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Summary

Over the last century, numerous studies in Astronomy and Cosmology have led to the

conclusion that about seventy-five percent of the matter content and about twenty-

three percent of the energy density of the Universe comes from a mysterious form

of matter termed dark matter. We have not yet directly detected or produced it in

the laboratory and its properties are not well understood, although there are certain

criteria that it should fulfil to account for the observations. For example, it does

not seem to interact with light or matter in any way other than gravitationally,

or perhaps via weak interactions. However, there are several open questions about

the nature of this strange component of the Universe that may yet be constrained

with observations. The shapes of dark matter halos around galaxies, for instance,

hold important clues to the underlying nature of its constituent particles and have

been an active subject of research for a few decades. Although various approaches

and techniques have been employed in order to arrive at consistent estimates of the

profiles of dark matter halos around galaxies, and especially that of our own Milky

Way, it has proven to be difficult to do so, partly due to observational limitations and

partly due to systematic differences in the methodologies themselves.

In recent years, thanks to increasingly sensitive instruments and improved data

reduction methods, it has been possible to discern interesting stellar features in the

dark halos of galaxies. These structures are thought to be the remnants of galaxy

mergers and have emerged as a useful tool to study dark halos at galactic scales.

Prominent among these are thin, long features known aptly as stellar streams, or

tidal streams as they are formed due to the tidal disruption of small satellite galaxies

by the gravitational field of their large host galaxies. Since a tidal stream closely
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follows the orbit of its progenitor, it can be used effectively as a tracer of the halo

density profile, probing it along the equatorial as well as vertical axes. Earlier work

based on tidal streams has been mostly confined to the Milky Way, using the streams

observed in our Galactic halo such as the Sagittarius, Monoceros, GD1 and Palomar

5 streams. Based on characteristics of the Sagittarius stream alone, the halo of the

Milky Way was at first thought to be spherical (Ibata et al. 2001b; Majewski et

al. 2003) or not necessarily constrainable (Mayer et al. 2002, Helmi 2004, Mart́ınez-

Delgado et al 2002) and most recently Law & Majewski (2010) have found that a

mildly triaxial halo works best.

In this thesis, I extend the modelling efforts with a significant improvement in

methodology. In all of the previous work, the approach has been either to treat the

streams as exact orbits and find a best fitting orbit for the stream or to run simulations

that reproduce the observed stream to a certain degree. Both of these approaches

pose problems in that the former is slightly erroneous in its assumption, as stellar

streams, in fact, deviate from exact orbits, and the latter is computationally costly,

making it impossible to conduct a thorough parameter search. One of the novel as-

pects of the work included in this thesis is the combination of the best of the two

methods. We have developed a simple way to calculate the deviations of the stream

from the orbit of the progenitor so that the stream can be obtained quickly without

any N-body integrations, which makes it feasible to sample millions of possible pro-

genitor orbits or streams within a reasonable time frame. These trial streams are used

to fit the observed stream, and the fitting routine is based on Bayesian sampling, an-

other differing aspect of our approach. Using these modifications in methodology, we

examine how effectively the dark matter distribution of galaxies can be constrained,

the quality and quantity of information needed to do so and specifically, whether it

is at all possible to estimate the profiles of dark halos of external galaxies with only

the projected coordinates of their stellar streams. The initial chapters of the thesis

are dedicated to a brief review of studies of dark matter and a detailed description of

the formation of tidal streams.

The main goal of the fitting algorithm developed is to be able to sample a multi-
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dimensional parameter space with minimum computational time and find the values

of the parameters of a halo model that yield the maximum likelihood for a given

(pseudo) data set. The precise algorithm that is used is known as Parallel Tempering,

wherein a few Markov Chain Monte Carlo (MCMC) chains are used simultaneously to

sample the parameter space and find the global maximum of the likelihood surface.

Initial tests done with pure orbits in a simple logarithmic halo model show that

parameters can be easily constrained using the code. The fitting algorithm is also

tested with orbits integrated in a more realistic galactic potential (with a bulge, disk

components, and a spheroidal halo), the accelerations from the density distributions

being calculated using multipole expansion as in Dehnen & Binney (1998). These

tests demonstrate that with an orbit of sufficient length (with two or more turning

points), it is possible to constrain the flattening of the halo even with only the 2-

dimensional projected positions of the orbit.

In order to do a similar kind of sampling for stellar streams instead of exact orbits,

a mechanism is required to convert the orbit of the progenitor to the tidal stream

that it would yield in a given potential, without resorting to N-body simulations. We

found that for progenitor masses less than 109 M�, for which dynamical friction can

be ignored, it can be achieved fairly easily. The correction mechanism is based on

the fact that the stars which make up the leading and trailing arms of the stream

escaped from the outskirts of the progenitor at earlier times and followed slightly

different orbits in the potential. The correction mechanism has been found to work

consistently well for all the streams we have tested. With this mechanism in place, we

show by fitting pseudo test streams, the different parameters that can be estimated

for the various kinds of data available. As expected, it is not possible to constrain the

circular velocity or mass of a galactic model without kinematic data (radial velocities),

but for several nearby systems, the rotational velocity curves are available or readily

measurable. The encouraging result we obtain is that for sufficiently long streams, as

seen in the case of pure orbits, we are able to estimate the flattening of the dark matter

halo with only the positions of the stream on the sky. This enables us to constrain

the profiles of external galaxies for which kinematic data are not obtained. It is to be
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noted that we assumed the galaxies to be viewed edge-on, but small inclinations can

be corrected for in the fitting procedure and do not affect the quality of estimation.

Recent observations by Mart́ınez-Delgado et al. (2008) reveal long, multiply-

wrapped stellar structures around the edge-on, spiral galaxy NGC 5907 which provide

an excellent system to apply the above method on. The data used for fitting are the

rotation curve (for up to 30 kpc) of the galaxy, and the geometry of the stream on

the sky. The position of the progenitor is unknown and the exact path of the stream

is unclear as there are a few crossing arcs. Assuming the progenitor to be completely

disrupted and the age of the stream to be a free parameter, we find the best fitting

stream with the technique developed. In order to ensure convergence, we also fit the

streams with a modified algorithm known as affine sampling, which uses many groups

of parallel MCMCs. The preliminary tests show that the stream can be fit well in a

highly prolate halo as well as a triaxial halo. The conclusive parameter values and

their errors are yet to be estimated. The prospects for further development of the

technique and its application to other data are discussed.
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Résumé

Au cours du siècle dernier, des études en astronomie et en cosmologie ont conduit

à la conclusion qu’environ 75% de la matière et environ 23% de la densité d’énergie

de l’Univers vient d’une forme mystérieuse de matière appelée matière noire. Nous

ne l’avons pas encore directement détectée ou produit et ses propriétés ne sont pas

bien comprises, mais il y a certains critères qu’elle doit remplir pour être compatible

avec les observations. Par exemple, elle ne semble pas interagir avec la lumière ou

la matière de toute autre manière que gravitationnellement, ou eventuellement via

des interactions faibles. Il y a plusieurs questions ouvertes sur la nature de cette

composante étrange de l’Univers qui peuvent être contraintes par des observations.

La forme des halos de matière noire autour des galaxies, par exemple, contiennent

d’importants indices sur la nature profonde de ses particules et sont un sujet de

recherche actif depuis quelques dizaines d’années. De nombreuses approches et tech-

niques ont été employées afin d’aboutir à des estimations cohérentes des profiles de

halos de matière noire autour des galaxies et en particulier celui de la Voie Lactée.

Cependant, c’est une tâche difficile en partie du fait des limitations observationnelles

et en partie à cause des différences systématiques entre les méthodes utililsées.

Ces dernières années, grâce à des instruments plus sensibles et à l’amélioration

des méthodes de réduction de données, il a été possible de discerner des structures

stellaires à basse brillance de surface dans le halo des galaxies. On pense que ces

structures sont le reste de fusions de galaxies et sont ainsi un outil utile pour étudier

les halos à des échelles galactiques. Parmi celles-ci, il existe de longues et minces

structures connues sous le nom de courant stellaire, ou de courant de marée. Elles

sont formées lors de la perturbation de marée de petites galaxies satellites par le
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champ gravitationnel de leur galaxie hôte. Puisque le courant de marée suit de près

l’orbite de son progéniteur, on peut l’utiliser efficacement comme traceur du profil

de densité du halo, et le sonder le long des axes équatiorial et vertical. Les travaux

antérieurs basés sur les courants de marée ont été principalement confinés à la Voie

Lactée. Ils utilisaient les courants observés dans notre halo Galactique comme celui

de la galaxie naine du Sagittaire, celui du Monoceros, GD1 et de l’amas globulaire

Palomar 5. A partir des caractéristiques du courant du Sagittaire uniquement, le halo

de la Voie Lactée était d’abord considéré sphérique (Ibata et al. 2001b; Majewski

et al. 2003) et n’était pas bien contraint (Mayer et al 2002, Helmi 2004, Mart́ınez-

Delgado et al 2002). Récemment Law & Majewski (2010) ont trouvé que un halo

légèrement triaxial est ce qui fonctionne le mieux.

Dans cette thèse, je poursuis les efforts de modélisation avec une amélioration sig-

nificative de la méthodologie. Dans tous les travaux précédents, l’approche a été soit

de considérer les courants comme des orbites exactes et de les ajuster, soit d’effectuer

des simulations qui reproduisent approximativement ces courants. Ces deux ap-

proches posent des problèmes. La première est baseée sur une hypothèse erronée, car

en réalité les courants stellaires s’écartent des orbites exactes. Le deuxième approche

est coûteuse en ressources informatiques ce qui rend impossible une recherche exhaus-

tive dans l’espace des paramètres. Un des nouveaux aspects des travaux inclus dans

cette thèse est la combinaison du meilleur des deux méthodes. Nous avons développé

une méthode simple pour calculer rapidement un courant à partir de l’orbite de son

progéniteur sans avoir à faire d’intégration N-corps. On peut donc échantilloner

des millions d’orbites progénitrices ou de courants possible dans un laps de temps

raisonnable. Une autre particularité de notre approche réside dans le fait que la rou-

tine d’ajustement est basée sur une méthode Bayésienne. Grâce à ces modifications

dans la méthodologie, nous examinons la qualité des contraintes sur la distribution de

matière noire des galaxies, le type et la quantité de données nécessaires pour le faire

et, en particulier, si il est possible ou pas d’estimer les profils de halos de galaxies

externes avec seulement les coordonnées projetées de leurs courants stellaires.

L’objectif principal de l’algorithme d’ajustement développé est d’être capable
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d’échantillonner un espace paramétrique multi-dimensionnel avec des temps de calcul

minimum et de trouver les valeurs des paramètres d’un modèle de halo qui rappor-

tent le maximum de vraisemblance pour un ensemble de données. L’algorithme précis

qui est utilisé est connu sous le nom de ‘Parallel Tempering’, qui utilise des chaines

de Markov (Markov Chain Monte Carlo, MCMC) simultanément pour échantilloner

l’espace des paramètres et trouver le maximum global de la surface de vraisemblance.

Les premiers tests faits avec des orbites pures dans un modèle de halo logarithmique

simple montrent que les paramètres peuvent être facilement contraints en utilisant le

code. L’algorithme d’ajustement est également testé avec des orbites intégrées dans

un potentiel galactique plus réaliste (avec un renflement, des composants du disque,

et un halo sphéröıdal). Pour ce potentiel, les accélérations sont calculées à partir des

distributions de densité en utilisant l’expansion multipolaire de Dehnen & Binney

(1998). Ces tests démontrent que, pour une orbite de longueur suffisante (avec deux

ou plusieurs points d’inflexion), il est possible de contraindre l’aplatissement du halo,

même en connaissant uniquement des positions 2-D de l’orbite prévue.

Afin de faire un échantillonage similaire pour les courants stellaires à la place

d’orbites exactes, nous avons besoin d’un mécanisme pour obtenir le courant à partir

de l’orbite du progéniteur sans recourir aux simulations N-corps. Nous avons constaté

que pour des masses du progéniteur inferieur à 109 M�, pour laquelle la friction dy-

namique peut être ignorée, le conversion est obtenu assez facilement. Le mécanisme

de correction est basé sur le fait que les étoiles qui composent les deux bras du courant

de marée suivent des orbites différentes dans le potentiel. Nous avons trouvé que le

mécanisme de correction fonctionne correctement pour tous les courants que nous

avons testés. Avec ce mécanisme en place, en ajustant des pseudo courants de test,

nous vérifions les différents paramètres qui peuvent être estimés pour les différents

types de données disponibles. Comme prévu, il n’est pas possible de contraindre

la vitesse circulaire ou la masse d’un modèle galactique sans données cinématiques

(vitesses radiales), mais pour plusieurs systèmes proches, les courbes de rotation sont

de toutes façons disponibles ou facilement mesurables. Le résultat encourageant que

nous obtenons est que, pour des courants suffisamment longs, nous sommes en mesure
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d’estimer l’aplatissement du halo de matière noire avec seulement les positions des

courants sur le ciel. Cela nous permet de contraindre les profils des galaxies extérieures

pour lesquels des données cinématiques ne sont pas obtenues. Il est à noter que nous

avons supposé que les galaxies sont vues par la tranche, mais de petites inclinaisons

peuvent être corrigées dans la procédure d’ajustement et n’affectent pas la qualité de

l’estimation.

Des observations récentes par Mart́ınez-Delgado et al. (2008) révèlent des struc-

tures stellaires multiplement enroulées et longues autour de la galaxie spirale NGC

5907. Ceci fournit un excellent système pour appliquer la méthode ci-dessus. Les

données utilisées pour l’ajustement sont la courbe de rotation de la galaxie, et la

géométrie du courant sur le ciel. La position du progéniteur est inconnue et le chemin

exact du courant n’est pas clair car il ya un peu d’arcs de croisement. En supposant

que le progéniteur est complètement détruit et en prenant l’âge du courant comme

paramètre libre, on trouve le courant correspondant au meilleur ajustement avec la

technique développée. Afin d’assurer la convergence, nous avons également ajusté les

courants avec un algorithme modifié connu sous le nom d’‘échantillonnage affine’, qui

utilise de nombreux groupes de MCMCs parallèles. Les tests préliminaires montrent

que le courant peut être bien ajusté dans un halo très allongé ainsi que dans un halo

triaxial. Les valeurs des paramètres concluants et leurs erreurs ne sont pas encore

estimés. La méthode présentée ici a donné des résultats préliminaires intéressants sur

le galaxy. Son utilisation dans un cadre plus général est en cours et discuté dans la

dernière partie de cette thèse.
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Chapter 1

Introduction

A few centuries since the dawn of scientific thinking, we find ourselves in the midst

of an era contemplating questions about the Universe that are beyond our senses

and perhaps even our imagination. Equipped with unprecedented technology and

knowledge, we seek these challenging answers. One such set of questions concerns an

elusive component of the Universe, whose presence has been betrayed by observations

of the night sky as well as of the tiniest particles that we are made of. Dark matter,

as it has come to be called, is now an integral part of the current understanding of

the physical world, even though its exact nature remains a mystery. In this thesis,

we develop a method that may be used to answer a particular question about its

property: How is dark matter distributed at the galactic scale?

Our tool of investigation is stellar streams, observed in the halos of spiral galaxies,

and which are remnants of the accretion process that builds up these halos. In

Chapter 2, we present the various aspects of the formation of stellar streams during

minor mergers. Chapter 3 contains the backbone of the thesis, the methodology

developed to constrain the shape and mass of dark matter halos with these stellar

streams. In Chapter 4, some preliminary results obtained by using the method on

the stellar stream of NGC 5907 are discussed. We end with general conclusions and

several possible extensions of the work in Chapter 5. In this introductory chapter,

we present a general overview of dark matter. §1.1 contains a brief discussion on

the developments in astronomy, cosmology, and particle physics that has given dark
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matter its current status as a crucial component of models of the Universe. We touch

upon a popular alternate theory of gravity in §1.2 and discuss some examples of

possible dark matter candidates and their detection mechanisms in §1.3. The second

half of this Chapter focuses on profiles of galactic halos, theoretical predictions from

simulations and some observational estimates of the same.

1.1 Early Evidence of Dark Matter

The beginnings of a paradigm shift in the fundamental idea of the composition of

the Universe surfaced about a century ago when astronomers began to notice a stark

discrepancy in the amount of luminous matter and dynamically inferred matter in the

Universe. Zwicky (1933) measured radial velocities of galaxies in the Coma cluster.

Subtracting the mean velocity of the cluster from these, he found that the individual

galaxies were orbiting within the system with velocities much greater than were ex-

pected given the total mass of the cluster. He hypothesized the presence of unseen

matter, which he called dunkle materie, to account for the observed speeds. Similar

analyses of the radial velocities of galaxies in the Virgo cluster by Smith (1936) and

Zwicky (1937) revealed that it too contained a substantial amount of dunkle materie.

These results spurred on a string of dynamical studies of pairs and groups of galaxies,

with new techniques developed along the way, and they all pointed to the presence of

some kind of unseen matter. For instance, based on timing arguments of the motion

of Andromeda (M31) and the Milky Way, Kahn and Woltjer (1959) concluded that

there was a deficit in the luminous mass of about 1.3× 1012 M� in the Local Group.

The evidence for unaccounted-for-matter from other areas of astronomy also started

to mount. In fact, eleven years prior to Zwicky’s study of the Coma cluster, Jeans

(1922) and Kapteyn (1922) had found that the observed density of stars near the

Galactic plane was insufficient to maintain their high-velocity vertical motions. An-

other astounding piece of evidence for dark matter came in the form of the rotational

curve of M31 in the optical (Babcock, 1939; Rubin and Ford, 1970) and radio bands

(van de Hulst et al., 1957; Roberts and Whitehurst, 1975). The spectra these authors
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obtained showed that the orbital velocities of stars in the outer parts of the galaxy

did not decrease with radius, as was expected in a Keplerian potential. Instead, the

orbital velocities stayed more or less constant at radii of 16− 30 kpc from the nucleus

of M31, which could be explained by assuming that its galactic disk is surrounded by

a halo of unseen matter. Rotation curves of other galaxies were also found to show

the same trend (Thonnard et al., 1978; Bosma, 1978; Rubin et al., 1980).

Developments in X-ray astronomy provided a powerful direct tracer of mass dis-

tribution at large scales. Hot gas was observed to extend far beyond the disks of

galaxies, and in between galaxies in clusters. The motion and temperature of the hot

gas, which can be inferred from its X-ray emissions, are related to the gravitational

potential it resides in (Forman and Jones, 1982; Rosati et al., 2002). Mass determi-

nation of the Coma and Virgo clusters from its X-ray emissions yielded values that

agreed with the earlier obtained estimates (Bahcall and Sarazin, 1977), and confirmed

the missing matter problem.

