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Résumé

Résumeé

Aujourd’hui, notre quotidien fait intervenir l'usag d’innombrables matériaux
performants et adaptés a nos besoins, comme legyesll de fer, les céramiques, les
polyméres. Les élastomeres qui sont des matériaamtchouteux synthétiques ou naturels
appartiennent a cette derniere famille. Au fil demps, le caoutchouc a connu plusieurs
révolutions dans sa fabrication, dont la principede celle de 1839 avec Charles Goodyear. Il
a mit au point le procédé de vulcanisation qui xiesen un branchement des chaines par des

liaisons covalentes.

La mise sous contrainte d’'un élastomére provoquecti@ngements mécaniques et
optiques. Les changements mécaniques sont en Hdéadralés par une relation entre la
contrainte et la déformation. Ceux optiques sostalianisotropie, ils se caractérisent par la
différence de propagation de la lumiére dans I&&rdntes directions du matériau. Cette
anisotropie peut étre mesurée par la biréfringengeest la différence entre deux indices de

réfraction de deux directions principales.

Plusieurs travaux ont été effectués en se basamdragément sur des méthodes
Gaussiennes et non Gaussiennes pour déterminerategions de la contrainte et de la
biréfringence dans les polyméres en fonction deddéormation. Elles permettent aussi
d’obtenir une relation entre la contrainte et laébingence comme formulé pdreloar
(1947) pour le cas Gaussien &truda et Przybylo (1995) pour le modéle non Gaussien a
huit-chaines. Le second est mieux adapté aux gasimentaux car il prend en compte I'effet
de la non linéarité pour les grandes déformatiQuant au premier, il n’est valable que dans

les cas de déformation modérée<(1).

MOSSI IDRISSA Abdoul Kader, University of Strasbayr -9-



Résumé

Actuellement, deux modeles sont tres utilisés ppuoedire le comportement
mécanique des élastomeéres en fonction de la défiormée modéle de Gent et celui de huit-
chaines d’Arruda et Boyce. Par contre, seul le rageo été étendu a la biréfringence pour
avoir une relation entre la biréfringence et latainte tout au long de la déformation dans
les élastoméres. Raison pour laquelle dans cettke éhous avons formulé une relation entre
la différence de deux contraintes principales cquedces du modele de Gent en trois
dimensions avec la biréfringence sous la forme &anse. Ensuite, les résultats numériques
de cette relation sont comparés avec ceux expérameret du modéle non Gaussien a huit-
chaines. Les résultats montrent que les prédictiense modéle concordent avec les résultats

expérimentaux en grande déformation comme celé basle modele de huit-chaines.

Plusieurs autres phénomeénes physiques caractéléseatastomeres dont I'élasticité
non linéaire, la viscoélasticité, I'hyperélasticitét principalement une température de
transition vitreuse inférieure a la température iamte, ceci implique un état caoutchouteux
des élastomeres a la température ambiante. L'effetllins est un phénoméne
d’adoucissement qui se produit particulierementsdas élastoméres chargés. En effet, pour
améliorer leurs propriétés chimiques ou mécanigiess¢lastoméres sont renforcés par des
nodules de noir de carbone ou d’autres particilieslins et Tobin (1957,1965)considérent
un élastomeére renforcé comme un matériau compasdeux domaines, dont un domaine
mou et un domaine dur. D’aprés leur concept, lteffallins n’est autre que la transformation

d’une partie du domaine dur en domaine mou lorégeemposite est sollicité en contrainte.

Dans nos travaux, pour modéliser le comportememamgue d’élastoméres chargés
en fonction de leur microstructure, on a considérdénatériau composite a base d’élastomere

constitué par une matrice en élastomere, une pagtimatrice occluse par les renforts et les

MOSSI IDRISSA Abdoul Kader, University of Strasbayr -10-



Résumé

renforts qui sont des nodules de noir de carboname® dans 'industrie pneumatique. Ainsi,
la matrice constitue le domaine mou considéré pating et Tobin tandis que les deux autres
constituent le domaine dur c'est-a-dire la fractiolumique effective des renforts (incluant la
matrice occluse). L'estimation du domaine dur encfmn du type de nodule de noir de
carbone et de sa fraction volumique est obtenueardir pdes mesures de microscopie

électronique dé&ledalia (1970) D’ou on peut quantifier le domaine dur de notvenposite.

En se basant sur les équations de la mécaniquenitiesix continus, on établit la
relation entre la contrainte et la déformation tautlong du chargement du composite, en
tenant compte de I'évolution de sa microstruct@ette évolution de la microstructure se
caractérise principalement par la libération desiqmus inactives de la matrice quitseuvent
emprisonnées entre les particules, provoquant aim& augmentation de la fraction
volumigue du domaine mou dans le composite. Cettiestormation est modélisée par la
théorie proposée padshmyan et al (2006) Ensuite, I'énergie de déformation d&ent
(1996) pour les matériaux caoutchouteux non chargés ee@iémuléepour tenir compte de
l'effet des particules de renforts dans le compgoslte principal fondement de cette
reformulation est d’admettre que la déformationcdmposite se produit uniquement au sein
du domaine mou. Ainsi, I'énergie de déformation réduit a celle du domaine mou,
impliquant la connaissance de I'évolution de satfoam volumique durant la déformation. La
modélisation du comportement mécanique avec I'dffallins spécifigue a chaque type de
nodules de noir de carbone est ainsi établie aaemite en relation de I'évolution de la

microstructure et la loi de comportement reformuléksant la théorie de Gent.

Le modéle obtenu donne des résultats numériquesaportement mécanique des

élastomeres chargés avec l'effet Mullins en terantpte du type de nodules de carbone, la
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fraction volumique des renforts et les modes deordddition (uni-axial, bi-axial ou en
déformation plane). Ces résultats concordent assi des résultats expérimentaux trouvés
dans la littérature. Ce modéle est ensuite étendeas de I'élastomere thermoplastique

polyuréthane dont le comportement mécanique inttattula viscoplasticité.
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Introduction

INTRODUCTION

For their properties, elastomers are very usefutenas for many applications like
pneumatic, cable jacketing for electrical or elecic industries, shaft seals, shock absorbers
and power-transmission flexible joints used for caubtive, rail, aerospace and other
engineering industries. These examples show hostosteric materials become more and
more important for industries which aim to imprawa life conditions. The current advances
made on elastomeric materials properties knowledgéain the increase in their performance
and process for different industries applicatiddswever, a deeper understanding of these
materials behavior could provide a useful toolHayher performance elastomers production.
Elastomeric materials are usually classified asction of their origin, their ability to
vulcanization or their composition. Hence, we havatural or synthetic elastomers,

vulcanizable or thermoplastic elastomers and filednfilled elastomers.

Filled or unfilled elastomers mechanical behavioase predicted by physical or
phenomenological models but their optical anisotrdyghavior is given by a physical
Gaussian or non-Gaussian model. In physical modle¢s,behavior involves two essential
scales which are the treatment for a single mackernte long-chain structure and the
application of this treatment to the material netwd hus, the contribution of all chains in the
network corresponds to the material behavior. Sammel applications may present
limitations like for the well known Gaussian modethich is adapted for moderate strains.
However, for high strains, a Gaussian model mayimecinadequate. In this case, one can
use a more elaborate non-Gaussian model develgp&diin and Grun (1942) andJames

and Guth (1943)for small strain to full extended length. A pher@mlogical model is a
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Introduction

purely mathematical approach. The aim of such mketh@ssentially to find the most general

way to describe material properties.

Here, we investigate modeling optical anisotroplyawor for unfilled elastomers under stress
and also Mullins effect or softening produced ithefl elastomers during cyclic loading-
unloading-reloading. Modeling of thermoplastic &asers behavior is also investigated. This
work will be subdivided into four chapters. In tfiest chapter, we introduce a general
presentation of elastomeric materials. It presargammary of the origin of elastomers and a
short history on the material evolution. We alsscdss, in this chapter, the elastomeric
materials chemical and mechanical properties hieerhacromolecule structure obtained from
the monomers, vulcanization process, viscoelagtimit hyperelasticity behavior. Different
physical and phenomenological models are presdntednfilled and filled elastomers. The
second chapter is on the modeling and predictioth@fmechanical and optical property of
unfilled elastomers where the Gaussian theory fisical anisotropy and the corresponding
stress-optical law is utilized. We show havent (1996)model can be extended to optical
anisotropy prediction during stretching. The pragbapproach is compared Aoruda and
Przybylo (1995) model and to experimental data from literature.the third chapter, a
constitutive model is built to predict mechanicahbvior of filled elastomers based on the
consideration of microstructure evolution usingdao-soft domains transformations. In the
last chapter, the elastic-viscoplastic behaviantsoduced in the constitutive model in order
to predict thermoplastic elastomers behavior (stedin response), with particular
application to thermoplastic polyurethane. The mlgidh model is validated by experimental

data from literature.
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Finally, this thesis is concluded by a general amion and remarks. Some suggestions on

future research are also exposed.
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Chapter I: WHAT IS AN ELASTOMER?

CHAPTER |

WHAT IS AN ELASTOMER?

The term elastomer is often used interchangeabti Wie term rubber. Elastomers are
amorphous polymer materials which have the abilityrecover their shape after a large
deformation. They are normally used at temperatabese their glass transition temperature
so that considerable molecular segmental motigpossible. Thus, elastomers are soft and
deformable. However, hard plastics normally exighex below their glass transition

temperature, they are called thermoplastics at @onperature. They are different from other
polymers because of their special properties sacfieaibility, extensibility, resilience and

durability. Elastomers are used in a wide rangeagplications because of their unusual

physical properties.

The first known elastomer was natural rubber. Is waginally derived from milky colloidal
suspension, or latex found in the sap of some plaunth as Para rubber tree which present the
major commercial source of natural latex. The pedifnatural rubber corresponds to the
chemical polyisoprene which can also be producedhsyically. Mentioned by Spanish and
Portuguese writers in the "I&entury, pre-Columbian people of South and Cemtrakrica

like Maya used non-vulcanized natural rubber to endalls, containers, shoes and
waterproofing fabrics. Charles Marie de la Condaariscredited of introducing samples of
rubber in 1736 to the French Academy of Sciencescaldled this material by the name used

by natives,caoutchouc. In 1751, it was presented a paper on rubber bypdéis Fresneau at
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Chapter I: WHAT IS AN ELASTOMER?

the same Academy. He described many propertieghiffer in a paper which was published
in 1755. This paper has been referred as the daigintific paper on rubber. Before 1800,
natural rubber was used only for elastic bands emders. Joseph Priestley is credited the
discovery of its use as an eraser and also the maloher for this material. In 1823, Charles
Macintosh found a process using rubber to makematef. In 1839, the industry of rubber
was revolutionized with the discovery of vulcaniaat process by Charles Goodyear. His
process consists to heat natural rubber with sulfurwas first used in Springfield,
Massachusetts, in 1841. During the latter halhef19" century, rubber was demanded for its

insulating property by the electrical industry. éftthe pneumatic tire increased this demand.

[.1. MOLECULAR STRUCTURE

Elastomers like other polymers are obtained by mpelyzation process which can be
illustrated by monomers conversion to macromolacductures. Example, ethylene
molecules are converted into polyethylene whicthes most widely produced thermoplastic
in the word. The ethylene molecule ffgure 1.1) which is unsaturated must be transformed
under appropriate conditions of heating and pressaith the presence of catalyst. Then, the
double bond between the two carbon atoms can besbrand replaced by a single saturated
bond. After, a long macromolecular chain is obtdifeom monomers combination (See

Figure 1.2).

Figure 1.1: Ethylene molecule.

MOSSI IDRISSA Abdoul Kader, University of Strasbayr -17-



Chapter I: WHAT IS AN ELASTOMER?

Figure 1.2: Polyethylene macromolecule.

