0.07 0.20 2.49 85.16 5.08 1.78
4Q 9.75 0.21 0.62 6.33 62.69 15.68 4.72
8Q 9.64 0.25 0.68 6.29 60.38 17.83 4.92
24Q 9.25 0.39 0.74 7.33 56.72 21.01 4.56Nominal interest rate
1Q 6.25 0.24 8.49 8.51 11.79 1.07 63.64
4Q 10.59 0.53 4.87 43.07 12.76 5.01 23.18
8Q 10.45 0.58 4.54 45.16 12.20 6.17 20.89
24Q 10.46 0.79 4.36 45.10 12.02 7.91 19.36



5.4. Empiri
al results: U.S. 955.4.4. Impulse responsesIn this se
tion, we analyse the model's transmission me
hanisms through theimpulse responses. Following Smets and Wouters (2007), we report impulseresponse for output, hours, in�ation and interest rate.
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90%error band MedianFigure 5.2: Impulse responses (median) to a investment sho
k. Left panels areimpulse responses for the two regimes; right panels are the di�eren
e betweenimpulse responses asso
iated with their 90 per
ent 
redible intervals.Table 5.6 and Table 5.7 
learly suggest that the main driving for
es of �u
tu-ations in output, in�ation and interest rate are the investment sho
ks), pri
eand markup sho
ks and monetary poli
y sho
ks, respe
tively. Thus, we reportimpulse responses to these sho
ks.Figure 5.2 depi
ts the posterior median impulse responses to a one standarddeviation investment sho
k. On impa
t, output, hours, in�ation and interest
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90%error band MedianFigure 5.3: Impulse responses (median) to a pri
e markup sho
k. Left panelsare impulse responses for the two regimes; right panels are the di�eren
ebetween impulse responses asso
iated with their 90 per
ent 
redible intervals.rate in
rease. The di�eren
e in magnitude between regimes is signi�
ant, assuggested by the error bands around the di�eren
e of impulse responses forthe two regimes (right panels). The transmission me
hanism works as follow:investment rises while 
onsumption de
lines (not reported). The in
rease ininvestment rises hours, whi
h leads to a rise in output sin
e �rms are able toprodu
e more. The rise in demand raises in�ation to rise, so that the nominalinterest rate in
reases (through the poli
y rule).Figure 5.3 depi
ts the responses to a one standard deviation sho
k to thepri
e sho
k. A positive pri
e markup sho
k leads optimizing �rms to in
reasetheir pri
e. Consequently, in�ation rises and output falls. The rise in in�ation
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al results: U.S. 97implies that the nominal interest rate in
reases (through the poli
y rule) whileaggregate output and hours fall.Finally, following a monetary poli
y sho
k, the nominal interest rises whileoutput, hours and in�ation fall. This is depi
ted in Figure (5.4). The 
on-�den
e bands show that there are important di�eren
e in the transmissionme
hanism a
ross regimes.
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98Chapter 5. Great Moderation and endogenous monetary poli
yswit
hes5.5. Empiri
al results: Euro AreaThis se
tion presents the results for Euro Area. As for the US, we �rst as-sess the model �t, then the posterior summaries are analysed. Through thevarian
e de
omposition, we do
ument what sho
ks are most important inexplaining European business 
y
les. We then 
ompute and interpret theimpulse responses. Finally, we des
ribe the regimes that the data lead to.5.5.1. Model �tWhile Euro Area and U.S. e
onomies present important di�eren
es, we havefound that su
h di�eren
es do not matter for the prior eli
itation. That is,using the same prior as in Smets and Wouters (2003) and the prior used inSe
tion 5.3.2 leads essentially to the same results. Thus, we 
omment ourresults with respe
t to prior information in se
tion 5.3.2.The model ranking is the same as for the US, as suggested in Table 5.8.The best �t model is the one where both poli
y and sho
ks varian
e swit
hregime. Note that our results stand in 
ontrast with those of Rubio-Ramirezet al. (2005). A

ording to their results, lower ma
roe
onomi
 volatility ob-served in the Euro Area in the early 90's and after is due to smaller sho
ksto interest rate and in�ation. They �nd little (if any) eviden
e about 
hangein monetary poli
y. They obtain su
h a 
on
lusion using Markov-Swit
hingVe
tor autoregressive models. This might explain why our results are di�erentfrom their.5.5.2. Stru
tural parameters and regime probabilitiesTable 5.9 and 5.10 report estimates of the best-�t model. We fo
us on pa-rameters 
hara
terizing pri
e and wage sti
kiness, sho
ks pro
esses and poli
y.
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al results: Euro Area 99Table 5.8: Model �t: (Log) Marginal Data Density: Euro AreaSpe
i�
ation Modi�ed harmoni
 mean1.Constant parameters model -733.23012.Swit
hing varian
e only -694.04813.Swit
hing in�ation target,poli
y rule and sho
k varian
es -672.41674.Independent swit
hing in in�ation target,poli
y rule and sho
k varian
es -673.6352Notes: Log Marginal Data Density (MDD) 
omputed for di�erent spe
i�
ations, withthe modi�ed harmoni
 mean estimator and the Lapla
e approximationThe estimated pri
e indexation γp is estimated to be 0.09. Su
h estimation
omes with great un
ertainty, as suggested by the large error band aroundthis parameter. This implies that the ba
kward looking 
omponent in theNew Phillips 
urve is 
lose to zero. For 
omparison, Smets and Wouters(2003)'s estimates is γp = 0.46.We estimate the wage indexation 
losely to Smets and Wouters (2003). Es-timates of the degree of pri
e and wage sti
kiness suggest that pri
e andwage 
ontra
ts last three-and-a-half and four-and-a-half quarters, respe
tively.Su
h estimates are 
onsistent with �ndings based on mi
roe
onomi
 studies.Our estimates of poli
y parameters suggest that in the �rst regime, Euro Areamonetary poli
y tends to be more aggressive against in�ation than in the se
-ond regime. In parti
ular, the estimates of the posterior mode for the se
ondregime would imply indetermina
y in a 
onstant parameter DSGE model sin
ewe estimate rπ,2 = 0.98. However, su
h estimates should be interpreted witha bit of 
aution. Prior of 1999, the monetary poli
y in the Euro area was notunique. It 
ould be the 
ase that while some single e
onomies would have hada monetary poli
y that leads to indetermina
y, the monetary poli
y followedby others may have implied determina
y. Both regimes exhibit 
onsiderableinterest rate smoothing (ρr,1 = 0.90, ρr,2 = 0.83). Rea
tion to output gap is
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yswit
hesslightly lower in the �rst regime (ry,1 = 0.8, ry,2 = 0.9). Estimates of thein�ation target imply that in the �rst regime, the annual in�ation target is
2.5% while it is 4.5% in the se
ond regime.Fo
using on parameters 
hara
terizing the sho
k pro
ess, two remarks arein order. First, produ
tivity, government spending, wage markup and pri
emarkup sho
ks are very persistent. Their autoregressive parameters are 
loseto one. Smets and Wouters (2003) �nd a similar results. Se
ond, estimatesof standard deviations suggest that regime one is a regime of lower ma
roe-
onomi
 volatility. In fa
t, unlike the US 
ase, the standard deviations ofall sho
ks in the �rst regime are lower than their 
ounterpart in the se
ondregime.
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al results: Euro Area 101Table 5.9: Posterior of Stru
tural ParametersPosterior-Syn
 Posterior-IndParameters Mode Mean 5% 95% Mode
ϕ 6.4280 6.5644 4.8020 8.2231 7.0427
σc 1.4128 1.4282 1.1538 1.7623 1.6704
h 0.8180 0.7932 0.7101 0.8696 0.4967
θw 0.7332 0.7275 0.6716 0.7842 0.6712
σL 2.6401 2.8212 1.8572 4.0339 2.5227
θp 0.7876 0.7757 0.7176 0.8289 0.7564
γw 0.2152 0.2515 0.0850 0.4350 0.1864
γp 0.0900 0.1108 0.0288 0.2091 0.0915
ψ 0.5013 0.5899 0.3748 0.7980 0.7702
µP 1.7921 1.7633 1.6163 1.9483 1.7246
rπ,1 1.3901 1.3255 0.9948 1.7128 1.6074
rπ,2 0.9878 1.0729 0.7980 1.3226 1.2201
ρr,1 0.9097 0.8907 0.8288 0.9461 0.9011
ρr,2 0.8320 0.8430 0.7744 0.9060 0.5773
ry,1 0.0801 0.0819 0.0285 0.1412 0.0778
ry,2 0.0923 0.1353 0.0585 0.2131 0.1215
r∆y,1 0.1713 0.2014 0.1261 0.3029 0.2709
r∆y,2 0.1205 0.1327 0.0657 0.2073 0.0899
100(1/β − 1) 0.1555 0.1563 0.0562 0.2584 0.1058
100γ 0.2964 0.3029 0.2420 0.3601 0.3331
α 0.1859 0.1802 0.1474 0.2093 0.1877
100π∗(1) 0.6205 0.6190 0.4388 0.8081 0.6228
100∆π∗ 0.4884 0.4941 0.3200 0.6624 0.4260