1.1.1 Cosmological Considerations

There are a few cosmological conundrums which are easily solved by introducing a

large dark matter component to the matter content of the Universe. For instance,

there is the problem posed by the abundances of light elements, such as deuterium,

helium and lithium, created during big bang nucleosynthesis. Nucleosynthesis is

the epoch in the early Universe when its temperature dropped low enough so that

photons did not have the required energy to break apart nuclei of light elements

(D, 3He, 4He, 7Li) that formed by the collision of protons and neutrons. With further

expansion and decrease in temperature, the collisions between neutrons and protons

become fewer and finally marked the end of nucleosynthesis. The exact amount of

light elements formed depends upon the density of baryons during the short nucleosyn-

thesis phase. The estimates of the relic light elements from present day observation,

therefore, place tight constraints on the baryon density of the Universe. Based on this

approach, the estimated values of the baryon density is about 0.04 times the critical

density (Schramm and Turner, 1998; Steigman, 2010), whereas the total mass density
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Figure 1.1: WMAP image of the Cosmic Microwave Background. The colours cor-
respond to the fluctuations in temperature, which are in turn related to the initial
density fluctuations that grow by gravitational collapse to the present day large-scale
structures. Source: NASA/ WMAP Science Team.

of the Universe is at least 0.3 times the critical density. Another significant event in

Cosmology was the discovery of the Cosmic Microwave Background (CMB), which

maps the last surface of scattering of photons at the time of the transition of the early

Universe from an opaque plasma to a transparent neutral gas. The quantum fluctu-

ations in density could then grow and form structures by gravitational collapse. The

initial density fluctuations can be calculated from the temperature anisotropies in the

CMB (White, 1999); a modern map of these anisotropies is shown in Figure 1.1 as

obtained by the Wilkinson Microwave Anisotropy Probe (WMAP). The fluctuation

amplitude turns out to be extremely insufficient to trigger structure formation early

enough, in order to produce the large-scale structures that are seen today. However,

a large dark matter component could provide the required mass needed to set off

structure formation at the right time.
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1.1.2 Motivations from Particle Physics

In parallel to all these developments in Astronomy and Cosmology, a lot of exciting

progress was being made at the other end of the (spatial) scale spectrum. Towards

the end of the 19th Century, Becquerel (1896) discovered the curious phenomenon of

radioactivity. A particular kind of radioactivity, known as beta-decay, could not be

explained by the then known strong and electromagnetic forces. An extremely short-

range force, known as the weak force, was proposed to explain the phenomenon. The

first model of the weak force was put forward by Fermi in 1933, and by 1970, it

was modified and unified with electromagnetism, by Glashow, Salam and Weinberg,

as the electroweak theory (Glashow, 1961; Weinberg, 1967; Salam, 1968). Advances

in high energy experiments confirmed the predictions of the theory. The neutrino,

which only interacts via the weak force and which was postulated by Pauli in 1930

to conserve energy and momentum in the observed beta-decays, was finally detected

by Reines and Cowan (1953) using liquid scintillation detectors (Cowan et al., 1953).

The W and Z bosons, the carriers of the weak force, were also produced and detected,

by Rubbia and van der Meer (Rubbia, 1985; van der Meer, 1981) at the Super Pro-

ton Synchrotron. When it became clear that brown dwarfs and other non-luminous

baryonic matter was insufficient to account for the missing matter in astronomical

problems, these advents in particle physics suggested that dark matter may indeed

be particles that interact only via weak interactions and gravitation, much like the

neutrino. In fact, an extension of the standard model of particle physics, known as

supersymmetry, postulates entire families of as-yet-undetected particles, such as the

neutralino, which are excellent dark matter candidates. These are collectively known

as Weakly Interacting Massive Particles or WIMPs. Using the production energy and

annihilation rates predicted for WIMPs, one may calculate the frozen-in quantity of

WIMPs during the earliest epochs of the formation of the Universe. The estimated

value turns out to be in the same ballpark as the value inferred from cosmological

considerations. This matching up of the estimated values of the WIMP number den-

sity using a particle physics as well as a cosmological approach, known as the WIMP

coincidence, lends further support to the notion that the deviant dynamical behaviour



6

(from the expected Newtonian) of stars and galaxies can be attributed to dark matter

which consists of these WIMPs.

1.2 Modified Newtonian Dynamics

Despite several compelling pieces of evidence that the rotational curves of galaxies and

the peculiar motions of galaxies in clusters can be simply justified with dark matter,

there remains a very real possibility that these observations hint at a departure of

the underlying gravitational law from the standard Newtonian or Einsteinian, rather

than the mere presence of hypothetical, invisible matter. One of the main reasons for

investigating this alternative, besides its physical feasibility and elegance, is that no

convincing dark matter particle has yet been detected or produced, even after years

of experiments to do so. Before we delve into a discussion of dark matter, it would be

fitting to discuss one of the more popular of these alternative gravity theories known

as MOdified Newtonian Dynamics, or MOND. Most tests and probes of dark matter

distribution at the galactic and cluster scales try to verify MONDian predictions as

well. Stellar streams that we use in this thesis may also be used to test it at galactic

scales, as we demonstrate in Chapter 4.

MOND was originally put forward by Milgrom (1983a,b) to explain the asymp-

totically flat rotational curves of galaxies, by proposing a modification of Newtonian

gravity at very small acceleration regimes. In particular, the usual force law, F = ma,

is replaced by:

F = mµ

(
a

a0

)
a (1.1)

where a0 is a constant which determines the acceleration scale at which the modifica-

tion becomes significant, and µ is a function of the relative acceleration a/a0, known

as the interpolating function. Its exact form depends on the specific flavour of the

theory used. In general, µ(a/a0) ∼ 1 when a � a0 and reduces to the standard

Newtonian law, and µ(a/a0) ∼ a/a0 when a� a0. This ensures that the velocities of

stars at larger radii, with increasingly smaller accelerations, are much larger than in

the Newtonian case.
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A consequence of this modification is that it renders the corresponding Poissonian

non-linear:

∇ ·
[
µ

(
||∇Φ||
a0

)
∇Φ

]
= 4πGρ (1.2)

from which a simple expression for the gravitational acceleration in a MONDian

regime, ~gM , in terms of the Newtonian gravitational acceleration, ~gN , may be derived

as:

~gM = ~gN

√
a0

||~gN ||
. (1.3)

A covariant generalization of MOND known as Tensor-Vector-Scalar (TeVeS) theory

was developed by Bekenstein (2004), which allows gravitational lensing predictions

for modified gravitational theories.

Despite the success of MOND at galactic scales, it faces difficulties in explaining

phenomena at larger scales. One of the observational evidences against MOND that

gained a lot of notoriety was the X-ray observations and lensing studies of the Bullet

Cluster 1E 0657-558 (Clowe et al., 2004, 2006). It consists of a collision of a small

cluster with a larger cluster, during which the gas has been stripped due to ram-

pressure. It was shown that the gravitating matter distribution, determined by weak

lensing, is well separated from the X-ray gas which makes up most of the baryonic

matter. Since the potential in a modified gravity theory should follow the baryonic

mass, the distinction of the gravitational and baryonic matter distributions violates

the expectations of MOND. Some efforts have been made to resolve this issue, such

as by coupling MOND with some form of missing matter such as massive neutrinos

(Famaey et al., 2008), or by reproducing lensing signals similar to the one seen in the

Bullet Cluster using lensing in a multifield TeVeS framework (Angus et al., 2006).

Therefore, despite the challenges to MOND at cluster and super-cluster scales, its

validity still remains debated and its important to continue to verify it with gravita-

tional potential tracers.
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1.3 Dark Matter Candidates

Assuming that Newtonian gravity holds at non-relativistic speeds and that what

causes the anomalies in the dynamics of stars, galaxies and clusters is indeed a form

of matter unknown to us, we briefly discuss what this dark matter could be made

of, in the light of current research in particle physics. The aim of the section is to

highlight the diverse possibilities of exotic matter that may exist, and which makes

the hunt for dark matter particles extremely difficult.

The leading DM candidate is the lightest neutralino χ1 (Ellis et al., 1984), a

typical WIMP. It is the lightest of the supersymmetric particles, electrically neutral

and stable. They are the superpartners of neutral Higgs and gauge bosons. As

explained in §1.1.2, it turns out to have the correct relic density at thermal freeze-

out. They may be detected by scattering in sensitive detectors below the Earth’s

surface. They may also be detected indirectly from χ1χ1 annihilation in the galactic

halo which produces positrons (Feng, 2004).

Another possible candidate arises when one considers theories of extra dimensions.

In models of universal extra dimensions (UED), there are counterparts to the standard

model particles known as Kaluza-Klein particles, the lightest of which is stable due

to a type of parity conservation and could be a WIMP (Feng et al., 2003a). There are

several such WIMP particles predicted by various flavours of electroweak theories, but

they are all similar in nature in that they are cold, collisionless and weakly interacting,

and therefore lead to similar cosmological and astronomical observations. However,

their differences become important when considering their detection or production in

laboratories.

Yet another group of hypothetical particles, known as superWIMPs, could account

for all or some dark matter (Feng et al., 2003c,b). They are named so for they interact

mainly through gravity, and other interactions, if any, are much weaker than the

weak force. They are thought to be formed by the decay of WIMPs after the latter

thermally decouples, or by the occasional interactions of standard model particles

after reheating. Once produced, their annihilation is difficult due to their extremely

weak interactions. The lightest gravitino G̃ is a prime example of a superWIMP. It
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is a stable, spin 3/2 fermion predicted by supersymmetry, as a superpartner of the

graviton. Besides the gravitino, there are many possible superWIMP particles such

as the axino, the quintessino, none of which can be detected directly due to their

poor interaction. SuperWIMPs, unlike WIMPs, may be warm, with large velocities.

One direct observable consequence of this is that it wipes out cusps at the center of

dark matter halos (see §1.5 below). However, there are other mechanisms suggested

for smoothing out cusps, or it may be the consequence of other warm dark matter

particles like sterile neutrinos. See Feng (2010) for a discussion of superWIMPs.

A popular cold dark matter candidate is the axion, a hypothetical boson that

is created due to the spontaneous breaking of Peccei-Quinn symmetry, invoked to

resolve the strong CP problem (Weinberg, 1978; Wilczek, 1978). Axions interact with

gluons and fermions. Unlike WIMPs, its relic density need not necessarily match the

cosmologically estimated relic density. It can convert to and from a photon in the

presence of a strong magnetic field. This conversion process is used in hunting for

axions. ADMX (Axion Dark Matter Experiment) looks for axions in the dark matter

halo of our galaxy and CAST (CERN Axion Solar Telescope) for solar axions. There

are also several ongoing efforts to create and detect axions in laboratories such as

BFRT, PVLAS, BMV, LIPSS, GAMMeV, in which laser beams are passed through

strong magnetic fields to produce axions, which are then separated from the photons

with a filtering wall. Such laboratory experiments have hitherto been unsuccessful,

though some exclusion constraints have been made. For instance, ADMX has also

ruled out µeV axions (Hertzberg et al. 2008). For detailed reviews of various dark

matter candidates, see (Bergström, 2009).

1.4 ΛCDM

There exists a plethora of likely dark matter candidates with different properties as

illustrated in the previous section, but from a cosmological perspective, the most

widely accepted general form of dark matter is of the non-relativistic variety. Known

as cold dark matter, or CDM, it is an integral part of the current standard model of
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cosmology, which explains the birth and evolution of the Universe and its structures.

According to this model, called ΛCDM or the concordance model, the Universe con-

sists of dark energy (∼ 73%), cold dark matter (∼ 23%) and baryonic matter (∼ 5%).

Λ denotes the dark energy, which is the energy of the vacuum that drives the acceler-

ation of galaxies away from each other, against their mutual gravitational pull. The

Universe is considered to be isotropic and homogenous at large enough scales and is

thought to have been brought into existence by a singularity known as the ‘Big Bang’.

The model has been successful in explaining the cosmic microwave background (CMB)

as well the abundances of light elements.

In the Λ-CDM framework, the early universe, immediately after the big bang,

was characterized by rapid expansion and chaotic fluctuations of quantum mechan-

ical origin. The resulting initial density perturbations grew linearly and once they

gained enough mass, started to attract each other gravitationally and collapse to form

larger structures. The gas that collected in the cores of heavy halos formed by this

hierarchical clustering cooled and condensed to form galaxies (Searle and Zinn, 1978;

White and Rees, 1978), which continue to cluster, merge and evolve. The comparison

of astrophysical observations with theoretical and numerical prediction is the basis

for understanding, verifying and improving cosmological models. The simulations use

N-body integrations (commonly based on merging treecode among other approaches)

to calculate the gravitational clustering of dark matter and also usually include pro-

cesses such as star formation, radiative cooling, gas dynamics at the relevant scales.

One of the successes of ΛCDM over other models is the agreement between the large

scale structures seen in the simulations and those observed at the present epoch.

Seminal papers by Eggen et al. (1962) and Searle and Zinn (1978) triggered an

explosion of activity in the field of galactic archaeology, which involves using stellar

kinematics, metal abundances, age and distribution on the sky as clues for unravelling

the formation history of galaxies (see also Freeman and Bland-Hawthorn 2002). For

these purposes, the stellar and dark matter halos of a galaxy contain the maximum

information as they are the most well-preserved, unlike the disk or bulge (of spi-

ral galaxies) which undergo severe dissipation during their formation, thereby losing
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many of the signatures of their early existence. However, the faint halo structures are

more difficult to observe and it is only in recent years, with better telescopes and data

reduction tools, that the archaeological potential of these structures have started to

be tapped into. Improvements in technology also allow increasingly detailed studies of

halos of galaxies other than our own. Observations of in-falling satellites, remnants of

minor and major mergers such as stellar arcs, shells, streams and tails, provide strong

evidence in support of a top-down scenario of structure formation, as predicted by

ΛCDM models.

1.5 Profiles of Galactic Halos

The morphology of halos provides hints of their formation process and the underlying

nature of dark matter. Rotation curves of galaxies are sensitive to the distribution

of dark matter in the equatorial plane, but not to that in the vertical direction. It

can be reproduced both in a spherical as well as a flattened density distribution that

obeyed an inverse square law. For simplicity, the initial approach was to assume a

truncated isothermal sphere. However, high resolution N-body simulations of dark

matter halos based on cold dark matter showed that galactic halos are much better

described in general by a double-power law (Navarro et al., 1996):

ρ(r) =
ρ0

(r/a)(1 + r/a)2
, (1.4)

where ρ0 and a are the central density and scale radius respectively. The above form,

known as the NFW profile, has a strongly cuspy center, rather than the observa-

tionally preferred core-like center. The ‘core-cusp’ problem has been met with more

measurements of the inner dark matter profiles of galaxies, and proposed mechanisms

to smooth out cusps, but it remains largely unresolved (see de Blok 2010 for a dis-

cussion). Another interesting aspect of halo profiles is its flattening. It is to be noted

that the NFW profile was used to characterize the total mass of the halo at different

radii, and did not take into consideration its variation with height from the disk.

Since a halo forms by accretion of smaller halos around it, usually from a particular
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direction, it is expected to have some angular momentum and non-sphericity. Exam-

ination of halo shapes in cosmological simulations showed this to be true, and that it

was related to the exact nature of dark matter in the simulation. Earlier work on the

subject by Barnes and Efstathiou (1987); Frenk et al. (1988); Warren et al. (1991);

Dubinski and Carlberg (1991) found that cold dark matter halos tend to be triaxial,

with a preference for prolateness, although a substantial fraction of oblate halos were

seen as well. Halo shapes may be conveniently characterized by the axial ratios c/a

and b/a of an ellipsoid, where a, b, and c are respectively the long, intermediate and

short axes of the ellipsoid. The simulated halos studied by Dubinski and Carlberg

(1991) had axial ratios of c/a = 0.50 and b/a = 0.71, although they were found to be

rounder in the outer regions. In contrast, Frenk et al. (1988) found them to be more

spherical in the center. Typical values in these studies of the flattening was around

0.5. These studies also concluded that the shapes of galactic halos are supported by

anisotropic velocity dispersion, rather than due to rotation.

It was also seen that the morphology of galactic halos are modified by their interac-

tions with baryons, such as accretion of dissipative gas (Dubinski, 1994). More recent

studies of CDM simulations, with much higher resolution and inclusion of different

baryonic processes, highlight the differences in the features of galactic halos due to

baryons (Springel et al., 2004; Kazantzidis et al., 2010; Bailin and Steinmetz, 2005).

For instance, baryonic cooling and star formation render the halos more spherical.

Halo shapes also depend significantly on their masses, with less massive halos being

more spherical (Bullock, 2002). This is likely related to the fact that low mass halos

formed much earlier than higher mass halos, thereby rendering them more phase-

mixed and isotropic. This may be the same reason why halos in warm dark matter

or self-interacting dark matter simulations tend to be more spherical than their CDM

counterparts. These recent studies also indicate that halos are not as flat as they

were thought to be, with typical values of flattening at around 0.7. It has also been

seen that processes such as baryonic cooling also renders their dark halos spherical.

Various techniques have been employed to probe the shape of real galactic halos,

but the reach of most techniques are limited to within 30 kpc in the equatorial plane
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and less then 10 kpc in the meridional plane. Only a few methods such as those

based on merger remnants, satellite galaxies, weak gravitational lensing are capable

of studying the matter distribution out to greater distances, especially in the vertical

direction. We discuss these below.

1.5.1 Weak Gravitational Lensing

According to general relativity, the path of light behind a massive body is bent by

its gravitational field due to the distortion in space-time it causes. This results in

the massive body acting as a lens, producing images of the background source or

distorting it in some manner. Strong lensing occurs when the observer, lens and

source are lined up so that the received light is bent severely. This causes multiple

images of the source usually as arcs and in rare cases, as an Einstein ring, depending

on the precise geometry of the lens or lens complex. Since strong lensing requires

the light from the source to pass close to the center of the lens, it only probes the

potential at small scales. In weak lensing, the bending of light only produces a slight

distortion, specifically a tangential shear, in the background source and no arcs or

images of it are seen. The advantage is that the effects of weak lensing are present

at large radii and hence, can be used to trace the potential far from the disk. Since

galaxies are elliptical, the small ellipticity due to lensing cannot be measured for an

individual source, but given a large number of sources, the lensing distortion due to the

foreground mass can be assessed statistically (Bernstein and Jarvis, 2002). In recent

years, weak lensing has been used in determining the average properties of the mass

distribution of galaxies (Smith et al., 2001; Hoekstra et al., 2004; Mandelbaum et al.,

2006). These studies are based on galaxy-galaxy lensing, and use large numbers of

both sources and lenses, as made available by galaxy surveys. The azimuthal variation

of the lensing signal is an indicator of the shape of the halo of the field galaxy. The

major limitation of weak lensing studies is that they are plagued by several systematic

sources of error, that have to be corrected for. Errors may arise due to complications

such as inaccurate redshift values of the lenses, noise due to cosmic-rays on the CCD

plates, or PSF anisotropy, to name a few. Additionally, the method relies on an
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extremely large amount of data.

Using this technique, Hoekstra et al. (2004) arrived at an average value of the

ellipticity e ∼ 0.33 and of the corresponding flattening c/a = 1 − e ∼ 0.67, in

agreement with numerical predictions. The authors suggest that since MOND should

yield a nearly isotropic signal, their results provide more evidence in favour of CDM

over MOND. Mandelbaum et al. (2006) reported estimated values of e ∼ −1.4 and

e ∼ 0.6, respectively for the spirals and ellipticals in their sample. The inconsistency

with the estimates of the previous authors may be due to differences in the galaxy

samples.

