
INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE
Université de Strasbourg, CNRS (UMR 7501) et INRIA Grand-Est Nancy

7, rue René Descartes 67084 Strasbourg Cedex

Isogeometric Analysis in Plasma Physics
and Electromagnetism

Ahmed RATNANI

Thèse soutenue le 07 octobre 2011 devant le jury composé de

Eric SONNENDRÜCKER Directeur de thèse
Annalisa BUFFA Rapporteur
Rémi ABGRALL Rapporteur
Nicolas CROUSEILLES Examinateur
Philippe HELLUY Examinateur
Boniface NKONGA Examinateur

te
l-0

06
28

06
0,

 v
er

si
on

 1
 -

15
 O

ct
 2

01
1

http://tel.archives-ouvertes.fr/tel-00628060/fr/
http://hal.archives-ouvertes.fr
agillium
Zone de texte

Isogeometric Analysis in Plasma Physics and
Electromagnetism

RATNANI Ahmed

July 13, 2011

ii

Remerciements

A la mémoire de mon père

iii

iv

Résumé

Dans cette thèse, nous nous intéressons à la résolution de divers problèmes numériques
issues de la physique des plasmas, en utilisant l’analyse isogéométrique. L’une des prin-
cipales difficultés que rencontrent les méthodes actuelles est la prise en compte de la
complexité de la géométrie. L’analyse isogéométrique permet de répondre à ce type de
problèmes, que ce soit par la modélisation exacte d’une grande classe de domaines, ou
par la précision des approximations qu’on peut obtenir le cas échéant.
Tout d’abord on commence par présenter le contexte physique.

Contexte physique

Les plasmas

Avec les trois états de matières, i.e solide, liquide and gaz, le plasma est considéré être le
quatrième. Même si on ne l’observe pas dans notre quotidien, il représente plus de 99%
de la matière connu à ce jour de l’univers. Le mot grecque Plasma a été introduit pour la
première fois par le physiologiste Jan Evangelista Purkinje, au milieu du 19eme siècle, ce
qui veut dire en français moulé. Une intéressante présentation historique est donnée dans
[9].

Jusqu’aux années 1950, la recherche concernant les plasmas confinés était classée
secret défense. Mais à partir de 1958, les Etats Unis, la Grande Bretagne et l’Union
Soviétique les déclassent, lorsqu’ils se sont rendus compte que ces recherches ne pou-
vaient en aucun cas avoir d’ intérêt militaire. Assez rapidement, la configuration du
Tokamak développée par les russes, s’impose comme étant la meilleure façon d’atteindre
un confinement magnétique. La conception toroidale des Tokamaks, ainsi que les lignes de
champs magnétiques qui s’enroulent d’une manière hélicoı̈dale, (voir figure 1), piègent
les particules grâce à la force de Lorentz. Ainsi, les particules vont suivre une trajectoire
hélicoı̈dale suivant ces lignes de champs.

La fusion nucléaire et le projet ITER

Le recours à l’énergie nucléaire a été une conséquence du choc pétrolier de 1973. La
France, par exemple produit actuellement les trois quarts de son énergie électrique par
voie nucléaire. Pour le moment, les réacteurs fonctionnent selon le principe de la fission
nucléaire. Celle-ci est très polluante, car consiste à désintégrer le noyau d’un atome lourd
(l’Uranium 235) en noyaux plus légers. Le projet ITER (International Thermonuclear
Experimental Reactor), est un prototype de réacteur nucléaire à fusion, actuellement en
construction à Cadarache, et qui aura une puissance de 500MW . Le but de ce projet
étant de démontrer la faisabilité du point scientifique et technique de la fusion nucléaire.

v

Figure 1: Helical magnetic field lines

Afin d’aboutir aux technologies nécessaires et suffisantes au développement du réacteur
expérimental DEMO, dont la puissance sera de 1500MW , à une fin industrielle.

Figure 2: ITER tokamak

Le confinement magnétique

Comment peut-on s’assurer que les particules restent rassemblées dans le tokamak? Pour
le soleil, tout est simple, la force gravitationnel se charge de cette tâche. Sur terre, la
structure des tokamaks, couplée à de fort champs magnétiques, permettent de confiner
les particules, qui se verront obliger de bouger autour de ces lignes de champs tout en

vi

suivant un mouvement hélicoı̈dal.

Figure 3: A confined particle follows the magnetic field line, while gyrating

La figure 3 montre la trajectoire d’une particule confinée. Dans ce cas, la direction de
la trajectoire va dépendre du signe de la charge. Se pose alors la question de la nature
des lignes de champs magnétiques. Pour assurer le confinement dans la 3eme direction,
les lignes de champs ne peuvent être purement toroidales; sinon, elles vont dériver (voir
figure 4).

Figure 4: In purely toroidal configuration, magnetic field lines drift in the third dimension

Une autre conséquence d’un champ magnétique purement toroı̈dal est son caractère
non-uniforme. En effet, un champ magnétique axisymétrique généré par un solénoı̈de
coudé, varie inversement avec le rayon majeur.

Pour éviter ce genre de problèmes, on impose un fort champ magnétique poloı̈dal.
Ce qui nous emmène à la forme suivante du champ magnétique:

B = BP + BT (0.0.1)

où BP est la composante poloidale du champ, et BT la composante toroidale.
Conséquence, les lignes de champ magnétiques vont se tordre à cause de la com-

posante poloidale (voir figure 5). Pour plus de détails, voir [96].

Figure 5: Twisted magnetic field line, under the poloidal component

Le système de coordonnées

Il existe différents systèmes de coordonnées utilisés en physique des plasmas. Dans la fig-
ure 6, on montre le lien entre les coordonnées toroı̈dales (r, θ, φ) et cylindriques (R, z, φ).

vii

�

6

-R

z

φ

-�
R0

r
θ = 0
θ

Major Axis

Minor Axis

6

Figure 6: Toroidal (r, θ, φ) and cylindrical (R, z, φ) coordinate systems.

Les principaux modèles physiques

Trois paramètres caractérisent le plasma:

1. la densité des particules n

2. la température pour chaque espèce, Ti pour les ions, et Te pour les électrons,

3. le champ magnétique stationnaire B.

L’interaction entre les particules et le champ électromagnétique, détermine la dy-
namique du plasma. Soit xip(t) la position d’un ion à l’instant t, et xep(t) celle de l’électron.
Ces particules vont générer un courant, qui une fois injectées dans les équations de
Maxwell, mettent à jour le champ électromagnétique. Ces nouvelles valeurs des champs
vont mettre à jour à leur tour, la position et la vitesse de chaque particule grâce à la force
de Lorentz.

A cause de la géométrie, un système de coordonnées typique serait,

x = (r, θ, ϕ) (0.0.2)

pour les positions des particules. Et pour les vitesses:

v = (v‖, v⊥, α) (0.0.3)

Un modèle naı̈f prendrait en compte des inconnues 6D. Cependant, à cause du nom-
bre très élevé de particules à l’intérieur du tokamak, ce serait complètement illusoire de
vouloir utiliser un modèle à n-corps, prenant en compte les particules et leurs contribu-
tions pour le champ électromagnétique. Par contre, à partir d’une description n-corps,

viii

nous pouvons dériver des modèles de plus en plus simples, le prix à payer évidemment
est la perte d’informations. Le nouveau modèle sera restreint alors à certaine configura-
tion du plasma. Dans la figure 7, nous montrons une hiérarchie de ces modèles (la liste
est non exhaustive), selon la physique, et en fonction de la complexité du modèle.

Plasma models Equations of the physics

N-body model

Kinetic model

Fluid model

Lorentz force
+

Maxwell’s equations

Vlasov’s equation
+

Maxwell’s equations

Gyrokinetic theory

two-fluid theory

Magnetohydrodynamic
(MHD)

equations

Figure 7: Plasma models

Modèle de Vlasov-Maxwell

Dans ce type de modèle, on étudie l’évolution des distributions des positions et vitesses
des particules. L’équation de Vlasov est une équation de transport. Dans le cas où on
néglige les collisions, et l’agitation thermique,

(∂t + v · ∇x)f +
q

m
(E + v× B)∇vf = 0 (0.0.4)

où f est la fonction de distribution des ions ou électrons. A ces particules nous asso-
cions la densité de charge électrique ρ, et la densité de courant électrique J:

ρ =
∑
s

qs

∫
fs(x,v, t)dv (0.0.5)

ix

J =
∑
s

qs

∫
fs(x,v, t)vdv (0.0.6)

Ces densités sont couplées aux équations de Maxwell:

∂tE− rot H = −J, (0.0.7)
∂tH + rot E = 0, (0.0.8)

div E = ρ, (0.0.9)
div H = 0 (0.0.10)

Il existe deux principales méthodes numériques pour la simulation de tels modèles.
La première est dite particulaire, Particle In Cell (PIC) . La seconde est une méthode
Eulerienne.

Néanmoins, notre modèle comporte toujours des inconnues 6D. Pour réduire ce
modèle, tout en gardant le caractère statistique, on utilise la gyromoyenne. La théorie
gyrocinétique développée par Brizard [3], permet d’étudier des inconnues 5D.

Modèle deux fluides

Le modèle deux fluides est intermédiaire à la théorie de Vlasov et la
magnétohydrodynamique (MHD). Le plasma y est décrit comme un système de
deux fluides (ions d’un côté et électrons de l’autre) en interaction. Pour plus de détails
(c.f [71, 9]).

Magnétohydrodynamique

Il s’agit du modèle le moins détaillé. Le plasma y est décrit comme un seul fluide
électrique conducteur. Pour plus de détails, c.f [71, 9, 29].

Présentation de la thèse

Dans cette thèse, nous avons essayé de considérer plusieurs approches communément
utilisées dans la physique des plasmas. Notre but n’était pas d’étudier tous les modèles,
mais plutôt de révéler l’intérêt de l’analyse isogéométrique. Ce manuscrit ne respecte
absolument pas l’ordre chronologique du travail effectué durant cette thèse. Nous
avons essayé d’écrire un document auto-suffisant; faute de temps la physique sera
moins détaillée, et on notera les rappels des principales bases dans chaque chapitre
d’application. La difficulté de rédaction, mais aussi de l’approche, est qu’elle s’inscrit
à l’intersection de plusieurs domaines, tout aussi riches et passionnants: la physique
des plasmas, l’analyse numérique, la CAO, et l’implémentation informatique. Vouloir
couvrir la totalité de cette interaction serait complément illusoire. Néanmoins, notre but
était d’ essayer de rendre un document qui permet à une personne qui vient de l’un
de ces domaines d’avoir les bases nécessaires pour aborder l’ensemble des problèmes
traités. Nous rendant compte de l’importance du code informatique à développer, nous
avons pu achever cette thèse avec une librairie PyIGA qui permet la résolution des
équations aux dérivées partielles en utilisant l’approche IGA (c.f annexe D pour plus de

x

détails).

Remark 0.0.1 Il est extrêmement important de noter que l’une de principales propriétés de
l’analyse isogéométrique est que la description du domaine est donnée par la les mêmes fonctions
de bases qu’on utilisera pour approcher les solutions des équations aux dérivées partielles qu’on
traite. Cette description reste exacte après raffinement; ce qui explique le terme iso-géométrique.
Il se trouve que dans la majorité des applications (en physique des plasmas) qu’on va considérer,
on n’ aura pas de description exacte du domaine. Cette description sera, en général, une approx-
imation. Dans ce cas là, il s’agira plutôt d’une méthode isoparamétrique. Le lecteur devra faire
attention à ce point particulier. On utilisera la version isoparamétrique de l’IGA lorsque la
physique l’impose. Sinon, lorsque la description du domaine est exacte, on utilisera la version
classique de l’IGA.

Nous présentons brièvement le contenu de chaque chapitre.

Chapitre 1 : Introduction aux splines

Ce chapitre est constitué de rappels que nous considérons assez importants pour pouvoir
entamer les études que nous voudrons faire. Nous présentons la définition des splines
dans le cadre théorique, ainsi que les principales propriétés d’approximations dont on
aura besoin par la suite. On présentera aussi les différents algorithmes pour les évaluer,
mais aussi pour manipuler les courbes B-splines, en tout cas pour ce dont on a besoin
pour les problèmes que nous traitons. Nous présentons aussi la méthode des web-splines
développée par Höllig [58], que nous avons étudiée tout au début de cette thèse. Nous
montrons les limites de cette méthode, en tout cas pour les problèmes qu’on voudra
traiter. Ensuite, nous introduisons l’analyse isogéométrique en rappelant les principales
propriétés d’approximation. L’idée de base de cette approche est d’utiliser les fonctions
de base

Q

F

Patch
Physical Domain

K
Q

F

Patch
Physical Domain

K

Figure 8: Mapping from the patch to the physical domain: (left) initial patch, (right) patch after h-refinement
in the η direction. Here, we have K = F(Q)

Chapitre 2 : Etude des équations aux dérivées partielles elliptiques

Dans ce chapitre on montre pas à pas la résolution des équations différentielles ellip-
tiques. Pour la validation numérique, nous avons étudié diverses domaines, constru-
its à l’aide des B-splines ou NURBS. Nous donnons aussi une solution analytique pour

xi

l’équation de Poisson dans un domaine général. Nous terminons ce chapitre par traiter
des équations non-linéaires.

Figure 9: The difference between the numerical and analytical solution

Chapitre 3 : Application à l’équation de Quasi-Neutralité

Dans ce chapitre nous traitons l’équation de Quasi-Neutralité, l’équivalent de l’équation
de Poisson dans le cadre de la théorie gyrocinétique. Nous commençons par traiter le
problème sur une couronne. Nous montrons que dans ce cadre on peut utiliser une ap-
proche basée sur des FFT pour la résolution du système linéaire. On s’inspirera de cette
méthode pour développer plus tard l’approche Analyse Isogéométrique rapide, Fast-
IGA.Ensuite, on utilise l’analyse isogéométrique pour résoudre le problème dans le cadre
générale, pour des solutions dites de turbulence. Les résultats seront comparés avec une
méthode d’éléments finis basée sur des triangles. Le code développé dans cette partie est
en cours de couplage avec Gysela, en vue d’une future probable intégration.

Chapitre 4 : Applications aux équations de Maxwell en 2D

Dans ce chapitre nous résolvons les équations de Maxwell en 2D en se basant sur un
diagramme de DeRham [16, 18]. Dans une formulation H-div, un choix judicieux de la

xii

Spline degree FIGA SPLU
1 0.012 0.013
2 0.014 0.046
3 0.014 0.073
4 0.013 0.098
5 0.015 0.124
6 0.015 0.152
7 0.015 0.179

Spline degree FIGA SPLU
1 0.008 0.38
2 0.013 3.81
3 0.012 10.69
4 0.016 19.17
5 0.017 31.95
6 0.020 47.01
7 0.023 65.00

Figure 10: CPU-time, in seconds, spent in solving (left) and initializing (right) the linear system, using the
new approach, namely Fast IGA, compared to SuperLU. Test done on a grid 128× 128

Spline degree FIGA SPLU
1 0.074 0.067
2 0.076 0.967
3 0.075 3.505
4 0.075 16.070
5 0.077 32.852

Spline degree FIGA SPLU
1 0.021 3.38
2 0.043 31.40
3 0.052 197.31
4 0.060 330.28
5 0.069 415.63

Figure 11: CPU-time, in seconds, spent in solving (left) and initializing (right) the linear system, using the
new approach, namely Fast IGA, compared to SuperLU. Test done on a grid 256× 256

base nous permet de transformer les dérivations (l’opérateur rotationel par exemple) en
opérations algébriques, se rapprochant à des différences directionnelles dans le cadre des
méthodes de Différences Finies. Ainsi, à chaque itération, on aura besoin d’inverser une
seule matrice. Nous avons aussi implémenté la formulation H-rot. Nous avons aussi
considéré le cadre axisymétrique, et nous avons montré que l’on n’ obtient pas l’ordre de
convergence classique pour la formulation H-div, alors qu’on le retrouve dans le cadre
d’une formulation H-rot.

Chapitre 5 : Un solveur PIC axisymétrique basé sur l’analyse isogéométrique

Dans ce chapitre nous résolvons le système Vlasov-Maxwell en coordonnées ax-
isymétriques. Les résultats sont en cohérence avec l’expérience. Le code développé devra
être parallélisé pour de meilleures performances.

La principale nouveauté dans ce travail est que les particules vivent dans le patch. On
utilise alors le mapping F pour transformer les positions des particules ainsi que leurs
vitesses. On a calculé les équations de mouvements des particules sur le patch (voir le
chapitre C), dont nous donnons ici les grandes lignes.

Les équations du mouvement des électrons, qui ont une expression simple en
géométrie cartésienne :

dX

dt
= V,

dV

dt
= −(E + V ∧B),

doivent être écrites en géométrie 2D axisymétrique dans un système de coordonnées
quelconque.

xiii

Pour cela, on passe des coordonnées cartésiennes (x, y, z) aux coordonnées cylin-
driques (z, r, θ), puis axisymétriques (z, r) puis à un système de coordonnées quelconque
(ξ, η). On écrit le Lagrangien (voir [110] et [49]) dans ces coordonnées :

L =
1

2
m(Mξ ξ̇

2 +Mηη̇
2 + 2Mξη ξ̇η̇) + e(Aξ ξ̇ +Aηη̇ − φ),

où

Mξ = (
∂r

∂ξ
)2 + (

∂z

∂ξ
)2,

Mη = (
∂r

∂η
)2 + (

∂z

∂η
)2,

Mξη =
∂r

∂ξ

∂r

∂η
+
∂z

∂ξ

∂z

∂η
,

avec A = (Aξ, Aη) le potentiel vecteur et φ le potentiel scalaire : E = −∂A
∂t −∇φ.

Les équations d’Euler-Lagrange

d

dt

∂L

∂q̇
=
∂L

∂q
,

où

q =

(
ξ
η

)
,

conduisent aux équations du mouvement suivantes :

det(J)
d ξ̇

dt
+ ξ̇2Kξ,η + η̇2Kη,η + 2 η̇ξ̇ Kηξ,η

= − 1

det(J)
(((E + q̇ ∧B) |ξ)Mη − (E + q̇ ∧B) |η)Mξη)

det(J)
d η̇

dt
− ξ̇2Kξ,ξ − η̇2Kη,ξ − 2η̇ξ̇Kξη,ξ

= − 1

det(J)
(((E + q̇ ∧B) |η)Mξ − (E + q̇ ∧B) |ξ)Mξη)

,

où tous les coefficients sont explicités en annexe, tout comme les détails des calculs.
Ce travail a été effectué dans le cadre du Cemracs 2010 [8], avec A. Back, A. Crestetto, et
E. Sonnendrücker.

Chapitre 6 : Applications aux méthodes semi-lagrangienne

Dans ce chapitre on étudie une méthode semi-lagrangienne couplée avec des map-
pings B-splines pour transformer une grille cartésienne (sur le patch) en une grille sur
le domaine réel. On traitera alors le système Vlasov-Poisson en 2D, sur des domaines

xiv

Figure 12: The Semi-Lagrangian method in complex geometry: (1) map the position in the reference space
into physical space, (2) follow the characteristic backwards in physical space, (3) map the obtained
position back in the reference space to perform the interpolation

complexes (voir figure 12). Même si le coût numérique est élevé, il peut être con-
sidérablement réduit par une architecture du code plus adaptée et parallèle. Les résultats
concluants de ce travail, pourront faire l’objet d’une extension du code Gysela.

Ce travail a été effectué dans le cadre du Cemracs 2010 [1], avec J. Abiteboul, G. Latu,
V. Grandgirard, E. Sonnendrücker et A. Strugarek.

Chapitre 7 : Applications à la MHD

Dans ce chapitre, nous étudions quelques problèmes issus de la MHD. Après l’étude de
diffusion fortement anisotropique (voir figure 13), nous traitons une question assez cru-
ciale en physique des plasma; il est communément admis dans la communauté des physi-
ciens d’utiliser les coordonnées curvilignes pour traiter le cas d’un confinement avec un
fort champ magnétique. Le but est alors de pouvoir créer des maillages qui suivent les
lignes de champs. Evidemment, dans le cadre de l’analyse isogéométrique il n’y a pas
de ”maillage réels”, l’idée est alors de prendre des surfaces de niveaux du jacobien de
la transformation F, qui correspondront à des surfaces fermées reflétants au mieux les
surfaces magnétiques (voir figure 14).

Nous traitons aussi le cas de la MHD résistive et incompressible, dans le cadre du test
Current Hole. Dans ce cas, il faut utiliser des grilles très raffinées pour pouvoir capturer
l’évolution du champ magnétique. Le raffinement local se révèle d’une grande nécessité
dans ce cadre. Pour le moment, PyIGA ne prend pas en compte ce type de raffinement.

Chapitre 8 : Un schéma de DeRham basé sur les Box-splines

Dans ce chapitre, nous explorons de nouvelles pistes pour utiliser les splines sur tri-
angles. En effet, on suivra l’idée développée par Buffa et al [16, 18], pour générer un
diagramme de DeRham basés sur ce type d’éléments. Pour le moment, on ne prend
pas les conditions aux bord, et donc l’étude est faite plutôt localement. Il reste aussi à
implémenter ce type d’éléments (voir la figure 15 pour un exemple de support).

xv

Figure 13: Evolution of the pulse, for a radial section, on a square domain

Figure 14: Soloviev solution, example of aligned meshes

xvi

Figure 15: Les supports des box-splines B211 et B221.

xvii

Publications

Les travaux présentés dans cette thèse ont fait l’objet des publications suivantes:

1. Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell
equations (with E. Sonnendrücker). Journal of Scientific Computing, 2011, pages 1-20.

2. An Isogeometric Analysis Approach for the study of the gyrokinetic quasi-
neutrality equation (with E. Sonnendrücker and N. Crouseilles). Submitted.
URL : http://hal.inria.fr/inria-00587009

3. Solving the Vlasov equations in complex geometries. (with J. Abiteboul, G. Latu,
V. Grandgirard, E. Sonnendrücker and A. Strugarek.). Proceedings of CEMRACS
2010. Submitted.

4. An Axisymmetric PIC code based on Isogeometric Analysis (with A. Back, A.
Crestetto, and E. Sonnendrücker). Proceedings of CEMRACS 2010. Submitted.

Les articles suivants sont cours de préparation,

1. Simulation of 2D reduced MHD using Isogeometric Analysis (with E. Son-
nendrücker). In preparation.

2. The Fast IGA Approach. In preparation.

3. PyIGA, Isogeometric Analysis simulations in Python. In preparation.

Logiciels

Nous terminons la présentation de ce manuscrit, en introduisant les codes développés:

• WEBSPLINE2D est un code Fortran pour la résolution des équations aux dérivées
partielles en 2D en utilisant la méthode Web-splines. (9′700 lignes)

• ISOBOX est un code Fortran. C’est le noyau de PyIGA. Il contient un module pour
la C.A.O, qui permet d’effectuer les opérations de bases pour manipuler des courbes
NURBS. Il contient aussi un module pour manipuler les matrices sparse. Il contient
aussi un module pour la visualisation à l’aide de VisIt sous format silo. (15′000
lignes)

• ISOPIC est un code Fortran, basé sur ISOBOX, qui permet la résolution du système
Vlasov-Maxwell, en coordonnées axisymétriques, en utilisant l’approche IGA. Les
particules vivent dans le patch. (8′900 lignes)

• PyIGA est un code Python-Fortran, basé sur ISOBOX, qui permet la résolution
d’une large catégorie d’edps (système d’edps), en utilisant l’approche IGA. Elle
contient aussi quelques familles de splines, généralisations des B-splines qui sont
les GB-splines. (7′200 lignes)

• PyIGA - GUI est une interface graphique permettant la création de domaines 2D,
ainsi que leur maillages, puis l’exportation en format XML. (2′900 lignes)

xviii

La librairie PyIGA sera présentée plus en détail dans le chapitre D. Il s’agit d’un code
écrit en Fortran et Python. Il a été développé pour faciliter la résolution des équations
aux dérivées partielles, où l’utilisateur peut créer les opérateurs dont il a besoin. Ensuite,
il fait appel à scipy pour le traitement des matrices ainsi obtenues. L’utilisateur peut con-
tinuer à communiquer avec la librairie pour les différents diagnostiques ou d’éventuels
nouveaux assemblages de matrices.

xix

xx

Introduction

Plasmas

Introduction

With the three state of matter, i.e solid, liquid and gas, plasma is known to be the forth
one. Even if we don’t see such state in our daily lifes, it represents much more than 99%
of the known matter. The Greek word plasma was introduced by the physiologist Jan
Evangelista Purkinje, in the mid nineteenth century, which means molded. An interesting
history is given in [9].
Until 1950’s, researches on plasma confinement were classified as secret defense. How-
ever, in 1958, United States of America, Britain, and the then Soviet Union, declassified
their researches when they found that controlled fusion research was not of interest in
the military domain. Quickly, the Tokamak configuration developed by russians, began
to take place as the best way to perform a magnetic confinement. The toroidal design of
tokamaks, and the magnetic field lines that move around it in helical shape (see figure 16),
trap particles thanks to the Lorentz force. Particles will follow helical paths around the
field lines.

Figure 16: Helical magnetic field lines

ITER Project

The use of Nuclear energy, was a consequence of the 1973 oil crisis. Nowadays, France
produces 75% using this energy source. The major disadvantage of such source, is the
use of nuclear fission, which leads to important radioactive wastes. In this context, the
ITER (International Thermonuclear Experimental Reactor) project, is an interesting way

xxi

of generating energy using a nuclear fusion rather than fission one. The main goal of
this project, is to prove the feasibility, of nuclear fusion providing a power of 500MW .
This will lead to the construction of an experimental reactor, namely DEMO, which will
provide a power of 1500MW , for an industrial use.

Figure 17: ITER tokamak

Plasma Confinement

How to gather particles? In the sun, it is done thanks to the gravitational force, but
this would not be the case on earth! The solution is to use a strong magnetic field, to
confine particles. Figure 18 shows the trajectory of a confined particle. In this case, the

Figure 18: A confined particle follows the magnetic field line, while gyrating

particle will follow the magnetic field line; the direction of its trajectory will depend on
the sign of the charge. This poses the question of the shape of the magnetic field lines. To

xxii

ensure the confinement in the third dimension, magnetic fields can not be purely toroidal;
otherwise magnetic fields lines will drift (see figure 19). Another consequence of purely

Figure 19: In purely toroidal configuration, magnetic field lines drift in the third dimension

toroidal magnetic field is the non-uniform character of the magnetic field. In fact, an
axisymmetric toroidal magnetic field, formed by a bent solenoid, varies inversely with
the major radius. To avoid such problem, we impose a strong poloidal magnetic field.
Therefore, the magnetic field must be of the form :

B = BP + BT (0.0.11)

where BP is the poloidal component of the magnetic field, and BT the toroidal one. As
a consequence, the magnetic field lines will twist because of the poloidal component (see
figure 20). More details can be found in [96].
Another interpretation of this consequence is that the poloidal component BP will im-
pose a poloidal motion on the guiding center. In such configuration, the magnetic field

Figure 20: Twisted magnetic field line, under the poloidal component

line will perform a certain number of circuits along the toroidal axis and then loops again.
This number is called the safety factor ”q”. A simple approximation for q, is the safety
factor for the cylindrical torus ”qc” :

q ' qc =
r

R0

BT
BP

System of coordinates

There exist many system of coordinates that we use in Plasma Physics. In figure 21, we
show the link between the toroidal (r, θ, φ) and cylindrical (R, z, φ) coordinates.

Plasma Models

There are three parameters that characterize a plasma:

1. the particle density n

2. temperature for each species Ti for ions, and Te for electrons,

3. the steady state magnetic field B.

xxiii

�

6

-R

z

φ

-�
R0

r
θ = 0
θ

Major Axis

Minor Axis

6

Figure 21: Toroidal (r, θ, φ) and cylindrical (R, z, φ) coordinate systems.

The interaction between particles and electromagnetic fields, determines the plasma dy-
namics. Let xip(t) be the position of an ion particle at the time t, and xep(t) for electron.
Let us also define vip(t) the velocity of an ion particle at the time t, and vep(t) for electron.
These particles generate a current that injected in Maxwell’s equations updates the elec-
tromagnetic fields. On the other hand, those new values of the electromagnetic fields are
used to update the position and the velocity of particles thanks to the Lorentz force.
Because of the geometry, a typical coordinates system would be :

x = (r, θ, ϕ) (0.0.12)

for particles position. For the velocity:

v = (v‖, v⊥, α) (0.0.13)

A naive model, would involve 6D unknowns. Because of the big number of particles liv-
ing in a tokamak, it would be obvious to use the N-body model, involving all particles and
their contribution to the electromagnetic fields. This model is not used in practice. How-
ever, we can derive some other models, to reduce parameters, while paying the price of
losing some information. The new model will be restricted to some plasma configura-
tions. In figure 22, we show a hierarchical list of models, with the underlying physics,
depending on the complexity of the model.

Vlasov Model

In the Vlasov model, rather than studying all particles one by one, we study the evolu-
tion of ions/electrons and their velocities distribution functions. The Vlasov equation is

xxiv

Plasma models Equations of the physics

N-body model

Kinetic model

Fluid model

Lorentz force
+

Maxwell’s equations

Vlasov’s equation
+

Maxwell’s equations

Gyrokinetic theory

two-fluid theory

Magnetohydrodynamic
(MHD)

equations

Figure 22: Plasma models

nothing else than a transport equation :

(∂t + v · ∇x)f +
q

m
(E + v× B)∇vf = 0 (0.0.14)

where f denotes the distribution function of either ions or electrons.
To these particles, will be associated an electric charge density ρ, and an electric current
density J:

ρ =
∑
s

qs

∫
fs(x,v, t)dv (0.0.15)

J =
∑
s

qs

∫
fs(x,v, t)vdv (0.0.16)

These densities are coupled to Maxwell’s equations:

∂tE− rot H = −J, (0.0.17)
∂tH + rot E = 0, (0.0.18)

div E = ρ, (0.0.19)
div H = 0 (0.0.20)

xxv

There are two major ways to solve numerically this model. The first one, uses the well
known Particle In Cell (namely PIC) method. The second one is a Lagrangian approach.
To reduce this model (which is 6D), while keeping the statistical character, we use a
gyroaverage. A gyrokinetic theory [3] has been developed to reduce the problem to 5D
unknowns.

Gyrokinetic model

Near the equilibrium, i.e B
δB ' ε, with ε << 1, where B is the equilibrium magnetic field

and δB is the perturbation. In this case, strong anisotropy appears in the tokamak. Let
us take k = k‖ + k⊥ a wave vector, and define b = B

‖B‖ , we get

‖k‖‖
‖k⊥‖

' ε (0.0.21)

Rather than following the fast rotational movement of the particle, we can use a gyroav-
erage and study the trajectory of the center guide. This means that we can reduce our
model to 5D unknowns. Remark also, that the quantity :

µ = m
‖v⊥‖2

2‖B‖
(0.0.22)

becomes an adiabatic invariant, in the case of a non collisional model. So that the problem
is rather 4D with a parameter µ. Now, let us go back to the Vlasov equation, and use the
scaling of the perturbed equilibrium. We get the Vlasov scaled equation :

∂tf + v‖ · ∇xf +
1

ε
v⊥ · ∇xf − εE‖ · ∇vf +

(
E⊥ +

1

ε
v ×B

)
· ∇vf = 0. (0.0.23)

In the sequel, we consider a constant magnetic field parallel to the vector basis e3, B =
Be3.
Following the change of variables proposed in [92]

x → R = x− ρ, where ρ =
v⊥ × ~e3

B

v → (µ, θ, v‖), where µ =
v2
⊥

2B

which transforms f(t,x,v) into f(t,R, v‖, µ, θ).
Finally, the Vlasov equation re-written in guiding center variables is

∂tf +

(
v‖ +

∂RΦ× e3

B

)
· ∂Rf +

B

ε
∂θf − ∂θΦ∂µf

− εE · ∂v‖f − ∂RΦ · v × e3

v2
⊥

∂θf = 0. (0.0.24)

where Φ is the electric potential.
we can write a gyrokinetic model for 〈f〉which is an approximation of the Vlasov model
to the second order in ε

∂t〈f〉+

(
v‖ +

∂R〈Φ〉 × e3

B

)
· ∂R〈f〉 − 〈E〉∂v‖〈f〉 = O(ε2). (0.0.25)

where 〈·〉 is an average operator over θ.
Modern gyrokinetic models, are based on Hamiltonian dynamics. More details can be
found in [3, 92, 94, 80, 34, 55].

xxvi

Two-fluid Model

The two-fluid model is an intermediate model between Vlasov theory and MHD. It is a
description of the plasma where the species ions/electrons form a system of mutually
interacting. More details can be found in [71, 9].

MHD Model

The MHD model is the least detailed one. It is a description of the plasma as a single
electrically conducting fluid. More details can be found in [71, 9, 29].

Presentation of this thesis

In this thesis, we tried to apply the IsoGeometric Analysis approach to solve some
problems involved in Plasma Physics and Electromagnetism. As it is very common in
Plasma Physics simulations, some numerical methods become in some sense references.
We have applied the IGA approach, coupled with a Particle In Cell Method, to solve
the Vlasov-Maxwell problem, in axisymmetric coordinates (c.f chapter 5). We have
also developed a new Semi-Lagrangian method using mappings based on B-splines, to
deal with complex geometries. This was done to solve the Vlasov-Poisson 2D problem
(c.f chapter 6). We have applied the IGA method to solve the equivalent part of the
Poisson’s equation in the Gyrokinetic model, i,e Quasi-Neutral equation (c.f chapter 3
). For the MHD equilibrium problem, we have constructed mappings that allow us to
have an aligned mesh to the magnetic fields lines (c.f chapter 7). We have also studied and
developed a new scheme to solve Maxwell’s equations based on B-splines, and which
allows us to remove one of the mass matrices; hence at each time step we will need to
inverse only one matrix. We have also tried to develop a new DeRham sequence based
on Box-splines (c.f chapter 8).

Remark 0.0.2 It is very important to notice that one of the most important properties of IGA is
that the domain description is given by the same basis functions used to approach the solution
of the studied partial differential equations. This description stills exact after refinement; this
explains the term iso-geometric. It turns out that in most applications (in plasma physics) we
will consider, there will be no exact description of the domain, but just an approximation. In this
case, it is rather an isoparametric method. The reader should pay attention to this particular point.
We will use the isoparametric version of the IGA when physics requires. Otherwise, when the
description is exact, we will use the conventional version of the IGA.

At the beginning of each application chapter, we have tried to recall the physics that
we are dealing with.

Publications

This thesis has lead to the following publications:

1. Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell
equations (with E. Sonnendrücker). Journal of Scientific Computing, 2011, pages 1-20.

xxvii

2. An Isogeometric Analysis Approach for the study of the gyrokinetic quasi-
neutrality equation (with E. Sonnendrücker and N. Crouseilles). Submitted.
URL : http://hal.inria.fr/inria-00587009

3. Solving the Vlasov equations in complex geometries. (with J. Abiteboul, G. Latu,
V. Grandgirard, E. Sonnendrücker and A. Strugarek.). Proceedings of CEMRACS
2010. Submitted.

4. An Axisymmetric PIC code based on Isogeometric Analysis (with A. Back, A.
Crestetto, and E. Sonnendrücker). Proceedings of CEMRACS 2010. Submitted.

The following articles are in progress:

1. Simulation of 2D reduced MHD using Isogeometric Analysis (with E. Son-
nendrücker). In preparation.

2. The Fast IGA Approach. In preparation.

3. PyIGA, Isogeometric Analysis simulations in Python. In preparation.

4. A new DeRham sequence based on Box-splines. In preparation.

Softwares

We finish this introduction with softwares developed during this thesis:

• WEBSPLINE2D is a Fortran code to solve 2D elleptic-pdes using the webspline
method. (9′700 lines)

• ISOBOX is a Fortran code. This is the kernel of PyIGA. It contains a C.A.D module,
that allows common geometric operations on NURBS curves. It contains a specific
module for sparse matrices that arise in IGA. It also integrates a common tool for
visualizations under VisIt, in SILO format. (15′000 lines)

• ISOPIC is a Fortran code, based on ISOBOX, that solves the coupled system
Vlasov-Maxwell, in axisymmetric coordinates, using IGA. The particles are living
in the patch. (8′900 lines)

• PyIGA is a Python library, based on ISOBOX, that allows the user to solve a large
category of pdes (system of pdes), using the IsoGeometric Analysis approach. It
also contains some GB-splines. (7′200 lines)

• PyIGA - GUI is a GUI that allows the user to create domains, refine and export
them so they can be used by PyIGA. Data can be given in a file text or XML format.
(2′900 lines)

xxviii

Notations

• As it is a common use, we will denote a constant by C. If the constant depends on
i parameters p1, · · · , pi, we will write C = C(p1, · · · , pi)

• A . B: if it exists a constant C such that A ≤ CB.

• A ' B: if A . B and B . A.

• Multi-index : k = (k1, · · · , kd)

• Di will denote the ith derivative operator.

• Sk(T ?,m, I), Sk(T, I) and Sk will denote Schoenberg space. The latest notations are
used, when parameters defining the Schoenberg space are fixed once for all.

• For each B-spline Ni, σi will denote its support.

• We will usually use the notation b ∈ Γ or Λ, to describe the index of a univari-
ate/multivariate B-spline/NURBS. In 1D, we have Γ = {i/ 1 ≤ i ≤ N}. In 2D,
Γ = {(iξ, iη)/ 1 ≤ iξ ≤ N ξ, 1 ≤ iη ≤ Nη}. When we are dealing with Dirich-
let boundary condition, we will use Γ0 or Λ0. They are obtained from Γ (or Λ) by
removing interpolating B-splines/NURBS.

• V0
h = span{ϕb, b ∈ Λ0} and Vh = span{ϕb, b ∈ Λ} will usually denote the finite

dimensional space of H1
0 (Ω) and H1(Ω).

• When we expand a function uh ∈ V0
h (or Vh) over the basis of V0

h (or Vh), [uh]b will
denote the coefficients of the basis function ϕb.

• ω(g;h): The modulus of continuity, for a continuous function g, and a positif num-
ber h, we define: ω(g;h) := max{|g(x)− g(y)|; |x− y| 6 h}

• Ω : will denote a 2D physical (master) domain.

• P : will denote a 2D patch (parametric) domain.

• Q : will usually denote a cell in the physical domain, (except in chapter 5, we will
use C).

• Q̃ : will usually denote a cell in the parametric domain, (except in chapter 5, we will
use C̃).

• Qh : the set of all meshes in the parametric domain.

• Q will denote the extension of the cell Q: i.e Q =
⋃
i∈Γ(Q) σi, where Γ(Q) =

{i, such that Q ∩ σi 6= ∅}.

xxix

• Kh = {F(Q), Q ∈ Qh} : the set of all meshes in the physical domain.

• Nh : will denote the space of all B-splines functions according to a given set of
meshes Qh.

• Vh : will denote the space of all NURBS according to a given set of meshes Qh.

• The set of polynomials of degree less than k (k, for multivariate polynomials), will
be denote by P<k+1, Pk, Πk or Π<k+1.

• For variational formulations, we will usually index a multivariate basis function,
by ϕb. The index b is intend to be a 2D index, i.e b = (i,j).

• πX will usually denote either a L2 Projector or Quasi-Interpolant on the space X .

• ‖ · ‖p,K and ‖ · ‖Hp(K) will denote the norm of the Sobolev space Hp(K).

• | · |p,K and | · |Hp(K) will denote the semi-norm of the Sobolev space Hp(K).

xxx

Contents

1 Splines and Isogeometric Analysis 1
1.1 Splines and B-splines functions . 2

1.1.1 Splines . 2
1.1.2 B-Splines . 4

1.2 B-Spline series . 5
1.2.1 Multivariate tensor product splines 8

1.3 Splines in CAD . 9
1.3.1 Modeling a curve . 9
1.3.2 Fundamental geometric operations 13
1.3.3 NURBS . 15
1.3.4 Multivariate tensor product NURBS 15
1.3.5 Modeling conics using NURBS . 16

1.4 Splines in Approximation Theory . 17
1.4.1 Quasi-interpolant . 18
1.4.2 Distance of a regular function to S 18

1.5 Web-splines . 19
1.5.1 B-Splines on bounded domains . 20
1.5.2 Weight functions . 20
1.5.3 Web-Splines . 20
1.5.4 Stability in weB . 22
1.5.5 Study of an elliptic partial differential equation 22
1.5.6 Polynomial Approximation . 24
1.5.7 Numerical results . 24
1.5.8 Conclusion . 26

1.6 Isogeometric analysis . 26
1.6.1 Refinement strategies . 28
1.6.2 Patch . 28
1.6.3 Grid generation . 29
1.6.4 Local approximation . 29
1.6.5 Global approximation using NURBS 30

2 Elliptic Equations 31
2.1 Galerkin-Ritz approximation . 32
2.2 The variational formulation . 34
2.3 Assembling matrices . 35

2.3.1 Stiffness local matrix . 35
2.3.2 Mass local matrix . 36
2.3.3 Local load vector . 36

xxxi

Contents

2.3.4 Assembling matrices algorithm . 36
2.4 Numerical results . 37

2.4.1 Domain defined by B-splines curves 37
2.4.2 Solution for an affine transformation 37

2.5 Domain defined with NURBS curves . 40
2.5.1 Poisson’s equation on a quarter ring domain 40
2.5.2 Poisson’s equation on a ring domain 42

2.6 Computing the solution on general domain 42
2.7 Nonlinear elliptic problems . 45

2.7.1 Picard’s algorithm . 47
2.7.2 Newton’s algorithm . 47
2.7.3 Numerical results : Example from combustion theory 48

3 Application to the Quasi-Neutral equation 51
3.1 Introduction . 52
3.2 Quasi-neutrality equation . 53
3.3 A fast solver for polar coordinates . 54
3.4 Numerical validation . 56

3.4.1 Test case 1: Order of convergence for Poisson in polar coordinates . 56
3.4.2 Test case 2: Chaotic solution . 58

3.5 Numerical solution of the quasi-neutrality equation 59
3.5.1 The decoupling approach . 60
3.5.2 First approach: spectral + finite differences 61
3.5.3 Second approach: FEM . 62
3.5.4 Numerical results . 62

3.6 Conclusion . 65

4 Application to the 2D Maxwell’s equations 67
4.1 Introduction . 68
4.2 Variational formulation for the 2D Maxwell equations 69
4.3 Construction of the finite element spaces 70

4.3.1 Spline finite elements on patch grids 71
4.3.2 The Discrete Equations . 72

4.4 Leap Frog scheme’s stability . 73
4.5 Numerical results . 74

4.5.1 Test case 1: square . 75
4.5.2 Test case 2: circular wave guide . 77
4.5.3 Test case 3: Silver-Muller condition 78

4.6 H-rot formulation . 79
4.7 Axisymmetric Variational formulation of the 2D Maxwell’s equation . . . 80

4.7.1 Discrete equations - 1st formulation 81
4.7.2 Discrete equations - 2nd formulation 83
4.7.3 H-rot formulation . 84
4.7.4 Remarks . 85

4.8 Conclusions and perspectives . 86

xxxii

Contents

5 An axisymmetric PIC code based on Isogeometric Analysis 97
5.1 Introduction . 98

5.1.1 Domain parametrization using Splines/NURBS curves 98
5.2 PIC method for Vlasov equation . 98

5.2.1 The PIC Method . 99
5.2.2 The equations of motion . 100
5.2.3 The Dirac mass with a change of variables 101
5.2.4 Computing J and ρ with a change of variables 102

5.3 Particles emission . 102
5.3.1 Short description of a diode . 102
5.3.2 Extraction conditions . 102

5.4 Numerical results . 103
5.4.1 Emission of particles in the diode . 103

5.5 Conclusion and perspectives . 103

6 Application to Semi-Lagrangian schemes 107
6.1 2D Vlasov . 109

6.1.1 Physical model: the paraxial beam 109
6.1.2 The ISOLOSS code . 110

6.2 Complex geometry using parametric surfaces 113
6.2.1 General framework . 113
6.2.2 Analytic mapping . 115
6.2.3 Bézier patches . 115

6.3 Algorithms . 116
6.3.1 Inverse mapping for Bézier patches 117
6.3.2 Reducing delays for patch finding 119
6.3.3 Velocity integrals . 120

6.4 Results . 120
6.4.1 Geometry settings and experimental results 120
6.4.2 Performance issues . 122

7 Simulation of 2D reduced MHD 125
7.1 Introduction . 126
7.2 Anisotropic Diffusion . 126

7.2.1 Introduction . 126
7.2.2 The choice of the grid . 126
7.2.3 Evolution of a Gaussian pulse . 127
7.2.4 Conclusions . 128

7.3 MHD equilibrium . 130
7.3.1 Equilibrium in the absence of toroidal flux 130
7.3.2 Equilibrium with toroidal flux . 132
7.3.3 Nonlinear equilibrium . 133

7.4 Current-Hole . 134
7.4.1 Time scheme . 135
7.4.2 Variational formulation . 135
7.4.3 Numerical results . 137

7.5 Conclusions . 144

xxxiii

Contents

8 A new DeRham sequence based on Box-splines 145
8.1 Introduction . 146
8.2 Notations . 146
8.3 Bernstein-Bézier bivariate polynomials . 147
8.4 Box-Splines . 148

8.4.1 Strang-Fix conditions applied to Box-splines 150
8.4.2 Box-Spline series . 151
8.4.3 Quasi-interpolant operator for Box-Splines 153

8.5 Box-splines as finite elements basis . 153
8.5.1 Approximation with box-splines . 154

8.6 DeRham diagram . 155
8.6.1 Notations . 156
8.6.2 Interpolants and commutativity . 156
8.6.3 Approximation Analysis . 158

8.7 Boundary Condition using Box-splines . 159
8.8 Conclusions and Perspectives . 159

A Appendix: Decoupling approach for J(r, θ) 163

B Transformation compatible with grad, div and curl operators 165

C Equations of motion 167
C.1 Cylindrical coordinates . 167
C.2 General coordinates . 171
C.3 Numerical implementation . 176
C.4 Computing densities ρ and J . 177

D Python Interface 181
D.1 Introduction . 182
D.2 pdefield class . 182
D.3 source class . 182
D.4 isogeo class . 182

D.4.1 Setting Grid’s parameters . 184
D.4.2 Poisson’s equation . 185
D.4.3 Anisotropic Diffusion . 190
D.4.4 Maxwell’s 2D problem . 193

D.5 Using GB-splines . 206
D.6 PyIGA’s available operators . 206
D.7 PyIGA’s input data . 208

D.7.1 Importing domain data . 208
D.7.2 Refinement data . 209
D.7.3 Boundary conditions . 210
D.7.4 Silver Muller condition . 211
D.7.5 Details and output file . 211

D.8 Creating domains using the GUI . 211
D.8.1 The XML Format . 211
D.8.2 Using the GUI . 211
D.8.3 Examples . 212

D.9 Creating domains defined by an implicit function 213

xxxiv

Contents

D.10 Visualization . 215
D.10.1 Using Silo . 215
D.10.2 Using VTK . 216

D.11 PyIGA and Pastix . 216
D.12 Installing PyIGA . 216

Bibliography 219

xxxv

CHAPTER 1

Splines and Isogeometric Analysis

Contents
1.1 Splines and B-splines functions . 2

1.1.1 Splines . 2
1.1.2 B-Splines . 4

1.2 B-Spline series . 5
1.2.1 Multivariate tensor product splines 8

1.3 Splines in CAD . 9
1.3.1 Modeling a curve . 9
1.3.2 Fundamental geometric operations 13
1.3.3 NURBS . 15
1.3.4 Multivariate tensor product NURBS 15
1.3.5 Modeling conics using NURBS . 16

1.4 Splines in Approximation Theory . 17
1.4.1 Quasi-interpolant . 18
1.4.2 Distance of a regular function to S 18

1.5 Web-splines . 19
1.5.1 B-Splines on bounded domains . 20
1.5.2 Weight functions . 20
1.5.3 Web-Splines . 20
1.5.4 Stability in weB . 22
1.5.5 Study of an elliptic partial differential equation 22
1.5.6 Polynomial Approximation . 24
1.5.7 Numerical results . 24
1.5.8 Conclusion . 26

1.6 Isogeometric analysis . 26
1.6.1 Refinement strategies . 28
1.6.2 Patch . 28
1.6.3 Grid generation . 29
1.6.4 Local approximation . 29
1.6.5 Global approximation using NURBS 30

1

1.1. Splines and B-splines functions

1.1 Splines and B-splines functions

1.1.1 Splines

Splines are piecewise polynomials defined on the real line. We shall require that on each
compact interval, they consist of a small number of non-vanishing polynomial pieces.
Let T ? = {t?i , 0 6 i 6 s} be a finite strictly increasing sequence of points of R. A function
S on R is a spline of order k, k > 1 with the breakpoints T ? if on each interval (t?i , t

?
i+1),

it is a polynomial of degree 6 p := k − 1. On the other hand, the spline can have any
regularity less than p − 1 at the breakpoints. The smoothness ri of a spline S at the
breakpoint t?i is defined as follows:

• ri := 0 if S is discontinuous at t?i , otherwise

• ri is the largest integer 0 < ri 6 k so that S has continuous derivatives of orders
< ri

therefore, we denote the associated spline space on an interval I = [a, b], a := t?0, b = t?s
by S?k(T ?, I) which consists of all splines S of order6 k with breakpoints contained in T ?

and of smoothness > ri at t?i .
Rather than use the smoothness of the spline at breakpoints, we use the defect mi :=

k − ri, this is the number of degrees of freedom of S at t?i .
A simple computation leads to dim Sk(T ?,m, I) = k+

∑s
i=0mi with m := (m0, · · · ,ms).

The space Sk(T ?,m, I) is called the Schoenberg space.
In fact, a natural basis of the Schoenberg space is

S−j(x) =
(x− a)j

j!
, j = 0, · · · , k

Si,j(x) =
(x− t?i)

j
+

j!
, j = k −mi, · · · , k − 1, i = 1, · · · , s

Then, for each spline S ∈ Sk(T ?,m, I), we can write

S =

k−1∑
j=0

a−j(S)S−j(x) +

s∑
i=1

k−1∑
j=k−mi

ai,j(S)Si,j(x) (1.1.1)

where a−j(S) = S(j)(a), ∀j ∈ {0, · · · , k−1}, with S(j)(a) the jth derivative of S evaluated
at a, and ai,j(S) = S(j)(t?i+) − S(j)(t?i−), ∀i ∈ {1, · · · , s}, ∀j ∈ {k − mi, · · · , k − 1}.
This introduces dual functionals for the basis. This also, gives us the dimension of the
Schoenberg space Sk(T ?,m, I), which writes:

dimSk(T ?,m, I) = n+ k, n =

k∑
i=1

mi . (1.1.2)

One of the basic properties used in the finite element method, is the Markov inequalities
for polynomials. Splines also, verify such elementary inequalities:

Theorem 1.1.1 If the breakpoints T ? satisfy δ0 ≤ |t?j+1 − t?j | ≤ δ, j ∈ {0, · · · , s}, then for
each S ∈ Sk(T ?,m, I), we have

‖S‖p ≤ Cδ
1
q
− 1
p ‖S‖q, p0 ≤ q ≤ p ≤ +∞

2

1.1. Splines and B-splines functions

where C = C(p0, k) is a constant. We also have

‖S(j)‖p ≤ Cδ−j0 ‖S‖p, 0 � p ≤ +∞, j ∈ {1, · · · , k − 1}

Expanding splines as in (1.1.1) would be a very difficult task. Thus Curry and Schoen-
berg [26] have introduced another basis which has a more local character. Their basis are
splines with the smallest possible support. They are defined by means of the divided
differences and called basic splines (B-splines). For more details on this subject we refer
to the books of De-Boor [19] (for computational aspect), DeVore and Lorentz [33], and
Schumaker [98] (for more theoretical aspects).

Definition 1.1.2 (Divided Differences) For a set of points (not necessarily ordered) X :=
{x0, · · · , xn}, and a function f , we define the n-th divided difference of f by

[x0, · · · , xn]f := An (1.1.3)

where An is the coefficient of xn of the polynomial which interpolates f at x0, · · · , xn.

For example, [x0]f = f(x0)

[x0, x1]f =
f(x0)− f(x1)

x0 − x1
, x0 6= x1, otherwise [x0, x1]f = f ′(x0)

We present here some properties of the Divided Differences operator:

• [x0, · · · , xn]f is a linear combinaition of the derivatives f (l)(xi), 0 ≤ l ≤ mi − 1,
where mi is the multiplicity of the point xi in the set X ,

• [x0, · · · , xn]f is symmetric in x0, · · · , xn,

• [x0, · · · , xn]f is constant if f is a polynomial of degree ≤ n, and zero for a polyno-
mial of degree < n,

• [x0, · · · , x0]f = 1
n!f

(n)(x0)

• (Newton’s Formula) Pn(f,X;x) =
∑n

i=0

∏i−1
j=0(x−xj)[x0, · · · , xi]f is the interpolat-

ing polynomial for f at the sites X .

• if f ∈ Cn([a, b]), a ≤ xi ≤ b, 0 ≤ i ≤ n, then :

[x0, · · · , xn]f =
1

n!
f (n)(ξ), for some ξ ∈ [a, b]

• [x0, · · · , xn]f is continuous at the sites in X , if the derivatives of f of proper orders
are continuous at the considered site,

• if x0 6= xn, we have

[x0, · · · , xn]f =
1

xn − x0
{[x1, · · · , xn]f − [x0, · · · , xn−1]f} (1.1.4)

• (Leibniz’s Formula) [x0, · · · , xn](fg) =
∑n

i=0[x0, · · · , xi](f) [xi, · · · , xn](g)

3

1.1. Splines and B-splines functions

• if f (n−1) is absolutely continuous, and if not all xi coincide, we have

[x0, · · · , xn]f =

∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
f (n)(x0 + h1t1 + h2t2 + · · ·+ hntn)dtn

where we denote hi = xi+1−xi, i ∈ {0, · · · , n−1}. This formula is very important;
in fact, later, we will define another family of splines, using a generalization of this
formula. Another application of this formula, is the next result, where under the
same assumptions we have:

|[x0, · · · , xn]f | ≤ 1

n!
‖f (n)‖∞

This shows, that the functional f → [x0, · · · , xn]f is continuous on Cn[a, b]. To
finish, we can give a representation of the functional [x0, · · · , xn] in term of the
Peano kernel:

[x0, · · · , xn]f =

∫ b

a
f (n)(t)[x0, · · · , xn]

(
(· − t)n−1

+

(n− 1)!

)
dt

this result is valid under the assumption that all xi are distinct.

1.1.2 B-Splines

Definition 1.1.3 (B-Spline) Let X = {x0, · · · , xp} a non-decreasing sequence of p + 1 points
such that x0 6= xp. The B-Spline will be defined in term of the following Divided-Difference :

M(x) = M(x;X) = M(x;x0, · · · , xp) = p[x0, · · · , xp](· − x)p−1
+ (1.1.5)

The points forming the set X , are called knots, and X is said to be a knot vector. From the
properties of the Divided-Differences, we can easily prove the following results:

• M(x) = 0, if x < x0 or xp < x

• M(x) > 0, ∀x ∈ [x0, xp]

• M
n! is the Peano kernel of the divided-difference at the set X = {x0, · · · , xp}. Then,
for any f ∈W p

1 , we have,

[x0, · · · , xp]f =

∫ +∞

−∞
f (p)(t)M(t)dt

•
∫ +∞
−∞ M(t)dt = 1

• M(x) ∼ (x− x0)p−m0 , x −→ x0+

• M(x) ∼ (x− xp)p−mp , x −→ xp−

• M(x) ≤ C
xp−x0

, where C = C(p) is a constant depending only on p

• if p ≥ 2, we have the following recurrence formula, which will serve to define a
simpler form for B-splines,

M(x;x0, · · · , xp) =
p

p− 1
{ x− x0

xp − x0
M(x;x0, · · · , xp−1) +

xp − x
xp − x0

M(x;x1, · · · , xp)}

(1.1.6)

4

1.2. B-Spline series

In fact, we can define the B-spline, depending on a normalization condition. The previous
one, was done to have integral one.
Another normalization is to define the B-spline as:

N(x;x0, · · · , xp) =
1

p
(xp − x0)M(x;x0, · · · , xp) (1.1.7)

which will lead to the partition unity property.
Hence, the recurrence formula (1.1.6) gives :

N(x;x0, · · · , xp) =
x− x0

xp−1 − x0
N(x;x0, · · · , xp−1) +

xp − x
xp − x1

N(x;x1, · · · , xp) (1.1.8)

What is interesting in this formula, is that in the right hand side, each term depends only
on the B-spline knots, and not on its degree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N1N2N3

Figure 1.1: B-splines functions associated to the knot vector T = {000 111}, of order k = 3. These are
Bernstein polynomials

1.2 B-Spline series

As noticed in the previous section, to construct a B-spline of degree p, we need p+1 knots.
Then, to create a family of B-splines, we will need to have a non-decreasing sequence of
knots, also called knot vector.