102Chapter 5. Great Moderation and endogenous monetary poli
yswit
hesTable 5.10: Posterior of Stru
tural ParametersPosterior-Syn
 Posterior-IndParameters Mode Mean 5% 95% Mode
ρa 0.9974 0.9960 0.9928 0.9988 0.9932
ρg 0.9988 0.9974 0.9936 0.9999 0.9982
ρb 0.1372 0.2511 0.0640 0.4970 0.7976
ρi 0.5490 0.5063 0.3665 0.6435 0.4785
ρep 0.7574 0.7461 0.5780 0.9064 0.7889
ρw 0.9798 0.9751 0.9645 0.9855 0.9735
ρr 0.4282 0.4298 0.3006 0.5743 0.3596
µw 0.8575 0.8332 0.7546 0.8993 0.7963
µp 0.6314 0.5900 0.3497 0.8070 0.6750
ρga 0.4723 0.4507 0.3198 0.5982 0.4454
100σa,1 0.2451 0.2496 0.2109 0.2904 0.2586
100σg,1 0.2420 0.2431 0.2115 0.2802 0.2361
100σb,1 0.1428 0.1393 0.1007 0.1767 0.0540
100σi,1 0.3020 0.3686 0.2678 0.4617 0.4082
100σp,1 0.1154 0.1148 0.0839 0.1452 0.1260
100σw,1 0.0752 0.0852 0.0612 0.1124 0.0938
100σR,1 0.0934 0.1079 0.0835 0.1355 0.1106
100σa,2 0.3847 0.4226 0.3381 0.5192 0.4160
100σg,2 0.3560 0.3885 0.3096 0.4764 0.3934
100σb,2 0.2296 0.2188 0.1468 0.2801 0.0838
100σi,2 0.5712 0.6265 0.4799 0.7840 0.6280
100σp,2 0.2352 0.2438 0.1806 0.3101 0.2692
100σw,2 0.1927 0.2093 0.1547 0.2687 0.2296
100σR,2 0.2326 0.2563 0.2104 0.3057 0.2436
p11 0.8993 0.9016 0.8453 0.9555 0.9411
p22 0.9382 0.9141 0.8573 0.9672 0.9271
q11 0.9462
q22 0.9170Figure 5.5 depi
ts the smoothed posterior estimates of regimes as well asthe series on output growth, in�ation and interest rate. The hawkish regimeexhibits mu
h of its persisten
e after 1993, whi
h is the se
ond important date
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Figure 5.5: EU: Posterior probabilities of the (syn
hronized) hawkish-lowvolatility regime for the best �t model.in the 
reation of the European Monetary Union (EMU). The dovish regimemainly o

urs in the 70's, the early 80's and 90's. The high volatility regime inthe early 90's 
an be explained by the German reuni�
ation as an exogenoussho
k. The 
reation of the German e
onomi
 monetary union (GEMU) andthe massive inje
tion of money that followed are important fa
tors behind thein
rease in in�ation.5.5.3. Varian
e de
ompositionTable 5.11 and 5.12 report the 
ontribution of the stru
tural sho
ks to the fore-
ast error varian
e for sele
ted endogenous variables. Flu
tuations in outputare mainly driven by spending, preferen
e, investment and monetary poli
y
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yswit
hessho
ks. Together, these sho
ks a

