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Résumé 

Aujourd’hui, notre quotidien fait intervenir l’usage d’innombrables matériaux 

performants et adaptés à nos besoins, comme les alliages de fer, les céramiques, les 

polymères. Les élastomères qui sont des matériaux caoutchouteux synthétiques ou naturels 

appartiennent à cette dernière famille. Au fil des temps, le caoutchouc a connu plusieurs 

révolutions dans sa fabrication, dont la principale est celle de 1839 avec Charles Goodyear. Il 

a mit au point le procédé de vulcanisation qui consiste en un branchement des chaînes par des 

liaisons covalentes. 

 

La mise sous contrainte d’un élastomère provoque des changements mécaniques et 

optiques. Les changements mécaniques sont en général formulés par une relation entre la 

contrainte et la déformation. Ceux optiques sont dus à l’anisotropie, ils se caractérisent par la 

différence de propagation de la lumière dans les différentes directions du matériau. Cette 

anisotropie peut être mesurée par la biréfringence qui est la différence entre deux indices de 

réfraction de deux directions principales. 

 

Plusieurs travaux ont été effectués en se basant généralement sur des méthodes 

Gaussiennes et non Gaussiennes pour déterminer les variations de la contrainte et de la 

biréfringence dans les polymères en fonction de la déformation. Elles permettent aussi 

d’obtenir une relation entre la contrainte et la biréfringence comme formulé par Treloar 

(1947) pour le cas Gaussien et Arruda et Przybylo (1995) pour le modèle non Gaussien à 

huit-chaînes. Le second est mieux adapté aux cas expérimentaux car il prend en compte l’effet 

de la non linéarité pour les grandes déformations. Quant au premier, il n’est valable que dans 

les cas de déformation modérée (1ε< ). 
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Actuellement, deux modèles sont très utilisés pour prédire le comportement 

mécanique des élastomères en fonction de la déformation: le modèle de Gent et celui de huit-

chaînes d’Arruda et Boyce. Par contre, seul le second a été étendu à la biréfringence pour 

avoir une relation entre la biréfringence et la contrainte tout au long de la déformation dans 

les élastomères. Raison pour laquelle dans cette étude, nous avons formulé une relation entre 

la différence de deux contraintes principales quelconques du modèle de Gent en trois 

dimensions avec la biréfringence sous la forme Gaussienne. Ensuite, les résultats numériques 

de cette relation sont comparés avec ceux expérimentaux et du modèle non Gaussien à huit-

chaînes. Les résultats montrent que les prédictions de ce modèle concordent avec les résultats 

expérimentaux en grande déformation comme celui basé sur le modèle de huit-chaînes. 

 

Plusieurs autres phénomènes physiques caractérisent les élastomères dont l’élasticité 

non linéaire, la viscoélasticité, l’hyperélasticité, et principalement une température de 

transition vitreuse inférieure à la température ambiante, ceci implique un état caoutchouteux 

des élastomères à la température ambiante. L’effet Mullins est un phénomène 

d’adoucissement qui se produit particulièrement dans les élastomères chargés. En effet, pour 

améliorer leurs propriétés chimiques ou mécaniques, les élastomères sont renforcés par des 

nodules de noir de carbone ou d’autres particules. Mullins et Tobin (1957,1965) considèrent 

un élastomère renforcé comme un matériau composite à deux domaines, dont un domaine 

mou et un domaine dur. D’après leur concept, l’effet Mullins n’est autre que la transformation 

d’une partie du domaine dur en domaine mou lorsque le composite est sollicité en contrainte. 

 

Dans nos travaux, pour modéliser le comportement mécanique d’élastomères chargés 

en fonction de leur microstructure, on a considéré un matériau composite à base d’élastomère 

constitué par une matrice en élastomère, une partie de matrice occluse par les renforts et les 
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renforts qui sont des nodules de noir de carbone comme dans l’industrie pneumatique. Ainsi, 

la matrice constitue le domaine mou considéré par Mullins et Tobin tandis que les deux autres 

constituent le domaine dur c'est-à-dire la fraction volumique effective des renforts (incluant la 

matrice occluse). L’estimation du domaine dur en fonction du type de nodule de noir de 

carbone et de sa fraction volumique est obtenue à partir des mesures de microscopie 

électronique de Medalia (1970). D’où on peut quantifier le domaine dur de notre composite. 

 

En se basant sur les équations de la mécanique des milieux continus, on établit la 

relation entre la contrainte et la déformation tout au long du chargement du composite, en 

tenant compte de l’évolution de sa microstructure. Cette évolution de la microstructure se 

caractérise principalement par la libération des portions inactives de la matrice qui se trouvent 

emprisonnées entre les particules, provoquant ainsi une augmentation de la fraction 

volumique du domaine mou dans le composite. Cette transformation est modélisée par la 

théorie proposée par Oshmyan et al (2006). Ensuite, l’énergie de déformation de Gent 

(1996) pour les matériaux caoutchouteux non chargés a été reformulée pour tenir compte de 

l’effet des particules de renforts dans le composite. Le principal fondement de cette 

reformulation est d’admettre que la déformation du composite se produit uniquement au sein 

du domaine mou. Ainsi, l’énergie de déformation se réduit à celle du domaine mou, 

impliquant la connaissance de l’évolution de sa fraction volumique durant la déformation. La 

modélisation du comportement mécanique avec l’effet Mullins spécifique à chaque type de 

nodules de noir de carbone est ainsi établie avec la mise en relation de l’évolution de la 

microstructure et la loi de comportement reformulée utilisant la théorie de Gent. 

 

Le modèle obtenu donne des résultats numériques du comportement mécanique des 

élastomères chargés avec l’effet Mullins en tenant compte du type de nodules de carbone, la 
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fraction volumique des renforts et les modes de déformation (uni-axial, bi-axial ou en 

déformation plane). Ces résultats concordent aussi avec des résultats expérimentaux trouvés 

dans la littérature. Ce modèle est ensuite étendu au cas de l’élastomère thermoplastique 

polyuréthane dont le comportement mécanique introduit de la viscoplasticité.  
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INTRODUCTION 

 

For their properties, elastomers are very useful materials for many applications like 

pneumatic, cable jacketing for electrical or electronic industries, shaft seals, shock absorbers 

and power-transmission flexible joints used for automotive, rail, aerospace and other 

engineering industries. These examples show how elastomeric materials become more and 

more important for industries which aim to improve our life conditions. The current advances 

made on elastomeric materials properties knowledge explain the increase in their performance 

and process for different industries applications. However, a deeper understanding of these 

materials behavior could provide a useful tool for higher performance elastomers production. 

Elastomeric materials are usually classified as function of their origin, their ability to 

vulcanization or their composition. Hence, we have natural or synthetic elastomers, 

vulcanizable or thermoplastic elastomers and filled or unfilled elastomers. 

 

Filled or unfilled elastomers mechanical behaviors are predicted by physical or 

phenomenological models but their optical anisotropy behavior is given by a physical 

Gaussian or non-Gaussian model. In physical models, the behavior involves two essential 

scales which are the treatment for a single macromolecule long-chain structure and the 

application of this treatment to the material network. Thus, the contribution of all chains in the 

network corresponds to the material behavior. Some model applications may present 

limitations like for the well known Gaussian model which is adapted for moderate strains. 

However, for high strains, a Gaussian model may become inadequate. In this case, one can 

use a more elaborate non-Gaussian model developed by Kuhn and Grun (1942) and James 

and Guth (1943) for small strain to full extended length. A phenomenological model is a 
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purely mathematical approach. The aim of such method is essentially to find the most general 

way to describe material properties.  

 

Here, we investigate modeling optical anisotropy behavior for unfilled elastomers under stress 

and also Mullins effect or softening produced in filled elastomers during cyclic loading-

unloading-reloading. Modeling of thermoplastic elastomers behavior is also investigated. This 

work will be subdivided into four chapters. In the first chapter, we introduce a general 

presentation of elastomeric materials. It presents a summary of the origin of elastomers and a 

short history on the material evolution. We also discuss, in this chapter, the elastomeric 

materials chemical and mechanical properties like the macromolecule structure obtained from 

the monomers, vulcanization process, viscoelasticity or hyperelasticity behavior. Different 

physical and phenomenological models are presented for unfilled and filled elastomers. The 

second chapter is on the modeling and prediction of the mechanical and optical property of 

unfilled elastomers where the Gaussian theory for optical anisotropy and the corresponding 

stress-optical law is utilized. We show how Gent (1996) model can be extended to optical 

anisotropy prediction during stretching. The proposed approach is compared to Arruda and 

Przybylo (1995) model and to experimental data from literature. In the third chapter, a 

constitutive model is built to predict mechanical behavior of filled elastomers based on the 

consideration of microstructure evolution using hard-to-soft domains transformations. In the 

last chapter, the elastic-viscoplastic behavior is introduced in the constitutive model in order 

to predict thermoplastic elastomers behavior (stress-strain response), with particular 

application to thermoplastic polyurethane. The obtained model is validated by experimental 

data from literature. 
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Finally, this thesis is concluded by a general conclusion and remarks. Some suggestions on 

future research are also exposed. 
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CHAPTER I  

 

WHAT IS AN ELASTOMER? 

 

The term elastomer is often used interchangeably with the term rubber. Elastomers are 

amorphous polymer materials which have the ability to recover their shape after a large 

deformation. They are normally used at temperatures above their glass transition temperature 

so that considerable molecular segmental motion is possible. Thus, elastomers are soft and 

deformable. However, hard plastics normally exist either below their glass transition 

temperature, they are called thermoplastics at room temperature. They are different from other 

polymers because of their special properties such as flexibility, extensibility, resilience and 

durability. Elastomers are used in a wide range of applications because of their unusual 

physical properties. 

 

The first known elastomer was natural rubber. It was originally derived from milky colloidal 

suspension, or latex found in the sap of some plants such as Para rubber tree which present the 

major commercial source of natural latex. The purified natural rubber corresponds to the 

chemical polyisoprene which can also be produced synthetically. Mentioned by Spanish and 

Portuguese writers in the 16th century, pre-Columbian people of South and Central America 

like Maya used non-vulcanized natural rubber to make balls, containers, shoes and 

waterproofing fabrics. Charles Marie de la Condamine is credited of introducing samples of 

rubber in 1736 to the French Academy of Sciences. He called this material by the name used 

by natives, caoutchouc. In 1751, it was presented a paper on rubber by François Fresneau at 
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the same Academy. He described many properties of rubber in a paper which was published 

in 1755. This paper has been referred as the first scientific paper on rubber. Before 1800, 

natural rubber was used only for elastic bands and erasers. Joseph Priestley is credited the 

discovery of its use as an eraser and also the name rubber for this material. In 1823, Charles 

Macintosh found a process using rubber to make waterproof. In 1839, the industry of rubber 

was revolutionized with the discovery of vulcanization process by Charles Goodyear. His 

process consists to heat natural rubber with sulfur. It was first used in Springfield, 

Massachusetts, in 1841. During the latter half of the 19th century, rubber was demanded for its 

insulating property by the electrical industry. After, the pneumatic tire increased this demand. 

I.1. MOLECULAR STRUCTURE 

Elastomers like other polymers are obtained by polymerization process which can be 

illustrated by monomers conversion to macromolecular structures. Example, ethylene 

molecules are converted into polyethylene which is the most widely produced thermoplastic 

in the word. The ethylene molecule (In Figure I.1) which is unsaturated must be transformed 

under appropriate conditions of heating and pressure with the presence of catalyst. Then, the 

double bond between the two carbon atoms can be broken and replaced by a single saturated 

bond. After, a long macromolecular chain is obtained from monomers combination (See 

Figure I.2).  

 

Figure I.1: Ethylene molecule. 
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Figure I.2: Polyethylene macromolecule. 

I.2. VULCANIZITION 

Vulcanization is a process applied to some elastomeric materials in order to improve their 

retraction to approximately original shape after large mechanical imposed deformation. 

Vulcanization can be defined as a process that increases the retractile forces and decreases the 

permanent deformation remaining after unloading. Hence, vulcanization increases elasticity in 

rubber. Vulcanization chemically produces network junctions by the insertion of cross-links 

between polymer chains like in Figure I.3. The process is usually carried out by heating 

elastomeric materials with vulcanizing agents. The cross linking element may be a group of 

sulfur atoms in a short chain, a single sulfur atom, a carbon to carbon bond, a polyvalent 

organic radical, an ionic cluster or a polyvalent metal ion. The increase of junctions generates 

supporting chains. This supporting chain is a linear chain in the network between two 

junctions. The retractile force needed to resist to a permanent deformation is proportional to 

the number of supporting chains in the network per volume of elastomeric materials. 
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Figure I.3: Vulcanized network formation. 

The network formation by vulcanization implies significant effect on elastomer properties like 

hysteresis whose effect decrease with an increasing cross-linking in the network. At the same 

time, the ability of elastomer for elastic recovery and stiffness becomes high. For tear 

strength, fatigue life and toughness, these properties increase with small amount of cross-

linking but they are decreased by further cross-linking formation. (See Figure I.4). 

 

 

Figure I.4: Elastomer properties as functions of the extent of vulcanization. 
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I.3. HYPERELASTICITY AND VISCOELASTICITY  

Elastomers are well known to exhibit non linear hyper-elastic deformation during uniaxial 

stretching at room temperature. This property is a principal characteristic of these kinds of 

polymers. Elastomers are also viscoelastic materials; it can be shown by relaxation or creep 

test. The simply rheological models use for hyperelasticity and viscoelasticity are respectively 

spring and dashpot based Maxwell model (Figure.I.5) or Kelvin model (Figure.I.6). 

 

Figure I.5: Maxwell model.                                                    Figure I.6: Kelvin model. 

I.4. CARBON BLACK  

I.4.1. FILLERS 

Elastomers are usually filled with much kind of inorganic or organic fillers in order to 

improve their properties or to control their processing characteristics. Sometime, particles are 

used to reduce their overall cost. Particles like carbon black or silica are stiffer and stronger 

than elastomer matrix and play an important role in materials mechanical properties 

improvement. They are reinforcing fillers. Basing on reinforcing assertion, fillers can be class 

in three types: non-reinforcing, semi-reinforcing and reinforcing. Filler effect in polymer 

composites is function of: their incorporation methods, their characteristics including 

geometry structures such aspect ratio, surface area, filler shape like in Figure I.7 (plate, 

cylindrical, spherical or irregular), filler size (centimeter, millimeter or nanometer), their 

distribution (random or arrange) and their physical, mechanical, chemical, thermal, optical, 
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electrical properties. The interaction type or adhesion between filler and matrix also affect 

filled rubber on stress transfers from the elastomer matrix to the filler. 

 

Spherical                                             Cylindrical                                            Plate 

Figure I.7: Types of fillers shape. 

I.4.2. CARBON BLACK 

Carbon black has been used in rubber compounds for many years. At first, it was used as 

black pigment. In 1910, channel carbon blacks obtained by exposing an iron plate to a natural 

gas flame and collecting the deposited soot were used as reinforcing filler. In fact, furnace 

blacks were produced industrially from petroleum oil in a furnace by an incomplete 

combustion. After, thermal blacks were produced from natural gas in preheated chambers 

without air but their effect on composite reinforcement is low. The size of carbon black 

primary particles is generally expressed in specific surface area/weight (m2/g). 

In filled elastomers microstructure, carbon black primary particles with size between 20-50nm 

are dispersed separately or cluster in aggregates (100-200nm) (See Figure I.8.a). Aggregates 

are formed by chemical and physical interactions. These aggregates can also cluster. Hence, 

agglomerate structure is obtained with a size between 104-106nm (See Figure I.8.a and 

Figure I.8.b). The aggregate structure is low or high in function of primary particles 

geometrical arrangements. The structure is low for linear arrangement and high for grape 

arrangement. The primary particles arrangement can be shown by transmission electron 

micrographs (TEMs) (See Figure.I.8.c). For the characterization of low and high structure, 

dibutyl phthalate (DBP) absorption method can be used. Hence, small amounts of DBP are 
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added to dry fillers until saturation. The DBP absorption is expressed in cm3 of DBP per 100g 

filler (cm3/100g) for each type of filler. 

