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AVEC TERMES DE CHAMP MAGNÉTIQUE AUTO-GÉNÉRÉ

Dirigée par Éric SONNENDRUCKER

Laboratoire de rattachement
Institut de Recherche Mathématique Avancée
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ANALYSE MATHÉMATIQUE ET NUMÉRIQUE
DU SYSTÈME DE LA MAGNÉTOHYDRODYNAMIQUE RÉSISTIVE

AVEC TERMES DE CHAMP MAGNÉTIQUE AUTO-GÉNÉRÉ

Résumé

Ce travail est consacré à la construction de méthodes numériques permettant
la simulation de processus d’implosion de coquilles en fusion par confine-
ment inertiel (FCI) avec prise en compte des termes de champ magnétique
auto-généré. Dans ce document, on commence par décrire le modèle de
magnétohydrodynamique résistive à deux températures considéré ainsi que
les relations de fermeture utilisées. Le système d’équations ainsi obtenu est
alors divisé en sous-systèmes selon la nature de l’opérateur mathématique
sous-jacent pour lesquels l’on propose ensuite des schémas numériques adaptés.
On insiste notamment sur le développement de schémas volumes finis pour
l’opérateur hyperbolique, ce dernier correspondant aux équations d’Euler ou
de la magnétohydrodynamique idéale selon que l’on tienne compte ou non des
termes de champ magnétique. Plus précisement, on propose une nouvelle classe
de schémas d’ordre élevé à directions alternées construits dans le formalisme
Lagrange + projection sur grille cartésienne qui présentent l’originalité d’être
particulièrement bien adaptés aux calculateurs modernes grâce, entre autres,
au traitement par directions alternées et à l’utilisation de techniques de vis-
cosité artificielle. Cette propriété est illustrée par des mesures de performance
séquentielle et d’efficacité parallèle. On combine ensuite les schémas hyper-
boliques développés avec des méthodes de type volumes finis permettant le
traitement semi-implicite des termes de conduction thermique et résistive et une
prise en compte explicite des termes de champ magnétique auto-générés. Afin
d’étudier les caractéristiques et les effets des champs magnétiques auto-générés,
on présente enfin un cas test de capsule FCI simulée à partir du début de la
phase de décélération.

Mots-clés

Équations d’Euler, magnétohydrodynamique idéale, volumes finis, ordre élevé,
formalisme Lagrange + projection, splitting directionnel, viscosité artificielle.
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MATHEMATICAL AND NUMERICAL ANALYSIS OF THE
RESISTIVE MAGNETOHYDRODYNAMICS SYSTEM OF EQUATIONS

WITH SELF-GENERATED MAGNETIC FIELD TERMS

Abstract

This work is devoted to the construction of numerical methods that allow the
accurate simulation of inertial confinement fusion (ICF) implosion processes by
taking self-generated magnetic field terms into account. In the sequel, we first
derive a two-temperature resistive magnetohydrodynamics model and describe
the considered closure relations. The resulting system of equations is then split
in several subsystems according to the nature of the underlying mathematical
operator. Adequate numerical methods are then proposed for each of these
subsystems. Particular attention is paid to the development of finite volume
schemes for the hyperbolic operator which actually is the hydrodynamics or
ideal magnetohydrodynamics system depending on whether magnetic fields are
considered or not. More precisely, a new class of high-order accurate dimension-
ally split schemes for structured meshes is proposed using the Lagrange-remap
formalism. One of these schemes’ most innovative features is that they have
been designed in order to take advantage of modern massively parallel computer
architectures. This property can for example be illustrated by the dimensionally
split approach or the use of artificial viscosity techniques and is practically
highlighted by sequential performance and parallel efficiency figures. Hyperbolic
schemes are then combined with finite volume methods for dealing with the
thermal and resistive conduction operators and taking magnetic field generation
into account. In order to study the characteristics and effects of self-generated
magnetic field terms, simulation results are finally proposed with the complete
two-temperature resistive magnetohydrodynamics model on a test problem that
represents the state of an ICF capsule at the beginning of the deceleration phase.

Key words

Euler equations, ideal magnetohydrodynamics, finite volume methods, high-
order accuracy, Lagrange-remap formalism, dimensional splitting, artificial
viscosity.
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Introduction

Contexte physique

La fusion par confinement inertiel (FCI) est un procédé consistant à porter une quantité de combustible -
généralement un micro-ballon de deutérium-tritium (DT) gazeux enrobé dans une phase cryogénique - à
des conditions de densité, de température et de pression permettant l’établissement de réactions de fusion
nucléaire (on parle alors d’ignition). Pour cela, le micro-ballon est comprimé par un fort dépôt d’énergie sous
l’effet duquel la coquille de DT se vaporise sous forme de plasma. On distingue deux approches permettant
de réaliser ce dépôt d’énergie. Dans le cas de l’attaque dite directe, il est obtenu en dirigeant un grand
nombre de lasers à haute énergie sur la cible de DT. Dans le cas de l’attaque dite indirecte, la cible est
placée dans un cylindre métallique (appelé hohlraum) qui est lui-même soumis à une irradiation laser,
entrâınant l’émissions de rayons X qui sont absorbés par la surface du micro-ballon et créent les conditions
de confinement désirées.

Cette étude se place dans le cadre du processus de fusion par confinement inertiel en attaque directe. On
sait que, dans ce contexte, des difficultés peuvent survenir pendant la phase d’implosion [64] consécutive à
l’irradiation laser en raison d’écarts à la sphéricité au niveau de la surface de la coquille. Ceux-ci proviennent
généralement soit de défauts d’usinage du micro-ballon, soit de l’anisotropie de l’éclairement laser. Les
perturbations que constituent ces écarts à la sphéricité sont amplifiées au cours du processus d’implosion
et donnent naissance à des instabilités hydrodynamiques - généralement de type Richtmyer-Meshkov ou
Rayleigh-Taylor - permettant l’apparition de champs magnétiques. En effet, comme nous le verrons au
cours de cette étude, on observe des pertes de colinéarité des gradients de densité et de température au
niveau des zones d’instabilités et celles-ci induisent l’apparition de termes de champ magnétique dits auto-
générés (puisqu’ils ne proviennent pas d’un champ extérieur) dont les conséquences peuvent être tout à
fait significatives. Ceux-ci ont notamment pour effet de réduire la conduction thermique électronique et
sont susceptibles, suivant leur intensité, de modifier la distribution de température au voisinage du point
chaud, modifiant ainsi les conditions d’ignition [42]. Dès lors, il semble important de suivre l’évolution des
composantes de champ magnétique en plus des quantités thermodynamiques usuelles dans les codes de
simulation.

Objectifs

L’objectif de cette étude est de développer des méthodes numériques permettant la prise en compte
des termes de champ magnétique auto-généré dans les simulations d’implosion de micro-ballons. Pour cela,
nous établirons tout d’abord un modèle de magnétohydrodynamique (MHD) résistive à deux températures
représentant de manière suffisamment exhaustive la physique du problème considéré. Nous proposerons
ensuite une méthode de résolution numérique du système d’équations établi en s’appuyant sur des schémas
précis et efficaces. Une attention toute particulière sera portée à l’implémentation de ces schémas numériques
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et plus globalement aux problématiques de performances et de parallélisme dans le but de tirer parti de la
puissance des calculateurs modernes caractérisés par leurs architectures massivement parallèles. La dernière
partie de cette thèse sera consacrée à l’exploitation du code de simulation développé, plus précisément à
l’étude des termes de champ magnétique auto-généré et de leurs effets sur la base de résultats numériques
préliminaires.

Contexte numérique

L’implosion de micro-ballons en fusion par confinement inertiel est un processus qui présente en théorie
une symétrie sphérique, ce qui pourrait servir à réduire le nombre de dimensions dans le cadre de la
simulation numérique. La prise en compte des défauts de sphéricité de la coquille implique cependant que
l’on considère des géométries plus riches. L’approche la plus générale consisterait à résoudre le problème
considéré en trois dimensions d’espace. Pour des raisons évidentes de coût de calcul, nous avons toutefois
choisi de restreindre notre étude aux géométries axisymétriques en deux dimensions d’espace.

Nous avons par ailleurs choisi de discrétiser les équations en jeu par des schémas numériques de type
volumes finis sur des maillages structurés, ce cadre étant le mieux adapté à la construction de méthodes de
résolution à hautes performances.

Aspects hautes performances

La simulation numérique est un domaine en constante évolution dont les problématiques se rapprochent
de plus en plus de celles du calcul hautes performances. D’une part, la nécessité de produire des résultats de
simulation fiables fait que les systèmes physiques étudiés sont de plus en plus complexes. D’autre part, les
architectures des calculateurs modernes évoluent vers des configurations massivement parallèles comportant
un grand nombre de coeurs d’exécution et un espace mémoire par coeur qui diminue de facto. Ces réalités
induisent des contraintes dans la construction et l’implémentation de méthodes numériques : celles-ci doivent
à la fois être performantes (afin de permettre la résolution de problèmes multi-physiques complexes) et avoir
de bonnes aptitudes de passage à l’échelle (compte tenu de l’architecture des calculateurs sur lesquels elles
sont amenées à être exécutées). Le travail de thèse que nous présentons adopte une approche novatrice en
ce sens que la majeure partie des choix effectués a été conditionnée par les contraintes exposées ci-dessus.
Ceux-ci demandent bien entendu à être validés en pratique. Nous nous appuyerons pour cela sur des outils
de mesure des performances que nous décrivons ci-dessous.

Outils de mesure des performances

Nous effectuons dans cette étude une analyse complète des performances de la plateforme de simulation
mise en œuvre afin de déterminer si les choix effectués portent leurs fruits en pratique. Nous nous basons
pour cela sur trois mesures - le grind time, le nombre d’opérations flottantes effectuées par seconde et
l’efficacité parallèle - qui, pris ensemble, fournissent une estimation relativement fiable des capacités d’un
code de calcul en termes de performances et de parallélisme.

Le grind time

Le grind time est défini comme le temps nécessaire à l’avancée en temps des inconnues par maille et par
cycle de calcul :

grind time =
temps de restitution

nombre de mailles× nombre d’itérations
.
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Il s’agit donc de l’indicateur critique de performance puisque de lui dépendra le temps de restitution pour
un problème et un maillage donnés. À titre indicatif, on considère qu’un code industriel se doit d’avoir un
grind time inférieur à 10 microsecondes par maille et par cycle pour un coeur de calcul d’un processeur
récent.

Le nombre d’opérations flottantes effectuées par seconde

Nous mesurerons également les performances de notre solveur en termes d’opérations flottantes effectuées
par seconde exprimées en FLOPS (floating operations per second). En pratique, celles-ci sont comptées
pendant l’exécution selon un protocole décrit en section 4.4.1. Le résultat obtenu est ensuite comparé à
la performance crête théorique du processeur utilisé et donne une idée de son exploitation et du potentiel
d’optimisation du code. À titre indicatif, on estime que les codes scientifiques exploitent en moyenne environ
10% de la puissance crête disponible.

L’efficacité parallèle

Nous évaluerons enfin l’efficacité parallèle de notre code de simulation qui mesure sa capacité à exploiter
un grand nombre de processus lorsqu’il est exécuté en parallèle. Plus précisement, il s’agit du ratio du
temps de restitution du solveur séquentiel par le temps de restitution du solveur parallèle sur un même
problème. Cette mesure (appelée efficacité parallèle forte) peut cependant se révéler difficile à estimer. Pour
un très grand nombre de processus, la taille du problème à considérer se doit alors d’être importante, ce
qui implique de très importantes ressources mémoire et rend le temps de restitution du solveur séquentiel
prohibitif. Nous adoptons par conséquent une approche différente consistant à calculer le rapport du temps
d’exécution séquentiel sur un problème donné par le temps d’exécution sur N processus avec un maillage
N fois plus grand (on parle alors d’efficacité parallèle faible).

Quelques principes permettant le développement de méthodes numériques performantes
et passant à l’échelle

La mise en place d’une plateforme de simulation parallèle à hautes performances suppose que l’on
respecte certains principes pour la conception et l’implémentation de méthodes numériques. Nous énonçons
trois d’entre eux ci-dessous.

Principe n̊ 1 : éviter les tests conditionnels

Nous éviterons autant que possible le recours à des tests conditionnels - en particulier lorsque le résultat
du test ne peut être prédit de manière fiable 1 - dans le corps des fonctions de calcul. Ceux-ci peuvent en
effet altérer notablement les performances d’un code de simulation.

– D’une part, la présence de tests conditionnels empêche en général le compilateur d’effectuer certaines
optimisations. L’utilisation de tests dans une boucle peut notamment empêcher sa vectorisation et
ainsi considérablement dégrader les performances, l’exécution de boucles vectorisées étant bien plus
rapide que celle de boucles non vectorisées.

– D’autre part, les tests conditionnels sont très peu performants sur des architectures de type GPGPU,
les cartes accélératrices ne disposant pas de mécanisme de prédiction de branchement.

1Les processeurs modernes s’appuyent sur un mécanisme appelé prédicteur de branchement qui vise à prédire le résultat
des tests conditionnels et poursuit le lancement d’instructions dans la branche la plus probable. Par conséquent, un test sur
un paramètre d’exécution constant peut être effectué très rapidement. Au contraire, les tests portant sur des variables dont la
valeur ne peut être prédite sont effectués de manière peu efficace et sont donc à éviter autant que possible.
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Il conviendra par conséquent d’éviter le recours à des tests conditionnels aussi bien dans la conception des
schémas numériques que dans leur implémentation.

Principe n̊ 2 : s’assurer de la proximité des données (algorithmes dits cache-oblivious)

Nous serons attentif aux problématiques de localité spatiale et temporelle des données dans le dévelop-
pement de méthodes numériques afin de maximiser la réutilisation des données présentes dans le cache du
processeur, l’accès à une donnée située en cache étant environ 100 fois plus rapide que l’accès à une donnée
stockée en mémoire centrale (RAM). En pratique, nous veillerons donc à ce qu’un maximum d’opérations
flottantes soient effectuées sur des données proches les unes des autres, aussi bien en mémoire (contiguité
en mémoire) qu’en temps.
Remarque 1. Un algorithme tirant parti des principes de localité spatiale et temporelle est dit cache-
oblivious.

Principe n̊ 3 : limiter le nombre de phases de communication en contexte parallélisé

Nous utilisons dans cette étude une méthode de parallélisation dite de décomposition de domaine.
Dans ce contexte, les données sont distribuées sur plusieurs processus : chacun d’entre eux n’a donc la
connaissance que d’une partie de l’information du maillage. Or, il est bien connu qu’un grand nombre de
méthodes numériques s’appuie sur des supports de mailles (stencils) plus ou moins larges, notamment les
méthodes d’interpolation. Ceci implique la présence de mailles dites fantômes autour du domaine physique
mais également du sous-domaine affecté à chaque processus qu’il s’agit de remplir préalablement à toute
opération sur une maille faisant appel à ses voisines. En parallèle, le remplissage des couches de mailles
fantômes partagées par deux processus se traduit par des phases communications qui sont susceptibles
de réduire l’efficacité parallèle. Il convient donc de limiter autant que possible le nombre de phases de
communications en pratique. Cette contrainte pénalise d’office les méthodes d’intégration temporelle multi-
pas (de type Runge-Kutta par exemple) : celles-ci nécessitent en effet la réalisation de plusieurs phases
de communication par pas de temps, ce qui peut être considéré comme très pénalisant pour un solveur
massivement parallèle.
Remarque 2. Les méthodes d’intégration temporelle multi-pas sont non seulement coûteuses en termes de
phases de communication mais également en termes d’appels à l’équation d’état. Or, dans le cas d’équations
d’état tabulées (i.e. pour laquelle il n’existe pas de relation de fermeture analytique), ce type d’appel est
particulièrement onéreux.

Plan de l’étude

I. Établissement du modèle

L’évolution des fonctions de distribution des espèces électroniques et ioniques est régie par l’équation
de Vlasov avec terme source de type colisionnel. Cette représentation cinétique du problème considéré
constitue le point de départ de notre étude. Le chapitre 1 détaille en premier lieu l’obtention d’un jeu
d’équations d’évolution pour le fluide moyen par le calcul des trois premiers moments de l’équation de
Vlasov pour chaque espèce. Ces équations fluides sont ensuite combinées aux équations de Maxwell que
satisfont les champs électrique et magnétique. Nous obtenons finalement une équation d’évolution pour
le seul champ magnétique en négligeant le courant de déplacement (approximation MHD). Le système
d’équations ainsi établi est complété par des relations de fermeture de type Braginskii [11] et un modèle
physique de Decoster [28] définissant les tenseurs thermoélectrique, de conductivité, et de résistivité. Ce
système comporte des opérateurs mathématiques de nature différente :
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Sous-système Opérateur mathématique Schéma temporel

MHD idéale à deux températures hyperbolique explicite

conduction thermique parabolique semi-implicite

conduction résistive parabolique semi-implicite

termes sources termes sources explicite

Tab. 1 – Récapitulatif des différents sous-systèmes considérés dans cette étude.

– un opérateur de type hyperbolique qui se trouve être l’opérateur de la MHD idéale ;
– deux opérateurs de type paraboliques régissant respectivement les phénomènes de conduction ther-

mique et résistive ;
– un opérateur de type terme source représentant les éventuels termes de champ magnétique auto-généré

ainsi que les contributions des effets Hall et Nernst.

Nous proposons dans le chapitre 2 une stratégie de résolution consistant à séparer le système d’équations
initial en plusieurs sous-systèmes (à l’aide d’une méthode de splitting d’opérateur) selon la nature de
l’opérateur mathématique sous-jacent. Le principal avantage de cette approche est qu’elle permet la construc-
tion de méthodes numériques adaptées à chaque opérateur et que l’étape de validation s’en trouve simplifiée
puisqu’elle peut alors être effectuée sous-système par sous-système. Elle permet également d’adapter la
discrétisation temporelle à chaque opérateur. Nous verrons que les schémas numériques proposés pour les
équations de la MHD idéale s’appuyent sur une discrétisation temporelle explicite impliquant une condition
de stabilité du type ∆t ≤ λ∆x. Or, la résolution explicite des termes de conduction induirait une contrainte
bien plus importante sur le pas de temps du type ∆t ≤ λ∆x2. Ceux-ci seront donc traités de manière
semi-implicite. Enfin, nous proposerons une approche explicite pour le traitement des termes sources, celle-
ci s’appuyant sur l’hypothèse que la contribution des termes sources est suffisamment faible pour ne pas
violer la condition de stabilité des schémas hyperboliques. Les différents sous-systèmes considérés ainsi que
la discrétisation temporelle retenue pour chacun d’entre eux sont résumés dans le tableau 1.

II. Construction de méthodes numériques d’ordre élevé pour les équations de l’hydro-
dynamique et de la MHD idéale

La seconde partie de notre étude est consacrée à la construction d’une nouvelle classe de schémas
numériques d’ordre élevé en espace et en temps en régime non-linéaire sur grille cartésienne régulière pour
les équations de l’hydrodynamique et de la MHD idéale en deux dimensions d’espace en géométries plane et
axisymétrique. Ces schémas numériques, dits GoHy (pour Godunov hybride) et construits dans le formalisme
Lagrange + projection, présentent la particularité d’avoir été conçus en respectant les principes évoqués
précédemment (cf. page 3), ceci dans le but de tirer parti de la puissance des calculateurs modernes.

Schémas GoHy pour l’hydrodynamique plane

Nous détaillons tout d’abord dans le chapitre 4 la construction des schémas GoHy pour les équations de
l’hydrodynamique plane et nous nous concentrons en premier lieu sur le cas monodimensionnel en section 4.1.
Les équations d’Euler monodimensionnelles sont tout d’abord réécrites en coordonnées lagrangiennes puis
sont discrétisées par une méthode de type volumes finis. Nous proposons alors une méthodologie reposant
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sur la procédure dite de Cauchy-Kovalevskaya permettant de calculer des valeurs approchées des flux lagran-
giens à l’ordre élevé et ainsi de construire un schéma volumes finis d’ordre élevé. Le recours à la procédure de
Cauchy-Kovalevskaya se révélant particulièrement complexe à l’ordre élevé, nous décrivons également une
technique permettant de l’appliquer automatiquement et de générer le code source correspondant à l’aide
d’un logiciel de calcul formel (Maple en l’occurrence). Cette première étape nous permet de déterminer les
valeurs moyennes des variables conservatives lagrangiennes sur un maillage non-uniforme. Celles-ci sont en-
suite projetées sur le maillage régulier initial à l’aide d’une méthode de reconstruction polynomiale d’ordre
élevé. Les schémas numériques Lagrange + projection ainsi obtenus sont en théorie particulièrement effi-
caces. En effet, ils n’ont recours à aucun test conditionnel (en accord avec le principe n̊ 1), reposent sur un
schéma en temps direct ne nécessitant qu’un seul appel à l’équation d’état et aux conditions de bord par
itération (en accord avec le principe n̊ 3) et utilisent uniquement des méthodes d’interpolation centrées peu
coûteuses.

Nous proposons ensuite en section 4.2 d’étendre les schémas GoHy aux géométries bidimensionnelles en
combinant le schéma monodimensionnel décrit précédemment avec des méthodes de splitting directionnel
d’ordre élevé dont la précision est supérieure au classique splitting de Strang [77] d’ordre 2. Les techniques
de splitting directionnel consistent à résoudre le système d’équations bidimensionnel considéré par plusieurs
itérations d’un schéma monodimensionnel selon les directions horizontale et verticale avec un pas de temps
pondéré de manière adéquate. L’ordre de la méthode de splitting dépend du nombre d’itérations et du choix
des coefficients de pondération. Nous proposons dans cette étude plusieurs jeux de coefficients de l’ordre 3 à
l’ordre 6. Ceux-ci sont pour l’essentiel tirés de la littérature sur les intégrateurs symplectiques [36, 61, 13, 95].
Notre contribution dans ce domaine consiste à proposer des séquences de splitting dites optimales au sens
où elles permettent de maximiser le pas de temps.

Nous montrons par ailleurs qu’une simple combinaison d’un schéma monodimensionnel et d’une méthode
de splitting directionnel d’ordre élevé ne permet pas la construction d’un schéma multidimensionnel d’ordre
élevé. Il est en effet nécessaire d’effectuer une étape supplémentaire dite de reconstruction transverse per-
mettant le passage du contexte monodimensionnel au contexte multidimensionnel. Nous proposons en sec-
tion 4.2.2 une telle méthode opérant sur les variables conservatives qui se révèle contraignante en termes de
conservativité. Nous indiquons par conséquent comment cette méthode de reconstruction peut être appliquée
aux flux, ce qui permet de s’affranchir de tout problème de préservation de la conservativité.

La stratégie à directions alternées que nous proposons présente un avantage significatif par rapport
aux méthodes classiques en termes de performances. En effet, comme nous le verrons en introduction de
la section 4.2, les techniques de splitting directionnel permettent la mise en œuvre d’une implémentation
opérant majoritairement sur des données contigües en mémoire, respectant ainsi le principe n̊ 2 énoncé
page 4.

La section 4.3 est consacrée au traitement des deux principales difficultés auxquelles sont confrontés
de tels schémas d’ordre élevé en pratique. D’une part, comme la majorité des méthodes d’ordre élevé,
les schémas que nous avons développés sont sujets à des phénomènes d’oscillations de Gibbs au voisinage
des discontinuités qui sont susceptibles d’altérer la qualité de la solution numérique, voire de produire des
résultats erronés. D’autre part, les schémas GoHy provoquent en raison de leur approche par directions
alternées des pertes de symétrie sur certains cas pratiques présentant en théorie une symétrie de révolution.
Ces deux problèmes sont traités par des techniques de viscosité artificielle : nous utilisons un modèle
d’hyperviscosité d’ordre élevé inspiré de la littérature sur la simulation grandes échelles [21, 20] afin réduire
les phénomènes d’oscillations sans réduire l’ordre des schémas tandis que la préservation de la symétrie est
assurée par un modèle de viscosité artificielle d’ordre 1 combiné à un filtre évitant l’introduction excessive de
dissipation numérique dans les zones présentant des chocs. Ces techniques présentent l’avantage par rapport
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aux méthodes classiques (limiteurs, techniques d’interpolation à support adaptatif de type ENO) d’éviter le
recours à des tests conditionnels (elles respectent donc le principe n̊ 1 énoncé page 3) et se révèlent donc peu
coûteuses. Notons cependant que les méthodes de viscosité artificielle reposent sur un certain nombre de
paramètres qui doivent être ajustés pour chaque problème, rendant parfois leur mise en œuvre fastidieuse.

Afin de mesurer la capacité effective des schémas GoHy à tirer parti des calculateurs modernes, nous
proposons en section 4.4 des mesures de performance séquentielle et d’efficacité parallèle à l’aide des ou-
tils décrits page 2. Celles-ci se révèlent conformes aux attentes. Elles montrent en effet que les schémas
GoHy pour les équations de l’hydrodynamique sont capables d’exploiter 20 à 30% de la puissance crête des
processeurs actuels tandis que l’efficacité parallèle de notre implémentation atteint environ 95% sur 256
processus.

Nous concluons le chapitre 4 par des résultats numériques obtenus sur des cas tests tirés de la littérature.
Nous considérons tout d’abord des solutions régulières [53, 94] pour lesquelles nous réalisons une analyse
de convergence. Un même problème est résolu sur des maillages de tailles différentes et l’erreur entre les
solutions exacte et approchée est mesurée pour chaque finesse de maillage à l’aide d’une norme L1 en espace
et en temps. Ces résultats permettent alors de calculer l’ordre expérimental de convergence qui se révèle
conforme à l’ordre théorique dans tous les cas que nous avons considérés. Nous effectuons par ailleurs des
tests sur des problèmes non réguliers présentant des chocs et des discontinuités. Ceux-ci permettent, d’une
part, de mettre en valeur les effets positifs des méthodes de viscosité artificielle sur la qualité des solutions
numériques et, d’autre part, d’évaluer la robustesse des schémas GoHy. Cette dernière se révèle tout à fait
satisfaisante en pratique.

Les schémas GoHy pour l’hydrodynamique ont fait l’objet d’une publication aux Comptes-Rendus de
l’Académie des Sciences de Paris [32].