[.2. VULCANIZITION

Vulcanization is a process applied to some elastenmeaterials in order to improve their
retraction to approximately original shape aftergéa mechanical imposed deformation.
Vulcanization can be defined as a process that¢ases the retractile forces and decreases the
permanent deformation remaining after unloadingidée vulcanization increases elasticity in
rubber. Vulcanization chemically produces netwarkctions by the insertion of cross-links
between polymer chains like iRrigure 1.3. The process is usually carried out by heating
elastomeric materials with vulcanizing agents. €hass linking element may be a group of
sulfur atoms in a short chain, a single sulfur gtancarbon to carbon bond, a polyvalent
organic radical, an ionic cluster or a polyvalerdtahion. The increase of junctions generates
supporting chains. This supporting chain is a linelhain in the network between two
junctions. The retractile force needed to resist fgermanent deformation is proportional to

the number of supporting chains in the networkyodnme of elastomeric materials.
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Unvulcanized
w
r
r’ - _Rubber Molecules ="
—
- \/____

k \_/
I Sultfur
== Crosslinks s\g g

Sx
Vulcanized é
Network

Figure 1.3: Vulcanized network formation.
The network formation by vulcanization implies sfgrant effect on elastomer properties like
hysteresis whose effect decrease with an increasoss-linking in the network. At the same
time, the ability of elastomer for elastic recoveayd stiffness becomes high. For tear
strength, fatigue life and toughness, these prigserhcrease with small amount of cross-

linking but they are decreased by further croskitig formation. (Se&igure 1.4).

Tear Strength
Fatigue Life
Toughness

Elastic Recovery
Stiffness

&

Strength

Hvysteresis
Permanent Set

// Friction Coefficient

Vulcanizate Properties =

Crosslink Density T——

Figure 1.4: Elastomer properties as functions of tle extent of vulcanization.
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Chapter I: WHAT IS AN ELASTOMER?

[.3. HYPERELASTICITY AND VISCOELASTICITY

Elastomers are well known to exhibit non linear dryplastic deformation during uniaxial

stretching at room temperature. This property @@iacipal characteristic of these kinds of
polymers. Elastomers are also viscoelastic maseratan be shown by relaxation or creep
test. The simply rheological models use for hy@estetity and viscoelasticity are respectively

spring and dashpot based Maxwell modeg@re.l.5) or Kelvin model Figure.l.6).

s E (' o o VV VY o
S (00

Figure 1.5: Maxwell model. Figure 1.6: Kelvin model
I.4. CARBON BLACK

1.4.1. FILLERS

Elastomers are usually filled with much kind of riganic or organic fillers in order to
improve their properties or to control their pragiag characteristics. Sometime, particles are
used to reduce their overall cost. Particles liaebon black or silica are stiffer and stronger
than elastomer matrix and play an important role materials mechanical properties
improvement. They are reinforcing fillers. Basingreinforcing assertion, fillers can be class
in three types: non-reinforcing, semi-reinforcingdareinforcing. Filler effect in polymer
composites is function of: their incorporation nuath, their characteristics including
geometry structures such aspect ratio, surface &tles shape like inFigure 1.7 (plate,
cylindrical, spherical or irregular), filler sizeegntimeter, millimeter or nanometer), their

distribution (random or arrange) and their physicaéchanical, chemical, thermal, optical,
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Chapter I: WHAT IS AN ELASTOMER?

electrical properties. The interaction type or aitve between filler and matrix also affect

filled rubber on stress transfers from the elastomatrix to the filler.

0 “ ¥ L7

Spherical Cylindrical Plate

Figure 1.7: Types of fillers shape.

1.4.2. CARBON BLACK

Carbon black has been used in rubber compoundmémy years. At first, it was used as
black pigment. In 1910, channel carbon blacks akthby exposing an iron plate to a natural
gas flame and collecting the deposited soot weeel as reinforcing filler. In fact, furnace
blacks were produced industrially from petroleum i a furnace by an incomplete
combustion. After, thermal blacks were producednfroatural gas in preheated chambers
without air but their effect on composite reinfarent is low. The size of carbon black
primary particles is generally expressed in spesifirface area/weight ).

In filled elastomers microstructure, carbon bladknary particles with size between 20-50nm
are dispersed separately or cluster in aggrega@sZ00nm) (Se€igure 1.8.a). Aggregates
are formed by chemical and physical interactiorieeSE aggregates can also cluster. Hence,
agglomerate structure is obtained with a size bemwgd-10°nm (SeeFigure 1.8.a and
Figure 1.8.b). The aggregate structure is low or high in functiof primary particles
geometrical arrangements. The structure is lowlifegar arrangement and high for grape
arrangement. The primary particles arrangement lm&arshown by transmission electron
micrographs (TEMs) (SeEigure.l.8.c). For the characterization of low and high stroetu

dibutyl phthalate (DBP) absorption method can bedusience, small amounts of DBP are
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Chapter I: WHAT IS AN ELASTOMER?

added to dry fillers until saturation. The DBP aipsion is expressed in ¢hof DBP per 100g

filler (cm*/100g) for each type of filler.

Graphite 34 nm

Primary particle 20-50 nm
F

Filler aggregate 100-200 nm
v
A

Filler agglomerate 104-108nm
b

Figure 1.8.a: The different length scales of carborlack. (Vilgis et al., 2009)
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Primary particle

Primary
aggregate Cluster

Figure 1.8.b: Filler agglomerate structure.
Carbon black particles can be designated usindA81EM International nomenclature where
the first letter indicates the type of cure ratplegal on particles; N: for normal cure rate and
S: for slow cure rate.
Where the first digit indicates particle size ramgefollows:
1: for 10 to 19 nm, 2: for 20 to 25 nm, 3: for 2630 nm, 4: for 31 to 39 nm, 5: for 40 to 48

nm, 6: for 49 to 60 nm, 7: 61 to 100 nm, 8: for 10200 nm, 9: for 201 to 500 nm.

Figure 1.8.c. TEMs of five types of carbon black péicles. Their specific surface
increases from top to bottom and their correspondig aggregate structure.(Vilgis et al.,
2009)
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Chapter I: WHAT IS AN ELASTOMER?

[.5. UNFILLED ELASTOMERS MECHANICAL BEHAVIOR AND

OPTICAL ANISOTROPY

1.5.1. PHYSICAL THEORY

[.5.1.1. SINGLE LONG-CHAIN TO ELASTOMER NETWORK BGAUSSIAN THEORY

For the development of the statistical theory irthmmatical terms, it is convenient to use an
idealized simplest model which does not correspdidctly to a real macromolecular
structure. This model is consisting of a chainMf links of equal length, in which the
direction in space of any link is entirely rando8ome assumptions have also been done.
Hence, one end of the single chain is considered to be fixed &t dhnigin of a Cartesian
coordinate systen®x, Oy, and Oz, and allow the other enB to move in random manner
throughout the available space (Fégure 1.9). The motion is random and all positionsBof
are not equally probable; and for any particulasifpen P with coordinategx, y, z) which will

be an associated probability that the Bnalill be located at the position of the poihit

Kuhn (1934, 1936)and Guth and Mark (1934) give solution for this probability function

P(x, Y, 2) in the following equation:

p(x y,2)= 7;3;2 exp[—bz(x2+y2+zz)] 1.1

whereb? =3/2NI?

Equationl.1 can also be written in this form:

3

p(r)= nbm exp(-b’r?) .2

wherer? =x*+y*+2z°

Equationl.2 depends only on the vectorrepresenting the end-to-end distance of the chain.
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Figure 1.9: The chain end-to-end distance vector.

All conformations of the chain described in thigdhy are purely entropic and the shape of

the chain is driven purely by entropy. The entropthe chain is given by Boltzmann formula

as follows:

S=k;InQ 1.3
ks is the Boltzmann constant a2l is the number of conformations.

This fundamental equation can be rewritten in fibisn:

S(r)=kgln p(r):—kB[berHn(ns—jzﬂ 1.4

It is convenient to use Helmholtz free energy

A=U -TS 1.5
whereU is the internal energy.

For change taking place at constant absolute teatyrerT , we have:

dA=dU -TdS 1.6

Combining equation.6 with internal energy(dU =dQ+dw) and entropy(TdS=dQ)

evolution which are respectively introduce by thedynamic first and second laws. The

following equivalence was obtained:
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dA = (dQ + dw) - TdS = (TdS + dw) - TdS = dw 1.7

Here, w is the work required to move one end of the ch@he internal energl) effect on
the end-to-end distance is neglected. It obtaihedénsionf in single long-chain by using
the relationship of work required to move one ehthe chain from distance to a distance
r+dr, Sis given in equatioh4, therefore:

= WA OS5 o Torr =3 T 18
dr NI

Based on some fundamental assumptions generaliynating from Kuhn (1934, 1936)

Gaussian theory can be extended to elastomericriadatand the network strain ener@ly
equation is obtained as a function igf the first invariant of the left Cauchy-Green &the

tensorB.

l, =trB
|, =trB™ detB 1.9
|, =detB

|, and |, are respectively the second and the third invaothe left Cauchy-Green stretch

tensorB.
W:%anT(Il—S) .10

wheren is the number of chains per unit volume.

1.5.1.2 SINGLE LONG-CHAIN TO ELASTOMER NETWORK BY QIN-GAUSSIAN
THEORY

The aim of the non-Gaussian statistical treatmétiiesingle chain is to take into account all
finite extensibility in the chain. Thus, it leadsrere realistic distribution function which has
the ability to be valid for all range of extensiantil full extension. Then, the total chain

length will be the sum of the x-components of elok, like show inFigure 1.10. It is
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important to known the x-components for all linksthis case. Since a link inclined at an

angle @ to the x-axis, it has a component of lengthk= | cosg .

Figure 1.10: Chain length by non-Gaussian theory.
Kuhn and Grun (1942) gave a method of solution for this problem by deg the most
probable distribution of link angles with respectthe vector length. The probability of a
given vector length was taken to be the probabditythis particular distribution of links

angles. In this way{uhn and Grin (1942) obtained this probability in the logarithmic form:

In(p(r)):C—N{ﬁﬂﬂn(sifhﬂﬂ .11

where S=L" (ﬁj and L (x) = coth(x) -

C andL are respectively a constant and Langevin function.

L
X

Entropy and tension for single chain in non-Gaussieory were deduced like for Gaussian

theory. Hence, we have the following equationseespely for entropy and tension:

r B
S(r)=C-k,N| — B+ .12
(r) ° (NI'B sinhﬁj
f :—Ta—S:kB—TL'l(Lj 113
or I NI
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The function Langeviri_‘l(ﬁj written in form of series gives equatibf3 in this form

3 5 7
¢ kT ;{LJ;,Q(LJ +£7(L) +EiLj + .14
| TUND) T 5UN) Ta7sUNT) T 87EU N

It is easy to observe that non-Gaussian tensiorresgn’'s first term in the series

corresponds to Gaussian expression given by equia8ioFor the network scale, models are
generally presented in three-chain, four-chainhteadpain or full network model by several
authors.

[.5.1.2.1. Three-chain model

The three-chain model was suggestedlages and Guth (1943Yor rubber elasticity and
assumes that the networkchains per unit volume may be equivalent to threependent
sets ofn/3 chains per unit volume parallel to the Euleriamgipal axes system (Ségure
[.11). According to this theory, the three principatesses in principal axes have the

following form:

JN

whereC, =nk,T is modulus andp is the hydrostatic pressure.

o :—p+%Cr\/N/]iL_1£ij .15

Figure 1.11: Three-chain network model.
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[.5.1.2.2. Four-chain model

This model is derived frortlory and Rehner (1943)development of four-chain model for
Gaussian theory, andeloar (1946, 1954)modified the model for non-Gaussian chains. The
model considers that the network consists of ftwaires with a common junction point and all
chains have the same contour length. Then, thegegrositions of their outer ends are at the
four corners of a rectangular tetrahedron (Biggire 1.12). This four-chain model does not
exhibit the symmetry required for principal strapace, it is major inconvenien¢érruda

and Boyce, 1991).

Figure 1.12: Four-chain network model.