 

Figure I.8.a: The different length scales of carbon black. (Vilgis et al., 2009) 
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Figure I.8.b: Filler agglomerate structure. 

Carbon black particles can be designated using the ASTM International nomenclature where 

the first letter indicates the type of cure rate applied on particles; N: for normal cure rate and 

S: for slow cure rate. 

Where the first digit indicates particle size range as follows: 

1: for 10 to 19 nm, 2: for 20 to 25 nm, 3: for 26 to 30 nm, 4: for 31 to 39 nm, 5: for 40 to 48 

nm, 6: for 49 to 60 nm, 7: 61 to 100 nm, 8: for 101 to 200 nm, 9: for 201 to 500 nm. 

 

Figure I.8.c: TEMs of five types of carbon black particles. Their specific surface 
increases from top to bottom and their corresponding aggregate structure. (Vilgis et al., 
2009) 
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I.5. UNFILLED ELASTOMERS MECHANICAL BEHAVIOR AND 

OPTICAL ANISOTROPY  

I.5.1. PHYSICAL THEORY 

I.5.1.1. SINGLE LONG-CHAIN TO ELASTOMER NETWORK BY GAUSSIAN THEORY 

For the development of the statistical theory in mathematical terms, it is convenient to use an 

idealized simplest model which does not correspond directly to a real macromolecular 

structure. This model is consisting of a chain of N  links of equal length l , in which the 

direction in space of any link is entirely random. Some assumptions have also been done. 

Hence, one end A of the single chain is considered to be fixed at the origin of a Cartesian 

coordinate system Ox, Oy, and Oz, and allow the other end B to move in random manner 

throughout the available space (See Figure I.9). The motion is random and all positions of B 

are not equally probable; and for any particular position P with coordinates (x, y, z) which will 

be an associated probability that the end B will be located at the position of the point P. 

Kuhn (1934, 1936) and Guth and Mark (1934) give solution for this probability function 

P(x, y, z) in the following equation: 

( ) ( )
3

2 2 2 2
3/ 2

, , exp
b

p x y z b x y z
π

 = − + +                                                                                 I.1 

where 2 23 / 2b Nl=  

Equation I.1 can also be written in this form: 

( ) ( )
3

2 2
3/ 2

exp
b

p r b r
π

= −                                                                                                           I.2 

where 2 2 2 2r x y z= + +  

Equation I.2 depends only on the vector r  representing the end-to-end distance of the chain. 
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Figure I.9: The chain end-to-end distance vector. 

All conformations of the chain described in this theory are purely entropic and the shape of 

the chain is driven purely by entropy. The entropy of the chain is given by Boltzmann formula 

as follows: 

lnBS k= Ω                                                                                                                                I.3 

Bk  is the Boltzmann constant and Ω  is the number of conformations. 

This fundamental equation can be rewritten in this form: 

( ) ( )
3

2 2
3/ 2

ln lnB B

b
S r k p r k b r

π
  

= = − +  
  

                                                                            I.4 

It is convenient to use Helmholtz free energy 

A U TS= −                                                                                                                                I.5 

where U  is the internal energy. 

For change taking place at constant absolute temperature T , we have: 

dA dU TdS= −                                                                                                                         I.6 

Combining equation I.6 with internal energy ( )dU dQ dw= +  and entropy ( )TdS dQ=  

evolution which are respectively introduce by thermodynamic first and second laws. The 

following equivalence was obtained: 
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( ) ( )dA dQ dw TdS TdS dw TdS dw= + − = + − =                                                                   I.7 

Here, w  is the work required to move one end of the chain. The internal energy U  effect on 

the end-to-end distance is neglected. It obtained the tension f  in single long-chain by using 

the relationship of work required to move one end of the chain from distance r  to a distance 

r dr+ , S  is given in equation I.4, therefore: 

2
2

2 3B B

dw dA dS r
f T k Tb r k T

dr dr dr Nl
= = = − = =                                                                       I.8 

Based on some fundamental assumptions generally originating from Kuhn (1934, 1936), 

Gaussian theory can be extended to elastomeric materials and the network strain energy W  

equation is obtained as a function of 1I , the first invariant of the left Cauchy-Green stretch 

tensor B . 

1

1
2

3

det

det

I trB

I trB B

I B

−

=
 =
 =

                                                                                                                      I.9 

2I  and 3I  are respectively the second and the third invariant of the left Cauchy-Green stretch 

tensor B . 

( )1

1
3

2 BW k nT I= −                                                                                                                I.10 

where n  is the number of chains per unit volume. 

I.5.1.2 SINGLE LONG-CHAIN TO ELASTOMER NETWORK BY NON-GAUSSIAN 

THEORY 

The aim of the non-Gaussian statistical treatment of the single chain is to take into account all 

finite extensibility in the chain. Thus, it leads a more realistic distribution function which has 

the ability to be valid for all range of extension until full extension. Then, the total chain 

length will be the sum of the x-components of each link, like show in Figure I.10. It is 
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important to known the x-components for all links in this case. Since a link inclined at an 

angle iθ  to the x-axis, it has a component of length cosi ix l θ= . 

 

 

Figure I.10: Chain length by non-Gaussian theory. 

Kuhn and Grün (1942) gave a method of solution for this problem by deriving the most 

probable distribution of link angles with respect to the vector length. The probability of a 

given vector length was taken to be the probability of this particular distribution of links 

angles. In this way, Kuhn and Grün (1942) obtained this probability in the logarithmic form:  

( )( )ln ln
sinh

r
p r C N

Nl

ββ
β

  = − +  
  

                                                                               I.11 

where 1 r
L

Nl
β −  =  

 
 and ( ) ( ) 1

cothL x x
x

= −  

C  and L  are respectively a constant and Langevin function. 

Entropy and tension for single chain in non-Gaussian theory were deduced like for Gaussian 

theory. Hence, we have the following equations respectively for entropy and tension: 

( )
sinhB

r
S r C k N

Nl

ββ
β

 = − + 
 

                                                                                          I.12 

1Bk TS r
f T L

r l Nl
−∂  = − =  ∂  

                                                                                                    I.13 
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The function Langevin 1 r
L

Nl
−  
 
 

 written in form of series gives equation I.13 in this form  

3 5 7
9 297 1539

3
5 175 875

Bk T r r r r
f

l Nl Nl Nl Nl

        = + + + + ⋅⋅⋅        
         

                                             I.14 

It is easy to observe that non-Gaussian tension expression’s first term in the series 

corresponds to Gaussian expression given by equation I.8. For the network scale, models are 

generally presented in three-chain, four-chain, eight-chain or full network model by several 

authors.  

I.5.1.2.1. Three-chain model 

The three-chain model was suggested by James and Guth (1943) for rubber elasticity and 

assumes that the network n chains per unit volume may be equivalent to three independent 

sets of / 3n  chains per unit volume parallel to the Eulerian principal axes system (See Figure 

I.11). According to this theory, the three principal stresses in principal axes have the 

following form: 

11

3
i

i r ip C N L
N

λσ λ −  = − +  
 

                                                                                             I.15 

where r BC nk T=  is modulus and p  is the hydrostatic pressure. 

 

 

Figure I.11: Three-chain network model. 
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I.5.1.2.2. Four-chain model 

This model is derived from Flory and Rehner (1943) development of four-chain model for 

Gaussian theory, and Treloar (1946, 1954) modified the model for non-Gaussian chains. The 

model considers that the network consists of four chains with a common junction point and all 

chains have the same contour length. Then, the average positions of their outer ends are at the 

four corners of a rectangular tetrahedron (See Figure I.12). This four-chain model does not 

exhibit the symmetry required for principal strain space, it is major inconvenience (Arruda 

and Boyce, 1991). 

 

 

Figure I.12: Four-chain network model. 

I.5.1.2.3. Eight-chain model 

Arruda and Boyce (1993) proposed the eight-chain model for rubber elasticity. In this 

model, the network of elastomeric materials is considered to be equivalent to a set of eight 

chains connecting the central junction point and each of the eight corners of the unit cube like 

in Figure I.13. Cube edges are also taken to remain aligned with principal stretched space 

during deformation. The eight-chain model show ability to predict rubber materials 

mechanical behavior for large deformations in a good approximation with uniaxial or shear 

experimental data. In eight-chain model, strain energy is in the following form: 
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ln
sinhr chainW C N N

βλ β
β

 = + 
 

                                                                                         I.16 

where 1 chainL
N

λβ −  =  
 

 and 1 / 3chain Iλ =
 

 

 

Figure I.13: Eight-chain network model. 

I.5.1.2.4. Full Network Model  

Treloar and Riding (1979) developed this theory based on a full network description but 

they limited their considerations to deformations with biaxial extension along fixed axes 

under plane stress conditions. Wu and Van der Giessen (1992, 1993, 1995) extended this 

model to a general three dimensional formulation where rubbers properties are obtained by 

the use of a full network of randomly chains connected at the center of a sphere. During 

material deformation, all chains are stretched and rotated at the same time. In the full network 

model, a single chain is considered with its end-to-end vector in unstrained or strained state 

with angular coordinates like in Figure I.14. The overall or macro-stress tensor of the 

network is obtained by simply averaging the individual chains micro-stress. The network 

stress components are given in this form: 

2 1

0 0
sin

4
chainB

ij ij chain i j

nk T
p N L m m d d

N

π π λσ δ λ θ θ ϕ
π

−  = − +  
 

∫ ∫   , 1,2,3i j =                          I.17 
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where ijδ  is Kronecker symbol, chainλ  is the locking stretch chain and im  are the components 

of unit direction vector. 

1

2

3

sin cos

sin sin

cos

m

m

m

θ ϕ
θ ϕ
θ

=
 =
 =

                     
1

0
ij

ij

i j

i j

δ
δ

= ⇒ =
 ≠ ⇒ =

                2 2 2 2 2 2
1 1 2 2 3 3chain m m mλ λ λ λ= + +

 

 

 

θ

ϕ

1

2

3

 

Figure I.14: Full network model. 

 

I.5.2. PHENOMENOLOGICAL THEORY 

The aim of such method is essentially to find the most mathematical reasoning way to 

describe the properties. However, this method is not usually able in itself to give molecular or 

physical structure explanation or interpretation. Various phenomenological theories have been 

developed to predict materials mechanical behavior. In this work, we will just present 

summaries on some well known phenomenological models used for elastomers. 
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I.5.2.1. Mooney’s model (1940) 

Based on the assumptions that rubber is incompressible and isotropic state and also obeys to 

Hooke’s law in simple shear, Mooney (1940) developed this model with purely mathematical 

arguments. The strain-energy function of this model is presented in the following form: 

( ) ( )1 1 2 23 3W C I C I= − + −                                                                                                    I.18 

where 1C  and 2C  are two elastic constants. 1I  and 2I  are first and second invariants of left 

Cauchy-Green tensor B . 

I.5.2.2. Mooney-Rivlin’s model (1948) 

Rivlin (1948) proposed strain-energy function as the sum of a series of terms ( )1 3I −  and 

( )2 3I − . It is a general form of Mooney model and many other models from Isihara et al. 

(1951), Biderman (1958), Tschoegl (1971), James and Green (1975), Haines and Wilson 

(1979), Yeoh (1990) are based on Mooney-Rivlin’s model which has this form: 

( ) ( )1 2
, 0

3 3
i j

i j
i j

W C I I
∞

=

= − −∑       where 00 0C =                                                                    I.19 

I.5.2.3. Rivlin and Saunders’s model (1951) 

Rivlin and Saunders (1951) also proposed a general form for strain-energy after some 

observations on biaxial experimental data. They noted that 
1

W

I

∂
∂

 is a constant independent of 

1I  and 2I , while 
2

W

I

∂
∂

 is function of 2I  but independent of 1I . They observed that 
1

W

I

∂
∂

 is the 

major term for all states of deformation and that 
2

W

I

∂
∂

 decreases when 2I  increases. Hence, 

they suggested this form for the strain-energy: 

( ) ( )1 1 23 3W C I F I= − + −                                                                                                      I.20 
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I.5.2.4. Gent and Thomas model (1958) 

A model which accounts to a fair degree of approximation for the general strain data of Rivlin 

and Saunders (1951) has been proposed by Gent and Thomas (1958). In this model, the 

unknown function of Rivlin and Saunders is replaced by a logarithm one. 

( ) ( )1 1 23 ln /3W C I k I= − +                                                                                                   I.21 

I.5.2.5. Ogden’s model (1972) 

A new departure was made by Ogden (1972) with a strain-energy function for incompressible 

rubbers in the form of series. Ogden’s model strain energy is in this form: 

( )1 2 3 3n n nn

n n

W α α αµ λ λ λ
α

= + + −∑                                                                                              I.22 

where nα  are positive or negative values and not necessarily integers and nµ  are constants. 

iλ  ( )1,2,3i =  is the stretch in the direction i . 

I.5.2.6. Gent’s model (1996) 

Gent (1996) developed a new phenomenological model which is able to predict elastomers 

mechanical behavior at large deformation and can be reduced to the Neo-Hookean for small 

deformations. In this model, Gent introduced a parameter which presents a limiting state or 

fully stretched for a network of molecular chain. Boyce (1996) showed that the non-Gaussian 

eight-chain and Gent models are powerful three dimensional models to describe rubber 

behavior at large strain. Gent’s strain energy is in this form: 

1 3
ln 1

6 m
m

IE
W J

J

  −= − −  
  

                                                                                                   I.23 

where E  and mJ  are materials parameters corresponding respectively to modulus and 

maximum stretch.  
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I.5.3. ELASTOMERS OPTICAL ANISOTROPY 

Optical anisotropy is characterized by different values of refractive index for different 

directions of light propagation through the material or precisely for different directions of 

polarization of the transmitted light. Based on the work of some authors like Kuhn and Grün 

(1942), a close connection exists between the optical anisotropy and the mechanical behavior. 

Materials such as glasses and elastomers, whose structure is essentially irregular or 

amorphous, are normally isotropic in the unstrained state. But, during their deformation under 

loading, the amorphous network can have an arrangement distribution in some directions. 

Hence, the arrangement and amorphous distribution in the same network implies double 

refraction, it is a birefringence. This is an indicator of the structural anisotropy due to strain 

induced by stress. Optical anisotropic properties are represented by ellipsoid, whose axes, 

perpendicular one to them, represent the three principal refractive indices 1n , 2n  and 3n  (See 

Figure I.15). For optical anisotropy, we also have Gaussian and non-Gaussian conceptions, 

which are applied in material optical behavior. For the two concepts, mechanical and 

birefringence relationships have been introduced by some authors like Treloar (1947a, 

1947b) for Gaussian network or Arruda and Przybylo (1995) for non-Gaussian. In an 

optically isotropic medium the relation between the polarizability β  and the refractive n  

index is obtained by Lorentz-Lorenz formula in following form: 

2

2

1 4

32

n

n

π
β

−
=

+
                                                                                                                       I.24 
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Figure I.15: The refractive index ellipsoid. 

I.6. FILLED ELASTOMERS MECHANICAL BEHAVIOR 

Filled elastomers are heterogeneous materials. They are composed by more than one phase. 

Defining the properties of these heterogeneous materials has always been a challenge for 

scientists. Hence, some authors like Maxwell (1873) developed model for electric and 

magnetic properties in heterogeneous materials containing spherical particles and Rayleigh 

(1892) for conductivity. In 1906, Einstein derived the increase in viscosity caused by a 
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suspension of spherical particles in a viscous fluid. After, several authors suggested many 

models to predict heterogeneous materials properties. 

I.6.1. Voigt and Reuss models or upper and lower bounds  

Voigt (1889) suggested a model for biphasic heterogeneous material where the two phases are 

parallel. After, Reuss (1929) gave another model for the same heterogeneous material where 

the phases are in series. The application of Voigt and Reuss models in mechanical elasticity 

implies respectively uniform strain or stress throughout all phases. From Hill (1951) works, 

the two models are also known as upper bound for Voigt and lower bound for Reuss. The 

biphasic heterogeneous material property is between the two approximations. 

