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Résumé de thèse

1 Introduction
Plusieurs maladies a�ectant le système nerveux central, dont la sclérose en plaques
(SEP) [136], maladie d'Alzheimer [25, 138] et la schizophrénie [17], sont carac-
térisées par une diminution du volume cérébral. Ce processus est connu sous le nom
d'atrophie cérébrale. C'est un terme général qui représente la diminution de la taille
du cerveau due à une perte de neurones et de connexions entre eux. Des études clin-
iques suggèrent que la perte de matière cérébrale commence tôt au cours de maladies
telles que la SEP. La mesure de l'atrophie du cerveau a récemment émergé comme un
biomarqueur visible de progression de la maladie. Par conséquent, la communauté
s'est fortement intéressée au problème de l'estimation du changement volumétrique
du cerveau. Les outils automatisés, capables de détecter des changements dans le
cerveau avec précision, sont devenus une nécessité car ils peuvent faciliter le diag-
nostic et le pronostic de ces maladies.

En fournissant un bon contraste entre les di�érents tissus, l'imagerie par réso-
nance magnétique (IRM) est une technique d'imagerie non-invasive prédominante
pour étudier les changements dans le cerveau. Par conséquent, le développement de
programmes de traitement d'images permettant la manipulation des images d'IRM,
o�rent des moyens de mesurer la perte de volume du cerveau au cours d'une maladie.

Le but de cette thèse est d'étudier les méthodes de traitement d'image permet-
tant l'estimation de l'atrophie cérébrale chez les patients atteint de la SEP. L'analyse
d'images IRM acquises à des temps di�érents permet d'obtenir une estimation lon-
gitudinale de l'atrophie cérébrale.

Trois grandes parties dé�nissent les travaux réalisés dans cette thèse. Tout
d'abord, sur la base de leur robustesse à diverses sources d'erreur (inhomogénéité en
intensité, bruit, distorsions géométriques, artefacts d'interpolation et présence de lé-
sions), une évaluation des principales approches d'estimation de l'atrophie cérébrale
est réalisée à l'aide de simulations d'une vérité terrain. Ensuite, une analyse statis-
tique est e�ectuée a�n d'estimer les incertitudes associées à l'atrophie mesurée.
Fondé sur l'utilisation d'une base d'apprentissage, un cadre générique est proposé
pour construire des intervalles de con�ance de l'atrophie estimée dans une région
d'intérêt du cerveau. En�n, un cadre bayésien est proposé pour l'estimation con-
jointe d'une transformation non-rigide (à partir de laquelle l'atrophie est calculée)
et du champ d'inhomogénéité en intensité présent dans les images. Cette approche
bayésienne couplée aux techniques MCMC (pour Markov Chain Monte Carlo) four-
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nit un cadre rigoureux pour la construction d'intervalles de con�ance de l'atrophie
cérébrale.

Ce résumé est organisé en cinq sections. Des méthodes existantes largement
utilisées pour l'estimation de l'atrophie cérébrale sont décrites dans la section qui
est suivie par une brève description du cadre établi pour l'évaluation des méthodes
de l'estimation de l'atrophie du cerveau et de l'estimation des mesures d'incertitude
dans les sections et . En�n, l'approche bayésienne consacrée à l'estimation simul-
tanée de l'atrophie cérébrale et du champ d'inhomogénéité en intensité est décrite
dans la section . Les conclusions de cette thèse sont présentées dans la section .

2 État de l'art
Les méthodes actuellement disponibles pour l'estimation de l'atrophie du cerveau
se di�érencient en fonction de critères tels que leur dépendance au recalage ou à la
segmentation [106], le type de mesure (globale ou locale) de l'atrophie.

Les principales méthodes fondées sur une utilisation du recalage sont: BSI (pour
"Boundary Shift Integral") [44], SIENA (pour "Structural Image Evaluation us-
ing Normalisation, of Atrophy") [140, 143], VBM (pour "Voxel based morphome-
try") [5]), et en�n, celles qui utilisent une analyse locale du jacobien du champ de
déformation [18, 21, 20, 171, 170, 59]. Les approches reposant sur une étape de
segmentation s'appuient sur di�érentes mesures d'atrophie telles que la fraction du
parenchyme du cerveau (BPF pour Brain Parenchym fraction) [57, 131] et BICCR
(pour "Brain to intracranial capacity ratio") [31].

Lorsque on utilise la mesure de l'atrophie du cerveau comme un marqueur de
l'évolution de maladies, deux types d'analyses peuvent être e�ectuées: longitudi-
nales ou transversales. Dans les études longitudinales, plusieurs images IRM du
cerveau d'un même individu, acquises à des temps di�érents, sont considérées. Ces
études suivent la progression de la maladie en donnant une estimation de l'atrophie
cérébrale. On peut citer comme exemple de méthodes longitudinales BSI [44] et
SIENA [140]. Les études transversales sont utilisées pour connaître l'état de la
maladie en fournissant une estimation du volume du cerveau à un temps donné.
SIENAX [143] est une méthode couramment utilisée pour ce type d'études.

Une méthode globale d'estimation atrophie, telle que BSI [44] ou SIENA [140],
donne une estimation globale du taux de diminution du volume cérébral. Dans
la SEP, les mesures de l'atrophie du cerveau entier sont parfois utilisées comme
biomarqueurs de la progression de la maladie [132]. Les mesures locales (TBM
(pour Tensor based morphometry) [18, 21, 20, 171, 59], VBM [5]) fournissent une
estimation locale (voxel par voxel) de l'atrophie du cerveau. Ces mesures locales
sont intéressantes car elles nous permettent de déchi�rer quelles parties du cerveau
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sont les plus touchées par l'atrophie dans le cadre d'une pathologie.

Penchons-nous sur quelques méthodes populaires d'estimation de l'atrophie céréb-
rale.

SIENA Cet algorithme commence par l'extraction du cerveau et du crâne des im-
ages en utilisant l'outil BET (pour "Brain extraction tool" du logiciel FSL) [139]. Les
2 images sont ensuite recalées en utilisant une transformation a�ne corrigée par un
facteur d'échelle prenant en compte l'invariance du crâne. La transformation a�ne
ainsi obtenue, est d'abord décomposée en deux transformations "à mi-chemin" qui
sont ensuite appliquées aux deux images ré-échantillonnées dans un espace commun.
Cela évite des �ous asymétriques dans les images dus à l'interpolation. Ensuite,
une segmentation est e�ectuée a�n de trouver les bords du cerveau [175]. À cette
étape, une correction d'inhomogéneité en intensité est également appliquée. En�n,
un tableau 1D est rempli avec des valeurs d'intensité du pro�l perpendiculaire au
bord du cerveau de l'image de référence. En utilisant une interpolation tri-linéaire,
ces valeurs sont échantillonnées avec une précision sous "voxelique". Le nombre
d'éléments de ce tableau est prédéterminé (±3 mm du bord), mais il peut aussi
changer de région en région selon la présence d'un autre bord. Un autre tableau 1D
est également construit avec des valeurs d'intensité de la deuxième image IRM. Le
mouvement du bord du cerveau est désormais estimé en calculant le décalage relatif,
entre les tableaux, qui produit la corrélation maximale.

SIENA est une méthode entièrement automatisée qui rend possible l'analyse
longitudinale. Smith et coll. [141] rapportent une précision de 0, 15% à l'aide d'une
évaluation de type "scan-rescan".

BSI Un autre outil populaire pour estimer l'atrophie cérébrale à partir de deux
images longitudinales est �Boundary Shift Integral" (BSI) [44]. Dans cette approche,
les deux images sont recalées en utilisant une transformation a�ne. Dans la mise
en ÷uvre originale de BSI, une procédure de recalage a�ne permet de déterminer
les facteurs d'échelle spatiale en utilisant la surface du crâne comme invariant. Les
images sont ensuite normalisées en intensité et segmentées en utilisant une approche
morphologique itérative, où la taille des opérateurs est sélectionnée manuellement.
L'idée est de dé�nir une région d'intérêt sur laquelle est calculée l'indice BSI.

BSI est un outil semi-automatique pour estimer l'atrophie longitudinale. Free-
borough et coll. [44] constatent que les indices BSI pour le cerveau et le LCR sont
fortement corrélés (r = 1, 000 et r = 0, 999) avec les changements volumétriques
simulés.

SIENAX [143] est un algorithme de segmentation fournissant une estimation
transversale de l'atrophie à partir d'une seule image IRM. Contrairement à SIENA
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qui indique le taux progression de la maladie, cet outil donne une estimation "cou-
rante" du volume cérébral. Le cerveau et le crâne sont tout d'abord extraits de
l'image. Ensuite, l'image MNI 152 est recalée de façon a�ne sur l'image du patient
en utilisant le crâne comme invariant pour contraindre le facteur d'échelle. En�n
une segmentation [175] est e�ectuée sur l'image originale. Celle-ci prend en compte
l'estimation du volume partiel, donnant une précision supérieure à une segmentation
volumétrique dure. Le volume total du cerveau est obtenu à partir de ce résultat de
segmentation. Pour normaliser la taille de la tête, le volume du cerveau est multiplié
par le facteur d'échelle calculé avec l'image MNI 152. Smith et coll. [141] a�rment
obtenir une précision de 0, 5− 1% du volume du cerveau avec SIENAX.

Voxel (VBM) or tensor (TBM) based morphometry VBM [5] est dédié à
l'analyse des di�érences locales dans le cerveau en utilisant une approche statistique.
La procédure consiste à normaliser les images de tous les sujets de l'étude dans le
même espace, suivie par une segmentation de la matière grise à partir des images
spatialement normalisées suivi par une étape de lissage de la matière grise. Le
modèle linéaire général [89] fournit un cadre pour l'application de tests statistiques
a�n d'identi�er les régions de matière grise qui sont signi�cativement liées à des
paramètres de l'étude tels que l'âge ou des critères pathologiques. Les images sont
analysées voxel par voxel avec des tests statistiques (des tests non paramétriques
peuvent également être appliqués comme dans [122]).

En�n, les méthodes fondées sur une utilisation d'algorithmes de recalage non-
rigide constituent une autre classe conséquente pour l'estimation de l'atrophie céréb-
rale. Des cartes du changement volumétrique peuvent être obtenues sous forme de
cartes scalaires (jacobien du champ de déformation), celles-ci représentant alors les
changements entre 2 images consécutives. L'analyse de ces cartes voxel par voxel
ou dans une région d'intérêt est appelé TBM (pour Tensor-based morphometry). Si
les statistiques sont e�ectuées sur le champ de déformation directement, alors cette
approche est plus communément appelée �deformation based morphometry� (DBM)
ou �deformation �eld morphometry� (DFM) [18, 45, 109].

3 Évaluation des méthodes d'estimation de l'atrophie du
cerveau
La validation des algorithmes d'estimation de l'atrophie cérébrale est une tâche cru-
ciale a�n que ces mesures soit de plus en plus employées comme biomarqueurs dans la
progression de maladies neuro-dégénératives. Néanmoins, il est di�cile d'évaluer ces
méthodes lorsque aucune vérité terrain n'est disponible. Des travaux sur l'évaluation
de ces algorithmes comprennent [105, 18, 50, 142, 21, 20, 109, 34].

Dans cette section, un cadre pour évaluer trois méthodes de l'estimation de
l'atrophie (BSI-UCD [44], SIENA [140, 143] SIENAX [143]) est décrit. La vérité
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terrain est créée à l'aide d'un schéma de recalage non-rigide qui préserve la topolo-
gie et utilisant un modèle de déformation B-spline. Des contraintes supplémentaires
ont été introduites pour assurer l'invariance du crâne dans l'image simulée. Cette
approche permet de générer e�cacement un champ de déformation correspondant
à une carte scalaire de jacobien donnée, tout en tenant compte des contraintes
d'invariance.

Ensuite, les in�uences de l'inhomogénéité en intensité, du bruit, des distorsions
géométriques, des méthodes d'interpolation et de la charge lésionnelle sur les mesures
d'atrophie du cerveau sont analysées. Dans une autre série d'expériences, la con-
séquence de la variabilité anatomique sur l'estimation de l'atrophie en simulant des
atrophies sur une cohorte de 18 images Brainweb est examinée. En�n, des expéri-
mentations ont également été menées a�n de comparer un algorithme de récalage
déformable (Noblet et coll. [98]) avec SIENA, SIENAX et BSI-UCD.

Résultats et discussion
Di�érents degrés d'atrophie (0 − 1%) ont été simulés sur une image de la base
Brainweb. Dans ce cas, l'erreur moyenne du changement de volume du cerveau en
pourcentage (PBVC pour Percentage of Brain Volume Change) estimé pour SIENA
était de 0, 06±0, 04% pour des images non bruitées et 0, 35±0, 3% pour des images
dégradées par un bruit gaussien (avec un rapport signal sur bruit de 15dB rapport)
et un champ d'inhomogénéité en intensité (20% INU). Les erreurs sont beaucoup
plus élevées pour SIENAX et BSI-UCD.

Des expériences complémentaires sur les 18 Brainweb images ont indiqué qu'en
présence du champ d'inhomogénéité en intensité et de bruit, une erreur moyenne de
0, 64 ± 0, 53 peut être attendue dans l'atrophie estimée par SIENA. Ceci contraste
avec les résultats obtenus pour le cas sans bruit pour SIENA (0, 09 ± 0, 07%). Les
erreurs obtenues avec SIENAX et BSI-UCD étaient considérablement plus élevées
par rapport à SIENA. En revanche, il est apparu qu'une approche reposant sur
l'utilisation d'algorithme de recalage non-rigide permet d'obtenir des erreurs plus
faibles que SIENA.

Les di�érentes expériences (lorsque les images sont dégradées ou non par du
bruit et un biais en intensité) ont montré que SIENA fournit les meilleurs résul-
tats en terme de PBVC que SIENAX et BSI. Cependant, les expériences incluant
JI ont montré que cette méthode semble encore plus performante que SIENA. Les
erreurs d'estimation que nous avons pu observer sont comparables au taux annuel
d'atrophie (0.5 − 2.8%) de di�érentes pathologies neuro-dégénératives. Ce résultat
démontre qu'il est nécessaire de développer des méthodes d'estimation de l'atrophie
cérébrale plus précises.

Nous avons également observé que les artefacts liés à l'inhomogénéité en in-
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tensité et au bruit perturbent fortement l'étape d'extraction du cerveau, ce qui
a�ecte directement les estimations de SIENA, SIENAX et BSI. L'algorithme de re-
calage non rigide utilisait comme critère de similarité la di�érence des intensités.
Ainsi, cette approche (appelée JI pour Jacobian integration) s'est révélée sensible
aux inhomogénéités d'intensité. Un algorithme de correction de biais est essentiel
a�n d'améliorer la performance de ces méthodes. L'ensemble des tests que nous
avons e�ectués a aussi indiqué que SIENA, BSI-UCD et JI sont capables d'estimer
l'atrophie longitudinale de façon plus précise que SIENAX dans un scénario réel,
où les images sont corrompues par un champ d'inhomogénéité en intensité et du
bruit. Nous tenons à rappeler que SIENAX a été développé originellement pour
être appliqué à des études transversales. Par conséquent, il est nécessaire de rester
prudent dans l'interprétation de l'atrophie longitudinale estimée par SIENAX.

Les distorsions géométriques conduisent à des erreurs absolues d'environ 0, 07%
pour SIENA, 0, 82% pour BSI-UCD et 1, 68% pour SIENAX. Les artefacts d'interpo-
lations n'ont pas eu d'impact notable sur les résultats de SIENA et SIENAX par
rapport au cas sans bruit.

4 Estimation de l'incertitude en utilisant une vérité ter-
rain
L'analyse des propriétés statistiques des cartes de changements volumétriques du
cerveau, telles que les cartes de jacobien, est une étape importante dans les études de
type TBM ou DBM. Toutefois, la précision des cartes du changement volumétrique
est discutable quand ils sont obtenus à partir d'images corrompues par du bruit
ou des variations en intensité. En outre, des facteurs tels que les inexactitudes des
procédures de recalage et de segmentation peuvent également entraîner des estima-
tions biaisées, même en l'absence d'artefacts dans les images. Les di�érentes études
de validation [142, 20, 109] dont la notre ont con�rmé l'existence de ce type de biais
dans les estimations de l'atrophie. Un autre point à prendre en compte concerne
l'erreur de modélisation liée au modèle mathématique utilisé. Pour ces raisons, il
devient di�cile de séparer les changements anatomiques réels de ceux induits par
ces artefacts. Il est donc important de rendre ces cartes de changement plus �ables
en fournissant également une estimation des incertitudes.

Dans cette partie, l'objectif est de développer un cadre générique pour l'estimation
des incertitudes des mesures longitudinales de l'atrophie du cerveau au moyen d'inter-
valles de con�ance construits pour toute méthode d'estimation d'atrophie. Des ex-
emples de simulations d'atrophie sur di�érents sujets nous permettent d'estimer
ces incertitudes qui sont ensuite stockées pour des mesures futures dans une base
d'apprentissage. Ainsi, pour un jeu d'images et une méthode d'estimation donnés, il
est possible de déterminer l'atrophie sous-jacente en utilisant une mesure de distance
(ici, un z-score) avec la base d'apprentissage. Cela nous permet d'utiliser les erreurs



7

correspondant à l'atrophie de la base sélectionnée pour construire les intervalles de
con�ance de notre estimation.

La nouveauté de cette approche réside dans sa capacité à intégrer à la fois des
erreurs découlant des images et de la méthode d'estimation. Les atrophies simulées
qui composent la base de données d'apprentissage peuvent être choisies sur la base de
la maladie et de la région d'intérêt à l'étude. Au vue des performances de la méthode
de recalage non-rigide (RNR) de Noblet et coll. [98] par rapport à SIENA, SIENAX
et BSI (section ), et de part sa �exibilité de manipulation (mesure d'atrophie dans
n'importe quelle région d'intérêt), le reste de la thèse est consacrée à l'analyse des
cartes de jacobien obtenues à partir de tels algorithmes. Trois approches de type
RNR ont été évaluées [98, 10, 157] pour mesurer l'atrophie de l'hippocampe sur les
images IRM réelles. Les images ont été dégradées par un bruit gaussien (SNR = 35
dB) et aucun pré-traitement n'a été appliqué.

Résultats et discussion
Di�érents types de biais d'estimation ont pu être observés pour les trois méthodes
évaluées dans cette expérience. Pour l'algorithme de Noblet et coll., le biais reste
presque constant quelque soit la valeur de l'atrophie simulée (biais de l'ordre de
(−4, 22%,−3, 38%)). D'autre part, le biais observé pour la méthode ANTS aug-
mente avec la valeur de l'atrophie simulée (0, 72%, 5, 39%). En�n, le biais de la
méthode de Vemuri et coll. est inversement proportionnel à l'atrophie simulée
(−8, 8608%, 0, 4788%). Un biais négatif indique une sur-estimation de l'atrophie
et vice versa. Dans le cas de la méthode de recalage non-rigide développée par
Noblet et coll., le biais dans les estimations peut être dû à l'utilisation simultanée
des contraintes de préservation de la topologie et de la régularisation du champ de
déformation. Nous croyons que l'approche par ensemble de niveaux de Vemuri et
coll. est sujette à des erreurs provoquées par le bruit dans les images car le champ
de déformation est ajusté par une fonction liée à la di�érence des intensités dans les
deux images. Pour cette raison, il est possible que la direction de la déformation
soit correcte, mais que la magnitude soit erronée. Pour les petites atrophies, les
valeurs les plus basses des biais sont observés pour ANTS, possiblement en raison
de l'utilisation d'une transformation symétrique. Ce résultat est en accord avec
les études existantes [58, 174] qui ont identi�é l'utilisation d'une transformation
symétrique comme un moyen d'obtenir des estimations atrophie non biaisées. Il
ressort de nos expériences que les estimations de grandes atrophies sont biaisés mal-
gré l'utilisation d'une transformation symétrique et d'un modèle de déformation
�uide (dont l'intérêt est pourtant de mesurer de grandes déformations). Une expli-
cation possible concerne l'utilisation d'une régularisation gaussienne qui pénalise les
grandes déformations plus que les petites.

Les tests ont été e�ectués dans une approche de type "leave one out" a�n de
s'assurer de la robustesse de notre approche à de nouvelles anatomies. Les résultats
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ont souligné que l'algorithme ANTS permet d'obtenir une incertitude plus faible que
les méthodes de Noblet et coll. et de Vemuri et coll.. Les longueurs maximales des
intervalles de con�ance sont égales à 14, 32%, 4, 82% et 8, 94% pour les méthodes
de Noblet et coll., ANTS et Vemuri et coll., respectivement, pour la plus grande
atrophie simulée dans la base d'apprentissage (−14, 87%). Nous avons pu observer
que ces méthodes semblent mieux se comporter dans le cas de petites atrophies.

La probabilité de couverture (�coverage probability�) désirée était de 95%, tandis
que des probabilités de couverture de 89, 81 − 93, 52%, 92, 59 − 100% et 90, 74 −
98, 18% ont été obtenues avec les méthodes de Noblet et coll., ANTS et de Vemuri et
coll.. De cette étude, on peut conclure que la méthode ANTS fournit des intervalles
de con�ance signi�catifs par rapport à ceux obtenus avec les deux autres méthodes.

En termes de temps de calcul, il a fallu 10− 12 minutes, 1− 2 minutes et 3− 4
minutes avec les algorithmes de Noblet et coll., d'ANTS et de Vemuri et coll., re-
spectivement, pour traiter une paire d'images de taille 64 × 64 × 64 voxels. Cela
signi�e que la création d'une base de données d'une centaine d'images est une ques-
tion d'un jour pour l'algorithme de Noblet et coll. et de quelques heures pour les
deux autres méthodes. Toutefois, il ne faut pas oublier que ce coût de calcul est un
investissement en temps. Cette base de données peut en e�et être réutilisée dans les
calculs futurs de l'incertitude de l'estimation de l'atrophie cérébrale.

En conclusion, ce cadre proposé ici n'est pas seulement �exible en termes de
son applicabilité à toute méthode d'estimation d'atrophie et de l'incorporation
d'artefacts des images IRM, mais apporte aussi un avantage supplémentaire de cor-
rection automatique des biais existants dans les estimations d'atrophie.

5 Recalage bayésien
L'estimation de l'incertitude est un point important quand il s'agit d'utiliser les
mesures d'atrophie obtenues à partir de recalage déformable pour des décisions
médicales. Il est dans ce cas intéressant de développer une méthode qui est capable
de fournir conjointement des estimations ponctuelles de l'atrophie et l'incertitude
de ces estimations. À cet égard, une approche bayésienne de recalage non-linéaire
est développée pour quanti�er les changements volumétriques longitudinaux dans le
cerveau et prendre en compte les artefacts d'images d'IRM (bruit et inhomogénéité
en intensité) simultanément.

La première étape consiste à sélectionner des modèles mathématiques pour la
transformation non-linéaire du recalage, l'inhomogénéité en intensité et le bruit
présents dans les images IRM. La transformation non-linéaire est paramétrée à l'aide
de B-splines cubiques. Parce qu'elles peuvent modéliser n'importe quel objet en 3D,
indépendamment de son modèle physique, les B-splines forment une classe popu-
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laire de transformations. A�n de produire des solutions réalisables physiquement, il
est souhaitable d'introduire des contraintes de régularisation. Parmi de nombreux
termes de régularisation, le lissage de type plaques minces (�thin plate splines�) est
choisi. Cette quantité représente l'énergie de �exion d'une plaque mince de métal
et possède la propriété de pénaliser les grandes déformations. Pour restreindre da-
vantage le champ de déformation aux solutions topologiquement réalisables, seules
les solutions qui conduisent à un déterminant positif de la matrice jacobienne sont
autorisées. L'inhomogénéité de l'intensité varie lentement dans l'image IRM. Ainsi,
elle peut être exprimée comme une combinaison linéaire de fonctions lisses. Les
polynômes de Legendre représentent l'une des nombreuses fonctions de base capa-
ble de représenter cette inhomogénéité en intensité dans les images d'IRM. En�n,
une distribution gaussienne est utilisée pour dé�nir la vraisemblance (i.e. le critère
de similarité) car les images sont supposées être corrompues par un bruit gaussien.
Des a priori uniformes sont utilisés pour les paramètres de la transformation et les
paramètres du biais en intensité. La procédure consiste alors à maximiser la prob-
abilité a posteriori d'obtenir des estimations des di�érentes inconnues.

En raison de la nature complexe de la loi a posteriori, il n'est ni possible de
la calculer analytiquement, ni de tirer des échantillons suivant celle-ci directement.
Dans de telles situations, les méthodes Markov Chain Monte Carlo (MCMC) sont
généralement employées pour générer des échantillons. Dans notre cas, des échantil-
lons des paramètres du biais en intensité et des paramètres de transformation peu-
vent être générés par la distribution a posteriori en utilisant des méthodes MCMC
et une approche par maximum a posteriori (MAP) permet d'estimer le mode de
cette loi.

Résultats et discussion
Quatre niveaux d'atrophies (−14, 6%, −9, 9%, −4, 7%, −1, 6%) ont été simulés pour
les sujets 2 et 7 de la base d'images IBSR. La méthode présentée précédemment
est comparée avec quatre algorithmes de recalage non-rigide : Noblet et coll. [98],
ANTS [10], Vemuri et coll. [157] et une méthode utilisant sur les B-splines pour
modéliser le champ de déformation, mise en ÷uvre dans ITK (Insight Toolkit).
L'approche bayésienne permet d'obtenir de meilleurs résultats que les méthodes de
Noblet et coll., de Vemuri et coll. et l'approche disponible dans ITK (correspondant
à une optimisation déterministe). L'approche s'est révélée également compétitive
par rapport à ANTS pour six expériences sur huit en utilisant 648 points de contrôle
pour les B-splines. Les di�érences de performances sont dues à di�érents modèles
de transformation, de régularisation et autres contraintes employées telles que la
préservation de la topologie par exemple. Tandis que les méthodes ANTS et Noblet
et coll. sont des approches multi-résolution, Vemuri et coll. et notre algorithme ne
sont pas mises en ÷uvre dans un cadre multi-résolution. Pour les mêmes raisons,
les cartes de jacobien obtenues sont très di�érentes. Notre approche fournit notam-
ment des cartes plus lisses que celles obtenues avec les autres méthodes, notamment
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en raison du nombre de paramètres utilisés pour caractériser le champ de déforma-
tion. La distribution du jacobien obtenue à partir de l'algorithme MCMC, était
mono-modale pour la plupart de nos tests. Pour l'approche MCMC, la longueur
des intervalles de con�ance a été d'environ 2% de l'atrophie en considérant un bruit
gaussien de 35 dB et ces intervalles contenaient dans nos expériences l'estimation
ponctuelle de l'atrophie par maximum a posteriori (MAP). Les erreurs observées
avec cette méthode sont de l'ordre de 0, 22− 1, 61%.

Pour conclure, l'approche bayésienne a fourni des résultats très intéressants
tant en présence de bruit ou d'inhomogénéité en intensité dans les images. La
modélisation bayésienne et les techniques d'échantillonnage MCMC nous a per-
mis d'élaborer un cadre pour l'estimation de l'atrophie cérébrale. Choisir les bons
modèles pour les di�érentes quantités d'intérêt est une étape clé. Cependant, les
méthodes d'échantillonnage MCMC sont coûteuses en temps de calcul, notamment
lorsque le nombre de paramètres à échantillonner augmente. La motivation concer-
nant l'utilisation d'un tel cadre mathématique est de pouvoir fournir des estima-
tions des incertitudes des mesures d'atrophie. Nos résultats ont justi�é l'intérêt de
développer une approche bayésienne et ce cadre semble être très prometteur pour
l'avenir.

6 Conclusions
Le travail e�ectué dans le cadre de cette thèse est consacré à l'estimation de l'atrophie
cérébrale longitudinale à partir d'images IRM.

La simulation d'atrophie cérébrale est un des moyens de générer une vérité terrain
nécessaire pour l'évaluation de méthodes d'estimation d'atrophie. Les performances
de trois algorithmes disponibles à la communauté (SIENA, SIENAX et BSI-UCD) et
l'algorithme de recalage non-rigide de Noblet et coll. ont été évaluées dans ce cadre.
Les expériences menées ont montré que SIENA fournit les estimations les plus �-
ables des trois algorithmes disponibles (SIENA, SIENAX, BSI-UCD). Cependant,
l'approche développée par Noblet et coll. a permis d'obtenir de meilleurs que SIENA
dans une seconde série d'expériences. Par ailleurs, l'inhomogénéité en intensité et
le bruit contribuent majoritairement à la hausse des erreurs dans l'estimation de
l'atrophie par rapport aux artefacts d'interpolation et aux distorsions géométriques.

Cette étude nous a permis d'identi�er que les étapes essentielles pour SIENA
et BSI-UCD sont le recalage et la segmentation du cerveau (liée à la précision de
l'extraction du cerveau). Pour SIENAX, le goulot d'étranglement concerne princi-
palement l'étape d'extraction du cerveau. L'algorithme de Noblet et coll. dépend
à la fois la précision du recalage non-rigide et de l'étape d'extraction de la zone
d'intérêt. Le recalage est notamment fonction de nombreux aspects tels que le
modèle (le critère de similarité, la régularisation) et les paramètres algorithmiques
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(multi-résolution et optimisation).

Cette étude a permis de montrer que les erreurs d'estimation obtenues dans ces
expériences étaient comparables au taux annuel d'atrophie (0, 5 à 2.8%) observée
pour diverses pathologies. Il s'agit d'une des raisons qui nous ont motivé à éla-
borer un cadre permettant l'estimation des incertitudes pour la mesure de l'atrophie
cérébrale.

À cette �n, un nouveau cadre pour la construction d'intervalles de con�ance
des méthodes d'estimation de l'atrophie a été proposé. La caractéristique la plus
remarquable de cette approche est qu'elle a été capable de corriger les erreurs qui
découlent de biais dans les estimations de l'atrophie ainsi que d'inclure les arte-
facts présents dans les images IRM dans l'estimation de l'atrophie. L'utilisation
d'une base d'apprentissage permet l'étude de di�érentes zones du cerveau, d'inclure
plusieurs types d'artefacts selon les besoins de l'étude. L'e�cacité de ce cadre a été
démontrée en comparant trois algorithmes de recalage déformable (Noblet et coll.,
ANTS and Vemuri et coll.) pour la création d'intervalle de con�ance de mesures de
l'atrophie dans l'hippocampe. Cette analyse con�rme que la correction de ce biais
est nécessaire pour renforcer la précision des méthodes d'estimation de l'atrophie
cérébrale. L'origine de ce biais peut être expliquée par l'utilisation de di�érents
modèles de transformation ou de régularisation par exemple. Cette étude a montré
également que l'algorithme ANTS fournit les intervalles de con�ance les plus signi-
�catifs par rapport aux méthodes de Noblet et coll. et Vemuri et coll..

Dans la dernière partie de cette thèse, un nouvel algorithme d'estimation de
l'atrophie a été développé. Nous avons construit un modèle bayésien complet fa-
cilitant l'estimation des intervalles de con�ance des mesures de l'atrophie dans une
région d'intérêt. La formulation bayésienne se composait de la modélisation de la
transformation non-rigide et des inhomogénéités en intensité. Les résultats obtenus
sur des images dégradées par un bruit gaussien ont montré que l'approche bayési-
enne fournit dans la plupart des cas de meilleurs résultats que les méthodes d'ANTS,
de Noblet et coll. et de Vemuri et coll.. L'étude menée a également montré que
l'estimation des variations d'intensités et de l'atrophie sont liées [109]. Dans nos
expériences, nous avons montré qu'il était préférable d'estimer le biais en intensité
et l'atrophie séparément. Bien que cette approche soit très coûteuse en temps de
calcul, l'approche développée dans cette thèse permet d'obtenir de façon rigoureuse
des intervalles de con�ance de l'atrophie mesurée à partir d'images IRM.

Les contributions principales de cette thèse sont les suivantes:

• Développement d'un cadre qui a permis la comparaison des approches exis-
tantes d'estimation de l'atrophie du cerveau par la création d'une vérité terrain
simulée et l'évaluation des méthodes largement utilisées (e�et d'inhomogénéité
en intensité, bruit, distorsions géométriques, artefacts d'interpolation et lé-
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sions).

• Estimation de l'incertitude dans l'atrophie estimée pour tout algorithme dans
une région d'intérêt sous la forme d'intervalles de con�ance; le point clé con-
cerne la correction de biais des estimations de l'atrophie.

• Construction d'un modèle bayésien complet pour l'estimation simultanée de
l'atrophie, des biais en intensité des images IRM et l'estimation des intervalles
de con�ance sur l'atrophie estimée.



Chapter 1

General Introduction

Several diseases a�ecting the central nervous system, which include Multiple Scle-
rosis (MS), Alzheimer's and schizophrenia, are characterised by decreasing brain
volume. This process is known as brain atrophy which is a general term represent-
ing the decrease in size or wasting away of the brain due to loss of neurons and
connections between them. Clinical studies suggest that brain matter loss begins
early in the course of diseases such as MS. In addition, there has been increasing
amount of evidence linking brain atrophy to a variety of neurological and cogni-
tive impairments. Thus, brain atrophy has emerged as a conspicuous biomarker of
disease progression. Consequently, estimation of brain volumetric change has been
given a fair amount of attention in the recent past by the research community. Au-
tomated tools, capable of detecting changes in the brain accurately, are the need of
the day as they facilitate disease diagnosis and prognosis.

Magnetic Resonance Imaging (MRI) techniques are an important non-invasive
means of examining changes in the brain because they provide good contrast between
di�erent tissues of the brain. Developing image processing programs for manipulat-
ing MR images, therefore, o�er ways of measuring brain volume loss in the course
of a disease.

The purpose of this thesis is to investigate image processing methods for esti-
mating brain atrophy endured by MS patients. Longitudinally acquired 3D MR
images of a patient are compared with an aim of obtaining an estimate of loss in
brain volume in a period of time. Such analyses are referred to as longitudinal brain
atrophy estimations.

Three major parts de�ne the work produced in this thesis.

The �rst part deals with the development of a framework for evaluating exist-
ing approaches of longitudinal brain atrophy estimation using simulated ground-
truths. Acknowledging the fact that MR acquisitions are not free of artefacts, one
expects that they would interfere with the normal functioning of an image processing
method. For this reason, extensive validation of existing approaches of estimating
brain atrophy is necessary to understand the e�ect of various MR artefacts. Never-
theless, validation of methods is never an easy task, in the real scenario, due to the
absence of gold standards for comparison.
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In order to create gold standards, an approach for realistic simulation of brain
tissue loss that relies on the estimation of a topology preserving B-spline based
deformation �elds is utilised. Using these gold standards, examination of the per-
formance of three standard brain atrophy estimation methods SIENA, SIENAX and
BSI-UCD, on the basis of their robustness to various sources of error (bias-�eld in-
homogeneity, noise, geometrical distortions, interpolation artefacts and presence of
lesions), is performed in detail. The results show that, in general, bias-�eld inho-
mogeneity and noise lead to larger errors in the estimated atrophy than geometrical
distortions and interpolation artefacts. Further experiments are performed in order
to include a non-rigid registration (NRR) algorithm of Noblet et. al in the compar-
ison. Experiments on 18 di�erent anatomical models of the brain after simulating
whole brain atrophies in the range of 0.2 − 0.6% indicated that, in the presence of
bias-�eld inhomogeneity and noise, mean errors of 0.4472± 0.3074, 3.4483± 1.7303,
1.5255± 0.6828 and 0.3256± 0.1415 may be expected in the atrophy estimated by
SIENA, SIENAX, BSI-UCD, and Non-rigid registration (NRR) algorithm of Noblet
et. al, respectively. This step is instrumental in pinpointing the sources of errors
arising from MR artefacts and disease evolution (MS lesions).

The second part of the thesis is dedicated to statistical analysis of maps of
volumetric change in an individual brain so as to gain an insight into the uncertain-
ties associated with the estimated atrophy. A generic framework for constructing
con�dence intervals for atrophy estimated in any region of interest in the brain is
developed. All uncertainty estimations are performed separately i.e. they do not
form a part of the atrophy estimation method. Hence, this framework can be used
for any given method such as SIENA, BSI or an NRR algorithm.

This framework works in two steps. First a learning database is created with
the help of a simulated ground truth. This step is carried out to learn the mean and
variance of each estimator of atrophy. Next this database is used for constructing
con�dence intervals for an estimated atrophy. Although, we are interested in eval-
uating longitudinal atrophy in one patient, this database was built independent of
patient's anatomy. Due to the computational complexity involved in constructing
this database, it is stored and reused for future uncertainty estimations in atrophy
for any patient. Con�dence intervals are developed for estimated hippocampal at-
rophy that a patient has undergone over time. This framework is tested for three
NRR algorithms developed by Noblet et al., Avants et al. (ANTS) and Vemuri et
al.). Results show that ANTS algorithm produces compact con�dence intervals in
comparison to the other two methods. Maximum lengths of con�dence intervals are
14.32%, 4.82% and 8.935% for Noblet et. al, ANTS and Vemuri et al., respectively
for the highest atrophy in the database (−14.87%).

Finally, in the quest of creating a novel atrophy estimation approach, that has the
potential of quantifying longitudinal brain atrophy from serial images of a patient
along with the related uncertainties, a Bayesian registration framework is devised.
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Since a non-rigid registration method is implemented, atrophy in structures of inter-
est could be evaluated. Additionally, Bayesian registration also allows us to obtain
probability distributions of all the quantities of interest as a by-product of the esti-
mations. In order to deal with images degraded with bias-�eld inhomogeneity and
noise, the estimation of the deformation �eld, bias-�eld inhomogeneity and noise is
achieved simultaneously. In our formulation, the deformation �eld is modeled using
B-splines, bias-�eld inhomogeneity with Legendre polynomials and Gaussian noise
is considered. Unfortunately, it is not possible to analytically analyse the poste-
rior probability distribution for the deformation �eld or for other unknowns, nor is
it feasible to draw samples directly from it. A widely used Markov Chain Monte
Carlo (MCMC) method called Metropolis-Hastings algorithm allows us to perform
the sampling. Tests are carried out on real images with simulated longitudinal hip-
pocampal atrophy and comparisons are made with other NRR methods (Noblet et
al., ANTS and Vemuri et al.). While the observed errors with the new method are
in the range of 0.22 − 1.61%, the con�dence intervals could localise the atrophy
within 2%. Besides, our approach also outperformed other deterministic algorithms
in most of the cases. Thus, it can be concluded that our method holds great promise
for atrophy estimations along with the uncertainty in the coming years.

Thesis plan
This dissertation is organised in four chapters.

The �rst part, chapter 2, is a brief introduction to the structure of the brain,
MS disease, brain atrophy in MS, MRI methods and image processing tools studied
and used in this work. Section 2.2 provides a description of MS and its subtypes
followed by diagnosis and treatment of MS. In section 2.3, brain atrophy mecha-
nisms in MS, types of brain atrophy, treatment procedures and importance of brain
atrophy as a marker of disease progression is discussed. The basic principle of MRI,
MR anatomical scans, MR artefacts (bias �eld inhomogeneity, noise, geometrical
distortions) and their correction strategies are detailed in section 2.4. A detailed lit-
erature survey of existing methods of estimating atrophy using MRI is presented in
section 2.5. Brain extraction algorithms and their performances are summarised in
section 2.6. Current issues in brain atrophy estimation are addressed in section 2.7.

It is important for the user to know the potential reasons of failure and further
quanti�cation of errors for these methods. Hence, chapter 3 is dedicated to the vali-
dation of existing freely available atrophy estimation methods using a ground truth.
A survey of existing validation studies and performance comparison of atrophy esti-
mation methods is presented in section 3.1. The proposed framework is detailed in
two parts: �rst, an atrophy simulation algorithm that allows us to create a ground
truth is detailed in section 3.2.1 which is followed by simulation of artefacts for the
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validation framework are explained in section 3.2.2. Results of atrophy simulation
on BrainWeb images are presented in section 3.3.1 and evaluation experiments for
SIENA, SIENAX, BSI and JI are shown in section 3.3.2. The �ndings from this
study are listed in section 3.5.

Chapter 4 deals with the estimation of uncertainties in atrophy estimation. Ex-
isting uncertainty estimation methods in image registration are discussed in sec-
tion 4.2 including Bayesian registration and MCMC methods in section 4.2.3. The
proposed generic framework for estimating uncertainty in longitudinal brain atrophy
by means of constructing con�dence intervals for any given method is discussed in
section 4.4. It consists of learning uncertainties from example simulations using a
ground-truth (section 4.4.1) and construction of con�dence intervals (section 4.4.2).
The constructed con�dence intervals are shown for three NRR methods [98], [10]
and [157] on real images in section 4.5 which is mainly dedicated to quanti�cation
of bias in atrophy estimations and the evaluation of the con�dence intervals.

Finally, a novel Bayesian registration method is described in chapter 5 to si-
multaneously compute bias �eld inhomogeneity, noise and brain atrophy. The pro-
posed Bayesian model is described in section 5.1 in three parts: structural modelling
(section 5.1.1), de�nition of relations between the transformation, bias �eld inho-
mogeneity, noise (section 5.1.2) and, probability modelling and MCMC sampling
procedure (section 5.1.3). Experimental results on estimation of bias �eld inho-
mogeneity and atrophy from our framework are compared with popular bias �eld
correction methods (N4ITK [155] and di�erential bias correction of Lewis et al. [80])
and four di�erent non-rigid registration approaches of Noblet et al. [98], Vemuri et
al. [157], ANTS [10] and another cubic B-spline based registration method in sec-
tion 5.3. Results are discussed in section 5.4.

The overall conclusions, �ndings from this thesis and future perspectives are
presented in chapter 6.



Chapter 2

Background

Multiple sclerosis (MS) is a central nervous system disease, a�ecting between 2 to
150 persons per 100, 000 in the world. In Europe, United States, Russia, Canada,
Australia and New Zealand, this disease is rampant. The rarity of MS among Samis,
Turkmen, Uzbeks, Kazakhs, Kyrgyzis, native Siberians, North and South Amerindi-
ans, Chinese, Japanese, African blacks and New Zealand Maoris, as well as the high
risk among Sardinians, Parsis and Palestinians, indicate that di�erent racial and
ethnic groups have di�erent susceptibility to this disease and explains the geograph-
ical unevenness in the presence of MS [123].

MS is a highly researched disease with decrease in brain volume being one of
its characteristics [92]. With the development of robust image processing methods,
MRI techniques have become indispensable in studying MS disease progression by
measurement of brain atrophy, among other things. MRI comes with the advantage
of providing high tissue contrast however, it is prone to artefacts that modify the
acquired image. For example, MR noise is responsible for modifying the appearance
of the true signal in the image while others such as geometrical distortion mimic
the pathology or anatomy. Presence of artefacts impedes the correct functioning of
image processing methods.

This chapter is a brief introduction to the structure of the brain, MS disease,
MRI methods and image processing tools studied and used in this thesis. section 2.2
provides a description of MS disease and brain atrophy mechanisms in MS. Next,
MRI artefacts and correction strategies are detailed in section 2.4. A literature sur-
vey of existing methods of estimating atrophy using MRI is presented in section 2.5.

2.1 The brain
Let us examine the structure of the brain cursorily in order to be better equipped
to understand the subsequent sections. Neurons are basic building blocks of the
nervous system which (see Fig. 2.1) consist of four main parts:

• the nucleus, the mitochondria and other organelles required by the cell (called
the cell body).

• the dendrites that establish connections and assist in receiving chemical signals
from other neurons.
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• the axon or nerve �bre which connects di�erent parts of the body to the brain,
and passes electro-chemical signals.

• the axon terminal where the axon connects with other neurons or muscles to
pass on signals (synapses).

2.1.1 White matter
White Matter (WM) consists mostly of myelinated axons. The function of an axon
is to receive and interpret messages in the brain. In order to speed up transmissions
of electric signals through the axons, an insulating layer known as myelin sheath
surrounds them (see Fig. 2.1). It is due to the white colour of myelin that this part
of the brain is called �white matter�.

WM is located in the inner layer of the cortex, the optic nerves, the central and
lower areas of the brain (the brainstem) and surrounding the grey matter in the
spinal cord.

Figure 2.1: Structure of a neuron (Source: http://www.ainenn.org/). Figure
shows the cell nucleus and the main body (soma). Neurons have extensions called
dendrites whose main function is to receive chemical messages. Also shown are ax-
ons that pass electro-chemical signals to other neurons. The axons are covered with
a myelin sheath that acts as an insulator and accelerates communication of signals.
At the axon terminal are located the synaptic knobs, where the electro-chemical
signals are converted to chemical signals and passed on to other neurons.

http://www.ainenn.org/
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2.1.2 Grey matter
Grey matter (GM) contains neural cell bodies and their dendrites as opposed to
white matter which contains mostly myelinated axons. In living tissue, grey matter
has grey-brown colour and includes brain areas responsible for muscle control, sen-
sory perception such as seeing and hearing, memory, emotions, and speech.

It is distributed at the surface of the cerebral hemispheres (cerebral cortex)
and of the cerebellum (cerebellar cortex), as well as in the depth of the cerebrum
(thalamus; hypothalamus; sub-thalamus, basal ganglia - putamen, globus pallidus,
nucleus accumbens; septal nuclei), deep cerebellar nuclei (dentate nucleus, globose
nucleus, emboliform nucleus, fastigial nucleus), brainstem (substantia nigra, red
nucleus, olivary nuclei, cranial nerve nuclei) and spinal white matter (anterior horn,
lateral horn, posterior horn).

2.1.3 Cerebrospinal �uid
It is a colourless �uid that surrounds the brain and the spinal cord. Cerebrospinal
�uid (CSF) is produced by an organ, called the choroid plexus, in the ventricles and
by the surface of the roof of the third and fourth ventricles. The major functions of
CSF are to protect the brain from injury and to maintain chemical stability.

Some internal parts of the human brain are shown in Figure 2.2.

Figure 2.2: A sagittal view of the human brain. The cerebral and cerebellum WM,
CSF and GM (cerebral cortex, hippocampus and cerebellum) are shown. This �gure
has been obtained by segmenting a T1 weighted MR image from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) http://adni.loni.ucla.edu/ database
with FreeSurfer's segmentation algorithm http://surfer.nmr.mgh.harvard.edu/.

http://adni.loni.ucla.edu/
http://surfer.nmr.mgh.harvard.edu/
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2.2 Multiple sclerosis
MS is known to be an in�ammatory demyelinating disease constituted mainly by
multi-focal areas of WM lesions. MS falls into the category of autoimmune diseases
where a damaged immune system is forced to attack its own tissues, on account of its
inability to distinguish between virus proteins and body's own myelin (a substance
responsible for insulating nerve endings) and thus produces antibodies that attack.
This condition is known as autoimmunity meaning that the body has developed an
allergy towards itself. Readers seeking a thorough treatment of MS are referred to
[113].

2.2.1 Causes
The causes of MS have not, until now, been clearly understood. Researchers all
over the world are working towards �nding an explanation to this complicated phe-
nomenon. Many scientists believe that the root cause of the symptoms experienced
by MS patients can be explained through understanding the process of demyelina-
tion or loss of myelin. When the myelin sheath is lost, nerves are coerced to transmit
signals tardily. Loss of myelin may even result in complete loss of transmission in
severe cases. This process leads to patches of scarring or `sclerosis', occurring where
neurons have lost myelin. Such patches of in�ammation are known as lesions or
plaques and are abundant in the WM namely in centrum semiovale, corpus callo-
sum, optic chasm, optic nerves, brain stem and spinal cord [115]. MS derives its
name from these areas of scarring. Fig. 2.3 illustrates an MS patient with lesions.

Figure 2.3: (a-c) Sagittal �uid-attenuated inversion recovery (FLAIR) images ob-
tained for a 27 year old woman with MS with demyelinating lesions in the periven-
tricular white matter and corpus callosum. There is extensive involvement of callo-
sum, which is a hallmark of MS. (Source: [115] pp. 172).

Even when the patches of scarring caused by demyelination have healed and
remyelination has occurred, the response time of the nerve endings tends to remain
slower. The process of demyelination along with an in-vivo MR image of an MS
patient illustrating con�uent demyelination are shown in Fig. 2.4.
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Figure 2.4: Axial T1-weighted FLAIR MR image showing con�uent demyelination.
(Source: [107]).

2.2.2 Symptoms
Most patients experience their �rst symptoms of MS when they are as young as 20
years of age. The initial symptom of MS is often blurred or double vision, red-green
color distortion, or complete blindness in one eye. The course of patients with MS
disease is largely unpredictable, with patients su�ering from just any neurological
symptom from muscle weakness, di�culty in coordination, impaired walking to tran-
sitory abnormal sensory feelings such as numbness and prickling. In worst cases, MS
can produce partial or complete paralysis. Some patients may also experience pain.
Aphasia, tremors, and dizziness are also frequently seen. Cognitive impairments
such as di�culties with concentration, attention, memory, and poor judgement are
prevalent in almost half of the MS patients. Depression is another common feature
of MS. With the lapse of time, MS patients may su�er a variety of symptoms of
which some are reversible and others not [127].