1.5.1.2.3. Eight-chain model

Arruda and Boyce (1993)proposed the eight-chain model for rubber elagtidn this
model, the network of elastomeric materials is wered to be equivalent to a set of eight
chains connecting the central junction point anthes the eight corners of the unit cube like
in Figure 1.13. Cube edges are also taken to remain aligned prititipal stretched space
during deformation. The eight-chain model show igbito predict rubber materials
mechanical behavior for large deformations in adgapproximation with uniaxial or shear

experimental data. In eight-chain model, strairrgyés in the following form:
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_ B
W=C, {\/ﬁﬁm&mmmn Sinhﬁ} .16

—1-1 Achain —
- chain — V '1
where f=L (W and A l./3

Figure 1.13: Eight-chain network model.
1.5.1.2.4. Full Network Model
Treloar and Riding (1979) developed this theory based on a full network deson but
they limited their considerations to deformationghwbiaxial extension along fixed axes
under plane stress condition&u and Van der Giessen (1992, 1993, 199&xtended this
model to a general three dimensional formulatiorerehrubbers properties are obtained by
the use of a full network of randomly chains coredcat the center of a sphere. During
material deformation, all chains are stretched ratated at the same time. In the full network
model, a single chain is considered with its enésid vector in unstrained or strained state
with angular coordinates like ifigure 1.14. The overall or macro-stress tensor of the
network is obtained by simply averaging the indidt chains micro-stress. The network

stress components are given in this form:

. :—pdlj +

]

r]kBT (e -1 Achain i -
yp \/WJ'O _[0 AcrainL (W mm, sindd@d¢ i, =1,2,3 1.17
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where 9, is Kronecker symbold is the locking stretch chain ang are the components

chain

of unit direction vector.

ml:_SI.nQC(.)SKb i:j:>5ii =1 292 212 292
m, =sind sing izj=d =0 Achain :\/ml/]l +MyA; +midg
m, = cosd ’

31

v

Figure 1.14: Full network model.

1.5.2. PHENOMENOLOGICAL THEORY

The aim of such method is essentially to find thestnmathematical reasoning way to
describe the properties. However, this method iusoally able in itself to give molecular or
physical structure explanation or interpretatioarigus phenomenological theories have been
developed to predict materials mechanical behaviorthis work, we will just present

summaries on some well known phenomenological nsaaktd for elastomers.
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1.5.2.1. Mooney’s model (1940)

Based on the assumptions that rubber is incomjtesand isotropic state and also obeys to
Hooke’s law in simple sheakjooney (1940)developed this model with purely mathematical

arguments. The strain-energy function of this maslgkesented in the following form:
W=C,(1,-3)+C,(1,-3) .18
where C, and C, are two elastic constants, and |, are first and second invariants of left

Cauchy-Green tensds .

1.5.2.2. Mooney-Rivlin’s model (1948)

Rivlin (1948) proposed strain-energy function as the sum ofresef terms(ll—S) and

(I2 —3). It is a general form of Mooney model and manyeotimodels fromsihara et al.

(1951) Biderman (1958) Tschoegl (1971)James and Green (1975Haines and Wilson

(1979) Yeoh (1990)are based on Mooney-Rivlin’s model which has tbis:

W:iCij(ll—3)i(|2—3)j whereC,, =0 1.19

i,j=0

1.5.2.3. Rivlin and Saunders’s model (1951)
Rivlin and Saunders (1951)also proposed a general form for strain-energgrasome

. . . ow . ,
observations on biaxial experimental data. Thepcm(blnata—I is a constant independent of
1

. OW . : oW .
I, and 1,, while R is function of |, but independent of,. They observed thatal— is the
2 1

: : ow :
major term for all states of deformation and thé':ltt— decreases wheh, increases. Hence,
2

they suggested this form for the strain-energy:

W=C,(1,-3)+F(1,-3 .20
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1.5.2.4. Gent and Thomas model (1958)

A model which accounts to a fair degree of appration for the general strain datarifvlin
and Saunders (1951has been proposed lyent and Thomas (1958)In this model, the

unknown function of Rivlin and Saunders is replabga logarithm one.
W=C,(I,-3)+klIn(1,/3) .21

1.5.2.5. Ogden’s model (1972)

A new departure was made Byden (1972)with a strain-energy function for incompressible

rubbers in the form of series. Ogden’s model stemiergy is in this form:

W:Zn:%(/lf’" + A0+ A0 =3) .22

n

where @, are positive or negative values and not necegsatigers andi, are constants.
A (i=1,2,3 is the stretch in the directidn

1.5.2.6. Gent’s model (1996)

Gent (1996)developed a new phenomenological model which e abpredict elastomers

mechanical behavior at large deformation and caretleced to the Neo-Hookean for small
deformations. In this model, Gent introduced a pet@r which presents a limiting state or
fully stretched for a network of molecular chaiduyce (1996 showed that the non-Gaussian
eight-chain and Gent models are powerful three dsimmal models to describe rubber

behavior at large strain. Gent’s strain energy ithis form:

W:—EJmIn 1 L3 .23
6 .,

where E and J,, are materials parameters corresponding respegcticelmodulus and

maximum stretch.
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1.5.3. ELASTOMERS OPTICAL ANISOTROPY

Optical anisotropy is characterized by differenfuea of refractive index for different
directions of light propagation through the matedn precisely for different directions of
polarization of the transmitted light. Based onwwk of some authors likéuhn and Grin
(1942) a close connection exists between the opticaloamipy and the mechanical behavior.
Materials such as glasses and elastomers, whosetuse is essentially irregular or
amorphous, are normally isotropic in the unstraistadie. But, during their deformation under
loading, the amorphous network can have an arraegeuwtistribution in some directions.
Hence, the arrangement and amorphous distributiothe same network implies double
refraction, it is a birefringence. This is an iratier of the structural anisotropy due to strain
induced by stress. Optical anisotropic properties rapresented by ellipsoid, whose axes,
perpendicular one to them, represent the threeipahrefractive indicesy, n, and n, (See
Figure 1.15). For optical anisotropy, we also have Gaussiah raan-Gaussian conceptions,
which are applied in material optical behavior. Rbe two concepts, mechanical and
birefringence relationships have been introducedsbgne authors likelreloar (1947a,
1947b) for Gaussian network oArruda and Przybylo (1995) for non-Gaussian. In an
optically isotropic medium the relation between thadarizability 5 and the refractiven

index is obtained by Lorentz-Lorenz formula in éolling form:

n—1 4r
- .24
n“+2 3 p
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Figure 1.15: The refractive index ellipsoid.

[.6. FILLED ELASTOMERS MECHANICAL BEHAVIOR

Filled elastomers are heterogeneous materials. @aheyomposed by more than one phase.
Defining the properties of these heterogeneous matgtehas always been a challenge for
scientists. Hence, some authors likeaxwell (1873) developed model for electric and
magnetic properties in heterogeneous materialsagony spherical particles arf@ayleigh

(1892) for conductivity. In 1906, Einstein derived thecriease in viscosity caused by a
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suspension of spherical particles in a viscouddfldifter, several authors suggested many
models to predict heterogeneous materials progertie

1.6.1. Voigt and Reuss models or upper and lowends

Voigt (1889)suggested a model for biphasic heterogeneous ialatdrere the two phases are
parallel. After,Reuss (1929gave another model for the same heterogeneousiahatbere
the phases are in series. The application of Vamngt Reuss models in mechanical elasticity
implies respectively uniform strain or stress tlgioout all phases. Fromdill (1951) works,
the two models are also known as upper bound fagtVand lower bound for Reuss. The

biphasic heterogeneous material property is betwabe two approximations.
E“" =¢.E, +¢,E,

ERGUSS:{&+&}' .25
E E

where@, +¢, =1
¢., @, are filler particles and matrix volume fraction arld, ,E, their properties

respectively.

1.6.2. Guth-Gold model (1938)

Guth and Gold (1938)also proposed Young's modulus for elastomers filbgdspherical

particles. This model includes the interaction lestw pairs of particles.

E=E,(1+2.50, + 14.57) .26
1.6.3. Smallwood’s model (1944)

From the work ofEinstein (1906)on fluid viscosity with spherical particle§mallwood

(1944) applied the same approach on low concentratecfestfor filled rubber to predict

Young modulus.
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E=E,(1+2.5,) .27
Smallwood also showed that for low concentratiorfilter (gof < 0.1), his model fitted the

observed elastic behavior for lightly reinforcedstbmers. But, serious departures occurred
for highly reinforcing.

Guth (1945)found that the behavior of rubber containing spa¢particles of carbon black

is conformed to equatidni27 up to volume concentrations around 0.3.

1.6.4. Guth model (1945)

Guth (1945) developed a model applicable to any shape of gbesti He introduced a
parameterk which characterizes aspect ratio of the partididlsr aggregate structures or

cluster particles.

2
E= Em[1+ 0.6%4, + 163k, ) } .28
1.6.5. Mori-Tanaka model (1973)

Mori and Tanaka (1973)model is applied for spherical particles isotraflicdispersed in an

elastic matrix and can be written in this form:

K=K + ¢f(Kf_Km)Km

=K, .29.a
Ko +38,K,, (K, =K, ) /(3K + 45,)

G=G (G -G)Gy 1.29.b

+
"G, +6¢, (K, -K,)(K,+25,) /5 K, + 5,)

where K K, K, are the bulk modulus an@ G, G, are shear modulus respectively for

the composite, the matrix and fillegs, and ¢, are matrix and fillers volume fraction.
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[.7. CONCLUSION

In this chapter, a general presentation is duelastaners material. It includes their origin or
their applications in many industries. Their macotecule structure is introduced and also
their well known mechanical behavior. Some physaal phenomenological models which
have the ability to predict unfilled and filled stamers mechanical behavior are presented.
The fillers use for reinforced elastomers are a@sesent, particularly carbon black. It is the

most used in reinforced elastomers.
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CHAPTER I

MODELING OF THE STRESS-BIREFRINGENCE-STRETCH

BEHAVIOR IN RUBBERS USING THE GENT MODEL

Deformation of rubbers produces mechanical andcalptthanges of the polymer network.
This mechanical behavior of the elastomeric mdteria often given by a stress—strain
relationship which can be obtained from assumediphlyor phenomenological models. In
the familiar works, the theory of rubber elasticfty single chain is treated by Gaussian
statistics before to be applied on network. Hemabper properties are obtained from the
contributions of the whole chains in netwokuhn and Griun (1942) andJames and Guth
(1943) developed a non-Gaussian treatment for singlenciaich is extended to network.
Based on these Gaussian and non-Gaussian thewtegrk stress-strain constitutive models
were developed for rubber elasticity. These inclutie four-chain Gaussian theory from
Flory and Rehner (1943) the four-chain non-Gaussian theory franeloar (1975), the
three-chain non-Gaussian theory froviang and Guth (1952) the eight-chain non-Gaussian
network theory fromArruda and Boyce (1993)and the full network non-Gaussian theory
from Wu and Van Der Geissen (1993, 1995Phenomenological models have also been
developed and used. These include modelsi@iney (1940) Rivlin (1948), Valanis and
Landel (1976) Ogden (1972)and recenthyzent (1996) among many others.

The optical property like birefringence is charaizied by the material anisotropy which is
measured by the difference in the refractive inglice two orthogonal directions of the

anisotropic medium. Optical anisotropy evolves witholecular orientation during
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deformation. This implies, like for the stresseéationship between birefringence and strain
or stretch. This constitutive relation can alsoelzpressed in terms of a birefringence-stress
relationship. A statistical long-chain molecule iogk property composed with anisotropic
links has its foundation in the optical theorylafihn and Grin (1942), Treloar (1947a,
1947b) They also investigated the photo-elastic propedfasibbers.

Based on these works, several authors proposedIsntmsimulate optical anisotropy and
validated their modeling by comparison of the prel birefringence-stretch and stress-
stretch results to the experimental ones. For megta/Vu and Van Der Giessen (1995)
simulated the birefringence evolution using the-@aussian full network model for rubbers.
Arruda and Przybylo (1995) extended the non-Gaussian eight-chain model to the
birefringence; they also compared their model ttura rubber and polydimethylsiloxane
elastomers (PDMS) experimental resulfein Lockette and Arruda (1999) extended the
eight-chain network model for stress-birefringencederive Raman spectra evolution for
elastomers.