1

Re

Voigt
f f m m

fuss m

f m

E E E

E
E E

ϕ ϕ

ϕ ϕ
−

= +

 
= + 
  

                                                                                                              I.25 

where 1m fϕ ϕ+ =  

fϕ , mϕ  are filler particles and matrix volume fraction and fE , mE  their properties 

respectively. 

I.6.2. Guth-Gold model (1938) 

Guth and Gold (1938) also proposed Young’s modulus for elastomers filled by spherical 

particles. This model includes the interaction between pairs of particles.  

( )21 2.5 14.1m f fE E ϕ ϕ= + +                                                                                                    I.26 

I.6.3. Smallwood’s model (1944) 

From the work of Einstein (1906) on fluid viscosity with spherical particles, Smallwood 

(1944) applied the same approach on low concentrate particles for filled rubber to predict 

Young modulus. 
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( )1 2.5m fE E ϕ= +                                                                                                                   I.27 

Smallwood also showed that for low concentration of filler ( )0.1fϕ ≤ , his model fitted the 

observed elastic behavior for lightly reinforced elastomers. But, serious departures occurred 

for highly reinforcing. 

Guth (1945) found that the behavior of rubber containing spherical particles of carbon black 

is conformed to equation I.27 up to volume concentrations around 0.3. 

I.6.4. Guth model (1945) 

Guth (1945) developed a model applicable to any shape of particles. He introduced a 

parameter k  which characterizes aspect ratio of the particles, filler aggregate structures or 

cluster particles. 

( )2
1 0.67 1.62m f fE E k kϕ ϕ = + +  

                                                                                       I.28 

I.6.5. Mori-Tanaka model (1973) 

Mori and Tanaka (1973) model is applied for spherical particles isotropically dispersed in an 

elastic matrix and can be written in this form: 

 

( )
( ) ( )3 / 3 4

f f m m

m

m m m f m m m

K K K
K K

K K K K K G

ϕ
ϕ

−
= +

+ − +
                                                                I.29.a 

 

( )
( )( ) ( )6 2 /5 3 4

f f m m

m

m m f m m m m m

G G G
G G

G K K K G K G

ϕ
ϕ

−
= +

+ − + +
                                               I.29.b 

 

where K  mK  fK  are the bulk modulus and G  mG  fG  are shear modulus respectively for 

the composite, the matrix and fillers.mϕ  and fϕ  are matrix and fillers volume fraction. 
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I.7. CONCLUSION 

In this chapter, a general presentation is due on elastomers material. It includes their origin or 

their applications in many industries. Their macromolecule structure is introduced and also 

their well known mechanical behavior. Some physical and phenomenological models which 

have the ability to predict unfilled and filled elastomers mechanical behavior are presented. 

The fillers use for reinforced elastomers are also present, particularly carbon black. It is the 

most used in reinforced elastomers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter II: MODELING OF THE STRESS-BIREFRINGENCE-STRETCH BEHAVIOR IN RUBBERS USING THE GENT MODEL 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 39 -

CHAPTER II 

 

MODELING OF THE STRESS-BIREFRINGENCE-STRETCH 

BEHAVIOR IN RUBBERS USING THE GENT MODEL  

 

Deformation of rubbers produces mechanical and optical changes of the polymer network. 

This mechanical behavior of the elastomeric materials is often given by a stress–strain 

relationship which can be obtained from assumed physical or phenomenological models. In 

the familiar works, the theory of rubber elasticity for single chain is treated by Gaussian 

statistics before to be applied on network. Hence, rubber properties are obtained from the 

contributions of the whole chains in network. Kuhn and Grün (1942) and James and Guth 

(1943) developed a non-Gaussian treatment for single chain which is extended to network. 

Based on these Gaussian and non-Gaussian theories, network stress-strain constitutive models 

were developed for rubber elasticity. These include: the four-chain Gaussian theory from 

Flory and Rehner (1943), the four-chain non-Gaussian theory from Treloar (1975), the 

three-chain non-Gaussian theory from Wang and Guth (1952), the eight-chain non-Gaussian 

network theory from Arruda and Boyce (1993) and the full network non-Gaussian theory 

from Wu and Van Der Geissen (1993, 1995). Phenomenological models have also been 

developed and used. These include models of Mooney (1940), Rivlin (1948), Valanis and 

Landel (1976), Ogden (1972) and recently Gent (1996), among many others. 

The optical property like birefringence is characterized by the material anisotropy which is 

measured by the difference in the refractive indices in two orthogonal directions of the 

anisotropic medium. Optical anisotropy evolves with molecular orientation during 
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deformation. This implies, like for the stress, a relationship between birefringence and strain 

or stretch. This constitutive relation can also be expressed in terms of a birefringence-stress 

relationship. A statistical long-chain molecule optical property composed with anisotropic 

links has its foundation in the optical theory of Kuhn and Grün (1942), Treloar (1947a, 

1947b). They also investigated the photo-elastic properties of rubbers.  

Based on these works, several authors proposed models to simulate optical anisotropy and 

validated their modeling by comparison of the predicted birefringence-stretch and stress-

stretch results to the experimental ones. For instance, Wu and Van Der Giessen (1995) 

simulated the birefringence evolution using the non-Gaussian full network model for rubbers. 

Arruda and Przybylo (1995) extended the non-Gaussian eight-chain model to the 

birefringence; they also compared their model to natural rubber and polydimethylsiloxane 

elastomers (PDMS) experimental results. Von Lockette and Arruda (1999) extended the 

eight-chain network model for stress-birefringence to derive Raman spectra evolution for 

elastomers.  

Here, we propose to build birefringence-stress relationship with the Gent model in order to 

simulate the birefringence or optical refractive indices evolution in deformed rubbers under 

large strains. In this way, we combine Gent model with the Gaussian optic law. The results 

from our derived stress-optic model are compared to those from the non-Gaussian eight-chain 

stress-optic model and experimental data from the literature. 
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II.1. STRESS-OPTICAL LAW  

II.1.1. GAUSSIAN MODEL 

II.1.1.1. GAUSSIAN STRESS-STRETCH 

The first theories based on the stress and optical responses of rubber network using Gaussian 

statistics were developed by several authors like Kuhn and Grün (1942); Flory and Rehner, 

(1943); Wang and Guth (1952); Treloar (1975). From the Gaussian strain energy in 

equation I.10, we can deduce stress-stretch response of the network between any two of the 

three principal stresses as follows 

( )2 2 , 1,2,3i j B i jnk T i jσ σ λ λ− = − =                                                                                 II.1  

where 1,2,3i i
i

dW
p i

d
σ λ

λ
= + =   

W is the Gaussian strain energy, n  is the chain density, Bk  is the Boltzmann constant, T  is 

the absolute temperature, p  is the hydrostatic pressure and iλ  are the principal stretches 

corresponding respectively to the principal stresses iσ .  

II.1.1.2. GAUSSIAN BIREFRINGENCE 

Optical properties of strained rubber or strain birefringence were successfully solved by 

Kuhn and Grün (1942). The optical properties of elastomer can be defined as the 

contribution of each chain in the network to the total polarizability. Hence, as in the elastic 

properties at I.3, a single random chain of jointed links is considered and the optical 

properties are introduced by associating to each link an optical anisotropy defined by 

polarizabilities 1α
 
along of its length and 2α  in the transverse directions. Then, the resultant 

component of polarizability for the whole chain along the axes may be calculated when the 

directions of all links are known. 
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Consider a link defined by angular coordinates θ  and ϕ  (See Figure I.14), example, the link 

makes an angle θ  with ox  and the plane containing the angle θ  makes an angle ϕ  with the 

plane xoy . The components of the polarizability tensor are then given in this form: 

( )
( )

( )
( )
( )

2 2
1 2

2 2
1 2 2

2 2
1 2 2

1 2

1 2

2
1 2

cos sin ,

sin cos ,

sin cos ,

sin cos cos ,

sin cos sin ,

sin sin cos .

xx

yy

zz

xy yx

xz zx

yz zy

α α θ α θ
α α α θ ϕ α

α α α θ ϕ α
α α α α θ θ ϕ
α α α α θ θ ϕ

α α α α θ ϕ ϕ

= +

= − +

= − +

= = −

= = −

= = −

                                                                                    II.2  

ijα  is the polarizability in the direction i  for the field applied in the direction j . The 

corresponding total polarisabilities of the chain being the sum of the polarisabilities of each 

link and will be: 

ij ijdNγ α= ∫                                                                                                                             II.3  

where cos 1
sin

sinh 2 2

N d
dN e dβ θβ ϕθ θ

β π
=  represents the angular distribution of link directions 

and 1 r
L

Nl
β −  =  

 
. 

We obtain the following result: 

( ) ( )

( ) ( )

1 1 2 1

2 1 2 1

2 /
,

/

/
,

/

0.

xx

yy zz

xy xz yz

r Nl
N

L r Nl

r Nl
N

L r Nl

γ α α α

γ γ α α α

γ γ γ

−

−

 
= − − 

 

 
= = + − 

 

= = =

                                                                              II.4  

For the difference of the two principal polarisabilities, we have: 

( ) ( )1 2 1 2 1

3 /
1

/

r Nl
N

L r Nl
γ γ α α −

 
− = − − 

 
                                                                                     II.5  

where 1 xxγ γ=  and 2 yy zzγ γ γ= = . 
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This can be writing in form of series: 

( )
2 4 6

1 2 1 2

3 36 108
...

5 175 175

r r r
N

Nl Nl Nl
γ γ α α

      − = − + + +      
       

                                           II.5.a 

Like for tension, the polarisability Gaussian expression corresponds to a first term in the non-

Gaussian equation II.5.a. 

Hence: 

( ) ( )
2

1 2 1 2 1 2

3 3

5 5

r
N

Nl
γ γ α α α α − = − = − 

 
                                                                         II.5.b  

It is interesting to remember that for free chain, we have: 2 2r Nl=  

The network polarizabilities 1β  and 2β respectively parallel and perpendicular to the direction 

of the extension are obtained from Gaussian network assumptions from Treloar (1975). 

( ) ( ) ( )2 2 2
1 1 2 1 2 1 2 3

1
2 2

3 15x

N
nβ β α α α α λ λ λ = = + + − − −  

                                                  II.6.a 

( ) ( ) ( )2 2 2
2 1 2 1 2 2 3 1

1
2 2

3 15y

N
nβ β α α α α λ λ λ = = + + − − −  

                                                 II.6.b 

( ) ( )( )2 2 2
2 1 2 1 2 3 1 2

1
2 2

3 15z

N
nβ β α α α α λ λ λ = = + + − − −  

                                                  II.6.c 

n  and N are respectively the number of chains per unit volume and the number of links in the 

chain. 

Using Lorentz-Lorenz formula in equation I.24, the difference between any two of the 

principal refractive indices resulting from Gaussian theory is:  

( ) ( )
22

2 2
22

45
o

i j i j i j
o

n ηπαη η η λ λ
η−

+
∆ = − = −                                                                           II.7 

where 1 2α α α= −  and 1 2 3

3o

η η ηη + +=  is the mean refractive index. 

Combining equations II.1  and II.7 , a linear stress–optic law is obtained: 
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( ) ( )
22 22

45
o

i j i j
okT

ηπαη σ σ
η−

+
∆ = −                                                                                      II.8 

According to Treloar experimental results (Treloar 1947a, 1947b; Treloar and Riding 

1979), it was observed that the relationship between the stress and the birefringence is not 

linear at large stretch. Therefore, the model described by equation II.8  is able to predict the 

birefringence only in the range of moderate strains. Currently, the eight-chain model and the 

Gent model are two excellent predictors to describe the large stress-stretch behavior of 

rubbers (Arruda and Boyce, 1993; Gent, 1996; Boyce, 1996). Only, the eight-chain model 

was used to predict birefringence by non-Gaussian statistical theory (Arruda and Przybylo, 

1995). 

II.1.2. EIGHT-CHAIN MODEL 

This model was developed by Arruda and Boyce (1993). For this, they constructed a 

representative macromolecular network of eight-chains where each chain emanates from the 

center of a cube out to each corner. The cube is deformed such that each face lies along a 

principal stretch axis. The stress-stretch behavior of each chain is taken to be non–Gaussian 

and is represented with Langevin function chain statistics. The stress-stretch relations of the 

network are therefore given by: 

2 2
1

3
i jchainB

i j
chain

nk T
N L

N

λ λλσ σ
λ

− − − =  
 

                                                                                    II.9  

where ( )2 2 2 2
1 2 3 / 3chainλ λ λ λ= + +  

Arruda and Przybylo (1995) have extended this concept to derive a physically-based stress-

optic law. For this, a non-Gaussian statistical theory is also used for birefringence. Their 

obtained stress–optic law is given by the following expression:  
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( ) ( )
1

22

8

1

3

1

22 1

9

chain

chain

ochain
i j i j

chainB o chain

N

L
N N

k T
L

N

λ

λ
ηπ αη σ σ

λη λ

−

−
−

  
    − 
   

  +       ∆ = − 
   

  
  

 
 
 

                                     II.10 

II.2. GENT MODEL AND OPTICAL ANISOTROPY 

II.2.1. GENT MODEL 

Elastomers exhibit complex mechanical behavior, which includes non linear elasticity at large 

strain, hysteresis, time dependent response, stress-softening or Mullins effect. Some 

constitutive models Arruda and Boyce, (1993), Hart-Smith, (1966), Marckmann et al, 

(2002), Gent, (1996), Qi and Boyce, (2005) focus on one or more phenomenon observed 

experimentally like large strain elasticity, hysteresis, time dependent response, stress-

softening or Mullins effect. Currently, strain energy potential W  are proposed for elastomers 

material to capture these behaviors. Assuming that elastomers are isotropic and 

incompressible, a strain energy is generally given as function of the two first invariants of the 

left Cauchy-Green stretch tensor B . 

( )1 2,W W I I=                                                                                                                        II.11 

The true stress tensor is defined by the differentiation of W with respect toB : 

2
1

1 2 2

2 2 2
W W W W

pI B pI I B B
B I I I

σ
 ∂ ∂ ∂ ∂= − + = − + + − ∂ ∂ ∂ ∂ 

                                                     II.12 

Considering the proposed Gent (1996) model in equation I.23, and taking into account that 

W  is in function of 1I  and independent of 2I  the associated Cauchy stress is in the following 

form: 
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B
JJ

JE
pI

m

m

1
3 −

+−=σ                                                                                                        II.13 

where: 1 1 3J I= −  

As shown by Boyce (1996), Chagnon et al (2004), Horgan and Saccomandi (2002), the 

parameters E  and mJ  in the Gent model are rather related to well established parameters for 

elastomers deformation behaviour, namely the rubbery modulus and the locking stretch. To 

show this equivalence for the modulus E , Gent strain energy can be expressed in a series of 

polynomial form:  

1
1

0

1

6 1

n

G n
n m

JE
W

n J

+∞

=

=
+∑                                                                                                           II.14.a 

For small strains, the expression II.14.a is reduced to the first term: 

( )1 1 3
6 6G

E E
W J I= = −                                                                                                        II.14.b 

The equivalence of this equation II.14.b with the Neo-Hookean strain energy 

( )1 1 3
2 2NHW J I
µ µ= = − , which is valid in the range of small strains, implies: 

3 3 BE nk Tµ= =                                                                                                                     II.15 

where µ
 
is the shear modulus. 