Let T = (ti)16i6N+k be a non-decreasing sequence of knots, with k = p + 1. Each
set of knots Tj = {tj , · · · , tj+p} will generate a B-spline Nj . This leads to the following
definition:

Definition 1.2.1 (B-Spline serie) The j-th B-Spline of order k is defined by the recurrence rela-
tion:

Nk
j = wkjN

k−1
j + (1− wkj+1)Nk−1

j+1

where,
wkj (x) =

x− tj
tj+k−1 − tj

N1
j (x) = χ[tj ,tj+1[(x)

for k ≥ 1 and 1 ≤ j ≤ N .

5

1.2. B-Spline series

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N1N2N3N4N5N6N7N8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N1N2N3N4N5N6N7N8

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N1N2N3N4N5N6N7N8

Figure 1.2: B-splines functions associated to the knot vector T = {000 1 2 3 44 555}, of order k = 1, 2, 3

Curry and Schoenberg proved that

Theorem 1.2.2 With the above notations, the B-splines (Nj)j∈Γ are basis for the space Sk =
Sk(T, I).

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree p = k − 1

• Compact support; the support of Nk
j is contained in [tj , · · · , tj+k]

• if x ∈]tj , tj+1[, then only the B-splines {Nk
j−k+1, · · · , Nk

j } are non vanishing at x

• Positivity: ∀j ∈ {1, · · · , N} Nj(x) > 0, ∀x ∈]tj , · · · , tj+k[

• Partition of unity :
∑N

i=1N
k
i (x) = 1, ∀x ∈ R

• Local linear independence

• If a knot ti has a multiplicity mi then the B-spline is C(p−mi) at ti

We now give some important properties of the B-splines series:

6

1.2. B-Spline series

Mardsen’s identity

We have the following result:

(· − u)k−1 =
∑
j

ψj,k(u)Nk
j (·) (1.2.9)

where ψkj (u) =
∏k−1
i=1 (tj+i − u). This property is very important, it says that we can

reproduce any polynomial of degree less than p, on a B-spline basis, which is very crucial
in a finite element method.
This leads to the following representation theorem,

Theorem 1.2.3 Expansion in B-splines form: if S ∈ Sk(T, I) and x ∈ [tj , tj+1], then we can
write S as :

S(x) =

j∑
i=j−k+1

[S]iNk
i (x)

Convex hull

If tj < x < tj+1, then S(x) =
∑j

i=j−k+1[S]iNk
i (x) is a strictly convex combination of the

numbers ([S]i)i=j−k+1,..,j .
Using the convex-hull property, if tj 6 x 6 tj+1, then one can easily check that

min([S]i)i=j−k+1,..,j 6 S(x) 6 max([S]i)i=j−k+1,..,j (1.2.10)

Conditioning property (stability)

Let α = {αi, i ∈ Λ}, be a sequence of reals. We have the following conditioning property:

|αj | 6 Ck,∞‖
∑
i∈Λ

αiN
k
i ‖, ∀j ∈ Λ (1.2.11)

where Ck,∞ 6 k
2k−1 (Scherer and Shadrin).

Therefore, we have

1

Ck,∞
‖α‖ 6 ‖

∑
i∈Λ

αiN
k
i ‖ 6 ‖α‖ := max

i∈Λ
(|αi|) (1.2.12)

Dual functionals

For each f ∈ Sk(T, I), we define dual basis functionals of the B-splines :

λjf =

k∑
µ=1

(−D)k−µψj(τj)

(k − 1)!
Dµ−1f(τj) (1.2.13)

with τj is taken arbitrarily in]tj , tj+k[. Here Didenotes the ith derivative operator.

7

1.2. B-Spline series

Variation Diminution, Schoenberg (1967)

Let S−f be the number of sign changes of the function f(x) =
∑

i[f]iNk
i (x).

If S−α computes the number of changing sign of a real valued finite sequence α =
(αi)1≤i≤N , we have,

S−(
∑
j

αjNj) 6 S
−α (1.2.14)

In the section 1.3.2, we will show how one can insert new knots into the vector, and the
impact of this operation on the control points. We give here another impact in term of the
variation diminution :
Let f , (f̃) be a spline associated to the knot vector T , (T̃), where T̃ is obtained from T by
inserting a new knot. Then we have,

S−f̃ 6 S−f (1.2.15)

Deriving a B-spline

For a general derivative of a B-spline we have the following result:

Nk
i

(l)
=

p!

(p− l)!

l∑
j=0

al,jN
k−l
i+j , l ≤ k − 1 (1.2.16)

where the coefficient al,j are given :

a0,0 = 0, al,j =
al−1,j − al−1,j−1

ti+j+k−l − ti+j
, for each j ∈ {0, · · · , l − 1}

al,0 =
al−1,0

ti+k−l − ti
, al,l =

−al−1,l−1

ti+k − ti+l

1.2.1 Multivariate tensor product splines

Let us consider d knot vectors T = {T 1, T 2, · · · , T d}. For simplicity, we consider that
those knot vectors are open, and of bounds 0 and 1. In the sequel we will use the notation
I = [0, 1]. Each knot vector T i, will generate a basis for a Schoenberg space, Ski(T i, I).
The tensor product of all those spaces is also a Schoenberg space, namely Sk(T), where
k = {k1, · · · , kd}. The cube P = Id = [0, 1]d, will be referred to as a patch.
The basis for Sk(T) is defined by a tensor product :

Nk
i := Nk1

i1
⊗Nk2

i2
⊗ · · · ⊗Nkd

id

where, i = {i1, · · · , id}.
A typical cell from P is a cube of the form : Qi = [ξi1 , ξi1+1]⊗ · · · ⊗ [ξid , ξid+1]. To any cell
Q, we will associate its extension Q̃, which is the union of the supports of basis functions,
that intersects Q.
All results presented in the previous sections, can be easily extended to multivariate
splines.

8

1.3. Splines in CAD

1.3 Splines in CAD

1.3.1 Modeling a curve

In the sequel, we will explain how we can model curves, beginning from the simplest one
(the p-form) to B-splines, NURBS curves. We will explain the advantages of each method.
Most of the results presented in this section were taken from [91]. We will denote by
C(x(t)) a parametric curve, where each point is defined by the value of the parameter t.

The p-form

The first way to model a curve would be to consider the following form :

C(x(t)) =
n∑
i=0

tiPi (1.3.17)

Let us denote x(t) =

 x(t)
y(t)
z(t)

, and Pi =

 P xi
P yi
P zi

. The relation (1.3.17) can be written,

x(t) =

∑n
i=0 t

iP xi
y(t) =

∑n
i=0 t

iP yi
z(t) =

∑n
i=0 t

iP zi

(1.3.18)

A simple computation leads to Pi = 1
i!
d(i)

dt C(x(t))|t=0, for each i ∈ {0, · · · , n}. Even if
the p-form is a natural description for curves, it presents some disadvantages :

• the curve is not necessary regular everywhere. So a regular description of the curve,
may lead to non-efficient approximation,

• the points (Pi)0≤i≤n do not have any geometric interpretation,

• numerical evaluation of such description, needs the use of Horner algorithm, which
is unstable.

The Bézier-form

Rather than use {1, t, · · · , tn} as a basis of Π<n+1, we can take Bernstein polynomials; this
leads to the Bézier-form. Therefore, it is equivalent to the p-form and writes :

C(x(t)) =
n∑
i=0

Bn
i (t)Pi, for each 0 ≤ t ≤ 1 (1.3.19)

where Bn
i denote Bernstein polynomials :

Bn
i (t) =

(
n
i

)
ti(1− t)n−i =

n!

i!(n− i)!
ti(1− t)n−i, for each 0 ≤ t ≤ 1 (1.3.20)

The sequence (Pi)0≤i≤n is called control points.
Examples

9

1.3. Splines in CAD

Figure 1.3: A Bézier-curve of degree 1 and its control points

• n = 1 :

C(x(t)) = (1− t)P0 + tP1, for each 0 ≤ t ≤ 1.
This is just a description of a segment (figure 1.3).

• n = 2 :

C(x(t)) = (1− t)2P0 + 2t(1− t)P1 + t2P2, for each ≤ t ≤ 1.
This forms a parabolic arc (figure 1.4). We have the following properties:

– {P0,P1,P2} form a polygon: this is the control polygon,

– P0 = C(x(0)), and P2 = C(x(1)),

– C′(x(0)) is parallel to P1 −P0, and C′(x(1)) is parallel to P2 −P1,

– the curve is contained in the triangle P0P1P2,

– the control points approach the behavior of the curve.

Figure 1.4: A Bézier-curve of degree 2 and its control points

10

1.3. Splines in CAD

• n = 3 :

C(x(t)) = (1 − t)3P0 + 3t2(1 − t)P1 + 3t2(1 − t)P2 + t3P3, for each 0 ≤ t ≤ 1. We
give an example of such a curve (figure 1.5)
We have the following properties:

– {P0,P1,P2,P3} form a polygon: this is the control polygon,

– P0 = C(x(0)), and P3 = C(x(1)),

– C′(x(0)) is parallel to P1 −P0, and C′(x(1)) is parallel to P3 −P2,

– the control points approach the behavior of the curve.

– convex-hull : the curve is contained in the convex-hull associated to the control
points,

– variation diminution : there is no line that intersects the control polygon in
more points than the curve,

– it associates an implicit direction to the curve.

Figure 1.5: A Bézier-curve of degree 3 and its control points. (right) The after moving one control point.

Bézier-curves properties
We summarize the properties revealed in the previous examples:

• Invariance under some transformations : rotation, translation, scaling; it is suffi-
cient to transform the control points,

• Bn
i (t) ≥ 0,∀ 0 ≤ t ≤ 1

• partition of unity :
∑n

i=0B
n
i (t) = 1, ∀ 0 ≤ t ≤ 1

• Bn
0 (0) = Bn

n(1) = 1

• each Bn
i has exactly one maximum in [0, 1], at i

n

• Bn
i are symmetric with respect to 1

2

• recursive property : Bn
i (t) = (1 − t)Bn−1

i (t) + tBn−1
i−1 (t), and Bn

i (t) = 0, if i <
0 or, i > n

11

1.3. Splines in CAD

• derivation property: Bn
i
′(t) = n{Bn−1

i−1 (t)−Bn−1
i (t)}, and Bn−1

−1 (t) ≡ Bn−1
n (t) ≡ 0

• deriving a curve : C′(t) = n{
∑n−1

i=0 B
n−1
i (t) (Pi+1 −Pi)}

hence, we have :

C′(0) = n (P1 −P0) C′(1) = n (Pn −Pn−1) (1.3.21)

and,

C′′(0) = n(n− 1) (P0 − 2P1 + P2) C′′(1) = n (Pn − 2Pn−1 + Pn−2) (1.3.22)

this shows the interest of Bézier curves.

• DeCasteljau algorithm:

Cn(t; P0, · · · ,Pn) = (1− t)Cn−1(t; P0, · · · ,Pn−1) + tCn−1(t; P1, · · · ,Pn) (1.3.23)

The spline-form

Even with the advantages of the Bézier-form, still the problem of the regularity of the
curve. We need to use a piecewise-polynomial form. For this purpose, we use B-splines.
As seen before, they form a basis for the Schoenberg space.
Let (Pi)16i6N ∈ Rd be a sequence of control points, forming a control polygon.

Definition 1.3.1 (B-Spline curve) The B-spline curve in Rd associated to T = (ti)16i6N+k

and (Pi)16i6N is defined by :

C(t) =

N∑
i=1

Nk
i (t)Pi

We have the following properties for a B-spline curve:

• If N = k, then C is just a Bézier-curve,

• C is a piecewise polynomial curve,

• The curve interpolates its extremas if the associated multiplicity of the first and the
last knot are maximum (i.e. equal to k),

• Invariance with respect to affine transformations,

• strong convex-hull property:

if ti ≤ t ≤ ti+1, then C(t) is inside the convex-hull associated to the control points
Pi−p, · · · ,Pi,

• local modification : moving Pi affects C(t), only in the interval [ti, ti+k],

• the control polygon approaches the behavior of the curve

Remark 1.3.2 we can use multiple control points : Pi = Pi+1.

12

1.3. Splines in CAD

Deriving a B-spline curve: In the previous section, we gave a formula to compute
B-spline’s derivatives. Let us see what happens for C′:

C′(t) =
n∑
i=1

(
Nk
i
′
(t)Pi =

n∑
i=1

p

ti+p − ti
Nk−1
i (t)Pi −

p

ti+1+p − ti+1
Nk−1
i+1 (t)Pi

)
=

n−1∑
i=1

Nk−1
i

∗
(t)Qi

(1.3.24)

where Qi = p Pi+1−Pi
ti+1+p−ti+1

, and {Nk−1
i

∗
, 1 ≤ i ≤ n−1} are generated using the knot vector

T ∗ = {0 · · · 0, · · · · · · , 1 · · · 1}, where we have reduced by one the multiplicity of the first
and the last knot (in the case of opened knot vector).

example: T = {000 2
5

3
5 111}, p = 2, n = 5.

We have C(t) =
∑5

i=1N
3
i
′
(t)Pi, then

C′(t) =
4∑
i=1

N2
i
∗
(t)Qi

where
Q1 = 5{P2 −P1} Q2 =

10

3
{P3 −P2}

Q3 =
10

3
{P4 −P3} Q4 = 5{P5 −P4}

the B-splines {N2
i
∗
, 1 ≤ i ≤ 4} are associated to the knot vector T ∗ = {00 2

5
3
5 11}.

Figure 1.6: (left) A B-spline curve and its control points, (right) B-splines functions used to draw the curve.
N = 9, p = 2 , T = {000, 1

4
1
4
, 1

2
1
2
, 3

4
3
4
, 111}

Definition 1.3.3 (B-spline surface) The B-spline surface of order k associated to the knot vec-
tors {T (1), T (2)}, the control points (Pi,j)16i6N1,16j6N2 , is defined by

M(t(1), t(2)) =

N1∑
i=1

N2∑
j=1

Ni,j(t
(1), t(2))Pi,j

with Ni,j(t
(1), t(2)) = N

(1)
i (t(1))N

(2)
j (t(2))

1.3.2 Fundamental geometric operations

After modification, we denote by Ñ , k̃, T̃ the new parameters. (Qi) are the new control
points.

13

1.3. Splines in CAD

Knot insertion

One can insert a new knot t, where tj 6 t < tj+1. For this purpose we use the DeBoor
algorithm [31]:

Ñ = N + 1

k̃ = k

T̃ = {t1, .., tj , t, tj+1, .., tN+k}

αi =

1 1 6 i 6 j − k + 1
t−ti

ti+k−1−ti j − k + 2 6 i 6 j

0 j + 1 6 i

Qi = αiPi + (1− αi)Pi−1

Many other algorithms exist, like blossoming for fast insertion algorithm. For more de-
tails about such topic, we refer to [86].

Order elevation

We can elevate the order of the basis, without changing the curve. Several algorithms
exist for this purpose. We used the one by Huang et al. [64].

k̃ = k +m

m̃i = mi +m

Ñ = N +ms

Differential coefficients are defined as P̃
l

i :

P̃
l

i =

P̃i l = 0

1
ti+p−ti+l (P̃

l−1

i+1 − P̃
l−1

i) l > 0, ti+k−1 > ti+l

0 l > 0, ti+k−1 = ti+l

βi =
∑i

l=1ml, 1 6 i 6 s− 1, et αi =
∏i
l=1

k−1−l
k−1+m−l , 1 6 i 6 k − 2

We present the algorithm by [64]:

1. Compute P̃
j

0, 0 6 j 6 k − 1 et P̃
i

βl
,1 6 l 6 s− 1 , k −ml 6 i 6 k − 1

2. Compute Q̃
j

0 =
∏j
l=1(k−l

k+m−l)P̃
j

0, 0 6 j 6 k − 1

3. Compute Q̃
j

βl+ml
=
∏j
l=1(k−l

k+m−l)P̃
j

βl
, 1 6 l 6 s− 1 , k −ml 6 i 6 k − 1

4. Compute Q̃
k−1

βl+ml+i
= Q̃

(k−1)

βl+ml
, 1 6 l 6 s− 1 , 1 6 i 6 m

5. Compute Q̃
0

i

Note that there exist other algorithms which expand the curve into a Bézier curve, then
elevate the degree using Bernstein polynomials, finally come back to a description using
B-splines. For more details, we refer to [93, 77]. The one given in [64] is more efficient and
much more simple to implement. We can also use a more sophisticated version of this
algorithm to insert new knots while elevating the degree.

14

1.3. Splines in CAD

1.3.3 NURBS

Let ω = (ωi)16i6N be a sequence of non-negative reals. The NURBS functions are defined
by a projective transformation:

Definition 1.3.4 (NURBS) The i-th NURBS of order k, associated to the knot vector T and the
weights ω, is defined by

Rki =
ωiN

k
i∑N

j=1 ωjN
k
j

.

Notice that when the weights are equal to 1 the NURBS are B-splines.

Definition 1.3.5 (NURBS curve) The NURBS curve of order k associated to the knot vector T ,
the control points (Pi)16i6N and the weights ω, is defined by

M(t) =
N∑
i=1

Rki (t)Pi

1.3.4 Multivariate tensor product NURBS

As for splines, one can define multivariate tensor product NURBS. For surfaces, we have
the following definition.

Definition 1.3.6 (NURBS surface) The NURBS surface of order k associated to the knot vec-
tors {T (1), T (2)}, the control points (Pi,j)16i6N1,16j6N2 and the weights {(ω(1), ω(2)}, is defined
by

M(t(1), t(2)) =

N1∑
i=1

N2∑
j=1

Ri,j(t
(1), t(2))Pi,j

with Ri,j(t(1), t(2)) = R
(1)
i (t(1))R

(2)
j (t(2))

Remark 1.3.7 NURBS functions inherit most of B-splines properties. Remark that in the interior
of a knot span, all derivatives exist, and are rational functions with non vanishing denominator.
We present here the definition of the perspective mapping. We construct the weighted control
points Pωi = (ωixi, ωiyi, ωizi, ωi), then we define the B-spline curve in four-dimensional space as

Mω(t) =

N∑
i=1

Nk
i (t)Pωi . (1.3.25)

For fundamental geometric operations on NURBS curves, we use the latest transformation and
algorithms on B-spline curves.

Remark 1.3.8 NURBS functions allow us to model, exactly, much more domains than B-splines.
In fact, all conics can be exactly represented with NURBS. For more details, see [77].

15

1.3. Splines in CAD

nature of the curve
ω2 = 0 line

0 < ω2 < 1 ellipse arc
ω2 = 1 parabolic arc
ω2 > 1 hyperbolic arc

Figure 1.7: Modeling conics using NURBS

1.3.5 Modeling conics using NURBS

In this section, we will show how to construct an arc of conic, using rational B-splines.
Let us consider the following knot vector : T = {000 111}, the generated B-splines are
Bernstein polynomials. The general form of a rational Bézier curve of degree 2 is:

C(t) =
ω1N

2
1 (t)P1 + ω2N

2
2 (t)P2 + ω3N

2
3 (t)P3

ω1N2
1 (t) + ω2N2

2 (t) + ω3N2
3 (t)

(1.3.26)

Let us consider the case ω1 = ω3 = 1. Because of the multiplicity of the knots 0 and 1,
the curve C is linking the control point P1 to P3. Depending on the value of ω2, we get
different type of curves (figure 1.7) :

Circle

One can draw a circle using only 9 control points, and the parameters:
N = 9, p = 2 , T = {000, 1

4
1
4 ,

1
2

1
2 ,

3
4

3
4 , 111}. Control points and weights are given in the

following table:
i Pi ωi
1 (1, 0) 1

2 (1, 1) 1√
2

3 (0, 1) 1

4 (−1, 1) 1√
2

5 (−1, 0) 1

6 (−1,−1) 1√
2

7 (0,−1) 1

8 (1,−1) 1√
2

9 (1, 0) 1

Ring domain

To draw a circle inside another circle (c.f figure 1.8), we need the following parameters:

N1 = 9, p1 = 2, T (1) = {000,
1

4

1

4
,
1

2

1

2
,
3

4

3

4
, 111}

and

N2 = 3, p2 = 1, T (2) = {00,
1

2
, 11}.

16

1.4. Splines in Approximation Theory

Figure 1.8: Domain plot and the exterior control points.

Ellipse

To draw an ellipse we can change the scaling of control points coordinates.

Modeling a Tokamak

Starting with an ellipse, one can modify the control points and the weights to have a
simplified model of tokamak (c.f figure 1.9). More examples can be found in the chapter
7, where we construct for MHD equilibrium, a mesh which is aligned to the magnetic
field lines.
In practice, we will need to approximate domains. We can refer to the works of [83, 97].

Figure 1.9: Poloidal plane designing of a tokamak. (left) a tokamak model, (right) tokamak after h-
refinement.

1.4 Splines in Approximation Theory

Before giving the important results, it is very interesting to notice that we can approach
the B-splines coefficients, using the value at some knots. Let us define tj =

tj+1+···+tj+k−1

k−1 ,
for each j ∈ {1, · · · , N + 1}. Then, for each S ∈ Sk(T, I) ∩ C1 we have,

|S(tj)− [S]j | 6 C(k)h2‖D2S‖[tj+1,tj+k−1] (1.4.27)

17

1.4. Splines in Approximation Theory

where h := maxi∈Λ(ti+1 − ti).
If we define V S =

∑
i∈Λ S(ti)Ni, then we have

‖S − V S‖ . h2, ∀S ∈ Sk(T, I) ∩ Cm, m > 2 (1.4.28)

In the sequel, we explain how to recover the classical order p + 1, obtained using
polynomial approximation. To do so, we shall use strategies from Functional Analysis.
Let {µi}1≤i≤n be linear forms on the space of continuous functions, such that:

|µig| 6 ‖µi‖‖g‖[ti,ti+k], ∀g ∈ C0 (1.4.29)

Let :

Ag =
n∑
i=1

(µig)Ni, ∀g ∈ C0 (1.4.30)

Therefore, if the operator A is preserving polynomials of degree less than k − 1, i.e
Au = u, ∀p ∈ Π<k, we have:

‖g −Ag‖ 6 (1 + max
i
‖µi‖)C(k)‖Dkg‖hk, ∀g ∈ Ck (1.4.31)

1.4.1 Quasi-interpolant

In this section, we define a quasi-interpolant, using the dual-functions, for a local approx-
imation,

πShg =

n∑
i=1

(λig)Ni (1.4.32)

where dual functionals λi are given by 1.2.13.
We verify that it reproduces splines in Sh:

πShs = s, ∀s ∈ Sh (1.4.33)

Moreover, for each g ∈ Ck−1, we have,

‖Djg −DjπShg‖ 6 C(k, j)(m
(2j−k)+

t)hk−j−1ω(Dk−1g;h)

with mt = max{∆tr
∆ts

, |r − s| = 1, k 6 r, s 6 n}.
To extend the definition of the quasi-interpolant to functions in Lp, we must use the
Hahn-Banach extension of the functionals λi (for more details we refer to [33]). Later in
chapter 8, we shall use this idea to construct a quasi-interpolant for Box-splines.

1.4.2 Distance of a regular function to S

In Approximation Theory, Jackson’s inequality makes the relation between the distance
of a regular function (function’s best approximation) and the modulus of continuity of its
derivatives.

Proposition 1.4.1 (Jackson inequality) :
Let 0 6 j 6 k − 1, g ∈ C(j) then :

dist(g,SkT) 6 C(k, j)hjω(Djg;h)

In the case where g ∈ C(k) we have :

dist(g,SkT) 6 C(k)hk‖Dkg‖ (1.4.34)

18

1.5. Web-splines

1.5 Web-splines

Historically, the Web-spline method is the first Finite element method based on B-splines,
that takes into account the boundary. This is done thanks to the weight function. In this
section, we shall only consider uniform B-splines. Most of results in this section, are from
[58, 60, 74].

Definition 1.5.1 (uniform B-splines) The uniform B-Spline bn of degree n, is defined by the
recurrence formula :

bn(x) =

∫ x

x−1
bn−1(t)dt

which is equivalent to,
dbn

dx
(x) = bn−1(x)− bn−1(x− 1)

under the assumption : bn(0) = 0

Remark that in the chapter 8, we will use the same idea to construct the box-splines.
Another definition of uniform B-splines can be done using the knot vector T =
{0, 1, · · · , n}.

In the sequel, we shall note bnk,h(x) = bn(xh − k), for any real h > 0 and an integer
k ∈ Z. In some cases, we will omit the indices h and k when they are defined in the
context. Functions (bnk,h)k,n are the B-Splines over the grid hZ.

Definition 1.5.2 (Cardinal spline) A cardinal spline of degree 6 n and a mesh size h, is any
linear combination : ∑

k∈Z
ckb

n
k,h

where (ck)k ∈ R are a real valued sequence.

We recall this important result, which is used for Multigrid methods [61], but can also be
used in Multiscale methods:

Proposition 1.5.3 (Refinement)

bnk,h(x) =
1

2n

n+1∑
i=0

(
i

n+ 1

)
bn2k+i,h/2(x)

Proposition 1.5.4 (Convolution)

bn+m+1
k,h = bnk,h ? b

m
k,h

Proposition 1.5.5 (Scalar Product)

(bni,h, b
n
j,h) = hb2n+1(n+ 1 + j − i) = snh(j − i)

(
d

dx
bni,h,

d

dx
bnj,h) = dnh(j− i) =

1

h
(2sn−1(j− i)−sn−1(j− i+1)−sn−1(j− i−1)) = dn(j− i)

the scalar product was computed over R.

19

1.5. Web-splines

1.5.1 B-Splines on bounded domains

In the sequel, Ω will denote a real bounded domain in Rn.

Bnh(Ω) = {
∑
k∈K

ckb
n
k,h/(ck)k∈K ∈ R, ∀k ∈ K : supp(bnk,h) ∩ Ω 6= ∅}

For an easy reading, we shall write, when there is no ambiguity, B = Bnh(Ω) et bk = bnk,h
for fixed n and h.

Proposition 1.5.6 Any multi-variate polynomial of degree n, can be represented in the domain
Ω, using a cardinal spline of degree at most n :∑

k∈Z
α(k)bnk,h

where α is a multi-variate polynomial of degree at most n, for each variable kµ

Proposition 1.5.7 (Local Linear Independance) For any open Ω′ ⊂ Ω, B-Splines bk such
that Ω′ ∩ supp(bk) 6= ∅ are linearly independant.

1.5.2 Weight functions

Definition 1.5.8 A weight function ω of order p ∈ N∗ is a continuous function on Ω such that
ω(x) ' dist(x,Γ)p for any x ∈ Ω and Γ ⊂ ∂Ω. Where Γ admits a positive and sufficiently
regular measure such that the distance function have a bounded gradient. If ω is regular and non
vanishing on all the boundary, i.e ∂Ω and p = 1, and ω is said to be a standard weight function.

Under these assumptions, we will notice ωBnh(Ω) = spank∈Kωbk.

Definition 1.5.9 The weight function of order p, is said to be l-regular if :

|∂kω(x)| 6 C(ω)dist(x,Γ)p−|k|, ∀|k| 6 min(p, l)

Proposition 1.5.10 (R-functions) For the basic operations on domains, we shall define the fol-
lowing weight functions operators:

• Complementary : rC(ω) = −ω

• Intersection : rΩ1∩Ω2(ω1, ω2) = ω1 + ω2 −
√
ω2

1 + ω2
2

• Union : rΩ1∪Ω2(ω1, ω2) = ω1 + ω2 +
√
ω2

1 + ω2
2

1.5.3 Web-Splines

Remarks that when a cardinal spline vanishes on a cell, it is inevitably vanishing on all the
domain. Therefore, we can not use them in a finite element method on a general domain,
with for example a Dirichlet boundary condition. A first solution to this problem, is the
notion of interior and exterior B-spline.
Each cell in the grid, is defined by the m-uplet which consists of the left bound of each
interval.

Definition 1.5.11 A B-spline is said to be interior when it has at least one cell in the interior of
the domain. Otherwise, it is said to be exterior.

20

1.5. Web-splines

Figure 1.10: (1st line) : the computational domain is a circle centered at 0 and of radius 1. (2nd line) : (left)
The number of links depending on the position of the spline, for a quadratic B-spline, on a
32× 32 grid. (right) example of interior and exterior quadratic B-splines.

We denote I the set of all interior B-splines. J will denote the exterior ones. Figure 1.10
shows examples of interior and exterior quadratic B-splines in a circular domain.

As seen before, every polynomial P of degree n, defined on the domain Ω, can be
written as : ∑

i∈I
α(i)bi +

∑
j∈J

α(j)bj

where α is a multi-variate polynomial of degree at most n for each variable kµ. This helps
us to compute α(j), j ∈ J from any cube (n+ 1)m of interior indices.
Let us denote, I(j) = ij + {0, .., n}m ⊂ I, where ij is the nearest interior index to j. We
determine α using Lagrange interpolation at the nodes i ∈ I ∩ I(j).
Hence, we get :

α(j) =
∑
i∈I(j)

ei,jα(i)

21

1.5. Web-splines

for a given sequence {ei,j} to be determined. Therefore,

P (x) =
∑
i∈I

(bi(x) +
∑
j∈J (i)

ei,jbj(x))

where, J (i) = {j ∈ J /i ∈ I(j)}.
In this case, for a weight function ω, we denote:

Bi(x) =
ω(x)

ω(xi)
(bi(x) +

∑
j∈J (i)

ei,jbj(x))

where, xi is the middle of the interior cell.
In what follows, we denote weB the set of all web-splines.

Remark 1.5.12 Usually, the majority of the coefficients ei,j are equal to 0. Notice that the choice
of the interior index and the cube is very important. A wrong choice may lead to big coefficients
ei,j , and consequently will reduce the accuracy of the method. In this case, one may use a local
refinement.

In figure 1.11, we plot the shape of basis functions depending on its position in the do-
main.

1.5.4 Stability in weB

Proposition 1.5.13 For any weight function of order p, every linear combination of the interior
web-splines verifies :

h
m
2 ‖C‖ . ‖

∑
i∈I

ciBi‖0 . h
m
2 ‖C‖

We also have the following result:

Proposition 1.5.14 (Bernstein Inequality) If the weight function is of order p, and l-regular.
For any n > l we have:

hk‖
∑
i∈I

ciBi‖k . h
m
2 ‖C‖, ∀k 6 l

1.5.5 Study of an elliptic partial differential equation

In this section, we study an elliptic partial differential equation with a Dirichlet boundary
condition.
The problem we try to solve is of the form:
Find u ∈ H1

0 (Ω), such that: {
−∇ · (A∇u) = f, Ω

u = 0, ∂Ω
(1.5.35)

We will suppose that both the source term f and the boundary of the domain Ω ⊂ Rm
are regular, in order that a solution exists. A denotes here a matrix function :

A(x, y) =

(
a11(x, y) a21(x, y)
a21(x, y) a22(x, y)

)
22

1.5. Web-splines

Figure 1.11: The web-spline support depending on the position of the index and the number of linked in-
dices

The variational formulation leads to:∫
Ω
A∇u · ∇φ =

∫
fφ, ∀φ ∈ H1

0 (Ω)

As in the classical finite element method, we seek to approach the solution u by a function
uh on the finite dimensional space Xh.∫

Ω
A∇uh · ∇vh =

∫
fvh, ∀vh ∈ Xh

In our case, we will take for Xh, one of the following spaces B, wB or weB.
Classically, by expanding both of uh and vh in the basis of weB, we get:∑

i,i′

[uh]i [vh]i′

∫
Ω
A∇Bi · ∇Bi′ =

∑
i′

[vh]i

∫
Ω
Bif

By defining M = (
∫

ΩA∇Bi · ∇Bi′)i,i′ and F = (
∫

ΩBif)i, we get the classical linear
system:

M [uh] = F

23

1.5. Web-splines

1.5.6 Polynomial Approximation

We recall the classical result:

Proposition 1.5.15 (Bramble-Hilbert) Let Πn be the orthogonal projector into the space of
polynomials of degree 6 n, on a domain hD. Therefore, for every 0 6 q 6 p 6 n + 1, we
have

|f −Πnf |q,hD 6 C(D,n)hp−q|f |p,hD (1.5.36)

In the sequel, we will use the quasi-interpolant defined as:

Ph· =
∑
i∈I

(B∗i , ·)0Bi

where B∗i are dual functions of Bi, see [58] for more details.

Proposition 1.5.16 We have the following properties:

• ∀π ∈ Π<n, Ph(ωπ) = ωπ

• if ω is of order p and l-regular, then for each cell Q, and every k 6 min(l, n), we have:

‖Phu‖k,Q∩Ω . h
−k‖u‖0,Q∗

where Q∗ = ∪i∈I(Q)supp(Bi) ⊂ Ω is the union of the supports of all web-splines that are
non identically equal to 0 on Q ∩ Ω.

We have the following global convergence result:

Proposition 1.5.17 If ω is of order p and l-regular, and if v = u
ω is regular on Ω, then ∀k 6

min(l, n), we have :

inf
uh∈ωBh

‖u− uh‖k 6 infuh∈ωeBh‖u− uh‖k . h
n+1−k

1.5.7 Numerical results

We seek to solve the Poisson equation on a circular domain. The circle is centered at 0,
with a radius equal to 1, which can be parametrized by the function:

ω(x, y) = 1− x2 − y2

Another approach given by Hollig, is to consider a weight function which is equal to 1
inside a particular subdomain, and then use the weight ω to take into account the bound-
ary. We choose this subdomain to be a circle of radius equal to 1− δ. Following the idea
given by Hollig, and in order to have a regular weight function, we took :

ω0 := ωδ,γ(x, y) = (1− dist(x, ∂Ω))γ

where, d(x, y) = (

√
x2+y2−(1−δ)

δ)2.
To compute element integrals, we used the Gauss-Lobatto quadrature method. But

we still have a problem near the boundary. In fact we need a particular quadrature
method, to take into account the behavior of the boundary. This may be difficult and
not easy in the case of complex domains or a moving boundary. Therefore in practice,
the web-spline method will be less accurate because of the error made near the bound-
ary. Also, another problem is the choice of the parameter δ. Remark that we have imple-
mented a version of an ε-algorithm for the evaluation of integrals. But, it is not sufficient.

24

1.5. Web-splines

How to choose δ

The choice of the parameter δ is very important, as we can see in figure 1.12.
We have computed using quadratic B-splines, and different values of δ, the L2 and H1

error norm, in the case of grids 128× 128, 256× 256 and 512× 512.

Figure 1.12: The impact of δ on the error norm. (left) L2 norm, (right) H1 norm

Another important thing is how do we link the exterior and interior indices. A bad
algorithm may be bad on the accuracy of the method (see figure 1.13)

Figure 1.13: The impact of the linking algorithm on theL2 error norm in the case of grids 128×128, 256×256
and 512× 512.

To finish, another consequence of the precision-error of element integrals and the link-
ing algorithm, is that the error (u − uh) will not preserve the symmetry of the domain.
As shown in figure 1.14, we can see that on a circular domain, the error is very different
comparing the north west to the south east.

25

1.6. Isogeometric analysis

Figure 1.14: Examples of the error u− uh for quadratic B-splines

1.5.8 Conclusion

The web-spline method allows us to use uniform B-Splines in a Finite Element Method on
general domains, by integrating an implicit definition of the boundary in the basis. How-
ever, the theoretical accuracy can not be achieved using simple quadrature formulas. As
we do not want to have a specific formula for each domain, which will be unfeasible
in Plasma Physics, the only solution to use B-Splines, would be to couple them with a
mapping that maps the patch onto the real domain. The Web-spline method does not
have only disadvantages! One of the most interesting points is the easy use of Multi-
Grid Method thanks to the refinement strategy, even if we are penalized by the loss of
accuracy.

1.6 Isogeometric analysis

The idea behind IGA method is to use the same functions that define the physical do-
main, to approach the solution of a partial differential equation. We will only treat the
2D case.
In the sequel, we consider 2 knot vectors Tξ = {ξ1, · · · , ξN1+p1+1} and Tη =

{η1, · · · , ηN2+p2+1}. Let Wξ = {ωξ1, · · · , ω
ξ
N1
} and Wη = {ωη1 , · · · , ω

η
N2
} be two weights

sequences, and (Pij)16i6N1,16j6N2 a sequence of control points. This defines a mapping

F(ξ, η) =
∑

16i6N1,16j6N2

Rξi (ξ)R
η
j (η)Pij (1.6.37)

that maps the rectangular patch [ξ1, ξN1] × [η1, ηN2] onto the physical domain Ω. Where
Rξ and Rη are NURBS functions defined by knot vectors Tξ and Tη, and weights Wξ and
Wη.
As said before, we consider only open knot vectors. Without loss of generality, we shall
consider knot vectors of the form:

ξ1 = · · · = ξp1+1 = η1 = · · · = ηp2+1 = 0,

and
ξN1+1 = · · · = ξN1+p1+1 = ηN2+1 = · · · = ηN2+p2+1 = 1.

26

1.6. Isogeometric analysis

Let K be a cell in the physical domain. Q is the parametric associated cell and such
that K = F(Q). Let JF be the Jacobian of the transformation F, that maps any parametric
domain point (ξ, η) into physical domain point (x, y) (figure 1.15).

Q

F

Patch
Physical Domain

K
Q

F

Patch
Physical Domain

K

Figure 1.15: Mapping from the patch to the physical domain: (left) initial patch, (right) patch after h-
refinement in the η direction. Here, we have K = F(Q)

In figure 1.16, we give an example of the creation of a domain from a square.

Figure 1.16: Creating and Meshing a domain starting from a square (from left to right and top to bottom) :
we move a control point, then elevate the splines degree by 1, then moving the new control
points.

For any function v of (x, y) we associate its representation in the parametric domain

ṽ(ξ, η) := v ◦ F(ξ, η) = v(x, y).

The basis functions, B-splines (NURBS), will not be affected by these changes, as they

27

1.6. Isogeometric analysis

are invariant by affine transformations. For a point (x, y) in the physical domain, let us
denote

(x, y) = F(ξ, η), x = α(ξ, η) and y = β(ξ, η).

then,

α1 =
∂α

∂ξ
α2 =

∂α

∂η
β1 =

∂β

∂ξ
β2 =

∂β

∂η
,

we have for the determinant of the Jacobian

det(JF) = α1β2 − α2β1, (1.6.38)

JF =

(
α1 α2

β1 β2

)
, (1.6.39)

J−1
F =

1

∆

(
β2 −α2

−β1 α1

)
. (1.6.40)

Let u be a (scalar or vector) function defined on the physical domain. When we use the
patch coordinates, we will write it ũ, idem for the used spaces.

1.6.1 Refinement strategies

Refining the grid can be done in 3 different ways. This is the most interesting aspects of
B-splines basis,

• using the patch parameter h, by inserting new knots. This is the h-refinement, it is
the equivalent to mesh refinement of the classical finite element method.

• using the degree p, by elevating the B-spline degree. This is the p-refinement, it is
the equivalent to using higher finite element order in the classical FEM.

• using the regularity of B-splines, by increasing / decreasing the multiplicity of in-
serted knots. This is the k-refinement. This new strategy does not have an equiva-
lent in the classical FEM.

J.A. Evans et al. [39] studied the k-refinement using the theory of Kolmogorov n-widths.
As we will see later, the use of this strategy can be more efficient than the classical p-
refinement, as it reduces the dimension of the basis.
An active area of research is the study of local refinement. It is important to notice that
the use of tensor products leads to the existence of a lot of superfluous control points,
that might exist because of this cartesian grid in the parametric domain. Sederberg et al.
[100] defined the notion of T-splines that allows us to reduce the number of those control
points. In [35] Dörfel et al. used T-splines for local h-refinement in isogeometric anal-
ysis. Dokken, Kvamsdal and their team from SINTEF are currently developing another
approach for local refinement, based on LR-splines [108]. In [114], authors propose the
use of a hierarchical local refinement method.

1.6.2 Patch

The latest construction gives a coarse mesh, we can then, use h/p/k refinements to create
the grid. We can also use multiple patches to describe more complex domains [67, 23].
There are many ways to stick those patches together.

28

1.6. Isogeometric analysis

1.6.3 Grid generation

For this purpose, we use alternatively h and p-refinement. The minimal degree of basis
functions is imposed by the domain design, which will be given by the coarsest mesh.
When inserting knots, we can use uniformly-spaced knots or non uniformly-spaced ones.
In figures 1.17 and 1.18, we give examples of such refinements.

Figure 1.17: Grid generation: (left) the coarsest mesh, (right) domain after h-refinement. The minimal degree
of basis functions, in this case, is 2.

Figure 1.18: Grid generation: 1st line: (left) after h-refinement, (right) after p-refinement, p1 = p2 = 3. 2nd

line: (left) after h-refinement p1 = p2 = 3, (right) using unstructured mesh, p1 = p2 = 2.

1.6.4 Local approximation

The first step, in finite element method is to study the quasi-interpolant πSh . As noticed
before, πSh preserves splines in Sh. Another important property, is the stability of πSh .

Theorem 1.6.1 (Quasi-interpolant stability) For each v ∈ L2(P) and Q ∈ Qh
‖πShv‖L2(Q) . ‖v‖L2(Q) (1.6.41)

29

1.6. Isogeometric analysis

As the quasi-interpolant verifies the preserving and stability properties, then we have
the following local approximation result :

Theorem 1.6.2 (Bramble - Hilbert on Sh) Let 0 6 j 6 l 6 p+ 1 and Q ∈ Qh, then

|v − πShv|Hj(Q) . h
l−j
Q |v|Hl(Q) ∀v ∈ Hlh(Q) ∩ L2(P) (1.6.42)

Let us define the quasi-interpolant πNh on Nh:

πNhv :=
πShωv

ω
(1.6.43)

where ω =
∑

16i6N1,16j6N2
ωξi (ξ)ω

η
j (η)Pij . The next result shows that πNh verifies a local

approximation:

Theorem 1.6.3 (Bramble - Hilbert on Nh) Let 0 6 j 6 l 6 p+ 1 and Q ∈ Qh, then

|v − πNhv|Hj(Q) . h
l−j
Q |v|Hl(Q) ∀v ∈ H

l
h(Q) ∩ L2(P) (1.6.44)

In order to get the approximation in the physical domain, we need to estimate the
change of variable using the mapping F, [66]:

Lemma 1.6.4 Let m be a non-negative integer, Q ∈ Qh and K = F(Q). For all v ∈ Hm(K),
we have:

|v ◦ F|Hm(Q) . ‖ det∇F−1‖
1
2

L∞(K)

m∑
j=0

‖∇F‖jL∞(Q)|v|Hj(K) (1.6.45)

|v|Hm(K) . ‖ det∇F‖
1
2

L∞(Q)‖∇F‖−mL∞(Q)

m∑
j=0

|v ◦ F|Hj(Q) (1.6.46)

To extend the local approximation to the physical domain, we must define the quasi-
interpolant on Ω:

πVhv := πNh(v ◦ F) ◦ F−1 (1.6.47)

we give the local approximation result :

Theorem 1.6.5 (Bramble - Hilbert on Vh) Let 0 6 j 6 l 6 p+ 1 and K ∈ Kh, then

|v − πVhv|Hj(K) . h
l−j
K

l∑
i=0

‖∇F‖i−l
L∞(Q)

|v|Hi(K) ∀v ∈ H
l(K) ∩ L2(Ω) (1.6.48)

1.6.5 Global approximation using NURBS

With the previous properties, we can have a global approximation:

Theorem 1.6.6 (Global approximation) ∀v ∈ H l(Ω), 0 6 j 6 l 6 p+ 1,

∑
K∈Kh

|v − πVhv|
2
Hjh(K)

.
∑
K∈Kh

h
2(l−j)
K

l∑
i=0

‖∇F‖2(i−l)
L∞(F−1(K))

|v|Hi(K). (1.6.49)

more details can be found in [66].

30

CHAPTER 2

Elliptic Equations

Contents
2.1 Galerkin-Ritz approximation . 32
2.2 The variational formulation . 34
2.3 Assembling matrices . 35

2.3.1 Stiffness local matrix . 35
2.3.2 Mass local matrix . 36
2.3.3 Local load vector . 36
2.3.4 Assembling matrices algorithm . 36

2.4 Numerical results . 37
2.4.1 Domain defined by B-splines curves 37
2.4.2 Solution for an affine transformation 37

2.5 Domain defined with NURBS curves . 40
2.5.1 Poisson’s equation on a quarter ring domain 40
2.5.2 Poisson’s equation on a ring domain 42

2.6 Computing the solution on general domain 42
2.7 Nonlinear elliptic problems . 45

2.7.1 Picard’s algorithm . 47
2.7.2 Newton’s algorithm . 47
2.7.3 Numerical results : Example from combustion theory 48

31

2.1. Galerkin-Ritz approximation

In this chapter, we will derive a variational formulation for elliptic partial differential
equations, using the IGA paradigm. Details on the implementations are given, but we
refer the reader to [65, 23, 48].

Let us consider the following problem:

For given functions f, g and k, find u such that:
−∇ · (A∇u) = f ,Ω

u = g ,ΓD
∇u · n = k ,ΓN

(2.0.1)

where ΓD
⋃

ΓN = ∂Ω and ΓD
⋂

ΓN = ∅.

Let us consider the following sets:

X = H1(Ω)

S = {v/v ∈ H1(Ω), v|ΓD = g}

V = {v/v ∈ H1(Ω), v|ΓD = 0}

Using the Green formula, the variational formulation of (2.0.1) writes :

Find u ∈ S such that:
a(w, u) = l(w), ∀w ∈ V (2.0.2)

where we denote :

a(w, v) =

∫
Ω
A∇v · ∇w, and l(w) =

∫
Ω
fw +

∫
ΓN

kw (2.0.3)

2.1 Galerkin-Ritz approximation

Let Xh,Vh be finite dimensional subspaces of X ,V , where h is a parameter intended to
tend to zero. Let Sh be a finite dimensional approximation of S . Remark that the last set
is not necessarily a vector space.
The discrete Galerkin formulation writes:

Find uh = vh + gh ∈ Sh such that:

a(wh, uh) = l(wh), ∀wh ∈ Vh (2.1.4)

32

2.1. Galerkin-Ritz approximation

where here gh, k are given functions, with gh ∈ Sh.
We suppose a rearrangement of the basis functions such that: Ri|ΓD = 0, ∀i ∈ {1, .., n −
nD}. This helps us to construct a basis of Vh i.e :

∀wh ∈ Vh, wh =

n−nD∑
i=1

[wh]iRi

gh ∈ Sh is such that [gh]i = 0,∀i ∈ {1, .., n − nD} and so, gh =
∑n

i=n−nD+1 [gh]iRi
Therefore, uh ∈ Sh writes

uh =

n−nD∑
i=1

[uh]iRi +

n∑
i=n−nD+1

[gh]iRi .

Hence, equation (2.1.4) writes :

n−nD∑
i=1

[wh]i {
n−nD∑
j=1

[uh]j a(Ri, Rj)} =

n−nD∑
i=1

[wh]i {l(Ri)−
n∑

m=n−nD+1

[uh]m a(Ri, Rm)}

therefore

n−nD∑
j=1

[uh]j a(Ri, Rj) = l(Ri)−
n∑

m=n−nD+1

[gh]m a(Ri, Rm), ∀i ∈ {1, .., n− nD}

We denote for i, j ∈ {1, .., n− nD}

Σi,j = a(Ri, Rj)

Li = l(Ri)− a(Ri, gh)

therefore we get:
n−nD∑
j=1

Σi,j [uh]j = Li, ∀i ∈ {1, .., n− nD}

Finally, let us introduce the matrix :

Σ = (Σi,j)16i,j6n−nD

and the vectors :
L = (Li)

T
16i6n−nD

[uh] = ([uh]i)T16i6n−nD

this leads to the linear system
Σ [uh] = L .

33

2.2. The variational formulation

2.2 The variational formulation

We have obtained the linear formulation of our discrete formulation. In the sequel, we are
interested in rewriting it by computing the integrals on the parametric domain (patch).
For each cell, Q in the physical domain, we can associate a cell Q̃ in the parametric do-
main and such that Q = F(Q̃). We denote by JF the jacobian of this transformation F,
that maps each point (ξ, η), in the parametric domain, onto a point (x, y) in the physical
domain.
For each function v of (x, y) we associate the function

ṽ(ξ, η) := v ◦ F(ξ, η) = v(x, y)

Notice that the basis functionsRi are not affected by this mapping. Using these notations,
the reader can know at anytime, if we are working in the physical or the parametric
domain.
Let us denote JF−1 the jacobian of F−1. For each v, w defined on F(Q̃) = Q, we have∫

Q
(A∇v) · ∇w dx dy =

∫
Q̃=F−1(Q)

(AJF−1∇̃ṽ) · (JF−1∇̃w̃)
1

det JF−1

dξ dη

which can be written,∫
Q

(A∇v) · ∇w dx dy =

∫
Q̃
∇̃ṽJTF−1A

TJF−1∇̃w̃ det(JF) dξ dη

Let us denote d = det(JF) = α1β2 − α2β1,

α1 =
∂α

∂ξ
, α2 =

∂α

∂η

β1 =
∂β

∂ξ
, β2 =

∂β

∂η

where for simplification, we use for each point in the physical domain (x, y) = F(ξ, η),

x = α(ξ, η) and y = β(ξ, η). (2.2.5)

Doing this, JF−1 writes simply,

JF−1 =
1

d

(
β2 −β1

−α2 α1

)
In the sequel, let us denote Θ = JTF−1A

TJF−1 , and let∫
Q

(A∇v) · ∇w dx dy =

∫
Q̃
∇̃ṽ Θ ∇̃w̃ det(JF) dξ dη

When A is the identity matrix, we get:

Θ =
1

d2

(
α2

2 + β2
2 −α1α2 − β1β2

−α1α2 − β1β2 α2
1 + β2

1

)
.

In the general case, if

A =

(
a11 a12

a21 a22

)
34

2.3. Assembling matrices

we have:

Θ =
1

d2

(
Θ11 Θ12

Θ21 Θ22

)
with,

Θ11 = a11β
2
2 − (a12 + a21)α2β2 + a22α

2
2 (2.2.6)

Θ22 = a11β
2
1 − (a12 + a21)α1β1 + a22α

2
1 (2.2.7)

Θ21 = −(a11β1β2 − a12α1β2 − a21α2β1 + a22α1α2) (2.2.8)
Θ12 = −(a11β1β2 − a12α2β1 − a21α1β2 + a22α1α2) (2.2.9)

For the load vector, the computation is much simpler,∫
Q
f v dx dy =

∫
Q̃
f̃ ṽ det(JF) dξ dη (2.2.10)

And for the Neumann part,∫
∂Q∩ΓN

k v dΓ =

∫
∂Q̃∩Γ̃N

k̃ w̃ det(JF|Γ̃)dΓ̃ (2.2.11)

2.3 Assembling matrices

We have seen that
n−nD∑
j=1

Σi,j [uh]j = Li, ∀i ∈ {1, .., n− nD}

with,

Σi,j = a(Ri, Rj) =

∫
Ω̃
∇̃Ri Θ ∇̃Rj det(JF) dξ dη

=
∑
e∈E

∫
Q̃e

∇̃Ri Θ ∇̃Rj det(JF) dξ dη

=
∑
e∈E

ae(Ri, Rj)

because {Q̃e, e ∈ E} form a partition of the parametric domain P , where E is the set of all
elements and

ae(v, w) =

∫
Q̃e

∇̃ṽ Θ ∇̃w̃ det(JF) dξ dη

2.3.1 Stiffness local matrix

For (ie, je) ∈ {1, · · · , nen}, we denote by

Σe
ie,je = ae(Rie , Rje)

which defines a local stiffness matrix Σe = (Σe
ie,je

)16ie,je6nen .

35

2.3. Assembling matrices

2.3.2 Mass local matrix

Assembling the mass matrix can be done following the same method. The mass matrix
M = (Mi,j)16i,j6n−nD , is defined as

Mi,j =

∫
Ω
RiRj dx dy =

∫
Ω̃
RiRj det(JF) dξ dη

In the same way, we define the local mass matrix, M e = (M e
ie,je

)16ie,je6nen with

M e
ie,je =

∫
Q̃e

RiRj det(JF) dξ dη

2.3.3 Local load vector

We have
Li = l(Ri)− a(Ri, gh) =

∑
e∈E

le(Ri)− ae(Ri, gh)

Let us define, Leie = le(Rie)− ae(Rie , gh)
this is the load local vector Le = (Leie)16ie6nen

2.3.4 Assembling matrices algorithm

In this section, we give an algorithm of how one can assemble, with low cost, the
matrices and vectors involved in the linear system. In the sequel, we consider that we
have the following routines:

• build_stiffness_Local : it computes for each element e the quantity Σe,

• build_Mass_Local : it computes for each element e the quantity M e,

• build_source_Local : it computes for each element e the quantity Le,

• Assembly_from_elt : it copies the local matrices into the global matrices,

• assembly_Field : it computes all functions needed, at a given point in the para-
metric domain.

subroutine Assembly_Matrix (...)
! loop over all elements of non zero measure
do elt = 1, nel

if (measure(e) == 0) then
cycle

end if
! loop over quadrature points

do i1 = 1, GL + 1
do j1 = 1, GL + 1

call assembly_Field (...)
call build_stiffness_Local (...)
call build_mass_Local (...)
call build_source_Local (...)

36

2.4. Numerical results

end do
end do
call Assembly_from_elt (...)

end do
end subroutine Assembly_Matrix

The algorithm can be understood as :

1. We loop over each element of non zero measure,

2. For each element e, we loop over the quadrature points in the element,

3. We compute all functions needed (Rie , its derivatives, · · ·)

4. We compute all local matrices, and vectors (source terms)

5. We copy all local matrices into the global ones, thanks to the LM array.

Remark 2.3.1 In PyIGA , we perform a loop on elements, at the initialization, in order to assign
a new id, and take into account only non zero elements. The interest here, is that all fields (c.f
chapter D) will have a common indexation of elements.

Remark 2.3.2 In [68], Hughes et al. propose new quadrature rules that take into account the reg-
ularity of splines across elements. For the moment, PyIGA does not handle these type of quadra-
ture rules; we use the Gauss-Legendre quadrature.

2.4 Numerical results

For validation tests, it is important to use mappings for which we can compute the in-
verse analytically. To this purpose, we use affine transformations.
In the sequel, we present different tests, beginning with domains defined by B-splines
curves, and then NURBS. For more details on how we solve the linear system, we refer
the reader to the PyIGA’s documentation.

2.4.1 Domain defined by B-splines curves

We begin our tests with a domain defined by B-splines curves. We start with a square,
where the mapping is simply the identity, and then a parallelepiped.
In figure 2.1, we can see the convergence order of the error u−uh, using splines of degree
p. The expected order is p+ 1.