Here, we propose to build birefringence-stresstimiahip with the Gent model in order to
simulate the birefringence or optical refractiveliaes evolution in deformed rubbers under
large strains. In this way, we combine Gent modi¢h Wwhe Gaussian optic law. The results
from our derived stress-optic model are compardtidse from the non-Gaussian eight-chain

stress-optic model and experimental data fromitaeature.
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[1.1. STRESS-OPTICAL LAW

11.1.1. GAUSSIAN MODEL

11.1.1.1. GAUSSIAN STRESS-STRETCH

The first theories based on the stress and optsglonses of rubber network using Gaussian
statistics were developed by several authorsHiklen and Grun (1942), Flory and Rehner,
(1943) Wang and Guth (1952) Treloar (1975). From the Gaussian strain energy in
equationl.10, we can deduce stress-stretch response of theorkehetween any two of the

three principal stresses as follows

0,-0,=nkT(A2-A2)  i,j=122 1.1

J

whereai:/}id—w+p 1=1,2,3
dA,

W is the Gaussian strain energy is the chain densityk, is the Boltzmann constant, is
the absolute temperaturgy is the hydrostatic pressure amy are the principal stretches

corresponding respectively to the principal stregge

11.L1.1.2. GAUSSIAN BIREFRINGENCE

Optical properties of strained rubber or strainettingence were successfully solved by
Kuhn and Grun (1942). The optical properties of elastomer can be ddfims the
contribution of each chain in the network to th&akgolarizability. Hence, as in the elastic
properties atl.3, a single random chain of jointed links is constde and the optical
properties are introduced by associating to eank &n optical anisotropy defined by

polarizabilitiesa, along of its length andr, in the transverse directions. Then, the resultant

component of polarizability for the whole chain ragothe axes may be calculated when the

directions of all links are known.
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Consider a link defined by angular coordinateand ¢ (SeeFigure 1.14), example, the link
makes an angl@ with ox and the plane containing the anglemakes an angle with the
plane xoy. The components of the polarizability tensor &entgiven in this form:

a, =a,cos f+a, sirt g,
=(a,-a,)sin*Gcos g +a,

(a,-a,)sin@codp+a, , o

=(a,-a,)sind coy cop

a,
aZZ
Ay
aXZ
ay,

ayx
a, =(a,-a,)sind cod sirp ,
Ay

=(a, -a,)sin’ @sing cogp

a; is the polarizability in the direction for the field applied in the directiorj. The

corresponding total polarisabilities of the chaaing the sum of the polarisabilities of each

link and will be:

yij :J'aide 1.3
where dN :_N—'Beﬂ‘mglsinedH% represents the angular distribution of link direcs
sinhg 2 T
and g=L" Lj
s

We obtain the following result:

2r /NI
yxx:N|:al_(a1_02) r }’

L (r /NI
r/NI
VW=VZZ:N{O’2+(O’1—O’2)T”\”)}, “4
Vig =V =,z =0.

For the difference of the two principal polariséhak, we have:

1.5

3r /NI
M_yzzN(al_az){l_ r }

L (r /NI)

wherey, =y, andy, =y, =V,.
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This can be writing in form of series:

3(r Y, 36(r\" 108 r\°
Cy=N(a—ay) 3] 38 ) L0E Y, 5.2
hova=N(a 2){5(Nlj 175(NI) 17iNlj }

Like for tension, the polarisability Gaussian exgsien corresponds to a first term in the non-
Gaussian equatidihb5.a.

Hence:

3(r\V_3
yl_yzzN(al_az)g(Wj :_(al_az) [1.5.b

It is interesting to remember that for free chae, have:r? = NI?

The network polarizabilitiegs, and S, respectively parallel and perpendicular to theatios

of the extension are obtained from Gaussian netvesdumptions fronTreloar (1975).

N 1

ﬂlzﬁx:”[§(a1+2a2)+1_5(a1_a2)(2’15_)'3_’12)} 11.6.a
_N 1 2 2 2 |

B, = B, =n| S (ay+2a;) +=(a,-a,) (243 - A3 2] 11.6.b
_N 1 2 2 2 ]

B,=f,=n 3(01"‘202)‘*1—5(0'1‘02)(2/]3‘/11‘/]2) 11.6.C

n and N are respectively the number of chains per unitmawand the number of links in the
chain.
Using Lorentz-Lorenz formula in equatidiR4, the difference between any two of the

principal refractive indices resulting from Gaussiheory is:

:277an (’7§+2)2 (/12_/12) 1.7

A/7i—j =1n.-1n, 5 n i i

is the mean refractive index.

wherea =a, -a, and7, :W

Combining equationd.1 andll.7, a linear stress—optic law is obtained:
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_2m (/7§+2)2
-1 = JeeT 7,

(Ji —UJ-) 1.8

According to Treloar experimental resulfSreloar 1947a, 1947b; Treloar and Riding
1979) it was observed that the relationship betweensthess and the birefringence is not
linear at large stretch. Therefore, the model diesdrby equationl.8 is able to predict the
birefringence only in the range of moderate strasrently, the eight-chain model and the
Gent model are two excellent predictors to descthe large stress-stretch behavior of
rubbers(Arruda and Boyce, 1993 Gent, 1996 Boyce, 1996) Only, the eight-chain model
was used to predict birefringence by non-Gausdiatisscal theoryArruda and Przybylo,

1995)

11.1.2. EIGHT-CHAIN MODEL

This model was developed byrruda and Boyce (1993) For this, they constructed a

representative macromolecular network of eightithavhere each chain emanates from the
center of a cube out to each corner. The cubefmmded such that each face lies along a
principal stretch axis. The stress-stretch behawiagach chain is taken to be non—Gaussian
and is represented with Langevin function chaitisttes. The stress-stretch relations of the

network are therefore given by:

nk, T Ay A2 =A?
g -0 =—2—JNL*| fean T 1.9
I : 3 \/_ (\/N] /]chain
where A%, = (A7 + A2+ 47)/3

Arruda and Przybylo (1995) have extended this concept to derive a physidaled stress-
optic law. For this, a non-Gaussian statisticalotiieis also used for birefringence. Their

obtained stress—optic law is given by the followaxgpression:

MOSSI IDRISSA Abdoul Kader, University of Strasbayr -44-



Chapter II: MODELING OF THE STRESS-BIREFRINGENCE-SRETCH BEHAVIOR IN RUBBERS USING THE GENT MODEL

3/1<:hajn
LN
af A
Ll chain
. %)
- K [ TR W) 110
9 kBT ,70 Achain L-l(Achainj
JN

[1.2. GENT MODEL AND OPTICAL ANISOTROPY

11.2.1. GENT MODEL

Elastomers exhibit complex mechanical behaviorcWimcludes non linear elasticity at large
strain, hysteresis, time dependent response, sod&ning or Mullins effect. Some
constitutive modelsArruda and Boyce, (1993) Hart-Smith, (1966), Marckmann et al,
(2002) Gent, (1996) Qi and Boyce, (2005)focus on one or more phenomenon observed
experimentally like large strain elasticity, hyst®s, time dependent response, stress-
softening or Mullins effect. Currently, strain eggipotential W are proposed for elastomers
material to capture these behaviors. Assuming thktstomers are isotropic and
incompressible, a strain energy is generally gagrfiunction of the two first invariants of the
left Cauchy-Green stretch tensBr.

W=W(I,1,) I1.11

The true stress tensor is defined by the diffeagiomn of W with respect td :

o=-pl +2B—=-pl +2| — B-2—B’ 11.12
P B " o, ‘al,

oW oW oW oW
al,

Considering the proposedent (1996)model in equation.23, and taking into account that

W is in function ofl, and independent of, the associated Cauchy stress is in the following

form:
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+E J g 113

o=-pl
P 3J -J,

where: J, =1,-3

As shown byBoyce (1996) Chagnon et al (2004)Horgan and Saccomandi (2002)the
parametersE and J., in the Gent model are rather related to well disfaédd parameters for
elastomers deformation behaviour, namely the rybbeydulus and the locking stretch. To

show this equivalence for the modullts Gent strain energy can be expressed in a sdries o

polynomial form:

B E 00 1 Jln+1

== —— I1.14.a
6on+1J,
For small strains, the expressibri4.a is reduced to the first term:
E E
WG:Ele—G(Il—S) 11.14.b

The equivalence of this equatiol.14.b with the Neo-Hookean strain energy
w,, =43 —’U(I ~3), which is valid in the range of small strains, lieg:
NH _E 1_5 1 ’ g ) P

E =3y =3nk,T 11.15

where u is the shear modulus.

The relation between the parameter and other parameters can be obtained by the ube of

current chain stretch expressiqd,,,) (Arruda and Boyce, 1993)and its limited value
lock - N1/2

(lock chain) at full stretch condition. The lockisgetch is given byl , whereN is

the number of statistical links in the chain betwé®o chemical crosslinks. Let's introduce

the average stretch a& =%(/112 + A7 +/132) . Then, we obtain:
12 (343"

A =1 =
chaln\/é \/é

11.16
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At full stretch condition the parametdr tends to its limiting valuel,, and equivalently the

chain stretch tends to the locking one:

— Agan = N2 11.17

chain chain

‘]1 — ‘]m =
Fromll.16 andll.17, we can therefore get:

(Jm +3)1/2
T

Horgan and Saccomandi (20028howed that Gent model for incompressible rubbervery

=N"?=J, =3(N-J 11.18

good qualitative and quantitative alternative fog prediction of the stress-strain response of
elastomers. They also concluded that the Gent mzdel very good approximation for
molecular arguments usinguhn and Grun (1942) non—Gaussian probability distribution
function.

The difference between two principal stresses uGiagt strain energy is given by:

O -0 = J.E (

_Im= (j2- 52 .19
o 3(3,-0) )

[ J

where: g, = A a—W+ p
04

The combination of equatidh7 for the birefringence based on the Gaussian né&ti@ory
and equationl.19 for the stress-stretch relations based on the @eulel yields the stress-

optic law in the following form:

2 2
o

When we introduce equatidhl5 into equatioril.20, the stress-optic law becomes:

249 2
AncS = i’; aJ(”;B;”) (3., - Jl)(ai —aj) 11.21

Finally, one can compare equatidh40 andll.21 where the number of material parameters

is the same. However, stress-optic law in equdlid® based on the eight-chain model use
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the inverse Langevin function which is not the céseour stress-optic model in equation
11.21. To directly compare the expressions of the hingénceAs,_; using the eight-chain

model and our proposed Gent-based relationshipntkeduce the Padé approximation for

2

the inverse of Langevin functior:™ (x) = xi_ 5
- X

(Cohen, 1991; Richeton et al., 2007)

By inserting this approximation in equation® andll.10, after some rearrangements, we

can write the birefringence based on the elghtrchmdelA““‘*” as follows:

A 8chain _ﬂ U (”§+2)2 N (

T ok T n, (3N-A2,,) N=Aw) (-0

o I1.22.a
:AmM(N i)o-o)  wih A=t N
kBT o 9 (3N _Aczhajn)
where
o-0, = nkBTﬁ(N Afh;nj(ﬁ -1?) I1.22.b

Equation Il.22.a can be compared to the birefringence expressidairsa using our

proposed model that combines the Gaussian—bireinicey with the Gent modeld@?).

chain

Sinced, =3(A2,,-1), J,=3(N-1) and E= 3k,T, we can also write equatioiis21 and

11.19 in the following form:

N-AZ

o CA

GG_Em (I7§+2)2 1 (
T U15kT o, 3(N-1)

o I.23.a
82 (ﬂo; 2) (N-pz)(o-0))  with B:l—ZSB(N—l_])

where

o-0, = nkBT#(N -1)(A*- A7) I1.23.b

chain
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As we can obtain, both equatiohh®2.a andll.23.a for stress-optic relationship and the two
expressions have some similarities. However, wellshoote that the Arruda-Przyblyo model
is based on non-Gaussian eight-chain. HoweverGtrg model is based on using the stress
induced principal stretch differences in the Gerdgss stretch formulation to scale the stretch
induced principal birefringence in the Gaussianoek model.

In what follows, the results from equatioh2.a. andll.22.b. will be referred to as the AP
(Arruda-Przyblyo) model and the AB (Arruda-Boycepael, respectively. Results from
equationdl.23a. andll.23.b. will be referred to as the proposed model and@kat model,
respectively.

[1.2.2. RESULTS

We implemented the Gent model to predict the stsgetch response and birefringence
evolution as a function of the stretch for bothaximal tension and compression. The results
from the proposed Gent model are compared to tbb#ge non-Gaussian eight-chain model
and also to experimental data from the literatdiee selected rubbers are those used by
Arruda and Przybylo (1995) where they compared the eight-chain model to exaartal
data.