2.2.3 Multiple sclerosis subtypes
Based on factors including frequency of clinical relapses, time to disease progression,
and lesion development on MRI, four types of MS can be distinguished [85]:

Relapsing/remitting MS (RRMS)
This type of MS is characterised by relapses and in this period new symptoms may
appear and old ones may resurface or worsen. The relapses are followed by remission,
during which the patient fully or partially recoups from the adverse e�ects during
the relapse. Relapses can last for days, weeks or months and recovery can be slow
and gradual or almost instantaneous. Almost all patients presenting with MS are
�rst diagnosed with relapsing/remitting disease.
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Secondary progressive MS (SPMS)
SPMS is the next phase of the disease for persons who have su�ered from relaps-
ing/remitting MS for some years. This is characterised by a gradual worsening of
the disease between relapses. A few relapses may be experienced in the beginning
of SPMS but after a while these will result into a general progression. There may
be relapses followed by a periods of remissions, but once a person has entered this
phase, full recovery is generally not possible.

Primary progressive (PPMS)
This type of MS is characterised by a gradual progression of the disease from its onset
with no remissions at all. There may be periods when there is no disease activity
or levelling o� of disease activity. As with SPMS, there may be good and bad days
or weeks. The disease is seen mostly a�ecting the spinal cord but often migrates
into the brain, but is less likely to damage brain areas like in relapsing/remitting or
secondary progressive.

Progressive relapsing MS (PRMS)
In this form of MS, progression of disease is seen from its onset, emphasised by
relapses. The patient may recover signi�cantly immediately following a relapse. At
the same time, there is a gradual worsening of symptoms between the relapses.

Figure 2.5 illustrates how disability is related to time in di�erent forms of MS.

2.2.4 Diagnosis and treatment
There is no single test that con�rms the diagnosis of MS as the occurrence of symp-
toms may be random, a�ecting multiple areas of the body. In 2001, an international
panel in association with the National Multiple Sclerosis Society (NMSS) of America
recommended a revised diagnostic criteria for MS called the McDonald criteria [90].
These criteria facilitated the diagnosis of MS in patients with signs and symptoms
suggestive of the disease such as mono-symptomatic disease, disease with a typical
relapsing-remitting course or insidious progression but no clear attacks and remis-
sions. Since 2001, this criteria has been revised two times in 2005 [90] and in 2011
[111] where the use of imaging for demonstration of distribution of central nervous
system lesions in space and time has been simpli�ed and in some cases distribution
of lesions can be established by a single scan. The aim of these revisions was to
simplify the criteria while preserving their diagnostic sensitivity and speci�city in
order to allow a early diagnosis, uniform and widespread use.

Evidence of chronic in�ammation of the central nervous system is sought through
a procedure known as lumbar puncture, where CSF is collected and analysed. Ad-
ditionally, nerve conduction studies of optic, sensory and motor nerves can reveal
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(a) RRMS (b) SPMS

(c) PPMS (d) PRMS

Figure 2.5: Figure showing the increase in disability with time for di�erent types of
MS. RRMS: unpredictable attacks followed by periods of remission, SPMS: initial
RRMS suddenly begins to exhibit increased disability with no remissions, PPMS:
steady increase in disability without attacks and PRMS: steadily increasing disabil-
ity since onset with superimposed attacks. (Source: [113]).

evidence about presence of MS as the process of demyelination results in sluggish
nerve conduction. Several laboratory tests may be necessary to exclude other dis-
eases such as sarcoidosis, vasculitis and Lyme disease that exhibit symptoms similar
to MS. Brain and spinal cord atrophy, conceded by MRI, is also used as another
diagnostic criteria for MS [84, 93, 12].

Treatment of MS may be handled in many ways. Disease modifying drugs can
help reduce the severity or frequency of relapses by altering or suppressing the activ-
ity of the body's immune system. Common drug treatments include interferon beta-
1a, interferon beta-1b, glatiramer acetate and �ngolimo for relapsing forms of MS
and mitoxantrone for rapidly relapsing-remitting, primary-relapsing and secondary-
progressive forms of MS [110, 24]. Some symptoms of MS can be managed with
the help of specialists such as physiotherapists and psychologists who can help with
mobility, coordination and memory or concentration problems.

2.3 Brain atrophy
Brain atrophy is a general term representing the decrease in size or wasting away
of brain matter due to loss of neurons and connections between them. It is a char-
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acteristic of many diseases a�ecting the central nervous system such as Alzheimer's
(AD) [25, 138], MS [136] and Schizophrenia [17], these diseases being very prevalent
in the world and evolving over decades. The extent of neurological dysfunctions and
cognitive impairments in the disease course determine the quality of life of patients
[74]. As a result, rapid advances in research in areas related to these diseases are
imperative, given the duration of the disease and constant assistance needed by pa-
tients in order to perform simple chores. Although brain atrophy is a typical feature
of various neurodegenerative diseases, the focus in this thesis is on studying longi-
tudinal brain atrophy in MS patients. Figure 2.6 shows MRI scans of an individual
taken at di�erent instances of time indicating brain atrophy progression. Notice the
prominent enlargement of ventricles as atrophy becomes more and more severe.

Figure 2.6: Brain Atrophy in MS shown on T1-weighted MR images are shown
for normal controls in their �fth decade (a-b) compared with age-matched patients
with MS (c-d). Note thinning and decreased volume of corpus callosum (marked
with orange arrows). Also shown are cortical atrophy (marked with white arrows)
and ventricular enlargement (marked with yellow arrows) in MS. (Source: [178])
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2.3.1 Brain atrophy in MS
The emergence of brain atrophy in MS is related to a combination of multiple
factors. The exact mechanisms underlying central nervous system atrophy in MS
patients are largely unknown, evidence exists that atrophy may arise due to e�ects of
dynamic in�ammation within the central nervous system, including demyelination,
axonal injury, neuronal loss, Wallerian degeneration, and possibly iron deposition
[93]. Although it is di�cult to determine the individual in�uence of these factors
on atrophy, it has been shown to be a sensitive marker of disease evolution in MS.

2.3.2 Types of brain atrophy
Brain atrophy may manifest locally in a part of the brain or globally a�ecting
the entire brain. In local or regional atrophy, the damage is concentrated on a
particular area of the brain, which may become functionally impaired. Generalised
brain atrophy involves the whole brain, and may be associated with a whole range
of problems. Parts of GM of the brain are generally atrophied early in the disease
course [180, 41]. In MS, local cortical thinning is observed beside an overall reduction
of the cortical thickness with disease progression [125]. Cortical atrophy has been
shown to be related to lesion load and disability occuring even in patients with mild
disability [26]. Another prominent feature of brain atrophy in MS is ventricular
enlargement in Relapsing-Remitting MS. On the other hand, cortical atrophy seems
to be more important in the progressive forms of MS [104]. Hippocampus, a critical
brain area for memory retention, has been shown to undergo atrophy that surpasses
the global brain atrophy in MS [135]. Dietemann et al. have shown that corpus
callosum atrophy appears earlier than brain atrophy in the course of MS and severity
of clinical symptoms is more pronounced in patients with severe corpus callosum
atrophy [36]. Global brain atrophy measurements have also been widely studied
and accepted not only in MS but in other diseases too. Brain atrophy is observed
in early stages of PPMS and a�ects both GM and WM. WM atrophy appears more
closely related to clinical outcome and WM local damage than GM atrophy [126].
Studies have reported annual global brain atrophy rates in MS (in both early and
late stages) between 0.5% and 0.8% [4] and between 1% and 2.8% for AD patients
[138].

2.3.3 Treatment of brain atrophy
Until now, there is no complete cure for brain atrophy. The treatment for brain
atrophy concentrates on ways of preventing further damage if possible through drugs.
For example, Zivadinov et al. [177] have explored the e�ect of steroids on brain
atrophy. They show that chronic use of high dose intravenous methylprednisolone
(IVMP) in patients with MS may limit brain atrophy progression over long-term via
di�erent immunological mechanisms, including down regulation of adhesion molecule
expression on endothelial cells, decreased cytokine and matrix metalloproteinase
secretion, decreased auto reactive T-cell-mediated in�ammation and T-cell apoptosis
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induction, blood-brain barrier closure, demyelination inhibition and remyelination
promotion. In another study, clinical trials dedicated to analysing brain atrophy
progression as a result of undertaking interferon beta-1a therapy have observed
slowing of whole brain, GM atrophy and T1-hypointense lesion (also called T1 black
hole and is an area of severe tissue damage detected by MRI) volume accumulation
in Relapsing-Remitting MS [179]. Aside from that, therapy focused on aiding the
patients in coping with the decreased brain function is performed. Patients regularly
undergo neurological exams with an aim of monitoring their progress. In case of a
seditious decline, patients may be put in a special care facility if their caretakers are
unable to provide support due to excessive brain damage.

2.3.4 Brain atrophy as a biomarker
Clinical studies suggest that brain matter loss begins early in the disease course of
MS and is seen in all stages of the disease [92, 42]. There has been increasing amount
of evidence linking brain atrophy to a variety of neurological and cognitive impair-
ments. In a recent study, it was shown that decline in ambulatory function is related
to atrophy of central brain regions exclusively, whereas decline in neurologically more
complex tasks for coordinated hand function is related to atrophy of both central
and peripheral brain regions [65]. Moreover, there is an ongoing debate about the
relationship between degenerative and in�ammatory processes in MS, which may
be crucial in deciding the future course of disease treatments [102]. Studies have
highlighted the importance of the irreversible tissue destruction in determining dis-
ease progression more than lesion growth assessments [92, 15, 4, 136, 40]. Whole
brain and regional atrophy estimates are sensitive measures of neuro-degenerative
component of multiple sclerosis and have the potential of evaluating future anti-
in�ammatory, remyelinating or neuro-protective therapies in clinical trials. Regional
atrophy detection is particularly useful in understanding speci�c neuro-physical dys-
functions or other speci�c clinical �ndings [35]. Another dimension of research where
the atrophy measures prove to be valuable is when studying di�erent forms of MS.
They enable us to study any correlations that exist between regional atrophy and
the disease subtype [104]. These destructive processes hold promise and are capable
of providing novel therapeutic targets to help MS patients. In the light of these
factors, brain atrophy in conjunction with MRI methods has emerged as an impor-
tant biomarker of disease progression and severity [165]. Thus, the last decade has
witnessed the use of MRI in the development of a number of sophisticated image
processing tools for quantifying the loss in brain volume.

2.4 Magnetic resonance imaging
MRI is a non-invasive medical exam that helps the physicians in diagnosing and
treating medical conditions. Since the eighties, MRI has presented itself as a power-
ful imaging technique as a way of visualising detailed structures in-vivo. MRI makes
use of electromagnetic waves, which means that there is no exposure to radiation
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such as in X-rays or computed tomography (CT) scans. In addition, it provides
good tissue contrast enabling the detection or appearance of changes such as tu-
mours or cancerous tissues. The basic principle of MRI is that a magnetic �eld,
much stronger than that of the earth, forces hydrogen atoms in the body to line
up in a certain way. When radio waves are sent towards these lined-up hydrogen
atoms, they rebound, and a computer records the signal. Di�erent types of tissues
send back di�erent signals and accordingly tissue contrast appears in an MR image.
Interested readers are referred to [52] for an in-depth understanding of key funda-
mental and operational principles of MRI.

The basic parameters of image acquisition with MRI are echo time (TE) and
repetition time (TR), which are optimised to provide image contrast based on the
chemical sensitivity of MRI. The echo time (TE) represents the time between the
start of the Radio frequency (RF) pulse and the maximum in the signal. The second
parameter, repetition time (TR), is the amount of time that exists between succes-
sive pulse sequences applied to the same slice. Standard MRI scans are described
below:

T1-weighted MRI These scans are the most commonly run scan that use a gra-
dient echo (GRE) sequence, with short TE and short TR. This gives rise to contrast
between fat and water: with water darker and fat brighter. Due to the short repeti-
tion time (TR) this scan can be run very fast allowing the collection of high resolution
3D datasets. The main property of the T1-weighted scans is that they allow us to
obtain a GM/WM contrast. In these images, WM appears brighter than the GM.
See Fig. 2.7(a).

T2-weighted MRI As in the T1-weighted scan, fat is di�erentiated from water.
However, unlike the T1-weighted images, fat shows brighter and water lighter. As a
result, brain WM therefore shows as darker than the GM, which facilitates imaging
oedema. T2-weighted scans use a spin echo sequence, with long TE and long TR.
They have been in use for a long time since the spin echo sequence is less susceptible
to inhomogeneities in the magnetic �eld. See Fig. 2.7(b).

Proton density weighted MRI Unlike T1 or T2 weighted scans, spin density
or proton density weighted scans gain contrast only from di�erences in the amount
of available spins (hydrogen nuclei in water). It uses a spin echo or sometimes a
gradient echo sequence, with short TE and long TR. See Fig. 2.7(c).

Fluid attenuated inversion recovery (FLAIR) It is an inversion-recovery
pulse sequence used in order to null signal from �uids. For example, it can be
used in brain imaging to suppress CSF so as to bring out the periventricular hyper-
intense lesions, such as MS plaques. By carefully choosing the inversion time TI (the
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time between the inversion and excitation pulses), the signal from any particular
tissue can be suppressed. See Fig. 2.7(d).

(a) T1-weighted scan (b) T2-weighted scan (c) Proton Density Weighted

(d) FLAIR

Figure 2.7: Anatomical MR scans (Source: (a-c) BrainWeb Image Database [7] and
(d) http://www.gehealthcare.com/euen/mri/images/neuro4.jpg)

Other type of scans include Susceptibility weighted imaging (SWI) that exploit
the susceptibility di�erences between tissues to provide contrast and specialised
scans such as di�usion weighted MRI are currently in great use. The local charac-
teristics of water di�usion allows acquisition of in-vivo images of biological tissues.
Di�usion weighted MRI can provide information about damage to parts of the ner-
vous system.

2.4.1 MRI artefacts
The acquired image is altered due to unwanted e�ects of the MRI, known as arte-
facts. Since our goal is to manipulate anatomical MR images for extracting infor-
mation, the role of image artefacts must be clearly understood in order to be able to

http://www.gehealthcare.com/euen/mri/images/neuro4.jpg
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develop robust algorithms. Artefacts a�ect the accuracy of image processing meth-
ods such as registration and segmentation. Therefore, they are discussed in more
detail in the following paragraphs.

Noise is seen as an irregular granular pattern on the images degrading image in-
formation. The main source of noise in the image is the patient's body (RF emission
due to thermal motion) as well as the whole measurement chain of the MR scanner
(coils, electronics etc.) also contributes to the noise. This noise corrupts the sig-
nal coming from the transverse magnetisation variations of the intentionally excited
spins (on the selected slice plane).

Noise in MRI is additive i. e. noisy image F is F (x) = G(x) + N(x) for each
voxel x and the noise free image G. It follows a Rician distribution. The magnitude
of the signal is expressed as [1]:

M =
√

(A+ n1)2 + n2
2 (2.1)

where M is the magnitude image, A is the original noiseless signal level and n1

and n2 are uncorrelated Gaussian noise variables with zero mean and equal variance
σn

2. The probability density function (PDF) of such an image, given by the Rician
distribution as follows:

pM (M |A, σn) =
M

σn2
e
−M2+A2

2σn2 I0

(
AM

σn2

)
u(M) (2.2)

where I0(.) is the second order Bessel function of the �rst kind and u(.) the
Heaviside step function. However, when the signal to noise ratio (SNR) is higher
than 2 dB, this noise can be assumed to be distributed according to a Gaussian
distribution [49].

A real T1-weighted MR image and the distribution of the noise in its background
are illustrated in Figure 2.8(a-b).

RF inhomogeneity or bias-�eld inhomogeneity Slowly changing unwanted
intensity variations arise as a result of inhomogeneity in the uniform magnetic �eld,
inhomogeneity in the applied RF pulse sequence, RF �eld coil(s) and loading of the
coils by the patient. A real T1-weighted MR image having areas of high bias �eld
inhomogeneity is illustrated in Figure 2.8(a).

Generally, bias �eld is modelled as having a multiplicative e�ect on the images.
The image (F ) degraded by the bias �eld (B) is simulated as F (x) = G(x).B(x) for
each voxel x and the bias free image G.
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Partial volume artefacts Partial volume e�ect is caused when a voxel contains
a mixture of tissues and therefore possesses a signal that is an average of the signals
corresponding to these tissues. Smaller voxel size (higher resolution) is recommended
for taking care of this artefact but this is at the cost of a poorer signal to noise ratio
in the image and higher acquisition time.

Geometrical distortions They result from errors in gradient �eld strength and
non-linearity of gradient �elds in the MR scanner. As a consequence, image defor-
mations other than the actual anatomical changes in the brain and are introduced
in the image.

2.4.2 Correction of artefacts
Estimation and eventual correction of artefacts has been an active area of research
for many years. Most of the work has been dedicated to estimating noise, bias-�eld
inhomogeneity and geometrical distortions in MR images.

Noise artefact
We brie�y list the important methodologies adopted for correction of noise in MRI.

Parameter estimation of Rician distribution [1] The most natural way of
correction of noise is by estimating the parameter of the Rician distribution. Com-
plications come from the fact that moments of the distribution in Eq. 2.2 are di�cult
to calculate. However, the even-order moments can be expressed in simple polyno-
mial forms. For instance, the second order moment is:

µ2 = E
{
M2

}
= A2 + 2σn2 (2.3)

In the background of the image, the signal to noise ratio is zero due to lack of
water-proton density in the air, the Rician probability distribution function simpli-
�es to a Rayleigh distribution as follows:

pM (M |σn) =
M

σn2
e
− M2

2σn2 u(M) (2.4)

Another method that the authors call the �conventional approach� focuses on
the relation between noise and signal of the second order moment in a Rician dis-
tribution from Eq. 2.3 and the noise free signal Â is estimated as

Â =
√
〈M2〉 − 2σ2

n (2.5)

where
〈
M2

〉
is the sample second order moment. The estimation of noise from a
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(a) A T1-weighted image with visible bias �eld inhomogeneity

(b) MR noise distribution

Figure 2.8: Sagittal and coronal slices of a T1-weighted image. Notice the prominent
bias �eld inhomogeneity at the top of the head. Noise in the background of an
MR image follows a Rayleigh distribution [1]. The distribution of the noise in the
background is also shown and resembles a Rayleigh distribution.

single image is performed on the background where the signal is assumed to be zero.
An unbiased estimator based on methods of moments is:
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σ̂n
2 =

1
2N

N∑

i=1

M2
i (2.6)

where N is the number of points in the background. This estimator is also the
maximum likelihood (ML) estimate of the parameter for the Rayleigh distribution.

Linear minimum mean squared error (LMMSE) estimator The authors in
[1] have provided a closed form solution to the LMMSE estimator that �lters noise
in images that follows a Rician model using even order moments of the Rician distri-
butions. Closed form solutions are less expensive estimation methods as compared
to optimisation based methods. The �nal expression of the LMMSE estimator is:

Â2
ij =

〈
M2
ij

〉− 2σn2 +Kij(M2
ij −

〈
M2
ij

〉
) (2.7)

with Kij ,

Kij = 1−
4σn2

(〈
M2
ij

〉
− 2σn2

)

〈
M4
ij

〉
−

〈
M2
ij

〉2 (2.8)

where Aij is the unknown intensity value at pixel ij, Mij the observation vector
and 〈.〉 is the LMMSE operator.

The �conventional� approaches (Eq. 2.5), on �rst order moments Eq. 2.6 and
LMMSE (Eq. 2.7) have the disadvantage that a segmentation of the background
must be available and estimation is done considering that the signal is always be zero
in the background. These requirements make the methods sensitive to errors and
artefacts. In order to overcome these limitations, approaches that depend on some
sample local statistics of the image may be used. Using the second order moment and
the mean, two estimators are developed for images having a background. Finally,
another estimator based on variance that can be used on any kind of image following
a Rician distribution with no constraint on the background. Using the local images
statistics also makes the estimators less dependent on the size of estimation window,
uniformity and outliers. For more details and comparison of all these approaches
refer to [1].

Non local means (NLM) �lter based Another important class of denoising
methods is based on NLM �lters [32, 167]. In [32], NLM �lters are used for correcting
Gaussian noise. According to the basic principle of NLM �lters, the denoised value
df(xi) at a voxel xi is as follows:

df(xi) =
∑

xj∈Ω

w(xi, xj)f(xj) (2.9)
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where f(xj) is the intensity at voxel xj and w(xi, xj) is the weight assigned to f(xj)
in the restoration of voxel xi. The function of the weight is to provide a measure
of similarities of the local neighbourhoods Ni and Nj of voxels xi and xj under the
assumptions that w(xi, xj) ∈ [0, 1] and

∑
xj∈Ωw(xi, xj) = 1. NLM �lter de�nition

states that each voxel can be linked to all other voxels, however, the number of vox-
els taken into account can be limited to a smaller subset of voxels (search volume
V ) based on their similarity to each other de�ned by the weight function, centred
at the current voxel xi.

The weight is calculated as:

w(xi, xj) =
1
Zi
e−
‖f(xi)− f(xj)‖2

h2
(2.10)

where Zi is the normalisation constant to make sure that
∑

xj∈Ω

w(xi, xj) = 1 and h

is the smoothing parameter controlling the decay of the exponential function. The
parameter h can be calculated automatically.

In a similar way, NLM �lters are used for correcting Rician noise in [167] where
the corrected intensity dfR(xi) at voxel xi is given by the second order moment
equation of a Rician distribution (Eq. 2.3):

dfR(xi) =

√√√√√

 ∑

xi∈V
wix2

i


− 2σ2

n (2.11)

where σ2
n is the Rician noise parameter. For conventional MRI, the Rician NLM

�lter outperforms the previous version, the Gaussian NLM �lter. Interested reader
may refer to [32, 167] for elaborated explanations.

Curious readers may �nd a survey of some denoising methods in MRI in [61].

Bias-�eld inhomogeneity
Work dealing with bias-�eld inhomogeneity correction has been published since the
early eighties [38]. Sources related to the properties of the MRI device such as failure
of the RF coil, non-uniform B1 �eld (RF �eld strength), non-uniform sensitivity of
the receive only coil (spaces between wire in the coil, uneven distribution of wire),
or presence of non-ferromagnetic material in the imaged object [38] can be corrected
for by shimming techniques [82, 28], special imaging sequences and by employing a
di�erent sets of coils, or by calibrating the MRI device by a phantom or a mathemat-
ical model [97, 154, 156, 166]. Apart from these hardware related inhomogeneities,
there are others related to the shape, position and orientation of the object inside
the magnet, and to the speci�c magnetic permeability and dielectric properties of
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the imaged object [158]. High magnetic �eld scanners are more susceptible to arte-
facts related to the imaged object than low magnetic �eld scanners.

Automated pre-processing methods also deal with these spurious smoothly vary-
ing image intensities. We present a short survey of such methods here.

Approaches that use one image One of the most widely used algorithms for
multiplicative bias-�eld correction is an iterative approach by the name of non-
parametric non-uniform intensity normalisation (N3) [137]. N3 makes it possible
to estimate the bias-�eld and the distribution of the true tissue intensities simul-
taneously. The most important advantage of this algorithm is that no model of
the tissue classes present is required. Recently an improved version of N3 (N4ITK)
has been published where a fast and robust B-spline approximation routine and a
modi�ed hierarchical optimisation scheme has been incorporated for better bias �eld
estimation [155].

Retrospective correction of bias-�eld inhomogeneity has been presented in a
model-based correction method of Meyer et al. [91]. Unlike methods that consider
only multiplicative bias �eld, Meyer et al. model inhomogeneity as having a mul-
tiplicative and an additive component represented by a combination of smoothly
varying basis functions.

Styner et al. [148] have proposed PABIC (Parametric Bias Correction) where
the low-frequency bias �eld is modelled using Legendre Polynomials. The estima-
tion of bias-�eld is formulated as a non-linear energy minimisation problem using an
evolution strategy. Optimisation is carried out in a way such that the information
of the corrected image is minimised while the global intensity statistic is preserved.

In 3-D, the bias-�eld estimate B̂ is derived as follows:

B̂(x, p) =
l∑

i=0

l−i∑

j=0

l−i−j∑

k=0

pijkPi(x)Pj(x)Pk(x) (2.12)

where Pi(.) denotes a Legendre polynomial of degree i. The image coordinates x are
scaled in the range of [−1, 1]. For Legendre polynomials of degree l, the size m of
the parameter vector p is given by:

m = (l + 1)
(l + 2)

2
(l + 3)

3
(2.13)

Their results indicate that Legendre polynomials of maximum degree of three can
model bias inhomogeneity presented in MRIs with head coils. One of the limitations
of this method is that it models distributions of intensities of various tissue classes
(GM, WM, CSF) with a Gaussian distribution. The parameters (mean and stan-
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dard deviation) of this Gaussian need to be provided that are usually obtained from
a segmentation of tissue classes. As a result, this method is susceptible to errors in
segmentation.

Manjón et al. have devised another automatic non-parametric method of bias
correction [88], which is a coarse to �ne approach where bias �elds are modeled with
di�erent frequency ranges. The bias �eld is modelled as a linear combination of k
equidistant low frequency cubic B-Spline basis functions:

β(α) =
k∑

i=1

αiφi (2.14)

where φ are low frequency basis functions satisfying the following condition,

k∑

i=1

φi(xm) = 1, ∀m ∈ [1,M ] (2.15)

The highlight of this method is the use of a combination of intensity and gradient
image features for more robust homogeneity measurement using an entropy-based
cost function.

A combination of non-parametric non-uniformity normalisation (N3) algorithm
and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm has been de-
veloped into a new inhomogeneity correction method in [83].

Hadjidemetriou et al. [53] propose a inhomogeneity correction algorithm based
on non-parametric statistics of high order local intensity co-occurrences. These
statistics are restored with a non-stationary Wiener �lter. The use of co-occurrence
statistics improve robustness to whole head images for non-uniformities present in
high �eld acquisitions. Results demonstrate that it outperforms N3 algorithm both
in terms of performance and lower time requirements.

Approaches that use a template or longitudinal data Studholme et al. [146]
take a template based approach to bias �eld correction by means of considering the
underlying tissue structure. The intensity distorted MR images are warped to a
reference template using a �ne-scale entropy based registration method. Thus, the
relative bias �eld between template and subject MR images can be computed from
the ratio of their low-pass �ltered intensity values.

A completely di�erent approach dedicated to correcting di�erential bias in longi-
tudinal MR images is discussed in [80] where no assumptions are made about signal
distribution, bias �eld or signal homogeneity. The basis of this method is that the
di�erence of registered serial scans has small scale structure whereas bias �eld by
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nature is a low frequency signal. Thus, di�erential bias �eld could be estimated by
applying an appropriately sized �lter to the di�erence image.

Mathematically, for serially acquired images fi, i = 1, 2, we have

log(f1(x))− log(f2(x)) = log(u1(x))− log(u2(x)) + log(b1(x))− log(b2(x))

+ log

[
1 +

n1(x)
u1(x)b1(x)

]
+ log

[
1 +

n2(x)
u2(x)b2(x)

]
(2.16)

where ui(x) are the true images, bi(x) and the ni(x) are the bias �elds and noise
in the two images, log

[
1 + n(x)

ui(x)bi(x)

]
is the original additive noise of the system for

i = 1, 2 at voxel x. The di�erence log(b1(x))− log(b2(x)) gives the di�erential bias
�eld in the two images.

Simultaneous estimation of bias �eld and segmentation/registration The
problem of inhomogeneity correction has also been studied in conjunction with seg-
mentation or registration in order to reduce registration or segmentation errors.
Such approaches try to simultaneously rectify intensity inhomogeneity and perform
tissue segmentation [81, 19], registration [94] or both segmentation and registration
[6].

Ashburner et al. [6] present a probabilistic framework that combines image reg-
istration, tissue classi�cation, and bias correction within the same generative model
called Uni�ed segmentation. The tissue classi�cation is modelled as a mixture of
Gaussians. Extra parameters are used in the mixture of Gaussian formulation that
account for the smooth intensity variations caused by bias �eld inhomogeneity. This
model parametrises bias as the exponential of a linear combination of a small num-
ber of low frequency basis functions. In order to include registration to a standard
space in the same generative model, the tissue probability maps are allowed to be
deformed according to a parametric model that models the deformations by a lin-
ear combination of about a thousand cosine transform bases. The objective of this
work is to explain how tissue segmentation, registration and bias correction can
be included in the same generative model and this framework can be extended to
a more sophisticated implementation. This algorithm is also a part of Statistical
Parametric Mapping (SPM) 8 [5, 6] and is used for brain volume estimation by
adding segmented GM and WM volumes.

Modat et al. [94] perform di�erential bias �eld correction within a non-rigid
registration framework. The spatial transformation and di�erential bias correction
parameters are optimised simultaneously using normalised mutual information as a
metric. The bias �eld is parametrised using a second regular lattice of control points
overlaid on the reference image.

A review of bias �eld estimation procedures is presented in [158]. We would like
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to mention that due to rapidly evolving MRI technology, the problem of inhomo-
geneity correction is not a completely solved problem.

Geometrical distortions
Until now, only few studies have attempted the correction of geometrical distortions
arising from gradient non-linearity. Janke et al. [64] have presented the problem
of distortion correction by expressing the gradient �eld as expansion of spherical
harmonics as the basis function. A phantom is used in order to determine the coef-
�cients using an iterative procedure.

The �eld BV generated by a gradient �eld (V = X,Y, or , Z) can be written in
spherical coordinates as:

BV (n,m)(r, φ, θ) = rn
[
aV (n,m)cos(mφ) + bV (n,m)sin(mφ)

]
P(n,m)(cosθ) (2.17)

where BV (n,m)(r, φ, θ) is a spherical harmonics expansion of order n and degree m of
each component of the gradient �eld, aV (n,m) and bV (n,m) are constants and r is the
radial distance from the magnet isocenter. The corresponding Legendre functions
are P(n,m)(cos). Eq. 2.17 is only an approximation of the true gradient �eld BV .

Jovicich et al. [67] have veri�ed the accuracy of the method of Janke et al. using
phantom data and have ascertained the improved quality intensity reproducibility of
brain data. They have also shown that the amount of distortion measured within a
typical �eld of view (FOV) required for head imaging is su�ciently signi�cant neces-
sitating distortion correction in images especially those used for longitudinal studies.

The work of Wang et al [160] has shown that the main source of geometrical
distortion is gradient non-linearity. Maximum absolute geometric errors ranged be-
tween 10 and 25 mm within a volume of 240× 240× 240 mm3 are observed, when
imaging with the new generation of gradient systems that employ shorter coils, more
than the old generation of scanners. The vendor's correction method can success-
fully reduce the geometric distortion measured but only within the plane in which
these 2D correction methods are applied. Distortion along the axis normal to the
plane was, as expected, virtually unchanged. If the distortion along the normal of
the correction plane is not small, 2D and vendor's correction are ine�cient. In the
sequel to this work, Wang et al. [161] have implemented a 3D method based on the
phantom-mapped geometric distortion data, with or without vendor's correction.
When the vendor's 2D correction applied, the method corrects for both the �resid-
ual� geometric distortion left in the plane in which the correction method is applied
(the axial plane) and the uncorrected geometric distortion along the axis normal to
the plane.

Caramanos et al. [23] have established that inconsistent positioning of sub-
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jects in the MRI along the magnet's long axis (i.e. Z) and the gradient distortion
e�ects associated with such Z-shifts can a�ect the accuracy and precision of MRI-
derived measures of whole-brain atrophy. The error caused by geometric distortions
increases in magnitude with the increase in Z-distances between the brains to be
compared or between the magnet isocenter and the center of the pair of brains to
be compared. These distortions can be corrected by accurate subject positioning
when acquiring images or with the use of gradient-distortion correction �elds post
image acquisition. A novel phantom made using DUPLO plastic bricks (a toy for
children) is used for learning gradient distortions which are modelled using spherical-
harmonics. These corrections are applied to SIENA measurements for neutralising
observed Z-shift-associated gradient distortion e�ects.

Finally, this set-up is also used for simulating gradient distortion e�ects for fur-
ther testing. Synthetic Z-shifts of 50 mm are created by moving the scanner bed
out by 50 mm. This resulted in a mean (range) MRI-measured Z-shift of −49.2 mm
(−50.9 to 48.4) relative to each subjects' CM (typical canthomeatal alignment) scan.
Canthomeatal line is the reference line for correct head positioning. CM alignment
results in an individual's cerebrum being centred several centimetres further into
the magnet's isocenter. Other acquisitions are performed by trying to reposition
the subject in relative to the CM alignment (accurate-as-possible repositioning). In
spite of trying to reposition the image in the same place, an average MRI-measured
Z-shift of 4.3 mm (−9.0 to 21.1) is observed, indicating that precise and accurate
positioning and repositioning is di�cult to achieve. Results with SIENA show that
Z-shifts of 50mm in PBVC values with a signi�cantly higher mean absolute error
of about 0.40% (versus 0.17% for the accurate-as-possible repositioning), paired-
samples t-test with 8 degrees of freedom t = −2.96, p = 0.018 and a maximum
absolute error of 0.81%.

The key point for geometrical distortion correction is that when the amount of
distortion measured within a typical �eld of view required for head imaging is suf-
�ciently large then, not correcting for these distortions would render images to be
of limited use for stereotaxy or longitudinal studies for obtaining reliable atrophy
measurements.

2.5 Brain atrophy estimation with MRI
MRI acquisitions coupled with sophisticated image processing techniques have the
power of providing ways of measuring brain volume loss. Several methods manip-
ulating MR images have been developed for estimating brain atrophy in the past,
each employing di�erent methodologies and focused on di�erent aspects of atrophy.
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2.5.1 Classi�cation of existing atrophy estimation approaches
The currently available image processing methods for brain atrophy estimation have
been di�erentiated based on criteria determined by dependence on registration or
segmentation [106], type of analysis they aid in conducting and whether they output
a global or a local measurement of atrophy.

Use of registration or segmentation
Atrophy estimation and image registration Image registration is the pro-

cess of geometrically aligning two (or more) images (generally called reference and
�oating images) in order to facilitate their comparison. The process of registration
produces a transformation that maps the �oating image into the coordinate system
of the reference image. Registration is a step of primary importance when evaluat-
ing atrophy evolution in serially acquired scans of the same individual (longitudinal
studies), in comparing an individual to an atlas (cross-sectional studies) or using
di�erent imaging modalities. From the point of view of atrophy estimation, the type
of registration algorithm chosen depends on the type of alignment desired: rigid,
a�ne or deformable.

Registration methods that estimate rigid (a linear transformation model that
includes rotations, translations) or a�ne (a linear transformation that includes ro-
tation, scaling and shear followed by a translation) transformations align the images
globally as they compute a common set of transformation parameters for the each
voxel. Atrophy estimation methods that do not perform a voxel based or regional
analysis may use rigid or a�ne transformations for comparisons. For instance, whole
brain atrophy measurements based on the movement of boundaries over serial scans
of the same subject, matching a subject to an atlas for normalising for head size or
correcting for geometrical distortions using the skull.

Deformable registration methods are also called non-linear or non-rigid registra-
tion approaches. Such registration approaches result in minimising local di�erences
between the target and the �oating images. A variety of transformation models ex-
ist and their use depends on the material being modelled. These could be physical
models such as linear elasticity, �uid �ow transformations or free form deformations
such as B-splines. Linear elastic transformations are based on the assumption of
a linear stress-strain relationship. However, many biological materials have a non-
linear stress-strain relationship. Further approximations make it accurate only for
small deformations [56]. Fluid �ow transformations make it possible to model large
deformations such as those arising in inter-subject registration. They are based on
idealised physical properties of liquids and must satisfy physical laws such as conser-
vation of mass, energy, and linear and angular momentum. Physical models preserve
topology (i.e. do no allow tearing or folding) in the estimated deformation. Free
form deformations (FFD) model the transformations using polynomial basis func-
tions such as B-splines that allow the modelling of any 3-D object in space rather
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than a surface. A disadvantage of employing FFDs is non-conservation of topology.
Nevertheless, in a recent study a topology preserving B-spline transformation model
is presented, where topology preservation is achieved by adding explicit constraints
on the Jacobian [98].

Usually, a combination of a�ne and non-linear registrations are applied to images
for correcting both global and local di�erences. Local registration methods provides
us with a voxel-wise atrophy map between the �oating and the target image, thus
local atrophy evolution can be studied. An atrophy map can be obtained from the
Jacobian determinant of the local transformation. It gives us the volume expansion
or shrink factor at each voxel. Mathematically, the Jacobian determinant (or simply
the Jacobian) J(x, y, z) of a transformation T (x, y, z) = (tx, ty, tz) at a voxel (x, y, z)
can be written as:

J(x, y, z) =

∥∥∥∥∥∥∥

∂tx
∂x

∂tx
∂y

∂tx
∂z

∂ty
∂x

∂ty
∂y

∂ty
∂z

∂tz
∂z

∂tz
∂y

∂tz
∂z

∥∥∥∥∥∥∥
(2.18)

Registration-based methods include atrophy estimation by brain edge motion anal-
ysis (�Boundary Shift Integral� (BSI) [44], �Structural Image Evaluation, using Nor-
malisation, of Atrophy� (SIENA) [140, 143]), Voxel-Based Morphometry (VBM)
(�Statistical Parametric Mapping� (SPM) [5]), Template-Driven Segmentation [51]
and Local Jacobian Analysis [18, 21, 20, 171, 170, 59]. Details of some of these
methods will be provided in section 2.5.2.

A review of registration methods in medical imaging can be found in [86, 176, 56].

Atrophy estimation and image segmentation Image segmentation refers
to the partitioning of an image into multiple classes. It often results in a simpler
representation of the image due to grouping of those areas that are similar according
to some criterion. For example, a brain image is often segmented into GM, WM
and CSF.

In atrophy estimations, usually the total brain volume is computed by totalling
the volume of GM and WM. Segmentation is also performed when evaluating atro-
phies in regions of interest (ROI) such as the ventricles or the hippocampus.

Segmentation based methods rely on di�erent brain atrophy measurements like
the �Brain Parenchymal Fraction� (BPF) [57, 132] and �Brain to IntraCranial Ca-
pacity Ratio� (BICCR) [31]. Details of some of these methods will be provided in
section 2.5.2.

The reader may �nd a survey of existing automated and semi-automated image
segmentation methods in [108, 11].
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Longitudinal or cross-sectional analysis
When using brain atrophy as a marker of disease evolution, two types of analyses
are conducted: longitudinal and cross-sectional (illustrated in a general manner in
Fig. 2.9). In longitudinal studies, repeated brain scans of the same individual are
considered over time. These studies track disease progression by giving an estimate
of the atrophy rate. Examples of widely used methods for longitudinal studies are
BSI [44] and SIENA [140]. Cross-sectional studies are used to know the state of the
disease at a given time by providing an estimate of brain volume at one point in
time. SIENAX [143] is a popular method utilised by cross-sectional studies.

(a) Longitudinal (b) Cross-sectional

Figure 2.9: Types of analyses. (a) Longitudinal analysis: Serial scans of the same
subject are analysed. (b) Cross-sectional: Analysis using one scan of a subject.

Locally or globally estimated atrophy
A global atrophy estimation method, such as BSI [44] or SIENA [140], gives an
estimate of overall decrease or rate of decrease in the brain volume. Global measures
are used in cases when one just wants to know whether the brain has undergone an
atrophy globally. In MS, whole brain atrophies are sometimes utilised as biomarkers
of disease progression [132]. Local measurements (Tensor Based Morphometry [18,
21, 20, 171, 59], SPM [5]) make it possible to have a regional (or voxel by voxel)
estimate of the atrophy in the brain. Local measures are interesting since they allow
us to decipher which parts of the brain are more a�ected by atrophy in the course
of a pathology.
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2.5.2 Atrophy estimation approaches
In this section, we brie�y describe some widely used measures of brain atrophy. At
this stage, the goal is to make the reader familiar with the existing methods for mea-
suring atrophy. An evaluation of some of these methods is presented in chapter 3.
We classify the methods on the basis on the analysis (longitudinal or cross-sectional)
that can be performed with them.

Methods for longitudinal analysis
SIENA is a widely used automated tool that estimates longitudinal brain atrophy
[140, 143]. This algorithm begins by extracting the brain and skull from the baseline
and repeat scans using the Brain Extraction Tool (BET) [139]. The brains are then
registered using an a�ne transformation while constraining the scaling with skull
images. The a�ne transformation, thus obtained, is �rst divided into two halfway
transformations that are then applied to the brain scans to resample them into a
common space. This avoids asymmetric blurring of the scans due to interpolation.
Next, tissue type segmentation is performed in order to �nd brain/non-brain edge
points [175]. At this step, bias �eld correction is also applied. Next, a 1D array is
�lled with intensity values from a pro�le perpendicular to the edge of the baseline
image. Using tri-linear interpolation, these values are sampled at sub-voxel posi-
tions as the array's elements will not in general fall exactly at voxel grid positions.
The number of elements in this array is predetermined (±3mm from the edge), but
may also change from region to region depending on the presence of another edge.
Another 1D array is similarly constructed with intensity values of the second scan
(that is registered into a common space as scan 1) from the same voxel positions as
in the baseline image. Edge motion is now estimated by �nding the relative shift,
between the arrays, which produces the maximum correlation. The direction of the
edge determines whether it has been a�ected with an atrophy or hypertrophy. By
�tting a quadratic through the correlation values at the peak and its two neigh-
bours, the position of optimal displacement is estimated to sub-voxel accuracy. The
estimation of edge motion is pictorially described in Fig. 2.10. In order to make the
algorithm robust, correlation is computed between smoothed derivatives of the 1D
pro�les instead of using the intensity values directly.

SIENA provides whole-brain atrophy as a single number called the percentage
brain volume change (PBVC) as mean perpendicular brain edge motion, which is
calculated according to the following formulae:

The mean surface motion l is given by,

l =
v

∑
m

aN
(2.19)
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Figure 2.10: SIENA: egde motion detection. The x-axis and y-axis represent the
motion in millimetres and image intensity (top image) or image intensity derivatives
(bottom image). The intensity pro�les of an edge in serially acquired images 1 and
2 and their derivatives. By �tting a quadratic through the correlation values at the
peak and its two neighbours, the position of optimal displacement is estimated to
sub-voxel accuracy. (Source: [141]).
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where
∑
m is the edge motion (voxels) summed over all edge points, v is voxel

volume, N is the number of detected edge points and a is voxel cross-sectional area.
Thus,

PBVC =
100lA
V

=
100lfV
V

= 100lf (2.20)

where A is the actual brain area (di�erent from aN), V is the brain volume and f
is the ratio of actual area to volume. A and V need not be known and f can be
directly obtained by scaling a single image by a known amount and then comparing
with the unscaled version using the complete SIENA algorithm. The correct PBVC
is known from the scaling that was applied and from the measurement of l, f can
be calculated. It varies across scanners, slice thicknesses and pulse sequence, but
normally lies between 0.1 and 0.2mm−1. This method (called self-calibration) helps
reduce bias (systematic error) in the reported estimates of PBVC.

SIENA is a fully automated method that makes longitudinal analysis possible.
Smith et al. [141] report the accuracy of SIENA (median brain volume change er-
ror) to be 0.15% based on scan-rescan atrophy estimations. In addition, the error
introduced by skull-based registration is comparable to total error, meaning that the
skull-based registration on average may be a major contributor to the overall error.
The key step of this algorithm is to estimate the displacement of the edges between
the scans; which depends on the segmentation and registration algorithm. Errors
in segmentation and registration of the edge points thus a�ect the quality of the
results obtained using SIENA. Figure 2.11 depicts the edge motion of boundaries as
estimated by SIENA.

Figure 2.11: Brain edge movement as estimated by SIENA. A hot-cold map rep-
resents the movement of edges (hot colours indicate atrophy while cold colours
represent growth).
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The authors in [13] extend SIENA for voxel-wise analysis of atrophy across sub-
jects. The edge displacement map between the time points is �rst estimated for
each subject which is warped to align with a standard-space edge image and then
carries out many voxel-wise cross-subject statistical analysis. For example, this can
be used for locating brain edge points that are signi�cantly atrophic for the group
of subjects as a whole or for correlating factors such as age or disease progression
to atrophy.

BSI Another popular tool for estimating cerebral atrophy from two time points is
boundary shift integral [44]. In this approach, the repeat scan and the baseline scan
are registered using an a�ne transformation. In the original BSI implementation
[44], an a�ne registration procedure that determines the spatial scaling factors based
on the cranial surface between the two scans is used. The registered scans are then
intensity normalised in order to compare the intensity values. At this stage, the
brain is segmented using an iterative morphological technique, where the sizes of
the morphological operators is selected manually. The idea is to remove all non-
brain tissue including CSF, in order to de�ne a boundary region on which BSI is
computed. The brain atrophy is estimated by calculating the amount by which the
boundary of the brain tissue has moved over a period of time according to Eq. 2.21.

BSI =
K

I1 − I2

∑

x,y,z∈E
(clip(ibase(x, y, z), I1, I2)− clip(ireg(x, y, z), I1, I2)) (2.21)

where K is the voxel volume, E is the set of voxels in the boundary region and
ibase(x, y, z) and ireg(x, y, z) are the normalised voxel intensities of the registered
serial scans. [I2, I1] is the intensity window in which BSI is calculated. The clip
function for an intensity a is de�ned as:

clip(a, I1, I2) =





I2 a < I2
a I1 < a < I2
I1 a > I1

This computation is pictorially shown in Figure 2.12.

BSI is a popularly used semi-automated tool for estimating longitudinal atrophy.
Freebourough et al. [44] �nd that brain and ventricular BSIs correlated tightly with
correlation coe�cients of r = 1.000 and r = 0.999, respectively, with simulated vol-
umetric changes. Atrophy is introduced in a given structure by spatially scaling the
scan about the central point of the structure by equal amounts in each dimension.
The comparison of intensity values directly makes BSI measurements vulnerable to
intensity variations in images caused by bias �eld inhomogeneities and noise. For
the same reason, normalisation of intensities between the serial scans forms an im-
portant step.
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Figure 2.12: Boundary shift integral calculation. A 1-D representation of a boundary
shift between a baseline scan, ibase(x), and a registered serial scan, ireg(x). This
shift ∆w is the area A divided by the length of the intensity window I2 − I1.

Leung et al. [79] seek an improvement on the classic BSI algorithm. Their
method (KN-BSI) performs tissue-speci�c intensity normalisation and parameter
selection in order to obtain better performance. They introduce some new steps.
The baseline and repeat brain regions are dilated by 3 voxels to include enough voxels
in CSF to estimate the mean CSF intensity. k-means clustering is performed with 3
clusters (CSF, GM and WM) on the bias-corrected baseline and repeat scans inside
the dilated regions. Linear regression coe�cients are calculated using the mean
intensities of CSF, GM, WM, and the interior brain region and are further applied
to the images for normalising their intensities. From results of k-mean clustering,
the intensity windows, which de�ne the limits of BSI, are calculated. The estimated
KN-BSI atrophy rates, on the ADNI database, are 0.09% higher than classic BSI
rates in controls and 0.07% higher in ADs. The standard deviation of the KN-
BSI rates is 22% lower in controls and 13% lower in ADs, compared to classic BSI
algorithm. Results con�rm that KN-BSI is more robust and reduces sample sizes
by 32% (to detect an atrophy of 25% at 5% signi�cance) needed in clinical trials as
compared to classic BSI.

Cortical longitudinal atrophy detection algorithm (CLADA) This method
addresses the problem of measuring changes in cortical thickness over time. CLADA
[96] creates a subject-speci�c cortical model which is longitudinally deformed to
match images from individual time points. In the �rst step, all the images are cor-
rected for intensity variations [148, 80], registered to the baseline using a symmetric
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a�ne registration algorithm followed by voxel-wise image averaging for producing a
bias free image with improved image quality for each subject. The resulting subject
speci�c average image is segmented into GM, WM, and CSF and a cortical GM-
WM boundary is generated through a combination of segmentation and atlas-based
classi�cation [33]. Two explicit surfaces for the inner cortical surface (ICS i.e. the
surface between WM and GM) and the outer cortical surface (OCS i.e. the surface
between CSF and GM) are constructed. Finally, this subject-speci�c cortical model
is deformed to �t the images from individual time points. Transforming the cortical
model is preferred to transforming the image for preventing interpolation artefacts.
Cortical thickness is determined for each surface vertex in the follow-up image as
the distance between corresponding vertices on the ICS and OCS surfaces. The
global cortical thickness is estimated as the surface-area-weighted average. Results
on MS patients show a higher rate of cortical thinning in MS patients compared to
healthy controls over 2 years and show that CLADA can measure cortical atrophy
in longitudinal studies reliably. The annual global cortical thinning is found to be
signi�cantly higher in the MS group −0.025 mm/year ( −0.71 ± 0.91% ) as com-
pared to the control group (−0.011 mm/year, or −0.30 ± 0.52%/year; p = 0.018),
indicating a higher rate of cortical thinning in the MS patients over the two years of
follow-up. Also, the estimation of bias using the scan-rescan datasets was not signif-
icantly di�erent from zero. Using scan-rescan tests, the estimated change is 0.45%
for images with 1 mm3 isotropic voxels and 0.77% for images with 1 × 1 × 5 mm3

voxels. The mean absolute accuracy error is 0.43 mm (determined by comparison
of CLADA measurements to cortical thickness measured directly in post-mortem
tissue).