Extension des schémas GoHy à la MHD idéale

Le chapitre 5 est consacré à l’application des schémas GoHy au système de la MHD idéale. Celle-ci
repose globalement sur les mêmes algorithmes que dans le cas de l’hydrodynamique. Une difficulté survient
toutefois dans le cas multidimensionnel. Dans ce contexte, le champ magnétique doit en effet satisfaire la
contrainte de divergence suivante :

∇ ·B = 0,

sans quoi la résolution numérique est susceptible de mener à des résultats erronés [10]. Or, le respect de
cette contrainte n’est pas automatiquement garanti au niveau discret : il est par conséquent nécessaire
de l’imposer numériquement. Nous présentons en section 5.2 plusieurs techniques tirées de la littérature
répondant à cette problématique [10, 35, 88, 1, 29] et étudions leur capacité à être couplée avec l’approche à
directions alternées que nous avons adoptée. Il se trouve que la technique dite de nettoyage hyperbolique de
la divergence proposée par Dedner et al. [29] semble être la mieux adaptée. Nous décrivons donc comment
elle peut être combinée aux schémas GoHy sans perte d’ordre.

Comme dans le cas de l’hydrodynamique, nous mesurons ensuite la performance séquentielle et l’efficacité
parallèle des schémas GoHy pour la MHD idéale à l’aide des outils décrits page 2. Les résultats sont très
satisfaisants : ils montrent en effet que les schémas GoHy sont capables de tirer parti de près de 40%
de la puissance crête des processeurs actuels à l’ordre 4 tandis que l’efficacité parallèle faible estimée est
supérieure à 95% pour 256 processus. Nous concluons le chapitre 5 par des résultats numériques sur des
cas tests réguliers ou non tirés de la littérature. Ceux-ci montrent d’une part que l’ordre de convergence
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expérimental des schémas GoHy correspond à l’ordre théorique et font état, d’autre part, d’une robustesse
tout à fait satisfaisante.

Cette partie a fait l’objet d’une présentation à la conférence Numerical Models for Controlled Fusion
qui s’est déroulée au mois d’avril 2009 sur l’̂ıle de Porquerolles. Celle-ci a débouché sur une publication dans
les actes de cette conférence [93].

Cas des géométries axisymmétriques

Le chapitre 6 détaille l’extension des schémas GoHy aux géométries axisymétriques dans le cas de la
MHD idéale. Deux principales difficultés surviennent dans ce contexte. D’une part, le calcul automatique
des flux lagrangiens avec le logiciel Maple se révèle délicat le long de l’axe r = 0 en raison de la présence
de termes en 1/r. Ce problème est traité en modifiant quelque peu la procédure proposée en chapitre 4
pour les géométries planes. D’autre part, le cas axisymétrique se caractérise par la présence d’un terme
non-conservatif qu’il convient de discrétiser de manière adéquate afin de construire des schémas d’ordre
élevé. Nous proposons un algorithme d’approximation analogue à celui utilisé pour la construction des flux
lagrangiens d’ordre élevé et l’illustrons par un exemple à l’ordre 2. En outre, nous détaillons également la
mise en œuvre des techniques de viscosité artificielle et de nettoyage hyperbolique de la divergence dans le
cas des géométries axisymétriques.

Nous concluons le chapitre 6 par des résultats numériques sur des cas tests réguliers [53, 70] et non
réguliers tirés de la littérature. Une fois de plus, ceux-ci montrent que l’ordre expérimental de convergence
correspond à l’ordre théorique et fait état de propriétés de robustesse satisfaisantes.

III. Vers des simulations d’implosion de capsule FCI

Prise en compte des opérateurs de diffusion et des termes sources

La résolution du modèle complet établi dans le chapitre 1 suppose que les schémas GoHy pour la
MHD idéale soient couplés à des schémas de diffusion - permettant la prise en compte des opérateurs de
conduction thermique et résistive - et à une discrétisation des termes sources, en particulier des termes
régissant l’apparition de champ magnétique auto-généré. Ceci fait l’objet du chapitre 7. Dans cette partie
de notre étude, les problématiques d’ordre élevé sont écartées : l’objectif consiste ici simplement à permettre
la résolution du modèle complet par la mise en œuvre de méthodes numériques de type volumes finis tout
à fait classiques. Une attention particulière est toutefois portée aux problématiques de performances et de
parallélisme, notamment dans le cadre de la discrétisation semi-implicite des termes de conduction. Celle-ci
suppose en effet la résolution de systèmes linéaires creux dont l’implémentation et l’optimisation en contexte
parallèle sont non triviales. En pratique, nous résolvons ces systèmes par des méthodes de gradient conjugué
ou de bigradient conjugué stabilisé [74] préconditionnés dont l’implémentation repose sur la bibliothèque
Intel Math Kernel Library [47]. Nous proposons enfin des résultats numériques sur des problèmes de diffusion
tirés de la littérature.

Exploitation du solveur développé sur un cas test d’implosion de coquille FCI

Le chapitre 8, dernière partie de cette étude, est consacré à l’exploitation du solveur que nous avons
développé sur un cas test tiré de [80] dont la condition initiale correspond à l’état d’une coquille FCI
en début de phase de décélération. Celle-ci a été obtenue en interpolant des profils de densité, vitesse
et pression fournis par un code de FCI monodimensionnel [12], celui-ci ayant été utilisé afin de simuler
l’implosion d’une coquille FCI jusqu’au début de la phase de décélération. Cette approche nous permet
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de réaliser des simulations réalistes sans avoir à prendre en compte les phénomènes physiques intervenant
dans le processus d’implosion complet, en particulier l’absorption laser. En effet, au début de la phase de
décélération, le dépôt d’énergie laser est achevé et la cible est déjà mise en vitesse. Dans ce contexte, nous
simulons la présence d’un écart à la sphéricité en introduisant au niveau de l’interface gaz/coquille une
perturbation numérique par des polynômes de Legendre. Nous proposons enfin des résultats numériques
avec des perturbations de différentes amplitudes afin d’analyser les caractéristiques du champ magnétique
auto-généré et ses effets sur le plasma.

Une partie de cette étude a été menée lors de l’école d’été du CEMRACS2 2010 et a fait l’objet d’une
publication dans les actes du CEMRACS [92].

Quelques notations

Avant de débuter cette étude, nous définissons quelques notations. Nous considérons dans la suite des
domaines bidimensionnels Ω = [ax; bx]×[ay; by] sur lesquels nous définissons un maillage structuré deNx×Ny

mailles :

Ω =
⋃

1≤i≤Nx

⋃
1≤j≤Ny

[xi− 1
2
;xi+ 1

2
]× [yj− 1

2
; yj+ 1

2
] où

{
xi+ 1

2
= ax + i∆x,

yj+ 1
2

= ay + j∆y,

∆x et ∆y désignant le pas (uniforme) du maillage selon les directions x et y :

∆x =
bx − ax

Nx
, ∆y =

by − ay

Ny
.

Les faces verticales des mailles sont par conséquent repérés par xi+ 1
2

tandis que les faces horizontales sont
notées yj+ 1

2
. Enfin, le point (xi; yj) désigne le centre géométrique de la maille (i, j) :

xi =
xi− 1

2
+ xi+ 1

2

2
, yj =

yj− 1
2

+ yj+ 1
2

2
.

2Centre d’Été Mathématique de Recherche Avancée en Calcul Scientifique.
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Introduction

Physical context

Inertial confinement fusion (ICF) is a process where nuclear fusion reactions are initiated by heating
and compressing a fuel target - generally a capsule made of an external layer of cryogenic deuterium-tritium
(DT) which encloses a volume of DT gas. In order to compress and heat the ICF capsule, energy is delivered
to the outer layer of the target and vaporizes it into a plasma envelope. There are two ways to perform
this energy delivery. In the case of direct drive ICF, it is done by irradiating the target with several high-
energy laser beams. In the case of indirect drive ICF, the target is placed into a metal cylinder (called the
hohlraum) which is irradiated by the laser beams instead of the target itself, causing the emission of X-rays.
These are then absorbed by the capsule’s surface and create the desired confinement conditions.

This study concerns direct drive inertial confinement fusion. In this context, it is well-known that
some difficulties may be encountered during the implosion phase [64] which follows the laser irradiation due
to slight sphericity deviations (shell rugosity and/or non-uniformity of the laser irradiation) on the outer
surface of the shell. These sphericity deviations generate initial perturbations which are then amplified
during the implosion process. Richtmyer-Meshkov and/or Rayleigh-Taylor instabilities develop, leading
to the apperance of self-generated magnetic field. Indeed, as we will see in this study, the density and
pressure gradients which are theoretically aligned are not colinear anymore in the vicinity of instabilities
and thus cause the development of so-called self-generated magnetic field (they are said to be self-generated
because they are not the consequence of an exterior field) whose effects may be significant. In particular,
these magnetic fields reduce thermal conductivity. Depending on their intensity, they may also modify the
temperature distribution in the vicinity of the hot spot and may thus modify the ignition conditions [42]. It
therefore seems important to follow the evolution of magnetic field components additionally to the evolution
of hydrodynamical quantities in simulation codes.

Objectives

This study is devoted to the development of numerical methods that take self-generated magnetic
field terms into account and allow realistic simulations of the ICF implosion processes. To that end, we
first derive a two-temperature resistive MHD model that represents in a sufficiently exhaustive way the
physics of the considered problem. Then we propose accurate and efficient numerical methods for solving
the evolution equations that have been derived. Particular attention will be paid to the implementation
of these numerical schemes and, in a more general way, to high performance computing (HPC) aspects
(performance optimization, scalability) so that the solver that we aim to develop is able to take advantage
of modern massively parallel supercomputers. The last part of this study is devoted to the exploitation of
the implemented simulation code, more precisely to the study of self-generated magnetic field terms and
their effects on the basis of preliminary numerical results.
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Numerical context

The implosion of capsules in the context of direct drive ICF theoretically is a spherically symmetric
process, which could help to reduce the number of space dimensions in numerical simulations. Considering
sphericity deviations on the surface of the shell nevertheless supposes to deal with more complex geometries.
The most general approach would consist in solving the considered problem in the three-dimensional case
but it would obviously lead to extremely expensive simulations. We therefore restrict this study to the case
of two-dimensional axisymmetric geometries.

Moreover, we have chosen to build numerical schemes on structured meshes using the finite volume
method, this framework being well-suited to the above-mentioned high performance constraint.

High performance computing aspects

Frontiers between the domains of numerical simulation and high performance computing (HPC) are
getting thinner and thinner. On the one hand, in order to provide reliable numerical results, physical
models which are built for simulation purposes become more and more complex. On the other hand,
supercomputer architectures evolve towards massively parallel configurations with an increasing number
of cores and a consequently decreasing memory space per core. These trends impose several constraints
for building and implementing numerical methods: these have to be both efficient (in order to allow the
resolution of complex multi-physics problems) and scalable on massively parallel computers. We propose
in this study an innovative approach in the sense that the decision of implementing a certain technique has
been mostly motivated by the above-mentioned constraints. These choices of course have to be justified on
the basis of practical evidences. To that end, we use three performance measurement tools that we describe
in the sequel.

Performance measurement tools

We perform in this study a complete performance analysis of the solver that we have developed in order
to determine if the technical choices that have been made provide concrete benefits. This analysis relies on
three measurements: the grind time, the number of floating point operations that are performed per second
and the parallel efficiency. Altogether, these measurements give a reliable evaluation of performance and
scalability.

The grind time

The grind time is defined as the time that is necessary to perform an iteration of a given numerical
scheme in a single cell:

grind time =
restitution time

number of cells× number of iterations
.

It is therefore the critical performance indicator since the restitution time entirely depends on it for a given
problem and mesh size. For information, it is generally admitted that the grind time has to be under 10
microseconds per cell and per iteration for an industrial code running on a single core of a recent processor.

Number of floating point operations per second

The number of floating point operations performed per second (FLOPS) in another interesting perfor-
mance indicator that we measure in this study. Floating point operations are counted during execution
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following a protocol described in section 4.4.1. The result is then compared to the used processor’s peak
performance. It indicates whether the processor is well exploited and gives an evaluation of a code’s perfor-
mance optimization margin. For information, scientific codes generally exploit about 10% of the available
peak power.

Parallel efficiency

The last measurement that we consider in this study is the parallel efficiency which evaluates the ability
of a code to take advantage of parallel computers. More precisely, it is defined as the ratio of the sequential
restitution time to the parallel one for a given problem. Nevertheless, this measurement, called strong
parallel efficiency, may sometimes be difficult to obtain. Indeed, when dealing with a huge number of
processes, problems that have to be considered are so large that they lead to prohibitive restitution times
in the sequential context. Memory available for one core may also reveal unsufficient. As is classical in
such a case, we therefore adopt a different approach which consists in evaluating the ratio of the sequential
restitution time on a given problem to the execution time on N processes with a N times finer mesh. This
measurement is called weak parallel efficiency.

A few principles for designing high performance and scalable numerical methods

In order to develop a parallel and high-performance simulation platform, one has to follow a few rules
for building and implementing numerical methods. Three of these principles are given below.

Principle n̊ 1 : avoiding conditional tests

Conditional tests have to be avoided as much as possible in computation loops, in particular when the
test result cannot be predicted efficiently 3. These may indeed have significantly degrade performances.

• On the one hand, the presence of conditional tests may prevent the compiler from performing some
optimizations. For example, resorting to tests in a loop may prevent its vectorization and thus slow
down execution.

• On the other hand, GPU architectures are unable to deal efficiently with conditional tests since they
do not have branch predictor circuits.

Conditional tests should therefore be avoided as much as possible during both development and implemen-
tation phases of numerical schemes.

Principle n̊ 2 : paying attention to data locality (cache-oblivious algorithms)

Particular attention has to be paid to the principles of spatial and temporal data locality for building
and implementing numerical schemes in order to reuse cached data as much as possible. Accessing to a
cached datum is indeed about 100 times faster than accessing to a datum stored in the central memory
(RAM), which motivates the principle of reusing cached data. Numerical schemes should therefore mostly
operate on data that are close the ones from the others in both memory (data contiguity) and time.

Remark 1. An algorithm that exploits the principles of spatial and temporal locality is said to be cache-
oblivious.

3Modern processors use so-called branch predictor circuits which aims at guessing the result of if-then-else structures and
automatically carry on the execution of instructions in the most likely branch. Conditional tests can therefore be performed
very quickly on constant execution parameters whereas they noticeably decrease performance when they concern a variable
whose value cannot be predicted.
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Principle n̊ 3 : limiting the number of communication phases between processes in parallel
context

The solver that we have developed has been parallelized using a domain decomposition method. In this
context, data are distributed among several processes : only a part of the computational domain is therefore
stored in memory on each process. But several numerical methods - like interpolation methods - have to be
performed on stencils of cells. This supposes the presence of ghost cells layers not only around the physical
domain but also around the subdomain that is assigned to each process. These have to be filled prior to
every function that operates on stencils of cells. In parallel context, filling ghost cells layers supposes to
perform a communication phase in order to share data between processes but these are costly and may
reduce the parallel efficiency. Communication phases therefore have to be avoided as much as possible.
This constraint automatically discards multistep integration methods (like Runge-Kutta methods) since
these require several communication phases per time step. They are therefore badly suited to massively
parallel computer architectures.

Remark 2. Multistep temporal integration methods are expensive not only in terms of communication
phases but also in terms of equation of state calls. Yet, in the case of tabulated equations of state (i.e.
when closure relations are not analytical), equation of state calls are particularly costly.

Outline

I. Model derivation

The evolution of the ionic and electronic species distribution functions is governed by the Vlasov equation
with a collisional source term. This kinetic representation of the problem is the starting point of our study.
We firstly describe in chapter 1 the derivation of evolution equations for the mean fluid by calculating the
three first moments of the Vlasov equation for each species. These are then combined with the Maxwell
equations which are satisfied by the electric and magnetic fields. By neglecting the displacement current
(MHD approximation), we get an evolution equation for the only magnetic field. The resulting system
is then completed by Braginskii closure relations [11] and Decoster’s collisions model [28] which provide
expressions for the thermoelectric, conductivity and resistivity tensors. It involves mathematical operators
of different natures:

• an hyperbolic operator which actually is the ideal MHD operator;

• two parabolic operators that respectively govern thermal and resistive conduction;

• a source term operator that takes the self-generated magnetic field terms into account as well as the
contribution of Hall and Nernst effects.

We propose in chapter 2 a resolution strategy that consists in splitting the derived system of equations
into several subsystems according to the nature of the underlying mathematical operator. The main advan-
tage of this approach is that it allows to build numerical methods that are well-suited to each operator and
it simplifies the validation step since it can be performed separately for each term. The time discretization
method can also be appropriately chosen. We will see that numerical schemes that have been proposed for
the ideal MHD equations rely on an explicit time discretization that implies a ∆t = λ∆x type stability
condition. Yet, treating diffusion terms explicitly would lead to a far more constraining ∆t = λ∆x2 time
step constraint. These therefore will be discretized semi-implicitly. We finally propose an explicit approach
for dealing with source terms. We indeed assume that the source terms’ contribution is weak enough not to
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Subsystem Mathematical operator Time scheme

two-temperature ideal MHD hyperbolic explicit

thermal conduction parabolic semi-implicit

resistive conduction parabolic semi-implicit

source terms source terms explicit

Table 2: Subsystems resulting from the splitting of the complete model considered in this study.

fulfill the hyperbolic schemes’ stability condition. The considered subsystems and the corresponding time
discretization are summarized in Table 2.

II. Construction of high-order numerical methods for hydrodynamics and ideal MHD
equations

The second part of this study is devoted to the construction of a new class of numerical schemes which
are high-order accurate in both space and time in the non-linear regime on structured grids. These so-called
GoHy (for Godunov hybrid) schemes have been built in the Lagrange-remap formalism for hydrodynamics
and ideal MHD equations in both planar and axisymmetric geometries. Their most innovative feature is
that they have been developed with the above-mentioned efficiency principles in mind so that they are able
to take advantage of modern computer architectures.

GoHy schemes for planar hydrodynamics

We describe in chapter 4 the construction of GoHy schemes for planar hydrodynamics equations and
being with the one-dimensional case (see section 4.1). The one-dimensional Euler equations are firstly
written in Lagrangian coordinates and discretized using a finite volume method. We then propose a
methodology for building high-order accurate approximate Lagrangian fluxes based on the so-called Cauchy-
Kovalevskaya procedure that thus allows to build high-order accurate numerical schemes. Applying the
Cauchy-Kovalevskaya (C-K) procedure reveals particularly complex when dealing with higher-orders. We
therefore describe a technique based on the Maple software that automatically applies this C-K procedure
and generates the corresponding source code. This first step allows us to determine updated values of the
Lagrangian conservative variables on a non-uniform mesh. These are then remapped onto the initial regular
grid using a high-order accurate polynomial reconstruction method. The resulting Lagrange-remap schemes
are theoretically particularly efficient. Indeed, they do not involve conditional tests (in accord with principle
n̊ 1), rely on a one-step temporal scheme that requires only one equation of state and boundary condition
call per iteration (in accord with principle n̊ 3) and only resort to centered (and thus cheap) interpolation
methods.

We extend GoHy schemes to two-dimensional geometries in section 4.2 by combining the one-dimensional
scheme with high-order dimensional splitting methods whose accuracy is greater than the classical Strang
splitting [77]. Dimensional splitting techniques consist in solving the considered two-dimensional system of
equations by performing several iterations of the one-dimensional scheme along the horizontal and vertical
directions with an appropriately weighted time step. The splitting method’s accuracy depends on both the
number of iterations and the time step weights. We propose in this study several sets of coefficients from
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third to sixth-order accuracy. Most of these are taken from the literature on symplectic integrators [36,
61, 13, 95]. Our contribution here consists in determining optimal splitting sequences in the sense that the
time step is maximized.

Moreover, we show that a trivial combination of a high-order one-dimensional scheme and a high-order
dimensional splitting sequence does not allow to build a high-order multidimensional scheme. Indeed, an
additional reconstruction step has to be performed in order to switch between the one-dimensional and
multidimensional contexts. We propose in section 4.2.2 such a reconstruction method that operates on
conservative variables but it reveals constraining in terms of conservativity preservation. We then show
that this issue can be bypassed by moving the reconstruction step on fluxes.

The dimensionally split approach that we propose presents a major advantage over classical unsplit
methods in terms of performance. Indeed, as we will see in section 4.2, dimensional splitting techniques
allow cache-oblivious implementations that mostly operate on contiguous data and thus respect the second
principle stated page 13.

Section 4.3 is devoted to the treatment of the two main issues that such high-order schemes may
practically encounter. On the one hand, like most high-order methods, GoHy schemes are subject to
the phenomenon of Gibbs oscillations in the vicinity of discontinuities which may degrade the numerical
solutions quality or even produce unphysical results. On the other hand, due to their dimensionally split
approach, GoHy schemes sometimes cause symmetry losses in practical cases that theoretically present a
rotational symmetry. These two difficulties are treated thanks to artificial viscosity techniques. Oscillations
are controlled using an hyperviscosity model inspired from the large eddy simulation (LES) literature [21, 20]
whereas symmetry preservation is improved by a first-order artificial viscosity model which is combined with
a filtering method in order not to degrade the shock-capturing features of GoHy schemes. These techniques
present the advantage of avoiding conditional tests (in accord with the first principle stated page 13) unlike
classical slop limiting or essentially non-oscillatory (ENO) methods, which makes them cheap in terms of
computational cost. The use of artificial viscosity techniques nevertheless sometimes reveals tedious in
practice since these rely on several parameters that have to be adjusted for each problem.

In order to assess the ability of GoHy schemes to take advantage of modern computer architectures,
we provide in section 4.4 sequential performance and parallel efficiency figures that have been obtained
using indicators described page 12. These figures match expectations. They indeed show that hydrody-
namical GoHy schemes are able to exploit 20 to 30% of recent processors’s peak performance whereas our
implementation’s parallel efficiency reaches 95% on 256 processes.

We conclude chapter 4 with numerical results obtained on test problems taken from the related literature.
We first consider smooth solutions [53, 94] and carry out a convergence analysis: the same test problem
is solved on different mesh sizes and the error between the exact and approximate solutions is measured
for each mesh using a L1 norm in space and time. These results then allow to compute the experimental
order of convergence which actually matches expectations in all the considered situations. We also run
computations on non-smooth test problems in order to illustrate the benefits of artificial viscosity techniques
and to evaluate the robustness of GoHy schemes which reveals satisfying.

GoHy schemes for hydrodynamics have been published as part of the Comptes-Rendus de l’Académie
des Sciences de Paris [32].
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Extension of GoHy schemes to the ideal MHD equations

Chapter 5 is devoted to the description of GoHy schemes for the ideal MHD equations. These generally
rely on the same methodology than in the case of hydrodynamics. An additional difficulty nevertheless
arises in the multidimensional case. In this context, the magnetic field indeed has to satisfy the following
divergence constraint:

∇ ·B = 0,

otherwise, the numerical resolution of the ideal MHD equations may lead to unphysical results [10]. This
constraint is not automatically satisfied at the discrete level: it therefore has to be enforced numerically. We
present in section 5.2 several well-known techniques taken from the literature [10, 35, 88, 1, 29] for imposing
∇ ·B in numerical simulations and study their ability to be coupled with the dimensionally split approach
of GoHy schemes. It turns out that the so-called hyperbolic divergence cleaning technique proposed by
Dedner et al. [29] seems to be the best suited. We therefore describe how it can be combined with GoHy
schemes.

As in the case of hydrodynamics, we provide sequential performance and parallel efficiency figures for the
ideal MHD GoHy schemes using the measurements tools described page 12. Results are very satisfying. They
indeed show that GoHy schemes are able to exploit up to 40% of modern processors’s peak performance at
fourth-order accuracy while the parallel efficiency is over 95% on 256 processes. We then conclude chapter 5
with numerical results on both smooth and non-smooth test problems taken from the related literature.
These show that the experimental order of convergence matches the theoretical order and exhibit satisfying
robustness features.

GoHy schemes for the ideal MHD equations have been the subject of an oral presentation at the Nu-
merical Models for Controlled Fusion (NMCF) conference which took place in April 2009 on the island of
Porquerolles. They also have been published as part of the NMCF conference proceedings [93].

Extension to axisymmetric geometries

We detail in chapter 6 the extension of GoHy schemes to axisymmetric geometries in the case of ideal
MHD equations. One encounters two main difficulties in this context. Firstly, the Maple-based automated
computation of Lagrangian fluxes reveals tricky along the r = 0 axis due to the presence of 1/r terms.
This issue is bypassed by slightly modifying the methodology proposed in chapter 4 for planar geometries.
Secondly, the axisymmetric case is characterized by the presence of a non-conservative term in both hydro-
dynamics and ideal MHD equations which has to be appropriately discretized in order to achieve high-order
accuracy. We propose an approximation procedure that is analog to the one used for building high-order
accurate Lagrangian fluxes and illustrate its application in the second-order case. Moreover, we detail the
extension of artificial viscosity and hyperbolic divergence cleaning techniques in the axisymmetric case.

We then conclude chapter 6 with numerical results on smooth [53, 70] and non-smooth test problems
taken from the literature. Once again, these show that the experimental order of convergence matches the
theoretical one and put satisfying robustness features forward.
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III. Towards ICF shell implosion simulations

Discretization of the diffusion and source terms operators

The resolution of the complete model that has been derived in chapter 1 supposes to combine GoHy
schemes with diffusion schemes - that take the thermal and resistive conduction terms into account - and a
discretization of source terms, in particular the operator that governs magnetic field generation. Chapter 7
is devoted to these additional terms. Note that we do not aim to achieve high-order accuracy in this part
of our study: our objective here is simply to allow the resolution of the complete two-temperature resistive
MHD model using classical finite volume methods. Particular attention is however paid to performance and
parallelism aspects, especially for the semi-implicit discretization of diffusion operators since it implies the
resolution of sparse linear systems whose implementation and optimization are non-trivial topics. Practi-
cally, these systems are solved using preconditioned conjugate gradient or stabilized biconjugate gradient
methods [74] that have been implemented with the help of the Intel Math Kernel Library [47]. We conclude
chapter 7 with numerical results obtained on diffusion problems taken from the related literature.

ICF implosion test problem

The last part of this study is devoted to the carrying out of numerical experiments with the solver we
have developed on a test problem taken from the literature [80] which corresponds to the state of an ICF
capsule at the beginning of the deceleration phase. The initial condition has been obtained by interpolating
density, velocity and pressure profiles generated by a one-dimensional ICF code [12] that has been used for
simulating the implosion of an ICF capsule up to the beginning of the deceleration phase. This approach
allows us to perform realistic ICF implosion simulations without taking into account all physical phenomena
involved in such ICF implosion processes - in particular the laser absorption. Indeed, laser beams have
already been shut down at the beginning of the deceleration phase and the target has been given an initial
velocity. In this context, sphericity deviations are emulated by introducing a numerical perturbation on the
gas/shell interface using Legendre polynomials. We finally present simulation results for the perturbed ICF
test problem with different initial perturbation amplitudes in order to study self-generated magnetic fields
and their effects on the plasma.