The relation between the parameter mJ  and other parameters can be obtained by the use of the 

current chain stretch expression ( )chainλ  (Arruda and Boyce, 1993) and its limited value 

(lock chain) at full stretch condition. The locking stretch is given by 1/2lock
chain Nλ = , where N  is 

the number of statistical links in the chain between two chemical crosslinks. Let’s introduce 

the average stretch as ( )2 2 2 2
1 2 3

1

3chainλ λ λ λ= + + . Then, we obtain: 

( )1/ 21/ 2
11

3

3 3
chain

JIλ
+

= =                                                                                                         II.16  
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At full stretch condition the parameter 1J  tends to its limiting value mJ  and equivalently the 

chain stretch tends to the locking one: 

1/ 2
1

lock
m chain chainJ J Nλ λ→ ⇒ → =                                                                                            II.17 

From II.16 and II.17, we can therefore get: 

( ) ( )
1/ 2

1/ 23
3 1

3
m

m

J
N J N

+
= ⇒ = −                                                                                       II.18 

Horgan and Saccomandi (2002) showed that Gent model for incompressible rubber is a very 

good qualitative and quantitative alternative for the prediction of the stress-strain response of 

elastomers. They also concluded that the Gent model is a very good approximation for 

molecular arguments using Kuhn and Grün (1942) non–Gaussian probability distribution 

function. 

The difference between two principal stresses using Gent strain energy is given by:  

( ) ( )2 2

13
m

i j i j
m

J E

J J
σ σ λ λ− = −

−
                                                                                           II.19 

where: i i
i

W
pσ λ

λ
∂= +
∂

 

The combination of equation II.7  for the birefringence based on the Gaussian network theory 

and equation II.19 for the stress-stretch relations based on the Gent model yields the stress-

optic law in the following form: 

( ) ( )( )
22

1

22

15
oGG

i j m i j
m o

n
J J

J E

α ηπη σ σ
η−

+
∆ = − −                                                                       II.20 

When we introduce equation II.15 into equation II.20, the stress-optic law becomes: 

( ) ( )( )
22

1

22

45
oGG

i j m i j
m B o

J J
J k T

α ηπη σ σ
η−

+
∆ = − −                                                                 II.21 

Finally, one can compare equations II.10 and II.21 where the number of material parameters 

is the same. However, stress-optic law in equation II.10 based on the eight-chain model use 
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the inverse Langevin function which is not the case for our stress-optic model in equation 

II.21. To directly compare the expressions of the birefringence i jη −∆  using the eight-chain 

model and our proposed Gent-based relationship, we introduce the Padé approximation  for 

the inverse of Langevin function: ( )
2

1
2

3

1

x
L x x

x
− −≈

−
 (Cohen, 1991; Richeton et al., 2007). 

By inserting this approximation in equations II.9  and II.10, after some rearrangements, we 

can write the birefringence based on the eight-chain model, 8chain
i j−∆ , as follows: 

( )
( )

( )( )

( ) ( )( )
( )

22

8 2
22

22

2
22

24

9 3

2 4

9 3

ochain
i j chain i j

B o chain

o

chain i j
B o chain

N
N

k T N

N
A N with A

k T N

ηπαη λ σ σ
η λ

ηπα λ σ σ
η λ

−

+
∆ = − −

−

+
= − − =

−

        II.22.a 

where 

( )
2

2 2
2

1

3
chain

i j B i j
chain

nk T N
N

λσ σ λ λ
λ

 
− = − − −  

                                                                II.22.b 

Equation II.22.a can be compared to the birefringence expression obtained using our 

proposed model that combines the Gaussian–birefringence with the Gent model ( GG
i jη −∆ ). 

Since ( )2
1 3 1chainJ λ= − , ( )3 1mJ N= −  and 3 BE nk T= , we can also write equations II.21 and 

II.19 in the following form: 

( )
( ) ( )( )

( ) ( )( ) ( )

22

2

22

2

22 1

15 3 1

2 2 1

15 3 1

oGG
i j chain i j

B o

o

chain i j
B o

N
k T N

B N with B
k T N

ηπαη λ σ σ
η

ηπα λ σ σ
η

−

+
∆ = − −

−

+
= − − =

−

 II.23.a 

where 

( )( )2 2
2

1
1i j B i j

chain

nk T N
N

σ σ λ λ
λ

− = − −
−

                                                                        II.23.b 
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As we can obtain, both equations II.22.a and II.23.a for stress-optic relationship and the two 

expressions have some similarities. However, we should note that the Arruda-Przyblyo model 

is based on non-Gaussian eight-chain. However, the Gent model is based on using the stress 

induced principal stretch differences in the Gent stress stretch formulation to scale the stretch 

induced principal birefringence in the Gaussian network model. 

In what follows, the results from equations II.22.a. and II.22.b. will be referred to as the AP 

(Arruda-Przyblyo) model and the AB (Arruda-Boyce) model, respectively. Results from 

equations II.23a. and II.23.b. will be referred to as the proposed model and the Gent model, 

respectively. 

II.2.2. RESULTS 

We implemented the Gent model to predict the stress-stretch response and birefringence 

evolution as a function of the stretch for both uniaxial tension and compression. The results 

from the proposed Gent model are compared to those of the non-Gaussian eight-chain model 

and also to experimental data from the literature. The selected rubbers are those used by 

Arruda and Przybylo (1995) where they compared the eight-chain model to experimental 

data.  

The experimental data are those from Flory and Erman (1982) and Erman and Flory (1982, 

1983a, 1983b) for two Polydimethylsiloxanes (Name here: PDMS(A) and PDMS(B)), as well 

as those from Von Lockette and Arruda (1999) for two other polydimethylsiloxanes (Name 

here: PDMS(C), PDMS(D)) and also on natural rubber. The molecular weights for PDMS(C) 

PDMS(D) are 2600g/mol and 21500g/mol respectively. The molecular weights for PDMS(A) 

and PDMS(B) were not given but they were reported to differ in their mechanical and optical 

properties (Arruda and Przybylo, 1995) since they were synthesized under different 

conditions. The material parameters for both models are those used by Arruda and Przybylo 

(1995) and Von Lockette and Arruda (1999) and are shown in Table II.1. 
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Table II.1: Parameters of the materials used for simulation. 

 Fig.1. 

PDMS(A)* 

Fig.2. 

PDMS(B)* 

Fig.3. 

PDMS(C)** 

Fig.4. 

PDMS(D)** 

Fig.5. 

Rubber* 

ηo 1.4074 1.4074 1.4074 1.4074 1.5205 

α (m3) 5.4 10-31 5.4 10-31 8.5 10-31 4.66 10-31 51.1 10-31 

n(m-3) 2.25 1025 4.55 1025 1.42 1025 2.12 1025 7.25 1025 

Jm=3(N-1) 147 72 29.67 297 72 

E=3nkBT(MPa) 0.278 0.56 0.175 0.262 0.895 

*  Arruda and Przybylo (1995) 

**  Von Lockette and Arruda (1999) 

Figures II.1. shows the results for PDMS(A) under uniaxial tensile (in 1X
���

direction). Figure 

II.1.a. gives the evolution of the nominal stress versus the uniaxial stretch and Figure II.1.b . 

shows the evolution of the birefringence (1 2 1 3η η− −∆ = ∆  and 2 3 0η −∆ = ). From these results, 

we observe that the two models predict exactly the same stress-stretch response which slightly 

deviates from the experimental results of Flory and Erman (1982) and Erman and Flory 

(1982, 1983a, 1983b) at large stretches. However, the birefringence results from the proposed 

model yield a relative error of 10% from the experimental results of Flory and Erman (1982) 

and Erman and Flory (1982, 1983a, 1983b). 
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Figure II.1.a: PDMS (A) Stress–stretch response in uniaxial tension. 
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Figure.II.1.b:  PDMS (A) Birefringence–stretch response in uniaxial tension 

1 2 1 3η η− −∆ = ∆ . 

Figures II.2. shows the results for PDMS(B) under uniaxial tension. Figure II.2.a. shows a 

good accord between the predicted results by both models and the experimental results of 

Flory and Erman (1982) and Erman and Flory (1982, 1983a, 1983b) for the stress-stretch 

response. Figure II.2.b. exhibits the birefringence stretch as predicted by the two models 

where we observe a small deviation (about 10% at a stretch of 1.8) between the predictions of 

the AP model and the experimental results of Flory and Erman (1982) and Erman and 

Flory (1982, 1983a, 1983b). 
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Figure II.2.a: PDMS (B) Stress–stretch response in uniaxial tension. 
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Figure II.2.b: PDMS (B) Birefringence–stretch response in uniaxial 

tension 1 2 1 3η η− −∆ = ∆ . 
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Figures II.3 and Figures II.4 show results for PDMS(C) and PDMS(D) respectively. Figures 

II.3.a and II.4.a depict the stress-stretch responses under uniaxial compression (in 1X
���

 

direction) predicted by the two models in comparison with the experimental results. This 

comparison shows that the two models predict very close results which are in a good 

agreement with the experimental data. The similarity of the stress-stretch results from the two 

models was reported previously by Boyce (1996). Figures II.3.b and II.4.b  show the 

predicted birefringence evolution with the compressive stretch. We note that the difference 

between the two models prediction diverge slightly with compressive stretching. In the first 

stage of compressive stretching, the experimental results seem to be closer the predicted 

results by our model. As the compressive stretching increases, the prediction of Arruda and 

Przybylo (AP model) numerical results tend to get closer to the experimental data. 
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Figure II.3.a: PDMS (C) Stress–stretch response in uniaxial compression. 
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Figure II.3.b:  PDMS(C) Birefringence–stretch response in uniaxial compression 

i j i jη η− −∆ = ∆ . 
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Figure II.4.b:  PDMS (D) Stress–stretch response in uniaxial compression. 
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Figure II.4.b: PDMS (D) Birefringence–stretch response in uniaxial compression 

i j i jη η− −∆ = ∆ . 

Figures II.5 shows the results for natural rubber. Figure II.5.a depicts the stress-stretch 

response and Figure II.5.b  depicts the birefringence evolution under uniaxial tension (in 1X
���

 

direction). As shown on these figures, predicted numerical results for the two models show 

good agreement with experimental data for stretch value below 3.5. For larger stretches, some 

divergences between these results are obtained where the models seem to slightly 

overestimate the stress-stretch response and the birefringence evolution data seems to be 

comprised between the two models predictions. 
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Figure II.5.a: Natural rubber Stress–stretch response in uniaxial tension 

       

Figure II.5.b: Natural rubber Birefringence–stretch response in uniaxial tension 

i j i jη η− −∆ = ∆  
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Another way for comparing the birefringence predictions by the two models consists of a 

comparison of the terms in equations II.22.a and II.23.a The second terms of the right hand 

sides of these two equations are similar and yield exactly the same results since the stress 

evolutions in the two models are shown to be similar. Therefore, the difference resides only in 

the evolution of the first terms, A  and B , of the right hand sides of these two equations. The 

evolution of A  and B  under tensile stretching is plotted for a fixed value of N  in Figures 

II.6  and II.7.  It is clear that A  is constant, B  varies with stretching and A B> . Figures II.6 

and II.7  show the evolution of A  and B  as well and the evolution of their difference A B−  

for 10.89N =  and 50N = , respectively. These curves show that A increases and starts to 

noticeably deviates from B when the stretch extends to locking stretch which equal toN . 

The two figures also show that the value of N affects the difference between A  and B  which 

decreases when N increases. The difference between A  and B  is less than 2.10-3 and 4.10-4 

at locking stretch for respectively 10.89N =  and 50N = . Therefore, the difference between 

the two models prediction for birefringence is very small for stretches less than the locking 

stretch but this difference increases as the stretch extends to the locking stretch. 

 

 

 

 

 

 

 

 

 

Figure II.6:  The difference between expressions A  and B  for 10.89N =  or 29.67mJ = . 
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Figure II.7: The difference between expressions A  and B  for 50N =  or 147mJ = . 

II.3. CONCLUSION 

We proposed the formulation of a simplified stress-optic relationship for rubbers. This 

formulation is based on combining the simpler stress-stretch relationship from the 

phenomenological Gent model with a Gaussian network theory for birefringence. The 

obtained stress-optic law is valid for large strains and also includes the non linear behavior. 

Our results show a fairly good agreement with the experimental data from the literature for 

the PDMS and natural rubber. Thus, we conclude that our simplified formulation basing on 

Gent model; can be used to predict optical anisotropy evolution under large strains. These 

numerical results are nearly equivalent to the predictions from physically-based formulations 

using the eight-chain model. 

Although, Arruda and Przybylo model is physically based of Arruda and Boyce (1993) 

Eight-chain model but Gent model is rather phenomenological; their numerical results are 

mainly controlled by two parameters N , Bnk Tµ =  for Arruda and Przybylo model and mJ , 

E  for Gent model. These parameters are related as shown in equations II.15 and II.18 which 
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leads to similarities in the physics represented by these parameters in the two models and to 

similar stress-strain response as well as to the closeness of the birefringence results from both 

models. 
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CHAPTER III  

 

A CONSTITUTIVE MODEL FOR STRESS-STRAIN 

RESPONSE WITH MULLINS EFFECT IN FILLED 

ELASTOMER 

 

For many industrial applications, elastomers have been charged by different kind of fillers 

like carbon-black in order to improve the material mechanical properties such as stiffness, 

rupture energy, tear strength, tensile strength, cracking resistance, durability, owed to filler-

filler and filler-elastomer interactions. Filled and unfilled elastomers show differences in their 

stress-strain response under loading. Particularly, strain-induced stress softening phenomenon 

during cyclic tension, known as Mullins effect (See Figure III.1 ), is more pronounced in 

filled elastomers. For unfilled elastomers, Mullins  (1947) experimental data showed that 

previous stretching has little effect on the stress-strain properties, this implies neglected 

softening. This phenomenon was observed first by Bouasse and Carrière (1903) and several 

subsequent authors’ studies showed that the phenomenon doesn’t have one single 

interpretation. Blanchard and Parkinson (1952) and Bueche (1960, 1961) suggested that 

increase in stiffness obtained in filled rubber to be a result of rubber-filler attachments 

providing additional restrictions on the cross linked rubber network and Mullins effect 

resulted from the breakdown of macromolecular chains rubber or loosing their links with filler 

particles. 
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First cycle: :I Loading correspond to Iλ λ→ ⇒  /0 :unloading correspond to Iλ→ ⇒  

Second cycle: /:II Loading correspond to I IIλ λ→ ⇒ +  /0 :unloading correspond to I Iλ→ ⇒  

Third cycle: /:III Loading correspond to I I IIIλ λ→ ⇒ +  /0 :unloading correspond to IIIλ→ ⇒  

Figure III.1: Macroscopic description of the Mullins effect: (a) Stretching history, (b) 

stress-stretch. Marckmann et al. (2002). 

This idea was extended by other authors like Simo (1987), Govindjee and Simo (1991, 1992) 

by considering chains breakdown in the material network (See Figure III.2 ). Based on this 

idea of damage induced softening, Klüppel and Schramm (2000) also proposed a model for 

rubber elasticity and stress softening which combines generalized tube model of rubber 

elasticity with a damage model of stress-induced filler cluster breakdown. Miehe and Keck 

(2000) also developed a superimposed phenomenological material model with damage at 

large deformation. The constitutive model is decomposed into nonlinear elastic, nonlinear 

viscoelastic and nonlinear plastoelastic over-stresses which are in parallel (See Figure III.3 ). 

In this model, the damage is assumed to act isotropically on each branch and their stresses are 
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in the form ( ) ( )01 ;b b bS d S C G= −  for , ,b e v p=  and tC F F=  is the current metric. The 

inelastic stress response is governed by evolution equations for the two reference metric 

tensors ,v pG G  and the scalar damage variable evolution ( )1
d

d d d z
η

∞= −ɺ ɺ  where dη  is a 

material parameter, zɺ  is a rate of the arc length and d ∞ is the saturation. 

 

(a) 

 

(b) 

Figure III.2: Local schematic of two particles in the rubber matrix (a) in the reference 

state and strained state (b). Govindjee and Simo (1991). 
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Figure III.3: Superimposed stress response e v pS S S S= + + with damage. Miehe and 

Keck (2000). 

Recently, Marckmann et al. (2002) proposed a theory of network alteration to explain the 

Mullins effect (See Figure III.4 ). They assumed that breakdown of chain interactions in the 

material network decreases macromolecular chains density and increase their length.  

 

Figure III.4: Weak links and cross-links breakdown. Marckmann et al (2002). 