2.4.2 Solution for an affine transformation

We consider, here, the case where the mapping can be written in the form:(
x
y

)
= A

(
ξ
η

)
+B =

(
a11 a12

a21 a22

)(
ξ
η

)
+

(
b1
b2

)
We suppose N1 = N2 = 2, p1 = p2 = 1 et T1 = T2 = { 0 0 1 1 }. We get then,

M(ξ, η) =

(
x
y

)
=

2∑
i=1

2∑
j=1

N
(1)
i (ξ)N

(2)
j (η)Pij

37

2.4. Numerical results

Figure 2.1: Convergence order: (left) for a square domain, (right) parallelepiped

Let us define Pij =

(
Pxij
Pyij

)
. As we are using linear B-splines, we have:

{
x = (1− ξ)(1− η)Px11 + ξ(1− η)Px21 + (1− ξ)ηPx12 + ξηPx22

y = (1− ξ)(1− η)Py11 + ξ(1− η)Py21 + (1− ξ)ηPy12 + ξηPy22

We want to have {
x = a11ξ + a12η + b1
y = a21ξ + a22η + b2

reordering the first equation leads to,

a11ξ + a12η + b1 = Px11 + (Px21 − Px11)ξ + (Px12 − Px11)η + (Px11 − Px12 − Px21 + Px22)ξη

where,
Px11 = b1

Px12 = a12 + b1
Px21 = a11 + b1

Px22 = a11 + a12 + b1

We also have :
Py11 = b2

Py12 = a22 + b2
Py21 = a21 + b2

Py22 = a21 + a22 + b2

Posing δ = a11a22 − a12a21, we get

A−1 =
1

δ

(
a22 −a12

−a21 a11

)
so that {

ξ = 1
δ{a22(x− b1)− a12(y − b2)}

η = 1
δ{−a21(x− b1) + a11(y − b2)}

We consider a particular solution of Poisson’s equation, under Dirichlet’s boundary con-
dition :

u(x, y) = ũ(ξ, η) = sin(λ1ξ) sin(λ2η)

38

2.4. Numerical results

with λ1 = π
L1

et λ2 = π
L2

, where 0 6 ξ 6 L1 and 0 6 η 6 L2. Here, L1 = L2 = 1 and
λ := λ1 = λ2.
We denote {

ω1(x, y) = λ1ξ
ω2(x, y) = λ2η

where u(x, y) = sin(ω1(x, y)) sin(ω2(x, y)), then

∂u

∂ξ
=
∂ω1

∂ξ
cos(ω1) sin(ω2) +

∂ω2

∂ξ
cos(ω2) sin(ω1)

and

∂2u

∂ξ2
=
∂2ω1

∂ξ2
cos(ω1) sin(ω2) +

∂2ω2

∂ξ2
cos(ω2) sin(ω1)

−{(∂ω1

∂ξ
)2 + (

∂ω2

∂ξ
)2} sin(ω1) sin(ω2)

+2{∂ω1

∂ξ

∂ω2

∂ξ
} cos(ω1) cos(ω2)

therefore,

4u = 4ω1 cos(ω1) sin(ω2) +4ω2 cos(ω2) sin(ω1)

−{‖∇ω1‖2 + ‖∇ω2‖2} sin(ω1) sin(ω2)

+2{∇ω1 · ∇ω2} cos(ω1) cos(ω2)

As4ω1 = 4ω2 = 0, and

∇ω1 = 1
δ

(
a22

−a12

)
, ∇ω2 = 1

δ

(
−a21

a11

)
we get,

4u =
−1

δ2
{a2

11 + a2
12 + a2

21 + a2
22} sin(ω1) sin(ω2)

−2

δ2
{a11a12 + a21a22} cos(ω1) cos(ω2)

Therefore, we only need to take the source term as f = −4 u.

Numerical results

We have made several tests, depending on the transformation. For the first one, (Test
(1)), we have considered the case

A =

(
0 1
1 0

)
, B =

(
0
0

)
for the second one, (Test (2)), we used

A =

(
1 1
2 0

)
, B =

(
1
0

)
39

2.5. Domain defined with NURBS curves

and for the third (Test (3)), we used

A =

(
2 1
1 2

)
, B =

(
0
0

)
Figure 2.2 shows that we get the expected convergence order, which is p+ 1, when using
splines of degree p. We remark also the similar behavior of the convergence order in the
three tests.

Figure 2.2: Convergence order for affine transformation. The L2 norm error for, first line Test (1) (left) and
Test (2) (right), second line Test (3).

2.5 Domain defined with NURBS curves

2.5.1 Poisson’s equation on a quarter ring domain

The first test is done for a quarter ring domain. The Dirichlet homogenous boundary
condition was imposed on all the boundary. Notice that one can use different type of
finite elements, thanks to the k-refinement strategy. Recalling that, when the multiplicity
at a knot is m, for 1 6 m 6 p, the basis functions are then Cp−m at the interfaces of the
involved elements.

40

2.5. Domain defined with NURBS curves

Figure 2.3: Quarter ring domain: (left) Domain and its control points, (right) Convergence order of the error
u− uh, in L2 norm

Remark also, that increasing the multiplicity of inserted knots, increases the dimension of
the discrete space Vh. In figure 2.4, we plot theL2-error norm depending on the regularity
of the finite space (multiplicity of inserted knots). Figure 2.5, shows the convergence

Figure 2.4: The error u− uh, in the L2 norm, depending on the regularity (using k-refinement)

order function of the number of degrees of freedom.

41

2.6. Computing the solution on general domain

degree dof L2-error
2 4 4.3922758 10−2

2 16 1.1411639 10−2

2 64 8.0964235 10−4

2 256 1.3062773 10−4

2 1024 1.4651313 10−5

2 4096 1.6770547 10−6

2 16384 2.0319858 10−7

degree dof L2-error
3 9 1.8776008 10−2

3 25 8.9466095 10−4

3 81 4.2640301 10−4

3 289 2.2630589 10−5

3 1089 1.3793966 10−6

3 4225 9.6672361 10−8

3 16641 6.4468944 10−9

Figure 2.5: The L2-error norm in function of the number of degrees of freedom, for quadratic and cubic
splines

2.5.2 Poisson’s equation on a ring domain

In this test, we look to solve the Poisson’s problem in a ring domain. The analytical
solution taken is u(x, y) = sin(π

r2
max−r2

min
(x2 + y2 − r2

min)). Figures (2.6, 2.8) show the

convergence order. In figure 2.7, we showed the L2-error norm as a function of the spline
degree and the number of degrees of freedom.

Figure 2.6: Convergence order of the error u− uh in the L2 norm

2.6 Computing the solution on general domain

Let us denote: d = α1β2 − α2β1,

α1 =
∂α

∂ξ
, α2 =

∂α

∂η

β1 =
∂β

∂ξ
, β2 =

∂β

∂η

α11 =
∂2α

∂ξ2
, α12 =

∂2α

∂ξ∂η
, α22 =

∂2α

∂η2

42

2.6. Computing the solution on general domain

degree dof L2-error
2 16 3.3114853 10−2

2 48 6.1729483 10−3

2 128 6.0494590 10−4

2 384 6.9280406 10−5

2 1280 8.4546119 10−6

2 4608 1.0503232 10−6

2 17408 1.3108596 10−7

degree dof L2-error
3 36 1.5201134 10−2

3 80 9.1622683 10−4

3 180 5.8446087 10−5

3 476 3.5830426 10−6

3 1452 2.2346372 10−7

3 4940 1.4003773 10−8

3 18060 8.7738695 10−10

Figure 2.7: The L2-error norm in function of the number of degrees of freedom, for quadratic and cubic
splines

2 3 4 5 6
3.351082 3.970526 5.694030 5.265023 7.3045905
3.126287 4.027849 5.169361 6.133205 7.1552658
3.034637 4.003073 5.034454 6.035759 7.0688696
3.008905 3.996153 5.005171 6.002190 6.9955629
3.002248 3.996459 4.999353 5.981826 -

Figure 2.8: The convergence for different splines on grids 8× 8, 16× 16, 32× 32, 64× 64 and 128× 128

β11 =
∂2β

∂ξ2
, β12 =

∂2β

∂ξ∂η
, β22 =

∂2β

∂η2

In the sequel, we will give the solution for Poisson’s problem, on a domain defined by a
NURBS. We will look for a couple (u, f) such that u is the solution of the problem :
Find u ∈ H1

0 (Ω) such that:
−4 u = f ,Ω (2.6.12)

We have the following chain-rules formulas:

∂ũ

∂ξ
= α1

∂u

∂x
+ β1

∂u

∂y

∂ũ

∂η
= α2

∂u

∂x
+ β2

∂u

∂y

Also, for the second order, we have:

∂2ũ

∂ξ2
= α11

∂u

∂x
+ β11

∂u

∂y
+ α2

1

∂2u

∂x2
+ 2α1β1

∂2u

∂x∂y
+ β2

1

∂2u

∂y2

∂2ũ

∂ξ∂η
= α12

∂u

∂x
+ β12

∂u

∂y
+ α1α2

∂2u

∂x2
+ (α1β2 + α2β1)

∂2u

∂x∂y
+ β1β2

∂2u

∂y2

∂2ũ

∂η2
= α22

∂u

∂x
+ β22

∂u

∂y
+ α2

2

∂2u

∂x2
+ 2α2β2

∂2u

∂x∂y
+ β2

2

∂2u

∂y2

43

2.6. Computing the solution on general domain

Let

H =

 α2
1 2α1β1 β2

1

α1α2 α1β2 + α2β1 β1β2

α2
2 2α2β2 β2

2

The inverse of H is easily computed:

H−1 =
1

d2

 β2
2 −2β1β2 α2

2

−α2β2 α1β2 + α2β1 −α1β1

β2
1 −2α1α2 α2

1

Let us denote:

D2u =
(

∂2u
∂x2

∂2u
∂x∂y

∂2u
∂y2

)T
(2.6.13)

D̃2ũ =
(

∂2ũ
∂ξ2

∂2ũ
∂ξ∂η

∂2ũ
∂η2

)T
(2.6.14)

and,

C =
(
α11

∂u
∂x + β11

∂u
∂y α12

∂u
∂x + β12

∂u
∂y α22

∂u
∂x + β22

∂u
∂y

)T
(2.6.15)

hence,
D̃2ũ = HD2u+ C

therefore we get:
D2u = H−1(D̃2ũ− C)

We can now compute the Laplacian of u, and we get :

d2 4 u = (β2
1 + β2

2){∂
2ũ

∂ξ2
− α11

∂u

∂x
− β11

∂u

∂y
}

−2(α1α2 + β1β2){ ∂
2ũ

∂ξ∂η
− α12

∂u

∂x
− β12

∂u

∂y
}

+(α2
1 + α2

2){∂
2ũ

∂η2
− α22

∂u

∂x
− β22

∂u

∂y
}

On the other hand, we have

∂u

∂x
=

1

d
{β2

∂ũ

∂ξ
− β1

∂ũ

∂η
}

∂u

∂y
=

1

d
{−α2

∂ũ

∂ξ
+ α1

∂ũ

∂η
}

we inject these relations in the precedent equation, and we get:

4u = c11
∂2ũ

∂ξ2
+ 2c12

∂2ũ

∂ξ∂η
+ c22

∂2ũ

∂η2
+ c1

∂ũ

∂ξ
+ c2

∂ũ

∂η
(2.6.16)

44

2.7. Nonlinear elliptic problems

where :

c11 =
1

d2
{β2

1 + β2
2} (2.6.17)

c12 = − 1

d2
{α1α2 + β1β2} (2.6.18)

c22 =
1

d2
{α2

1 + α2
2} (2.6.19)

c1 =
−α11β2 + β11α2

d
c11 + 2

−α12β2 + β12α2

d
c12 +

−α22β2 + β22α2

d
c22 (2.6.20)

c2 =
α11β1 − β11α1

d
c11 + 2

α12β1 − β12α1

d
c12 +

α22β1 − β22α1

d
c22 (2.6.21)

Remark that those expressions can be computed easily, by deriving the position vector.
We chose the solution u in the form : u = sin(ω). As ũ = sin(ω̃), we get using (2.6.16):

4u = cos(ω̃){c11
∂2ω̃

∂ξ2
+ 2c12

∂2ω̃

∂ξ∂η
+ c22

∂2ω̃

∂η2
+ c1

∂ω̃

∂ξ
+ c2

∂ω̃

∂η
}

− sin(ω̃){c11(
∂ω̃

∂ξ
)2 + 2c12

∂ω̃

∂ξ

∂ω̃

∂η
+ c22(

∂ω̃

∂η
)2}

Then, we need to take f = −4 u.

In figure 2.9, we plot the difference between the numerical and analytical solution.
In figure 2.10, we plot particular solutions, in a turbulent mode.

2.7 Nonlinear elliptic problems

In this section, we present how one can solve nonlinear elliptic partial differential equa-
tions. Such problems arise in MHD-equilibrium [29, 9].
In the sequel, we shall consider the following problem:
Find u such that: {

−∇ · (A∇u) +Bu = F (x, u) ,Ω
u = 0 , ∂Ω

(2.7.22)

Typical problems in MHD equilibrium are of the form,

F (r, z, u) := −(r2f1(u) + f2(u)), for x = (r, z) (2.7.23)

Let Vh be the discrete space, such that Vh = span{ϕb, b ∈ Λ}, then the variational
formulation of (2.7.22) is :∫

Ω
(A∇u) · ∇ϕb +

∫
Ω
Buϕb =

∫
Ω
F (x, u)ϕb, ∀b ∈ Λ (2.7.24)

thus, by expanding uh over Vh, using uh =
∑

b∈Λ[u]bϕb, we get :∑
b∈Λ

[u]b{
∫

Ω
(A∇ϕb) · ∇ϕb′ +

∫
Ω
Bϕbϕb′} =

∫
Ω
F (x, uh)ϕb′ , ∀b′ ∈ Λ (2.7.25)

this leads to solving the problem :

S[u] = F([u]) (2.7.26)

45

2.7. Nonlinear elliptic problems

Figure 2.9: The difference between the numerical and analytical solution

Figure 2.10: Particular solutions, in a turbulent mode.

where,

Sb,b′ =

∫
Ω

(A∇ϕb) · ∇ϕb′ +
∫

Ω
Bϕbϕb′ , ∀b, b′ ∈ Λ (2.7.27)

F([u])b′ =

∫
Ω
F (x, uh)ϕb′ , ∀b′ ∈ Λ (2.7.28)

46

2.7. Nonlinear elliptic problems

2.7.1 Picard’s algorithm

This is the simplest algorithm, and the less accurate also. To solve (2.7.26), we use the
following algorithm

1. X0 is given,

2. knowing Xn, we solve :

SXn+1 = F(Xn) (2.7.29)

2.7.2 Newton’s algorithm

Let us define the function :

g(X) = SX −F(X) (2.7.30)

thus [u] is a zero of the function g. To solve 2.7.26, we use Newton’s method. As Jg(X) =
S − JF(X), the Newton’s method is:

• X0 is given,

• knowing Xn, we solve :

Jg(Xn)(X
n+1 −Xn) = −g(Xn) (2.7.31)

The algorithm is the following:

1. we compute the mass matrix associated to the function : ∂uF , i.e :

Mn
b,b′ =

∫
Ω
∂uF (x,

∑
b∈Λ

Xn
b ϕb)ϕbϕb′ (2.7.32)

2. compute the term F(Xn):

[F(Xn)]b′ =

∫
Ω
F (x,

∑
b∈Λ

Xn
b ϕb)ϕb′ (2.7.33)

3. compute g(Xn):

g(Xn) = SXn −F(Xn) (2.7.34)

4. compute Jg(Xn):

Jg(Xn) = S − JF(Xn) = S −Mn (2.7.35)

5. solve Jg(Xn)(X
n+1 −Xn) = −g(Xn), and then find Xn+1

47

2.7. Nonlinear elliptic problems

2.7.3 Numerical results : Example from combustion theory

In this section, we shall solve the equation :

−∆u = −a expβu (2.7.36)

This example occurs in combustion theory, but also models the electrostatic potential in
a charged body.
The general form of solutions is :

u(x, y) =
1

β
ln

8C

aβ
− 2

β
ln |(x+A)2 + (y +B)2 − C| (2.7.37)

for more solutions, we refer to [28].
In order to have the function u, vanishing at the boundary, we shall take the following
values of parameters:

C = −1

2
, A = B = 0, aβ = −4

which gives,

u(x, y) = − 2

β
ln |x2 + y2 +

1

2
| (2.7.38)

One can easily check that u verifies:

−∆u =
4

β
expβu (2.7.39)

In the following test, we took β = −1.
To have homogeneous Dirichlet boundary condition, the domain will be a circle of radius√

2
2 , centered at 0.

In figure 2.12, we can see that, as predicted by the theory, Picard’s algorithm is less
accurate. We notice also, that in the case of Newton’s algorithm, there exist oscillations for
higher order. We also notice that up to the 10th iteration, the convergence is exponential.
Notice that oscillations are less important for the 64× 64 than 32× 32 grid.

As in the practice we do not know the exact solution, we shall stop the algorithm
when the error ‖Xn+1 − Xn‖∞ is less than a tolerance value. Using Newton’s method,
we achieve a precision of 0.00484 after only 8 iterations, using splines of degree 2 in
32 × 32 grid. For cubic splines, we notice that the algorithm is less stable, probably due
to precision error, as the order of the Taylor expansion used in the Newton’s algorithm is
less than the spline’s one.

48

2.7. Nonlinear elliptic problems

Figure 2.11: Plot of the solution u of (2.7.39)

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60

e
rr

o
r

(L
2

 n
o

rm
)

iteration

Picard, N=16,p=2
Picard, N=32,p=2
Picard, N=16,p=3
Picard, N=32,p=3

Figure 2.12: L2norm error, in function of the number of iterations. (left), using Newton’s algorithm. (right),
using Picard’s algorithm

49

2.7. Nonlinear elliptic problems

Figure 2.13: L2norm error, in log-scale, in function of the number of iterations using 9 Gauss-Legendre
points per 1D-mesh.

50

CHAPTER 3

Application to the Quasi-Neutral
equation

Contents
3.1 Introduction . 52
3.2 Quasi-neutrality equation . 53
3.3 A fast solver for polar coordinates . 54
3.4 Numerical validation . 56

3.4.1 Test case 1: Order of convergence for Poisson in polar coordinates 56
3.4.2 Test case 2: Chaotic solution . 58

3.5 Numerical solution of the quasi-neutrality equation 59
3.5.1 The decoupling approach . 60
3.5.2 First approach: spectral + finite differences 61
3.5.3 Second approach: FEM . 62
3.5.4 Numerical results . 62

3.6 Conclusion . 65

51

3.1. Introduction

3.1 Introduction

Nowadays, the modeling of magnetized plasmas is a key issue for controlled thermonu-
clear fusion. In practice, the study of such plasmas requires solving the Maxwell equa-
tions coupled to the computation of the plasma response. Different ways are possible to
compute this response: the fluid or the kinetic description. Obviously solving the full
Vlasov equation involves the discretization of the six-dimensional phase space, which is
a challenging problem. On the other hand, the fluid approach seems to be insufficient
when one wants to study the behavior of zonal flow, or the interaction between waves
and particles for example (see [56, 54]).

In the context of strongly magnetized plasmas however, the motion of the particles
is particular since it is confined around the magnetic field lines; the frequency of this
cyclotron motion is faster than the frequencies of interest. Hence, averaging the Vlasov
equation over the cyclotron motion reduces the dimensionality, and numerical simula-
tions, even if they remain very costly, become possible (see [51, 57]). These simulations
are performed using particles methods or a phase space grid (Eulerian methods) but the
computation of the electric potential is always performed on a physical 3D grid. More-
over, the configuration of a tokamak is such that the physics is highly anisotropic and
structures along the magnetic field lines are quite larger than across the magnetic field
lines. In order to reduce the numerical effort which is huge anyway, it is quite important
to use this information in order to define the grid resolution in each direction. Indeed, if
the grid is aligned or almost aligned with the magnetic field lines, it is possible to use a
lot fewer points in the parallel direction than in the transverse direction.

It is of great importance to develop a quasi-neutrality solver that is flexible with re-
spect to geometry and that can provide high order accuracy. In this work, we are inves-
tigating an approach which can accommodate arbitrary coordinates and a complicated
geometry of the computation domain. In [27] Czarny and Huysmans used Bézier ele-
ments for MHD simulations. Bézier surfaces are the most basic tool in (CAD) computer
aided design. However, it suffers from some disadvantages (preserving the exact geome-
try for a class of domains). The Isogeometric Analysis (IGA), which has been introduced
recently by Hughes et al. [67], seems to provide all these features. The IGA relies on
NURBS functions, which are a generalization of Spline functions and provides an exact
modeling of large classes of computational domains including conics and all spline sur-
faces. Moreover they rely on a cartesian grid of the parameter space and are fairly easy
to use even using spline basis functions of arbitrary degree. Moreover for domains that
can be represented using a periodic angular variable as is the case for the poloidal plane
of the tokamak, we were able to develop a fast solver that is comparable in computation
time, for any spline degree, with the spectral and Finite Difference solver used in Gysela
[51].

The results presented in this work use a bean shaped domain corresponding to a
poloidal cut of the tokamak plasma. The next step will be to couple this field solver
with a gyrokinetic solver. Moreover, being based on the projection of the approximated
function into a finite dimensional space, it can not only deal with differential operators
but also integral operators such as those involved in an exact computation of the double
gyroaverage, which is up to now approximated by the transverse Laplacian.

Finally, let us mention a point which is particularly useful for parallel computations.
Due to the adiabatic assumption for electrons, a nonlocal term intervenes in the equation
which is very penalizing for massive parallelization of full gyrokinetic codes. In this

52

3.2. Quasi-neutrality equation

work, we propose an algorithm which enables an interesting decoupling of the quasi-
neutrality equation. Indeed, by decomposing the electric potential between its average
on a magnetic surface and the difference between itself and this average, it is possible
to solve the quasi-neutrality equation by: first, solving a 1D radial ordinary differential
equation, and second, solving Nϕ poloidal 2D equations (where Nϕ is the number of
poloidal planes). This latter equations are solved using the NURBS approach. The two
equations are local and seem suitable for massively parallel computations.

3.2 Quasi-neutrality equation

The Poisson equation enables to determine the electric potential φ as a function of the
distribution function

∇2φ = −4π|e|(ni − ne).

where ni (resp. ne) stands for the ion density (resp. the electron density). In classical
tokamak plasmas, the Debye length is one order smaller than the Larmor radius so that
(see [80]), the quasi-neutrality equation is given by

ni(x) = ne(x), (3.2.1)

The ion density ni is evaluated at particles position, and can be computed from the solu-
tion of the gyrokinetic equation (posed on guiding-center position). At the first gyroki-
netic order, ni can be written

ni(x) =

∫
J (f+g)(x, v)dv, J (f)(x) =

1

2π

∫ 2π

0
f(x+ρ)dϕ, ρ = |ρ|(cosϕ, sinϕ), (3.2.2)

where f stands for the gyrocenter distribution and g is the first order correction, which
can be approximated (as in [80, 116, 55]) by

g = ∂µFM (φ− J (φ)), with FM =
n0√
2πT

exp(−mµ/(2T)),

where n0 = n0(r) is an equilibrium density and T = T (r) is an equilibrium ion temper-
ature. These two profiles are generally given. Hence, injecting this last expression into
(3.2.2) leads to

ni(x) = n̄i(x) +
n0

T
(φ(x)− φ̃(x)), (3.2.3)

where n̄i(x) =
∫
J (f)(x, v)dv and φ̃(x) =

∫∞
0 J

2(φ)(x) exp(−µ)dµ is the second gyroav-
erage transformation of φ. In Fourier variables, this term has a compact form using the
function Γ0(b) =

∫ +∞
0 exp(−x)J 2

0 (bx)dx, where J0 is the Bessel function. Then (3.2.3)
becomes in Fourier variables

n̂i = ̂̄ni + n0
φ̂

Ti
(1− Γ0(b)),

with b = k2
⊥ρ

2
i , ρ

2
i = T/B2. By expanding the Gamma function Γ0 using a Padé approxi-

mation (see [34, 55, 116]), we obtain

ni = n̄i +
1

B2
∇⊥ · (ni∇⊥φ) .

53

3.3. A fast solver for polar coordinates

For the electron density, an adiabatic assumption is often performed so that we can
write the following equality

ne(x) = n0 +
n0

Te
(φ− 〈φ〉),

where the operator 〈·〉 is an integration over constant magnetic surfaces. The quasi-
neutrality equation then reads,

− 1

B2
∇⊥ · (ni∇⊥φ) +

n0

Te
(φ− 〈φ〉) = n̄i − n0.

Linearization around the equilibrium density n0 together with the approximationB ≈ B0

are usually performed (see [55, 51]); these simplifications provides only a radial depen-
dence for the anisotropic factor

− 1

B2
0

∇⊥ · (n0∇⊥φ) +
n0

Te
(φ− 〈φ〉) = n̄i − n0. (3.2.4)

In the rest of the paper, the equation (3.2.4) is intended to be solved.

3.3 A fast solver for polar coordinates

Let us now see how the specific structure of our problem allows us to derive a specific
solver which is much faster than using a generic sparse matrix solver. For our quasi-
neutrality equation, the mapping F is the mapping defining polar coordinates F(r, θ) =
(r cos θ, r sin θ). Then we have det(JF) = r. Moreover the matrix A is of the form a(r)I
and c ≡ c(r) is only a function of r. The matrix Θ becomes

Θ =

(
a(r) 0

0 a(r)
r2 .

)
On the other hand the basis functions can be written as products of functions of r only
and of θ only. Let us also introduce a numbering using the two indices of our logical
patch Q̃ in (r, θ). Thus the degree of freedom with index iwill be associated with the grid
index (ir, iθ) and the basis function Ri is such that R̃i(r, θ) = R̃ir(r)R̃iθ(θ). Plugging this
into the element integrals defining the stiffness and mass matrices, we get∫

Q̃
∇̃R̃Ti Θ ∇̃R̃j det(JF) dξ dη +

∫
Q̃
c̃R̃iR̃j det(JF) dξ dη

=

∫
Q̃

(
a(r)

∂R̃i
∂r

∂R̃j
∂r

+
a(r)

r2

∂R̃i
∂θ

∂R̃j
∂θ

)
r dr dθ +

∫
Q̃
c̃(r)R̃iR̃j r dr dθ

=

∫
a(r)R̃′ir(r)R̃

′
jr(r) r dr

∫
R̃iθ(θ)R̃jθ(θ) dθ+

∫
a(r)

r2
R̃ir(r)R̃jr(r) r dr

∫
R̃′iθ(θ)R̃

′
jθ

(θ) dθ

+

∫
c̃(r)R̃ir(r)R̃jr(r) r dr

∫
R̃iθ(θ)R̃jθ(θ) dθ. (3.3.5)

These formulas lead us to two observations. First the elementary matrices decouple into
products of integrals in r and integrals in θ so that the final matrices can be written in
a Kronecker product structure (explanations and applications of this structure can be

54

3.3. A fast solver for polar coordinates

found in the article by Van Loan [113] and references therein). The exploitation of this
structure for developing fast solvers was developed in [37]. Second the matrices in θ are
simple mass and stiffness matrices with no varying parameter inside, so that if the mesh
is uniform in θ the matrix will be circulant.

One way to express the Kronecker product structure is to write the unknown degrees
of freedom and the right-hand-side as matrices where the terms correspond to the indices
(ir, iθ). We denote those respectively by U and F . Then, in our case, the linear system
can be written

KarUMθ +MarUKθ +McrUMθ = F, (3.3.6)

where Kar is the weighted stiffness matrix in r corresponding to the terms∫
a(r)R̃′ir(r)R̃

′
jr

(r) r dr, Mar is the weighted mass matrix in r corresponding to the

terms
∫ a(r)

r2 R̃ir(r)R̃jr(r) r dr, Mcr is the weighted mass matrix in r corresponding to
the terms

∫
c(r)R̃ir(r)R̃jr(r) r dr, Kθ is the stiffness matrix in θ corresponding to the

terms
∫
R̃′iθ(θ)R̃

′
jθ

(θ) dθ and Mθ is the mass matrix in θ corresponding to the terms∫
R̃iθ(θ)R̃jθ(θ) dθ. The latter two matricesKθ andMθ are circulant, which means that they

can be both diagonalized in the same orthonormal basis corresponding to the Fourier
modes. This can be expressed by

Mθ = PΛMP
∗, Kθ = PΛKP

∗,

where ΛM and ΛK are the diagonal matrices of the eigenvalues and a multiplication by
P corresponds to the normalized Fast Fourier Transform and a multiplication by P ∗ to
its inverse.

This can be exploited for the fast solution of (3.3.6) bringing the solution of a linear
system arising from a 2D problem to sets of smaller systems corresponding to 1D prob-
lems. The procedure can be performed with the following algorithm:

1. Multiply system (3.3.6) on the right by P (amounts to a 1D FFT on each line of F).
Then we get

KarUPΛM +MarUPΛK +McrUPΛM = FP. (3.3.7)

2. Note that a multiplication on the right by the diagonal matrix of eigenvalues cor-
responds to multiplying each column of the matrix by the corresponding eigen-
value, which implies that (3.3.7) corresponds to uncoupled problems on each of the
columns of Û = UP . So denoting by Û1, . . . , Ûn the columns of the matrix Û and by
F̂1, . . . , F̂n the columns of the matrix F̂ = FP , (3.3.7) becomes for each column j,

(λMj (Kar +Mcr) + λKjMar)Ûj = F̂j (3.3.8)

This is a set of banded systems of size the number of points in the r direction, that
can be solved very efficiently using the LAPACK routines DPBTRF for the Cholesky
factorization that is only called once at the beginning and then DPBTRS for the
solution at each time step.

3. Compute U = ÛP ∗ by inverse FFT of the lines of Û .

Let us now compute the cost at each time step for a Nr × Nθ mesh, disregarding the
cost of the Cholesky factorization for the systems in r which needs only to be performed
once for a many time steps computation. The algorithm consists of three steps: 1) Nr

55

3.4. Numerical validation

FFTs which need O(Nθ log2Nθ) operations, 2) Nθ up and down sweeps of a Cholesky
decomposed banded system which cost O(Nr) each, 3) Nr inverse FFTs which cost
O(Nθ log2Nθ) operations. So all together the cost is O(NrNθ log2Nθ) operations, which
is almost optimal. This algorithm uses the structure of the system in an optimal manner
and only works on dense matrices. A generic sparse systems solvers could not do this.

Numerical results

We have tested this new approach to solve an elliptic partial differential equation, using
the analytic solution u(r, θ) = sin(2πr) sin(2πθ), which solves :

−∇2u(r, θ) + u(r, θ) = F (r, θ), Ω (3.3.9)

where Ω = [0, 1]× [0, 1],∇2 is the Laplacian cartesian. The boundary conditions are :

u(r = 0, ·) = u(r = 1, ·) = 0 (3.3.10)

and periodic boundary condition on θ.
In Figures 3.1 and 3.2, we compare the time CPU spent to solve the linear system,

using this approach, spsolve, from scipy based on SUPERLU solver, for the classical for-
mulation (detailed in the sections before). The test was done on grids 128 × 128 and
256 × 256, using different spline order. As one can see, the new method only slightly
depends on the spline degree, the reason is that, for 1D problem, non-zeros elements are
concentrated around the diagonal compared to the 2D case. On a grid of 512 × 512, we
spent 0.3 sec to solve the linear system, using cubic splines. Using splines of order 8, it
took only 0.321 sec.

Spline degree FIGA SPLU
1 0.012 0.013
2 0.014 0.046
3 0.014 0.073
4 0.013 0.098
5 0.015 0.124
6 0.015 0.152
7 0.015 0.179

Spline degree FIGA SPLU
1 0.008 0.38
2 0.013 3.81
3 0.012 10.69
4 0.016 19.17
5 0.017 31.95
6 0.020 47.01
7 0.023 65.00

Figure 3.1: CPU-time, in seconds, spent in solving (left) and initializing (right) the linear system, using the
new approach, namely Fast IGA, compared to SuperLU. Test done on a grid 128× 128

3.4 Numerical validation

In all tests we have treated, we consider an elliptic problem under Dirichlet boundary
condition, i.e u(x) = 0, ∀x ∈ ∂Ω.

3.4.1 Test case 1: Order of convergence for Poisson in polar coordinates

For the validation, we solved the polar coordinate elliptic problem, which fits into our
generic elliptic problem (2.6.12) with A the identity tensor and c = 0,

−∇2
r,θφ(r, θ) = n(r, θ),

56

3.4. Numerical validation

Spline degree FIGA SPLU
1 0.074 0.067
2 0.076 0.967
3 0.075 3.505
4 0.075 16.070
5 0.077 32.852

Spline degree FIGA SPLU
1 0.021 3.38
2 0.043 31.40
3 0.052 197.31
4 0.060 330.28
5 0.069 415.63

Figure 3.2: CPU-time, in seconds, spent in solving (left) and initializing (right) the linear system, using the
new approach, namely Fast IGA, compared to SuperLU. Test done on a grid 256× 256

with the following analytical solution:

φ(r, θ) = sin

(
π

r2
max − r2

min

(r2 − r2
min)

)
.

Injecting the solution into the elliptic problem enables to compute the right hand side n
which is given in input of the code. This test enables to check the L2 norm of the error (in
log scale) between the numerical and analytical solution, with respect to the parameter
h = max{diam(Q̃)}, for different orders of the basis functions (from order 2 to order 6).
This is shown in Figure 3.3. We verify that the slopes of the different curves correspond
to the order of the basis functions. In particular, for high orders, the machine precision
is achieved. We also plot in Figure 3.3 the CPU time as a function of the parameter
h = max{diam(Q̃)}, for different orders of the basis functions (from order 2 to order
6). These two last figures gives information for choosing a priori the best compromise
between precision (which order of the basis function should be chosen) and the CPU
time.

Figure 3.3: Validation test : (left) L2 error norm, (right) CPU time.

57

3.4. Numerical validation

3.4.2 Test case 2: Chaotic solution

Following [88], we first test our solver on a chaotic solution on a polar coordinate Lapla-
cian −∇2φ = n. This analytic solution takes the form

φmath(r, θ) =

[
sin(2πξ) + ε

∑
M

BM sin(2πMξ)

]∑
l

Al cos(lθ + Θl), (3.4.11)

where 0 ≤ ε ≤ 1, ξ = (r − rmin)/(rmax − rmin), Al and BM are random numbers which
range between 0 and 1, with |M |, |l|(≤ 20 for the first simulation and ≤ 40 for the second
one). Finally, the phase Θl is also given by a random number in 0, 2π. The right hand side
of −∇2φ = n is given by

n(r, θ) = −1

r

(
∂r(r∂φmath)

)
− 1

r2
∂2
θφmath

= −1

r
σr(r, θ)

∑
l

Al cos(lθ + Θl)

+

[
sin(2πξ) + ε

∑
M

BM sin(2πMξ)

]∑
l

l2

r2
Al cos(lθ + Θl),

with

σr(r, θ) =
2π

∆r
cos(2πξ)− 4π2r

∆r2
sin(2πξ)

+ ε
∑
M

BM

[
2πM

∆r
cos(2πMξ)− 4π2M2r

∆r2
sin(2πMξ)

]
In our numerical experiments, ε is taken equal to 0.4. Note that the solution satisfies the
homogeneous Dirichlet condition at r = rmin = 0.2 and r = rmax = 0.4 and periodic
boundary conditions in the θ direction.

We show on Figure 3.4, the L2 norms (in log scale) of the difference between the an-
alytical and numerical solutions as a function of the parameter h = max{diam(Q̃)}. The
same observations as before are also available for this test; the slopes of the curves corre-
sponds to the order of the basis, even when a very large number of modes is considered
in the solution. In this kind of test high order basis functions enable to better capture the
very fine scales of the solution.

Spline degree Degrees of freedom L2 error norm
2 17408 7.20 10−3

3 18060 1.07 10−3

4 18720 1.71 10−4

5 19388 2.84 10−5

6 20064 4.81 10−6

7 20748 1.67 10−6

Table 3.1: Nishimura test: Number of degree of freedom and L2 norm of the error for each spline degree.

Comparing with Nishimura results [88], we see in Table 3.1 that the new method
allows us to reach same error order, with much fewer degrees of freedom, by increasing

58

3.5. Numerical solution of the quasi-neutrality equation

Figure 3.4: Nishimura test: L2 error norm as a function of h; (left) for 20 modes, (right) 40 modes.

the spline order. Let us notice, that to reach an error of 10−6, Nishimura used a grid
of N = 154, 560, with our method, we only need 8 times less (N = 20064) degrees of
freedom by using sixth or seventh order for spline basis.

3.5 Numerical solution of the quasi-neutrality equation

This section is devoted to the numerical approximation of the quasi-neutrality equation
(3.2.4) by applying the method introduced above. To that purpose, we will consider a
given right hand side (that is to say the distribution function of the ions is given and the
coupling with the gyrokinetic equation is not considered), and we focus on the computa-
tion of the solution of (3.2.4) in polar coordinates:

Given n0(r), Te(r) two radial profiles and F (r, θ, ϕ), solve for φ(r, θ, ϕ) satisfying

−∇⊥ · (n0∇⊥φ) +
n0

Te
(φ− 〈φ〉) = F (r, θ, ϕ). (3.5.12)

The 〈·〉 operator refers to the magnetic flux average

〈φ〉(t, r) =
1∫ ∫

J(r, θ)dθdϕ

∫ ∫
φ(t, r, θ, ϕ)J(r, θ)dθdϕ, (3.5.13)

with J(r, θ) a jacobian defining the poloidal geometry, whereas the given right hand side
F (r, θ, ϕ) reads

F (r, θ, ϕ) = (n̄i(r, θ, ϕ)− n0(r)) ,

where n̄i is the ion density, Te the electronic temperature and n0 is a correction term
taking into account the presence of the electrons. The first term on the left hand side is
known as the polarization term which corresponds to the difference between the guiding-
center density and that of particles.

The boundary conditions are supposed to be 2π-periodic in the θ, ϕ variables,
whereas the radial boundary conditions are imposed by the Dirichlet condition and
writes φ(r = rmin, θ, ϕ) = 0 and φ(r = rmax, θ, ϕ) = 0 .

59

3.5. Numerical solution of the quasi-neutrality equation

The main goal of this section consists in the numerical solution of (3.5.12). More pre-
cisely, we want to derive an efficient method for (3.5.12), that is to say a method which is
as local as possible. Indeed, the principal difficulty is the average term 〈φ〉which is totally
nonlocal since it couples every values of θ and ϕ. The nonlocality is an important obstacle
for an efficient parallelization, but also when one wants to use Fourier transforms in the
θ, ϕ variables. We propose a decoupling approach that enables to decompose the solu-
tion of (3.5.12) into two local problems, one of them reduces to a two-dimensional elliptic
type problem of the form (2.6.12).

The rest of this section presents different ways to solve the quasi-neutrality equation,
pointing out the advantages and disagrements of the solvers. Then, some numerical
results are shown to compare the performance of the solvers.

3.5.1 The decoupling approach

In this subsection, we propose a new method to allow us the derivation of a local al-
gorithm for (3.5.12) in the ϕ variable. An efficient algorithm can then be developed for
its resolution. To this purpose, we first restrict in this section to a Jacobian such that
J(r, θ) = r, but the computations for arbitrary Jacobians J(r, θ) are performed in Ap-
pendix A. The main ingredient consists in the decoupling of (3.5.12) into two local equa-
tions: one equation on 〈φ〉which is given by (3.5.13), and one equation on Φ = φ− 〈φ〉.

The first equation is simply derived by averaging the left hand side of the quasi-
neutrality equation (3.5.12) with respect to θ and ϕ variables

1

(2π)2

∫ ∫
∇⊥ · [n0(r)∇⊥φ] dθdϕ =

[(
n0(r)

r
+ n′0(r)

)
∂r〈φ〉+ n0(r)∂2

r 〈φ〉
]
. (3.5.14)

Finally, introducing 〈F 〉(r) = 1/(2π)2
∫ ∫

F (r, θ, ϕ)dθdϕ, we have

〈∇⊥ · [n0(r)∇⊥φ]〉 = ∇⊥ · [n0(r)∇⊥〈φ〉] = 〈F 〉, (3.5.15)

from which we can deduce a 1D equation for 〈φ〉 = 〈φ〉(r)

−
[
n0(r)∂2

r 〈φ〉+

(
n0(r)

r
+ n′0(r)

)
∂r〈φ〉

]
= 〈F 〉(r), (3.5.16)

Then, we want to derive an equation satisfied by Φ = φ−〈φ〉. This can be done easily
by adding and removing the term∇⊥ · [n0(r)∇⊥〈φ〉] in (3.5.12)

−∇⊥ · [n0(r)∇⊥(φ− 〈φ〉)] +
n0

Te
[φ− 〈φ〉]−∇⊥ · [n0(r)∇⊥〈φ〉] = F (r, θ, ϕ).

By introducing the new unknown Φ = φ− 〈φ〉 in this last equation, we get

−∇⊥ · [n0(r)∇⊥Φ] +
n0

Te
Φ−∇⊥ · [n0(r)∇⊥〈φ〉] = F (r, θ, ϕ). (3.5.17)

Thanks to (3.5.15), we can write the equation which is satisfied by Φ(r, θ, φ) = φ− 〈φ〉

−∇⊥ · [n0(r)∇⊥Φ] +
n0

Te
Φ = F (r, θ, ϕ)− 〈F 〉(r). (3.5.18)

More precisely, the equation to solve is

−n0∂
2
rΦ−

[n0

r
+ n′0

]
∂rΦ−

n0

r2
∂2
θΦ +

n0

Te
Φ = F (r, θ, ϕ)− 〈F 〉(r). (3.5.19)

60

3.5. Numerical solution of the quasi-neutrality equation

Thanks to these straightforward computations, we totally decoupled (3.5.12) by intro-
ducing the new unknowns Φ and 〈φ〉. Moreover, equation (3.5.12) is strictly equivalent
to the equations (3.5.16)-(3.5.18). This new formulation provides a system of equation
which does not include nonlocal term any more. The algorithm is then the following
Algorithm

• solve the 1D equation (3.5.16) to get 〈φ〉(r)

• solve the 2D equation (3.5.18) ∀ϕ to get Φ(r, θ, ϕ)

• compute φ = Φ + 〈φ〉

Now, an important point consists in a good choice of the numerical approximation
to solve the 2 equations (3.5.16) and (3.5.18). A two-dimensional solver will provide Φ
whereas a one-dimensional solver for (3.5.16) leads to 〈φ〉. By the summation of these
two solutions, we can obtain the desired solution φ(r, θ, ϕ).

3.5.2 First approach: spectral + finite differences

The first approach to solve (3.5.18) consists in the use of a Fourier transform in the θ
direction (Φ is periodic in the θ variable since φ is). The projection of Φ(r, θ, ϕ) onto the
Fourier space writes

Φ(r, θ, ϕ) =

N∑
m=1

Φm(r, ϕ)eimθ.

so that equation (3.5.19) is rewritten

−
(
n0∂

2
rΦm +

(n0

r
+ n′0(r)

)
∂rΦ

m
)

+ n0

(
1

Te
+
m2

r2

)
Φm = Sm(r, φ), (3.5.20)

where

Sm(r, φ) =

{
Fm(r, ϕ) if m 6= 0
F 0(r, ϕ)− 1

(2π)2

∫
F 0(r, ϕ)dϕ else,

is the Fourier coefficient of order m of the right hand side of (3.5.18). We are faced to
an ODE for each Fourier mode m; one classical way to solve this problem is the use of a
finite difference scheme in the r direction to solve (3.5.20); this leads to the constitution
of a tridiagonal linear system, the resolution of which allows to get the Fourier modes
Φm(r, ϕ). An inverse Fourier transform leads to Φ(r, θ, ϕ).

The resolution of the ODE (3.5.16) can be performed in the same way as (3.5.20), using
finite differences of order two.

Remark 3.5.1 From the CPU time point of view, the present approach enables us to solve the
total quasi-neutrality equation (i.e. to compute φ = 〈φ〉 + Φ) with a cost of order O(N2 ln(N))
for a N × N grid in (r, θ). Our NURBS based solver has the same complexity with only the
bandwith of the systems in r that increase with the degree of the splines.

61

3.5. Numerical solution of the quasi-neutrality equation

3.5.3 Second approach: FEM

The second option discretizes directly equation (3.5.18), that considers two dimensions
(r, θ) and a parameter ϕ. The IGA finite element method is performed here.

For the ODE (3.5.16), a high order method is required not to penalize the high or-
der achieved in the two-dimensional solution. Here, we propose a collocation method
introduced in [19].

Recalling, that the equation 3.5.18 can be written in the form:

−∇⊥ · (A ∇⊥Φ) + c Φ = g (3.5.21)

where,

A =

(
n0 0
0 n0

)
, c =

n0

Te
, and, g = F (r, θ, ϕ)− 〈F 〉(r). (3.5.22)

Remark 3.5.2 A third approach could be the use of a spline FEM to solve the ODE. We can use
the same 1D matrices that we have already assembled and appear in the Kronecker product.

3.5.4 Numerical results

In the present section, we compare the different approximation of the quasi-neutrality
equation (3.5.12) we proposed in the previous section. The different methods are studied
on analytic tests, since we impose a right hand side which is consistent with a solution of
(3.5.12).

Test case 1

In this test, we consider the full quasi-neutrality equation (3.5.12) in which the profile n0

and Te are supposed constant equal to 1, with the following solution

φ(r, θ, ϕ) = sin

(
2π

L
(r − rmin)

)
u(θ, ϕ), θ, ϕ ∈ [0, 2π], r ∈ [0.2, 0.8],

with L = rmax − rmin and u(θ, ϕ) = 1/π2(cos2 θ cos2 ϕ). This form of solution imposes
the average to be 〈φ〉(r) = sin

(
2π
L (r − rmin)

)
. Injecting this solution in (3.5.12) leads to

an analytical right hand side which is used to recover numerically the true solution. This
analytical way enables comparison with the analytical solution. Let us detail the compu-
tations leading to the right hand side. First, we compute the three component of∇2

⊥φ

−∂2
rφ =

4π2

L2
sin

(
2π

L
(r − rmin)

)
u(θ, ϕ),

−1

r
∂rφ =

2π

L
cos

(
2π

L
(r − rmin)

)
u(θ, ϕ),

− 1

r2
∂2
θφ =

2

r2π2
sin

(
2π

L
(r − rmin)

)
cos(2θ) cos2 ϕ,

Then, we can compute 〈F 〉which will be used in the right hand side of equations (3.5.16)
and (3.5.18)

〈F 〉(r) =
4π2

L2
sin

(
2π

L
(r − rmin)

)
− 2π

rL
cos

(
2π

L
(r − rmin)

)
.

62

3.5. Numerical solution of the quasi-neutrality equation

We also compute F (r, θ, ϕ) for the resolution of (3.5.18)

F (r, θ, ϕ) = sin

(
2π

L
(r − rmin)

)
u(θ, ϕ)

[
4π2

L2
+ 1

]
+

2π

L
cos

(
2π

L
(r − rmin)

)
u(θ, ϕ)

+
2

r2π2
sin

(
2π

L
(r − rmin)

)
cos(2θ) cos2 ϕ− sin

(
2π

L
(r − rmin)

)
= sin

(
2π

L
(r − rmin)

)
u(θ, ϕ)

[
4π2

L2
+ 1

]
+ u(r, θ)

[
sin

(
2π

L
(r − rmin)

)
− 1

r

2π

L
cos

(
2π

L
(r − rmin)

)]
− 〈F 〉(r)− sin

(
2π

L
(r − rmin)

)
We then test the decoupling method for which the spectral approach, the IGA-FEM

solution is compared to the analytic solution. For the first approach, we fix the number
of points in the angular directions θ, ϕ to 64 whereas the number of points in the radial
direction is modified to recover the order of the finite difference method.

Figure 3.5: Test case 1: L2 error norm, (left) for the elliptic part, (right) for the global problem ODE + FEM.

We show in the following figures comparisons between the different approaches we
propose. On Figures 3.5, we plot theL2 norm errors between the numerical and analytical
solution. We first plot the error for the elliptic part (3.5.18) for which the behavior is
similar to the curves obtained in chapter 2. Then, we focus on the total error of the
solvers for (3.5.12). We observe that the curves are nearly the same; this is due to the
collocation method which is very precise. The error made in this part is then negligible
compared to the error made in the elliptic part. We can also remark that the error for the
classical approach spectral + finite differences is of order 2 (due to the second order finite
differences). This approach needs to consider a lot of point in the radial direction (2048)
to reach a competitive accuracy, whereas the IGA-FEM approach presents very precise
results even considering cubic or quartic order.

63

3.5. Numerical solution of the quasi-neutrality equation

Test case 2

In this test, some anisotropy is introduced in the Laplacian term by initializing n0. More-
over, a profile is imposed to Te. These two functions are solutions of a differential equa-
tion. The radial profiles of the ion temperature Te(r) as well as the radial density profile
n0(r) are deduced by numerical integration of their gradient profile given by

1

Te(r)

dTe(r)

dr
= − cosh−2(3(r − rp)), (3.5.23)

with rp = 0.5. These parameters are employed in [51]. Hence, imposing analytical form
of the solution,

φ(r, θ, ϕ) = C sinϕ cos(4θ)(r − rmin)6(rmax − r)6, (3.5.24)

with C a constant chosen such that max[φ] = 1, we deduce an expression of the right
hand side of (3.5.12) which is given to the code to compute back an approximation of the
solution. The right hand side F is given by

F (r, θ, ϕ) = −∂2
rφ− ∂rφ

(
1

r
+
n′0
n0

)
− 1

r2
∂2
θφ+

φ

Te
,

where the different term are

∂rφ = 6C sin(4θ) sinϕ
[
(r − rmin)5(rmax − r)6 − (r − rmin)6(rmax − r)5

]
,

∂2
rφ = 30C sin(4θ) sinϕ(r − rmin)4(rmax − r)4[

(rmax − r)2 − 12

5
(r − rmin)(rmax − r) + (r − rmin)

]
,

∂2
θφ = −16φ.

As in the previous tests, we are interested in the L2 norm of the error as a function
of the size of the mesh. Results are presented in Table 3.2 in which the L2 norm of the
error is given as a function of the number of points and the degree of the splines. We also
give the results for the standard approach where finite difference and FFT are used. In
this test also, the IGA-FEM approach has a very good behaviour since with 32 points per
direction; to achieve the same precision the finite difference+FFT approach needs 1024
points per direction. Note a kind of saturation of the error: this is due to the computation
of the solution of the ODE 3.5.23. Indeed, Te and n0 are numerical solution of an ODE
and are not analytical. We verify that when the ODE is solved precisely (by refinement),
the correct orders are recovered.

On Figure 3.6, the solution together with the error between the analytical solution and
the numerical one are plotted for the IGA-FEM approach, using degree 2 and 32 points
per direction.

Test case 3: non-circular cross section

Following the Nishimura idea [88], we have generated a turbulence test over our non-
circular tokamak model. We give the result of such test, with l = m = 10 and NURBS
degree p = 4, in Figure 3.7.

For such a domain, the use of the standard finite elements method, would need a
great number of degrees of freedom, moreover we couldn’t be able to represent exactly
the tokamak.

64

3.6. Conclusion

Spline degree Degrees of freedom L2 error norm L2 error norm ”refined”
FD+FFT 262144 1.5 10−5

FD+FFT 1048576 3.7 10−6

FD+FFT 4194304 9.6 10−7

2 256 4.5 10−5 4.5 10−5

2 1024 6.4 10−6 2.3 10−6

3 256 9.6 10−6 7.6 10−6

3 1024 7.5 10−6 5.7 10−7

4 256 5.3 10−6 1.6 10−6

4 1024 6.6 10−6 4.8 10−7

Table 3.2: Test 2 QN: Number of degree of freedom and L2 norm of the error for some spline degrees and for
the method finite-difference+FFT (FD+FFT). In the third column, the ODE (3.5.23) is solved using
103 points whereas in the last column, 104 are used.

Figure 3.6: Test 2 QN: numerical solution with NURBS (left) and the difference with the analytical solution
(right). 32 points are used per direction, order 3.

3.6 Conclusion

In this work we have developed an adequate solver of the Quasi-Neutral equation, using
the IGA approach. Currently, we are trying to couple the Fast polar solver in the Gysela
code. In the future, we hope that Gysela will be able to deal with complex geometries
using the IGA, for this purpose we need to develop Semi-Lagrangian schemes using B-
splines/NURBS mappings. This is the subject of the chapter 6.

65

3.6. Conclusion

Figure 3.7: Turbulence test: (left) the numerical solution, with l = m = 10 and p = 4, (right) the difference
u− uh for a turbulence test in the tokamak model, with l = m = 2 and p = 4.

66

CHAPTER 4

Application to the 2D Maxwell’s
equations

Contents
4.1 Introduction . 68
4.2 Variational formulation for the 2D Maxwell equations 69
4.3 Construction of the finite element spaces 70

4.3.1 Spline finite elements on patch grids 71
4.3.2 The Discrete Equations . 72

4.4 Leap Frog scheme’s stability . 73
4.5 Numerical results . 74

4.5.1 Test case 1: square . 75
4.5.2 Test case 2: circular wave guide . 77
4.5.3 Test case 3: Silver-Muller condition 78

4.6 H-rot formulation . 79
4.7 Axisymmetric Variational formulation of the 2D Maxwell’s equation . 80

4.7.1 Discrete equations - 1st formulation 81
4.7.2 Discrete equations - 2nd formulation 83
4.7.3 H-rot formulation . 84
4.7.4 Remarks . 85

4.8 Conclusions and perspectives . 86

67

4.1. Introduction

4.1 Introduction

Since their introduction, B-splines have had a great success, thanks mainly to fast and
stable algorithms developed for their use. They are used as well in industry as in aca-
demic research for interpolation, data fitting and computer aided design. Recent works
by Hughes and co-authors [67, 23] and the introduction of iso-geometric analysis have
added yet another dimension to their use, creating an interface between simulation and
numerical modeling.

It seems that before the recent works of Hughes [67], the use of splines as basis
functions in the finite element method was quite uncommon and essentially limited to
uniform B-splines using periodic conditions, even though the web-splines developed
by Hoellig and co-workers provided a strategy for dealing with boundary conditions
[63, 59]. The idea of iso-geometric analysis using geometric transformations and non
uniform splines or NURBS appears much simpler for most applications. Compared to
traditional finite elements, the main change due to the iso-geometric analysis is undoubt-
edly the emergence of the k-refinement, a strategy that can increase the regularity of
functions through the mesh’s interfaces, to reduce the number of degrees of freedom.

Modern finite element techniques for Maxwell’s equations rely on ideas from differ-
ential geometry and more precisely on the existence of discrete spaces that provide an
exact De Rham sequence. Following pioneering ideas by Bossavit [13, 14] a complete
theory was successively developed [95, 85]. Buffa and co-workers [16, 18, 17] extended
iso-geometric analysis to steady-state Maxwell’s equations providing a discrete exact De
Rham sequence involving discrete spaces based on B-splines. In [15], Buffa et all studied
the 2D Stokes equation.

Our aim is to use this discrete sequence for the solution of the time-dependent
Maxwell equations. One important feature of geometric Finite Maxwell solvers is that
one of Faraday’s or Ampere’s law hold strongly in the discrete spaces and the other one
needs a Galerkin Hodge operator [14]. Hence, one of the discrete equations is completely
explicit and the other one involves a mass matrix that yields a linear system to be solved
at each iteration. Thanks to a property of B-spline derivatives, we were able to exhibit ba-
sis functions of the discrete spaces involved in the De Rham sequence, such that the same
property holds and the discrete curl or divergence, depending on the chosen formulation,
is simply an incidence matrix depending only on the connectivity of the mesh, which is
thus independent of the geometric transformation. We have implemented this idea in
2D, but as it is based on a tensor product approximation, it extends straightforwardly to
3D.

The outline of the paper is the following. First we recall the variational formulation
of the 2D Maxwell equation, then we give the most important properties of B-splines
and iso-geometric analysis. After that, we construct our exact sequence of discrete spaces
as spans of well chosen basis functions on a cartesian grid and explain how to trans-
form them on the geometric domain defined by NURBS. We can then compute the semi-
discrete equations in space in a matrix formulation. We then prove a stability condition
when a Leap-Frog algorithm in time is used. Finally, different test cases are performed to
validate the method. High-order convergence is obtained and CFL conditions are com-
puted for different degrees of splines.

68

4.2. Variational formulation for the 2D Maxwell equations

4.2 Variational formulation for the 2D Maxwell equations

In the sequel, Ω will denote a subdomain in R2, for which there exists a mapping F that
maps a square onto Ω. Our theory is restricted to a class of functions F which are C1.
The Computer Aided Design (CAD) gives us a simple way to construct or approach such
functions, (using B-splines and NURBS for example). We will denote by Γ = ∂Ω the
boundary of Ω, and n, the outward unit normal vector of Ω on the boundary Γ.

We recall that in 2D, we have two curl operators, one acting on scalars rotu =(∂u
∂y

−∂u
∂x

)
, and one acting on vectors v =

(
vx
vy

)
for which

rot v =
∂vy
∂x −

∂vx
∂y . The divergence of a vector v is defined by div v = ∂vx

∂x +
∂vy
∂y .