A part of this work has been done during the 2010 CEMRACS4 summer school and has then been
published in the CEMRACS proceedings [92].

A few notations

Before beginning this study, we introduce a few notations. We consider in the sequel two-dimensional
Ω = [ax; bx]× [ay; by] domains on which we define structured meshes of Nx ×Ny cells:

Ω =
⋃

1≤i≤Nx

⋃
1≤j≤Ny

[xi− 1
2
;xi+ 1

2
]× [yj− 1

2
; yj+ 1

2
] where

{
xi+ 1

2
= ax + i∆x,

yj+ 1
2

= ay + j∆y,

∆x et ∆y denoting the (uniform) space step along the x and y directions:

∆x =
bx − ax

Nx
, ∆y =

by − ay

Ny
.

4Centre d’Été Mathématique de Recherche Avancée en Calcul Scientifique.
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As a matter of fact, vertical and horizontal cell interfaces positions are respectively denoted by xi+ 1
2

and
yj+ 1

2
. The (xi; yj) point denotes the middle of the (i, j) cell:

xi =
xi− 1

2
+ xi+ 1

2

2
, yj =

yj− 1
2

+ yj+ 1
2

2
.
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Part I

A two-temperature resistive MHD model
for direct drive ICF
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Chapter 1

Model equations

We derive in this chapter the partial differential equations that govern the evolution of both hydro-
dynamic quantities and magnetic field. To that end, we start from the Vlasov equation satisfied by the
distribution functions of both ions and electrons and calculate its three first moments in order to derive fluid
evolution equations for the mean fluid. These are then combined with the Maxwell equations so that the
magnetic field’s contribution is taken into account. The resulting system is finally completed by Braginskii’s
closure relations [11] and Decoster’s collisions model [28].

This study has been done in CGS units. The physical constants that we will use in the sequel and their
values in CGS units are summarized in Table 1.1.

Symbol and name Value in CGS units

c speed of light 2.9979 · 1010

e elementary charge 4.8 · 10−10

kB Boltzmann constant 1.3806 · 10−16

me mass of the electron 9.1094 · 10−28

mp mass of the proton 1836 me

h Planck constant 6.6262 · 10−27

h̄ reduced Planck constant (2π)−1h

µ permeability 4π

Table 1.1: A few physical constants and their values in CGS units.

1.1 A few macroscopic quantities

Let fα(xα,vα, t) denote the distribution function of the α species (namely ions and electrons in practice)
whose mass and electric charge are respectively given by mα and Zα. Its evolution is governed by the
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following well-known Vlasov equation in CGS units [28]:

∂tfα + vα · ∇fα +
Zαe

mα

(
E +

vα

c
∧B

)
· ∂fα

∂vα
=
∑
β

Cαβ(fα, fβ), (1.1)

where E is the electric field, B the magnetic field and Cαβ a collision term between α and β species
particles. Hydrodynamic quantities - particle density, momentum and total energy - are defined as the
three first moments of the distribution function fα:

density nα =
∫
fα dvα, (1.2a)

momentum nαuα =
∫
fαvα dvα, (1.2b)

total energy nαeα =
1
2

∫
fα|vα|2 dvα. (1.2c)

The internal energy nαεα is defined as the difference between total energy and kinetic energy:

internal energy nαεα = nαeα −
1
2
nα|uα|2. (1.3)

We now define the (symmetric) constraint tensor and the heat flux:

constraint tensor Pα = mα

∫
fα(vα − uα)⊗ (vα − uα) dvα, (1.4a)

heat flux qα =
mα

2

∫
fα|vα − uα|2(vα − uα) dvα, (1.4b)

The constraint tensor writes Pα = pαI +Πα where pα is the gas pressure, I the identity tensor and Πα the
viscous tensor. We finally introduce the Rαβ and Qαβ terms that respectively represent the mean change
in momentum and energy as a consequence of collisions between particles of species α and β:

mean change in momentum Rαβ = mα

∫
Cαβ(fα, fβ)(vα − uα) dv, (1.5a)

mean change in energy Qαβ =
mα

2

∫
Cαβ(fα, fβ)|vα − uα|2 dv. (1.5b)

Since the momentum and energy are conserved in collisions [28], we have:

Rαβ +Rβα = 0, (1.6a)
Qαβ + uα ·Rαβ +Qβα + uβ ·Rβα = 0, (1.6b)

and in particular:

Rαα = 0, (1.7a)
Qαα = 0. (1.7b)

We are now able to derive the density, momentum and total energy equations for each species from the
Vlasov equation (1.1).
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1.2 From kinetic to fluid equations

Taking the three first moments of the Vlasov equation (1.1) leads to the fluid evolution equations satisfied
by the density, momentum and total energy of the α species (details about these calculations can be found
in Appendix A):

∂tnα +∇ · (nαuα) = 0, (1.8a)

∂t (mαnαuα) +∇ ·
(
mαnαuα ⊗ uα + Pα

)
− Zαnαe

(
E +

uα

c
∧B

)
=
∑
β

Rαβ , (1.8b)

∂t (mαnαeα) +∇ ·
(
mαnαeαuα + Pα · uα + qα

)
− Zαnαeuα ·E =

∑
β

(Qαβ + uα ·Rαβ) . (1.8c)

The equation that governs the evolution of internal energy can be obtained by differentiating equation (1.3)
with respect to time and using the fluid equations (1.8a)-(1.8c). It finally writes:

mαnα (∂tεα + uα · ∇εα) + Pα : ∇uα +∇ · qα =
∑
β

Qαβ . (1.9)

1.3 Maxwell equations

In order to take the contribution of the magnetic field into account, fluid equations are completed by
the Maxwell equations (written here in CGS units):

c∇×E = −∂tB, (Faraday’s equation)
c∇×B = ∂tE + µJ, (Ampère-Maxwell’s equation)
∇ ·E = µQ, (Poisson’s equation)
∇ ·B = 0,

where Q is the total electric charge and J the current density:

Q = e
∑
α

Zαnα,

J = e
∑
α

Zαnαuα.

1.4 Physical hypotheses

Before we derive the complete model equations, we state a few physical hypotheses that are commonly
used in the area of astrophysics and inertial confinement fusion [27, 9].

Hypothesis 1. The plasma is assumed to be locally neutral, i.e. Q = niZi − ne = 0.

Hypothesis 2. Since the mass of the proton is about 1836 times higher than the mass of the electron (see
Table 1.1), we assume that me ≪ mi.

Hypothesis 3. As suggested in the literature (see [27], p. 847), the viscous tensor is neglected, i.e. Πi =
Πe = 0.

Hypothesis 4. (MHD approximation) The displacement current ∂tE is neglected, i.e. ∂tE = 0.
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Remark 3. Hypothesis 4 can be justified by performing a scaling of the Maxwell equations. Introducing L
the characteristic length, t the characteristic time, J the current density scaling factor, E and B the electric
and magnetic fields scaling factors and setting:

x = Lx′, t = tt′, J = JJ′, E = EE′, B = BB′,

the Maxwell equations become (using the plasma local neutrality hypothesis):

cE

L
∇×E′ +

B

t
∂tB′ = 0,

cB

L
∇×B′ − E

t
∂tE′ = µJJ′,

∇ ·E′ = 0,
∇ ·B′ = 0.

(1.10)

We now scale the equations so that:
E

B
= 1 and

µLJ

cB
= 1.

Dropping the primes, the dimensionless Maxwell equations then write:
∇×E + λ∂tB = 0,
∇×B− λ∂tE = J,
∇ ·E = 0,
∇ ·B = 0,

where λ = L
ct

is a very small factor in the non-relativistic case. The displacement current therefore can be
neglected in the Ampère-Maxwell equation.

Note that according to Hypothesis 4 and to the Ampère-Maxwell equation, the current density writes:

J =
c

µ
∇×B,

and it satisfies ∇ · J = 0.

1.5 Summarized equations for the mean fluid

We now wish to derive evolution equations for the mean fluid. Introducing ρα = mαnα the mass density
of the α species, we first define the total mass density ρ and the mean velocity u from their ionic and
electronic parts:

ρ = ρi + ρe, (1.11a)
u = (ρiui + ρeue)/ρ. (1.11b)

The ionic and electronic mass densities and velocities can actually be determined from the total mass density
ρ and mean velocity u. Indeed, combining the definition of total mass density (1.11a) and Hypothesis 1
(plasma local neutrality) which rewrites:

meZiρi − ρe = 0,
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the ionic and electronic mass densities are given by:

ρi =
ρ

1 + Zi
me
mi

, (1.12a)

ρe =
ρ

1 + Zi
me
mi

Zime

mi
. (1.12b)

Moreover, injecting Hypothesis 1 into the current density definition J = e(niZiui − neue) leads to:

J = ene(ui − ue). (1.13)

Combining (1.13) with the definition of the mean velocity (1.11b), both ionic and electronic velocities can
be determined:

ui = u +
me

eρ
J, (1.14a)

ue = u− mi

eZiρ
J. (1.14b)

The evolutions equations for the mean fluid can therefore be solved in terms of the ρ and u unknowns
without considering additional closure relations.

1.5.1 Mass continuity equation

Adding equation (1.8a) for both ions and electrons leads to:

∂tρ = ∂tρi + ∂tρe = −∇ · (ρiui + ρeue) = −∇ · (ρu),

i.e. the mass continuity equation is given by:

∂tρ+∇ · (ρu) = 0.

1.5.2 Momentum equation

The momentum equation can be obtained by adding equation (1.8b) for both ions and electrons:

∂t (ρu) = −∇ ·
(
P i + P e

)
−∇ · (ρiui ⊗ ui + ρeue ⊗ ue) + e(Zini − ne)E +

e

c
(Ziniui − neue) ∧B,

= −∇ ·
(
P i + P e

)
−∇ · (ρiui ⊗ ui + ρeue ⊗ ue) +

1
c
J ∧B.

Using the definition of ionic and electronic velocities (1.14a) and (1.14b), it rewrites:

∂t (ρu) = −∇ ·
(
P i + P e

)
−∇ · (ρiui ⊗ u + ρeue ⊗ u)−∇ ·

(
meρi

ρe
ui ⊗ J− miρe

ρeZi
ue ⊗ J

)
+

1
c
J ∧B.

We now use the fact that ρiui + ρeue = ρu and ρα = mαnα:

∂t (ρu) = −∇ ·
(
P i + P e

)
−∇ · (ρu⊗ u)− mime

eZi
∇ ·
(
niZiui − neue

ρ
⊗ J

)
+

1
c
J ∧B,

= −∇ ·
(
P i + P e

)
−∇ · (ρu⊗ u)− mime

e2Zi
∇ ·
(

1
ρ
J⊗ J

)
+

1
c
J ∧B.
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Since ∇ · J = 0, one can notice that:

∇ ·
(

1
ρ
J⊗ J

)
=
∇ · J
ρ

J +
(
∇J
ρ

)
J =

(
∇J
ρ

)
J,

and the momentum equation is thus given by:

∂t (ρu) +∇ ·
(
P i + P e

)
+∇ · (ρu⊗ u)− 1

c
J ∧B = −mime

e2Zi

(
∇J
ρ

)
J. (1.15)

Practically, the right hand side in equation (1.15) can be neglected (see [9], p. 697). Indeed, its ratio to the
momentum advection term ∇ · (ρu⊗ u) is of order:

mime

e2Zi

J2

ρ2u2
. (1.16)

Under Hypothesis 2, relation (1.13) implies that J is of the order of eneu and (1.12b) leads to:

mi

Ziρ
=
mi

ρe

1
Zi + mi

me

=
me

ρe

1
Zi

me
mi

+ 1
≈ me

ρe
≈ 1
ne
. (1.17)

The quantity given in (1.16) is consequently of order me
mi

:

mime

e2Zi

J2

ρ2u2
≈ mime

e2Zi

e2n2
e

ρ2
≈ mene

ρ
≈ ρe

ρ
≈ me

mi
.

The right hand side in the momentum equation (1.15) can therefore be neglected according to Hypothesis 2.
Finally, using the following relation:

1
c
J ∧B =

1
µ

(B · ∇)B− 1
2µ
∇(B ·B),

=
1
µ
∇ · (B⊗B)− 1

2µ
∇(B ·B) since ∇ ·B = 0,

the momentum equation rewrites:

∂t (ρu) +∇ ·
(
P i + P e + ρu⊗ u− 1

µ
B⊗B +

B ·B
2µ

)
= 0. (1.18)

1.5.3 Generalized Ohm’s law

Starting from the momentum equation for electrons and using Hypothesis 2, we now derive the gener-
alized Ohm’s law who links the electric field to other quantities. Divided by the ionic mass, (1.8b) writes:

me

mi
(∂t (neue) +∇ · (neue ⊗ ue)) +

1
mi
∇ · P e +

nee

mi

(
E +

ue

c
∧B

)
=

1
mi

Rei.

We then replace ue using relation (1.14b) and neglect the me/mi terms according to Hypothesis 2:

1
mi
∇ · P e +

nee

mi
E +

nee

mi

u
c
∧B− ne

Ziρ

J
c
∧B =

1
mi

Rei.

Since miZi/ρ ≈ 1/ne (see (1.17)), the previous relation finally writes:

E +
1
ene
∇ · P e +

u
c
∧B− 1

ecne
J ∧B =

1
ene

Rei, (1.19)

which is called the generalized Ohm’s Law.
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1.5.4 Internal energy equations

Since ρα = mαnα, the evolution equation for (ραεα) can be derived using the internal energy equa-
tion (1.9):

∂t(ραεα) = ρα∂tεα + εα∂tρα,

= −uα · ∇εα − Pα : ∇uα −∇ · qα − εα∇ · (ραuα) +
∑
β

Qαβ ,

= −∇ · (ραεαuα)− Pα : ∇uα −∇ · qα +
∑
β

Qαβ .

Using the definition of ionic and electronic velocities (1.14a)-(1.14b), internal energy equations rewrite:

∂t (ρeεe) +∇ · (ρeεeu) + P e : ∇u +∇ · qe = Qei +
mi

eZi

(
P e : ∇

(
J
ρ

)
+∇ ·

(
ρeεe
ρ

J
))

, (1.20a)

∂t (ρiεi) +∇ · (ρiεiu) + P i : ∇u +∇ · qi = Qie −
me

e

(
P i : ∇

(
J
ρ

)
+∇ ·

(
ρiεi
ρ

J
))

. (1.20b)

The last right hand side term in the ionic internal energy equation (1.20b) can be neglected according to
Hypothesis 2 since we assume that me ≪ mi. We also recall that mi/(Ziρ) ≈ 1/ne, see (1.17). These
simplifications lead to the following evolution equations for internal energies:

∂t (ρeεe) +∇ · (ρeεeu) + P e : ∇u +∇ · qe = Qei + P e : ∇
(

J
ene

)
+∇ ·

(
ρeεe
ene

J
)
, (1.21)

∂t (ρiεi) +∇ · (ρiεiu) + P i : ∇u +∇ · qi = Qie. (1.22)

1.5.5 Magnetic field equation

Combining the generalized Ohm’s law (1.19) and Faraday’s equation, one gets the following evolution
equation for the magnetic field:

∂tB = c∇×
(

u
c
∧B +

1
ene
∇ · P e −

1
ecne

J ∧B− 1
ene

Rei

)
.

Note that the ∇× (u ∧B) term can be rewritten alternatively:

∇× (u ∧B) = −∇ · (u⊗B−B⊗ u) .

The magnetic field equation is thus finally given by:

∂tB +∇ · (u⊗B−B⊗ u) =
c

e
∇×

(
1
ne
∇ · P e

)
− 1
e
∇×

(
1
ne

J ∧B
)
− c

e
∇×

(
1
ne

Rei

)
. (1.23)

1.6 Closure relations

We now need some closure relations that complete the mass continuity, momentum, internal energy and
magnetic field equations derived previously. More precisely, we have to provide expressions for the following
quantities:

pi, pe, Rei, Qei, qe, qi.
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1.6.1 Equations of state

In this study, we assume that both ions and electrons follow a perfect gas law. The pressure terms thus
write:

pα = nαkBTα,

where the temperature of the α species Tα is given by:

εα =
3
2
kBTα

mα
.

Introducing the heat capacity at constant volume Cvα = 3kB
2mα

and the ratio of specific heats γα = 5/3, these
relations rewrite:

εα = CvαTα,

pα = (γα − 1)ραεα.

1.6.2 Transport terms

The transport terms Rei, Qei, qe and qi that respectively represent the friction term, the mean change
in energy due to collisions and the heat fluxes still have to be determined. We consider in this study the
following closure relations which have been initially proposed by Braginskii [11]:

Rei = eneρ · J− neβ · ∇ (kBTe) , (1.24a)

Qei =
1
ene

Rei · J + 3
me

mi
neνei (kBTi − kBTe) , (1.24b)

qe = −kBTe

e
β · J− κe · ∇ (kBTe) , (1.24c)

qi = −κi · ∇ (kBTi) . (1.24d)

Here, ρ denotes the resistivity tensor, β the thermoelectric tensor, κi and κe the ionic and electronic
conductivity tensors. These tensors are defined in the sequel using (‖,⊥,∧) coordinates that refer to the
direction of the magnetic field:

u‖ = (h · u)h, u⊥ = h ∧ u, u∧ = (h ∧ u) ∧ h,

where h denotes a unit vector along the magnetic field direction. Using these notations, we write for any
tensor T :

T · u = T ‖u‖ + T⊥u⊥ + T∧u∧. (1.25)

Before giving tensors’ expressions, we first introduce additional terms, namely Coulombian logarithms and
collision frequencies.

Coulombian logarithms

According to previous works by Decoster [28], the Coulombian logarithm lnΛαβ is defined by:

lnΛαβ = ln

(
kmax

αβ

kD
αβ

)
,
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where kmax
αβ is the de Broglie wavelength’s inverse and kD

αβ the Debye screening length’s inverse. These write:

kmax
αβ = min

(
mαβv

2
αβ

|ZαZβ|e2
,
2mαβvαβ

~

)
, kD

αβ =

√
4πe2(mαTβ +mβTα)

kBTαTβ

(
niZ2

i

kBmiTi
+

ne

kBTeme

)
,

where mαβ denotes the reduced mass and vαβ the mean velocity:

mαβ =
mαmβ

mα +mβ
, vαβ =

√
2
(
kBTα

mα
+
kBTβ

mβ

)
.

Collision frequencies

The electron-electron, electron-ion and ion-ion collision frequencies (respectively denoted by ee, ei and
ii subscripts) proposed by Decoster [28] write:

νee =
4
3
√
π

e4ne lnΛee
√
me (kBTe)

3
2

, (1.26a)

νei =
4
3

√
2π

Z2
i e

4ni lnΛei
√
me (kBTe)

3
2

, (1.26b)

νii =
4
3
√
π
Z4

i e
4ni lnΛii

√
mi (kBTi)

3
2

. (1.26c)

We also define the electronic and ionic cyclotron frequencies:

ωe =
e|B|
mec

, ωi =
eZi|B|
mic

,

and the following χe and χi quantities (χe is the Hall parameter):

χe =
ωe

νei
, χi =

ωi

νii
.

Resistivity tensor

According to Braginskii’s closure relations [11], the resistivity tensor is given by:

ρ‖ = −meνei

e2ne
α0, (1.27a)

ρ⊥ =
meνei

e2ne

(
1− α

′
1χ

2
e + α

′
0

χ4
e + δ1χ2

e + δ0

)
, (1.27b)

ρ∧ = −meνei

e2ne
χe

α
′′
1χ

2
e + α0

′′

χ4
e + δ1χ2

e + δ0
, (1.27c)

with constants α0, α′0, α
′
1, α

′′
0, α

′′
1, δ0 and δ1 given in Table 1.2.
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Thermoelectric tensor

Braginskii’s [11] thermoelectric tensor is given by:

β‖ = β0, (1.28a)

β⊥ =
β
′
1χ

2
e + β

′
0

χ4
e + δ1χ2

e + δ0
, (1.28b)

β∧ = χe
β
′′
1χ

2
e + β0

′′

χ4
e + δ1χ2

e + δ0
, (1.28c)

with constants β0, β′0, β
′
1, β

′′
0 , β′′1 , δ0 and δ1 given in Table 1.2.

Electronic and ionic conductivity tensors

Braginskii’s [11] electronic and ionic conductivity tensors are respectively given by:

κ‖e =
nekBTe

meνei
γ0, (1.29a)

κ⊥e =
nekBTe

meνei

γ
′
1χ

2
e + γ

′
0

χ4
e + δ1χ2

e + δ0
, (1.29b)

κ∧e =
nekBTe

meνei
χe

γ
′′
1χ

2
e + γ0

′′

χ4
e + δ1χ2

e + δ0
, (1.29c)

and:

κ
‖
i = 3.906

nikBTi

miνii
, (1.30a)

κ⊥i =
nikBTi

miνii

2χ2
i + 2.645

χ4
i + 2.70χ2

i + 0.677
, (1.30b)

κ∧i =
nikBTi

miνii
χi

5
2χ

2
i + 4.65

χ4
i + 2.70χ2

i + 0.677
, (1.30c)

with constants γ0, γ′0, γ
′
1, γ

′′
0 , γ′′1 , δ0 and δ1 given in Table 1.2.
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Z = 1 Z = 2 Z = 3 Z = 4 Z →∞

δ0 3.7703 1.0465 0.5214 0.4106 0.0961

δ1 14.79 10.80 9.618 9.055 7.482

α′1 6.416 5.523 5.226 5.077 4.63

α′0 1.837 0.5956 0.3515 0.2566 0.0678

α′′1 1.704 1.704 1.704 1.704 1.704

α′′0 0.7796 0.3439 0.2400 0.1957 0.0940

β′1 5.101 4.450 4.233 4.124 3.798

β′0 2.681 0.9473 0.5905 0.4478 0.1461

β′′1 1.5 1.5 1.5 1.5 1.5

β′′0 3.053 1.784 1.442 1.285 0.877

γ′1 4.664 3.957 3.721 3.604 3.25

γ′0 11.92 5.118 3.525 2.841 1.20

γ′′1 2.5 2.5 2.5 2.5 2.5

γ′′0 21.67 15.37 13.53 12.65 10.23

α0 = 1− α′0/δ0 0.5129 0.4408 0.3965 0.3752 0.2949

β0 = β′0/δ0 0.7110 0.9052 1.016 1.090 1.521

γ0 = γ′0/δ0 3.1616 4.890 6.064 6.920 12.471

Table 1.2: Transport coefficients given by Braginkii [11].
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Chapter 2

Splitting of the complete model

At this stage, the closure relations have been given and we are able to write the complete system of
equations that governs the evolution of both hydrodynamic quantities and magnetic field. We first recall
the physical hypotheses which have been stated in chapter 1.

• The plasma is assumed to be locally neutral, i.e. Q = niZi − ne = 0.

• Equations have been derived in the me
mi
→ 0 limit.

• The viscous tensor is neglected in this study so that the constraint tensor writes Pα = pαI.

• The MHD approximation is considered here, i.e. the displacement current ∂tE is neglected and the
Ampère-Maxwell equations thus writes:

J =
c

µ
∇×B.

Under these assumptions, the considered evolution equations are given by:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ ·
(
ρu⊗ u +

(
pi + pe + B·B

2µ

)
I− B⊗B

µ

)
= 0,

∂t(ρeεe) +∇ · (ρeεeu) + pe∇ · u +∇ · qe −
(
ρ · J− 1

eβ · ∇(kBTe)
)
· J + pe∇

(
J

ene

)
+∇ ·

(
ρeεe

ene
J
)

= Σei,

∂t(ρiεi) +∇ · (ρiεiu) + pi∇ · u +∇ · qi = Σie,

∂tB +∇ · (u⊗B−B⊗ u)− c ∇×
(

1
ene
∇pe − 1

ecne
J ∧B + 1

eβ · (kB∇Te)− ρ · J
)

= 0.

where Σei denotes the following relaxation term:

Σei = −Σie = 3
me

mi
neνeikB(Ti − Te).

Introducing P the total pressure:

P = pi + pe +
B ·B
2µ

,

and the Sself, SHall and SNernst source terms that respectively govern the magnetic field generation, the Hall
effect and the Nernst effect:

Sself =
1
ene
∇pe, SHall = − 1

ecne
J ∧B, SNernst =

1
e
β · ∇ (kBTe) ,
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the previous system rewrites:



∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ ·
(
ρu⊗ u + P I− B⊗B

µ

)
= 0,

∂t(ρeεe) +∇ · (ρeεeu) + pe∇ · u +∇ · qe −
(
ρ · J− SNernst

)
· J + pe∇

(
J

ene

)
+∇ ·

(
ρeεe

ene
J
)

= Σei,

∂t(ρiεi) +∇ · (ρiεiu) + pi∇ · u +∇ · qi = Σie,

∂tB +∇ · (u⊗B−B⊗ u)− c ∇×
(
Sself + SHall + SNernst − ρ · J

)
= 0.

(2.1)
System (2.1) relies on mathematical operators of different natures. We therefore have chosen to split it in
several subsystems according to the nature of the underlying mathematical term. These are detailed in the
sequel. This strategy allows us to develop numerical schemes that are well-suited to each operator. It also
simplifies the validation step since it can be performed separately for each subsystem

2.1 Hyperbolic operator: ideal MHD system of equations

The hyperbolic operator involved in system (2.1) is actually the ideal MHD system of equations. It
writes: 

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ ·
(
ρu⊗ u + P I− B⊗B

µ

)
= 0,

∂t(ρeεe) +∇ · (ρeεeu) + pe∇ · u = 0,

∂t(ρiεi) +∇ · (ρiεiu) + pi∇ · u = 0,

∂tB +∇ · (u⊗B−B⊗ u) = 0.

(2.2)

In this study, we do not solve the internal energy formulation (2.2) of the ideal MHD equations. We indeed
rewrite system (2.2) in a more convenient conservative form. To that end, we consider the total energy ρe
whose definition is recalled below:

ρe = ρiεi + ρeεe +
ρ

2
u · u +

B ·B
2µ

.

One can show that ρe satisfies the following evolution equation:

∂t(ρe) +∇ ·
(
ρeu + Pu− u ·B

µ
B
)

= 0.

We also introduce another variable change which has been widely studied in the related literature [48, 22,
23, 31] and proved to be admissible in the case we are considering. It consists in considering the electronic
entropy Se defined by:

Se = ln
(
δ(ρeεe)ρ−γe

)
,
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where δ is an arbitrary constant. The evolution equations of Se is given by:

∂tSe =
1
ρeεe

∂t(ρeεe)−
γe

ρ
∂tρ,

= − 1
ρeεe

(u · ∇(ρeεe) + ρeεe∇ · u + pe∇ · u) +
γe

ρ
(ρ∇ · u + u · ∇ρ) ,

= −u ·
(
∇Se +

γe

ρ
∇ρ
)
−∇ · u− (γe − 1)∇ · u + γe∇ · u +

γe

ρ
u · ∇ρ,

= −u · ∇Se.