However, for Mullins and Tobin (1957, 1965), Mullins (1969) filled rubber is composed of 

two domains: one hard and another soft. During the application of stress, most deformation 

happens in the soft domain and the hard one makes neglected contribution to the deformation 

and may be broken down to form soft domain by the application of stresses in excess of those 

previously applied. Hence, the soft domain volume increases when stretch becomes high. 
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Here, σ  is soft domain volume fraction. 

Figure: III.5 Mullins and Tobin (1957) model for filled elastomer.  

Mullins (1947, 1969) also showed that the samples of filled rubber which were previously 

stretched have their stress-strain properties approach those of pure rubber due to the 

destruction of some substantially hard domain which increased the stiffness. In addition, it 

was also observed a recovery of partially or totally their original stiffness very slowly, several 

days at room temperature after cyclic loading-unloading. This recovery is accelerated when 

the temperature is high, Bueche (1960). Hard and soft domain concept is used by Johnson 

and Beatty (1993) where they considered hard domain like cluster of macromolecular chains 

held together by short chain segments entanglements or intermolecular forces. Hence, during 

material stretching, chains are pulled from clusters and hard domain is transformed into soft 

domain. Other observations from Mullins (1948), James and Green (1975) showed that 

softening is not identical in all directions. It is less in perpendicular direction of the stretch 

than stretch direction. 

Based on Miehe and Keck (2000) model, Qi and Boyce (2004) proposed a constitutive 

approach using the eight-chain stress-strain response to predict Mullins effect. 
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The rate of the soft domain evolution is in the following form: 

( )
( )

max
2max

1lock
chain

s ss s chain
lock
chain chain

v A v v
λ

λ

−
= − Λ

−Λ

ɺɺ  where 

max

max

max

0, chain chain

chain

chain chain chain

 Λ < ΛΛ = 
Λ Λ ≥ Λ

ɺ

ɺ

  

and the associated eight-chain stress-strain response is given in the following equation: 

1

3
s chain

chain

v X N
L B pI

N

µ
σ −

 Λ = −  Λ  
. 

Here, ( )
1/ 2

1 / 3 1 1chain X I Λ = − +  , ( ) ( )
2

1 3.5 1 18 1s sX v v= + − + −  is the amplified factor, 

1/ 2lock
chain Nλ =  is the locking chain, 1I  is the first invariant of the macroscopic B  tensor, sv  is 

the soft volume fraction, ssv  is the saturation value of sv , nkµ θ=  is the soft domain 

modulus, N  is the number of rigid links between crosslinks of the soft domain region and A  

is a fitting parameter.  

In addition to filler particle volume fraction, other parameters of fillers can influence their 

contribution in filled elastomers mechanical response: fillers size, type and shape (Harwood 

et al 1965, Mullins 1950) or the fillers aggregate (Smallwood 1944, Meinecke and Taftaf 

1988). These are not generally included in most developed models. Here, the aim of this work 

is to develop a theory based on filled elastomers microstructure evolution to explain softening 

phenomena. 
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III.1. MICROSTRUCTURE BEHAVIOR 

Several authors like Morozov et al. (2010), Heinrich et al. (2002), Vilgis et al. (2009) 

showed that filler volume concentration in filled rubber affect the material microstructure. In 

the microstructure, particles are present in the following states: individual dispersion of 

primary particle with length scales 20nm-50nm for small concentrations, their cluster gives a 

filler aggregate with length scales 100nm-200nm, from filler aggregates clustering we obtain 

filler agglomerate which can build a continuous network of particles.  

The microstructure of elastomers reinforced by carbon black can be represented as a system 

composed of soft and hard domains like in Mullins and Tobin (1957) concept. Here, the 

volume of the hard domain includes total volume of the filler and the occluded matrix volume 

which is formed in aggregates of the carbon black particles. The occluded matrix is 

immobilized by particles within the carbon black agglomerates and increases effectively the 

initial volume fraction of the hard domain 0hϕ  as: 0 0 0
h oc fϕ ϕ ϕ= + . The terms 0

fϕ  and 0
ocϕ  are the 

initial volume fractions of the filler and the occluded matrix, respectively. The soft domain 

corresponds to the elastomeric matrix no occluded by the carbon black agglomerates and 

aggregates. Its initial volume fraction is denoted by 0
sϕ . The occluded volume does not 

contribute to the deformation of the composite until rupture of the agglomerates or 

aggregates. So, the released occluded matrix contributes to the deformation as an additional 

part of the elastomeric matrix. Hence, the transformation of hard to soft domain which implies 

softening in reinforced elastomers.  

Medalia (1970) showed that effective volume occupied by clustering carbon black in a rubber 

can be obtained by: 0 0 0 0
h oc f f pϕ ϕ ϕ ϕ= + =

 
with

 ( )1 0.02139 /1.46Absp DBP= +  where ( )1p > . 

AbsDBP  is dibutyl phthalate absorption, where small amounts of DBP are added to dry fillers 
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until saturation. The AbsDBP  is expressed in cm3 of DBP per 100g filler (cm3/100g) for each 

type of carbon filler.  

We can therefore get the volume fraction of the occluded domain by:
  

( )0 01oc fpϕ ϕ= −                                                                                                                       III.1  

In unstretched state, the material composition is defined by the following relationships: 

( )

0 0

0 0 0

0 0

1,

,

1 .

h s

h oc f

oc fp

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

+ =

= +

= −

                                                                                                                   III.2.a 

During deformation, the composition evolution can be written in the following form: 

0

0

1,

,

,

.

h s

h oc f

s s

h h

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

+ =

= +

≥

≤

                                                                                                                    III.2.b 

where sϕ , hϕ , fϕ  
and ocϕ  are soft domain, hard domain, particles and occluded matrix volume 

fractions respectively, 0sϕ , 0
hϕ , 0

fϕ  and 0
ocϕ  correspond to initial values.  

We assume that the decrease of the hard domain in the filled elastomers is caused by the 

deformation during loading but not during unloading or a reloading under previous 

deformation. We assume that hard domain volume fraction evolution as function of 

kinematical transformation is given by the following equation during loading: 

h
hs h sh s

d
K K

d

ϕ ϕ ϕ
ε

= − +                                                                                                              III.3  

where hsK  and shK  are kinetic coefficients defined by Oshmyan et al. (2006) which are the 

transformation from hard-to-soft and soft-to-hard domains. They are defined by: 
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( )

( )

0

0

exp exp

exp exp

hs h
hs hs hs h

B

Bsh s
sh sh sh s

B

U
K k b

k T
with

k TU
K k b

k T

γσ βσ
γβ

γσ βσ

  −
= − =  

   =
 + = − = − 
 

                               III.4  

where, hσ , sσ  are stress in the hard and soft domain, hsU , shU  are activation energies, 0hsk , 

0
shk  are pre-exponential coefficients and γ  an activation volume. In fact, Mullins (1969) 

observed that several days are needed to recover very slowly the stiffness which is decreased 

by the softening. 

Using the condition of 0shb = , because the recovery time constant is far greater than the time 

period of interest here. We obtain a simplification of equation III.3  in as follows : 

h
hs h

d
K

d

ϕ ϕ
ε

= −                                                                                                                       III.5.a  

After integration of equation III.5.a we get: 

( )0 exph oc f h hsKϕ ϕ ϕ ϕ ε= + = −                                                                                          III.5.b 

The following expressions are also deduced:  

00 h hε ϕ ϕ→ ⇒ →                                                                                                                III.5.c 

0hε ϕ→ ∞ ⇒ →                                                                                                                III.5.d  

The last two equations III.5.c  and III.5.d  show that hard domain volume fraction is bounded 

by upper and lower bound estimates. However, experimental conditions do not permit the 

transformation of entire hard domains, particularly in the case of non-deformable particles 

like carbon black for the applied stress. In this case, 0
f fϕ ϕ= , and only the occluded matrix 

becomes soft. Then:  

h fε ϕ ϕ→ ∞ ⇒ →                                                                                                              III.5.e  

Using equations III.2.b  and III.5.b , we obtain the soft domain evolution in the following 

form: 
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( )01 exps h hsKϕ ϕ ε= − −                                                                                                          III.6  

where 1s fε ϕ ϕ→ ∞ ⇒ → −  

Equations III.5.b  and III.6  describe the filled elastomer microstructures evolution during 

deformation and also explain the softening phenomena produced in the material. In the next 

part, filled elastomers mechanical behaviors are treated with a reformulated Gent’s strain 

energy which takes into account filler effect and microstructure evolution.  

 

Figure III. 6: Difference of microstructure aggregate before (a) and after (b) 

deformation. 

III.2. MECHANICAL BEHAVIOR 

Here, reinforcing fillers effect is taken into account for reformulation of Gent strain energy 

which is limited to unfilled elastomers, in order to extend this model into reinforced ones. 

Hence, the microstructure evolution which happens during deformation is introduced in the 

stress-strain relationship. The strain energy, *W , of reinforced elastomers which present soft 

and hard domain is found from the strain energy of the deformable domain, sW , 

corresponding to the soft domain.  

Then: 

}
*

*

0
s s h h

s s
h

W W W W W
here

ϕ ϕ ϕ
ε

= + ⇒ =
=

                                                                                      III.7 
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Using Gent model for the soft domain which is elastomeric material, we obtain the following 

equation: 

* 1 3
ln 1

6
m m

G s GS s m
m

E I
W W J

J
ϕ ϕ

 −= = − − 
 

                                                                                 III.8 

where GSW  is the Gent strain energy for the soft domain and 1mI  is the average first invariant 

stretch of this domain. 

In filled elastomers, the matrix is prevented from deforming uniformly by adhesion of the 

rubber to the surface of the particles. Thus, macromolecule deformation is more complex than 

in unfilled elastomers.  

Mullins and Tobin (1965) introduced the notion of strain amplification strain to estimate the 

uniaxial strain in the matrix for filled elastomers. This relation can be shown when the stress-

strain relationship for filled elastomers, ( ) ( )1 1mE E E Xσ ε λ λ= = − = − , and unfilled 

elastomers, ( )1mEσ = Λ − , is considered for the same average stress. Where E  and mE  are 

respectively filled and unfilled elastomer modulus. The amplified stretch expression is 

therefore deduced as: ( )1 1X λΛ = − + , where λ is the apparent macroscopic axial stretch in 

filled rubber and X  the amplification factor. 

Whereas, Govindjee and Simo (1991) proposed amplifying the total deformation gradient in 

order to obtain the relation between the average volume strain quantities and the matrix 

quantities. This can be written in the following form: ( ) ( )/ 1m f fF F Rϕ ϕ= − −  where 

F RU= , F  and mF  are respectively the average volume deformation gradients in the 

material and in the matrix, R  the rotation tensor and U
 
the right stretching tensor.  

As in the work of Bergstrom and Boyce (1999) or Qi and Boyce (2004), we propose to use 

the amplification of the first invariant stretch 1I  which corresponds to Mullins and Tobin 

stretch amplification with an extension to a general three-dimensional deformation state: 
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( )1 1 3 3mI X I= − +                                                                                                                  III.9  

where 1I  is the average first invariant stretch in the overall macroscopic of the composite 

material. Using equation III.9  in the reinforced elastomers strain energy of equation III.8 , we 

can deduce our proposed extension of the Gent strain energy for filled elastomers in this form: 

( )1* 3
ln 1

6
m

G s m
m

X IE
W J

J
ϕ

− 
= − − 

 
                                                                                        III.10 

where, ( ) ( )2
1 3.5 1 18 1s sX ϕ ϕ= + − + −  is amplification factor used by Qi and Boyce (2004) 

for filled elastomers. From the proposed strain energy for filled elastomers in equation III.10 , 

we get the corresponding Cauchy stress tensor: 

( )
*

13 3
m m

G s
m

E X J
pI B

J X I
σ ϕ= − +

− −
                                                                                  III.11 

Where I  and B  are the unit tensor and the left Cauchy-Green stretch tensor ( )tB FF= . 

In summary, the proposed constitutive model for stress-strain behavior of filled elastomers 

can be summarized by the following constitutive relations: 

( )
( ) ( )

( )

*

1

2

0

0 0

3 3

1 3.5 1 18 1

1 exp

m m
G s

m

s s

s h hs

h f

E X J
pI B

J X I

X

K

p

σ ϕ

ϕ ϕ
ϕ ϕ ε

ϕ ϕ

= − +
− −

= + − + −

= − −

=

                                                                                III.12 

p  was defined at page 67. 

III.3. RESULTS  

Equations III.12  which represent the constitutive model are used to predict numerical results 

for stress-strain response of filled elastomers including soft domain evolution. In the first 

application, we simulated loading-unloading in cyclic tension. The predicted stress-strain 

response is shown in Figure III.7.a , the corresponding soft domain volume fraction evolution 
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is shown in Figure III.7.b.  The selected material parameters are also shown in these figures. 

Figure III.7.a  corresponds to the stress-strain behavior with cyclic loading-unloading. The 

first cyclic shows loading until 2ε =  and unloading to 0ε = . In the second cyclic, we have 

reloading until 3ε =  and unloading to 0ε = . The third cyclic corresponds to reloading until 

4ε =  and also unloading to 0ε = . 
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Figure III.7.a: Loading-unloading-reloading cyclic for the new constitutive model. 
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Figure III.7.b: Corresponding soft volume evolution for the new constitutive model 

during stretching. 

In order to validate this model, it is compared to Mullins and Tobin (1957) vulcanized 

materials data for GRS and natural rubbers filled with carbon black S301. DBPAbs for carbon 

black S301 equal to 113cm3/100g (Roychoudhury and De (1993)). These comparisons are 

reported on Figure III.8.a  for GRS (Government Rubber Styrene) and Figure III.9.a  for 

filled natural rubber. These comparisons show a fairly good agreement between the model 

predictions and the experimental stress-strain response; their soft volume fraction evolutions 

are given respectively in Figure III.8.b and Figure III.9.b. 
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bhs=0.18 s-1, φf=0.2, β=9.10-3 MPa-1, E=0,7MPa, Jm=56, DBPAbs=113 cm3/100g 

 

 

 

 

 

Figure III.8.a: Model compared to Mullins and Tobin (1957) experimental data where 

GRS is filled by carbon black S301. 

 

 

Figure III.8.b: Corresponding soft volume evolution for the constitutive model during 

stretching. 
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bhs=0.18s-1, φf=0.19, β=4.10-2MPa-1, E=0.9MPa, Jm=28, DBPAbs=113 cm3/100g 

Figure III.9.a: Model compared to Mullins and Tobin (1957) experimental data where 

natural rubber is filled by carbon black S301. 
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Figure III.9.b: Corresponding soft volume evolution for the constitutive model during 

stretching. 

In our model, the two parameters that characterize the filler particles in the composite are 

their volume fraction and DBPAbs. In Figure III.10 , the effect of filler volume fraction is 

shown by changing its value, 0.1, 0.15 and 0.20. As expected, we can observe in this Figure 

III.10  that the higher filler volume fraction leads to a stiffer stress-strain response. In Figure 

III.11 , three types of carbon black (N660 (DBPAbs=91 cm3/100g), N550 (DBPAbs=120 

cm3/100g), N330 (DBPAbs=101 cm3/100g)) are used for the same filler volume fraction. In this 

figure, the type of the carbon black affects the stress-strain response. Stiffer response is 

obtained for carbon black with higher DBP which implies higher volume fraction of the hard 

domain. 
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Figure III.10: Effect of filler volume fraction on the mechanical behavior. 
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Figure III.11: Effect of the type of carbon black on the mechanical behavior. 
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To verify our model’s ability to predict the stress-strain response under different cyclic states 

of deformation, Figures III.12.a, III.12.b  and III.12.c  are the predicted results for uniaxial 

tension where the chains extend in one direction ( )1/ 2 1/ 2
1 2 3, ,λ λ λ λ λ λ− −= = = , equi-

biaxial tension offers two principal tensile stretching ( )2
1 2 3, ,λ λ λ λ λ λ−= = =  and 

plane strain tension ( )1
1 2 3, 1,λ λ λ λ λ−= = = . The corresponding soft domains volume 

fraction evolutions are shown in Figure III.12.d . Our predicted stress-strain response under 

different cyclic stretching conditions is in accord with the results obtained by Qi and Boyce 

(2004) 
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Figure III.12.a: Numerical results under uniaxial tension. 
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Figure III.12.b: Numerical results under equi-biaxial tension. 
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Figure III.12.c: Numerical results under plane strain tension. 
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Figure III.12.d: States deformation effect on the soft volume evolution in the 

microstructure.  