We shall also need the following function spaces

H(curl,Ω) =
{
v ∈ (L2(Ω))2; rot v ∈ L2(Ω)

}
and H0(curl,Ω) = {v ∈ H(curl,Ω); v × n = 0} ,

H(div,Ω) =
{
v ∈ (L2(Ω))2; div v ∈ L2(Ω)

}
.

Notice that the space that could be called

H(rot ,Ω) =
{
u ∈ (L2(Ω))2; rotu ∈ L2(Ω)

}
is identical to H1(Ω). We shall therefore stick with the more usual H1(Ω).

Finally, we recall the Green formula we will need:∫
Ω

(rotG) · F dX =

∫
Ω
G rot F dX −

∫
Γ
(G× n) · F dS , ∀ F ∈ H(curl,Ω), ∀ G ∈ H1(Ω),

and∫
Ω

(div F)G dX = −
∫

Ω
F · (∇G) dX +

∫
Γ

F · nG dS , ∀ F ∈ H(div,Ω), ∀ G ∈ H1(Ω).

(4.2.1)
In 2D domains, Maxwell’s equations can be decoupled into two systems. The first in-

volving the (Ex, Ey, Hz) components is called the Transverse Electric (TE) mode, and the
second, involving the (Hx, Hy, Ez) components is called the Transverse Magnetic (TM)
mode. As both modes can be discretized in the same manner, we shall only consider in
the sequel the TE mode which reads

∂E

∂t
− rotH = −J, (4.2.2)

∂H

∂t
+ rot E = 0, (4.2.3)

div E = ρ, (4.2.4)

where the components are defined by E =

(
Ex
Ey

)
, H = Hz . These equations need to be

supplemented with initial and boundary conditions. We shall only consider periodic or
perfectly conducting boundary conditions E × n = 0 and in a second step Silver-Müller
absorbing boundary conditions.

In order to derive a conforming Finite Element approximation of Maxwell’s equations
we first need to write an appropriate variational formulation. We would like to stay with
the first order version of the system and are then naturally led to a mixed formulation

69

4.3. Construction of the finite element spaces

involving two different functional spaces for E and H . The two options are, after multi-
plying both equations by a test function and integrating by parts, to use Green’s formula
for either one of the two equations but not for both.

The first variational formulation, in the case of perfectly conduction boundary condi-
tions, can be derived using Green’s formula (4.7.21) in Ampere’s law (4.2.2). This yields
Find (E, H) ∈ H0(curl,Ω)× L2(Ω) such that

d

dt

∫
Ω

E ·ψ dX −
∫

Ω
H(rotψ) dX = −

∫
Ω

J ·ψ dX ∀ψ ∈ H0(curl,Ω), (4.2.5)

d

dt

∫
Ω
Hϕ dX +

∫
Ω

(rot E)ϕ dX = 0 ∀ϕ ∈ L2(Ω). (4.2.6)

Using the Green formula (4.7.21) in Faraday’s law (4.2.3) yields the second variational
formulation
Find (E, H) ∈ H(div,Ω)×H1(Ω) such that

d

dt

∫
Ω

E ·ψ dX −
∫

Ω
(rotH) ·ψ dX = −

∫
Ω

J ·ψ dX ∀ψ ∈ H(div,Ω), (4.2.7)

d

dt

∫
Ω
Hϕ dX +

∫
Ω

E · (rotϕ) dX = 0 ∀ϕ ∈ H1(Ω). (4.2.8)

Notice that in the first variational (4.2.5)-(4.2.6) formulation the boundary condition is
taken into account in strong form by putting it into the function space where E lives. On
the other hand, in the second formulation (4.2.7)-(4.2.8) the boundary condition is taken
into account in a weak form.

4.3 Construction of the finite element spaces

An important feature of the functional spaces we chose for the variational formulation is
that they form an exact sequence. Depending of the variational formulation we choose,
we need to work with different exact sequences. In the case of (4.2.5)-(4.2.6), the following
function spaces are involved

grad rot
H1(Ω) −→ H(curl,Ω) −→ L2(Ω)
∪ ∪ ∪
V −→ Wcurl −→ X

(4.3.9)

In the case of (4.2.7)-(4.2.8), the following function spaces are involved

curl div
H1(Ω) −→ H(div,Ω) −→ L2(Ω)
∪ ∪ ∪
V −→ Wdiv −→ X

(4.3.10)

In order to keep the specific features of Maxwell’s equations at the discrete level we
need to construct finite dimensional subspaces endowed with the same structure. The in-
volved discrete spaces are denoted by X ⊂ H1(Ω), Wcurl ⊂ H(rot ,Ω), Wdiv ⊂ H(div,Ω)
and V ⊂ L2(Ω). When discretizing the first variational formulation (4.2.5)-(4.2.6), we
shall look for (Eh, Hh) ∈ Wcurl × V and when discretizing the second variational formu-
lation (4.2.7)-(4.2.8), we shall look for (Eh, Hh) ∈Wdiv ×X .

70

4.3. Construction of the finite element spaces

4.3.1 Spline finite elements on patch grids

We shall now start constructing the actual subspaces X ⊂ H1(Ω), Wcurl ⊂ H(curl,Ω),
Wdiv ⊂ H(div,Ω) and V ⊂ L2(Ω).

Our discrete space will be constructed using B-splines.
The key point of our method is the use of the recursion formula for the derivatives:

Np
i
′
(t) = p

(
Np−1
i (t)

ti+p − ti
−

Np−1
i+1 (t)

ti+p+1 − ti+1

)
. (4.3.11)

It will be convenient to introduce the notation Dp
i = p

Np−1
i (t)
ti+p−ti . Then the recursion

formula for derivative simply becomes

Np
i
′
(t) = Dp

i (t)−D
p
i+1(t). (4.3.12)

Discrete vector fields on a rectangular domain.
Let us first consider a rectangular domain Ω. We consider the following discrete func-

tional spaces
V = span{Np

i (x)Np
j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

Wdiv = span

{(
Np
i (x)Dp

j (y)

0

)
,

(
0

Dp
i (x)Np

j (y)

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}

}
,

Wcurl = span

{(
Dp
i (x)Np

j (y)

0

)
,

(
0

Np
i (x)Dp

j (y)

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}

}
,

X = span{Dp
i (x)Dp

j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.

As proved in the article by Buffa et al, [16, 18, 17] these spaces verify the same exact
property as the spaces they approximate.

Vector field transformations.
Let us now define coordinate changes conserving either the curl or the divergence of

a vector field.
Let us start from a vector field Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T defined on the para-

metric domain Q̃.
Using the transformation formula (B.0.3) for the vector fields ofWdiv which conserves

the divergence, using the diffeomorphism G = F−1, we get Ψ(1) = 1
∆(α2Ψ(2) + α1Ψ(1))

and Ψ(2) = 1
∆(β2Ψ(2) + β1Ψ(1)) .

So let Ψ = (Ψ(1),Ψ(2))T be a function in Wdiv, and Ψ = (Ψ(1),Ψ(2))T be a function in
W̃div.
To save the divergence property, the corresponding space of W̃div on the physical domain
is

Wdiv = {Ψ := (
1

∆
(α1Ψ(1) + α2Ψ(2)),

1

∆
(β1Ψ(1) + β2Ψ(2)))T , Ψ ∈ W̃div}

therefore,

Wdiv = span

{
1

∆
Ñp
i (ξ)D̃p

j (η)

(
α1

β1

)
,

1

∆
D̃p
i (ξ)Ñ

p
j (η)

(
α2

β2

)}
.

71

4.3. Construction of the finite element spaces

4.3.2 The Discrete Equations

Let us now express the equation satisfied by the approximations Eh, Hh when using each
of the variational formulations we introduced. Let’s start with (4.2.7)-(4.2.8). In this case
we look for Eh ∈ Wdiv and Hh ∈ H1(Ω). We first notice that due to the exact sequence
property we have divEh ∈ X .

Let us denote by

ψ1
i,j =

(
Np
i (x)Dp−1

j (y)

0

)
, ψ2

i,j =

(
0

Dp−1
i (x)Np

j (y)

)
we have

Wdiv = span
{
ψ1
i,j ,ψ

2
i,j , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}

}
,

Denoting the components of Eh by (Exh , E
y
h), we have

Exh(t, x, y) =

Nx∑
i=1

Ny∑
j=1

exi,j(t)N
p
i (x)Dp

j (y), Eyh(t, x, y) =

Nx∑
i=1

Ny∑
j=1

eyi,j(t)D
p
i (x)Np

j (y),

and

Hz
h(t, x, y) =

Nx∑
i=1

Ny∑
j=1

hzi,j(t)N
p
i (x)Np

j (y).

Using these expansions on the finite element bases, we can compute explicitly, for

rotHh =

Nx∑
i=1

Ny∑
j=1

hzi,j(t)

(
Np
i (x)Np

j
′
(y)

−Np
i
′
(x)Np

j (y)

)
we now use the formula (4.3.11),

rotHh =

Nx∑
i=1

Ny∑
j=1

hzi,j(t)

(
Np
i (x)(Dp−1

j (y)−Dp−1
j+1(y))

−(Dp−1
i (x)−Dp−1

i+1 (x))Np
j (y)

)

=

Nx∑
i=1

Ny∑
j=1

hzi,j(t){ψ1
i,j −ψ1

i,j+1 −ψ2
i,j +ψ2

i+1,j} .

We will use the following convention: for a knot vector T = (ti)16i6N+k generating
the ”N” B-splines of order k, {Nk

i , 1 6 i 6 N}, we put Nk
j := 0 for any j > N .

By making a change of index in the sum, we get

rotHh =

Nx∑
i=1

Ny∑
j=1

hzi,j{ψ1
i,j −ψ2

i,j} −
Nx∑
i=1

Ny+1∑
j=2

hzi,j−1ψ
1
i,j +

Nx+1∑
i=2

Ny∑
j=1

hzi−1,jψ
2
i,j

therefore,

rotHh =

Nx∑
i=2

Ny∑
j=2

(hzi,j − hzi,j−1)ψ1
i,j − (hzi,j − hzi−1,j)ψ

2
i,j

+

Ny∑
j=2

{hz1,j − hz1,j−1}ψ1
1,j +

Nx∑
i=2

{hzi−1,1 − hzi,1}ψ2
i,1 + hz1,1ψ

1
1,1 − hz1,1ψ2

1,1.

72

4.4. Leap Frog scheme’s stability

In case of periodic boundary conditions, the discrete Ampere’s law (4.2.7) can be written

−ė +Rhz = M−1
W j, (4.3.13)

where hz , ex, ey the vectors of spline coefficients, MW is the mass matrix for Wdiv and R
consists of two blocks of the discrete derivatives in the x and y directions of these vectors.
Remark We’ve shown that we can write KT = MWR, where K is the rotational matrix
involved in the classical formulation (without current density field):{

MW ė = Kh

MV ḣ = −KTe

therefore, the linear system writes:{
ė = Rh

MV ḣ = −KTe
(4.3.14)

A discrete Faraday’s law can be obtained from the variational formulation (4.2.6)
which can be written

ḣz + dxe
y − dyex = 0, (4.3.15)

where dx and dy the discrete derivatives in the x and y directions.
We have thus obtained matrix differential equations on the vectors of spline coeffi-

cients that can be solved by any appropriate ODE solver. For example, for a second order
time discretization, a leap-frog or Verlet scheme is well adapted.

4.4 Leap Frog scheme’s stability

In this section we will give a preview of the time discretization scheme we used to solve
the linear system obtained and some classical results. Let us first, just recall the general
formulation of the LF scheme. For the linear system{

MW ė = Kh

MV ḣ = −KTe

the LF time discretization of order N is given by{
MW

En+1−En
∆t = KNH

n+ 1
2

MV
Hn+ 3

2−Hn+ 1
2

∆t = −KT
NE

n+1

where {
KN = K ,N = 2

KN = K(I − ∆t2

24 M
−1
W KM−1

V KT) , N = 4

We define the global energy by En := 1
2{(E

n)TMWE
n + (Hn− 1

2)TMVH
n+ 1

2 }We have the
following lemma:

Lemma 4.4.1 The global energy is stationary, i.e En+1 = En

73

4.5. Numerical results

Proof Let us put En+ 1
2 = En+1+En

2 . Then we have,

En+1 − En =
1

2
((En+1)TMWE

n+1 + (Hn+ 1
2)TMVH

n+ 3
2 − 1

2
((En)TMWE

n − (Hn− 1
2)TMVH

n+ 1
2)

= (En+1)TMWE
n+ 1

2 − (En)TMWE
n+ 1

2 +
1

2
(Hn− 1

2)TMV (Hn+ 3
2 −Hn+ 1

2)

= (En+ 1
2)TMW (En+1 − En) +

1

2
(Hn− 1

2)TMV (Hn+ 3
2 −Hn+ 1

2)

using the time discretization scheme, we have:

En+1 − En = ∆t(En+ 1
2)TKNH

n+ 1
2 −∆t(Hn+ 1

2)TKNE
n+ 1

2

Therefore, we have En+1 − En = 0
The stability of the scheme depends on the global energy, which must be a positive
quadratic form to ensure stability.

Lemma 4.4.2 En is a positive quadratic form if ∆t 6 2
dN

, where dN = ‖M−
1
2

V KT
NM

− 1
2

W ‖

Proof

En =
1

2
(En)TMWE

n +
1

2
(Hn− 1

2)TMVH
n+ 1

2

=
1

2
(En)TMWE

n + (Hn− 1
2)TMVH

n− 1
2 − ∆t

2
(Hn− 1

2)TMVE
n

>
1

2
‖M

1
2
W ‖

2 +
1

2
‖M

1
2
V ‖

2 − ∆

2
|(Hn− 1

2)TM
1
2
VM

− 1
2

V
TKNM

− 1
2

W M
1
2
WE

n|

>
1

2
‖M

1
2
W ‖

2 +
1

2
‖M

1
2
V ‖

2 − ∆dN
2
{‖M

1
2
V H

n− 1
2 ‖2 + ‖M

1
2
WE

n‖2}

>
1

2
‖M

1
2
W ‖

2 +
1

2
‖M

1
2
V ‖

2 − ∆dN
4
‖M

1
2
V H

n− 1
2 ‖‖M

1
2
WE

n‖

>
1

2
(1− ∆tdN

2
){‖M

1
2
W ‖

2 + ‖M
1
2
V ‖

2}

The last quantity is positive if 1 > ∆tdN
2 .

Finally, we can take CFLthN = 2
hdN

. As proved in [40], we have CFLth4 ' 2.85CFLth2 .

4.5 Numerical results

In [16, 18, 17], the authors construct adequate interpolators that achieve the optimal rates
(please see the section 5 of [17]). Thanks to the theory developed in literature (see e.g.
[90]), we can expect a convergence order of p for the electric field, and p + 1 for the
magnetic field with our discrete spaces defined in section 4.3.2.

In all tests, we insert knots with a multiplicity of 1. To solve the linear equation
MV ḣ = −KTe involved in (4.3.14), we used the band solver from LAPACK, with the
routines DGBTRS, DGBTRF. We have also tested PASTIX, and it reduces considerably
the computational time.

74

4.5. Numerical results

4.5.1 Test case 1: square

The analytical solution in this case is:

Hz = cos(k1x+ φ1) cos(k2y + φ2) cos(ωt), (4.5.16)

Ex = −k2

ω
cos(k1x+ φ1) sin(k2y + φ2) sin(ωt), (4.5.17)

Ey =
k2

ω
sin(k1x+ φ1) cos(k2y + φ2) sin(ωt). (4.5.18)

For our test we took a computational domain of size [0, 2π]× [0, 2π] and

k1 = k2 = 1, φ1 = φ2 = 0, ω = π

This test enables to check the L2 norm of the error (in log scale) between the numerical
and analytical solution, with respect to the parameter h = max{diam(Q̃)}, for different
orders of the basis functions (from order 3 to order 6). This is shown in Figure 4.1. We
verify that the slopes of the different curves correspond to the order of the basis func-
tions. In particular, for high orders, the machine precision is achieved. For validation,
we solved the Maxwell’s equation forN = 16, 32, 64, 128, while keeping ∆t

h constant, and
computed the error at the time Niter∆t = C, with Niter is the number of iterations, taken
to keep the same final time.

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001 0.01 0.1

e
rr

o
r

(L
2
 n

o
rm

)

h

quadratic
Ch3

cubic
Ch4

quartic
Ch5

quintic
Ch6

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.001 0.01 0.1

e
rr

o
r

(L
2
 n

o
rm

)

h

quadratic
Ch2

cubic
Ch3

quartic
Ch4

quintic
Ch5

Figure 4.1: Square test: the L2 norm error for (left) the magnetic field , (right) the electric field

The k-refinement strategy helped as to reduce the number of degrees of freedom as
we can see it in Figure 4.2, where the number of degrees of freedom was reduced by a
factor of 6 between multiplicity 2 (corresponding to quadratic Lagrange finite elements)
and 1 keeping the same accuracy. The price to pay, is that we increased the support of the
basis functions compared to the classical finite element method. But as we said before,
this is the best we can do using splines functions, the B-splines have the minimal support
that we can get if we try to increase the regularity of our basis.

Tables 4.1 and 4.2 show the CFL numbers for different B-splines degree p = 2, · · · , 5.
We see that the CFL decreases with the B-splines degree and the knots multiplicity.

75

4.5. Numerical results

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

dim W, m=1
dim W, m=2
dim V, m=1
dim V, m=2

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001 0.01 0.1

e
rr

o
r

(L
2
 n

o
rm

)

h

m=1
m=2

Figure 4.2: Square test: (left) the dimension of the discrete spaces Wh and Vh , (right) the L2 norm error for
the electric field, where the vector knots are multiplicity m = 1, 2 for quadratic B-splines

LF2Th LF2num LF4Th LF4num

p = 2 0.3044 0.3056 0.8676 0.8720
p = 3 0.2058 0.1840 0.5866 0.5872
p = 4 0.1496 0.1520 0.4265 0.4272
p = 5 0.1151 0.1168 0.3281 0.3280

Table 4.1: Test case 1: CFL numbers (theoretical and numerical values), for splines of degree p = 2, · · · , 5

m=1 m=2
p = 2 0.8720 0.5200
p = 3 0.5872 0.4224
p = 4 0.4272 0.3056
p = 5 0.3280 0.2304

Table 4.2: Test case 1: CFL, using LF4, for splines of degee p = 2, · · · , 5 for singular knots (m = 1), and
doubled knots (m = 2)

N = 16 N = 32 N = 64
p = 2 11.35 48.67 239.25
p = 3 24.74 105.10 471.10
p = 4 50.72 211.09 919.90
p = 5 91.61 392.61 1708.61

Table 4.3: Test case 1: computation time in seconds after 10000 iterations. Computations were done on
MacBook 2GHz Intel Core 2 Duo, Memory 2 Go 667 MHz DDR2, using the band solver from LAPACK

LF2num and LF4num are obtained numerically, by fixing h and increasing ∆t until di-
vergence (let us denote it ∆tmax). The CFL number is therefore the value ∆tmax

h . This was
done for different values of h.

It is well known [5] that for rectangular meshes, there is a condition to get the optimal

76

4.5. Numerical results

convergence rate. Otherwise, we will see a degradation of this rate. In our case, as we
are only using a cartesian meshes for the parametric domain (patch), we can recover the
same property by changing the regularity of the mapping F . In Figure 4.3, we construct
a mapping F by elevating the B-spline degree, and repositioning 4 control points. We can
see, that this operation has generated a discontinuity of the jacobian of F . This surely will
cause a degradation of the convergence rate, as it is shown in Figure 4.3. An important
question, could be how can we weaken the regularity constraint on the mapping?

 0.0001

 0.001

 0.01

 0.01 0.1

e
rr

o
r

(L
2
 n

o
rm

)

h

Approximation error
Projection error

Ch3

Figure 4.3: (left) The jacobian of the mapping F and control points. (right) degradation of the convergence
rate

4.5.2 Test case 2: circular wave guide

The analytical solution, in the polar coordinates, in this case is:

Hz(r, θ) = − cos(ωt+ θ){J1(ωr) + aY1(ωr)}

Eθ(r, θ) =
1

2
sin(ωt+ θ){J0(ωr)− J2(ωr) + a(Y0(ωr)− Y2(ωr))}

Er(r, θ) = − 1

ωr
cos(ωt+ θ){J1(ωr) + aY1(ωr)}

where Jn, Yn are the first and the second Bessel functions of order n.
For our test we took

rmin = 0.65138750344695903414, rmax = 0.99000418530735846839, a = 1.0, ω = 3π

In the sequel, we present two different ways to solve this problem.

Polar mapping, with periodic splines

Under a polar mapping, we use uniform periodic B-splines in the theta direction and
uniform B-splines with open knots in the radial direction. The use of uniform B-splines
allows to reduce the number of degrees of freedom. Therefore, we can achieve an error
of 10−11, using quintic B-splines, with only 64×64 meshes, and dimWh = 8640,dimVh =

77

4.5. Numerical results

4352. A precision of 10−7 is achieved, using quintic B-splines, with only 16× 16 meshes.
In figures 4.4 and 4.5, we have plotted the solution and the convergence order, using a
LF4 time scheme.

Figure 4.4: Circular wave guide test: (left) at t = 0, (right) after 20 iterations, for N = 64, p = 3

Polar mapping, with C0-periodic splines

Here, we use a polar mapping, which is only C0. In fact, rather than takin uniform B-
splines in the θ-direction, we impose strongly the periodicity, assuming that control points
must coincide on the extremities of each (closed) curve in the θ-direction. We shall ob-
serve, a degradation of the convergence order. In figures 4.6, 4.7 and 4.8, we have plotted
the L2 error norm and computed the convergence order, at t = 0.0, 0.05 and 0.5. This
shows the degradation of the accuracy, depending on the spline degree. Notice that the
C0-periodicity does not have any impact at t = 0.0, i.e the projection over the discrete
spaces. We also observe that the accuracy degradation is more important using B-splines
of odd degree (the reference is for the magnetic field).

Remark 4.5.1 In order to use a C0 condition, we must have only Bernstein polynomials.

4.5.3 Test case 3: Silver-Muller condition

In the case of the Silver-Muller condition the discrete Faraday’s equation of (4.2.8) is
written

∂tMV h
z +Ke + Γhz = 0

where Γ is the mass matrix of the discrete Vh on the boundary that implements Silver-
Muller condition i.e

∫
∂ΩSM

Ni,jNi′,j′

In this test we see the evolution of an electromagnetic wave (figure 4.9), under Silver-
Muller condition on both the internal and external boundary. At t = 0, we took Ex =

u(x)u(y)′ and EY = u(x)′u(y), with u(x) = exp(− (x−m)2

2σ2).

78

4.6. H-rot formulation

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01 0.1

e
rr

o
r

(L
2
 n

o
rm

)

h

quadratic
Ch2

cubic
Ch3

quartic
Ch4

quintic
Ch5

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01 0.1

e
rr

o
r

(L
2
 n

o
rm

)

h

quadratic
Ch2

cubic
Ch3

quartic
Ch4

quintic
Ch5

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.01 0.1

e
rr

o
r

(L
2
 n

o
rm

)

h

quadratic
Ch3

cubic
Ch4

quartic
Ch5

quintic
Ch6

Figure 4.5: Circular wave guide test: the L2 norm error for, first line Ex (left) and Ey (right) components of
the electric field, second line the magnetic field

4.6 H-rot formulation

In this section, we will use the diagram 4.3.9 to construct a discrete DeRham sequence.
As noticed before, the spaces in the patch, involved in this case are:

V = span{Np
i (x)Np

j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

Wcurl = span

{(
Dp
i (x)Np

j (y)

0

)
,

(
0

Np
i (x)Dp

j (y)

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
,

X = span{Dp
i (x)Dp

j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.
As in the case of the H-div formulation, we will need to transform carefully the vector
functions in order to conserve their properties. In this case,

Wcurl = span

{
1

∆
D̃p
i (ξ)Ñ

p
j (η)

(
β2

−β1

)
,

1

∆
Ñp
i (ξ)D̃p

j (η)

(
−α2

α1

)}
. (4.6.19)

After discretization, we get the linear system :{
MW ė = Kh

MV ḣ = −KTe
(4.6.20)

79

4.7. Axisymmetric Variational formulation of the 2D Maxwell’s equation

where,

MW
b,b′ =

∫
Ω Ψb ·Ψb′dΩ,

MV
b,b′ =

∫
Ω ϕbϕb′dΩ,

Kb,b′ =
∫

Ω ϕbrot Ψb′dΩ.

with the usual notation:

Wcurl = span {Ψb} .
V = span {ϕb} .

Numerical results

Let’s go back to the test presented in section 4.5.1, with the analytical solutions given by
equations 4.5.16, 4.5.17 and 4.5.18. Results are given in figure 4.10.

4.7 Axisymmetric Variational formulation of the 2D Maxwell’s
equation

In this section, we shall investigate different formulation to solve the axisymmetric case.
More details about the axisymmetric Maxwell equations can be found in [6, 7].

Maxwell’s equations

The 2D Maxwell equations, in the TE mode, are

−∂E

∂t + rotB = J,

∂B
∂t + rot E = 0,

div E = ρ.

For the axisymmetric geometry, we have:

E =

(
Ez
Er

)
, B = Bθ, rot E = ∂zEr − ∂rEz, div E = 1

r∂r(rEr) + ∂zEz et rotBθ =(
1
r∂r(rBθ)
−∂zBθ

)
.

Operators expressions

We have,

E ·Ψ = EzΨz + ErΨr,

J ·Ψ = JzΨz + JrΨr,

E · rotφ = Ez
1

r
∂r(rφ)− Er∂zφ,

rotB ·Ψ = Ψz
1

r
∂r(rB)−Ψr∂zB,

80

4.7. Axisymmetric Variational formulation of the 2D Maxwell’s equation

Validation test

For numerical validation, we solve the Maxwell’s equations on a rectangle z ∈ (0, L) and
r ∈ (0, R). Let m be the mode, the analytic solution is

H(z, r) =
ω

c

λp
R

√
ε0
µ0
J1(

λp
R
r) cos(

mπz

L
) cos(ωt),

Ez(z, r) =
1

µ0
(
λp
R

)2J0(
λp
R
r) cos(

mπz

L
) sin(ωt),

Er(z, r) =
1

µ0

mπ

L

λp
R
J1(

λp
R
r) sin(

mπz

L
) sin(ωt),

where Jn are Bessel functions of the first kind order n. λp is the pth zero of J0. In practice,
we will take L = R = 1.

In the sequel, we present different variational formulations.
The expected convergence order is p+ 1 for the magnetic field and p for the electric field.

4.7.1 Discrete equations - 1st formulation

As known, to derive a variational formulation, we will relax one equation (Ampère or
Faraday), and keep the other one in the strong form. Multiplying the two equations by a
test function and integrating on the physical domain Ω, we obtain: ∀Ψ ∈ H(div,Ω),∫

Ω
−∂E

∂t
·Ψ dX +

∫
Ω

rotB ·Ψ dX =

∫
Ω

J ·Ψ dX,

− ∂

∂t

∫
Ω

E ·Ψ dX +

∫
Ω

rotB ·Ψ dX =

∫
Ω

J ·Ψ dX.

We have, for the Faraday equation, ∀φ ∈ H1(Ω),

∫
Ω

∂B

∂t
φ dX +

∫
Ω

rot E φ dX = 0.

Now by relaxing this equation, and if we are dealing with perfectly conducting boundary
conditions, we have

∂

∂t

∫
Ω
B φ dX +

∫
Ω

E · rotφ dX = 0,

where we used the Green formula:∫
Ω

(rotG) · F dX =

∫
Ω
G rot F dX −

∫
Γ
(G× n) · F dS , ∀ F ∈ H(curl,Ω), ∀ G ∈ H1(Ω).

In the case of axisymmetric geometry, the measure dX considered is simply dX = rdrdz.
Therefore,

− ∂

∂t

∫
Ω

(EzΨz + ErΨr) rdrdz +

∫
Ω

(Ψz∂r(rB)− rΨr∂zB) drdz =

∫
Ω

(JzΨz + JrΨr) rdrdz,

81

4.7. Axisymmetric Variational formulation of the 2D Maxwell’s equation

and,

∂

∂t

∫
Ω
B φ rdrdz +

∫
Ω

(Ez∂r(rφ)− rEr∂zφ) drdz = 0.

Let Wdiv = span{ϕb, b ∈ ΛE} the basis for Wdiv, the discrete space associated to
the electrical field. Let V = span{Ψb′ , b

′ ∈ ΛH} the basis of V , it discretizes the space
associated to the magnetic field.

Mass matrix for the electrical field

MW
b,b′ =

∫
Ω

Ψb ·Ψb′rdrdz.

Mass matrix for the magnetic field

MV
b,b′ =

∫
Ω
ϕbϕb′rdrdz.

Matrix for the curl

Kb,b′ =

∫
Ω

rotϕb ·Ψb′rdrdz =

∫
Ω

(r∂rϕb + ϕb)ψ
z
b′ − (r∂zϕb)ψ

r
b′drdz

=

∫
Ω
r(∂rϕbψ

z
b′ − ∂zϕbψrb′)drdz +

∫
Ω
ϕbψ

z
b′drdz.

This is the contribution of two terms. The first one ”r(∂rϕbψzb′ − ∂zϕbψ
r
b′)” which

differs from the cartesian formulation by a multiplication by r. The second one ”ϕbψzb′”
is due to the axisymmetric geometry.

Therefore, we obtain the classical system:

MW∂t[E] = K[B], (4.7.21)

MV ∂t[B] = −KT [E] (4.7.22)

In figures 4.11 and 4.12, we have plotted the L2 error norm and computed the con-
vergence order, at t = 0.0 and 1.0. Observing the convergence orders, we may suppose
that :

• the convergence order for B is :{
p− 1

2 , if p is even
p+ 1

2 , if p is odd

• the convergence order for Ez is p+ 1,

• the convergence order for Er is the minimum of the two previous ones.

82

4.7. Axisymmetric Variational formulation of the 2D Maxwell’s equation

4.7.2 Discrete equations - 2nd formulation

In this section, we are interested in solving the Maxwell’s equations on a square domain.
We shall consider a scalar version for the variational formulation, based on one discrete
space Vh spanned by B-splines (this can also be done using NURBS). Let’s go back to
Maxwell’s equations without source terms:

−∂E
∂t + rotB = 0,

∂B
∂t + rot E = 0.

Discrete equations

Let ϕ ∈ Vh, we have :

∂t

∫
Bϕ+

∫
rot Eϕ = 0

using the Green’s formulae we get:

∂t

∫
Bϕ+

∫
E · rotϕ = 0

now let us compute the term
∫

E · rotϕ. We have,∫
E · rotϕ =

∫
Ez(

1

r
ϕ+ ∂rϕ)− Er∂zϕrdrdz

=

∫
Ez∂rϕ rdrdz −

∫
Er∂zϕ rdrdz +

∫
Ezϕdrdz

on the other hand, we have for ϕb1 , ϕb2 ∈ Vh:∫
rotB ·

(
ϕb1
ϕb2

)
=

∫
ϕb1(

1

r
B + ∂rB)− ϕb2∂zBrdrdz

=

∫
ϕb1∂rB rdrdz −

∫
ϕb2∂zB rdrdz +

∫
ϕb1Bdrdz

now let us expand Er, Ez and B on Vh, we have:∫
Ez∂rϕb rdrdz =

∑
b′

[Ez]
b′
∫
ϕb′∂rϕb rdrdz = (Dr[Ez])b (4.7.23)

and, ∫
Er∂zϕb rdrdz =

∑
b′

[Er]
b′
∫
ϕb′∂zϕb rdrdz = (Dz[Er])b (4.7.24)

and,
where we define the matrices,

(Dz)b,b′ =

∫
ϕb∂zϕb′ rdrdz, and (Dr)b,b′ =

∫
ϕb∂rϕb′ rdrdz (4.7.25)

(M)b,b′ =

∫
ϕb′ϕb drdz, and (Mr)b,b′ =

∫
ϕb′ϕb rdrdz (4.7.26)

83

4.7. Axisymmetric Variational formulation of the 2D Maxwell’s equation

Therefore, the discrete equations can be written in the form:

Mr∂t[Ez] = (DT
r +M)[B], (4.7.27)

Mr∂t[Er] = −DT
z [B], (4.7.28)

Mr∂t[B] = −(Dr +M)[Ez] +Dr[Er]. (4.7.29)

Time scheme

Equations 4.7.27, 4.7.28 and 4.7.29, can be written in the form:

M e∂t[E] = K[B], (4.7.30)

Mr∂t[B] = −KT [E] (4.7.31)

where,

M e =

(
Mr 0
0 Mr

)
, [E] =

(
[Ez]
[Er]

)
, and K =

(
DT
r +M
−DT

z

)
As in the previous section, we will use the Leap Frog time scheme, which leads to the LF
time discretization of order N , given by :{

M e [E]n+1−[E]n

∆t = KN [B]n+ 1
2

Mr
[B]n+ 3

2−[B]n+ 1
2

∆t = −KT
N [E]n+1

where {
KN = K ,N = 2

KN = K(I − ∆t2

24 M
−eKM−1

r KT) , N = 4

In figure 4.13, we have plotted the L2 error norm and computed the convergence
order, at t = 0.01. We get the corespondent convergence order, i.e p + 1 for a discrete
space based on splines of degree p.

4.7.3 H-rot formulation

In the sequel, we will solve the Maxwell’s equation in axisymmetric coordinates, using
the H-rot formulation, based on the diagram 4.3.9, following the same idea as in the
section 4.6. The discretized spaces involved in this case are:

V = span{Np
i (x)Np

j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

Wcurl = span

{(
Dp
i (x)Np

j (y)

0

)
,

(
0

Np
i (x)Dp

j (y)

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
,

X = span{Dp
i (x)Dp

j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.

As in the case of the H-div formulation, we will need to transform carefully the vector
functions in order to conserve their properties. In this case,

Wcurl = span

{
1

∆
D̃p
i (ξ)Ñ

p
j (η)

(
β2

−β1

)
,

1

∆
Ñp
i (ξ)D̃p

j (η)

(
−α2

α1

)}
. (4.7.32)

84

4.7. Axisymmetric Variational formulation of the 2D Maxwell’s equation

After discretization, we get the linear system :{
MW ė = Kh

MV ḣ = −KTe
(4.7.33)

where,

MW
b,b′ =

∫
Ω Ψb ·Ψb′ rdrdz,

MV
b,b′ =

∫
Ω ϕbϕb′ rdrdz,

Kb,b′ =
∫

Ω ϕbrot Ψb′ rdrdz.

with the usual notation:

Wcurl = span {Ψb} .
V = span {ϕb} .

Numerical results

Let us go back to the test presented in section 4.5.1, with the analytical solutions given
by equations 4.5.16, 4.5.17 and 4.5.18. Results are given in figure 4.14. We recover the
expected theoretic convergence order.

4.7.4 Remarks

Let us investigate the impact of the variational formulation on the CFL number. In tables
4.4 and 4.5, we give the theoretic CFL in the following cases:

1. Square domain, in cartesian coordinates, using H-div formulation,

2. Square domain, in cartesian coordinates, using H-rot formulation,

3. Square domain, in axisymmetric coordinates, using H-div formulation,

4. Square domain, in axisymmetric coordinates, using H-rot formulation.

We remark that the CFL is better when using the H-rot formulation.

p = 2 0.8676 1.7335
p = 3 0.5866 1.1644
p = 4 0.4265 0.8516
p = 5 0.3281 0.6588

Table 4.4: Square domain - cartesian coordinates: CFL-LF4 depending on the formulation : (left) using H-div
formulation, (right) using H-rot formulation

85

4.8. Conclusions and perspectives

p = 2 0.8613 1.2276
p = 3 0.5824 0.8428
p = 4 0.6287
p = 5 0.4941

Table 4.5: Square domain - axisymmetric coordinates: CFL-LF4 depending on the formulation: (left) using
H-div formulation, (right) using H-rot formulation

4.8 Conclusions and perspectives

We presented a new scheme for Maxwell’s equation using B-splines functions, which en-
ables as to reduce the number of degrees of freedom thanks to the k-refinement. Our
method can be easy used with an integrated CAD system. However, the use of the Isoge-
ometric idea requires to verify the De Rham diagram, so, we can not always use an exact
modeling. therefore, we will need to approximate or interpolate domains using either
splines or NURBS functions. Another idea, which can be a great help is the use of GB-
Splines [75, 76, 22]. GB-Splines are a general basic splines, and verify a closed relation to
(4.3.11).

We have constructed new basis functions based on appropriately chosen tensor prod-
ucts of B-spline functions that generate several discrete spaces involved in the numerical
solution of Maxwell’s equations. These discrete spaces are the same as those introduced
by Buffa et al. and proved there to form an exact sequences on which a convergence proof
can be based. This new setting provides a simple and efficient way to use B-splines for
the solution of Maxwell equations. Due to the discrete exact sequence all the geometric
properties satisfied by the Whitney Finite Elements still hold in our context. Moreover
we verified that for smooth solutions a lot fewer degrees of freedom are needed for spline
Finite Elements that for same order Whitney Finite Elements for the same accuracy. Fi-
nally our spline Finite Elements can be naturally constructed on a computational domain
defined by NURBS curves or surfaces generated by a CAD system.

In the case of axisymmetric coordinates, we have shown that we can not use the same
DeRham sequence as for the cartesian coordinates, in the case of the H-div formulation.
Finding an appropriate sequence might be very interesting. However, in the case of the
H-rot formulation, we recover the expected theoretic convergence order.

For some applications, our approach could be extended to an approximation of the
electromagnetic fields using GB-Splines. GB-Splines are general basic splines, and verify
a closed relation to (4.3.11):

G′i,k(t) =
Gi,k−1(t)

ci,k−1
−
Gi+1,k−1(t)

ci+1,k−1
, k > 3

with

Gi,2(t) =

ψ

(n−2)
i,n (t), t?i 6 t 6 t

?
i+1

φ
(n−2)
i+1,n (t), t?i+1 6 t 6 t

?
i+2

0, t /∈ (t?i , t
?
i+2)

and ci,k−1 =
∫ t?i+k−1

t?i
Gi,k−1(t)dt, ψ(n−2)

i,n , φ
(n−2)
i,n are assumed to be strictly monotone on

(t?i , t
?
i+1) and (t?i+1, t

?
i+2) respectively. We can get the classical polynomial spline of order

86

4.8. Conclusions and perspectives

n by taking

φi,n(t) = −(t− t?i)n−1

(n− 1)!hi
, ψi,n(t) =

(t− t?i)n−1

(n− 1)!hi
, hi = t?i+1 − t?i

Thanks to this recurrence formula, which is of the form of 4.3.11, we will be able to do
same normalization of the basis which will lead to delete one of the mass matrices. Using
such functions, we can perform a Mass Lumping technique. In fact, for certain parameters
we noticed a diminution of 20% of the non zeros elements of the Mass matrix. This is
under development.

87

4.8. Conclusions and perspectives

p = 2, 1 2.0791 2.0161 2.0038

p = 3, 2 3.4231 3.1047 3.0206

p = 4, 3 4.3873 4.0394 3.9975

p = 1, 2 2.2985 2.0816 2.0209

p = 2, 3 3.2882 3.0578 3.0113

p = 3, 4 4.6607 4.3011 4.0930

p = 2, 2 3.1438 3.0403 3.0104

p = 3, 3 4.1581 4.0308 3.9990

p = 4, 4 5.3096 5.0972 5.0269

Figure 4.6: Circular wave guide test using the polar mapping and C0 periodicity-condition : at t = 0.0, the
L2 norm error (left) and the convergence order (right) for, 1st line: Ex , 2nd line: Ey , 3rd line: the
magnetic field B

88

4.8. Conclusions and perspectives

p = 2, 1 2.1072 2.0263 2.0077

p = 3, 2 3.4210 3.0915 2.9544

p = 4, 3 4.5051 4.0865 4.0106

p = 1, 2 2.2108 2.0465 2.0089

p = 2, 3 3.2951 3.0647 3.0127

p = 3, 4 4.5811 4.2198 4.0592

p = 2, 2 3.1471 3.0403 3.0097

p = 3, 3 4.1526 3.8353 3.0033

p = 4, 4 5.3016 5.0838 4.9900

Figure 4.7: Circular wave guide test using the polar mapping and C0 periodicity-condition : at t = 0.05, the
L2 norm error (left) and the convergence order (right) for, 1st line: Ex , 2nd line: Ey , 3rd line: the
magnetic field B

89

4.8. Conclusions and perspectives

p = 2, 1 2.2972 2.0777 2.0196

p = 3, 2 2.2890 1.7850 1.9095

p = 4, 3 4.1817 3.6617 4.0116

p = 1, 2 2.0710 2.0155 2.0034

p = 2, 3 2.5530 1.7775 1.9557

p = 3, 4 4.1252 3.8068 4.0253

p = 2, 2 3.0317 2.5654 2.1401

p = 3, 3 2.2594 1.6027 1.7505

p = 4, 4 4.1574 3.4791 3.8574

Figure 4.8: Circular wave guide test using the polar mapping and C0 periodicity-condition : at t = 0.5, the
L2 norm error (left) and the convergence order (right) for, 1st line: Ex , 2nd line: Ey , 3rd line: the
magnetic field B

90

4.8. Conclusions and perspectives

Figure 4.9: Evolution of an electromagnetic wave in circular domain under Silver-Muller boundary condi-
tion

91

4.8. Conclusions and perspectives

p = 1, 2 2.0208 2.0037 2.0003 1.9998

p = 2, 3 3.0385 3.0100 3.0022 3.0004

p = 3, 4 3.9836 3.9774 3.9848 3.9914

p = 4, 5 5.0859 5.0247 5.0063 4.9981

p = 2, 1 2.0208 2.0037 2.0003 1.9998

p = 3, 2 3.0385 3.0100 3.0022 3.0004

p = 4, 3 3.9836 3.9774 3.9848 3.9914

p = 5, 4 5.0859 5.0247 5.0063 4.9982

p = 2, 2 3.0596 3.0157 3.0032 3.0008

p = 3, 3 3.9323 4.1170 4.0002 4.0201

p = 4, 4 5.0230 5.0062 5.0016 4.9998

p = 5, 5 6.1666 5.9391 5.9089 −1.2096

Figure 4.10: Square wave guide test using H-rot formulation : the L2 norm error (left) and the convergence
order (right) for, 1st line: Ex , 2nd line: Ey , 3rd line: the magnetic field B

92

4.8. Conclusions and perspectives

p = 2, 1 3.0714 3.0271 3.0114

p = 3, 2 4.0372 4.0048 3.9988

p = 4, 3 5.1757 5.0420 5.0090

p = 5, 4 6.1985 6.0510 6.0117

p = 1, 2 3.0159 3.0044 3.0011

p = 2, 3 3.9630 3.9732 3.9845

p = 3, 4 5.0665 5.0179 5.0046

p = 4, 5 6.0471 5.9983 5.9925

p = 2, 2 3.0354 3.0087 3.0018

p = 3, 3 3.9845 3.9787 3.9856

p = 4, 4 5.0864 5.0257 5.0070

p = 5, 5 6.0554 5.9893 5.9843

Figure 4.11: Square wave guide test in axisymmetric coordinates : at t = 0.0, the L2 norm error (left) and the
convergence order (right) for, 1st line: Ez , 2nd line: Er , 3rd line: the magnetic field B

93

4.8. Conclusions and perspectives

p = 2, 1 2.0267 2.0030 1.9992

p = 3, 2 3.0286 3.0012 2.9971

p = 4, 3 4.1499 4.0170 3.9958

p = 5, 4 5.2235 5.0525 5.0107

p = 1, 2 1.5514 1.5219 1.5100

p = 2, 3 3.0716 3.0378 3.0172

p = 3, 4 3.6055 3.5411 3.5218

p = 4, 5 5.0503 5.0218 5.0049

p = 2, 2 1.5278 1.5064 1.5015

p = 3, 3 3.4792 3.5101 3.5047

p = 4, 4 3.5283 3.4974 3.4992

p = 5, 5 5.2508 5.5199 5.5185

Figure 4.12: Square wave guide test in axisymmetric coordinates : the L2 norm error (left) and the conver-
gence order (right) for, 1st line: Ez , 2nd line: Er , 3rd line: the magnetic field B

94

4.8. Conclusions and perspectives

p = 1, 1 1.7007 1.6761 1.8550 2.2167

p = 2, 2 2.8501 2.9308 3.3615 2.9031

p = 3, 3 3.9786 3.9191 2.6482 2.0748

p = 4, 4 4.4928 0.8006 2.1500 0.5124

p = 1, 1 1.5446 1.5904 1.8248 2.2541

p = 2, 2 3.0802 3.0480 3.0227 3.0085

p = 3, 3 3.9386 3.9886 3.7554 3.8725

p = 4, 4 5.7821 5.7574 4.0066 1.6888

p = 1, 1 2.0159 1.9916 1.9322 1.9046

p = 2, 2 3.0353 3.0080 3.0001 3.0022

p = 3, 3 3.9838 3.9766 3.9861 3.9452

p = 4, 4 5.0867 4.9531 2.3205 2.4643

Figure 4.13: Square wave guide test in axisymmetric coordinates (2nd formulation) : the L2 norm error (left)
and the convergence order (right) for, 1st line: Ez , 2nd line: Er , 3rd line: the magnetic field B

95

4.8. Conclusions and perspectives

p = 1, 2 2.0164 2.0032 2.0003 1.9998

p = 2, 3 3.0369 3.0095 3.0022 3.0004

p = 3, 4 3.9814 3.9770 3.9847 3.9914

p = 4, 5 5.0838 5.0244 5.0063 4.9992

p = 2, 1 2.0135 2.0045 2.0005 1.9999

p = 3, 2 3.0262 2.9889 2.9895 2.9936

p = 4, 3 4.0698 4.0157 4.0018 3.9992

p = 5, 4 5.2810 5.0913 5.0336 4.8522

p = 2, 2 3.0766 3.0201 3.0031 3.0005

p = 3, 3 4.0776 4.0300 3.9901 4.0006

p = 4, 4 5.0764 5.0255 5.0065 5.0018

p = 5, 5 6.0846 5.9970 5.9844 3.7644

Figure 4.14: Square wave guide test in axisymmetric coordinates, using H-rot formulation : the L2 norm
error (left) and the convergence order (right) for, 1st line: Ez , 2nd line: Er , 3rd line: the magnetic
field B

96

CHAPTER 5

An axisymmetric PIC code based on
Isogeometric Analysis

Contents
5.1 Introduction . 98

5.1.1 Domain parametrization using Splines/NURBS curves 98
5.2 PIC method for Vlasov equation . 98

5.2.1 The PIC Method . 99
5.2.2 The equations of motion . 100
5.2.3 The Dirac mass with a change of variables 101
5.2.4 Computing J and ρ with a change of variables 102

5.3 Particles emission . 102
5.3.1 Short description of a diode . 102
5.3.2 Extraction conditions . 102

5.4 Numerical results . 103
5.4.1 Emission of particles in the diode 103

5.5 Conclusion and perspectives . 103

97

5.1. Introduction

5.1 Introduction

The Vlasov equation describes the evolution of charged particles in an electromagnetic
field, which can consist of an applied and a self-consistent field. The latter being com-
puted using Maxwell’s equations. Hence, we need to consider the system of the Vlasov-
Maxwell equations. Physical problems described by this system are varied and it is nec-
essary to develop methods adapted for each one of them.
We are interested here in the emission of electrons in a diode with hemispherical cath-
ode. The problem is a priori three-dimensional and we can use cylindrical coordinates
(z, r, θ). Moreover this problem is such that the unknowns do not depend on θ so that we
can assume 2D axisymmetric geometry.
The IsoPIC code that we describe in this paper is a (z, r) axisymmetric Vlasov-Maxwell
solver.
Thanks to symmetry in θ direction, it is enough to give the description of the domain for
a section (for example θ = 0). The isogeometric analysis approach will be applied, and
we will construct a mapping F transforming a square into the section.
For the Maxwell equations, we consider in a first stage only the transverse electric mode
(denoted by TE). The electric and magnetic field components considered are Er, Ez and
Bθ. To solve them, we use spline finite elements. This has been studied in the chapter 4.
The present chapter describes an axisymmetric Vlasov-Maxwell Particle In Cell (PIC)
method based on isogeometric analysis.

5.1.1 Domain parametrization using Splines/NURBS curves

The parametrization of the domain by curves defined by B-splines and NURBS is a recent
topic. In fact, it is a very important question to be able to create a surface meshes giving
only a description of the boundary in term of curves. An additional properties may be
required: in the case of Maxwell’s equations, it is well known (see for example [90]) that
the mapping must be continuously differentiable, one-to-one and onto map, such that the
determinant of the jacobian is of one sign on all the parametric domain (i.e patch). For the
moment, only few articles discussing the topic provide strategies to build meshes [2, 21,
84, 118] from the description of the boundary, but nothing about additional properties of
the corresponding mapping.

The easiest approach, which involves NURBS to describe the quarter of circle of the
diode, leads to a mapping which is continuous at the crossing of some nodes and not
C1, see Fig. 5.1. We thus opted for a version in the spirit of isoparametric analysis using
only B-splines. The elements used to describe the boundary improve this description by
increasing the degree of splines. A quarter of the circle is constructed by interpolation,
by choosing a degree, determined by the user. This can also be done by approximation.

For numerical validation, we will work on a version of the domain, obtained by
keeping the control points and weights equal to 1 (in which case the NURBS become
B-splines), is presented later. This domain is used for validation, before looking a more
advanced version.

5.2 PIC method for Vlasov equation

The main idea of a PIC method is to consider a set of macro-particles, which under elec-
tromagnetic fields (Lorentz force) will move (Vlasov equation). Those macro-particles

98

5.2. PIC method for Vlasov equation

Figure 5.1: Diode: (left) The Jacobian of the mapping and the control points, (right) the mesh.

are in fact a mathematical model of cloud of (micro) particles. Hence, a typical model
would be to consider a distribution of those (mini) particles around this macro-particle.
As the Maxwell’s equations are written in the patch, it would be better to be able to move
particles in this parametric domain. The aim of this section, is to write the equations of
motion in the patch.

5.2.1 The PIC Method

To solve the Vlasov equation

∂f

∂t
+ V · ∇Xf − (E + V ∧B) · ∇V f = 0,

we use the PIC method [103], [11]. We consider a set of N macro-particles with Xk being
as the position, Vk as the velocity, and ωk as the weight. The particles represent the dis-
tribution function f . We approach f by a sum of Dirac functions centered in the positions
and in the velocities of particles:

f(X,V, t) ≈ fN (X,V, t) =
N∑
k=1

ωkδ(X−Xk(t))δ(V −Vk(t)). (5.2.1)

The motion of particles is described by the equations of motion in which the electric and
magnetic fields are used. They are obtained by solving the Maxwell equations which
involve the charge density ρ and the current density J. We present the different steps of
the PIC method:

99

5.2. PIC method for Vlasov equation

Mesh Generation

��

Computation of
fields on the mesh

 Initialization of
positions and velocities //

Interpolation of
charge and current

densities on the mesh

44

Emission of new
particles

��

Motion of particles

OO

Interpolation of fields
on the particles

oo

The most important steps that we develop in the following are:

- the description of equations of motion,

- the computation of charge density and current density,

- the condition for the emission of the particles.

5.2.2 The equations of motion

In our case, we move the particles in the patch, because it is easier to localize them on it.
Otherwise, we will need to inverse the mapping for all particles, and at each time step,
which is obviously inadmissible. Let us explain how to obtain the equations of motion in
generalized coordinates, more details can be found in the appendix C.

The equations of motion in Lagrangian mechanics are the Lagrange equations, also
known as the Euler-Lagrange equations. There are available in any coordinate system:

d

dt

∂L

∂q̇
(q, q̇, t) =

∂L

∂q
(q, q̇, t),

where L(q, q̇, t) is the Lagrangian.
To write and solve the equations of motion in any coordinate system, we must know the
Lagrangian to obtain the Lagrange equations. We start from its expression in cylindrical
coordinates, where denoting by A the vector potential and φ the scalar potential, it has
the form

L(z, r, θ, ż, ṙ, θ̇, t) =
1

2
m(ṙ2 + r2θ̇2 + ż2)− e(Arṙ +Aθθ̇ +Az ż − φ(z, r, θ)).

Now, we define the map F which transforms the cylindrical coordinates F (ξ, η, θ) =
(z, r, θ) into a new coordinate system (ξ, η, θ). It is denoted by F (ξ, η, θ) = (z, r, θ). But,
since we work in 2D axisymmetric geometry, we have θ̇ = 0, and so the map is simplified
by F (ξ, η) = (z, r).
In this coordinate system, the Lagrangian has the form

L(ξ, η, θ, ξ̇, η̇, , θ̇, t) =
1

2
m(Mξ ξ̇

2 +Mη η̇
2 + 2Mξη ξ̇ η̇)− e

(
Aξ ξ̇ +Aη η̇ − φ(ξ, η, θ)

)
,

with (Aξ, Aη, Aθ) the components of the vector potential in the coordinate system (ξ, η, θ)
and with

Mξ = (
∂r

∂ξ
)2 + (

∂z

∂ξ
)2, Mη = (

∂r

∂η
)2 + (

∂z

∂η
)2, Mξη =

∂r

∂ξ

∂r

∂η
+
∂z

∂ξ

∂z

∂η
.

100

5.2. PIC method for Vlasov equation

From this new Lagrangian, we can deduce the equations of motion in the new coordinate
system:

det(J)
d ξ̇

dt
+ ξ̇2Kξ,η + η̇2Kη,η + 2 η̇ξ̇ Kηξ,η = − e

mdet(J)
(((E + q̇ ∧B) |ξ)Mη − (E + q̇ ∧B) |η)Mξη)

det(J)
d η̇

dt
− ξ̇2Kξ,ξ − η̇2Kη,ξ − 2η̇ξ̇Kξη,ξ = − e

mdet(J)
(((E + q̇ ∧B) |η)Mξ − (E + q̇ ∧B) |ξ)Mξη)

with

Kξ,ξ = HξVξ, Kξ,η = HξVη, Kη,η = HηVη, Kη,ξ = HηVξ, Kξη,ξ = HξηVξ, Kξη,η = HξηVη,

where

Hξ =

(
∂2z
∂2ξ
∂2r
∂2ξ

)
, Hη =

(
∂2z
∂2η
∂2r
∂2η

)
, Hξη =

(
∂2z
∂ξ∂η
∂2r
∂ξ∂η

)
, Vξ =

(
∂r
∂ξ

−∂z
∂ξ

)
, Vη =

(
∂r
∂η

−∂z
∂η

)
.

det(J) = ∂z
∂ξ

∂r
∂η −

∂z
∂η

∂r
∂ξ is the Jacobian of the change of coordinates F , the components

of E, B are the components of the electric field and the magnetic field in (ξ, η, θ) and

q̇ =

(
ξ̇
η̇

)
.

Numerically, we consider ξ̇ and η̇ as independent variables with ξ̇ = dξ
dt and η̇ = dη

dt .
We then solve the resulting first order system of ordinary differential equations using the
second-order Runge-Kutta method.

5.2.3 The Dirac mass with a change of variables

Let C be a cell of the physical domain, C̃ is such that F(C̃) = C. The Dirac mass at a
point xk is denoted by δ(x− xk). It has the following properties:

1 =

∫
C
δ(x−xk)dx, and g(xk) =

∫
C
δ(x−xk)g(x)dx, for any continuous function g.

Since the integral value does not change when we change the coordinates we can
deduce that

1 =

∫
C
δ(x−xk)dx =

∫
C̃
δ(F(ξ, η)−xk)Jac(ξ, η)dξdη =

∫
C̃

δ(ξ − ξk)δ(η − ηk)
Jac(ξk, ηk)

Jac(ξ, η)dξdη,

with F(ξk, ηk) = xk and because by definition δ(F(ξ, η)− xk) = δ(ξ−ξk)δ(η−ηk)
Jac(ξk,ηk) , so

g(xk) =

∫
C
δ(x− xk)g(x)dx =

∫
C̃
g(F(ξ, η))δ(F(ξ, η)− xk)Jac(ξ, η)dξdη

hence,

g(xk) = g(F(ξk, ηk)). (5.2.2)

101

5.3. Particles emission

5.2.4 Computing J and ρ with a change of variables

In the physical domain, we have ρ(X, t) = −
∫
V f(X,V, t)dV, and J(X, t) =

−
∫
V f(X,V, t) VdV. Replacing f by its sum of Dirac function (5.2.1), we have:

ρ(X, t) = −
N∑
k=1

ωkδ(X−Xk(t)),

J(X, t) = −
N∑
k=1

ωkVk(t)δ(X−Xk(t)).