Sparse unbiased analysis of anatomical variance (SUAAV) Longitudinal
analysis of cortical and WM atrophy rates are studied with penalised statistical
methods by Avants et al. [9]. In this approach, there is a group template that
contains cortical priors and labels that can be used in a parcellation scheme. The
priors of the group template are warped to the �Single Subject Template� (SST) in
order to initialise the segmentation. An SST is created from each subject's serial
data by rigidly aligning the �rst time point image to the group template. The
probability maps are then deformed to the individual space and initialise a prior
constrained segmentation of the baseline and the repeat scan. Thickness maps and
cortical parcellation are then calculated for each time point. Parcellation is used
for verifying the �ndings of the voxel-wise analysis. Test-retest data shows that
this approach produces no change when the retest data contains the same image
content as the test data and produces normally distributed low variance estimates
of thickness change centred at zero when test-retest data is collected within a short
interval when no change is actually expected. The standard deviation of changes
measured is 0.1 mm across these images and is a measure of reproducibility for
images of resolution approximately 1 mm3. The key highlight of this method is the
use of subject speci�c priors that provide unbiased, prior-based segmentation and
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measurement of cortical thickness.

Iterative principal component analysis (IPCA) In the atrophy estimation
method of Chen et al. [27] iterative principal component analysis (IPCA) is carried
out in order to compute changes in brain volume from sequential MR images for
characterising whole-brain atrophy rates in patients with Alzheimer's disease (AD).
The idea is to �rst register the baseline and the repeat scan and identify those pairs
of intensities voxel-wise that are su�ciently distant from the iteratively determined
PCA major axis. An outlier distance threshold, depending on the required sensitiv-
ity and speci�city in the detection of small volume changes while calculating global
intensity changes is determined. The IPCA is evaluated with coregistered MRIs
that are acquired 30-min apart in a normal subject, simulated regions-of-atrophy
(ROA) of di�erent sizes, ranging from 0.04% to 5.5% of whole-brain volume, into
the follow-up image, two di�erent levels of noise (50% or 100% of standard devia-
tion of the intensities) in the ROA. ROAs are de�ned by identifying GM from fuzzy
segmentations of the brain and, alternatively as the group of voxels representing
the outer and inner GM boundaries or a manually de�ned brain region. The mean
errors are found to be in the range of 0.125− 4.6%.

Inverse problem approach An inverse problem approach is employed by Schwei-
ger et al. [129] for studying atrophy of various structures of interest in the brain.
A pre-labelled brain and serially acquired images of the same patient are used for
generating �nite element meshes from the image data. In this formulation, volume
change is modelled using an unknown coe�cient of expansion for each structure.
It is an inverse problem because the coe�cients of expansion for each structure
are recovered from the observed volume changes in the mesh. For the purpose of
reconstruction, the search space is restricted by assuming that the expansion coe�-
cients be homogeneous or piecewise homogeneous within each of a set of anatomical
structures of the brain. Thus, the problem is to �nd one expansion coe�cient per
segmented structure. Let m be the number of regions, and n the number of mesh
nodes. The expansion coe�cients α = α(i) ∈ Rm, are computed through an iterative
Levenberg-Marquardt solver as follows:

αk+1 = αk + (JT
k Jk + ηI)−1(JT

k (ak − atgt)) (2.22)

where ak and atgt are the nodal positions of the deformed and the target mesh, re-
spectively, and J ∈ Rn×m is the Jacobian matrix Jij = ∂ui

∂αj
, and η is a trust region

control parameter. Because m is small, J can be calculated by explicit perturbation
of the region coe�cients.

Atrophy estimation on 9 AD patients for a low-dimensional solution space of 15
regions of interest show that the reconstruction results capture the trend of atrophy
in GM, WM, CSF and background but the absolute values of atrophy are not in
accord. The salient feature of this algorithm is that it directly estimates the un-
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known volume changes anatomically as opposed to providing a voxel-wise atrophy
measure. By increasing the number of regions, that is to say, the dimension of α
the accuracy could be improved. Also, the regions can be chosen according to the
disease being investigated.

Methods for cross-sectional analysis
SIENAX [143] attempts to estimate cross-sectional atrophy using a single time
point scan. Unlike SIENA that indicates the rate of disease progression, this tool
gives an estimate of the current extent of disease progression [142]. To begin with,
the brain and skull images are extracted from the given scan. The MNI152 stan-
dard brain is a�ne registered to the given brain, using the extracted skull and the
standard brain skull to constrain the scaling. At this step, a volumetric scaling
factor is calculated which is required for brain normalisation at the �nal stage of the
algorithm. Next, tissue type segmentation [175] is performed on the original (unreg-
istered) extracted brain. The segmentation method includes estimation of partial
volume e�ects for edge voxels, giving higher volumetric accuracy than a hard seg-
mentation. The total brain volume is derived from this segmentation result. To
normalise for head size, the brain volume is multiplied with the volumetric scaling
factor derived earlier.

Although SIENAX has been primarily developed for cross-sectional studies,
through comparison of brain volumes of serial scans of a patient, it can be em-
ployed for studying longitudinal atrophy also. Brain volume can be estimated for
each of the two given scans and then the percentage decrease in brain volume from
time point one to two can be calculated. Tissue classi�cation is performed on the
brain making brain extraction an important step in its analysis. It may be noted
that for SIENAX the brain volume change is directly calculated from the segmen-
tation, so inaccuracies in segmentation, (for instance, mis-classi�cation of lesions)
a�ect the performance of this method. In order to calculate the brain volume, num-
ber of voxels inside this segmentation are counted and multiplied by voxel volume.

Smith et al. [141] report an accuracy of 0.5 − 1% brain volume accuracy for
SIENAX.

Methods for longitudinal and/or cross-sectional analysis
Voxel [5] and tensor based morphometry [45, 18, 21, 103, 20, 171, 109,
59, 162] VBM [5] is dedicated to analysis of local di�erences in the brain using
a statistical approach. The procedure involves normalising high-resolution images
from all the subjects under study into the same space, followed by segmentation
of the GM from the spatially normalised images and smoothing the gray-matter
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segments. The general linear model (GLM) provides a framework for application of
statistical tests for identifying regions of gray matter concentration that are signi�-
cantly related to parameters of the study such as group comparisons and identifying
regions of grey matter that are signi�cantly related to covariates such as age or
disease severity. GLM is a linear statistical model [89],

Y = XB + U, (2.23)

where Y is a matrix with series of multivariate measurements such as di�erent sub-
ject brain scans, X contains experimental design variables, B is a matrix containing
parameters that are usually to be estimated and U is a matrix containing errors or
noise. The errors are usually assumed to follow a multivariate normal distribution.

The smoothed gray-matter images are compared with voxel-wise parametric sta-
tistical tests, although non-parametric testing can also be applied such as in [122].
The underlying philosophy of this approach is that macroscopic volume and shape
di�erences can be measured by means of employing spatial normalisation. However,
mesoscopic volume di�erences cannot be accounted for, even after spatial normal-
isation has been performed. Due to the partial volume e�ect, smoothing re�ects
these small di�erences in the form of intensity di�erences.

In a study, receiver operating characteristic curves for a z-score in the bilateral
medial temporal areas including the entorhinal cortex showed a high discrimination
accuracy of 87.8% between controls and AD patients [54]. Another study [62] that
performed z-score based analysis showed the sensitivity and speci�city between AD
and Vascular dementia are 92% and 80%, respectively.

Methods based on non-rigid registration constitute another important set. Maps
of volumetric change can be obtained in the form of scalar Jacobian maps of the
deformation �eld, representing the changes between serially acquired brain images.
Analysis of maps such as Jacobian maps on a voxel-wise or regional basis is called
tensor based morphometry (TBM). Usually TBM is performed on anatomical im-
ages, Pagani et al. [103] have extended TBM for di�usion tensor MRI by using dif-
fusion anisotropy images. The use of di�usion anisotropy images makes the analysis
sensitive to changes in the major white matter �bre bundles. Instead of obtaining a
scalar map such as a Jacobian map, if statistics are performed on the deformation
�eld directly, it is known as deformation based morphometry (DBM) or deformation
�eld morphometry (DFM).

In TBM/DBM, analysis can be done in various ways. For example, Gaser et al.
[45] divide subjects into two groups based on their mean ventricular/brain ratios and
compute statistical maps of displacement vectors and their spatial derivatives in the
GLM framework. Wang at al. [162] de�ne a new multivariate surface morphometry
statistic as a 4×1 feature vector containing the logged deformation tensor (3×1) and
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the radial distance (a scalar). Radial distance is the distance from each parametric
surface point to the center of 3D positions of the iso curves in the parameter domain.
Finally, they use the Mahalanobis distance for measuring the di�erence between the
mean vectors of two di�erent groups of subjects. Jacobian integration (JI) is used
in many studies which consists of averaging the Jacobian in a ROI [18, 20, 109] for
estimating regional atrophy.

No explicit accuracy estimates have been mentioned by Gaser et al. and Wang
et al. while the accuracy of JI has been reported to be in the range of 0.2− 0.6% in
[18, 20, 109].

Voxel or tensor based morphometries provide us with the freedom of obtaining
brain atrophy in any area of interest such as the whole brain or voxel-wise. If a
ROI based analysis is preferred, a segmentation of the region of interest must be
made available in which atrophy is desired. Thus, the segmentation of the ROI will
be a critical determinant of their performance. Since these techniques are based
on registration, an accurate and precise registration method will vitally increase
the accuracy of these methods. Assumptions related to parametric statistical tests
should be satis�ed, if not non-parametric tests are preferred. Also the sample size
determines the performance of VBM / TBM. These techniques can be used in MS
for both longitudinal and cross-sectional analysis such as to identify areas of signif-
icant volumetric change and lesion growth.

A schematic representation of VBM and TBM can be found in Fig. 2.13.

Other measures
Brain parenchymal fraction (BPF) Atrophy can be estimated as a change in
the absolute volume of brain parenchyma, or as a change in a normalised index of
brain volume such as the brain parenchymal fraction, BPF [57, 132] (Eq. 2.24).
Brain parenchyma is the brain itself excluding its blood vessels, coverings or its
support structures. In other words, brain parenchyma is brain's GM and WM. Bias
�eld correction is applied before BPF calculation.

BPF =
parenchyma volume

parenchyma volume + CSF
(2.24)

Using this approach, an assessment of the degree of atrophy of the brain can be
obtained in cross-sectional studies by a single measurement, since the normalisa-
tion of the parenchymal volume takes account of absolute brain size. Secondly, any
variation in the calibration of the MRI scanner gradient strengths should have little
e�ect on the BPF.

Recently Souplet et al. [145] have presented an improved version of BPF for
longitudinal studies. An Expectation-Maximisation (EM) segmentation framework
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Figure 2.13: Voxel and tensor based morphometry (Source: http://www.fil.ion.
ucl.ac.uk/spm/).

is proposed taking into account the partial volume e�ect. For better applicability
to longitudinally acquired data, the segmentation parameters are computed from
all the time points together and then used for segmenting each time point indi-
vidually. Experiments on BrainWeb images (with 3% noise, 20% INU (intensity
non-uniformity), slice thicknesses: 1 and 3 mm and moderate MS lesions model)
exhibited errors in whole brain atrophies of +1% and +5% for 1 mm and 3 mm slice
thicknesses, respectively.

Brain to intra-cranial capacity ratio The second ratio, BICCR Eq. 2.25, is
calculated from the estimates of intracranial, brain parenchymal and CSF volumes
[31]. Lesion volumes are also accounted for.

BICCR =
GM +WM + L

GM +WM + L+ CSF
(2.25)

where L refers to lesion volume. Each brain voxel is classi�ed as brain tissue, CSF or
background. Intensity inhomogeneity and noise correcting pre-processing is applied
before this ratio is calculated. As opposed to BPF, normalisation for individual
brain size is sought by linearly registering the brain into the standard Talairach
space. The main di�erence between the BICCR and BPF metrics is the inclusion
of extra-cerebral CSF in the denominator. Scan-rescan tests on 4 normal controls

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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show that mean error is 0.21%.

Note that BPF and BICCR are measures of atrophy derived from segmentation
and are not methods that provide atrophy measurements exclusively. Some aspects
of brain atrophy estimation algorithms discussed in this section with the roles of
registration and segmentation steps are summarised in Table 3.6.

2.6 Brain extraction
Accurate dissociation of brain tissue (brain extraction) from non-brain tissue, in the
whole head image is a crucial pre-processing step for most of the atrophy measure-
ment tools. Brain extraction is also known as �skull stripping�. Many segmentation
algorithms require a brain mask in order to perform tissue classi�cation. Let us
brie�y go over some brain extraction tools.

FMRIB software library's (FSL) Brain extraction tool (BET) [139] is
most extensively used for this purpose. At �rst, the intensity histogram is analysed
to �nd lower and upper intensity values in an image and a rough brain/non-brain
intensity threshold based on the image contrast in the image modality used. In
the next step, the centre-of-gravity of the head is calculated in addition to the
rough size of the head in the image. Inside the brain, a triangular tessellation of
the surface spheres is initialised and deformed vertex by vertex in direction of the
brain boundary. This algorithm can also segment the outer surface of the skull. An
example of a brain extracted by BET is illustrated in Figure 2.14.

(a) Whole Head Image (b) Extracted Brain

Figure 2.14: Brain Extraction by BET on the simulated BrainWeb image. The
areas that BET fails to classify as brain (with respect to the ground truth) are
shown in blue. It can be seen that the boundary of the brain is under-estimated by
the BET algorithm.

BrainSuite's brain surface extractor (BSE) [134] Shattuck et al.'s brain
extraction works in three steps: First, the whole brain MRI is processed with an
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anisotropic di�usion �lter to smooth out non-essential gradients. Next, a Marr-
Hildreth edge detector is applied to the �ltered image to extract important anatom-
ical boundaries. Finally, a sequence of morphological and connected component
operations identi�es and re�nes the objects de�ned by these boundaries.

FreeSurfer's brain extraction [33] This procedure involves deforming a tes-
sellated ellipsoidal template into the shape of the inner surface of the skull of the
subject. The deformation process is driven by two kinds of forces, an MRI-based
force, that drives the template outwards from the brain and a curvature reducing
force, constraining the deformed template to be smooth.

FreeSurfer's MRI Hybrid Watershed (HWA) [130] Segonne et al. [130] have
presented a brain extraction that combines watershed algorithms and deformable
surface models. It has three steps. First, a single white matter voxel is extracted
in a T1-weighted MRI image, for creating a global minimum in the white matter
before applying a watershed algorithm. Next, the watershed algorithm builds an
initial estimate of the brain volume based on the three-dimensional connectivity
of the white matter. A statistical atlas validates and corrects the segmentation,
and the MRI intensity values are locally re-estimated at the boundary of the brain.
Finally, a high-resolution surface deformation is performed that matches the outer
boundary of the brain.

Analysis of functional neuroimages (AFNI) 3d intracranial [163] In this
algorithm, the grey, white matter and background voxel intensities are modelled
with Gaussian distributions which allows the estimation of lower and upper bounds
of grey and white matter intensities. Slice by slice, voxels are classi�ed into the
brain if their intensities are within the bounds calculated in the previous step. The
set of voxels classi�ed within the brain is a disconnected set (contains holes). By
determining the connected components these holes are �lled.

Brain extraction meta-algorithm [116] Rex et al. [116] have developed brain
extraction meta-algorithm (BEMA) that executes several extraction algorithms par-
allely (BET [139], BrainSuite's Brain Surface Extractor [134], Analysis of Functional
NeuroImages' (AFNI) 3d Intracranial [163], FreeSurfer's brain extraction [33]) and
then combines their results in an e�cient fashion so as to obtain improved results
over any of the individual methods. By performing voxel-wise analysis on training
data, BEMA attempts to calculate an optimal boolean combination of results of
these four brain extraction algorithms that produces the most accurate output for
a voxel.

Other extraction tools include Brainvisa's1 [87], SPM's brain extraction algo-
rithm [5], Minneapolis Consensus Strip (McStrip) [114] and EM based brain extrac-

1http://brainvisa.info

http://brainvisa.info
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tion [37]. Souplet et al. [144] combine the brain extraction results from 5 di�erent
algorithm ([87, 139, 163, 130, 37]) using the measures of speci�city and sensitivity
under the STAPLE framework [164].

Evaluation of some brain extraction algorithms has been performed in [76, 16,
39]. Lee et al. [76] found that automated methods (BET (kappa SI: 0.946) and BSE
(kappa SI: 0.905)) produce erroneous results, but, at the same time, said that these
errors can be corrected by adjusting their parameters. When parameter tuning does
not work, manual intervention may be needed to correct the brain mask. Boesen et
al. [16] demonstrated that McStrip (that is based on warping to a template, inten-
sity thresholding, and edge detection) is better than SPM's brain extraction, BET,
and BSE. The Dice similarity indices are McStrip: 0.994, SPM's method: 0.986,
BET: 0.976 and BSE: 0.977. Fennema-Notestine et al. [39] have concluded that
HWA and BSE are more robust across diagnostic groups than 3dIntracranial and
BET. Mean Jaccard similarity indices obtained by comparison to manual segmen-
tations are 3dIntracranial: 0.802, BET: 0.787, BSE: 0.863 and HWA: 0.855. Their
results indicate that BSE could reach the surface of the brain. However, in some
cases some brain tissue may have been removed. 3dIntracranial and BET often
could not remove large chunks of non-brain tissue and/or removed some desirable
brain regions. Besides, HWA worked well in di�cult face and neck regions, carefully
preserving the brain, although further stripping of other non-brain regions may have
been needed.

Brain extraction is one of the �rst steps in many atrophy estimation algorithms
(such as SIENA, SIENAX, BSI) and determines the region over which atrophy
estimations are performed. Hence, their ability to remove non-brain tissue and
leave brain tissue determines the accuracy of atrophy estimations. Because brain
extraction is based on manipulating image intensities, it is a�ected by artefacts such
as noise and bias �eld inhomogeneity.

2.7 Key issues in brain atrophy estimation
Brain atrophy is a feature of many neuro-degenerative diseases and is seen fairly
early in the disease course. In addition, the phenomenon of atrophy is known to
be related to cognitive decline and motor functions. Thus, interesting information
can be derived through comparison of atrophies in groups, in serial scans of an
individual or by relating atrophies regions in the brain to covariates such as age,
disease severity or cognitive decline. However, the changes in the brain volume may
be subtle and this requires the use of sophisticated measurement methods that can
gauge minute di�erences in the brain. Methods that manipulate MRI images to
extract atrophy information have been developed. Each of them are based on di�er-
ent interpretations of brain atrophy and target di�erent applications. For example,
movement of boundaries over time for estimating whole brain atrophy volume change
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or non-rigidly aligning serial scans for tracking voxel-wise longitudinal atrophy or
segmentation of the brain for cross-sectional studies.

Longitudinal atrophy estimation methods SIENA,[141], BSI [44], TBM [45, 18,
21, 20, 171, 109, 59] and; cross-sectional methods SIENAX [141] and VBM [5] are
widely used by the research community.

The critical steps for BSI and SIENA are related to the calculation of movement
at boundaries. Due to the use of image intensities directly for calculation of BSI, it
is susceptible to MR artefacts such as noise and bias �eld inhomogeneity. SIENA
may be less a�ected by this as it uses smoothed derivatives of intensities instead of
the intensities directly for estimating edge movement. Both SIENA and BSI need
aligned serial scans in order to be able to compare corresponding boundaries in the
two scans, a�ne registration is used in both cases. We expect that mis-aligned edges
are a source of error. Brain extraction is also a critical step as it is on this area, the
movement is computed. Performance of SIENAX is dependent on the accuracies
of the tissue classi�cation and the brain extraction algorithms. Inaccurate brain
extraction will a�ect SIENAX more than SIENA, where information from the brain
extraction of the two serial scans is utilised for identifying brain tissue. Statistical
tests are applied in VBM methods in order to perform voxel based analysis. The
validity of assumptions of using parametric tests is very important. For TBM, the
important steps are non-rigid alignment of scans. Within the non-rigid registration,
the transformation model, regularisation and other constraints must be carefully
chosen to suit the requirements. Segmentation of ROI is required in both VBM and
TBM methods.

Table 3.6 listed the accuracy of some of these methods to be between 0.15 −
1% while medical research has shown that the annual whole brain atrophies in
MS are in the interval of 0.5 − 0.8% [4]. This fact makes the existing atrophy
estimation algorithms susceptible to errors comparable to the annual atrophy rates
and calls for development of more accurate methods. In addition, a conscientious
validation of these methods is an important task in order to ascertain errors in
estimations as well as determining optimal values of parameters of these methods.
All the methods discussed above provide a point estimate of atrophy, however,
given the many sources of error, it would be worthier to provide an interval or
reliability estimates. Such reliability estimates, for instance con�dence intervals,
must represent the reproducibility and bias in atrophy estimations. From the point
of view of the end user, accuracy, level of automation, computational complexity,
availability and ease of interpretation may be important considerations.



Chapter 3

Evaluation of Existing Brain
Atrophy Estimation Algorithms

Validation of brain atrophy estimation algorithms is a crucial task as brain atrophy
is being increasingly employed as a biomarker of disease progression. Nonetheless,
it is challenging to evaluate methods when no atrophy ground truths exist. In
this chapter, a framework for assessing three popular freely available brain atrophy
estimation methods (BSI-UCD [44], SIENA [143] and SIENAX [141]) is developed.
A topology preserving non-rigid registration approach allows us to simulate realistic
atrophies in the brain, which serve as the ground truth. The in�uence of bias �eld
inhomogeneity, noise, geometrical distortions and interpolation artefacts on whole
brain atrophy measurements is analysed. E�ect of lesion load is also investigated.
In another set of experiments, the consequence of anatomical variability on atrophy
estimation by simulating atrophies on a cohort of 18 Brainweb images is examined.
Lastly, experiments are conducted to compare a deformable registration algorithm
(Noblet et al. [98]) to SIENA, SIENAX and BSI-UCD.

3.1 Studies on evaluation of brain atrophy estimation
algorithms

Until now, few studies have aimed to evaluate existing brain atrophy estimation
algorithms. They can be distinguished on the basis of the evaluation criteria (scan-
rescan, consistency, patient-control separation and evaluation using a ground truth)
that are adopted for determining the accuracy of methods. The most commonly
used criteria are enlisted below, followed by a survey of existing works on validation
of atrophy estimation methods.

3.1.1 Evaluation criteria
Same day scan-rescan : This measure is based on the fact that tests on two
scans of the same subject obtained on the same day should yield zero atrophy.
Use of this protocol can help in gauging the in�uence of non-destructive biological
factors and MRI sequence variations on brain atrophy estimation. Let {Aij , i 6= j}
be the set of brain atrophy estimations between exam i and exam j for a patient
taken on the same day. Ideally, the spread of the true brain volume changes in
such cases should be negligible and the deviations from zero represent measurement
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uncertainties of the methods (zero atrophy metric) i. e. E(Aij) ∼ 0 and V ar(Aij)
is the uncertainty.

Consistency : This is also a way of measuring the variability in atrophy esti-
mations arising from non-destructive biologic factors and MRI sequence variations.
Consistency can be measured using several approaches. A way of checking the con-
sistency of a method is to measure volume loss for two (or more) baseline scans
with respect to the same 1 year repeat scan. All such comparisons should lead to
the same volume change estimation. Mathematically, it involves analysis of the set
{Air, i = 1 . . . n} where Air is the brain atrophy estimation between the ith of the
n baseline examinations and 1 year repeat exam r for a patient. We expect that
V ar(Air) ∼ 0.

Another approach is incremental atrophy summation comparison which is of-
ten used for validating a method in the absence of a ground truth. This criteria
must be interpreted cautiously as a consistent method may not necessarily be ac-
curate. For a patient, Aij + Ajl ∼ Ail is desired from a consistent method where
i = 1 . . . n − 1, j = i + 1 . . . n, l = j + 1 . . . n and n is the total number of scans
acquired. The variance in these cases represents the uncertainty in the measure-
ments. Smith et al. [142] adopt this technique for calculating the overall error in
the estimated percentage brain volume change (PBVC) in terms of mean absolute
di�erence. They calculate the mean absolute di�erence (error) using the following
expression: (A1n − (A12 +A23 · · ·+A(n−1)n)).

Patient-control separation : A reliable atrophy estimation method is expected
to be able to reliably discriminate between the two groups such as that of patients
and controls in a statistical analysis. Hence, the degree of patient-control group sep-
aration is another way of deciding the e�ciency of a measurement. Various metrics
can be used for measuring this. For example, Gunter et al. [50] use the di�erence
between the group mean rates of atrophy (meanpatient,meancontrol) divided by the
pooled variance, |meanpatient−meancontrol|q

SD2
patient+SD

2
control

where standard deviation (SD) of estimated

atrophies of patients and controls. This approach of evaluation of an atrophy es-
timation measurement makes it possible to perform comparisons when no ground
truth but patients and controls are available. However, the information that can be
gathered from such a metric is limited, for instance, we cannot infer anything about
the error (accuracy) or bias in the measurement of atrophy.

Evaluation using simulated ground truth : This involves simulation of a
known atrophy value in the brain. Recently, some methods have been proposed
for the creation of ground truth data with simulated brain atrophy relying on bio-
mechanical models [21, 20], Jacobian maps [68, 109] and manual brain segmentations
[34]. Such an evaluation framework is of great interest since it allows the assessment
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of method performance with respect to several sources of errors such as motion arte-
facts, noise or bias �eld inhomogeneity and makes it possible to provide a numerical
estimate of the accuracy of a method in terms of the measured error. We expect
Aij −GTij ∼ 0, i = 1 . . . n− 1, j = i+ 1 . . . n, where GTij is the ground truth atro-
phy speci�ed between exam i and exam j for a patient. The focus will be on this
criterion in our study.

3.1.2 Existing studies on validation of atrophy estimation methods
In this section, we present some of the previous works on the evaluation of atrophy
estimation methods, without the use of any simulated ground truth, and the various
criteria that are adopted to perform the comparisons.

Notations used in this section: p represents the p-value and r the correlation
coe�cient between the speci�ed quantities.

Using patient-control separation, same day scan-rescan and consistency
criteria
The separation of controls and Alzheimer's disease (AD) patients is used as a gold
standard by Gunter et al. [50] for evaluating BSI and Gradient Matching Method
(GMM, derived from SIENA). The yearly atrophy rate results show that, in terms of
control/patient separation, GMM method is superior to BSI method for the whole
brain (BSI: 0.46 ± 0.19, GMM: 1.30 ± 0.22) as well as ventricular measurements
(BSI: 0.81 ± 0.20, GMM: 0.95 ± 0.20). Next, they evaluate major steps in im-
age pre-processing. According to their �ndings, neither bias �eld corrections (con-
trol/patient separation with no bias �eld correction for BSI: 0.42 ± 0.18, GMM:
1.28 ± 0.22) nor a hardware change between the scan pairs a�ected the group sep-
aration. The use of an alignment mask (including skull and scalp apart from the
brain) for selecting the region over which alignment is to be optimised, left the
whole brain measures of BSI largely unchanged while that of GMM worsened with
respect to the case when default brain mask is used. They conclude that, in general,
ventricular measure o�ers a better group separation than the whole brain measure.

The authors, Paling et al. [105], present a validation of BSI [44] by applying
it to atrophy measurements in late-onset dementia. The validation is carried out
to evaluate the e�ect of calibration of BSI parameters and image scaling to adjust
intensity on overall accuracy of atrophy measurements. Accuracy is estimated by
the analysis of di�erences in atrophy estimation values for same-day repeat scan
pairs of 15 young and elderly controls. The overall accuracy is in the range of 2− 4
ml for this study The results of comparison of registration techniques with 6 and
9 DOF, respectively show that the use of an automated image registration with 9
DOF can e�ciently correct scanner voxel size variations without being biased due to
the presence of cerebral atrophy. Also, the patient group demonstrated considerable
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atrophy (p < 0.001) as compared to the controls.

Boyes et al. [18] show the correspondence between two di�erent approaches of
measuring atrophy, JI (B-spline free form deformation (FFD) based registration),
and BSI for Alzheimer's disease. They compare the performance of the methods
on the basis of a number of criteria such as same day scan-rescan, consistency and
patient-control group separation. Also, a simplistic atrophy is simulated by decreas-
ing the voxel size in the x, y and z directions (scaled atrophy). Results suggest that
the mean atrophy for the same-day scan pairs with BSI and JI was close to zero
(BSI: p = 0.56, JI: p = 0.10), while the mean absolute atrophy is very similar (BSI
0.28%, JI 0.25%) for the two techniques. JI (p > 0.6) also proves to be a better
discriminator between patient-control groups than BSI (p < 0.01). The authors
infer that JI (absolute error 0.23± 0.28) technique is more accurate as compared to
BSI (absolute error 0.78± 0.46) in terms of scaled atrophy.

Smith et al. [142] compare the longitudinal atrophies estimated by SIENA
and BSI with each other and also with the cross-sectional atrophy estimated us-
ing SIENAX using Percentage Brain Volume Change (PBVC) as a measure. The
evaluation is based on correlation of PBVC values, same day scan-rescan analyses,
comparison of incremental atrophy summation with �rst-last di�erencing (when
scans at several time points are available, the atrophy estimated between every two
consecutive scans when summed should be close to the atrophy estimated between
�rst and last time points) and patient-control group separation. They show that BSI
and SIENA estimates correlate highly (r = 0.87, p < 0.0001) with each other and
exhibit an atrophy estimation error rate of 0.2%. The same day scan-rescan results
yield the mean(), mean(abs()) and median(abs()) values for SIENA and BSI (ratio
adjusted by 1.20 to match SIENA) respectively as: 0.0006, 0.27, 0.16 and 0.1118,
0.22, 0.17. For �rst-last time point atrophy estimation results, median absolute dif-
ferences (controls/patients) of 0.20%/0.16% in the case of SIENA and 0.20%/0.18%
in the case of BSI are observed. In this case, SIENAX results also correlate well
with SIENA (r = 0.71) and (p < 0.0001). BSI and SIENA show very similar sen-
sitivity in discriminating the AD-control groups. It is also indicated that SIENAX
correlates well with SIENA but is less sensitive, in terms of discrimination between
patient and control groups.

Use of a gold standard for evaluating atrophy estimation methods
Creation of gold standard Designing methods that simulate realistic atrophy
is of great importance for evaluating atrophy measurement techniques, since it is
a way of generating ground truth data. In the literature, the currently available
approaches for the simulation of brain atrophy can be classi�ed into two groups:
Jacobian-based methods and bio-mechanical-based approaches.
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In [68], Karacali et al. have proposed a Jacobian-based method in which de-
formation �elds are estimated in order to induce the desired volume variations in
the regions of interest. This is done by minimising the sum of squared di�erences
between the Jacobian of the transformation and the desired level of atrophy at each
voxel. An additional penalisation term is also considered in order to prevent cor-
ner Jacobians from being negative to ensure that the estimated deformation �eld
preserves topology. However, the penalisation term cannot guarantee this property
since this is only a necessary condition but not su�cient for ensuring topology preser-
vation. Besides, the framework that is proposed initially is not capable of estimating
large atrophy, thus requiring an iterative strategy that estimates the deformation in
an incremental way, as a composition of several estimated transformations.

Pieperho� et al. have recently presented a similar approach relying on �Local
Volume Ratio (LVR)� [109]. LVR refers to the ratio of the distorted voxel volume
in the source brain to the voxel volume in the target brain. Pieperho� et al. use
a similar cost function as proposed by Karacali et al. but LVR is used instead of
the Jacobian. They also consider an additional regularisation term that ensures
that the estimated transformation is smooth. Unfortunately, none of these methods
address the problem of enforcing skull invariance, which is a desirable property for
the simulation of realistic brain atrophy.

The approach proposed by Camara et al. [21] relies on a bio-mechanical model
to deform brain tissues using a �nite element approach. A 3D mesh of labeled brain
structures from an atlas is warped onto the considered image using a �uid registra-
tion method. Atrophy is then simulated by a FEM (�nite element model) solver by
considering a thermoelastic model of soft tissue deformation. This framework also
incorporates the skull invariance constraint. Let us also notice that the interpola-
tion strategy used for deriving a dense deformation �eld from the set of displacement
vectors in this work, does not ensure that the �nal transformation is a one-to-one
mapping.

Evaluation using a gold standard Camara et al. [21, 20] evaluate global (BSI
and SIENA) and local (JI) brain atrophy estimation methods using a simulated gold
standard. To generate the gold standard data, atrophy is simulated using a cohort
of scans of 27 probable Alzheimer's disease and 19 age-matched controls. They �nd
that SIENA and BSI results correlate well with gold standard data (Pearson coef-
�cient of 0.962 and 0.969, respectively). Absolute di�erences in Percentage Brain
Volume Change (PBVC) are reported to be 0.23%± 0.26% and 0.22%± 0.28% for
BSI and SIENA respectively. They also use FFD-based and �uid techniques for JI
and compare the PBVC errors with respect to the gold standard for di�erent regions
of the brain. Results show that mean absolute di�erences from the gold standard
in PBVC are, for the whole brain: FFD = 0.31% and �uid = 0.58%, the lateral
ventricles: FFD = 0.79%; �uid = 1.45%; the left hippocampus: FFD = 0.82%; �uid
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= 1.42% and the right hippocampus: FFD = 0.95%; �uid = 1.62%. The largest
errors for both local techniques occurred in the sulcal CSF (FFD = 2.27%; �uid =
3.55%) regions. For small structures such as the hippocampus, the errors are found
to be larger, specially for controls (controls/patients) as compared to the errors
in the estimated whole brain atrophy. When using JI, better results are obtained
when FFD based registration is used, as opposed to �uid registration. Camara et
al. identify brain extraction as a crucial step in global techniques whereas number
of multi-resolution levels and stopping criteria determined the accuracy of JI ap-
proaches.

Pieperho� et al. present a non-rigid registration based approach that quanti�es
longitudinal atrophy in [109]. They study the e�ect of noise and bias �eld inhomo-
geneity on the results of volume change. To analyse the di�erences between MR
images that were longitudinally acquired, they test the speci�city (to what degree
are only actual volume changes taken into account) and sensitivity (ability of the
method to detect small structural changes) of deformable �eld morphometry (DFM).
They also present a method of simulating atrophy that provides a ground truth for
their evaluation. Their experiments suggest that noise and RF inhomogeneity, when
not corrected, lead to di�erent types of errors in brain volume change estimation.
Noise is responsible for scattered clusters of small volume changes while RF inho-
mogeneity causes stronger volume changes wide-spread on the brain, unrelated to
brain anatomy. Experiments on Brainweb images [30] degraded with 5% additive
noise; 40% INU or both showed that spurious changes of up to ±4% can be seen if
these artefacts are not corrected for when using DFM. DFM is capable of detect-
ing and estimating simulated atrophies in the brain but provides underestimated
results. Same day scan-rescan analysis on healthy subjects reveals that SIENA and
BSI report an error of 0.15% and 0.3% respectively, which is comparable to 0.29%
for the proposed DFM approach.

The approach of de Bresser et al. [34] makes use of manual segmentations of
the brain as a gold standard. SIENA [141], Uni�ed Segmentation (US) [6] and k
nearest neighbour (kNN) [2] approaches are employed for measuring brain volume
change. Adopting precision (repeatability) and accuracy (ground truth) criteria
they establish that US and kNN show a good precision, accuracy and compara-
bility for brain volume measurements. The coe�cient of repeatability (brain vol-
ume/volume change) is found to be larger for US (2.84%) than for kNN (0.31%)
and SIENA (0.92%). When brain volume changes are compared, SIENA showed
a good (r = 0.82; p = 0.004), kNN a moderate (r = 0.60; p = 0.067) and US a
weak (r = 0.50; p = 0.138) correlation with the manual segmentations. To conclude,
SIENA outperformed kNN and US in terms of whole brain volume change. kNN can
be used if volume change measurements of brain structures are studied separately.
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Recapitulation of existing evaluation studies
The most utilised criteria to perform validation of atrophy estimation techniques
are: same day scan-rescan, consistency, group separation, incremental atrophy sum-
mation with �rst-last di�erencing and comparison with a ground truth. The point
to be noted is that each criterion has its own limitations. For instance, with same
day scan-rescan, consistency and group separation, there is no absolute standard for
comparison whereas it is di�cult to verify if a simulated ground truth represents
atrophies seen in the real cases. It may also be mentioned that, in the context of
atrophy simulation, that the way tissue loss occurs in the brain is still not very well
understood. It is more likely to be driven by physiological aspects rather than bio-
mechanical ones. However, the use of bio-mechanical modelling may be interesting
to account for the consequences of tissue loss on the brain shape, for instance, on
the orientation of the gyri. Although approaches based on bio-mechanical models
of brain tissues may appear attractive, one can wonder whether such models are
actually more relevant than the one proposed by Karacali et al. [68] or Pieperho�
et al. [109].

This literature survey has highlighted that SIENA, BSI and JI are the three
most studied approaches of atrophy estimation. Various validation studies report
the errors in whole brain atrophy estimations for SIENA and BSI to be between
0.15 − 0.2% and 0.2 − 0.3%, respectively. In addition, SIENA overestimates while
BSI underestimates atrophy. Besides, JI is validated for di�erent transformation
models. Errors in estimations on whole brain have been reported to be for di�erent
models as FFD: 0.25 − 0.31%, �uid �ow: 0.58% and bio-mechanical: 0.29%. Note
that it may be di�cult to directly compare the results of these studies as they have
been performed on di�erent image databases. From investigations dealing with MR
artefacts, it can be concluded that noise and bias �eld inhomogeneity, if not cor-
rected, lead to di�erent types of errors in the brain. Up to ±4% of spurious changes
can be measured with DFM. Brain extraction is a crucial step in global atrophy es-
timation algorithms whereas multi-resolution levels and stopping criteria determine
the performance of JI techniques.

The reader is referred to Table 3.1 for a summary of existing works on evaluation
of existing atrophy estimation approaches detailed in section 3.1.2.

This remainder of the chapter is organised as follows. The evaluation framework
consisting of atrophy simulation (section 3.2.1) and simulation of artefacts (section
3.2.2) is detailed next. Results of atrophy simulation on Brainweb images are pre-
sented in section 3.3.1 and evaluation experiments are discussed in section 3.3.2.
The �ndings from this study are listed in section 3.5.
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3.2 Evaluation framework
The evaluation framework consists of two steps: generation of a test database
through simulation of di�erent atrophies and image artefacts and testing brain atro-
phy measurement algorithms (SIENA, SIENAX, BSI and JI (Noblet et al. [98]) on
these images. A pictorial summary of the validation framework is shown in Fig. 3.1.
Let us study the algorithm of atrophy simulation and addition of image artefacts in
more detail.

Figure 3.1: Proposed atrophy simulation framework and the evaluation framework
showing the addition of various artefacts to the simulated images in order to carry
out the validation procedure. This �gure shows the various steps involved in the
simulation of atrophy (Section 3.2.1) followed by the addition of various artefacts
(Section 3.2.2). Here �Output" refers to the images that we simulate for the eval-
uation experiments. Experiment 1, 2, 3, 4, 5 and 6 refers to the experiments for
evaluation of atrophy estimation algorithms on the basis of bias �eld inhomogene-
ity, noise, bias �eld inhomogeneity and noise, geometrical distortions, interpolation
artefacts and e�ect of lesions, respectively.
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3.2.1 Simulation of atrophy: ground truth generation
The atrophy simulation approach estimates a deformation �eld that preserves topol-
ogy so that the Jacobian at each voxel, is as close as possible to the desired local level
of atrophy. Topology preservation ensures that connected structures remain con-
nected and that the neighbourhood relationship between structures is maintained,
which are desired properties when simulating atrophy. By enforcing this constraint,
the space of possible solutions is restricted to physically acceptable deformations.
It also prevents the appearance or disappearance of existing or new structures.

Contrary to Karacali et al. [68] who consider the sum of squared di�erences
between the Jacobian of the transformation and the desired level of atrophy, the
logarithm of the Jacobian is considered so that dilations (1 < J < +∞) and contrac-
tions (0 < J < 1) have a similar in�uence on the objective function. The advantage
of considering the logarithm of the Jacobian has already been highlighted in [78].
Besides, additional constraints are introduced in order to make sure that the skull
remains invariant by the estimated transformation.

An overview of the existing atrophy simulation approaches and of the current
approach is presented in Table 3.2.

First, the B-spline based deformation model that is considered is described fol-
lowed by the associated optimisation problem.

The multi-resolution deformation model
Let s

∆= [x, y, z]t ∈ Ω ⊂ R3. The mapping h : Ω 7→ Ω writes h (s) = s+u (s), where
u is the displacement vector �eld. Consider a decomposition of the displacement
vector �eld u over a sequence of nested subspaces V1 ⊂ . . . ⊂ Vl ⊂ Vl+1 ⊂ . . .,
de�ning a multi-resolution approximation of u [95]. Space V1 de�nes the coarsest
scale representation. Any deformation �eld at scale l may also be expressed as
a deformation �eld at a �ner scale l + 1. A basis of Vl may be generated from
a scaling function Φ. To handle a 3-D deformation �eld, three multi-resolution
decompositions are considered, one for each component of the displacement. Every
element of the basis of Vl writes

Φl
i,j,k (x, y, z) = Φl

i (x) Φl
j (y) Φl

k (z)
= 23l/2 Φ

(
2lx− i

)
Φ

(
2ly − j

)
Φ

(
2lz − k

)
.
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At scale l, i.e., in space Vl, the displacement �eld ul is parametrised by the vector
al

∆=
{
alx;i,j,k, a

l
y;i,j,k, a

l
z;i,j,k

}
as:

ul (x, y, z) =



ulx (x, y, z)
uly (x, y, z)
ulz (x, y, z)


 =




∑

i,j,k

alx;i,j,kΦ
l
i,j,k (x, y, z)

∑

i,j,k

aly;i,j,kΦ
l
i,j,k (x, y, z)

∑

i,j,k

alz;i,j,kΦ
l
i,j,k (x, y, z)



. (3.1)

First degree polynomial B-spline scaling functions Φ are considered in the current
implementation [98]. The reader is referred to [98, 99] for additional details on the
deformation model.

Optimisation problem
Let ΩJ ⊂ Ω be the area where the desired simulated atrophy level J (s) (the value
of the Jacobian at each voxel s ∈ ΩJ ) is user-speci�ed. The estimation of the
corresponding deformation �eld u is performed according to the following objective
function:

Eu,J,λ =
∫

ΩJ

|log (Ju (s))− log (J (s))|2 ds + λ C

∫

Ω
EReg (u (s)) ds, (3.2)

where Ju stands for the Jacobian of u, Ereg is a regularisation term that ensures that
the estimated transformation is smooth, λ is the weight of the regularisation term
and C is a scaling factor computed at the beginning of each scale so that the data
term and regularisation term are comparable [99]. Among the many regularisation
terms proposed in the literature, the membrane energy is chosen.

EReg (u(s)) =
(
∂ux(s)
∂x

)2
+

(
∂ux(s)
∂y

)2
+

(
∂ux(s)
∂z

)2
+

(
∂uy(s)
∂x

)2
+

(
∂uy(s)
∂y

)2

+
(
∂uy(s)
∂z

)2
+

(
∂uz(s)
∂x

)2
+

(
∂uz(s)
∂y

)2
+

(
∂uz(s)
∂z

)2
.

(3.3)
Contrary to Karacali et al. [68] who consider an additional term that prevents

the violation of the topology preservation condition, we directly solve the following
constrained optimisation problem, which ensures exact topology preservation in the
underlying continuous domain:

û = arg min
∀s∈Ω, 0<Ju(s)<+∞

Eu,J,λ. (3.4)

The procedure for solving this optimisation problem is quite involved and is de-
tailed in [98]. The estimation is done in a hierarchical way until the desired �nal
scale lf , the optimisation procedure at scale l being initialised with the solution
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at scale l − 1. Instead of considering a gradient descent algorithm as in [98], the
Levenberg-Marquardt optimisation procedure [112] is made use of in order to im-
prove the convergence rate.

To simulate realistic atrophy, it is desirable to enforce that the skull remains
invariant under the simulated transformation. This constraint has been considered
previously in [21] but not in [68]. In the present framework, the optimisation is per-
formed only on those B-spline parameters that do not a�ect the skull, while setting
the other parameters to zero. By doing this, the deformation �eld vanishes on the
skull. Therefore, it is allowed to remain in the same position.

Finally, to obtain the warped image, it is more convenient to consider the back-
ward transformation so that standard interpolation techniques can be used for the
regularly sampled data. Inversion is performed using the algorithm described in
[100]. In this inversion algorithm of Noblet et al., again a topology preserving para-
metric B-spline-based representation of the deformation �eld is considered. The
inversion method consists of solving a system of non-linear equations using interval
analysis techniques. This procedure provides the �exibility of controlling the accu-
racy of inversion to the user.

3.2.2 Simulation of artefacts
In order to conduct a realistic evaluation of atrophy estimation methods, artefacts
(MR, method or disease related) must be incorporated in the images after having
simulated atrophy in the brain. E�ect of bias �eld inhomogeneity, noise, geomet-
rical distortions, interpolation noise and MS lesions on the estimated atrophy are
considered in this work and are simulated/used in the following manner:

Bias �eld inhomogeneity The baseline image as well as the atrophied images
are degraded using two di�erent multiplicative intensity non-uniformity (INU) �elds
(20% INU) available with Brainweb.

Noise In this work, a Gaussian noise is added to all brain scans, such that a
signal to noise ratio (SNR) of 15 dB is achieved. Gaussian noise provides a good
approximation to the noise present in MRI [49].

Geometrical distortions Assuming that the undistorted brain image is avail-
able, measuring geometrical distortions means performing a point to point registra-
tion between the distorted image 3D coordinate x′ and the undistorted image 3D
coordinate x. Let T be the transformation that represents the geometrical distor-
tions then:

x′ = Tx (3.5)
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Holden et al. [55] suggest that geometrical distortions can be modeled as a fourth
degree polynomial as follows:

x′ = P0 + P1x+ P2x
2 + P3x

3 + P4x
4 (3.6)

where Pd refers to the coe�cient of degree d of the polynomial. To simulate these
distortions, we need a rough numerical idea of the geometrical distortions that occur
in the real scenario. Due to the unavailability of any undistorted image, we resort
to registering two brain scans of a healthy subject that were taken on the same day.
The registration parameters represent the relative geometrical distortions as well
as any rotation and/or translation due to head movement between the two scans.
We use �Automated Image Registration (AIR) [168]� algorithm (version 5.2.5) in
order to perform the registration. Since AIR is a polynomial based registration, we
directly obtain the registration parameters in the form of polynomial coe�cients,
for the simulation of geometrical distortions. Note that only relative geometrical
distortions between the two scans are estimated. This artefact is simulated only on
the baseline image that is compared with other atrophied images that are free of
any geometrical distortions.

The simulated �eld is illustrated in Fig 3.2. This �eld induces a mean displace-
ment of 1.57± 0.66 mm in the whole head area and of 1.22± 0.54 mm in the brain
area. In order to make sure that the simulated �eld is realistic, we compared our
geometrical distortion �eld to the one in [22] who demonstrate a phantom based
geometrical distortion �eld which is determined based on T1 weighted acquisitions.
The range of displacements in [22] is 0− 5 mm gradually increasing from the center
to the periphery. Our displacement �eld varies smoothly in the range 0 − 6.5 mm,
also showing an increase from the center to the periphery. As a result of the simu-
lated transformation, the brain volume of the baseline scan undergoes a decrease of
2% globally.

Interpolation noise The idea is to investigate and quantify the change in the
estimation of atrophy due to the introduction of an extra interpolation step. This
is important because interpolation is used during registration which is an inevitable
step for most of the longitudinal atrophy estimation techniques. To simulate this
artefact, we rotate all the images by 1◦ using �fth order B-spline interpolation.