It leads to a conservative evolution equation for ρSe:

∂t(ρSe) +∇ · (ρSeu) = 0.

We finally get the following conservative ideal MHD system of equations which has been obtained by
replacing the internal energy equations by the total energy and electronic entropy ones:

∂t



ρ

ρu

ρe

ρSe

B


+∇ ·



ρu

ρu⊗ u + P I− B⊗B
µ

ρeu + Pu− u·B
µ B

ρSeu

u⊗B−B⊗ u


= 0.

2.2 First parabolic operator: thermal conduction

A parabolic operator is involved for thermal conduction with an additional coupling term for the two-
temperature case. The corresponding system of equations writes:



∂tρ = 0,

∂t(ρu) = 0,

∂t(ρeεe) +∇ · qe = 3me
mi
neνeikB(Ti − Te),

∂t(ρiεi) +∇ · qi = 3me
mi
neνeikB(Te − Ti),

∂tB = 0.

(2.3)

Note that due to cancellation of coupling terms, the total energy equation is conservative:

∂t(ρe) +∇ · (qi + qe) = 0.
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2.3 Second parabolic operator: resistive conduction

Another parabolic operator governs resistive conduction. The corresponding system of equations writes:

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρeεe)− (ρ · J) · J = 0,

∂t(ρiεi) = 0,

∂tB + c ∇× (ρ · J) = 0.

(2.4)

It is again more convenient to solve the total energy equation since it can be written in a conservative form.
Indeed, the magnetic pressure equation writes:

∂t

(
B ·B
2µ

)
= − c

µ
B · ∇ × (ρ · J),

= − c
µ
∇ ·
(
(ρ · J) ∧B

)
− c

µ
(ρ · J) · ∇ ×B,

= − c
µ
∇ ·
(
(ρ · J) ∧B

)
− (ρ · J) · J,

and it leads to the following evolution equation for total energy:

∂t(ρe) = ∂t(ρeεe) + ∂t

(
B ·B
2µ

)
,

= (ρ · J) · J− (ρ · J) · J− c

µ
∇ ·
(
(ρ · J) ∧B

)
,

= − c
µ
∇ ·
(
(ρ · J) ∧B

)
.

Finally, system (2.4) can be rewritten in a conservative form:

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρiεi) = 0,

∂t(ρe) + c
µ∇ ·

(
(ρ · J) ∧B

)
= 0,

∂tB + c ∇× (ρ · J) = 0.

(2.5)

2.4 Source terms

The source terms effects are governed by the following set of equations:

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρiεi) = 0,

∂t(ρeεe) + SNernst · J = pe∇ ·
(

J
ene

)
+∇ ·

(
ρeεe

ene
J
)
,

∂tB = c ∇× (Sself + SHall + SNernst) .

(2.6)
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Once again, it is more convenient to solve the total energy equation since it can be written in a conservative
form. To that end, we first consider the magnetic pressure equation:

∂t

(
B ·B
2µ

)
=

1
µ
B · ∂tB,

=
c

µ
B · ∇ × Sself +

c

µ
B · ∇ × SHall +

c

µ
B · ∇ × SNernst,

and since ∇ · (A ∧B) = B · (∇×A)−A · (∇×B):

∂t

(
B ·B
2µ

)
=
c

µ
∇ · (Sself ∧B + SHall ∧B + SNernst ∧B) +

c

µ
(∇×B) · (Sself + SHall + SNernst) .

We recall that J = c
µ(∇×B) and SHall = − 1

ecne
(J ∧B):

∂t

(
B ·B
2µ

)
=
c

µ
∇ · (Sself ∧B + SHall ∧B + SNernst ∧B) + Sself · J−

1
ene

(J ∧B) · J + SNernst · J,

and finally, since (J ∧B) · J = 0:

∂t

(
B ·B
2µ

)
=
c

µ
∇ · (Sself ∧B + SHall ∧B + SNernst ∧B) + Sself · J + SNernst · J.

We now recall that Sself = 1
ene
∇pe and we write the total energy equation:

∂t(ρe) = ∂t(ρeεe) + ∂t

(
B ·B
2µ

)
,

= −SNernst · J + pe∇ ·
(

J
ene

)
+∇ ·

(
ρeεe
ene

J
)

+ ∂t

(
B ·B
2µ

)
,

=
c

µ
∇ · (Sself ∧B + SHall ∧B + SNernst ∧B) +

1
ne
∇pe · J + pe∇ ·

(
J
ene

)
+∇ ·

(
ρeεe
ene

J
)
,

= ∇ ·
(
pe + ρeεe
ene

J +
c

µ
Sself ∧B +

c

µ
SHall ∧B +

c

µ
SNernst ∧B

)
.

Finally, the conservative set of equations that governs source terms effects is given by:

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρiεi) = 0,

∂t(ρe) = ∇ ·
(

pe+ρeεe

ene
J + c

µSself ∧B + c
µSHall ∧B + c

µSNernst ∧B
)
,

∂tB = c ∇× (Sself + SHall + SNernst) .

(2.7)
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Part II

High-order schemes for multidimensional
compressible hydrodynamics and ideal

magnetohydrodynamics
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Chapter 3

State of the art high-order schemes for
hydrodynamics and ideal MHD

The accurate simulation of hydrodynamical and magnetohydrodynamical flows is an important topic
in several areas of science and engineering. While second order accurate simulations have been carried
out for a while, recent advances have made it possible to go beyond second-order accuracy. We describe
in this chapter a few well-known high-order numerical methods for solving the hydrodynamics and ideal
MHD systems of conservation laws: the Discontinuous Galerkin (DG) methods, the weighted essentially
non-oscillatory (WENO) interpolation techniques and the Arbitrary Derivative Riemann Problem (ADER)
class of schemes. But contrarily to most high-order schemes reviews, we here propose a short analysis of
these methods in terms of complexity and computational cost. In particular, we give a few hints about
their predictable performances and parallelization abilities according to their appropriateness to the three
principles that we stated in introduction (see page 13).

3.1 Discontinuous Galerkin (DG) methods

3.1.1 Principle of DG methods

Discontinuous Galerkin methods consists in seeking for each time t an approximate solution Uh to the
hyperbolic system of conservation laws

∂tU +∇ · F(U) = 0, (3.1)

in the finite element space of discontinuous functions

Wh = {Vh ∈ L∞(Ω), Vh|K ∈W (K) ∀K ∈ Th}, (3.2)

where Th is a triangulation of the domain Ω ⊂ Rd and W (K) is the so-called local space. More precisely,
one has to find a decomposition of Uh into functions of the local space for each element:

Uh(t)|K =
N∑

n=1

ΦnuK
n (t), uK

n (t) ∈ Rd ∀n,

where N denotes the dimension of the local space W (K) and Φn is a basis function of W (K). The time-
dependent uK

n coefficients are called the degrees of freedom. In order to determine the approximate solution
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Uh, one needs the following weak formulation of (3.1):

∂t

∫
K
vU dΩ +

∑
e∈δK

∫
e
v(F(U) · ne,K)ne,K d(δΩ)︸ ︷︷ ︸

Ie

−
∫

K
F(U) · ∇v dΩ︸ ︷︷ ︸

IK

= 0, (3.3)

where v denotes a smooth test function and ne,K the outward unit normal to the edge e. The weak
formulation (3.3) now has to be discretized. To that end, the Ie and IK integrals are approximated by
quadrature rules:∫

e
v (F(U) · ne,K)ne,K d(δΩ) ≈

L∑
l=1

ωlv(xe
l ) (F(U(xe

l )) · ne,K(xe
l ))ne,K(xe

l ), (3.4)

∫
K

F(U) · ∇v dΩ ≈
M∑

m=1

ωmF(U(xK
m)) · (∇v)(xK

m), (3.5)

where xe
l denotes the quadrature points along edge e and xK

m the quadrature points over element K, both
being respectively associated to the ωl and ωm weights. The quadrature rule used for discretizing Ie and IK
must be chosen in order to match the desired order: practically, it is often chosen so that each local space
function is integrated exactly. For an exhaustive review of quadrature rules, we refer the reader to [68] and
references therein. Then the F(U(xe

l )) flux term along edge e is replaced by the numerical flux Fe,K
l whose

value at xe
l is obtained from the interior and the exterior of the element K. More precisely, defining

the interior value Uh(xK
int, t) = lim

y→xe
l , y∈K

Uh(y, t),

and the exterior value Uh(xK
ext, t) =

imposed by boundary conditions if xe
l ∈ δΩ,

lim
y→xe

l , y/∈K
Uh(y, t) otherwise.

the numerical flux along the edge e of element K at x = xe
l is given by:

Fe,K
l = H

(
Uh(xK

int, t), Uh(xK
ext, t)

)
,

where H is any exact or approximate Riemann solver. Once the Ie and IK integrals have been computed,
U has to be replaced by the decomposition of Uh into basis functions of the local space, leading to the
following numerical scheme:

N∑
n=1

(
∂tuK

n (t)
) ∫

K
vΦn dΩ =

M∑
m=1

ωmF(U(xK
m)) · (∇v)(xK

m)−
L∑

l=1

ωlv(xe
l )
(
Fe,K

l · ne,K(xe
l )
)
ne,K(xe

l ), (3.6)

with the initial condition
Uh(t = 0) = PWh

(U(t = 0)) , (3.7)

PWh
being a projection method onto the finite element spaceWh. At this stage, one has to write scheme (3.6)

with v = Φn for 1 ≤ n ≤ N . This strategy finally leads to a linear system for each element K whose
unknowns are the degrees of freedom of Uh (contrarily to the finite element method that requires the
resolution of a global linear system for the whole mesh).

Building DG schemes finally consists in choosing three main parameters: the Riemann solver H, the
local space W (K) (that governs the accuracy in space of the resulting scheme) and the time discretization
method (that governs its accuracy in time).
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d = 1 d = 2 d = 3

r = 1 1 1 1

r = 2 2 3 4

r = 3 3 6 10

r = 4 4 10 20

r = 5 5 15 36

Table 3.1: Dimension of the local space W (K) for different values of r (desired order of accuracy) and d
(number of space dimensions).

3.1.2 Computational complexity analysis

For a given system of conservation laws, the computational complexity of DG methods mainly depends
on the choice of the local space. DG schemes are actually known to be quite expensive since a dense linear
system has to be solved for each element in order to determine the degrees of freedom of the approximate
solution. The size of this linear system is given by:

dimension of the local space × number of unknowns in system (3.1).

For low-order schemes, the size of this system stays reasonable and its shape is usually convenient (it
often involves a diagonal matrix, see [18]) but it increases noticeably when dealing with higher-order DG
methods. Indeed, the usual choice for building an r-th order scheme consists in taking W (K) = Pr−1(K)
the space of (r − 1)-th degree polynomials. Table 3.1 summarizes the dimension of W (K) for different
values of r and d (we recall that d denotes the dimension of Ω): one can notice that it rapidly increases
in the multidimensional case and makes high-order DG methods very expensive, in particular in the case
of complex systems like magnetohydrodynamics. Moreover, preserving robustness in the case of high-order
accurate DG techniques usually imposes to resort to expensive slope limiters that involve many conditional
tests and thus do not fulfill the first principle that we stated in introduction (see page 13). According to
recent advances [39], DG schemes seem nevertheless to take advantage of GPU implementations and thus
tend to become competitive in terms of computational performance.

3.1.3 Short review of DG schemes

Second and third-order accurate DG methods for the Euler equations have been introduced by Cockburn
and Shu [18] who had previously designed such schemes in more simple frameworks [17, 16, 15, 14]. Their
schemes rely on first and second-degree polynomial spaces combined with a Lax-Friedrichs numerical flux
and Runge-Kutta time stepping which allows to reach high-order accuracy in time but at the cost of
several boundary conditions calls. This approach thus does not fulfill the third principle that we stated in
introduction, see page 14).

Dumbser and Munz propose in [34] a different approach that allows to design arbitrary high-order DG
schemes with a one-step temporal discretization relying on the Cauchy-Kovalevskaya procedure described
in section 3.3. Called the ADER-DG class of schemes, it resorts to classical polynomial local spaces and
to the ADER methodology (which is described in section 3.3) for building high-order accurate numerical
fluxes along edges. Dumbser et al. propose later in [33] an elegant unification of finite volume and DG
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frameworks for building one-step schemes on unstructured meshes but this goes beyond the scope of DG
techniques.

DG schemes have been firstly applied to magnetohydrodynamics by Warburton and Karniadakis [91] in
association with Powell’s eight wave formulation (see section 5.2.3) for preserving the divergence constraint
∇·B = 0. These rely on classical polynomial local spaces combined with a multi-step Adams-Bashforth time
discretization. Li and Shu [56] propose a different strategy with their locally divergence-free DG schemes
for ideal MHD: they impose the divergence-free aspect of the magnetic field by choosing the local space for
the magnetic field components so that the ∇·B = 0 constraint is satisfied in each cell. High-order accuracy
in time is achieved thanks to Runge-Kutta time stepping in this case. We can also mention works by Taube
et al. [79] who extend the ADER-DG class of schemes to the case of ideal MHD but without any treatment
for enforcing the divergence constraint.

3.2 Weighted essentially non-oscillatory (WENO) methods

High-order schemes are usually based on polynomial interpolations of discrete data which provide ac-
curacy benefits on smooth solutions. Nevertheless, it is well-known that such interpolation techniques
generate spurious oscillations in the vicinity of discontinuities (called Gibbs phenomena) which do not de-
cay in magnitude when the mesh is refined. In the late 1980’s, there were two main methods to deal with
these unphysical oscillations.

• The first one consists in adding artificial viscosity that smoothens variable profiles and reduces oscilla-
tions phenomena, thus improving robustness. But these methods rely on parameters who are most of
times test problem dependent and therefore need to be adjusted ”by hand” to the considered problem.

• The second one is slope limiting. Applying slope limiters to high-order interpolants usually provides
robustness improvements but at the cost of accuracy: such techniques indeed enforce first-order
accuracy in the vicinity of discontinuities.

The ENO (for essentially non-oscillatory) idea introduced in [41] seems to be the first successful attempt to
obtain a non-oscillatory interpolation technique for piecewise smooth functions. We present in this section
the ENO algorithm and the WENO (weighted ENO) method that improves the basic ENO idea upon several
points, both in the one-dimensional case. We then propose a computational complexity analysis of WENO
techniques and finally recall a few of the numerous schemes that exploit WENO interpolations to achieve
high-order accuracy.

3.2.1 Towards WENO interpolation

Preliminary to the ENO algorithm description, we first present in the sequel a standard conservative
polynomial reconstruction method for the one-dimensional case that will also be used in the following
chapters.

One-dimensional conservative polynomial reconstruction

Given the cell averages of a function φ(x):

φi =
1

∆xi

∫ x
i+1

2

x
i− 1

2

φ(ξ) dξ, (3.8)
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we look for a polynomial pi(x) of degree at most (k − 1) for each cell Ii = [xi− 1
2
;xi+ 1

2
] such that:

pi(x) = φ(x) +O
(
∆xk

)
∀x ∈ Ii i.e. pi is a k-th order accurate approximation of φ inside Ii,∫ x

i+1
2

x
i− 1

2

pi(ξ) dξ =
∫ x

i+1
2

x
i− 1

2

φ(ξ) dξ i.e. the cell average of φ over Ii is preserved.
(3.9)

To determine this polynomial, we first choose a stencil Si around Ii based on r cells to the left and s cells
to the right with r + s+ 1 = k. Si writes:

Si = {Ii−r, . . . , Ii+s}. (3.10)

We now consider the following primitive Hi of φ:

Hi(x) =
∫ x

x
i−r− 1

2

φ(ξ) dξ.

The values of Hi on cell boundaries can easily be calculated, indeed:

Hi(xi−r− 1
2
) = 0,

Hi(xi−r+ 1
2
) = ∆xi−rφi−r,

Hi(xi−r+ 3
2
) = ∆xi−rφi−r + ∆xi−r+1φi−r+1,

...

Hi(xi+s+ 1
2
) =

s∑
j=−r

∆xi+jφi+j .

Let Pi be the unique (k + 1)-th degree Lagrange interpolating polynomial of Hi on the cell boundaries
{xi−r− 1

2
, . . . , xi+s+ 1

2
}, i.e. the unique (k + 1)-th degree polynomial that satisfies:

Pi

(
xi+j− 1

2

)
= Hi

(
xi+j− 1

2

)
, −r ≤ j ≤ s+ 1. (3.11)

It is well-known that Pi is a (k+1)-th order approximation of Hi if Hi is smooth enough over the Si stencil:

Pi(x) = Hi(x) +O
(
∆xk+1

)
∀x ∈ [xi−r− 1

2
;xi+s+ 1

2
], (3.12)

and we therefore have the following property.

Proposition 1. The polynomial pi = P ′i satisfies both accuracy and conservatity conditions given by (3.9).

Proof. According to (3.12), pi clearly is a k-th order accurate approximation of φ inside Ii. Regarding the
conservativity condition, one can notice that:∫ x

i+1
2

x
i− 1

2

pi(ξ) dξ =
∫ x

i+1
2

x
i− 1

2

P ′i (ξ) dξ,

= Pi

(
xi+ 1

2

)
− Pi

(
xi− 1

2

)
.
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Relation (3.11) shows that Pi and Hi coincide at xi± 1
2
, implying that:

∫ x
i+1

2

x
i− 1

2

pi(ξ) dξ = Hi

(
xi+ 1

2

)
−Hi

(
xi− 1

2

)
,

= ∆xiφi,

=
∫ x

i+1
2

x
i− 1

2

φ(ξ) dξ,

which shows that the cell average of φ over Ii is preserved and thus ends the proof.

We now describe the ENO algorithm but, for the sake of simplicity, we only consider the case of regular
grids in the sequel.

Essentially non-oscillatory (ENO) interpolation

It is well-known that applying the standard reconstruction method on the Si stencil leads to spurious
oscillations when φ is not smooth inside Si. This issue motivates the idea of selecting several candidate
stencils (by taking different values for r and s in (3.10)) for performing the reconstruction step described
in the previous section and then choosing the one where φ presents the fewest discontinuities (or even no
discontinuity at all). This is the principle of the ENO procedure detailed hereafter introduced by Harten
et al. [41]. To determine which stencil is the best suited for computing the polynomial interpolation, one
requires a smoothness measurement criterion. In the case of the ENO algorithm on uniform grids, Harten
et al. propose to resort to undivided differences defined by:Φ

〈
xi− 1

2
, xi+ 1

2

〉
= φi,

Φ
〈
xi− 1

2
, . . . , xi+j+ 1

2

〉
= Φ

〈
xi+ 1

2
, . . . , xi+j+ 1

2

〉
− Φ

〈
xi− 1

2
, . . . , xi+j− 1

2

〉
,

which present the following property:

Φ
〈
xi− 1

2
, . . . , xi+j+ 1

2

〉
=

{
O
(
∆xj−1

)
if φ is smooth over [xi− 1

2
, xi+j+ 1

2
],

O (1) otherwise.

Note that undivided differences have to be replaced by divided differences when dealing with non-uniform
grids, see [19]. We now summarize the ENO procedure.

1. Start with the two point stencil Si,2 = {xi− 1
2
, xi+ 1

2
}.

2. For l from 3 to k, assuming that Si,l−1 = {xr+ 1
2
, . . . , xs− 1

2
}, add one point to the left or the right of

Si,l−1 according to the values of undivided differences on both resulting stencils:

Si,l =

{xr− 1
2
, . . . , xs− 1

2
} if

∣∣∣Φ〈xr− 1
2
, . . . , xs− 1

2

〉∣∣∣ < ∣∣∣Φ〈xr+ 1
2
, . . . , xs+ 1

2

〉∣∣∣ ,
{xr+ 1

2
, . . . , xs+ 1

2
} otherwise.

3. Once the right stencil has been chosen, compute the polynomial reconstruction as explained in the
previous section.
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The resulting reconstruction of φ obviously satisfies the accuracy and conservativity conditions given by
(3.9), at least theoretically. But despite being theoretically accurate and providing improvements upon
classical polynomial reconstruction, ENO techniques practically show several weaknesses.

• ENO interpolation sometimes causes a loss of accuracy on smooth solutions in practical cases despite
it theoretically guarantees to provide a high-order accurate polynomial reconstruction. It is indeed
very sensitive to round-off errors in such cases and switches therefore frequently from one stencil to
another while interpolations on fixed centered stencils would provide better results.

• In order to compute a k-th order accurate reconstruction, ENO techniques require a stencil of 2k− 1
cells but finally only use k values of the considered variable. One could imagine to make use of the
information provided by the k−1 remaining cells, for example to improve accuracy in smooth regions.

• ENO techniques obviously require several conditional tests that do not fulfill our first principle. This
point could be improved by considering another smoothness measurement operator.

Weighted essentially non-oscillatory (WENO) interpolation

The WENO method introduced by Liu et al. [58] is an attempt to improve ENO methods on the above-
mentioned points. The basic idea is the following: instead of using only one of the candidate stencils to
form the reconstruction, one uses a convex combination of all of them. More precisely, suppose that the k
candidate stencils

Sj
i = {Ii−j , . . . , Ii, . . . , Ii−1+k−j}, j ∈ {0, . . . , k − 1}, (3.13)

produce k different reconstructions φj
i of φi. WENO reconstruction consists in taking a linear combination

of all of them:

φi =
k−1∑
j=0

ωjφ
j
i ,

with ωj weights satisfying:
ωj ≥ 0 and

∑
j

ωj = 1.

The key to success lies in the choice of these weights. The originally proposed coefficients write:

ωj =
αj∑
l αl

with αj =
dj

(ε+ βj)2
, (3.14)

with following notations.

• The dj are real coefficients that are chosen so that:

k−1∑
j=0

djφ
j
i = φi +O

(
∆x2k−1

)
,

if φ is smooth inside all of the candidate stencils in order to improve accuracy in smooth regions;

• βj are positive smoothness indicators given by:

βj =
k−1∑
l=0

∫ x
i+1

2

x
i− 1

2

∆x2l−1
(
φ(l)
)2
dx where φ(l) =

∂lφ

∂xl
.
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If φ is smooth enough over Ii, the φ(l) spatial derivatives can be estimated with at least first-order
accuracy and βj is of the order of the l = 0 term:

βj = O

∫ x
i+1

2

x
i− 1

2

∆x−1 ·∆x2 dx

 = O
(
∆x2

)
.

Otherwise, the φ(l) spatial derivative is a O (1) and βj is of the order of:

βj = O

∫ x
i+1

2

x
i− 1

2

∆x−1 dx

 = O (1) .

As a matter of fact, the smoothness indicator βj takes small values in smooth regions and leads to
high αj weights. On the contrary, βj takes high values in the vicinity of discontinuities, leading to
weak weights.

• ε is a constant (usually set to 10-6) that prevents from dividing by zero in the definition of αj , for
example when φ is constant over the Sj stencil.

All of these coefficients (the dj coefficients, the βj smoothness indicators and the polynomial interpolation
coefficients in the case of uniform grids) have been summarized up to seventeenth-order in [38]. Note that
the dj coefficients are sometimes chosen not to improve accuracy but robustness, see [5] for example.

3.2.2 Computational complexity analysis of WENO interpolation

The major advantage of WENO methods upon the ENO approach in terms of computational cost
is that they do not require any conditional test for selecting one of the candidate stencils. These have
indeed been replaced by the estimation of smoothness indicators, making WENO techniques more able to
exploit modern processors. They are nevertheless quite expensive since they require to compute several
intermediate variables. This is all the more the case when dealing with multidimensional reconstructions
since these generally operate on data that are not memory-contiguous and thus do not fulfill the second
principle that we stated in introduction (see page 13). Several attempts to decrease the computational
cost of WENO techniques can therefore be found in the related literature. Jiang et al. [51] and Shu [96]
propose for example alternative smoothness measurements. Some progress has also been made in terms
of performances by considering different basis of polynomials that allow some algorithmic simplifications
(see [3] for example).

3.2.3 Short review of WENO-based high-order schemes

Finite difference and finite volume WENO schemes

In the case of hydrodynamics, WENO techniques have for example been used by Liu et al. [58], Jiang
and Shu [51] and Balsara and Shu [6] in order to build high-order accurate finite difference schemes. They
also have been exploited in finite volume context, see for example works by Balsara [3] and Balsara et
al. [4] in which the case of structured meshes is discussed whereas Hu and Shu [46] treat the problem
of unstructued meshes. In the case of ideal magnetohydrodynamics, we can for example mention works
by Jiang and Wu [52] and Tang and Xu [78] who both propose finite difference WENO schemes that
enforce the divergence constraint thanks to the projection scheme described in section 5.2.1. Most of these
numerical methods resort to Runge-Kutta time-stepping in order to achieve temporal high-order accuracy.
They therefore require several boundary conditions and equation of state calls and do not fulfill the third
principle that we stated in introduction (see page 14).
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Central WENO schemes

WENO techniques are also the main ingredient for building high-order accurate central schemes. These
methods appeared more recently than the class of upwind schemes that mainly rely on the approach in-
troduced by Godunov’s upwind scheme [40] to deal with hyperbolic systems of conservation laws. They
depart from upwind schemes in the sense that they rely neither on a Riemann solver (exact or approxi-
mate) nor on characteristics decomposition, which tends to reduce their complexity, especially in the case
of multidimensional systems.

Central schemes generalize the idea of the Lax-Friedrichs scheme [37]. We describe them shortly in the
sequel in the one-dimensional case. To that end, we consider the following system of conservation laws:

∂tU + ∂xF(U) = 0.

Introducing Un
i the cell average of U over the Ii = [xi− 1

2
;xi+ 1

2
] cell at time tn, the first step for building high-

order accurate central schemes consists in computing a conservative, accurate and non-oscillatory polynomial
reconstruction Pi(x, tn) of U in Ii from its cell averages. Originally, Nessyahu and Tadmor [66] used a
MUSCL-type interpolant combined with a minmod limiter in order to build Pi(x, tn) and thus obtained a
second-order accurate central scheme. WENO techniques allow to break the second-order accuracy barrier
by providing higher-order interpolants. Once the polynomial reconstruction has been computed, a staggered
representation of U can be evolved according to the following scheme:

Un+1
i+ 1

2

=
1

∆x

∫ xi+1

xi

Pi(x, tn) dx+
∆t
∆x

[F (U(xi, t
n))− F (U(xi+1, t

n))] ,

Un+2
i =

1
∆x

∫ x
i+1

2

x
i− 1

2

Pi+ 1
2
(x, tn+1) dx+

∆t
∆x

[
F
(
U(xi− 1

2
, tn+1)

)
− F

(
U(xi+ 1

2
, tn+1)

)]
,

Un+3
i+ 1

2

= . . .

and so on.