Numerically, we have to compute the integral of these functions in space. It is easier to
do it on the patch. With help of previous part and the equality (5.2.2), we deduce, for any
ψ ∈

(
L2(Ω)

)2 and ϕ ∈ L2(Ω),∫
C

J(X, t)·ψdX =

∫
C̃

∑
k

ωkδ(F(ξ, η)−Xk(t))Vk(t)Jac(ξ, η)dξdη =
∑

k|Xk(t)∈C

ωkVk(t)·ψ(Xk(t)),

and∫
C
ρ(X, t)ϕdX =

∫
C̃

∑
k

ωkδ(F (ξ, η)−Xk(t))Jac(ξ, η)dξdη =
∑

k|Xk(t)∈C

ωkϕ(Xk(t)),

where C is a cell of a physical domain and C̃ a cell in the patch such as F (C̃) = C.

5.3 Particles emission

5.3.1 Short description of a diode

A diode is constituted of two semiconductors: a cathode rich in electrons and an anode
which lacks them. If we apply a positive tension at the anode and a negative one at the
cathode, such that the created potential drop is greater than a threshold value, electrons
are extracted of the cathode and move towards the anode. This phenomena allows an
electric current to pass. The movement of electrons near the cathode can create a vicious
circle: they increase the potential drop, allowing it to propagate in the diode, and new
electrons are extracted and moved.

Numerically, we can impose a negative electric field at the entry of the diode and
allow it to propagate. If it is strong enough, it extracts electrons of the cathode, they go
towards the anode. Our domain is meshed, so we look at each cell to see if the field
satisfies the conditions of the emission of particles.

5.3.2 Extraction conditions

At a given frequency, particles are created in each cell C respecting the following condi-
tions:

- the cell C touches the cathode,

- the normal electric field to the cathode on C is greater than a threshold value.

102

5.4. Numerical results

Weights of created particles are positive and such that the following relation is respected:
div E = ρ, and in the same time, the normal electric field to the cathode is zero according
to the Child-Langmuir law. We integrate this relation on a cell C :

∫
C

div E dΩ =

∫
C
ρ dΩ.

The Stokes formula leads to:
∫
C div E dΩ =

∫
∂C E · n dγ. Besides, the approximation

(5.2.1) gives:

∫
C
ρ dΩ =

∑
particle k∈C

−ωk

because particles are electrons, their charge is negative but their weight is positive. We
obtain the relation

∫
∂C

E · n dγ =

∫
∂C0

E · n dγ +

∫
∂C1

E · n dγ =
∑

particle k∈C
−ωk,

where ∂C0 is the boundary of C touching the cathode and ∂C1 is the union of other
boundaries of C. In order to make

∫
∂C0

E · n dγ vanish, the weight of injected particles is
imposed such that we have∫

∂C1

E · n dγ =
∑

particle k∈C
−ωk.

5.4 Numerical results

5.4.1 Emission of particles in the diode

We studied qualitatively the extraction of particles in the domain representing the diode.
We impose at the beginning of the diode a tension that increases linearly until reaching
a threshold value, and is then constant. Particles are emitted at the cathode under the
conditions of extraction described previously. We take the time step dt = 1.0× 10−2 and
perform 25 000 iterations. We represent the electric field Er and the particles at the time
T = 25, 50, 75, 100, 125, 150, 175 and 200 in the figure 5.2.

5.5 Conclusion and perspectives

We have developed the IsoPIC code which solves the Vlasov-Maxwell equations in 2D
axisymmetric geometry. It is based on isogeometric analysis. It is applied to emit elec-
trons in a diode with a hemispherical cathode, which we approximated using splines.
The solution of the Vlasov equation is performed with a PIC method by moving the par-
ticles emitted at the cathode.

The Maxwell solver in axisymmetric geometry gives good results. The theoretical
orders of convergence are checked on a square and the fields evolve correctly in the diode.
Qualitatively, we also have good results for the particles. The extraction seems to be good

103

5.5. Conclusion and perspectives

Figure 5.2: Electric field and electrons at time T=25, T=50 (first line), T=75, T=100 (second line), T=125, T=150
(third line), T=175 and T=200 (last line).

but we have to add a confinement for which the TM mode, we have not implemented up
to now, is needed.

We noticed that the conjugate gradient method is not good for our problem because
the mass matrix of the electric field in axisymmetric geometry is not well conditioned so
this algorithm does not converge fast enough. We did not notice this problem in carte-
sian coordinates where the matrices are better conditioned. So we used the direct solver
Pastix, which has the advantage to be faster than iterative solvers for this kind of prob-
lems in 2D.

The equations of motion are written and implemented in a general coordinate system.

104

5.5. Conclusion and perspectives

We have tested them in particular cases and we have compared the results with polar co-
ordinates. The use of generalized coordinates is a choice for this study, despite the bigger
calculation time. We would like to test later other possibilities, like cartesian coordinates
with a mapping/inverse mapping to handle the mesh.

This work needs to be continued addressing the following topics. On the one hand,
we can rewrite the Maxwell equations in order to not have to invert the mass matrix of
the electric field. On the other hand, we have to compute a Poisson solver, in order to
consider more general cases. In fact, if there are particles at initial time (which is not the
case in this study), we have to solve the Poisson equation initially. Then, the conservation
of charge is obtained thanks to the exact De Rham sequence. Finally, we can parallelize
the Maxwell solver and the motion of particles using GPU (Graphics Processing Unit),
to reduce computation time. This kind of parallelization is indeed very efficient in our
costly computations, which do not require a lot of memory.

105

5.5. Conclusion and perspectives

106

CHAPTER 6

Application to Semi-Lagrangian
schemes

Contents
6.1 2D Vlasov . 109

6.1.1 Physical model: the paraxial beam 109
6.1.2 The ISOLOSS code . 110

6.2 Complex geometry using parametric surfaces 113
6.2.1 General framework . 113
6.2.2 Analytic mapping . 115
6.2.3 Bézier patches . 115

6.3 Algorithms . 116
6.3.1 Inverse mapping for Bézier patches 117
6.3.2 Reducing delays for patch finding 119
6.3.3 Velocity integrals . 120

6.4 Results . 120
6.4.1 Geometry settings and experimental results 120
6.4.2 Performance issues . 122

107

Introduction

A tokamak is a toroidal device for plasma confinement in which a strong toroidal mag-
netic field is imposed by a system of external coils, while a poloidal magnetic field is
generated by a strong toroidal current flowing through the plasma. The sum of these
toroidal and poloidal fields results in a helical geometry of the magnetic field lines. In
the region we are interested in, which is the confined plasma in the core of the toka-
mak, the magnetic field lines are closed and are wrapped around closed surfaces. These
so-called magnetic surfaces are nested around the plasma center and can usually be con-
sidered axisymmetric and described by a constant section around the torus. The shape
of the magnetic surfaces has a strong impact on the physics involved in the confinement
of the plasma [4]. Therefore, in order to accurately describe the transport processes in a
tokamak plasma, a fine description of the geometry of magnetic surfaces is mandatory.

The strong magnetic field in a tokamak means that the motion of particles will be
restricted in the direction perpendicular to the magnetic field lines, but free along this
(so-called parallel) direction. Moreover, the large perturbations along the magnetic field
lines play an important role in transport processes and must be included in the model.
Thus, it appears that even small discretization errors can corrupt numerical results, for
instance by causing a parallel heat flux to leak into the transverse direction [47]. These
issues are particularly critical when modeling nonlinear phenomena such as turbulence,
which is usually studied in the fusion community through the development of gyroki-
netic codes [45]. These first-principle codes solve a coupled Vlasov-Poisson system in 5
dimensions (3 dimensions in real space and 2 in velocity space). As a first approach, most
of these codes adopted a simplified description of the geometry of magnetic surfaces, for
instance using basic polar coordinates, which implies that realistic tokamak geometries
were not taken into account. More recently, an ongoing effort has been initiated to in-
clude more realistic geometries. As a long-term objective, we expect to design a new
Vlasov solver for the gyrokinetic code GYSELA [53] which would extend the code’s ca-
pability to perform simulations in complex tokamak geometry while providing a fine
description of this geometry.

Classical FEM method with straight lines describing the edges are not adapted to the
complex geometry of magnetic surfaces in a tokamak, where curved elements appear
necessary for an accurate description of these surfaces. In this context, the isoparamet-
ric and isogeometric frameworks provide a method to produce curved elements adapted
to any given geometry, and to create a PDE solver using these elements. Compared to
a more standard description by metric tensors, the isoparametric/isogeometric frame-
works: 1) give more flexibility to generate and refine the computational mesh, 2) intro-
duce a rich set of computationally cheap parametric functions to build the mesh and
to map quantities between configuration space and parameter space, 3) provide the so
called k-refinement, a strategy that can increase the regularity of functions through the
mesh’s interfaces, reducing the number of degrees of freedom, 4) allow a simple modifi-
cation of the boundary by repositioning the control points.

In order to advance towards the long-term objective of designing a gyrokinetic Vlasov
solver in complex geometry, we describe in this paper a feasibility study of isoparametric
analysis in a simplified setting. The Vlasov solver is implemented on a reduced phase
space (1D in space and 1D in velocity), instead of the 5D phase space of gyrokinetic
codes. This reduced model is directly relevant for the application expected in GYSELA, as
isoparametric meshes would be used – at least as a first step – to generate the 2D meshes

108

6.1. 2D Vlasov

describing magnetic surfaces in the poloidal plane. We consider a Vlasov-Poisson prob-
lem modeling the focusing of a heavy ion beam in an axisymmetric geometry around its
optical axis. The advantage of this reduced model is that numerical experiments can be
performed in a small-sized phase space domain using simple Dirichlet boundary condi-
tions. Since the solution remains very localized, one can easily investigate different mesh
geometries without damaging numerical results. Moreover, as is the case in gyrokinetic
simulations, small-scale filamentation develops in phase-space, which must be correctly
captured by the solver independently of the chosen mesh. The aim of this paper is to vali-
date numerically the Vlasov solver for different underlying meshes, as well as to measure
the impact of the chosen mesh on computational costs.

In section 6.1, we describe the two-dimensional Vlasov-Poisson test case considered,
as well as the numerical methods used for a standard cartesian mesh. The framework for
isogeometric analysis and the chosen computational grids are introduced in section 6.2.
The specific algorithms needed to design a Vlasov solver on an isoparametric surface are
presented in section 6.3. The results in terms of accuracy and computational cost for the
different geometries considered are detailed in section 6.4. A conclusion follows.

6.1 2D Vlasov

6.1.1 Physical model: the paraxial beam

Our reference test case is the study of beam focusing using the paraxial Vlasov-Poisson
model[42]. This model is common in accelerator physics and describes the propagation
of a particle beam along a linear optical axis. While the beam is considered in steady-
state, the propagation velocity in the direction z of the optical axis is assumed constant
(thus z is formally replaced by time in the equations). We also assume that the beam
is symmetric around its optical axis. Therefore, we solve the Vlasov-Poisson system in
cylindrical geometry with the radius r as the only space coordinate and vr the velocity in
the radial direction. In order to avoid issues with boundary conditions around r = 0, we
consider a symmetric domain in r with the condition f(−r, vr) = f(r,−vr) where f is the
particle distribution function in phase-space.

Following the normalization in [105], we solve the Vlasov equation coupled with a
Poisson equation

∂tf + vr∂rf + F (t, r)∂vf(t, r, vr) = 0 (6.1.1)
1

r
∂r (rEself (t, r)) = ρ(t, r) =

∫ ∞
−∞

f(t, r, vr) dvr (6.1.2)

where F (t, r) is the applied force. It contains contributions from both the externally ap-
plied (Eapp) and the self-applied (Eself) fields:

F (t, r) = Kself Eself (t, r) +KappEapp(t, r) .

whereKapp andKself are constants. We consider the case where a proton beam is focused
by applying a periodic external electric field with the following normalized expression

Eapp(t, r) = −1

2
{1 + cos (2πt)}2 r (6.1.3)

109

6.1. 2D Vlasov

As an initial distribution function, we will use the semi-gaussian (gaussian in velocity,
localized in space) formulation

f0(r, vr) =
N0√

2ππa2vth
e
− v2

r
2v2
th for |r| < a (6.1.4)

= 0 elsewhere (6.1.5)

whereN0 is the total number of particles, a is the initial beam radius and vth is the thermal
velocity.

6.1.2 The ISOLOSS code

In order to solve the 2D Vlasov-Poisson system in complex geometry, we have used the
LOSS code [25], extending it for the paraxial beam test case and for various geometries
to a new version named ISOLOSS. The ISOLOSS code uses a semi-Lagrangian numerical
scheme[106], which will be presented in section 6.1.2. The time integration is performed
using a predictor-corrector scheme, described in section 6.1.2.

Semi-Lagrangian method

Two types of methods are most commonly used to solve the Vlasov-Poisson system.
On the one hand, Lagrangian (or Particle-In-Cell) methods[12] discretize the distribution
function into a finite number of macro-particles. The evolution of these macro-particles
then follows the characteristics of the Vlasov equation, while a grid is necessary only in
real space in order to solve the Poisson equation. Lagrangian methods allow for efficient
computations with a numerical cost that can be tuned depending on the expected accu-
racy. The main drawback of such methods is the numerical noise due to the sampling
of the distribution function, which requires complex noise reduction methods (see for
instance [73] for state-of-the-art noise reduction techniques in gyrokinetic simulations).
On the other hand, Eulerian methods solve the Vlasov equation on a fixed grid in phase-
space using finite differences, finite volumes or spectral methods to discretize the opera-
tors in the Vlasov equation. The key issue for Eulerian methods is that the discretization
of the operators leads to numerical dissipation.

The semi-Lagrangian method is a mix between the Lagrangian and Eulerian meth-
ods, which tries to eliminate the main drawbacks of each method. This method was
first developed for meteorological studies (see [107] for a review) and was more recently
adapted to plasma simulations [106]. In order to avoid the statistical noise observed in
Lagrangian codes, a fixed (Eulerian) grid in phase-space is used. On the other hand, to
avoid numerical dissipation and take advantage of the conservation of the distribution
function along trajectories by the Vlasov equation, the characteristics of the equation are
used to compute the time evolution of the distribution function. The basic algorithm for
the backward semi-Lagrangian method [106] used in LOSS is described in figure 6.1. For
every grid point at a given time step, the characteristic curves are integrated backward to
find the value of the distribution function at the foot of the characteristic. As this point is
hardly ever on the grid, an interpolation must be performed to compute the value of the
distribution function. It has been shown [43, 10] that cubic spline interpolation provides
a good compromise between accuracy (low diffusivity) and numerical cost. Details of
this method will be presented in section 6.1.2.

110

6.1. 2D Vlasov

Figure 6.1: Basic algorithm for the Semi-Lagrangian method (figure from [52])

Predictor-corrector scheme

The time integration of the Vlasov-Poisson system is performed using a second-order in
time predictor-corrector numerical scheme. Given the distribution function f(tn, r, vr) at
time tn we perform the following sequence to compute f at tn+1 = tn + ∆t:

1. Computation at time tn of the charge density ρn (different methods are considered
for this computation, depending on the choice of geometry, see 6.3.3 for details)

2. Computation of the self-consistent electric field En by solving the Poisson equation
(6.1.2) with ρ = ρn

3. For each grid point (r, vr): backward advection of ∆t/2 to compute the foot of the
characteristic (r∗, v∗r)

4. Interpolation on the 2D grid using local cubic splines to compute f(tn, r∗, v∗r), which
yields the value for f̃(tn+1/2, r, vr) due to the conservation of the distribution func-
tion along the characteristics

5. Computation of the density ρ̃n+1/2 and electric field Ẽn+1/2

6. For each grid point (r, vr): backward advection (and interpolation) of ∆t using the
fields at tn+1/2 to compute f(tn+1, r, vr) from the values f(tn)

This numerical scheme is similar to a second-order Runge-Kutta method.

Following the characteristics

In the semi-Lagrangian method, one has to compute characteristic curves between two
consecutive time steps. The foot of one characteristic, denoted previously (r∗, v∗r), is
found by approximating an advection term using the velocity and the force fields. Sev-
eral procedures can be used in order to find this foot, such as Taylor expansion [52] or
fixed-point iterations. We choose a predictor-corrector scheme that gives an advection
term approximated with an error of second order in space (see [24] for detailed descrip-
tion).

2D cubic spline interpolation

The interpolation of the distribution function on the grid in phase-space is one of the
main challenges of the semi-Lagrangian method. The method used for this interpolation

111

6.1. 2D Vlasov

should limit dissipation while being numerically efficient, as it will be performed at each
time step and for every grid point. In the LOSS and ISOLOSS codes, this interpolation
is performed using two-dimensional cubic splines [31, 106]. In this section, we will first
present the method for interpolation with cubic splines in one dimension, then extend
this method to two dimensions using a tensor product of cubic spline basis.

In one dimension, consider a function g(x) defined for x ∈ [x0, xN]. This function g is
projected on a basis of cubic splines:

g(x) ' cs(x) =
N+1∑
ν=−1

ηνBν(x) (6.1.6)

where Bν are the cubic B-splines and the coefficients ην are the unknown spline coeffi-
cients. The interpolation of the function g by cs on the N + 1 points of the domain leads
to N + 1 equations (cs(xi) = g(xi) for i = 0, . . . , N) for the N + 3 spline coefficients.
As the linear system is undetermined, we add two constraints on the derivatives at the
boundaries

g′(xi) ' cs′(xi) =
1

2h
(ηi+1 − ηi−1) for i = 0 and i = N (6.1.7)

where h is the uniform cell size defined by h = xi+1−xi. Thus the spline cs interpolating
g at the grid points and verifying the boundary conditions is uniquely defined. The
vector of spline coefficients η = [η−1, . . . , ηN+1]T is obtained by solving the linear system
Aη = G where

G =
[
g′(x0), g(x0), . . . , g(xN), g′(xN)

]T (6.1.8)

and A is the following (N + 3)× (N + 3) matrix:

A =
1

6

−3/h 0 3/h 0 · · · 0

1 4 1
.

1 4 1
0 · · · 0 −3/h 0 3/h

 (6.1.9)

Note that the Hermite boundary conditions can, depending on the simulation domain,
be replaced by periodic boundary conditions. It modifies the linear system that needs
to be solved but not the general method. The LU decomposition of matrix A is easily
computed using Gauss elimination. For a given vector G, the spline coefficients are
then computed in two steps by solving successively the lower triangular matrix system
Lµ = G and the upper triangular matrix system Uη = µ.

Extending this method from one dimension to two dimensions is achieved by consid-
ering the tensor product of two cubic spline bases. Consider a function g(x, y) defined
for (x, y) ∈ [x0, xNx]×

[
y0, yNy

]
. The interpolating spline becomes:

g(x, y) ' cs(x, y) =

Nx+1∑
ν=−1

Ny+1∑
β=−1

ην,βBν(x)Bβ(y) (6.1.10)

where the unknowns are the (Nx + 3) × (Ny + 3) coefficients ην,β . We first solve the
following system for each value of j = 0, . . . , Ny

cs(x, yj) =

Nx+1∑
ν=−1

γν(yj)Bν(x) where γν(yj) ≡
Ny+1∑
β=−1

ην,βBβ(y) (6.1.11)

112

6.2. Complex geometry using parametric surfaces

For each value of j, we obtain Nx + 1 interpolation conditions. Imposing values of the
derivatives at the boundaries in x leads to Ny + 1 linear systems of the type Aγν(yj) = G
whereA is the matrix (6.1.9) and the vectorG is similar to expression (6.1.8). TheseNy+1
systems of size (Nx + 3)× (Nx + 3) are solved using LU decomposition as described for
one dimensional interpolation, yielding the solutions γν(yj) for ν = −1, . . . , Nx + 1 and
j = 0, . . . , Ny.

To compute the coefficients ην,β in equation (6.1.10), we still need to solve equation
(6.1.11) for ν = −1, . . . , Nx + 1. For a given value of ν, the systems previously solved
give us Ny + 1 interpolation conditions, while we need to solve for Ny + 3 unknowns.
We force the derivatives at the boundaries in y to complete the system, which implies
that we need to compute γ′ν(y0) and γ′ν(yNy). This means solving two additional linear
systems of the type Aγ′ν(yj) = ∂yG with j = 0 and j = Ny, where the vector G is defined
by derivatives of g(x, y) and A is the matrix in (6.1.9). Finally, for each value of ν, we
solve the system Aην,β = Γν,β with Γν,β =

[
γ′ν(y0), γν(y0), . . . , γν(yNy), γ

′
ν(yNy)

]T , once
again using LU decomposition to obtain the spline coefficients ην,β .

To estimate the computational cost of two-dimensional cubic spline interpolations, we
need to count the number and size of the linear systems solved by oneLU decomposition.
To compute all the coefficients, we need to solve:

• Ny + 1 systems of size (Nx + 3)× (Nx + 3)

• 2 systems of size (Nx + 3)× (Nx + 3)

• Nx + 3 systems of size (Ny + 3)× (Ny + 3)

Considering that the resolution through LU decomposition of a linear system of size N
requires O(N) operations, the global cost of two-dimensional cubic spline interpolation
is of the order O(NxNy) operations. The cubic B-splines have compact support basis, the
1D interpolation at a given position requires only the combination of 4 coefficients with
4 basis functions. Let us assume a uniform grid spacing ∆x from xmin to xmax, one has

cs(x) =

bx−xmin
∆x

c+2∑
ν=bx−xmin

∆x
c−1

ηνBν(x) . (6.1.12)

In a two dimensional setting, the interpolation uses 16 spline coefficients combined with
8 basis functions, leading to a reasonable cost of several tens of floating point operations.
In the sequel, Interp(g, x, y) denotes the 2D interpolation of function g taken at position
(x, y).

6.2 Complex geometry using parametric surfaces

In the following, the symbol t will no longer be used as the time variable but as a param-
eter in the spatial parametric equations.

6.2.1 General framework

The need of an accurate representation of the geometry is not an exclusive matter of a
specific application domain but is quite common in scientific computing. Diffeomorphisms

113

6.2. Complex geometry using parametric surfaces

associated to finite elements have proved to be very useful to deal with complex geome-
tries. The idea is to perform a shape transformation in order to map a computational
domain, for example a rectangular grid, to a potentially complex geometrical domain.
At a given mesh resolution, a well chosen diffeomorphism adapted to the geometry can
reduce numerical errors.

Diffeomorphisms and mapping techniques provide methods to go from a reference
coordinate system (e.g. (s, t) ∈ [0, 1]2) to a physical coordinate system (e.g. (x, y) ∈ Ω). To
do so, one has to choose a shape function or a mapping to go from the reference system
to the physical system. A common example is the use of a polar mapping to map a
rectangular grid onto a circular domain. In our context, we choose to work on a uniform
grid in the reference coordinate system. Such techniques have also been used in the
context of moving grids for the semi-Lagrangian method [104].

In this context, the use of B-splines and NURBS may provide a simple and powerful
tool. Since their introduction in the 1960s, B-splines (then NURBS) were almost exclu-
sively used in the CAD community. Recently, Hughes [67] has made the link between
the CAD community and the simulation one. The isogeometric analysis gives the user
the ability to approach numerical solutions of partial differential equations in the same
space used to describe the domain. Isoparametric analysis is generally attributed to Taig
[109] and Irons [70]. The idea is to approximate the domain using shape functions. Those
functions are then used to approximate the solution of partial differential equations. In
fact, when one uses high-order elements for solving a partial differential equation in a do-
main with curved boundaries, it is essential to include some way of approximating the
boundary conditions accurately. The use of isoparametric elements is an efficient way
which involves a general piecewise-polynomial change of variables F in the definition
of the discrete spaces. Recalling the classical formulation of the FEM, we use an affine
transformation to map a given element Ke to the reference element K. The element ba-
sis functions ϕe in Ke are then related to the reference basis functions ϕ by the relation
ϕe(x) = ϕ(F−1(x)). Elements where the mapping F comes from the same finite ele-
ment space are called isoparametric. One cost to pay is that this chain rule will be needed
for each derivative evaluation. Notice that we must be careful to obtain mappings that
have regular jacobians [20, 81]. When the shape functions are B-splines or NURBS, and
when the domain is exactly modeled using those shape functions, Isoparametric analy-
sis becomes Isogeometric analysis. Recalling that we can model exactly all conics using
NURBS.

One of the most interesting aspects of B-splines is that once the domain is described
by B-splines, several strategies exist to refine the mesh:

• by inserting new knots. This is the h-refinement, it is the equivalent of mesh refine-
ment of the classical finite element method.

• by elevating the B-spline degree. This is the p-refinement, it is the equivalent of
using higher finite element order in the classical FEM.

• by increasing / decreasing the multiplicity of inserted knots. This is the k-
refinement. This new strategy does not have any equivalent in the classical FEM.

One of the most interesting points of such mappings is that the evaluation for a par-
ticular point depends only on a finite (and quite small, depending on the spline degree)
number of data, which makes the algorithms strongly local. In figure 6.2, one can see
that a curve lying between two (interpolating) controls points is uniquely determined by

114

6.2. Complex geometry using parametric surfaces

the control points defining the corresponding control polygon. This local dependence is
very useful as one can change the shape of a curve by only changing the position of some
control points (see figure 6.2).

P1 �

P2 � P3�

P4� P1 �
P2 �

P3�

P4�

Figure 6.2: A Bézier curve after repositioning the control point P2

The inconvenient of B-spline mappings is the inverse problem: given a point in the
physical domain, what is the corresponding parametric point? Iterative algorithms to
perform this inverse mapping will be described in section 6.3.1. Another idea is to use
an analytic inverse, whenever it is possible, for example in the case of a polar grid (see
section 6.2.2).

A main idea included in this tool set, is to be able to deal with some class of spatial
domains, described by B-splines. The aforementioned description can be coupled with a
Semi-Lagrangian method to solve the Vlasov equation. The resulting code, that we have
named ISOLOSS, will be described in the sequel of this paper. The present work focuses
on two isoparametric meshes: an oval mesh with an analytic inverse mapping (section
6.2.2) and a mesh defined by Bézier elements (section 6.2.3), which are a specific type of
NURBS or B-splines.

6.2.2 Analytic mapping

As a first step, we consider the case where the mapping is performed by a fully analytic
diffeomorphism. This diffeomorphism maps a rectangle (s, t) ∈ [0, 1] × [0, 2π[(in the
reference space) to an ellipse in the physical space. The following parametric equations
are taken as a mapping function:

x(s, t) = rmax × s× cos(t) y(s, t) = vmax × s× sin(t)

The inverse mapping is also given by analytical expressions:

s(x, y) =

√
y2

v2
max

+
x2

r2
max

t(x, y) =

arctan(yx) if x > 0 and y ≥ 0

arctan(yx) + 2π if x > 0 and y < 0

arctan(yx) + π if x < 0
π
2 if x = 0 and y > 0
3π
2 if x = 0 and y < 0

The computational cost of moving forward and backward from the reference space to the
physical space is quite low. A direct or inverse mapping represents a fraction of the cost
induced by one 2D interpolation. Therefore, as we shall see in the numerical experiments,
the overhead in the ISOLOSS code is small compared to the original solution that does
not require a diffeomorphism.

6.2.3 Bézier patches

A Bézier surface (also known as Bézier patch) of order (n,m) is defined by several control
points (ki,j)i∈[0,n],j∈[0,m]. It maps the unit square [0, 1]2 into a surface embedded within

115

6.3. Algorithms

Figure 6.3: The Semi-Lagrangian method in complex geometry: (1) map the position in the reference space
into physical space, (2) follow the characteristic backwards in physical space, (3) map the ob-
tained position back in the reference space to perform the interpolation

a space of the same dimensionality as the control points. In our application, we take
the control points ki,j in R2 in order to represent a 2D geometry. A Bézier surface is
parametric and the equations describing it depend on parameters that are not explicitly
part of the geometry. Hence, a point P of coordinates (s, t) on the patch is localized at the
following position in the physical space:

P(s, t) =

n∑
i=0

m∑
j=0

Bni (s)Bmj (t) ki,j with Bni (u) =

(
n

i

)
ui(1− u)n−i

Bni (u) are known as the Bernstein basis of polynomials of degree n. As a first step, we
decide to use biquadratic Bézier patches.

6.3 Algorithms

The Semi-Lagrangian method, as described in section 6.1.2, must be adapted to the for-
malism of parametric surfaces introduced in section 6.2. In the approach proposed in
this paper, the choice has been made to keep the expressions of the advection equations
in the physical space, rather than rewriting these equations in the reference space [8].
Therefore, it is necessary to move backward and forward between the reference space
and the physical space. Figure 6.3 outlines the adapted Semi-Lagrangian method when
using parametric surfaces. From a given position (s, t) in the reference space, we map
the corresponding position in physical space. The characteristics are then followed back-
wards in physical space, and the foot of the characteristics must be mapped back into
the reference space before performing the cubic spline interpolation. The main issue
in this algorithm is the inverse mapping of positions from physical space to reference
space. This transformation has to be performed for each grid point during the advection
step. There is no generic analytical solution for curved elements and this operation can
be numerically costly. Several solutions have been proposed in the computer graphics
community to design fast inverse mappings [46, 89]. Algorithms to perform the inverse
mapping from physical space to reference space are presented in section 6.3.1.

Another issue when solving the Vlasov-Poisson system on an isoparametric mesh is
the computation of velocity integrals to obtain the density, which is needed to solve the
Poisson equation. Whereas such computation is trivial for a cartesian grid in position
and velocity, it requires a special treatment for curved elements, which will be presented
in section 6.3.3.

116

6.3. Algorithms

6.3.1 Inverse mapping for Bézier patches

Existing solutions

Several algorithms have been proposed to calculate the inverse mapping for Bézier
patches [46]. A common approach is to use a multivariate Newton iteration scheme (also
called Newton-Raphson scheme). This method uses an iterative process to approach one
root of a set of equations. For an adequately suited set of equations, this procedure starts
with the position in physical space and gives the position in the reference space within a
few iterations. The convergence is quadratic and the number of significant digits double
after each iteration. The Newton scheme has an intrinsic problem: it may fail to converge.
As the convergence depends on the gradient, we can expect Newton algorithms to fail
for domains with singularities.
A method called Bézier clipping [89] has been introduced to guarantee systematic conver-
gence. Iteratively, the algorithm builds smaller nested Bézier subpatches. These Bézier
subpatches keep the target point inside them. The parameter domain that surrounds the
target point is thus iteratively reduced until it becomes sufficiently small that one can
approximate easily the inverse mapping in averaging the control points of the subpatch.
This strategy involves much more computations than the Newton-Raphson method.
The inverse mapping algorithm we need is based on the same techniques used for com-
puting the points at which a ray intersects a rational Bézier patch in the computer graph-
ics community. In this work we only investigate Newton and clipping schemes. Some
alternative methods (such as interval Newton iteration) have been described in [111].
The inverse mapping function used in the sequel is denoted Imap(r, vr). If the input point
(r, vr) is in the computational domain then one has Imap(r, vr) = (s, t) ∈ [0, 1]2.

Description of the Newton algorithm

The inverse mapping problem can be written as:

P(s?, t?) =
n∑
i=0

m∑
j=0

Bni (s?)Bmj (t?) ki,j = (x?, y?)

where s∗ and t∗ are the unknown parameters in reference space. We apply Newton’s
method to solve this nonlinear system. The equation can be rewritten as

f(s?, t?) = 0 with f(s, t) = P (s, t)−
(
x0

y0

)
.

The Taylor series of f(s, t) around the point f(s?, t?) where f is equal to zero is given by

f(s?, t?) = f(s, t) + J(s, t)

(
s? − s
t? − t

)
+ . . . , with J =

(
∂x?

∂s
∂x?

∂t
∂y?

∂s
∂y?

∂t

)
.

At first order we get
(
s?

t?

)
=

(
s
t

)
− J−1(s, t)[f(s?, t?)− f(s, t)] .

The Newton iteration is then
(
sk+1

tk+1

)
=

(
sk

tk

)
− J−1(sk, tk)[f(sk+1, tk+1)− f(sk, tk)] .

The inverse of the Jacobian matrix J can be accurately computed in the Bézier formula-
tion, using derivatives of the Bernstein polynomials. The iterative algorithm continues
until one of the following three criteria is met:

117

6.3. Algorithms

1. the L2 norm of
∥∥∥∥sk+1 − sk
tk+1 − tk

∥∥∥∥ is lower than a threshold,

2. the number of iteration is larger than a predefined maximum number,

3. the position (s, t) is no longer in the Bézier patch.

The Newton algorithm needs to evaluate surface points as well as partial derivatives
for given parameter values (s, t). In order to reduce the number of computations in
the Newton kernel, factorizations are performed between the computations of f(sk, tk),
∂P
∂s (sk, tk) and ∂P

∂t (sk, tk).

Description of the clipping algorithm

The clipping algorithm uses properties associated to Bézier patches:

- Convex hull property: a Bézier surface lies completely within the convex hull of its
control points.

- Subdivision Algorithm for Bézier Curves: using the DeCasteljau algorithm, one can
write a quick algorithm to subdivide a Bézier patch into two Bézier subpatches (see
for instance [41]).

Let us describe briefly the different steps of the Bézier clipping (for more details, see[89,
115, 82, 102]). As an input, we have a Bézier patch with its control points Ci,j (position in
parameter space (si,j , ti,j), position in space (xi,j , yi,j)). The idea is to reduce the interval
of possible values of s ∈ [0, 1] to a smaller interval that contains the target point P . As a
first step, one tries to approximate the intersection of the Bézier patch with a line L in the
direction of the t-axis that goes through P . Suppose that we find a way to know that the
intersection of this line L with the Bézier patch contains only values of s in the interval
[smin, smax], one can then deduce immediately that the s coordinates of P is also in the
same interval.

To find such an interval, the convex hull property can be used as follows: the inter-
section of the Bézier patch with L has to be included in the intersection of the convex
hull (defined by the control points Ci,j) with L. Computing the intersection of the con-
vex hull with L is a non trivial procedure, which we present here. First, one defines a
line L almost perpendicular to the s-axis that traverses the target point P . Then, the di,j
distance of each control point Ci,j to this line is computed. Because of the perpendicular
property of line L, one can expect that control points at s = 0 will be often negative and
these at s = 1 will be often positive. A new Bézier patch is build with a set built with
the following control points (si,j , di,j). This patch represents a projection that simplifies
the intersection task. Suppose the convex hull of these new control points intersects the
s-axis at two points smin and smax, such that 0 ≤ smin ≤ smax ≤ 1. Then we know the
intersection points of the Bézier curve and s-axis will be inside [smin, smax]. We subdivide
the Bézier patch into three patches, with s ranging in [0, smin], [smin, smax], and [smax, 1]
respectively. We know that the intervals [0, smin] and [smax, 1] can be safely discarded.
Next, we can iterate the whole procedure in the other direction (t) on the new Bézier
patch restricted to s ∈ [smin, smax].

Finally, the algorithm loops onto the described process until the intervals for each
parameter are small enough. The proof of convergence of the algorithm is based on the

118

6.3. Algorithms

following fact: at each iteration one substracts parameter ranges which are guaranteed
not to include the target point.

A sketch of the nested Bézier patches generated during the clipping are depicted in
figure 6.4 for an input point located at (2, 3).

 1

 2

 3

 4

 5

 6

-1 0 1 2 3 4

Bezier patch
first clip

second clip
third clip

Figure 6.4: Nested Bézier patches generated during clipping algorithm

6.3.2 Reducing delays for patch finding

In order to achieve good performance, it is crucial to reduce the total number of inverse
mapping calculations to the minimum. In theory, when applying the Bézier clipping al-
gorithm for inverse mapping, we must iterate over all the Bézier patches until finding the
one which actually contains the point we are trying to map. A useful strategy (common
in the computer graphics community) consists in subdividing space into more manage-
able and smaller chunks. We choose to build a collection of axis-aligned bounding boxes
around each Bézier patch. Due to the convex hull property of Bézier surfaces, the control
points allow us to determine an axis-aligned bounding box in physical space for each
patch. For a given point in physical space, if it does not belong to a given bounding
box, then it is certain that the point is not inside the associated Bézier patch. One can
take advantage of this property to restrict the search of the inverse mapping procedure
to a small set of Bézier patches, typically between one and four potential patches. This
strategy shortens the time needed to find the patch in which the target point lies.

In order to further improve this strategy, we perform some work in a preprocessing
stage to remove costs during inverse mapping computations [82]. Initially, the entire
physical domain is bounded by a global bounding box and this box is cut into voxels of
equal size. The size of the voxels is chosen such that the volume of a voxel is significantly
smaller than the volume of the average bounding box of a Bézier surface. Inside each
voxel, a list of the Bézier patches is stored. Given an input point lying in one voxel, this
list gives all Bézier patches which could encompass the input point. The list is built based
on the axis-aligned bounding boxes previously computed.

Finally, the procedure adopted to obtain the inverse mapping of an input point using
Bézier clipping is the following: 1) read the voxel where the list of potential Bézier patches
is stored, 2) try applying the clipping algorithm inside each patch of the list and stop as
soon as the input point belongs to one of the patches 3) return the localization (s?, t?)
given by the clipping algorithm.

119

6.4. Results

In all the test cases considered in this work, where the meshes do not present any
singularity, the Newton-Raphson algorithm always converges. Both methods for inverse
mapping have been implemented, but the computational cost of the Bézier clipping al-
gorithm is greater by at least one order of magnitude. Therefore, we have used the
Newton-Raphson algorithm for the results presented in section 6.4. More generally, a
good compromise can be found by using the faster Newton-Raphson algorithm, with the
“safer” Bézier clipping algorithm as a backup solution when the Newton scheme does
not converge, for instance when the grid presents singularities.

6.3.3 Velocity integrals

The density ρ(r) must be obtained in order to solve the Poisson equation. This density
is computed as an integral over the velocity direction, which is not trivial when using a
curved grid in phase-space. Indeed, we need a numerical quadrature for approximating
the integral over a curved domain represented by isoparametric elements. The inputs
available for this computation are the values of the distribution function at the control
points positions, and also the spline coefficients used for the interpolation. We choose to
approximate the integrals using the trapezoidal rule coupled with a spline interpolation.
Let us define the following series rq = rmin + q∆r for q = 0, Nr−1 and vk = vmin + k∆v
for k = 0, Nv−1. The sampled ρ integrals and associated computations are

ρ(rq) = ∆v

Nv−1∑
k=0

f(rq, vk) , (s?q,k , t
?
q,k) = Imap(rq, vk) ,

f(rq, vk) = Interp(f, s?q,k, t
?
q,k) =

b
s?q,k
∆s
c+2∑

ν=b
s?
q,k
∆s
c−1

b
t?q,k
∆t
c+2∑

β=b
t?
q,k
∆t
c−1

ην,βBν(s?q,k)Bβ(t?q,k) ,

ρ(rq) = ∆v

Nv−1∑
k=0

b
s?q,k
∆s
c+2∑

ν=b
s?
q,k
∆s
c−1

b
t?q,k
∆t
c+2∑

β=b
t?
q,k
∆t
c−1

ην,βBν(s?q,k)Bβ(t?q,k) .

where ∆t and ∆s are the grid sizes in the reference space. Thus, the ρ vector can be
expressed as the result of a matrix-vector multiplication ρ = M η where η represents
the values of the distribution function. Furthermore, the matrix M depends only on the
Bν(s?q,k)Bβ(t?q,k) products that are available at the beginning of the simulation and remain
fixed over time. So, we precompute the matrix M initially and perform sparse matrix-
vector multiplication each time we need the density ρ. Let us remark that the size of
M barely depends on the number Nv of samples along the v direction. To improve the
accuracy of the integrals, one simply needs to perform a bigger precomputation to get
the matrix M .

6.4 Results

6.4.1 Geometry settings and experimental results

We consider the evolution of a non stationary beam with the following dimensionless
parameters:

120

6.4. Results

N0 = 2π, a = 1.83271471003, vth = 0.0727518214392,Kself = 1.,Kapp = 0.5 .

In our simulations, the beam is transported over 163 lattice periods, with 100 time steps
per period. The underlying uniform 2D grid used for the simulation consists in 218 points
covering entirely or partially the spatial domain (r, vr) ∈ [−6, 6] × [−2.5, 2.5]. We intend
to compare the speed and accuracy on three geometries:

1. Original LOSS: no diffeomorphism is employed and this case corresponds to the
initial simulator configuration. The computational grid is rectangular and its size
is 512 × 512.

2. Analytical mapping: an analytic shaping function (see section 6.2.2) maps an oval in
phase space to a reference domain [0, 1]× [0, 1]. The reference domain has a uniform
grid mesh of size 1024 × 256 with a larger number of points in the angle direction.
Especially in this configuration, the periodicity along the angle direction has to be
taken into account.

3. Bezier mapping: a set of Bézier patches (see section 6.2.3) are built; the shape of the
computational domain is in-between the shapes of the previous oval and rectangle
configurations. The reference domain has a 512 × 512 size.

The different computational grids are sketched in figure 6.5 where an undersampling has
been applied in order to improve readability.

-3

-2

-1

 0

 1

 2

 3

-6 -4 -2 0 2 4 6

Original grid

-3

-2

-1

 0

 1

 2

 3

-6 -4 -2 0 2 4 6

Ovale grid

-3

-2

-1

 0

 1

 2

 3

-6 -4 -2 0 2 4 6

Bezier grid

Figure 6.5: Three computational grids are tested for the paraxial beam problem: (a) regular cartesian grid,
(b) oval grid associated to an analytical inverse mapping, (c) grid defined by Bézier elements

Figure 6.6: Final state of the distribution function in phase space in the three configurations

The final state of the distribution function is shown in figure 6.6 for the different com-
putational grids. For each configuration, the simulator manages to follow the evolution

121

6.4. Results

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8
Analytic
Original

Bezier

Figure 6.7: Final state of the density function ρ(r) in the three configurations

of filamentation. The distribution functions are quite similar, but the analytic mapping
exhibits some clear differences with the two other settings. The strong anisotropy of the
oval mapping in the center of the domain clearly triggers numerical problems.

These problems are also illustrated in figure 6.7 where the final state of density ρ(r) is
presented in the three geometries. The Bézier and the original curves almost overlay, but
the analytic curve has a different behavior at the peak of the density and on the lateral
small shoulders. The Rrms quantity is displayed in figure 6.8, it measures the effective
beam focalisation. The three configurations give nearly identical Rrms curves over time.
Finally, we conclude that diffeomorphims do not decrease accuracy directly, but care
must be taken in order to avoid unjustified anisotropy.

6.4.2 Performance issues

Performance of the different geometry settings has been investigated on a desktop com-
puter. A 3.0 GHz Intel Core 2 Duo E8400 processor was used to run numerical experi-
ments on only one core. The settings of the runs were exactly the same as in the previous
subsection. In Table 6.1, the timings of each part of the code for one simulation of 16384
time steps are gathered. The Field solve column sums time used to compute the den-
sity ρ density and the self-consistent field. The Spline coeff. column corresponds to
calls to the LU solver described in section 6.1.2. The Advection column comprises the
trajectories computation to find the origins of the characteristics and the interpolation
costs. The Total column sums the first columns, ignoring the preprocessing phase of
the simulation and the diagnostics. The field solver and ρ calculation take much more
time when a mapping is employed. This is due to the fact that without mapping the

122

6.4. Results

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160

Analytic
Original

Bezier

Figure 6.8: Evolution in time of the Rrms quantity in the three geometry configurations

Field solve Spline
coeff.

Advection Total

Original LOSS 2.3 16.4 78 97
Analytical mapping 10.1 18.4 115 143

Bezier mapping 9.2 17.3 275 301

Table 6.1: Timing results (seconds) for three geometry settings and simulation over 1024 time steps

computation ρ(r) is very light, as it is only a sum of f(r, v) along dimension v; whereas
with mapping the strategy explained in subsection 6.3.3 is used. The computation of
spline coefficients takes nearly the same amount of time in each case. The computation
costs are almost identical and cache effects are the critical factor that modulates slightly
the costs of computing spline coefficients. Concerning the advection step, the cost of the
inverse mapping explains the observed differences in computation time. The analytic in-
verse mapping involves a 50% time increase compared to the original LOSS, and Bézier
inverse mapping leads a 250% time increase.

If we look forward to the application of this technique in the GYSELA code, this over-
head must be rescaled. The 2D interpolations represents approximately 5% of the execu-
tion time in a GYSELA run. A rough estimate of the overhead induced by implementing
the Bézier setting in the GYSELA Vlasov solver is thus 13% (with the simple calculation
[275/78− 1]× 5%). Other overheads should also be considered for the field solver using
the upgraded geometry setting, but no simple estimate of this cost can be provided for
the moment.

123

6.4. Results

Conclusion

The Semi-Lagrangian scheme combined with isoparametric analysis successfully solves
the Vlasov equation on a reduced beam test case. Small-scale filamentations in phase-
space are well captured by the new solver. Quantitative analysis shows that only minor
issues in accuracy are caused by the mesh geometry. For a parametric Bézier patch, the
overhead in terms of computational cost is about 200% on the whole simulation run when
compared to the original version. Although this figure may appear quite large, it could
in fact be reasonable if the advantages brought by a more accurate description of the
domain geometry outweigh its numerical cost. This should be the case for applications
with strong geometrical constraints on the computational mesh, such as the gyrokinetic
code GYSELA.

124

CHAPTER 7

Simulation of 2D reduced MHD

Contents
7.1 Introduction . 126
7.2 Anisotropic Diffusion . 126

7.2.1 Introduction . 126
7.2.2 The choice of the grid . 126
7.2.3 Evolution of a Gaussian pulse . 127
7.2.4 Conclusions . 128

7.3 MHD equilibrium . 130
7.3.1 Equilibrium in the absence of toroidal flux 130
7.3.2 Equilibrium with toroidal flux . 132
7.3.3 Nonlinear equilibrium . 133

7.4 Current-Hole . 134
7.4.1 Time scheme . 135
7.4.2 Variational formulation . 135
7.4.3 Numerical results . 137

7.5 Conclusions . 144

125

7.1. Introduction

7.1 Introduction

In this chapter, we are interested in some problems that arise in MHD models. We be-
gin by studying the case of anisotropic diffusion. It is very important to derive accurate
methods for this kind of problems. Usually, physicists use curvilinear meshes. We will
show that, at least in this case, the use of higher order methods gives an interesting way to
solve this problem without using curvilinear elements. In the second part of this chapter,
we treat the MHD equilibrium problem. We will give an overview of different Magneto-
static equilibriums, and show that the use of IGA seems to be a very interesting approach.
Although the real equilibriums are free boundary problems, in this chapter we will only
treat the case of Soloviev solutions. We close our study by an example of instability. For a
long time, Plasma physics has been called the science of instabilities. The reason behind
that, as explained in [29], is that Plasmas generated in laboratories develop rapid dynam-
ics with a rapid loss of plasma energy which will tend to terminate the plasma discharge.
These instabilities are very dangerous because they usually involve large-scale motions
and short time scales [29]. The understanding and control of the instabilities is one of the
ITER-building challenges.
The second section of this work is inspired from [27], where the authors used cubic Bézier
elements. The IGA approach is a natural generalization of Bézier elements. Thanks to
IGA, we can reduce considerably the number of degrees of freedom, which is a crucial
problem in JOREK code. Moreover, as we have seen with Maxwell’s equations, the use
of higher regularity elements will allow us to have better CFL condition.

7.2 Anisotropic Diffusion

7.2.1 Introduction

Anisotropic Diffusion plays an important role in tokamak. Several articles [44, 101] have
treated this problem, but not in a general complex geometry. The general Anisotropic
Diffusion problem writes :

∂tu−∇ · (K∇u) = f, Ω (7.2.1)
u = 0, ∂Ω (7.2.2)

In general, u denotes the temperature (inside the plasma), and K the conductivity.
An important question in Physics, is the choice of the meshes to treat this kind of

problems, where we have a strong anisotropy in a given direction. It has been noticed
that using methods of lower order, the numerical solution diffuses when crossing edges
of elements that not follow the anisotropy. This is why several authors proposed the use
of curvilinear meshes so that we can be aligned to the anisotropy. In this section, we
show that using methods of higher order, we recover a good behavior of the numerical
solution, even if the meshes are not curvilinear and does not follow the anisotropy.

7.2.2 The choice of the grid

In figure 7.1, we give an example of non curvilinear meshes used for our test.

Remark 7.2.1 In the sequel, we will give results using a cartesian grid to solve the problem. We
have tested different meshes and mappings, and we obtained very similar results.

126

7.2. Anisotropic Diffusion

Figure 7.1: Non curvilinear meshes

7.2.3 Evolution of a Gaussian pulse

In this section, we consider the case where :

K =

(
Dµ‖ sin2(θ) + µ⊥ cos2(θ) D(µ‖ − µ⊥) sin(θ) cos(θ)

D(µ‖ − µ⊥) sin(θ) cos(θ) Dµ‖ cos2(θ) + µ⊥ sin2(θ)

)
(7.2.3)

where µ‖, µ⊥ and D are constants.
The variational formulation leads to:

∂t

∫
Ω
uϕ−

∫
Ω
∇ · (K∇u)ϕ =

∫
Ω
fϕ, ∀ϕ ∈ V0

h (7.2.4)

we consider here Homogenous Dirichlet boundary condition, as the pulse is localized
inside the domain.
By Green’s formula we get,

∂t

∫
Ω
uϕ+

∫
Ω

(K∇u) · ∇ϕ =

∫
Ω
fϕ, ∀ϕ ∈ V0

h (7.2.5)

let us expand uh over the basis of the finite dimension space V0
h = span{φb, b ∈ Λ0} ⊂

H1
0 (Ω),

uh =
∑
b∈Λ

[u]bφb (7.2.6)

127

7.2. Anisotropic Diffusion

then after discretization, we get,

∂t
∑
b∈Λ

[u]b
∫

Ω
φbφb′ +

∑
b∈Λ

[u]b
∫

Ω
(K∇φb) · ∇φb′ =

∫
Ω
fφb′ , ∀b′ ∈ Λ0 (7.2.7)

This is equivalent to the linear system

∂tM [u] + S[u] = F (7.2.8)

where M,S are the Mass and the Stiffness matrices.
We used an implicit time scheme :

M [u]n+1 = M [u]n −∆tS[u]n+1 + F (7.2.9)

where for the initialization we took :

u(t = 0, x, y) = ψ(x,m1, σ1)ψ(y,m2, σ2), with ψ(x,m, σ) = e
−(x−m)2

2σ2

f = 0

For simulations, we have taken σ2
1 = σ2

2 = 0.001, m1 = 0.25, m2 = 0.5, µ‖ = 2.0, µ⊥ = 0.0
and D = 0.00775.
In figures 7.2 and 7.3, we show the evolution of the pulse, using a cartesian grid.

Remark 7.2.2 As we know the behavior of the evolution of the pulse, we can restrict our domain
to reduce the dimension of our discrete space. In the case of complex geometry, the IGA approach
allows us to solve the problem.

7.2.4 Conclusions

In plasma physics, we usually use coordinates aligned to flux surfaces, to solve partial
differential equations. Indeed, in this case the partial differential equation is reduced to a
couple of ordinary differential equations.
The use of higher order elements allows us to treat strong anisotropy, however it is insuf-
ficient. The reason is this strong magnetic field in Plasma Confinement. In fact, particles
will rotate around the magnetic field lines, while the guiding-center will follow them. In
this case, having meshes that follow, or behave like the magnetic field line geometry, is
very important, to capture these small variations caused by particles gyration.

128

7.2. Anisotropic Diffusion

Figure 7.2: Evolution of the pulse, for a radial section, on a square domain

Figure 7.3: Evolution of the pulse, for a radial section, on a square domain

129

7.3. MHD equilibrium

7.3 MHD equilibrium

In MHD, the helical symmetry implies that any physical quantity will depend only on r
and u = lφ+ kz (more details can be found in [29]). The general solution of Gauss’s law
for magnetism div ·B = 0 in helical symmetry can be written in the form:

B = h×∇ψ(r, u) + hf(r, u). (7.3.10)

where:

• h is defined by:

h =
r

l2 + k2r2
∇r ×∇u,

is tangent to the helix r = const, u = const.

• ψ is the helical flux function. ψ is essantially the component of the vector poten-
tional in the direction of the ignorable coordinate [29],

ψ = −A · h
‖h‖2

= −(lAz − krAφ)

• f is the helical magnetic field. We have:

f =
B · h
‖h‖2

= (lBz − krBφ)

The starting point for the magnetostatic equilibrium (using primitive variables) is the
following balance equations (c.f MHD’s equations in [71]):

ρ(∂tv + v · ∇v) = −∇p+ J×B− ρ∇φg (7.3.11)

where p is the pressure and φg is the gravitational potential. Usually, in laboratory, this
term is negligible. However, it is very important in astrophysical systems.
In the case of a steady state, ∂t· = 0, we end up with,

ρv · ∇v = −∇p+ J×B (7.3.12)

which traduces the balance of forces inside the electrical fluid.

7.3.1 Equilibrium in the absence of toroidal flux

When we can neglect the term ρv · ∇v, the equilibrium writes simply,

∇p = J×B (7.3.13)

The general form of the MHD equilibrium, in this case, is

Lk,lψ =
2kl

l2 + k2r2
f − ff ′ − (l2 + k2r2)p′ (7.3.14)

where the differential operator Lk,l is :

Lk,lψ =
l2 + k2r2

r
{∂r

r

l2 + k2r2
∂rψ +

1

r
∂uuψ} (7.3.15)

130

7.3. MHD equilibrium

Plane case

In this case, we have l = 1 and k = 0, so that L0,1 = ∆. This leads to the equation:

∇2ψ = r−1∂r(r∂rψ) + r−2∂φφψ = −ff ′ − p′ (7.3.16)

Axisymmetric case

In this case, we have l = 0 and k = 1, so that L1,0 = ∆?. It is one of the most important
case in tokamaks. This leads to the Grad-Shafranov equation.

∆?ψ = r∂r(r
−1∂rψ) + ∂zzψ = −ff ′ − r2p′ (7.3.17)

Soloviev equilibrium

Soloviev equilibrium is a special case of the Grad-Shafranov equation. This happens
when the right hand side is independent of ψ. Thus:

p = −|p′|ψ + p0, and f2 = f2
0 +

2γ|p′|
1 + α2

ψ (7.3.18)

The quantities p0 and f0

R0
are the pressure and the toroidal field, on the magnetic axis

r = R0, z = 0, ψ = 0.
In this configuration, the Grad-Shafranov equation writes:

∆?ψ = |p′|(r2 − γ

1 + η2
) (7.3.19)

a solution of such equation is :

ψ =
|p′|

2(1 + η2)
((r2 − γ)z2 +

η2

4
(r2 −R2

0)2) (7.3.20)

In the sequel, we shall use the cartesian coordinates (x, y):

r = R0 + ax = R0(1 + εx), and z = ay (7.3.21)

where ε = a
R0

.
The Soloviev equilibrium writes :

−∇ ·
(
∇ψ

1 + εx

)
= a2αR2

0(1 + εx) +
a2β

1 + εx
(7.3.22)

this can be solved under homogeneous Dirichlet boundary condition, as there exists a
level surface where the solution vanishes. We have introduced the quantities:

β = − λ

b2ε
, α =

4(a2 + b2)ε+ a2(2λ− ε3)

2R2
0εa

2b2

Notice that the points (±1, 0) and (0,± b
a) are on the level surface ψ = 0.

In figure 7.4, we show different solutions depending on the ellipticity parameter ε,
and the triangularity parameter λ.

As one can remark in figure 7.5, increasing the triangularity parameter λ decreases
the accuracy of the approximation for a given number of meshes.

131

7.3. MHD equilibrium

Figure 7.4: 1st line : in order, (ε, λ) = (0.3, 0.0)− test1, (0.2, 0.0)− test2, (0.2, 0.2)− test3 2nd line : in order,
(ε, λ) = (0.2, 0.4)− test4, (0.2, 0.6)− test5, (0.2, 0.7)− test6

Remark 7.3.1 Using PyIGA, we were able to create meshes that are aligned with the magnetic
field lines (c.f figure 7.6).