The experimental data are those frelory and Erman (1982)andErman and Flory (1982,
1983a, 1983bfor two Polydimethylsiloxanes (Name here: PDMSéhy PDMS(B)), as well
as those fronvon Lockette and Arruda (1999)for two other polydimethylsiloxanes (Name
here: PDMS(C), PDMS(D)) and also on natural rublbee molecular weights for PDMS(C)
PDMS(D) are 2600g/mol and 21500g/mol respectivEhe molecular weights for PDMS(A)
and PDMS(B) were not given but they were reportediffer in their mechanical and optical
properties (Arruda and Przybylo, 1995) since they were synthesized under different
conditions. The material parameters for both modedsthose used byrruda and Przybylo

(1995)andVon Lockette and Arruda (1999)and are shown ifable 11.1.
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Table 1l.1: Parameters of the materials used for snulation.

Fig.1. Fig.2. Fig.3. Fig.4. Fig.5.

PDMS(A)* | PDMS(B)* | PDMS(C)* | PDMS(D)** | Rubber*
o 1.4074 1.4074 1.4074 1.4074 1.5205
a (m°) 5.4 10 5.4 10° 8.5 10° 4.66 10" 51.1 10"
n(m?) 22516 |4.55106° 1.42 16° 2.12 16° 7.25 16°
Jm=3(N-1) 147 72 29.67 297 72
E=3nksT(MPa) | 0.278 0.56 0.175 0.262 0.895

* Arruda and Przybylo (1995)

** \Jon Lockette and Arruda (1999)

Figures I1.1. shows the results for PDMS(A) under uniaxial tenéin X direction).Figure
Il.1.a. gives the evolution of the nominal stress versesuniaxial stretch anéigure I1.1.b.

shows the evolution of the birefringencérs{_, =An,_, and An,_,=0). From these results,

we observe that the two models predict exactlysrae stress-stretcbsponse which slightly
deviates from the experimental resultsFodry and Erman (1982) and Erman and Flory
(1982, 1983a, 1983Mat large stretches. However, the birefringencelte$rom the proposed
model yield a relative error of 10% from the experntal results oflory and Erman (1982)

andErman and Flory (1982, 1983a, 1983b)
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Figure Il.1.a: PDMS (A) Stress—stretch response iaoniaxial tension.
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Figure.ll.1.b: PDMS (A) Birefringence—stretch response in uniaxialension
An_,=An,_,.
Figures 11.2. shows the results for PDMS(B) under uniaxial tenskigure Il.2.a. shows a
good accord between the predicted results by baitiels and the experimental results of
Flory and Erman (1982)and Erman and Flory (1982, 1983a, 1983Hpr the stress-stretch
responseFigure 11.2.b. exhibits the birefringence stretch as predictedth® two models
where we observe a small deviation (about 10%s#tedch of 1.8) between the predictions of

the AP model and the experimental results-afry and Erman (1982) and Erman and

Flory (1982, 1983a, 1983b)
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Figure Il.2.a: PDMS (B) Stress—stretch response in uniaxial tensio
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Figure 11.2.b: PDMS (B) Birefringence—stretch respmse in uniaxial

tensionAn,_, =An,_,.
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Figures 11.3 andFigures 11.4 show results for PDMS(C) and PDMS(D) respectivElgures
[I.3.a and Il.4.a depict the stress-stretch responses under uniawiapression (in7<»l

direction) predicted by the two models in comparisaith the experimental results. This
comparison shows that the two models predict vdogec results which are in a good
agreement with the experimental data. The simylaritthe stress-stretch results from the two
models was reported previously lBoyce (1996) Figures 11.3.b and 1l.4.b show the
predicted birefringence evolution with the compressstretch. We note that the difference
between the two models prediction diverge slightlth compressive stretching. In the first
stage of compressive stretching, the experimemsiliits seem to be closer the predicted
results by our model. As the compressive stretcimogeases, the prediction of Arruda and

Przybylo (AP model) numerical results tend to deser to the experimental data.

0.4 -
0.35 ~
0.3 ~
0.25 +
------ AB Model

Gent Model
A DATA

0.2 A

0.15 +

True Stress(MPa)

0.1

0.05 +

O T T T T
0 0.2 0.4 0.6 0.8 1

Stretch

Figure 1l.3.a: PDMS (C) Stress—stretch response ianiaxial compression.

MOSSI IDRISSA Abdoul Kader, University of Strasbayr -54-



Chapter II: MODELING OF THE STRESS-BIREFRINGENCE-SRETCH BEHAVIOR IN RUBBERS USING THE GENT MODEL

------ AP Model
Proposed Model
A DATA

Birefringence(x10®)

0 0.2 0.4 0.6 0.8 1
Stretch

Figure 11.3.b: PDMS(C) Birefringence—stretch response in uniaxiatompression
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Figure 1.4.b: PDMS (D) Stress—stretch response in uniaxial compssion.
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Figure 1.4.b: PDMS (D) Birefringence—stretch respmse in uniaxial compression
A =Dn_;.
Figures 1.5 shows the results for natural rubb&igure 11.5.a depicts the stress-stretch

response anétigure 11.5.b depicts the birefringence evolution under uniakggision (inf1

direction). As shown on these figures, predictetherical results for the two models show
good agreement with experimental data for stretdbhevbelow 3.5. For larger stretches, some
divergences between these results are obtained ewtie® models seem to slightly

overestimate the stress-stretch response and th&irmgence evolution data seems to be

comprised between the two models predictions.

MOSSI IDRISSA Abdoul Kader, University of Strasbayr -56-



Chapter II: MODELING OF THE STRESS-BIREFRINGENCE-SRETCH BEHAVIOR IN RUBBERS USING THE GENT MODEL

3 =
2.5 -
------- AB Model
Gent Model
2 4 4 DATA ot
=
= i o
w15 —‘-"'. ‘wl
& 1. A
=
=
5
S 0.5 - ™
0 T T T T T T 1
1 1.5 2 25 #5 4 4.5 5
Stretch
Figure I.5.a: Natural rubber Stress—stretch resporse in uniaxial tension
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Figure 11.5.b: Natural rubber Birefringence—stretch response in uniaxial tension
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Another way for comparing the birefringence pradits by the two models consists of a
comparison of the terms in equatidh2.a andll.23.a The second terms of the right hand
sides of these two equations are similar and yeadalctly the same results since the stress
evolutions in the two models are shown to be similaerefore, the difference resides only in
the evolution of the first termsi and B, of the right hand sides of these two equatiohe T
evolution of A and B under tensile stretching is plotted for a fixedueaof N in Figures

[1.6 andll.7. It is clear thatA is constantB varies with stretching ané > B . Figures 11.6
andll.7 show the evolution ofA and B as well and the evolution of their differené¢e- B

for N =10.89 and N =50, respectively. These curves show that A increasek starts to

noticeably deviates from B when the stretch extand®cking stretch which equal N .
The two figures also show that the valueMaffects the difference betweeh and B which
decreases whehl increases. The difference betwegnand B is less than 2.1dand 4.1¢
at locking stretch for respectivel =10.8S and N =50. Therefore, the difference between
the two models prediction for birefringence is vemall for stretches less than the locking

stretch but this difference increases as the stettends to the locking stretch.

0,007
0,006 A

0005 4 T

0,004 4 e A

0,003 - — — - A-B
0,002

0,001 A e

Stretch

Figure 11.6: The difference between expressioné and B for N =10.8Cor J, =29.67.
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Figure I1.7: The difference between expression#\ and B for N =50 or J =147.
11.3. CONCLUSION
We proposed the formulation of a simplified strepsic relationship for rubbers. This
formulation is based on combining the simpler st®setch relationship from the
phenomenological Gent model with a Gaussian netwbdory for birefringence. The
obtained stress-optic law is valid for large stsaamd also includes the non linear behavior.
Our results show a fairly good agreement with tkpeeimental data from the literature for
the PDMS and natural rubber. Thus, we conclude dhatsimplified formulation basing on
Gent model; can be used to predict optical anipgtrevolution under large strains. These
numerical results are nearly equivalent to the ipteohs from physically-based formulations
using the eight-chain model.
Although, Arruda and Przybylo model is physicallgsked ofArruda and Boyce (1993)
Eight-chain model but Gent model is rather phenamtagical; their numerical results are

mainly controlled by two parameteid, 1 =nk,T for Arruda and Przybylo model andl,,

E for Gent model. These parameters are relatedasnsim equation$l.15 andll.18 which
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leads to similarities in the physics representedhege parameters in the two models and to
similar stress-strain response as well as to theealess of the birefringence results from both

models.
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CHAPTER Il

A CONSTITUTIVE MODEL FOR STRESS-STRAIN

RESPONSE WITH MULLINS EFFECT IN FILLED

ELASTOMER

For many industrial applications, elastomers hagenbcharged by different kind of fillers
like carbon-black in order to improve the matenachanical properties such as stiffness,
rupture energy, tear strength, tensile strengtcking resistance, durability, owed to filler-
filler and filler-elastomer interactions. Filledanunfilled elastomers show differences in their
stress-strain response under loading. Particulanigin-induced stress softening phenomenon
during cyclic tension, known as Mullins effect (Seigure Ill.1), is more pronounced in
filled elastomers. For unfilled elastomeigullins (1947) experimental data showed that
previous stretching has little effect on the st®sgin properties, this implies neglected
softening. This phenomenon was observed firsBbyasse and Carriere (1903and several
subsequent authors’ studies showed that the phemmealoesn’'t have one single
interpretation.Blanchard and Parkinson (1952)and Bueche (1960, 1961%uggested that
increase in stiffness obtained in filled rubberbe a result of rubber-filler attachments
providing additional restrictions on the cross &dkrubber network and Mullins effect
resulted from the breakdown of macromolecular chaibber or loosing their links with filler

particles.
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First cycle: ) — ) = Loadingcorrespond to:1 A — 0= unloadingcorrespond to:1’
Second cycle) — », = Loadingcorrespond  to:1” +11 A — 0= unloading correspond to:1 1’
Third cycle: \ — ), = Loadingcorrespond to: 11" + 11l X\ — 0= unloading correspond to: 111’

Figure Ill.1: Macroscopic description of the Mullins effect: (a) Stretching history, (b)

stress-stretch.Marckmann et al. (2002).

This idea was extended by other authors $ikeo (1987) Govindjee and Simo (1991, 1992)
by considering chains breakdown in the materialvogt (SeeFigure 111.2). Basedon this
idea of damage induced softenifidiippel and Schramm (2000)also proposed a model for
rubber elasticity and stress softening which combigeneralized tube model of rubber
elasticity with a damage model of stress-inducldrfcluster breakdownviiehe and Keck
(2000) also developed a superimposed phenomenologicarimamodel with damage at
large deformation. The constitutive model is decosga into nonlinear elastic, nonlinear
viscoelastic and nonlinear plastoelastic over-sggsvhich are in parallel (S€eure 111.3).

In this model, the damage is assumed to act isctathyp on each branch and their stresses are
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in the form S" =(1-d) s (C:G") for b=eyv,p and C=F'F is the current metric. The

inelastic stress response is governed by evolutiguations for the two reference metric

tensorsG',G" and the scalar damage variable evolutibr id(d“ —d)z where ¢ is a
7

material parameter; is a rate of the arc length ani is the saturation.

Crosslink Point Carbon Black

(@)

Loaose Chain End

(b)
Figure I1.2: Local schematic of two particles in the rubber matrix (a) in the reference

state and strained state (b)Govindjee and Simo (1991).
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e(lastic)
——NNVVNN————
v(iscoelastic)
S — 1] NNVNVNA — §
p(lastoelastic)
= AAAAA

Figure I11.3: Superimposed stress respons& = S° + S’ + SP with damage. Miehe and
Keck (2000).
Recently,Marckmann et al. (2002)proposed a theory of network alteration to expthie
Mullins effect (Sedrigure 111.4). They assumed that breakdown of chain interastiorthe

material network decreases macromolecular chainsityeand increase their length.

75  chain interactions é

Figure I11.4: Weak links and cross-links breakdown. Marckmann et al (2002).
However, forMullins and Tobin (1957, 1965) Mullins (1969) filled rubber is composed of
two domains: one hard and another soft. Duringaghy@ication of stress, most deformation
happens in the soft domain and the hard one madgieated contribution to the deformation
and may be broken down to form soft domain by h@ieation of stresses in excess of those

previously applied. Hence, the soft domain volun@eases when stretch becomes high.
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Here, o is soft domain volume fraction.
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Figure: 1.5 Mullins and Tobin (1957) model for filled elastomer.