1.5.2 X-Ray Studies of Elliptical Galaxies

The continuous development of satellite telescopes, such as the ROSAT, XMM-

Newton and Chandra satellites, dedicated to observing the Universe in X-ray, plays

a huge role in studying the mass distribution traced by the hot X-ray emitting gases

in clusters and galaxies. As discussed earlier in the chapter, it helped determine the

masses of clusters, and separating the gaseous and stellar components of the Bullet

cluster. At the galactic scale, they have primarily been used to constrain the profiles

of the dark matter halos of isolated elliptical galaxies. These studies are based on

the fact that the gas, which makes up most of the baryonic mass of the galaxies,

follows the dark matter distribution and therefore, the measurement of flattening

of the X-ray isophotes gives the flattening of the dark matter. The details of the

inferred dark matter distribution depends on the temperature profiles of the diffuse

gas, although geometric tests which show the difference in the gravitating mass and

stellar component distributions to demonstrate the presence of dark matter in these

galaxies can be performed independently of the gas temperature analysis (Buote and

Canizares, 1998a). The main difficulties in the method are the uncertainties in the

gas temperature profile and an efficient removal of point sources.

Earlier work found that the ellipticity of the dark matter halos of studied galaxies

(NGC 720, NGC 1332, NGC 3923) lie in the range e ∼ 0.4−0.6 (Buote and Canizares,

1997, 1998b). More recently, Buote et al. (2002) show that NGC 720 has a flattened,
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triaxial halo of ellipticity e ∼ 0.35 − 0.4, which supports the predictions of cold

dark matter simulations. Humphrey et al. (2006) and Humphrey and Buote (2010)

undertook the mass profiling of many more massive early type galaxies, which were

found to fit reasonably the NFW profile as well as an adiabatically compressed NFW

profile. The virial masses are found to lie in the range of 0.5 − 1.0 × 1013 M�. The

center of the dark matter distribution cannot be constrained effectively with the

method due to degeneracies caused by the stellar component, but they find that the

less cuspy models result in larger estimated stellar mass-to-light ratios.

1.5.3 Merger Remnants

The collisions and interactions of galaxies produce distinct tails of stars and other tidal

features which may be used to investigate the mass profiles of their halos (Dubinski

et al., 1996; Springel and White, 1999; Dubinski et al., 1999). By numerically simu-

lating encounters between galaxies and tuning the model parameters of the galaxies

involved to produce structures similar to those observed, it is possible to get rough

estimates of the halo parameters. For instance, by simulating the tidal tails of the

Antennae (NGC 4038/39) and NGC 7252, Dubinski et al. (1996) find that the ratio

of the halo mass to the mass of the bulge and disk are less than 10:1. Recent studies

based on tidal features focus more on stellar streams formed in minor mergers of

small satellite galaxies and large disk galaxies, which prove to be great tracers of the

gravitational potential of the host. These low mass tidal streams are the subject of

this thesis, and in the following chapters, we discuss the details of their formation,

as well as a unique approach to using these streams, based on a maximum likelihood

analysis, to constrain the properties of the host galaxy halo.



16

Chapter 2

Formation of Stellar Streams

2.1 Introduction

We as a species seem to be fascinated with objects smashing into each other, be it

tiny atoms or massive galaxies. Besides the wonderful visual treats these collisions

produce, they provide an opportunity to study the forces and phenomena that come

into play at the scales involved. Minor mergers, in which a relatively small galaxy,

such as a globular cluster or a dwarf spheroidal, falls into a much larger galaxy, usually

leave behind coherent structures such as shells, arcs and long streams of stars that

are now observed around several galaxies. Such kinematically cold, thin and long

structures are the centerpiece of this thesis and in this chapter, the physics behind

their formation is reviewed in order to understand how to use them effectively to

study gravity and mass profiles at galactic scales. The two forces which influence

the evolution of a satellite galaxy are the tidal forces and dynamical friction, both of

which are discussed here.

2.2 Tides

Tides are the second-order effect of a gravitational field, the first being gravitational

acceleration. It is essentially the difference in the gravitational pull across an extended

body as a result of the difference in distance of the various points of the body from the
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Figure 2.1: M1 and M2 are the host and satellite galaxies. P is a test particle or a
star of the satellite, at whose position the tidal field is investigated.

center of the gravitational field. Consequently, tides are a powerful means of sensing

and measuring a gravitational field from within it. At the heart of the tidal streams

formation scenario is the classical restricted three body problem (Szebehely, 1967),

in which the motion of a test particle (of negligible mass) under the gravitational

influence of two massive bodies is studied. Consider the system shown in Figure 2.1,

in which the potential at the test particle or star P due to the host galaxy M1 and

the satellite M2 can be expanded in Taylor series as:

φ( ~X) = φ(~R) + ~x ·
[
∇ ~R′φ( ~R′)

] ∣∣∣
~R′=~R

+
1

2
~x ·
[
~x · ∇ ~R′(∇ ~R′φ( ~R′))

] ∣∣∣
~R′=~R

(2.1)

+
1

6
~x ·
[
~x ·
[
~x · ∇ ~R′(∇ ~R′(∇ ~R′φ( ~R′)))

]] ∣∣∣
~R′=~R

+ . . .

When the force due to the potential is now calculated from this expansion as−∇φ( ~X),

the first term which is a constant vanishes. The second term contributes to the

gravitational acceleration. The third term is the matrix of the second order partial

derivatives of the potential, also known as its Hessian. This third term gives rise to
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the tidal force, that is, the variation of the gravitational acceleration, at the point of

interest. For a Keplerian case, where φ(X) = 1

| ~X|
, the second RHS term in equation

2.1 becomes:

~x ·
[
∇ ~R′φ( ~R′)

] ∣∣∣
~R′=~R

=
~x · ~R
|~R|3

(2.2)

and the third term becomes:

1

2
~x ·
[
~x · ∇ ~R′(∇ ~R′φ( ~R′))

] ∣∣∣
~R′=~R

= −1

2

|~x|2

|~R|3
+

3

2

(~x · ~R)3

|~R|5
(2.3)

Adding the above two terms, we get the acceleration in a Keplerian potential:

g( ~X) = − R̂

|~R|2
−

(
~x

|~R|3
− 3

(~x · R̂)R̂

|~R|3

)
. (2.4)

The tidal force, given by the bracketed term, reduces to 2|~x|
|~R|3

when ~x is parallel to

~R and to −~x
|~R|3

when ~x is perpendicular to ~R. Consequently, the satellite M2 gets

tidally stretched in the radial direction and compressed in the tangential direction,

with respect to the point source M1. The amount of compression and stretching

depends upon the potential form of the host galaxy M1. The tidal field affects a

satellite on a trajectory in the potential in two distinct ways. The first is by limiting

the plausible size of a satellite in the potential, pruning away stars for which the

gravitational acceleration towards the satellite is weaker than the tidal pull of the

host. This is known as tidal pruning and occurs even at large distances, where the

tidal field is stationary. The second and the more disruptive of the effects is tidal

shocking, which takes place when the in-falling satellite has high speed and is close

enough to the center of the galaxy where the changes in the tidal field are quite large.

These conditions are usually satisfied during pericenter passages, which is when tidal

forces wreak the most havoc, ejecting stars from the satellite, sometimes leading to

complete disruption of the satellite. Both these effects are discussed in further detail

in the following sections.
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Figure 2.2: Zero velocity curves corresponding to two values of the Jacobi integral
EJ . Ej = 0.07363178in (a) and Ej = 0.07175149 in (b). In (a), the zero velocity
curves isolate the masses from each other and therefore, stars around m with this
energy cannot escape it. In contrast, the zero velocity curve in (b) surrounds both
the masses and it is therefore possible for a star orbiting m to escape through the
gap to orbit M .

2.2.1 Tidal Pruning

In order to understand the motion of the stars in the outer regions of the satellite

galaxy due to the tidal field, let us consider the simple case of a satellite on a circular

orbit of radius ~R around the host galaxy. We further assume that the host and

satellite are both point masses and that they rotate about their common center of

mass with an angular velocity:

Ω =

√
G(M1 +M2)

R3
. (2.5)

In a reference frame centered at the center of mass of the system and rotating

with the system at the same angular speed, the gravitational field Φ is stationary. If

the position and velocity of a star of the satellite in this rotating frame are given by

~x and ~̇x, its Lagrangian is given by

L =
1

2
|~̇x+ Ω× ~x|2 − Φ(~x), (2.6)
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Figure 2.3: A contour plot of constant effective potential. The host M is ten times
as massive as the satellite m, which is in a circular orbit around M . The Lagrange
points are L1, L2, L3, L4, and L5. The ones of particular interest to us are L3 and L2,
through which stars of the satellite may escape.

and its momentum by

~p =
∂L
∂~̇x

= ~̇x+ Ω× ~x. (2.7)

Therefore, the Hamiltonian of the star in the rotating frame is (Binney and Tremaine

2008 §3.3.2):

HJ = ~p · ~̇x− L

=
1

2
p2 + Φ− Ω · (~x× ~p). (2.8)

The time derivative of the Hamiltonian vanishes in the rotating frame because Φ

remains constant with time, which implies that it is an integral of the motion. Sub-

stituting for ~p from equation 2.7, we get an expression for the integral of the orbit of

a star in such a system, known as the Jacobi integral:

EJ =
1

2
v2 + Φeff (~x), (2.9)



21

where Φeff is the effective potential at ~x given by the sum of the gravitational po-

tential due to the satellite and host and the repulsive centrifugal potential due to the

rotation of the system:

Φeff (~x) = Φ(~x)− 1

2
|Ω× ~x|2. (2.10)

It is to be noted that neither energy nor angular momentum of star P is conserved

and EJ is the only integral of motion. Since the equations of motion have only

one constant, they cannot be exactly solved. However, the Jacobi integral restricts

the parts of phase-space that the stars of the satellite are allowed in. Rearranging

equation 2.9, we see that for the velocity of a star in the system:

v2 = 2 [EJ − Φeff (~x)] , (2.11)

so that for points ~x for which EJ = Φeff (~x), the velocity is zero. These points are

the stationary points of the system, where the gravitational force is balanced by the

centrifugal force and define the zero-velocity surface for stars with Jacobi integral

EJ . Since regions with EJ ≤ Φeff (~x) have negative or zero v2, they are forbidden

to the stars and the zero-velocity surfaces demarcate these forbidden regions. Figure

2.2 shows the zero velocity curves for two different values of EJ . In the left panel,

the stars of M2 within the curve centered on it cannot escape, whereas in the right

panel, they can do so and orbit M1 instead, since the zero velocity curve surrounds

both M1 and M2. In a series of such curves, as the one in Figure 2.3 of the contours

of constant effective potential of a host-satellite system, the last curve that surrounds

only the satellite M2 defines its Roche limit. The distance from the center of the

satellite to the Roche surface is called its Jacobi radius rj, almost synonymous with

its tidal radius, since the stars that are within the Jacobi radius remain bound to

the satellite indefinitely and thus defines the extent of the satellite. The maxima and

saddle points of the zero velocity surfaces make up the five Lagrange points of the

system, as marked in Figure 2.3. The points that are of interest to us are L2 and L3,

through which stars, that have sufficient energy to be outside the tidal radius of the

satellite, may escape. Under the present assumptions, where M1 and M2 are point
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Figure 2.4: (From Fukushige and Heggie (2000)). Top panel: the orbit of a star with
energy above the escape energy. The tar attempts to leave the system close to the
L2 point (located at x ∼ 3.1, y = 0), but “bounces” off it. The bottom panel shows
a close-up of this region, with several orbits of similar energy also failing to escape.

masses, with M2 �M1 and in a circular orbit of radius R, the Jacobi radius is given

by:

rJ =

(
M2

3M1

)1/3

R. (2.12)

In non-circular orbits such an analytic formula for the Jacobi radius cannot be derived.

However, there does exist a tidal extent for the satellite, as well as analogs of the

Jacobi integral and the Lagrange points. It is often the case that the tidal radius may

be approximated for practical purposes with a modification to the above expression

for the Jacobi radius. For instance, if the host is of the form of an isothermal sphere,

then multiplying the above formula for rJ by 1.145 yields the radius of the stationary

points. We use a similar empirically found multiplicative factor in this thesis, for

approximating the formation of streams.

Some of the stars of the satellite gain sufficient kinetic energy due to relaxation

processes to be outside the Roche surface and get ripped out of the satellite from
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Figure 2.5: The orbit of an escaping star in a restricted three-body system with a
point-mass potential for the host. After many revolutions around the satellite, the
star manages to escape via the L2 point. (Credit: Douglas Heggie).

its Lagrange or analagous stationary points. However, if these sufficiently energetic

stars miss the narrow Lagrange regions, they cannot escape the system. Figure 2.4

shows orbits of such stars which pass close to the Lagrange point, but fail to escape.

Figure 2.5 shows the orbit of a star which does manage to escape via the L2 point.

It has also been found that at times, despite being unbound, certain stars,continue

to closely follow the satellite, because they gain the unbinding energy slowly and

their orbital parameters remain similar to those of the bound stars (Ross et al., 1997;

Johnston et al., 1999; Fukushige and Heggie, 2000). This effect blurs the actual tidal

extent of the satellite and makes observational comparisons with simulations difficult.

If we rewrite equation 2.12 in terms of the densities of the host and the satellite, it

immediately follows that the average density of the satellite cannot be more than

three times that of the host. In this way, the host also limits the density of the

satellite.
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2.2.2 Tidal Shocks

When the satellite approaches the pericenter of its orbit, the rapidly changing tidal

field perturbs its stars and increases the velocities of a large number of stars drastically

so that they are able to escape the satellite’s gravitational field. This disruption of

the satellite over the short time-period of the pericenter passage can be understood

well by applying the impulse approximation and the distant-tide approximation for

encounters together. In the impulse approximation, the positions of the stars are

assumed to remain the same during the encounter and only the changes in their

velocities are examined. Comparing with numerical simulations, Aguilar and White

(1985) show that this approximation is valid even when the encounter time is long.

The change in the internal kinetic energy is given by:

∆E =
1

2

∑
α

mα|∆~vα|2 (2.13)

where mα denotes the masses of the constituent stars and ∆~vα is the component of

the change in its velocity left over after accounting for the change in the center-of-

mass velocity of the satellite. The distant-tide approximation holds when the size

of the satellite is much smaller than the impact parameter so that the tidal field

across the satellite varies smoothly. Hence, it can be expanded as a Taylor series

about the center-of-mass, just as in equation 2.1, with the third and higher order

terms being neglected. The first-order term contributes to the increase in the center-

of-mass velocity and the second-order terms alone contribute to ∆~vα in the above

equation.

2.3 Dynamical Friction

Besides tidal acceleration and disruption, an important factor that affects the trajec-

tory of a satellite galaxy is the frictional drag it experiences as it moves through the

field of the host galaxy. However, as we show at the end of the section, the effect

is can be neglected for the range of satellite masses in our study. Nevertheless, it
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is an important ingredient in the formation of stellar streams and is essential to be

included in the extensions of the method for higher mass satellites.

A physical explanation of it is as follows: consider a field of stars or point masses

each of mass ma through which a satellite galaxy of mass M moves. As it does so,

the satellite attracts the field stars to itself, increasing the local density. By the

time the field stars or point masses gather, the satellite moves further ahead and the

increase in density behind it acts as a wake. The mass of the wake pulls the satellite

backwards, decreasing its velocity, which causes the orbit of the satellite to decay

over time. Energy is conserved during the process as the kinetic energy lost by the

satellite is the sum total of the kinetic energy gained by the stars in the wake.

In order to characterize the strength of the frictional force, we treat the redistribu-

tion of energy and momentum between the satellite and the field stars as a diffusive

process. The fluctuation in the phase-space density f(~x,~v, t) of the field stars due

to their encounter with the satellite, also known as the encounter operator Γ[f ], can

be calculated as the difference of the influx probability and outflux probability. If

Ψ(~w,∆~w)d6(∆~w)∆t is the probability of a star with phase-space coordinate ~w to be

scattered into the volume of phase-space density d6(∆~w) around ~w + ∆~w during a

time interval ∆t, this gives us the net increase in phase-space density around the star

to be

∂f

∂t
= Γ[f ]

=

∫
d6(∆~w)[Ψ(~w −∆~w,∆~w)f(~w −∆~w)−Ψ(~w,∆~w)f(~w)]. (2.14)

The above equation is similar to the diffusion equation. For weak encounters, the

change in velocity of a star is much smaller than its velocity, that is ∆~w is small and

one may expand the first term of the integral as a Taylor series. Truncating it at

the second-order terms and using it in equation 2.14, we arrive at the Fokker-Planck

approximation

Γ[f ] = −
6∑
i=1

∂

∂wi
{D[∆wi]f(~w)}+

1

2

6∑
i,j=1

∂2

∂wi∂wj
{D[∆wi∆wj]f(~w)}, (2.15)
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where D[∆wi] is the first-order diffusion coefficient and quantizes the net drift of the

satellite through phase-space due to the frictional force. D[∆wi∆wj] is the second

order diffusion coefficient which represents the random walk of the satellite due to the

field stars. As the satellite is much more massive than the field stars, this second-order

effect is negligible. Moreover, since the encounters between the satellite and field stars

are local, they affect only the velocity components. Therefore, the phase-space coor-

dinates wi and wj in equation 2.15 may be replaced by the corresponding velocities vi

and vj. The first-order diffusion coefficient, which is the only contributing factor for

the present scenario, reduces to the average value of the changes in velocities D[∆vi].

If the distribution function of the field stars is isotropic, then the average velocity

changes in the directions perpendicular to the motion of the satellite cancel out and

the net change in velocity is solely along the direction of its motion. This decelerating

force acting opposite to the direction of motion is known as dynamical friction and

under the present assumptions, is given by the Chandrasekhar’s dynamical friction

formula (Chandrasekhar, 1943):

d~vM
dt

= −16π2G2Mma ln Λ

[∫ vM

0

dvav
2
af (va)

]
~vM
v2
M

(2.16)

where ln Λ is the Coulomb logarithm, which for a satellite of half-radius rh is given

by

ln Λ = ln

(
bmax

max(rh, GM/v2
typ)

)
(2.17)

and bmax is the maximum impact parameter. For very large velocities, equation 2.16

reduces to
d~vM
dt

= −4π2G2Mman ln Λ
~vM
v3
M

. (2.18)

This implies that at large velocities the frictional force is inversely proportional to the

square of the velocity, large velocities giving less time for the wake to gather. It is to

be noted, however, that at low velocities equation 2.16 reduces to the form of Stoke’s

law and the deceleration is proportional to the satellite velocity. For a Maxwellian
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Figure 2.6: The decay of the orbit of point mass satellites. The decrease in the radius
over time of satellites of mass 109 M� (left hand panel) and 1010 M� (right hand panel)
in a Milky Way potential are shown. The effect of dynamical friction is negligible for
the lower mass satellite, but clearly significant with increasing mass.

distribution function with dispersion σ, the Chandrasekhar formula becomes

d~vM
dt

=
−4π2G2Mnm ln Λ

v3
m

[
erf(X)− 2X√

π
e−X

2

]
~vM , (2.19)

where X ≡ vM/(
√

2σ). The above equations show that the deceleration is propor-

tional to the mass of the satellite. The more massive the satellite, the more the

bodies gathered in the wake resulting in a larger wake mass, and a proportionally

larger decelerating force on the satellite. This is evident in Figure 2.6, which shows a

comparison of the orbital decay of point mass satellites of masses 109 M� and 1010 M�,

as they evolve in a Milky Way type potential. Similarly, the higher the number den-

sity of the host field the more the field stars that are gathered in the wake, increasing

the frictional force.