Remark 7.3.2 In our numerical tests, the boundary was given analytically thanks to Soloviev
solutions. In the general case, we need to solve a free boundary problem, (c.f [50, 71] for the
physical part, and [112] for the use of IGA in a free boundary problem).

Remark 7.3.3 For the moment, only the construction using linear splines is done with PyIGA.
The case of higher degree has been implemented but does not work well because of some memory
problems of FITPACK.

7.3.2 Equilibrium with toroidal flux

In this case we keep the term ρv · ∇v, we have,

ρv · ∇v +∇p = J×B (7.3.23)

we get a generalized Grad-Shafranov equation:

∆?ψ = r∂r(r
−1∂rψ) + ∂zzψ = −ff ′ − r2∂ψp (7.3.24)

f is still a function of the only variable ψ, but now the pressure p is a function of r and ψ.

132

7.3. MHD equilibrium

λ Relative L2 error
0.0 4.32E-003
0.2 1.18E-002
0.4 2.35E-002
0.6 3.87E-002
0.7 4.85E-002

Figure 7.5: The evolution of the error depending on the triangulation parameter λ, with ε = 0.2,N = 32 and
p = 1

Figure 7.6: Soloviev solution, example of aligned meshes

7.3.3 Nonlinear equilibrium

In this case, we look for the solution of the Grad-Shafranov nonlinear equation :

∆?ψ = F (r, ψ) (7.3.25)

where, F is a nonlinear function of ψ:

F (r, ψ) := −(r2f1(ψ) + f2(ψ)) (7.3.26)

This non linear partial differential equation can be solved using Picard or Newton meth-
ods, as described in the chapter 2.

133

7.4. Current-Hole

7.4 Current-Hole

The general Current-Hole problem [27] writes:
∂tψ = (1 + εx)[ψ, φ] + η (J − Jc) ,

∂tω = 2ε∂φ∂yω + (1 + εx)[ω, φ] + 1
1+εx [ψ, J] + ν∆ω,

J = ∆?ψ,
∆⊥φ = ω.

where [a, b] = ∂a
∂x1

∂b
∂x2
− ∂a

∂x2

∂b
∂x1

, denotes the Poisson Bracket of the functions a, b.
In the sequel, we consider only the planar cylindrical geometry (ε = 0). The problem of
the Current-Hole writes :

∂tψ = [ψ, φ] + η (J − Jc) ,
∂tω = [ω, φ] + [ψ, J] + ν∆ω,

J = ∆ψ,

∆φ = ω.

(7.4.27)

Remark 7.4.1 In 2D, we can write the Poisson Bracket in a different form. In fact, we have
[a, b] = ∇a · rot b = −rot a · ∇b.

The current-hole problem, is subject to the intial conditions:
J(0,x) = Jc(x), x ∈ Ω
ψ(0,x) = ∆−1Jc, x ∈ Ω
φ(0,x) = 0, x ∈ Ω
ω(0,x) = 0, x ∈ Ω

and the boundary conditions:
J(t,x) = 0, x ∈ ∂Ω, t ∈ [0, T]
ψ(t,x) = 0, x ∈ ∂Ω, t ∈ [0, T]
φ(t,x) = 0, x ∈ ∂Ω, t ∈ [0, T]
ω(t,x) = 0, x ∈ ∂Ω, t ∈ [0, T]

Before going through numerical simulations, let us recall some properties for the current-
hole problem. We refer to [32, 36] for proofs.

Proposition 7.4.2 (Conservation) If ν = η = 0 then all regular solutions of 7.4.27 , verify:

• Energy conservation :

d

dt

∫
Ω
|∇ψ|2 + |∇φ|2 dΩ = 0,

• Magnetic Helicity conservation :

d

dt

∫
Ω
ψ dΩ = 0,

• Cross-Helicity conservation :

d

dt

∫
Ω
∇ψ · ∇φ dΩ = − d

dt

∫
Ω
ψφ dΩ = 0.

134

7.4. Current-Hole

As mentioned in [32], when Jc = 0 and ν > 0 and η > 0, we have :

d

dt

∫
Ω
|∇ψ|2 + |∇φ|2 dΩ ≤ 0.

In the sequel, we present the time scheme and variational formulation that we used.

7.4.1 Time scheme

We use a semi-implicit time scheme:

ωn+1 − ωn

∆t
= [ωn, φn] + [ψn, Jn] + ν∇2ωn+1, (7.4.28)

∇2φn+1 = ωn+1, (7.4.29)

ψn+1 − ψn

∆t
= [ψn, φn+1] + η∇2ψn+1 − ηJc, (7.4.30)

Jn+1 = ∇2ψn+1. (7.4.31)

This time scheme has the advantage of being very simple, however it is of order 1.

7.4.2 Variational formulation

Now let us introduce the discrete space,

V0
h = span{ϕb, b ∈ Λ0}.

where, the functions ϕb can be B-splines or more generally NURBS.
Multiplying the equation 7.4.28 by ϕb and taking the integral over the whole domain, we
get: ∫

Ω ω
n+1ϕb −

∫
Ω ω

nϕb

∆t
=

∫
Ω

[ωn, φn]ϕb +

∫
Ω

[ψn, Jn]ϕb + ν

∫
Ω
∇2ωn+1ϕb

Now using Green’s Formulae, we get:∫
Ω ω

n+1ϕb −
∫

Ω ω
nϕb

∆t
=

∫
Ω

[ωn, φn]ϕb +

∫
Ω

[ψn, Jn]ϕb − ν
∫

Ω
∇ωn+1 · ∇ϕb

thus,∫
Ω
ωn+1ϕb + ν∆t

∫
Ω
∇ωn+1 · ∇ϕb =

∫
Ω
ωnϕb + ∆t

∫
Ω

[ωn, φn]ϕb + ∆t

∫
Ω

[ψn, Jn]ϕb

Let us consider ωh ∈ V0
h an approximation of ω. We can expand ωh over the basis of V0

h :

ωh =
∑
b′∈Λ0

[ω]b
′
ϕb′

Therefore, the previous equation leads to the linear to system:

A0
ν [ωn+1] = M0[ωn] + ∆tCV0

h
[Jn, ψn] + ∆tCV0

h
[φn, ωn] (7.4.32)

135

7.4. Current-Hole

where we have introduced the matrices,

M0 = (

∫
Ω
ϕbϕb′)b,b′∈Λ0 , (7.4.33)

S0 = (

∫
Ω
∇ϕb · ∇ϕb′)b,b′∈Λ0 , (7.4.34)

A0
ν = M0 + ∆tνS0 (7.4.35)

and CV0
h
[u, v] is the L2 contribution over V0

h of the Poisson’s Bracket [u, v], i.e. a column
vector where the element of each line b is

∫
Ω[u, v]ϕb.

For the equation 7.4.29, we have for any ϕb ∈ V0
h:∫

Ω
∇φn+1 · ∇ϕb = −

∫
Ω
ωn+1ϕb

which leads to the linear system:

S0[φn+1] = −M0[ωn+1] . (7.4.36)

Now, let’s go back to the equation 7.4.30, we have for any ϕb ∈ V0
h:∫

Ω ψ
n+1ϕb −

∫
Ω ψ

nϕb

∆t
=

∫
Ω

[ψn, φn+1]ϕb + η

∫
Ω
∇2ψn+1ϕb − η

∫
Ω
Jcϕb

using Green’s Formulae we get:∫
Ω ψ

n+1ϕb −
∫

Ω ψ
nϕb

∆t
=

∫
Ω

[ψn, φn+1]ϕb − η
∫

Ω
∇ψn+1 · ∇ϕb − η

∫
Ω
Jcϕb .

Let us consider ψh ∈ V0
h an approximation of ψ. We can expand ψh over the basis of V0

h :

ψh =
∑
b′∈Λ0

[ψ]b
′
ϕb′

which leads to:

A0
η[ψ

n+1] = M0[ψn] + ∆tCV0
h
[ψn, φn+1]− η∆tM0[Jc] (7.4.37)

with,

A0
η = M0 + ∆tηS0 . (7.4.38)

Finally, equation 7.4.31 leads to:

M0[Jn+1] = −S0[ψn+1] . (7.4.39)

Finally, the discretization of the incompressible MHD writes:

A0
ν [ωn+1] = M0[ωn] + ∆tCV0

h
[Jn, ψn] + ∆tCV0

h
[φn, ωn], (7.4.40)

S0[φn+1] = −M0[ωn+1], (7.4.41)

A0
η[ψ

n+1] = M0[ψn] + ∆tCV0
h
[ψn, φn+1]− η∆tM0[Jc], (7.4.42)

M0[Jn+1] = −S0[ψn+1]. (7.4.43)

136

7.4. Current-Hole

7.4.3 Numerical results

Following [27, 32], we consider the case of a circular domain of radius 1 centered at 0.
For initialization, we take :

Jc = j1(1−R4)− j2(1−R2)8.

with R2 = x2 + y2, j1 = 0.2 and j2 = 0.266. As we can notice in figure 7.7, there is a
negative current density close to the axis named the Current Hole. In order to start our
simulations, we must take the Grad-Shafranov equilibrium based on this current as the
initial condition. The following results were taken for ν = 10−6 and η = 10−5, using

Figure 7.7: Current Hole: The current density (left) and its profile (right).

quadratic NURBS and a grid of 64× 64 meshes. The time step was dt = 0.1.
In figures 7.8 and 7.9, we plot the evolution of the density current and its profile; they are
comparable to the ones obtained in [27, 32]. The current density, initially axisymmetric,
is not affected during the linear stage while non-linear effects are still negligible. Then,
the profile begin to change: the current density is expelled outward from the central axis,
generating a current sheet at the resonant surface. Then, the profile close to the centre is
flattened, leaving only residual fluctuations around J = 0.

137

7.4. Current-Hole

Figure 7.8: Current Hole: Evolution of the current density as a function of time for t =
2400, 3310, 3540, 3600, 3640, 3730, 3830, 3920, using ν = 10−6 and η = 10−5.

138

7.4. Current-Hole

Figure 7.9: Current Hole: Evolution of the current density profile as a function of time for t =
2400, 3310, 3540, 3600, 3640, 3730, 3830, 3920, using ν = 10−6 and η = 10−5.

139

7.4. Current-Hole

In figure 7.10, we plot the kinetic energy as a function of time, for ν = 10−5 and
η = 10−6. In figure 7.11, we show the magnetic, kinetic and total energies as functions of
time. As one can see, the impact of the kinetic energy is small. In figure 7.12, we show

Figure 7.10: Current Hole: Kinetic energy of the plasma for ν = 10−6 and η = 10−5.

the kinetic energy for long times.

140

7.4. Current-Hole

Figure 7.11: Current Hole: The energy diagnostic for ν = 10−6 and η = 10−5.

Figure 7.12: Current Hole: Kinetic energy of the plasma for ν = 10−6 and η = 10−5.

141

7.4. Current-Hole

In order to validate our simulations, we follow [27] and compute the grow rate γ of
the m = 1 mode during the linear stage. In figure 7.13, we plot the grow rate γ as a
function of the resistivity η, for the grids 32 × 32 and 64 × 64 using quadratic NURBS. It

Figure 7.13: Current Hole: the grow rate γ as a function of the resistivity η, using quadratic NURBS, for the
grids : 1st line, (left) 32 × 32 and (right) 64 × 64. 2nd line 128 × 128. The dashed line indicates
the η

1
3 asymptote.

is very important to notice that our results are not as accurate as those presented in [27].
There many reasons :

• Time scheme : our time scheme is of order 1,

• Local h-refinement : In our code PyIGA, we do not handle local-refinement.

Remark 7.4.3 (Remark on the instability) The Soloviev equilibrium, which was the starting
point of our simulation, is unstable for the current hole problem. Because of the numerical noise
of the simulation, the plasma will leave this equilibrium and start a linear stage and then enter
a non-linear one. Using IGA, we can understand exactly the cause of this numerical noise. As
we can see in figure 7.14, the singularity of our mapping at the 4 extremities of the patch, will be
propagate and force the plasma to leave the equilibrium.

142

7.4. Current-Hole

Figure 7.14: Current Hole: Creation of the instability. Evolution of ω from left to right and top to bottom at
t = 0, 2, 4, 6, 8, 10, 22, 36, 160

143

7.5. Conclusions

7.5 Conclusions

In this chapter, we have treated some problems that arise in MHD models. We have seen
that the IGA approach, when used in its isoparametric version, gives us a powerful tool
to handle realistic geometries that take into account the plasma boundary. Even if we
have treated a simple case of equilibrium, we know that IGA provide us necessary tools
to solve the free boundary problem. In order to take into account the plasma core, we will
need to use local refinement, for example LR-splines. Hence, we will reduce considerably
the number of degrees of freedom, which is for the moment a crucial problem in JOREK
[27] code. Another important feature, is the use of the p-refinement coupled with a time
scheme of order 2, Crank-Nicholson scheme or Adams-Bashforth [32]. As we have no-
ticed it with Maxwell’s equations, the use of higher regularity elements gives better CFL
numbers. We would like to study these CFL numbers using a second order time scheme.
We would like also to use stabilized elements to be able to treat the case where η is very
small.

144

CHAPTER 8

A new DeRham sequence based on
Box-splines

Contents
8.1 Introduction . 146
8.2 Notations . 146
8.3 Bernstein-Bézier bivariate polynomials 147
8.4 Box-Splines . 148

8.4.1 Strang-Fix conditions applied to Box-splines 150
8.4.2 Box-Spline series . 151
8.4.3 Quasi-interpolant operator for Box-Splines 153

8.5 Box-splines as finite elements basis . 153
8.5.1 Approximation with box-splines 154

8.6 DeRham diagram . 155
8.6.1 Notations . 156
8.6.2 Interpolants and commutativity 156
8.6.3 Approximation Analysis . 158

8.7 Boundary Condition using Box-splines 159
8.8 Conclusions and Perspectives . 159

145

8.1. Introduction

8.1 Introduction

We have seen in the chapter 4, the necessity of the construction of DeRham sequences, are
very important in modern Numerical Methods in Electromagnetism. In [16, 18], Buffa et
al have constructed such sequence using B-splines. The problem of such a construction
is that it relies on a tensor product. In many problems, we can not use such description.
Hence, we need to construct new DeRham sequences based on more sophisticated bi-
variates splines. In this chapter, we will construct a DeRham sequence using Box-splines,
following the same idea as for B-splines. The use of Box-splines in order to solve partial
differential equation is not new. Hollig et al have used them in a Web-spline method [62].
The first remark about Box-splines is that the support is a union of a finite number of
specific triangles. However, the construction of discrete splines spaces on triangles, for
a given regularity at edges, is more complicated. Ming-Jan Lai et al have succeeded to
use such spaces to solve Stokes and Navier-Stokes equations [78]. However, we can not
expect to use such construction for a DeRham sequence. We will begin by a brief recall
on Box-splines. All definitions and properties were taken from [99, 30].
For our construction of the DeRham sequence, we will not take into account general
boundary conditions, even if it is a crucial question. We shall only consider the periodic
case. In the last section, we will show how to construct Box-splines that are interpolat-
ing at the boundary, without giving any proof of the approximation accuracy using such
elements.

8.2 Notations

Let us define the vectors e1 := (1, 0), e2 := (0, 1), e3 := (1, 1) and e4 := (−1, 1).
In the sequel, Xn := {v1,v2, · · · ,vn}will denote a direction set.
The idea behind box-splines, is that starting with the characteristic function of the unit
square, we will use convolution in several directions to generate a new function, called
box-spline. We can recover the case of bivariate B-splines if we do convolution using the
two directions e1 and e2.
A direction set is said to be of type-I, if vi ∈ {e1, e2, e3}, and ∀ n > 3, e1, e2, e3 ∈ Xn. It is
of type-II, if vi ∈ {e1, e2, e3, e4}, and ∀ n > 4, e1, e2, e3, e4 ∈ Xn.
Without loss of generality, let us consider vi = ei,∀i ∈ {1, 2, 3}. Let X3 = {v1,v2,v3} and
∀i > 4, Xi := Xi−1 ∪ {vi}.
For any function f of real values, let δuf := f(·)− f(· − u) and δuf := f(·+ u)− f(·) the
backward and forward difference.
Let ∆ be a triangulation. The space of splines, of a regularity r across edges and of degree
d, is

Srd(∆) = {s ∈ Cr(∆), s|Ti ∈ Pd, ∀1 ≤ i ≤ |∆|}

For simplicity, we enumerate triangles so that ∆ = {Tj , 1 ≤ j ≤ |∆|}.
We define mα the monomial of multi-index α :

mα(v) :=
1

α!
xα1yα2 , α = (α1, α2) ∈ Z2

+

where for any multi-index, we denote by α! = α1!α2!

146

8.3. Bernstein-Bézier bivariate polynomials

8.3 Bernstein-Bézier bivariate polynomials

Before introducing the Box-splines, we shall define Bernstein polynomials for triangles.
We have the following result:

Lemma 8.3.1 ∀v ∈ R2, ∃(b1, b2, b3) ∈ R3,v = b1v1 + b2v2 + b3v3 such that b1 + b2 + b3 = 1

The values of the coefficients bi are bi =
ATi
AT

where T =< v1,v2,v3 > and Ti is obtained
by changing vi by v. AT is the area of the triangle T . Therefore, for v = (x, y), the bi are
linear polynomials of x and y. The coefficients bi are said the barycentric coordinates.

v3

v

v1

v2

v1

v3v2

+ - -

+ - +

- - +

+ + +

- + +
- + -

+ + -

Figure 8.1: (left) a triangle element T =< v1, v2, v3 >, (right) sign of the coefficients b1, b2, b3

Definition 8.3.2 (Bernstein basis polynomials) The Bernstein polynomials of degree d are
Bd
ijk(v) = d!

i!j!k! b
i
1b
j
2b
k
3 , where i+ j + k = d, i, j, k ∈ N∗.

Bernstein polynomials have the property of the partition of unity: 1 = (b1+b2+b3)d =∑
i+j+k=d

d!
i!j!k! b

i
1b
j
2b
k
3 =

∑
i+j+k=dB

d
ijk.

We also have ∀ v ∈ T, 0 ≤ Bd
ijk(v) ≤ 1.

Theorem 8.3.3 Let Bd = {Bd
ijk}i+j+k=d, Bd is a basis for the space Pd of bivariate polynomials.

For each p ∈ Pd the B-form of p is p =
∑

i+j+k=d cijkB
d
ijk

Let ξijk = iv1+jv2+kv3

d . The setDd,T = {ξijk, i+j+k = d} is the set of domain-points.

ξ003

ξ102

ξ012

ξ201

ξ111

ξ021

ξ300

ξ210

ξ120

ξ030

x

x

x

x

x

x

x

c003

c102

c012

c201

c111

c021

c300

c210

c120

c030

x

x

x

x

x

x

x

Figure 8.2: (left) Domain points and (right) B-coefficients for a cubic polynomial

As each spline has a unique B-form on each triangle. We can now control the regular-
ity of a spline over a triangulation, thanks to its B-coefficients.

147

8.4. Box-Splines

8.4 Box-Splines

This is a brief sketch of the Box-splines functions, and some of their properties.

Definition 8.4.1 (Box-Spline of type I) For 4 ≤ i ≤ n, we define the box-spline of type-I
associated to the direction set Xn recursively by

B(v|Xi) :=

∫ 1

0
B(v− tvi|Xi−1)dt

where B(v|X3) = B111 is the hat box-spline (Courant element).

In figure 8.3, we show the support of the Courant element.

0

00

0

0 0

1

Figure 8.3: The support and B-coefficients of the Box-spline B111

Definition 8.4.2 (Box-Spline of type II) For 5 ≤ i ≤ n, we define the box-spline of type-II
associated to the direction set Xn recursively by

B(v|Xi) :=

∫ 1

0
B(v− tvi|Xi−1)dt

where B(v|X4) = B1111 is the ZP element.

In figure 8.4, we show the impact of convolution in the directions e3 and e4. In figure

-

6 �

I

e1
e2 e3

e4

Figure 8.4: Construction of Box-splines: Starting with the characteristic function of the unit square (left),
convolution in the direction e3 (middle) gives the hat (Courant) function, further convolution in
the direction e4 (right) gives the ZP element

8.6, we show the supports of the Box-splines B211, B221, B222, and B322. In figure 8.7, we
show the B-net (B-coefficients) of 2 ·B111.

148

8.4. Box-Splines

Figure 8.5: The two-, three-, and four-direction meshes

Figure 8.6: The supports of B211, B221, B222, and B322.

Theorem 8.4.3 The support of B(v|Xn) is the closure of the set

[Xn] := {
n∑
j=1

tjvj : 0 6 tj < 1, j ∈ {1, · · · , n}}

Moreover, B(v|Xn) > 0, for all v in the interior of [Xn]

Proposition 8.4.4 For any 4 6 j 6 n, we have

∂vjB(·|Xn) = δvjB(·|Xn − {vj})

In what follows, we shall denote B as the box-spline associated with the direction set Xn

of type-I (or type-II). We will denote also : Bx(·) := B(·|Xn − {e1}) , By(·) := B(·|Xn −
{e2}). We can writeXn = E1∪E2∪E3 (orXn = E1∪E2∪E3∪E4), withEi := {ei, · · · , ei},
where |Ei| = ni, and n1 + n2 + n3 = n = |Xn| (or n1 + n2 + n3 + n4 = n = |Xn|).

Theorem 8.4.5 (Regularity of Box-splines) For Box-splines of type-I, we have Bn1n2n3 =
B(·|Xn) ∈ Srn−2(∆I), where r := r(Xn) = min{n1 + n2, n2 + n3, n3 + n1} − 2.
For Box-splines of type-II, we have Bn1n2n3n4 = B(·|Xn) ∈ Srn−2(∆II), where r := r(Xn) =
min{n1 + n2 + n3, n2 + n3 + n4, n3 + n4 + n1, n4 + n1 + n2} − 2.

Theorem 8.4.6 ∀f ∈ C(R2),
∫
R2 B(v)f(v)dv =

∫
[0,1]n f(

∑n
i=1 tivi)dt1 · · · dtn

149

8.4. Box-Splines

2

1 1

1
1

1 1

00000

0

0

00

00000

0

0

0
0

0

0

0

0

Figure 8.7: The B-net (B-coefficients) of 2 ·B111

Theorem 8.4.7 ∀n > 3, ∀f ∈ C1(R2),
∫
R2 B(v)∂vjf(v)dv = −

∫
R2 ∂vjB(v)f(v)dv

Theorem 8.4.8 ∀f ∈ Cn(R2),
∫
R2 B(v)∂Xnf(v)dv = δXnf(0, 0)

Theorem 8.4.9 (h-refinement)

B(v|Xn) =
∑
ν∈Z2

aνB(2v− ν|Xn)

Theorem 8.4.10 (scalar product) If n1 + n2 + n3 = m1 +m2 +m3 = n, and ni,mi > 0,∫
R2

Bn1,n2,n3Bm1,m2,m3 = Bn1+m1,n2+m2,n3+m3(n1 + n3, n2 + n3)

8.4.1 Strang-Fix conditions applied to Box-splines

In this section, we recall an interesting theorem from Strang-Fix [99].

Definition 8.4.11 (Strang-Fix conditions) A compactly supported function φ ∈ C(R2), such
that its Fourier transform φ̂ ∈ L1(R2), is said to satisfy the Strang-Fix conditions with SF index
α ∈ Z2

+ if:

• φ̂(0, 0) = 1,

• Dγφ̂(2πν) = 0, ∀ν ∈ Z2 − {(0, 0)}, γ ≤ α

The collection Λφ of all SF indices of φ is called the SF indicator set of φ. The largest integer n
for which α ∈ Λφ whenever |α| ≤ n is called the SF degree of φ.

We have the following nice result

Theorem 8.4.12 IfXn is of type I or II, then the SF degree of the box-splineB(·|Xn) is r(Xn)+1,
where r(Xn) is the regularity of B(·|Xn).

Henceforth, we shall denote by ΛXn the SF indicator set of the box-spline B(·|Xn). When
we will omit Xn for the box-spline, its SF indicator set will be Λ, r will be its regularity.

150

8.4. Box-Splines

8.4.2 Box-Spline series

We define the linear space of all splines :

S(Xn) := {
∑
ν∈Z2

aνB(· − ν|Xn); aν ∈ R, ν ∈ Z2}

For simplicity, when we fixe a direction set Xn, we shall denote by Bν the box-spline
B(· − ν|Xn), for ν ∈ Z2. σ(Bν) will be its support. We will denote S in stead of S(Xn).
For each triangle Tj , Λj will be the set of Box-splines indices, that are none vanishing on
Tj , Λj = {ν ∈ Z2, Bν |Tj 6= 0}. We denote by T̃j its extension, i.e T̃j = ∪ν∈Λjσ(Bν).

Theorem 8.4.13 (Global Independence) The Box-splines {Bν(·)}ν∈Z2 are linearly indepen-
dent.

There is also a local version of the last property. Jia [72] have shown :

Theorem 8.4.14 (Local Independence) For any open set A ∈ R2, the Box-splines {Bν(·), ν ∈
Z2, σ(Bν) ∩A 6= ∅} are linearly independent.

Theorem 8.4.15 (Stability) If a := {aν}ν∈Z2 is a bounded sequence, K a compact in R2, and
1 ≤ p ≤ ∞:

A‖a‖p|K|
1
p 6 ‖

∑
ν∈Z2

aνBν‖p,K 6 ‖a‖p|K|
1
p

for some constant A.

Proof We will distinguish the case 1 ≤ p < ∞ from p = ∞. We only treat here the case
1 ≤ p < ∞, the other one is similar. First, we begin by the second inequality which is
more simple. We have

‖
∑
ν∈Z2

aνBν‖pp,K =

∫
K

(
∑
ν∈Z2

aνBν)p

≤
∫
K

(
∑
ν∈Z2

apν)(
∑
ν∈Z2

Bp
ν)

≤
∫
K

(
∑
ν∈Z2

apν)(
∑
ν∈Z2

Bν)

≤
∫
K

(
∑
ν∈Z2

apν) = ‖a‖pp|K|

where we used Holder inequality, the fact that the box-splines are positive and form a
partition of unity.
For the first inequality, we assume the contrary. Let am := {amν }ν ∈ Z2, be uniformly
bounded sequences such that ‖am‖p|K|

1
p = 1, and

‖
∑
ν∈Z2

amν Bν‖p,K → 0

As the sequence is bounded, we can then extract a sub-sequence that converges to some
a = {aν}ν ∈ Z2. Then, we have, by passing to the limit

‖a‖p|K|
1
p = 1, ‖

∑
ν∈Z2

aνBν‖p,K = 0

151

8.4. Box-Splines

therefore,
∑

ν∈Z2 aνBν = 0, so that a = 0, which contradicts the fact that ‖a‖p|K|
1
p = 1. �

Theorem 8.4.16 (Stability) If a := {aν}ν∈Z2 is a bounded sequence, K a compact in R2, and
1 ≤ p ≤ ∞:

A‖a‖p|K|
1
p 6 ‖

∑
ν∈Z2

aνBν‖p,K 6 ‖a‖p|K|
1
p

for some constant A.

Theorem 8.4.17 (Marsden’s identity) Let L0(·) = 1, and for β ∈ Z2
+ we define Lβ by induc-

tion by

Lβ(·) := mβ(·)−
∑
j∈Z2

B(j)
∑

γ≤β,γ 6=β

(−j)β−γ

(β − γ)!
Lγ(·)

then we have the Marsden’s identity

mα(v) =
∑
ν∈Z2

Lα(ν)Bν(v), ∀v ∈ R2, α ∈ Λ

Theorem 8.4.18 (Polynomial reproducing) For any multivariate polynomial p ∈ Pr, there
exist a unique real sequence {cν}ν∈Z2 such that

p(·) =
∑
ν∈Z2

cνBν(·)

Proof We know that mα(v) =
∑

ν∈Z2 Lα(ν)Bν(v), ∀v ∈ R2, α ∈ Λ. Let p ∈ Pr. By
applying the Taylor expansion to p, we have

p(v) =
∑

α∈Z2,|α|≤r

∂αp(0)

α!
mα(v)

then by the Marsden’s identity we have

p(v) =
∑

α∈Z2,|α|≤r

∂αp(0)

α!

∑
ν∈Z2

Lα(ν)Bν(v)

which leads to

p(v) =
∑
ν∈Z2

{
∑

α∈Z2,|α|≤r

∂αp(0)

α!
Lα(ν)}Bν(v)

which proves the existence. The unicity, is a consequence of the linear independence of
box-spline series (cf th 8.4.13,8.4.14). �

We now, can define functionals {cν}ν∈Z2 , such that, for each multivariate polyno-
mial p ∈ Pr, we have cν(p) := cν , where cν is the coefficient associated to Bν in the
latest expansion. The result is easily extensible to the space of splines, by a domain
decomposition. Now we would like to extend the definition of those functionals to Lp

spaces.

Lemma 8.4.19 In the case of Ω = R2, the Box-splines series
∑

ν∈Z2 cν(s)Bν converges to s, for
each s ∈ S ∩ Lp, 0 < p <∞ in the Lp metric.

152

8.5. Box-splines as finite elements basis

Proof Let s ∈ S ∩Lp then by the stability property of box-splines series we get ‖c(s)‖p <
∞. Then, as m→∞, we have

‖s−
∑

ν∈Z2,|ν|≤m

cν(s)Bν‖pp = ‖
∑

ν∈Z2,|ν|�m

cν(s)Bν‖pp .
∑

ν∈Z2,|ν|�m

cν(s)p → 0

�
For p = 1 and ν ∈ Z2, we see that cν is a bounded linear functional on S in the L1 norm.
Let λν be its Hahn-Banach extension onto L1(Tj) we will have |λν(f)| . |Tj |−1‖f‖1,Tj . By
Holder inequality we get

|λν(f)| . |Tj |−p‖f‖p,Tj , ∀ 1 ≤ p ≤ ∞

8.4.3 Quasi-interpolant operator for Box-Splines

We are now able to define a quasi-interpolant operator for Box-splines series.

Theorem 8.4.20 (Quasi-interpolant) For each locally integrable function f ∈ L1
loc(Ω), we

define the operator
Q(f) :=

∑
ν∈Z2

λν(f)Bν

The quasi-interpolant Q is a projection from Lp(Ω), 1 ≤ p ≤ ∞ onto its subspace S .

To give an estimate for the norm of Q, we must use for each triangle Tj its extension T̃j .

Theorem 8.4.21 For each f ∈ Lp(Ω), 1 ≤ p < ∞, f ∈ C(Ω), p = ∞, we have the local and
global norm estimates {

‖Q(f)‖p,Tj . ‖f‖p,T̃j
‖Q(f)‖p,Ω . ‖f‖p,Ω

Proof Let v ∈ Tj , we have Q(f)(v) =
∑

ν∈Λj
λν(f)Bν(v). Using the fact that

∑
ν∈Λj

Bν ≡
1, we get

‖Q(f)‖p,Tj ≤ max
ν∈Λj

|λν(f)| · ‖
∑
ν∈Λj

Bν‖p,Tj . max
ν∈Λj

|Tν |−p‖f‖p,Tν |Tj |p . ‖f‖p,T̃j

For the global norm estimate, we sum over all ν ∈ Λ. �

8.5 Box-splines as finite elements basis

Let Ω ⊂ R2 be a domain for such there is a triangulation ∆ such that Ω = ∪T∈∆hT , for
h > 0. In this section, we will take the standard notation for triangulations T := ∆.
We will denote by

Sh := {
∑
ν∈Z2

aνB(
·
h
− ν|Xn); aν ∈ R, ν ∈ Z2}

We introduce the bent Sobolev spaces of order m ∈ N

Hm(Ω) :=

f ∈ L2(Ω) such that

f |T ∈ Hm(T) ∀T ∈ Th, and
Dkf |T1(v) = Dkf |T2(v) ∀v ∈ ∂T1 ∩ ∂T2,
∀k ∈ N 0 ≤ k ≤ min{mT1,T2 ,m− 1},

∀T1, T2 ∈ Th ∂T1 ∩ ∂T2 6= ∅

153

8.5. Box-splines as finite elements basis

where for any T1, T2 ∈ Th, ∂T1∩∂T2 6= ∅, we denote by mT1,T2 the number of continuous
derivatives across the edge ∂T1 ∩ ∂T2.
Hm(Ω) is a well-defined Hilbert space, endowed with the semi-norms

|f |2l,Ω = |f |2Hl(Ω) :=
∑
T∈Th

|f |2Hl(T) =
∑
T∈Th

|f |2l,T , ∀ 0 ≤ l ≤ m

and norm

‖f‖2m,Ω = ‖f‖2Hm(Ω) :=
m∑
l=0

|f |2l,Ω

8.5.1 Approximation with box-splines

We first, begin by giving an extension of the Bramble-Hilbert lemma over spline spaces.

Lemma 8.5.1 Let 0 ≤ k ≤ l ≤ p+ 1. For each f ∈ Hlh, there exists an s ∈ Sh, such that

|f − s|Hkh(T̃h) . h
l−k
T |f |Hlh(T̃h)

Proof It is very classic. The proof is inspired from [66] (lemma 3.1) and [59] (theorem 5.5
page 61).
The proof is divided into 3 steps:

• scaling:
Let us consider the function f̂(·) := f(hT ·), we have for every integer l

|f̂ |l,T = h
− d

2
T hlT |f |l,hTT

the desired inequality becomes

|f̂ − ŝ|Hk(T̃) . |f̂ |Hl(T̃)

• Prove that ‖f̂ − ŝ‖p+1 . |f̂ |p+1.
Let PP<p+1 represent the set of piecewise polynomial functions of degree at most
p on T̃ , that is, the set of functions that are polynomials of degree at most p on each
element forming T̃ . Notice that PP<p+1 ∩Hp+1(T̃) ⊂ Sh.
Let us consider π the L2(T̃)-projection from Hp+1(T̃) on PP<p+1 ∩ Hp+1(T̃). We
will prove that the result holds for ŝ := π(f̂).
To this purpose we suppose the contrary: we suppose that we can construct a se-
quence ĝm = f̂m − ŝm such that ‖ĝm‖p+1 = 1 and |ĝm|p+1 → 0.
We then can extract a sequence, also noted ĝm, and a function g, such that
‖ĝm − g‖p → 0 and ‖g‖p = lim ‖ĝm‖2p+1 − |ĝm|2p+1 = 1.
We now prove that g ∈ PP<p+1 :
Let |α| = p+ 1, then

|
∫
g∂αϕ| = lim |

∫
ĝm∂

αϕ| = lim |
∫
∂αĝmϕ| . lim |ĝm|p+1

but lim |ĝm|p+1 = 0, then g ∈ PP<p+1.
We now have to prove that g = 0.
We project f̂ into PP<p+1∩Hp+1(T̃), using an orthonormal basisDα. We can write :

πf̂m =
∑
|α|≤p

< f̂m, Dα >0 Dα

154

8.6. DeRham diagram

and ĝm = f̂m − ŝm = f̂m − πf̂m.
On the other hand: < f̂m, Dα >0=< πf̂m, Dα >0, ∀α, |α| ≤ p,
so that, ∀α, |α| ≤ p : < ĝm, Dα >0= 0 then ĝm = 0 and by passing to the limit we
get g = 0.

• The remaining cases k ≤ p follow easily.

�

Lemma 8.5.2 Let 0 ≤ k ≤ l ≤ p+ 1. For each f ∈ Hlh(T̃) ∩ L2(Ω) then

|f −Q(f)|Hkh(T) . h
l−k
T |f |Hlh(T̃)

and
|Q(f)|Hlh(T) . |f |Hlh(T̃)

Proof Using the last lemma, we know that for some s ∈ Sh, we have

|f −Q(f)|Hkh(T) ≤ |f − s|Hkh(T) + |Q(s− f)|Hkh(T)

the first term is bounded using the last lemma. For the second term, we use the inverse
inequality for polynomials, which leads to

|Q(s− f)|Hkh(T) . h
−k‖Q(s− f)‖2,T

but, Q(s− f) = s− f . We now can use again the last lemma to conclude. �

Lemma 8.5.3 Let vi ∈ Xn be a direction, and f ∈ Hlh(T̃)∩L2(Ω). We have the following result:

‖∂viQ(f)‖p,Tj . ‖∂vif‖p,T̃j

Proof First we will need a version of Poincaré’s inequality, which is adapted to our case:

∀vi ∈ Ω, ∀ϕ ∈ C∞0 (Ω), ‖ϕ‖0,p,Ω . ‖∂viϕ‖0,p,Ω .

For any polynomial function ph, we have

‖∂viph‖0,p,T ≤ |ph|1,p,T . h−1
T ‖ph‖0,p,T .

As Q(f) is a polynomial, then we get by the last Poincaré’s inequality

‖∂viQ(f)‖0,p,T . h−1
T ‖Q(f)‖0,p,T = h−1

T ‖f‖0,p,T . ‖∂vif‖0,p,T̃ .

�

8.6 DeRham diagram

In this section, we will consider only periodic boundary condition.

155

8.6. DeRham diagram

8.6.1 Notations

X0 := H1(Ω), X2 := H(div,Ω), X3 := L2(Ω).
For h > 0, let us define

X0
h := span

{
B(
·
h
− ν), ν ∈ Z2

}
X2
h := span

{(
By(·h − ν)

0

)
,

(
0

Bx(·h − ν)

)
, ν ∈ Z2

}
X3
h := span

{
Bxy(

·
h
− ν), ν ∈ Z2

}
Our goal is to construct the following DeRham diagram

curl div
X0 −→ X2 −→ X3

↓ π0
h ↓ π2

h ↓ π3
h

X0
h −→ X2

h −→ X3
h

(8.6.1)

8.6.2 Interpolants and commutativity

Let us define
π0
h(ϕ) := QhΛ(ϕ), ϕ ∈ X0

π2
h(F)(v) :=

(
∂yπ

0
h

∫ vy
0 Fx(vx, u)du

∂xπ
0
h

∫ vx
0 Fy(u, vy)du

)
, F = (Fx, Fy) ∈ X2

For φ ∈ X3, we know that there exists a unique q ∈ X0, such that −∆q = φ, Ω, and
q |∂Ω= 0. Let us take F := −∇q, so that we have φ = div F. We therefore define π3

h as

π3
h(φ) := π2

h(div F) = div π2
h(F)

Lemma 8.6.1 (Preserving property) We have the following properties,

1. π0
h(ϕh) = ϕh, ∀ϕh ∈ X0

h

2. π2
h(Fh) = Fh, ∀Fh ∈ X2

h

3. π3
h(φh) = φh, ∀φh ∈ X3

h

Proof

1. Let ϕh ∈ X0
h. We can write ϕh =

∑
ν∈Z2 φνhB(·h − ν), so that we have by the preser-

vation property of the quasi-interpolant π0
h(ϕh) = ϕh.

2. Let Fh ∈ X2
h, we can write Fh =

∑
ν∈Z2 F νx,h

(
0

Bx(·h − ν)

)
+ F νy,h

(
By(·h − ν)

0

)
.

As π2
h is linear, it is sufficient to prove the preserving property for

(
0

Bx(·h − ν)

)
,(

By(·h − ν)
0

)
, ∀ν ∈ Z2.

We know that we can writeBy(·h −ν) =
∑

µ∈Λ b
µ∂yB(·h −µ), for a unique sequence

{bµ}µ∈Λ, which only a finite set is not null. Therefore we have

156

8.6. DeRham diagram

∫ vy

0
By(

vx
h
− ν1,

u

h
− ν2)du =

∑
µ∈Λ

bµ
∫ vy

0
∂yB(

vx
h
− µ1,

u

h
− µ2)du

= h
∑
µ∈Λ

bµ{B(
vx
h
− µ1,

vy
h
− µ2)−B(

vx
h
− µ1,−µ2)}

By applying π0
h, we preserve the last quantity. We now can derive in the e2 direction,

which leads to

∂yπ
0
h

∫ vy

0
By(

vx
h
− ν1,

u

h
− ν2)du = h

∑
µ∈Λ

bµ{1

h
∂yB(

vx
h
− µ1,

vy
h
− µ2)− 0} .

which is equal to By(v
h − ν).

Therefore we have π2
h

(
By(·h − ν)

0

)
=

(
By(·h − ν)

0

)
. By the same arguments we

shall prove π2
h

(
0

Bx(·h − ν)

)
=

(
0

Bx(·h − ν)

)
.

3. Let φh :=
∑

ν∈Z2 φνhB
xy(·h − ν) ∈ X3. Let us take F :=

(
h
∑

ν∈Z2 φνhB
y(·h − ν)

0

)
. It

is clear that F ∈ X2
h, then div F =

∑
ν∈Z2 φνhB

xy(·h − ν) = φh. Therefore,

π3
h(φh) = div (π2

hF) = div (F) = φh .

�

Lemma 8.6.2 (Commuting property) We have the following properties,

1. π2
h(rotϕ) = rotπ0

h(ϕ), ∀ϕ ∈ X0

2. π3
h(div F) = div π2

h(F), ∀F ∈ X2

Proof

1. Let ϕ ∈ X0. We have

π2
h(rotϕ)(v) = π2

h(

(
∂yϕ
−∂xϕ

)
)(v)

=

(
∂yπ

0
h

∫ vy
0 ∂yϕ(vx, u)du

−∂xπ0
h

∫ vx
0 ∂xϕ(u, vy)du

)
=

(
∂yπ

0
hϕ

−∂xπ0
hϕ

)
= rot (π0

hϕ)

2. Let F ∈ X2, we have by construction π3
h(div F) = div (π2

h(F)).

�

Lemma 8.6.3 (Continuity property) We have the following properties,

157

8.6. DeRham diagram

1. ‖π0
h(ϕ)‖L2(Ω) . ‖ϕ‖L2(Ω), ∀ϕ ∈ X0

2. ‖π2
h(F)‖(L2(Ω))2 . ‖F‖(L2(Ω))2 , ∀F ∈ X2

3. ‖π3
h(φ)‖L2(Ω) . ‖φ‖L2(Ω), ∀φ ∈ X3

Proof

1. The first assertion is a consequence of theorem (8.4.21).

2. For F =

(
Fx
Fy

)
∈ X2, we have

‖π2
h(F)‖2(L2(Ω))2 =

∫
Ω
‖∂yπ0

h

∫ vy

0
Fx(vx, u)du‖22 + ‖∂xπ0

h

∫ vx

0
Fy(u, vy)du‖22

let f1(v) :=
∫ vy

0 Fx(vx, u)du. We know by the first section that

‖∂yπ0
hf1‖2 ≤ |π0

hf1|21 . ‖∂yf1‖20 = ‖Fx‖20

we have, if we define f2(v) :=
∫ vx

0 Fy(u, vy)du:

‖∂xπ0
hf2‖2 . |π0

hf2|21 . ‖∂xf2‖20 = ‖Fy‖20

then by summing the two inequalities we get

‖π2
h(F)‖2(L2(Ω))2 . ‖F‖20

3. We use the same idea as for the last assertion.

�

8.6.3 Approximation Analysis

Theorem 8.6.4 We have the following properties,

1. |ϕ− π0
h(ϕ)|Hl(T) . h

s−l
T |ϕ|Hs(T̃), ∀ϕ ∈ X0 ∩H0,s(T̃), 0 ≤ l ≤ s ≤ p+ 1

2. |F− π2
h(F)|Hl(T) . h

s−l
T |F|Hs(T̃), ∀F ∈ X2 ∩H2,s(T̃), 0 ≤ l ≤ s ≤ p

3. |φ− π3
h(φ)|Hl(T) . h

s−l
T |φ|Hs(T̃), ∀φ ∈ X3 ∩H3,s(T̃), 0 ≤ l ≤ s ≤ p

Proof The proof is based on the approximation property (lemma (8.5.1)), and the pre-
serving property of the interpolants:

We know that there exists a spline s such that |ϕ− s|Hkh(T̃h) . h
l−k
T |ϕ|Hlh(T̃h), therefore,

using the triangle inequality and the preserving property of the interpolant π0
h we have

|ϕ−π0
h(ϕ)|Hl(T) ≤ |ϕ−s|Hl(T)+|π0

h(s)−π0
h(ϕ)|Hl(T) . h

l−k
T |ϕ|Hlh(T̃h)+|s−ϕ|Hl(T) . h

l−k
T |ϕ|Hlh(T̃h)

where we used the lemma (8.5.2)
For the other cases, the proof is similar. �

158

8.7. Boundary Condition using Box-splines

8.7 Boundary Condition using Box-splines

There are several ways to treat the boundary condition. As we notice the definition of
Box-splines is similar to the well known uniform B-splines (in 1D). So how can we force
our basis so that it can interpolate (for example) the boundary?
The first solution is inspired by the work done by Hollig ([58, 69]). We can stabilize our
basis by introducing an inner and outer Box-splines.
The second solution is to take an adapted box-spline B111 for the boundary (figure 8.8)
and then define box-spline of high order by the convolution property.

0

11

0

0 0

1
2

Figure 8.8: Adapted box-spline for the boundary

8.8 Conclusions and Perspectives

In this chapter we gave the premise for the construction of DeRham sequence using a
specific splines (Box-splines) defined on triangles. We still have work to do, in order
to use interpolating elements for the boundary, to implement the method and verify its
numerical accuracy.
Another generalization of this work would be the use of Simplex or Manifold Splines on
Delaunay configurations. Such construction was introduced first by Neamtu [87]. More
details about the algorithmic aspect can be found in [117]. It will be a real challenge to
derive an adequate DeRham sequence for such elements.

159

8.8. Conclusions and Perspectives

160

Conclusions

In this dissertation, we have tested the IGA approach to solve some problems that arise
in Plasma Physics and Electromagnetism. It is of big interest to be able to model and
handle these complex geometries that are defined by magnetic field lines (because of the
Magnetic Confinement). Most of the work developed during this thesis needs to be im-
proved. Because of time constraint, we have devote much more effort in the development
of the library PyIGA, which has been written from scratch (based only on pppack).

Directions for future work

In what follows, suggestions are given for future work and developments on several
areas.

Semi-Lagrangian schemes for complex geometries

Handling more complicated mappings than those treated in chapter 6. The implementa-
tion of adapted algorithms for the inversion of the grid has to be investigated.

PIC code for complex geometries

In our work, we have rewritten the motions equations on the parametric domain. But
this leads to a high computational cost. It will be very important to compare this com-
putational time with the case when particles may live in the physical domain adding
inversing the mapping for each particle. It may be also interesting to consider a domain
decomposition, using multiple patches, where for a large number of domains we keep
the identity mapping, and use NURBS/B-splines mapping to locally handle the geometry
[38].

IGA in incompressible MHD

As seen in the chapter 7, the IGA approach seems very relevant to treat problems that
arise in MHD. We will surely need to use stabilized elements (SUPG, for example). Local
refinement, will be of great interest to capture these fine changes of the magnetic structure
in magnetic reconnection.

Box-Splines and the DeRham sequence

We would like to finish the study of the DeRham sequence using Box-Splines, by taking in
account the boundary condition. This will be done by deriving an adequate recurrence
formulas for the evaluation of those Box-splines.

161

8.8. Conclusions and Perspectives

As said in the chapter 8, another interesting generalization would be the use of
Simplex-Splines on Delaunay configurations. We believe that such elements may be in-
teresting for discretizing differential forms.

GB-Splines for Maxwell’s equations

In the chapter 4, we have noticed that using GB-Splines, we can remove one of the mass
matrices involved in the Maxwell’s discretized system. We need to derive a DeRham
sequence for GB-Splines. Following the same idea as for Box-Splines, it is not difficult to
treat the case of uniform GB-Splines, thanks to the Strang-Fix theory. A full study must
be achieved.

The Fast-IGA solvers

We are investigating new approachs to derive Fast- solvers for IGA. The idea is to use an
unclamped description of the boundary. We are also developing proconditioners based on
the NKP (Near Kronecker Product) problem.

PyIGA’s perspectives

The following tasks are under development:

• the use of multi-patches,

• boundary operators,

• the implementation of GB-Splines, a fast evaluation algorithm, and appropriate
quasi-interpolator,

• setting the boundary condition using the GUI,

The following tasks will be done later:

• local refinement using LR-splines,

• improving performances: parallelism using either MPI or GPU, and memory use,

• adding routines to treat the free boundary problem, moving boundaries,

162

APPENDIX A

Appendix: Decoupling approach for
J(r, θ)

The starting equation writes

−∇⊥ · (n0∇⊥φ) + [φ− 〈φ〉] = F, (A.0.1)

with F = (ni − ne)/n0 and

〈φ〉(r) =

∫
φ(r, θ, ϕ)J(r, θ)dθdϕ∫

J(r, θ)dθdϕ
.

The appendix is devoted to the extension of the decoupling approach to (r, θ) depending
jacobians J . As in the case where J(r, θ) = r, we integrate (A.0.1) with respect to θ, ϕ to
get a one-dimensional equation on φ̄(r) = 1/(4π2)

∫
φdθdϕ

−∇⊥ · (n0∇⊥φ̄) + φ̄− 〈φ〉 = F̄ . (A.0.2)

Let us remark that this operation is transparent for the operator 〈·〉. Moreover, we are
looking for an equation satisfied by Φ = φ− φ̄ from (A.0.1):

−∇⊥ · (n0∇⊥Φ)−∇⊥ · (n0∇⊥φ̄) + φ− φ̄+ φ̄− 〈φ〉 = F

−∇⊥ · (n0∇⊥Φ)−∇⊥ · (n0∇⊥φ̄) + Φ + φ̄− 〈φ〉 = F

−∇⊥ · (n0∇⊥Φ) + F̄ − φ̄+ 〈φ〉+ Φ + φ̄− 〈φ〉 = F thanks to (A.0.2)
−∇⊥ · (n0∇⊥Φ) + F̄ − φ̄+ 〈φ〉+ Φ + φ̄− 〈φ〉 = F

−∇⊥ · (n0∇⊥Φ) + Φ = F − F̄ . (A.0.3)

Let us come back to (A.0.2) in order to derive an equation satisfied by 〈φ〉. From (A.0.2),
we have

−∇⊥ · (n0∇⊥(φ̄− 〈φ〉))−∇⊥ · (n0∇⊥〈φ〉) + φ̄− 〈φ〉 = F̄ .

By introducing the notation h(r) = φ̄− 〈φ〉, we can derive an equation for 〈φ〉(r)

−∇⊥ · (n0∇⊥〈φ〉) = F̄ +∇⊥ · (n0∇⊥h)− h, h(r) = φ̄− 〈φ〉. (A.0.4)

To conclude, we present the decoupling algorithm which enables to solve (A.0.1)

• (a) solve (A.0.3)→ Φ = φ− φ̄

• (b) compute 〈Φ〉

163

• (c) compute (and store) tmp = (Φ− 〈Φ〉)

• (d) compute h(r) = 1/(4π2)
∫

(Φ− 〈Φ〉)dθdϕ = φ̄− 〈φ〉

• (e) solve (A.0.4)→ 〈φ〉

• (f) φ = tmp + 〈φ〉 = (Φ− 〈Φ〉) + 〈φ〉 = φ− φ̄− 〈φ〉+ φ̄+ 〈φ〉 using (c) and (e).

Remark A.0.1 One of the key argument comes from the fact that operators 〈·〉 and ·̄ are trans-
parent from each other

〈φ̄〉 =

∫
φ̄Jdθdϕ/(

∫
Jdθdϕ) = φ̄

∫
Jdθdϕ/(

∫
Jdθdϕ) = φ̄,

and
¯〈φ〉 = 1/(4π2)

∫
〈φ〉dθdϕ = 〈φ〉/(4π2)

∫
dθdϕ = 〈φ〉.

164

APPENDIX B

Transformation compatible with
grad, div and curl operators

In order to define our basis functions on the parametric domain, which is a rectangu-
lar domain of R2 with cartesian coordinates and then to map them onto a patch of the
physical domain, we need to define a transformation of scalar and vector fields which is
compatible with our differential operators (grad, div and curl). This is provided to us by
the pullback operator for differential forms which is designed to commute with the exte-
rior derivative. Hence compatible transformations will be provided to us by associating
our scalar or vector fields to a well chosen differential form and using the pullback.

In our case, we have differential forms defined on Q and need to construct the associ-
ated differential forms on K. For this we need a C1 diffeomorphism G : K → Q. Let us
recall the pullback formula for 0, 1 and 2-forms. A 0-form on Q is a function (or a scalar
field) ϕ(ξ, η). The pullback of ϕ on K is in this case simply ϕ = ϕ ◦G.

A 1-form on the parametric space can be written ω = ω1(ξ, η)dξ+ω2(ξ, η)dη. Denoting
by G1 and G2 the components of the diffeomorphism G, the pullback of ω on K is then
defined by

ω = G∗ω = ω1 ◦GdG1 + ω2 ◦GdG2

=

(
ω1
∂G1

∂x
+ ω2

∂G2

∂x

)
dx+

(
ω1
∂G1

∂y
+ ω2

∂G2

∂y

)
dy, (B.0.1)

where we denote by ω1(x, y) = ω1 ◦G(x, y) and ω2(x, y) = ω2 ◦G(x, y).
A 2-form on the parametric space can be written σ(ξ, η) dξ ∧ dη and its pullback on K

by the diffeomorphism G is defined by

σ(x, y) dx ∧ dy = G∗(σ dξ ∧ dη) = σ ◦GdG1 ∧ dG2

= σ(x, y)

(
∂G1

∂x

∂G2

∂y
− ∂G2

∂x

∂G1

∂y

)
dx ∧ dy, (B.0.2)

where we denote by σ(x, y) = σ ◦G(x, y).
Now a vector field in a 2D space is associated to a differential 1-form. This 1-form

depends on the sequence of spaces we are working on and is chosen such that its exterior
derivative corresponds either to the curl or the divergence of the vector field. Note that
in both cases a function ϕ (or scalar field) can be associated to either a 0-form which is
the function itself or the two form ϕdξ ∧ dη.

Let us start with the case of (4.3.9). In this case the exterior derivative of a 0-form
should be associated to the grad operator and the exterior derivative of a 1-form should

165

be associated to the curl operator. This is the case if we associate a generic vector field
Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T to the differential form

ωc = Ψ(1)(ξ, η) dξ + Ψ(2)(ξ, η) dη.

Indeed, take a function (or 0-form) ϕ. Then, on the one hand

gradϕ = (∂ξϕ, ∂ηϕ)T

which is associated to the one form

∂ξϕdξ + ∂ηϕdη = dϕ,

an on the other hand

rot Ψ(ξ, η) dξ ∧ dη = (∂ξΨ
(2) − ∂ηΨ(1)) dξ ∧ dη = dωc.

Let us now consider the case of (4.3.10). Then the exterior derivative of a 0-form
should be associated to the rot operator and the exterior derivative of a 1-form should
be associated to the div operator. This is the case if we associate a generic vector field
Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T to the differential form

ωd = Ψ(1)(ξ, η) dη −Ψ(2)(ξ, η) dξ.

Indeed, take a function (or 0-form) ϕ. Then, on the one hand

rotϕ = (∂ηϕ,−∂ξϕ)T

which is associated to the one form

∂ηϕdη − (−∂ξϕdξ) = dϕ,

an on the other hand

div Ψ(ξ, η) dξ ∧ dη = (∂ξΨ
(1) + ∂ηΨ

(2)) dξ ∧ dη = dωd.

Having now associated our functions and vector fields to differential forms, we can
use the expression of the pullbacks to define the adequate scalar and vector field trans-
formations.

In particular, when using the spaces associated to (4.3.10). We need to transform
the basis functions associated to V , this is straightforward as they are functions as-
sociated to 0-forms, and to Wdiv. To defined the transformation of a vector field
Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T ∈ Wdiv we use the pullback formula (B.0.1) for the1-
form ωd = Ψ(1)(ξ, η) dη −Ψ(2)(ξ, η) dξ. This yields

ωd =

(
−Ψ(2) ◦G∂G1

∂x
+ Ψ(1) ◦G∂G2

∂x

)
dx+

(
−Ψ(2) ◦G∂G1

∂y
+ Ψ(1) ◦G∂G2

∂y

)
dy,

which is associated to the vector field

Ψ =

(
(−Ψ(2) ◦G∂G1

∂y
+ Ψ(1) ◦G∂G2

∂y
), (Ψ(2) ◦G∂G1

∂x
−Ψ(1) ◦G∂G2

∂x
)

)T
. (B.0.3)

166

APPENDIX C

Equations of motion

C.1 Cylindrical coordinates

Change of coordinates

Let

X =

 x
y
z

be the cartesian coordinates and

q =

 q1

q2

q3

 =

 r
θ
z

be the cylindrical ones, with

 x
y
z

 =

 r cos θ
r sin θ
z

⇔
 r

θ
z

 =

√
x2 + y2

arctan(yx)
z

 .