Mullins (1947, 1969)also showed that the samples of filled rubber Wwhiere previously
stretched have their stress-strain properties agprahose of pure rubber due to the
destruction of some substantially hard domain whigtreased the stiffness. In addition, it
was also observed a recovery of partially or tgtédeir original stiffness very slowly, several
days at room temperature after cyclic loading-udilog. This recovery is accelerated when
the temperature is higlBueche (1960)Hard and soft domain concept is usedJbiinson
and Beatty (1993)where they considered hard domain like cluster aénmmolecular chains
held together by short chain segments entanglenoentgermolecular forces. Hence, during
material stretching, chains are pulled from clustnd hard domain is transformed into soft
domain. Other observations froMullins (1948), James and Green (1975showed that
softening is not identical in all directions. Itlsss in perpendicular direction of the stretch
than stretch direction.

Based onMiehe and Keck (2000)model, Qi and Boyce (2004)proposed a constitutive

approach using the eight-chain stress-strain resptmpredict Mullins effect.
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The rate of the soft domain evolution is in the Ideing form:

0, A gin < A

)\Iock _1 ) ) chain
Y chain max max __
Ve = A(Vss _Vs) (Alock AT 2 Achain WhereAchain -
chain — N chai ) A max
o o Achain Achain Z Achain

and the associated eight-chain stress-strain resp@ given in the following equation:

O_:VSX/L \/N L—l Achain]B_ pl .
3 Achain \/ﬁ
Here, Ay, =[X(1,/3—1)+ ]]1/2, X =1+351-v,)+ 1§ +-v,)° is the amplified factor,

M = N*? is the locking chain], is the first invariant of the macroscop® tensor,v, is

‘chain
the soft volume fractiony, is the saturation value o¥,, ;=nké is the soft domain

modulus, N is the number of rigid links between crosslinkgh# soft domain region and

is a fitting parameter.

In addition to filler particle volume fraction, ah parameters of fillers can influence their
contribution in filled elastomers mechanical resgmrfillers size, type and shafiéarwood

et al 1965, Mullins 1950)or the fillers aggregaté&Smallwood 1944, Meinecke and Taftaf
1988) These are not generally included in most develapedels. Here, the aim of this work
is to develop a theory based on filled elastomeacsastructure evolution to explain softening

phenomena.
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[1.1. MICROSTRUCTURE BEHAVIOR

Several authors liké/orozov et al. (2010) Heinrich et al. (2002) Vilgis et al. (2009)
showed that filler volume concentration in filleebber affect the material microstructure. In
the microstructure, particles are present in théowang states: individual dispersion of
primary particle with length scales 20nm-50nm forall concentrations, their cluster gives a
filler aggregate with length scales 100nm-200nmnfifiller aggregates clustering we obtain
filler agglomerate which can build a continuouswak of particles.

The microstructure of elastomers reinforced by @arblack can be represented as a system
composed of soft and hard domains like in Mullimgl a obin (1957) concept. Here, the
volume of the hard domain includes total voluméhef filler and the occluded matrix volume
which is formed in aggregates of the carbon blaektigdes. The occluded matrix is

immobilized by particles within the carbon blackgbmgnerates and increases effectively the
initial volume fraction of the hard domaiy as: @’ =¢@J +¢;. The termsp? and ¢° are the
initial volume fractions of the filler and the oaded matrix, respectively. The soft domain
corresponds to the elastomeric matrix no occludgdhle carbon black agglomerates and
aggregates. lts initial volume fraction is denotad ¢°. The occluded volume does not
contribute to the deformation of the composite lumtipture of the agglomerates or
aggregates. So, the released occluded matrix bates to the deformation as an additional
part of the elastomeric matrix. Hence, the tramafiiron of hard to soft domain which implies

softening in reinforced elastomers.

Medalia (1970)showed that effective volume occupied by clustgdarbon black in a rubber

can be obtained bypy =g, +¢; =¢’p with p=(1+0.0213DBP,, ) /1.4 where(p>1).

DBP,, is dibutyl phthalate absorption, where small antewf DBP are added to dry fillers
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until saturation. TheDBP, is expressed in chof DBP per 100g filler (cft100g) for each

type of carbon filler.

We can therefore get the volume fraction of thdum®d domain by:

s =(P-1)87 .1
In unstretched state, the material compositiorefsndd by the following relationships:
#+90=1

80 = §0 +¢°, Il.2.a
b =(P-1) 7.

During deformation, the composition evolution cawritten in the following form:

¢, +9. =1,

G, = Poc + &1

b2 4.,

$ <Py

.2.b

whereg_, ¢, ,¢. and ¢__ are soft domain, hard domain, particles aocluded matrix volume

fractions respectivelyp?, ¢;, ¢? and ¢°. correspond to initial values.

We assume that the decrease of the hard domaimeiriilled elastomers is caused by the
deformation during loading but not during unloading a reloading under previous
deformation. We assume that hard domain volumetidracevolution as function of

kinematical transformation is given by the follogiaquation during loading:

d
%Z_ hs¢h+Ksh¢s ”I3

where K, and K, are kinetic coefficients defined liyshmyan et al. (2006which are the

transformation from hard-to-soft and soft-to-haoigins. They are defined by:
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U.-)o
K=K e U0 iy (o)
B

: y
with = .4
P KT

U, +
Ko =K exp(—*k—fy”sj =b, exq{-40,)
B

where, g,, o, are stress in the hard and soft domalp,, U, are activation energies’,,

kS are pre-exponential coefficients and an activation volume. In factyiullins (1969)
observed that several days are needed to recokeshmvly the stiffness which is decreased
by the softening.

Using the condition ob,, =0, because the recovery time constant is far grélader the time

period of interest here. We obtain a simplificatarequationll.3 in as follows :

a9, _

o = Kt ll.5.a

After integration of equation Ill.5.a we get:

By = o + B; = Py eXP(—K£) lIl.5.b
The following expressions are also deduced:

£E-0=>4, - o 11.5.c
£o0=g¢ 0 111.5.d

The last two equation$l.5.c andlll.5.d show that hard domain volume fraction is bounded
by upper and lower bound estimates. However, expggrial conditions do not permit the

transformation of entire hard domains, particulanythe case of non-deformable particles
like carbon black for the applied stress. In thase; ¢, = ¢?, and only the occluded matrix
becomes soft. Then:

£ow=d - 4, lll.5.e

Using equationdll.2.b andlll.5.b, we obtain the soft domain evolution in the follog

form:
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¢, =1- ¢y exp(-K &) 1116
wherege - 0= ¢, - 1-¢,

Equationslll.5.b andIll.6 describe the filled elastomer microstructures ettoh during
deformation and also explain the softening phen@y@oduced in the material. In the next

part, filled elastomers mechanical behaviors agatéd with a reformulated Gent's strain

energy which takes into account filler effect anidnwstructure evolution.

%fef
‘v\f%’“

(b)

(a)

[

Figure lll. 6: Difference of microstructure aggregate before (a) and after (b)

deformation.

[11.2. MECHANICAL BEHAVIOR

Here, reinforcing fillers effect is taken into acow for reformulation of Gent strain energy
which is limited to unfilled elastomers, in order éxtend this model into reinforced ones.
Hence, the microstructure evolution which happemsnd deformation is introduced in the
stress-strain relationship. The strain enelyy, of reinforced elastomers which present soft

and hard domain is found from the strain energy tled deformable domain\\,

corresponding to the soft domain.

Then:
W' = oW, + g W C_
here c :61 h}:>W = oW, .7
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Using Gent model for the soft domain which is elastric material, we obtain the following

equation:
W, = g Wi =-¢S%Jmln{1-ll’3—_3} 1.8

whereW, is the Gent strain energy for the soft domain &pds the average first invariant

stretch of this domain.

In filled elastomers, the matrix is prevented fraleforming uniformly by adhesion of the
rubber to the surface of the particles. Thus, nractecule deformation is more complex than
in unfilled elastomers.

Mullins and Tobin (1965) introduced the notion of strain amplification gtréo estimate the

uniaxial strain in the matrix for filled elastomefihis relation can be shown when the stress-

strain relationship for filled elastomersy=Ee=E(A-1)=E,X(4-1), and unfilled

elastomersg = E, (A -1), is considered for the same average stress. WEeaed E,, are
respectively filled and unfilled elastomer modulughe amplified stretch expression is
therefore deduced ag\ = X (A -1)+1, where is the apparent macroscopic axial stretch in

filled rubber andX the amplification factor.
WhereasGovindjee and Simo (1991 proposed amplifying the total deformation gradient

order to obtain the relation between the averagenwe strain quantities and the matrix

quantities. This can be written in the followingrrfo Fm:(F—¢f R)/(l—¢f) where

F=RU, F and F, are respectively the average volume deformaticadignts in the

material and in the matriX the rotation tensor and the right stretching tensor.
As in the work ofBergstrom and Boyce (19990r Qi and Boyce (2004)we propose to use

the amplification of the first invariant stretch which corresponds to Mullins and Tobin

stretch amplification with an extension to a gehtmeee-dimensional deformation state:
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I, =X (1,-3)+3 1.9
where | is the average first invariant stretch in the olfemacroscopic of the composite

material. Using equatiohl.9 in the reinforced elastomers strain energy of gognall.8 , we

can deduce our proposed extension of the Genhsreargy for filled elastomers in this form:

. X(1,-3
W, :—¢S%Jmln{l—¥} 111.10

m

where, X =1+3.51-¢.)+ 1§ +4.)° is amplification factor used b@i and Boyce (2004)

for filled elastomers. From the proposed strainrgyéor filled elastomers in equatidi.10,

we get the corresponding Cauchy stress tensor:

EnX In B .11
3 J,-X(1,-9

Oc =—pl +¢,

Wherel and B arethe unit tensoand the left Cauchy-Green stretch ten(th FFt).

In summary, the proposed constitutive model foesstrstrain behavior of filled elastomers

can be summarized by the following constitutivatiehs:

%o =PI +4. Enéx Jm—)j?ll—B) °

X=1+351-¢)+ 1§ £ 4.) .12
¢, =1- ¢ exp(-K.€)

By =P

p was defined at page 67.

11.3. RESULTS

Equationdlll.12 which represent the constitutive model are usegarédict numerical results
for stress-strain response of filled elastomerdudting soft domain evolution. In the first
application, we simulated loading-unloading in aydension. The predicted stress-strain

response is shown Figure I11.7.a, the corresponding soft domain volume fractionletion
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is shown inFigure 11l.7.b. The selected material parameters are also showhese figures.
Figure IIl.7.a corresponds to the stress-strain behavior withicygading-unloading. The
first cyclic shows loading untie =2 and unloading tas =0. In the second cyclic, we have

reloading untile =3 and unloading tee =0. The third cyclic corresponds to reloading until

£ =4 and also unloading te =0.

Nominal Stress (MPa)

+ Model

0.00 1.00 2.00 3.00 4.00 5.00
Strain

bre=0.15s", ¢=0.19, f=2.10°MPa™*, E= 1MPa, J,=60, DBPaps=120 cm*/100g

Figure Ill.7.a: Loading-unloading-reloading cyclic for the new constitutive model.
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0.85 ~

0.80

0.75 ~

0.70 ~

0.65 A

0.60 +

0.55 ~

Soft volume fraction evolution

¢ Model

0.50 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Strain

Figure 111.7.b: Corresponding soft volume evolutionfor the new constitutive model
during stretching.
In order to validate this model, it is comparedMallins and Tobin (1957) vulcanized
materials data for GRS and natural rubbers filléith warbon black S301. DBE; for carbon
black S301 equal to 113é00g (Roychoudhury and De (1993)) These comparisons are
reported onFigure 1l1.8.a for GRS (Government Rubber Styrene) dridure 111.9.a for
filled natural rubber. These comparisons show dyfgjood agreement between the model
predictions and the experimental stress-strainomesg their soft volume fraction evolutions

are given respectively iRigure 111.8.b andFigure 111.9.b.
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Figure 111.8.a: Model compared to Mullins and Tobin (1957) experimental data where

1,00
0,95
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0.85
0.80
0.75
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0,65

0,60

Sof domain volume fraction evolution

0,55

0,50

GRS is filled by carbon black S301.