Using the frictional force in the Lagrangian of the satellite enables us to integrate

the time it takes to spiral to the center of the host galaxy. For a globular cluster

or dwarf spheroidal that gets tidally stripped during the course of its trajectory, the
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inspiral time from an initial circular orbit of radius ri turns out to be (Binney and

Tremaine, 2008):

tfric =
2.34

ln Λ

σ2
M
σ3
s

ri, (2.20)

where σM and σs are the velocity dispersion of the host and satellite respectively.

Typical satellites in our study are globular clusters or dwarf spheroidals with masses

in the range of 108 M� to 109 M� and the host galaxies are Milky Way type spirals with

masses of about 1012 M�. If σs . 0.5σM, the Coulomb logarithm from equation 2.17

simplifies into the form Λ = 23/2σM/σs (Binney and Tremaine, 2008). Thus, a satellite

with a velocity dispersion of 50 km s−1 on an initial circular orbit of radius 30 kpc

around a host galaxy with velocity dispersion of 200 km s−1, takes approximately

10 Gyr to spiral to the center. We limit our study to such values where the effect

of dynamical friction is unimportant and does not need to be taken into account to

obtain the path of a tidal stream from a given progenitor orbit (see Chapter 3).

2.4 Numerical Aspects of Tidal Streams

The evolution of a satellite galaxy in the potential of a much larger host and the

resulting stellar stream of a typical minor merger can be studied in great detail with

the help of simulations based on N-body codes. One such simulation is shown in

Figure 2.7, of the disruption of a Sagittarius-type dwarf galaxy in a realistic Milky

Way potential. In this section, the basic principles behind N-body simulations and

other important numerical tools which we use extensively in our study, namely orbit

integration and multipole expansion, are discussed.

2.4.1 Orbit Integration

Orbit integration is a crucial component of the work included in this thesis, as it

primarily revolves around fitting observed tidal streams with corrections to possible

orbits of the in-falling satellite galaxy. An orbit of a particle in a given potential is

computed by integrating its equations of motion forward in time, starting from an
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initial set of values for of position and velocity. There are several schemes available

for numerical integration, such as the Leapfrog integrator, the Runge-Kutta family

of integrators, and adaptive step-size integrators. Adaptive step-size integrators and

the fourth-order Runge-Kutta (RK4) provide high accuracy, and the most preferred

integration scheme is the adaptive step-size for most purposes, as it adjusts the time-

step to gain a required level of accuracy. Even though we used the adaptive step-size

scheme in the initial phase of the project, we found that using the RK4 integrator saves

much time when the sampling algorithm involves other time consuming components

such as Poisson solvers, and does not result in any significant loss of accuracy.

The equation of motion r̈ = −∇Φ can be solved by breaking it down into two first

order differential equations:

dv

dt
= −∇Φ

dr

dt
= v . (2.21)

Putting the above equations in the general form of a first order differential equation

dy

dt
= f(y, t), (2.22)

the value of the variable y after a short time interval h is evaluated from its current

value yt as:

yt+1 = yt +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5), (2.23)

where k1, k2, k3, k4 are given by:

k1 = hf(yt, t)

k2 = hf

(
yt +

k1

2
, t+

h

2

)
k3 = hf

(
yt +

k2

2
, t+

h

2

)
k2 = hf (yt + k3, t+ h) (2.24)
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The above prescription for updating the position and velocity of the body in motion is

known as the fourth order Runge-Kutta. A detailed discussion of the scheme and other

useful integrators can be found in Press et al. (1992). The equations of motion, which

determine the orbit of the body, depend on the gradient of the potential in which

the body moves. The potential of a matter distribution may be given directly or can

be derived from the density distribution of the field. In this thesis, potential forms

of both kinds are used. In order to calculate the potential or resulting acceleration

at a point from an analytical density distribution, such as the double spheroidal

introduced in Chapter 3, we resort to multipole expansion in spherical coordinates.

2.4.2 N-body Simulation

The stellar stream results from the motion of the satellite galaxy along an orbit in the

potential of the host, which may be integrated as described in the previous section,

as well as gravitational interactions between the stars of the satellite. N-body codes

are concerned with such mutual interactions of a system of particles. The simulation

shown in Figure 2.7 and all the others used in this thesis have been performed with

“gyrfalcON”, an N-body code implemented in “NEMO” (Teuben, 1995), which is

similar to but much faster than standard tree-codes.

The goal of an N-body code is to alternatively calculate the acceleration individual

particles experience due to the gravity of all the other particles in the system and then

advance the particles by the required amount. The straightforward method of directly

summing up all the forces on a given particle due to each of the other particles is time-

consuming when the number of particles is of the order of 105 or more, but is useful

in certain situations in which the number of particles is small. In the classic tree-

code (Barnes and Hut, 1986), the forces on a particle due to each nearby particle is

summed up directly, but the contribution to the force due to particles that lie farther

away is calculated by grouping these as pseudo single particles. This is achieved

by sub-dividing an imaginary cube which encloses the whole system, known as the

root cube, into eight cubes of equal sides, the cubes of which contain more than one

particle are further sub-divided into eight daughter cubes and so on until each cube
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Figure 2.7: N-body simulation of the formation of a stellar stream by the disruption
of a dwarf spheroidal in a Milky Way potential. The left panels and right panels show
the projections of the particles of the satellites in the XY and XZ planes respectively,
at times T = 0, 0.5, 1.0 and 8 Gyr from top to bottom. The insets show the core of the
satellite at each stage. The N-body integrations were performed using “gyrfalcON”
in NEMO.
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is either empty or has only one particle. Once the tree is set up, each cell at each

level is assigned its total mass and its center-of-mass, starting from the highest order

individual cubes up towards the root cube. When a cube lies farther enough from

the particle whose acceleration is to be calculated, it is treated as a particle with the

total mass of the cube positioned at its center-of-mass. If the cell is not far enough,

it is resolved into its sub-cells, each of which is either treated as a single pseudo-

particle or further resolved. Whether a cell lies far enough from the given particle,

or whether it needs to be resolved, depends on the ratio of the length of the cell in

question (l) to the distance of the center-of-mass of the cell (d). If l/d is less than

a certain prescribed value, known as the opening angle parameter θ0 and usually set

to ∼ 1, then it is not further resolved and treated as a single pseudo particle. The

contributions of the validated particles and pseudo-particles are summed up to yield

the total acceleration ~aα of the particle in question:

~aα =
∑
β 6=α

GS(|~rβ − ~rα|)
~rβ − ~rα
|~rβ − ~rα|

, (2.25)

where S(r) is a softening kernel introduced to avoid divergences that arise when ~rβ =

~rα, which asymptotically reduces the acceleration to that of a Keplerian for distances

greater than the softening length ε and makes it zero when ~rβ = ~rα. The different

forms of the softening lengths in practical use and their pros and cons are discussed

in Dehnen (2001). Figure 2.8 shows the subdivision and hierarchical grouping of a

system of particles as in the classical treecode algorithm.

The algorithm which is used to calculate the accelerations in gyrfalcON is falcON

(Force Algorithm with Complexity O(N); Dehnen 2002). It is a combination of

the tree-code described above with the fast multipole method (FMM), rendering it

faster by a factor of ten. In falcON, the stellar system is grouped hierarchically as in

the standard tree-code, but mutual interactions between between pairs of particles or

pseudo-particles are calculated simultaneously, saving computational time.

From the simulation shown in Figure 2.7, we can see that during the evolution of

the satellite in the potential of the host, its stars have escaped from the equivalent of



33

Figure 2.8: Taken from Barnes and Hut (1986): A two-dimensional representation of
the hierarchical grouping of particles for force calculation in the tree code. The left
panel shows the subdivided cells such that each cell has only one particle. The right
panel shows the system in relation to the particle x, using the opening angle critierion.
The squares show the particles that are grouped together as a pseudo-particle in the
force calculation for x.

the Lagrange points L1 and L2. The disruptions take place during pericenter passages.

The escaped stars follow the orbit of the satellite closely, but are clearly on different

orbits. The stars from the two escaped regions form two streams, an inner one which

is on a faster orbit and called the leading arm, and an outer one which lags behind

the satellite and is called the trailing arm. Towards the end of the simulation, more

features become discernible such as tiny bifurcations in the arms. The insets show

the evolution of the progenitor, which gets completely disrupted, although it need not

always be the case. It is found that these streams remain coherent for a long period

of time (Johnston et al. 1996) since they are far from the dense inner regions, and

do not phase-mix quickly. However, they are difficult to detect, especially in external

galaxies, since the low mass accretions we are considering here naturally give rise to

very faint structures. Another difficulty is the ability to distinguish between streams

from multiple accretions, particularly when the progenitors are completely disrupted

or obscured. Despite these problems, stellar streams are fast emerging as one of the

most powerful potentiometers at the galactic scale.
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Chapter 3

Stellar Streams as Probes of Dark

Halo Mass and Morphology

This chapter appeared as a publication in the Monthly Notices of the Royal Astro-

nomical Society (Varghese et al., 2011).

Abstract

Tidal streams provide a powerful tool by means of which the matter distribution of

the dark matter halos of their host galaxies can be studied. However, the analysis is

not straightforward because streams do not delineate orbits, and for most streams,

especially those in external galaxies, kinematic information is absent. We present a

method wherein streams are fit with simple corrections made to possible orbits of

the progenitor, using a Bayesian technique known as Parallel Tempering to efficiently

explore the parameter space. We show that it is possible to constrain the shape of

the host halo potential or its density distribution using only the projection of tidal

streams on the sky, if the host halo is considered to be axisymmetric. By adding

kinematic data or the circular velocity curve of the host to the fitting data, we are

able to recover other parameters of the matter distribution such as its mass and

profile. We test our method on several simulated low mass stellar streams and also

explore the cases for which additional data are required.
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3.1 Introduction

The global features of the dark matter halos of spiral galaxies such as their mass,

shape and extent hold key clues to understanding the nature of dark matter particles

as well as galactic evolution and morphology. Simulations of cold dark matter tend

to produce halos that are oblate (Dubinski, 1994; Debattista et al., 2008) or triaxial

(Frenk et al. 1988; Dubinski and Carlberg 1991; Bett et al. 2007) whereas hot dark

matter models yield more spherical halos (Mayer et al., 2002; Bullock, 2002) and

baryonic dark matter such as cold molecular gas form disk-like halos (Pfenniger et al.,

1994). It is crucial to test these theoretical predictions with observations and to this

end, several techniques have been developed to probe the vertical distribution of

dark matter around galaxies. These range from methods that are very local, such as

measuring the density of dark matter in the Solar neighbourhood which is sensitive to

the halo flattening (Kuijken and Gilmore, 1989), to methods based on gravitational

lensing (Hoekstra et al., 2004; Mandelbaum et al., 2006). Yet, a conclusive result

remains elusive. This is in part due to the small sample of galaxies for which these

measurements have been made. The other cause for the disagreement in results may

be the systematic differences in the methods themselves. For instance, Olling and

Merrifield (2000) measured the flattening of halos based on its effect on the thickness

of the H I gas layer in disk galaxies and find that their method tends to yield flatter

halos as opposed to other techniques such as those based on warped gas disks. A recent

study of halo shapes based on H I flaring can be found in O’Brien et al. (2010a,b,c,d).

See Sackett (1999) for a review of earlier work on the subject, and Merrifield (2004)

for measurements of the shape of the Milky Way halo. Allgood et al. (2006) contains

a more recent comparative study of different methods to determine halo shapes.

Orbits in a potential are simple, yet powerful tracers of the matter distribution.

Polar rings in early-type galaxies are a good example of these (Sackett et al., 1994b;

Iodice et al., 2003; Combes, 2006). In this paper, we use a similar tracer, namely the

stellar streams that are formed by the tidal disruption of globular clusters or dwarf

spheroidal galaxies as they fall into the halos of larger spiral galaxies. The stars that

make up the stream are ejected from the in-falling satellite due to tidal disruption
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and shocks during pericenter passages. The stream stars occupy (approximately) two

different orbits that are slightly offset from that of the progenitor, one that is ahead

of it and one lagging behind, making up the leading and trailing arms of the stream

respectively. The positions of the stream stars can be calculated fairly easily from the

orbit of the progenitor (see §3.5). As the geometry of the stream depends on the orbit

of the progenitor, which in turn depends on the potential of the host galaxy, it can

be used to constrain the parameters of the halo potential or its density distribution.

Tidal streams in the halo have the added advantage of being far enough from the

bright galactic components that the fitting is unaffected by small errors in the disk

and bulge models. Tidal tails formed by interacting disk galaxies in major mergers

can also be used to probe the parent halos (Dubinski et al., 1999; Springel and White,

1999), but in this study, we focus solely on stellar streams formed in minor mergers.

Several stellar streams have been observed in the Milky Way; these include the

Sagittarius (Ibata et al., 2001b; Majewski et al., 2003), the Orphan (Belokurov et al.,

2007; Grillmair, 2006) and the Monoceros tidal streams (Newberg et al., 2002; Conn

et al., 2005, 2007, 2008). Stream-like structures have also been observed around many

nearby galaxies, for example M31 (Ibata et al., 2001a, 2004), NGC 5907 (Mart́ınez-

Delgado et al., 2008), NGC 891 (Mouhcine et al., 2010) and others; refer Mart́ınez-

Delgado et al. (2010) for a recent systematic survey of streams in nearby spiral galax-

ies. Many more remain to be uncovered by future surveys that are increasingly sensi-

tive to low surface brightness objects, enabling an extensive application of techniques

based on them. These could provide a large sample of measurements of halo shapes

and profiles, which is required if we are going to be able to uncover the generic prop-

erties of dark halos and study the possible correlations with their formation histories.

There has been an ongoing effort in recent years to glean information from these

streams about their host halo distribution. For example, the fact that the stars of

the Sagittarius tidal stream lie on a narrow great circle on the sky (implying little

precession) and that the stream has not been dispersed, initially led to the conclusion

that the Milky Way has a spherical halo (Ibata et al., 2001b; Majewski et al., 2003).

Mayer et al. (2002), Helmi (2004) and Mart́ınez-Delgado et al. (2002) suggested that



37

this need not necessarily be the case as the debris is dynamically young and may not

be sensitive to the shape of the halo. Law et al. (2009) have shown that the Sagittarius

tidal stream is best reproduced in a triaxial halo and more recently, a more mildly

triaxial halo (Law and Majewski, 2010). Attempts have also been made to constrain

the Galactic potential by fitting thin, cold streams found in the Milky Way halo,

GD1 (Grillmair and Dionatos, 2006) and Palomar 5 (Odenkirchen et al., 2003), with

orbits integrated in a triaxial potential, but the data were found to be insufficient to

discriminate between possible solutions, although triaxial models seem to be favored

over spherical ones (Lux, 2010). However, by fitting the GD-1 stream with orbits

in a logarithmic, axisymmetric potential, Koposov et al. (2010) have estimated the

flattening of the Milky Way potential at galactocentric radii near R ∼ 15 kpc at 0.9

and a lower limit for the flattening of its halo potential at 0.89.

In general, there are two main challenges that have so far hindered the successful

application of tidal streams in constraining halo shapes. One is that tidal streams

do not exactly delineate individual orbits in the galactic potential (Eyre and Binney

2009a,b) and treating them as such may result in incorrect estimates. We overcome

this hurdle by fitting a given stream with corrected sets of points computed from

the progenitor orbit. The other limitation is that in most systems, only projected

coordinates of the stream on the sky are available. In closer systems such as the

Andromeda galaxy (M31), line of sight velocities are also available and distances to

globular clusters or dwarf galaxies that may be the stream progenitors are measurable

using the tip of the Red Giant Branch (TRGB method - see McConnachie et al. 2004.

In previous studies using tidal streams, the approach has been to try to reproduce the

observed streams using a few N-body simulations (typically less than 10). It has been

found that the phase space information is insufficient in reasonably constraining the

halo parameters using this approach. The N-body technique is severely handicapped

by the fact that it is only possible to explore a tiny fraction of the full parameter space

with such simulations. We redress this shortcoming by adopting a statistical approach

sampling the parameter space of possible progenitor orbits and halo parameters using

a Markov chain Monte Carlo routine. The sampling yields distributions of the halo
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structural parameters that peak at their most likely values. We find in our tests

on simulated streams that it is possible to estimate halo shapes using this method

even with limited phase space information. We also find that it is possible to recover

line of sight distances along streams in cases where they are not available. In this

paper, we explore how much and what information is required to uniquely estimate

the orbital and potential parameters using this statistical approach and how the

estimates improve with additional data. Later contributions in this series will use the

technique developed here to actual observed systems.

3.2 Methodology

Consider a galaxy whose disk lies in the XY plane. We assume that the mid-plane

of its bulge and halo coincide with this plane. We also assume that the halos we

study are static and have an axisymmetric density profile, even though the density

profile of the dark halo is generally considered to be a triaxial ellipsoid (Dubinski and

Carlberg 1991; Jing and Suto 2002; Bailin and Steinmetz 2005). The flatness of the

distribution is given by the ratio of the polar to the equatorial axis (c/a) and the

ovalness by the equatorial axis ratio (b/a). In the most general models, which involve

a superposition of ellipsoids, c/a and b/a vary with radius.

However, for the present contribution, we make the simplifying assumption that

the equatorial axes are equal (b/a = 1), and that the halo has a flattening of q =

c/a (we discuss both flattening in the potential and density distribution). Studies

have shown that this is a reasonable assumption for the halos of spiral galaxies,

especially far from the galactic disk where it becomes spheroidal (Debattista et al.

2008; Kazantzidis et al. 2010).

Throughout the paper, we analyse the specific case of a host galaxy that is viewed

edge-on, although the method can be very simply adapted to systems that do not

have that geometry. What we have access to are the projected coordinates (x,z) of

a tidal stream in its potential, and the width of the stream providing an uncertainty

of σ on these coordinate values. The tidal stream has two tails: the leading and the
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trailing tails. In reality, each tail consists of several different yet very similar orbits,

the stars along these having similar values of energy and angular momentum. The

slight difference in these orbits show up in places in the form of bifurcations and

small protrusions from the main stellar feature. In this paper, we neglect these tiny

features and only consider the longest, contiguous structures that we observe. The

method is only applicable in its current simple form to streams of low mass satellites

( <∼ 108 M�), for which the self-gravity of the stream is negligible. This allows us to

ignore dynamical friction which would have to be taken into consideration for more

massive and heavily disrupted systems.