III.4. CONCLUSION 

The combination of the extended Gent model with a new kinematic model for phase 

transformation leads to a simple and original approach that correctly predicts the stress-strain 

behavior which takes into account Mullins effect for filled elastomers. The proposed model 

takes into account the type of carbon black via the DBPAbs. Although neglected here, this 

model has the ability to predict stiffness increase which happens slowly by setting shb  

different to zero. This is not possible with damage theories based only on the breakdown of 

elastomers links of Govindjee and Simo (1991) or Marckmann et al. (2002). For isotropic 

softening, the approach can also be easily implemented in computational codes such as FEM. 

The constitutive model gives a fairly good agreement with experimental data from the 

literature and also proves its ability to be applicable on different states of deformation. 
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CHAPTER IV 

 

THERMOPLASTIC ELASTOMERS 

 

Thermoplastic elastomers (TPEs) are an interesting class of polymeric materials. They are a 

copolymer with hard and soft segments like thermoplastic polyurethane elastomer (See 

Figure IV.1) or another class of composite materials made of thermoplastic homopolymer 

and elastomer (See Figure IV.2). For the last case, the thermoplastic polypropylene (PP) and 

ethylene-propylene diene monomer (EPDM) elastomer composite is an example like in the 

work of Boyce et al. (2001). Then, thermoplastic elastomers are biphasic materials; they 

possess the properties of glassy or semi-crystalline thermoplastics like processability and 

properties of cross-linked elastomers like hyper-elasticity. This elasticity comes from the 

structure of the macromolecules which contain soft segments for copolymers or a dispersed 

soft phase elastomer forming microscopic droplets in a continuous phase of a hard 

thermoplastic for TPEs. Thermoplastic elastomers find use in many applications. Advantages 

offered by TPEs over thermoset elastomers include the following points: Processing is 

simpler and requires fewer steps, TPEs need little or no mixing with other particles in 

opposition of thermoset elastomers which must be mixed with curatives, stabilizers, 

processing aids and others, TPE scrap may be recycled which is not the case for thermoset 

elastomers scrap which is often discarded, causing environmental problems. 
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Figure IV.1: Schematic structure of copolymer with hard segments arranged in 

domains. 

 

Figure IV.2: Schematic structure compound of rubber particles dispersed in 

thermoplastic. 

IV.1. THERMOPLASTIC POLYURETHANES 

Thermoplastic polyurethanes (TPUs) elastomers are copolymer thermoplastic elastomers 

consisting of urethane monomer which is obtained from the reaction of two molecules 

containing isocyanate (See Figure IV.3.a) and hydroxyl (See Figure IV.3.b) functional 

groups. Bayer-Farbenfabriken established the first commercial thermoplastic polyurethanes in 

Germany. Their general structure is –A-B-A-B- (See Figure IV.4), where A represents a hard 



Chapter IV: THERMOPLASTIC ELASTOMERS 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 84 -

segment obtained from chain extension of a diisocyanate with a glycol and B is a soft segment 

and originates from either polyester or polyether. The hard segment possess a high glass 

transition temperature (Tg) or high melting temperature (Tm) like for glassy polymers and a 

low transition temperature (Tg) for soft segments like in the case of rubbers. The nature of the 

soft segments affects the final TPUs elastic behavior and low-temperature performance. TPUs 

based on polyester soft segments have excellent resistance for non polar fluids, high tear 

strength and abrasion resistance and high resilience, thermal stability or hydrolytic stability 

for those based on polyether soft segments. The properties of TPUs are largely defined by the 

ratio between hard and soft phases, hard segments length and their distribution. TPUs are also 

known for their outstanding abrasion resistance and low coefficient of friction on other 

surfaces. For these properties, thermoplastic polyurethanes are used for a wide range of 

applications but still limited by their relatively high mechanical hysteresis in comparison with 

other elastomers. 

 

Figure IV.3.a: Isocyanate functional group. 

 

Figure IV.3.b: Hydroxyl functional group. 
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Figure IV.4: TPUs chemical representation. 

It has been established by Ryan et al (1991, 1992) and Elwell et al (1994) that hard segments 

phase separate in spinodal mechanism or micro phase separation and form hard domains. 

These domains render TPUs behavior similar to a composite with nanoscale fillers (Petrovic 

and Ferguson, 1991). From the work of Aneja and Wilkes (2003), Schneider et al. (1975), 

Chen-Tsai et al. (1986), Garrett et al. (2001), Halary et al.(2008), O’Sickey et al. (2002), it 

is shown that mesophase separation of hard and soft domains in TPUs is responsible for the 

versatile properties of this kind of polymer. Several authors (Qi and Boyce 2005, Yi et al. 

2006, Buckley et al. 2010) studied the thermoplastic polyurethane mechanical behavior. 

Among them, Russo and Thomas (1983) studied a series of polyurethanes with different 

percent of hard segments. They found that the increase of hard segments in samples implies 

an increase in both initial modulus and ultimate strength. This shows that hard segments 

improve mechanical strain-stress response and behave like stiff particles. 
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IV.2. THREE-DIMENSIONAL CONSTITUTIVE MODEL 

IV.2.1. KINEMATICS OF FINITE STRAIN 

Currently, finite deformation or transformation method is used for computation of polymer 

mechanical behavior at large deformation. The deformed configuration state is described by 

the deformation gradient tensor F , obtained by: 

x
F x

X

∂
= ∇ =

∂
                                                                                                                      IV.1 

where x  are the coordinates of a point in the current configuration state and X  are 

coordinates of a point in the initial configuration state. This deformation gradient can be the 

combination of plastic and elastic deformation gradients (See Figure IV.5) in isothermal 

conditions. 

 

Figure IV.5: F  decomposition in plastic pF  and elastic eF  deformation gradient. 

In this work, the thermal deformation gradient thF  is taken equal to identityI . 

e th p e pF F F F F F= =                                                                                                          IV.2 

where thF I= . 
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The deformation gradient tensor can also be given in polar decomposition which implies that 

any non-singular second-order tensor can be decomposed uniquely into the product of an 

orthogonal tensor (rotation) and a symmetric tensor (stretch). Hence, the elastic deformation 

gradient eF  is decomposed in terms of the elastic stretch tensors eV  or eU  respectively left or 

right and the elastic rotation tensor eR  in order to separate out stretch and rotation. 

e e e e eF V R R U= =                                                                                                                IV.3 

The velocity field of the material varies spatially. The increment in velocity dv , occurring 

over an incremental change in position dx  and can be written in the deformed configuration 

as: 

v
dv dx

x

∂
=

∂
                                                                                                                            IV.4 

The velocity gradient tensor describes the spatial rate of change of the velocity and is given in 

the following form: 

v
L

x

∂
=

∂
                                                                                                                                  IV.5 

The velocity gradient can be also written in function of the time rate and the inverse of the 

deformation gradient: 

x v v x
F LF

t X X x X

•  ∂ ∂ ∂ ∂ ∂= = = =  ∂ ∂ ∂ ∂ ∂
                                                                                    IV.6 

Hence: 

1L F F
•

−=                                                                                                                              IV.7 

The velocity gradient can be decomposed into symmetric and anti-symmetric part: 

L D W= +                                                                                                                             IV.8 

The symmetric part is called the rate deformation D  and the anti-symmetric part the 

continuum spin W . These tensors are written in function of velocity gradient in the following 

form: 
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( )
1

2
TD L L= +                                                                                                                      IV.9 

( )
1

2
TW L L= −                                                                                                                    IV.10 

IV.2.2. CONSTITUTIVE MODEL 

In TPEs or TPUs network structure, we have a rubbery and glassy phase in the same material. 

The glassy phase, which is hard, is also acting like reinforcing fillers where the increase of 

hard segments produces modulus rise (Petrovic and Ferguson, 1991). Then, a constitutive 

model for these materials must take into account behavior of the two phases and also the 

relationship between them. Hence, we propose a constitutive model with parallel branches 

corresponding to hyperelastic and elastic-viscoplastic behaviors. A one dimensional model 

which is constituted by a linear elastic spring ( )2E  for the hyperelasticity behavior part and 

spring ( )0E  in series with Kelvin model (See Figure I.6) for the elastic-viscoplastic part. In 

this Kelvin model, a nonlinear viscoplastic dashpot ( )1µ  capturing the rate and temperature is 

in parallel with a spring ( )1E . The stresses across the two branches are 1σ  for the hyperelastic 

and 2σ  for elastic-viscoplastic branch and the overall stress in the rheological model is σ  

(See Figure IV.6). 
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Figure IV.6: Schematic representation of the mechanical model. 

The parallel arrangement of the components implies: 

1 2F F F= =                                                                                                                          IV.11 

where F  is the macroscopic deformation gradient, 1F  and 2F  are respectively the glassy 

network with elastic-viscoplastic behavior and rubbery network with hyperelastic behavior 

deformation gradient.  

The Cauchy stress is given by the following form: 

1 2σ σ σ= +                                                                                                                           IV.12 

where 1σ  and 2σ  originate respectively from the glassy and rubbery portions whose behaviors 

are elastic-viscoplastic and hyperelastic. 
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IV.2.2.1. ELASTIC-VISCOPLASTIC OF THE GLASSY NETWORK BEHAVIOR 

Cauchy stress 1σ  in the hard domain is obtained in the following form: 

1 1
1

ln
det

e eh
e

L V
V

ϕ
σ  =                                                                                                               IV.13 

where eL  is the fourth-order tensor modulus of elastic constants. 1
eV  is the left stretch tensor 

of the elastic deformation gradient tensor 1
eF  and hϕ  the current hard domain volume fraction 

in the thermoplastic polyurethane. It decreases during stress and is given by equation III.5.b  

( )( )0 exph h hsKϕ ϕ ε= − .  

The elastic-viscoplastic deformation gradient 1F  can be decomposed into contribution of 

elastic 1
eF  and viscoplastic 1

pF  deformation gradient. 

Then: 

1 1 1
e pF F F=                                                                                                                            IV.14 

The corresponding decomposition of the velocity gradient is: 

1 1 1 1
1 1 1 1 1 1 1 1 1

e e e p p eL F F F F F F F F
• ••

− − − −= = +                                                                            IV.15 

The velocity of the viscoplastic element is obtained in this form: 

1
1 1 1 1 1
p p p p pL F F D W

•
−= = +                                                                                                   IV.16 

Here, we take 1 0pW =  with no loss in generality as shown by Boyce et al (1988). The rate of 

deformation pD  is given in the following form: 

1
p pD Nγ= ɺ                                                                                                                           IV.17 

N  is a normalized tensor aligned with the deviatoric driving stress state and pγɺ  denotes the 

viscoplastic shear strain rate of the viscoplastic element ( )1µ . These are given in the 

following equations: 
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*1

2
N σ

τ

′
=                                                                                                                         IV.18 

where τ  is the equivalent shear stress and *σ
′  is the deviatoric form of the driving stress. 

Argon and cooperative model are used separately for the viscoplastic shear strain rate 

evolution to show our model ability for the two: 

0 exp 1p p

B

G

k T S

τ
γ γ

   ∆    = − −         
ɺ ɺ  (Argon’s model) Argon, (1973a, 1973b)                      IV.19.a 

( )
0 exp sinh

2
p p n

B B

S VH

k T k T

τ
γ γ

   −∆   = −       
ɺ ɺ  (Cooperative model) Richeton et al (2005)    IV.19.b 

where 0γɺ  is the pre-exponential shear rate factor, G∆  is the zero stress level activation 

energy, τ  is the effective equivalent shear stress, H∆  is the activation energy of the 

secondary relaxation of mechanical significance, V  is the shear activation volume and S  is 

the internal stress which evolves in the following form: 

1 p

ss

S
S h

S
γ

  = −   
ɺ ɺ                                                                                                                 IV.20 

The effective equivalent shear stress τ  is obtained from the tensorial difference between the 

Cauchy stress 1σ  and the network stress Nσ  from the spring ( )1E . 

1/ 2
* *1

2
τ σ σ

′ 
′ = ⋅

  
                                                                                                                 IV.21 

where: 

*
1 1 1

1eT e N eT eR F F R
J

σ σ σ
 
 = −
  

                                                                                            IV.22 

where *σ  is the driving stress state. This portion of the Cauchy stress 1σ  continues to activate 

the plastic flow and *σ ′  corresponds to its deviatoric part. Nσ  is the network stress. This 

portion of the Cauchy stress 1σ  captures the effect of orientation-induced strain hardening: 
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( )
11

1 13 3
N m

m

JE
B

J I
σ =

− −
                                                                                                    IV.23 

where 1

3
p pT I

B F F I= −  

IV.2.2.2. HYPERELASTIC OF THE RUBBERY NETWORK BEHAVIOR 

For the hyperelastic network mechanical behavior, we use Gent model for filled elastomers 

which is developed in chapter III. Because the hard segments act as stiff filler, the material 

can be considered as composite (Petrovic and Ferguson, 1991, Qi and Boyce, 2005). Then, 

TPU can be modeled as elastomer reinforced by stiff particles. This implies the introduction 

of amplified stretch and softening effect in the TPU network behavior. Hence, we have the 

following expression for the stress in rubbery network: 

( ) ( )
22

2
2 1

1
3 3

m
h

m

JE X
B pI

J X I
σ ϕ= − −

− −
                                                                         IV.24 

where TB FF=  

IV.2.2.3. NUMERICAL IMPLEMENTATION 

At time zero, the deformation gradient tensors are all unit tensor I  and the velocity gradient 

L  is given as a deformation constraint. The stress and strain of the material are equal to zero. 

The update of the model between the time t  and t t+ ∆  is presented in Figure IV.7. 

 

 

 

 

 

 

 

 



Chapter IV: THERMOPLASTIC ELASTOMERS 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 93 -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.7: Numerical implementation of the constitutive model. 

, , ,p t
t t hF F L ϕ  

( )( )2 , 1t t T t
t t t t hf F Fσ ϕ+∆
+∆ +∆= −

 

t t t tF F LF t+∆ = + ∆  

*
1

1eT t t e N eT e
t t t tR F F R

J
σ σ σ+∆

+∆ +∆

 
 = −
  

1e p
t t t t tF F F −
+∆ +∆=  

( )1 ln
t

t t e eh
t tL V

J

ϕ
σ +∆

+∆=  

( )N p pT
t t t tf F Fσ +∆ =  

,p
t t t tγ τ+∆ +∆
ɺ  

p p
t t t t t tD N γ+∆ +∆ +∆= ɺ  

( )1

p p p p
t t t t t t
t t t t
h

F F D F t
fϕ σ

+∆ +∆
+∆ +∆

= + ∆

=
 

1 2σ σ σ= +  
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The evolving internal stress S  is given by an implicit differential equation IV.20. Figure 

IV.8 shows a numerical method to get an approximate solution for S  at time t t+ ∆  by 

iteration. When t t t

t

S S
S

S
+∆ −

∆ =  is small than error, we obtain t tS +∆ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.8: Numerical method to solve the implicit Equation IV.20. 
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IV.3. RESULTS 

The three-dimensional constitutive model is implemented to predict stress-strain response as 

function of the microstructure evolution. The results from the constitutive model are 

compared to two TPUs experimental data from the literature. The selected data are from the 

work of Yi and al. (2006). TPUs (TPU(A), TPU(B)) were based on diphenylmethane 

diisocyanate (MDI, ISONATE) and poly(tetramethylene ether) glycol, mixed with chain 

extender respectively 1,4-butanediol (BDO) for TPU(A) and 2,2-dimethyl-1,3-propanediol 

(DMPD) for TPU(B). These materials properties are shown in Table IV.1. The experimental 

data correspond to uniaxial compression at strain rate 11sε −=ɺ . In Figure IV.9.a and Figure 

IV.10.a using Argon shear rate evolution and Figure IV.11.a and Figure IV.12.a using 

cooperative shear rate evolution, it shows a good agreement with experimental data. The 

corresponding soft domain evolutions are also shown respectively in Figure IV.9.b, Figure 

IV.10.b and Figure IV.11.b, Figure IV.12.b. During unloading, the soft domain evolution 

does not return back to strain 0  because we have a viscoplastic deformation in the material.  