Remark 4. It is possible to reformulate central schemes without loss of accuracy in order to transform them
into non-staggered schemes that do not switch between several cell averages representations (see Jiang et
al. [50]).

Levy et al. propose in [54] a high-order accurate central WENO scheme with a Runge Kutta time inte-
grator for one-dimensional systems and they apply it to hydrodynamics. They then extend these works to
multidimensional geometries in [55]. The case of central WENO schemes for ideal magnetohydrodynamics
is discussed among others by Ziegler [97] and Li [57] that both resort to Runge Kutta time schemes but nev-
ertheless propose different strategies. On the one hand, Ziegler proposes a fully non-staggered scheme that
enforces the divergence constraint thanks to the constrained transport method presented in section 5.2.2.
On the other hand, Li builds a staggered high-order central scheme that relies on both constrained trans-
port and divergence-free reconstruction (see section 5.2.2) methods to impose ∇ · B = 0. In this case,
the constrained transport algorithm operates on the interface centered representation of the magnetic field
whereas the divergence-free reconstructions are applied to cell-centered representations.

3.3 Arbitrary Derivative Riemann Problem (ADER) schemes

3.3.1 Detailed ADER methodology

The ADER approach has been originally introduced by Toro et al. [86, 87]. It denotes a class of
finite volume schemes that reach high-order accuracy in both space and time by combining Godunov’s
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upwind approach [40] and the so-called Cauchy-Kovalevskaya procedure. ADER schemes have firstly been
developed for one-dimensional non-linear systems of conservation laws [82] and have then been applied to
multidimensional scalar equations [84]. The case of non-linear multidimensional systems is studied in [85].
In this section, we brielfy describe principles of ADER schemes for non-linear one-dimensional systems
of equations. In this context, the finite volume discretization of the following one-dimensional hyperbolic
system of conservation laws:

∂tU + ∂xF(U) = 0, (3.15)

is given by:

Un+1
i = Un

i −
∆t
∆x

(
Fi+ 1

2
− Fi− 1

2

)
. (3.16)

Here, Un
i denotes the cell average of the solution at time tn and Fi+ 1

2
the time average of the physical flux

accross the cell interface located at x = xi+ 1
2
:

Fi+ 1
2

=
1

∆t

∫ tn+1

tn
F(U(xi+ 1

2
, t) dt. (3.17)

The first step in ADER fluxes evaluation consists in computing point-wise values of the solution at time
tn via high-order polynomials, more precisely using WENO reconstructions that prevent the generation of
spurious oscillations on discontinuities. After this reconstruction step, the solution is represented by vectors
pi(x) of polynomials in each cell. Then the following generalized Riemann problem has to be solved at each
cell interface:

PDE: ∂tU + ∂xF(U) = 0,

IC: U(x, 0) =

{
pi(x) x < xi+ 1

2
,

pi+1(x) x > xi+ 1
2
,

(3.18)

in order to compute an r-th order accurate approximate solution for the interface state U(xi+ 1
2
, τ) (τ = t−tn

is the local time) appearing in (3.17). To that end, a semi-analytical method has been developed [83]. It
consists in solving r conventional Riemann problems (namely one non-linear and (r − 1) linear problems)
instead of solving the generalized Riemann problem (3.18). It relies on the following truncated Taylor
expansion in time:

U(xi+ 1
2
, τ) = U(xi+ 1

2
, 0) +

r−1∑
k=1

τk

k!
∂kU
∂tk

(xi+ 1
2
, 0). (3.19)

The leading term U(xi+ 1
2
, 0) is obtained by solving the following non-linear conventional Riemann problem:

PDE: ∂tU + ∂xF(U) = 0,

IC: U(x, 0) =

{
pi(xi+ 1

2
) x < xi+ 1

2
,

pi+1(xi+ 1
2
) x > xi+ 1

2
.

(3.20)

This can be achieved using any exact or approximate Riemann solver. The higher-order terms are evaluated
in two steps. First, the time-derivatives are replaced by spatial derivatives using the Cauchy-Kovalevskaya
procedure which is illustrated below. Starting from:

∂tU = −∂xF(U) = −
(
∂F
∂U

)
∂xU, (3.21a)
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one can determine an expression of ∂txU using (3.21a):

∂txU = ∂x (∂tU) = −
(
∂2F
∂U2

)
(∂xU)2 −

(
∂F
∂U

)
∂xxU. (3.21b)

Combining relations (3.21a) and (3.21b) then allows to rewrite ∂ttU without time-derivatives:

∂ttU = ∂t (∂tU) = −
(
∂2F
∂U2

)
(∂tU)(∂xU)−

(
∂F
∂U

)
∂xtU, (3.21c)

and so on. Spatial derivatives that appear once the Cauchy-Kovalevskaya procedure has been applied have
to be computed at x = xi+ 1

2
in order to evaluate the Taylor expansion of U(xi+ 1

2
, τ) given in (3.19). To

that end, one has to consider evolution equations of the spatial derivatives:

U(k) =
∂kU
∂xk

, k ∈ {1, . . . , r − 1},

that can be derived from (3.15):

∂tU(k) + A∂xU(k) = H
(
U,U(1), . . . ,U(k−1)

)
, (3.22)

where H is a non-linear source term that depends on lower-order derivatives. Since spatial derivatives are
evaluated at the local time τ = 0, the influence of this source is neglected. Equation (3.22) is then linearized
around the leading term U(xi+ 1

2
, 0), the U(k) derivatives can finally be computed by solving the following

linear conventional Riemann problems:

PDE: ∂tU(k) + Ai+ 1
2
∂xU(k) = 0, Ai+ 1

2
= A

(
U(xi+ 1

2
, 0)
)
,

IC: U(k) =

p(k)
i (xi+ 1

2
) x < xi+ 1

2
,

p(k)
i+1(xi+ 1

2
) x > xi+ 1

2
.

(3.23)

At this stage, all the terms of the Taylor expansion (3.19) have been estimated and the numerical flux
given by (3.17) now has to be computed so that the conservative variables can be updated according to the
finite volume scheme (3.16). To that end, two options are available. The first option called state-expansion
ADER consists in discretizing the time integral in (3.17) using a r-th order accurate quadrature rule:

Fi+ 1
2
≈ 1

∆t

L∑
l=1

ωlF(U(xi+ 1
2
, τl),

where τl denotes the quadrature points along [tn; tn+1] and ωl the associated weights. The implementation of
state-expansion ADER fluxes is straightforward: one simply has to apply several times the above-described
ADER methodology with τ = τl for 1 ≤ l ≤ L. The second strategy called flux-expansion ADER replaces
the quadrature rule with a method that is similar to the one used for the computation of U(xi+ 1

2
, τ). A

Taylor expansion in time is performed on the physical flux at x = xi+ 1
2

leading to the following high-order
accurate approximate flux term:

Fi+ 1
2
≈ F(xi+ 1

2
, 0) +

r−1∑
k=1

∆tk

(k + 1)!

(
∂kF
∂tk

)
(xi+ 1

2
, 0).

The leading term F(xi+ 1
2
, 0) is computed as a certain monotone flux of the conventional Riemann problem

(3.20) whereas time-derivatives of the flux are expressed via time-derivatives of the intercell state U(xi+ 1
2
, 0)

which are known at this stage from (3.23). No numerical quadrature is required in this case.
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3.3.2 Computational complexity analysis

The most expensive part of ADER schemes in terms of computational cost is the high-order recon-
struction of point-wise values of the solution that resorts to WENO techniques. As we have shown in
section 3.2, this step requires numerous computations (polynomial interpolation, smoothness indicators
and weights on several stencils). The complexity of WENO techniques also increases noticeably in the
multidimensional case since these (even more) numerous computations are performed on data that are not
memory-contiguous. In [85], the authors claim that this step takes about 60% of the total computational
time. Switching time-derivatives into spatial ones using the Cauchy-Kovalevskaya procedure can also reveal
very costly when dealing with high-order accurate simulations in multidimensional geometries. We will
indeed see in section 4.1.2 that this step leads to heavy algebraic calculations that have to be properly
performed so that the resulting solver is able to take advantage of modern processors. On the contrary,
the resolution of Riemann problems is said to be relatively cheap (about 5% of the total computational
time according to [85]). Regarding the two flux computation options, one should favour the flux-expansion
approach since state-expansion ADER schemes resort to subcycling for the time discretization which re-
quire several equation of state calls and do not fulfill the third principle that we stated in introduction (see
page 14).

3.3.3 Short review of ADER schemes

We have seen in section 3.1 that Dumbser and Munz exploit ADER numerical fluxes in [34] in a Dis-
continuous Galerkin framework. ADER techniques are used in this case to compute numerical fluxes at cell
interfaces but the authors propose a more efficient and generic way of performing the Cauchy-Kovalevskaya
procedure that relies on a generalized Leibniz rule. Further developments have been performed by Balsara
et al. [5] who propose ADER schemes for ideal MHD with divergence-free reconstruction of the magnetic
field. Contrarily to original ADER methods, this new class of schemes does not resort anymore to the
Cauchy-Kovalevskaya procedure but to a continuous Galerkin formulation for both space and time dis-
cretizations. They also provide major improvements regarding the WENO reconstruction which is made
less expensive thanks to an appropriate choice of polynomials and algorithmic simplifications, see [4]. The
resulting schemes prove to be accurate for both smooth and non-smooth problems and competitive in terms
of computational time.

3.4 Conclusions on the state of the art high-order schemes

We conclude this state of the art for high-order schemes for hydrodynamics and ideal MHD with a few
comments about the different techniques that have been described in this chapter and their appropriateness
to the three principles stated in introduction.

ENO and WENO techniques are widely used to achieve high-order accuracy but we will not follow this
path in our study. Indeed, ENO methods do not fulfill the first principle that we stated in introduction (see
page 13) which imposes to avoid conditional tests and WENO interpolations reveal quite costly as shown
in [85]. We will therefore restrict to less expensive centered polynomial reconstructions in the sequel and
try to control oscillations with the help of artificial viscosity techniques.

Multistep time integration techniques have to be avoided in the context of massively parallel computer
architectures since they do not fulfill the third principle that we stated page 14 and require additional calls to
the equation of state (see remark 2 page 14) compared to one-step methods. In this study, we will therefore
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adopt the approach presented in the previous section that consists in applying the Cauchy-Kovalevskaya
procedure to remove time-derivatives from approximate fluxes and thus build direct temporal schemes.

A noticeable drawback of the high-order methods we have studied in this chapter is that none of these
can be easily implemented in a cache-oblivious way. Indeed, they all rely on multidimensional computations
that do not operate naturally on contiguous data. We propose in the sequel an innovative approach based
on dimensional splitting techniques that aims at improving this point. We will indeed see in section 4.2
that dimensionally split schemes can be implemented in such a way that they mostly operate on contiguous
datasets and thus respect the second principle that we stated in introduction (see page 13).
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Chapter 4

High-order dimensionally split
Lagrange-remap schemes for
compressible hydrodynamics in planar
geometry

We propose in this chapter a new class of finite volume numerical schemes on Cartesian meshes for
solving the compressible hydrodynamics system of equations which writes:

∂t


ρ

ρu

ρe

+∇ ·


ρu

ρu⊗ u + pI

(ρe+ p)u

 = 0, (4.1)

where ρ denotes the density, u the velocity, ρe the total energy, p the pressure and I the identity tensor. Built
in the Lagrange-remap formalism, these so-called GoHy schemes (for Godunov Hybrid) - which have been
firstly introduced in a purely Lagrangian framework [45] - are high-order accurate in space and time in the
non-linear regime. To our knowledge, they are the first successful attempt to achieve high-order accuracy in
the Lagrange-remap formalism. GoHy schemes have been designed to take advantage of modern computer
architectures, which is an innovative feature compared to existing high-order accurate methods. It can be
illustrated by several technical choices that we detail below.

First of all, like most highly accurate techniques, GoHy schemes resort to high-order polynomial inter-
polations and are thus subject to unphysical Gibbs oscillations that must be efficiently controlled in order
to provide good robustness properties. Existing methods usually rely either on slope limiters or on WENO
techniques (that we presented in section 3.2) but none of these strategies reveals satisfying, especially in
terms of performance.

• Limiters reduce accuracy in the vicinity of discontinuities and their implementation resorts to many
conditional tests. Such techniques therefore do not fulfill the first principle for designing efficient
numerical schemes that we stated in introduction (see page 13).

• The WENO approach requires the computation of several intermediate variables (high-order inter-
polants on different stencils, smoothness indicators, weights) that makes them very expensive.
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GoHy schemes depart from existing high-order accurate methods in the sense that oscillations are controlled
thanks to hyperviscosity models inspired from previous works [20] in the area of large eddy simulations
(LES). Hyperviscosity techniques basically consist in adding an artificial diffusion term that is proportional
to a high exponent of the space step and thus quickly tends to zero when the mesh is refined. The accuracy
of the underlying scheme is consequently preserved. This approach suffers a few drawbracks - it involves
for example several parameters that are test problem dependent and must be adjusted manually - but it
also presents major advantages in terms of performance. Indeed, hyperviscosity models are completely
free of conditional tests and reveal quite cheap. They therefore represent a worthy alternative to limiting
techniques and WENO-type methods.

Another original feature of GoHy schemes lies in their multidimensional extension which is achieved by
combining an efficient one-dimensional scheme with an high-order accurate dimensional splitting technique.
Dimensional splitting is a well-known method for extending one-dimensional schemes to multidimensional
geometries but existing split schemes usually rely on the classical Strang splitting [77] and are thus at most
second-order accurate. This study goes beyond by providing up to sixth-order accurate splitting sequences,
some of those being taken from the literature on symplectic integrators [36, 61, 13, 95]. The dimensionally
split approach presents several benefits over unsplit methods.

• Firstly, dimensional splitting allows to design schemes that operate on contiguous data. Indeed, in-
stead of working on multidimensional datasets, dimensionally split methods operate on one-dimensional
datasets and may therefore be implemented in a cache-oblivious way. In this sense, they are compatible
with the second principle that we stated in introduction (see page 13).

• Secondly, dimensional splitting techniques are well-suited to parallelization. Indeed, dimensionally
split schemes solve a given set of equations on several one-dimensional datasets of the computational
domain along a particular direction. An important point here is that all of these resolution steps
are independent: they can therefore be performed simultaneously, allowing a parallel implementation.
This feature is nevertheless not exploited in our case. As we will see in section 4.4, the solver that we
developed has been parallelized using a domain decomposition method that differs from the above-
described parallel programming model but both approaches could be mixed together. Practically, this
would lead to an hybrid programming model that combines a multiprocess strategy for the domain
decomposition and a multithreaded treatment of one-dimensional datasets.

• Thirdly, dimensional splitting significantly simplifies the implementation of multidimensional numer-
ical schemes. Practically, dimensionally split codes simply rely on a function that implements the
one-dimensional scheme and on a procedure that applies it along each direction of the considered
geometry.

The outline of this chapter is the following. We first present the one-dimensional numerical scheme
that has been developed and describe its extension to the two-dimensional case using dimensional splitting
techniques. We then detail an artificial viscosity method that aims at controlling Gibbs oscillations using
high-order hyperviscosity (as indicated previously) and to preserve symmetry for relevant problems thanks
to a first-order artificial viscosity model. In order to show that our schemes are well-suited for modern
computers, we then provide a few performance and parallel efficiency measurements. This chapter will be
concluded with numerical results on smooth and non-smooth test problems taken from the related literature
in order to check the practical accuracy and robustness of GoHy schemes. The GoHy schemes presented in
this chapter have been published in [32].
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4.1 One-dimensional high-order Lagrange-remap schemes

We first focus on the one-dimensional Euler system of equations which writes:

∂t


ρ

ρu

ρe

+ ∂x


ρu

ρu2 + p

ρeu+ pu

 = 0. (4.2)

Note that we drop the velocity subscript for the one-dimensional case since there is no ambiguousness: u
denotes in this section the velocity component along the x-direction. Building numerical schemes in the
Lagrange-remap formalism consists in solving the considered system of equations in two steps.

1. Lagrangian step. System (4.2) is first solved in Lagrangian coordinates between tn and tn+1. To
that end, we introduce in section 4.1.1 the (x, t) → (X, t) variable change from Eulerian coordinates
x to Lagrangian coordinates X. We then rewrite the Eulerian system (4.2) in Lagrangian coordinates
and describe the construction of second, third and fourth-order accurate numerical schemes in section
4.1.2.

2. Remap step. At the end of the Lagrangian step, we have at our disposal a set of updated Lagrangian
conservative variables on a non-uniform grid. These are remapped on the initial Cartesian grid using
a conservative high-order accurate polynomial reconstruction which is detailed in section 4.1.3.

4.1.1 The Lagrangian variable change

In this section, we introduce the Lagrangian variable change and provide a general framework for
writing hyperbolic systems of conservation laws in Lagrangian coordinates that we finally apply to the
one-dimensional Euler system of equations (4.2). The (x, t)→ (X, t) variable change given by:

dx(X, t) = J(X, t) dX + u(X, t) dt, (4.3)

where J denotes the associated Jacobian:

J(X, t) = ∂Xx(X, t). (4.4)

From (4.3), one can notice that the Eulerian coordinate x satisfies:

∂tx(X, t) = u(X, t).

We choose for this evolution equation the initial condition x(X, 0) = X which implies that Cartesian
and Lagrangian meshes initially match and in particular that ∆x = ∆X. This choice also implies that
J(X, 0) = 1. Differentiating equation (4.4) with respect to time leads to the well-known Piola identity:

∂tJ(X, t) = J(x, t) · ∂xu(x, t). (4.5)

Using these results, one gets the following relation between Eulerian and Lagrangian time-derivatives for
any function φ:

∂tφ(X, t) = [∂tφ+ u · ∂xφ] (x, t), (4.6)

and the following one between spatial derivatives:

∂Xφ(X, t) = [J · ∂xφ] (x, t). (4.7)
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Combining equations (4.5) and (4.6), one can show that:

∂t(Jφ)(X, t) = [J · (∂tφ+ ∂x(φu))] (x, t). (4.8)

Finally, adding equations (4.7) and (4.8) allows to state the following lemma.

Lemma 1. For any functions φ and ψ, one has the following relation between Eulerian and Lagrangian
derivatives:

[∂t(Jφ) + ∂Xψ] (X, t) = [J · (∂tφ+ ∂x(φu+ ψ))] (x, t).

We now consider the four (φ, ψ) couples:

(ρ, 0), (ρu, p), (ρe, pu), (1, −u). (4.9)

The one-dimensional Euler equations in Eulerian coordinates (4.2) write under the form ∂tφ+∂x (φu+ ψ) =
0 with the three first couples whereas the last one corresponds to the trivial equation ∂t(1) + ∂x(0) = 0.
Applying Lemma 1 with (φ, ψ) = (ρ, 0) leads to:

∂t (Jρ) = 0

which implies that:

(Jρ)(X, t) = (Jρ)(X, 0) = ρ(X, 0) = ρ0(X) since J(X, 0) = 1.

and thus:
J = ρ0/ρ where ρ0 denotes the density at time tn.

Using this result and applying Lemma 1 to the three other couples leads to the one-dimensional Euler
equations in Lagrangian coordinates:

∂t


ρ0τ

ρ0u

ρ0e

+ ∂X


−u

p

pu

 = 0, (4.10)

where τ = 1/ρ denotes the specific volume.

Remark 5. Note that building schemes in the Lagrange-remap formalism consists in treating separately the
advection part and the effect of pressure forces. The Lagrangian step only takes the latter into account
and, as a matter of fact, variables which satisfy pure advection equations should only be updated during
the remap step.

4.1.2 Lagrangian step

This section aims at describing the high-order numerical schemes that have been developed for solving
the Lagrangian system of equations (4.10). To that end, it is more convenient to rewrite it under the
following general form:

∂tU + ∂XF(U) = 0 with U =


ρ0τ

ρ0u

ρ0e

 and F(U) =


−u

p

pu

 . (4.11)
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Since we would like to solve system (4.11) in finite volume context, we integrate it over a control volume
[Xi− 1

2
;Xi+ 1

2
]×[tn; tn+1] and then divide the result by ∆t and ∆X. These manipulations lead to the following

well-known finite volume scheme:

Un+1
i −Un

i

∆t
+

F∗
i+ 1

2

− F∗
i− 1

2

∆X
= 0, (4.12)

where Un
i denotes the cell average of U over [Xi− 1

2
;Xi+ 1

2
] at time tn:

Un+1
i =

1
∆x

∫ X
i+1

2

X
i− 1

2

U(X, tn) dX,

and F∗
i+ 1

2

the Lagrangian flux at the Xi+ 1
2

cell interface:

F∗
i+ 1

2

=
1

∆t

∫ tn+1

tn
F(U)(Xi+ 1

2
, θ) dθ. (4.13)

Building an Nth-order scheme requires to approximate these fluxes at desired order. To that end, we first
perform an (N − 1)th-order Taylor expansion in time of the F(U)(Xi+ 1

2
, θ) term in (4.13):

F(U)(Xi+ 1
2
, θ) =

N−1∑
k=0

(θ − tn)k

k!

(
∂kF(U)
∂tk

)
(Xi+ 1

2
, tn) +O

(
(θ − tn)N

)
,

and thus obtain the following approximation of F∗
i+ 1

2

:

F∗,N
i+ 1

2

=
N−1∑
k=0

∆tk

(k + 1)!

(
∂kF(U)
∂tk

)
(Xi+ 1

2
, tn) = F∗

i+ 1
2

+O
(
∆tN

)
. (4.14)

Note that the approximate flux (4.14) guarantees high-order accuracy in time provided that its computation
does not require any information from a time t > tn. This is of course not the case in (4.14) due to the
presence of time-derivatives. Fortunately, time-derivatives can be removed using the so-called Cauchy-
Kovalevskaya procedure that we briefly presented in section 3.3. Indeed, this technique allows to replace
time-derivatives with a non-linear combination of space-derivatives and thus to form an expression of the
approximate flux (4.14) that only relies on estimations of quantities which can be computed at time tn.
These manipulations are described more precisely in the sequel. Once the Cauchy-Kovalevskaya procedure
has been applied, quantities involved in (4.14) have to be evaluated at cell interfaces. This is achieved in
three steps.

1. We first reconstruct cell-centered point-wise values of conservative variables using a centered conser-
vative polynomial reconstruction. More precisely, for φ ∈ {1, u, e}, we compute:

(ρ0φ)n
i = (ρ0φ)(Xi, t

n) +O
(
∆XN

)
,

= cN0 · (ρ0φ)
n

i +
r∑

k=1

cNk ·
(
(ρ0φ)

n

i+k + (ρ0φ)
n

i−k

)
,

(4.15)

where r = bN/2c (floor function), the cNk coefficients being given in Table 4.1. Note that this step is
not necessary if N < 3 as explained in the sequel (see remark 6).
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2. The previous step now allows us to compute cell-centered point-wise values of each primitive variable
without loss of accuracy. This would not have been possible directly from cell averages since the
computation of primitive variables generally resorts to non-linear arithmetic operations. Assume for
example that we would like to compute cell-centered values of u. This can be done without loss of
accuracy using the following formula that operates on point-wise values:

un
i = (ρ0u)n

i / (ρ0)n
i

but not from cell averages (see remark 6 below):

un
i = (ρ0u)

n

i

/
(ρ0)

n

i +O
(
∆x2

)
6= (ρ0u)

n

i

/
(ρ0)

n

i .

3. We finally compute high-order accurate estimations of quantities involved in (4.14) on cell interfaces
using centered finite difference formulae. Note that the effectively required accuracy varies for each
term depending on where it appears in the truncated Taylor expansion. For example, quantities
involved in the l-th degree term only need to be estimated at (N − l)-th order due to the presence of
an ∆tl factor. We therefore introduce:

Neff = (N − l) + [(N − l) mod 2] .

Note that since we only resort to centered formulae, the Neff order of accuracy is necessarily even.
These finite difference operators write:(

∂mψ

∂xm

)n

i+ 1
2

=
(
∂mψ

∂xm

)(
Xi+ 1

2
, tn
)

+O
(
∆XNeff

)

=


1

∆xm

s∑
k=1

dNeff
m,k ·

(
ψn

i+k + ψn
i−k+1

)
if m is even,

1
∆xm

s∑
k=1

dNeff
m,k ·

(
ψn

i+k − ψn
i−k+1

)
if m is odd,

(4.16)

where s = d(Neff +m)/2e (ceiling function), the dNeff
m,k coefficients being given in Table 4.2.

Remark 6. In the case of smooth functions, cell averages are a second-order approximation of cell-centered
values:

1
∆x

∫ x
i+1

2

x
i+1

2

f(x) dx =
1

∆x

∫ x
i+1

2

x
i+1

2

(
f(xi) + (x− xi)f ′(xi) +O

(
∆x2

))
dx,

= f(xi) +
1

∆x

[
(x− xi)2

2

]x
i+1

2

x
i+1

2

f ′(xi) +O
(
∆x2

)
,

= f(xi) +
f ′(xi)
∆x

(
∆x2

8
− ∆x2

8

)
+O

(
∆x2

)
,

= f(xi) +O
(
∆x2

)
.

The above-detailed first step consequently does not need to be performed if N ≤ 3.

To complete the Lagrangian step, positions of the Eulerian grid have to be updated. We have indeed seen
in section 4.1.1 that the Eulerian coordinate x satisfies the evolution equation:

∂tx = u.
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k = 0 k = 1 k = 2 k = 3

r = 1
13
12

1
24

r = 2
1067
960

− 29
480

3
640

r = 3
30251
26880

− 7621
107520

159
17920

− 5
7168

Table 4.1: Coefficients cNk used in (4.15)

Neff = 2 Neff = 4 Neff = 6

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

m = 0 1/2 9/16 −1/16 75/128 −25/256 3/256

m = 1 1 9/8 −1/24 75/64 −25/384 3/640

m = 2 −1/2 1/2 −17/24 13/16 −5/48

m = 3 −3 1 −17/4 13/8 −1/8

m = 4 1 −3/2 1/2

m = 5 10 −5 1

Table 4.2: Coefficients dNeff
m,k used in (4.16).

Integrating it on [tn; tn+1] with X = Xi+ 1
2

leads to:

xn+1
i+ 1

2

− xi+ 1
2

=
∫ tn+1

tn
u(Xi+ 1

2
, θ) dθ.