The method for fitting the streams is briefly as follows. Different values of the halo

potential parameters and the orbital parameters of the progenitor are tested, each set

of values corresponding to a point in the multidimensional parameter space. For each

set of parameters considered, an orbit is integrated and a set of points is calculated

that represents the stream that would be formed by a satellite on the orbit (see §3.5);

we refer to this as the trial stream corresponding to the point in parameter space under

consideration. Comparing the trial stream to the observed stream (or the N-body

generated test stream in the present work), we measure how likely the parameters

are to be the ones that generated the observed stream. We sample different values of

the parameters using a Markov chain Monte Carlo (MCMC) algorithm, in order to

deduce the distribution of parameter values that are consistent with the data. For the

galactic halo potential, we use two models: a purely logarithmic halo for its simplicity

and a more realistic multiple-slope power-law model.

In §3.4, we explore how the quality of the estimate depends on the quantity and

type of information available. We discuss cases for which the streams are shorter or

have fewer turning points. We also consider the different kinds of data that may be

available and their effect on the accuracy of the estimate. For instance, line of sight

velocities and/or distances at some points along the stream or the rotational velocity

curve are available for nearby systems. The method is tested on these various cases

with pseudo-data generated by N-body simulations.
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3.3 The Fitting Routine

In this section, we first briefly discuss the general principles of maximum likelihood

estimation and parallel tempering, and then describe how we apply it to fitting tidal

streams.

Maximum likelihood parameter estimation is a robust method of determining the

parameters of a model that maximize the likelihood of a data set. The likelihood of

a set of parameters is the probability of obtaining the given data for those parameter

values. Suppose the data set consists of N independent observations of a random

variable x which has a probability distribution function f(x; Θ) that depends on a

set of k parameters Θ which are to be estimated, then the likelihood is calculated by

the product of the values of the distribution function for each data point (Gregory,

2005):

L(x1, x2, ..., xN |Θ1,Θ2, ...,Θk) =
N∏
i=1

f(xi; Θ1,Θ2, ...,Θk). (3.1)

The estimated values of the parameters Θ are the ones for which this likelihood is

maximum. A basic and simple algorithm to find this set of parameters is known as

the Metropolis Algorithm, which probes the parameter space in an efficient way to

locate the parameters for which the likelihoods are high. The sampling is done by a

chain that walks through the parameter space.

For a single chain, the walk through the parameter space basically involves choos-

ing a random point that we consider to move to, and then moving to it or staying put

based on a likelihood criterion. Such a chain is known as a Markov chain Monte Carlo

(MCMC). A chain is set off at an initial random point Θt=0 in the parameter space (t

being the time step of the MCMC), and we calculate the likelihood at this point, say

L(Θt). Then we consider another point Θ′ (the trial point) in the parameter space,

from a proposal distribution and calculate its likelihood L(Θ′). In our algorithm, the

proposal distribution is a normal distribution centered on the current point. If the

trial point falls beyond the plausible range of the parameters, then we set its likeli-

hood to be arbitrarily low. We calculate the Metropolis ratio, r = L(Θt)/L(Θ′). If

this is greater than 1, then we take the trial point as the next point in the chain. If
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r < 1, then we pick a uniform random number U between 0 and 1. If U ≤ r, then

we take the trial point as the next point (Θt+1 = Θ′), else we stay at the same point

(Θt+1 = Θt). Proceeding in a similar fashion, we explore the full parameter space.

Parallel Tempering

In many cases, especially in multidimensional parameter space, there are usually

many local likelihood maxima, whereas we seek the global maximum. Using only a

single chain, the algorithm often becomes stuck in a local maximum. To avoid this,

multiple chains of different “temperatures” are used to step through the parameter

space. Effectively, this means that for a chain of temperature T , its likelihood is

raised to the power of the inverse of its temperature, i.e.:

Lβi = (L1)
βi , (3.2)

where L1 corresponds to the likelihood at a temperature of 1 (given by equation 3.1

in general, which reduces to equation 3.4 for the present study) and βi = 1/Ti. Ti

is the temperature of the ith chain. As T ranges from 1 to infinity, β takes values

from 1 to 0. The higher temperature chains are less sensitive to the likelihood, and

take larger strides through the parameter space. Suppose we use n parallel chains

and swap their states after every ns steps on average. The higher temperature chains

pull out the colder chains from local maxima they may be stuck in. The algorithm

for the swapping of chains is as follows:

1. At each step, choose a uniform random number U1 between 0 and 1. A swap is

proposed if U1 ≤ 1/ns.

2. If a swap is proposed, we consider swapping the states of chain i and i + 1,

where i is a random integer between 1 and n− 1.

3. Calculate the swapping probability,

r =
Lβi(Θt,i+1)Lβi+1

(Θt,i)

Lβi(Θt,i)Lβi+1
(Θt,i+1)

(3.3)
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where Θt,i and Θt,i+1 are the current points on the ith and (i + 1)th chains

respectively, and Lβi(Θt,i+1) is the likelihood of Θt,i+1 if it were on the ith chain.

4. Choose another uniform random number U2 between 0 and 1. Accept the swap

if U2 ≤ r.

5. The maximum corresponding to the coldest chain T = β = 1 is the global

maximum.

The efficiency of the algorithm is sensitive to the size of the proposal distribution.

If it is too small, then most of the trial points are accepted and the MCMC is slow

to sample the full parameter space. If it is too large, most of the trial points are

rejected and though the MCMC may make large jumps in parameter space, it could

become stuck at a certain point for long. For the present work, optimal sizes of the

proposal distributions for the parameters were found experimentally, by requiring

that the acceptance rate lie between 15% and 40%. Note that it is possible, however,

to automate the process such that the routine finds an optimal size for the proposal

distribution (Gregory, 2005). It is important to check that the MCMC converges on a

solution. One way of checking for convergence is to sample the parameter space with

chains that start at different initial points and to check if they yield similar solutions.

Once convergence has been achieved (i.e. a chain is well-mixed), the distribution is

independent of the number of MCMC steps and is said to be stationary. The initial

steps of the chain are discarded to forget the starting point. This is known as burn-

in and is typically around 10, 000 steps in our test cases. The remaining steps of

the chain form a sample distribution of the parameters. The estimated value of a

parameter corresponds to the peak of its marginalized distribution. The accuracy of

the estimate is equal to the standard deviation of the distribution, if it turns out to

approximate a Gaussian distribution. However, the parameter distributions may turn

out to be multimodal or otherwise complex. As the specific details of the parameter

distributions vary from stream to stream, we defer the discussion of accuracies and

convergence tests to when we apply the method to real, observed streams. For a

detailed discussion of Parallel Tempering and maximum likelihood estimation, see
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Gregory (2005).

3.3.1 Estimation of Halo Parameters

By defining the parameter space and the likelihood calculation for the parameters,

we can use the above method to find an orbit that best reproduces a given stream

(after the required corrections explained in §3.5), thereby also estimating the model

parameters that we wish to determine. A point in the parameter space corresponds

to an orbit, which is parametrized by its initial position and velocity components

(x0, y0, z0, vx0 , vy0 , vz0 at t = 0), in addition to the potential or density distribution

parameters. Depending on the information available, few of these initial phase space

coordinates are known. The remaining orbital parameters are set to be free param-

eters with physically reasonable ranges. The best fit orbit corresponds to the one

with the highest likelihood. The main processes involved in the algorithm are: (1)

Stepping through the parameter space, (2) Integrating orbits corresponding to the

points in the parameter space, (3) Generating a corrected set of points (trial stream)

corresponding to an orbit and (4) Calculating the likelihood of these trial streams.

As the several MCMC chains step through the parameter space, we integrate

orbits at each step with a fourth-order Runge-Kutta integrator starting from an initial

point defined by the parameters. For fitting the streams, we calculate a set of n

points {S(n)} via a correction mechanism (detailed in §3.5) from the integrated orbit.

Assuming a Gaussian distribution for the parameters, the likelihood of a trial orbit

is calculated as:

L =
N∏
i=1

1

σi
√

2π
e
− D2

i
2σ2
i , (3.4)

where N is the number of data points and σi is the uncertainty in each data point,

which includes both the width of the stream as well as measurement errors. Di is the

distance of each data point on the observed stream from the corrected set of points,

i.e. the distance of a data point to its closest point on the trial stream. As not all of

the phase space information is available, the distance Di only includes the distances

along the coordinates for which data are available. For instance, if the projected
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positions xi, zi and line of sight (l.o.s) velocities vyi are observed, then the exponent

in equation 3.4 reduces to:

D2
i

2σ2
i

=
∑
i

(xi − xc)2 + (zi − zc)2

2σ2
xzi

+
(vyi − vyc)2

2σ2
vi

, (3.5)

where xc, zc, vyc are the closest points on the trial stream to the data point xi, zi, vyi

and σxzi , σvi are the uncertainties in position and velocity. The σi in the normalizing

coefficient of the exponent in equation 3.4 is the product of the uncertainties in the

different phase space coordinates, which in this example reduces to σxziσvi .

In our tests, we used four parallel chains to search the parameter space, the

inverse of the temperature of the ith chain being βi = 1/i2. The states of the chains

are considered for swapping after every thirty steps on average. At the beginning of

the parallel tempering, all the chains are initialized by setting the free parameters to

physically plausible random values. We checked that the results were insensitive to

these starting values. Given the stream data, the likelihood of the orbit corresponding

to the initial point is calculated with equation 3.4. This is the likelihood of the starting

point for the coldest chain, i = 1. The likelihoods for the same point on the hotter

chains are calculated using equation 3.2.

Having calculated the likelihoods for the initial point, the next point on each

MCMC has to be chosen. For this, a trial point is chosen for each chain. This can be

done in many ways. In our case, if Θt is the current value of the parameter Θ, then

the next point for consideration Θ′ is drawn randomly from a normal distribution

centered on Θt. The width of the proposal distribution, i.e. the size of the step,

depends on the expected range of the parameters. It also helps to use different

step sizes for the different chains to enable sampling the parameter space at various

scales. The algorithm is run until the chains are well mixed, which could take from

approximately one hundred thousand to a million steps (depending on the stream and

halo model), and the marginalized distributions of the parameters are drawn from the

coldest chain.
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3.4 Testing with Orbits (not streams)

To get a heuristic idea of the effectiveness of the method, we first investigated how

well it constrains potential parameters using ideal orbits in both logarithmic halos

and double power law density halos. The primary aim was to explore if and when

the projected positions of an orbit are sufficient to estimate the density or potential

flattening and how additional information would affect the accuracy of the estimation.

3.4.1 Orbits in a Logarithmic Potential

Consider the set of orbits shown in Figure 3.1. These were integrated in a logarithmic

halo given by (Binney and Tremaine, 2008):

Φhalo =
1

2
V 2

0 ln

(
R2
c +R2 +

z2

q2
φ

)
(3.6)

in cylindrical coordinates, where qφ is the potential flattening, V0 is the circular ve-

locity, and Rc is the core radius. For this initial test, we neglect the contribution

of the bulge and the disk to the potential. The orbital and potential parameters of

each of these are listed in Table 3.1. A logarithmic halo has the advantage of having

only three parameters, thereby minimizing possible degeneracies between the different

models. Using only the projected positions of these orbits, we find that the flattening

qφ and initial line of sight distance of the orbit from the center of the galaxy y0 are

easily constrained as shown in Figures 3.2 and 3.3, whereas the circular velocity is

degenerate and cannot be constrained with only positional information (Figure 3.4).

It is to be noted that there may be a sign discrepancy in the distance estimate, as

orbits with either value of y0 will be identical in projection. Therefore, we restrict the

fitting routine to positive y0 space and only the magnitude of the progenitor distance

is recovered. The orbits in this set are fairly long and have more than two turning

points. However, several observed streams are much shorter. In order to analyze the

effect of the length of an orbit and more importantly, the number of turning points

of the orbit, on the estimate of the flattening, we fit shorter versions of the orbit
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Figure 3.1: Projection in the XZ plane of orbits integrated in a logarithmic potential
using a Runge-Kutta scheme. The dots indicate the positions on the orbits that are
used as data points in the fitting. The top, middle and bottom panels show orbits
in spherical, oblate and prolate potentials respectively. The parameters of each orbit
are listed in Table 3.1.

AS1 (Figure 3.5). Not surprisingly, having fewer turning points on an orbit causes a

spread in the estimated value of qφ. Adding more information to the fitting (line of

sight velocities for BS1 and line of sight velocities and distances y for CS1) results

in much more accurate estimations of qφ as shown in the bottom panels of Figure

3.5. As for the distance to the progenitor, y0, it is strongly constrained (with a sign

discrepancy) for BS1 even only with the projected positions and for CS1, if kinematic

information is provided (but not with only the projection), making it the most easily

constrainable parameter.
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Figure 3.2: Estimation of qφ for the projected orbits shown in Figure 3.1. The input
value of qφ in each case is shown. This distribution is drawn from 100,000 steps of
the coldest MCMC chain. The excellent correspondence with the input values shows
that the shape of a logarithmic potential can be accurately recovered from the spatial
projection of some orbits within it.
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Figure 3.3: Estimation of y0 for the projected orbits shown in Figure 3.1. The input
value of y0 in each case is shown. This distribution is drawn from 100,000 steps of the
coldest MCMC chain, and clearly peaks near the input value. The fitting routine only
considers positive values for y0 as orbits that are symmetrical about the XZ plane
will have identical positions (so there may be a sign discrepancy in the estimated
value of y0).
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Figure 3.4: Estimation of V0 for the orbits shown in Figure 3.1. The input value
of V0 in each case is shown. This distribution is drawn from 100,000 steps of the
coldest MCMC chain. We see that the peaks of the distribution vary greatly from the
input value, which implies that the orbits are not uniquely dependent on the circular
velocity.
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Figure 3.5: Fitting shorter versions of the orbit AS1 (qφ = 1). BS1 has two turning
points and CS1 only one. The middle panels show the qφ distributions obtained by
fitting only the projected positions of these orbits. The spread in the distribution
increases with decreasing turning points. The bottom panels show the qφ distribution
obtained by adding more information to the fitting: the line of sight velocities vy for
BS1, the distances y and line of sight velocities vy for CS1.
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Figure 3.6: Estimation of qρ for the orbits shown in the top panel. The host galaxy
models in these examples are a one-component ellipsoidal halo (Equation 3.7). The
input value of qρ in each case is marked in red. These distributions are drawn from
2,000,000 steps of the coldest MCMC chain.
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Table 3.1: Series of Logarithmic Orbits: The following are the potential and orbital
parameters of the orbits shown in Figure 3.1. qφ, Rc and V0 are the potential flattening,
core radius and circular velocity respectively. x0, y0, z0 are the initial positions and
vx0 , vy0 , vz0 the initial velocities used.

Name qφ Rc V0 x0 y0 z0 vx0 vy0 vz0
( kpc) ( km s−1) ( kpc) ( kpc) ( kpc) ( km s−1) ( km s−1) ( km s−1)

AS1 1.0 2.0 220 30.0 30.0 30.0 250.0 10.0 10.8
AS2 1.0 3.0 180 30.0 30.0 30.0 200.0 10.0 10.8
AS3 1.0 5.0 200 20.0 10.0 30.0 -230.0 40.0 20.0
AO1 0.72 5.0 200 20.0 10.0 30.0 -230.0 40.0 20.0
AO2 0.8 1.0 240 20.0 20.0 20.0 220.0 200.0 180.0
AO3 0.8 3.0 200 20.0 20.0 10.0 20.0 200.0 180.0
AP1 1.3 3.0 200 20.0 20.0 10.0 20.0 200.0 180.0
AP2 1.2 3.0 200 20.0 20.0 10.0 120.0 50.0 180.0
AP3 1.4 3.0 200 40.0 30.0 30.0 50.0 50.0 150.0

Figure 3.7: Recovery of the three dimensional structure of orbits with only their
projections on the XZ plane. The grayscale image shows the density of the line of
sight distances along the trial orbits considered in the coldest MCMC chain used in
the fitting of the orbits shown in Figure 3.6. The red line marks the actual distance
along the input orbits. This figure shows that coarse estimates of the distances along
the orbit can be obtained.
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3.4.2 Orbits in a Spheroidal Halo

A more general halo is described by a double power law density distribution (Dehnen

and Binney, 1998)

ρs = ρ0

(
s

r0

)−γ (
1 +

s

r0

)γ−β
e−s

2/r2t , (3.7)

where s is the ellipsoidal coordinate

s ≡
(
R2 + z2/q2

ρ

)1/2
. (3.8)

The model parameters that are unknown are the central density ρ0, the inner and

outer slopes γ, β, the scale radius r0 and the flattening in density qρ. We calculate the

potential due to this distribution by multipole expansion using an algorithm similar

to ‘GalPot’ (Dehnen and Binney, 1998; Binney and Tremaine, 2008). The truncation

radius rt is fixed at 1000 kpc, but its precise value does not affect orbits at the radial

distances under consideration. We find that the inner slope γ cannot be constrained

by orbits that are far away from the center of the galaxy and that small variations

in γ do not affect the fits. Hence, we adopt a fixed value of γ = 1, equivalent to

the central power-law slope of a NFW profile (Navarro et al. 1996), for the orbital

fitting and set the remaining parameters to be free. Figure 3.6 shows the distributions

in the flattening qρ obtained by fitting the projections of three orbits in this power-

law spheroidal halo. Even though the distributions peak at the right values of qρ,

they are much more spread out than the previous distributions in qφ. This is to

be expected, as orbits respond directly to the potential, and these are rounder than

their corresponding mass distributions. For a logarithmic potential, at distances much

larger than the core radius, the relation between qφ and qρ can be approximated as

(Binney and Tremaine, 2008):

1− qφ ≈
1

3
(1− qρ) . (3.9)

The fitting mechanism also turns out to be extremely useful in approximating the

line of sight distances along the orbit as revealed by a grayscale plot of the distances
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Figure 3.8: Correction Mechanism: Calculating a pair of corrected points on the
leading and trailing tails corresponding to a point on the past orbit of the progenitor.
The black dots are particles from an N-body simulation of the stream. The grey
dotted curve shows the backward integrated orbit of the progenitor, starting from its
current position at P . Q is an arbitrary point on this orbit. The blue and red dotted
curves are the orbits of stars which escape the progenitor system at Q from the inner
and outer escape points respectively. The end points of these orbits lie on the leading
and trailing arms of the stream, marked as A and B. The velocity components at Q
of the blue and red orbits are the same as that of the grey orbit (with the opposite
sign). This process is repeated for several points along the grey curve to obtain a set
of corrected points like A and B that demarcate the stream path (see Figure 3.9).

along the various trial orbits on the coldest MCMC chain (Figure 3.7).

3.5 Testing with streams in a spheroidal potential

Having demonstrated the power of the technique in constraining the parameters of

a density distribution by fitting only the projected positions of orbits, we test its

ability to robustly estimate the same by fitting streams which, as mentioned in §3.1,

do not delineate the orbit of the progenitor or any other exact orbit in the potential.