Presence of lesions Lesions in the brain may arise due to a number of factors
such as stroke, tumours, arteriovenous malformations, MS, injury or congenital brain
abnormalities. The presence of lesions in the brain may have an adverse e�ect on
the analysis of atrophy. For example, the mis-classi�cation of white matter lesions
as CSF/gray matter or partial volume e�ects may lead to inaccuracies in volume
estimation. To evaluate the e�ect of lesions, we use the MS database of Brainweb
containing a normal brain and images with mild, moderate and severe degrees of
lesions. Due to the unavailability of noise-free images with lesions, the experiments
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(a) (b)

(c)

Figure 3.2: The modulus (in mm) of the simulated geometrical distortion �eld (a)
Coronal (b) Sagittal (c) Axial views. The simulated deformations vary in the range
of 0− 6.5 mm.

are performed on normal as well as images with lesions that are degraded with 3%
of noise. Since the images under test contain the same amount of noise, it can be
assumed that any variability between the results with di�erent lesion loads is due
to the presence of lesions only.

3.3 Results
Results of experiments on simulation of atrophy and evaluation of SIENA, SIENAX,
BSI-UCD (BSI implementation by Imaging of Dementia and Ageing lab, UC, Davis)
and JI (Non-rigid registration of Noblet et al.) are detailed in this section. The im-
plementation details and the parameters used for experiments for SIENA, SIENAX,
BSI-UCD and JI are explained in appendix B.1.
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3.3.1 Results on simulation of atrophy and discussion

(a) Atrophy of −20% (b) Atrophy of −50%

(c) Hypertrophy of +25% (d) Hypertrophy of +100%

Figure 3.3: Distributions of Jacobian values obtained when simulating uniform at-
rophies [(a) 20% (J = 0.8) and (b) 50% (J = 0.5)] and hypertrophies [(c) 25%
(J = 1.25) and (d) 100% (J = 2)].

In this section, we study the performance of the proposed atrophy simulation
algorithm. First, we investigate the in�uence of considering the logarithm of the Ja-
cobian in the objective function (Log-norm) instead of the standard sum of squared
di�erences (L2-norm). To this end, we simulate several rates of uniform atrophy
(20% and 50%) and hypertrophy (25% and 100%) without considering any invari-
ance constraint. Histograms of the Jacobian values of the estimated deformation
�elds are represented in Fig. 3.3. We can see that the use of the logarithm for
simulating a large atrophy (Fig. 3.3(b)) yields a smaller dispersion of Jacobian val-
ues as compared to the L2 norm. This dispersion increases when simulating large
hypertrophies (Fig. 3.3(d)). When simulating small atrophies or hypertrophies, the
use of the logarithm or the sum of squared di�erences tends to yield similar results
(Fig. 3.3(a) and (c)). The distributions of the simulated Jacobian values also high-
light the fact that using the Log-norm yields to a constant relative dispersion of
the Jacobian values (the dispersion varies linearly with the desired Jacobian value)
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which is not the case with the L2 norm. Hence, the Log-norm is more consistent as
opposed to the L2 norm.

Table 3.3: In�uence of considering the skull constraint on the mean and standard
deviation of Jacobian values of the simulated deformation �elds.

Desired Atrophy Without skull constraint With skull constraint
10%(J=0.9) 0.9017± 0.0021 0.9032± 0.0115
20%(J=0.8) 0.8015± 0.0021 0.8019± 0.0202
30%(J=0.7) 0.7011± 0.0020 0.7032± 0.0349
40%(J=0.6) 0.6008± 0.0018 0.6025± 0.0797
50%(J=0.5) 0.5005± 0.0017 0.5140± 0.2088

A quantitative analysis of the ability of the proposed algorithm to simulate the
desired atrophy has also been done (see Table 3.3). Simulations have been done
by considering a uniform atrophy over gray and white matter using the Brainweb
image. In all our experiments, we use 7 levels in the multi-resolution deformation
model. The �nal scale amounts to considering a regular grid of control points with
a spacing of 2 × 2 × 2 voxels (each control point corresponding to the center of a
B-spline function). We can notice that, on the average, the desired atrophy is well
achieved without and with the skull constraint. It can also be seen that, without
the skull constraint, the standard deviation of the Jacobian values decreases when
the desired atrophy rate increases.

An inverse trend is observed when considering the skull constraint. This is due
to the fact that the Jacobian values tend to be equal to one in the neighbourhood
of the skull and do not vary abruptly in order to warrant topology preservation.
Thus, the Jacobian values of the voxels located on the brain boundary are far from
the desired atrophy. Fig. 3.4 elucidates this point using an error map (the absolute
di�erence between the desired Jacobian map and the one obtained by our algorithm).

Notice that the proposed simulation algorithm can easily achieve very high at-
rophy, contrary to the method proposed in [68], which requires the estimation of a
large atrophy in an incremental way. For example, it is possible to simulate a uni-
form atrophy of 99.9% (J = 0.001), without the skull constraint, with an obtained
average Jacobian value of 0.00106 ± 0.000716. Such an atrophy rate is obviously
unrealistic, but it highlights the ability of the proposed method to converge to the
desired solution, even for very low Jacobian values, while still preserving the topol-
ogy.

An example of a simulated atrophied image is shown in Fig. 3.5. Fig. 3.5(c)
illustrates the simulated changes in the brain and also that there is no movement
around the skull.
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Figure 3.4: Error map illustrating the absolute di�erence between the desired and
the obtained Jacobian maps for 50% (J = 0.5) of atrophy. The gray levels (from
black to white) depict the errors in the range of 0 − 5.5 (from low to high). Note
the high error near the skull surface. Also, one must remember that an atrophy of
50% in the brain is an extreme case of brain tissue loss.

(a) (b) (c)

Figure 3.5: (a) Original Brainweb image (b) Simulated image with 10% of globally
uniform atrophy (c) Di�erence between images (a) and (b). Note that there is no
deformation on the skull between (a) and (b).

Experiments have also been conducted for the simulation of non-uniform atro-
phies. To this end, we utilise the �Internet Brain Segmentation Repository (IBSR)�
1. This database provides manual segmentation of the brain in several brain struc-
tures. We simulate di�erent atrophies in some structures of the same brain including
the hippocampus, the cortex, the cerebellum, the ventricles and in the rest of the
brain without considering the skull constraint. In order to ensure that the simu-
lated atrophy rates corroborate the atrophies in real cases, we refer to [151] and [20],
which mention atrophy rates observed in various parts of the brains of Alzheimer's
disease patients. We illustrate the desired and the obtained Jacobians with the cor-

1http://www.cma.mgh.harvard.edu/ibsr/

http://www.cma.mgh.harvard.edu/ibsr/
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responding error map in Fig. 3.6. It can be seen in this �gure that the simulated
Jacobian is close to the true Jacobian with errors in the range of 0−1.2% of atrophy.
Fig. 3.6(c) depicts that these errors in the Jacobian are spread evenly all over the
brain. Table 3.4 shows the desired and obtained Jacobian values for various areas
of interest with the corresponding atrophy rates. It can be seen that the algorithm
is able to reach the desired atrophy accurately.

(a) (b) (c)

Figure 3.6: Simulation of non-uniform atrophies (a) Desired Jacobian map (b) Ja-
cobian map obtained by using our algorithm (c) Error map. The gray levels (from
black to white) depict the values of the Jacobian (from low to high) in the range of
0.94−1.08 for the maps shown in (a) and (b) and for the error map (c) in the range
of 0− 1.2% of atrophy.

Table 3.4: Table showing the desired and the obtained mean Jacobian values for
various parts of a brain in which non-uniform atrophies are simulated using the
proposed atrophy simulation approach. The desired and the achieved atrophy values
are also shown.

Area of interest Desired Obtained Desired Achieved
Jacobian Volume Change

Ventricles 1.0408± 0.0195 1.0444± 0.0110 +4.08% +4.44%
Cortex and cerebellum 0.9520± 0.0086 0.9562± 0.0092 −4.80% −4.38%

Hippocampus 0.9648± 0.0096 0.9682± 0.0101 −3.52% −3.18%
White Matter 0.9911± 0.0141 0.9936± 0.0280 −0.89% −0.64%

Brain 0.9675± 0.0220 0.9673± 0.0658 −3.25% −3.27%

The proposed simulation framework is also versatile and can be used for sim-
ulating a more complicated pattern of atrophy. For instance, it can be used for
simultaneously simulating a global brain atrophy and a change in a given pathologi-
cal area such as MS lesion evolution or tumour growth. The Brainweb MS moderate
lesion database is used for this experiment. The simulation is done by �rst simulat-
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ing the hypertrophy in MS lesion area while constraining the gray matter and the
cerebrospinal �uid to be invariant in order to ensure that lesions evolve inside the
white matter. Then, global atrophy is simulated, while only constraining the skull
to be invariant, and the estimated deformation �eld is combined with the previous
one. Notice that the global atrophy will modify the hypertrophy rate of the lesions.
This has to be taken into account when simulating MS lesion increase in order to
get the desired volume change.

In Fig. 3.7, we present a simulation of 10% of global brain atrophy and 100% of
MS lesion volume increase. Notice the increase in the sizes of lesions from Fig. 3.7
(a) to (b). The simulated atrophy can be clearly seen in the di�erence image (Fig.
3.7 (c)), especially at the boundaries along with the change in lesion sizes.

(a) (b) (c)

Figure 3.7: Simulation of atrophy in a brain with an increase in the MS lesion size:
(a) Original Brainweb image with moderate lesions (b) Image with 10% of global
atrophy and 100% of MS lesion increase (c) Di�erence between images (a) and (b).

3.3.2 Evaluation results of SIENA, SIENAX, BSI-UCD, JI and
discussion

Our evaluation is divided into two parts. The �rst part consists of the simulation
of a number of atrophies in a single normal brain image from Brainweb database
[71] to study the robustness of SIENA, SIENAX and BSI-UCD to various artefacts.
In the second part, we present results with these algorithms for 18 di�erent normal
brains (from Brainweb [8]) in order to examine the e�ect of anatomical variability
on these methods. Also, few results of comparison are shown for JI (Noblet et al.
[98]). Atrophy is simulated using the Log-norm in both the cases. The experiments
are detailed in the following sections. In the forthcoming discussion, we would use
the term �error� to represent the absolute di�erence between the ground truth and
the estimated Percentage Brain Volume Change (PBVC), unless stated otherwise.
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Experiments on one normal brainweb image
For this part of the experiments, the results are obtained by simulating brain atrophy
ranging between 0-1% (step size 0.1%) and 1-10% (step size 1%). Although, the
brain atrophy range of 0-1% is more relevant to neuro-degenerative pathologies, we
also present results for larger brain volume changes, in order to better assess the
accuracy of these methods. Fig. 3.8(a) shows the percentage brain volume change
(PBVC) between any two brain scan pairs, B1 and B2, such that the simulated
atrophy in brain B1 is less than the simulated atrophy in B2 (for the simulated
atrophy ranges of 0-1% and 1-10%). For example, if the simulated atrophy in B2
is 10%, then it is compared with all simulated atrophies of 1 − 9% (in B1). Fig.
3.8(a) compares the methods under consideration with respect to the ground truth,
for the noise-free case.

E�ect of bias �eld inhomogeneity and noise In order to comprehend the
e�ect of these artefacts, we create three sets of images using the baseline Brainweb
image and the simulated images with atrophy.

1. The baseline image as well as the atrophied images are degraded using di�erent
intensity non-uniformity (INU) �elds (20% INU) available with Brainweb.

2. A second set of images is obtained by adding Gaussian noise to all the brain
scans, such that a signal to noise ratio (SNR) of 15 dB is achieved.

3. We create a third set of images that are degraded by bias �eld inhomogeneity
followed by noise using the same parameters as in 1 and 2.

Fig. 3.8 (b-d) show the PBVC estimation for SIENA, SIENAX and BSI-UCD for
observations degraded with bias �eld only, noise only, both bias �eld and noise,
respectively. The absolute errors in the estimated PBVC for the three methods
are depicted using boxplots in Fig. 3.9 for the noise-free case and for images de-
graded with bias �eld inhomogeneity and noise. Note that the boxplots are shown
separately for atrophy ranges of 0 − 1% and 1 − 10%. This is done to capture the
trends in the observed errors properly as Fig. 3.8 clearly shows that the errors in
the estimated PBVC are dependent on the simulated atrophy value.

For low atrophy values (less than 1%), SIENA, SIENAX and BSI-UCD show a
similar performance in terms of error in PBVC measured with respect to the ground
truth (See Fig. 3.8(a)). Fig. 3.9(a) illustrates that, for the noise-free case, the max-
imum errors in the estimated PBVC values for SIENA, SIENAX and BSI-UCD are
0.15%, 0.24% and 0.34%, respectively for the low atrophy values. Also, Fig. 3.8(a)
shows that SIENA overestimates the atrophy, while BSI-UCD underestimates it for
large atrophy values when no artefact is added. For this range of atrophy, Fig. 3.9(b)
shows that SIENAX (maximum error 1%) outperforms SIENA and BSI-UCD (max-
imum error 3.7%).
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(a) (b)

(c) (d)

Figure 3.8: PBVC comparison of SIENA, SIENAX and BSI-UCD with the ground
truth for (a) noise-free images and those degraded by (b) bias �eld inhomogeneity
only (c) noise only and (d) bias �eld inhomogeneity and noise. (Refer to section
3.3.2.)

As can be seen from Fig. 3.8, the introduction of bias �eld inhomogeneity
Fig. 3.8(b) and both noise and bias �eld inhomogeneity Fig. 3.8(d) leads to a vis-
ible increase in errors for all the three methods. The maximum errors obtained
with SIENA, SIENAX and BSI-UCD for the atrophy range 0 − 1% and 1 − 10%
are 1.55%, 5.60%, 3.35% and 5.70%, 5.83%, 9.22%, respectively when using images
corrupted with bias �eld inhomogeneity and noise (Fig. 3.9(c-d)). The errors that
are discerned here are very large as compared to the simulated values of atrophy. A
prominent reason for this is incorrect brain extraction while using BET due to the
addition of bias �eld inhomogeneity, mostly at the boundary of the brain. In our
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(a) (b)

(c) (d)

Figure 3.9: Boxplot showing absolute errors in the estimated PBVC by SIENA,
SIENAX and BSI-UCD with respect to the ground truth for (a-b) noise-free images
and (c-d) those degraded by bias �eld inhomogeneity and noise. The ends of the
boxes show the lower quartile and upper quartile values. The red line denotes the
median. The lines extending from each end of the boxes show the maximum and
minimum values of the data.

observation, the addition of noise over bias �eld inhomogeneity leads to a signi�-
cant change in the brain extraction as compared to the brain extraction performed
when only bias �eld inhomogeneity is added. However, for the observations that
are degraded with Gaussian noise only, we do not observe any gross errors in the
extraction of brain. Brain extraction is crucial for SIENAX because segmentation
is performed on the brain image, that is directly related to the calculation of the
brain volume. Although, SIENA uses a combined brain mask from the two scans
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to evaluate the change in brain volume, it is seen that non-brain areas are included
in the calculations if they were included in one of the scans. This is a reason of
the degradation of the performance of SIENA since it leads to errors in detection
of the brain/non-brain boundaries. It is evident that registration of the two scans
is an important step for SIENA and BSI-UCD because it determines the relative
edge position (for SIENA) and corresponding intensity values (for BSI-UCD). We
would like to point out that bias �eld correction integrated with the segmentation
algorithm FAST [175] is performed for SIENA and SIENAX. In our experiments on
BSI-UCD, a bias �eld correction provided with the implementation of BSI-UCD is
applied after the registration has been performed. Since the bias �eld correction
step comes after the brain extraction and registration steps are performed, the error
in these steps possibly propagate to the �nal result. We note that, for BSI-UCD
too, brain extraction is an important step since the �nal result depends on getting
a good mask of the brain. Our experiments also suggest that an improper extrac-
tion of the boundary of the brain leads to a mis-calculation of the boundary shift
integral (∼ 2 − 3% in some cases). Note that for a pathology like MS, where the
annual atrophy is small, an error of 0.5% in PBVC, for instance, is quite signi�cant,
specially when it is not consistent over repeated measurements.

A striking observation is that addition of Gaussian noise leads to a decrease in
the mean absolute errors in the measurements of SIENA and SIENAX (Table 3.6).
As described previously, SIENA and SIENAX algorithms are sensitive to the extrac-
tion of brain boundaries. When we compare the brains extracted by BET, for the
noise-free and noise-only case, the extracted brains of some of the noise-free images
contain some parts of the brain in addition (such as some extra length of the brain
stem, CSF), which are not present in the noise-only extracted brains in some images.
The extracted brains for the noise-only case are closer to the Brainweb ground-truth
as compared to the ones in the noise-free case. Noise may a�ect the subsequent steps
also. For BSI-UCD, the errors in the PBVC values show an increase of around 0.5%
and 1% for simulated atrophy of less than 1% and between 1% and 10%, respec-
tively, with respect to the noise-free case. Although, BET is used with BSI-UCD
also, an increase in the error is seen for BSI-UCD for the noise-only case which may
be due to the pre-processing steps or due to the use of image intensities directly
for the calculation of the boundary shift integral. Note that such phenomena are
random and may arise due to the noise that is added. It is also informative to de-
termine whether these di�erences are statistically signi�cant. A two-sample paired
t-test indicates that for SIENA (p = 3.0795e−07) and BSI (p = 1.5435e−27) there
are signi�cant di�erences in the absolute errors with respect to the ground truth for
the noise-free and noise-only case at the 95% level. For SIENAX these di�erences
are not signi�cant (p = 0.1258) at the 95% level.
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E�ect of geometrical distortions Geometrical distortions are simulated as de-
scribed in section 3.2.2. Fig. 3.10 shows the PBVC comparison for SIENA, SIENAX
and BSI-UCD, respectively with the ground truth when the geometrically distorted
Brainweb image is compared with simulated images for di�erent atrophy rates. For
our experiments, we simulate 4th degree polynomial distortions. SIENA constrains
the a�ne registration, which corresponds to a 1st degree polynomial, using the skull,
attempting to correct for the geometrical distortions. SIENAX uses the same regis-
tration as SIENA. However, the purpose of registration for SIENAX is to calculate
the scaling factor to normalise the brain volume with respect to the MNI brain atlas.
As mentioned earlier, in our study only unnormalised results are considered. With
the a�ne registration of BSI-UCD, one can expect that the scaling distortions are
somewhat corrected. On comparing the three methods, we �nd that SIENA is least
a�ected by the simulated distortions: when compared to the ground-truths, a mean
absolute error of 0.07% is observed in the PBVC values. SIENAX and BSI-UCD
digress more from the ground truth where mean absolute errors of 1.68% (SIENAX)
and 0.82% (BSI-UCD) in the estimated PBVC are observed. The mean absolute
errors are calculated for the simulated atrophy range of 0 − 1%. The fact that an
additional volume decrease of 2% is induced due to the simulation of these distor-
tions indicates that the distortion correction of SIENA is e�ective. An increase in
errors for SIENAX with respect to the noise-free case is expected because the dis-
tortions are not recti�ed. As for BSI-UCD, the error indicates that the geometrical
distortions can not be corrected for only using an a�ne transformation. The annual
atrophy rate in MS and other neuro-degenerative diseases is comparable to the esti-
mation error caused by geometrical distortions. Hence, correction of such distortions
is crucial in order to guarantee the accuracy of these measurement techniques.

E�ect of interpolation The e�ect of introducing an additional interpolation step
to the images on the PBVC obtained with the three methods is shown in Fig. 3.11.
We see that SIENA and SIENAX remain generally una�ected, when compared to
the noise-free case shown in Fig. 3.8(a). For both these methods, the error in
estimation is less than 0.23% for the atrophy range of 0-1%. For the higher range
(1-10%), the error is less than 3.4% and 1% for SIENA and SIENAX, respectively.
While the error in PBVC increases for BSI-UCD for atrophy values lower than 1%
(maximum error 1.1), it decreases for atrophy values between 1-10% (maximum
error 1.7%), as compared to the noise-free case shown in Fig. 3.8(a).

E�ect of lesions To determine the e�ect of presence of lesions on atrophy, SIENA,
SIENAX and BSI-UCD algorithms are run for 6 cases (ranging from �normal� brain
to �severe� lesions). These are illustrated in Table 3.5. In all these cases, no addi-
tional atrophy is simulated. Hence, it is expected that ideally the atrophy estimated
between the various cases listed in Table 3.5 is close to zero. The deviations from
zero thus represent the change in estimated atrophy due to the presence of lesions. It
can be noticed from the Table 3.5 that lesions can lead to a signi�cant non-desired
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Figure 3.10: PBVC comparison for SIENA, SIENAX and BSI-UCD, respectively
with the ground truth when the geometrically distorted Brainweb image is compared
with simulated images for di�erent atrophy rates.

Figure 3.11: PBVC comparison of SIENA, SIENAX and BSI-UCD, respectively,
with the ground truth when images are rotated by 1◦ to add an extra interpolation
(B-Spline 5th order) step.
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change of up to 0.2% when comparing a normal brain with the same brain with
lesions using SIENA. SIENAX is more a�ected by the presence of lesions when a
normal brain is compared with the same brain with lesions (maximum PBVC is
∼ 0.4%). However, when two brains with lesions are compared the errors are lower
for both SIENA and SIENAX as depicted in Table 3.5. A maximum error of 0.78%
is observed when testing the in�uence of lesions on the atrophy estimated by BSI-
UCD. As we pointed out earlier, a gray-white matter mask must be provided to
BSI-UCD in order to de�ne the brain boundaries on which the boundary shift inte-
gral is calculated, which in our case is the ground truth mask. The images that are
used for this experiment contain some lesions close to brain boundaries which can
a�ect the atrophy calculation. However, only the presence of lesions is not expected
to have a large e�ect on the estimated atrophy by BSI-UCD in the experiments here.
Note that the tests are performed with images degraded by noise, which is mainly
responsible for the poor performance of BSI-UCD (see Table 3.5). Our experiments
on images degraded with noise have already illustrated the sensitivity of BSI-UCD
towards presence of noise (see Table 3.6).

Table 3.5: PBVC obtained using SIENA, SIENAX and BSI-UCD for establishing
the e�ect of lesions on atrophy measurements. In the �rst column �Normal-Mild�
means that atrophy is estimated between Brainweb normal image and the mild
lesion case

Case SIENA SIENAX BSI-UCD
Normal-Mild 0.1177 0.4574 0.3632

Normal-Moderate 0.2070 0.4309 0.4245
Normal-Severe 0.1487 0.3868 0.4573
Mild-Moderate -0.0078 -0.0263 0.7757
Mild-Severe -0.0246 -0.0702 0.7121

Moderate-Severe -0.0589 0.0439 0.7696

Table 3.6 summarises the results corresponding to various sources of error dis-
cussed in this section.

Experiments on multiple normal brains
In this section, we present the results of our experimentation on several anatomi-
cal models of normal brains provided by Brainweb [8]. The Brainweb images have
been obtained from the brain images of normal adults. Each image is created by
registering and averaging T1, T2 and PD weighted MRI images for each subject. A
fuzzy minimum distance classi�cation is adopted for separating the white matter,
gray matter, CSF and fat from the average volumes for each case.

These experiments are rendered on 18 normal brains by simulating two patterns



3.3. Results 85

Table 3.6: Summary of the results discussed in this section for the simulated atrophy
range 0 − 1% in one Brainweb image. This table illustrates the mean error in the
estimated PBVC for various artefacts. Note that, for presence of lesions, the error
represents the non-desired change that is observed when comparisons are done using
di�erent versions of the same brain with varying lesion load. Refer to section 3.3.2
for details.

Artefact SIENA SIENAX BSI-UCD
Noise-free 0.0615± 0.0407 0.0815± 0.0710 0.1072± 0.0899

Bias �eld inhomogeneity 0.2940± 0.4343 0.8420± 0.7502 1.0412± 0.3827
Noise 0.0292± 0.0226 0.0673± 0.0433 0.4400± 0.1082

Bias �eld inhomogeneity and Noise 0.3492± 0.3812 2.0277± 1.4622 0.9131± 0.7993
Interpolation artefacts 0.0628± 0.0401 0.0814± 0.0539 0.2209± 0.1619
Geometrical distortions 0.0745± 0.0562 1.6840± 0.1233 0.8273± 0.3495

Presence of lesions 0.0941± 0.0772 0.2359± 0.2089 0.5837± 0.1886

of atrophy: uniform and non-uniform over the brain.

• Uniform atrophy case: For every subject, 4 atrophy levels, 0.2%, 0.5%, 1%
and 1.5%, are simulated in a globally uniform fashion in the brain.

• Non-uniform atrophy case: In every brain, a slowly varying atrophy in the
gray matter and a uniform atrophy in the white matter is simulated. Three
such patterns are simulated using three di�erent slowly varying �elds. The
simulated gray matter and white matter atrophies are (range of gray matter
atrophy/ white matter atrophy/ global atrophy): 0.4% − 0.8%/0.2%/0.25%,
0.4%− 0.6%/1.5%/0.3% and 0.3%− 0.7%/0.5%/0.57% which we will refer to
as A, B and C, respectively in the following discussion.

In both cases, we choose these values of atrophy so that the whole brain sim-
ulated atrophies are consistent with the atrophies observed in many typical neuro-
degenerative diseases (0.5% − 1%). The atrophied images are compared with the
baseline images for all the 18 anatomies. Two comparisons are performed, one
involving noise-free images and the other images degraded with bias �eld inhomo-
geneity and noise. The parameters of the applied bias �eld inhomogeneity and noise
are the same as in section 3.3.2.

Fig. 3.12(a-d) illustrate the outcome of this experiment, for noise-free (a), (c)
and �noisy� images (b), (d) for the uniform and non-uniform atrophy cases. Since
non-uniform atrophy simulations represent the most general case, these tests are
repeated using a local atrophy estimation method, Jacobian Integration (Non-rigid
registration (Noblet et al. [98]) along with the three other methods. The �gure
depicts the mean and standard deviation of absolute error in the estimated PBVC
with respect to the ground truth for the 18 brains. The mean error and the standard
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deviation for a particular value of simulated atrophy are calculated as follows:

Let Eki =| PBV CGT ki − PBV CEstimatedki | where k = 1 . . . 18 and i =
0.2%, 0.5%, 1%, 1.5%;A,B,C.

µi = Eki (3.7)

σi =

√√√√ 1
n

n∑

k=0

(Eki − µi)2 (3.8)

where PBV CGT ki and PBV CEstimatedki are the ground truth and estimated
PBVC, respectively. n represents the number of experiments (in this case n = 18).
Ideally, one expects the mean error and standard deviation to be close to zero. Notice
that the error in the estimation of PBVC is dependent on the amount of simulated
atrophy for the noise-free case, Fig. 3.12(a) the error being higher for higher values
of atrophy. The error in PBVC increases in the following order : SIENA, SIENAX
and BSI-UCD. However, the standard deviation is the lowest for SIENA and of a
similar order for SIENAX and BSI-UCD. A di�erent trend is seen for the noisy case
shown in Fig. 3.12(b). In this case, the error in the PBVC increases in the following
order : SIENA, BSI-UCD and SIENAX. The standard deviation is much higher for
SIENAX as compared to SIENA and BSI-UCD. Similar results can be identi�ed in
the non-uniform atrophy case Fig. 3.12(c) and (d) with the exception that the per-
formance of SIENA is comparable to that of SIENAX when non-uniform atrophies
are simulated and noise-free images are used for the experiments (Fig. 3.12(c)).
When the same tests are performed using JI, it is observed that JI surpasses all
the other three methods in both noise-free and noisy cases Fig. 3.12(c) and (d). It
may be clari�ed here that the simulation algorithm uses the transformation model,
the regularisation term and topology preservation constraints in the same manner
as Noblet et al.'s algorithm that is used here for performing JI. Nevertheless, the
transformation of the simulated atrophy is inverted before it is applied to the images
so that the model parameters do not remain the same as the original transforma-
tion. Hence, when the simulated transformation is recovered with Noblet et al.'s
algorithm the estimation does not favour JI.

As we said before, the addition of bias �eld inhomogeneity and noise is responsi-
ble for errors in brain extraction. Particularly, when the atrophy under consideration
is small (like in our experiment here), incorrect brain extraction can be a reason for
misleading results. A disproportionate increase in error for SIENAX can be ex-
plained as following. Di�erent bias �eld inhomogeneities are added to all the 18
baseline images and the simulated images. It is observed that whenever a strong
bias �eld is present in a part of the image, some parts of the brain (corresponding to
a volume of around 10000 mm3 in some brains) are not detected by BET. The bias
�elds added to some of the simulated images also lead to the inclusion of non-brain
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(a) (b)

(c) (d)

Figure 3.12: Bar plot showing the mean absolute error and its standard deviation in
the estimated PBVC (in percentage) with respect to the ground truth for SIENA,
SIENAX and BSI-UCD for the Uniform atrophy case using (a) Noise-free images
(b) With images degraded with bias �eld inhomogeneity and noise and for the Non-
uniform atrophy case using (c) Noise-free images (d) With images degraded with
bias �eld inhomogeneity and noise. A (−0.25%), B (−0.3%) and C (−0.57%) are
di�erent patterns of simulated non-uniform atrophy.

parts. Hence, the PBVC estimated by SIENAX is erroneous, which is re�ected by
the mean of the error. Two factors contribute to the change in error in BSI-UCD:
incorrect extraction of brain and perturbation of intensity values due to the addition
of noise and bias �eld inhomogeneity. As mentioned in section 3.3.2, the increase in
error of SIENA can be attributed to the inclusion of non-brain parts, while �nding
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the brain/non-brain boundary. Although similar in nature, SIENA does not lose
performance in the noisy case as much as BSI-UCD due to the use of derivatives of
edges instead of intensity values to �nd the PBVC and also the fact that the �nal
PBVC given by SIENA is the average of PBVC in both directions (�rst time point
to second time point and the reverse), which can compensate to an extent for small
errors in one of the directions.

It is also interesting to calculate the overall mean and the standard deviation of
error in the estimated atrophy using these 18 cases for the simulated atrophy range
0.2− 1.5% (uniform atrophy case) and for the range 0.2− 0.57% (non-uniform atro-
phy case). This provides an idea of the accuracy and precision of the methods under
consideration. The overall mean and standard deviation of error of the methods for
the di�erent cases are tabulated in Tables 3.7 and 3.8. It is observed that SIENA
performs better than SIENAX and BSI-UCD when noise-free and noisy images are
used since it shows lowest mean and standard deviation of error. SIENAX per-
forms better than BSI-UCD in the noise-free case. However, BSI-UCD outperforms
SIENAX in the noisy case. The same trend can be noticed for the noise-free uniform
and the non-uniform atrophy cases, except that the performances of SIENA as well
as SIENAX are comparable in the non-uniform atrophy case. Also, note that the
absolute error is less, when non-uniform atrophy is simulated, for SIENAX and BSI-
UCD, with respect to the corresponding error values in the uniform atrophy case.
A two sample t-test between the absolute errors observed when non-uniform and
uniform atrophies are simulated for the same simulated atrophy range (0.2− 0.5%)
shows that for all the three methods these di�erences are signi�cant. At the 95%
signi�cance level, p < 0.001 for SIENA and SIENAX while p < 0.001 for BSI. In
terms of overall mean also, JI proves to be the best performer among this group of
four methods.

Table 3.7: Overall mean and standard deviation of absolute error in PBVC of
SIENA, SIENAX and BSI-UCD for uniformly simulated atrophy. Noisy observa-
tions are images degraded with noise and bias �eld inhomogeneity.

Uniform Atrophy
Method Noise-free Observations Noisy Observations
SIENA 0.0944± 0.0656 0.6382± 0.5306
SIENAX 0.4492± 0.2210 4.0073± 2.4087
BSI-UCD 1.1881± 0.2418 1.7948± 0.9743

As mentioned earlier in this section, the errors in the estimated atrophy by
SIENAX in the �noisy� case show an abrupt increase (as compared to the noise-
free case) due to incorrect segmentation of brain by BET. In order to gain a better
insight into this problem, voxel by voxel error in brain segmentation for the 18 base-
line images is investigated. Fig. 3.13 shows the voxel by voxel mean error for the



3.3. Results 89

Table 3.8: Overall mean and standard deviation of absolute error in PBVC of
SIENA, SIENAX, BSI-UCD and JI for non-uniformly simulated atrophy. Noisy
observations are images degraded with noise and bias �eld inhomogeneity.

Non-Uniform Atrophy
Method Noise-free Observations Noisy Observations
SIENA 0.1545± 0.0948 0.4472± 0.3074
SIENAX 0.1510± 0.0629 3.4483± 1.7303
BSI-UCD 0.6715± 0.1891 1.5255± 0.6828

JI (Noblet et al.) 0.0366± 0.0100 0.3256± 0.1415

noise-free and noisy baseline images. It can be seen that in the noisy case the mean
error is high near the cerebellum since this part is not taken into account by BET.
This is due to a strong bias �eld inhomogeneity in that area in some of the images.
We also observed that the skull is not properly stripped for one of the cases and can
be distinctly seen in Fig. 3.13(b). In BET, the detection of the brain boundary is
dependent on local calculation of an intensity threshold, which is disturbed by the
perturbation of intensity values, due to the existence of inhomogeneity in intensities.
The results show that bias �eld inhomogeneity is a major factor that contributes to
the errors in brain segmentation.

(a) (b)

Figure 3.13: Mean error in the segmentation of brain for (a) the noise-free case
(b) when using images degraded by bias �eld inhomogeneity and noise for the 18
baseline images.

We also perform some additional experiments on BSI-UCD, in order to explain
the high error that is observed. Studies on BSI (such as [20]) have stated the mean
absolute error to be around 0.2% which is lower than what can be seen in our analy-
sis (See Tables 3.7 and 3.8). Three experiments are performed with BSI-UCD using
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noise-free images in which non-uniform atrophy is simulated. To ascertain the ef-
fect of pre-processing (registration and bias �eld correction) on the �nal BSI-UCD
calculation, we skip these steps from the BSI-UCD analysis in the �rst experiment.
These steps can be passed over as the images are free of intensity inhomogeneity
and the Brainweb images are already registered to the same space. For the second
experiment, the BSI-UCD algorithm is run normally as has been done for all our
experiments with BSI-UCD. Finally, a test is carried out by replacing the registra-
tion of the BSI-UCD with an in-house mutual information based a�ne registration
algorithm. These results are demonstrated in Fig. 3.14. It can be seen that when
no pre-processing is used the BSI-UCD algorithm works better than the other two
cases where images are pre-processed. This is expected since the Brainweb images
are already registered. The mean absolute error in the measured atrophy for the
�rst experiment (no pre-processing) is 0.15%, which is in accordance with what has
been reported in [20]. There is a reduction in the error with our in-house a�ne reg-
istration as compared to the registration of BSI-UCD, indicating that registration
is a critical step when employing BSI-UCD and registration parameters should be
carefully selected. We have also performed experiments that test the in�uence of
the bias �eld correction algorithm on the estimated error. Results, obtained on the
noise-free case, show that there is no signi�cant di�erence between the results when
the bias �eld correction is not performed.

Figure 3.14: Bar plot showing the mean absolute error and the standard deviation
in the estimated PBVC (in percentage) when the BSI-UCD algorithm is run with
no pre-processing (BSI-UCD(1)), normal BSI-UCD algorithm (BSI-UCD(2)) and by
replacing the registration algorithm of BSI-UCD with an in-house a�ne registration
algorithm (BSI-UCD(3)).
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In Jacobian integration, there are two primary steps: a non-rigid registration
(NRR) step in order to obtain the Jacobian and the integration of this Jacobian
over the area of interest. In order to quantify the e�ect of using an erroneous mask
for integrating the Jacobian, another experiment is performed by integrating the
same Jacobian map over di�erent masks. Brain masks are created as follows: by
manipulating the ground truth mask by performing dilations, erosions and transla-
tions on it and from the segmentation algorithm of Bricq et al. [19]. The list of the
masks employed are listed below:

• M: Ground truth mask.

• MD1: Ground truth mask dilated 1 iteration using a 3×3×3 cubic structuring
element.

• MD2: Ground truth mask dilated 2 iterations using a 3×3×3 cubic structuring
element.

• ME1: Ground truth mask eroded 1 iteration using a 3×3×3 cubic structuring
element.

• ME2: Ground truth mask eroded 2 iterations using a 3×3×3 cubic structuring
element.

• MT: Ground truth mask translated by 1◦ each in X, Y and Z dimensions.

• SHMC: Mask obtained by brain extraction (BET) followed by the segmenta-
tion algorithm. The algorithm also makes use of N3 bias correction [137] for
noisy images.

Table 3.9 shows the mean and standard deviation of absolute error in PBVC of
NRR algorithm of Noblet et al. for non-uniformly simulated atrophy with respect to
the ground truth when di�erent masks are used for averaging the Jacobian. It can
be seen that erosion and dilation lead to higher errors as compared to translation
of the true brain mask. On the whole, using Bricq et al.'s algorithm can cause a
di�erence of up to 0.1% in the estimated global atrophy (with respect to the case
when ground truth mask is used). Statistical tests show that the results obtained
using masks from Bricq et al.'s algorithm are signi�cantly di�erent to the case when
true mask is used on the same deformation (p ≈ 10−13). These tests highlight the
noteworthy role of the mask used for averaging the Jacobian in order to estimate
atrophy.

3.4 Comparison with other studies
In this section, we compare the results of evaluation with other works. Camara et
al. [20], who utilise the same criterion as in our study, report the mean absolute
errors in the estimated atrophy as 0.22% and 0.23% for SIENA and BSI, respec-
tively. These values do not agree with the mean absolute errors that we obtain in
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Table 3.9: Overall mean and standard deviation of absolute error in PBVC of NRR
of Noblet et al. for non-uniformly simulated atrophy with respect to the ground
truth when di�erent masks are used for averaging the Jacobian.

Mask Noise-free Observations
M 0.0366± 0.0011

MD1 0.2563± 0.1148
MD2 0.3351± 0.1363
ME1 0.2807± 0.1641
ME2 0.1954± 0.1922
MT 0.08548± 0.0320

SHMC 0.0721± 0.0278

our work (SIENA: 0.64%, BSI-UCD: 1.79%) in a real scenario (where experiments
are conducted after a deliberate addition of bias �eld inhomogeneity and noise after
the simulation of atrophy). Their experiments are performed on real images. We
believe that the di�erence in the quality of the images could be responsible for the
di�erences in the results. As we have said before, bias �eld inhomogeneity along
with noise can degrade the performance of SIENA, SIENAX and BSI-UCD in a large
way. Also, the results may vary depending on the implementation of BSI utilised in
the simulations. It is shown in the previous section that the registration algorithm
should be carefully chosen so as to guarantee a good performance by BSI. In case of
JI, Noblet et al.'s [98] method cannot be directly compared to Camara et al.'s [21]
FFD as these two algorithms are based on di�erent models. Note that the mean ab-
solute errors can only be compared to those studies who use simulated ground truths.
The employment of other criteria of evaluation by Smith et al. [142] and Boyes et
al. [18] makes it incorrect to compare their mean absolute errors with our estimates.

Our results also illustrate that SIENA has a tendency of overestimating atrophy
while BSI-UCD underestimates it and that the error in the measured atrophy is
larger for higher values of atrophy (See Fig. 3.8). The least squares �tted scaling
factors are GT(Ground Truth)=SIENA∗0.89; GT=BSI-UCD∗1.88; SIENA=BSI-
UCD∗2.15 (for noise-free observations). A similar trend has been observed in
Smith et al. [142] (SIENA=BSI∗1.20) and Camara et al. [20] (GT=SIENA∗0.90;
GT=BSI∗1.18; SIENA=BSI∗1.29). The scaling factors in our study with BSI-UCD
have a higher value than the other studies. This can be explained by the fact that
we use a di�erent implementation of BSI and the quality of images too is not the
same. We obtain a weak correlation of r = 0.42, p = 0.0015 between SIENA and
BSI-UCD while other studies show a much better correlation (Smith: r = 0.87,
p < 0.001, Camara: r = 0.97). Our results indicate a better correlation between
the atrophy measured by SIENA and SIENAX (r = 0.89; p < 0.001) as compared
to Smith et al. (r = 0.71; p < 0.001).
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3.5 Findings
We have evaluated the performance of three popular methods for the estimation of
cerebral atrophy using gold standards. To create the gold standards, a topology
preserving scheme is used for simulating atrophy using a B-spline based deforma-
tion model. Additional constraints ensured skull invariance in the simulated image.
We have shown that the framework for atrophy simulation can e�ciently generate
a deformation �eld that �ts a given Jacobian map, while taking into account the
invariance constraints. The ability of the method to simulate uniform and non-
uniform atrophies accurately was demonstrated using various examples.

The performance of three freely available algorithms (SIENA, SIENAX and BSI-
UCD) and one JI algorithm by simulating atrophy in Brainweb images was assessed.
Our analysis consisted of two steps: the simulation of atrophies in a single Brain-
web image in order to examine the robustness of the three methods to bias �eld
inhomogeneity, noise, geometrical distortions and interpolation artefacts; statistical
analysis of the results obtained on 18 di�erent anatomical models of the brain.

From the various tests that were performed, we draw the following conclusions:

• Experiments in the presence of bias �eld inhomogeneity and noise

� Our experiments related to a single Brainweb image on which a number of
atrophies in the range 0−1% were simulated, showed that the mean error
in the estimated PBVC for SIENA was 0.06%±0.04 and 0.35%±0.38 for
noise-free and images degraded with bias �eld inhomogeneity and noise,
respectively. The errors were much higher for SIENAX and BSI-UCD.

� Complementary experiments on 18 di�erent Brainweb images, where uni-
form atrophy was simulated, indicated that, in the presence of bias �eld
inhomogeneity and noise, a mean error of 0.64%±0.53 may be expected in
the atrophy estimated by SIENA. This is contrastingly high as compared
to the results for the noise-free case for SIENA (0.09%±0.07). The errors
obtained with SIENAX and BSI-UCD were considerably higher as com-
pared to SIENA. Experiments with non-uniformly simulated atrophies,
where Jacobian integration (based on the non-rigid registration method
of Noblet et al. [98]) was tested as well, also supported these results. In
terms of mean error, JI outperformed SIENA in both noise free and noisy
cases. The observed errors were also higher than the overall errors (mean
absolute di�erences) obtained by Camara et al. [21] for SIENA and BSI.

Both sets of experiments showed that, SIENA is the best performer with re-
spect to the error in the estimated PBVC in the noise-free case as well as when
the images are degraded with bias �eld inhomogeneity and noise in the group
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of three widely used methods SIENA, BSI and SIENAX. However, experi-
ments including JI showed that it performed better than SIENA. The errors
that we observed here are comparable to the whole brain annual atrophy rates
(0.5− 2.8%) that have been reported for various pathologies. This highlights
the need for more sensitive methods.

We also concluded that bias �eld inhomogeneity and noise were responsible for
incorrect brain extraction that considerably a�ected the accuracy of SIENA,
SIENAX and BSI. In the JI algorithm, the similarity criterion was based on
the intensity values and was susceptible to intensity inhomogeneities. A good
bias �eld correction algorithm is essential in order to improve the performance
of the methods. The set of tests that we performed also indicated that SIENA,
BSI-UCD and JI are capable of estimating the longitudinal atrophy more ac-
curately than SIENAX in a real scenario, where the images are corrupted with
bias �eld inhomogeneity and noise. We would like to remind the reader that
SIENAX has been developed for performing cross-sectional studies. Hence,
one has to be careful when interpreting the longitudinal atrophy estimated
through SIENAX.

• Geometrical distortions lead to mean absolute errors of around 0.07% in
SIENA, 0.82% in BSI-UCD and 1.68% in SIENAX.

• Interpolation artefacts did not have a noticeable impact on the results of
SIENA and SIENAX as compared to the noise-free case.

• The presence of lesions on atrophy estimation by SIENA, SIENAX and BSI-
UCD was also evaluated. A maximum error of 0.2%, 0.45% and 0.46% was
observed with SIENA, SIENAX and BSI-UCD, respectively, when comparing
image of a normal brain with the same brain with lesions.

The bottlenecks for SIENA are registration of the two given scans and segmentation
of the boundary voxels (that is a�ected by the accuracy of the brain extraction).
Since SIENA measures atrophy by measuring the displacement of the brain surface
edge points after registering the two brains, it needs an accurate registration algo-
rithm. Accurate segmentation would better localise the brain edges and thereby
improve the accuracy of SIENA. The critical steps for BSI-UCD are the registra-
tion of the two brain scans and the manual extraction of a gray-white matter mask
to determine the boundaries of the brain on which the volume change is calcu-
lated. For SIENAX, the bottleneck is the brain extraction stage. Since, SIENAX
estimates brain volume directly by counting the number of brain voxels, a better
brain extraction method would improve the accuracy of SIENAX (see for instance,
[14]). JI depends both on the non-rigid registration of the serial images and the
segmentation of brain for extracting the region of interest. The registration in turn
is a function of many aspects such as the model (similarity criterion, regularisation
function) and algorithmic settings (such as levels in the multi-resolution framework
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and optimisation parameters). Pre-processing techniques play a critical role in its
correct functioning. In our opinion, brain atrophy estimation is still an open issue
and accurate algorithms are needed to measure the small atrophy that occurs in
neuro-degenerative diseases.



Chapter 4

Uncertainty Estimation for
Longitudinal Brain Atrophy

Measurement Algorithms with a
Ground Truth

Analysis of statistical properties of maps of volumetric changes of the brain, such as
Jacobian maps, is a crucial step in studies based on voxel or tensor based morphom-
etry. However, the accuracy of maps of volumetric change is questionable when
they are obtained from images corrupted with artefacts. Bias �eld inhomogeneities
and noise in the images were identi�ed as major determinants causing errors in atro-
phy estimations in chapter 3. In addition, factors such as inaccuracies of registration
and segmentation procedures used during an atrophy estimation algorithm may also
result in biased estimates of atrophy, even in the absence of any image artefacts.
Another critical consideration that is generally overlooked is model error (i.e., errors
in the mathematical model representing brain atrophy). For instance, in non-linear
registration approaches free-form, linear elastic or viscous �uid �ow transformations
can be chosen as models. Jacobian maps obtained from these non-linear registration
models may be biased [121]. Validation studies [142, 20, 109] including ours (chapter
3) have con�rmed the existence of bias in atrophy estimations. Due to these reasons,
it becomes di�cult to separate real anatomical changes from spurious ones. It is
thus important to make such maps of change more reliable by providing estimates
of uncertainties in atrophy estimations. This will aid end users in decision making.

In this chapter, the goal is to develop a generic framework for estimating uncer-
tainties in longitudinal brain atrophy by means of constructing con�dence intervals
for any atrophy estimation method. A simulated ground truth acts as an indepen-
dent source of learning errors in atrophy measurements. Example simulations on
multiple subjects allow us to estimate uncertainties that are stored for future mea-
surements in a �learning database�. The novelty of the framework lies in its ability to
incorporate both errors arising from MRI artefacts and method speci�c bias in the
constructed con�dence intervals. In the light of superior performance of the NRR
method of Noblet et al. [98] over SIENA, SIENAX and BSI methods in section
3.3.2, coupled with the �exibility of manipulation (atrophy measurement in any re-
gion of interest) that NRRs o�er, the rest of the thesis is dedicated to the analysis of
Jacobian maps obtained from such algorithms. Three non-rigid registration (NRR)
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approaches are chosen [98, 10, 157] to demonstrate how con�dence intervals can be
constructed for atrophies estimated by them. The proposed framework is tested for
hippocampal atrophies in real MR brain images. Con�dence intervals are quantita-
tively evaluated on the basis of coverage probability and length. Results show that
the ANTS [10] method provides meaningful con�dence intervals as compared to the
NRR methods of Noblet et al. [98] and Vemuri et al. [157].

4.1 Uncertainty
Uncertainty is de�ned as the margin of error in a measured value and depends on
the accuracy and precision of the system of measurement. Accuracy refers to the
distance of an estimated value from its true value whereas precision is the variabil-
ity in repeated measurements of the same quantity under identical conditions [149].
Precision can be increased by using a large sample size. However, if the system has a
systematic error, a large sample size will not improve the accuracy. An independent
source is required to measure accuracy.

Let θ∗ be a scalar measured quantity then uncertainty on θ∗ can be expressed
as an interval (θl, θh) that is likely to contain the true value (or the ground truth)
θ of this quantity with a prede�ned probability. The distance of mean estimated
value θ∗ and the true value θ (accuracy) is what we will refer to as the bias (b) in
estimations in the rest of the thesis. Fig. 4.1 depicts the de�nition of precision and
bias.

e = (θl, θh) (4.1)
b = θ − θ∗ (4.2)

4.2 Uncertainty estimation in image registration
The discussion in the previous chapters has revealed how and why registration al-
gorithms play a crucial role in brain atrophy estimation. Hence, this section is
devoted to approaches of measuring uncertainty in registration algorithms. The ex-
isting approaches are classi�ed depending on whether they employ a ground truth,
manipulate the similarity criterion or the deformation �eld or are based on Bayesian
registration for obtaining uncertainties.