= Model

0.00 1.00 2,00 3.00 4.00

Strain

Figure 111.8.b: Corresponding soft volume evolutionfor the constitutive model during

stretching.
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bre=0.18s, ¢=0.19, f=4.10°MPa™*, E=0.9MPa, J,=28, DBPaps=113 cm*/100g

Figure I11.9.a: Model compared to Mullins and Tobin (1957) experimental data where

natural rubber is filled by carbon black S301.
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Figure 111.9.b: Corresponding soft volume evolutionfor the constitutive model during
stretching.

In our model, the two parameters that charactetheefiller particles in the composite are
their volume fraction and DBs. In Figure 111.10, the effect of filler volume fraction is
shown by changing its value, 0.1, 0.15 and 0.20eXscted, we can observe in tRigure
[11.10 that the higher filler volume fraction leads tetédfer stress-strain response.Higure
I11.11, three types of carbon black (N660 (DBR91 cm®100g), N550 (DBRps=120
cm/100g), N330 (DBR,s=101cm*/100g)) are used for the same filler volume fractiontHis
figure, the type of the carbon black affects theesst-strain response. Stiffer response is
obtained for carbon black with higher DBP which lrep higher volume fraction of the hard

domain.
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Figure 111.10: Effect of filler volume fraction on the mechanical behavior.
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bre=0.15s", ¢=0.20, =2.10°MPa™, E= 1IMPa, J,=75, N660/DBPass=91 cm*/100g,
N330/DBPaps= 101 cm*/100g, N550/DBPas= 120cm*/100g

Figure I11.11: Effect of the type of carbon black an the mechanical behavior.
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To verify our model’s ability to predict the strestsain response under different cyclic states

of deformation,Figures Ill.12.a, 111.12.b andlll.12.c are the predicted results for uniaxial

tension where the chains extend in one direc@qn: A =2 N = X”z), equi-
biaxial tension offers two principal tensile sthit (A, =), A, =X, A,=X") and

plane strain tensio(v\1 =X A=1 A= )\*1). The corresponding soft domains volume

fraction evolutions are shown Figure I11.12.d. Our predicted stress-strain response under
different cyclic stretching conditions is in accosith the results obtained kyi and Boyce
(2004)

Nominal Stress (MPa)
D

» Uniaxial

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00
Strain

bn=0.24s", 9=0.2, f=2.10°MPa’*, E= IMPa, J.= 75, DBPass= 120cm*/100g

Figure lll.12.a: Numerical results under uniaxial tension.
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0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50

Strain

bre=0.24s, p=0.2, f=2.10>°MPa,E= 1IMPa, J,= 75, DBPaps= 120cm?/100g

Figure 111.12.b: Numerical results under equi-biaxial tension.

Nominal Stress (MPa)
N

3 -
2 -
1 4
* Plane Strain
0 T T T 1
0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00

Strain

bne=0.24s*, 9=0.2, f=2.10>*MPa’, E= IMPa, J,= 75, DBPass=120cm*/100g

Figure 111.12.c: Numerical results under plane stran tension.
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Figure 1l1.12.d: States deformation effect on the gft volume evolution in the

microstructure.

[11.4. CONCLUSION

The combination of the extended Gent model with eav rkinematic model for phase
transformation leads to a simple and original apphhothat correctly predicts the stress-strain
behavior which takes into account Mullins effect fitled elastomers. The proposed model
takes into account the type of carbon black via DiPans. Although neglected here, this

model has the ability to predict stiffness increadeich happens slowly by setting,

different to zero. This is not possible with damalgeories based only on the breakdown of
elastomers links ofsovindjee and Simo (1991pr Marckmann et al. (2002) For isotropic
softening, the approach can also be easily implésdein computational codes such as FEM.
The constitutive model gives a fairly good agreemeith experimental data from the

literature and also proves its ability to be apgdtie on different states of deformation.
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CHAPTER IV

THERMOPLASTIC ELASTOMERS

Thermoplastic elastomers (TPES) are an intereslimgs of polymeric materials. They are a
copolymer with hard and soft segments like thermsid polyurethane elastomer (See
Figure 1V.1) or another class of composite materials madéefmoplastic homopolymer
and elastomer (Sdagure IV.2). For the last case, the thermoplastic polyprapyIéPP) and
ethylene-propylene diene monomer (EPDM) elastormenposite is an example like in the
work of Boyce et al. (2001) Then, thermoplastic elastomers are biphasic maigrthey
possess the properties of glassy or semi-crystalivermoplastics like processability and
properties of cross-linked elastomers like hypesttity. This elasticity comes from the
structure of the macromolecules which contain sefiments for copolymers or a dispersed
soft phase elastomer forming microscopic dropletsai continuous phase of a hard
thermoplastic for TPEs. Thermoplastic elastomerd fise in many applications. Advantages
offered by TPEs over thermoset elastomers include following points: Processing is
simpler and requires fewer steps, TPEs need ldtleno mixing with other particles in
opposition of thermoset elastomers which must beediiwith curatives, stabilizers,
processing aids and others, TPE scrap may be estydhich is not the case for thermoset

elastomers scrap which is often discarded, cawsingonmental problems.
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. | A

Figure IV.1: Schematic structure of copolymer withhard segments arranged in

domains.

Figure IV.2: Schematic structure compound of rubberparticles dispersed in

thermoplastic.

IV.1. THERMOPLASTIC POLYURETHANES

Thermoplastic polyurethanes (TPUs) elastomers amolgmer thermoplastic elastomers
consisting of urethane monomer which is obtaineminfrthe reaction of two molecules
containing isocyanate (Sdegure 1V.3.a) and hydroxyl (Sed-igure 1V.3.b) functional

groups. Bayer-Farbenfabriken established the dostmercial thermoplastic polyurethanes in

Germany. Their general structure-&-B-A-B- (SeeFigure IV.4), whereA represents a hard
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segment obtained from chain extension of a diiseai@awith a glycol an® is a soft segment
and originates from either polyester or polyethHre hard segment possess a high glass
transition temperature (Tg) or high melting tempam@ (Tm) like for glassy polymers and a
low transition temperature (Tg) for soft segmeiks in the case of rubbers. The nature of the
soft segments affects the final TPUs elastic badraamd low-temperature performance. TPUs
based on polyester soft segments have excellerstarese for non polar fluids, high tear
strength and abrasion resistance and high res#ljaethermal stability or hydrolytic stability
for those based on polyether soft segments. Theepties of TPUs are largely defined by the
ratio between hard and soft phases, hard segrmergthland their distribution. TPUs are also
known for their outstanding abrasion resistance kmwd coefficient of friction on other
surfaces. For these properties, thermoplastic pelljanes are used for a wide range of
applications but still limited by their relativelygh mechanical hysteresis in comparison with

other elastomers.

N
~ %C\

R
0

Figure IV.3.a: Isocyanate functional group.
PON

R H

Figure IV.3.b: Hydroxyl functional group.
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{OC NH-Ar-HNC Q- CHchZCH2CH2]—[ O-R}
] |
O 8] n m
Soft

Hard

Ar = divalent aromatic radical
R= -E:H2CH2CHZCH2]- or -ECHZ(_I“,H} or -ECHZCHZ OGCH,CH,CH,CH, & E|-
CH, o Q

N =30to 120

m =g to 50

Figure IV.4: TPUs chemical representation.
It has been established Byan et al (1991, 1992andElwell et al (1994)that hard segments
phase separate in spinodal mechanism or micro pegsaration and form hard domains.
These domains render TPUs behavior similar to aposite with nanoscale fillergetrovic
and Ferguson, 1991)From the work ofAneja and Wilkes (2003) Schneider et al. (1975)
Chen-Tsai et al. (1986)Garrett et al. (2001) Halary et al.(2008) O’Sickey et al. (2002)it
is shown that mesophase separation of hard andisofains in TPUs is responsible for the
versatile properties of this kind of polymer. Selaauthors(Qi and Boyce 2005)Yi et al.
2006, Buckley et al. 2010)studied the thermoplastic polyurethane mechaniedatior.
Among them,Russo and Thomas (1983%tudied a series of polyurethanes with different
percent of hard segments. They found that the aser®f hard segments in samples implies
an increase in both initial modulus and ultimateersgth. This shows that hard segments

improve mechanical strain-stress response and bdikavstiff particles.
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IV.2. THREE-DIMENSIONAL CONSTITUTIVE MODEL

IV.2.1. KINEMATICS OF FINITE STRAIN

Currently, finite deformation or transformation imed is used for computation of polymer
mechanical behavior at large deformation. The aeéal configuration state is described by
the deformation gradient tensbr, obtained by:

_OX

=— V.1
oX

F =Vx

where x are the coordinates of a point in the current igométion state andX are
coordinates of a point in the initial configuratistate. This deformation gradient can be the
combination of plastic and elastic deformation grats (SeeFigure IV.5) in isothermal

conditions.

F

Initial

configuration /\‘
Current

configuration

Intermediate
configuration

Figure IV.5: F decomposition in plasticF? and elastic F® deformation gradient.
In this work, the thermal deformation gradierE™ is taken equal to identity.

F=F°F"FP = F°FP IV.2

where F" = | .
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The deformation gradient tensor can also be giagooiar decomposition which implies that
any non-singular second-order tensor can be decssdpaniquely into the product of an
orthogonal tensor (rotation) and a symmetric terfstietch). Hence, the elastic deformation
gradientF° is decomposed in terms of the elastic stretchotsns® or U ¢ respectively left or
right and the elastic rotation tensBf in order to separate out stretch and rotation.
F°=V°R*=RU°® V.3
The velocity field of the material varies spatiallyhe increment in velocityv, occurring
over an incremental change in positidn and can be written in the deformed configuration
as:

dv = @dx V.4

OX
The velocity gradient tensor describes the spedial of change of the velocity and is given in
the following form:

_ov

L =2
OX

V.5

The velocity gradient can be also written in fuantiof the time rate and the inverse of the

deformation gradient:

ﬁzﬁﬁ]:ﬂ:@%:w V.6
ot | oX oX  OxoX

Hence:

L _FEt V.7

The velocity gradient can be decomposed into symonatd anti-symmetric part:

L=D+W V.8
The symmetric part is called the rate deformatibn and the anti-symmetric part the
continuum spinW . These tensors are written in function of velogtsdient in the following

form:
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1

D:E<L+ L) V.9
WZE(L_U) IV.10
2

IV.2.2. CONSTITUTIVE MODEL

In TPEs or TPUs network structure, we have a rupbed glassy phase in the same material.
The glassy phase, which is hard, is also acting té&inforcing fillers where the increase of
hard segments produces modulus (iBetrovic and Ferguson, 1991)Then, a constitutive
model for these materials must take into accouh@wer of the two phases and also the
relationship between them. Hence, we propose atitange model with parallel branches

corresponding to hyperelastic and elastic-viscdigldsehaviors. A one dimensional model

which is constituted by a linear elastic spri@”@) for the hyperelasticity behavior part and
spring (EO) in series with Kelvin model (Sdegure 1.6) for the elastic-viscoplastic part. In
this Kelvin model, a nonlinear viscoplastic dash(qqt) capturing the rate and temperature is
in parallel with a sprindEl). The stresses across the two branches afer the hyperelastic

and o, for elastic-viscoplastic branch and the overaikss in the rheological model is

(SeeFigure 1V.6).
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Figure IV.6: Schematic representation of the mechanal model.

The parallel arrangement of the components implies:
F=F=F V.11
where F is the macroscopic deformation gradieft, and F, are respectively the glassy

network with elastic-viscoplastic behavior and relybnetwork with hyperelastic behavior
deformation gradient.

The Cauchy stress is given by the following form:
oc=o0,+0, V.12
where o, ando, originate respectively from the glassy and rublpamtions whose behaviors

are elastic-viscoplastic and hyperelastic.
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IV.2.2.1. ELASTIC-VISCOPLASTIC OF THE GLASSY NETWQORBEHAVIOR

Cauchy stress; in the hard domain is obtained in the followingnfio

0, = 1°[Invg] V.13

detV]
where L® is the fourth-order tensor modulus of elastic tamnts.V,® is the left stretch tensor

of the elastic deformation gradient ten$gt and ¢, the current hard domain volume fraction

in the thermoplastic polyurethane. It decreasesdstress and is given by equatidins.b
(¢h =@’ exp(—Khse)) .

The elastic-viscoplastic deformation gradieft can be decomposed into contribution of
elasticF° and viscoplastid~" deformation gradient.