A consistent and fast mechanism is required to derive the positions of stream stars
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Figure 3.10: The projection of test streams generated by N-body integrations using
gyrfalc(ON) in a realistic multi-component galaxy model with bulge, disk, thick disk,
ISM and halo components. The qρ value indicated on each panel is the flattening of
the halo used in each simulation. The streams in the top, middle and bottom panels
were generated from satellites with initial masses of 5.0× 106 M�, 5.0× 107 M�, and
1.0× 108 M� respectively. The green dots are the points taken along the streams to
fit trial streams to.
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Figure 3.11: Estimation of the density flattening qρ with only projections of streams.
Shown here are the distributions of qρ obtained by fitting the projection of streams
shown in Figure 3.10. The number of progenitor orbits attempted vary from 500, 000
to 1, 000, 000 from stream to stream. The red lines indicate the input qρ for each. We
find that the accuracy of estimation varies from stream to stream. In all the cases,
the distributions indicate the right shape of the halo (oblate, spherical or prolate).
For fitting streams B and E, the inner power slope γ was kept fixed at 1.0 though its
true value is 1.28. This does not introduce any significant error on the estimate of
the density flattening. For fitting stream H, we set γ to be a free parameter and this
does not affect the estimate on qρ either. For stream I, there are two peaks in the
distribution, the actual value of qρ being at the smaller peak. However, the streams
generated at the smaller peak resemble the test stream in finer details, such as its
bifurcations, which were not included in the fitting data.
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Figure 3.12: Estimating the mass of the halo with only projections of streams. We
use the circular velocity at 50 kpc, V50, as an indirect mass parameter. The value of
V50 is calculated using the potential parameters at each step of the coldest MCMC
for the fitting of the streams shown in Figure 3.10. These are the distributions in V50

thus obtained for these streams. The cyan lines indicate the input V50 for each. It is
seen that it is impossible to estimate V50 and the mass of the halo with only positional
information. The algorithm finds highly likely solutions at different values of mass
of the halo. This is because several streams (like orbits) exist that are identical in
projection, but different in velocity space, for different values of the halo mass. As a
result, the algorithm, in many cases, does not even reach the correct input V50 value.
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Figure 3.13: Estimating the outer power law β with only projections of streams.
Shown here are the distributions of β obtained by fitting the projection of streams
shown in Figure 3.10. The violet lines indicate the input β for each. This shows that
β cannot be constrained by the 2-dimensional positional information alone.
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Figure 3.14: Effect on the estimates of parameters of adding the rotational velocity
curve of the host galaxy to the projection of a stream. The panels from left to right
show the distributions in the density flattening qρ, circular velocity at 50 kpc V50,
and outer power law β respectively, for stream B, when the inner circular velocity
curve (which extends up to 30 kpc for this case) is also provided in addition to the
projected positions. The true values of each of these are marked in red, cyan and violet
respectively. It is seen that the provision of the rotational velocity curve accurately
constrains the V50 value as expected. This, in turn, helps constrain other parameters
of the model, such as β.

from the progenitor’s orbit, without using N-body integration. The stars which make

up the stream are those which were tidally ripped from the satellite during pericenter

passages. Based on this, it is possible to formulate a simple correction mechanism

that maps a given progenitor orbit to the coordinates of its tidal tails.

Consider the stream shown in Figure 3.8, whose projection in the VxVz plane is

shown in the right panel of Figure 3.9 (it is the same as stream B in Figure 3.10,

which was integrated in an oblate halo). The grey dotted curve is the orbit of the

progenitor, the remnant of which is the concentrated sphere. The progenitor’s orbit

corresponds to a set of orbital parameters (the progenitor’s current position and

velocity components) and potential parameters. The stars that lie on the tidal tails

escaped the progenitor at earlier times, from two regions of the satellite: one that

is closest to the center of the host galaxy and one that is farthest from it. We refer

to these points as the inner and outer escape points respectively, which approximate

the inner and outer Lagrange points in a restricted three-body problem. Therefore,
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Figure 3.15: Effects on the estimates of qρ and V50 when l.o.s velocities are added to the
projection of the stream. The top panels show the distributions in qρ and the bottom
panels the corresponding distributions in V50 for stream G, that was generated in a
perfectly spherical potential. The true values of qρ and V50 of the model are marked
in red and cyan respectively. In (a) only the projection of the stream on the sky is
used, and a reasonably good estimate of the flattening obtained, whereas the estimate
of V50 is poor. Adding the line of sight velocity vy0 of the progenitor to the projection
of the stream (but no rotational curve) greatly improves the estimates of V50 as well
as qρ (b). Adding to this five l.o.s velocity data points for each tail further improves
the estimation of these parameters (c).
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Figure 3.16: Distributions of qφ obtained when the test streams (generated in a
multicomponent host potential with a double spheroidal halo) are fit in a logarithmic
potential, without any stellar components. The green lines indicate the flattening
in potential qφ corresponding to the input flattening in density qρ of the host halo
calculated using equation 3.9. It is seen that by using a logarithmic halo to fit
streams that were generated in a double power law density model, the flattening in
the potential can still be recovered.
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Figure 3.17: Estimation of qρ and V50 for a short stream with only one prominent
turning point. The red line shows the input value of qρ. The distributions are drawn
from 500,000 steps of the coldest MCMC chain. Case A: only projected positions,
red dots show the points used in the fitting. Case B: projected positions and l.o.s
velocities at cyan squares. Case C: projected positions and distance to the progenitor.
Case D: projected positions, distance to the progenitor and l.o.s velocities at cyan
squares. Case E: Same as Case D but with the rotational velocity curve given. The
rightmost panels show the estimation of the circular velocity at 50 kpc for case D
and E, the cyan lines indicating its true value. It is not possible to constrain V50

without any velocity information, but if l.o.s velocities are provided (case D), it can
be estimated even with a short stream like the one above. It is not surprising that
V50 is very well constrained in case E as the circular velocities up to 30 kpc are given.
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Figure 3.18: As Fig. 3.17, but for a Palomar 5-like stream with no turning point.

the trajectory of a stream star can be integrated with its initial position offset from

a certain point in the progenitor’s past orbit by a certain distance rcutoff , offset

outwards for trailing tail stars and inwards for leading tail stars. This is shown

diagrammatically in Figure 3.8. Starting at the current position and velocity of the

progenitor P , its orbit is integrated backwards in time, marked by the grey dots. For

any point on its backward orbit, Q, at time tQ, the inner and outer escape points

are approximated as rQ − rcutoff and rQ + rcutoff , indicated respectively by the blue

and red dots at Q. These provide the initial positions for the orbits of stars that

escape the satellite at Q. For their initial velocity components, we use the velocity

of the progenitor orbit at Q. With these initial phase space coordinates, we integrate

forward for the same amount of time tQ. These orbits are indicated by the blue and

red dotted curves, with their final points on the leading and trailing tails at A and

B respectively. Repeating this process for several points on the backward integrated

orbit (say, for every 50 Myr) yields a set of points which lie closely on the tidal tails of

the stream (red and blue dots in Figure 3.9), which we shall refer to as the corrected
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points for a given set of parameters.

We find empirically that the offset radius for a point Q at a radial distance r can

be calculated approximately as 2.88 times the theoretical Jacobi radius:

rcutoff = 2.88×

(
msat

3M̃(r)

)1/3

r , (3.10)

where msat is the mass of the satellite and M̃(r) is calculated from the circular velocity

Vc of the host galaxy at r as M̃(r) = rV 2
c (r)/G, where G is the gravitational constant.

For a perfectly spherical potential, M̃(r) is equivalent to the mass contained within

radius r. For non-spherical potentials, it is only a crude approximation to the total

mass inside r, but as we show below, the correction we obtain using rcutoff calculated

in this manner is sufficiently accurate for our purposes.

We find that by fitting the stream data with these corrected points it is indeed

possible to recover the parameters of the potential as well as the orbit. It is interesting

to note that through this correction mechanism, one has more information on the

progenitor’s past orbit than one would have with only the local orbit of the progenitor

(i.e. the red and blue dotted curves in Figure 3.9 contain more information than the

grey curve does). In this sense, the tidal stream retains some memory of its infall.

It is important to note that although we do not correct for velocities at the escape

points, the velocities of the corrected points also lie along the velocities of the tidal

tails as seen in Figure 3.9, i.e. the correction is valid in all of phase space. This

is true of all the streams we tested, possibly because we use low mass satellites. If

a similar correction mechanism is used for extending the present technique to more

massive streams, we expect that a corresponding correction in velocity space would

be required.

The backward integration time depends on the age of the stream and is usually

unknown. It is also assumed in the present discussion that the progenitor is iden-

tifiable and its position on the sky is known, but more often than not, the satellite

is completely disrupted or obscured and it is impossible to identify the progenitor

(for example, the NGC 5907 and the Monoceros streams). The time for backward
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integration can be found empirically, running different fitting routines with different

backward integration times for the correction (it only need be accurate to around 1

Gyr). Similarly, several fitting routines can be tried assuming the unidentified progen-

itor to be at different positions along the stream. However, in all the tests described

in this paper, the progenitor, its initial mass and backward integration time, were

taken to be known quantities.

Figure 3.10 shows nine streams on which this stream-fitting method was tested

(note that we are now fitting streams, not orbits as in §3.4). These were generated

with gyrfalc(ON), an N-body integrator based on a fast and momentum conserv-

ing tree-code (Dehnen 2000, 2002), as implemented in the stellar dynamics toolbox

NEMO (Teuben, 1995). For the host galaxy, realistic models were used that com-

prised a spheroidal halo, a spheroidal bulge, and exponential disks (thick disk, thin

disk and ISM) similar to the ones described in Dehnen and Binney (1998) for the

Milky Way. Except for the flattening of the halo, the model of the host galaxy for

each case is one of the two models described in Table 3.2. The halo flattening and

the initial conditions of the orbits of the satellites for each stream along with its inte-

gration time are listed in Table 3.3. Spherical King models of 100,000 particles were

used for the N-body satellite simulations. See Table 3.3 for the masses, tidal radii

and central potentials of these. We have limited the present study to satellite masses

in the range of 5.0 × 106 to 1.0 × 108 M�, as they seemed to be ideal candidates for

this technique rather than more massive and heavily disrupted satellites, for which

dynamical friction plays a significant role. For the integration with gyrfalc(ON), a

Plummer softening kernel, along with a softening length of 0.03 kpc, and an opening

angle tolerance parameter of 0.6 (the default) were used.

We make extensive use of the work of Dehnen and Binney (1998) for the calculation

of the potential, especially for the bulge and disk components. We assume that these

baryonic components of the system are well understood and their contribution to

the potential is kept fixed, so that the only parameters to be estimated are those

of the dark halo. As the streams are distant, the precise details of the inner mass

distribution are not critical and the estimates are not affected by small variations in
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the baryonic component. The potential due to the trial density distribution of the

halo is calculated using multipole expansion. The calculated halo potential and its

first derivatives (w.r.t ln r and |z/r|) are stored on a grid in ln r and |z/r|. Adding to

these, the potential and accelerations due to the bulge and the disk using GalPot, we

have the total potential and acceleration at each of the grid points. The acceleration

at any point is obtained by interpolating with a 2-dimensional, fifth-order spline.

In the following sections, we describe the results of fitting the streams with differ-

ent kinds of information.

3.5.1 With projected positions alone

In this section, we discuss how well the various parameters of the halo are constrained

by fitting only the projection of streams on the sky, as this is the only information

that is usually available for very distant systems. Figure 3.11 shows the distributions

of the density flattening qρ obtained by fitting the pseudo-streams with corrections

to trial orbits described in the previous section. The number of attempted orbits

in the fitting routines are in the range of 500, 000 to 1, 000, 000, running the fitting

algorithm until the chains are well mixed and reasonable fits of the test streams are

found. As can be seen, the estimates fall within reasonable ranges of the true values

of qρ (indicated by the red lines), but the accuracy of the estimates vary from case

to case. The differences in the accuracies arise from the differences in the streams

themselves, as some configurations are more degenerate, in that many parameter

choices can reproduce the same observations. However, even in the poor cases, the

estimated qρ still provides a useful indicator of the shape of the halo. For example, for

stream I, made in a prolate halo of qρ = 2.0, there are two peaks in the distribution,

the true value of qρ being at the smaller peak. The trial streams that are generated

at both the peak values of qρ resemble the given stream, but streams generated at

the smaller peak (with qρ = 2.0) show extra features such as small bifurcations that

are similar to the ones seen in stream I, whereas streams generated at the larger peak

(with qρ ≈ 1.6) do not show these. Thus, the streams at qρ = 2.0 resemble the test

stream in its finer details. These smaller features were not included in the fitting as we
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deemed them difficult to observe, especially in distant systems, but if observed, they

could be used to obtain better estimates or distinguish between multiple solutions.

Nonetheless, the distribution in qρ for stream I is limited to the prolate region and the

corresponding distribution in the potential flattening qφ is narrower (approximately,

qρ = 1.6 ≡ qφ = 1.2 and qρ = 2.0 ≡ qφ = 1.33, using equation 3.9). It should be

noted that for streams B and E, the true value of the inner slope γ of the halo is

approximately 1.28, but they were fitted in a model with a fixed γ = 1.0. This was

primarily undertaken to check if the difference in the inner slope affects the estimation

of qρ, and it does not, confirming our assumption that these streams are insensitive

to the finer details of the inner matter distribution. On the other hand, for fitting

stream H, we set the inner power slope γ to be a free parameter, with lower and

upper bounds at -1 and 2.0. This does not seem to deteriorate the estimate of qρ as

was initially expected, so γ can be set to be a free parameter in the application of the

technique to real stellar streams. However, γ itself is not found to be constrained by

fitting the projections of these streams.

Another significant parameter of the halo is its mass, which determines the circular

velocities at large radii. In order to see how well our technique estimates this quantity,

we plot the distribution of the circular velocity at 50 kpc, V50, shown in Figure 3.12,

calculated from the potential parameters at each step of the coldest MCMC chain.

As seen in the case for logarithmic orbits, these distributions are degenerate and it is

not possible to constrain the halo mass with only positional information of a stream.

We find that the remaining parameters of the halo, i.e. the outer slope β, the central

density ρ0 and the scale radius r0 can have different values for the same value of the

flattening qρ to produce streams that look identical in projection. The distributions

of these parameters are degenerate (as shown in Figure 3.13 for β) and the projection

of a stream alone cannot constrain them. The combination of these parameters result

in different circular velocities, making the distribution of V50 degenerate.

As for the orbital parameters, the line of sight distance y0 of the progenitor from

the center of the galaxy is well-constrained (although there may be a sign discrepancy,

as was seen in the case of pure orbits), whereas the line of sight velocity or the
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tangential velocity components of the progenitor cannot be recovered.

3.5.2 Adding circular velocities

For many spiral galaxies, inner rotational velocities are available (for instance from H I

kinematics) or are feasible to measure with current instrumentation, which provides

information on the inner mass profile of the galaxy. Figure 3.14 shows the effects of

adding the rotational velocities (here assumed to extend up to 30 kpc) to the projected

positions for stream B (to take a particular example). Comparing the corresponding

distributions for the stream in Figures 3.12 and 3.13, we see that there is a marked

improvement in the estimate of the outer power slope β. This is, as explained in

the previous section, due to the correlation of β and the circular velocity parameter

V50, the latter being estimated accurately with the provision of the inner circular

velocities. The peaks of the distributions in qρ in Figure 3.14 and Figure 3.11 are at

similar positions, but the former is less smooth as a different proposal step size was

used to fit the stream in this case. Though not shown here, the degeneracies in the

scale radius r0 and the central density ρ0 are also removed and we obtain accurate

estimates of these parameters. Moreover, distance to the progenitor and its velocities

can also be constrained when the rotational curve is added to the fitting data. As

seen in the distance parameter, there may be a sign discrepancy in the estimate of the

line of sight velocity vy0 of the progenitor, but not in the estimates of its tangential

velocity components.

3.5.3 Adding line of sight velocities

Using stream G as an example, we illustrate the effects of adding kinematic data to

the projected geometry of the stream (but without circular velocities) on the estimates

of qρ and V50. Figure 3.15 shows the qρ distributions in each case in the top panels

and the V50 distributions in the bottom panels. In (a), only the projected positions

of stream G on the XZ plane are used in the fitting routine. In addition to these, the

line of sight velocity of the progenitor is provided to obtain the distributions for (b).
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To make the distributions in (c), we added more line of sight velocities (at five points

along each tail, within 20 kpc from the progenitor). This shows that by providing

velocity information it is possible to estimate V50 or the mass of the halo. The added

information also improves the estimate on qρ. As in the case where we provided the

rotation curve, the progenitor’s velocity components and its line of sight distance are

well constrained.

3.5.4 Fitting in a logarithmic potential

We also investigated how well the test streams in Figure 3.10 (simulated within a

full multi-component galaxy model) can be fit with a simple axisymmetric logarith-

mic halo with no stellar components. Figure 3.16 shows the distribution in qφ thus

obtained. The green lines indicate the potential flattening qφ that correspond to the

input density flattening qρ values. We find that the estimates are remarkably accurate.

This exercise suggests that a logarithmic halo can be used as a good approximation

to the more complex input axisymmetric model, at least in order to constrain the

flattening of the halo.

3.5.5 Shorter streams

We have seen in §3.4.1 that the estimation of parameters is sensitive to the number

of turning points of the orbit. To explore this aspect of the problem for streams,

we consider stream B at much earlier stages of its infall, where its tidal tails are

substantially shorter. In Figure 3.17, it is at 5 Gyr into its infall and the tidal arms

form a parabolic curve, much like the structure observed to the north west of M31

(Carlberg et al., 2011). In Figure 3.18, it is at 2 Gyr in its evolution and resembles the

Palomar 5 stream (Odenkirchen et al. 2001). For both these cases, we consider five

possible scenarios of available information. Case A is where we only have the projected

positions of the streams on the sky. We see that the distributions of qρ are much more

spread out than for stream B, the degeneracy being much more for the Palomar 5-like

stream. For Case B, the line of sight velocities at certain points (red squares) are also
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provided for the fit. In Case C, we assume that no kinematic data is available, but the

distance to the progenitor is known. It is possible to measure this quantity for many

nearby systems as well as in our own galaxy with the TRGB method. In Case D, the

distance to the progenitor and line of sight (l.o.s) velocities are provided in addition to

the projected positions. Case E has the maximum information, where the rotational

velocity curve is also available along with all the information of Case D. This case

has been included primarily to study the effect of circular velocity information on the

estimation of qρ. The distributions shown have been drawn from 500,000 steps of the

coldest Markov chain.

Here, only the estimates of qρ and V50 are presented. For the stream in Figure

3.17 with only one prominent turning point, the distributions of qρ are limited to

the oblate region and peak at approximately the true value of qρ (red lines). This

particular example of this class of streams suggests that the estimates of the flattening

are much more accurate when kinematic data are available as in cases B, D and E,

although the estimate is good even with only the projection of the stream. The

rightmost panels show the distribution of V50 for cases D and E (the cyan lines mark

the input value). Though not shown, it is not possible to constrain this quantity

without any kinematic information, as was seen for the longer streams. However, the

technique yields very good constraints on V50 when a few velocity data points or the

inner rotational curve are added to the spatial projection of the stream, making it

possible to estimate the mass and shape of the halo for systems where such information

is available.