The jacobian of this transformation writes:

J = det

 ∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z

 = det

 cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 = r.

The Lagrangian

In cartesian coordinates, the Lagrangian writes,

L(X, Ẋ, t) =
1

2
mẊ2 − e(A · Ẋ− φ) =

1

2
m(ẋ2 + ẏ2 + ż2)− e(Axẋ+Ayẏ +Az ż − φ),

where,

u̇ =
du

dt
,

167

C.1. Cylindrical coordinates

with A the potential vector, and φ scalar potential.
Let us search for its expression in cylindrical coordinates,

L̃(q, q̇, t) = L(X(q), Ẋ(q), t).

We have :

ẋ =
dx

dt
=
∂x

∂r

∂r

∂t
+
∂x

∂θ

∂θ

∂t
+
∂x

∂z

∂z

∂t

ẋ = ṙ cos θ − rθ̇ sin θ ⇒ẋ2 = ṙ2 cos2 θ + r2θ̇2 sin2 θ − 2rṙθ̇ cos θ sin θ

and

ẏ = ṙ sin θ + rθ̇ cos θ ⇒ẏ2 = ṙ2 sin2 θ + r2θ̇2 cos2 θ + 2rṙθ̇ cos θ sin θ

and

ż = ż ⇒ż2 = ż2.

Therefor,

ẋ2 + ẏ2 + ż2 = ṙ2 + r2θ̇2 + ż2.

Covariant transformation of the potential vector A

We have,

Ax =
∂r

∂x
Ar +

∂θ

∂x
Aθ +

∂z

∂x
Az

=
2x

2
√
x2 + y2

Ar +
−y

x2 + y2
Aθ

=
r cos θ

r
Ar −

r sin θ

r2
Aθ

= cos θAr −
sin θ

r
Aθ,

and,

Ay = sin θAr +
cos θ

r
Aθ

and,

Az =
∂r

∂z
Ar +

∂θ

∂z
Aθ +

∂z

∂z
Az = Az.

168

C.1. Cylindrical coordinates

Hence, we get,

Axẋ+Ayẏ +Az ż = (cos θAr −
sin θ

r
Aθ)(ṙ cos θ − rθ̇ sin θ)

+ (sin θAr +
cos θ

r
Aθ)(ṙ sin θ + rθ̇ cos θ) +Az ż

= Arṙ +Aθθ̇ +Az ż

and,

L̃ =
1

2
m(ṙ2 + r2θ̇2 + ż2)− e(Arṙ +Aθθ̇ +Az ż − φ).

Euler-Lagrange equations

Let us consider the Euler-Lagrange equations:

d

dt

∂L̃

∂q̇
=
∂L̃

∂q
.

as,

∂L̃

∂r
= mrθ̇2 − e(ṙ ∂Ar

∂r
+ θ̇

∂Aθ
∂r

+ ż
∂Az
∂r
− ∂φ

∂r
),

∂L̃

∂θ
= −e(ṙ ∂Ar

∂θ
+ θ̇

∂Aθ
∂θ

+ ż
∂Az
∂θ
− ∂φ

∂θ
),

∂L̃

∂z
= −e(ṙ ∂Ar

∂z
+ θ̇

∂Aθ
∂z

+ ż
∂Az
∂z
− ∂φ

∂z
),

and,

∂L̃

∂ṙ
= mṙ − eAr,

∂L̃

∂θ̇
= mr2θ̇ − eAθ,

∂L̃

∂ż
= mż − eAz,

we get,

d

dt

∂L̃

∂ṙ
= mr̈ − e(ṙ ∂Ar

∂r
+ θ̇

∂Ar
∂θ

+ ż
∂Ar
∂z

+
∂Ar
∂t

),

d

dt

∂L̃

∂θ̇
= 2mrṙθ̇ +mr2θ̈ − e(ṙ ∂Aθ

∂r
+ θ̇

∂Aθ
∂θ

+ ż
∂Aθ
∂z

+
∂Aθ
∂t

),

d

dt

∂L̃

∂ż
= mz̈ − e(ṙ ∂Az

∂r
+ θ̇

∂Az
∂θ

+ ż
∂Az
∂z

+
∂Az
∂t

).

Therefor, we get the motion equations:

169

C.1. Cylindrical coordinates

mr̈ − e(ṙ ∂Ar
∂r

+ θ̇
∂Ar
∂θ

+ ż
∂Ar
∂z

+
∂Ar
∂t

) = mrθ̇2 − e(ṙ ∂Ar
∂r

+ θ̇
∂Aθ
∂r

+ ż
∂Az
∂r
− ∂φ

∂r
)

2mrṙθ̇ +mr2θ̈ − e(ṙ ∂Aθ
∂r

+ θ̇
∂Aθ
∂θ

+ ż
∂Aθ
∂z

+
∂Aθ
∂t

) = −e(ṙ ∂Ar
∂θ

+ θ̇
∂Aθ
∂θ

+ ż
∂Az
∂θ
− ∂φ

∂θ
)

mz̈ − e(ṙ ∂Az
∂r

+ θ̇
∂Az
∂θ

+ ż
∂Az
∂z

+
∂Az
∂t

) = −e(ṙ ∂Ar
∂z

+ θ̇
∂Aθ
∂z

+ ż
∂Az
∂z
− ∂φ

∂z
)

⇔

mr̈ − e(θ̇ ∂Ar
∂θ

+ ż
∂Ar
∂z

+
∂Ar
∂t

) = mrθ̇2 − e(θ̇ ∂Aθ
∂r

+ ż
∂Az
∂r
− ∂φ

∂r
)

2mrṙθ̇ +mr2θ̈ − e(ṙ ∂Aθ
∂r

+ ż
∂Aθ
∂z

+
∂Aθ
∂t

) = −e(ṙ ∂Ar
∂θ

+ ż
∂Az
∂θ
− ∂φ

∂θ
)

mz̈ − e(ṙ ∂Az
∂r

+ θ̇
∂Az
∂θ

+
∂Az
∂t

) = −e(ṙ ∂Ar
∂z

+ θ̇
∂Aθ
∂z
− ∂φ

∂z
)

⇔

m(r̈ − rθ̇2) = −e(θ̇(∂Aθ
∂r
− ∂Ar

∂θ
) + ż(

∂Az
∂r
− ∂Ar

∂z
)− ∂Ar

∂t
− ∂φ

∂r
)

2mrṙθ̇ +mr2θ̈ = −e(ṙ(∂Ar
∂θ
− ∂Aθ

∂r
) + ż(

∂Az
∂θ
− ∂Aθ

∂z
)− ∂Aθ

∂t
− ∂φ

∂θ
)

mz̈ = −e(ṙ(∂Ar
∂z
− ∂Az

∂r
) + θ̇(

∂Aθ
∂z
− ∂Az

∂θ
)− ∂Az

∂t
− ∂φ

∂z
)

⇔

 m(r̈ − rθ̇2)

2mrṙθ̇ +mr2θ̈
mz̈

 = −e(q̇ ∧ (∇∧A)− ∂A

∂t
−∇φ)

⇔

 z̈

r̈ − rθ̇2

2rṙθ̇ + r2θ̈

 = − e

m

 ż
ṙ

θ̇

 ∧
 r Bz

r Br
Bθ
r

+

 Ez
Er
Eθ

⇔

170

C.2. General coordinates

 r z̈

r r̈ − (rθ̇)2

2 ṙθ̇ + r θ̈

 = − e

m

 ż
ṙ

θ̇r2

 ∧
 Bz

Br
Bθ

+

 r Ez
r Er
Eθ
r

 .

C.2 General coordinates

We would like now to go from any general coordinates system (ξ, η, θ), to cylindrical
coordinates. Let F be a mapping such that :

F(ξ, η, θ) = (z, r, θ) (C.2.1)

and we assume a 2D axisymmetric geometry.
Under the assumption θ̇ = 0, we have :

F(ξ, η) = (z, r).

We recall the expression of the Lagrangian in cylindrical coordinates,

L̃ =
1

2
m(ż2 + ṙ2)− e(Az ż +Arṙ − φ).

We have,

ṙ =
dr

dt
=
∂r

∂ξ

∂ξ

∂t
+
∂r

∂η

∂η

∂t
=
∂r

∂ξ
ξ̇ +

∂r

∂η
η̇,

and,

ż =
∂z

∂ξ
ξ̇ +

∂z

∂η
η̇.

therefor,

ṙ2 + ż2 = ((
∂r

∂ξ
)2 + (

∂z

∂ξ
)2)ξ̇2 + ((

∂r

∂η
)2 + (

∂z

∂η
)2)η̇2 + 2(

∂r

∂ξ

∂r

∂η
+
∂z

∂ξ

∂z

∂η
)ξ̇η̇.

Covariant transformation of the potential vector A

We have,

Aξ =
∂r

∂ξ
Ar +

∂z

∂ξ
Az,

and,

Aη =
∂r

∂η
Ar +

∂z

∂η
Az.

171

C.2. General coordinates

hence, in the new coordinates, the potential vector writes,

Arṙ +Az ż = Ar(
∂r

∂ξ
ξ̇ +

∂r

∂η
η̇) +Az(

∂z

∂ξ
ξ̇ +

∂z

∂η
η̇)

= (Ar
∂r

∂ξ
+Az

∂z

∂ξ
)ξ̇ + (Ar

∂r

∂η
+Az

∂z

∂η
)η̇

= Aξ ξ̇ +Aηη̇,

so that,

L =
1

2
m(((

∂r

∂ξ
)2 + (

∂z

∂ξ
)2)ξ̇2 + ((

∂r

∂η
)2 + (

∂z

∂η
)2)η̇2 + 2(

∂r

∂ξ

∂r

∂η
+
∂z

∂ξ

∂z

∂η
)ξ̇η̇)

− e(Aξ ξ̇ +Aηη̇ − φ).

Let us denote,

Mξ = (
∂r

∂ξ
)2 + (

∂z

∂ξ
)2,

Mη = (
∂r

∂η
)2 + (

∂z

∂η
)2,

and,

Mξη =
∂r

∂ξ

∂r

∂η
+
∂z

∂ξ

∂z

∂η
,

we can now write,

L =
1

2
m(Mξ ξ̇

2 +Mηη̇
2 + 2Mξη ξ̇η̇)− e(Aξ ξ̇ +Aηη̇ − φ).

Euler-Lagrange equations

We recall that,

d

dt

∂L

∂q̇
=
∂L

∂q
,

where,

q =

(
ξ
η

)
.

Let us compute the following partial derivatives:

172

C.2. General coordinates

∂Mξ

∂ξ
= 2

∂2r

∂ξ2

∂r

∂ξ
+ 2

∂2z

∂ξ2

∂z

∂ξ
,

∂Mξ

∂η
= 2

∂2r

∂η∂ξ

∂r

∂ξ
+ 2

∂2z

∂η∂ξ

∂z

∂ξ
,

∂Mη

∂η
= 2

∂2r

∂η2

∂r

∂η
+ 2

∂2z

∂η2

∂z

∂η
,

∂Mη

∂ξ
= 2

∂2r

∂η∂ξ

∂r

∂η
+ 2

∂2z

∂η∂ξ

∂z

∂η
,

∂Mξη

∂ξ
=
∂2r

∂ξ2

∂r

∂η
+

∂2r

∂η∂ξ

∂r

∂ξ
+
∂2z

∂ξ2

∂z

∂η
+

∂2z

∂η∂ξ

∂z

∂ξ
,

and,

∂Mξη

∂η
=

∂2r

∂η∂ξ

∂r

∂η
+
∂2r

∂η2

∂r

∂ξ
+

∂2z

∂η∂ξ

∂z

∂η
+
∂2z

∂η2

∂z

∂ξ
.

hence, we get,

∂L

∂ξ
=

1

2
m(

∂Mξ

∂ξ
ξ̇2 +

∂Mη

∂ξ
η̇2 + 2

∂Mξη

∂ξ
ξ̇η̇)− e(

∂Aξ
∂ξ

ξ̇ +
∂Aη
∂ξ

η̇ − ∂φ

∂ξ
),

∂L

∂η
=

1

2
m(

∂Mξ

∂η
ξ̇2 +

∂Mη

∂η
η̇2 + 2

∂Mξη

∂η
ξ̇η̇)− e(

∂Aξ
∂η

ξ̇ +
∂Aη
∂η

η̇ − ∂φ

∂η
).

But, as we have,

∂L

∂ξ̇
=

1

2
m(2Mξ ξ̇ + 2Mξηη̇)− eAξ = m(Mξ ξ̇ +Mξηη̇)− eAξ,

∂L

∂η̇
=

1

2
m(2Mηη̇ + 2Mξη ξ̇)− eAη = m(Mηη̇ +Mξη ξ̇)− eAη.

The time derivatives writes,

173

C.2. General coordinates

d

dt

∂L

∂ξ̇
= m(Mξ ξ̈ +Mξηη̈ +

∂Mξ

∂ξ
(ξ̇)2 +

∂Mξ

∂η
η̇ξ̇ +

∂Mξη

∂η
(η̇)2 +

∂Mξη

∂ξ
ξ̇η̇)

− e(
∂Aξ
∂ξ

ξ̇ +
∂Aξ
∂η

η̇ +
∂Aξ
∂t

),

d

dt

∂L

∂η̇
= m(Mηη̈ +Mξη ξ̈ +

∂Mξη

∂ξ
(ξ̇)2 +

∂Mξη

∂η
η̇ξ̇ +

∂Mη

∂η
(η̇)2 +

∂Mη

∂ξ
ξ̇η̇)

− e(∂Aη
∂ξ

ξ̇ +
∂Aη
∂η

η̇ +
∂Aη
∂t

).

We end up with the motions equations in this general coordinates system:

m(Mξ ξ̈ +Mξηη̈) = e(
∂Aξ
∂ξ

ξ̇ +
∂Aξ
∂η

η̇ +
∂Aξ
∂t

)

+ m

((
−1

2

∂Mξ

∂ξ

)
ξ̇2 +

(
1

2

∂Mη

∂ξ
−
∂Mξη

∂η

)
η̇2 −

∂Mξ

∂η
ξ̇η̇

)
− e(

∂Aξ
∂ξ

ξ̇ +
∂Aη
∂ξ

η̇ − ∂φ

∂ξ
),

m(Mηη̈ +Mξη ξ̈) = +e(
∂Aη
∂ξ

ξ̇ +
∂Aη
∂η

η̇ +
∂Aη
∂t

)

+ m

((
1

2

∂Mξ

∂η
−
∂Mξη

∂ξ

)
ξ̇2 +

(
−1

2

∂Mη

∂η

)
η̇2 − ∂Mη

∂ξ
ξ̇η̇

)
− e(

∂Aξ
∂η

ξ̇ +
∂Aη
∂η

η̇ − ∂φ

∂η
).

But, we know that :

E = −∂A

∂t
−∇φ =

(
−∂Aξ

∂t −
∂φ
∂ξ

−∂Aη
∂t −

∂φ
∂η

)
,

q̇ ∧

(
BξMη−BηMξη

det(J)
BηMξ−BξMξη

det(J)

)
= q̇ ∧ (∇∧A) =

 η̇
(
∂Aη
∂ξ −

∂Aξ
∂η

)
−ξ̇
(
∂Aη
∂ξ −

∂Aξ
∂η

) ,

with (Bξ, Bη) the coordinates of B in the new system.
Therefor, we get,

174

C.2. General coordinates

Mξ ξ̈ +Mξηη̈ =

(
−1

2

∂Mξ

∂ξ

)
ξ̇2 +

(
1

2

∂Mη

∂ξ
−
∂Mξη

∂η

)
η̇2 −

∂Mξ

∂η
ξ̇η̇

− e

m
(E + q̇ ∧ (∇∧A)) |ξ,

Mηη̈ +Mξη ξ̈ =

(
1

2

∂Mξ

∂η
−
∂Mξη

∂ξ

)
ξ̇2 +

(
−1

2

∂Mη

∂η

)
η̇2 − ∂Mη

∂ξ
ξ̇η̇

− e

m
(E + q̇ ∧ (∇∧A)) |η,

where derivatives with respect to ξ and η were given previousily.
This is equivalent to the system:

Mξ ξ̈ +Mξηη̈ −
((
−1

2

∂Mξ

∂ξ

)
ξ̇2 +

(
1

2

∂Mη

∂ξ
−
∂Mξη

∂η

)
η̇2 −

∂Mξ

∂η
ξ̇η̇

)
= − e

m
(E + q̇ ∧B) |ξ

Mηη̈ +Mξη ξ̈ −
((

1

2

∂Mξ

∂η
−
∂Mξη

∂ξ

)
ξ̇2 +

(
−1

2

∂Mη

∂η

)
η̇2 − ∂Mη

∂ξ
ξ̇η̇

)
= − e

m
(E + q̇ ∧B) |η

where q̇ = (vξ, vη) =
(
ξ̇, η̇
)

are the component of the velocity in the new coordinates. In
order to implement these equations, we need to compute explicitly the coefficients. We
get after simplifications:

det(J)
d ξ̇

dt
+ ξ̇2Kξ,η + η̇2Kη,η + 2 η̇ξ̇ Kηξ,η

= − e

mdet(J)
(((E + q̇ ∧B) |ξ)Mη − (E + q̇ ∧B) |η)Mξη)

det(J)
d η̇

dt
− ξ̇2Kξ,ξ − η̇2Kη,ξ − 2η̇ξ̇Kξη,ξ

= − e

mdet(J)
(((E + q̇ ∧B) |η)Mξ − (E + q̇ ∧B) |ξ)Mξη)

with

Kξ,ξ = HξVξ,

Kξ,η = HξVη,

Kη,η = HηVη,

Kη,ξ = HηVξ,

Kξη,ξ = HξηVξ,

Kξη,η = HξηVη,

175

C.3. Numerical implementation

where

Hξ =

(
∂2F1
∂2ξ
∂2F2
∂2ξ

)
,

Hη =

(
∂2F1
∂2η
∂2F2
∂2η

)
,

Hξη =

(
∂2F1
∂ξ∂η
∂2F2
∂ξ∂η

)
,

Vξ =

(
∂F2
∂ξ

−∂F1
∂ξ

)
,

Vη =

(
∂F2
∂η

−∂F1
∂η

)
,

and det(J) = ∂F1
∂ξ

∂F2
∂η −

∂F1
∂η

∂F2
∂ξ corresponds to the determinant of the change of variable

Jacobian.

C.3 Numerical implementation

Equations

For θ̇ = 0, we must solve,

Mξ ξ̈ +Mξηη̈ −
((
−1

2

∂Mξ

∂ξ

)
ξ̇2 +

(
1

2

∂Mη

∂ξ
−
∂Mξη

∂η

)
η̇2 −

∂Mξ

∂η
ξ̇η̇

)
= − e

m
(E + q̇ ∧B) |ξ

Mηη̈ +Mξη ξ̈ −
((

1

2

∂Mξ

∂η
−
∂Mξη

∂ξ

)
ξ̇2 +

(
−1

2

∂Mη

∂η

)
η̇2 − ∂Mη

∂ξ
ξ̇η̇

)
= − e

m
(E + q̇ ∧B) |η

where q̇ = (vξ, vη, vθ) =
(
ξ̇, η̇, θ̇

)
are the components of the velocity in the new coor-

dinates system. In order to implement these equations, we need to linearize them, and
compute explicitly the coefficients. After simplifications, we get,

det(J)
d ξ̇

dt
+ ξ̇2Kξ,η + η̇2Kη,η + 2 η̇ξ̇ Kηξ,η

= − e

mdet(J)
(((E + q̇ ∧B) |ξ)Mη − (E + q̇ ∧B) |η)Mξη)

det(J)
d η̇

dt
− ξ̇2Kξ,ξ − η̇2Kη,ξ − 2η̇ξ̇Kξη,ξ

= − e

mdet(J)
(((E + q̇ ∧B) |η)Mξ − (E + q̇ ∧B) |ξ)Mξη)

176

C.4. Computing densities ρ and J

with

Kξ,ξ = HξVξ,

Kξ,η = HξVη,

Kη,η = HηVη,

Kη,ξ = HηVξ,

Kξη,ξ = HξηVξ,

Kξη,η = HξηVη,

where

Hξ =

(
∂2F1
∂2ξ
∂2F2
∂2ξ

)

Hη =

(
∂2F1
∂2η
∂2F2
∂2η

)

Hξη =

(
∂2F1
∂ξ∂η
∂2F2
∂ξ∂η

)

Vξ =

(
∂F2
∂ξ

−∂F1
∂ξ

)

Vη =

(
∂F2
∂η

−∂F1
∂η

)
,

and det(J) = ∂F1
∂ξ

∂F2
∂η −

∂F1
∂η

∂F2
∂ξ corresponds to the change of variable determinant.

C.4 Computing densities ρ and J

In cartesian coordinates, charge and current densities ρ and J are given by :

ρ(X, t) = −
∫ ∫ ∫

V
f(X,V, t)dV,

J(X, t) = −
∫ ∫ ∫

V
f(X,V, t) VdV.

Using the expression of the density in term of Dirac’s sum, we get:

ρ(X, t) = −
∫ ∫ ∫

V

N∑
k=1

ωkδ(X−Xk(t))δ(V −Vk(t))dV

= −
N∑
k=1

ωkδ(X−Xk(t)),

J(X, t) = −
∫ ∫ ∫

V

N∑
k=1

ωkδ(X−Xk(t))δ(V −Vk(t)) VdV

= −
N∑
k=1

ωkVk(t)δ(X−Xk(t)).

177

C.4. Computing densities ρ and J

In order to implement these expressions, we need to compute them on each cell. This
can be done easily on the Patch domain, rather than the physical one. We need to use a
change of variable.

Change of variables

We follow the same idea as previously. We first go to cylindrical coordinates:

X =

 x
y
z

 =

 r cos θ
r sin θ
z

 =

 G1(z, r, θ)
G2(z, r, θ)
G3(z, r, θ)

 = G(z, r, θ),

and then, go to a general coordinate system:

 z
r
θ

 =

 F1(ξ, η, θ)
F2(ξ, η, θ)
F3(ξ, η, θ)

 = F(ξ, η, θ),

and,

X =

 x
y
z

 =

 (GoF)1(ξ, η, θ)
(GoF)2(ξ, η, θ)
(GoF)3(ξ, η, θ)

 = GoF(ξ, η, θ) = GoF(U).

We denote by Jac the jacobian of this change of coordinates.

Expression of ρ

Let C be a cell in the physical domain, and C̃ be the correspondent cell in the patch
(C = F(C̃)). We have for the charge density,

ρC(t) =

∫
C
ρ(X, t)dX

=

∫
C̃
ρ(GoF(U), t) | Jac | dU

= −
∫
C̃

N∑
k=1

ωkδ(GoF(U)−GoF(Uk(t))) | Jac | dU

= −
∫
C̃

N∑
k=1

ωkδ(U−Uk(t)) | Jac | dU

= −
∑

k|Uk(t)∈C̃

ωk | Jac | .

In order to average, we divide this expression by the area of the cell,

ρC(t) = − 1

∆U

∑
k|Uk(t)∈C̃

ωk | Jac | .

178

C.4. Computing densities ρ and J

Expression of J

For the current density we have,

JC(t) =

∫
C

J(X, t)dX

=

∫
C̃

J(GoF(U), t) | Jac | dU

= −
∫
C̃

N∑
k=1

ωkVk(t)δ(GoF(U)−GoF(Uk(t))) | Jac | dU

= −
∫
C̃

N∑
k=1

ωkVk(t)δ(U−Uk(t)) | Jac | dU

= −
∑

k|Uk(t)∈C̃

ωkVk(t) | Jac | .

In order to average, we divide this expression by the area of the cell,

JC(t) = − 1

∆U

∑
k|Uk(t)∈C̃

ωkVk(t) | Jac |,

where Vk is the velocity of the particle k in the physical domain.

179

C.4. Computing densities ρ and J

180

APPENDIX D

Python Interface

Contents
D.1 Introduction . 182
D.2 pdefield class . 182
D.3 source class . 182
D.4 isogeo class . 182

D.4.1 Setting Grid’s parameters . 184
D.4.2 Poisson’s equation . 185
D.4.3 Anisotropic Diffusion . 190
D.4.4 Maxwell’s 2D problem . 193

D.5 Using GB-splines . 206
D.6 PyIGA’s available operators . 206
D.7 PyIGA’s input data . 208

D.7.1 Importing domain data . 208
D.7.2 Refinement data . 209
D.7.3 Boundary conditions . 210
D.7.4 Silver Muller condition . 211
D.7.5 Details and output file . 211

D.8 Creating domains using the GUI . 211
D.8.1 The XML Format . 211
D.8.2 Using the GUI . 211
D.8.3 Examples . 212

D.9 Creating domains defined by an implicit function 213
D.10 Visualization . 215

D.10.1 Using Silo . 215
D.10.2 Using VTK . 216

D.11 PyIGA and Pastix . 216
D.12 Installing PyIGA . 216

181

D.1. Introduction

D.1 Introduction

In this chapter we introduce the PyIGA library. We will also present some examples of
solving partial differential equations using the IGA approach.

PyIGA is a library written in Fortran and Python. The main idea behind PyIGA, is to
facilitate solving pde’s; the user will only need to write a Python-script and then execute
it. The book [79] is an excellent introduction to Python for Computational Science. The
reader may find in it, everything he will need.

D.2 pdefield class

In PyIGA, each scalar or vectorial function unknown, will be modeled by what we call a
field. The constructor of a field object needs the following parameters:

• as name : the name used for visualization diagnostics,

• ai ndof : the dimension (scalar or vectorial) of the field, default value : scalar func-
tion

• ai bc : the type of the boundary condition, default value : 0.

when calling iso.addfield, this assigns an id to the created field.

F = pdefield ('L')
iso.addfield (F)

D.3 source class

We have implemented a class to handle source terms. For the moment, only L2 projector
operator is implemented. But in the future, we can implement quasi-interpolants (in the
case of GB-splines for example).

A source term must be associated to a given field:

S = source (F)
iso.addsource (S)

D.4 isogeo class

In this section, we will show, step by step, how one can use PyIGAto solve a scalar pde.
To this purpose we consider solving the Poisson’s equation on a given domain Ω ⊂ R2.
This begins by importing the class isogeo, and create the associated object,

from isogeo import *
iso = isogeo ()

now, we can choose the operators (matrices) involved in the pde,

182

D.4. isogeo class

creation of the involved matrices
stiffness_id = iso.addmatrix(F, F, iso.STIFFNESS)

To finish the definition of the operator, we need to give the parameters of the matrix,

def parammatrices(work, values):
#we must fill matrices params for all matrices
#values[0,0:nparam] =
#...
#values[self.nmatrices, 0:nparam] =
########
#first matrix
values[1,0] = 1.0
values[1,1] = 0.0
values[1,2] = 0.0
values[1,3] = 1.0

now, we initialize isogeo,

iso.initiso ()
iso.initnurbsfem ()

in the initialization step, PyIGA performs certain tasks. For example, this constructs the
Gauss-Quadrature grid. All through this document, we will see other tasks that are per-
formed by PyIGA (the construction of a DeRham sequence, using H-div or H-rot formu-
lation). We now have to evaluate input functions on the grid.

#evaluating both sources and matrices params on the GL grid
iso.eval_functions_on_glgrid(af_source = sources, af_matrices = ←↩

parammatrices)

Now, we can assemble the matrices involved in our pde, source terms and also the
exact solutions if they are given,

iso.fem.assembly()

using, iso.csr matrix, we can construct a scipy.sparse matrix using the id of the matrix,

from scipy.sparse import *

Stiffness = iso.csr_matrix (stiffness_id)

to solve the linear system, we must export the source term,

li_dim = F.dim
lpr_source = numpy.zeros(li_dim ,dtype=numpy.double)
lpr_source = iso.getsource (S)

183

D.4. isogeo class

to solve the linear system, we can call spsolve,

from scipy.sparse.linalg import spsolve

lpr_tmp = numpy.zeros(li_dim ,dtype=numpy.double)

lpr_tmp = spsolve (Stiffness, lpr_source)

The user can also call SuperLU,

from scipy.sparse.linalg import splu

#------- factorizing matrices ------
Stiffness_csc = Stiffness.tocsc()
op_Stiffness = splu(Stiffness_csc)

#------- Solving the linear system ------
lpr_tmp = op_Stiffness.solve (lpr_source)

For diagnostics, we need to import the solution into the isogeo module,

iso.setfield (F , lpr_tmp)

#diagnostics
iso.silodiag(exact)
iso.l2errordiag(exact)

The argument function (here exact), can be omitted, if the user does not know it. In this
case, PyIGA will write only the numerical solution. For more details about that, we refer
to the section (D.10):

#diagnostics
iso.silodiag ()

Remark D.4.1 For the moment, PyIGA handles only silo files, for visualization using Visit.

The user can export or import the matrix, in the Matrix Market format, by calling :

#--- exporting matrix
mmwrite('../Runs/Stiffness.mtx', Stiffness)

#--- importing matrix
Stiffness = mmread('../Runs/Stiffness.mtx')

D.4.1 Setting Grid’s parameters

The isogeo class contains some functions that allow the user to call the Python script with
arguments.

184

D.4. isogeo class

• href : the number of knot to insert (h-refinement) , assigned using –href=n1,n2, or
-n n1 n2

• pref : the order used to elevate the NURBS/B-splines curves (p-refinement) , as-
signed using –pref=p1,p2, or -p p1 p2

• ordergl : the number of Quadratures points, -g (–ordergl=val) : this assigns the value
val to ordergl

• dt : -t (–dt=val) : this assigns the value val to dt

• niter : -i (–niter=val) : this assigns the value val to niter

• nfreq : -f (–nfreq=val) : this assigns the value val to nfreq

• load matrices : -M (–loadm) : this tells PyIGA to load matrices, rather than compute
them again

• load vectors : -V (–loadv) : this tells PyIGA to load vectors, rather than computed
them again

• noviz : -z (–noviz) : if you do not want to do visualization diagnostics

• noerror : -e (–noerror) : if you do not want to compute L2-norm errors

D.4.2 Poisson’s equation

On a square domain : pdelaplace square.py

Code Listing D.1: Poisson’s equation on a square domain

!/ usr/bin/env python
from isogeo import *
import numpy
from scipy .sparse import *
from scipy .sparse .linalg import spsolve
import sys
import os
from time import clock , time
from scipy .io import mmread , mmwrite
#from p a s t r i x import *
from get_arg_isogeo import *

###
reading arguments must be done before c a l l i n g s e t d a t a
otherwise sys . argv w i l l be erased
href = get_arg_href (sys .argv [1 :])
pref = get_arg_pref (sys .argv [1 :])
ordergl = get_arg_ordergl (sys .argv [1 :])
###

###
s e t t i n g up domain data
sys .argv=[” s e t d a t a . py” , ” uni t square ” , ”−l ”]

PYIGAPATH = os .getenv (”PYIGAPATH”)
setdatafile=os .path .join (PYIGAPATH , ” s e t d a t a . py”)
execfile (setdatafile)
###

185

D.4. isogeo class

###

L = 1 . 0
mode = 2
lamb = mode * pi / L

###
#
t e s t pour l e c a r r e
#
##
def sources (work , values) :

#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
values [0] = 2 . 0 * ((lamb) * * 2) * sin (lamb*work [0]) * sin (lamb*work [1])

def parammatrices (work , values) :
#we must f i l l matr ices params f o r a l l matr ices
values [0 , 0 : nparam] =
. . .
values [s e l f . nmatrices , 0 : nparam] =
#######
f i r s t matrix
values [0 , 0] = 1 . 0
#second matrix
values [1 , 0] = 1 . 0
values [1 , 1] = 0 . 0
values [1 , 2] = 0 . 0
values [1 , 3] = 1 . 0

def exact (work , values) :
#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
values [0] = sin (lamb*work [0]) * sin (lamb*work [1])

###
iso = isogeo ()

F = pdefield (’L ’)
iso .addfield (F)

S = source (F)
iso .addsource (S)

iso .fem .set_href (href)
iso .fem .set_pref (pref)
iso .fem .set_ordergl (ordergl)

. . . t e s t params
i s o . fem . s e t d e t a i l (3)
iso .fem .set_boundarycondition (10)
iso .fem .set_detail_silo (4)
. . .

c r e a t i o n of the involved matr ices
mass_id = iso .addmatrix (F , F , iso .MASS)
stiffness_id = iso .addmatrix (F , F , iso .STIFFNESS)

iso .initiso ()

iso .initnurbsfem ()

evaluat ing both sources and matr ices params on the GL grid
iso .eval_functions_on_glgrid (af_source = sources , af_matrices = parammatrices)

186

D.4. isogeo class

iso .fem .assembly ()

Stiffness = iso .csr_matrix (stiffness_id)
Mass = iso .csr_matrix (mass_id)

mmwrite (’ . . / Runs/ S t i f f n e s s . mtx ’ , Stiffness)
mmwrite (’ . . / Runs/Mass . mtx ’ , Mass)

#−−− using P a s t i x
S t i f f p a s t = p a s t r i x (pas t ix , fem , s t i f f n e s s i d)
#−−−

li_dim = F .dim

lpr_source = numpy .zeros (li_dim ,dtype=numpy .double)
lpr_tmp = numpy .zeros (li_dim ,dtype=numpy .double)

lpr_source = iso .getsource (S)

#−−− u t i l i s a t i o n de Spsolve
start = clock ()

lpr_tmp = spsolve (Stiffness , lpr_source)

elapsed = (clock () − start)
p r i n t (”SPSOLVE − CPU time f o r so lv ing the l i n e a r system i s : ” + str (elapsed))
#−−−

#−−− u t i l i s a t i o n de P a s t i x
s t a r t = c lock ()

lpr tmp = l p r s o u r c e
S t i f f p a s t P s i . so lve (lpr tmp)

elapsed = (c lock () − s t a r t)
p r i n t (”PASTIX − CPU time f o r so lv ing the l i n e a r system i s : ” + s t r (elapsed))
#−−−

iso .setfield (F , lpr_tmp)

d i a g n o s t i c s
iso .silodiag (exact)
iso .l2errordiag (exact)

lr_normerror = iso .fem .getnormerror (F .id , 1)
p r i n t (” e r r o r : ”+str (lr_normerror))
lr_hmax = iso .fem .get_hmax ()
p r i n t (”hmax : ”+str (lr_hmax))

lpr_output = []
lpr_output .append (lr_hmax)
lpr_output .append (lr_normerror)

lo_file = open (’ output . log ’ , ’w’)
lo_file .write (str (lpr_output))
lo_file .close ()

iso .free ()

On a circular domain : pdelaplace circle.py

We only need to change the corresponding functions, for the source term and the exact
solution,

187

D.4. isogeo class

Code Listing D.2: Poisson’s equation on a circular domain

!/ usr/bin/env python
from isogeo import *
import numpy
from scipy .sparse import *
from scipy .sparse .linalg import spsolve
import sys
import os
from time import clock , time
from scipy .io import mmread , mmwrite
from get_arg_isogeo import *

###
reading arguments must be done before c a l l i n g s e t d a t a
otherwise sys . argv w i l l be erased
href = get_arg_href (sys .argv [1 :])
pref = get_arg_pref (sys .argv [1 :])
ordergl = get_arg_ordergl (sys .argv [1 :])
###

###
s e t t i n g up domain data
sys .argv=[” s e t d a t a . py” , ” c i r c l e 1 . 0 ” , ”−l ”]

PYIGAPATH = os .getenv (”PYIGAPATH”)
setdatafile=os .path .join (PYIGAPATH , ” s e t d a t a . py”)
execfile (setdatafile)
###

###

###
#
t e s t pour l e c e r c l e
#
##
def sources (work , values) :

#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
r2 = work [0] * * 2 + work [1] * * 2
w = 1 . 0 − r2
values [0] = 4 . 0 * r2 * sin (w) + 4 . 0 * cos (w)

def parammatrices (work , values) :
#we must f i l l matr ices params f o r a l l matr ices
values [0 , 0 : nparam] =
. . .
values [s e l f . nmatrices , 0 : nparam] =
#mass matrix
values [0 , 0] = 1 . 0
s t i f f n e s s matrix
values [1 , 0] = 1 . 0
values [1 , 1] = 0 . 0
values [1 , 2] = 0 . 0
values [1 , 3] = 1 . 0

def exact (work , values) :
#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
r2 = work [0] * * 2 + work [1] * * 2
values [0] = sin (1 . 0 − r2)

###
iso = isogeo ()

188

D.4. isogeo class

F = pdefield (’L ’)
iso .addfield (F)

S = source (F)
iso .addsource (S)

iso .fem .set_href (href)
iso .fem .set_pref (pref)
iso .fem .set_ordergl (ordergl)

. . . t e s t params
i s o . fem . s e t d e t a i l (3)
iso .fem .set_boundarycondition (10)
iso .fem .set_detail_silo (4)
i s o . fem . set extdomain (1)
. . .

c r e a t i o n of the involved matr ices
mass_id = iso .addmatrix (F , F , iso .MASS)
stiffness_id = iso .addmatrix (F , F , iso .STIFFNESS)

iso .initiso ()

iso .initnurbsfem ()

evaluat ing both sources and matr ices params on the GL grid
iso .eval_functions_on_glgrid (af_source = sources , af_matrices = parammatrices)

iso .fem .assembly ()

Stiffness = iso .csr_matrix (stiffness_id)
Mass = iso .csr_matrix (mass_id)

mmwrite (’ . . / Runs/ S t i f f n e s s . mtx ’ , Stiffness)
mmwrite (’ . . / Runs/Mass . mtx ’ , Mass)

li_dim = F .dim

lpr_source = numpy .zeros (li_dim ,dtype=numpy .double)
lpr_tmp = numpy .zeros (li_dim ,dtype=numpy .double)

lpr_source = iso .getsource (S)

#−−− u t i l i s a t i o n de Spsolve
start = clock ()

lpr_tmp = spsolve (Stiffness , lpr_source)

elapsed = (clock () − start)
p r i n t (”SPSOLVE − CPU time f o r so lv ing the l i n e a r system i s : ” + str (elapsed))
#−−−

iso .setfield (F , lpr_tmp)

d i a g n o s t i c s
iso .silodiag (exact)
iso .l2errordiag (exact)

lr_normerror = iso .fem .getnormerror (F .id , 1)
p r i n t (” e r r o r : ”+str (lr_normerror))
lr_hmax = iso .fem .get_hmax ()
p r i n t (”hmax : ”+str (lr_hmax))

lpr_output = []
lpr_output .append (lr_hmax)
lpr_output .append (lr_normerror)

189

D.4. isogeo class

lo_file = open (’ output . log ’ , ’w’)
lo_file .write (str (lpr_output))
lo_file .close ()

iso .free ()

D.4.3 Anisotropic Diffusion

Code Listing D.3: Anisotropic Diffusion on a square domain

!/ usr/bin/env python
from isogeo import *
import numpy
import math
from scipy .sparse import *
from scipy .sparse .linalg import spsolve , splu
import sys
import os
from time import clock , time
from scipy .io import mmread , mmwrite
#from p a s t r i x import *
from get_arg_isogeo import *

###
reading arguments must be done before c a l l i n g s e t d a t a
otherwise sys . argv w i l l be erased
href = get_arg_href (sys .argv [1 :])
pref = get_arg_pref (sys .argv [1 :])
ordergl = get_arg_ordergl (sys .argv [1 :])
dt = get_arg_dt (sys .argv [1 :])
niter = get_arg_niter (sys .argv [1 :])
load_matrices = get_arg_load_matrices (sys .argv [1 :])
load_vectors = get_arg_load_vectors (sys .argv [1 :])
noviz = get_arg_noviz (sys .argv [1 :])
###

###
s e t t i n g up domain data
sys .argv=[” s e t d a t a . py” , ” uni t square ” , ”−l ”]

PYIGAPATH = os .getenv (”PYIGAPATH”)
setdatafile=os .path .join (PYIGAPATH , ” s e t d a t a . py”)
execfile (setdatafile)
###

n i t e r = 10000
nfreq = 500

t = 0 . 0
dt = 0 .0001

m1 = 0 . 2 5
m2 = 0 . 5
s1 = 0 .001
s2 = 0 .001

mu_paral = 2 . 0
mu_perp = 0 . 0
D = 0.00775

L1 = 0 .025

def f (x ,m ,s) :
re turn exp(−(x−m) * * 2 / (2 . 0 *s))

190

D.4. isogeo class

def get_tetha (x ,y) :
i f (x==0.0) :

i f (y==0.0) :
re turn 0 . 0

lr_sign = 1 . 0
i f (y < 0 . 0) :

lr_sign = −1.0

lr_val = x / sqrt (x * * 2 + y * * 2)

lr_result = lr_sign * acos (lr_val)

re turn lr_result
###
#
t e s t pour l e c e r c l e
#
##
def sources (work , values) :

#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
values [0] = f (work [0] , m1 ,s1) *f (work [1] , m2 ,s2)

def parammatrices (work , values) :
#we must f i l l matr ices params f o r a l l matr ices
values [0 , 0 : nparam] =
. . .
values [s e l f . nmatrices , 0 : nparam] =
s t i f f n e s s matrix
lr_tetha = get_tetha (work [0] , work [1])

lr_c = sin (lr_tetha)
lr_s = − cos (lr_tetha)

lr_c2 = lr_c * * 2
lr_s2 = lr_s * * 2
lr_sc = lr_s * lr_c

values [0 , 0] = D * mu_paral * lr_c2 + mu_perp * lr_s2
values [0 , 1] = D * (mu_paral − mu_perp) * lr_sc
values [0 , 2] = D * (mu_paral − mu_perp) * lr_sc
values [0 , 3] = D * mu_paral * lr_s2 + mu_perp * lr_c2
#mass matrix
values [1 , 0] = 1 . 0

def exact (work , values) :
#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
values [0] = 0 . 0

###
iso = isogeo ()

F = pdefield (’L ’)
iso .addfield (F)

S = source (F)
iso .addsource (S)

iso .fem .set_href (href)
iso .fem .set_pref (pref)
iso .fem .set_ordergl (ordergl)

. . . t e s t params
i s o . fem . s e t d e t a i l (3)

191

D.4. isogeo class

iso .fem .set_boundarycondition (10)
iso .fem .set_detail_silo (4)
. . .

c r e a t i o n of the involved matr ices
stiffness_id = iso .addmatrix (F , F , iso .STIFFNESS)
mass_id = iso .addmatrix (F , F , iso .MASS)

iso .initiso ()

iso .initnurbsfem ()

evaluat ing both sources and matr ices params on the GL grid
iso .eval_functions_on_glgrid (af_source = sources , af_matrices = parammatrices)

iso .fem .assembly ()

Stiffness = iso .csr_matrix (stiffness_id)
Mass = iso .csr_matrix (mass_id)

mmwrite (’ . . / Runs/ S t i f f n e s s . mtx ’ , Stiffness)
mmwrite (’ . . / Runs/Mass . mtx ’ , Mass)

#A conta ins mass+ S t i f f n e s s
A = csr_matrix (Stiffness)
A = A + Mass

Mass_csc = Mass .tocsc ()
op_Mass = splu (Mass_csc)

li_dim = F .dim

lpr_source = numpy .zeros (li_dim ,dtype=numpy .double)
lpr_tmpU = numpy .zeros (li_dim ,dtype=numpy .double)
lpr_U = numpy .zeros (li_dim ,dtype=numpy .double)
lpr_exact = numpy .zeros (li_dim ,dtype=numpy .double)

#==================================
lpr_source = iso .getsource (S)

lpr_U = spsolve (A , lpr_source)

iso .setfield (S , lpr_U)

d i a g n o s t i c s
iso .silodiag (exact ,ai_numdiag=0)
iso .l2errordiag (exact)
#==================================

nstart = 1
nend = niter + 1

def solve (ai_nstart , ai_nend) :
g loba l t , dt , fem , iso
globa l lpr_tmpU , lpr_dotU , lpr_U

f o r i in range (ai_nstart , ai_nend) :
p r i n t (”=============================== i t e r a t i o n : ”+str (i) +” ←↩

===============================”)
t = t + dt

lpr_tmpU = − A .dot (lpr_U)

lpr_dotU = op_Mass .solve (lpr_tmpU)

lpr_U = lpr_U + dt * lpr_dotU
p r i n t (” lpr U=”+ s t r (lpr U))

192

D.4. isogeo class

i f (mod (i , nfreq) == 0) :
numdiag = i / nfreq
p r i n t (”=== d i a g n o s t i c : ”+str (numdiag) +” ←↩

===”)
p r i n t←↩

(”===”)←↩

p r i n t (” i t e r a t i o n =”+str (i))
numdiag = i / nfreq

iso .setfield (S , lpr_U)

d i a g n o s t i c s
iso .silodiag (ai_numdiag=numdiag)

solve (nstart ,nend)
p r i n t (” to add more i t e r a t i o n s , type the number you want”)
n = input (” press 0 to stop : ”)
while (n > 0) :

nstart = nend + 1
nend += n
solve (nstart ,nend)
p r i n t (” to add more i t e r a t i o n s , type the number you want”)
n = input (” press 0 to stop : ”)

iso .free ()

D.4.4 Maxwell’s 2D problem

In this section we show how we can solve Maxwell’s 2D problem, using a H-div formu-
lation. The key point here, is the use of a discrete DeRham sequence. We begin by the
creation of the electrical and magnetic fields.

#creation of the magnetic field
B = pdefield ('B')
iso.addfield (B)

#creation of the electrical field
E = pdefield ('E', ai_ndof = 2)
iso.addfield (E)

The construction of the discrete DeRham sequence is done simply by calling,

#creation of the hilbert complex
iso.add_hilbertcomplex ([B,E] , iso.HILBERT_COMPLEX_VW)

the default construction is H-div formulation. For H-rot formulation, we shall call,

#creation of the hilbert complex
iso.add_hilbertcomplex ([B,E] , iso.HILBERT_COMPLEX_VW, al_useHrot =←↩

True)

193

D.4. isogeo class

however, in this case we must take appropriate boundary conditions.
The user can also create the whole DeRham sequence:

#creation of the hilbert complex
iso.add_hilbertcomplex ([B,E,Phi] , iso.HILBERT_COMPLEX_VWX)

We need to create also the source terms,

#creation of the sources terms
S_B = source (B)
iso.addsource (S_B)

S_E = source (E)
iso.addsource (S_E)

As it was shown before, we need to choose which operators (matrices) are involved
in the two pdes, and then associated them to the corresponding pde.

creation of the involved matrices
Mass matrix
MassB_id = iso.addmatrix (B, B, iso.MASS)
Mass matrix
MassE_id = iso.addmatrix (E, E, iso.MASS)
Rotational matrix
rotational_id = iso.addmatrix (B, E, iso.ROTATIONAL)
R-matrix
rmatrix_id = iso.addmatrix (E, B, iso.R_MATRIX)

We now can initialize the nurbsfem module, evaluate sources terms, exact solutions
and operators (matrices) parameters:

iso.initiso ()
iso.initnurbsfem ()

#evaluating both sources and matrices params on the GL grid
iso.eval_functions_on_glgrid(af_source = sources, af_matrices = ←↩

parammatrices)

iso.fem.assembly()

using, iso.csr matrix, we can construct a scipy.sparse matrix using the id of the ma-
trix,

MassB = iso.csr_matrix (MassB_id)
MassE = iso.csr_matrix (MassE_id)
Rotational = iso.csr_matrix (rotational_id)
Rmatrix = iso.csr_matrix (rmatrix_id)

194

D.4. isogeo class

We give in the next sections the complete code for solving the Maxwell’s 2D equa-
tions.