High-order accurate position of the Eulerian cell interfaces at time tn+1 can therefore be computed using
the following scheme:

xn+1
i+ 1

2

= xi+ 1
2

+ u∗,N
i+ 1

2

∆t (4.17)

since it relies on the high-order accurate numerical flux u∗,N .

We now describe the practical Lagrangian fluxes construction (in particular how to apply the Cauchy-
Kovalevskaya procedure) for achieving second, third and fourth-order accuracy.

Second-order accurate Lagrangian fluxes

The second-order accurate Lagrangian flux is given by:

F∗,2
i+ 1

2

= F(Xi+ 1
2
, tn) +

∆t
2

(
∂F(U)
∂t

)
(Xi+ 1

2
, tn).
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We thus have to determine expressions of the first time-derivatives of u and p. The time-derivative of u can
easily be derived from system (4.11), indeed:

∂t(ρ0u) + ∂Xp = 0 ⇒ ∂tu = − 1
ρ0
∂Xp.

The time-derivative of p could be obtained by differentiating the equation of state but there is a more
generic way (that has been firstly proposed in [45]) to determine it as shown below.

Proposition 2. For any equation of state, the pressure p satisfies the evolution equation:

∂tp = −(ρc)2

ρ0
∂Xu

where (ρc)2 = γp/τ denotes the Lagrangian sound speed, the ratio of specific heats γ being defined by:

γ = −τ
p

∂p

∂τ

∣∣∣∣
S

.

Proof. The second law of thermodynamics writes TdS = dε + pdτ and implies that the entropy S is not
time-dependent for smooth solutions in the Lagrangian framework:

ρ0T∂tS = ∂t(ρ0ε) + p∂t(ρ0τ)
= ∂t(ρ0e)− u∂t(ρ0u) + p∂t(ρ0τ)
= −∂X(pu) + u∂Xp+ p∂Xu

= 0.

To be thermodynamically consistant, the equation of state has to satisfy (see [63] for more details):

dp = −(ρc)2dτ +
ΓT
τ
dS,

where Γ denotes the Grüneisen coefficient defined by:

Γ = − τ
T

∂T

∂τ

∣∣∣∣
S

The time-derivative of p therefore writes:

∂tp = −(ρc)2∂tτ +
ΓT
τ
∂tS

= −(ρc)2

ρ0
∂Xu since ∂tS = 0 and ∂t(ρ0τ) = ∂Xu.

We are now able to form the second-order accurate numerical fluxes u∗ and p∗ (for the sake of simplicity,
we drop the time step superscript, every variable being evaluated at time tn):

u∗,2
i+ 1

2

=
ui + ui+1

2
− ∆t

(ρ0)i + (ρ0)i+1

(
pi+1 − pi

∆x

)
,

p∗,2
i+ 1

2

=
pi + pi+1

2
− ∆t

2

(
(ρc)2i + (ρc)2i+1

(ρ0)i + (ρ0)i+1

)(
ui+1 − ui

∆x

)
,

(pu)∗,2
i+ 1

2

= p∗,2
i+ 1

2

· u∗,2
i+ 1

2

.

Note that computing (pu)∗ by multiplying p∗ and u∗ is accurate enough for building second-order schemes.
We will see that this term must be treated more carefully at higher orders of accuracy.
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Third-order accurate Lagrangian fluxes

The third-order accurate Lagrangian flux writes:

F∗,3
i+ 1

2

= F(Xi+ 1
2
, tn) +

∆t
2

(
∂F(U)
∂t

)
(Xi+ 1

2
, tn) +

∆t2

6

(
∂2F(U)
∂t2

)
(Xi+ 1

2
, tn)

and we now have two determine the second time-derivatives of u and p. The second time-derivative of u
can be easily expressed from the first one:

∂ttu = ∂t (∂tu) = ∂t

(
− 1
ρ0
∂Xp

)
= − 1

ρ0
∂X (∂tp) ,

= − 1
ρ0
∂X

(
−(ρc)2

ρ0
∂Xu

)
,

=
(ρc)2

ρ2
0

∂XXu+
1
ρ0

(∂Xu)
(
∂X

(
(ρc)2

ρ0

))
.

The same procedure can be applied to determine the second time-derivative of p using the following propo-
sition which provides an equation of state independent expression for the first time-derivative of (ρc)2.

Proposition 3. For any equation of state, the Lagrangian sound speed (ρc)2 satisfies the following evolution
equation:

∂t(ρc)2 = −2(ρc)2G
τρ0

∂Xu,

where G denotes the fundamental derivative:

G =
τ2

2γρ
· ∂

2p

∂τ2

∣∣∣∣
S

.

Proof. Differentiating (ρc)2 with respect to τ for constant S leads to:

∂(ρc)2

∂τ

∣∣∣∣
S

=
p

τ
· ∂γ
∂τ

∣∣∣∣
S

+
γ

τ
· ∂p
∂τ

∣∣∣∣
S

− γp

τ2
. (4.18)

We recall that the ratio of specific heats γ and the fundamental derivative G are defined by:

γ = −τ
p
· ∂p
∂τ

∣∣∣∣
S

and G =
τ2

2γp
· ∂

2p

∂τ2

∣∣∣∣
S

.

One can therefore show that:
∂γ

∂τ

∣∣∣∣
S

=
γ

τ
(γ + 1− 2G) .

Equation (4.18) thus rewrites:
∂(ρc)2

∂τ

∣∣∣∣
S

= −2G(ρc)2

τ
= −2ρG(ρc)2.

These results allow us to derive the evolution equation of the Lagrangian sound speed (ρc)2 since:

∂(ρc)2

∂t
=
∂(ρc)2

∂τ

∣∣∣∣
S

· ∂τ
∂t

+
∂(ρc)2

∂S

∣∣∣∣
τ

· ∂S
∂t︸︷︷︸
=0

= −2ρG(ρc)2

ρ0τ
∂Xu.
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Remark 7. In the specific case of perfect gases, G is a constant, its value being given by G = (γ+1)/2. The
time-derivative of G is therefore zero in this case.
Proposition 3 leads to the following expression for the second time-derivative of p:

∂ttp = ∂t (∂tp) = ∂t

(
−(ρc)2

ρ0
∂Xu

)
,

= − 1
ρ0
∂t(ρc)2∂Xu−

(ρc)2

ρ0
∂X (∂tu) ,

=
2(ρc)2G
τρ2

0

(∂Xu)
2 +

(ρc)2

ρ2
0

∂XXp−
(ρc)2

ρ3
0

(∂Xρ0)(∂Xp).

In order to write the third-order accurate Lagrangian fluxes, we first define the approximate first time-
derivatives of u and p:

(∂tu)
∗
i+ 1

2
=
(

2
(ρ0)i + (ρ0)i+1

)(
pi − pi+1

∆x

)
= (∂tu) (xi+ 1

2
, tn) +O

(
∆x2

)
,

(∂tp)
∗
i+ 1

2
=
(

(ρc)2i + (ρc)2i+1

(ρ0)i + (ρ0)i+1

)(
ui − ui+1

∆x

)
= (∂tp) (xi+ 1

2
, tn) +O

(
∆x2

)
,

and their approximate second time-derivatives:

(∂ttu)
∗
i+ 1

2
=
(

(ρc)2i + (ρc)2i+1

(ρ0)2i + (ρ0)2i+1

)(
(ui+2 + ui−1)− (ui + ui+1)

2∆x2

)
+

1
2∆x

(
1

(ρ0)i + (ρ0)i+1

)(
(ρc)2i+1

(ρ0)i+1
− (ρc)2i

(ρ0)i

)(
ui+1 − ui

∆x

)
=(∂ttu) (xi+ 1

2
, tn) +O

(
∆x2

)
,

(∂ttp)
∗
i+ 1

2
=
(

(ρc)2i + (ρc)2i+1

(ρ0)3i + (ρ0)3i+1

)(
(ρ0)i+1 − (ρ0)i

∆x

)(
ui − ui+1

∆x

)
+ 2

(
(ρc)2iGi + (ρc)2i+1Gi+1

(ρ0)i + (ρ0)i+1

)(
ui+1 − ui

∆x

)2

+
(

(ρc)2i + (ρc)2i+1

(ρ0)2i + (ρ0)2i+1

)(
(ui+2 + ui−1)− (ui + ui+1)

2∆x2

)
=(∂ttp) (xi+ 1

2
, tn) +O

(
∆x2

)
.

Third-order accurate fluxes are then given by:

u∗,3
i+ 1

2

=
9
16

(ui + ui+1)−
1
16

(ui−1 + ui+2) +
∆t
2

(∂tu)
∗
i+ 1

2
+

∆t2

6
(∂ttu)

∗
i+ 1

2

p∗,3
i+ 1

2

=
9
16

(pi + pi+1)−
1
16

(pi−1 + pi+2) +
∆t
2

(∂tp)
∗
i+ 1

2
+

∆t2

6
(∂ttp)

∗
i+ 1

2

(pu)∗,3
i+ 1

2

=
9
16

(piui + pi+1ui+1)−
1
16

(pi−1ui−1 + pi+2ui+2) +
∆t2

3
(∂tp)

∗
i+ 1

2
(∂tu)

∗
i+ 1

2

+
∆t
2

(
pi + pi+1

2

)(
(∂tu)

∗
i+ 1

2
+

∆t
3

(∂ttu)
∗
i+ 1

2

)
+

∆t
2

(
ui + ui+1

2

)(
(∂tp)

∗
i+ 1

2
+

∆t
3

(∂ttp)
∗
i+ 1

2

)
Fourth-order accurate Lagrangian fluxes

The fourth-order accurate Lagrangian flux writes:

F∗,4
i+ 1

2

= F(Xi+ 1
2
, tn) +

∆t
2

(
∂F(U)
∂t

)
(Xi+ 1

2
, tn) +

∆t2

6

(
∂2F(U)
∂t2

)
(Xi+ 1

2
, tn) +

∆t3

24

(
∂3F(U)
∂t3

)
(Xi+ 1

2
, tn)
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and we now have to determine the third time-derivatives of u and p. Since such calculations will obviously
lead to complex expressions, we present in this section a method relying on the Maple algebraic calculator
that provides expressions of time-derivatives for building arbitrarily high-order accurate Lagrangian fluxes.
First of all, we define some differentiating rules with respect to time for each variable that may appear in
approximate Lagrangian fluxes:

> DTTAU := diff(tau(x,t),t) = 1/rho0(x) * diff(u(x,t),x)
> DTU := diff(u(x,t),t) = -1/rho0(x) * diff(p(x,t),x);
> DTP := diff(p(x,t),t) = -rc2(x,t)/rho0(x,t) * diff(u(x,t),x);
> DTRC2 := diff(rc2(x,t),t) = -2*rc2(x,t)/(tau(x,t)*rho0(x))*G(x,t) * diff(u(x,t),x);
> DTG := diff(G(x,t),t) = 0;

Remark 8. For the sake of simplicity, we restrict to the case of perfect gas laws from N = 4. As we indicated
previously (see remark 7), the fundamental derivative G is constant in this context and its time-derivative
is zero.

We now initialize a table flux that contains the flux variables, in our case u and p. Note that there is no
need to add (pu) to this table since its time-derivatives can be easily computed once the time-derivatives
of u and p are known.

> for n from 1 to N-1 do
> flux[n] := [-diff(u(x,t),t$n), diff(p(x,t),t$n)];
> end do;

We apply the Cauchy-Kovalevskaya procedure by replacing several times the time-derivatives with expres-
sions given previously.

> for n from 1 to N-1 do
> for i from 1 to 3 do
> for j from 1 to n do
> flux[n][i] := expand(subs([DTTAU, DTU, DTP, DTRC2, DTG], flux[n][i]));
> end do;
> end do;
> end do;

Now that the Cauchy-Kovalevskaya procedure has been applied, the fluxes’ expressions can be slightly
simplified since ρ0 = 1/τ at time tn:

> for n from 1 to N-1 do
> for i from 1 to 3 do
> flux[n][i] := expand(subs([rho0(x)=1/tau(x,t)], flux[n][i]));
> end do;
> end do;

Note that this substitution step allows to avoid costly floating point division operations. At this stage, it
would be convenient to automatically generate source code that performs the computation of the required
time-derivatives. To that end, we first replace the diff(phi(x,t),x$m) expressions with their approximate
values.

> for n from 1 to N-1 do
> for i from 1 to 3 do
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> for m from n to 0
> Neff := N-n + mod(N-n, 2);
> flux[n][i] := subs([diff(tau(x,t),x$m), _tau[m][k]), flux[n][var]);
> flux[n][i] := subs([diff(u(x,t) ,x$m), _u[m][k]), flux[n][var]);
> flux[n][i] := subs([diff(p(x,t) ,x$m), _p[m][k]), flux[n][var]);
> flux[n][i] := subs([diff(rc2(x,t),x$m), _rc2[m][k]), flux[n][var]);
> flux[n][i] := subs([diff(G(x,t) ,x$m), _G[m][k]), flux[n][var]);
> end do;
> end do;
> end do;

We recall that the phi[m][k] terms should be estimated using the finite difference formulae (4.16):

phi[m][k] =


1

∆xm

s∑
k=1

dNeff
m,k ·

(
φn

i+k + φn
i−k+1

)
if m is even,

1
∆xm

s∑
k=1

dNeff
m,k ·

(
φn

i+k − φn
i−k+1

)
if m is odd,

the dNeff
m,k coefficients being given in Table 4.2. It is now possible to generate source code as desired (here in

C language) using Maple’s codegen package.

> with(codegen);
> C(flux, precision=double);

Note that this code generation function provides many available options. One of these is particularly efficient
since it forces source code optimization: several intermediate variables are then created to avoid computing
several times the same quantities. Fourth-order accurate Lagrangian fluxes can finally be easily built using
the procedure described in this section with N = 4. For example, the fourth-order accurate flux term p∗,4

writes:

p∗,4 = p[0][4] +
∆t
2
flux[1][2] +

∆t2

6
flux[2][2] +

∆t3

24
flux[3][2].

Practically, this procedure has been exploited in order to build up to sixth-order accurate Lagrangian
fluxes.

4.1.3 Remap step

Once the Lagrangian scheme has been applied, we have at our disposal a set of Lagrangian conservative
variables (ρ0φ) for φ ∈ {1, u, e} at time tn+1. These correspond to Eulerian conservative variables on the
non-uniform {xn+1

i+ 1
2

} grid. Indeed, since the Lagrangian variable change is given by ρ0dX = ρdx, Eulerian

and Lagrangian conservative variables satisfy the following exact formula:

∆X (ρ0φ)
n+1

i =
∫ X

i+1
2

X
i− 1

2

(ρ0φ)(X, tn+1) dX =
∫ xn+1

i+1
2

xn+1

i− 1
2

(ρφ)(x, tn+1) dx. (4.19)
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The remap step aims at projecting these values on the initial regular Cartesian grid. It is based on the
following integral splitting for φ ∈ {1, u, e}:

∆x (ρφ)
n+1

i =
∫ x

i+1
2

x
i− 1

2

(ρφ)(x, tn+1) dx,

=
∫ xn+1

i− 1
2

x
i− 1

2

(ρφ)(x, tn+1) dx

︸ ︷︷ ︸
P

i− 1
2

+
∫ xn+1

i+1
2

xn+1

i− 1
2

(ρφ)(x, tn+1) dx

︸ ︷︷ ︸
Pi

+
∫ x

i+1
2

xn+1

i+1
2

(ρφ)(x, tn+1) dx

︸ ︷︷ ︸
P

i+1
2

.

The Pi∓ 1
2

terms in the right hand side can be expressed from the so-called remap fluxes (ρφ)∗
i∓ 1

2

:

Pi∓ 1
2

=
(
xn+1

i∓ 1
2

− xi∓ 1
2

)
(ρφ)∗

i∓ 1
2

with (ρφ)∗
i∓ 1

2

=
1

xn+1
i∓ 1

2

− xi∓ 1
2

∫ xn+1

i∓ 1
2

x
i∓ 1

2

(ρφ)(x, tn+1) dx.

Pi corresponds to the cell average of (ρφ) on the non-uniform grid {xn+1
i+ 1

2

}i and can be estimated using

(4.19). Since xn+1
i+ 1

2

− xi+ 1
2

= u∗
i+ 1

2

∆t, the remap scheme for φ ∈ {1, u, e} finally writes:

(ρφ)
n+1

i = (ρ0φ)
n+1

i − ∆t
∆x

(
u∗

i+ 1
2

(ρφ)∗
i+ 1

2

− u∗
i− 1

2

(ρφ)∗
i− 1

2

)
. (4.20)

We now have to compute high-order accurate remap fluxes. To that end, we resort to the standard polyno-
mial reconstruction that has been presented in section 3.2 with an additional upwinding. Let us introduce
the Nth-order accurate numerical flux:

(ρφ)∗,N
i+ 1

2

=
1

xn+1
i+ 1

2

− xn+1
i− 1

2

∫ xn+1

i+1
2

x
i+1

2

pφ,N
upwind with upwind =


i if xn+1

i+ 1
2

≥ xi+ 1
2
,

i+ 1 if xn+1
i+ 1

2

≤ xi+ 1
2
,

where pφ,N
i is a polynom satisfying:

pφ,N
i = (ρφ) +O

(
∆xN

)
on
[
xn+1

i− 1
2

;xn+1
i+ 1

2

]
and

∫ xn+1

i+1
2

xn+1

i− 1
2

pφ,N
i =

∫ xn+1

i+1
2

xn+1

i− 1
2

(ρφ). (4.21)

We now define s = bN/2c+1 and SN
i = {xn+1

i−s+ 1
2

, . . . , xn+1
i+s− 1

2

}. SN
i is a centered stencil of 2s points around

[xn+1
i− 1

2

;xn+1
i+ 1

2

]. Let Hφ
i be the following primitive of (ρφ):

Hφ
i (x) =

∫ x

xn+1

i−s+1
2

(ρφ)(ξ, tn+1)dξ. (4.22)

Using formula (4.19), one easily computes the values of Hφ
i on SN

i :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Hφ
i (xn+1

i−s+ 1
2

) = 0,

Hφ
i (xn+1

i−s+ 3
2

) = ∆X(ρ0φ)
n+1

i−s+1,

Hφ
i (xn+1

i−s+ 5
2

) = ∆X
(
(ρ0φ)

n+1

i−s+1 + (ρ0φ)
n+1

i−s+2

)
,

...

Hφ
i (xn+1

i+s− 1
2

) = ∆X
(
(ρ0φ)

n+1

i−s+1 + . . .+ (ρ0φ)
n+1

i+s−1

)
.

(4.23)
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Let P φ,N
i be the unique Lagrange interpolating polynom of Hφ

i on SN
i . As explained in section 3.2, the

following choice of pφ,N
i satisfies (4.21):

pφ,N
i =

[
P φ,N

i

]′
. (4.24)

Practically, there is though no need to compute pφ
i . The approximate remap fluxes can be obtained directly

from the Lagrange interpolating polynom P φ
i :

(ρφ)∗,N
i+ 1

2

=
1

xn+1
i+ 1

2

− xn+1
i− 1

2

(
P φ,N

i

(
xn+1

i+ 1
2

)
− P φ,N

i

(
xi+ 1

2

))
(4.25)

which allow to update Eulerian conservative variables.

4.1.4 Stability condition

The time step is constrained by a classical CFL condition for both Lagrangian and remap steps:
∆t ≤ ∆x

max ci
for the Lagrangian scheme,

∆t ≤ ∆x
max u∗

i+ 1
2

for the remap scheme,

where c denotes the Eulerian sound speed. To insure the stability of our numerical schemes, we therefore
consider the following time step constraint for the whole Lagrange-remap scheme:

∆t ≤ ∆x
max (|ui|+ ci)

. (4.26)

4.1.5 Summarized one-dimensional Lagrange-remap scheme

In order to complete the description of our one-dimensional Lagrange-remap schemes, we summarize
hereafter the different tasks that have to be performed.

1. Lagrangian step 1.

(a) Initialize Lagrangian conservative variables: since ρ0 = ρ at time tn, one has ρ0u = ρu and
ρ0e = ρe.

(b) Compute cell-centered point-wise values of Lagrangian conservative variables using (4.15).

(c) Form the Nth order accurate Lagrangian fluxes according to the truncated Taylor expansion
(4.14).

(d) Replace time-derivatives involved in (4.14) with space-derivatives using the Cauchy-Kovalevskaya
procedure.

(e) Compute cell-centered point-wise values of each primitive variable required to form numerical
fluxes. We recall that this step can be performed without loss of accuracy since we have at our
disposal cell-centered point-wise values of conservative variables.

(f) Compute each term appearing in the Lagrangian fluxes after the Cauchy-Kovalevskaya procedure
has been applied using finite difference formulae, see (4.16).

1As we indicated previously (see remark 6), step (b) is only necessary for accuracy orders that are strictly greater than two
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(g) Update the (ρ0u) and (ρ0e) Lagrangian conservative variables according to the finite volume
scheme (4.12).

(h) Compute updated positions of the Eulerian grid using (4.17).

2. Remap step.

(a) Compute high-order accurate remap fluxes using a conservative polynomial reconstruction method
as explained in section 4.1.3.

(b) Compute updated values of the Eulerian conservative variables ρ, (ρu) and (ρe) according to the
remap scheme (4.20).

Remark 9. Practically, the Lagrangian flux u∗ has to be computed so that the Eulerian grid can be updated
but there is no need to solve the equation on (ρ0τ) in which it is involved. Indeed, the remap scheme given
by (4.20) does not make any use of updated values of (ρ0τ). The effectively solved Lagrangian scheme
therefore writes:  (ρ0u)n+1

i

(ρ0e)n+1
i

 =

 (ρ0u)n
i

(ρ0e)n
i

− ∆t
∆x

 p∗
i+ 1

2

− p∗
i− 1

2

(pu)∗
i+ 1

2

− (pu)∗
i− 1

2

 . (4.27)

We have been able to give formal proofs of accuracy for the second, third and fourth-order GoHy schemes
with the help of the algebraic calculation software Maple. The formal proof for the third-order scheme is
given in Appendix F.

4.2 Building high-order schemes for two-dimensional planar geometries

We show in this section how the high-order schemes that have been developed for one-dimensional ge-
ometries can be extended to the two-dimensional case. We here propose to resort to dimensional splitting
techniques which present the advantage of allowing cache-oblivious implementations. Indeed, instead of
operating on multidimensional datasets, dimensionally split schemes operate on one-dimensional datasets:
several so-called dimensional sweeps are performed successively along the directions of the considered geom-
etry. They are therefore compatible with the second principle that we stated in introduction (see page 13)
in the sense that a proper implementation of dimensionally split methods operates mostly on memory con-
tiguous data. Practically, this can be achieved by storing the considered variables in several tables with
different memory alignments (which is of course a drawback in terms of memory requirements). In the
two-dimensional case, variables that have to be updated need to be stored twice: once with a memory
alignment along the x direction and once with another memory alignment along the y direction (see Fig-
ure 4.1). Switching from one of these storage tables to the other one can be done during the update step.
This strategy supposes that the update step is performed on non-contiguous data (it is fortunately a very
cheap step in terms of computational cost) but allows to save a more expensive transposition step. The
cache-oblivious algorithm for implementing dimensionally split Lagrange-remap schemes is summarized by
the following pseudo-code in which the different steps are written in blue if they operate on contiguous data
and in red otherwise.

Input: U = conservative variables, N = number of dimensional sweeps
// store in Ux the x-aligned version of U
Ux ← U
// loop on dimensional sweeps
for n = 1→ N do
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if n mod 2 = 1 then
// apply the one-dimension scheme along the x direction
F∗

x = ComputeLagrangianFluxes(Ux)
Ux = UpdateVariables(Ux, F∗

x)
F∗

x = ComputeRemapFluxes(Ux)
// put updated variables in an y-aligned table after the remap step
Uy = UpdateVariables(Ux, F∗

x)
else

// apply the one-dimensional scheme along the y direction
F∗

y = ComputeLagrangianFluxes(Uy)
Uy = UpdateVariables(Uy, F∗

y)
F∗

y = ComputeRemapFluxes(Uy)
// put updated variables in an x-aligned table after the remap step
Ux = UpdateVariables(Uy, F∗

y)
end if

end for
// once all dimensional sweeps have been performed, put updated variables in U
if N mod 2 = 0 then

// if N is even, updated variables are stored in Ux

U← Ux

else
// if N is odd, updated variables are stored in Uy

U← Uy

end if
Output: U = updated conservative variables

The outline of this section is the following. We first recall a few well-known theoretical elements about
splitting techniques (these have already been widely discussed in the literature, see [77] for example) and
propose several splitting sequences up to sixth-order accuracy. We then apply these methods to extend
one-dimensional GoHy schemes to the two-dimensional case.

4.2.1 Dimensional splitting techniques

Let A and B denote two differential operators. We consider the evolution equation:

∂tφ = Aφ+ Bφ, (4.28)

whose exact solution at time t+ ∆t is given by:

φ(t+ ∆t) = exp (∆t(A+ B))φ(t).

Splitting techniques consists in solving alternatively the two following equations:

∂tφ = Aφ and ∂tφ = Bφ, (4.29)

instead of equation (4.28), leading to the following approximate solution at time t+ ∆t:

φ̃(t+ ∆t) = [exp (∆tA) · exp (∆tB))]φ(t). (4.30)

but such an approach has consequences in terms of accuracy as shown in the following proposition.
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u1,1 u2,1 . . . ur,1

...

u1,2 u2,2

ur,su1,s

u1,1 . . . ur,1. . . . . . . . . ur,su1,s y alignmentu2,1 u2,s

u1,1 . . . ur,1 u1,2 . . . ur,2 . . . . . . ur,su1,s x alignment

Figure 4.1: Memory alignment strategies
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Proposition 4. The approximate solution given by (4.30) is first-order accurate:

φ̃(t+ ∆t) = φ(t+ ∆t) +O
(
∆t2

)
.

Proof. The accuracy of the approximate solution can be estimated by comparing Taylor expansions of
exp (∆t(A+ B)) and [exp (∆tA) · exp (∆tB))]. On the one hand, we have:

exp (∆t(A+ B)) = 1 + ∆t (A+ B) +
∆t2

2
(
A2 + B2 +AB + BA

)
+O

(
∆t3

)
, (4.31)

whereas on the other hand one can show that:

exp (∆tA) · exp (∆tB)) =
(

1 + ∆tA+
∆t2

2
A2 +O

(
∆t3

))
·
(

1 + ∆tB +
∆t2

2
B2 +O

(
∆t3

))
= 1 + ∆t (A+ B) +

∆t2

2
(
A2 + B2 + 2AB

)
+O

(
∆t3

)
.