ount for more than 70 per
ent of the out-put variation. Smets and Wouters (2003) �nd similar results for the role ofmonetary poli
y in 
ontributing to output variations. They argue that su
ha role of monetary poli
y sho
ks is due to the disin�ation period in the early1980s and the ERM 
risis. Unlike the US, the investment sho
k does notplay a preponderant role. It only mainly 
ontributes to investment varia-tions. As expe
ted, variations in 
onsumption are mainly due to preferen
esho
ks. Note that monetary poli
y 
ontributes importantly to 
onsumption�u
tuations. Pri
e markup and wage markup sho
ks are the main drivers forvariation in real wages, but monetary poli
y sho
ks still play an importantrole. Turning to in�ation, we note that its variations are mainly due to pri
eand wage markup sho
ks. However, as horizon lengthens, wage markup sho
ksbe
ome the main 
ontributor. Finally, �u
tuations in nominal interest rateare mainly determined by the wage markup sho
k and the monetary poli
ysho
k. In the very short term, the monetary poli
y sho
k mainly determinesinterest rate variations.
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e de
omposition for the best �t model (Regime 1)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 12.38 28.87 23.16 21.60 0.35 1.84 11.80
4Q 13.02 23.54 20.34 20.47 1.01 2.40 19.23
8Q 12.91 23.05 20.02 20.55 1.01 3.04 19.41
24Q 12.49 22.22 19.32 20.14 1.19 3.85 20.80Consumption
1Q 2.47 0.79 83.49 0.41 0.05 0.54 12.25
4Q 6.66 1.97 67.97 1.55 0.69 1.34 19.83
8Q 6.88 2.02 66.92 1.55 0.72 2.16 19.76
24Q 6.78 1.98 64.80 1.63 0.81 3.02 20.97Investment
1Q 0.72 0.01 0.87 87.27 0.37 1.67 9.09
4Q 1.62 0.03 0.90 81.27 1.00 2.22 12.97
8Q 1.59 0.03 0.92 80.94 0.99 2.46 13.07
24Q 1.55 0.03 0.92 79.32 1.18 2.89 14.09Real Wage
1Q 0.48 0.13 2.94 1.75 30.42 56.67 7.60
4Q 2.48 0.18 2.54 3.06 22.75 50.86 18.13
8Q 3.00 0.18 2.58 3.09 22.58 50.55 18.01
24Q 3.02 0.19 2.44 3.20 21.40 50.19 19.56Employment
1Q 35.37 22.60 17.25 16.27 0.03 0.37 8.11
4Q 14.73 14.31 9.34 14.43 1.73 1.02 44.44
8Q 12.23 13.98 7.57 11.66 2.63 2.35 49.58
24Q 8.71 15.92 4.36 7.35 2.28 26.02 35.36In�ation
1Q 0.94 0.17 0.21 0.03 72.29 22.48 3.88
4Q 1.67 0.45 0.47 0.05 29.58 57.63 10.15
8Q 1.64 0.49 0.46 0.07 24.30 62.49 10.53
24Q 1.98 0.70 0.40 0.43 17.76 69.72 9.02Nominal interest rate
1Q 5.57 1.00 30.19 2.71 4.26 6.66 49.61
4Q 6.37 1.62 13.31 6.43 3.44 44.31 24.51
8Q 5.38 1.53 10.29 5.13 2.67 56.19 18.80
24Q 4.24 1.57 6.27 4.42 1.65 70.24 11.61
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yswit
hesTable 5.12: Varian
e de
omposition for the best �t model (Regime 2)Horizon ǫa ǫg ǫb ǫi ǫp ǫw ǫrOutput
1Q 11.12 24.07 19.61 21.04 0.67 3.51 19.97
4Q 11.35 18.67 16.69 19.24 1.51 4.30 28.24
8Q 11.04 17.90 16.11 19.08 1.53 5.03 29.30
24Q 10.63 17.16 15.47 18.64 1.81 5.52 30.77Consumption
1Q 2.14 0.62 73.03 0.55 0.10 1.07 22.49
4Q 6.06 1.56 56.52 1.55 0.96 2.57 30.77
8Q 6.19 1.57 54.62 1.51 0.97 3.68 31.45
24Q 6.04 1.53 52.41 1.57 1.13 4.36 32.95Investment
1Q 0.59 0.01 0.55 80.80 0.66 3.09 14.30
4Q 1.47 0.02 0.58 74.09 1.48 3.90 18.47
8Q 1.42 0.02 0.57 73.07 1.52 4.09 19.30
24Q 1.41 0.02 0.60 71.59 1.80 4.29 20.29Real Wages
1Q 0.23 0.07 1.45 1.02 26.37 63.83 7.03
4Q 1.46 0.10 1.34 1.82 20.79 59.83 14.65
8Q 1.79 0.11 1.39 1.89 20.75 59.09 14.98
24Q 1.82 0.11 1.33 2.04 20.28 57.65 16.77Employment
1Q 34.21 19.36 15.03 16.35 0.07 0.72 14.25
4Q 12.39 10.72 6.75 12.76 2.33 1.79 53.26
8Q 10.74 10.98 5.61 10.76 3.10 3.99 54.81
24Q 8.65 13.91 3.45 8.03 2.31 27.30 36.36In�ation
1Q 0.58 0.10 0.12 0.02 67.53 28.18 3.48
4Q 0.89 0.24 0.18 0.03 25.61 66.37 6.69
8Q 0.85 0.25 0.16 0.07 20.77 71.76 6.14
24Q 1.01 0.35 0.11 0.33 13.76 80.07 4.36Nominal interest rate
1Q 2.23 0.37 9.23 1.04 6.46 7.93 72.74
4Q 2.98 0.72 4.43 2.71 4.40 52.15 32.61
8Q 2.51 0.69 3.32 2.12 3.28 64.06 24.01
24Q 2.00 0.73 1.91 1.92 1.94 77.65 13.87



5.6. Endogenous monetary poli
y 1075.6. Endogenous monetary poli
yIn this se
tion, we use our estimation results to shed new light on the followingquestion: Are 
hanges in monetary poli
y regime endogenous? More pre
isely,to what extent do 
hanges in the 
ondu
t of monetary poli
y re�e
t the 
urrentstate of the e
onomy?We provide insights to this question by jointly analyzing the estimates fromthe syn
hronized and independent regimes spe
i�
ations. The fa
t that bothversions �t the data equally well is interesting, given that the syn
hronizedregimes spe
i�
ation is a
tually nested in the independent regimes spe
i�
a-tion.To understand this point, assume for instan
e that the true data generatingpro
ess features independent regime 
hanges, and we estimate both versions ofthe model. Then, the spe
i�
ation with independent regime swit
hes should
learly dominate. Assume now that the true Data Generating Pro
ess featuressyn
hronized regime 
hanges. Be
ause the syn
hronized version is nested inthe independent regimes spe
i�
ation, both version should deliver roughlysimilar �ts (at least, asymptoti
ally).In pra
ti
e, things are 
ompli
ated by the fa
t that there are additional pa-rameters to estimate in the independent regime spe
i�
ation,6 and that thenumber of observations is limited. But the �nding of a similar �t for bothversions of the model 
learly points toward investigating the potential endo-geneity of monetary poli
y regime 
hanges.In order to address this issue while taking into a

ount the data limitationproblem, we will 
onsider a stri
ter diagnosis test for 
on
luding that monetary6For example, the spe
i�
ation with independent regime swit
hes requires the estimationof four transition probabilities, while the version with syn
hronized regimes only requires2.
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yswit
hespoli
y is indeed endogenous. Spe
i�
ally, we require that the following three
riteria be roughly satis�ed: (i) the "independent regimes" and "syn
hronizedregimes" spe
i�
ations produ
e similar �ts ; (ii) in the "independent regimes"spe
i�
ation, 
hanges in monetary poli
y o

ur (roughly) simultaneously with
hanges in the varian
e of sho
ks ; (iii) in the "independent regimes" spe
i�-
ation, two of the four 
on�gurations possible ex-ante almost never o

ur. Inparti
ular, the "hawkish monetary poli
y � high volatility" and the "dovishmonetary poli
y � low volatility" regimes should almost never o

ur.5.6.1. Diagnosis test: U.S. e
onomyAs mentioned above, the �rst 
riterion required for the 
on
lusion that the USmonetary poli
y has been endogenous is satis�ed (see Table 5.3). However,the other two 
riteria remain far from being ful�lled.Consider for example the smoothed regime probabilities for the US e
onomy,depi
ted in Figure 5.6. The �gure indi
ates that two swit
hes in monetarypoli
y o

urred. The �rst swit
h, from the hawkish to the dovish regime,o

urred roughly in the year 1970. The se
ond swit
h, from the dovish to thehawkish regime, o

urred in the early 80s. This timing does not 
on
ord wellwith the timing of swit
hes in volatility regimes.Consider now the smoothed probabilities asso
iated with being in any of thefour 
on
eivable 
on�gurations in the independent regimes spe
i�
ation (see5.7). Clearly, the �gure indi
ates that the 
on�guration of a high volatilityregime asso
iated with a hawkish monetary poli
y o