 

Table IV.1: Thermoplastic polyurethane samples properties. 

Sample Density 

(g/mm3) 

Hard 

segment 

(wt%) 

Chain 

extender 

Tg (°C) 

DSC 

Tg (°C) 

DMA 

(1Hz) 

Tg shift 

(°C/decade 

Strain rate) 

Tβ(°C) Tγ(°C) 

TPU(A) 1.128 55 DMPD 12 24 4.7 -80 -146 

TPU(B) 1.133 44 1,4-BDO -37 -25 4.6 -80 -144 

DMA: Dynamic Mechanical Analysis               Tβ: Temperature of transition β 

DSC: Differential Scanning Calorimetry            Tγ: Temperature of transition γ 
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Figure IV.9.a: TPU(A).uniaxial compression response at strain rate 11sε −=ɺ  with Argon 

shear rate evolution. 

2 0.1 ,E MPa= 2 42,mJ = 1 16,E = 1 16,mJ = 0.499999,µ= 5 1
0 1.94.10 ,p sγ −=ɺ

190.77.10 ,G J−∆ = 300 ,YoungE MPa= 0 30 ,S MPa= 26 ,ssS MPa= 100 ,h MPa= 0 0.80,hϕ =
3 18.10 ,MPaβ − −= 3 11.10 ,hsb s− −= 298.15 .T K=  

 

Figure IV.9.b: TPU(A) soft volume fraction evolution for the constitutive model during 

stretching. ( )1s hϕ ϕ= −  
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Figure IV.10.a: TPU(B).uniaxial compression response at strain rate 11sε −=ɺ  with 

Argon shear rate evolution. 

2 0.2 ,E MPa= 2 21.5,mJ = 1 0.2 ,E MPa= 1 16,mJ = 0.499999,µ= 2 1
0 1.94.10 ,p sγ − −=ɺ

190.77.10 ,G J−∆ = 22 ,YoungE MPa= 0 30 ,S MPa= 10 ,ssS MPa= 100 ,h MPa= 0 0.80,hϕ =
10.1 ,MPaβ −= 3 11.10 ,hsb s− −= 298.15 .T K=  

 

Figure IV.10.b: TPU(B) soft volume fraction evolution for the constitutive model during 

stretching. ( )1s hϕ ϕ= −  
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Figure IV.11.a: TPU(A).uniaxial compression response at strain rate 11sε −=ɺ  with 

cooperative shear rate evolution. 

2 0.1 ,E MPa= 2 65,mJ = 1 12,E = 1 16,mJ = 0.499999,µ= 30 1
0 1.94.10 ,p sγ −=ɺ

390.10 ,H J∆ = 300 ,YoungE MPa= 0 5 ,S MPa= 1 ,ssS MPa= 0 ,h MPa= 0 0.80,hϕ =
1 11.10 ,MPaβ − −= 4 11.10 ,hsb s− −= 298.15 ,T K= 8,n = 19 31.10 .V m−=  

 

Figure IV.11.b: TPU(A) soft volume fraction evolution for the constitutive model during 

stretching. ( )1s hϕ ϕ= − . 
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Figure IV.12.a: TPU(B).uniaxial compression response at strain rate 11sε −=ɺ  with 

cooperative shear rate evolution. 

2 0.25 ,E MPa= 2 22.25,mJ = 1 1 ,E MPa= 1 16,mJ = 0.499999,µ= 29 1
0 1.94.10 ,p sγ −=ɺ

390.10 ,H J∆ = 22 ,YoungE MPa= 0 30 ,S MPa= 1 ,ssS MPa= 0 ,h MPa= 0 0.80,hϕ =
10.1 ,MPaβ −= 3 11.10 ,hsb s− −= 298.15 ,T K= 8,n = 29 31.10V m−=  

 

Figure IV.12.b: TPU(B) soft volume evolution for the constitutive model during 

stretching. ( )1s hϕ ϕ= − . 
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IV.4. CONCLUSION  

This constitutive model for thermoplastic elastomers is based on microstructure evolution and 

mechanical behavior. The thermoplastic polyurethane chains are consisted by hard segments 

which are separated in spinodal mechanism and form nanoscale hard domains acting like 

fillers. It also implies nanoscale soft domains. However, the hard segments are considered to 

be deformable and present an elastic-viscoplastic behavior. Hence, the rheological model 

proposed in Figure IV.6 takes into account the two domains behavior during mechanical 

deformation. The numerical results are obtained for two viscoplastic shear strain rate 

evolutions which are Argon and cooperative model. These numerical results are also in good 

agreement with different thermoplastic polyurethane experimental data. The model also 

shows its ability to predict thermoplastic polyurethanes whose behavior is more elastomeric 

or more thermoplastic. 
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V. CONCLUSIONS AND FUTURE WORK 

 

In this thesis, we propose three constitutive models for elastomeric materials under stress. The 

first is on stress-birefringence-stretch and the two others are on biphasic elastomers stress-

strain behavior in relationship with microstructure evolution. Here, the biphasic elastomers 

are elastomers filled by carbon black or thermoplastic elastomers with hard segments and soft 

segments. The second constitutive model has the ability to predict only filled elastomers 

behavior because it does not include plasticity. However, the third is extended to include the 

plasticity behavior which happens in thermoplastic elastomers. 

 

For stress-birefringence-stretch, the constitutive model is based on the well know Gaussian 

model for birefringence-stretch response and Gent model for stress-stretch response. The 

stress-optical law obtained from these models predicts results in good agreement with 

experimental data from the literature for the PDMS and natural rubber. Our stress-optical law 

is also compared with the non-Gaussian birefringence-stretch coupled with the eight-chain 

model in order to show the difference between the two approaches. The results are controlled 

by the two parameters in these approaches, N  and Bnk Tµ =  for the non-Gaussian model and 

mJ  and E  for the Gent model. These parameters also show some similarities in their 

representation for the two models. Similar Stress-strain response as well as to the closeness of 

the birefringence results from both models confirm the relation between models parameters. 

 

The constitutive model for filled elastomers includes microstructure evolution and mechanical 

behavior. The microstructure of the filled elastomers is considered to be composed of soft and 

hard domains where the hard domain includes fillers and occlude matrix. Under stress, the 
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filler aggregates break down leads to the transformation of the immobilized occlude matrix to 

deformable matrix (hard-to-soft domain transformation). Hence, the soft domain volume 

fraction increases during loading and the hard one decreases. This is what induces the 

softening or Mullins effect. The soft domain evolution controls the relationship between 

microstructure and mechanical behavior because the applied stress generates deformation 

only in filled elastomers soft part (the fillers are assumed non-deformable). The model takes 

into account the carbon black volume fraction and its type via the DBPAbs. It also gives 

explanation to stiffness increase by soft-to-hard domains transformation which happens 

slowly after experimental test, this is not the case in other models based on damage theories. 

For isotropic softening, the approach can also be easily implemented in computational codes. 

The constitutive model gives good agreement with experimental data from the literature and 

also proves its ability to be applicable on different states of deformation. 

 

The third constitutive model for thermoplastic elastomers is also based on microstructure 

evolution and mechanical behavior. The thermoplastic polyurethane chains are consisted by 

hard segments and soft segments. The hard segments phase separate in spinodal mechanism 

and form nanoscale hard domains acting like fillers However, the hard segments are 

considered to be deformable and present an elastic-viscoplastic behavior. Hence, unlike the 

case of filled elastomers, here the stress generates deformation in the two domains of the 

materials. Hence, the rheological model proposes taking into account the two domains 

behavior during mechanical deformation. The numerical results are obtained for two 

viscoplastic shear strain rate evolutions which are Argon and cooperative model. These 

numerical results are also in good agreement with different thermoplastic polyurethane 

experimental data. Then, our model shows is ability to predict thermoplastic polyurethanes 

whose behavior is more elastomeric or more thermoplastic. 
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For future work, Mullins effect model should be compared to experimental data for different 

states of deformation. The TPU model should be applied for high strain rate tests, cyclic 

loading-unloading tests or on other type of thermoplastic elastomers tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 104 -

REFERENCES 

 

Aneja A, Wilkes G. L., 2003. 

A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using 

atomic force microscopy, Polymer, 44, 7221-7228, 2003. 

 

Argon A.S., 1973a 

Physical basis of distortional and dilatational plastic flow in glassy polymers, Journal of 

Macromolecular Science-Physics, B8, 573-596, 1973. 

 

Argon A.S., 1973b 

A theory for the low-temperature plastic deformation of glassy polymers, Philosophical 

Magazine, 28, 839-865, 1973. 

 

Arruda E.M., Boyce M.C., 1993.  

A three–dimensional constitutive model for the large stretch behavior of rubber elastic 

materials, J. Mech. Phys. Solids, 41, 389–412, 1993. 

 

Arruda E.M., Boyce M.C., 1991.  

Anisotropy and localization of plastic deformation, p.483, Elsevier/New York, 1991. 

 

Arruda E.M., Przybylo P.A., 1995. 

An investigation into the three–dimensional stress–birefringence–strain relation in elastomers, 

Polymer. Eng. Sci., 35, 395–402, 1995. 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 105 -

Biderman V.L., 1958. 

Problems of Analysing Rubbery-like Materials, Raschety na Prochnost'. Mashgiz, Moscow, 3, 

1958. 

 

Blanchard A.F., Parkinson D., 1952. 

Breakage of carbon–rubber networks by applied stress, Ind. Eng. Chem., 44, 799–812, 1952. 

 

Bergstrom J., Boyce M.C., 1999. 

Mechanical behavior of particle filled elastomers, Rubber Chem. Tech., 72, 633–656, 1999. 

 

Bouasse H., Carrière Z., 1903. 

Courbes de traction du caoutchouc vulcanisé, Ann. Fac. Sciences de Toulouse, 5, 257-283, 

1903. 

 

Boyce M. C., 1996. 

Direct comparison of the Gent and Arruda–Boyce constitutive models of rubber elasticity, 

Rubber Chem. Technol., 69, 781–785, 1996. 

 

Boyce M. C., Kear K., Socrate S., Shaw K., 2001. 

Deformation of thermoplastic vulcanizates, J. Mech. Phys. Solids, 49, 1073-1098, 2001. 

 

Boyce M. C., Parks D. M., Argon A. S., 1988. 

Large inelastic deformation of glassy polymers Part I Rate-dependent constitutive model, 

Mech. Mater., 7, 15-33, 1988. 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 106 -

Buckley C. P., Prisacariu C., Martin C., 2010. 

Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical 

and physical structure, Polymer, 51, 3213-3224, 2010. 

 

Budiansky B., 1965. 

On the elastic modulus of some heterogeneous materials, J. Mech. Phys. Solids, 13, 223–227, 

1965. 

 

Bueche F., 1960. 

Molecular basis for the Mullins effect, J. Appl. Polym. Sci, 4, 107–114, 1960. 

 

Bueche F., 1961. 

Mullins effect and rubber–filler interaction, J. Appl. Polym. Sci, 5, 271–281, 1961. 

 

Chagnon G., Verron E., Marckmann G., Gornet L., 2006. 

Development of new constitutive equations for the Mullins effect in rubber using the network 

alteration theory, Int. J. Solids Struct., 43, 6817-6831, 2006. 

 

Chagnon G., Marckmann G., Verron E., 2004. 

A comparison of the Hart–Smith model with Arruda–Boyce and Gent formulations for rubber 

elasticity, Rubber Chem. Technol., 77, 724–735, 2004. 

 

 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 107 -

Chen-Tsai C. H Y., Thomas E. L., Macknight W. J., Schneider  N. S., 1986. 

Structure and morphology of segmented polyurethanes. 3. Electron microscopy and small 

angle X-ray scattering studies of amorphous random segmented polyurethanes, Polymer, 27, 

659-666, 1986. 

 

Cohen A., 1991. 

A Padé approximant to the inverse Langevin function, Rheologica Acta 30, 270–273, 1991. 

 

Einstein A., 1906. 

Ann. Physik. (Leipzig) 19, 289, 1906. 

 

Einstein A., 1911. 

Ann. Physik. (Leipzig) 34, 591, 1911. 

 

Elwell M. J., Mortimer S., Ryan A. J., 1994. 

A synchrotron SAXS study of structure development kinetics during the reactive processing 

of flexible polyurethane foam, Macromolecules, 27, 5428-5439,1991. 

 

Erman B., Flory P.J., 1983a. 

 Theory of strain birefringence of amorphous polymer networks, Macromolecules, 16, 1601–

1606, 1983. 

 

Erman B., Flory P.J., 1983b. 

Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) 

networks. Comparisons with theory, Macromolecules, 16, 1607–1613, 1983. 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 108 -

Erman B., Flory P.J., 1982. 

Relationships between stress, strain and molecular constitution of polymer networks. 

Comparison of theory with experiments, Macromolecules, 15, 806–811, 1982.  

 

Flory P.J., B. Erman B., 1982. 

Theory of elasticity of polymer networks.3, Macromolecules, 15, 800–806, 1982. 

 

Flory P.J., Rehner Jr.J., 1943. 

Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity, J. Chem. 

Phys, 11, 512-520, 1943. 

 

Garrett J. T., Siedlecki C. A., Runt J., 2001. 

Microdomain morphology of poly(urethane urea) multiblock copolymers, Macromolecules, 

34, 7066-7070, 2001. 

 

Gent A.N., 1996. 

A new constitutive relation for rubber, Rubber Chem. Technol., 69, 59–61, 1996. 

 

Gent A. N., Thomas A. G., 1958.  

Forms of the stored (strain) energy function for vulcanized rubber. J. Polym. Sci., 28, 625–

637, 1958. 

 

Goindjee S., Simo J., 1991. 

A micro-mechanically continuum damage model for carbon black filled rubbers incorporating 

Mullins’s effect, J. Mech. Phys. Solids, 39, 87-112, 1991. 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 109 -

Goindjee S., Simo J., 1992. 

Transition from micro-mechanics to computationally efficient phenomenology: carbon black 

filled rubbers incorporating Mullins’ effect, J. Mech. Phys. Solids, 40, 213-233, 1992. 

 

Guth E., 1945. 

Theory of filler reinforcement, J. Appl. Phys. 16, 20–25, 1945. 

 

Guth, E., Mark, H. 1934.  

Internal molecular statistics, especially in chain molecules. I. Mh.Chem. 65, 93, 1934. 

 

Guth E., Gold O., 1938.  

On the hydrodynamical theory of the viscosity of suspensions, Phys. Rev. 53, 322, 1938. 

 

Haines D.W., Wilson W.D., 1979. 

Strain-energy density function for rubber like materials, J. Mech. Phys of Solids, 27,345-360, 

1979. 

Halary J.L.,Lauprêtre F., Monnerie L. 2008. 

Mécanique des matériaux polymères, Collection Echelles, Belin, (2008) 

Harwood J.A.C., Mullins L., Payne A.R., 1965. 

Stress softening in natural rubber vulcanizates, Part II, J. Appl. Polym. Sci. 9, 3011–3021, 

1965. 

 

Harwood J.A.C., Payne A.R., 1966. 

Stress softeningin natural rubber vulcanizates Part III.,  J. Appl. Polym. Sci., 10, 315, 1966. 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 110 -

Hart-Smith L. J., 1966. 

Elasticity parameters for finite deformations of rubber-like materials, J. App. Phys., 17, 608–

625, 1966. 

 

Hashin, Z., Shtrikman, S., 1963. 

A variational approach to the elastic behaviour of multiphase materials: J. Mech. Phys. Solids, 

11, 127-140, 1963. 