The solution given by (4.30) is therefore obviously first-order accurate since AB 6= BA generally.

This first-order splitting is called the Godunov splitting. In order to increase accuracy, one has to solve the
split equations (4.29) several times with appropriately weighted time steps, leading to the following solution
at time t+ ∆t:

φ̃(t+ ∆t) =
p∏

i=1

[exp (ai∆tA) · exp (bi∆tB))]φ(t) (4.32)

where ai and bi are real coefficients. Each step needed for computing φ(t+∆t) according to (4.32) is called a
dimensional sweep. In the sequel, n denotes the number of dimensional sweeps, i.e. the number of non-zero
ai and bi coefficients.

Remark 10. Note that the choice of dimensional splitting coefficients has an impact on the time step
constraint. Let c denote a splitting coefficient, the effective time step in the multidimensional case is now
given by c∆t. As a matter of fact, if c is less than 1, the time step ∆t can be increased by a factor 1/c
without violating the stability condition (4.26). In the case of of multidimensional GoHy schemes, we
therefore determine the time step using the following adjusted formula that takes the value of splitting
coefficients into account:

∆t =
∆tCFL

max(|a1|, . . . |ap|, |b1|, . . . , |bp|)
where ∆tCFL denotes the time step obtained from the CFL condition (4.26). This property gives a hint
about how selecting sets of splitting coefficients: whereas these are usually chosen in order to minimize the
error caused by the splitting strategy (see [13] for example), we propose to determine the sequence with
the lowest max(|a1|, . . . |ap|, |b1|, . . . , |bp|) value in order to maximize the time step. Such splitting sequences
will be called optimal in the sequel.

Remark 11. In practical cases, we are often interested in preserving symmetry and we therefore only consider
symmetric splitting sequences, i.e. sequences that satisfy for all i:{

bi = an/2+1−i if n is even,
ai = a(n+1)/2+1−i and bi = b(n−1)/2+1−i if n is odd.

We now describe how to build second, third and fourth-order splitting sequences. Several sets of coeffi-
cients can be found in the literature on symplectic integrators for Hamiltonian systems, our contribution to
this topic will therefore mainly consist in providing the optimal set. We finally summarize several splitting
sequences of from third to sixth-order accuracy in Table 4.3.
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Second-order accurate splitting method: the Strang splitting

Second-order accurate splitting methods can be obtained by taking p = 2 as shown below.

Proposition 5. The approximate solution given by:

φ̃(t+ ∆t) =

[
2∏

i=1

exp(ai∆tA) · exp(bi∆tB)

]
φ(t)

is second-order accurate if and only if the ai and bi coefficients satisfy the following system of non-linear
equations: 

a1 + a2 = 1,

b1 + b2 = 1,

a1b2 = 1/2.

(4.33)

Proof. Once again, the proof of this proposition relies on Taylor expansions. Indeed, one can see that:

2∏
i=1

exp(ai∆tA) · exp(bi∆tB) = 1 + (a1 + a2) ∆tA+ (b1 + b2) ∆tB

+ (a1b1 + a1b2 + a2b1) ∆t2AB + b1a2∆t2BA

+
(
a2

1 + a2
2 + 2a1a2

) ∆t2

2
A+

(
b21 + b22 + 2b1b2

) ∆t2

2
B +O

(
∆t3

)
.

Comparing this expression with the Taylor expansion of exp (∆t(A+ B)) given in (4.31) leads to the fol-
lowing non-linear system of equations:

a1 + a2 = 1, (4.34a)
b1 + b2 = 1, (4.34b)

a2
1 + a2

2 + 2a1a2 = 1, (4.34c)

b21 + b22 + 2b1b2 = 1, (4.34d)
a1b1 + a1b2 + a2b2 = 1/2, (4.34e)

a2b1 = 1/2. (4.34f)

One can easily notice that (4.34a) ⇒ (4.34c) and (4.34b) ⇒ (4.34d) since:

a2
1 + a2

2 + 2a1a2 = (a1 + a2)2 and b21 + b22 + 2b1b2 = (b1 + b2)2.

Moreover, equation (4.34e) can be obtained from (4.34a), (4.34b) and (4.34f):

a1b1 + a1b2 + a2b2 = a1(b1 + b2) + a2b2,

= a1 + a2b2,

= 1− a2 + a2b2,

= 1− a2(1− b2),
= 1− a2b1,

= 1/2.
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The remaining equations finally write: 
a1 + a2 = 1,

b1 + b2 = 1,

a1b2 = 1/2.

The optimal second-order accurate splitting method is obtained by taking either a1 = 0 or a1 = 1/2 which
actually leads to the (symmetric) Strang splitting sequence [77]:

a1 = a2 =
1
2
, b1 = 1, b2 = 0.

Third-order accurate splitting methods

In order to reach third-order accuracy, one has to consider the p = 3 case for which several sets of
coefficients can be found as shown hereafter.

Proposition 6. The approximate solution given by:

φ̃(t+ ∆t) =

[
3∏

i=1

exp(ai∆tA) · exp(bi∆tB)

]
φ(t)

is third-order accurate if and only if the ai and bi coefficients satisfy the following system of non-linear
equations: 

a1 + a2 + a3 = 1,

b1 + b2 + b3 = 1,

a2b1 + a3b1 + a3b2 = 1/2,

a2b
2
1 + a3(b1 + b2)2 = 1/3,

b3 + b2(a1 + a2)2 + b1a
2
1 = 1/3.

(4.35)

The proof is given in Appendix B. Some sequences satisfying system (4.35) can be found in the literature
(see works of Forest and Ruth [36] and McLachlan [61] for example). We now would like to determine the
optimal set of coefficients. To that end, we have solved system (4.35) numerically using Maple and it turns
out that the optimal unsymmetric sequence is given by:

a1 = +0.28321919245984298,
a2 = +0.78867513459481288,
a3 = +0.07189432705465587,
b1 = +0.65323862309023541,
b2 = −0.44191375768504829,
b3 = +0.78867513459481288,
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whereas the optimal symmetric set of coefficients is actually the one proposed by McLachlan [61]:

a1 = +0.91966152301739986,
a2 = −0.18799161879915978,
a3 = +0.26833009578175993.

Remark 12. Note the presence of negative coefficients. These can not be avoided from third-order accuracy
and will generate negative time steps that could possibly be difficult to handle. Practically, we however did
not encounter any particular issue. The only upwind-biased formula we resort to is used to determine the
upwind cell for building remap fluxes and, since it depends on the sign of (u∗∆t), it is automatically able
to handle negative time steps. All other reconstruction methods operate on centered stencils and therefore
do not require any special treatment. On the contrary, introducing slope or flux limiting techniques would
be more complicated in such an unusual case.

Fourth-order and higher-order accurate splitting methods

For the case of fourth-order accuracy, we restrict to theoretical results given in the related literature.
Chin [13] has shown that symmetric fourth-order accurate splitting methods can be built using nine dimen-
sional sweeps with following ai coefficients:

b1 = b4 =
1
4

1∓

√
9a2 − 4±

√
3− 12a2 + 9a2

2

3a2

 ,

b2 = b3 = 1/2− b1,
a1 = a5 = 1/6− 4a2b

2
2,

a3 = 1− 2(a1 + a2),

a2 being a free negative parameter. The optimal symmetric set of coefficients is obtained with

a2 = a4 = −0.27516060407455222,

and it is given in Table 4.3. Forest and Ruth [36] propose the following symmetric fourth-order accurate
sequence with n = 7:

a1 = a4 =
2 + 21/3 + 2−1/3

6
, a2 = a3 =

1− 21/3 − 2−1/3

6
, b1 = b3 =

1
2− 21/3

, b2 =
1

1− 22/3
, (4.36)

whereas McLachlan gives fourth (n = 8) and fifth-order (n = 12) unsymmetric sets of coefficients in [61]
(these have been reported in Table 4.3).

Remark 13. (Yoshida’s procedure) Regarding higher-order splitting sequences, Yoshida [95] proposes an
algorithm for building symmetric dimensional splitting sequences with an arbitrary (but necessarily even)
order of accuracy. Let S2m denote a (2m)th order accurate splitting method, a (2m + 2)th order one is
given by:

S2m+2(t) = S2m(αt) · S2m(βt) · S2m(αt)

where the α and β coefficients satisfy:  2α+ β = 1,

2α2m+1 + β2m+1 = 0.
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They are therefore given by:

α = − 2
1

2(2m+1)

2− 2
1

2(2m+1)

and β =
1

2− 2
1

2m+1

.

Applying Yoshida’s procedure with m = 1 from the second-order Strang sequence, one obtains Forest and
Ruth’s set of coefficients (4.36). Applying it one more time leads to a symmetric sixth-order accurate
dimensional splitting sequence with n = 15. It is given in Table 4.3.

4.2.2 Extending one-dimensional schemes to the two-dimensional case

At this stage, we have at our disposal several splitting techniques that allow to achieve high-order
accuracy. We now detail how one-dimensional schemes can practically be extended to the two-dimensional
case. To that end, we first recall the two-dimensional Euler system of equations:

∂t


ρ

ρux

ρuy

ρe

+ ∂x


ρux

ρu2
x + p

ρuxuy

(ρe+ p)ux

+ ∂y


ρuy

ρuxuy

ρu2
y + p

(ρe+ p)uy

 = 0.

According to (4.29), one has to solve several times the following split systems respectively along the x and
y directions:

∂t


ρ

ρux

ρuy

ρe

+ ∂x


ρux

ρu2
x + p

ρuxuy

(ρe+ p)ux

 = 0 and ∂t


ρ

ρux

ρuy

ρe

+ ∂y


ρux

ρuxuy

ρu2
y + p

(ρe+ p)uy

 = 0

with appropriately weighted time steps. These split systems correspond to the one-dimensional set of
equations that have been studied in section 4.1 with an additional pure advection equation for the transverse
velocity component. As we indicated previously (see remark 5 page 60), this additional equation does not
need any treatment during the Lagrangian step: it is solved during the remap step by applying the remap
scheme (4.20) with φ = uy or φ = ux depending on the considered direction.

However, achieving high-order accuracy requires an additional step. Indeed, a trivial combination of
high-order accurate one-dimensional schemes and high-order dimensional splitting sequences does not allow
to go beyond second-order accuracy in practice. This is due to the fact that two-dimensional schemes
naturally operate on two-dimensional cell averages whereas the one-dimensional Lagrange-remap schemes
presented in section 4.1 operate on one-dimensional cell averages. We therefore propose in the sequel some
conversion operations in order to switch between the one-dimensional and two-dimensional contexts. For the
sake of simplicity, we now focus on the example of a dimensional sweep along the x direction (the treatment
along the y direction being analog), more precisely along the j-th line, and introduce the following notations.

•
[
φn

i,j

]xy
denotes the two-dimensional cell average of φ over [xi− 1

2
;xi+ 1

2
]× [yj− 1

2
; yj+ 1

2
] at time tn:

[
φn

i,j

]xy =
1

∆x ∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

φ(x, y, tn) dx

 dy,
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SYMMETRIC SEQUENCES

Optimal

3rd-order (n = 6)

a1 = b3 = +0.91966152301739986,

a2 = b2 = −0.18799161879915978,

a3 = b1 = +0.26833009578175993

Forest, Ruth [36]

4th-order (n = 7)

a1 = a4 = (2 + 21/3 + 2−1/3)/6,

a2 = a3 = (1− 21/3 − 2−1/3)/6,

b1 = b3 = (2− 21/3)−1,

b2 = (1− 22/3)−1

Optimal

4th-order (n = 9)

a1 = a5 = 0.5,

a2 = a4 = −0.27516060407455222,

a3 = a2

b1 = b4 = −0.05032120814910445,

b2 = b3 = +0.55032120814910445,

Yoshida [95]

6th-order (n = 15)

a1 = a8 = +0.3922568052387787,

a2 = a7 = +0.5100434119184577,

a3 = a6 = −0.4710533854097564,

a4 = a5 = +0.0687531682525201,

b1 = b7 = +0.7845136104775573,

b2 = b6 = +0.2355732133593581,

b3 = b5 = −1.1776799841788710,

b4 = +1.3151863206839112

UNSYMMETRIC SEQUENCES

Forest, Ruth [36]

3rd-order (n = 6)

a1 = 7/24,

a2 = 3/4,

a3 = −1/24,

b1 = 2/3,

b2 = −2/3,

b3 = 1

Optimal

3rd-order (n = 6)

a1 = +0.28321919245984298,

a2 = +0.78867513459481288,

a3 = +0.07189432705465587,

b1 = +0.65323862309023541,

b2 = −0.44191375768504829,

b3 = +0.78867513459481288

McLachlan [61]

4th-order (n = 8)

a1 = +0.515352837431122936,

a2 = −0.085782019412973646,

a3 = +0.441583023616466524,

a4 = +0.128846158365384185,

b1 = +0.1344961992774310892,

b2 = −0.2248198030794208058,

b3 = +0.7563200005156682911,

b4 = +0.3340036032863214255

McLachlan [61]

5th-order (n = 12)

a1 = +0.339839625839110000,

a2 = −0.088601336903027329,

a3 = +0.585856476825962118,

a4 = −0.603039356536491888,

a5 = +0.323580796554697639,

a6 = +0.442363794219749458,

b1 = +0.119390029287567275,

b2 = +0.698927370382475230,

b3 = −0.171312358271600775,

b4 = +0.401269502251353448,

b5 = +0.010705081848235984,

b6 = −0.058979625498031163

Table 4.3: Some symmetric and unsymmetric splitting sequences from third to sixth-order accuracy.
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•
[
φn

i,j

]x
and

[
φn

i,j

]y
respectively denote one-dimensional cell averages of φ over [xi− 1

2
;xi+ 1

2
] with y = yj

and over [yj− 1
2
; yj+ 1

2
] with x = xi, both at time tn:

[
φn

i,j

]x =
1

∆x

∫ x
i+1

2

x
i− 1

2

φ(x, yj , t
n) dx and

[
φn

i,j

]y =
1

∆y

∫ y
j+1

2

y
j− 1

2

φ(xi, y, t
n) dy.

Remark 14. The manipulations described in this section only need to be performed for orders of accuracy
that are strictly greater than two. This is related to the fact that cell averages are a second-order ap-
proximation of cell-centered values in the case of smooth functions (see remark 6 page 62) which implies
that: [

φn
i,j

]xy =
[
φn

i,j

]x +O
(
∆y2

)
and

[
φn

i,j

]xy =
[
φn

i,j

]y +O
(
∆x2

)
.

Reconstruction on conservative variables

In the two-dimensional case, the approximate solution is known along the j-th line at time tn as a set
of two-dimensional cell averages of conserved variables:[

Un
i,j

]xy for i ∈ {1, . . . , I}

where U = (ρ, ρu, ρe). But the one-dimensional Lagrange-remap schemes that have been developed operate
on the following set of one-dimensional cell averages:[

Un
i,j

]x for i ∈ {1, . . . , I}

and they return: [
Un+1

i,j

]x
for i ∈ {1, . . . , I}.

For each dimensional sweep, the Lagrange-remap scheme therefore has to be encapsulated between an
interpolation step and a reconstruction step that both resort to conservative high-order accurate operators,
respectively denoted by Π and Π−1 in the sequel. These aim to transform the input two-dimensional cell
averages into one-dimensional cell averages and then revert the output one-dimensional cell averages back to
two-dimensional cell averages. More precisely, they have to satisfy the following accuracy and conservativity
conditions (note that the conservativity condition does not take boundary conditions into account):

(accuracy condition)


[
Un

i,j

]x = Π
([

Un
i,j

]xy)+O
(
∆xN

)[
Un+1

i,j

]xy
= Π−1

([
Un+1

i,j

]x)
+O

(
∆xN

) ∀i ∈ {1, . . . , I}, (4.37)

(conservativity condition)
∑
i,j

[
Un+1

i,j

]xy
=
∑
i,j

[
Un

i,j

]xy
, (4.38)

where N is the desired order of accuracy. Moreover, the interpolation and reconstruction operators have
to be compatible with negative time steps. We therefore propose the following discrete centered operators
that both satisfy these conditions:

Π
([
φn

i,j

]xy) = p0

[
φn

i,j

]xy +
r∑

k=1

pk

([
φn

i+k,j

]xy +
[
φn

i−k,j

]xy)
, (4.39a)

Π−1
([
φn

i,j

]x) = q0
[
φn

i,j

]x +
r∑

k=1

qk
([
φn

i+k,j

]x +
[
φn

i−k,j

]x)
, (4.39b)
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Order
p coefficients q coefficients

k = 0 k = 1 k = 2 k = 3 k = 0 k = 1 k = 2 k = 3

N = 3
13
12

− 1
24

11
12

1
24

N = 5
1067
960

− 29
480

3
640

863
960

77
1440

− 17
5760

N = 7
30251
26880

− 7621
107520

159
17920

− 5
7168

215641
241920

6361
107520

− 281
53760

367
967680

Table 4.4: p and q coefficients used to build the Π and Π−1 operators in (4.39a) and (4.39b).

where r = bN/2c, coefficients p and q being given in Table (4.2.2). Note that the Π interpolator has already
been used to transform cell averages into cell centered point-wise values in the construction of Lagrangian
fluxes, see (4.15).

This approach however presents a major drawback. Like any high-order polynomial reconstruction, the
discrete Π operator may return unphysical values in the vicinity of discontinuities due to Gibbs oscillations
(this may also be true for the inverse operator). In this case, it would be temptating to apply the following
procedure: [

Un
i,j

]x =


[
Un

i,j

]xy
if any physical criterion is not satisfied,

Π
([

Un
i,j

]xy)
else,

(4.40)

in order to prevent pathologic values from appearing but this is in fact a bad solution for two reasons.

• First, such a procedure is quite expensive in terms of computational time since a conditional test must
be performed on each cell.

• Above all, the conservativity condition (4.38) would not be satisfied anymore (practically, it would
be satisfied with second-order accuracy), making our finite volume schemes lose one of their most
important features. This point is detailed in Proposition 7 below.

Proposition 7. The conservativity condition (4.38) is exactly preserved by the discrete operators Π and
Π−1 but it is only preserved at second-order accuracy if the procedure (4.40) is used in one or more cells.

Proof. For the sake of simplicity, we restrict this proof to the case of a one-dimensional dataset denoted by
(ui) and we do not discuss the issue of boundary conditions. Let S denote the sum of the variable u over
the considered dataset:

S =
∑

ui.

We now define û = Π(u) and ũ that is obtained by computing Π(u) in all cells except one (denoted by the
j subscript in the sequel) where the procedure (4.40) is used. We also introduce the corresponding sums Ŝ
and S̃. On the one hand, one can notice that:

Ŝ =
∑

i

ûi =
∑

i

(
r∑

k=−r

p|k|ui+k

)
=

r∑
k=−r

p|k|

(∑
i

ui+k

)
=

r∑
k=−r

p|k|S = S
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since the sum of all pk coefficients is always equal to 1. This shows that the conservativity condition is
preserved if the discrete operator Π is used in all cells. On the other hand, the sum S̃ of the ũ dataset is
given by:

S̃ =
∑

i

ũi = uj +
∑
i6=j

(
r∑

k=−r

p|k|ui+k

)

= uj +
r∑

k=−r

p|k|

∑
i6=j

ui+k


= uj +

r∑
k=−r

p|k|

[(∑
i

ui+k

)
− uj+k

]

=

(
uj −

r∑
k=−r

p|k|uj+k

)
+

r∑
k=−r

p|k|S

=

(
uj −

r∑
k=−r

p|k|uj+k

)
+ S

= (uj −Π(uj)) + S.

Clearly, S̃ is not equal to S. The sum S̃ is actually a second-order approximation of S if u is a smooth
function since (see remark 6 page 62):

Π(uj) = uj +O
(
∆x2

)
.

As a matter of fact, the conservativity condition (4.38) is preserved at best at second-order accuracy if the
procedure (4.40) is applied.

Note that the issue described in Proposition 7 would appear with any interpolation method that does not
operate on the same stencil for all cells. It therefore disqualifies all adaptative methods and in particular
ENO and WENO techniques.

Reconstruction on fluxes

Another less intuitive approach consists in performing a reconstruction step on fluxes. Indeed, since finite
volume schemes are conservative by construction, such an approach guarantees conservativity preservation
whatever polynomial reconstruction method is chosen. More precisely, the idea consists is directly updating
two-dimensional cell averages in both Lagrangian and remap steps by integrating the underlying one-
dimensional schemes (4.27) and (4.20) over [yj− 1

2
; yj+ 1

2
]. The resulting Lagrangian scheme then writes:

 (ρ0ux)n+1
i,j

(ρ0e)n+1
i,j

xy

=

 (ρ0ux)n
i,j

(ρ0e)n
i,j

xy

− ∆t
∆x

(
F∗

i+ 1
2
,j
− F∗

i− 1
2
,j

)
(4.41)

whereas the remap scheme is given by:[
(ρφ)n+1

i,j

]xy
=
[
(ρ0φ)n+1

i,j

]xy
− ∆t

∆x

(
R∗

i+ 1
2
,j
−R∗

i− 1
2
,j

)
. (4.42)
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with φ ∈ {1,u, e}. The flux terms involved in (4.41) and (4.42) write:

F∗
i+ 1

2
,j

=
1

∆y

∫ y
j+1

2

y
j− 1

2

F∗
i+ 1

2

(y) dy, (4.43)

R∗
i+ 1

2
,j

=
1

∆y

∫ y
j+1

2

y
j− 1

2

(
u∗

i+ 1
2

(ρφ)∗
i+ 1

2

)
(y) dy, (4.44)

i.e. these are cell averages of the one-dimensional Lagrangian and remap fluxes F∗ and u∗(ρφ)∗ along the
transverse y direction. They can thus be computed using the Π−1 conversion function:

F∗
i+ 1

2
,j

= q0F∗
i+ 1

2

(yj) +
r∑

k=1

qk

(
F∗

i+ 1
2

(yj+k) + F∗
i+ 1

2

(yj−k)
)
, (4.45)

R∗
i+ 1

2
,j

= q0

(
u∗

i+ 1
2

(ρφ)∗
i+ 1

2

)
(yj) +

r∑
k=1

qk

[(
u∗

i+ 1
2

(ρφ)∗
i+ 1

2

)
(yj+k) +

(
u∗

i+ 1
2

(ρφ)∗
i+ 1

2

)
(yj−k)

]
. (4.46)

This approach is much more flexible than the previous reconstruction on conservative variables. Indeed,
assume that the two-dimensional fluxes generate unphysical values due to one of the reconstruction steps
(4.45) - (4.46), their computation can easily be avoided so that conservative variables are updated using one-
dimensional fluxes on pathologic interfaces and, even in this case, conservativity will not be affected. Such
a treatment does not solve the performance issue mentioned previously but at least improves robustness.

Summarized two-dimensional scheme with reconstruction on fluxes

To complete the description of dimensionally split GoHy schemes, we finally summarize the different
steps that have to be performed for each dimensional sweep.

1. Transform the input two-dimensional cell averages of conservative variables into one-dimensional cell
averages by applying the interpolating function Π along the transverse direction. Note that the
resulting set of data will only be used to compute Lagrangian fluxes since we perform the reconstruction
step on Lagrangian fluxes.

2. Compute the one-dimensional Lagrangian fluxes using the previously computed one-dimensional cell
averages as explained in section 4.1.2.

3. Compute updated positions of the Eulerian grid using one-dimensional flux terms u∗ according to
(4.17).

4. Reconstruct two-dimensional Lagrangian fluxes according to (4.45).

5. Update conservative variables by applying the Lagrangian scheme (4.41).

6. Transform updated two-dimensional conservative variables into one-dimensional cell averages by ap-
plying the interpolation function Π along the transverse direction. Note that the resulting set of data
will only be used to compute remap fluxes since we perform the reconstruction step on remap fluxes.

7. Compute one-dimensional remap fluxes as explained in section 4.1.3.

8. Reconstruct two-dimensional remap fluxes according to (4.46).

9. Update conservative variables by applying the remap scheme (4.42).
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4.3 Improving robustness and symmetry preservation: artificial visco-
sity techniques

High-order dimensionally split numerical schemes encounter two major issues in practical computations
that we describe below. We then propose an original method for dealing with them.

1. First of all, it is well-known that high-order schemes are subject to unphysical Gibbs oscillations in
presence of discontinuities which may cause robustness issues. These are often controlled by slope or
flux limiting techniques but such approaches usually impose to perform many conditional tests that
have a negative impact on computational performance. That’s why some sophisticated interpolation
methods (like WENO techniques that have been presented in section 3.2) have been designed. These
aim to replace conditional tests by numerical computations, for example by computing smoothness
indicators in the case of WENO interpolations. This strategy is however still very expensive, especially
in the multidimensional case.

2. The second issue that we may encounter comes from dimensional splitting techniques on Cartesian
grids. Numerical experiments have indeed shown that these may cause symmetry losses when dealing
with cylindrically symmetric problems, especially along the horizontal and vertical directions. This
is a major issue for inertial confinement fusion applications since some unphysical instabilities may
develop due to these symmetry flaws.

In this study, we have chosen to treat these two phenomena by adding artificial viscosity terms to the
Lagrangian step. More precisely, Gibbs oscillations are controlled using an hyperviscosity model inspired
from the large eddy simulations literature [21, 20] while symmetry preservation is achieved thanks to a
first-order artificial viscosity model. This approach presents two main advatanges. On the one hand, its
computational cost is relatively low as we will see in the sequel. On the other hand, artificial viscosity
provides a fully centered scheme that easily handles negative time steps.

Practically, the idea is to consider the Navier-Stokes equations, i.e. the Euler system of equations with
an additional viscous right hand side:

∂t


ρ

ρu

ρe

+∇ ·


ρu

ρu⊗ u + pI

(ρe+ p)u

 = ∇ ·


0

τ

τu + κ∇T

 , (4.47)

τ denoting the symmetric viscous stress tensor:

τ = ν
(
∇u + (∇u)T

)
+
(
β − 2

3
ν

)
(∇ · u)I

=


a ∂xux + b ∂yuy ν(∂xuy + ∂yux) ν∂xuz

a ∂yuy + b ∂xux ν∂yuz

b (∂xux + ∂yuy)

 where

{
a =

(
β + 4

3ν
)
,

b =
(
β − 2

3ν
)
.