urred quite frequently,espe
ially during the late 50s � early 60s, and during the mid-80s. It alsosuggests that monetary poli
y has been dovish while volatility was low in thelate 70s. Thus our 
riteria (ii) and (iii) are 
learly not satis�ed, and we 
annot
on
lude that the US monetary poli
y has been endogenous.This 
on
lusion tends to be 
on�rmed by another observation. Figure 5.6 sug-
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y 109gests, quite strikingly, that 
hanges in monetary poli
y regimes are stronglyrelated to the appointments of a new Chairman at the Federal Reserve. Inparti
ular, while the hawkish regime was prevailing in the Martin era, mone-tary poli
y apparently swit
hed to the dovish regime with the appointment ofBurns, and remained dovish under Miller. Then, a

ording to the �gure, a re-turn to the hawkish regime o

urred shortly after the appointment of Vol
keras the Fed's Chairman. This hawkish regime 
ontinued to prevail during theGreenspan and Bernanke 
hairmanships. Thus, the personality of the Chair-man in o�
e appears to be a good indi
ator of the type of monetary poli
y
ondu
ted. This tends to 
on�rm that monetary poli
y did not systemati
ally
hange in response to 
hanges in the e
onomi
 situation.
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Figure 5.6: Posterior probabilities for the Hawkish regime, 
omputed at theposterior mode estimates of the independent regime swit
hing model. Verti
albars mark the 
hairmen appointment.
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Figure 5.7: Posterior probabilities 
omputed at the posterior mode estimatesof the independent regime swit
hing model swit
hing model.5.6.2. Diagnosis test: Euro AreaIn 
ontrast to the US, our results suggest that for the Euro Area monetarypoli
y has been endogenous. Consider �rst the smoothed regime probabilitiesdepi
ted in Figure 5.8. Clearly, periods during whi
h the European monetarypoli
y has been hawkish tend to 
orrespond with periods of low volatility,and vi
e versa. Similarly, looking at the smoothed probability asso
iatedwith being in any of the 4 
on
eivable situations ex-ante (see Figure 5.9),one 
learly sees that the "hawkish monetary poli
y � high volatility" and the"dovish monetary poli
y � low volatility" regimes almost never o

urred. Theonly ex
eption is the period of the early 80s, where monetary poli
y remainedhawkish while the Euro Area was experien
ing a severe re
ession.
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Figure 5.8: Posterior probabilities for the Hawkish regime, 
omputed at theposterior mode estimates of the independent regime swit
hing model. Verti
albars mark the three stages dates in the 
reation of the European E
onomi
Union.5.7. Con
luding remarksIn this 
hapter, we have estimated the Smets and Wouters (2007) model inthe presen
e of regime swit
hes in both monetary poli
y and the sho
ks vari-an
e parameters. We have used the estimated model to shed new lights onthe sour
es of the Great Moderation and the on issue related to the endogene-ity of monetary poli
y. We �nd strong eviden
e in favor of regime swit
hes,both in poli
y parameters and sho
k varian
es. Imposing syn
hronized regimeswit
hes in our model does not deteriorate its �t, as this version �ts equallywell than the version where regime swit
hes are independent. Our last impor-
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Figure 5.9: Posterior probabilities 
omputed at the posterior mode estimatesof the independent regime swit
hing model swit
hing model.tant �nding is the strong eviden
e that 
hanges in European monetary poli
yhad been endogenous, while for the US e
onomy, 
hanges in monetary poli
yare 
losely related to the personality of the Chairman in pla
e.The 
urrent version of the 
hapter la
ks 
ounterfa
tual experiments that wouldmore deeply do
ument the sour
es of the Great Moderation. Also, it will beuseful to 
ontrast our results with fa
ts based on the European e
onomy. Weleave these two 
onsiderations for future resear
h.
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6.1. Con
lusionNowadays, dynami
 sto
hasti
 general equilibriummodels provide a new mod-eling framework for poli
y analysis, both in a
ademi
 and poli
y-makingspheres. There are several theoreti
al arguments that 
ould explain the su
-
ess of these models. In this thesis, we have fo
used instead on empiri
alrather than theoreti
al arguments. To do so, we have used re
ent e
onomet-ri
s tools, whi
h have allowed us to provide a systemati
 
onfrontation of thesemodels to the data.6.1.1. SummaryOur e
onometri
 work has tried to evaluate DSGE models with respe
t to thedata in three dimensions. Su
h dimensions are in�ation fore
asting perfor-man
e, in�ation persisten
e and the Great Moderation.



114 Chapter 6. Con
lusionTo study the predi
tions of DSGE models with respe
t to fore
asting in�ation,we have estimated the new-Keynesian Phillips 
urve, a key equation sharedby every DSGE models featuring Keynesian ingredients. The key result fromthat estimation is that on
e dire
t observations from survey data on in�a-tion expe
tations are used, the new-Keynesian Phillips 
urve helps to fore
astin�ation quite well.With respe
t to the in�ation persisten
e, we provide new results in the lit-erature dealing with the �t of the new-Keynesian Phillips 
urve in mat
hingin�ation dynami
s. We show that in
luding a time-varying in�ation targetof the 
entral bank in the new-Keynesian Phillips 
urve does not ne
essarylead to a time-varying new-Keynesian Phillips 
urve, unlike in studies su
has Cogley and Sbordone (2008). However, like the authors, we do �nd thatthe introdu
tion of a time-varying in�ation target is su�
ient to a

ount forin�ation persisten
e, instead of ad ho
 ba
kward-looking 
omponent in thenew-Keynesian Phillips 
urve.The last dimension of the data to whi
h we have 
onfronted the model is theGreat Moderation, the idea that e
onomi
 data before the mid 1980 are morestable than before. The model proves to be useful in repli
ating the GreatModeration both for the U.S. and for the Euro Area e
onomies. Furthermore,the estimated model provides an interesting sour
e of the Great Moderation:both the varian
e of the sho
ks and improved monetary poli
ies are plausibleexplanations for the de
line in ma
roe
onomi
 data observed sin
e the mid of80's until the re
ent �nan
ial 
risis.Eviden
e of 
hanges in monetary poli
y regime naturally raises the questionof whether su
h 
hanges are endogenous or exogenous. This question makessense be
ause the 
entral bank is supposed a priori to rea
t to the 
urrent stateof the e
onomy by adjusting its poli
y instrument, i.e. the nominal interestrate in the model. We have found that for the Euro Area e
onomy, 
hanges
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lusion 115in monetary poli
y regimes are endogenous pre
isely be
ause the 
entral banksets its poli
y instrument with respe
t to the volatility of the e
onomy. Inparti
ular, periods of low volatility 
oin
ide with those where the Europeanmonetary poli
y is aggressive towards in�ation. On the 
ontrary, 
hanges inthe U.S. monetary poli
y 
annot be said to be endogenous, but appear to be
losely 
onne
ted to the personality of the Chairman in pla
e, re�e
ting the�
onservative 
entral banker� view of the 
ondu
t of monetary poli
y (Rogo�,1985).6.1.2. ExtensionsDespite the su

ess of the DSGE models in mat
hing interesting dimensionsof the data, a number of re
ent papers have pointed out several limitations ofthe DSGE approa
h. Here, we fo
us on two of them.The �rst one is the inability of DSGE models to take into a

ount high andpersistent unemployment found in the data. Su
h a limitation 
ould poten-tially redu
ed the ability of the new-Keynesian to take into a