On a square domain :

Code Listing D.4: Maxwell’s equations on a square domain

!/ usr/bin/env python
from isogeo import *
import numpy
from scipy .sparse import *
from scipy .sparse .linalg import spsolve , splu
import sys
import os
from time import clock , time
from scipy .io import mmread , mmwrite
from get_arg_isogeo import *

###
reading arguments must be done before c a l l i n g s e t d a t a
otherwise sys . argv w i l l be erased
href = get_arg_href (sys .argv [1 :])
pref = get_arg_pref (sys .argv [1 :])
ordergl = get_arg_ordergl (sys .argv [1 :])
dt = get_arg_dt (sys .argv [1 :])
niter = get_arg_niter (sys .argv [1 :])
load_matrices = get_arg_load_matrices (sys .argv [1 :])
load_vectors = get_arg_load_vectors (sys .argv [1 :])
noviz = get_arg_noviz (sys .argv [1 :])
###

###
s e t t i n g up domain data
sys .argv=[” s e t d a t a . py” , ” uni t square ” , ”−l ”]

PYIGAPATH = os .getenv (”PYIGAPATH”)
setdatafile=os .path .join (PYIGAPATH , ” s e t d a t a . py”)
execfile (setdatafile)
###

###
#
GLOBAL DECLARATIONS
#
###
load_data = load_matrices and load_vectors
export_matrices = True
export_vectors = True
nfreq = niter
timescheme =4

t = 0 . 0

L = 1 . 0
###

###
#
t e s t on a square domain
#
##
mode1 = 1
mode2 = 1

195

D.4. isogeo class

k1 = mode1 * pi / L
k2 = mode2 * pi / L

w = sqrt ((k1) * * 2 + (k2) * * 2)

def sources (work , values) :
#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
there i s no source term
values [0 , 0] = cos (k1*work [0]) \

* cos (k2*work [1]) \
* cos (w * t)

e l e c t r i c a l f i e l d , 1 s t component
values [1 , 0] = (− k2 / w) * cos (k1*work [0]) \

* sin (k2*work [1]) \
* sin (w * (t − 0 . 5 * dt))

e l e c t r i c a l f i e l d , 2nd component
values [1 , 1] = (k1 / w) * sin (k1*work [0]) \

* cos (k2*work [1]) \
* sin (w * (t − 0 . 5 * dt))

def exact (work , values) :
#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
magnetic f i e l d

values [0 , 0] = cos (k1*work [0]) \
* cos (k2*work [1]) \
* cos (w * t)

e l e c t r i c a l f i e l d , 1 s t component
values [1 , 0] = (− k2 / w) * cos (k1*work [0]) \

* sin (k2*work [1]) \
* sin (w * (t − 0 . 5 * dt))

e l e c t r i c a l f i e l d , 2nd component
values [1 , 1] = (k1 / w) * sin (k1*work [0]) \

* cos (k2*work [1]) \
* sin (w * (t − 0 . 5 * dt))

def parammatrices (work , values) :
#we must f i l l matr ices params f o r a l l matr ices
values [0 , 0 : nparam] =
. . .
values [s e l f . nmatrices , 0 : nparam] =
#######
f i r s t matrix
values [0 , 0] = 1 . 0
values [0 , 1] = 1 . 0
values [0 , 2] = 1 . 0
values [0 , 3] = 1 . 0
#second matrix
values [1 , 0] = 1 . 0
values [1 , 1] = 1 . 0
values [1 , 2] = 1 . 0
values [1 , 3] = 1 . 0

###

iso = isogeo ()

c r e a t i o n of the magnetic f i e l d
B = pdefield (’B ’)
iso .addfield (B)

c r e a t i o n of the e l e c t r i c a l f i e l d
E = pdefield (’E ’ , ai_ndof = 2)
iso .addfield (E)

196

D.4. isogeo class

c r e a t i o n of the h i l b e r t complex
iso .add_hilbertcomplex ([B ,E] , iso .HILBERT_COMPLEX_VW)

c r e a t i o n of the sources terms
S_B = source (B)
iso .addsource (S_B)

S_E = source (E)
iso .addsource (S_E)

iso .fem .set_href (href)
iso .fem .set_pref (pref)
iso .fem .set_ordergl (ordergl)

. . . t e s t params
iso .fem .set_stdoutput (1)
iso .fem .set_detail (1)
iso .fem .set_boundarycondition (0)
iso .fem .set_detail_silo (4)
iso .useUnitPatch = True
. . .

c r e a t i o n of the involved matr ices
Mass matrix
MassB_id = iso .addmatrix (B , B , iso .MASS)
Mass matrix
MassE_id = iso .addmatrix (E , E , iso .MASS)
R o t a t i o n a l matrix
rotational_id = iso .addmatrix (B , E , iso .ROTATIONAL)
R−matrix
rmatrix_id = iso .addmatrix (E , B , iso .R_MATRIX)

iso .initiso ()
iso .initnurbsfem ()

evaluat ing both sources and matr ices params on the GL grid
iso .eval_functions_on_glgrid (af_source = sources , af_matrices = parammatrices)

li_dimB = B .dim
li_dimE = E .dim

lpr_sourceE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_E = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_dotE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmpE = numpy .zeros (li_dimE ,dtype=numpy .double)

lpr_sourceB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_dotB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmpB = numpy .zeros (li_dimB ,dtype=numpy .double)

lpi_matrices = (MassB_id ,MassE_id ,rotational_id ,rmatrix_id)
lpi_sources = (S_B .id ,S_E .id)

i f (load_matrices) :
MassB = mmread (’ . . / Runs/MassB . mtx ’)
MassE = mmread (’ . . / Runs/MassE . mtx ’)
Rotational = mmread (’ . . / Runs/ R o t a t i o n a l . mtx ’)
Rmatrix = mmread (’ . . / Runs/Rmatrix . mtx ’)

lpi_matrices = ()

i f (load_vectors) :
lpr_sourceB = genfromtxt (” . . / Runs/sourceB . t x t ”)

197

D.4. isogeo class

lpr_sourceE = genfromtxt (” . . / Runs/sourceE . t x t ”)

lpi_sources = ()

i f (not load_data) :

iso .fem .matrixtoassembly (lpi_matrices)
iso .fem .sourcetoassembly (lpi_sources)

iso .fem .assembly ()

i f (not load_matrices) :
MassB = iso .csr_matrix (MassB_id)
MassE = iso .csr_matrix (MassE_id)
Rotational = iso .csr_matrix (rotational_id)
Rmatrix = iso .csr_matrix (rmatrix_id)

i f (not load_vectors) :
#computing the p r o j e c t i o n of the f i e l d s over the d i s c r e t e spaces
lpr_sourceB = iso .getsource (S_B)
lpr_sourceE = iso .getsource (S_E)

i f (export_matrices) :
#−−−−−−− export ing matr ices −−−−−−−−
mmwrite (’ . . / Runs/MassB . mtx ’ , MassB)
mmwrite (’ . . / Runs/MassE . mtx ’ , MassE)
mmwrite (’ . . / Runs/ R o t a t i o n a l . mtx ’ , Rotational)
mmwrite (’ . . / Runs/Rmatrix . mtx ’ , Rmatrix)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (export_vectors) :
#−−−−−−− export ing v e c t o r s −−−−−−−−−
savetxt (” . . / Runs/sourceB . t x t ” , lpr_sourceB)
savetxt (” . . / Runs/sourceE . t x t ” , lpr_sourceE)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−− f a c t o r i z i n g matr ices −−−−−−
MassE_csc = MassE .tocsc ()
op_MassE = splu (MassE_csc)

MassB_csc = MassB .tocsc ()
op_MassB = splu (MassB_csc)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpr_B = op_MassB .solve (lpr_sourceB)
lpr_E = op_MassE .solve (lpr_sourceE)

iso .setfield (B , lpr_B)
iso .setfield (E , lpr_E)

d i a g n o s t i c s
i f (not noviz) :

iso .silodiag (exact)

iso .l2errordiag (exact)

lr_hmax = iso .fem .get_hmax ()
lr_normerrorB = iso .fem .getnormerror (B .id , 1)
lr_normerrorEx = iso .fem .getnormerror (E .id , 1)
lr_normerrorEy = iso .fem .getnormerror (E .id , 2)

lpr_output = []
lpr_output .append ([lr_hmax ,lr_normerrorB ,lr_normerrorEx ,lr_normerrorEy])
ls_file = ” e r r o r p r o j . t x t ”
savetxt (ls_file , lpr_output)

f o r i in range (1 ,niter+1) :

198

D.4. isogeo class

t = t + dt

i f (timescheme == 2) :

lpr_dotE = Rmatrix .dot (lpr_B)

lpr_E = lpr_E + dt * lpr_dotE

lpr_tmpB = Rotational .dot (lpr_E)

lpr_dotB = op_MassB .solve (lpr_tmpB)

lpr_B = lpr_B + dt * lpr_dotB

i f (timescheme == 4) :

#−−
Magnetic f i e l d evaluat ion
#−−

lpr_dotE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp1_E = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp2_E = numpy .zeros (li_dimE ,dtype=numpy .double)

lpr_dotB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp1_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp2_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp3_B = numpy .zeros (li_dimB ,dtype=numpy .double)

lpr_tmp1_E = Rmatrix .dot (lpr_B)

lpr_tmp1_B = Rotational .dot (lpr_tmp1_E)

lpr_tmp2_B = op_MassB .solve (lpr_tmp1_B)

lpr_tmp2_E = Rmatrix .dot (lpr_tmp2_B)

lpr_dot_E = lpr_tmp1_E + (1 . 0 / 2 4 . 0) * (dt * * 2) * lpr_tmp2_E

lpr_E = lpr_E + dt * lpr_dot_E

#−−
Magnetic f i e l d evaluat ion
#−−

lpr_dotE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp1_E = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp2_E = numpy .zeros (li_dimE ,dtype=numpy .double)

lpr_dotB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp1_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp2_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp3_B = numpy .zeros (li_dimB ,dtype=numpy .double)

lpr_tmp1_B = Rotational .dot (lpr_E)

lpr_tmp2_B = op_MassB .solve (lpr_tmp1_B)

lpr_tmp1_E = Rmatrix .dot (lpr_tmp2_B)

lpr_tmp3_B = Rotational .dot (lpr_tmp1_E)

lpr_tmp1_B = op_MassB .solve (lpr_tmp3_B)

lpr_dot_B = lpr_tmp2_B + (1 . 0 / 2 4 . 0) * (dt * * 2) * lpr_tmp1_B

lpr_B = lpr_B + dt * lpr_dot_B

i f (mod (i , nfreq) == 0) :
p r i n t (” i t e r a t i o n =”+str (i))
numdiag = i / nfreq

199

D.4. isogeo class

iso .setfield (B , lpr_B)
iso .setfield (E , lpr_E)

d i a g n o s t i c s
i f (not noviz) :

iso .silodiag (exact , numdiag)

iso .l2errordiag (exact)

lr_normerrorB = iso .fem .getnormerror (B .id , 1)
lr_normerrorEx = iso .fem .getnormerror (E .id , 1)
lr_normerrorEy = iso .fem .getnormerror (E .id , 2)

lpr_output = []
lpr_output .append ([lr_hmax ,lr_normerrorB ,lr_normerrorEx ,lr_normerrorEy])
ls_file = ” e r r o r ”+” ”+str (numdiag) +” . t x t ”
savetxt (ls_file , lpr_output)

iso .free ()

On a ring domain :

We need to use the special module of scipy for Bessel functions. We need also to change
the corresponding functions, for the source term and the exact solution,

Code Listing D.5: Maxwell’s equations on a ring domain

!/ usr/bin/env python
from isogeo import *
import numpy
from scipy .sparse import *
from scipy .sparse .linalg import spsolve , splu
from scipy import special as sp
from math import *
import sys
import os
from time import clock , time
from scipy .io import mmread , mmwrite
from get_arg_isogeo import *

###
reading arguments must be done before c a l l i n g s e t d a t a
otherwise sys . argv w i l l be erased
href = get_arg_href (sys .argv [1 :])
pref = get_arg_pref (sys .argv [1 :])
ordergl = get_arg_ordergl (sys .argv [1 :])
dt = get_arg_dt (sys .argv [1 :])
niter = get_arg_niter (sys .argv [1 :])
load_matrices = get_arg_load_matrices (sys .argv [1 :])
load_vectors = get_arg_load_vectors (sys .argv [1 :])
noviz = get_arg_noviz (sys .argv [1 :])
###

###
s e t t i n g up domain data
sys .argv=[” s e t d a t a . py” , ” maxwell ring ” , ”−l ”]

PYIGAPATH = os .getenv (”PYIGAPATH”)
setdatafile=os .path .join (PYIGAPATH , ” s e t d a t a . py”)
execfile (setdatafile)
###

###

200

D.4. isogeo class

#
GLOBAL DECLARATIONS
#
###
load_data = load_matrices and load_vectors
export_matrices = True
export_vectors = True
nfreq = niter
timescheme =4

t = 0 . 0

r1 = 0.65138750344695903414
r2 = 0.99000418530735846839

rmin = 0.65138750344695903414
rmax = 0.99000418530735846839

a = 1 . 0
w = 3 . 0 * pi

###

###
#
t e s t pour l a couronne
#
##
def get_tetha (x ,y) :

i f (x==0.0) :
i f (y==0.0) :

re turn 0 . 0

lr_sign = 1 . 0
i f (y < 0 . 0) :

lr_sign = −1.0

lr_val = x / sqrt (x * * 2 + y * * 2)

lr_result = lr_sign * acos (lr_val)

re turn lr_result

def sources (work , values) :
#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
there i s no source term

lr_radius = sqrt (work [0] * * 2 + work [1] * * 2)
lr_tetha = get_tetha (work [0] , work [1])

lr_J0 = sp .j0 (w * lr_radius)
lr_J1 = sp .j1 (w * lr_radius)
lr_Y0 = sp .y0 (w * lr_radius)
lr_Y1 = sp .y1 (w * lr_radius)

lr_J2 = 2 . 0 / (w * lr_radius) * lr_J1 − lr_J0
lr_Y2 = 2 . 0 / (w * lr_radius) * lr_Y1 − lr_Y0

values [0 , 0] = − cos (w * t + lr_tetha) \
* (lr_J1 + a * lr_Y1)

e l e c t r i c a l f i e l d , 1 s t component
values [1 , 0] = − 0 . 5 * sin (w * (t − 0 . 5 * dt) + lr_tetha) * sin (lr_tetha)←↩

\
* (lr_J0 − lr_J2 + a * (lr_Y0 − lr_Y2)) \
− cos (lr_tetha) / (w * lr_radius) \
* cos (w * (t − 0 . 5 * dt) + lr_tetha) \

201

D.4. isogeo class

* (lr_J1 + a * lr_Y1)

e l e c t r i c a l f i e l d , 2nd component
values [1 , 1] = 0 . 5 * sin (w * (t − 0 . 5 * dt) + lr_tetha) * cos (lr_tetha) \

* (lr_J0 − lr_J2 + a * (lr_Y0 − lr_Y2)) \
− sin (lr_tetha) / (w * lr_radius) \
* cos (w * (t − 0 . 5 * dt) + lr_tetha) \
* (lr_J1 + a * lr_Y1)

def exact (work , values) :
#we must f i l l source term f o r a l l pdes
values [0] =
. . .
values [s e l f . npdes] =
magnetic f i e l d

lr_radius = sqrt (work [0] * * 2 + work [1] * * 2)
lr_tetha = get_tetha (work [0] , work [1])

lr_J0 = sp .j0 (w * lr_radius)
lr_J1 = sp .j1 (w * lr_radius)
lr_Y0 = sp .y0 (w * lr_radius)
lr_Y1 = sp .y1 (w * lr_radius)

lr_J2 = 2 . 0 / (w * lr_radius) * lr_J1 − lr_J0
lr_Y2 = 2 . 0 / (w * lr_radius) * lr_Y1 − lr_Y0

values [0 , 0] = − cos (w * t + lr_tetha) \
* (lr_J1 + a * lr_Y1)

e l e c t r i c a l f i e l d , 1 s t component
values [1 , 0] = − 0 . 5 * sin (w * (t − 0 . 5 * dt) + lr_tetha) * sin (lr_tetha)←↩

\
* (lr_J0 − lr_J2 + a * (lr_Y0 − lr_Y2)) \
− cos (lr_tetha) / (w * lr_radius) \
* cos (w * (t − 0 . 5 * dt) + lr_tetha) \
* (lr_J1 + a * lr_Y1)

e l e c t r i c a l f i e l d , 2nd component
values [1 , 1] = 0 . 5 * sin (w * (t − 0 . 5 * dt) + lr_tetha) * cos (lr_tetha) \

* (lr_J0 − lr_J2 + a * (lr_Y0 − lr_Y2)) \
− sin (lr_tetha) / (w * lr_radius) \
* cos (w * (t − 0 . 5 * dt) + lr_tetha) \
* (lr_J1 + a * lr_Y1)

def parammatrices (work , values) :
#we must f i l l matr ices params f o r a l l matr ices
values [0 , 0 : nparam] =
. . .
values [s e l f . nmatrices , 0 : nparam] =
#######
f i r s t matrix
values [0 , 0] = 1 . 0
values [0 , 1] = 1 . 0
values [0 , 2] = 1 . 0
values [0 , 3] = 1 . 0
#second matrix
values [1 , 0] = 1 . 0
values [1 , 1] = 1 . 0
values [1 , 2] = 1 . 0
values [1 , 3] = 1 . 0

###

iso = isogeo ()

c r e a t i o n of the magnetic f i e l d
B = pdefield (’B ’)
iso .addfield (B)

c r e a t i o n of the e l e c t r i c a l f i e l d

202

D.4. isogeo class

E = pdefield (’E ’ , ai_ndof = 2)
iso .addfield (E)

c r e a t i o n of the h i l b e r t complex
iso .add_hilbertcomplex ([B ,E] , iso .HILBERT_COMPLEX_VW)

c r e a t i o n of the sources terms
S_B = source (B)
iso .addsource (S_B)

S_E = source (E)
iso .addsource (S_E)

iso .fem .set_href (href)
iso .fem .set_pref (pref)
iso .fem .set_ordergl (ordergl)

. . . t e s t params
iso .fem .set_detail (1)
iso .fem .set_boundarycondition (1)
iso .fem .set_detail_silo (4)
. . .

c r e a t i o n of the involved matr ices
Mass matrix
MassB_id = iso .addmatrix (B , B , iso .MASS)
Mass matrix
MassE_id = iso .addmatrix (E , E , iso .MASS)
R o t a t i o n a l matrix
rotational_id = iso .addmatrix (B , E , iso .ROTATIONAL)
R−matrix
rmatrix_id = iso .addmatrix (E , B , iso .R_MATRIX)

iso .initiso ()
iso .initnurbsfem ()

evaluat ing both sources and matr ices params on the GL grid
iso .eval_functions_on_glgrid (af_source = sources , af_matrices = parammatrices)

li_dimB = B .dim
li_dimE = E .dim

lpr_sourceE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_E = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_dotE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmpE = numpy .zeros (li_dimE ,dtype=numpy .double)

lpr_sourceB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_dotB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmpB = numpy .zeros (li_dimB ,dtype=numpy .double)

lpi_matrices = (MassB_id ,MassE_id ,rotational_id ,rmatrix_id)
lpi_sources = (S_B .id ,S_E .id)

i f (load_matrices) :
MassB = mmread (’ . . / Runs/MassB . mtx ’)
MassE = mmread (’ . . / Runs/MassE . mtx ’)
Rotational = mmread (’ . . / Runs/ R o t a t i o n a l . mtx ’)
Rmatrix = mmread (’ . . / Runs/Rmatrix . mtx ’)

lpi_matrices = ()

i f (load_vectors) :
lpr_sourceB = genfromtxt (” . . / Runs/sourceB . t x t ”)

203

D.4. isogeo class

lpr_sourceE = genfromtxt (” . . / Runs/sourceE . t x t ”)

lpi_sources = ()

i f (not load_data) :

iso .fem .matrixtoassembly (lpi_matrices)
iso .fem .sourcetoassembly (lpi_sources)

iso .fem .assembly ()

i f (not load_matrices) :
MassB = iso .csr_matrix (MassB_id)
MassE = iso .csr_matrix (MassE_id)
Rotational = iso .csr_matrix (rotational_id)
Rmatrix = iso .csr_matrix (rmatrix_id)

i f (not load_vectors) :
#computing the p r o j e c t i o n of the f i e l d s over the d i s c r e t e spaces
lpr_sourceB = iso .getsource (S_B)
lpr_sourceE = iso .getsource (S_E)

i f (export_matrices) :
#−−−−−−− export ing matr ices −−−−−−−−
mmwrite (’ . . / Runs/MassB . mtx ’ , MassB)
mmwrite (’ . . / Runs/MassE . mtx ’ , MassE)
mmwrite (’ . . / Runs/ R o t a t i o n a l . mtx ’ , Rotational)
mmwrite (’ . . / Runs/Rmatrix . mtx ’ , Rmatrix)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (export_vectors) :
#−−−−−−− export ing v e c t o r s −−−−−−−−−
savetxt (” . . / Runs/sourceB . t x t ” , lpr_sourceB)
savetxt (” . . / Runs/sourceE . t x t ” , lpr_sourceE)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−− f a c t o r i z i n g matr ices −−−−−−
MassE_csc = MassE .tocsc ()
op_MassE = splu (MassE_csc)

MassB_csc = MassB .tocsc ()
op_MassB = splu (MassB_csc)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpr_B = op_MassB .solve (lpr_sourceB)
lpr_E = op_MassE .solve (lpr_sourceE)

iso .setfield (B , lpr_B)
iso .setfield (E , lpr_E)

d i a g n o s t i c s
i f (not noviz) :

iso .silodiag (exact)

iso .l2errordiag (exact)

lr_hmax = iso .fem .get_hmax ()
lr_normerrorB = iso .fem .getnormerror (B .id , 1)
lr_normerrorEx = iso .fem .getnormerror (E .id , 1)
lr_normerrorEy = iso .fem .getnormerror (E .id , 2)

lpr_output = []
lpr_output .append ([lr_hmax ,lr_normerrorB ,lr_normerrorEx ,lr_normerrorEy])
ls_file = ” e r r o r p r o j . t x t ”
savetxt (ls_file , lpr_output)

f o r i in range (1 ,niter+1) :

204

D.4. isogeo class

t = t + dt

i f (timescheme == 2) :

lpr_dotE = Rmatrix .dot (lpr_B)

lpr_E = lpr_E + dt * lpr_dotE

lpr_tmpB = Rotational .dot (lpr_E)

lpr_dotB = op_MassB .solve (lpr_tmpB)

lpr_B = lpr_B + dt * lpr_dotB

i f (timescheme == 4) :

#−−
Magnetic f i e l d evaluat ion
#−−

lpr_dotE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp1_E = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp2_E = numpy .zeros (li_dimE ,dtype=numpy .double)

lpr_dotB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp1_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp2_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp3_B = numpy .zeros (li_dimB ,dtype=numpy .double)

lpr_tmp1_E = Rmatrix .dot (lpr_B)

lpr_tmp1_B = Rotational .dot (lpr_tmp1_E)

lpr_tmp2_B = op_MassB .solve (lpr_tmp1_B)

lpr_tmp2_E = Rmatrix .dot (lpr_tmp2_B)

lpr_dot_E = lpr_tmp1_E + (1 . 0 / 2 4 . 0) * (dt * * 2) * lpr_tmp2_E

lpr_E = lpr_E + dt * lpr_dot_E

#−−
Magnetic f i e l d evaluat ion
#−−

lpr_dotE = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp1_E = numpy .zeros (li_dimE ,dtype=numpy .double)
lpr_tmp2_E = numpy .zeros (li_dimE ,dtype=numpy .double)

lpr_dotB = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp1_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp2_B = numpy .zeros (li_dimB ,dtype=numpy .double)
lpr_tmp3_B = numpy .zeros (li_dimB ,dtype=numpy .double)

lpr_tmp1_B = Rotational .dot (lpr_E)

lpr_tmp2_B = op_MassB .solve (lpr_tmp1_B)

lpr_tmp1_E = Rmatrix .dot (lpr_tmp2_B)

lpr_tmp3_B = Rotational .dot (lpr_tmp1_E)

lpr_tmp1_B = op_MassB .solve (lpr_tmp3_B)

lpr_dot_B = lpr_tmp2_B + (1 . 0 / 2 4 . 0) * (dt * * 2) * lpr_tmp1_B

lpr_B = lpr_B + dt * lpr_dot_B

i f (mod (i , nfreq) == 0) :
p r i n t (” i t e r a t i o n =”+str (i))
numdiag = i / nfreq

205

D.5. Using GB-splines

iso .setfield (B , lpr_B)
iso .setfield (E , lpr_E)

d i a g n o s t i c s
i f (not noviz) :

iso .silodiag (exact , numdiag)

iso .l2errordiag (exact)

lr_normerrorB = iso .fem .getnormerror (B .id , 1)
lr_normerrorEx = iso .fem .getnormerror (E .id , 1)
lr_normerrorEy = iso .fem .getnormerror (E .id , 2)

lpr_output = []
lpr_output .append ([lr_hmax ,lr_normerrorB ,lr_normerrorEx ,lr_normerrorEy])
ls_file = ” e r r o r ”+” ”+str (numdiag) +” . t x t ”
savetxt (ls_file , lpr_output)

iso .free ()

D.5 Using GB-splines

TODO
For the moment only few types of GB-splines are implemented. PyIGA handles exp-GB
of degree 4, 5 and variable degree GB-splines vd-GB of degree 3.

In the following, we give an example, from pdelaplace squareGB.py, of how we can
use GB-splines:

iso.fem.set_gbsplines_type(F.id, 2)
lpr_alpha = (5.0,5.0)
iso.fem.set_gbsplines_alpha (lpr_alpha, F.id, 1)

D.6 PyIGA’s available operators

In the sequel we give in detail, the available operators implemented in PyIGA.

Mass matrix

The user can create this operator using the isogeo’s property iso.MASS.
The elements of this matrix are,∫

Ω
c(x, y)ϕb(x, y)ϕb′(x, y)dΩ (D.6.1)

In this case, the user must give the parameter function c, as in :

def parammatrices(work, values):
values[0,0] = 1.0

206

D.6. PyIGA’s available operators

Stiffness matrix

The user can create this operator using the isogeo’s property iso.STIFFNESS.
The elements of this matrix are,∫

Ω

(
a11(x, y) a12(x, y)
a21(x, y) a22(x, y)

)
∇ϕb(x, y) · ∇ϕb′(x, y)dΩ (D.6.2)

In this case, the user must give the parameter function matrix A, as in :

def parammatrices(work, values):
values[1,0] = 1.0
values[1,1] = 0.0
values[1,2] = 0.0
values[1,3] = 1.0

the given order must be a11, a12, a21, a22.

Advection matrix

The user can create this operator using the isogeo’s property iso.ADVECTION.∫
Ω

v · ∇ωb (D.6.3)

where v is either a given vector, or a numerical field obtained after discretization.

Rotational matrix

The user can create this operator using the isogeo’s property iso.ROTATIONAL.
The elements of this matrix are, ∫

Ω
ϕbrot Ψb′dΩ (D.6.4)

Directional derivative matrix

The user can create this operator using the isogeo’s property iso.R MATRIX.

Derivative with respect to the x axis matrix

The user can create this operator using the isogeo’s property iso.DX MATRIX.
The elements of this matrix are,∫

Ω
c(x, y)∂xϕb(x, y)ϕb′(x, y)dΩ (D.6.5)

Derivative with respect to the y axis matrix

The user can create this operator using the isogeo’s property iso.DY MATRIX.
The elements of this matrix are,∫

Ω
c(x, y)∂yϕb(x, y)ϕb′(x, y)dΩ (D.6.6)

207

D.7. PyIGA’s input data

Poisson’s Bracket operator

The user can create this operator using the isogeo’s property iso.POISSON BRACKET.
The elements of this matrix are,∫

Ω
c(x, y)[ϕb, ϕb′]ϕb′′dΩ (D.6.7)

Weak Rotational matrix

The user can create this operator using the isogeo’s property iso.ROTATIONAL WEAK.
The elements of this matrix are, ∫

Ω
rotϕb ·Ψb′dΩ (D.6.8)

Mass matrix, in axisymmetric coordinates

The user can create this operator using the isogeo’s property iso.MASS AXI.
The elements of this matrix are,∫

Ω
c(r, z)ϕb(r, z)ϕb′(r, z)rdΩ (D.6.9)

Rotational matrix, in axisymmetric coordinates

The user can create this operator using the isogeo’s property iso.ROTATIONAL AXI.

Weak Rotational matrix, in axisymmetric coordinates

The user can create this operator using the isogeo’s property
iso.ROTATIONAL WEAK AXI.

Derivative with respect to the x axis matrix, in axisymmetric coordinates

The user can create this operator using the isogeo’s property iso.DX AXI MATRIX.

Derivative with respect to the y axis matrix, in axisymmetric coordinates

The user can create this operator using the isogeo’s property iso.DY AXI MATRIX.

D.7 PyIGA’s input data

D.7.1 Importing domain data

Before executing your test, you must specify the domain you are dealing with. Several
examples are given, to create a domain using NURBS. To import your domain just add
those few lines in the beginning of your script :

208

D.7. PyIGA’s input data

import sys

sys.argv=["set_data.py","Square"]
execfile("/usr/local/pyiga/set_data.py")

this will tell PyIGAto read data directly using the environment variable PYIGADATAP-
ATH. We highly recommend the user to use the option ”-l”, which allows to read data
from ../data,

import sys

sys.argv=["set_data.py","Square","-l"]
execfile("/usr/local/pyiga/set_data.py")

The user can also import data directly from Archive Domains, this needs to read the
environment variable PYIGAPATH.

import sys

sys.argv=["set_data.py","Square","-l"]

PYIGAPATH = os.getenv("PYIGAPATH")
setdatafile=os.path.join(PYIGAPATH,"set_data.py")
execfile(setdatafile)

Several domains are given as examples in the archive directory.

D.7.2 Refinement data

Before running your PyIGA script, you have to specify some parameters for refinement.
This can be done using some specific functions setters :

iso.fem.set_href (href) # h-refinement
iso.fem.set_pref (pref) # p-refinement
iso.fem.set_mref (mref) # multiplicity
iso.fem.set_ordergl (ordergl) # number of Quadrature Points
iso.fem.set_htype (li_type) # choose the type of inserted knots

h-refinement

PyIGA will insert Ni knots in whole the knot vector, for each vector Ti.

p-refinement

PyIGA will elevate the degree, with the value pi, for each dimension

209

D.7. PyIGA’s input data

multiplicity

Coupling with a h-refinement process, PyIGA will insert Ni knots in whole the knot vec-
tor, for each vector Ti with a multiplicity mi (the same multiplicity for all inserted knots)

type-h-refinement

The user can specify the type of inserted knots. Default treatment, is an equally-spaced
knots. (see D.1)

type h insert corresponding treatment
Default equally-spaced knots

1 using Gauss-Legendre quadratures points
2 using Gauss-Lobatto quadratures points
3 using a decentered version of Gauss-Legendre quadratures points
4 using Gauss-Legendre quadratures points, by inversion the order
5 using Hammersley sequence

Figure D.1: h-refinement types

D.7.3 Boundary conditions

In (D.2), we give the different values for this parameter. Not all cases are covered for the
moment.

Boundary Condition corresponding treatment on ξ corresponding treatment on η
0 free free
1 periodic free
-1 periodic maximum regularity free
2 free periodic
-2 free periodic maximum regularity
3 periodic periodic
10 dirichlet dirichlet
11 dirichlet free
12 free dirichlet
21 dirichlet C0 periodicity
22 C0 periodicity dirichlet

111 free North = free, South = dirichlet

Figure D.2: Boundary condition values

210

D.8. Creating domains using the GUI

D.7.4 Silver Muller condition

D.7.5 Details and output file

D.8 Creating domains using the GUI

D.8.1 The XML Format

We have adopted the following norm for domain descriptions.

Code Listing D.6: XML description for the circle

<xml>
<patch>
<param domain>
<n>3 ,3</n>
<p>2 ,2</p>
</param domain>
<knots>
0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0
</knots>
<knots>
0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0
</knots>
<points>
−0.35355339059327379 , −0.35355339059327379 , 1 . 0 ;
−0.70710678118654746 , 0 . 0 , 0 .70710678118654752440 ;
−0.35355339059327379 , 0 .35355339059327379 , 1 . 0 ;
0 . 0 , −0.70710678118654746 , 0 .70710678118654752440 ;
0 . 0 , 0 . 0 , 1 . 0 ;
0 . 0 , 0 .70710678118654746 , 0 .70710678118654752440 ;
0 .35355339059327379 , −0.35355339059327379 , 1 . 0 ;
0 .70710678118654746 , 0 . 0 , 0 .70710678118654752440 ;
0 .35355339059327379 , 0 .35355339059327379 , 1 . 0
</points>
</patch>
</xml>

Remark D.8.1 As one can see for the control points, the last column contains the associated
weights.

Remark D.8.2 This description allows us to use multiple-patches.

D.8.2 Using the GUI

By executing the following command in your shell (see figure D.3), you may access to
the PyIGA-GUI.

Figure D.3: How to run the GUI

211

D.8. Creating domains using the GUI

D.8.3 Examples

Example 1

In this example we show how to construct a domain from an initial square. For this, we
can clic on the open button, a new window appears, that allows the user to browse the
Archive domains directory in pyiga’s home (figure D.4):

Figure D.4: Initializing the patch, by choosing a initial configuration

In the figure D.5, we show the different steps of such construction:

1. we choose a square as an initial configuration,

2. we clic on update button to draw the lines,

3. we move one control point,

4. we elevate the degree of the curve by 1; the corresponding curve is quadratic,

5. we move those new control points, corresponding to the middle of the exterior
edges,

6. we use an h-refinement, by inserting 8 knots in each direction.

After each step, the user must click on the update button.

Example 2

To create a circle, the user can choose it in (figure D.4). This example shows the meshing
of a circle (figure D.6).

Example 3

In this example, we show how one can construct a compact convex domain (figure D.7).
In figure D.8, we give examples of domains where boundaries are defined implicitly. In
this case, we only approach the boundary (we must use the isoparametric version of
IGA).

212

D.9. Creating domains defined by an implicit function

Figure D.5: Creating and Meshing a domain

Figure D.6: The circle after h-refinement

D.9 Creating domains defined by an implicit function

In this section, we show how to construct a domain defined by an implicit function, and
generate an adequate meshing. This is done thanks to the routines genermesh mhdeq.

213

D.9. Creating domains defined by an implicit function

Figure D.7: Parametrization of the circle; starting from a square, we move some of the control points

Here is an example of such treatment (taken from pdesoloviev.py).

#using genermesh_mhdeq_v2
#param using genermesh_mhdeq_v2
from genermesh_mhdeq_v2 import *
n = 32
levelmax = 0.975
typelevel = 0
genermesh_mhdeq (n,testcase.psi,testcase.dxpsi,testcase.dypsi,←↩

testcase.phi,testcase.dphi,levelmax,typelevel)

The user can also another version of genermesh mhdeq, but it is less efficient than
the previous one.

#using genermesh_mhdeq_v1
#param using genermesh_mhdeq_v1
from genermesh_mhdeq_v1 import *
n = 32
prof = 4
r = 0.7
genermesh_mhdeq (n , prof , r , testcase.psi , testcase.dxpsi , ←↩

testcase.dypsi)

214

D.10. Visualization

Figure D.8: Soloviev domains: (first line) for test1 using splines of degree 1 and (left) 8 × 8 meshes, (right)
16 × 16 meshes, (second line) (left) test4, (right) test6 using splines of degree 1 and (left) 8 × 8
meshes

D.10 Visualization

D.10.1 Using Silo

Visualizations can be done using VisIt. The user can specify the desired detail for this
diagnostic.

For visualization, there are only two parameters to control diagnostics
gi npoint SILO and gi detail SILO. For a better image quality, the user may in-
crease the value of gi npoint SILO; this is the number of intervals in each mesh [ti, ti+1]
for vector knots. When the h-refinement parameter h is small, we can take it equal to 1.

To control those parameters, the user must call,

iso.fem.set_npoint_silo (1) # the resolution of diagnostics
iso.fem.set_detail_silo (4) # the detail level of diagnostics

Depending on the value of gi detail SILO, PyIGA may give certain details (please
see D.9).

The user may also want a diagnostic in the patch, this can be done by adding 10 to the
desired value of gi detail SILO . Diagnostics will be given in the physical domain and

215

D.11. PyIGA and Pastix

gi detail SILO corresponding treatment
1 numerical solution of the pde, namely uh
2 uh and the jacobian
3 uh, the jacobian and control points
4 uh, the jacobian, control points, the field u and u− uh

Figure D.9: Visualization details

the patch.

D.10.2 Using VTK

TODO

D.11 PyIGA and Pastix

To use Pastix, we need to load the following module,

module load openmpi-x86_64

we have created a pastrix class, that allows us to communicate directly with isogeo.

from pastrix import *

#--- Constructing the Pastrix object
Stiff_past = pastrix (pastix, iso.fem, stiffness_id)

#--- Solving the linear system
lpr_tmp = lpr_source
Stiff_past.solve (lpr_tmp)

D.12 Installing PyIGA

TODO The user must define the environment variable PYIGADATAPATH, which de-
fines the directory where PyIGA will read input data.

The user must define the environment variable PYIGAWORKPATH, which defines
the working directory for PyIGA. He must respect the following tree:

216

D.12. Installing PyIGA

Working Directory

data Runs

Silolog data

Figure D.10: Working directory tree

217

D.12. Installing PyIGA

218

Bibliography

[1] J. Abiteboul, G. Latu, V. Grandgirard, A. Ratnani, E. Sonnendrücker, and A. Stru-
garek. Solving the vlasov equation in complex geometries. Proceedings of CEM-
RACS 2010, submitted.

[2] M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and A. V. Vuong.
Swept volume parameterization for isogeometric analysis. In Proceedings of the 13th
IMA International Conference on Mathematics of Surfaces XIII, pages 19–44, Berlin,
Heidelberg, 2009. Springer-Verlag.

[3] T.S. Hahm A.J. Brizard. Foundations of nonlinear gyroki-
netic theory. Reviews of Modern Physics, 79:421–468, 2007.
http://www.damtp.cam.ac.uk/user/tong/dynamics.html.

[4] P. Angelino, X. Garbet, and al. Role of Plasma Elongation on Turbulent Transport
in Magnetically Confined Plasmas. Physical Review Letters, 102(19), 2009.

[5] Douglas N. Arnold, Daniele Boffi, and Richard S. Falk. Quadrilateral h(div) finite
elements. SIAM J. Numer. Anal, 42:2429–2451.

[6] Franck Assous, Patrick Ciarlet, and Simon Labrunie. Theoretical tools to solve
the axisymmetric maxwell equations. Mathematical Methods in the Applied Sciences,
25:49–78, 2002.

[7] Franck Assous, Patrick Ciarlet, and Simon Labrunie. Solution of axisymmetric
maxwell equations. Mathematical Methods in the Applied Sciences, 26:861–896, 2003.

[8] A. Back, A. Crestetto, A. Ratnani, and E. Sonnendrücker. Isopic: coupling an
axysimmetric pic solver with the isogeometric approach. In In Proceedings of
ESAIM, 2010. submitted.

[9] P.M. Bellan. Fundamentals of Plasma Physics. cambridge university press, first edi-
tion, 2006.

[10] N. Besse and M. Mehrenberger. Convergence of classes of high-order semi-
Lagrangian schemes for the Vlasov-Poisson system. Mathematics of Computation,
77(61):93–123, 2008.

[11] C. K. Birdsall and A. B. Langdon. Plasma Physics Via Computer Simulation. Institute
of Physics Publishing, Bristol and Philadelphia, 2002.

[12] C.K. Birdsall and A. Langdon. Plasma physics via computer simulation. McGraw-Hill,
New York, NY, USA, 1985.

219

Bibliography

[13] A. Bossavit. Mixed finite elements and the complex of Whitney forms. The Mathe-
matics of Finite Elements and Applications VI, J. Whiteman (ed.), pages 137–144, 1988.

[14] A. Bossavit. Computational electromagnetism and geometry : building a finite-
dimensional “Maxwell’s house” (part 5). J. Japan Soc. Applied Electromagnetism and
Mechanics, 8:203–209, 2000.

[15] A. Buffa, C. de Falco, and G. Sangalli. Isogeometric analysis: Stable elements for
the 2d stokes equation. International Journal for Numerical Methods in Fluids, 65(11-
12):1407–1422, 2011.

[16] A. Buffa, J. Rivas, G. Sangalli, and R. Vázquez. Isogeometric discrete differential
forms in three dimensions. SIAM J. Numerical Analysis, 49(2):818–844, 2011.

[17] A. Buffa, J. Rivas, G. Sangalli, and R. Vàzquez. Isogeometric analysis in electro-
magnetics: theory and testing. Technical report, IMATI-CNR.

[18] A. Buffa, G. Sangalli, and R. Váazquez. Isogeometric analysis in electromagnetics:
B-splines approximation. Comput. Methods Appl. Mech. Engrg, 199:1143–1152, 2009.

[19] B. Swartz C. de Boor. Collocation at gaussian points. SIAM J. Numer. Anal., 19,
1973.

[20] P. G. Ciarlet and P. A. Raviart. Interpolation theory over curved elements, with
applications to finite element methods. CMAME, 1:217–249, 1972.

[21] E. Cohen, T. Martin, R.M. Kirby, T. Lyche, and R.F. Riesenfeld. Analysis-aware
modeling: Understanding quality considerations in modeling for isogeometric
analysis. Computer Methods in Applied Mechanics and Engineering, 199(5-8):334 – 356,
2010. Computational Geometry and Analysis.

[22] Paolo Costantini, Carla Manni, Francesca Pelosi, and M. Lucia Sampoli. Quasi-
interpolation in isogeometric analysis based on generalized b-splines. Comput.
Aided Geom. Des., 27:656–668, November 2010.

[23] J.A Cottrell, T. Hughes, and Y. Bazilevs. Isogeometric Analysis, toward Integration of
CAD and FEA. John Wiley & Sons, Ltd, first edition, 2009.

[24] N. Crouseilles, G. Latu, and E. Sonnendrücker. Hermite spline interpolation on
patches for parallelly solving the Vlasov-Poisson equation. Int. J. of Applied Math.
and Computer Science, 17(3):335–349, 2007.

[25] N. Crouseilles, G. Latu, and E. Sonnendrücker. A parallel Vlasov solver based
on local cubic spline interpolation on patches. Journal of Computational Physics,
228(5):1429–1446, 2009.

[26] H.B. Curry and I.J. Schoenberg. On polya frequency functions iv: The fundamental
spline functions and their limits. J. d’Analyse Math, 17:71–107, 1966.

[27] Olivier Czarny and Guido Huysmans. Bézier surfaces and finite elements for mhd
simulations. J. Comput. Phys., 227:7423–7445, August 2008.

[28] Polyanin A. D. and Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations.
Chapman, Hall CRC, 2004. BocaRaton.

220

Bibliography

[29] D.Biskamp. Nonlinear Magnetohydrodynamics. Cambridge Uniersity Press, 1997.

[30] C. de Boor, K. Höllig, and S. Riemenschneider. Box splines. Springer-Verlag New
York, Inc., New York, NY, USA, 1993.

[31] C. DeBoor. A practical guide to splines. Springer-Verlag, New York, applied mathe-
matical sciences 27 edition, 2001.

[32] E. Deriaz, B. Depres, G. Faccanoni, K.P. Gostaf, L.M. Imbert-Gerard, G. Sadaka, and
R. Sart. Magnetic equations with freefem++: The grad-shafranov equation and the
current hole. In In Proceedings of ESAIM, 2010. submitted.

[33] R.A. DeVore and G.G. Lorentz. Constructive Approximation. Springer-Verlag, Berlin,
Heidelberg, 1993.

[34] D.H.E. Dubin, J. A. Krommes, C. Oberman, and W. W. Lee. Nonlinear gyrokinetic
equations. Phys. Fluids, 26, 1983.

[35] Michael R. Dörfel, Bert Jüttler, and Bernd Simeon. Adaptive isogeometric analysis
by local h-refinement with t-splines. Computer Methods in Applied Mechanics and
Engineering, 199(5-8):264 – 275, 2010. Computational Geometry and Analysis.

[36] B. DÈpres and R. Sart. Reduced resistive mhd with general density i: Model and
stability results. 2011. Technical Report RR11003, LJLL, UPMC.

[37] Lynch Robert E., Rice John R., and Thomas Donald H. Direct solution of partial
difference equations by tensor product methods. Numerische Mathematik, 6:185–
199, 1964. 10.1007/BF01386067.

[38] J. W. Eastwood, W. Arter, N. J. Brealey, and R. W. Hockney. Body-fitted electromag-
netic pic software for use on parallel computers. Computer Physics Communications,
87(1-2):155 – 178, 1995. Particle Simulation Methods.

[39] John A. Evans, Yuri Bazilevs, Ivo Babuska, and Thomas J.R. Hughes. n-widths,
sup-infs, and optimality ratios for the k-version of the isogeometric finite element
method. Computer Methods in Applied Mechanics and Engineering, 198(21-26):1726
– 1741, 2009. Advances in Simulation-Based Engineering Sciences - Honoring J.
Tinsley Oden.

[40] Hassan Fahs and Stéphane Lanteri. A high-order non-conforming discontinu-
ous galerkin method for time-domain electromagnetics. J. Comput. Appl. Math.,
234:1088–1096, June 2010.

[41] G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Pub.
Inc., San Francisco, CA, USA, 2002.

[42] F. Filbet and E. Sonnendrücker. Modeling and numerical simulation of space
charge dominated beams in the paraxial approximation. Mathematical Models and
Methods in Applied Sciences, 16(5):763, 2006.

[43] F. Filbet, E. Sonnendrücker, and P. Bertrand. Conservative Numerical Schemes for
the Vlasov Equation. Journal of Computational Physics, 172(1):166 – 187, 2001.

221

Bibliography

[44] Paul F. Fischer. Anisotropic diffusion in a toroidal geometry. Journal of Physics:
Conference Series, 16:446–455, 2005.

[45] X. Garbet, Y. Idomura, L. Villard, and T.-H. Watanabe. Gyrokinetic simulations of
turbulent transport. Nuclear Fusion, 50(4):043002, 2010.

[46] M. Geimer and O. Abert. Interactive ray tracing of trimmed bicubic bézier surfaces
without triangulation. In Proceedings of WSCG, pages 71–78, 2005.

[47] A.H. Glasser, I.A. Kitaeva, V.D. Liseikin, V.S. Lukin, and A.N. Simakov. Harmonic
grid generation for the tokamak edge region. In Proceedings of EPS, Spain, 2005.

[48] Mark S. Gockenbach. Understanding and Implementing the Finite Element Method.
SIAM, first edition, 2006.

[49] Herbert Goldstein. Classical mechanics. Addison-Wesley Publishing Co., Reading,
Mass., second edition, 1980. Addison-Wesley Series in Physics.

[50] H. Grad, A. Kadish, and D. C. Stevens. A free boundary tokamak equilibrium.
Communications on Pure and Applied Mathematics, 27(1):39–57, 1974.

[51] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Man-
fredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, and L. Villard. A drift-
kinetic Semi-Lagrangian 4D code for ion turbulence simulation. Journal of Compu-
tational Physics, 217(2):395–423, 2006.

[52] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Man-
fredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, and L. Villard. A drift-
kinetic Semi-Lagrangian 4D code for ion turbulence simulation. Journal of Compu-
tational Physics, 217(2):395–423, 2006.

[53] V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet,
G. Dif-Pradalier, X. Garbet, P. Ghendrih, S. Jolliet, et al. Global full-f gyrokinetic
simulations of plasma turbulence. Plasma Phys. and Control. Fusion, 49:B173, 2007.

[54] F.W. Perkins G.W. Hammett. Fluid models for landau damping with application to
the ion-temperature-gradient instability. Phys. Rev. Lett., 64:3019–3022, 1990.

[55] T.S. Hahm. Nonlinear gyrokinetic equations for tokamak microturbulence. Phys.
Fluids, 31, 1988.

[56] Dimits Beer Hammett, A. M. Dimits, M. A. Beer, G. W. Hammett, S. E. Parker, A. J.
Redd, and J. Weiland. Comparisons and physics basis of tokamak transport models
and turbulence simulations. Phys. Plasmas, 7:969–983, 2000.

[57] R. Hatzky, T.M. Tran, A. Koenis, R. Kleiber, and S.J. Allfrey. Energy conservation
in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven
modes in θ-pinch geometry. Phys. Plasmas, 9, 2002.

[58] K. Höllig. Finite Element Methods with B-Splines. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2003.

[59] K. Höllig. Finite Element Methods with B-Splines, volume 26. SIAM, 2003. Frontiers
in Applied Mathematics.

222

Bibliography

[60] K Höllig and DJ Benson. Finite element methods with b-splines. Applied Mechanics
Reviews, 57, 2004.

[61] K. Höllig, Reif Ulrich, and Wipper Joachim. Multigrid methods with b-splines.
Numerische Mathematik, 91:237–255, 2002.

[62] Klaus Höllig, Jörg Hörner, and Martina Pfeil. Parallel finite element methods with
weighted linear b-splines. pages 667–676, 2008.

[63] Klaus Höllig, Ulrich Reif, and Joachim Wipper. Weighted extended b-spline ap-
proximation of dirichlet problems. SIAM J. Numer. Anal., 39:442–462, February
2001.

[64] Qi-Xing Huang, Shi-Min Hu, and Ralph R. Martin. Fast degree elevation and knot
insertion for b-spline curves. Computer Aided Geometric Design, 22(2):183 – 197, 2005.

[65] T. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Anal-
ysis. Dover Publications Inc., 2003.

[66] T.J.R. Hughes, Y. Bazilevs, L. Beirao de Veiga, J.A. Cottrell, and G. Sangalli. Isoge-
ometic analysis: approximation, stability and error estimates for h-refined meshes.
Mathematical Models and Methods in Applied Sciences (M3AS), 16:1031–1090, 2006.

[67] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, finite el-
ements, nurbs, exact geometry and mesh refinement. Computer Methods in Applied
Mechanics and Engineering, 194(39-41):4135 – 4195, 2005.

[68] T.J.R. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for nurbs-based iso-
geometric analysis. Computer Methods in Applied Mechanics and Engineering, 199(5-
8):301 – 313, 2010. Computational Geometry and Analysis.

[69] K. Höllig, J. Hörner, and M. Pfeil. Parallel Finite Element Methods with Weighted
Linear B-Splines. Springer Berlin Heidelberg, 2008.

[70] B.M. Irons. Engineering application of numerical integration in stiffness method.
Journal of the American Institute of Aeronautics and Astronautics, 4:2035–2037, 1966.

[71] S. Jardin. Computational Methods in Plasma Physics. CRC Press, Inc., Boca Raton, FL,
USA, 1st edition, 2010.

[72] Rong-Qing Jia. Local linear independence of the translates of a box spline. Con-
structive Approximation, 1:175–182, 1985. 10.1007/BF01890029.

[73] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, TM Tran, BF McMillan, O. Sauter,
K. Appert, Y. Idomura, and L. Villard. A global collisionless PIC code in magnetic
coordinates. Computer Physics Communications, 177(5):409–425, 2007.

[74] Höllig Klaus, Reif Ulrich, and Wipper Joachim. Weighted extended b-spline ap-
proximation of dirichlet problems. SIAM J. Numer. Anal., 39:442–462, February
2001.

[75] Boris I. Kvasov. Shape preserving c2 spline interpolation. In proceedings of the second
asian mathematical conference 1995, 1998.

223

Bibliography

[76] Boris I. Kvasov. Approximation by discrete gb-splines. Numerical Algorithms,
27:169–188, 2001. 10.1023/A:1011818621589.

[77] W. Tiller L. Piegl. The NURBS Book. Springer-Verlag, Berlin, Heidelberg, 1995.
second ed.

[78] Ming-Jun Lai and Paul Wenston. Bivariate splines for fluid flows. Computers and
Fluids, 33(8):1047 – 1073, 2004.

[79] H. P. Langtangen. Python Scripting for Computational Science. Springer-Verlag Berlin
Heidelberg, third edition, 2008.

[80] W.W. Lee. Gyrokinetic approach in particle simulation. Phys. Fluids, 26, 1983.

[81] M. Lenoir. Optimal isoparametric finite elements and error estimates for domains
involving curved boundaries. SIAM J. Numer. Anal., 23:562–580, June 1986.

[82] D. Lischinski and J. Gonczarowski. Improved techniques for ray tracing parametric
surfaces. The Visual Computer, 6:134–152, 1990.

[83] W. Ma and J. P. Kruth. Nurbs curve and surface fitting for reverse engineering.
The International Journal of Advanced Manufacturing Technology, 14:918–927, 1998.
10.1007/BF01179082.

[84] T. Martin, E. Cohen, and R.M. Kirby. Volumetric parameterization and trivariate b-
spline fitting using harmonic functions. Computer Aided Geometric Design, 26(6):648
– 664, 2009. Solid and Physical Modeling 2008, ACM Symposium on Solid and
Physical Modeling and Applications.

[85] Arnold Douglas N., Falk Richard S., and Winther Ragnar. Finite element exterior
calculus, homological techniques, and applications. Acta Numer., 15:1–155, 2006.

[86] Goldman R. N. and Lyche T. Knot Insertion and Deletion Algorithms for B-Spline
Curves and Surfaces. SIAM, Philadelphia, USA, 1993.

[87] Marian Neamtu. Bivariate simplex b-splines: A new paradigm. In Proceedings of
the 17th Spring conference on Computer graphics, pages 71–, Washington, DC, USA,
2001. IEEE Computer Society.

[88] Y. Nishimura, Z. Lin, J.L.V. Lewandowski, and S. Either. A finite element poisson
solver for gyrokinetic particle simulations ina global field aligned mesh. J. Comput.
Phys., 214:657–671, 2006.

[89] T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed rational surface
patches. SIGGRAPH Comput. Graph., 24(4):337–345, 1990.

[90] Monk P. Finite Element Methods for Maxwell”s Equations. Calderon Press (Oxford),
2003.

[91] L.A. Piegl and W. Tiller. The NURBS book. Springer Verlag, 1997.

[92] D.E. Baldwin P.J. Catto, W.M. Tang. Generalized gyrokinetics. Plasma Phys, 23:639,
1981.

224

Bibliography

[93] Hartmut Prautzsch and Bruce Piper. A fast algorithm to raise the degree of spline
curves. Comput. Aided Geom. Des., 8:253–265, October 1991.

[94] H. Qin. A short introduction to general gyrokinetic theory. PPPL, 2005. report 4052.

[95] Hiptmair R. Finite elements in computational electromagnetism. Acta Numerica,
11:237–339, 2002.

[96] J.D. Meiss R.D. Hazeltine. Plasma Confinement. Dover edition, 2003.

[97] Wolfgang Heidrich Richard, Richard Bartels, and George Labahn. Fitting uncertain
data with nurbs. In Proc. 3rd Int. Conf. on Curves and Surfaces in Geometric Design,
Vanderbilt University Press, 1997.

[98] L. L. Schumaker. Spline Functions: Basic Theory. Wiley (New York), 1981.

[99] L.L. Schumaker and M-J. Lai. Spline Functions on Triangulations, volume Encyclope-
dia of Mathematics and its Applications 110. Cambridge press, 2007.

[100] T.W. Sederberg, D.L. Cardon, J. Zheng, and T. Lyche. T-spline simplification and
local refinement. ACM Trans, Graphics, 23:276–283, 2004.

[101] P. Sharma and G.W. Hammett. A fast semi-implicit method for anisotropic diffu-
sion. Journal of Computational Physics, 2011. Accepted for publication.

[102] B. Smits. Efficiency issues for ray tracing. J. Graph. Tools, 3:1–14, February 1998.

[103] E. Sonnendrücker. Modèles cinétiques pour la fusion. notes du cours de M2 (2008).

[104] E. Sonnendrücker, F. Filbet, A. Friedman, E. Oudet, and J.-L. Vay. Vlasov Simula-
tions of beams with a moving grid. Computer Physics Communications, 164(1–3):390–
395, 2004.

[105] E. Sonnendrücker, M. Gutnic, M. Haefele, G. Latu, and J.L. Lemaire. Vlasov Simu-
lation of Beams and HALO. In Proceedings of the Particle Accelerator Conference, 2005,
pages 581–585, 2005.

[106] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo. The Semi-Lagrangian
Method for the Numerical Resolution of the Vlasov Equation. Journal of Compu-
tational Physics, 149(2):201–220, 1999.

[107] A. Staniforth and J. Côté. Semi-lagrangian integration schemes for atmospheric
models: A review. Monthly Weather Review, 119(9):2206–2223, 1991.

[108] Dokken T. Workshop on: ”Non-Standard Numerical Methods for PDE’s”, Pavia,
Italy, jun 29 - jul 02.

[109] I.C. Taig. Structural analysis by the matrix displacement method. English Electric
Aviation Report, SO 17, 1961.

[110] David Tong. Lectures on classical dynamics.
http://www.damtp.cam.ac.uk/user/tong/dynamics.html.

[111] D. L. Toth. On ray tracing parametric surfaces. SIGGRAPH Comput. Graph.,
19(3):171–179, 1985.

225

Bibliography

[112] K. G. van der Zee and C. V. Verhoosel. Isogeometric analysis-based goal-oriented
error estimation for free-boundary problems. Finite Elem. Anal. Des., 47:600–609,
June 2011.

[113] Charles F. van Loan. The ubiquitous kronecker product. J. Comput. Appl. Math.,
123:85–100, November 2000.

[114] A.-V. Vuong, C. Giannelli, B. J¸tler, and B. Simeon. A hierarchical approach to local
refinement in isogeometric analysis. Submitted.

[115] S.W. Wang, Z.C. Shih, and R.C. Chang. An efficient and stable ray tracing algorithm
for parametric surfaces. J. Inf. Sci. Eng., 18(4):541–561, 2002.

[116] R. A. Kolesnikov W.W. Lee. On high-order corrections to gyrokinetic vlasov-
poisson equations in the long wavelength limit. 2009. PPPL- 4382 report.

[117] Gu Xianfeng, He Ying, and Qin Hong. Manifold splines. In Proceedings of the 2005
ACM symposium on Solid and physical modeling, SPM ’05, pages 27–38, New York,
NY, USA, 2005. ACM.

[118] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Optimal analysis-aware param-
eterization of computational domain in isogeometric analysis. submitted.

226

	Isogeometric Analysis in Plasma Physics and Electromagnetism
	Remerciements
	Introduction
	Contents
	CHAPTER 1 : Splines and Isogeometric Analysis
	1.1 Splines and B-splines functions
	1.1.1 Splines
	1.1.2 B-Splines

	1.2 B-Spline series
	1.2.1 Multivariate tensor product splines

	1.3 Splines in CAD
	1.3.1 Modeling a curve
	1.3.3 NURBS
	1.3.4 Multivariate tensor product NURBS
	1.3.5 Modeling conics using NURBS

	1.4 Splines in Approximation Theory
	1.4.1 Quasi-interpolant
	1.4.2 Distance of a regular function to S

	1.5 Web-splines
	1.5.1 B-Splines on bounded domains
	1.5.2 Weight functions
	1.5.3 Web-Splines
	1.5.4 Stability in weB
	1.5.5 Study of an elliptic partial differential equation
	1.5.6 Polynomial Approximation
	1.5.7 Numerical results
	1.5.8 Conclusion

	1.6 Isogeometric analysis
	1.6.1 Refinement strategies
	1.6.2 Patch
	1.6.3 Grid generation
	1.6.4 Local approximation
	1.6.5 Global approximation using NURBS

	CHAPTER 2 : Elliptic Equations
	2.1 Galerkin-Ritz approximation
	2.2 The variational formulation
	2.3.1 Stiffness local matrix
	2.3 Assembling matrices
	2.3.1 Stiffness local matrix
	2.3.2 Mass local matrix
	2.3.3 Local load vector
	2.3.4 Assembling matrices algorithm

	2.4 Numerical results
	2.4.1 Domain defined by B-splines curves
	2.4.2 Solution for an affine transformation

	2.5 Domain defined with NURBS curves
	2.5.1 Poisson’s equation on a quarter ring domain
	2.5.2 Poisson’s equation on a ring domain

	2.6 Computing the solution on general domain
	2.7 Nonlinear elliptic problems
	2.7.1 Picard’s algorithm
	2.7.2 Newton’s algorithm
	2.7.3 Numerical results : Example from combustion theory

	CHAPTER 3 : Application to the Quasi-Neutral equation
	3.1 Introduction
	3.2 Quasi-neutrality equation
	3.3 A fast solver for polar coordinates
	3.4 Numerical validation
	3.4.1 Test case 1: Order of convergence for Poisson in polar coordinates
	3.4.2 Test case 2: Chaotic solution

	3.5 Numerical solution of the quasi-neutrality equation
	3.5.1 The decoupling approach
	3.5.2 First approach: spectral + finite differences
	3.5.3 Second approach: FEM
	3.5.4 Numerical results

	3.6 Conclusion

	CHAPTER 4 : Application to the 2D Maxwell’s equations
	4.1 Introduction
	4.2 Variational formulation for the 2D Maxwell equations
	4.3 Construction of the finite element spaces
	4.3.1 Spline finite elements on patch grids
	4.3.2 The Discrete Equations

	4.4 Leap Frog scheme’s stability
	4.5 Numerical results
	4.5.1 Test case 1: square
	4.5.2 Test case 2: circular wave guide
	4.5.3 Test case 3: Silver-Muller condition
	4.6 H-rot formulation
	4.7 Axisymmetric Variational formulation of the 2D Maxwell’s equation
	4.7.1 Discrete equations - 1st formulation
	4.7.2 Discrete equations - 2nd formulation
	4.7.3 H-rot formulation
	4.7.4 Remarks

	4.8 Conclusions and perspectives

	CHAPTER 5 : An axisymmetric PIC code based on Isogeometric Analysis
	5.1 Introduction
	5.1.1 Domain parametrization using Splines/NURBS curves

	5.2 PIC method for Vlasov equation
	5.2.1 The PIC Method
	5.2.2 The equations of motion
	5.2.3 The Dirac mass with a change of variables
	5.2.4 Computing J and ˆ with a change of variables

	5.3 Particles emission
	5.3.1 Short description of a diode
	5.3.2 Extraction conditions

	5.4 Numerical results
	5.4.1 Emission of particles in the diode

	5.5 Conclusion and perspectives

	CHAPTER 6 : Application to Semi-Lagrangian schemes
	Introduction
	6.1 2D Vlasov
	6.1.1 Physical model: the paraxial beam
	6.1.2 The ISOLOSS code

	6.2 Complex geometry using parametric surfaces
	6.2.1 General framework
	6.2.2 Analytic mapping
	6.2.3 Bézier patches

	6.3 Algorithms
	6.3.1 Inverse mapping for Bézier patches
	6.3.2 Reducing delays for patch finding
	6.3.3 Velocity integrals

	6.4 Results
	6.4.1 Geometry settings and experimental results
	6.4.2 Performance issues

	Conclusion

	CHAPTER 7 : Simulation of 2D reduced MHD
	7.1 Introduction
	7.2 Anisotropic Diffusion
	7.2.1 Introduction
	7.2.2 The choice of the grid
	7.2.3 Evolution of a Gaussian pulse
	7.2.4 Conclusions

	7.3 MHD equilibrium
	7.3.1 Equilibrium in the absence of toroidal flux
	7.3.2 Equilibrium with toroidal flux
	7.3.3 Nonlinear equilibrium

	7.4 Current-Hole
	7.4.1 Time scheme
	7.4.2 Variational formulation
	7.4.3 Numerical results

	7.5 Conclusions

	CHAPTER 8 : A new DeRham sequence based on Box-splines
	8.1 Introduction
	8.2 Notations
	8.3 Bernstein-B´ezier bivariate polynomials
	8.4 Box-Splines
	8.4.1 Strang-Fix conditions applied to Box-splines
	8.4.2 Box-Spline series
	8.4.3 Quasi-interpolant operator for Box-Splines

	8.5 Box-splines as finite elements basis
	8.5.1 Approximation with box-splines

	8.6 DeRham diagram
	8.6.1 Notations
	8.6.2 Interpolants and commutativity
	8.6.3 Approximation Analysis

	8.7 Boundary Condition using Box-splines
	8.8 Conclusions and Perspectives

	Conclusions
	APPENDIX A : Appendix: Decoupling approach for...
	APPENDIX B : Transformation compatible with grad, div and curl operators
	APPENDIX C : Equations of motion
	APPENDIX D : Python Interface
	Bibliography