4.2.1 Using a ground truth
The most popular way of measuring uncertainty is to simulate known transforma-
tions and compare the recovered results with the true transformation. Let T be the
transformation estimated by a registration approach and let θ∗ be the simulated
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Figure 4.1: Assuming a Gaussian distribution for atrophy, the mean estimated atro-
phy θ∗ and precision (variance) are obtained from repeated measurements of atrophy
under identical conditions. In this depiction, the con�dence interval e = (θl, θh) does
not contain the true value (ground truth). The distance between the mean estimated
atrophy θ∗ and the true atrophy θ is the bias b in atrophy measurements.
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deformation (ground truth). The residual registration error at a voxel x can be
calculated as:

ε =
1
N

∑

x∈Ω

‖(x+ θ∗(x))− T (x)‖ (4.3)

where N is the total number of voxels and Ω is the domain of the images.

Applications of FEM to modelling interrelations between di�erent tissue types
for creating arti�cial deformations have been demonstrated for breast tissue by Schn-
abel et al. [128], for prostrate by Lee et al. [75] and for brain by Camara et al. [20].

Schnabel et al. [128] report average registration errors for non-rigid registration
method of Rueckert et al. [124] as 0.4 mm and 0.85 mm when registering post-
contrast breast images to a FEM deformed version of themselves and pre-contrast
breast images to a FEM deformed version of post-contrast images.

Lee et al. [75] compare three registration algorithms: the Demon's method
[150], level set method of Vemuri et al. [157] and a physically-based viscous �uid
�ow method [29]. They use the fact that the estimated deformation θ̂ and the
simulated deformation θ∗ must be inverse mappings of each others. Hence, their
composition must produce values close to zero. They de�ne absolute εabs and relative
εrel measures of registration error as:

εabs(x) = length(θ̂(θ∗(x))) (4.4)

εrel(x) =
length(θ̂(θ∗(x)))
length(θ(x))

(4.5)

where length(θ(x)) represents the norm of the 3-D vector at voxel x. They con-
clude that Demon's method produces the best results on prostrate images (mean
εabs = 0.41 cm, mean εrel = 1.5 cm) followed by �uid �ow registration method
(mean εabs = 0.37 cm, mean εrel = 3.93 cm) and level set motion based method
(mean εabs = 0.97 cm, mean εrel = 15.58 cm).

The contributions of Camara et al. [20] have already been discussed in section
3.1.2.

4.2.2 Manipulating the similarity criterion or deformation �eld
Robinson et al. [120] and Yetik et al. [172] present registration accuracy derived
from the Cramér-Rao bound (CRB) in terms of covariance of deformation �eld
parameters. The Cramér-Rao bound states that if θ is an unknown set of parameters
then the covariance (C) of any unbiased estimator θ̂ of θ is bounded by the inverse
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of the Fisher information I(θ):
C(θ̂) ≥ 1

I(θ)
(4.6)

Let f(x) = u′(x) + nf (x) and g(x) = u(x) + ng(x) where f , g are images to be
registered, nf (x), ng(x) are zero mean i.i.d. noise with variance σ2. u is the true
image and u′(x) = u(x + θ∗), where θ∗ is the true deformation between the two
images f and g. The Fischer information matrix I is given by [73]

Iij(θ) =
1
σ2

∑

x∈Ω

∂u′∂u′

∂θi∂θj
(4.7)

where Ω is the domain of the images f and g. Computation of the Fischer matrix
is done using the ML estimates of u′ and σ2 [73].

The Cramér-Rao bound (Eq. 4.6) gives us a lower bound on the covariance
of any unbiased estimator θ̂ of θ∗. The requirement of an unbiased estimator of
deformation may be too limiting in practise where we deal with biased estimates
frequently.

Fast Registration Accuracy Estimation (FRAE) is presented by Kybic et al. [72]
which assumes that the similarity criterion and the error in registration parameters
are normally distributed. Statistical analysis of the similarity criterion leads to a
closed form solution to �nding parameter covariance. Let J be a similarity criterion
which can be written as a sum of pixel contributions as follows

J(θ) =
∑

x∈Ω

s(θ(x)) (4.8)

where s(θ(x)) is the similarity criterion at voxel x at which the estimated deforma-
tion is θ. The covariance under this framework can be estimated as,

CFRAEθ =
4γ

F−1((1− α)2, d)
H−1 (4.9)

where F−1 is the inverse cumulative χ2
d distribution function and H−1 is the in-

verse of the Hessian of the parameter of interest θ. γ is the variance of the similarity
criterion around the noiseless value at 95% level. FRAE can be applied to atrophy
estimations performed with the help of NRR methods based on similarity functions
that can be written as a sum of pixel contributions. However, some additional com-
putational overhead is required. This approach has the advantage of being fast.

In another work, Kybic et al. [73] make use of bootstrap resampling in order
to estimate uncertainty. Bootstrap methods are versatile as they allow the user to
obtain an estimate of any parameter of interest such as the mean or standard devi-
ation from an approximate distribution. The basic principle of bootstrap methods
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is stated here. Let X = {x1, x2, . . . , xN} be N i.i.d samples of a random variable
X . The bootstrap procedure consists of drawing N samples from X with replace-
ment, generating a bootstrap sample Xb. This process is repeated BR times and
b = 1, 2, . . . , BR.

Kybic et al. [73] estimate uncertainty by applying bootstrap resampling on the
image voxels for simulating the behaviour of the cost function. The bootstrap resam-
pling method is applied to voxel coordinates Ω. A set ofBR bootstrap resamples Ω(b)

by sampling on Ω with replacement to obtain bootstrap cost Jb, which is minimised
to generate the bootstrap estimated deformation �eld, θ̂(b). Here, b = 1, 2, . . . , BR.
The main advantage of the bootstrap approach is that it is applicable to any cost
function that can be written as a sum of voxel contributions such as sum of squared
or absolute di�erences but can be generalised to accommodate mutual information.
The covariance matrix is calculated from bootstrap samples in order to facilitate a
comparison to CRB (Eq. 4.6) and FRAE (Eq. 4.9).

Cboot
θ̂

=
1
BR

BR∑

b=1

(θ̂(b) − µbootθ )(θ̂(b) − µbootθ )T (4.10)

and

µbootθ =
1
BR

BR∑

b=1

θ̂(b) (4.11)

Kybic et al. compare CRB, FRAE and bootstrap method by simulating 2-D
translations in the range of [−2, 2] and adding uncorrelated zero mean i.i.d. Gaus-
sian noise, correlated Gaussian noise and salt and pepper noise to achieve SNRs
from −10 dB to 70 dB using Lena and ultrasound images. CRB provides optimistic
estimates of errors at low SNRs but its estimates are useful for Gaussian noise and
high SNRs. For medium to high SNRs, FRAE overestimates the error but fails at
lower SNRs (10 to 20 dB) and tests with salt and pepper noise. The bootstrap based
method outperforms the other two methods for correlated, uncorrelated Gaussian
and salt and pepper noise. The ratio of the estimated to the true translation is less
than 2. The overall conclusion from this study is that FRAE is superior to Cramér-
Rao bound but is a worse performer than the bootstrap method. A drawback is that
the uncertainties from these three methods do not include bias in estimations. For
the bootstrap method, the image generating process needs to be assumed ergodic so
that its behaviour across realisations can be learnt from their behaviour in space [73].

Hub et al. [60] identify ambiguity in homogeneous regions and misaligned edges
due to ine�cient optimisation as the major causes of errors in B-spline image reg-
istration. Their uncertainty estimation is based on characterising the sensitivity
of the similarity measure to moderate and randomly performed variations in the
B-spline coe�cients. Let {c1, c2, . . . , c3N} be the B-spline coe�cients obtained from
the registration algorithm. Also let {q1, q2, . . . , q3N} be a set of random variables
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distributed uniformly in the range of (−10, 10) mm. Typical registration errors in
lung imaging are expected in this range. Generation of test deformations is carried
out by replacing each estimated cn B-spline coe�cient by cn+ qn. As the next step,
the new deformation �eld is calculated from the perturbed coe�cients. The voxel
wise uncertainty is de�ned as the maximum deviation deformation obtained after
random variations in the coe�cients and the initial deformation (i.e. before random
variations). This procedure is repeated with K sets of random variations rn and
for each voxel and dimension the largest spatial deviation is stored for those K ′

random variations where the local similarity metric (SSD) is less than or equal to
the initial local similarity metric. Finally, the voxel wise uncertainty ei(x) is given
by the following expression:

ei(x) = θmax,k(x) = max
k=1,...,K

{|θk,i(x)− θi(x)|} (4.12)

where θk,i(x) is one of the K ′ deformations and θi(x) is the initial deformation at
voxel x. i = 1, 2, 3 denotes the dimension.

Results of experiments on CT lung images exhibited maximum average local
registration error of 5.7 ± 4.6 mm in the caudal-cranial directions. This method is
based on the premise that randomly performed variations may locally improve the
registration quality although the global registration could be worse as the global
metric may increase.

Jalobeanu et al. [63] estimate the uncertainties as the inverse covariance matrix
(or precision matrix) corresponding to a Gaussian approximation of the a posteri-
ori probability distribution function of the deformation �eld around the minimum.
The covariance matrix is obtained by computing the second derivatives of the cost
function at the minimum. A major highlight of this method is the correction of
uncertainties for systematic biases. First, they apply a soft thresholding to inverse
covariance terms, and the threshold value is computed by the average second deriva-
tive for pure noise, computed from simulations. Second, resampling errors are taken
into account in cases where raw images are not available. Their simulations on satel-
lite images of Mars con�rm that interpolation methods such as bi-cubic resampling
are a source of systematic shifts (maximum 0.25 pixel). The distribution of these
positioning errors is well-approximated by a Gaussian with a standard deviation of
0.1 pixel. In order to account for this, a diagonal matrix (with diagonals equal to
0.1) is added to the estimated covariance matrix.

4.2.3 Bayesian registration
Bayesian registration forms another category of methods of uncertainty and param-
eter estimation. A Bayesian registration framework consists of choosing a model
for the deformation �eld and characterising its posterior distribution according to
Bayes' rule. Some of the recent publications on Bayesian registration are reviewed
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here.

A Bayesian framework driven by local image regions is investigated by Toews
et al. [153] for use in image-guided surgical applications. They aim at multi-modal
registration between a pre-operative MR to ultrasound brain images acquired during
surgery. The idea is to incorporate local region information for coping with missing
tissue between pre and intra-operative images and non-stationary image intensity
characteristics. Their joint posterior probability is written as:

p(X,T |F,G) ∝ p(F,G|X,T )p(T |X)p(X) (4.13)

where F are G are the observed pre and intra-operative images. p(X) represents
the prior probability over regions de�ned according to relative sizes or overlap of
regions, X and T is the transformation to be estimated. The likelihood p(F,G|X,T )
is represented in terms of mutual information (MI). The informativeness of a region
is quanti�ed in terms of an MI based criterion as related to spatial location S and
intensity I:

MI(I|S) = H(I)−H(I|S) (4.14)

H(I|S) =
n∑

i=1

p(Si)H(I|Si) (4.15)

where H(.) is the entropy function and S represents a spatial location at sub-region
image scale de�ned over a set of n discrete spatial labels. Based on the informative-
ness of a region, it is selected for the registration. The transformation T is recovered
in the form of a global translation between the ultrasound image and the MR slice
corresponding to the position of the ultrasound probe via e�cient numerical inte-
gration.

The results presented in the article indicate that extracting information from
local regions leads to an error reduction in comparison to the case when this infor-
mation is not taken into account. Mean errors in estimated maximum a posteriori
(MAP) transformation in (pixels) with respect to the ground truth is 2.5± 1.7 and
3.9±2.9 when the local region information is incorporated and when it is disregarded.

Markov chain Monte Carlo sampling based methods
In the context of Bayesian registration, Markov chain Monte Carlo (MCMC) sam-
pling approaches may be used when trying to estimate quantities such as MAP
and compute distributions of parameters of interest. An MCMC approach consists
of simulating samples from a probability distribution by constructing an ergodic
Markov chain with a stationary distribution. The state of this chain after �su�-
ciently� large number of iterations is used as a sample from the desired distribution.
Generally the samples before this are discarded (known as burn-in). By doing this,
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the e�ect of the initial state of the chain is forgotten. One of the important factors
is the determination of the number of iterations needed by the chain to reach its
stationary state.

Metropolis-Hastings (MH) and Gibbs sampler are two widely utilised MCMC
approaches based on random walks. In these algorithms, the Markov chain moves
in small random steps around the equilibrium value. New candidates are generated
according to a distribution known as the proposal distribution. By comparing the
probabilities of the current state and the new proposal, the new proposal is either
accepted or rejected. While these algorithms are easy to implement and analyse,
they take a long time to explore the whole parameter space. More details on MH
method and Gibbs sampler can be found in appendix C.1.

Risholm et al. [119] describe an elastic Bayesian registration framework that
allows the estimation of the deformation �eld as well as the uncertainty with an
application to neurosurgical image guidance. Their implementation is based on the
use of FEMs which are numerical techniques for �nding approximate solutions to
partial di�erential equations and integrals. Its computations are performed on a
mesh that covers the region of interest. In this work, the brain tissue is assumed to
be a linear elastic material and a FEM derives a non-uniform tetrahedral mesh con-
forming to the brain boundaries delineated by grey, white matter and cerebrospinal
�uid. When dealing with linear elastic �nite element methods, the strain energy is
de�ned as follows:

Er =
1
2

∫

Ω
εTσdx (4.16)

where the strain vector ε for a displacement vector θ = [θx, θy, θz] is de�ned as
follows:

ε =
[
∂θx
∂x

,
∂θy
∂y

,
∂θz
∂z

,
∂θx
∂y

+
∂θy
∂x

,
∂θx
∂z

+
∂θz
∂x

,
∂θx
∂z

+
∂θz
∂y

]
(4.17)

where σ is the stress vector. Hooke's law describes the relation between stress and
strain vectors as σ = Cε, where C is the material matrix characterised by Lamé
constants, λ and µ. Next, the likelihood term and the prior on the deformation �eld
are modelled as Boltzmann distributions:

p(g|θ) =
1
Zs

exp
(−Es(θ; f, g)

Ts

)
(4.18)

p(θ|λ, µ) =
1
Zr

exp
(−Er(θ;λ, µ)

Tr

)
(4.19)

where Es is the similarity criterion (SSD), Er is the regulariser (Eq. 4.16) , Zs; Zr
are normalising constants and Ts; Tr are temperature parameters of the distribu-
tion. f and g are the pre and intra-operative images. Lamé parameters λ and µ are
modelled as following a Beta distribution.
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They use Metropolis-Hastings algorithm for drawing samples from the posterior
distribution of the deformation �eld and the elastic parameters. If the segmentation
of the skull is available, their sampler can be restricted to values inside the intra-
cranial space. The proposal distributions for the deformation �eld and the Lamé
parameters are chosen to be three independent normals given by:

Nθ(θ∗|θi, σθ)Nλ(λ∗|λi, σλ)Nµ(µ∗|µi, σµ) (4.20)

where θ∗, µ∗ and λ∗ are the new candidates proposed at iteration (i + 1), θi, µi
and λi are the values of these parameters at iteration i and σθ, σλ and σµ are the
proposal variances.

Convergence is established when the scale reduction [48] for all parameters is
less than 1.2. In their experiments, deformations are sampled at 349 boundary
nodes. For the remaining nodes, deformation �eld is determined deterministically.
The set of tests with λ and µ sampled uniformly in all tissue types such that
λ(GM) = λ(WM) = λ(CSF ) and µ(GM) = µ(WM) = µ(CSF ) result in a
maximum registration error of 2.40 mm. Other tests, where these parameters are
sampled non-uniformly, lead to a maximum maximum registration error of 2.43 mm.
The registration error is computed as the di�erence from the ground truth at the
boundary nodes. An advantage of their method is that the movement of the bound-
ary nodes is computed by the algorithm and need not be speci�ed.

The same authors also present ways of summarising uncertainty using a robust
statistic (inter-quartile range (IQR)) and their visualisation [118]. The objective
of this work is to enable sharing of this information with neuro-surgeons for aiding
surgical decisions. IQR (di�erence of the �rst and third quartile) represents the
dispersion of a distribution and can be useful even when dealing with non-Gaussian
distributions. While IQR of the marginal distributions is used as a measure of un-
certainty, it is visualised as IQR ellipsoids or as maximum IQR scalar maps. An
ellipsoid is �tted to the IQRs of samples of deformation at each node and each di-
mension in the �nite element mesh. The dispersion of the marginal distribution on
deformations can be visualised with IQR ellipsoids three dimensionally. A scalar
measure of the extent of the distribution can be generated by visualising the maxi-
mum of the IQRs in each dimension at one node. Fig. 4.2 is an example illustration
of IQR maps.

Richard et al. [117] present a �nite element based Bayesian registration frame-
work. Like Risholm et al. [119], they also model the brain as a linear elastic material.
SSD serves as the similarity criterion and strain energy of a linear elastic material
is the regulariser. Sampling is accomplished by setting up a Metropolis-Hastings
sampler. In order to make the Markov chain converge quickly, the authors intro-
duce a scaling parameter and penalisation. It is a coarse to �ne strategy where the
sampler accepts large deformations in the early iterations and �ne displacements are
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Figure 4.2: Inter-quartile visualisations overlaid on the post-operative image. Im-
ages on the left and centre show axial and coronal maximum IQR maps. Pink areas
have maximum IQR of 7.5 mm which decreases down to 1.7 mm for red. Large IQRs
(pink areas) are seen around the tumour because of the high intensity di�erences
due to blood and oedema; lack of one to one correspondence between pre and post-
operative images of the brain. The image of the right is a composite visualisation of
intersecting axial, coronal and sagittal planes overlaid with the maximum IQR map
and a few IQR ellipsoids. (Source: [118])

corrected in the later iterations. The scaling parameters at iteration i are de�ned
as:

δi = δmaxτi + δmin(1− τi) (4.21)

where δmin and δmax are lower and upper bounds on δt variations and τi = (0.985)i.
δmin = 1 is the precision to which the deformation �eld must be computed and
δmax = 30 is the maximum expected deformation. This correction approach ap-
pears interesting, nonetheless, it may not always be a good strategy to accept large
deformations in the beginning and exponentially decreasing the size of deformations
accepted as the algorithm progresses. First, it will not allow the sampler to explore
the whole parameter space. If the sampler strays away from the solution (which is
possible because lower probability states are also accepted), it may become di�cult
to come back to the right direction as the proposal variance will become smaller and
smaller with each passing iteration.

The penalisation term enforces regularisation constraints such that large defor-
mations are accepted initially if they produce a signi�cant correction, gradually
loosening the constraint as the sampling progresses. It is chosen at iteration i as:

βi =
1

1− 0.999τi
(4.22)

The penalisation is expressed on the regularisation term as Erβi .

The average registration error between the ground truth and the estimated de-
formation �eld at the mesh nodes when the regularisation function is not penalised
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is 1.16 ± 2.67 pixels compared to 1.06 ± 2.35 pixels when it is, indicating that use
of penalisation does not improve the results signi�cantly. Tests are conducted on
Lena image corrupted with a Gaussian noise of σ = 10.

Bayesian registration methods and atrophy estimation
Bayesian registration methods allow us to characterise posterior distributions of
the deformation �eld from which atrophy information can be extracted. The in-
tractability of the posterior distribution calls for sophisticated sampling methods
such as MCMC approaches or numerical integration techniques for computing MAP
and gather other information such as uncertainty in registration.

The basis of Bayesian registration methods is the model chosen for quantities of
interest. The underlying interest in adopting bio-mechanical models for the brain
is that they are connected to the physiological behaviour and material parameters
characterising an organ. This choice is in contrast to the use of free form deformation
models, whose parameters do not have any physiological basis and are applicable
to any 3D object. Risholm et al. [118] mention that most successful methods for
intra-operative image registration are based on bio-mechanical models. One disad-
vantage of the linear elastic model of [117, 118] is that it can only handle small
deformations e�ciently. In the context of longitudinal atrophy estimation, it is not
clear if a bio-mechanical model may be more relevant or accurate than its non bio-
mechanical counterparts.

Finally, the three methods that are detailed here are developed for image guided
surgeries. No e�ort has been made to apply a Bayesian framework to the problem of
atrophy estimation. The main di�erence between these applications is that, in brain
tumour operations, the brain loses a fairly considerable part (a large deformation)
as opposed to the occurrence of brain atrophy (usually characterised by smaller
deformations).

4.2.4 Key issues in uncertainty estimation
Uncertainty estimation in registration algorithms can be performed with a ground
truth [128, 75, 20] and other approaches that involve manipulation of the similarity
criterion or the deformation �eld [73, 60] and Bayesian registration [118, 117].

A ground truth provides one of the easiest ways of estimating errors. Care
should be taken to use physically plausible simulations and, if possible, they should
be based on some physical evidence. For example, Schnabel et al. [128] state that
due to con�nement on the breast tissue in the scanner RF coil, tissue motion of 10
mm is expected in most of cases. They use these values as boundary conditions for
the FEM solver that simulates known deformations for them. Arbitrary simulations
may not provide a realistic estimate of uncertainty. Also, the selected model of
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simulation of deformations must be di�erent from the one that is tested, in order to
avoid biased estimation of error. Other methods that involve manipulation of the
similarity criterion or deformation �eld need to be speci�cally included within the
optimisation of the cost function, but are attractive due to the non-requirement of a
ground truth. Besides, a pre-requisite is that the deformation �eld or the similarity
criterion follows a Gaussian distribution for these computations to be valid. As for
the Bayesian registration methods, the models for parameters of interest such as the
transformation must be selected cautiously. Remember that Bayesian registration
methods coupled with MCMC are time consuming approaches.

All these uncertainty methods, though developed and tested for other applica-
tions, can be employed or extended for atrophy estimations. The mean registration
errors are reported to be 5.7 mm for lung applications [60], 0.1 pixel in satellite
applications [63] and, 2.5 pixels [153]; 2.43 mm in [118] in image guided surgical ap-
plications for the brain. It should be mentioned here that these errors are high from
the point of view of atrophy, where often deformations of this order (1− 6 mm) are
seen and must be quanti�ed to increase sensitivity to volume change measurements.

Also, except for the approach of Jalobeanu et al. [63], uncertainty estimation
approaches have not attempted to simultaneously examine the bias in estimated
registration parameters. Some of the available studies dedicated to bias estimation
in atrophy approaches are discussed here.

4.3 Bias in estimated atrophy
The existence of bias in atrophy estimations has been brought to light in many
evaluation e�orts including ours (Smith et al. [142], Camara et al. [20], Pieperho�
et al. [109], Sharma et al. [133]).

The e�ect of non-rigid registration deformation model and deformation con-
straints is studied by Rohl�ng et al. [121] with deformation based morphometry.
Three non-rigid registration methods are evaluated: based on a B-spline based trans-
formation model, Demons algorithm and a curvature PDE based registration algo-
rithm. It is revealed that all three methods produce identical overlap of underlying
structures but the deformation �eld and the Jacobian are highly di�erent. They
conclude that the statistics performed on Jacobian in DBM are biased due to the
underlying models and constraints of the non-rigid registration. Another important
�nding of this work is the average Jacobian in homogeneous regions is close to the
correct volume ratios. Hence, results from DBM are reliable when performed on a
segmented region rather than voxel by voxel.

Further, correction of bias has also been attempted, mainly by introducing reg-
ularisation terms in non-rigid registration methods. Leow et al. [78] have presented
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an unbiased non-linear image registration with a new regularisation term based on
the logarithm of the Jacobian, which reduces the skewness of the Jacobian map, a
requirement when dealing with tensor based morphometry.

According to Leow et al., a registration method can be considered unbiased
if it does not produce any spurious changes in the absence of changes. In other
words, it must produce Jacobian maps that indicate zero change. The statistical
distributions of log-Jacobian maps are studied by de�ning the Kullback-Leibler (KL)
distance on density functions of materials arising in continuum-mechanical models.
With this framework, unbiased image registration can be constructed by quantifying
the symmetric KL-distance between the identity map and the resulting deformation.
They minimise the following functional:

arg min
θ

C(F, F (θ−1), G,G(θ)) + wt(KL(pdfθ, pdfid) +KL(pdfid, pdfθ−1)) (4.23)

where C is a similarity criterion, F and G are the two images to be registered, θ and
θ−1 are the recovered deformation �eld and its inverse, wt is the weight parameter.
pdfid and pdfθ are probability density functions of the identity mapping and the
deformation θ. The symmetric KL distance is de�ned as:

KL(pdfθ, pdfid) +KL(pdfid, pdfθ−1) = (4.24)∫
(|Jθ(x)| − 1)log|Jθ(x)|dx = (4.25)

∫
(|Jθ−1(x)| − 1)log|Jθ−1(x)|dx (4.26)

A serial MRI example showing the Jacobian map estimated by Leow et al. [78]
and another viscous �uid method is depicted in Fig. 4.3. The reduction of in-
verse consistency errors is demonstrated by comparing the deformations obtained
by switching the order of the source and target images. Since this is a symmetric
formulation, the deformation should not depend on the order of the input images.
For a maximum displacement of 4.2, the error for inverse consistent mapping is
0.8616± 0.0115 whereas the error for the same experiment with inverse inconsistent
mapping is higher, 0.9617± 0.0685.

Yanovsky et al. [170] extended this unbiased method to an unbiased symmetric
registration method. Symmetry comes from the regularisation term that is used
(see Eq. 4.26). From tests conducted on baseline and repeat scans from the ADNI
database, they conclude that unbiased methods both symmetric and asymmetric
are less inclined towards producing biased estimates.

Yushkevich et al. [174] have established that DBM produces biased results (over-
estimation of atrophy) when estimating hippocampal changes. A non-zero regres-
sion line �tted to 6 and 12 month rates of hippocampal atrophy of controls and
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Figure 4.3: A 3-D serial MRI example showing Jacobian maps for a viscous �uid
method (left) and (right) the method of Leow et al. [78]. Right temporal atrophy
(RT) and ventricular enlargement (V ) can be easily discerned in the Jacobian map
generated using the method of Leow et al. [78]. The viscous �uid method generated
a comparatively noisy map. (Source: [78]).

patients with mild cognitive impairment (MCI) from ADNI con�rms the presence
of an additive bias in estimations. Explicit estimation of this additive bias is per-
formed by registering baseline and repeat scans of subjects acquired on the same
day. They examined the e�ect of symmetric and asymmetric global and deformable
transformations on atrophy estimations employing ANTS [10] and Rueckert et al.'s
[124] free form deformation algorithms. A symmetric registration algorithm forces
the computed deformations to be the same regardless of which image is the target
i.e., if the reference and target images change places. Their study concludes that
e�ect of interpolation (when applying global and local transforms) a�ects the asym-
metric DBM much more than the symmetric con�guration. Also, asymmetry does
not have signi�cant e�ect on the power of MCI-control group di�erence compari-
son. Experiments on MCI and control groups with the intercept based method show
that asymmetry in the application of the global transform results in a bias of 2−3%
when ANTS is used, while asymmetry in the deformable registration has less e�ect
on bias. Finally, Yushkevich et al. suggest that symmetric transforms be used in
order to reduce the e�ect of bias in estimated atrophy.

Recently Hua et al. [58] have endorsed the presence of biased estimations with
TBM with the hippocampus as the region of interest. They assume that any bias
in atrophy estimates has a constant additive o�set and a second component whose
magnitude may depend on the true level of atrophy. Like Yushkevich et al. [174],
Hua et al. �nd that asymmetric registration is the main reason of biased atrophy
estimations. As a remedy, they reimplemented their registration method to be fully
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inverse-consistent by further symmetrising the similarity metric MI and using a
symmetric-KL regularisation term (Eq. 4.26). By enforcing inverse-consistency in
their TBM method, the bias (o�set) reduced from 1.4% to 0.28%. Transitivity error
accounted for the remaining o�set. By transitivity, it is meant that atrophy calcula-
tions between time points 1 and 2 and subsequent calculations between time points
2 and 3, should add up to direct calculations between times points 1 and 3. This
error is computed through any con�icts in the direct and the indirect transforms.
It is also mentioned that transitivity errors may lead to an additive or multiplica-
tive bias present in all mappings, which may relate to the true change, or with the
estimated amount of change.

Fox et al. [43] study recent works on TBM [58, 174] and suggest that accu-
rate examination of longitudinal brain atrophy can be made possible by assessing
methods through: simulation of atrophy by taking into account that simulated at-
rophies seldom represent the complex phenomena in the human brain perfectly and
sophisticated simulations may be susceptible to biases of their own, symmetry and
transitivity of measurements, manual measurements on large datasets could expose
systematic biases in methods, reproducibility assessed with scan-rescan techniques
and comparison with known disease biology to decide if the changes measured are
probable.

In summary, bias in atrophy estimations from deformable registration algorithms
is due to the asymmetric estimation as well as application of the global and the lo-
cal transforms. Ensuring symmetry of the estimated transformations is a way of
minimising the unwanted bias in atrophy measurements.

Most approaches for uncertainty estimation in image registration methods do
not account for bias in atrophy estimates. What we describe in this chapter, is a
framework that can be applied to any atrophy estimation approach as the uncer-
tainty estimations are performed separately and compensates for biases in atrophy
estimations. We will show later that depending on the NRR algorithm used, bias
may be proportional to the true atrophy value. In such cases, bias cannot be learnt
from scan-rescan images as is the case in [174].

In this chapter, a generic framework for estimating uncertainty in longitudi-
nal brain atrophy by means of constructing con�dence intervals is discussed. The
proposed framework is described in section 4.4 consisting of learning uncertainties
from example simulations using a ground-truth (section 4.4.1) and construction
of con�dence intervals (section 4.4.2). Results are shown on three NRR methods
[98, 10, 157] on real images in section 4.5.
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4.4 Proposed framework for uncertainty estimation
Let us suppose that we would like to test a set of longitudinally acquired images
of a patient, I(t1) and I(t2), at times t1 and t2, for existence of (longitudinal) at-
rophy. Using an atrophy estimation method, m, an atrophy change map cmI(t1;t2)

is obtained. A change map represents the volumetric changes that the brain has
endured between times t1 and t2.

Our aim is to de�ne con�dence intervals for cmI(t1;t2). For a given methodm, error
distributions are learnt for di�erent atrophies and example anatomies by means
of creating a database. This will be referred to as the �learning database�. The
construction of con�dence intervals is accomplished via errors distributions in the
learning database.

4.4.1 The learning database
The learning database is constructed with two objectives: to be able to capture the
role of MRI artefacts and that of bias in measurements in the mis-estimation of
atrophy.

Firstly, a ground truth is designed with an atrophy simulation algorithm capable
of introducing synthetic local and global changes in the brain volume. The idea is
to carry out simulations of varying magnitudes of volumetric changes in a region of
interest in order to obtain a number of ground truths. For this purpose, the method
described in chapter 3.2 is employed.

Let A = {an} be the set of all desired atrophies an to be included in the learning
database, n = 1, 2, . . . , N , where N is the number of atrophies. An atrophy could be
de�ned as each voxel of the region of interest shrinking uniformly or non-uniformly
(based on some atrophy pattern discerned from real cases).

If the database is required to be patient independent, di�erent patient anatomies
must be taken into account in the process of its creation. Let us denote each image in
the image database, comprising P patients, used in the construction of the learning
database as I(p, t). This represents image for a patient p acquired at time instant
t where p = 1, 2, . . . , P . For the database, we consider only the �rst time point
of each of these patients. Atrophies are simulated in the image I(p, 1) (�rst time
point) such that

I(p, 1) an−→ I(p, tn) (4.27)

where an ∈ A and I(p, tn) is the nth atrophied version of I(p, 1) for the pth patient.

Intuitively, this process represents shrinking of the region of interest over time
each time undergoing an atrophy an ∈ A. In essence, this step allows us to generate
images of patients with known changes in the brain, starting from the baseline, in
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a progressive manner. In our implementation, a1 < a2 < · · · < an · · · < aN and the
region of interest shrinks by an% i.e., average atrophy in this region is an%

A source of variability is MR artefacts (such as noise, bias-�eld inhomogeneity)
that can be incorporated in this analysis. By example of MR noise addition, the
inclusion of MR artefacts in this framework is explained. MRI noise is approxi-
mated with Gaussian noise, which is a valid assumption when SNR ≥ 2 dB [49].
Let MRI noise, η, is a random variable distributed as N (0, σ2). The value of σ is
chosen depending on the image acquisition system and can be computed from noise
estimation methods discussed in section 2.4.2. Note that several independent reali-
sations of noise need to be added to the images in order to obtain the distribution
of the estimated atrophy. Independently and identically distributed realisations of
Gaussian noise are added to the baseline and the atrophied images in the following
manner,

Ik(p, 1) = I(p, 1) + ηk (4.28)

Ik(p, tn) = I(p, tn) + ηk (4.29)

where

n = 1, 2 . . . , N
k = 1, 2, . . . , R.

R is the total number of noise realisations. The ensemble of images after at-
rophy simulation and addition of noise will be referred to as L in the forthcoming
discussion:

L =
{
Ik(p, 1), Ik(p, tn); p = 1, 2, . . . , P ; n = 1, 2 . . . , N ; k = 1, 2, . . . , R

}
(4.30)

The next step is to estimate volumetric change maps by applying method m on the
images in L, which will enable us to estimate the error distribution of each atrophy
in A as the true atrophy is known. Estimation of volumetric change maps is denoted
by cmIk(p;1;tn)

, obtained for the nth simulated atrophy, kth artefact realisation and pth
patient. If we assume that these estimations follow a Gaussian distribution, the ML
parameters of the expected distribution (µn, σ2

n) can be estimated from them for
each atrophy as the sample mean,

µn =
1
P.R

P∑

p=1

R∑

k=1

cmIk(p;1;tn) (4.31)

and variance

σ2
n =

1
P.R

P∑

p=1

R∑

k=1

(cmIk(p;1;tn) − µn)2 (4.32)
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Since the R realisations for an atrophy an, forming the learning database, are
assumed to follow a Gaussian distribution with parameters (µn, σ2

n), the errors E
also follow a Gaussian distribution with parameters,

en = (bn, σ2
n), (4.33)

and
bn = an − µn, (4.34)

Here, bn is the bias in the estimated atrophy with respect to the ground truth and,

E = {e1, e2, . . . , en} , n = 1, 2, . . . , N (4.35)

The di�erence (an − µn) allows us to incorporate in the estimated error distribu-
tions, the method dependent bias in atrophy estimations arising from the errors in
atrophy modelling and MRI artefacts. Despite the fact that building this database
is computationally intensive, the framework is practically implementable because
once the database is created, it can be reused for uncertainty estimations for any
patient.

To summarise, the database E contains the distribution of errors for varying mag-
nitudes of atrophies. The procedure of learning database formation is represented
pictorially in Fig. 4.4.

4.4.2 Con�dence interval calculation
At this stage, the learning database is made use of in order to obtain con�dence
intervals. Let cmI(t1;t2) be an atrophy change map estimated by method m on two
longitudinally acquired MR images in a region of interest. We would like to con-
struct con�dence intervals for this atrophy change map.

cmI(t1;t2) is classi�ed into one of the most probable of the N atrophy classes of the
learning database so as to be able to associate an error distribution with this atro-
phy change map. That is to say, the closest distribution that could have generated
cmI(t1;t2) is chosen and the corresponding error distribution is taken for estimating
con�dence intervals. Employing z-score as a distance measure, all distributions
satisfying the following inequality are accepted at �rst, where α is the desired sig-
ni�cance level:

|z| ≤ zα
2

(4.36)

The selection of atrophies is shown in Fig. 4.5 and the z-score is calculated for each
atrophy an having a distribution (µn, σn) as:

zn =
µn − cmI(t1;t2)

σn
(4.37)
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Figure 4.4: Learning database construction for atrophy an. Atrophy an is
simulated in the region of interest in image I(p, 1) (baseline image) of pa-
tient p to obtain its atrophied version I(p, tn). As a second step, arte-
facts are added to I(p, 1) and I(p, tn) for building the learning database L ={Ik(p, 1), Ik(p, tn); p = 1, 2, . . . , P ; n = 1, 2 . . . , N ; k = 1, 2, . . . , R

}
. Atrophy esti-

mations by a methodm generate R change maps cmIk(p;1;tn)
. This process is repeated

for all N atrophies represented in A and each patient p ∈ P .

If no atrophies in A satisfy the z-score criterion, the atrophy that we are looking
for does not exist in the learning database. Consequently, the scope of the database
must be expanded. The expansion of the database requires the addition of more
ground truths and hence is a matter of more computational time.

Let A′ ⊂ A be the set of accepted atrophies. Assuming that A′ is not empty,
the distribution with the minimum z-score, denoted by zmin, is selected from A′ and
the corresponding error distribution parameters are used for estimating con�dence
intervals. Let an′ be the atrophy with z-score zmin then the con�dence interval φ
for cmI(t1;t2) is given as:

φ = cmI(t1;t2) + (an′ − µn′ ± zα
2
σn′) (4.38)
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Figure 4.5: An example of selecting the closest atrophy distribution from the learning
database. z-scores are computed for each atrophy an in A present in the learning
database as zn =

µn−cmI(t1;t2)

σn
. From the database A, all atrophies satisfying the

relation |z| ≤ zα
2
are selected in the database A′ at �rst. In the second step, the

error distribution corresponding atrophy with the minimum z-score zmin within the
set A′ is chosen as the closest distribution.

4.5 Results
All experiments are carried out on three non-rigid registration algorithms (Noblet et
al. [98], ANTS [10] and Vemuri et al. [157]). We demonstrate the construction of the
learning database and the estimated con�dence intervals, followed by a quantitative
evaluation of the con�dence intervals in terms of coverage probability and length of
the interval. The implementation details and parameters used for experiments with
Noblet et al. [98], ANTS [10] and Vemuri et al. [157] are explained in appendix B.1.
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4.5.1 Learning database construction
The learning database is constructed with 18 anatomically di�erent in-vivo 3D im-
ages from the IBSR database which contains real MR image data with manually
guided segmentations. Our experiments have been performed on T1-weighted MR
image data from 18 anatomies with a slice thickness of 1.5 mm.

This study will focus on the change in hippocampus' volume for MS patients.
Anderson et al. report the annual mean decrease in hippocampal volume in MS
patients as 9.4% on the right and 8.9% on the left [3]. Therefore, atrophies sur-
rounding these are included in the learning database. This step is accomplished by
simulating uniform volume changes in the range of 1 − 15% (with step size of 1%)
in the hippocampus using the algorithm described in section 3.2.1. Variability is
introduced by degrading the images by addition of Gaussian noise (SNR = 35 dB).
The noisy image is veri�ed visually to con�rm that this choice of SNR results in a
realistic image.

A total of 108 independent realisations (6 per patient) are simulated for each
atrophy for the learning database of all the three NRR algorithms. An example of
the image that has been used and simulated changes in the hippocampus are shown
in �g. 4.6 (a-b).

4.5.2 Gaussian assumption
The error distribution of the estimated atrophies for the three methods [98, 10, 157]
are learnt by examining the error distributions of the estimated Jacobians. Applying
logarithm to the Jacobian (J) renders the distribution symmetric as hypertrophy
(J > 1) and atrophy (0 < J < 1) are scaled evenly. Thus, all calculations are
performed with the average values of the log-transformed Jacobian over the hip-
pocampus, which we will refer to as hippocampal log-Jacobian and the correspond-
ing atrophy as hippocampal atrophy in the future sections. They are computed as
follows:

logJavg =
1
V

N∑

x=0

log(J(x)) (4.39)

aavg = (1− elogJavg).100 (4.40)

where logJavg is the average Jacobian (hippocampal log-Jacobian), log(J(x)) is the
logarithm of the Jacobian at voxel x, aavg is the average atrophy in percentage. N
is the total number of voxels in the hippocampus.

All the log-transformed Jacobian distributions in the learning database are ver-
i�ed to follow a Gaussian distribution. A rule of thumb is to accept the null hy-
pothesis that a distribution is Gaussian at a signi�cance level of 95% if its skewness
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(a)

(b)

Figure 4.6: Figure depicting (a) A sample image degraded with Gaussian noise
(SNR=35dB) with hippocampus delineated and (b) simulated changes (as the dif-
ference between the baseline image and after simulating a hippocampal atrophy of
10.89% in the baseline image).

and kurtosis lie in the interval [−2, 2]. Table 4.1 lists the skewness and kurtosis
values for all distributions indicating that Gaussian assumption indeed holds for the
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three registration methods. Histograms depicting these distributions of errors in es-
timated log-Jacobians are shown in Fig. 4.7 for true atrophies of −14.87%, −5.94%
and −1.67% for all the NRR methods.

True Atrophy Skewness Kurtosis
(in %) Noblet et al. ANTS Vemuri et al. Noblet et al. ANTS Vemuri et al.
−14.87 −0.8330 0.6612 −0.3074 0.9344 0.3226 −0.7560

−13.93 −0.9556 −0.0428 −0.7523 1.0940 −0.4609 0.8238

−12.94 −1.0371 0.4143 −0.5932 1.1469 0.3803 0.9243

−11.90 −0.8488 −0.0169 0.1171 0.8425 −0.0480 −0.3756

−10.89 −0.9541 0.1617 −0.0521 0.8609 −0.1399 −0.9736

−10.23 −0.7933 0.6162 0.1180 0.3858 0.3735 −0.5756

−8.98 −0.9425 −0.1468 0.1955 0.6657 0.3792 0.5815

−7.98 −0.6529 −0.0446 0.2446 −1.1387 1.6377 −0.5038

−7.39 −0.8625 0.0555 −0.2704 0.2293 0.4361 −0.4690

−5.94 −1.1272 0.2257 −0.0839 1.5227 0.3059 −0.7118

−4.93 −0.8600 0.3880 −0.2884 0.9519 0.5673 −0.8076

−4.05 −0.9099 0.3757 −0.6436 0.7589 0.3387 −0.4809

−2.98 −0.8568 −0.0654 −0.2648 0.6254 −0.7390 −0.6419

−1.67 −0.9949 0.0199 −0.0691 0.7735 0.0812 −0.7539

Table 4.1: Skewness and kurtosis of log transformed Jacobian distributions. Skew-
ness and kurtosis are within the range of [−2, 2] for all the simulated atrophies.

4.5.3 Bias in atrophy estimations
Average atrophies (Eq. 4.40) and the bias (Eq. 4.34) in their estimations computed
for atrophies in the learning database are illustrated in Fig. 4.8 (a-c), where each
NRR algorithm shows a di�erent pattern in bias. For Noblet et al.'s algorithm,
the bias remains almost constant with the true atrophy value (bias in the range
of (−3.38%,−4.22%). On the other hand, ANTS method's bias increases with
increasing ground truth atrophy (�g. 4.8) (bias in the range of (+0.72%,+5.39%).
Bias is inversely proportional to true atrophies for the estimations of Vemuri et al.
(bias in the range of (+0.48%,−8.86%)). Negative bias indicates an over-estimation
of atrophy and vice-versa. The key point here is that the bias may depend on atrophy
values. Hence, the bias in atrophy estimations that are obtained by registering
baseline and repeat scan may not always hold true.

4.5.4 Quantitative evaluation
The accuracy of the con�dence intervals can be evaluated on the basis of two criteria:
coverage probability and length of the con�dence interval. For ensuring that the
calculation of coverage probability and the length of the interval is not biased, a
leave one out approach is followed. The patient for whom con�dence intervals are
constructed is not included in the training of the learning database. Considering a
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Figure 4.7: Histograms showing the distributions of error (in log-Jacobian scale)
when the true atrophies are −14.87%, −5.94% and −1.67% for the three NRR
methods. Note that the bin size has been set to 10 and the plots have been shown
on the same scale. By doing so, the spreads of the distributions of the three methods
under consideration can be compared. The plots allow us to conclude that ANTS
is associated with the least amount of spread among the three methods which will
translate later into shorter length con�dence intervals.
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database of P patients, this process is repeated P times and the coverage probability
and the length are averaged at the end.
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Figure 4.8: Bias bn in the estimated atrophies used in building the learning database
L in terms of log-Jacobian for the methods being studied. Bias is calculated as the
distance of the estimated atrophy from the ground truth atrophy.

Coverage probability (or actual coverage) refers to the number of times the con-
�dence interval contains the true value. When con�dence intervals are constructed,
they are expected to contain the value of interest with a certain probability. This
is known as nominal coverage, like in our case, it is usually set to 95%. Nominal
and actual coverage are equal when the assumptions made in deriving con�dence
intervals are met. In our case, there are two assumptions: the error distributions
follow a Gaussian distributions and the bias in atrophy estimations is additive in
nature. The actual coverage can be lower or higher than the nominal coverage if the
assumptions are not properly satis�ed and can be used for evaluating the accuracy
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of the constructed con�dence intervals. In these set of experiments, the coverage
probability is simply the number of test samples for which, the ground truth atro-
phy is contained in the interval. Coverage probability is calculated with 100 test
samples per atrophy. The results are shown for log-transformed hippocampal Ja-
cobian in Table 4.2 indicate that the learning database is capable of providing an
estimate that contains the true value between 89.81 − 93.52%, 92.59 − 100% and
90.74 − 98.18% with the NRR methods of Noblet et al., ANTS and Vemuri et al.,
respectively. These results con�rm that the Gaussian assumption is satis�ed and
bias correction is e�ective for ANTS and Vemuri et al. as they are able to achieve a
coverage close to the desired coverage of 95% while Noblet et al.'s approach shows a
poorer coverage in comparison to the other two methods. The coverage probability
did not depend on the atrophy.

Length of the interval depends on how well the non-rigid registration algorithms
cope with the sources of variations such as images artefacts, di�ering anatomies
and model errors. Length of the intervals is proportional to dispersion of data
(standard deviation). Compact con�dence intervals are more informative as they
localise the value of interest in a smaller range. Table 4.2 also displays the mean
lengths of the con�dence intervals in percentage of hippocampal atrophy. With
NRR methods of Noblet et al., ANTS and Vemuri et al., the maximum lengths
of con�dence intervals are 14.32%, 4.82% and 8.94%, respectively. According to
these results, ANTS method provides meaningful con�dence intervals as opposed to
algorithms of Noblet et al. and Vemuri et al. that provide large intervals. Results
also allowed us to conclude that the length of the interval is dependent on the value
of the atrophy. Higher values of atrophy resulted in larger con�dence intervals in
all the three methods.

Constructed con�dence intervals The premise of the learning database is that
the uniformly simulated atrophy in the hippocampus represents atrophies in a real
scenario. If this assumption holds, the error distributions would be capable of �nding
reliable con�dence intervals. In order to demonstrate the ability of the framework
to estimate more general atrophies, 14 atrophies are simulated such that each voxel
undergoes a di�erent atrophy but the mean atrophy over the hippocampus still lies
within the scope of the learning database. These simulations are performed for one
patient of the IBSR database. Note that this patient is removed from the learning
database before computing the intervals.

The con�dence intervals estimated for these atrophies are shown in Table 4.3.
It is indeed possible to estimate atrophies for both methods. These results are
in agreement with those presented in the previous section con�rming the superior
performance of ANTS method in terms of lengths of intervals, over those of Noblet
et al. and Vemuri et al.. For Noblet et al. and Vemuri et al., the true atrophy is
found within the interval for all the atrophies in the learning database. However, for
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True Atrophy Coverage Probability Interval Length
(in %) Noblet et al. ANTS Vemuri et al. Noblet et al. ANTS Vemuri et al.
−14.87 0.9259 0.9722 0.9815 8.9535 4.8200 14.3168

−12.94 0.9074 1.0000 0.9444 9.2716 3.5070 12.7654

−11.90 0.9167 0.9630 0.9444 9.5253 3.4588 11.1728

−10.89 0.9167 0.9907 0.9259 9.2262 3.0040 11.6553

−10.23 0.9259 0.9907 0.9537 9.5072 2.7028 15.5321

−8.98 0.9259 0.9907 0.9444 9.6157 2.7806 13.3435

−7.98 0.9074 0.9722 0.9074 9.4348 2.3324 11.3982

−7.39 0.9074 0.9259 0.9352 10.1654 2.7612 12.2597

−7.39 0.8889 0.9352 0.9352 10.2372 2.6639 10.4151

−5.94 0.9352 0.9444 0.9722 8.9444 1.9213 10.6057

−4.93 0.9352 0.9537 0.9722 9.2625 1.5774 8.8066

−4.05 0.9074 0.9259 0.9444 9.3170 1.3015 9.1981

−2.97 0.9352 0.9907 0.9630 8.9353 1.2422 8.4815

−1.67 0.8981 0.9352 0.9818 8.4605 1.4001 7.4677

Table 4.2: Average coverage probability using log-Jacobian values and lengths (%
of volume loss with respect to the total hippocampal volume) of the constructed
con�dence intervals. All but one of the intervals contain the true value of atrophy.
This interval is shown in red.

ANTS for 1 out of 14 atrophies the true value is outside the constructed con�dence
interval, which is highlighted in Table 4.3.