ount somemonetary phenomena. Indeed, Galí et al. (2011) show that the Smets andWouters (2007) model 
an be reformulated to in
orporate unemployment.Their results suggest that the model is able to reprodu
e observed unemploy-ment �u
tuations when it is estimated with data on unemployment, insteadof data on hours worked, as we have done in the thesis. Thus, it remainsinteresting to see whether our main 
on
lusions are robust with respe
t tothis reformulations.The se
ond limitation has to do with the re
ent �nan
ial 
risis. To model themonetary poli
y, we have 
onsidered a �
onventional monetary poli
y�, i.e. apoli
y where the Federal Reserve manipulates the Federal Funds rate in orderto a�e
t markets interest rates. However, the re
ent �nan
ial 
risis startedin August 2007 dramati
ally 
hanges the environment, as it has led the Fed
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lusionto inje
t 
redit into private markets. In this sense, su
h a poli
y is termed�un
onventional�. Most of DSGE models 
onsidered in the literature spe
ify amonetary poli
y in whi
h the Federal Reserve a
ts 
onventionally. Thus, theyare not truly useful to make predi
tions in 
risis time where the 
entral banka
ts un
onventionally.There is a burgeoning literature trying to introdu
e the �nan
ial se
tor intoDSGE models. The most representative paper of that literature is a paper pro-vided by Gertler and Karadi (2011). The authors develop a quantitative mon-etary DSGE model that allows for a role for the �nan
ial se
tor through the�nan
ial intermediaries fa
ing endogenous balan
e sheet 
onstraints. Whiletheir model is not intended to model the sub-prime 
risis, it tries to a

ount forsome key elements relevant to analyzing the un
onventional monetary poli
y
ondu
ted by the Fed sin
e August 2007 and parti
ularly after the LehmanBrothers 
ollapse. Hen
e, we see the Gertler and Karadi (2011) model asa good starting point to extend our work. The methodology developed inChapters 4 and 5 
ould be used to estimate su
h a model.
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A.1. Appendix to Chapter 3A.1.1. The New Keynesian Phillips CurveThe �rst-order 
ondition asso
iated to the program of the �rms is given by

p̃it
pt
E
t

∞∑

k=0

(
βξp
)k pt
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t,kλt+ky

i
t+k = µpE
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t+k.Inserting the de�nition of yit+k in the previous expression leads to
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,where µp ≡ θ/(θ − 1) and pNt and pDt are expressed re
ursively as

pNt = λtmctyt + βξpEt
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(
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Xp
t,1

)θ}
,
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pDt = λtyt + βξpπ

(1−γp)(1−θ)Et

{
pDt+1

(
πt+1

Xp
t,1

)θ−1
}
.Log linearization of pDt and pNt yields
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p̃it
pt

)
=

(
1− βξp
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p̃it+1
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+ β (γz)

1−σ ξpEtπ̂t+1

−βξpγpπ̂t − βξp
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1− γp
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Etπ̂

∗
t+1From the de�nition of pri
e index, we have
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ξp(
1− ξp

) (π̂t − γpπ̂t−1 −
(
1− γp

)
π̂∗
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.Equating the two previous expressions and solving for π̂t reads
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(
1− ξp

) (
1− βξp
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ξp(1 + βγp)
m̂ct

+
γp

(1 + βγp)
π̂t−1 +
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+
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1− γp
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π̂∗
t −

β
(
1− γp

)

(1 + βγp)
Etπ̂

∗
t+1. (A.1.1)A.1.2. The Ja
obian MatrixWe derive the Ja
obian matrix following the appendix of Magnusson andMavroeidis (2010). Note that the 
ompanion matrix Φ(ϕ) 
an be written as

Φ(ϕ) = BA + Cwhere B = (Ik, 0, · · · , 0)′ is a (kp) × k matrix, A = (Φ1, · · · ,Φp)′ is k × (kp)matrix of the VAR 
oe�
ients, and C = (0, 0; Ikp−1, 0) is a (kp)×(kp) matrix.



A.1. Appendix to Chapter 3 119Hen
e, Φ(ϕ) is linear in ϕ and the distan
e fun
tion is di�erentiable withrespe
t to ϕ.Sin
e Φ(ϕ)′ = A′B′ +C ′, its derivative w.r.t ϕ is given by Ikp⊗B. Using thislast result and the properties of the Krone
ker produ
t, it is easy to show that
∂g(ϕ, ϑ)

∂ϕ′
= Ikp ⊗ {[I − γfΦ(ϕ)

′]eπ − λ1emc}
′B

− γf [Φ(ϕ)
′ ⊗ e′πB].

(A.1.2)
A.1.3. DerivativesWe transform our HNKPC to fa
ilitate the 
omputation of the derivatives.The ve
tor of restri
tions writes

g(ϕ, ϑ) = Φ(ϕ)′
{
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(A.1.3)
Let Gϕ(ϕ, ϑ) ≡

∂g(ϕ,ϑ)
∂ϕ′

Gϕ(ϕ, ϑ) = Ikp ⊗ [I −
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1 + βγp
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−
β

1 + βγp
[Φ(ϕ)′ ⊗ e′πB].

(A.1.4)
The robust tests require the following derivatives:
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(A.1.6)
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2
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]
B. (A.1.8)A.2. Appendix to Chapter 5The appendix reports a variant from the Smets and Wouters (2007) modelwith regime swit
hing in sho
ks varian
es and in monetary poli
y.



A.2. Appendix to Chapter 5 121A.2.1. HouseholdsThe representative household determines {ct, Bt, Kt, It, zt, lt}
∞
t=0 and its nom-inal wage W̃0 when it optimizes it, a

ording to the indexation rule, whi
h isde�ned in Se
tion 2.2. In se
tion 2.1, we derive how the household determines

{ct, Bt, Kt, It, zt, lt}
∞
t=0 whereas the determination of wage is derived in se
tion2.2.A.2.2. Standard problemTo determine the evolution of {ct, Bt, Kt, It, zt, lt}

∞
t=0, the household solves

max
{ct,Bt,Kt,It,zt,lt}

∞

t=0

E0

∞∑

t=0

βtU (ct, lt)subje
t to
Bt−1

Pt
+
W̃t

Pt
lt + (rtzt − ψ (zt))Kt−1 +Divt − ct − It −

1

εb,t

Bt

RtPt
= 0

Kt − εit(1− S(It/It−1))It − (1− δ)Kt−1 = 0
(
W̃t

Wt

)−(1+λw,t)/λw,t

Lt − lt = 0and to the preferen
e and investment sho
ks (whith ε̂xt = log εxt , x = b, i) :

ε̂bt = ρε̂bt−1 + σbtη
b
t ,

ε̂it = ρε̂it−1 + σitη
i
t,where, for x = b, i, ηxt ∼ N(0, 1) and the standard deviation σxt is regimedependent.The FOC write:
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.De�ning λ̃t = λtz
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t , Qt = νt/λt, χ̃t = χtz
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t , we have

λ̃t = U c(c̃t, 1− lt), (A.2.1)
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σc−1
t + λ̃t
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ztPt
. (A.2.6)Following Smets and Wouters (2007), we spe
ify

U(ct, lt) =
1

1− σc
(ct − hCt−1)

1−σc exp

(
σc − 1

1 + σL
l1+σL

t

)
,where Ct−1 is the aggregate 
onsumption level of the previous period. Thus,
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λt = U c(ct, 1− lt) = (ct − hCt−1)
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(
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)
,whi
h we stationarize as
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= λt (ct − hCt−1) l
σL

t .whi
h we stationarize as:
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t .Then, the marginal rate of substitution between 
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mrs (c̃t, lt) ≡