 

Heinrich G., Klüppel M., Vilgis T. A., 2002. 

Reinforcement of elastomers, Current Opinion in Solid State and Materials Science, 6, 195-

203, 2002. 

 

Hill R., 1951. 

On the state of stress in a plastic-rigid body at the yield point, Philosophical Magazine, 42, 

868-875, 1951. 

 

Horgan C.O., Saccomandi G., 2002. 

A molecular–statistical basis for Gent constitutive model of rubber elasticity, J. Elasticity, 68, 

167–176, 2002. 

 

Isihara A., Hashitsume N., Tatibana M., 1951. 

Statistical theory of rubber-like elasticity.IV. (Two-dimensional stretching) J. Chem. Phys., 

19, 1508, 1951. 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 111 -

James A.G., Green A., 1975. 

Strain energy functions of rubber. II. Characterization of filled vulcanizates, J. Appl. Polym. 

Sci.19, 2319-2330, 1975. 

 

James H.M., Guth E., 1943. 

Theory of the elastic properties of rubber, J. Chem. Phys., 11, 455–481, 1943. 

 

Johnson M. A., Beatty M.F., 1993. 

A constitutive equation for the Mullins effect in stress controlled uniaxial extension 

experiments, Continuum Mech. Thermodyn., 5, 301-318, 1993. 

 

Klüppel and Schramm, 2000 

A generalized tube model of rubber elasticity and stress softening of filler reinforced 

elastomer systems, Macromolecular Theory and Simulations, 2000, 9, 742-754 

 

Kuhn W., 1936. 

Kolloid-Z, 76, 258, 1936. 

 

Kuhn W., 1934. 

Kolloid-Z, 68, 2, 1934. 

 

Kuhn W., Grün F., 1942. 

Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer 

Stoffe. Kolloid Z. 101, 248–271, 1942. 

  



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 112 -

Makradi A., Ahzi S., Gregory R. V., 2000. 

Modeling of the mechanical response and evolution of optical anisotropy in deformed 

polyaniline, Poly. Eng. Sc, 40, 1716–1723, 2000. 

 

Marckmann G., Verron E., Gornet L., Chagnon G., Charrier P., Fort P., 2002. 

A theory of network alteration for the Mullins effect, J. Mech. Phys. Solids, 50, 2011-2028, 

2002. 

 

Maxwell J.C., 1873. 

Treatise on electricity and magnetism, Clarendon Press, Oxford, 1873. 

 

Medalia A.I., 1970. 

Morphology of aggregates VI. Effective volume of aggregates of carbon black from electron 

microscopy; application to vehicle absorption and to die swell of filled rubber, Journal of 

Colloid and Interface Science, 32, 115–131, 1970. 

 

Meinecke E. A., Taftaf M.I., 1988. 

Effect of Carbon Black on the Mechanical Properties of Elastomers, Rubber Chem. Technol., 

61, 534, 1988. 

 

Miehe C., Keck J., 2000. 

Superimposed finite elastic-viscoelastic-plastoelastic response with damage in filled rubbery 

polymers. Experiments, modeling and algorithmic implementation, J. Mech. Phys. Solids, 48, 

323-365, 2000. 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 113 -

Mooney M.J., 1940. 

A theory of large elastic deformation, J. Appl. Phys., 11, 582–592, 1940. 

 

Mori T., Tanaka K., 1973. 

Average stress in matrix and average elastic energy of materials with misfitting inclusions, 

Acta Metall, 21, 571–574, 1973. 

 

Morozov I., Lauke B., Heinrich G., 2010. 

A new structural model of carbon black framework in rubbers, Computational Materials 

Science, 47, Issue 3, 817–825, 2010. 

 

Mullins L., 1947. 

Effect of stretching on the properties of rubber, J. Rubber Res., 16, 275–289, 1947. 

 

Mullins L., 1948. 

Effect of stretching on the properties of rubber, Rubber Chem. Technol., 21, 281-300, 1948. 

 

Mullins L., 1950. 

Thixotropic behavior of carbon black in rubber, Rubber Chem. Technol., 23,733, 1950. 

 

Mullins L., 1969. 

Softening of rubber by deformation, Rubber Chem. Technol., 42, 339-362, 1969. 

 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 114 -

Mullins L., Tobin N.R., 1957. 

Theoretical model for the elastic behavior of filler–reinforced vulcanized rubber, Rubber 

Chem. Technol., 30, 555–571, 1957. 

 

Mullins L., Tobin N.R., 1965. 

Stress softening in natural rubber vulcanizates, Part I. J. Appl. Sci., 9, 2993–3010, 1965. 

 

Ogden R.W., 1972. 

Large deformation isotropic elasticity–On the correlation of theory and experiment for 

incompressible rubbelike solids, Proc. R. Soc. London. A 326, 565–584, 1972. 

 

Oshmyan V. G., Patlazhan S. A., Remond Y., 2006. 

Principles of structural-mechanical modeling of polymers and composites, Polymer Science, 

Series A, 48 (9), 1004–1013, 2006. 

 

O’Sickey M. J., Lawrey B. D., Wilkes G. L., 2002. 

Structure-property relationships of poly(urethane urea)s with ultra-low monol content 

poly(propylene glycol) soft segments: I. Influence of soft segment molecular weight and hard 

segment content, Journal of Applied Polymer Science, 84, 229-243, 2002. 

 

Petrovic Z., Ferguson J., 1991 

Polyurethane elastomers, Progress in Polymer Science, 16, 695-836, 1991. 

 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 115 -

Ponte Castaňeda P., 1989. 

The overall constitutive behaviour of nolinear elastic composite, Proc. R. Soc. London, Ser. A 

A422, 147-171, 1989. 

 

Qi H. J., Boyce M. C., 2005. 

Stress-strain behavior of thermoplastic polyurethanes, Mechanics of Materials, 37, 817–839, 

2005. 

 

Qi H.J., Boyce M.C., 2004. 

Constitutive model for stretch–induced softening of the stress–stretch behavior of elastomeric 

materials, J. Mech. Phys. Solids, 52, 2187–2205, 2004. 

 

Rayleigh L., 1892. 

On the influence of obstacles arranged in a rectangular order upon the properties of medium. 

Philosophical Magazine 34,481-502, 1892. 

 

Reuss A., 1929. 

Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur 

einkristalle, Zeitung Angewandte Mathematik und Mechanik 9, 49-58, 1929. 

 

Richeton J., Ahzi S., Vecchio K.S., Jiang F.C., Makradi A., 2007. 

Modeling and validation of the large deformation inelastic response of amorphous polymers 

over a wide range of temperatures and strain rates, International Journal of Solids and 

Structures, 44, 7938–7954, 2007. 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 116 -

Richeton J., Ahzi S., Daridon L., Rémond Y., 2005.  

A formulation of the cooperative model for the yield stress of amorphous polymers for a wide 

range of strain rates and temperatures, Polymer, 46, 6035-6043, 2005. 

 

Rivlin R. S., 1948. 

Large elastic deformation of isotropic materials-IV. Further developments of the general 

theory, Phil. Trans. Roy. Soc. London. A. 241, 379, 1948. 

 

Rivlin R.S., Saunders D.W., 1951. 

Large elastic deformations of isotropic materials-VII. Experiments on the deformation of 

rubber, Phil. Trans. Roy. Soc. A243, 251, 1951. 

 

Roychoudhury A., De P.P., 1993. 

Reinforcement of epoxidized natural rubber by carbon black: Effect of surface oxidation of 

carbon black particles, J. Applied Polymer Science, 50,181–186, 1993. 

 

Russo R., Thomas E., 1983. 

Phase separation in linear and cross-linked polyurethanes, Journal of Macromolecular 

Science-Physics, B22, 553-575, 1983. 

 

Ryan A. J., Macosko C. W., Bras W., 1992. 

Order-disorder transition in a block copolyurethane, Macromolecules, 25, 6277-6283, 1992. 

 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 117 -

Ryan A. J., Stanford J. L., Still R. H., 1991. 

Thermal, mechanical and fracture properties of reaction injection-moulded poly(urethane-

urea)s, Polymer, 32, 1426-1439, 1991. 

 

Schneider  N. S., Desper C. R., Illinger J. L., King A. O., Barr D., 1975. 

Structural studies of crystalline MDI-based polyurethanes, J. Macromol. Sci. Phys, B11, 527-

552, 1975. 

 

Simha R., 1940. 

The influence of Brownian movement of the viscosity of solutions, J. Phys. Chem., 44, 25–

34, 1940. 

 

Simo J., 1987. 

On a fully three-dimensional finite-strain viscoelastic damage model: formulation and 

computational aspects, Comput. Methods Appl. Mech. Eng., 60, 153-173, 1987. 

 

Smallwood H.M., 1944. 

Limiting law of the reinforcement of rubber, J. Appl. Phys., 15, 758–766, 1944. 

 

Stepto R.F.T., 1986. 

In advances in Elastomers and Rubber Elasticity, J. Lal and J.E. Mark, eds., Plenum Press, 

New York, 1986. 

 

 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 118 -

Suquet P., 1997. 

Effective properties of nonlinear composites, In: Suquet P., (Ed.), Continuum 

Micromechanics, Springer–Wien, New York, 1997. 

Treloar L.G.R., 1975. 

The physics of rubber elasticity. Oxford University Press, Oxford 1975. 

 

Treloar. L. R. G., 1954. 

The photoelastic properties of short-chain molecular networks, Trans. Faraday Soc., 50, 881, 

1954. 

 

Treloar L.G.R., 1947a. 

The photo–elastic properties of rubber. Part I: Theory of the optical properties of strained 

rubber, Trans. Faraday. Soc., 43, 277–284, 1947. 

 

Treloar L.G.R., 1947b. 

The photo–elastic properties of rubber. Part II: Double refraction and crystallization in 

stretched vulcanized rubber, Trans. Faraday Soc., 43, 284–293, 1947. 

 

Treloar L. R. G., 1946. 

The statistical length of long chain molecules, Trans. Faraday Soc., 42:77–83, 1946. 

 

Treloar L.G.R., Riding G., 1979. 

A non–Gaussian theory for rubber in biaxial strain. I. Mechanical properties, Proc. Roy. Soc. 

London. A 369, 261–280, 1979. 

 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 119 -

Tschoegl N. W., 1971. 

Constitutive equation for elastomers, J. Polymer Sci., A1, 9, 1959, 1971. 

 

Ullman, 1986. 

Advances in Elastomers and Rubber Elasticity, J. Lal and J.E. Mark, eds., Plenum Press, New 

York (1986). 

 

Valanis K.C., Landel R.F., 1967. 

The strain–energy function of a hyperelastic material in terms of the extension ratios, J. Appl. 

Phys., 38, 2997-3002, 1967. 

 

Vand V., 1948. 

Viscosity of solutions and suspensions. I. Theory, J. Phys. Colloid Chem., 52, 277-299, 1948. 

 

Vilgis T. A., Heinrich G., Klüppel, 2009. 

Reinforcement of polymer nano-composites, Cambridge University Press, Cambridge, U.K. 

(2009). 

 

Von Lockette P.R., Arruda E.M., 1999. 

A network description of the non–Gaussian stress–optic and Raman scattering responses of 

elastomer networks, Acta Mechanica, 134, 81–107, 1999. 

 

Voigt W., 1889. 

Uber die Beziehung zwischen den beiden Elastizitatskonstanten isotroper Korper, Wiedemann 

Annalen, 38, 573, 1889. 



References 

MOSSI IDRISSA Abdoul Kader, University of Strasbourg - 120 -

Wang M.C., Guth E.J., 1952. 

Satistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144-1157, 

1952. 

 

Wu P.D., Van Der Giessen E., 1995. 

On network descriptions of mechanical and optical properties of rubbers, Philosophical 

Magazine A, 71, 1191–1206, 1995. 

 

Wu P.D., Van der Giessen E., 1993. 

On improved network models for rubber elasticity and their applications to orientation 

hardening in glassy polymers, J. Mech. Phys. Solids, 41, 427-456, 1993. 

 

Wu P.D., Van der Giessen E., 1992. 

On improved 3-D non-Gaussian network models for rubber elasticity, Mechanics Research 

Communications, 19, Issue 5, 427-433, 1992. 

 

Yeoh O. H., 1990.  

Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber. 

Chem. Technol., 63(5):792–805, 1990. 

 

Yi J., Boyce M. C., Lee G. F., Balizer E., 2006. 

Large deformation rate-dependent stress-strain behaviour of polyurea and polyurethanes, 

Polymer, 47, 319-329, 2006. 

 


	Modeling and simulation of the mechanical behavior under finite strains offilled elastomers as function of their microstructure
	Remerciements
	Contents
	Résumé
	INTRODUCTION
	CHAPTER I. WHAT IS AN ELASTOMER?
	I.1. MOLECULAR STRUCTURE
	I.2. VULCANIZITION
	I.3. HYPERELASTICITY AND VISCOELASTICITY
	I.4. CARBON BLACK
	I.4.1. FILLERS
	I.4.2. CARBON BLACK

	I.5. UNFILLED ELASTOMERS MECHANICAL BEHAVIOR AND OPTICAL ANISOTROPY
	I.5.1. PHYSICAL THEORY
	I.5.1.1. SINGLE LONG-CHAIN TO ELASTOMER NETWORK BY GAUSSIAN THEORY
	I.5.1.2 SINGLE LONG-CHAIN TO ELASTOMER NETWORK BY NON-GAUSSIAN THEORY
	I.5.1.2.1. Three-chain model
	I.5.1.2.2. Four-chain model
	I.5.1.2.3. Eight-chain model
	I.5.1.2.4. Full Network Model


	I.5.2. PHENOMENOLOGICAL THEORY
	I.5.2.1. Mooney’s model (1940)
	I.5.2.2. Mooney-Rivlin’s model (1948)
	I.5.2.3. Rivlin and Saunders’s model (1951)
	I.5.2.4. Gent and Thomas model (1958)
	I.5.2.5. Ogden’s model (1972)
	I.5.2.6. Gent’s model (1996)

	I.5.3. ELASTOMERS OPTICAL ANISOTROPY

	I.6. FILLED ELASTOMERS MECHANICAL BEHAVIOR
	I.6.1. Voigt and Reuss models or upper and lower bounds
	I.6.2. Guth-Gold model (1938)
	I.6.4. Guth model (1945)
	I.6.5. Mori-Tanaka model (1973)

	I.7. CONCLUSION

	CHAPTER II. MODELING OF THE STRESS-BIREFRINGENCE-STRETCH BEHAVIOR IN RUBBERS USING THE GENT MODEL
	II.1. STRESS-OPTICAL LAW
	II.1.1. GAUSSIAN MODEL
	II.1.1.1. GAUSSIAN STRESS-STRETCH
	II.1.1.2. GAUSSIAN BIREFRINGENCE

	II.1.2. EIGHT-CHAIN MODEL

	II.2. GENT MODEL AND OPTICAL ANISOTROPY
	II.2.1. GENT MODEL
	II.2.2. RESULTS
	II.3. CONCLUSION


	CHAPTER III. A CONSTITUTIVE MODEL FOR STRESS-STRAIN RESPONSE WITH MULLINS EFFECT IN FILLED ELASTOMER
	III.1. MICROSTRUCTURE BEHAVIOR
	III.2. MECHANICAL BEHAVIOR
	III.3. RESULTS
	III.4. CONCLUSION

	CHAPTER IV. THERMOPLASTIC ELASTOMERS
	IV.1. THERMOPLASTIC POLYURETHANES
	IV.2. THREE-DIMENSIONAL CONSTITUTIVE MODEL
	IV.2.1. KINEMATICS OF FINITE STRAIN
	IV.2.2. CONSTITUTIVE MODEL
	IV.2.2.1. ELASTIC-VISCOPLASTIC OF THE GLASSY NETWORK BEHAVIOR
	IV.2.2.2. HYPERELASTIC OF THE RUBBERY NETWORK BEHAVIOR


	IV.3. RESULTS
	IV.4. CONCLUSION

	V. CONCLUSIONS AND FUTURE WORK
	REFERENCES