True Atrophy Con�dence Interval
(in %) Noblet et al. ANTS Vemuri et al.
−14.87 (−19.9402,−12.0319) (−17.9408,−12.6115) (−17.8160,−3.5021)

−13.93 (−18.7320,−10.1951) (−16.4603,−12.4954) (−14.2921,−0.9400)

−12.94 (−18.0697,−9.4958) (−14.7293,−10.6740) (−15.5948,−3.9525)

−11.90 (−16.9299,−8.1880) (−12.8147,−9.1926) (−19.9626,−8.8496)

−10.89 (−15.7578,−6.7546) (−10.3662,−7.0424) (−22.7274,−5.6283)

−10.23 (−15.3949,−5.7069) (−12.7324,−9.3787) (−13.7539, 3.0007)

−8.98 (−14.2713,−4.8983) (−10.6501,−7.8014) (−14.0809,−0.4525)

−7.98 (−14.3404,−3.6037) (−9.9778,−6.5600) (−13.8439, 1.9576)

−7.39 (−13.3304,−2.3820) (−8.9090,−5.5201) (−11.1788, 2.7105)

−5.94 (−11.2729,−2.7607) (−7.6454, ,−5.1987) (−11.4884, 2.5558)

−4.93 (−10.3265,−0.9738) (−6.7062,−4.7089) (−12.2917,−1.1914)

−4.05 (−9.8035,−0.0351) (−5.0100,−3.3159) (−8.6878, 4.2306)

−2.97 (−4.2373, 0.5599) (−3.7908,−2.2303) (−7.6977, 4.3176)

−1.67 (−7.7270, 1.4471) (−3.2507,−1.5254) (−6.5251, 4.8842)

Table 4.3: Constructed Con�dence Intervals. For ease of interpretation, the upper
and lower bounds are shown in terms of % atrophy.
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4.6 Discussion and �ndings
In this chapter, we discussed a novel and generic framework for constructing con-
�dence intervals by an atrophy estimation method. A learning database was built
in order to obtain an estimate of error in the measured atrophy through simula-
tion of di�erent magnitudes of volumetric changes and addition of artefacts. The
main feature of this database is that it is capable of correcting for errors that may
arise due to the bias in atrophy estimations as well as of capturing the role of MRI
artefacts in the mis-estimation of atrophy. This database is �exible as any atrophy
(e.g. in a region of interest such as the hippocampus or the entire brain) and other
image artefacts, depending on the user's requirement can be included. Atrophies
that compose the learning database can be chosen on the basis of the disease and
region of interest being studied.

This framework was employed for comparing the performance of three NRR al-
gorithms, by Noblet et al. [98], ANTS [10] and by Vemuri et al. [157] for building
con�dence intervals for hippocampal atrophies. Images were degraded with a Gaus-
sian noise (SNR = 35 dB) and no pre-processing was applied.

The bias in estimations revealed di�erent patterns among the three methods.
For Noblet et al.'s algorithm, the bias remains almost constant with the true at-
rophy value (bias in the range of (−4.22%,−3.38%). On the other hand, ANTS
method's bias increased with increasing ground truth atrophy (bias in the range of
(+0.72%,+5.39%). Bias was inversely proportional to true atrophies for the esti-
mations of Vemuri et al. (bias in the range of (−8.86%,+0.48%)). Negative bias
indicates an overestimation of atrophy and vice versa. In case of Noblet et al., the
bias in estimations may be because of the simultaneous use of the regulariser and
constraints that were applied to preserve the topology. We believe that the level set
based approach of Vemuri et al. is prone to errors with noisy images as the deforma-
tion vectors are scaled by a function of the di�erence of intensities in the two images.
Due to this reason, it is possible that the direction of the deformation is correct but
the magnitude is erroneous. For small atrophies, lowest bias values are observed
for ANTS, possibly due to the con�guration of ANTS that estimates a symmetric
transformation used in this study. This result is in agreement with existing studies
in bias estimation [58, 174] that identify the use of a symmetric transformation as
a means of obtaining unbiased atrophy estimates. From our results, it appears that
large atrophy estimations are biased, in spite of using symmetric transformation and
�uid �ow transformation model that allows us to measure large deformations. A
possible explanation is the use of Gaussian regularisation that penalises large defor-
mations more than small ones. As compared to Yushkevich et al. [174] that provide
the bias estimation from scan rescan method to be between 2− 3% for ANTS, the
bias in our case for low atrophies is smaller (for an atrophy of −1.68% the bias is
0.7174%). Reasons for this include di�erences in the quality of the ADNI database
that Yushkevich et al. use and IBSR database in our case. Secondly, in our case a
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global transform was not estimated as the observations were already aligned with
only deformable changes between them.

Tests were carried out with leave one out method in order to ascertain that new
anatomies can be detected without being used in training of the learning database.
Results have highlighted that the ANTS algorithm produced shortest intervals as
compared to NRRs of Noblet et al. and Vemuri et al.. Maximum lengths of con�-
dence intervals are 14.32%, 4.82% and 8.94% for methods of Noblet et al., ANTS
and Vemuri et al., respectively for the highest atrophy in the database (−14.87%).
Large con�dence intervals were observed for large atrophies for all the 3 NRR ap-
proached. Hence, these methods localised smaller atrophies better than large ones.

The desired coverage probability was 95% whereas the achieved coverage proba-
bilities were 89.81−93.52%, 92.59−100% and 90.74−98.18% with the NRR methods
of Noblet et al., ANTS and Vemuri et al., respectively. Through this study, it can
be concluded that the ANTS approach provides meaningful con�dence intervals as
compared to the approaches of NRRs of Noblet et al. and Vemuri et al.

All three NRR methods exhibited di�erent bias patterns in their estimations.
These patterns depended on the ground truth atrophy value in the database for
ANTS and Vemuri et al. while bias in estimations was approximately constant for
Noblet et al.. Such observations a�rm the need for learning errors for each method
and separately for atrophies depending on the their magnitudes. In this work, only
additive bias was considered. Other models such as multiplicative bias could be
explored in the future.

Our tests were based on addition of noise. The e�ect of bias-�eld inhomogeneity
and other artefacts such as geometrical distortion was not considered. However,
it is possible to incorporate these artefacts within our framework. Also, the e�ect
of di�erent levels of noise was not tested. Note that adding more variable factors
would lead to higher variability in results and a poorer localisation of atrophy. A
limitation of this database is that it works for images acquired on the same scanner
with similar noise characteristics. Huge di�erences in the quality of the images will
not let this database function e�ciently. Therefore, we recommend that in a real
scenario, this database be built for a speci�c scanner. MR artefacts with parameters
pertaining to the scanner can be included in this framework. For instance, Rician
noise can be used instead of Gaussian noise that was used in our tests, whose pa-
rameters can be learnt from the acquired images. Further, depending on the type
of coil used the bias �eld inhomogeneity characteristics and geometrical distortion
characteristics can be a part of the database.

Apart from anatomies and MR artefacts, another dimension of training of this
database comes from atrophies. A more pragmatic approach would be to learn re-
alistic patterns of brain deformations in the region of interest from real subjects.
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Simulations conforming to realistic voxel-wise atrophies can be created, thereby
making the database practically usable.

When constructing such a framework, an inherent assumption is that a �good�
segmentation of the region on interest is available. The fact that atrophy is averaged
over this segmentation renders its accuracy indispensable to the correct functioning
of this database and NRR algorithms used for measuring atrophy in general.

In terms of computational complexity, it took 5− 6 minutes, 1− 2 minutes and
3− 4 minutes with the algorithms of Noblet et al., ANTS and Vemuri et al., respec-
tively, per image pair on images of size 64× 64× 64. This means that the creation
of a database of 100 images is a matter of 1 day for the algorithm of Noblet et al.
and few hours of computer time for the other two methods. However, remember
that this computational cost is one time investment. This database can be reused
in future calculations of uncertainty.

A future task is to compare this study to con�dence intervals extracted from
other approaches such as bootstrap method of Kybic et al. or Bayesian registration.

In conclusion, this uncertainty estimation framework is not only �exible in terms
of its applicability to any atrophy estimation method and incorporation of MR
artefacts, but also brings an added advantage of automatic correction of method
dependent bias, existent in atrophy estimations.



Chapter 5

Atrophy Estimation using
Bayesian Non-Linear Registration

Uncertainty estimation is a point of paramount signi�cance when it comes to putting
image registration based measurements to use in real life decisions. The last chapter
dealt with an uncertainty estimation framework whose salient feature was estimating
uncertainties using a ground truth and could be applied to any atrophy estimation
method. Similarly, it is also interesting to develop a method that is capable of
providing uncertainties along with point estimates of atrophy. In this regard, a
Bayesian non-linear registration model is presented in this chapter in order to quan-
tify longitudinal volumetric changes in the brain and to estimate MR image artefacts
(noise and bias �eld inhomogeneity), simultaneously. The non-linear transformation
is modelled as 3D cubic B-splines, noise is assumed to be distributed according to
a Gaussian law and bias �eld inhomogeneity is modelled with Legendre polynomi-
als. Furthermore, Monte Carlo Markov Chain (MCMC) methods are employed for
sampling from the desired probability distributions.

In this chapter, the proposed probability model is described followed by the
sampling procedure in section 5.1. Experimental results on estimation of bias �eld
inhomogeneity and atrophy from our framework are compared with popular bias
�eld correction methods (N4ITK [155] and di�erential bias correction of Lewis et
al. [80]) and four di�erent non-rigid registration approaches of Noblet et al. [98],
Vemuri et al. [157], ANTS [10] and another cubic B-spline based registration method
in section 5.3. Results are discussed in section 5.4.

5.1 Modelling
In the construction of a full probability model, three distinct components can be
identi�ed [46]:

• Specifying model quantities and their conditional independence structure using
a graphical representation.

• Specifying the parametric form of direct relationships between these quantities.

• Probability modelling i.e., calculate the likelihood terms in the model and
specifying prior distribution of parameters and hyper-parameters.

Following these steps, our framework is described below.
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5.1.1 Structural modelling
Directed Acyclic Graphs (DAGs) are often used for representing tasks performed in
an orderly fashion, depending on certain constraints. DAGs are directed as the link
between two nodes is represented by an arrow and acyclic because starting from a
node it is not possible to return to the same node by following the arrows.

Throughout this chapter, majuscule and minuscule letters indicate random vari-
ables and their realisations, respectively.

Figure 5.1 shows a DAG illustrating the problem. In our formulation, estimating
atrophy is equivalent to estimating a non-linear mapping (T), between serially ac-
quired scans of an individual I1 and I2, from which atrophy can be obtained through
its Jacobian. Images are assumed to be degraded with a smooth multiplicative bias
(B) that gives rise to inhomogeneity in intensities and also with spatially invariant
additive Gaussian noise (N). Only di�erential bias �eld inhomogeneity and noise in
the images are considered, therefore only image I2 is shown to be a�ected by these
artefacts in the DAG. Θ; Π are the parameters of the models chosen for the non-
linear transformation and bias �eld inhomogeneity, respectively; they are assumed
to be random variables by the design. βn is the the noise parameter. βr, tl, th and,
pl, ph are hyper-parameters for Θ and Π, respectively.

Variables in the DAG
Let Ω = {(x, y, z)|0 ≤ x < x, 0 ≤ y < y, 0 ≤ z < z} be the domain of the images I1
and I2.

Non-Linear transformation The non-linear transformation T is parametrised
using uniform cubic B-splines. Because they can model any 3D object irrespective
of its physical model, B-splines form a popular class of transformations. Cubic B-
spline based registration has been developed before in [124, 173].

B-splines are de�ned by a control lattice φ superimposed on Ω. φ is a set of
ηx× ηy × ηz control points Θi,j,k with a uniform spacing δ. Then 3D �eld T(x, y, z)
at a voxel (x, y, z) can be represented as a product of 1D cubic B-splines [77]:

T(x, y, z) =
3∑

l=0

3∑

m=0

3∑

n=0

Sl(u)Sm(v)Sn(w)Θi+l,j+m,k+n (5.1)

where i = b x
ηx
c−1, j = b y

ηy
c−1 and k = b z

ηz
c−1 and u =

x

ηx
−b x

ηx
c, v =

y

ηy
−b y

ηy
c

and w =
z

ηz
−b z

ηz
c. Sl represents the lth basis function of the cubic B-spline de�ned

as
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Figure 5.1: A DAG representing relations the deformable transformation T, bias
�eld inhomogeneity B, noise N and the observed images I1, I2. Conventional rep-
resentations are used where square boxes represent quantities assumed �xed by the
design and circles represent quantities that need to be estimated. Dotted and solid
arrows represent deterministic and probabilistic relations, respectively.
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S0(h) =
(1− h)3

6
,

S1(h) =
(3h3 − 6h2 + 4)

6
,

S2(h) =
(−3h3 + 3h2 + 3h+ 1)

6
,

S3(h) =
h3

6

where 0 ≤ h < 1.

The basis functions determine the contribution of each control point to T(x, y, z)
depending on their distances from voxel (x, y, z). Spacing δ between the control
points decides how densely control points are distributed on the image. It in turn
is related to the changes that can be detected as it determines the shape of the
approximating function. For example, if we choose ηx = ηy = ηz = c′ instead of
ηx = ηy = ηz = c, the location of a control point Θi+l,j+m,k+n determined by i,
j and k will be di�erent, hence the approximating functions will di�er in shape.
The new location will be i′ = bx

c
c − 1, j′ = by

c
c − 1 and k′ = bz

c
c − 1 instead

of i = bx
c′
c − 1, j = b y

c′
c − 1 and k = b z

c′
c − 1. Transformation is estimated at

control points and then according to Eq. 5.1 the value of the transformation at
each voxel (x, y, z) is computed. As δ becomes larger (the control lattice becomes
coarser), more voxels a�ect the same control point to produce a smoother shape
at the expense of compromising the accuracy. Processing large number of control
points needs more computational time.

Due to such a parametrisation, T(x, y, z) is deterministically dependent on the
transformation at control points Θ. The objective of this work is to estimate volume
change in a region of interest through the Jacobian of the transformation T. We
will refer to Θ as transformation parameters in the upcoming sections.

Regularisation function In order to produce physically feasible solutions, it
is desirable to constrain the deformable transformation to be smooth. Among many
regularisation terms, the thin plate spline smoothing is chosen [159]:

Rsmooth =
1
V

∫ X

x=0

∫ Y

y=0

∫ Z

z=0

[(
∂2T
∂x2

)2

+
(
∂2T
∂y2

)2

+
(
∂2T
∂z2

)2

+
(
∂2T
∂xy

)2

+
(
∂2T
∂xz

)2

+
(
∂2T
∂yz

)2
]
dxdydz (5.2)
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where V denotes the volume of the image domain. This quantity is the bending
energy of a thin-plate of metal and possesses a property of penalising large defor-
mations. In applications of intra-subject registration, large deformations are not
expected and are taken care of by this smoothing function. This regularisation
function has been earlier used in conjunction with cubic B-splines in breast [124]
and inter-subject brain [147] registrations.

Bias �eld B changes slowly in the image leading to smooth intensity variations.
Thus, it can be expressed as a linear combination of smooth basis functions. Legen-
dre polynomials represent one of the many basis functions capable of parametrising
bias �eld inhomogeneity in MR images [148].

In 3D, the bias �eld estimate B(x, y, z) given the maximum degree d of the
Legendre polynomials and the parameter set Π is derived as follows:

B(x, y, z) =
d∑

i=0

d−i∑

j=0

d−i−j∑

k=0

ΠijkLi(x)Lj(y)Lk(z) (5.3)

where Li(.) denotes a Legendre polynomial of degree i. The image voxel co-ordinates
(x, y, z) are scaled in the range of [−1, 1]. For Legendre polynomials of maximum
degree l, the size m of the parameter vector Π is given by:

m = (d+ 1)
(d+ 2)

2
(d+ 3)

3
(5.4)

The maximum degree d of Legendre polynomials is related to the accuracy and
stability of the estimated bias �eld. Choosing a large degree will result in ine�cient
computation time, unstable coe�cients and chances are that anatomical structures
will be mistaken for intensity inhomogeneity [148]. On the other hand, low degree
polynomials may not be able to remove bias completely. Experiments of Styner
et al. [148] have established that a 3rd order Legendre polynomial is su�cient for
modelling bias �eld inhomogeneity for MR scanners with head coils. We will refer
to Π as bias �eld parameters in the upcoming discussion.

A brief description of Legendre polynomials can be found in Appendix A.1.

Noise in the image is modelled by a zero mean Gaussian distribution with stan-
dard deviation βs. It is worth noting that approximating the Rician noise in MRI
with Gaussian noise is valid when the signal to noise ratio in the image is greater
than 2 dB [49].



5.1. Modelling 132

5.1.2 Direct relations between variables in DAG
In a real scenario, during the acquisition interval, the patient's brain undergoes
volumetric changes that are modelled as a non-linear transformation T. According
to our model, images I1 and I2 su�er multiplicative bias �eld inhomogeneity and
additive MR noise. Let (B1, N1) and (B2, N2) be the bias �eld inhomogeneities
and Gaussian noise (with standard deviations β1 and β2) in images I1 and I2,
respectively. The imaging process is modelled as:

B1(x, y, z)I1(x, y, z) + N1(x, y, z) = B2(T(x, y, z))I2(T(x, y, z)) + N2(x, y, z)

=⇒ I1(x, y, z) = B(T(x, y, z))I2(T(x, y, z)) +
N(x, y, z)
B1(x, y, z)

(5.5)

where B(T(x, y, z)) = B2(T(x,y,z))
B1(x,y,z) and N(x, y, z) is Gaussian noise distributed

according to a Gaussian law with a standard deviation of βn =
√
β1

2 + β2
2.

Eq. 5.5 can be interpreted as follows. If we consider a spatially invariant noise
in images I1 and I2, the di�erential correction will result in noise enhancement in
areas where bias �eld is dark as compared to bright areas due to the factor N(x,y,z)

B1(x,y,z)

(the di�erential noise is scaled by a factor equal to the bias �eld in image I1). For
example, let b1(x, y, z) be a bias �eld in the �rst image with 0.9 < b1(x, y, z) < 2
and let original di�erential noise be n(x, y, z), the ratio n(x,y,z)

b1(x,y,z) is higher when
b1(x, y, z) = 0.9 (dark area) than when b1(x, y, z) = 1.5 (bright area). Thus, the
noise n(x,y,z)

b1(x,y,z) cannot be represented by the same parameters as the original noise
n(x, y, z). Consequently, di�erential bias correction will achieve a common bright-
ness level in the images but will result in noise enhancement in dark areas. This
detail may not have a huge impact if the bias �eld is not strong, for instance,
0.9 < B1 < 1.1, corresponding to 20% INU, which is the case in our experiments.
So, the noise parameter can be safely assumed to be the same for the entire image.
This assumption is important because the noise parameter determines the minimum
energy that can be reached.

It is this di�erential bias �eld (B) and noise (N) whose estimation is carried out
in this framework. When estimating longitudinal atrophies for a patient, it is su�-
cient to correct for di�erential B and N since this makes the intensities of the two
images comparable to allow the use of a similarity criterion such as sum of squared
di�erences (SSD).

Considering SSD as the similarity criterion, the energy in a 3D region of interest
is given by:

Es =
∑

Ω

(I1(x, y, z)−B(T(x, y, z))I2(T(x, y, z))2 (5.6)

Let Er = Rsmooth (See Eq. 5.2) be the energy of the regularisation term. The total
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energy can be written as:
Et = Es +

Er
βr

(5.7)

βr is the weight of the regulariser. The total energy Et must be minimised in
order to �nd the unknown parameters. To further constrain the deformation �eld
to topologically feasible solutions [98], only those solutions that lead to a positive
Jacobian determinant are allowed. At each iteration the Jacobian is checked at each
voxel, and the solution is rejected if it does not satisfy the criterion of positivity.

5.1.3 Probability modelling
After having established a structural model, we move to probability modelling. Ow-
ing to the parametric modelling of random variables T, B and N, the transformation
parameters Θ, bias �eld parameters Π and standard deviation βn of the noise are
random variables and the estimation of these parameters directly leads us to esti-
mates of T, B and N.

This guides us to the following joint probability model.

P (I1, I2,T,B,N) = P (I1, I2,Θ,Π, βn)

= P (I1, I2|Θ,Π, βn)P (Θ|βr, tl, th)P (Π|pl, ph)P (βn) (5.8)

where I1 and I2 are the given images. βr, tl, th and pl, ph are hyper-parameters for
Θ and Π, respectively. The modelling of the likelihood and prior functions in the
joint probability distribution (Eq. 5.8) are detailed in the forthcoming discussion.

Likelihood
A Gaussian distribution is used for de�ning the likelihood (also known as the simi-
larity criterion) because images are assumed to be corrupted by Gaussian noise:

P (I1, I2|Θ,Π, βn) =
1
Zs
e

−Es(I1, I2,Θ,Π)
2β2

n (5.9)

where Zs is the normalising constant.

Prior distributions
The choice of the prior distributions is crucial in incorporating the knowledge of the
system we possess, in the framework. In the present case, there are three quantities
whose prior distributions are needed (Θ, Π and βn):

• Transformation parameters: Two priors are chosen on the transformation
parameters: a prior to regularise the deformation �eld and a uniform prior to
restrict the values of the deformation �eld during sampling. The regulariser
is chosen so as to make calculations simpler (the logarithm of the similarity
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criterion (Es) and regularisation energies (Er) can be written as a sum). Fur-
ther, a uniform prior is imposed on the transformation parameters Θ with
hyper-parameters tl and th. The range (tl, th) is set according to the smallest
and the largest deformation expected in the region of interest. In essence, tl
and th control the range of deformation �eld values from which samples are
drawn in the MCMC framework.

Thus, we have the complete prior as:

P (Θ|βr, tl, th) ∝ e

−Er(Θ)
βr U(tl, th) (5.10)

• Bias �eld parameters: A uniform prior is chosen for the bias �eld parame-
ters Π with hyper-parameters pl and ph. This allows us to restrict the range
in which the sampling is performed for the bias �eld parameters. If the largest
and the smallest values of bias �eld inhomogeneity are known, an approxi-
mate range in which the Legendre polynomial parameters lie can be found
analytically. The prior for the bias �eld parameters is given as,

P (Π|pl, ph) = U(pl, ph) (5.11)

Remember that the parameters tl, th, pl and ph, even if estimated approxi-
mately, can facilitate sampling by further constraining the MCMC sampler to
probable solutions.

• Noise parameter βn: The standard deviation βn of the di�erential noise
present in the images can be estimated from the noise in the background of
MR images where the signal can be assumed to be zero. Alternative methods
such as those discussed in section 2.4.2 can also be employed.

Segmentation of the background is obtained through Otsu's thresholding ap-
proach [101]. If the MRI noise can be approximated with a Gaussian distri-
bution, the ML estimate of the noise standard deviation (βn) is given by,

βn =

√√√√ 1
N

N∑

i=0

n2
i (5.12)

where ni is the value at the ith voxel of the background and N is the total
number of voxels in the background. Note that βn will not be sampled in the
MCMC framework.
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Posterior probability
The standard procedure involves maximising the a posteriori probability to obtain
estimates of unknowns. Therefore, let us write the posterior probability which comes
directly from the de�nition of conditional probability and Eq. 5.8 as:

P (Θ,Π, βn|I1, I2) =
P (I1, I2,Θ,Π, βn)

P (I1, I2)
∝ P (I1, I2|Θ,Π, βn)

P (Θ|βr, tl, th)P (Π|pl, ph)P (βn) (5.13)

where P (I1, I2) is constant because I1 and I2 are given images. P (βn) = constant
because it is determined deterministically. βr, tl, th and pl, ph are hyper-parameters
for Θ and Π, respectively.

Expanding the posterior by substituting for all likelihood and priors distributions
from Eqns. 5.9, 5.10, 5.11, and 5.13 we have

P (Θ,Π, βn|I1, I2) ∝ e
−Es(I1,I2,Θ,Π)

2β2
n e

−Er(Θ)
βr U(tl, th)U(pl, ph) (5.14)

5.2 Maximum a posteriori estimation
Solving the maximum a posteriori (MAP) problem is tantamount to �nding those
parameters of the transformation �eld and the bias �eld that maximise the posterior
probability in Eq. 5.14. Due to the complicated nature of our posterior it is neither
possible to analytically compute it nor samples can be drawn from it directly. In
such situations, MCMC methods are generally employed for generating samples.
MCMC methods stochastically optimise the posterior distribution based on proba-
bility distributions.

In our case, samples of bias �eld parameters Π and transformation parameters
Θ can be generated from the posterior distribution using MCMC methods. The
energy is monitored iteration per iteration and the values of Π and Θ that lead
to the minimum energy (or MAP) are the estimated values. Estimated atrophy is
calculated from the estimated Θ.

5.2.1 Sampling schedule
The sampling is carried out with Metropolis-Hastings algorithm where candidate
samples for the target distribution are drawn from a proposal distribution (from
which sampling is easy). Gaussian proposal distributions are chosen for bias �eld
(Π) and transformation (Θ) parameters. The next candidate state (i+1) is computed
by means of generating samples as a function of the current state of the chain for
bias �eld parameters πi and transformation parameters θi according the following
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rules:

π′(i+1) ∼ N (π(i), σπ)

θ′(i+1) ∼ N (θ(i), σθ) (5.15)

where σπ are σθ are proposal distribution parameters. It is assumed that the two
parameter sets are independent and thus can be sampled from two independent
proposal distributions as shown in Eq. 5.15. The complete proposal distribution is

Q(ψ′;ψ(i)) = N (π(i), σπ)N (θ(i), σθ) (5.16)

where ψ = (π, θ). These candidates are accepted with a probability

A(ψ′|ψ(i)) = min

(
1,

P (ψ′|I1, I2)Q(ψ(i);ψ′)
P (ψ(i)|I1, I2)Q(ψ′;ψ(i))

)
(5.17)

P (.|I1, I2) is the posterior probability given by Eq. 5.14.

Note that the ratio Q(ψ(i);ψ′)
Q(ψ′;ψ(i))

= 1 because a symmetric distribution (Gaussian) is
chosen as a proposal distribution. Also, the knowledge of the normalising constant
Zs is not required for computing the acceptance probability.

Proposal variances An important factor is the variance of the proposal dis-
tributions that determines the time taken by the chain to reach its stable state or
convergence. The distribution of the parameters studied via the Markov chain in its
stable state is called their stationary distribution. Usually, the proposal variance is
obtained by studying the acceptance rate (which is the number of samples accepted
among the last N proposals). A large variance leads to low acceptance rates as
most of the new samples will land in regions of low probability and hence will be
rejected. Similarly, a small variance will result in more proposals being selected and
the acceptance rate will be high. The optimal value of the proposal variance must
be able to aid the Markov chain in reaching its stable state soon from the initial
point while covering the entire possible parameter space.

Consider a Markov chain, {x1, x2, . . . , xN} with stationary distribution ψ, then
the expectation µ̄ of x can be estimated by a delayed averaging,

µ̄N =
1
N

M+N∑

n=M+1

µ(xn), (5.18)

The period until iteration M is the burn-in period. µ̄N is a consistent estimator if
the chain is irreducible [152]. This computation will not hold if this is not the case
and there is dependence, within the Markov chain xn. Approximating µ(xn) as a
�rst order autoregressive process with autocorrelation ρ, the variance of µ̄N is given
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by,
var(µ̄N ) =

σ2

N

1 + ρ

1− ρ
(5.19)

where σ is the proposal distribution. This means that when autocorrelation ρ is
high, a large number of samples are needed, in order to achieve the desired accuracy
in µ̄N .

Gilks et al. [47] attempt to solve the problem of estimating the proposal vari-
ance for when the target distribution has an exchangeable form ΠM

i=1ψ(xi) where xi
is the ith element of x. They have shown that for large M , it can be determined
that the variance in Eq. 5.19 is minimised when σ is chosen such that 23.4% of the
total candidates are accepted. It has been shown through empirical results that in
most cases 15 − 50% of the proposals must be accepted for optimal performance
[48]. Note that there is no optimal theoretical value of the proposal variance.

The optimal variance may be determined empirically, by monitoring the accep-
tance rates of candidates in nested windows of iterations. Gilks et al. [48] provide
a way for setting a value for this quantity. Let Ri be the acceptance rate after i
iterations, then the proposal variance or scaling for the next iteration σi+1 can be
calculated as follows:

log(σi+1) = log(σi) +
(logit(Ri)− logit(r))

r
(5.20)

where r is the target acceptance rate and the function logit of a number p between
0 and 1 is logit(p) = log(p) − log(1 − p). If Ri < r , σ will be reduced and, as a
result, the acceptance rate will increase and vice versa.

In our implementation, �optimal� values for both σπ and σθ are set according to
the Eq. 5.20. This expression is not evaluated at each iteration as the acceptance
rate may not vary substantially in one iteration. Acceptance rates are calculated
using overlapping windows of candidates accepted in the last 20 iterations and vari-
ance values are updated at every 5th iteration. This is done in order to reduce the
computational overhead of recalculating acceptance rate and σ at every iteration.

Convergence Convergence is established by following the evolution of the total
energy Et Eq. 5.7 graphically.

Algorithm 1 provides an overview of the sampling algorithm.

5.3 Results
Results of experiments conducted to demonstrate and compare the proposed frame-
work with other bias �eld correction and non-rigid registration methods, are pre-
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while no convergence do
Sample π′(i) = N (π(i−1), σπ).
Sample θ′(i) = N (θ(i−1), σθ).
Compute total energy Et = Es + Er from Eqns. 5.9 and 5.10.
Compute MH criterion in Eq. 5.17.
if Accept then

π(i) = π′(i) and θ(i) = θ′(i)

else
π(i) = π(i−1) and θ(i) = θ(i−1)

end
Adjust σπ and σθ values according to Eq. 5.20.

end
Algorithm 1: Bayesian estimation of bias �eld and transformation parameters

sented in this section in three parts:

• performing only bias correction but no atrophy estimation

• performing only atrophy estimation and

• simultaneous estimation of bias �eld inhomogeneity and atrophy

5.3.1 Bias �eld correction
In order to study the e�ciency of the bias �eld correction algorithm, images are
degraded with two di�erent synthetic bias �eld inhomogeneities of 20% INU from
the Brainweb database and additive Gaussian noise (SNR=35 dB). Tests are per-
formed on the whole brain simulated Brainweb image down-sampled to an image of
size 64×64×64. Neither atrophy is simulated nor atrophy estimation is performed.
The similarity cost in the Eq. 5.9 is minimised where T is set to identity (no defor-
mation exists between the two images).

Tests are carried out with Legendre polynomials of maximum degree 2 to 5 in
order to determine the optimum number of parameters for further tests. Next, the
variance of the proposal distribution for bias �eld parameters is dynamically com-
puted following Eq. 5.20. The hyper-parameters of the uniform prior are set to
pl = −5 and ph = 5. Convergence is established by studying the evolution of total
energy as the iterations progress. An example of change in total energy with pro-
gressing iterations is plotted in Fig. 5.2 (for the case when Legendre polynomials
of maximum degree 3 are used for bias �eld parameter estimation). It can be seen
from Fig. 5.2 that after 700 iterations the chain reaches a stable state.

The MCMC based di�erential bias estimation is compared with N4ITK1 [155],
di�erential bias correction of Lewis et al. [80] and PABIC of Styner et al. [148].

1http://www.insight-journal.org/browse/publication/640

http://www.insight-journal.org/browse/publication/640
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Figure 5.2: Evolution of energy with the sampling iterations when using a Legendre
polynomial of degree 3 for the bias �eld B. The position of the MAP energy is
marked with a red cross. Total energy converges after 700 iterations when the chain
reaches a stable state.

While N4ITK is an improved version of the popular N3 algorithm that uses one
image, Lewis et al.'s method estimates di�erential bias from a pair of serially ac-
quired images only on the brain area (brain extraction must be performed prior to
bias estimation). The PABIC approach also estimates bias �eld from a single image
and models the classes in the image (e.g. GM, WM) using a Gaussian model. For
algorithms that take one input image, the di�erential bias �eld is calculated as the
ratio of the individual bias �elds obtained by applying bias �eld estimation to each
image separately. Examples of estimated �elds by the four methods are in shown
in Fig. 5.3. An explanation of the parameters of N4ITK, Lewis et al.'s and PABIC
methods is available in appendix B.1.

The ground truth bias �eld that is added to the Brainweb image is shown in Fig.
5.3 (a) and the resulting bias �elds from our approach in Fig. 5.3 (b-e) with max-
imum degree of Legendre polynomials in the range of 2 − 5, Lewis et al.'s method
Fig. 5.3 (f), N4ITK Fig. 5.3 (g) and PABIC Fig. 5.3 (h) are also shown. The errors
between the estimated �elds and the ground truth are depicted in Fig. 5.4. Quan-
titative results are shown in Table 5.1. For all the four approaches, mean squared
errors (MSE) in the recovered bias �eld and the bias corrected image with respect to
the ground truth bias �elds and Brainweb image are computed. MSE is computed
according to the following equation:

MSE =
1
N

∑

(x,y,z)∈Ω′
(G(x, y, z)−E(x, y, z))2 (5.21)

where Ω′ is the region of the image considered and N is the total number of voxels
in this region. G and E are expected and estimated quantities (anatomical image
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or bias �eld), respectively.

(a) Ground-Truth (b) Our method (d = 2) (c) Our method (d = 3)

(d) Our method (d = 4) (e) Our method (d = 5) (f) Lewis et al.'s method

(g) N4ITK method (h) PABIC (d = 4)

Figure 5.3: Comparison of estimated bias �elds by our method, Lewis et al.'s
method, N4ITK correction and PABIC approach. d = 2, 3, 4, 5 for our method
represent the maximum degree of Legendre polynomial used in modelling of the
bias �eld. For PABIC approach, the results obtained with d = 4 are illustrated
because this results in the best estimations. See Table 5.1 for quantitative results.

The estimated �elds in Fig. 5.3 and the errors in estimated bias �elds in Fig. 5.4



5.3. Results 141

(a) Our method (d = 2) (b) Our method (d = 3) (c) Our method (d = 4)

(d) Our method (d = 5) (e) Lewis et al.'s method (f) N4ITK method

(g) PABIC (d = 4)

Figure 5.4: Error in the estimated bias �elds and the ground truth for our method,
Lewis et al.'s method, N4ITK correction and PABIC. d = 2, 3, 4, 5 for our method
represent the degree of Legendre polynomial used in modelling the bias �eld. For
PABIC, the results obtained with d = 4 are illustrated because this results in the
best estimations. See Table 5.1 for quantitative results.
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allow us to conclude that with Lewis et al.'s method and our approach the pattern
of bias is well captured. Let us notice that the bias �eld is underestimated and
patternless with N4ITK correction. The results of estimated �elds and MSE show
that the PABIC approach overestimates the bias �eld. Considering the accuracy of
estimations for our method when Legendre polynomials of di�erent degrees are used,
it can be seen from Fig. 5.3 (b-e) that the estimated bias �elds resemble the ground
truth visually in all the four cases. If we look at the errors in Fig. 5.4, a Legendre
polynomial of 3rd or 4th degree models the ground truth bias �eld better than a
2nd or 5th degree polynomial. The quantitative analysis (Table 5.3) con�rms these
observations. Legendre polynomial of maximum degree d = 4 leads to the lowest
MSE values among experiments with other degree polynomials. Table 5.3 also high-
lights that Lewis et al.'s method performs better than our approach. Nevertheless,
the performance of our method (with d = 4) is comparable to that of Lewis et al.'s
method as opposed to N4ITK and PABIC that leave a considerable residual bias
hence the larger MSE values. According to these results, PABIC approach is the
worst performer out of the methods tested.

The maximum degree of the polynomial is related to the number of parameters
with the Eq. 5.4. For maximum degrees between 2−5, the number of parameters are
10, 20, 35 and, 56, in the same order. Generation of 5000 samples is accomplished
in 1, 1.8, 2.2 and 3.8 hours, respectively for maximum degrees of 2− 5.