UL(c̃t,Lt)

U c(c̃t,Lt))
=

(
c̃t −

h

γz
C̃t−1

)
lσL

t .Linearizing it, we have
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Ĉt−1. (A.2.7)A.2.3. The determination of wageFor ea
h period t, the wage, whi
h 
annot be optimized, is adjusted a

ordingto the rule
W̃t+i = γz (πt+i−1)

γw
(
π∗
t+i

)1−γw W̃t+i−1, (A.2.8)
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t is the in�ation target de
ided in period t by the 
entral bank. Letthe in�ation fa
tor be

Xw
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γiz
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t,iW̃t. (A.2.9)From the previous rule, we note that the wage is indexed on te
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alprogress.The wage optimizing household solves the following problem:
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. (A.2.10)From the de�nition of the wage index:
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h we have:
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.(A.2.13)Smets and Wouters (2007) de�ne the wage markup as the ratio between thereal wage and the marginal rate of substitution between 
onsumption andleisure: µwt ≡ wt/mrst. Following them, we have

m̂rst = ŵt − µ̂wt , (A.2.14)with m̂rst = ÛL
t − Û c

t . Substituting this expression in (A.2.13) and fa
torizingterms in ŵt, we have:
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1 + β (γz)

1−σc γw
1 + β (γz)

1−σc
π̂t

+
1

1 + β (γz)
1−σc

(ŵt−1 + γwπ̂t−1 + (1− γw)π̂
∗
t )

+
β (γz)

1−σc

1 + β (γz)
1−σc

(
Etŵt+1 − (1− γw)Etπ̂

∗
t+1 + Etπ̂t+1

)
, (A.2.16)where µw ≡ 1 + λw.A.2.4. FirmsThe �rm's program is des
ribed in two steps. First, for a given level of produ
-tion, the �rm determines the quantities of 
apital and labour that minimizeits variable total 
ost rtzitkit−1 + wtL

i
t, subje
t to the produ
tion 
onstraint

yit = At
(
zitk

i
t−1

)α (
(γz)

t Lit
)1−α

− (γz)
t φ. (A.2.17)Here φ > 0 is a �xed 
ost, At is an exogenous te
hnologi
al progress, followinga known sto
hasti
 pro
ess given by :

At = f (At−1, ǫA,t) , (A.2.18)
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hnologi
al sho
k . The FOC writes:
zitk

i
t−1 =

(
α

1− α

)1−α(
wt
rt

)1−α (
yit + (γz)

t φ
)
, (A.2.19)and

Lit =

(
α

1− α

)−α(
wt
rt

)−α (
yit + (γz)

t φ
) . (A.2.20)From the FOC, we dedu
e the total variable 
ost (for yit > 0):

rtz
i
tk
i
t−1 + wtL

i
t = Υ

rαt w
1−α
t

At
(yit + (γz)

t φ) (A.2.21)
≡ st(y

i
t + φ), (A.2.22)where st ≡ s (rt, wt, At) is the marginal 
ost of produ
tion and Υ = α−α(1 −

α)−(1−α) .Se
ond, in ea
h and every period, ea
h �rm fa
es a 
onstant probability 1−ξpof being able to optimize its pri
e p̃it . Otherwise, it determines its pri
ea

ording to the rule
pit+k = (πt+k−1)

γp
(
π∗
t+k

)1−γp pit+k−1,where πt+k−1 is the past in�ation fa
tor and π∗
t+k is the in�ation target.De�ne the indexation fa
tor as

Xp
t,k =

{
1 for k = 0(

Pt+k−1

Pt−1

)γp (
π∗
t+kπ

∗
t+k−1...π

∗
t+1

)1−γp for k = 1, ...,∞

}
,or, equivalently:

Xp
t,k =





1 for i = 0
k

Π
l=1

(
(πt+l−1)

γp
(
π∗
t+l

)1−γp) for i = 1, ...,∞



 .



130 Appendix A.This rule implies
pit+k = Xp

t,kp̃
i
t, (A.2.23)In this 
ontext, the optimal pri
e p̃it 
hosen by an optimizing �rm at t is thesolution to the following program:max

p̃it

E
t

∞∑

k=0

(
βξp
)k λt+k

λt

(
p̃itX

p
t,k

pt+k
− st+k

)
yit+ksubje
t to

yit+k =

(
p̃itX

p
t,k

pt+k

)−θ

yt+kwherept is the aggregate pri
e index and yt is the aggregate output.The FOC writes
p̃it
pt
E
t

∞∑

k=0

(
βξp
)k pt
pt+k

Xp
t,kλt+ky

i
t+k = µpE

t

∞∑

k=0

(
βξp
)k
λt+kst+ky

i
t+kor

p̃it
pt
E
t

∞∑

k=0

(
βξp
)k (

Xp
t,k

)1−θ
(

pt
pt+k

)(1−θ)

λt+kyt+k =

µpE
t

∞∑

k=0

(
βξp
)k (

Xp
t,k

)−θ
(
pt+k
pt

)θ
λt+kst+kyt+k,or

p̃it
pt

= µp

E
t

∑∞
k=0

(
βξp
)k (

Xp
t,k

)−θ (pt+k

pt

)θ
λt+kst+kyt+k

E
t

∑∞
k=0

(
βξp
)k (

Xp
t,k

)1−θ (pt+k

pt

)θ−1

λt+kyt+k

,where µp ≡ θ/(θ − 1) . Stationarizing it, we have
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p̃it
pt

= µp

E
t

∑∞
k=0

(
β (γz)

1−σ ξp
)k (

Xp
t,k

)−θ (pt+k

pt

)θ
λ̃t+kst+kỹt+k

E
t

∑∞
k=0

(
β (γz)

1−σ ξp
)k (

Xp
t,k

)1−θ (pt+k

pt

)θ−1

λ̃t+kỹt+k

,or
p̃it
pt

= µp
pNt
pDt
,where pNt and pDt are expressed re
ursively as

pNt = λtstyt + β (γz)
1−σ ξpEt

{
pNt+1

(
πt+1

Xp
t,1

)θ}
,and

pDt = λtyt + β (γz)
1−σ ξpπ

(1−γp)(1−θ)Et

{
pDt+1

(
πt+1

Xp
t,1

)θ−1
}
.Linearizing them, we have

(̂
p̃it
pt

)
=

(
1− β (γz)

1−σ ξp
)
ŝt + β (γz)

1−σ ξpEt

(̂
p̃it+1

pt

)
+ β (γz)

1−σ ξpEtπ̂t+1

−β (γz)
1−σ ξpγpπ̂t − β (γz)

1−σ ξp
(
1− γp

)
Etπ̂

∗
t+1From the de�nition of the pri
e index, we have

(̂
p̃it
pt

)
=

ξp(
1− ξp

) (π̂t − γpπ̂t−1 −
(
1− γp

)
π̂∗
t

)where:
ξp(

1− ξp
) (π̂t − γpπ̂t−1 −

(
1− γp

)
π̂∗
t

)
=

(
1− β (γz)