The short stream shown in Figure 3.18 has no noticeable turning point. Conse-

quently, the distributions of qρ are broad and highly degenerate even when the distance

to the progenitor or line of sight velocities are provided. It is only when both the

progenitor distance and line of sight velocities along the stream are provided that the

distribution peaks at approximately the right input value of the flattening. When

the circular velocities are also added to the fitting, then the distribution looks more

Gaussian-like and a better estimate of qρ is obtained. One has to bear in mind that

the difference in the estimated and true values of the flattening in the potential is
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expected to be much less than that of the flattening in the density distribution, since

the distribution of the corresponding qφ is narrower as per equation 3.9. As for the

mass estimates, even with a stream as short as this, the constraints on V50 are good

when sufficient information (as in case D) is available. Such short streams are mostly

observed in systems very close to us, for which the rotational velocity curve, line of

sight velocities and distance to the progenitor are available or can be easily measured.

Therefore, they can be used as effective probes of the shapes and masses of nearby

halos.

3.6 Discussion

We have shown that stellar streams found in halos of galaxies can be used to constrain

parameters of the mass distribution, even without any kinematic information. The

easiest potential parameter to estimate, and perhaps one of the most interesting, is

the flattening of the distribution qρ. This is under the simplifying assumption that the

halo is axisymmetric. In a future contribution, we will test the technique with triaxial

halo models. Not surprisingly, our technique cannot constrain the mass of the halo

(measured by the circular velocity at 50 kpc) without any kinematic information.

However, by adding the rotational velocity curve or line of sight velocities of the

stream stars, it is possible to estimate the total mass as well. According to the

currently-held view of hierarchical galaxy formation, large galaxies are built up by

the accretion (and disruption) of smaller satellite galaxies (White and Rees, 1978). If

this is the case, one can expect to find remnants of the process in many galaxies and

these will certainly be revealed by future deep surveys (E-ELT, JWST). By applying

this technique to a large sample of galaxies, it would be possible to obtain statistics

on the shapes of halos, which is crucial in understanding dark matter and galactic

evolution. The method is immediately applicable to individual streams, the results

of which have several implications. For one, they would provide a better description

of the environment in which other phenomena occur. The properties of the halo can

be used in studies involving satellite dynamics, tidal debris, gas distributions in the
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outer regions of galaxies, lensing and many other areas of interest.

The method could also provide a consistency check for galaxies where the dark

matter distribution or its shape has been measured by one of the techniques mentioned

in §3.1. Tidal streams may also be used in testing alternative theories of gravity. For

instance, if a prolate halo is found, it could eliminate MOND as a viable theory (Read

and Moore 2005). In addition to the halo parameters, the technique also recovers the

progenitor orbit, giving us a coarse estimate of the distance to the progenitor, and

clues to its location if it is unknown, as well as distances and velocities along the

stream.

The correction mechanism employed is one of the key aspects of the technique.

It enables us to sample millions of models of the stream without having to resort

to N-body simulations for each case, making the problem computationally tractable.

During the developmental stages of this paper, we attempted to fit the tidal tails

with orbits alone and this sometimes resulted in wrong estimates or highly degenerate

distributions of the flattening. Thus, the correction mechanism plays an important

role in the effectiveness of the method and the accuracy of the estimates obtained. For

its simplicity, it reproduces the stream for an orbit remarkably well, even recreating

the bifurcations and other features seen in the stream simulations. The only drawback

is that one requires the mass of the in-falling satellite to calculate the corrected points,

an approximate value of which can be obtained from star counts or integrating the

light along the stream.

Our correction mechanism has only been tested with spherical, non-rotating King

satellites. It is unclear how well it will work for disk-like or other types of satellites,

but it should be possible to obtain a correction mechanism for these based on the

same principles. However, this means that the results for an observed stream would

depend on the assumptions made about its progenitor. For low mass streams such as

the ones discussed in this paper, it is safe to assume that the progenitor is a globular

cluster or dwarf spheroidal galaxy. Nevertheless, it would be useful to check the

correction mechanism with other models of the satellite to see how sensitive it is to

the input satellite properties.
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In light of all these assumptions, the technique in its present form is applicable

to cold, low-mass streams (M ≤ 1.0 × 108 M�), for which dynamical friction can be

neglected. Observationally, stellar streams fall into two major categories: the ones

that are closer to us, in which the positions and velocities of individual stars can

be measured and the ones that are farther away and detected in surface brightness.

For the latter, the kinematics are usually not measurable. In rare cases, globular

clusters associated with the stream may be observed and their velocities can be used

as additional information (Mackey et al., 2010). Among the streams that are closer to

us, are short structures like the Palomar 5 stream. For these, a large number of radial

velocity measurements can be made, and these streams can be used to constrain the

parameters of the host halo, despite having no turning points. Another plausible

scenario is where two or more streams are observed in the same galaxy. Fitting them

simultaneously would provide constraints on the halo, even if the individual streams

are relatively short. Multiple streams in a halo provide a possible means of probing

the halo shape through different cross sections of the halo, which would also enable

us to check for triaxiality of the halo.

A surprising result we found, that can serve as a powerful diagnostic tool in

the application of the method to real systems, is that if the streams (generated in

a host potential with a double power law halo with a bulge and a disk) are fit in

an axisymmetric logarithmic potential, the flattening of the potential can still be

well estimated. This is encouraging as it suggests that while extending the method

for triaxial models, one could use a triaxial logarithmic potential for preliminary

estimates on the axial flattenings, which is much easier to use than triaxial density

distributions. In addition to the logarithmic and double power law models described

in this paper, we also experimented with non-parametric density models for the halo,

in which the matter distribution was defined by the values of densities at different

radii. Preliminary tests showed that these parameters are difficult to constrain, but

this may yet be improved upon.
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3.7 Conclusions

We have extended the idea of using tidal streams to estimate the shape of the dark

halos they reside in. The major challenge was that for most streams, only their

projected positions are available. This has been a hindrance in using these streams

effectively as there may be streams with similar projections for different profiles. We

overcome this difficulty by adopting a statistical approach. We sample various orbits

with different orbital and potential parameters using parallel MCMC chains. The

output distribution of the flattening parameter that we obtain from these peak at the

right value, if the information is sufficient. We first tested the method on orbits in

a logarithmic potential and then on streams made with N-body simulations in more

realistic galactic potentials (sum of disk, ISM, bulge and spheroidal halo). Another

major aspect by which the technique differs from earlier work is that the stream in

question is not treated as an orbit, but derived as a correction to the orbit of its

progenitor.

We have demonstrated that there are cases in which it is possible to get constraints

on the shape of the dark halo using only the projection of a tidal stream on the sky,

the accuracy of which varies from stream to stream. The method is sensitive to the

number of turning points of a stream and only works when there are at least two

turning points. With more turning points, the accuracy of the estimate increases. If

the stream is only a parabola or turns out to be degenerate even with a few turning

points, the estimate may be improved by adding more information such as the line

of sight velocities or the distances along the stream if they are available. In our tests

with simulated streams, we did not find cases where the fitting procedure yielded

significantly incorrect estimates of the input halo flattening (though of course with

insufficient information there are degenerate solutions). Exhaustive testing is required

to confirm that this is always the case. In all our tests, we used low mass satellites

(M ≤ 1.0×108 M�). This method cannot be applied in its current form to heavy and

highly disrupted streams such as the Giant Stellar stream around M31 (Ibata et al.

2001a). However, it may be possible to further extend the technique to such massive

satellites by accounting for dynamical friction as an additional correction.
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We find that the line of sight distance of the progenitor from the center of the host

galaxy is well-estimated (at times, with a sign discrepancy) when only the projection

of the stream on the sky is available. The other orbital parameters, i.e. the velocity

components of the progenitor are also well-estimated, but only when kinematic infor-

mation, in the form of line of sight velocities along the stream or the H I rotational

curve, are provided.

We also fit the streams generated in a spheroidal density model of the halo with

orbits in a logarithmic potential. We see that despite using a simpler model, we are

able to get a good estimate on the flattening of the halo. In the tests with the orbits

in a logarithmic potential, we see that the initial distance y0 is also constrained very

well, but not the circular velocity. This is as expected; even for a circular orbit in

a Keplerian potential, it is not possible to deduce the central mass from the radius

of the orbit alone. The method cannot be used to constrain the inner slope of a

spheroidal halo as the considered halo streams are too distant to probe the inner

mass distribution using only the projection of the stream. It is encouraging to note

that with circular velocities and the projection of the stream, most of the parameters

of the halo can be recovered, as such information is available or easily acquirable for

several systems. This technique is readily applicable to many of the streams observed

in the near universe such as the low mass streams around M31, NGC 5907, NGC 891

and the Sagittarius stream in our galaxy.
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We would also like to thank Jorge Peñarrubia and Mustapha Mouhcine for helpful

discussions during the development of the methodology. We are also very grateful to

the reviewer, Dr. Shoko Jin, for insightful and detailed comments that helped improve

the clarity of the paper. RI acknowledges support from the Agence Nationale de



77

la Recherche (programme POMMME). GFL gratefully acknowledges the Australian

Research Council for support through DP0665574 and DP110100678, and for his

Future Fellowship (FT100100268).



78

Table 3.2: Models used in simulations: The parameters of the halo except its flat-
tening, and the baryonic components of the host galaxy in which the streams are
generated, along with their units are given. ρ0, r0, qρ, γ, β and rt are the central
density, scale radius, density flattening, inner power slope, outer power slope and
truncation radius of the spheroidal components (the bulge and the halo). The pa-
rameters of the disk components are the central surface density Σd, the scalelength
Rd, the scaleheight zd and the central depression parameter Rm (which is 0 for the
thin and thick disks).

Component Parameter Model 1 Model 2
Streams A, D, G, C, F, I Streams B, E, H

Halo

ρ0 ( M�pc
−3) 0.11013117 2.7986274

r0 (kpc) 5.23553 1.0
γ 1.0 1.28
β 3.0 2.34
rt (kpc) 1000 1000

Bulge

ρ0 ( M�pc
−3) 0.65074246 0.3

r0 (kpc) 1.0 1.0
qρ 0.6 0.6
γ 1.8 1.8
β 1.8 1.8
rt (kpc) 1.9 1.9

Thin Disk
Σd ( M�pc

−2) 412.0 341.0
Rd ( kpc) 3.2 3.2
zd ( kpc) 0.18 0.18

ISM

Σd ( M�pc
−2) 69.5 57.5

Rd (kpc) 6.4 6.4
zd (kpc) 0.04 0.04
Rm (kpc) 4.0 4.0

Thick Disk
Σd ( M�pc

−2) 29.5 24.4
Rd (kpc) 3.2 3.2
zd (kpc) 1.0 1.0
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Chapter 4

The Stellar Stream of NGC 5907

4.1 Introduction

Streams of stars that are the relics of minor merger events have been discovered

around several spiral galaxies, starting with the Sagittarius stream in our very own

Milky Way (Ibata et al., 2001b; Majewski et al., 2003). These kinematically cold and

thin streams act as excellent tracers of the dark matter halo, as they approximately

delineate the orbit of the in-falling satellite galaxy. In Chapter 3, we demonstrated

how it is possible to use these streams as effective probes of the morphology of the dark

matter halos of the host galaxy. In this chapter, we apply the technique developed

to study the dark halo of NGC 5907. It is to be noted that due to time constraints,

the results presented here are only preliminary, and the estimates are as yet not

conclusive.

NGC 5907 is a thin Sc spiral galaxy at a distance of 13.4 Mpc (Tully et al., 2009),

which with an inclination of 87◦, is almost edge-on. Despite the warp noticed in its

disk, it was long considered to be an isolated normal galaxy. This view changed when

Sackett et al. (1994a) discovered a faint low-surface brightness halo around it, the

presence of which was further confirmed by others in various bands (Morrison et al.,

1995; Lequeux et al., 1996; James and Casali, 1998; Rudy et al., 1996), suggesting the

presence of a peculiar red “halo” stellar population. The new interest in the halo of

NGC 5907 finally led to the discovery of a polar ring structure, of stellar origin, in its
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halo by Shang et al. (1998). The stellar ring and faint halo were both attributed to the

cannibalization of a low mass galaxy by NGC 5907. As explained by the discoverers

of the ring structure, the alternative origins of the ring as Galactic cirrus, planetary

nebula or supernova remnant can be ruled out by photometric considerations. These

authors also observed a dwarf companion PGC 54419 at a projected distance of

36.9 kpc, which was initially suspected to be associated with the stellar ring or the

warp. Independent analyses of the polar ring by Reshetnikov and Sotnikova 2000 and

Johnston et al. (2001) provided some limits on the mass of the halo and age of the

structure. The former used N-body simulations to reproduce a structure similar to

the one observed by the disruption of a low-mass dwarf companion (both spheroidal

and disk-like). They estimated a mass to light ratio in the range Υ ∼ 3 − 4 and

the age of disruption to be less than 1.4 Gyr. The latter authors used geometrical

considerations applied to a part of the ring (the one with the least observational

uncertainties) to arrive at similar estimates, Υ ∼ 3, with the age between 0.8 and 2.4

Gyr and the mass of the progenitor as 2× 108 M�.

More recently, a pilot survey by Mart́ınez-Delgado et al. (2008) (hereafter MD08)

showed the stellar ring to be part of an exquisite stream-like structure wrapped around

NGC 5907, the image of which is shown in Figure 4.1. An independent confirmation

image of the structure was also obtained by amateur astronomers Binnewies and

Popsel in 20081. We use the image of the stellar stream presented in MD08 in an

attempt to constrain the parameters of the halo of NGC 5907. We also use the work

of these authors as a guideline for our study of the stream, and to compare our results

against. In Section 2, we discuss the observational data and certain problems specific

to the NGC 5907 stream. It also includes a description of the baryonic models used

in our fitting. The fitting routine is discussed briefly in Section 3, as some significant

improvements have been made in the algorithm. Preliminary results of fitting the

stream in a double spheroidal density model for the halo, as well as in a MOND

scenario are presented in Section 4. We conclude with a discussion of our results and

further work required to fully explore the information of the halo we can obtain from

1http://www.capella-observatory.com/ImageHTMLs/Galaxies/NGC5907Prim.htm
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the stream.

4.2 The Stellar Stream

The optical image of NGC 5907 in MD08 was obtained by stacking multiple deep

exposures in several bands. One of the main limitations in studies of faint surface

brightness structures is the uncertainty in the background subtraction (due mainly

to scattered light). To correct for this, MD08 subtracted out a locally-smooth back-

ground from their image, and it should be kept in mind that this is a somewhat

subjective procedure. Clearly structures larger than the smoothing length will be

erased and false detections can be created, depending on the choice of the algorithm

that is used. The confirmation by Binnewies and Popsel cited above lends confi-

dence that the main structures shown in Figure 4.1 are real. We noticed that the

amateur camera employed by MD08 suffers extremely strong optical distortion; we

corrected for this effect by identifying reference stars in their stacked image, and used

a high-order polynomial fit to resample the data onto a tangent-point projection. The

resulting corrected image is shown in Figure 4.2, where we have additionally masked

out all regions containing point-source detections above a 3-sigma threshold, and ap-

plied a further mask to excise the bright disk of the galaxy as well as all regions not

obviously containing the stream structure. It is this data we will use for the fitting.

The NGC 5907 stream consists primarily of two elliptical loops which intersect

each other several times, making the exact path of the stellar stream highly unclear.

In order to refer to the different sections of the stream, we use the marked image of

MD08, shown in Figure 4.3. As can be seen, it is not clear whether the south eastern

(SE) loop is contiguous with the western W1 arc or the south-western SW tail. Even

though the uncertainties in the path of the stream causes significant degeneracy, it

is possible to fit the stream by making the fitting routine independent of the path

taken.

An important piece of information that is missing for the NGC 5907 stream is the

location of its progenitor, which is either completely disrupted or obscured. MD08
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Figure 4.1: From Mart́ınez-Delgado et al. (2008): Image of NGC 5907, obtained with
the BBRO 0.5-meter telescope, using multiple exposures of different filters for a total
exposure time of 11.35 hours. It is to be noted that the linear feature seen in the
lower left corner is spurious.



84

Figure 4.2: Tangent-plane resampling (1 kpc×1 kpc pixels) image of the MD08 image
of NGC 5907. We have masked out the disk of the host galaxy, as well as point sources
and regions devoid of the stream structure. This is the image of the stream that is
used in the maximum-likelihood fitting.
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suggested that it may be hidden by the galaxy disk in its western edge, where the

stream crosses it. By running a few fitting tests with different progenitor positions

along the stream and by considering the symmetry of the stream, we find this sug-

gestion to be plausible. Hence, for the preliminary tests, we have fixed the projected

progenitor position at this location. However, it would be ideal in a thorough study of

the stream to let this be a free parameter in the MCMC sampling. Other consequen-

tial unknown parameters are the age of the stream and the mass of the progenitor,

both of which we set to be free in the fitting routine.

Several rotational velocity curves for NGC 5907 have been published (Casertano,

1983; Sancisi and van Albada, 1987; Sofue, 1996). In this Chapter, we use the HI ro-

tation curve of Sancisi and van Albada (1987) along with the stream data to constrain

the density distribution of the dark matter halo.

The parameter space explored includes only those of the dark matter distribution

of the galaxy. Its baryonic component is kept fixed for the orbit intergration. The

luminous component of NGC 5907 consists mainly of a disk, with a small bulge.

We obtained the mass model of the disk and bulge of NGC 5907 by fitting 2MASS

galaxy atlas images using “GALFIT” (Peng et al., 2002), a tool which decomposes

an observed galaxy image into a sum of structural models. The disk component was

thus estimated to have a central surface brightness of 15.93± 0.00 mag arcsec−2, disk

scale height of 9.00 ± 0.01 arcsec and disk scale length of 62.50 ± 0.11arcsec. These

structural parameters were used to construct a mass model for the galaxy, using the

multipole expansion technique discussed in Chapter 3, with the constraint that the

model rotation curve should fit the inner HI rotation curve of Sancisi and van Albada

(1987), and give components that are similar to those of the Milky Way. The resulting

model has a stellar disk, gas and bulge with masses of 4.7× 1010 M�, 1.8× 1010 M�,

0.9×1010 M� respectively. We have yet to attempt fitting the stream with other mass

models of NGC 5907 (e.g. Just et al. 2006).
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Figure 4.3: Taken from Mart́ınez-Delgado et al. (2008): Image of NGC 5907 with the
different stream features marked. A colour image of the disk has been superimposed.
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4.3 Fitting the Stream

4.3.1 Modifications to the Fitting Algorithm

Later tests of the fitting algorithm described in Chapter 3 indicated that it takes a

long time to reach convergence. This is mostly due to the large differences in the scales

of the parameters. Therefore, the MCMC fitting was modified to have 100 sets of

parallel chains to sample the parameter space instead of only one set. The interactions

of the different sets of chains are such that it makes the sampling independent of

the scales of the parameters. The approach is known as “affine-invariant ensemble

sampling” (Goodman and Weare, 2009). For a simple understanding of the concept,

let us consider the case of single Markov chains (i.e. without Parallel Tempering).