MSE Bias Field MSE Bias Corrected
Image

`````````````̀Method
Bias A B A B

Our method (d = 2) 0.001871 0.001037 40.60 23.02
Our method (d = 3) 0.001643 0.0008509 31.93 19.06
Our method (d = 4) 0.001513 0.0005330 21.89 14.28
Our method (d = 5) 0.001351 0.0007008 20.19 10.99

PABIC (d = 2) 0.385496 0.339491 6109.91 6333.93
PABIC (d = 3) 0.290426 0.336078 6437.22 6347.76
PABIC (d = 4) 0.260397 0.280823 7093.02 6605.07
PABIC (d = 5) 0.268169 0.279130 6346.25 6510.79
Lewis et al. 0.000980 0.000461 21.908 9.913
N4ITK 0.051025 0.026226 1285.714 597.455

Table 5.1: MSE in the estimated bias �elds and the bias corrected images with
respect to the ground truth bias �eld and Brainweb image. A and B refer to the
two simulated bias �elds used in these experiments. d = 2, 3, 4, 5 represents the
maximum degree of the Legendre polynomial used in the modelling of the bias �eld.
The best results are shown in bold.
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5.3.2 Atrophy estimation
Results are shown on two in-vivo 3D images (subject number 2 and 7) from the
IBSR database (See appendix B.1 for details). The reason for choosing these two
images is that they are di�erent anatomically and in appearance. Uniform atrophies
of around 2%, 5%, 10% and 15% are simulated in the hippocampus with the algo-
rithm described in section 3.2.1. This provides us with a ground-truth for validation
of our algorithm. A 32×32×32 ROI containing the hippocampus is extracted from
the whole brain. Computations are performed on this extracted ROI. Gaussian noise
(SNR=35 dB) is added to the baseline as well as the simulated atrophied images.

The same tests are carried out with three other NRR algorithms (Noblet et al.
[98], ANTS [10], Vemuri et al. [157]) and a cubic B-spline based non-rigid registra-
tion method implemented in ITK to inspect the performances of these approaches,
compared to the proposed method. The cubic B-spline based registration will allow
us to compare the implemented MCMC algorithm with a deterministic method that
is based on the same transformation model. Regular step gradient descent optimi-
sation is used. We will refer to this method as ITK cubic B-spline registration. The
implementation details and values of parameters used for experiments with algo-
rithms of Noblet et al. [98], ANTS [10], Vemuri et al. [157] and ITK cubic B-spline
registration are given in appendix B.1.

The value of parameter βn is estimated to be 2 from Eq. 5.12 with mean found
to be close to zero. We use this value for our estimations. The value of βr is �xed to
100 for experiments with images from the IBSR database while the range (tl, th) is
set to (−20, 20) mm as the deformations are expected to lie within this interval. The
variance of the proposal distribution for transformation parameters is dynamically
computed following Eq. 5.20.

A minimum support of 3 × 3 × 3 control points is required by cubic B-splines
which encouraged us to set the size of the control point lattice to 5 × 5 × 5 and
6×6×6, amounting to 125×3 = 375 (lattice spacing = 6.5 mm) and 216×3 = 648
B-spline control points (lattice spacing = 5.5 mm), respectively. Image voxel size is
1 mm× 1 mm× 1 mm.

Evolution of energy Energy vs iteration plot for IBSR patient number 7 with
simulated atrophy of −14.64% is shown in Fig. 5.5. This chain reaches convergence
in 300 iterations. The number of iterations to convergence (or stability) depends
on the starting point. When the chain is initialised with an identity transform, the
number of iterations to stability averaged over all cases are 250± 100.

Visual comparison of Jacobians An example of estimated Jacobians are il-
lustrated in Fig. 5.6 for a simulated atrophy of −14.61% in the hippocampus of the
IBSR subject 7. The di�erence of the Jacobians from the ground truth is depicted
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Figure 5.5: Energy evolution for IBSR patient number 7 with simulated atrophy
of −14.64%. The chain reaches convergence in 300 iterations. The MAP energy is
marked with a red cross.

in Fig. 5.7 for the Jacobian maps displayed in Fig. 5.6. It can be seen that the error
is lower when the model is based on 648 control points than the one of 375 control
points in Fig. 5.7. For the same experiment, Jacobian maps from NRR algorithms
of Noblet et al., ANTS, Vemuri et al. and ITK cubic B-spline registration (run with
648 control points) are shown in Fig. 5.8.

The atrophy simulation approach is a multi-resolution implementation. Simu-
lations are performed on images of size 64 × 64 × 64 in 5 resolutions where at the
lowest level calculations are performed in blocks of 4 neighbouring voxels. As a
result, the Jacobian appears blocky. From this an ROI of 32× 32× 32 is extracted
in order to speed up the MCMC iterations. The Jacobian maps from all approaches
are drastically di�erent. Our Jacobian maps (Fig. 5.6 (b-c)) and that of ITK cubic
B-spline registration (Fig. 5.8 (d)) show some resemblance to the pattern of the
ground truth map. The mean di�erences in Jacobians are −4.74% and −1.35% of
atrophy in the ROI when the number of B-spline control points are 375 and 648,
respectively for MCMC method and 5.01% for ITK cubic B-spline based method
with 648 control points. No pattern can be observed in other approaches, however,
the mean Jacobian in the ROI is close to the ground truth (See Table 5.2). This
indicates that the main reason behind the methods not being able to recover the
simulated atrophy patterns has to do with the amount or the type of regularisation
and the resolution at which computations are performed. Note that cubic B-splines,
by nature, are smooth, so our approach and ITK cubic B-spline based registration
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method both produce visibly regularised Jacobian maps. ITK cubic B-spline based
registration method did not contain any explicit regularisation term yet managed
to produce an even Jacobian map.

(a) GT Mask (b) GT Jac.

(c) Estimated Jac. (c = 375) (d) Estimated Jac. (c = 648)

Figure 5.6: Ground truth mask of the hippocampus, the ground truth Jacobian
along with the estimated Jacobians by the Bayesian framework for experiments on
IBSR image number 7 for a simulated atrophy of −14.61%. c = 375, 648 refers to
the number of B-spline control points.

Quantitative evaluation A comparison of the MAP atrophies in the hip-
pocampus from our approach to other non-rigid registration methods Noblet et al.
[98], Vemuri et al. [157] and ANTS [10] is provided in Table 5.2 for two subjects
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(a) Di�. (c = 375) (b) Di�. (c = 648)

Figure 5.7: Di�erence of the estimated Jacobians shown in Fig. 5.6 from the ground
truth Jacobian for the Bayesian framework for experiments on IBSR image number
7 for a simulated atrophy of −14.61%. c = 375, 648 refers to the number of B-spline
control points.

from the IBSR database. Estimated mean atrophy is the estimated atrophy aver-
aged over the hippocampus. 1200 samples are generated for both experiments using
our framework.

Table 5.2 shows that, for our method, experiments using 648 B-spline control
points are able to estimate large atrophies more accurately (≈ 14.6% and ≈ 9.9%)
than simulations with 375 control points. The bias in the mean estimated atrophies
when ground truths are ≈ 14.6% and ≈ 9.9% for subjects 2; 7 are (−0.72, 0.76);
(0.61, 1.28) with 648 control points. The bias in estimations increases to (6.43, 3.51);
(4.74, 2.85) for subjects 2 and 7 with 375 control points. On the other hand, tests
with 375 control points estimate the smaller atrophies (≈ 4.7% and ≈ 1.6%) better
than higher atrophies. The bias in estimations for smaller atrophies are for c = 648
and subject 2: (−1.34,−1.66); subject 7: (0.63,−1.37) and for c = 375 and subject
2: (0.004, 0.17); subject 7: (0.40, 0.36). It can be observed that better results are
obtained when the number of control points is set to 648. Implementation of a
NRR algorithm with the same transformation model (uniform cubic B-splines) in a
deterministic setting shows that 648 B-spline control points lead to smaller errors
as opposed to experiments with 375 control points in all cases. This is not observed
in all MCMC based experiments. A possible reason is instability or slow mixing
of the chain that was mistaken for convergence. In spite of this, the MCMC algo-
rithm is a better performer than its deterministic counterpart in all the experiments.
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(a) Noblet et al. (b) ANTS

(c) Vemuri et al. (d) ITK cubic B-spline based

Figure 5.8: The estimated Jacobian maps for experiments on IBSR image number 7
for a simulated atrophy of −14.61% in the hippocampus using the NRR algorithms
of Noblet et al., ANTS, Vemuri et al. and ITK cubic B-spline based registration
(with c = 648).

The NRR algorithms of Vemuri et al. and Noblet et al. overestimate whereas
ANTS approach underestimates atrophy for both subjects. On the other hand, for
our method no such trend is observed. In terms of bias in estimated mean atrophy,
experiments with 648 control points outperform the other three NRR algorithms for
large atrophies (≈ 14.6% and ≈ 9.9%) in all cases except one, where the algorithm
of Vemuri et al. is better. For the same experiments with smaller atrophies (≈ 4.7%
and ≈ 1.6%) ANTS is a better performer (in 3 out of 4 cases) than our method
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but Vemuri et al. and Noblet et al. still fall behind. This trend is reversed in tests
with 375 control points, where the performance of MCMC approach surpasses that
of ANTS, Vemuri et al.'s and Noblet et al.'s approaches for smaller atrophies.

Con�dence intervals The Bayesian registration approach also allows us to con-
struct con�dence intervals on the estimated atrophy. The estimated con�dence
intervals are shown in Figs. 5.9 (a-b) for both subjects. It can be seen that ground
truths are not always contained in the con�dence intervals but the estimated atro-
phy is always found within the con�dence interval. In addition, the length of the
intervals is approximately 2%.

Fig. 5.10 illustrates the distributions of the Jacobians estimated for −14.64%
and −1.61% of hippocampal atrophy, for our experiments with di�erent number
of B-spline parameters. The location of the MAP with the corresponding 95%
con�dence intervals is also shown. The estimated atrophy falls at the mode of the
distribution of the Jacobian.

5.3.3 Simultaneous estimation of bias �eld inhomogeneity and noise
A bias �eld of 20% INU and a Gaussian noise of 35 dB are added to the IBSR image
of subject 2. In the same image, an atrophy of −14.6% is simulated. To conform to a
real scenario, care is taken to extract the same 32×32×32 ROI from the bias �eld as
the image. This image is compared to the original IBSR image of subject 2 to which
Gaussian noise with the same noise parameters is added. In order to perform bias
correction, two existing bias correction methods are employed: N4ITK and Lewis et
al.'s method, before atrophy estimation using the NRR registration approaches of
Noblet et al., ANTS, Vemuri et al., ITK cubic B-spline and the proposed MCMC
framework (without bias �eld correction). In addition, bias �eld parameters and
atrophy are estimated simultaneously in the MCMC framework (648 control points
and Legendre polynomials of maximum degree of 4 are used in these simulations).

The MSE between the estimated bias �elds and the ground truth bias �elds
when bias �eld parameters and atrophy are simultaneously estimated in the MCMC
scheme, with Lewis et al.'s method and with N4ITK are 0.009073, 0.0024387 and
0.032344. The results are in agreement with what we observed in earlier experiments
(see Table 5.1). Like the previous tests, the di�erential bias correction of Lewis et
al. is better than N4ITK correction and our method. The results of comparison of
estimated atrophies in the hippocampus are presented in Table 5.3 and show that
the bias correction methods of Lewis et al. and N4ITK are e�ective as there is
no drastic performance di�erence from the results presented in Table 5.2 for the
atrophy of −14.6% for all the methods. The maximum error with respect to the
ground truth is seen for the NRR method of Noblet et al. at 2.51% when bias is
corrected using N4ITK and lowest of −0.12% also for the same method but with
Lewis et al.'s bias correction. Vemuri et al.'s algorithm produces similar results with
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Figure 5.9: Estimated con�dence intervals by the Bayesian registration method. All
values are shown in percentage of atrophy. c = 375, 648 are the number of B-spline
control points used in these experiments. Red and blue colours are used for subjects
2 and 7, respectively. The blue and red straight lines represent the ground truth
atrophy and star (*) is the location of the MAP.
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Figure 5.10: The distributions of the Jacobians estimated for atrophies −14.64%
and −1.61% with 648 of B-spline parameters. The location of the MAP is shown
with a red circle and the 95% con�dence intervals are marked with red crosses.
Histograms are plotted with 10 bins.
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IBSR Subject 2
Bias �eld: 20% INU, Noise: 35 dB, GT: −14.6%
Bias correction Atrophy (in %)

Our approach
Our approach −19.18 CI (−16.64, −22.36)

N4ITK −15.2 CI (−13.21, −14.92)
Lewis et al. −15.18 CI (−14.43, −16.10)

Noblet et al.
N4ITK −17.11

Lewis et al. −14.72
ANTS

N4ITK −10.56
Lewis et al. −10.998

Vemuri et al.
N4ITK −15.72

Lewis et al. −15.71
ITK cubic B-spline

N4ITK −9.68
Lewis et al. −9.10

Table 5.3: Estimated atrophies with NRR algorithms of Noblet et al., ANTS, Vemuri
et al., ITK cubic B-spline based as well as our approach with c = 648 B-spline control
points. Di�erential bias correction of Lewis et al. and N4ITK bias �eld correction
are employed. The proposed framework is used for estimating atrophy (no bias �eld
corrections are performed) after bias corrections of Lewis et al. and N4ITK are
applied to the images. An experiment is conducted where bias �eld correction is
performed simultaneously with atrophy estimations. CI refers to the 95% con�dence
intervals. GT is the ground truth atrophy.

the two correction techniques. The results of simultaneous estimation of atrophy
and bias �eld by making use of the MCMC approach are not on par with other
methods (error with respect to the ground truth is 4.58%). The con�dence intervals
reveal that the estimated atrophy is not contained in them when the bias �eld
correction is carried out with N4ITK. Further, the ground truth is not found in
the intervals when bias �eld and atrophy are simultaneously evaluated using our
approach. Nevertheless, note that the MCMC method manages to perform well
(second to Noblet et al.'s NRR approach with Lewis et al.'s bias correction) with
both Lewis et al.'s and N4ITK bias correction (respective errors with respect to
the ground truths: −0.58%, −0.60%). The ground truth is contained inside the
con�dence intervals for these tests.
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5.3.4 Consistency test
Further demonstration of our framework is performed with serially acquired images
of an Alzheimer's disease patient from the ADNI database. In the absence of a
ground truth, one has to rely on other criteria of evaluation such as consistency
between the measurements. ADNI database contains more than two longitudinally
acquired images of a subject and provides a means to conduct consistency tests. An
image (subject number 002_S_0295) is arbitrarily chosen for hippocampal atrophy
estimation in our framework. Four serial scans are used in three consistency tests
as follows: a12 + a23 = a13, a23 + a34 = a24 and a12 + a23 + a34 = a14 where aij
is the estimated atrophy between scans taken at instants i and j, where i = 1, 2, 3
and j = 2, 3, 4. The reader may refer to section 3.1.1 to �nd a description of the
consistency criterion. No bias correction is applied as ADNI images have been
already treated for intensity inhomogeneity with N3 algorithm. Each pair of images
is registered with the a�ne registration available in ANTS. Besides, hippocampus'
segmentations are obtained from FreeSurfer's segmentation routine. Experiments
are performed on 32×32×32 image regions containing the hippocampus. The results
of these experiments are depicted in Fig. 5.11 where it can be observed that our
method and ANTS are the most consistent due to the fact that the measurements
are close to the x = y line whereas Vemuri et al.'s NRR approach is the worst
performer in this group of 5 methods.

5.4 Discussion and �ndings
In this chapter, a Bayesian non-rigid registration approach to measuring longitudi-
nal brain atrophy was introduced. The most important contribution of this piece of
work was that it allowed us to estimate bias �eld inhomogeneity and the deforma-
tion �eld simultaneously.

The Bayesian formulation consisted of modelling the non-rigid transformation as
3D cubic B-splines. Further, the bias �eld inhomogeneities were parametrised using
Legendre polynomials. Gaussian likelihoods were chosen for the transformation and
as a prior for the parameters of the cubic B-splines (which also acted as a regu-
lariser). This was primarily because we considered Gaussian noise in the images.
This assumption is valid when SNR in the image ≥ 2 dB and was veri�ed in all our
experiments. A di�erent likelihood needs to be chosen if the noise is modelled by
a Rician distribution, which is the actual distribution of MRI noise. Likewise, the
noise standard deviation βn sampling could be incorporated, in the present imple-
mentation its estimation was not in the MCMC framework. A uniform prior was
imposed on the bias �eld. For the transformation �eld parameters, a Gaussian prior
was chosen in conjunction with a uniform prior. The hyper-parameters (tl, th, pl
and ph) controlled the range in which the sampler could wander looking for proba-
ble values of the bias �eld and transformation �eld parameters, and were crucial in
achieving convergence. βr controlled the smoothness of the estimated transforma-
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Figure 5.11: Consistency test. The x and y axes show summed and directly esti-
mated atrophies between the �rst and the last time instants. If a method is perfectly
consistent, its measurements must lie on the straight line x = y.

tion �eld.

The results were classi�ed into three parts:

Estimation of bias �eld inhomogeneity Two simulated bias �elds of 20%
INU from the Brainweb simulated image database were recovered with the use
of our method (with the maximum degree of Legendre polynomials in the range
of d = 2 − 5), N4ITK [155] and di�erential bias correction of Lewis et al. [80]. In
these experiments, only bias �eld inhomogeneity and noise artefacts were simulated.
The images were free of any atrophy. The MSE between the MAP estimated �elds
and the ground truth �eld showed that Lewis et al.'s method could reproduce the
bias �eld better than our method and N4ITK. However, the MSE achieved with
our Legendre polynomial based modelling was not far from that of Lewis et al.'s
method. We believe that the exceptional performance of di�erential bias correction
method of Lewis et al. can be attributed to the ful�lment of its pre-requisites. The
method requires registered and skull stripped images. Next, a median �lter is ap-
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plied for removing any anatomical structure from the di�erence image while being
able to maintain sensitivity to adequately represent the di�erential bias �eld. As
the two images in our experiments did not contain any anatomical changes, there
was no residual anatomical structure in the di�erence image. Moreover, there was
no registration error, as the images were already registered. Our approach being a
parametric approach, depends on the validity of the assertion that bias �eld can be
represented by Legendre polynomials as well as the registration error. Like Lewis
et al.'s method, the absence of registration error and anatomical changes worked in
favour of our algorithm too. At the same time, remember that for our approach, no
knowledge of underlying tissue model or segmentation of the brain is needed.

The resulting bias �elds from our tests showed that Legendre polynomial of de-
gree 4 was optimal for the �elds in the Brainweb database. The lowest MSE among
experiments employing PABIC of Styner et al. [148], based on Legendre polynomial
modelling, was also achieved for degree 4. However, it showed consistently higher
MSE than the other methods. Possibly, this was due to the errors in segmentations
as PABIC method takes the means and standard deviations of the tissue classes
(WM, GM) as input. Values from K-means segmentation of the input image were
provided. In order to con�rm our assertions, we went back to the original contri-
bution of Styner et al. [148] where they achieved an average MSE (in percentage
of the contrast between white and grey matter) of 0.000904− 0.322544 over 20 bias
�elds that were generated from random Legendre parameter vectors (of 3rd degree)
and applied to Brainweb images along with Gaussian noise between 0 − 9% of in-
tensity range. It may be mentioned here that the simulation of bias �elds using
Legendre polynomial parameters and recovering them with a Legendre polynomial
based approach, might have driven PABIC to produce favourable results. As for
N4ITK [155], the authors use default parameters in their experiments on the Brain-
web database of 20 patients and comparisons are made by computing correlation
coe�cients. Due to di�erences in the experimental set-ups, our results could not be
directly compared to neither PABIC nor N4ITK methods on the basis of the results
produced in these articles.

A drawback of our MCMC based bias �eld inhomogeneity was the time require-
ment which is in hours. This is on the higher side when the other algorithms needed
a few minutes. Recall that the main purpose of bias �eld inhomogeneity estimation
was to aid in estimation of accurate con�dence intervals on atrophies. To serve a
larger perspective, con�dence intervals for bias �eld parameters could be obtained
for use in situations such as generation of bias �eld realisations to be incorporated
in the uncertainty estimation database that was presented in chapter 4.

Estimation of atrophy Four atrophies (−14.6%, −9.9%, −4.7%, −1.6%) were
simulated in the hippocampus of subject 2 and 7 from the IBSR database. The
Bayesian method outperformed Noblet et al.'s and Vemuri et al.'s approach in al-
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most all cases whereas it was better than ANTS in 6 out of 8 cases when 648 B-spline
control points were used. The MCMC approach was better than ITK cubic B-spline
based registration with a deterministic optimisation. In other experiments with 375
parameters, only smaller atrophies were well-estimated. From the visual Jacobian
results, we could identify under-regularisation as a problem, which also explained
the performance results of other algorithms. As discussed in 4.6, Vemuri et al.'s al-
gorithm is particularly sensitive to noise and under-regularisation could be a reason
of its failure. It is possible that transformation models and constraints could have
been an in�uence. Similar observations about Jacobians were also made in [121].

The length of the con�dence intervals was around 2% of atrophy with Gaussian
noise of 35 dB, which is a good localisation range for hippocampal atrophy known
to be around −9% in MS patients [3]. The estimated atrophy was contained in the
intervals in all our tests whereas some intervals presented a slight bias with respect
to the true atrophy. This may have arisen for two reasons: insu�ciency of the lattice
spacing or ine�ciency of the cubic B-spline model.

Consistency tests on four serial scans from the ADNI database showed that our
method as well as ANTS approach proved to be the most consistent among the 5
NRR methods tested. The di�erences in performances could be due to many factors
such as the size of the image over which atrophy was estimated, due to the noise
or residual artefacts that could not be taken care of by the ADNI pre-processing
routines.

The issue of selection of number of control points is pivotal in determining the
time complexity as well as the stability. Let us compare the lattice spacing in
our experiments to other work based on cubic B-splines. Rueckert et al. [124]
used a lattice spacing of 10 mm on breast images. Studholme et al. [147] studied
registration of a group of subjects to a reference image in a multi-resolution setting
with a lattice spacing of 2.4 mm at the �nest level. Our experiments have shown
that a lattice spacing of 5.5 mm could handle the simulated hippocampal atrophies
(intra-subject registration) well. Nevertheless, if di�erent atrophies are simulated
in various ROIs at once, higher number of B-spline parameters would be required
to achieve the same accuracy. Also, the regularisation will start to play a more
important role as the lattice becomes �ner. In our opinion, the trade o� of time
complexity vs accuracy is a crucial consideration. On an Intel Xeon processor at
2.5 GHz, 1000 samples were produced in 30 and 48 hours for 375 and 648 B-spline
parameters. Contemporary publications such as Risholm et al. [119] sampled only
the deformation at 349 boundary nodes with the MCMC algorithm leaving the
deformation �eld calculation of the interior nodes to a deterministic algorithm. The
total computation time for them was 14 hours (5 samples/second were generated).
We suspect that an ine�cient code may have contributed to the high computational
time in our case.
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Simultaneous estimation of bias �eld inhomogeneity and atrophy Results
on IBSR image 2 with a simulated atrophy of −14.6%; corrupted with a 20% INU
bias �eld and noise of 35 dB; showed that the N4ITK method and di�erential bias
correction approach of Lewis et al. are e�ective. After these corrections, our ap-
proach (without bias correction), Noblet et al.'s, ANTS and Vemuri et al.'s approach
could estimate the atrophies in the hippocampus, with the errors with respect to
the ground truth atrophy being less than 2%, barring one case of Noblet et al.'s
method for which the error is 2.58%.

Let us recall certain facts to understand why there is a change in the perfor-
mances of these approaches with respect to results on the Brainweb image. The
better performance of N4ITK correction method in these tests could be due to dif-
ferences in image quality between the simulated Brainweb and IBSR (contains real
images) databases. Experiments with di�erential bias correction methods of Lewis
et al. and ours, are also a�ected by the presence of atrophy in one of the images
while N4ITK uses only one image for the bias estimation.

Simultaneous estimation of atrophy and bias �eld parameters using the MCMC
framework did not perform as well as the previous case. The error with respect to
the ground truth is 4.58%. As a result, the con�dence intervals were skewed with
respect to the location of the ground truth atrophy. Considering the MSE of the
estimated bias �eld and the over-estimated atrophy, chances are that a part of the
atrophy compensated for the bias �eld inhomogeneity. Although, a polynomial of
maximum degree of 4 has only 56 parameters as compared to 648 parameters for
the B-spline transformation, owing to the small size of the image (32× 32× 32), it
is possible that during simultaneous estimation they interfere with each other's esti-
mations, especially when the bias correction and atrophy estimation are performed
at the same resolution. To remedy this situation, a multi-resolution framework
could be built where the bias �eld estimation is performed only at lower resolutions.
Also, further loss in interference between bias �eld and atrophy parameter sampling
scheme could be sought by sampling atrophy more than one time in one iteration.

To conclude, the Bayesian approach works well, both in the presence of noise
as well as both noise and bias �eld inhomogeneity in the images. Simultaneous es-
timation of bias �eld inhomogeneity and atrophy performed worse than other bias
correction and non-rigid registration approaches.

Bayesian modelling and MCMC sampling techniques allowed us to develop a
framework for estimating atrophy together with bias �eld inhomogeneity. Carefully
choosing the right models for the quantities of interest is a key step [48]. Further-
more, MCMC sampling methods could be time consuming, particularly when the
number of parameters to be sampled are large. The motivation behind the use of
such an expensive framework is to be able to estimate uncertainties in volumetric
measurements. Our results have justi�ed the interest of developing a Bayesian ap-
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proach and that this framework holds promise in the future. This is a step towards
estimating uncertainties in atrophy, an area that was relatively untouched by the
makers of algorithms dedicated to atrophy measurements.



Chapter 6

General conclusion and future
perspectives

The work performed in the course of this thesis is dedicated to the analysis of lon-
gitudinal atrophy estimation from serially acquired scans of a subject.

Simulation of atrophy is a way of generating desired ground truths for evaluation
of methods. The performance of three freely available algorithms (SIENA, SIENAX
and BSI-UCD) and NRR algorithm of Noblet et al. [98] by simulating atrophy in
Brainweb images was assessed. By means of simulating whole brain atrophies in
a single Brainweb image (to examine the robustness to bias �eld inhomogeneity,
noise, geometrical distortions and interpolation artefacts) and statistical analysis of
the results obtained on 18 di�erent anatomical models of the brain, an extensive
validation was carried out. Both sets of experiments showed that, SIENA is the best
performer with respect to the error in the estimated PBVC in the noise-free case as
well as when the images are degraded with bias �eld inhomogeneity and noise in the
group of three widely used methods SIENA, BSI and SIENAX. Other experiments
that included JI showed that it performed better than SIENA. Moreover, bias �eld
inhomogeneity and noise contributed to higher errors in atrophies as compared to
interpolation artefacts and geometrical distortions.

With the help of this study, we also identi�ed that bottlenecks for SIENA are
registration of the two given exams and segmentation of the boundary voxels (that
is a�ected by the accuracy of the brain extraction). The critical steps for BSI-UCD
are the registration of the two brain scans and the manual extraction of a gray-white
matter mask to determine the boundaries of the brain on which the volume change
is calculated. For SIENAX, the bottleneck is the brain extraction stage. Since,
SIENAX estimates brain volume directly by counting the number of brain voxels,
a better brain extraction method would improve the accuracy of SIENAX (see for
instance, [14]). JI depends both on the non-rigid registration of the serial images
and the segmentation of brain for extracting the region of interest. The registration
in turn is a function of many aspects such as the model (similarity criterion, regu-
larisation function) and algorithmic settings (such as levels in the multi-resolution
framework and optimisation parameters). Pre-processing techniques play a critical
role in its correct functioning.

The key learning from this study is that errors that were observed here were
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comparable to the whole brain annual atrophy rates (0.5 − 2.8%) that have been
reported for various pathologies. One of the reasons that motivated us to develop a
framework that allowed the estimation of uncertainties in estimated atrophies.

To this end, a novel and generic framework for constructing con�dence intervals
by an atrophy estimation method was devised. The most remarkable feature of
this approach is that it was capable of correcting for errors that arose from bias in
atrophy estimations as well as of capturing the role of MRI artefacts in the mis-
estimation of atrophy. This database is �exible as any atrophy (e.g. in a region
of interest such as the hippocampus or the entire brain) and other image artefacts,
depending on the user's requirement can be included. Besides, this database can be
created for images acquired from the same scanner and reused for future estimations.
The e�ciency of this framework was demonstrated by comparing the performance of
three NRR algorithms, by Noblet et. al [98], ANTS [10] and by Vemuri et al. [157]
for building con�dence intervals for hippocampal atrophies. The bias in atrophy es-
timations revealed di�erent patterns among the three methods. For Noblet et al.'s
algorithm, the bias remained almost constant with the true atrophy value (max.
value −4.22%). On the other hand, for the ANTS method, the bias in estimations
increased with increasing ground truth atrophy (max. value +5.39%). Bias in esti-
mations was inversely proportional to true atrophies for the estimations of Vemuri
et al. (max. value −8.86%). Smith et al. [142] also con�rmed such behaviour in
SIENA and BSI. This analysis con�rms that the correction of this bias is neces-
sary to strengthen the accuracy of atrophy estimation methods. The origin of this
bias may be explained by the use of di�erent transformation models; smoothness
and other constraints that were a part of the NRR methods. Furthermore, through
this study, it was concluded that ANTS provides meaningful con�dence intervals as
compared to those of NRR methods of Noblet et. al and Vemuri et al..

In the �nal stage of the thesis, a novel atrophy estimation algorithm was de-
veloped. We built a complete Bayesian model that facilitated the estimation of
con�dence intervals for atrophies in an ROI along with the estimation of bias �eld
inhomogeneity and noise, given two serially acquired images of an individual. The
Bayesian formulation consisted of modelling the non-rigid transformation as 3D cu-
bic B-splines and the bias �eld inhomogeneities were parametrised using Legendre
polynomials. It considered Gaussian noise in the images. A combination of Gaussian
and uniform priors was used for the transformation parameters whereas a uniform
prior was selected for bias �eld parameters.

Results on images degraded with Gaussian noise have shown that the Bayesian
approach outperformed ANTS, Noblet et. al 's and Vemuri et al.'s NRR meth-
ods in most of the cases. The maximum and minimum errors with respect to the
ground truth atrophy were 0.22% and −1.66%, respectively. It was also seen that
the recovered Jacobian maps from these methods were very distinct. An implemen-
tation of a non-rigid registration method having the same transformation model
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(cubic B-splines) but optimised by a deterministic optimisation was worse than our
approach. Simultaneous estimation of bias �eld inhomogeneity and noise in the
Bayesian framework overestimated the atrophy and underestimated the bias �eld.
Accurate estimation of bias �eld is related to accuracy of the estimated atrophy
[109]. Atrophy estimation in the Bayesian framework after correction of images for
bias �eld inhomogeneity by methods of Lewis et al. [80] and N4ITK [155], produced
better results than simultaneous estimation of bias �eld inhomogeneity and atrophy
in the same framework. A possible reason for this kind of behaviour could be using
the data from a small image patch for estimating bias �eld inhomogeneity and atro-
phy iteratively at the same resolution. The major drawback of this method comes
from the time consuming nature of MCMC sampling, particularly when the number
of parameters to be sampled are large. Nevertheless, an expensive framework like
the one described in this thesis is required to be able to estimate uncertainties in vol-
umetric measurements. Another limitation of this approach is that the constructed
con�dence intervals do not always contain the ground truth in all cases due to the
resolution of the B-spline lattice or ine�ciency of the models employed.

Note that the problem of determining uncertainties in longitudinal atrophies
explicitly is an area that was until now mostly ignored by the makers of algorithms
dedicated to atrophy measurements.

Summary of contributions
• Development of a framework that enabled the comparison of existing brain

atrophy estimation approaches by creating a simulated ground truth and eval-
uation of widely used atrophy estimation approaches to assimilate the e�ect of
bias �eld inhomogeneity, noise, geometrical distortions, interpolation artefacts
and MS lesions on atrophy estimation.

• Uncertainty estimation for any brain atrophy estimation algorithm in a region
of interest in the form of con�dence intervals for atrophy; the highlight of
uncertainty estimation is the correction of bias in atrophy estimations.

• Construction of a full Bayesian model for simultaneous estimation of atrophy,
bias �eld inhomogeneity and noise as well as estimation of con�dence intervals
on the estimated atrophy.

Future perspectives
In this thesis, the atrophy simulated was simplistic and was not learnt from real
cases. It is possible to construct an intricate model of deformations that parts of
the brain undergo and use them to simulate atrophy such as in [169]. However, in
doing so, the simulations run the risk of presenting biases of their own in estimations
and should be taken into account. May be in some cases the constraint of topology
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preservation can be relaxed as it may be too restrictive on the type of deformations
that can be generated.

From our analyses, in chapters 4 and 5 it is clear that atrophy estimations are
biased and must be corrected to deliver accurate atrophy measurements. One of
the main reasons for biased estimations is transformation model error, smoothness
and other constraints such as topology preservation. The Bayesian model can be
extended to incorporate this error. For this, one or more independent sources of
ascertaining atrophy is required, for example, a simulated ground truth or manual
segmentations. This is not a simple task as the error may be dependent on image
artefacts; magnitude of volumetric change and has to be learnt from a pair of im-
ages. Moreover, the accuracy of the ground truth must be accounted for (Is the
simulated ground truth biased? How accurate are manual segmentations?).

Let G be the ground truth atrophy obtained from an independent source of
measuring atrophy (such as manual segmentations), A be the estimated longitudinal
atrophy, δ be the model error and εG and εθ are the measurement errors in the
ground truth and the estimated atrophy. A model on the following lines can then
be used and put in a Bayesian framework by �nding appropriate models for δ and
ε. [69]:

G+ εG = A+ δ + εθ (6.1)

Here, the term model error (δ) accounts for the fact a mathematical model may
not represent the complicated physical phenomenon of atrophy accurately. Mea-
surement error (ε.) is a measure of reproducibility of the same measurement under
unchanged conditions (e.g. precision of manual segmentations). For the same rea-
son, if a mathematical model is used for generating the ground truth it may not
correspond to way atrophy actually happens in the brain. Therefore, we recommend
the use of several independent sources in order to obtain the true atrophy and/or
manual segmentations (that are not based on any mathematical model but are prone
to human error). Bias correction within the Bayesian framework will ensure that
the constructed con�dence intervals contain the true value.

Furthermore, the Bayesian model can be implemented in a multi-resolution
framework and bias correction can be performed only at lower resolutions to min-
imise the interaction between the bias �eld parameters and the transformation pa-
rameters. Improvements can be sought in the way MCMC sampling was performed
in chapter 5. Because of the smoothness constraints, the deformation �eld is corre-
lated in neighbourhoods and therefore if these parameters are sampled individually,
it leads to slow mixing of the chain. To alleviate this problem, we can think of
performing MCMC in blocks instead of sampling each parameter at each iteration.
Di�erent proposal distributions for di�erent B-spline parameters can improve con-
vergence rate. In addition, statistical voxel-wise analysis can be performed using
the Jacobian distributions obtained from the Bayesian framework.
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It was also found that di�erent con�gurations of non-linear transformations,
regulariser and constraints led to di�erent types of Jacobian maps and deforma-
tion �elds. An extensive evaluation of the Bayesian model using other non-linear
transformations, regulariser and constraints such as di�eomorphism can be explored
to determine the best con�guration and learn the error distributions. It would be
bene�cial to perform this evaluation on a real as well as simulated images.

Finally, some advice..
We would like to bring an end to this thesis by reiterating that atrophy estimation
is a subject that must be handled delicately and methods of measuring volumetric
changes must be evaluated thoroughly before any conclusions are drawn from them.
One of the major issues arises from con�icting results produced by di�erent algo-
rithms, on the same images, because the sensitivity of each method to image arte-
facts and adaptation to anatomy is subject to variation. Therefore, image processing
specialists must resort to understanding the behaviour of these approaches, anal-
ysis of uncertainties, reasons for failure and determining the possibility of changes
measured in the brain being real changes. It is through e�orts in this direction that
brain atrophy will become a more reliable biomarker of disease progression.
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Appendix I

A.1 Legendre polynomials
The bias �eld B(x) at a voxel x can be expressed as a linear combination of smooth
basis functions. Legendre polynomials represent one of the many basis functions
capable of parametrizing the smooth bias-�eld inhomogeneity in MR images. For
Legendre polynomials of degree l, the sizem of the parameter vector of the Legendre
polynomial coe�cients π is given by:

m = (l + 1)
(l + 2)

2
(l + 3)

3
(A.1)

In 3-D, the bias-�eld estimate B̂ is derived as follows:

B̂(x, p) =
l∑

i=0

l−i∑

j=0

l−i−j∑

k=0

πijkLi(x)Lj(x)Lk(x) (A.2)

where Li(.) denotes a Legendre polynomial of degree i. The image coordinates x are
scaled in the range of [−1, 1].

In mathematics, Legendre functions are solutions to Legendre's di�erential equa-
tion:

d

dx

[
(1− x2)

d

dx
Li(x)

]
+ i(i+ 1)Li(x) = 0. (A.3)

These solutions for i = 0, 1, 2, . . . (with the normalization Li(1) = 1) form a
polynomial sequence of orthogonal polynomials called the Legendre polynomials.
Each Legendre polynomial Li(x) is an ith-degree polynomial and can be expressed
using Rodrigues' formula:

Li(x) =
1

2ii!
di

dxi
[
(x2 − 1)n

]
. (A.4)

First few Legendre polynomials are:
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i Pi(x)
0 1
1 x

2 1
2(3x2 − 1)

3 1
2(5x3 − 3x)

4 1
8(35x4 − 30x2 + 3)

5 1
8(63x5 − 70x3 + 15x)

6 1
16(231x6 − 315x4 + 105x2 − 5)

7 1
16(429x7 − 693x5 + 315x3 − 35x)

8 1
128(6435x8 − 12012x6 + 6930x4 − 1260x2 + 35)

9 1
128(12155x9 − 25740x7 + 18018x5 − 4620x3 + 315x)

10 1
256(46189x10 − 109395x8 + 90090x6 − 30030x4 + 3465x2 − 63)

A.1.1 Orthogonality property
The Legendre polynomials Li(x), i = 0, 1, 2, . . . are orthogonal on the interval from
[−1, 1] which is expressed by the following integral:

∫ 1

−1
Li(x)Lj(x)dx = δij

2
2i+ 1

(A.5)

where δij = 1 if i = j and 0 otherwise.
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Appendix II

B.1 Experimental set-up
This chapter describes the implementations of algorithms and parameters used in
the experiments presented in this thesis.

B.1.1 Image database
Images from three databases are processed in our tests.

Brainweb simulated image database
Brainweb1 is a simulated brain database that contains a set of realistic MRI data
volumes produced by an MRI simulator [7]. These data provide the researchers
with a ground truth to validate their algorithms. This database contains simulated
brain MRI data for normal subjects and MS patients. For both cases, full 3-D data
volumes have been simulated using three sequences (T1-weighted, T2-weighted, and
proton-density weighted) and for varying slice thicknesses, noise levels, and levels
of intensity non-uniformity. Furthermore, another simulated database containing
20 anatomical models for 20 normal subjects with fuzzy segmentations are also
provided [8]. Brainweb database is used in experiments in chapters 3 and 5.

Internet brain segmentation repository
The IBSR 2 database contains real MR image data with manually guided segmenta-
tions. Our experiments have been performed on T1-weighted MR image data from
18 anatomies with expert segmentations of 43 individual structures (1.5mm slice
thickness). IBSR database is used in experiments in chapters 3, 4 and 5.

Alzheimer's disease neuroimaging initiative (ADNI)
The ADNI3 database is a collection of images acquired using di�erent protocols and
imaging systems. One of the objectives of this database is to create a standardised
repository of scans acquired from Alzheimer's disease patients longitudinally. The
following image correction procedures are applied to raw ADNI images:

1http://mouldy.bic.mni.mcgill.ca/brainweb/
2www.cma.mgh.harvard.edu
3http://adni.loni.ucla.edu/about-data-samples/image-data/database

http://mouldy.bic.mni.mcgill.ca/brainweb/
www.cma.mgh.harvard.edu
http://adni.loni.ucla.edu/about-data-samples/image-data/database
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1. Gradwarp is a correction procedure that corrects for image distortions due to
gradient non-linearity that are dependent on the scanner.

2. B1 non-uniformity employs B1 calibration scans to correct for image inten-
sity non-uniformity for image intensity inhomogeneity due to receiver coil non
uniformity.

3. N3 intensity inhomogeneity correction is applied after Gradwarp and B1 cor-
rection for systems on which these two correction steps are performed.

Tests in chapter 5 are carried out on 4 longitudinally acquired T1-weighted MR
images of a patient to which the aforementioned corrections had been applied. Image
are acquired using a 1.5T scanner.

B.1.2 Bias �eld inhomogeneity correction
Following bias �eld correction strategies have been employed in the thesis:

N4ITK
The N4ITK is an improved version of N3 correction. Its implementation4 is given as
a single class itk::N3MRIBiasFieldCorrectionImageFilter in Insight Toolkit (ITK).
Here is a description of the parameters of the algorithm:

1. m_MaskLabel (default = 1): Mask of the area of the image over which bias
�eld in computed.

2. m_NumberOfHistogramBins (default = 200): For intensity pro�le construc-
tion from the intensities of the uncorrected input image and a triangular parzen
windowing scheme.

3. m_WeinerFilterNoise (default = 0.01): Field estimation is performed by de-
convolution using a Wiener �lter which has an additive noise term to prevent
division by zero.

4. m_BiasFieldFullWidthAtHalfMaximum (default = 0.15): The full width at
half maximum (FWHM) characterising the Gaussian modelling of the bias
�eld.

5. m_MaximumNumberOfIterations (default = 50): Maximum number of iter-
ations.

6. m_ConvergenceThreshold (default = 0.001): The standard deviation of the
ratio between subsequent �eld estimates is used.

7. m_SplineOrder (default = 3): A smooth �eld estimate is produced using B-
spline after each corrective iteration.

4http://www.kitware.com/products/html/N3ITKImplementationForMRIBiasFieldCorrection.
html

http://www.kitware.com/products/html/N3ITKImplementationForMRIBiasFieldCorrection.html
http://www.kitware.com/products/html/N3ITKImplementationForMRIBiasFieldCorrection.html
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8. m_NumberOfControlPoints (default = m_SplineOrder+1): Number of con-
trol points in the B-spline. Minimum is m_SplineOrder+1.

9. m_NumberOfFittingLevels (default = 1): Number of resolutions for �tting
the B-spline.

The parameters are set to their default values in our experiments in chapter 5.

Di�erential bias �eld correction [80]
The implementation of di�erential bias �eld correction algorithm is done in ITK.
This algorithm has two parameters:

1. Smoothing �lter neighbourhood size: set to 5.

2. BET parameters: default parameters are used. When a ROI is extracted from
the brain, brain extraction is not needed.

PABIC [148]
The implementation of PABIC is available in ITK applications. This algorithm has
the following parameters:

1. �input �le : Image to be corrected for bias �eld inhomogeneity.

2. �class-mean : Intensity means of the di�erent tissue classes WM: 110.83;
GM+CSF: 54.88

3. �class-sigma WM: 16.00; GM+CSF: 25.50

4. �input-mask �le: Same as input �le (bias �eld is estimated over the brain
area).

5. �degree int: degree of Legendre polynomial used for the approximation of the
bias �eld. These values are between 2− 5.

6. �use-log: A multiplicative bias �eld is assumed. This parameter is set to �yes�.

7. �grow double (default 1.05), �shrink double (default grow(−0.25)): optimisation
parameters. Default parameters are used.

8. �volume-max-iteration (default 20): Number of iterations for 3D volume cor-
rection. It is set to 50.

9. �init-step-size (default 1.02): Initial step size for optimisation. This parameter
is set to its default value.

10. �coe�cients: Initial coe�cients of the polynomial. No initialisation is pro-
vided.
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11. �schedule (default 2 2 2 1 1 1): Multi-resolution schedule. Default schedule is
used.

All three algorithms take a few seconds on images of size 64× 64× 64.

B.1.3 Simulation of atrophy
The algorithm of atrophy simulation is described in section 3.2.1. The Brainweb
simulated image database [7, 8] is used in evaluating brain atrophy estimations in
chapter 3, where whole brain atrophies are studied. In experiments on uncertainty
estimations (chapter 4, 5), atrophies are simulated in a region of interest (the hip-
pocampus) with an aim of reducing the time complexity. Tests on hippocampal
atrophy evolution are performed on 18 brains from IBSR database.

B.1.4 Brain atrophy estimation methods
SIENA, SIENAX and BSI-UCD
In our work, we used the SIENA and SIENAX implementations available as a part
of the FMRIB Software Library (FSL)5 version 4.1 [141].

When the experiments were being performed with BSI, the original BSI im-
plementation was not available, so we used the BSI implementation developed by
Imaging of Dementia and Ageing lab, University of California, Davis (BSI-UCD) 6.
The calculation of the boundary shift integral is done in the same way as described
in [44] but di�erent pre-processing algorithms are used. The bias correction of BSI-
UCD 7 is a template based bias correction procedure in which a template, which
is assumed to be bias-free, is compared to the subject image. The corresponding
voxel intensities are compared in the template and the subject image in order to
identify the non-uniformities. An a�ne registration method is also a part of the
package8. The a�ne registration procedure of BSI-UCD does not estimate spatial
scaling factors using the cranial surface in order to compensate for spatial scaling.
In order to avoid any confusion, we will refer to the BSI implementation that we
use as BSI-UCD in this thesis. These bias correction and registration routines are
used in all the experiments with BSI unless mentioned otherwise.

The experiments are carried out with the default parameters of SIENA, SIENAX
and BSI-UCD so that the comparison is not biased as a result of manual intervention.
For SIENAX, the �unnormalised� brain volume estimates are used for all subsequent
calculations and comparisons.

5http://www.fmrib.ox.ac.uk/fsl/fsl/list.html
6http://neuroscience.ucdavis.edu/idealab/software/index.php
7http://neuroscience.ucdavis.edu/idealab/software/bias_correction.php
8http://neuroscience.ucdavis.edu/idealab/software/linear_coreg.php

http://www.fmrib.ox.ac.uk/fsl/fsl/list.html
http://neuroscience.ucdavis.edu/idealab/software/index.php
http://neuroscience.ucdavis.edu/idealab/software/bias_correction.php
http://neuroscience.ucdavis.edu/idealab/software/linear_coreg.php
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Jacobian Integration (JI)
JI has been performed on deformations from three non-rigid registration algorithms,
namely Noblet et al. [98], Advanced Normalisation Tools (ANTS) [10] and Vemuri
et al. [157], individually based on di�erent modelling schemes:

Noblet et al.'s NRR method The implementation of Noblet et al. [98] is avail-
able as it is an in-house non-rigid registration method. They estimate 3-D topology
preserving mappings where the deformation map is modeled as a hierarchical dis-
placement �eld, decomposed on a multi-resolution B-spline basis. By restricting
the Jacobian of the transformation topology preservation in the continuous domain
is ensured. Interval analysis optimisation are employed. They use sum of squared
di�erences of image intensities (SSD) as a matching criterion with elastic membrane
regularisation 3.3. Parameters are set to the following values:

1. Regularisation: Membrane energy with a weighting factor of λ = 1.

2. Normalisation: Histogram normalisation by quantile of the Insight Toolkit (ITK) 9
is used with number of quantiles=7.

3. Bias-�eld correction: Di�erential Bias Correction (Lewis et al. [80]) (used only
for bias a�ected images).

4. Resolution: 7 (for images of size 256 × 256 × 256) and 4 (for images of size
32× 32× 32).

Same parameters are used for the algorithm of simulating atrophy.

ANTS method The method of Avants et al. [10] (available with Advanced
Normalisation Tools, ANTS 10) is also employed, as it has been ranked as one of
the best among 14 NRRs [70]. Avants et al. have developed a symmetric image
normalisation method (SyN) for maximising the cross-correlation within the space
of di�eomorphic maps and use the Euler-Lagrange equations for optimisation. The
following command is used ANTS 3 -m PR[�xedImage, movingImage, 1, 1] -o out-
putImage -i 30× 100× 100 -r Gauss[1, 0] -t SyN [0.25] �number-of-a�ne-iterations
0. where

1. PR metric is a strict implementation of correlation taking the parameters
[�xedImage,movingImage,weight,radius] where �xedImage and movingImage
images are the two images to be registered, weight for this metric and the
region radius for computing cross correlation.

2. -i 30× 100× 100 refers to the number of iterations at each resolution. A level
three pyramid with 100 iterations each at the �rst two levels and 30 iterations
at the �nest level is used.

9http://www.itk.org/
10http://www.picsl.upenn.edu/ANTS/

http://www.itk.org/
http://www.picsl.upenn.edu/ANTS/
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3. -r Gauss[1, 0] Gaussian regulariser with a standard deviation of 1 that operates
only on the similarity gradient.

4. -t SyN [0.25] means that the estimated transformation is represented in terms
of a symmetric (both forward and backward transforms are calculated) di�eo-