1−σ ξp
)
ŝt +

β (γz)
1−σ (ξp

)2
(
1− ξp

) (
Etπ̂t+1 − γpπ̂t −

(
1− γp

)
Etπ̂

∗
t+1

)

+ β (γz)
1−σ ξp

(
Etπ̂t+1 − γpπ̂t −

(
1− γp

)
Etπ̂

∗
t+1

)
,
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π̂t =

(
1− ξp

) (
1− β (γz)

1−σ ξp
)

ξp(1 + β (γz)
1−σ γp)

ŝt

+
1

(1 + β (γz)
1−σ γp)

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)

+
β (γz)

1−σ

(1 + β (γz)
1−σ γp)

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
. (A.2.24)

Smets et Wouters (2007) de�ne the pri
e markup as as the ratio betweenmarginla produ
tivity of labour and real wage: µpt ≡ mplt/wt.Following them,we have
µ̂pt = Ât + α

(
k̂t−1 + ẑt−1 − L̂t

)
− ŵt

= Ât − αr̂t − (1− α)ŵt

= −ŝtSubstituting this in (A.2.24), we have:
π̂t = −

(
1− ξp

) (
1− β (γz)

1−σ ξp
)

ξp(1 + β (γz)
1−σ γp)

µ̂pt

+
1

(1 + β (γz)
1−σ γp)

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)

+
β (γz)

1−σ

(1 + β (γz)
1−σ γp)

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
. (A.2.25)Using the Kimball aggregator, we have (with µp ≡ 1 + λp) :
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π̂t = −

( (
1− ξp

) (
1− β (γz)

1−σ ξp
)

ξp(1 + β (γz)
1−σ γp)

((
µp − 1

)
ςp + 1

)
)
µ̂pt

+
1

(1 + β (γz)
1−σ γp)

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)

+
β (γz)

1−σ

(1 + β (γz)
1−σ γp)

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
. (A.2.26)A.2.5. Monetary poli
yAs in Smets and Wouters (2007), the 
entral bank adjusts the nominal interestrate a

ording to the rule

Rt

R∗
t

=

(
Rt−1

R∗
t

)ρ(st) [(πt
π∗
t

)rπ(st)( Yt

Y f
t

)ry(st)]1−ρ(st)( Yt/Yt−1

Y f
t /Y

f
t−1

)r∆y(st)

εRt ,(A.2.27)where R∗
t ≡ (1/βγ−σc)π∗

t and π∗
t = π∗(st) is the in�ation target when the
urrent regime is st. Unlike in Smets and Wouters (2007), the in�ation targetand the 
oe�
ients of the rule (ρ(st), rπ(st), ry(st), r∆y(st)) depend upon theregime in pla
e. Using the fa
t that R̂∗

t = π̂∗
t , log-linearization of (A.2.27)leads to

(R̂t − π̂∗
t ) = ρ(st)(R̂t−1 − π̂∗

t ) (A.2.28)
+(1− ρ(st))[rπ(st)(π̂t − π̂∗

t ) + ry(st)(Ŷt − Ŷ f
t )]

+r∆y
(st)(Ŷt − Ŷ f

t )− (Ŷt−1 − Ŷ f
t−1)] + ǫrt ,where π̂∗

t ≡ ln(π∗
t/π), π denoting the long run in�ation fa
tor.Pra
ti
ally, we assume as S
horfheide (2005) that the in�ation target is 
om-puted from an annualized in�ation rate ln(π∗

a(st)) and evolves a

ording to:



134 Appendix A.
ln(π∗

a(st) =




ln πLa if st = 1,

ln πHa if st = 2,where π∗
a(st) is the annualized in�ation fa
tor. With the transition matrix P ,we 
an easily show that the annualized long run in�ation rate is

πa = exp

(
1− p22

2− p11 − p22
ln πLa +

1− p11
2− p11 − p22

ln πHa

)
.We express the πa to a quarterly basis as in the model.A.2.6. Steady State

(
1 +

φ

Y

)
= µP ,

r =
1− βγ−σc(1− δ)

βγ−σc
,

K

L
=

(
α

rµP

) 1
1−α

,

w =
1− α

α
r
K

L
,

Y

L
=

1

µP

(
K

L

)α
,

G

L
= gy

Y

L
,

I

L
= (γ − 1 + δ)

K

L
,

C

L
=
Y

L
−
I

L
−
G

L
,. From household's optimization program, we have

(
1−

h

γ

)
L1+σL =

w

(1 + λw)(C/L)
.
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h is a 
ondition used to derive the linearized 
onsumption dynami
s.
R =

Π

βγ−σcA.3. Log linearization of other equations
· λ̃t= β (γz)

−σc εb,tRtEt

{
λ̃t+1

πt+1

}:
λ̂t = Etλ̂t+1 + R̂t − Etπ̂t+1 + ε̂bt (A.3.1)

· λ̃t = U c(c̃t, 1− lt) = (c̃t − h/γzCt−1)
−σc exp((σc − 1)/(1 + σL) (lt)

1+σL).Here, tilded variables refers to their stationarized values.
Ĉt =

h

γz
Ĉt−1 −

1− h/γz
σc

λ̂t +
(1− h/γz) (σc − 1) l1+σL

σc
l̂t, (A.3.2)from whi
h we dedu
e

λ̂t = −
σc

1− h/γz
Ĉt +

h/γzσc
1− h/γz

Ĉt−1 + (σc − 1) l1+σL l̂t.Then,
Etλ̂t+1 =

h/γzσc
1− h/γz

Ĉt −
σc

1− h/γz
EtĈt+1 + (σc − 1) l1+σLEt l̂t+1. (A.3.3)Inserting (A.3.3) and (A.3.1) in (A.3.2), we get:

Ĉt =
h/γz

1 + h/γz
Ĉt−1 +

1

1 + h/γz
EtĈt+1 +

(1− h/γz) (σc − 1) l1+σL

σc (1 + h/γz)

[
l̂t − Et l̂t+1

]

−
(1− h/γz)

σc (1 + h/γz)

[
R̂t − Etπ̂t+1 + ε̂bt

]
. (A.3.4)
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e at the steady state (1− h/γz) l
1+σL = wl/((1 + λw)c), we obtain thedynami
s of 
onsumption as

Ĉt =
h/γz

1 + h/γz
Ĉt−1 +

1

1 + h/γz
EtĈt+1 +

(σc − 1)wl/((1 + λw)c)

σc (1 + h/γz)

[
l̂t −Et l̂t+1

]

−
(1− h/γz)

σc (1 + h/γz)

[
R̂t − Etπ̂t+1 + ε̂bt

]
. (A.3.5)

· Qt = β (γz)
−σc Et

{
λ̃t+1

λ̃t
(rt+1zt+1 − ψ (zt+1) + (1− δ)Qt+1)

}At the steady state, we have z = 1, Q = 1, rk = ψ′ (1) and ψ (z) = ψ (1) = 0.