In this case, the ensemble consists of 100 MCMCs, which we refer to as walkers,

which start at different points of the parameter space and whose path through the

parameter space are dependent on the other chains. In the fitting routine used in

the previous chapter and tests with mock streams, the sizes of the proposal steps

for the various parameters during the sampling were kept fixed, which rendered the

sampling slow and caused the acceptance rate of proposed steps to be low. In affine-

invariant sampling, the size of the proposal step is adapted according to the scatter

of the population. The proposal step size for a walker at a given time is taken to be

proportional to the distance between two other random walkers in the ensemble. We

incorporate Parallel Tempering into this approach by introducing higher temperature

chains for each of the walkers in the ensemble, as described in Chapter 3. The swaps

between chains are considered and made separately for each walker. We also ensured

that the sampling reached a satisfactory acceptance rate of over 25%.

4.3.2 Preliminary Results

We discuss below the preliminary results we obtained by the fitting the projection

of the stream in both spheroidal and logarithmic halos, as well as in a potential

produced in a Modified Newtonian framework (MOND) by the baryonic components.

The likelihood of a trial stream was calculated by creating model images of the stream
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and comparing these to the observations. The corrected points obtained from a trial

orbit using the mechanism described in Chapter 3 are smeared out to mimic an

image of a real stream, which can then be used for a pixel-by-pixel comparison with

the image of the NGC 5907 stream. The total likelihood is the sum of the χ2 provided

by the image comparison and the fit to the rotational velocity data.

Since the age of the stream is unknown and an approximate value of the same is

required to use the correction mechanism effectively, we adopt the following approach:

For any given trial orbit, the stream resulting from it at different ages are considered,

out of which the one with the highest likelihood is taken to be the trial stream

corresponding to those trial parameters.

Fitting in a Double Spheroidal Halo with Baryonic Components

The results presented here are those of an initial fitting of the stream in a realis-

tic multicomponent galaxy model with a double spheroidal halo, in addition to the

fixed spheroidal bulge and exponential disk components. For this initial fit, all the

parameters of the halo, including its inner slope γ, were set to be free parameters.

A comparison of the best-fit stream and the observed stream is shown in Figure 4.4.

The green curves show the corrected points obtained from the trial orbit. The red

curves show the orbit of the progenitor. There is a remarkable coincidence of the

trial stream and the data, but since the method is based on a sampling approach,

it is necessary to carry out an extensive study of the parameter space in order to

achieve a high confidence on estimated values. The sampling yielded a reasonable fit

to the rotation curve. Figure 4.5 shows the rotational curve obtained for the best

fitting model (green dots) and the input curve (red dots). The distribution of the

flattening in density qρ is shown in the left panel of Figure 4.6, which seems to show

a peak in the prolate region. The values of flattening corresponding to the maximum

likelihood is in the range qρ ∼ 2.0 − 2.1. The middle and right panel of Figure 4.6

show the distributions of the initial radial distance y0 and the outer slope of the den-

sity profile β, which peak at about 26.0 kpc and 2.1 respectively. The distributions

of the central density ρ0, the scale radius r0 and the inner power slope γ are plot-
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Figure 4.4: A comparison of the best fitting stream (left) and the data (right). In
the left panel, the red curve shows the backward integrated orbit of the progenitor,
from which the green curves that represent the corresponding stellar stream can be
derived with the correction mechanism described in Chapter 3. The green curves are
smeared out to obtain an expected image (in white) of the trial stream. The red and
green curves in the right panel are the same as in the left, and have been overlaid on
the observed stream image for comparison.

Figure 4.5: The rotational velocity curve of the best fit model. The observed HI
rotational velocity data of Sancisi and van Albada (1987) is marked in red, and the
rotational curve of the model in green.
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Figure 4.6: The MCMC distributions of the fitted parameters in a double spheroidal
halo. From left to right: the flattening qρ, the progenitor line of sight depth y0, and
the halo outer power-law profile β.

ted in Figure 4.7 from left to right. The estimated values of these parameters are

ρ0 ∼ 2.0 × 108 M�/pc3, r0 ∼ 2.0 kpc, and γ ∼ 0.15. Figure 4.8 shows the likelihood

distributions of the initial orbital velocity components, whose maximum likelihood

values are vx0 ∼ −80.0 km s−1, vy0 ∼ 130.0 km s−1, and vz0 ∼ −170.0 km s−1. These

distributions are drawn from 500,000 values of each parameter. It is encouraging to

note that the distributions have distinct peaks and that they lie in physically rea-

sonable ranges of the parameter values. However, further testing of convergence and

narrow regions of the parameter space are required.

Fitting in a Spherical Halo

As a preliminary check of whether it is possible to reproduce the NGC 5907 stream

in a strictly spherical halo, we fit the stream in a double spheroidal halo with a fixed

flattening qρ = 1 and fixed baryonic components. The remaining parameters of the

halo are set to be free. As can be seen in Figure 4.9, a close fit to the stream was found,

although it is not as good as the fit found in the earlier section; in the right panel, the

eastern arm of the observed stream and the trial stream (green curve) do not coincide.

However, the sampling routine finds a reasonable fit to the rotational velocity curve

as shown in Figure 4.10. The distributions of the various parameters of the halo and
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Figure 4.7: The MCMC distributions of the central density ρ0, scale radius r0, and
inner power slope γ, obtained by fitting the stream in a double spheroidal halo.

Figure 4.8: The MCMC distributions of the initial velocity components obtained by
fitting the stream in a double spheroidal halo.
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Figure 4.9: A comparison of the best fitting stream (left) and the data (right) in a
spherical halo. In the left panel, the red curve shows the backward integrated orbit of
the progenitor, from which the green curves that represent the corresponding stellar
stream can be derived with the correction mechanism described in Chapter 3. The
green curves are smeared out to obtain an expected image (in white) of the trial
stream. The red and green curves in the right panel are the same as in the left, and
have been overlaid on the observed stream image for comparison. As the right panel
shows, the green trial stream lies along the observed stream, except at certain regions,
for instance, along the eastern arm.
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Figure 4.10: The rotational velocity curve of the best fit spherical halo model. The
observed HI rotational velocity data of Sancisi and van Albada (1987) is marked in
red, and the rotational curve of the model in green.

Figure 4.11: The MCMC distributions of the fitted parameters. From left to right:
the flattening qρ, the progenitor line of sight depth y0, and the halo outer power-law
profile β, obtained by fitting the stream in a spherical halo (qρ was set to be fixed at
1.0).
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Figure 4.12: The MCMC distributions of the central density ρ0, scale radius r0, and
inner power slope γ, obtained by fitting the stream in a spherical halo.

orbit of the progenitor are shown in Figure 4.11, 4.12, and 4.13. These distributions

were drawn from 200,000 values of each parameter. Comparing with the previous fit

(Figures 4.6, 4.7, and 4.8 respectively), we observe that the peaks in the distributions

of y0 in both are at 28 kpc approximately. The other similarity between the two fits

is their distribution in central density, which also peak at roughly the same value in

both. The forcing of qρ to stay fixed at 1 seems to be accommodated for by varying

the values of β, γ, and r0, so that a similar, albeit inexact, stream is reproduced. The

best fit orbit found in this case is similar to the one in a double spheroidal halo, but

they differ in their direction of motion, i.e., the estimated components of the velocity

are similar in magnitude, but of opposite sign. This causes the leading and trailing

arms to be the opposite of that in the previous fit, but since the distinction between

the two arms in the data itself is not very clear, both these solutions can be taken to

be effectively equivalent.

Fitting in a Logarithmic Halo

Following the example of Chapter 3, we fit the stream in an axisymmetric logarithmic

halo as well. The contribution from the fixed baryonic components are also included

in the calculation of the accelerations. All the parameters of the halo potential (the

flattening, circular velocity and scale radius) were set to be free parameters. A com-
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Figure 4.13: The MCMC distributions of the initial velocity components, obtained
by fitting the stream in a spherical halo.

parison between the data and best fit orbit found is shown in Figure 4.14. The best

fit orbit seems to be different from the previous two fitting, even though it reproduces

many of the features of the stream. Figure 4.15 shows the rotational velocity curve of

the best fit model. Figure 4.16 shows the distributions in qφ, V0 and Rc, and Figure

4.17 shows the distributions in the initial velocity components. Since the best fit

orbit found is quite different from the one in the spheroidal and spherical fits, it is

not surprising that the peak of the distribution in qφ does not coincide with that of

qρ in the earlier fits. However, the fitting routine did find orbits that are similar to

the earlier fits, an example of which is shown in Figure 4.18. These have qφ values

that are comparable with the qρ estimates (using the relation 1 − qφ ≈ 1
3

[1− qρ]).
The goodness of the fit for two very distinct orbits, with vastly different values of

flattening suggests that a much more thorough exploration of these parameters is

required before being able to reach a conclusive understanding of the stream and halo

of NGC 5907.

Fitting in MOND

As mentioned in Chapter 1, probes of dark matter are useful in testing modified

Newtonian dynamics (MOND). Therefore, we attempted to fit the stream in a MOND

potential derived from the baryonic components. For this purpose, the accelerations
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Figure 4.14: A comparison of the best fitting stream (left) and the data (right) in an
axisymmetric logarithmic halo. In the left panel, the red curve shows the backward
integrated orbit of the progenitor, from which the green curves that represent the
corresponding stellar stream can be derived with the correction mechanism described
in Chapter 3. The green curves are smeared out to obtain an expected image (in
white) of the trial stream. The red and green curves in the right panel are the same
as in the left, and have been overlaid on the observed stream image for comparison.

Figure 4.15: The rotational velocity curve of the best fit logarithmic model. The
observed HI rotational velocity data of Sancisi and van Albada (1987) is marked in
red, and the rotational curve of the model in green.
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Figure 4.16: The MCMC distributions of the fitted parameters. From left to right:
the flattening in logarithmic potential qφ, the circular velocity V0, and the scale radius
Rc, obtained by fitting the stream in a logarithmic potential.

Figure 4.17: The MCMC distributions of the initial velocity components in an axym-
metric logarithmic potential.
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Figure 4.18: A trial stream in an axisymmetric logarithmic halo that is similar to the
best-fit streams in the double spheroidal and spherical cases.

were calculated by first converting the MOND potential into an equivalent phantom

dark matter halo model. This enables us to easily use the multipole expansion, as in

the previous cases of the double spheroidal halo, for calculating the accelerations and

integrate the orbits. In order to derive the phantom dark matter in our case, we first

generate a MOND potential by solving the modified Poissonian equation, which can

be approximated as:

∇ · (||∇Φ||∇Φ) = 4πGa0ρ (4.1)

in the deep MOND regime. Once the MONDian potential is obtained, we consider it

as a Newtonian potential such that

∇Φ = 4πρeff (4.2)

where ∇Φ = ~gmond is calculated from the modified Poissonian solver (see Ciotti et al.

2006; Nipoti et al. 2007; Wu et al. 2008) and ρeff is the effective equivalent density

in the Newtonian framework. Subtracting the (Newtonian) contributions from the

baryonic components, we obtain the phantom dark matter halo, which can then be

used as a fixed component in the multicomponent model. Trial streams are generated
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Figure 4.19: A comparison of the best fitting stream (left) and the data (right) in a
MOND framework. In the left panel, the red curve shows the backward integrated
orbit of the progenitor, from which the green curves that represent the corresponding
stellar stream can be derived with the correction mechanism described in Chapter 3.
The green curves are smeared out to obtain an expected image (in white) of the trial
stream. The red and green curves in the right panel are the same as in the left, and
have been overlaid on the observed stream image for comparison.

in this fixed potential with varying orbital parameters (velocity and initial radial

distance) to find the best fit trial stream. The best fit we have found so far is

relatively poor, as can be seen in Figure 4.19, even though the outer part of the

rotational curve was reasonably well reproduced in this fixed potential (Figure 4.20).

Figure 4.21 shows the distributions in the velocity components. As before, a more

detailed study is required before any strong conclusions may be drawn.

4.4 Discussion

In this Chapter, we presented the preliminary tests obtained by using an improved

fitting routine to fit the exquisite stream observed around NGC 5907. We illustrated a

few initial fits in galactic models with axisymmetric halos, as well as a fit in a MOND

framework. Mart́ınez-Delgado et al. (2008) showed that it possible to reproduce a
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Figure 4.20: The rotational velocity curve produced in a MOND scenario. The ob-
served HI rotational velocity data of Sancisi and van Albada (1987) is marked in red,
and the rotational curve of the model in green.

Figure 4.21: The MCMC distributions of the initial velocity components in a MOND
framework.
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stream similar to the observed one in a spherical halo, by obtaining N-body simula-

tions that resembled the stream. To test the robustness of this result, we used our

approach to fit the stream in a spherical halo, and found that it yields a remarkably

similar best fit stream. However, a much better fit to the observed stream is obtained

when the flattening parameter is set to be free, which indicates that the halo may be

quite prolate. It is important to further test this possibility, as fits in a logarithmic

halo show that a vastly different orbit could also produce similar structures. The

ambiguity in the exact path of the stream makes it difficult to resolve this problem.

Another aspect that stands out in these preliminary tests is that none of the fits were

able to produce the south-western tail of the stream. In earlier fits of the NGC 5907

stream, based on Parallel Tempering rather than affine-invariant sampling with like-

lihood calculated as the distance of the trial stream from the observed stream instead

of a pixel-to-pixel comparison, we found that a mildly triaxial logarithmic halo could

produce the south western feature, along with the other parts of the stream. Due

to time-constraints, this possibility could not be explored further with the modified

fitting routine, and remains an urgent follow-up of the work presented in this chapter.

We also find that the stream could not be fit well in a MOND framework, but this

may be due to inaccuracies in the baryonic model or insufficient sampling. Nonethe-

less, further exploration of the stream in a MOND framework using the phantom dark

matter approach could provide strong constraints on this popular alternate theory of

gravity.
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Chapter 5

Conclusions and Outlook

Stellar streams that form during the minor mergers of galaxies are fast becoming

critical tools to study the morphology of galactic halos, which in turn can reveal the

nature of dark matter and the process of galaxy formation. In this thesis, we intro-

duced a novel approach to using stellar streams as probes of galactic halos. The usual

approach in implementing these streams as potential tracers depends either on the

flawed assumption that they follow exact orbits in the potential, or by the reproduc-

tion of the observed stream using N-body simulations that are too computationally

expensive to enable a thorough parameter search. The method described in this thesis

improves over both these techniques by combining their positive attributes. A correc-

tion mechanism was developed which can easily accurately compute a representative

stream from a given orbit of the satellite, provided its mass is less than ∼ 1.0×109, so

that a large number of N-body simulations (of the order of millions) can be avoided.

An extensive search of the halo parameter space can then be carried out using MCMC

sampling methods such as parallel tempering or affine invariant ensemble sampling.

With the methodology in place, we demonstrated that the parameters of the

stream and of the mass distribution of the host galaxy can be constrained, depending

on the type and quantity of the data available. We were especially interested in

investigating whether the density profiles of galactic halos (or at least their flattening)

can be constrained using only the projection of the stellar stream on the sky, which is

the typical information available for external galaxies. Luckily, we find by testing the
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method on pseudo streams that it is indeed possible to measure the halo flattening,

if the streams have at least two turning points.

Encouraged by these results, we proceeded to apply the technique on the exquisite

stream of NGC 5907, which is a near-perfect candidate for the method with its looping

structures and several turning points. Unfortunately, the same looping structures

create some confusion as to its exact path around the galaxy, while the absence of the

progenitor causes some further ambiguity in the stream modelling. Nonetheless, we

were able to obtain some preliminary fits for the stream and initial estimates of the

various parameters, which indicate that the halo may be prolate. A rigorous study

of the stream is still needs to be undertaken to draw strong conclusions from this

system. In what follows, some of the assumptions and limitations of the technique

are discussed, as well as future prospects based on the method.

A follow up work that could be immediately undertaken using the methodology

in its current form is its application to several low mass, lengthy streams observed

in our Galaxy such as well as external galaxies. The method may be readily ap-

plied to the Sagittarius stream, the streams of M31, M63 and several other more

distant systems (see Mart́ınez-Delgado et al. 2010 for a pilot survey). With increas-

ingly sensitive instruments and large-scale surveys, we would be able to constrain the

halo shapes and profiles of a statistically significant number of galaxies and get a

sense of the distribution of halo shapes and profiles of real galaxies, which can then

be compared with numerical predictions of the same. Advances in technology also

promise measurements of proper motions of stars in external galaxies, which would

enable much better constraints of their potentials, even with shorter streams. Future

missions similar to the (unfortunately now cancelled) Space Interferometry Mission

(SIM) may make this possibility a reality.

Besides observational improvements, refinements in the theoretical aspects of the

technique would also greatly enhance such studies based on stellar streams. First and

foremost, the work presented in this thesis can easily be extended to perform a similar

analysis using triaxial halo models or non-parametric halo models, in addition to the

axisymmetric models that we have used. Some efforts were made in this direction,
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but could not be concluded due to time constraints. We have also made other implicit

assumptions in our work, for the sake of simplicity, whose effects remain to be exam-

ined. For instance, the method rests on the assumption that stars of the in-falling

satellite galaxy follow the dark matter particles which get tidally stripped. Although

this is a reasonable assumption, especially for low mass halos, it is worth examining

multi-component satellite galaxy models that include stars and dark matter. We have

also assumed in all our testing that the halos are static over the time period of the

evolution of the stellar streams. In a live halo, the expectation is that the geometry

of the streams formed in it would be affected, which could have a significant impact

on the estimated halo shape. A similar factor to be considered in future studies is

the alignment of the dark matter halo and the stellar disk.

Another important question to be addressed regards the identification of streams

formed due to multiple accretion events. The double-elliptical structure of the NGC

5907 stream, for example, may be a result of two separate accretion events. The near-

constant width of the stellar structure along its path indicates that it is probably the

remnant of a single accretion, but it would be helpful to develop methods that strongly

distinguish between structures of different accretions.

It would be worthwhile to build on the current technique and generalize it to

more massive satellites. This can be done by including dynamical friction in the

correction mechanism put forward in this thesis. Since analytical expressions for the

orbital decay of massive satellites are available, they may be used in the backward

and forward orbit integrations of the progenitor and stars that escape the satellite.

This would effectively provide a correction mechanism for massive satellites, which

can then be used to perform similar statistical analyses of massive streams.

An interesting theoretical study may be the comparison, and possible combina-

tion, of the approach presented in this thesis and that described in Eyre and Binney

(2009a,b), wherein action-angle variables are used to study streams and their host

halos.

The technique of fitting streams can also be effectively used to fit several streams

in a given potential, which would introduce more orbital parameters, but since these
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are usually well-constrained, it would not increase the computational cost by much or

introduce degeneracies in the estimated distributions of the derived parameters. This

opens up a world of possibilities of using not just the long structures, but also small

tidal features such as arcs, shells, and short streams, as probes of galactic halos.
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