Then:

F =F°F° V.14
The corresponding decomposition of the velocitydgrat is:

L= FF = FeFet 4 FeFP FPIFe? V.15
The velocity of the viscoplastic element is obtdimethis form:

P — FPEP = DP 4+ W, V.16
Here, we také\,” = 0 with no loss in generality as shown Byyce et al (1988)The rate of
deformationD?" is given in the following form:

D/ =4°N V.17

N is a normalized tensor aligned with the deviatdriwing stress state angl® denotes the
viscoplastic shear strain rate of the viscoplastfiement (;,). These are given in the

following equations:
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N V.18

1 .
=—0
V2
where is the equivalent shear stress andis the deviatoric form of the driving stress.

Argon and cooperative model are used separatelytberviscoplastic shear strain rate

evolution to show our model ability for the two:

AG T
VP =3l exp——11-|=
TS kBTJl [8”

(7‘ — S)V

2k, T

(Argon’s model) Argon, (1973a, 1973b) IV.19.a

(Cooperative model)Richeton et al (2005) 1V.19.b

AH | .
vP = AP exp| ———| sini
Y Yo EXP kBT]

where 5, is the pre-exponential shear rate factvG is the zero stress level activation

energy, 7 is the effective equivalent shear stregsiH is the activation energy of the
secondary relaxation of mechanical significariéejs the shear activation volume ai&lis

the internal stress which evolves in the followfagn:

1. S
S

£

S=h 4P V.20

The effective equivalent shear stresss obtained from the tensorial difference betwten

Cauchy stress, and the network stress' from the spring E, ).

T = la*/ o’ V.21
2
where:
* eT 1 e N er e
o =R"|o,——=F%" F° |R V.22

whereo is the driving stress state. This portion of tri€hy stress, continues to activate

the plastic flow ands™’ corresponds to its deviatoric pas" is the network stress. This

portion of the Cauchy stresg captures the effect of orientation-induced sthardening:
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MN_B _Jdm g V.23
33, —(I,-3

where B = FPF"" —l—él

IV.2.2.2. HYPERELASTIC OF THE RUBBERY NETWORK BEHA®R

For the hyperelastic network mechanical behaviar,use Gent model for filled elastomers
which is developed in chapter Ill. Because the gagments act as stiff filler, the material
can be considered as composgRetrovic and Ferguson, 1991, Qi and Boyce, 2009hen,
TPU can be modeled as elastomer reinforced bymifficles. This implies the introduction
of amplified stretch and softening effect in theUrRetwork behavior. Hence, we have the

following expression for the stress in rubbery roeky

E,X J
=(1- 2 m2 B- pl IV.24

7. =(1-¢) 3 J,-X(1,-3 P

where B = FF'

IV.2.2.3. NUMERICAL IMPLEMENTATION
At time zero, the deformation gradient tensorsakenit tensorl and the velocity gradient
L is given as a deformation constraint. The stresisstrain of the material are equal to zero.

The update of the model between the timendt + At is presented ifigure IV.7.
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F.a = F +LRAt

'

Fe

_ p-1
t+At T Ft+At Ft

A 4

t
ot =20 *In (Ve
J

t+At )

A 4

‘7?& = f (Ft+At FtIAt ’<1_ h ))

* _ peT t+At 1 e N er e
oun =R oy 7 ——Fo ,F R

A 4
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A 4

DP
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Figure IV.7: Numerical implementation of the consttutive model.
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The evolving internal stresS is given by an implicit differential equatidw.20. Figure

IV.8 shows a numerical method to get an approximateisalfor S at timet + At by

S[+At B S

iteration. WhenAS = is small than error, we obtai§, ,,.

9P
S ’,‘yt ’Tt+At

S.a =S +SAt

<
y

f?tv+At = f (S+At>

A 4

$+At =f (%‘lm)

No
AS < error ?

Yes

Figure IV.8: Numerical method to solve the implicitEquation 1V.20.
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IV.3. RESULTS

The three-dimensional constitutive model is implatad to predict stress-strain response as
function of the microstructure evolution. The résufrom the constitutive model are
compared to two TPUs experimental data from tleditire. The selected data are from the
work of Yi and al. (2006) TPUs (TPU(A), TPU(B)) were based on diphenylmetha
diisocyanate (MDI, ISONATE) and poly(tetramethyleather) glycol, mixed with chain
extender respectively 1,4-butanediol (BDO) for TRU@nd 2,2-dimethyl-1,3-propanediol

(DMPD) for TPU(B). These materials properties dreven inTable IV.1. The experimental

data correspond to uniaxial compression at stati@a=1s *. In Figure IV.9.a andFigure
IV.10.a using Argon shear rate evolution aRtjure 1V.11.a and Figure IV.12.a using
cooperative shear rate evolution, it shows a gogeeament with experimental data. The
corresponding soft domain evolutions are also shmegpectively inFigure 1V.9.b, Figure
IV.10.b andFigure 1V.11.b, Figure IV.12.b. During unloading, the soft domain evolution

does not return back to strainbecause we have a viscoplastic deformation imtheerial.

Table IV.1: Thermoplastic polyurethane samples proprties.

Sample| Density| Hard Chain | Tg (°C) | Tg (°C) Tg shift Tp(°C) | T,(°C)
(g/mnT) | segment| extender] DSC | DMA | (°C/decade
(wWt%) (1H2) Strain rate)
TPU(A) 1.128 55 DMPD 12 24 4.7 -80 -146
TPU(B) 1.133 44 1,4-BDO -37 -25 4.6 -80 -14

DMA: Dynamic Mechanical Analysis p- ITemperature of transitigh

DSC: Differential Scanning Calorimetry - Temperature of transition
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Figure 1V.9.a: TPU(A).uniaxial compression responsat strain rate ¢ =1s* with Argon

shear rate evolution.

E,=0.1MPa,J , =42,E =16,J , =16, u = 0.499999+) =1.94.10s™*
AG=0.77.10"*J E,,, =300MPa,§ =30MPa, S, = 26MPa, h=100MPa, ¢y = 0.80,

1,00
0,90
0,80
0,70
0.60
0,50
0,40

0,30

Soft volume fraction evolution

0,20
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3=8.10°MPa*,h =1.10°s",T = 298.1K
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0,00 0,20 0,40 0,60 0,80 1,00
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Figure 1V.9.b: TPU(A) soft volume fraction evolution for the constitutive model during

stretching. (¢, =1—¢,)
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Figure 1V.10.a: TPU(B).uniaxial compression respors at strain rate ¢ =1s* with
Argon shear rate evolution.

E,=0.2MPa,J , = 21.5,E, = 0.2MPa, J , =16, u = 0.499999+) =1.94.10°s*
AG=0.77.10"J E,,, =22MPa, §, = 30MPa, S, =10MPa, h=100MPa, ¢y = 0.80,
B=0.IMPa"',b, =1.10°s",T =298.1K
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Figure IV.10.b: TPU(B) soft volume fraction evoluton for the constitutive model during

stretching. (¢, =1—¢;)
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Figure IV.11.a: TPU(A).uniaxial compression respons at strain rate ¢ =1s* with

cooperative shear rate evolution.

E, =0.IMPa,J _, =65,E =12,J =16, = 0.499999+) =1.94.16°s*
AH =90.16J E,,, =300MPa, S, =5MPa, S, =1MPa, h=0MPa, ¢, = 0.80,
f=110"MPa ' b, =1.10"s",T=298.1K n=8,V =1.10"m’.
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Figure IV.11.b: TPU(A) soft volume fraction evolution for the constitutive model during

stretching. (¢, =1—¢, ).
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Figure IV.12.a: TPU(B).uniaxial compression respons at strain rate ¢ =1s ' with

cooperative shear rate evolution.

E, =0.25MPa,J,, = 22.25,E, = IMPa, J, =16, u = 0.499999+f =1.94.16°s*
AH =90.16J E,,, = 22MPa, §, = 30MPa, S =1MPa, h=0MPa, ¢, = 0.80,
f=0IMPa*,b, =110°%s",T=298.1K n=8,V=110"m’
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Figure IV.12.b: TPU(B) soft volume evolution for the constitutive model during

stretching. (¢, =1—¢, ).
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IV.4. CONCLUSION

This constitutive model for thermoplastic elastosnierbased on microstructure evolution and
mechanical behavior. The thermoplastic polyuretharans are consisted by hard segments
which are separated in spinodal mechanism and faanoscale hard domains acting like
fillers. It also implies nanoscale soft domainswdger, the hard segments are considered to
be deformable and present an elastic-viscoplagitawor. Hence, the rheological model
proposed inFigure 1V.6 takes into account the two domains behavior dunmeghanical
deformation. The numerical results are obtained tf@o viscoplastic shear strain rate
evolutions which are Argon and cooperative modékese numerical results are also in good
agreement with different thermoplastic polyurethangerimental data. The model also
shows its ability to predict thermoplastic polylr@ies whose behavior is more elastomeric

or more thermoplastic.

MOSSI IDRISSA Abdoul Kader, University of Strasbayr -100-



V. Conclusion and future work

V. CONCLUSIONS AND FUTURE WORK

In this thesis, we propose three constitutive meétal elastomeric materials under stress. The
first is on stress-birefringence-stretch and the tthers are on biphasic elastomers stress-
strain behavior in relationship with microstructweeolution. Here, the biphasic elastomers
are elastomers filled by carbon black or thermdpladastomers with hard segments and soft
segments. The second constitutive model has tHayatw predict only filled elastomers
behavior because it does not include plasticityweler, the third is extended to include the

plasticity behavior which happens in thermoplastastomers.

For stress-birefringence-stretch, the constituth@del is based on the well know Gaussian
model for birefringence-stretch response and Geodlehfor stress-stretch response. The
stress-optical law obtained from these models ptediesults in good agreement with
experimental data from the literature for the PDMf8l natural rubber. Our stress-optical law
is also compared with the non-Gaussian birefringestoetch coupled with the eight-chain
model in order to show the difference between W dpproaches. The results are controlled

by the two parameters in these approachesand i =nk,T for the non-Gaussian model and
J, and E for the Gent model. These parameters also showe ssimilarities in their

representation for the two models. Similar Stréssrsresponse as well as to the closeness of

the birefringence results from both models confin relation between models parameters.

The constitutive model for filled elastomers inatgdnicrostructure evolution and mechanical
behavior. The microstructure of the filled elastosns considered to be composed of soft and

hard domains where the hard domain includes fillerd occlude matrix. Under stress, the
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filler aggregates break down leads to the transétion of the immobilized occlude matrix to
deformable matrix (hard-to-soft domain transform@ati Hence, the soft domain volume
fraction increases during loading and the hard daereases. This is what induces the
softening or Mullins effect. The soft domain evabdat controls the relationship between
microstructure and mechanical behavior becauseafipdied stress generates deformation
only in filled elastomers soft part (the fillerseasssumed non-deformable). The model takes
into account the carbon black volume fraction atsdtype via the DBR.. It also gives
explanation to stiffness increase by soft-to-haoidins transformation which happens
slowly after experimental test, this is not theecasother models based on damage theories.
For isotropic softening, the approach can alsoas#yeimplemented in computational codes.
The constitutive model gives good agreement witheexnental data from the literature and

also proves its ability to be applicable on differstates of deformation.

The third constitutive model for thermoplastic &dasers is also based on microstructure
evolution and mechanical behavior. The thermomgstilyurethane chains are consisted by
hard segments and soft segments. The hard segpieage separate in spinodal mechanism
and form nanoscale hard domains acting like filletswever, the hard segments are
considered to be deformable and present an elastioplastic behavior. Hence, unlike the
case of filled elastomers, here the stress gerseddtrmation in the two domains of the
materials. Hence, the rheological model proposé&mdainto account the two domains

behavior during mechanical deformation. The nuna¢rieesults are obtained for two

viscoplastic shear strain rate evolutions which Argon and cooperative model. These
numerical results are also in good agreement wifferdnt thermoplastic polyurethane

experimental data. Then, our model shows is abititypredict thermoplastic polyurethanes

whose behavior is more elastomeric or more therasbiol
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For future work, Mullins effect model should be qmared to experimental data for different
states of deformation. The TPU model should beieggor high strain rate tests, cyclic

loading-unloading tests or on other type of therlasic elastomers tests.
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