1 = β (γz)
−σc (rk + 1− δ), i.e rk = (1− β (γz)

−σc (1− δ)
)
/
(
β (γz)

−σc
)
.Then,

Q̂t = −λ̂t + Etλ̂t+1 + β (γz)
−σc rk (Etr̂t+1 + Etẑt+1)− β (γz)

−σc rkEtẑt+1

+β (γz)
−σc (1− δ)EtQ̂t+1.Using (A.3.1) and making some simpli�
ations, we have:

Q̂t =
rk

1− δ + rk
Etr̂t+1 +

1− δ

1− δ + rk
EtQ̂t+1 −

(
R̂t − Etπ̂t+1 + ε̂bt

)
. (A.3.6)

· Qtε
i
t

[
(1− S

(
γz Ĩt/Ĩt−1

)
−γz Ĩt/Ĩt−1S

′
(
γz Ĩt/Ĩt−1

)]
− 1

= −β (γz)
−σc Et

{
λ̃t+1

λ̃t
Qt+1ε

i
t+1

(
γz Ĩt+1/Ĩt

)2
S ′
(
γz Ĩt+1/Ĩt

)}Assumptions: S(γz) = 0; S ′(γz) = 0; S ′′(γz) = ϕ.We have:
Q̂t + ε̂it − (γz)

2 S
′′

(γz)
[
Ît − Ît−1

]
= −β (γz)

−σc (γz)
2 S

′′

(γz)
[
EtÎt+1 − Ît

]
.
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Ît =

1(
1 + β (γz)

1−σc
)
(γz)

2 ϕ
Q̂t +

1

1 + β (γz)
1−σc

Ît−1 +
β (γz)

1−σc

1 + β (γz)
1−σc

EtÎt+1

+
1(

1 + β (γz)
1−σc

)
(γz)

2 ϕ
ε̂it. (A.3.7)Note that Smets and Wouters (2007) normalize the investment sho
k: ε̂i′t =

ε̂it/
((
1 + β (γz)

1−σc
)
(γz)

2 ϕ
)
.

· rt = ψ′ (zt)We have
ẑt = z1r̂t,where z1 ≡ ψ′ (1) /ψ′′ (1) is the inverse of the elasti
ity of adjustment 
ostfun
tion.

· K̃t = (1− δ)/γzK̃t−1 + εit/γz [1− S (γzIt/It−1)] ĨtWe have :̂
Kt =

1− δ

γz
K̂t−1 +

[
1−

(1− δ)

γz

]
Ît +

[
1−

(1− δ)

γz

]
ε̂it. (A.3.8)

· Yt = Ct +Gt + It + ψ (zt)Kt−1We have :
Y Ŷt = CĈt +GĜt + IÎt + ψ(1)KK̂t−1 + ψ′(1)KẑtSin
e ψ (1) = 0, ψ′ (1) = rk and ẑt = (1/ǫψ′)r̂t,

Ŷt = (1− (γz − 1 + δ) ky−gy)Ĉt+gyĜt+(γz − 1 + δ) kyÎt+r
kkyz1r̂t (A.3.9)



138 Appendix A.Note that Smets and Wouters (2007) normalize spending sho
k as ǫg,t ≡ gyĜt.

· ztKt−1/Lt =
α

1−α
wt/rt.We have

r̂t + ẑt + K̂t−1 − ŵt − L̂t = 0..Using ẑt = z1r̂t, we obtain
(1 + z1) r̂t + K̂t−1 − ŵt − L̂t = 0. (A.3.10)

· Yt = µ̃t/µt (st)
(
At(ztKt−1)

αL1−α
t − Atφ

)Aggregating individual produ
tions, we obtain
Ŷt =

Y + φ

Y
Ât + α

Y + φ

Y

(
K̂t−1 + z1r̂t

)
+ (1− α)

Y + φ

Y
L̂t. (A.3.11)A.3.1. Final system

iy = (γz − 1 + δ) ky, cy = (1− iy − gy), ry = rkkyz1,

c1 = [h/γz] / [1 + h/γz] , c2 = [(σc − 1)wl/((1 + λw)c)] / [σc (1 + h/γz)],
c3 = [1− h/γz] / [σc (1 + h/γz)] ,

i1 =
[
1/1 + β (γz)

1−σc
], i2 = [1/ (1 + β (γz)

1−σc
)
(γz)

2 ϕ
]
,

q1 = [1− δ] /
[
1− δ + rk

]
,

k1 = (1− δ) /γz, k2 = (1− (1− δ) /γz)
(
1 + β (γz)

1−σc
)
(γz)

2 ϕ,

π1 = 1/
[
(1 + β (γz)

1−σ γp)
]
, π2 =

[
β (γz)

1−σ] /
[
(1 + β (γz)

1−σ γp)
],
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π3 =

[(
1− ξp

) (
1− β (γz)

1−σ ξp
)]
/
[
ξp(1 + β (γz)

1−σ γp)
((
µp − 1

)
ςp + 1

)]
,

w1 = 1/
[
1 + β (γz)

1−σc
], w2 =

[
1 + β (γz)

1−σc γw
]
/
[
1 + β (γz)

1−σc
]
,

w4 =
[
(1− ξw)

(
1− β (γz)

1−σc ξw
)]
/
[
ξw
(
1 + β (γz)

1−σc
)
((µw − 1) ςw + 1)

]
.We have:

Ŷt − cyĈt − iy Ît − ry r̂t − ε̂gt = 0, (Eq. 1)
Ĉt = c1Ĉt−1 + (1− c1)EtĈt+1 + c2

[
L̂t −EtL̂t+1

]

−c3
[
R̂t −Etπ̂t+1 + ε̂bt

]
, (Eq. 2)

Ît = i1Ît−1 + (1− i1)EtÎt+1 + i2Q̂t + ε̂it, (Eq. 3)
Q̂t = q1EtQ̂t+1 + (1− q1)Etr̂t+1 −

(
R̂t −Etπ̂t+1 + ε̂bt

)
, (Eq. 4)

Ŷt =

(
1 +

φ

Y

)(
α
(
K̂t−1 + z1r̂t

)
+ (1− α)L̂t + ε̂At

)
, (Eq. 5)

K̂t = k1K̂t−1 + (1− k1) Ît + k2ε̂
i
t, (Eq. 6)

µ̂pt = α
(
K̂t−1 + z1r̂t − L̂t

)
− ŵt + ε̂At , (Eq. 7)
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π̂t = π1

(
γpπ̂t−1 +

(
1− γp

)
π̂∗
t

)
+ π2

(
Etπ̂t+1 −

(
1− γp

)
Etπ̂

∗
t+1

)
− π3µ̂

p
t + ε̂pt ,(Eq. 8)

(1 + z1) r̂t + K̂t−1 − ŵt − L̂t = 0, (Eq. 9)
µ̂wt = ŵt − σLL̂t −

1

1− h/γz
Ĉt +

h/γz
1− h/γz

Ĉt−1, (Eq. 10)
ŵt = w1 (ŵt−1 + γwπ̂t−1 + (1− γw)π̂

∗
t )

+ (1− w1)
(
Etŵt+1 + Etπ̂t+1 − (1− γw)Etπ̂

∗
t+1

)

−w2π̂t − w4µ̂
w
t + ε̂wt , (Eq. 11)

R̂t = ρr(st)R̂t−1 + (1− ρr(st))
[
rπ(st) (π̂t − π̂∗

t ) + ry(st)
(
Ŷt − Ŷ f

t

)]

+r∆y(st)
[(
Ŷt − Ŷ f

t

)
−
(
Ŷt−1 − Ŷ f

t−1

)]
+ ε̂rt , (Eq. 12)where Ŷ f

t is potential output, de�ned by the same model but assuming �exiblepri
es and wages.
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