morphic model. 0.25 is the gradient step length.

5. A�ne registration is not needed because images are already placed in the same
co-ordinate system.

The method by Avants et al. [10] will be referred to as ANTS in the future.

Vemuri et al.'s NRR method In this deformable registration framework, a
level-sets framework achieves image intensity morphing and a simple non-linear
PDE representing motion as optical �ow is used for the corresponding coordi-
nate registration. An implementation of this algorithm is available in ITK as
itk::LevelSetMotionRegistrationFilter, which takes only one parameter of the num-
ber of iterations to be executed. We set the maximum number of iterations to
200.

ITK cubic B-spline based NRR A cubic B-spline based NRR is implemented
in ITK. SSD is chosen as the similarity metric, linear interpolation is used and the
optimiser is set to regular step gradient descent.

B.1.5 Brain Segmentation
While the implementations of SIENA and SIENAX are completely automated, the
implementation of BSI-UCD requires manual intervention, in order to obtain a gray-
white matter mask, for delineating the brain boundaries on which the boundary shift
integral is calculated. This problem is automatically alleviated in our case since the
gray-white matter mask of the baseline image is available (with Brainweb). This
mask can then be warped, using the transformation estimated for atrophy simula-
tion, for obtaining masks of the atrophied images. Moreover, the Brain Extraction
Tool (BET) [139] of the FSL library is used for performing brain extraction for BSI-
UCD, SIENA and SIENAX in all our experiments. Note that two types of masks
are required by BSI-UCD. One is the �brain mask� (Fig. B.1(b)) such as the one
obtained as an output of BET after the removal of the non-brain tissue and an-
other mask de�ning the gray-white matter (the atrophy a�ected areas of the brain)
boundaries (Fig. B.1(c)). For performing integration of the Jacobian obtained from
the algorithm of Noblet et al. [98], the ground-truth mask of the whole brain (gray-
white matter mask) is employed. Manual hippocampus segmentations are available
in the IBSR for atrophy estimation in this region of interest by Noblet et al. [98],
ANTS [10] and Vemuri et al. [157].
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(a) (b) (c)

Figure B.1: (a) A T1-weighted image (b) Brain mask (extracted by BET) and (c)
Gray-White matter mask of the brain computed from the T1-weighted image shown
in (a).

A summary of the brain extraction, registration and bias �eld correction algo-
rithms used for SIENA, SIENAX, BSI and NRR of Noblet et al. in this work is
illustrated in the Table B.1. These four algorithms are evaluated in the �rst part
(3) of the thesis. The similarity criteria and transformation models for deformable

Table B.1: Summary of the brain extraction, registration and bias �eld correction
algorithms used for SIENA, SIENAX, BSI-UCD and NRR of Noblet et al..

SIENA SIENAX BSI-UCD Noblet et al.
Brain extraction BET BET BET -
Registration type A�ne(FLIRT) A�ne(FLIRT) A�ne B-spline

based deformable
Similarity criterion Correlation ratio Correlation ratio Cross-correlation SSD
Final interpolation Tri-linear Tri-linear Tri-linear B-spline order 5
Bias-Field correction With segmentation With segmentation Template based DBC

BET: Brain Extraction Tool [139], FLIRT: [66], Segmentation (EM based): [175], DBC: Di�erential
Bias Correction[80], SSD: Sum of Squared Di�erences

registration methods tested in this work are enlisted in the Table B.2. Noblet et
al., ANTS and Vemuri et al. are used for experiments on uncertainty estimation in
chapters 4.4. We used histogram normalisation by quantile (available with ITK) for
all the methods in order to achieve intensity normalisation.

Table B.2: Deformable registration algorithms of Noblet et al., ANTS, Vemuri et
al. and ITK cubic B-spline based .

Noblet et al. ANTS Vemuri et al. ITK cubic B-spline
Similarity criterion SSD Cross-correlation based SSD SSD

Transformation model Linear B-spline Bi-directional di�eomorphism Optical �ow Cubic B-spline

Time Complexity
• Experiments on Evaluation of Brain Atrophy Estimations (SIENA,
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SIENAX, BSI-UCD and Noblet et al.) The time required for one exper-
iment of simulation of atrophy using the proposed approach is 2 hours. The
computational times (including the time required for pre-processing) when
performing one experiment with SIENA, SIENAX, BSI-UCD and JI (Noblet
et al. [98]) are approximately 1 hour, 20 minutes, 1 hour and 1.5 hours, re-
spectively. All the experiments are rendered on an Intel Dual Core 2.40 GHz
processor with images of size 256× 256× 256.

• Experiments on Uncertainty Estimation in Brain Atrophy Estima-
tions (Noblet et al., Avants et al. and Vemuri et al.) The time required
for one experiment of simulation of atrophy using the proposed approach is
5− 6 minutes. The computational times (including the time required for pre-
processing) when performing one experiment with Noblet et al., Avants et al.
and Vemuri et al. on images of size 32 × 32 × 32 are approximately 5 − 6
minutes, 1 − 2 minutes and 3 − 4 minutes, respectively. All the experiments
are rendered on an Intel Dual Core 2.40 GHz processor.



Appendix C

Appendix III

C.1 MCMC algorithms
This appendix is dedicated to widely used MCMC methods: Metropolis-Hastings
and Gibbs Sampler.

C.1.1 Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm, developed by Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller (1953) and generalised by Hastings (1970), is an MCMC
method.

With MH, only a function proportional to the target probability distribution is
required. The normalising constant need not be known, which is hard to calculate
in most Bayesian applications. Gibbs sampler is a special case of MH applicable
only in certain situations but possesses the advantage of being faster.

MH method generates a random walk using a proposal density and a criterion
for accepting proposed moves. It creates a Markov Chain where the next state
(si+1) depends on the current state of the sampler (si). A proposal density Q(s′; si)
generates a proposal for the next state (s′) depending on the current state si.

An example of the proposal density is Gaussian Q(s′; si) ∼ N (si, σ2I) which will
generate samples with a mean equal to the current density and a variance of σ2I.
The best results are obtained when the proposal density follows the shape of the
target distribution Q(s′; si) ≈ P (s′). Generally, the target distribution is unknown.

This proposal is �accepted� as the next value according to the following rules.
Let

k =
P (s′)Q(si; s′)
P (si)Q(s′; si)

(C.1)

where is P (s′)
P (si)

the likelihood ratio between the proposed sample s′, and the previous

sample si and Q(si; s′)
Q(s′; si)

is the ratio of the proposal density between the two states.
This ratio is equal to 1 for a symmetric proposal density such as the Gaussian
distribution. If the ratio k is:
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if k ≥ 1 then
si+1 = s′

else
si+1 =

{
s′ with probability k

si with probability 1− k.

C.1.2 Gibbs sampler
When sampling for multivariate distributions, it is simpler to sample from a condi-
tional distribution than to marginalise by integrating over a joint distribution. This
is useful when the joint distribution is unknown or di�cult to draw samples from
directly but the conditional distribution for each variable is known (this is the case
for Markov random �eld models). Suppose that we would like to draw samples of
s = {s1, s2, . . . , sn} from a joint distribution p (s1, s2, . . . , sn) .

Let the tth sample be denoted by s(t) = {s(i)1 , s
(i)
2 , . . . , s

(i)
n }. Beginning with

some initial value, for each variable, s(i)j , sample from the conditional distribution
p(s(i)j |s(i)1 , . . . , s

(i)
j−1, s

(i−1)
j+1 , . . . , s

(i−1)
n ). In the ith iteration, each variable s(i)j is sam-

pled once conditioned on all other variables, making use of the newly sampled values
of variables (s(i)j−1, s

(i)
j−2, . . . , s

(i−1)
n ) that have been sampled before s(t)j in the ith it-

eration.

Interested readers can �nd an in-depth treatment of MCMC algorithms in [46].



Publications
[1] Sharma, S., Noblet, V., Rousseau, F., Heitz, F., Rumbach, L., and

Armspach, J.-P. (2008). Evaluation of brain atrophy estimation algorithms
using simulated ground-truth data. In Workshop MIAMS - MICCAI 2008,
http://miams08.inria.fr. (Not cited.)

[2] Sharma, S., Noblet, V., Rousseau, F., Heitz, F., Rumbach, L., and Armspach,
J.-P. (2009a). In�uence of the presence of MS lesions on the measured atrophy.
In 25th Congress of the European Committee for the Treatment and Research in
Multiple Sclerosis (ECTRIMS). (Not cited.)

[3] Sharma, S., Noblet, V., Rousseau, F., Heitz, F., Rumbach, L., and Armspach,
J.-P. (2009b). Use of simulated atrophy for performance analysis of brain atro-
phy estimation approaches. In Medical Image Computing and Computer Assisted
Intervention, volume 5762 of Lecture Notes in Computer Science, pages 566�574.
Springer. (Not cited.)

[4] Sharma, S., Noblet, V., Rousseau, F., Heitz, F., Rumbach, L., and Armspach,
J.-P. (2010). Evaluation of brain atrophy estimation algorithms using simulated
ground-truth data. Medical Image Analysis, 14(3):373�389. (Not cited.)



Bibliography
[1] Aja-Fernandez, S., Alberola-Lopez, C., and Westin, C. F. (2008). Noise and

signal estimation in magnitude MRI and Rician distributed images: A LMMSE
approach. IEEE transactions on image processing, 17(8):1383�1398. (Cited on
pages 29, 30, 31 and 32.)

[2] Anbeek, P., Vincken, K. L., van Bochove, G. S., van Osch, M. J., and van der
Grond, J. (2005). Probabilistic segmentation of brain tissue in MR imaging.
NeuroImage, 27(4):795 � 804. (Cited on page 63.)

[3] Anderson, V. M., Fisniku, L. K., Khaleeli, Z., Summers, M. M., Penny, S. A.,
Altmann, D. R., Thompson, A. J., Ron, M. A., and Miller, D. H. (2010). Hip-
pocampal atrophy in relapsing-remitting and primary progressive MS: A compar-
ative study. Multiple Sclerosis, 16(9):1083�90. (Cited on pages 117 and 156.)

[4] Anderson, V. M., Fox, N. C., and Miller, D. H. (2006). MRI measures of brain
atrophy in multiple sclerosis. Journal of Magnetic Resonance Imaging, 23:605�
618. (Cited on pages 25, 26 and 57.)

[5] Ashburner, J. and Friston, K. (2000). Voxel-based morphometry: the methods.
NeuroImage, 11:805�821. (Cited on pages 2, 4, 36, 40, 41, 49, 55 and 57.)

[6] Ashburner, J. and Friston, K. J. (2005). Uni�ed segmentation. NeuroImage,
26(3):839 � 851. (Cited on pages 36 and 63.)

[7] Aubert-Broche, B., Collins, D. L., and Evans, A. C. (2006a). A new improved
version of the realistic digital brain phantom. NeuroImage, 32(1):138�145. (Cited
on pages 28, 166 and 169.)

[8] Aubert-Broche, B., Gri�n, M., Pike, G. B., Evans, A. C., and Collins, D. L.
(2006b). 20 new digital brain phantoms for creation of validation image data
bases. IEEE Transactions on Medical Imaging, 25(11):1410�1416. (Cited on
pages 77, 84, 166 and 169.)

[9] Avants, B., Cook, P., McMillan, C., Grossman, M., Tustison, N., Zheng, Y., and
Gee, J. (2010). Sparse unbiased analysis of anatomical variance in longitudinal
imaging. In MICCAI, volume 6361 of Lecture Notes in Computer Science, pages
324�331. Springer Berlin / Heidelberg. (Cited on page 47.)

[10] Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C. (2008). Symmetric
di�eomorphic image registration with cross-correlation: Evaluating automated
labeling of elderly and neurodegenerative brain. Medical image analysis, 12(1):26�
41. (Cited on pages 7, 9, 16, 97, 110, 111, 116, 117, 124, 127, 143, 145, 160, 170
and 171.)



Bibliography 178

[11] Babalola, K. O., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum,
W., Smith, S., Cootes, F., Jenkinson, M., and Rueckert, D. (2008). Comparison
and evaluation of segmentation techniques for subcortical structures in brain MRI.
In MICCAI, Part I, MICCAI '08, pages 409�416, Berlin, Heidelberg. Springer-
Verlag. (Cited on page 40.)

[12] Bakshi, R., Dandamudi, V. S. R., Neema, M., De, C., and Bermel, R. A. (2005).
Measurement of brain and spinal cord atrophy by magnetic resonance imaging as
a tool to monitor multiple sclerosis. Journal of Neuroimaging, 15:30S�45S. (Cited
on page 23.)

[13] Bartsch, A., Bendszus, N., De Stefano, N., Homola, G., and Smith, S. (2004).
Extending SIENA for a multi-subject statistical analysis of sample-speci�c cere-
bral edge shifts: Substantiation of early brain regeneration through abstinence
from alcoholism. In Tenth Int. Conf. on Functional Mapping of the Human Brain.
(Cited on page 45.)

[14] Battaglini, M., Smith, S. M., Brogi, S., and De Stephano, N. (2008). Enhanced
brain extraction improves the accuracy of brain atrophy estimation. NeuroImage,
40:583�589. (Cited on pages 94 and 159.)

[15] Bernel, R. A. and Bakshi, R. (2006). The measurement and clinical relevance
of brain atrophy in multiple sclerosis. Neurology, 5:158�170. (Cited on page 26.)

[16] Boesen, K., Rehm, K., Schaper, K., Stoltzner, S., Woods, R., Luders, E., and
Rottenberg, D. (2004). Quantitative comparison of four brain extraction algo-
rithms. NeuroImage, 22(3):1255 � 1261. (Cited on page 56.)

[17] Boos, H. B. M., Cahn, W., van Haren, N. E. M., Derks, E. M., Brouwer, R. M.,
Schnack, H. G., Hulsho� Pol, H. E., and Kahn, R. S. (2011). Focal and global
brain measurements in siblings of patients with schizophrenia. Schizophrenia
Bulletin. (Cited on pages 1 and 24.)

[18] Boyes, R. G., Rueckert, D., Aljabar, P., Whitwell, J., Schott, J. M., Hill, D.
L. G., and Fox, N. C. (2006). Cerebral atrophy measurements using Jacobian
integration: Comparison with the boundary shift integral. NeuroImage, 32:159�
169. (Cited on pages 2, 4, 40, 41, 49, 51, 57, 61, 65 and 92.)

[19] Bricq, S., Collet, C., and Armspach, J. P. (2008). Unifying framework for mul-
timodal brain MRI segmentation based on hidden Markov chains. Medical Image
Analysis, 12(6):639 � 652. Special issue on information processing in medical
imaging 2007. (Cited on pages 36 and 91.)

[20] Camara, O., Schnabel, J. A., Ridgway, G. R., Crum, W. R., Douiri, A., Scahill,
R. I., Hill, D. L. G., and Fox, N. C. (2008). Accuracy assessment of global and local
atrophy measurement techniques with realistic simulated longitudinal Alzheimer's
disease images. NeuroImage, 42(2):696�709. (Cited on pages 2, 4, 6, 40, 41, 49,
51, 57, 59, 62, 65, 68, 75, 89, 90, 91, 92, 96, 99, 107 and 108.)



Bibliography 179

[21] Camara, O., Schweiger, M., Scahill, R., Crum, W., Sneller, B., Schnabel, J.,
Ridgway, G., Cash, D., Hill, D., and Fox, N. (2006). Phenomenological model of
di�use global and regional atrophy using �nite-element methods. IEEE Transac-
tions on Medical Imaging, 25(11):1417�1430. (Cited on pages 2, 4, 40, 41, 49, 57,
59, 62, 68, 70, 92 and 93.)

[22] Caramanos, Z., Fonov, V. S., Francis, S. J., Narayanan, S., Collins, D. L., and
Arnold, D. L. (2008). E�ects of z-shift-associated gradient-distortions on SIENA-
generated measures of brain atrophy. In MICCAI workshop on Medical Image
Analysis on Multiple Sclerosis (MIAMS08), pages 13�24. (Cited on page 71.)

[23] Caramanos, Z., Fonov, V. S., Francis, S. J., Narayanan, S., Pike, G. B., Collins,
D. L., and Arnold, D. L. (2010). Gradient distortions in MRI: Characterizing and
correcting for their e�ects on SIENA-generated measures of brain volume change.
NeuroImage, 49(2):1601 � 1611. (Cited on page 37.)

[24] Carter, N. J. and Keating, G. M. (2010). Glatiramer acetate: A review of its
use in relapsing-remitting multiple sclerosis and in delaying the onset of clinically
de�nite multiple sclerosis. Drugs, 70:1545�1577. (Cited on page 23.)

[25] Chan, D., Fox, N. C., Jenkins, R., Scahill, R. I., Crum, W. R., and Rossor, M. N.
(2001). Rates of global and regional cerebral atrophy in AD and frontotemporal
dementia. Neurology, 57:1756�1763. (Cited on pages 1 and 24.)

[26] Charil, A., Dagher, A., Lerch, J. P., Zijdenbos, A. P., Worsley, K. J., and Evans,
A. C. (2007). Focal cortical atrophy in multiple sclerosis: Relation to lesion load
and disability. NeuroImage, 34(2):509�517. (Cited on page 25.)

[27] Chen, K., Reiman, E. M., Alexander, G. E., Bandy, D., Renaut, R., Crum,
W. R., Fox, N. C., and Rossor, M. N. (2004a). An automated algorithm for the
computation of brain volume change from sequential MRIs using an iterative prin-
cipal component analysis and its evaluation for the assessment of whole-brain at-
rophy rates in patients with probable Alzheimer's disease. NeuroImage, 22(1):134
� 143. (Cited on page 48.)

[28] Chen, Z., Li, S. S., Yang, J., Letizia, D., and Shen, J. (2004b). Measurement
and automatic correction of high-order B0 inhomogeneity in the rat brain at 11.7
tesla. Magnetic Resonance Imaging, 22(6):835 � 842. (Cited on page 33.)

[29] Christensen, G. E., Rabbitt, R. D., and Miller, M. I. (1996). Deformable
templates using large deformation kinematics. IEEE Transactions on Image Pro-
cessing, 5:1435�1447. (Cited on page 99.)

[30] Cocosco, C. A., Kollokian, V., Kwan, R. K.-S., and Evans, A. C. (1997).
Brainweb: Online interface to a 3D MRI simulated brain database. NeuroIm-
age, 5(4):S425. (Cited on page 63.)



Bibliography 180

[31] Collins, D. L., Montagnat, J., Zijdenbos, A. P., Evans, A. C., and Arnold, D. L.
(2001). Automated estimation of brain volume in multiple sclerosis with BICCR.
In Lecture Notes In Computer Science, volume 2082, pages 141�147. (Cited on
pages 2, 40 and 52.)

[32] Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., and Barillot, C.
(2008). An optimized blockwise nonlocal means denoising �lter for 3D magnetic
resonance images. Medical Imaging, IEEE Transactions on, 27(4):425�441. (Cited
on pages 32 and 33.)

[33] Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analy-
sis. I. segmentation and surface reconstruction. Neuroimage, 9(2):179�194. (Cited
on pages 47 and 55.)

[34] de Bresser, J., Portegies, M. P., Leemans, A., Biessels, G. J., Kappelle, L. J.,
and Viergever, M. A. (2011). A comparison of MR based segmentation methods
for measuring brain atrophy progression. NeuroImage, 54(2):760 � 768. (Cited on
pages 4, 59, 63 and 65.)

[35] De Stephano, N., Battaglini, M., and Smith, S. M. (2007). Measuring brain
atrophy in multiple sclerosis. Journal of Neuroimaging, 17:10S�15S. (Cited on
page 26.)

[36] Dietemann, J. L., Beigelman, C., Rumbach, L., Vouge, M., Tajahmady, T.,
Faubert, C., Jeung, M. Y., and Wackenheim, A. (1988). Multiple sclerosis and
corpus callosum atrophy: Relationship of MRI �ndings to clinical data. Neurora-
diology, 30:478�480. 10.1007/BF00339686. (Cited on page 25.)

[37] Dugas-Phocion, G., Ballester, M. A. G., Malandain, G., Lebrun, C., and Ay-
ache, N. (2004). Improved EM-based tissue segmentation and partial volume e�ect
quanti�cation in multi-sequence brain MRI. In MICCAI, pages 26�33. (Cited on
page 56.)

[38] Erasmus, L. J., Hurter, D., Naude, M., Kritzinger, H. G., and Acho, S. (2004).
A short overview of MRI artefacts. South African Journal of Radiology, 8(2):13�
17. (Cited on page 33.)

[39] Fennema-Notestine, C., Ozyurt, I. B., Clark, C. P., Morris, S., Bischo�-Grethe,
A., Bondi, M. W., Jernigan, T. L., Fischl, B., Segonne, F., Shattuck, D. W.,
Leahy, R. M., Rex, D. E., Toga, A. W., Zou, K. H., and Brown, G. G. (2006).
Quantitative evaluation of automated skull-stripping methods applied to contem-
porary and legacy images: E�ects of diagnosis, bias correction, and slice location.
Human Brain Mapping, 27(2):99�113. (Cited on page 56.)

[40] Fillipi, M. and Agosta, F. (2010). Imaging biomarkers in multiple sclerosis.
Journal of Magnetic Resonance Imaging, 31:770�778. (Cited on page 26.)



Bibliography 181

[41] Fisher, E., Lee, J.-C., Nakamura, K., and Rudick, R. A. (2008). Gray mat-
ter atrophy in multiple sclerosis: A longitudinal study. Annals of Neurology,
64(3):255�265. (Cited on page 25.)

[42] Flilippi, M., Bozzali, M., Rovaris, M., Gonen, O., Kesavadas, C., Ghezzi, A.,
Martinelli, V., Grossmann, R. I., Scotti, G., Comi, G., and Falini, A. (2003).
Evidence for widespread axonal damage at the earliest clinical stage of multiple
sclerosis. Brain, 126:433�437. (Cited on page 26.)

[43] Fox, N. C., Ridgway, G. R., and Schott, J. M. (2011). Algorithms, atrophy and
Alzheimer's disease: Cautionary tales for clinical trials. NeuroImage, 57(1):15 �
18. (Cited on page 111.)

[44] Freeborough, P. A. and Fox, N. C. (1997). The boundary shift integral: An
accurate and robust measure of cerebral volume changes from registered repeat
MRI. IEEE Transactions on Medical Imaging, 16:623�629. (Cited on pages 2, 3,
4, 40, 41, 45, 54, 57, 58, 60 and 169.)

[45] Gaser, C., Nenadic, I., Buchsbaum, B. R., Hazlett, E. A., and Buchsbaum,
M. S. (2001). Deformation-based morphometry and its relation to conventional
volumetry of brain lateral ventricles in MRI. NeuroImage, 13(6):1140 � 1145.
(Cited on pages 4, 49, 50 and 57.)

[46] Gilks, W. R., Richardson, S., and Speigelhalter, D. J. (1995). Markov Chain
Monte Carlo in Practice: Interdisciplinary Statistics. Chapman and Hall/CRC,
1 edition. (Cited on pages 127 and 175.)

[47] Gilks, W. R., Roberts, G. O., and Sahu, S. K. (1996). Strategies for improving
MCMC. MCMC in practice, pages 89�114. (Cited on page 137.)

[48] Gilks, W. R., Roberts, G. O., and Sahu, S. K. (1998). Adaptive Markov chain
Monte Carlo using regeneration. Journal of the American Statistical Association,
93:1045�1054. (Cited on pages 105, 137 and 157.)

[49] Gudbjartsson, H. and Patz, S. (1995). The Rician distribution of noisy MRI
data. Magnetic Resonance in Medicine, 34(6):910�914. (Cited on pages 29, 70,
113 and 131.)

[50] Gunter, J. L., Shiung, M. M., Manduca, A., and Jack, C. R. (2003). Method-
ological considerations for measuring rates of brain atrophy. Journal of Magnetic
Resonance Imaging, 18:16�24. (Cited on pages 4, 59, 60 and 65.)

[51] Guttmann, C. R., Benson, R.and War�eld, S. K., Wei, X., Anderson, M.,
Hall, C., Abu-Hasaballah, K., Mugler, J., and Wolfson, L. (2000). White matter
abnormalities in mobility-impaired older persons. Neurology, 54(6):1277�1283.
(Cited on page 40.)

[52] Haacke, E. (1999). Magnetic resonance imaging: physical principles and se-
quence design. J. Wiley & Sons. (Cited on page 27.)



Bibliography 182

[53] Hadjidemetriou, S., Studholme, C., Mueller, S., Weiner, M., and Schu�, N.
(2009). Restoration of MRI data for intensity non-uniformities using local high
order intensity statistics. pages 36�48. (Cited on page 35.)

[54] Hirata, Y., Matsuda, H., Nemoto, K., Ohnishi, T., Hirao, K., Yamashita, F.,
Asada, T., Iwabuchi, S., and Samejima, H. (2005). Voxel-based morphometry
to discriminate early Alzheimer's disease from controls. Neuroscience Letters,
382(3):269 � 274. (Cited on page 50.)

[55] Holden, M. (2001). Registration of 3D serial MR Brain Images. PhD thesis,
University of London. (Cited on page 71.)

[56] Holden, M. (2008). A review of geometric transformations for nonrigid body
registration. IEEE Trans. Med. Imaging, 27(1):111�128. (Cited on pages 39
and 40.)

[57] Hors�eld, M. A., Rovaris, M., Rocca, M. A., Rossi, P., Benedict, R. H., Filippi,
M., and Bakshi, R. (2003). Whole-brain atrophy in multiple sclerosis measured by
two segmentation processes from various MRI sequences. Journal of Neurological
Sciences, 216(1):169�177. (Cited on pages 2, 40 and 51.)

[58] Hua, X., Gutman, B., Boyle, C. P., Rajagopalan, P., Leow, A. D., Yanovsky,
I., Kumar, A. R., Toga, A. W., Jack Jr., C. R., Schu�, N., Alexander, G. E.,
Chen, K., Reiman, E. M., Weiner, M. W., and Thompson, P. M. (2011). Accu-
rate measurement of brain changes in longitudinal MRI scans using tensor-based
morphometry. NeuroImage, 57(1):5 � 14. (Cited on pages 7, 110, 111 and 124.)

[59] Hua, X., Lee, S., Yanovsky, I., Leow, A. D., Chou, Y.-Y., Ho, A. J., Gutman,
B., Toga, A. W., Jack Jr, C. R., and Bernstein, M. A. (2009). Optimizing power
to track brain degeneration in Alzheimer's disease and mild cognitive impairment
with tensor-based morphometry: An ADNI study of 515 subjects. NeuroImage,
48(4):668�681. (Cited on pages 2, 40, 41, 49 and 57.)

[60] Hub, M., Kessler, M. L., and Karger, C. P. (2009). A stochastic approach to
estimate the uncertainty involved in B-spline image registration. IEEE Trans Med
Imaging, 28(11):1708�16. (Cited on pages 101, 107 and 108.)

[61] Ishak, N., Gangeh, M., and Logeswaran, R. (2008). Comparison of denoising
techniques applied on low-�eld MR brain images. In Computer Graphics, Imaging
and Visualisation, 2008. CGIV '08. Fifth International Conference on, pages 345
�349. (Cited on page 33.)

[62] Ishii, S., Shishido, F., Miyajima, M., Sakuma, K., Shigihara, T., Tameta, T.,
Miyazaki, M., and Kuroda, H. (2009). Comparison of Alzheimer's disease with
vascular dementia and non-dementia using speci�c voxel-based z score maps.
Annals of Nuclear Medicine, 23:25�31. 10.1007/s12149-008-0210-8. (Cited on
page 50.)



Bibliography 183

[63] Jalobeanu, A. and Fitzenz, D. (2008). Inferring deformation �elds from mul-
tidate satellite images. In IEEE International Geoscience and Remote Sensing
Symposium, Boston MA, USA. (Cited on pages 102 and 108.)

[64] Janke, A., Zhao, H., Cowin, G. J., Galloway, G. J., and Doddrell, D. M. (2004).
Use of spherical harmonic deconvolution methods to compensate for nonlinear
gradient e�ects on MRI images. Magnetic Resonance in Medicine, 52(1):115�122.
(Cited on page 37.)

[65] Jasperse, B., Vrenken, H., Sanz-Arigita, E., de Groot, V., Smith, S. M., Pol-
man, C. H., and Barkhof, F. (2007). Regional brain atrophy development is re-
lated to speci�c aspects of clinical dysfunction in multiple sclerosis. Neuroimage,
38(3):529�37. (Cited on page 26.)

[66] Jenkinson, M. and M., S. S. (2001). A global optimisation method for robust
a�ne registration of brain images. Medical Image Analysis, 36:143�156. (Cited
on page 172.)

[67] Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R.,
Kennedy, D., Schmitt, F., Brown, G., MacFall, J., Fischl, B., and Dale, A. (2006).
Reliability in multi-site structural mri studies: E�ects of gradient non-linearity
correction on phantom and human data. NeuroImage, 30(2):436 � 443. (Cited on
page 37.)

[68] Karacali, B. and Davatzikos, C. (2006). Simulation of tissue atrophy using a
topology preserving transformation model. IEEE Transactions on Medical Imag-
ing, 25(5):649�652. (Cited on pages 59, 62, 64, 67, 68, 69, 70 and 74.)

[69] Kennedy, M. C. and O'Hagan, A. (2001). Bayesian calibration of computer
models. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 63(3):425�464. (Cited on page 162.)

[70] Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., and et al. (2009).
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI
registration. NeuroImage, 46(3):786�802. (Cited on page 170.)

[71] Kwan, R. K.-S., Evans, A. C., and Pike, G. B. (1999). MRI simulation-based
evaluation of image-processing and classi�cation methods. IEEE Transactions on
Medical Imaging, 18(11):1085�1097. (Cited on page 77.)

[72] Kybic, J. (2008). Fast no ground truth image registration accuracy evaluation:
Comparison of bootstrap and hessian approaches. In ISBI, pages 792�795. (Cited
on page 100.)

[73] Kybic, J. (2010). Bootstrap resampling for image registration uncertainty esti-
mation without ground truth. IEEE Transactions on Image Processing, 19(1):64�
73. (Cited on pages 100, 101 and 107.)



Bibliography 184

[74] Lanz, M., H.-H. H. H. (2007). Brain atrophy and cognitive impairment in
multiple sclerosis: a review. Journal of Neurology, 254:II43�II48(6). (Cited on
page 24.)

[75] Lee, H.-P., Lin, M. C., and Foskey, M. (2008). Physically-based validation of
deformable medical image registration. In MICCAI, Part II, MICCAI '08, pages
830�838, Berlin, Heidelberg. Springer-Verlag. (Cited on pages 99 and 107.)

[76] Lee, J.-M., Yoon, U., Nam, S. H., Kim, J.-H., Kim, I.-Y., and Kim, S. I. (2003).
Evaluation of automated and semi-automated skull-stripping algorithms using
similarity index and segmentation error. Computers in Biology and Medicine,
33(6):495 � 507. (Cited on page 56.)

[77] Lee, S., Wolberg, G., and Shin, S. Y. (1997). Scattered data interpolation
with multilevel B-splines. IEEE Transactions on Visualization and Computer
Graphics, 3:228�244. (Cited on page 128.)

[78] Leow, A. D., Yanovsky, I., Chiang, M.-C., Lee, A. D., Klunder, A. D., Lu, A.,
Becker, J. T., Davis, S. W., Toga, A. W., and Thompson, P. M. (2007). Statistical
properties of Jacobian maps and the realization of unbiased large-deformation
nonlinear image registration. IEEE Transactions on Medical Imaging, 26(6):822�
832. (Cited on pages 67, 108, 109 and 110.)

[79] Leung, K. K., Clarkson, M. J., Bartlett, J. W., Clegg, S., Jack Jr., C. R.,
Weiner, M. W., Fox, N. C., and Ourselin, S. (2010). Robust atrophy rate measure-
ment in Alzheimer's disease using multi-site serial MRI: Tissue-speci�c intensity
normalization and parameter selection. NeuroImage, 50(2):516 � 523. (Cited on
page 46.)

[80] Lewis, E. B. and Fox, N. C. (2004). Correction of di�erential intensity inho-
mogeneity in longitudinal MR images. NeuroImage, 23(1):75 � 83. (Cited on
pages 16, 35, 46, 127, 138, 154, 161, 168, 170 and 172.)

[81] Li, C., Huang, R., Ding, Z., Gatenby, C., Metaxas, D., and Gore, J. (2008). A
variational level set approach to segmentation and bias correction of images with
intensity inhomogeneity. In MICCAI, Part II, MICCAI '08, pages 1083�1091,
Berlin, Heidelberg. Springer-Verlag. (Cited on page 36.)

[82] Liang, Z.-P. and Lauterbur, P. C. (1999). Principles of Magnetic Resonance
Imaging: A Signal Processing Perspective. Wiley-IEEE Press. (Cited on page 33.)

[83] Lin, M., Chan, S., Chen, J.-H., Chang, D., Nie, K., Chen, S.-T., Lin, C.-J.,
Shih, T.-C., Nalcioglu, O., and Su, M.-Y. (2011). A new bias �eld correction
method combining N3 and FCM for improved segmentation of breast density on
MRI. Med Phys, 38(1):5�14. (Cited on page 35.)

[84] Lin, X., Tench, C. R., Evangelou, N., Jaspan, T., and Constantinescu, C. S.
(2004). Measurement of spinal cord atrophy in multiple sclerosis. Journal of



Bibliography 185

neuroimaging o�cial journal of the American Society of Neuroimaging, 14(3
Suppl):20S�26S. (Cited on page 23.)

[85] Lublin, F. D. and Reingold, S. C. (1996). De�ning the clinical course of multiple
sclerosis: Results of an international survey. national multiple sclerosis society
(USA) advisory committee on clinical trials of new agents in multiple sclerosis.
Neurology, 46(4):907�911. (Cited on page 21.)

[86] Maintz, J. and Viergever, M. (1998). A survey of medical image registration.
Medical Image Analysis, 2(1):1�36. (Cited on page 40.)

[87] Mangin, J.-F., Coulon, O., and Frouin, V. (1998). Robust brain segmentation
using histogram scale-space analysis and mathematical morphology. In Wells,
W. M., Colchester, A., and Delp, S., editors, Proc. 1st MICCAI, LNCS-1496,
pages 1230�1241, MIT, Boston. Springer Verlag. (Cited on pages 55 and 56.)

[88] Manjón, J. V., Lull, J. J., Carbonell-Caballero, J., García-Martí, G., Martí-
Bonmatí, L., and Robles, M. (2007). A nonparametric MRI inhomogeneity cor-
rection method. Medical Image Analysis, 11(4):336 � 345. (Cited on page 35.)

[89] Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate analysis.
Academic Press. (Cited on pages 4 and 50.)

[90] McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H.-P.,
Lublin, F. D., McFarland, H. F., Paty, D. W., Polman, C. H., Reingold, S. C.,
S.-W., M., Sibley, W., Thompson, A., Van Den N., S., Weinshenker, B. Y., and
Wolinsky, J. S. (2001). Recommended diagnostic criteria for multiple sclerosis:
Guidelines from the international panel on the diagnosis of multiple sclerosis.
Annals of Neurology, 50(1):121�127. (Cited on page 22.)

[91] Meyer, C., Bland, P., and Pipe, J. (1995). Retrospective correction of intensity
inhomogeneities in MRI. Medical Imaging, IEEE Transactions on, 14(1):36 �41.
(Cited on page 34.)

[92] Miller, D. H., Barkhof, F., Frank, J. A., Parker, G. J. M., and Thompson,
A. J. (2002). Measurement of atrophy in multiple sclerosis: pathological basis,
methodolgical aspects and clinical relevance. Brain, 125:1676�1695. (Cited on
pages 17 and 26.)

[93] Minagar, A., Toledo, E. G., Alexander, J. S., and Kelley, R. E. (2004). Patho-
genesis of brain and spinal cord atrophy in multiple sclerosis. Journal of Neu-
roimaging, 14:5S�10S. (Cited on pages 23 and 25.)

[94] Modat, M., Ridgway, G. R., Hawkes, D. J., Fox, N. C., and Ourselin, S. (2010).
Nonrigid registration with di�erential bias correction using normalised mutual
information. In Biomedical Imaging: From Nano to Macro, 2010 IEEE Interna-
tional Symposium on, pages 356 �359. (Cited on page 36.)



Bibliography 186

[95] Musse, O., Heitz, F., and Armspach, J.-P. (2003). Fast deformable matching
of 3D images over multiscale nested subspaces. Application to atlas-based MRI
segmentation. Pattern Recognition, 36(8):1881�1899. (Cited on page 67.)

[96] Nakamura, K., Fox, R., and Fisher, E. (2011). CLADA: Cortical longitudinal
atrophy detection algorithm. NeuroImage, 54(1):278 � 289. (Cited on page 46.)

[97] Narayana, P. A., Brey, W. W., Kulkarni, M. V., and Sievenpiper, C. L. (1988).
Compensation for surface coil sensitivity variation in magnetic resonance imaging.
Magnetic Resonance Imaging, 6(3):271 � 274. (Cited on page 33.)

[98] Noblet, V., Heinrich, C., Heitz, F., and Armspach, J.-P. (2005). 3D deformable
image registration: A topology preservation scheme based on hierarchical defor-
mation models and interval analysis optimization. IEEE Transactions on Image
Processing, 14(5):553�566. (Cited on pages 5, 7, 9, 16, 40, 58, 66, 69, 70, 77, 85,
92, 93, 96, 97, 111, 116, 117, 124, 127, 133, 143, 145, 159, 160, 170, 171 and 173.)

[99] Noblet, V., Heinrich, C., Heitz, F., and Armspach, J.-P. (2006). Retrospective
evaluation of a topology preserving non-rigid registration method. Medical Image
Analysis, 10(3):366�384. (Cited on page 69.)

[100] Noblet, V., Heinrich, C., Heitz, F., and Armspach, J.-P. (2008). Accurate
inversion of 3D transformation �elds. IEEE Transactions on Image Processing,
17(10):1963�1968. (Cited on page 70.)

[101] Otsu, N. (1979). A threshold selection method from gray-level histograms.
IEEE Transactions on Systems, Man and Cybernetics, 9(1):62�66. (Cited on
page 134.)

[102] Owens, T. (2003). The enigma of multiple sclerosis: In�ammation and neu-
rodegeneration cause heterogeneous dysfunction and damage. Current opinion in
neurology, 16(3):259�265. (Cited on page 26.)

[103] Pagani, E., Hors�eld, M. A., Rocca, M. A., and Filippi, M. (2007). Assessing
atrophy of the major white matter �ber bundles of the brain from di�usion tensor
MRI data. Magnetic Resonance in Medicine, 58(3):527�534. (Cited on pages 49
and 50.)

[104] Pagani, E., Rocca, M. A., Gallo, A., Rovaris, M., Martinelli, V., Comi, G.,
and Filippi, M. (2005). Regional brain atrophy evolves di�erently in patients
with multiple sclerosis according to clinical phenotype. AJNR Am J Neuroradiol,
26(2):341�346. (Cited on pages 25 and 26.)

[105] Paling, S. M., Williams, E. D., Barber, R., Burton, E. J., Crum, W. C., Fox,
N., and O'Brien, J. T. (2003). The application of serial MRI analysis techniques
to the study of cerebral atrophy in late-onset dementia. Medical Image Analysis,
8:69�79. (Cited on pages 4, 60 and 65.)



Bibliography 187

[106] Pelletier, D., Garrison, K., and Henry, R. (2004). Measurement of whole-brain
atrophy in multiple sclerosis. Journal of NeuroImaging, 14(3):11S�19S. (Cited on
pages 2 and 39.)

[107] Pershadsingh, H., Heneka, M., Saini, R., Amin, N., Broeske, D., and Feinstein,
D. (2004). E�ect of pioglitazone treatment in a patient with secondary multiple
sclerosis. Journal of Neuroin�ammation, 1(1):3. (Cited on page 21.)

[108] Pham, D. L., Xu, C., and Prince, J. L. (2000). A survey of current methods
in medical image segmentation. In Annual Review of Biomedical Engineering,
volume 2, pages 315�338. (Cited on page 40.)

[109] Pieperho�, P., Sudmeyer, M., Homke, L., Zilles, K., Schnitzler, A., and
Amunts, K. (2008). Detection of structural changes of the human brain in longi-
tudinally acquired MR images by deformation �eld morphometry: Methodolog-
ical analysis, validation and application. NeuroImage, 43(2):269�287. (Cited on
pages 4, 6, 11, 49, 51, 57, 59, 62, 63, 64, 65, 68, 96, 108 and 161.)

[110] Plosker, G. L. (2011). Interferon-1b: A review of its use in multiple sclerosis.
CNS Drugs, 25:67�88(22). (Cited on page 23.)

[111] Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi,
M., Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F. D., Mon-
talban, X., O'Connor, P., Sandberg-Wollheim, M., Thompson, A. J., Waubant,
E., Weinshenker, B., and Wolinsky, J. S. (2011). Diagnostic criteria for multiple
sclerosis: 2010 revisions to the mcdonald criteria. Annals of Neurology, 69(2):292�
302. (Cited on page 22.)

[112] Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical
recipes in C. The art of scienti�c computing. Cambridge University Press, second
edition. (Cited on page 70.)

[113] Raine, C. S., McFarland, H., and Hohlfeld, R. (2008). Multiple Sclerosis: A
Comprehensive Text. Saunders Ltd. (Cited on pages 20 and 23.)

[114] Rehm, K., Schaper, K., Anderson, J., Woods, R., Stoltzner, S., and Rotten-
berg, D. (2004). Putting our heads together: A consensus approach to brain/non-
brain segmentation in T1-weighted MR volumes. NeuroImage, 22(3):1262 � 1270.
(Cited on page 55.)

[115] Reimer, P., Parizel, P. M., Meaney, J. F. M., and Stichnoth, F. A. (2010).
Clinical MR Imaging: A Practical Approach: Third Edition. Springer. (Cited on
page 20.)

[116] Rex, D. E., Shattuck, D. W., Woods, R. P., Narr, K. L., Luders, E., Rehm,
K., Stolzner, S. E., Rottenberg, D. A., and Toga, A. W. (2004). A meta-algorithm
for brain extraction in MRI. Neuroimage, 23(2):625�637. (Cited on page 55.)



Bibliography 188

[117] Richard, F. J. and Samson, A. M. (2007). Metropolis-hasting techniques
for �nite-element-based registration. Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on, 0:1�6. (Cited on pages 105 and 107.)

[118] Risholm, P., Pieper, S., Samset, E., and Wells III, W. M. (2010a). Summariz-
ing and visualizing registration uncertainty in non-rigid registration. 6362:554�
561. (Cited on pages 105, 106, 107 and 108.)

[119] Risholm, P., Samset, E., and Wells III, W. (2010b). Bayesian estimation of
deformation and elastic parameters in non-rigid registration. Biomedical Image
Registration, 6204:104�115. (Cited on pages 104, 105 and 156.)

[120] Robinson, D. and Milanfar, P. (2004). Fundamental performance limits in
image registration. Image Processing, IEEE Transactions on, 13(9):1185 �1199.
(Cited on page 99.)

[121] Rohl�ng, T. (2006). Transformation model and constraints cause bias in statis-
tics on deformation �elds. In MICCAI, Part I, volume 4190 of Lecture Notes in
Computer Science, pages 207�214, Berlin/Heidelberg. Springer-Verlag. (Cited on
pages 96, 108 and 156.)

[122] Rorden, C., Bonilha, L., and Nicholas, T. E. E. (2007). Rank-order versus
mean based statistics for neuroimaging. Neuroimage, 35(4):1531�1537. (Cited on
pages 4 and 50.)

[123] Rosati, G. (2001). The prevalence of multiple sclerosis in the world: An
update. Neurological Science, 2:117�139. (Cited on page 17.)

[124] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., and
Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Appli-
cation to breast mr images. IEEE Transactions on Medical Imaging, 18(8):712�
721. (Cited on pages 99, 110, 128, 131 and 156.)

[125] Sailer, M., Fischl, B., Salat, D., Tempelmann, C., Schönfeld, M. A., Busa, E.,
Bodammer, N., Heinze, H. J., and Dale, A. (2003). Focal thinning of the cerebral
cortex in multiple sclerosis. Brain, 126(8):1734�1744. (Cited on page 25.)

[126] Sastre-Garriga, J., Ingle, G. T., Chard, D. T., Ramió-Torrentà, L., Miller,
D. H., and Thompson, A. J. (2004). Grey and white matter atrophy in early
clinical stages of primary progressive multiple sclerosis. NeuroImage, 22(1):353�
359. (Cited on page 25.)

[127] Schapiro, R. T. (2010). Managing the Symptoms of Multiple Sclerosis: Fifth
Edition. ReadHowYouWant. (Cited on page 21.)

[128] Schnabel, J. A., Tanner, C., Castellano-Smith, C. A., Degenhard, A., Leach,
M. O., Hose, D. R., Hill, D. L. G., and Hawkes, D. J. (2003). Validation of non-
rigid image registration sing �nite element methods: Application to breast MR
images. IEEE Trans. Med. Imaging, 22(2):238�247. (Cited on pages 99 and 107.)



Bibliography 189

[129] Schweiger, M., Camara-Rey, O., Crum, W., Lewis, E., Schnabel, J., Arridge,
S., Hill, D., and Fox, N. (2005). An inverse problem approach to the estimation of
volume change. In MICCAI, volume 3750 of Lecture Notes in Computer Science,
pages 616�623. Springer Berlin / Heidelberg. (Cited on page 48.)

[130] Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K.,
and Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI.
NeuroImage, 22(3):1060 � 1075. (Cited on pages 55 and 56.)

[131] Sharma, J., San�lipo, M. P., Benedict, R. H., Weinstock-Guttman, B., Mun-
schauer, F. E. r., and Bakshi, R. (2004a). Whole-brain atrophy in multiple scle-
rosis measured by automated versus semiautomated MR imaging segmentation.
American Journal of Neuroradiology, 25(6):985�996. (Cited on page 2.)

[132] Sharma, J., San�lipo, M. P., Benedict, R. H. B., Weinstock-Guttman, B.,
Munschauer, F. E., I., and Bakshi, R. (2004b). Whole-brain atrophy in multiple
sclerosis measured by automated versus semiautomated MR imaging segmenta-
tion. AJNR Am J Neuroradiol, 25(6):985�996. (Cited on pages 2, 40, 41 and 51.)

[133] Sharma, S., Noblet, V., Rousseau, F., Heitz, F., Rumbach, L., and Armspach,
J.-P. (2010). Evaluation of brain atrophy estimation algorithms using simulated
ground-truth data. Medical Image Analysis, 14(3):373�389. (Cited on page 108.)

[134] Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A.,
and Leahy, R. M. (2001). Magnetic resonance image tissue classi�cation using a
partial volume model. NeuroImage, 13(5):856 � 876. (Cited on pages 53 and 55.)

[135] Sicotte, N. L., Kern, K. C., Giesser, B. S., Arshanapalli, A., Schultz, A.,
Montag, M., Wang, H., and Bookheimer, S. Y. (2008). Regional hippocampal
atrophy in multiple sclerosis. Brain, 131(Pt 4):1134�41. (Cited on page 25.)

[136] Simon, J. H. (2006). Brain atrophy in multiple sclerosis: What we know
and would like to know. Multiple sclerosis (Houndmills, Basingstoke, England),
12(6):679�687. (Cited on pages 1, 24 and 26.)

[137] Sled, J., Zijdenbos, A., and Evans, A. (1998). A nonparametric method for
automatic correction of intensity nonuniformity in MRI data. Medical Imaging,
IEEE Transactions on, 17(1):87 �97. (Cited on pages 34 and 91.)

[138] Sluimer, J. D., Vrenken, H., Blankenstein, M. A., Fox, N. C., Scheltens,
P. Barkhof, F., and van der Flier, W. M. (2008). Whole-brain atrophy rate
in Alzheimer's disease: Identifying fast progressors. Neurology, 70(19):1836�1841.
(Cited on pages 1, 24 and 25.)

[139] Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain
Mapping, 17(3):143�155. (Cited on pages 3, 42, 53, 55, 56, 171 and 172.)



Bibliography 190

[140] Smith, S. M., De Stefano, N., Jenkinson, M., and Matthews, P. M. (2001).
Normalized accurate measurement of longitudinal brain change. Journal of Com-
puter Assisted Tomography, 25(3):466�475. (Cited on pages 2, 4, 40, 41 and 42.)

[141] Smith, S. M., Jenkinson, M., Woolrich, M. W.and Beckman, C. F., Behrens,
T. E. J., Johansen-Berg, H., Bannister, P. R., and et. al (2004). Advances in
functional and structural MR image analysis and implementation as FSL. Neu-
roImage, 23(S1):208�219. (Cited on pages 3, 4, 43, 44, 49, 57, 58, 63 and 169.)

[142] Smith, S. M., Rao, A., De Stefano, N., Jenkinson, M., Schott, J. M., Matthews,
P. M., and Fox, N. C. (2007). Longitudinal and cross-sectional analysis of atrophy
in Alzheimer's disease: Cross validation of BSI, SIENA and SIENAX. NeuroIm-
age, 36:1200�1206. (Cited on pages 4, 6, 49, 59, 61, 65, 92, 96, 108 and 160.)

[143] Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico,
A., and De Stefano, N. (2002). Accurate, robust and automated longitudinal
and cross-sectional brain change analysis. NeuroImage, 17(1):479�489. (Cited on
pages 2, 3, 4, 40, 41, 42, 49 and 58.)

[144] Souplet, J.-C. (2009). Evaluation de l'atrophie et de la charge lésionnelle
sur des séquences IRM de patients atteints de sclérose en plaques. PhD thesis,
University of Nice-Sophia Antipolis. (Cited on page 56.)

[145] Souplet, J.-C., Lebrun, C., Ayache, N., and Malandain, G. (2008). A new
evaluation of the brain parenchymal fraction: Application in multiple sclerosis
longitudinal studies. In Proceedings of the IEEE International Symposium on
Biomedical Imaging: From Nano to Macro (ISBI'08), pages 65�68, Paris, France.
IEEE. (Cited on page 51.)

[146] Studholme, C., Cardenas, V., Song, E., Ezekiel, F., Maudsley, A., and Weiner,
M. (2004). Accurate template-based correction of brain MRI intensity distortion
with application to dementia and aging. Medical Imaging, IEEE Transactions on,
23(1):99 �110. (Cited on page 35.)

[147] Studholme, C., Cardenas, V., and Weiner, M. (2001). Multiscale image and
multiscale deformation of brain anatomy for building average brain atlases. SPIE
Medical Imaging, 2(7):557�568. (Cited on pages 131 and 156.)

[148] Styner, M., Brechbuhler, C., Szekely, G., and Gerig, G. (2000). Parametric
estimate of intensity inhomogeneities applied to MRI. IEEE Transactions on
Medical Imaging, 19:153�165. (Cited on pages 34, 46, 131, 138, 155 and 168.)

[149] Taylor, J. R. (1996). An Introduction to Error Analysis: The Study of Uncer-
tainties in Physical Measurements. University Science Books. (Cited on page 97.)

[150] Thirion, J. P. (1998). Image matching as a di�usion process: an analogy with
maxwell's demons. Medical Image Analysis, 2(3):243�260. (Cited on page 99.)



Bibliography 191

[151] Thompson, P. M., Hayashi, K. M., De Zubicaray, G., Janke, A. L., Rose, S. E.,
Semple, J., Herman, D., Hong, M. S., Dittmer, S. S., Doddrell, D. M., and Toga,
A. W. (2003). Dynamics of gray matter loss in Alzheimer's disease. The Journal
of Neuroscience, 23:994�1005. (Cited on page 75.)

[152] Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals
of Statistics, 22:1701�1762. (Cited on page 136.)

[153] Toews, M. and Wells, Iii, W. M. (2009). Bayesian registration via local image
regions: Information, selection and marginalization. In Proceedings of the 21st
International Conference on Information Processing in Medical Imaging, IPMI
'09, pages 435�446, Berlin, Heidelberg. Springer-Verlag. (Cited on pages 103
and 108.)

[154] Tomanek, B., Ryner, L., Hoult, D. I., Kozlowski, P., and Saunders, J. K.
(1997). Dual surface coil with high-B1 homogeneity for deep organ MR imaging.
Magnetic Resonance Imaging, 15(10):1199 � 1204. (Cited on page 33.)

[155] Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie, Z., Egan, A., Yushkevich,
P. A., and Gee, J. C. (2010). N4ITK: Improved N3 bias correction. Medical
Imaging, IEEE Transactions on, 29(6):1310 �1320. (Cited on pages 16, 34, 127,
138, 154, 155 and 161.)

[156] van Heteren, J. G., Henkelman, R. M., and Bronskill, M. J. (1987). Equiva-
lent circuit for coil-patient interactions in magnetic resonance imaging. Magnetic
Resonance Imaging, 5(2):93 � 99. (Cited on page 33.)

[157] Vemuri, B. C., Ye, J., Chen, Y., and Leonard, C. M. (2003). Image registration
via level-set motion: Applications to atlas-based segmentation. Medical Image
Analysis, 7(1):1 � 20. (Cited on pages 7, 9, 16, 97, 99, 111, 116, 117, 124, 127,
143, 145, 160, 170 and 171.)

[158] Vovk, U., Pernus, F., and Likar, B. (2007). A review of methods for correction
of intensity inhomogeneity in MRI. Medical Imaging, IEEE Transactions on,
26(3):405 �421. (Cited on pages 34 and 36.)

[159] Wahba, G. (1990). Spline models for observational data, volume 59 of CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA. (Cited on page 130.)

[160] Wang, D., Strugnell, W., Cowin, G., Doddrell, D. M., and Slaughter, R.
(2004a). Geometric distortion in clinical MRI systems: Part I: Evaluation using a
3D phantom. Magnetic Resonance Imaging, 22(9):1211 � 1221. (Cited on page 37.)

[161] Wang, D., Strugnell, W., Cowin, G., Doddrell, D. M., and Slaughter, R.
(2004b). Geometric distortion in clinical MRI systems: Part II: Correction using
a 3D phantom. Magnetic Resonance Imaging, 22(9):1223 � 1232. (Cited on
page 37.)



Bibliography 192

[162] Wang, Y., Song, Y., Rajagopalan, P., An, T., Liu, K., Chou, Y.-Y., Gut-
man, B., Toga, A. W., and Thompson, P. M. (2011). Surface-based TBM boosts
power to detect disease e�ects on the brain: An N-804 ADNI study. NeuroImage,
56(4):1993 � 2010. (Cited on pages 49 and 50.)

[163] Ward, B. D. (1999). Intracranial segmentation. Technical report, Medical
College of Wisconsin. (Cited on pages 55 and 56.)

[164] War�eld, S., Zou, K., and Wells, W. (2004). Simultaneous truth and per-
formance level estimation (STAPLE): an algorithm for the validation of image
segmentation. Medical Imaging, IEEE Transactions on, 23(7):903 �921. (Cited
on page 56.)

[165] Whitwell, J. L. . (2008). Longitudinal imaging: change and casuality. Current
Opinion in Neurology, 21(4):1350�7540. (Cited on page 26.)

[166] Wicks, D. A., Barker, G. J., and Tofts, P. S. (1993). Correction of intensity
nonuniformity in MR images of any orientation. Magnetic Resonance Imaging,
11(2):183 � 96. (Cited on page 33.)

[167] Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S. P., and Barillot, C.
(2008). Rician noise removal by non-local means �ltering for low signal-to-noise
ratio MRI: Applications to DT-MRI. In MICCAI, Part II, pages 171�179, Berlin,
Heidelberg. Springer-Verlag. (Cited on pages 32 and 33.)

[168] Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., and Mazziotta,
J. C. (1998). Automated image registration: I. General methods and intrasubject,
intramodality validation. Journal of Computer Assisted Tomography, 22:139�152.
(Cited on page 71.)

[169] Xue, Z., Shen, D., and Davatzikos, C. (2006). Statistical representation of
high-dimensional deformation �elds with application to statistically constrained
3D warping. Medical Image Analysis, 10(5):740 � 751. (Cited on page 161.)

[170] Yanovsky, I., Leow, A. D., Lee, S., Osher, S. J., and Thompson, P. M. (2009).
Comparing registration methods for mapping brain change using tensor-based
morphometry. Medical Image Analysis, 13(5):679 � 700. (Cited on pages 2, 40
and 109.)

[171] Yanovsky, I., Thompson, P. M., Osher, S., Hua, X., Shattuck, D. W., Toga,
A. W., and Leow, A. D. (2008). Validating unbiased registration on longitudinal
MRI scans from the Alzheimer's disease neuroimaging initiative (ADNI). In ISBI,
pages 1091�1094. (Cited on pages 2, 40, 41, 49 and 57.)

[172] Yetik, I. and Nehorai, A. (2006). Performance bounds on image registration.
Signal Processing, IEEE Transactions on, 54(5):1737 � 1749. (Cited on page 99.)



Bibliography 193

[173] Yin, Y., Ho�man, E. A., Ding, K., Reinhardt, J. M., and Lin, C.-L. (2011).
A cubic B-spline based hybrid registration of lung CT images for a dynamic
airway geometric model with large deformation. Physics in Medicine and Biology,
56(1):203�218. (Cited on page 128.)

[174] Yushkevich, P. A., Avants, B. B., Das, S. R., Pluta, J., Altinay, M., and
Craige, C. (2010). Bias in estimation of hippocampal atrophy using deformation-
based morphometry arises from asymmetric global normalization: An illustration
in ADNI 3 T MRI data. NeuroImage, 50(2):434 � 445. (Cited on pages 7, 109,
110, 111 and 124.)

[175] Zhang, Y., Brady, M., and Smith, S. M. (2001). Segmentation of brain MR
images through a hidden Markov random �eld model and the expectation maxi-
mization algorithm. IEEE Transactions on Medical Imaging, 20(1):45�57. (Cited
on pages 3, 4, 42, 49, 81 and 172.)

[176] Zitova, B. (2003). Image registration methods: A survey. Image and Vision
Computing, 21(11):977�1000. (Cited on page 40.)

[177] Zivadinov, R. (2005). Steroids and brain atrophy in multiple sclerosis. Journal
of the Neurological Sciences, 233(1-2):73�81. (Cited on page 25.)

[178] Zivadinov, R. and Bakshi, R. (2004). Role of MRI in multiple sclerosis II:
Brain and spinal cord atrophy. Frontiers in Bioscience, (9):647�664. (Cited on
page 24.)

[179] Zivadinov, R., Locatelli, L., Cookfair, D., Srinivasaraghavan, B., Bertolotto,
A., Ukmar, M., Bratina, A., Maggiore, C., Bosco, A., Grop, A., Catalan, M.,
and Zorzon, M. (2007). Interferon beta-1a slows progression of brain atrophy
in relapsing-remitting multiple sclerosis predominantly by reducing gray matter
atrophy. Multiple Sclerosis, 13(4):490�501+. (Cited on page 26.)

[180] Zivadinov, R., Sepcic, J., Nasuelli, D., De Masi, R., Bragadin, L. M., Tommasi,
M. A., Zambito-Marsala, S., Moretti, R., Bratina, A., Ukmar, M., Pozzi-Mucelli,
R. S., Grop, A., Cazzato, G., and Zorzon, M. (2001). A longitudinal study of
brain atrophy and cognitive disturbances in the early phase of relapsing-remitting
multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 70(6):773�
780. (Cited on page 25.)



Résumé
Cette thèse est consacrée à l'estimation de l'atrophie cérébrale longitudinale pour
les patients atteints de sclérose en plaques. Tout d'abord, sur la base de leur ro-
bustesse à diverses sources d'erreur (inhomogénéité en intensité, bruit, distorsions
géométriques, artefacts d'interpolation et présence de lésions), une évaluation des
principales approches d'estimation de l'atrophie cérébrale est réalisée à l'aide de
simulations d'une vérité terrain.

Ensuite, une analyse statistique est e�ectuée a�n d'estimer les incertitudes as-
sociées à l'atrophie mesurée. Un cadre générique est proposé pour construire des
intervalles de con�ance de l'atrophie estimée dans une région d'intérêt du cerveau.
Une base d'apprentissage est utilisée pour obtenir ces intervalles de con�ance pour
un algorithme quelconque d'estimation de l'atrophie.

En�n, un cadre bayésien est proposé pour l'estimation conjointe d'une trans-
formation non-rigide (à partir de laquelle l'atrophie est calculée) et du champ
d'inhomogénéité en intensité présent dans les images. Cette approche bayésienne
couplée aux techniques MCMC fournit un cadre rigoureux pour la construction
d'intervalles de con�ance de l'atrophie cérébrale.

Mots-clés: imagerie médicale, atrophie du cerveau, validation, incertitude, in-
tervalle de con�ance, recalage non-rigide.

Abstract
This dissertation is dedicated to estimation of longitudinal brain atrophy in patients
with multiple sclerosis. First, an evaluation of widely used brain atrophy estima-
tion approaches is carried out using simulated gold standards in order to test their
robustness to various sources of error (bias-�eld inhomogeneity, noise, geometrical
distortions, interpolation artefacts and presence of lesions).

Next, statistical analysis of maps of volumetric change in an individual brain
is performed in order to estimate the uncertainties associated with the measured
atrophy. A generic framework for constructing con�dence intervals for atrophy esti-
mated in any region of interest in the brain is developed. With the help of a learning
database, con�dence intervals can be obtained for any atrophy estimation algorithm.

Finally, a Bayesian framework is developed that allows for the estimation of a
non-rigid transformation (from which atrophy is obtained through its Jacobian) and
bias �eld inhomogeneity. MCMC sampling methods coupled with this framework
make the construction of con�dence intervals possible for the estimated atrophy.

Keywords: medical imaging, brain atrophy, evaluation, uncertainty, con�dence
intervals, non-rigid registration.
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