One can notice that the right hand side involves three physical constants: the bulk viscosity β, the shear
viscosity ν and the thermal conductivity κ. Artificial viscosity techniques consist in replacing these constants
by artificial ones (marked with stars in the sequel) that vanish when the mesh size goes to zero so that
consistency with the initial sytem of equations (4.1) is preserved. We have focused on two different methods
for designing such artificial constants that we detail below.
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4.3.1 Controlling oscillations: high-order hyperviscosity

We introduce in this section an hyperviscosity model inspired from previous works by Cook [20] in
the area of large eddy simulations that allows to control Gibbs oscillations without sacrifying high-order
accuracy. Defining:

S =
∥∥∇u +∇uT

∥∥
2

the artificial constants of the hyperviscosity model are given by:

β? = Cβ · 〈ρ |∇rS|〉 ·∆r+2,

ν? = Cν · 〈ρ |∇rS|〉 ·∆r+2,

κ? = Cκ ·
〈ρc

T |∇
rε|
〉
·∆r+1,

(4.48)

where ∆ is the mesh size along the considered direction and r is an integer parameter.

Remark 15. We determine the r parameter so that high-order accuracy is preserved. Practically, the
following values are taken: {

r = 2 for the second and third-order schemes,
r = 4 for the fourth-order scheme.

Remark 16. The artificial constants given in (4.48) tend to zero when the mesh is refined:

β?, ν?, κ? −→
∆→0

0.

The choice of the r parameter given by remark 15 imposes to compute the Laplacian (if r = 2) or the
bi-Laplacian (if r = 4) of S and ε. We practically use the following centered discrete operators:

(∇rφ) i, j =


φi+1,j + φi−1,j − 2φi,j

∆x2
+
φi,j+1 + φi,j−1 − 2φi,j

∆y2
if r = 2,(

∇2
(
∇2φ

))
i,j

if r = 4.

The 〈·〉 operator denotes a truncated Gaussian filter:

〈φ(x0)〉 =
∫ +3∆

−3∆
G(|x|) · φ (|x− x0|)) dx with G(x) = exp (−2x/∆)2

/∫ +3∆

−3∆
exp (−2x/∆)2 dx

which can be discretized using the following formula [20]:

〈φ〉i,j =
∑
|k|≤4

∑
|l|≤4

f|k|f|l|φi+k,j+l with f0 =
3565
10368

, f1 =
3091
12960

, f2 =
1997
25920

, f3 =
149

12960
, f4 =

107
103680

.

Constants Cβ, Cν and Cκ are user-defined coefficients that can be adjusted to increase or decrease the
impact of hyperviscosity. Since the time scheme is fully explicit, this high-order viscosity model implies the
following time step constraint:

∆t ≤ 1
2

min
(
ρ∆2

β?
,
ρ∆2

ν?
,
ρc2∆2

κ?T

)
(4.49)

but numerical experiments have shown that it usually does not lead to significantly lower time steps than
the stability condition (4.26). We therefore do not take constraint (4.49) into account in most practical
computations.
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4.3.2 Symmetry preservation: first-order artificial viscosity

The first-order artificial viscosity model presented hereafter that we use to treat symmetry issues relies
on the stability condition that naturally arises with explicit Navier-Stokes solvers. We have seen in the
previous section that it writes:

∆t ≤ min
(
ρ∆2

β
,
ρ∆2

ν
,
ρc2∆2

κT

)
. (4.50)

where ∆ denotes the mesh size along the considered direction. We would like to design artificial constants
β?, ν? and κ? so that stability condition (4.50) is automatically satisfied provided that the CFL condition
for the Lagrangian scheme holds:

∆t ≤ 1
2

min
(

∆
c

)
.

Stability will necessarily be insured if:

min
(

∆
c

)
≤ min

(
ρ∆2

β?
,
ρ∆2

ν?
,
ρc2∆2

κ?T

)
.

The following choice of β?, ν? and κ? is therefore suitable:

β? = Cβ(ρc)∆, ν? = Cν(ρc)∆, κ? = Cκ

(
ρc3

T

)
∆, (4.51)

Cβ, Cν and Cκ being user-defined constants that must be taken between 0 and 1. Such an artificial
viscosity model is of course very dissipative and may noticeably degrade the shock-capturing features of
GoHy schemes. In order to keep sharp shock profiles, first-order artificial viscosity may be reduced in
compression zones by using a filter. The one used in this work writes:

β? = F (∇ · u) · Cβ(ρc)∆

ν? = F (∇ · u) · Cν(ρc)∆

κ? = F (∇ · u) · Cκ

(
ρc3

T

)
∆

with F (x) =

1 if x ≥ 0,

exp
(
−400

(
x

max|x|

)2
)

if x ≤ 0.

4.3.3 Detailed viscosity fluxes

Now that the artificial constants have been designed, we can integrate them into viscosity terms which
will be added to the Lagrangian step. Like Lagrangian and remap fluxes, viscosity fluxes are treated in a
dimensionally split way, leading to the following modified Lagrangian scheme along the x direction:

(ρ0ux)
n+1

i,j

(ρ0uy)
n+1

i,j

(ρ0e)
n+1

i,j

 =


(ρ0ux)

n

i,j

(ρ0uy)
n

i,j

(ρ0e)
n

i,j

− ∆t
∆x




p∗
i+ 1

2
,j

0

(pux)∗
i+ 1

2
,j

−


p∗
i− 1

2
,j

0

(pux)∗
i− 1

2
,j

+ V∗
i+ 1

2
,j
−V∗

i− 1
2
,j

 ,
and to the following one along the y direction:

(ρ0ux)
n+1

i,j

(ρ0uy)
n+1

i,j

(ρ0e)
n+1

i,j

 =


(ρ0ux)

n

i,j

(ρ0uy)
n

i,j

(ρ0e)
n

i,j

− ∆t
∆y




0

p∗
i,j+ 1

2

(puy)∗i,j+ 1
2

−


0

p∗
i,j− 1

2

(puy)∗i,j− 1
2

+ V∗
i,j+ 1

2

−V∗
i,j− 1

2

 .
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We recall that the artificial constants β?, ν? and κ? given by (4.48) have been designed so that they tend
quickly to zero when the mesh is refined (see remark 16). The viscosity fluxes therefore satisfy the following
property:

V∗
i+ 1

2
,j

= O
(
∆r+1

)
and V∗

i,j+ 1
2

= O
(
∆r+1

)
.

As a matter of fact, there is no need to build high-order accurate viscosity fluxes. We rather propose the
following viscosity terms which are physically suitable and can be efficiently computed:

V∗
i+ 1

2
,j

=
1
2


τ xx

i,j + τ xx
i+1,j

τ xy
i,j + τ xy

i+1,j

(τ xxux + τ xyuy)i,j + (τ xxux + τ xyuy)i+1,j + κ?
i,j

(
Ti+1,j−Ti−1,j

2∆x

)
+ κ?

i+1,j

(
Ti+2,j−Ti,j

2∆x

)
 ,

V∗
i,j+ 1

2

=
1
2


τ xy

i,j + τ xy
i,j+1

τ yy
i,j + τ yy

i,j+1

(τ xyux + τ yyuy)i,j + (τ xyux + τ yyuy)i,j+1 + κ?
i,j

(
Ti,j+1−Ti,j−1

2∆y

)
+ κ?

i,j+1

(
Ti,j+2−Ti,j

2∆y

)
 ,

the approximate strain rate tensor being given by:

(τ xx)i,j =
(
β?

i,j +
4
3
ν?

i,j

)
(ux)i+1,j − (ux)i−1,j

2∆x
+
(
β?

i,j −
2
3
ν?

i,j

)
(uy)i,j+1 − (uy)i,j−1

2∆y

(τ yy)i,j =
(
β?

i,j +
4
3
ν?

i,j

)
(uy)i,j+1 − (uy)i,j−1

2∆y
+
(
β?

i,j −
2
3
ν?

i,j

)
(ux)i+1,j − (ux)i−1,j

2∆x

(τ xy)i,j = ν?
i,j

(
(uy)i+1,j − (uy)i−1,j

2∆x
+

(ux)i,j+1 − (ux)i,j−1

2∆y

)
(τ xz)i,j = ν?

i,j

(
(uz)i+1,j − (uz)i−1,j

2∆x

)
(τ yz)i,j = ν?

i,j

(
(uz)i,j−1 − (uz)i,j−1

2∆y

)
.

Practically, one has to compute both artificial constants and viscosity fluxes at the beginning of each
dimensional sweep. These manipulations depart from the cache-oblivious implementation of Lagrangian
and remap fluxes since they involve estimations along both directions (e.g. approximate space derivatives
and filtering operators for hyperviscosity techniques) but they revealed quite cheap in practice. Artificial
viscosity increases the computational cost of GoHy schemes of about 25% for the second-order scheme and
20% for the third and fourth-order schemes.

Remark 17. We only have detailed viscosity fluxes for the two-dimensional case but these can of course be
adapted to the one-dimensional case by removing all y-wise discrete terms.

4.4 High performance computing aspects

The Lagrange-remap schemes proposed in the previous sections have been built so that they are able to
take advantage of modern and massively parallel computer architectures. We focused our attention on the
following two main points to reach this objective.
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1. Allowing cache-oblivious implementation. Dimensional splitting has made it possible to im-
plement the GoHy schemes in a cache-oblivious way. Indeed, most computations are performed on
data that are memory-contiguous and therefore benefit from low-latency cache memory accesses. We
propose several single core performance tests in section 4.4.1 in order to illustrate this feature.

2. Restricting the number of communications sweeps in parallel context. As we will see in
section 4.4.2, the code that implements GoHy schemes has been parallelized using a domain decom-
position method and the Message Passing Interface (MPI) library. Some efforts have been made to
lower the number of communications phases between processes and thus increase parallel efficiency.
In particular, unlike Runge-Kutta methods, GoHy schemes rely on a direct temporal scheme which
does not require subcycling (and thus additional communications) to achieve high-order accuracy in
time.

4.4.1 Performance figures

We first focus on estimating the single core performance of GoHy schemes. To that end, we measure
the number of floating point operations that are performed for a given problem. There are differents
methods for counting floating point operations practically. The most commonly used consists in resorting
to hardware counters but these sometimes reveal unreliable and we therefore adopt a different approach.
We have chosen to overload all functions that operate on floating point values with modified functions that
increment a counter according to the scale given in [62] and recalled in Table 4.5. Of course, overloading
these operators noticeably modifies the execution time and we consequently need to run our solver twice to
measure its performance:

• once without overloading to get the restitution time;

• once with overloaded operators to count floating point operations.

Practical tests have been performed on an Intel Xeon E5650 CPU @ 2.66 Ghz based on the Nehalem
architecture (theoretical peak performance: 10.64 GFLOPS). We have run a 100 cycles long simulation
with different mesh sizes on the advected vortex test problem described in section 4.5.1. The hyperviscosity
model has been enabled so that the considered benchmark is as representative as possible of real life
applications. Both execution times and measured performance have been reported in Table 4.7. These
show satisfying results: the GoHy solver is indeed able to exploit 20% to 30% of a modern processor’s peak
performance whereas most scientific codes reach values of about 10%.

Remark 18. Note that the efficiency of GoHy schemes increases with their accuracy, which is a predictable
result. Indeed, the number of floating point operations required for applying the whole Lagrange-remap
scheme increases noticeably with the order of accuracy as shown in Table 4.6. The solver therefore spends
more time in functions that respect the principles we stated in introduction (see page 13): these do not
require any test and operate mostly on contiguous data, thus increasing the global efficiency.

4.4.2 Parallelization technique and parallel efficiency

We now describe how the GoHy solver has been parallelized and then provide several parallel efficiency
figures. We recall that the implementation has been performed using the MPI library.

Domain decomposition method

We have chosen to resort to a classical domain decomposition method. Basically, the idea consists in
splitting the computational domain in several smaller ones (preferably of the same size) and to assign each of
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Operator Description Cost

+ - += -= addition 1

* *= product 1

/ /= division 4

== < > <= >= conditional tests 1

fabs absolute value 1

sqrt square root 4

pow power 4

sin sinus 8

cos cosinus 8

exp exponential 8

log logarithm 8

Table 4.5: Chosen Weights for counting floating point operations (the cost is given in terms of CPU
instructions). These are taken from [62].

Scheme Number of FLOPS per cell

2nd-order ≈ 2900

3rd-order ≈ 6500

4th-order ≈ 14000

Table 4.6: Number of floating point operations required to apply the two-dimensional second, third and
fourth-order GoHy schemes in a single cell.
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SECOND-ORDER SCHEME

Mesh size Execution time Performance

N×N cells wall time (s) µs / cell / cycle GFLOPS % peak

N = 100 1.29 1.29 2.27 21.3%

N = 200 4.92 1.23 2.34 21.9%

N = 400 20.93 1.31 2.17 20.4%

N = 800 94.09 1.47 1.93 18.1%

THIRD-ORDER SCHEME

Mesh size Execution time Performance

N×N cells wall time (s) µs / cell / cycle GFLOPS % peak

N = 100 2.54 2.54 2.65 24.9%

N = 200 9.98 2.50 2.63 24.7%

N = 400 41.87 2.62 2.48 23.2%

N = 800 190.57 2.98 2.16 20.3%

FOURTH-ORDER SCHEME

Mesh size Execution time Performance

N×N cells wall time (s) µs / cell / cycle GFLOPS % peak

N = 100 4.99 4.99 2.99 28.0%

N = 200 19.93 4.98 2.89 27.1%

N = 400 82.03 5.13 2.76 25.9%

N = 800 365.55 5.71 2.45 23.0%

Table 4.7: Single core performance figures of the two-dimensional Lagrange-remap schemes. Benchmark:
100 simulation steps on the advected vortex test problem, hyperviscosity model enabled. Test platform:
Intel Xeon E5650 CPU @ 2.66 GHz (theoretical peak performance: 2.66 GHz× 4 double precision floating
point operations per cycle = 10.64 GFLOPS).
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computational domain ⇒

#0 #1 #2 #3

#4 #5 #6 #7

#8 #9 #10 #11

#12 #13 #14 #15

Figure 4.2: Principle of the domain decomposition method: the computational domain is here distributed
over 16 different processes.

#0 #1

#2 #3

Figure 4.3: Example of overlapping zones with 4 processes. The physical computational domain is bounded
by black lines but data must be allocated on larger domains on each process. There are consequently some
overlapping zones on boundaries shared by several processes.

these subdomains to a different process as shown in Figure 4.2. Such a decomposition method corresponds
to a SPMD (Single Programm, Multiple Data) parallel programming model: a single application is running,
its data being distributed over all processes. Since GoHy schemes require ghost cells for performing some
operations (e.g. high-order interpolations), processes share practically a few overlapping layers of cells as
shown in Figure 4.3. The parallelized code finally mainly consists in the following communications phases:

• point-to-point communications (using MPI Send / MPI Recv instructions) with neighbour processes in
order to fill ghost cells layers;

• one collective reducing operation (using MPI Allreduce instructions) per cycle to set the time step
and share it over all processes.

Parallel efficiency figures

In order to check if GoHy schemes are well-suited to parallel architectures, we propose some parallel
efficiency results in the sequel. There are practically two methods for estimating parallel efficiency.

• The first one - the so-called strong measurement - consists in running the same computation in both
sequential and parallel modes. Let Tseq denote the restitution time of the sequential run and Tp the
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restitution time of the parallel one on p processes. Since the theoretical speed-up of the parallel
computation over the sequential one is p, the strong parallel efficiency is given by:

strong parallel efficiency =
pTp

Tseq
.

• The second one measures the so-called weak parallel efficiency. It consists in running on the one hand
a sequential computation for a problem of size s and on the other hand a parallel computation on
p processes for a problem of size s × p. In this case, the theoretical speed-up is 1 and, using the
above-defined notations, the weak parallel efficiency is given by:

weak parallel efficiency =
Tp

Tseq
.

In this study, we have restricted to the weak parallel efficiency measurement. Indeed, since the parallel
efficiency measurements have been performed with up to 256 processes, we were not able to solve a large
enough problem on a single process because of too high memory requirements. The test protocol is the
following. Computations have been run on a calculator that is equipped with Intel Xeon E5462 @ 2.8 Ghz
processors (Core 2 architecture) and an Infiniband interconnect @ 20 Gbit/s. We have run a 100 cycles long
simulation with different mesh sizes on the advected vortex test problem described in section 4.5.1. The
hyperviscosity model has been enabled so that the considered benchmark is as representative as possible of
real life applications. The measured parallel efficiencies have been reported in Table 4.8. These are very
satisfying: they are indeed above 95% in nearly all cases.

4.5 Numerical results

To conclude the presentation of GoHy high-order dimensionally split Lagrange-remap schemes, we pro-
vide in this section numerical results on various test problems taken from the literature. More precisely,
we first exhibit convergence results on smooth test problems in order to show that the experimental or-
der of convergence matches the theoretical one. We then propose simulation results obtained for several
non-smooth test problems to prove the robustness of the schemes we developed.

4.5.1 Experimental order of convergence

We first focus on smooth test problems and carry out a convergence analysis. To that end, we consider
two two-dimensional problems: Kidder’s isentropic compression problem [53] and an advected vortex test
problem proposed by Yee et al. [94]

Kidder’s isentropic compression problem [53]

Kidder’s test problem represents the isentropic compression of an ideal gas volume which is initially at
rest (i.e. the initial velocity is zero). We here focus on the two-dimensional case in cylindrically symmetric
geometry which actually describes the compression of a cylinder of gas. Let r1 and r2 denote the internal
and external radiuses of the shell and ρl and pl the initial densitiy and pressure at r = rl with l = 1, 2. The
initial density profile is given by:

ρ0(r) =
(
r22 − r2

r22 − r21
ργ−1
1 +

r2 − r21
r22 − r21

ργ−1
2

) 1
γ−1
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SECOND-ORDER SCHEME

Mesh size / process Parallel efficiency for p processes

N×N cells p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

N = 200 100% 100% 99% 98% 98% 97%

N = 400 100% 99% 99% 98% 97% 96%

N = 800 100% 99% 98% 98% 98% 97%

THIRD-ORDER SCHEME

Mesh size / process Parallel efficiency for p processes

N×N cells p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

N = 200 100% 99% 98% 98% 97% 97%

N = 400 100% 99% 99% 98% 97% 96%

N = 800 100% 100% 99% 99% 97% 96%

FOURTH-ORDER SCHEME

Mesh size / process Parallel efficiency for p processes

N×N cells p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

N = 200 100% 98% 96% 96% 96% 95%

N = 400 99% 97% 96% 95% 95% 94%

N = 800 99% 98% 96% 96% 95% 95%

Table 4.8: Parallel efficiency of the two-dimensional Lagrange-remap schemes. Benchmark: 100 simulation
steps on the advected vortex test problem, hyperviscosity model enabled. Test platform: Intel Xeon E5462
processors @ 2.8 GHz, InfiniBand interconnect @ 20 Gbit/s.
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where r2 = x2 + y2 and γ = 2 is the specific heats ratio. Since the compression is isentropic, the p/ργ ratio
is constant and thus p1ρ

γ
2 = p2ρ

γ
1 . Let cl denote the Eulerian sound speed at r = rl, we now define the shell

focalization time τ :

τ =

√
γ − 1

2
r22 − r21
c22 − c21

.

which allows to write the complete analytical solution. Defining h(t) =
√

1− (t/τ)2, it is given by:

ρ(r, t) = ρ0

(
r

h(t)

)
· h(t)

2
1−γ , u(r, t) = − tr

τ2h(t)2
, p(r, t) = p2

(
ρ(r, t)
ρ2

)γ

.

Here, u denotes the velocity along the radial direction, the velocity components along the x and y directions
therefore write:

ux(r, t) = cos θ u(r, t),

uy(r, t) = sin θ u(r, t),
with θ = atan(y/x).

For practical computations, we take p1 = 1, p2 = 100 and ρ2 = 1. We have run simulations for r ∈ [r1; r2] =
[0; 1] until t = 0.5τ with a CFL coefficient of 0.9. The computational domain has wall boundary conditions
along the x and y axis, the boundary conditions being imposed by the analytical solution elsewhere. In
order to estimate the experimental order of convergence, we analyse how the error between the analytical
and numerical solutions evolves when the mesh is refined. More precisely, the error is computed using a L1

norm in space and time:

error = (∆x ·∆y ·∆t)×
∑

φ∈{1,ux,uy ,e}

∑
i,j

∑
n

∣∣∣∣(ρφ)
n

i,j −
(
(ρφ)exact

)n

i,j

∣∣∣∣ .

Results have been reported in Table 4.5.1. These computations have been carried out with and without
hyperviscosity. We notice that the experimental order of convergence perfectly matches the theoretical
order (results obtained for the fourth-order scheme on 1600× 1600 cells can not be trusted since the error
is too close to the machine epsilon). Another satisfying point is that it is not affected by the presence of
hyperviscosity.
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WITHOUT HYPERVISCOSITY

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 4.26e-05 5.81e-07 2.92e-09

N = 200 1.05e-05 2.02 7.10e-08 3.03 1.77e-10 4.04

N = 400 2.61e-06 2.01 8.79e-09 3.02 1.09e-11 4.02

N = 800 6.50e-07 2.00 1.09e-09 3.01 6.74e-13 4.02

N = 1600 1.62e-07 2.00 1.36e-10 3.00 5.37e-14 3.65?

WITH HYPERVISCOSITY (Cβ = Cν = Cκ = 1)

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 5.97e-05 5.78e-07 2.85e-09

N = 200 1.26e-05 2.24 7.09e-08 3.03 1.74e-10 4.04

N = 400 2.87e-06 2.13 8.78e-09 3.01 1.07e-11 4.02

N = 800 6.82e-07 2.07 1.09e-09 3.01 6.62e-13 4.02

N = 1600 1.66e-07 2.04 1.36e-10 3.00 5.27e-14 3.65?

Table 4.9: Error between the analytical and numerical solutions for Kidder’s isentropic compression test
problem. (?) These results should not be trusted: they do not match the theoretical order because of
machine round-off errors.

Isentropic advected vortex

We now carry out the same convergence study on a two-dimensional isentropic advected vortex test
problem proposed by Yee et al [94]. The analytical solutions writes:

ρ(x, y, t) =
(

1− 25(γ − 1)
8γπ2

exp(1− r2)
) 1

γ−1

,

ux(x, y, t) = u0 −
5
2π

exp
(

1− r2

2

)
(y − u0t),

uy(x, y, t) = v0 +
5
2π

exp
(

1− r2

2

)
(x− v0t)),

and p = ργ where r =
√

(x− u0t)2 + (y − v0t)2. This problem is set on the [−10; 10]2 domain with periodic
boundary conditions and u0 = v0 = 1 (the vortex is therefore advected along an oblique direction) and
γ = 1.4. We have run computations until t = 20 with a CFL coefficient of 0.9 and reported the error between
the analytical and numerical solutions in Table 4.10. Once again, the experimental order of convergence
matches the theoretical one and it is not affected by the presence of hyperviscosity.
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WITHOUT HYPERVISCOSITY

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 2.98e+01 3.16e+01 6.36e+00

N = 200 5.60e+00 2.41 4.88e+00 2.69 3.92e-01 4.02

N = 400 1.08e+00 2.38 6.42e-01 2.93 2.42e-02 4.02

N = 800 2.34e-01 2.20 8.09e-02 2.99 1.50e-03 4.01

N = 1600 5.59e-02 2.06 1.01e-02 3.00 9.36e-05 4.00

WITH HYPERVISCOSITY (Cβ = Cν = Cκ = 1)

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 4.23e+01 3.36e+01 8.09e+00

N = 200 6.82e+00 2.63 4.94e+00 2.77 4.13e-01 4.29

N = 400 1.18e+00 2.53 6.43e-01 2.94 2.45e-02 4.08

N = 800 2.43e-01 2.28 8.09e-02 2.99 1.51e-03 4.02

N = 1600 5.68e-02 2.10 1.01e-02 3.00 9.37e-05 4.01

Table 4.10: Error between the analytical and numerical solutions for the isentropic advected vortex problem.

4.5.2 Non-smooth test problems

We now consider several non-smooth test problems in order to study the behaviour of GoHy schemes
on such benchmaks and illustrate their robustness features.

Remark 19. In the case of non-smooth test problems, the numerical results provided with GoHy schemes
are often compared in the sequel with a reference solution. This solution has actually been obtained
by performing computations with a one-dimensional first-order accurate Lagrange-remap scheme [30] on
100,000 cells.

One-dimensional Sod shock tube

The Sod shock tube [76] is a well-known test problem whose initial condition is given by the following
left and right states:

(ρ, p) =

{
(1, 1) if 0 ≤ x ≤ 0.5,
(0.125, 0.1) if 0.5 ≤ x ≤ 1

,

the fluid being initially at rest. We have run computations with the fourth-order scheme until t = 0.14 on
400 cells, the CFL coefficient being set to 0.7. Figure 4.4 plots the density and pressure obtained with and
without hyperviscosity. When hyperviscosity is enabled, the artifial coefficients are: Cβ = 2, Cκ = 5 and
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Figure 4.4: One-dimensional Sod shock tube at time t = 0.14. Density (left) and velocity (right) obtained
on 400 cells with the fourth-order scheme. The reference solution has been obtained using a first-order
accurate Lagrange-remap scheme on 100,000 cells (see remark 19 page 96).

Cν = 0. These results highlight the impact of hyperviscosity on oscillations: these have been noticeably
reduced, leading to a satisfying approximation of the exact solution.

One-dimensional Shu-Osher problem

The next test problem has been proposed by Shu and Osher [75] and consists in a shock wave crossing
a sinusoidal density field that generates turbulences. The initial condition is given by:

(ρ, u, p) =

{
(3.857143, 2.629369, 31/3) if −5 ≤ x ≤ −4,
(1 + 0.2 sin(5x), 0, 1) if −4 ≤ x ≤ 5.

The computational domain is [−5; 5] and has open boundary conditions on both sides. We run this test
problem until time t = 1.8 with a CFL coefficient of 0.7.

Figure 4.5 plots the density and pressure obtained with the fourth-order scheme at final time on 800
cells. Computations have been performed with and without hyperviscosity (when hyperviscosity is enabled,
the artificial constants are Cβ = Cκ = 1 and Cν = 0). They show that hyperviscosity provides important
qualitative improvements by reducing Gibbs oscillations.

Figure 4.6 plots the density obtained on 400 cells with the first-order accurate acoustic solver (whose
description can be found in [45]) and the second, third and fourth-order accurate GoHy schemes. For GoHy
schemes, the hyperviscosity model has been turned on with Cβ = 1 in all cases, the other artificial constants
being set to zero. Figure 4.6 shows that the acoustic solver is not able to provide a satisfying numerical
solution on 400 cells, especially in the turbulent zone behind the shock. GoHy schemes produce far better
results. The second and third-order schemes provide similar numerical solutions in the turbulent zone but
the second-order one is more subject to Gibbs oscillations in the left part of the computational domain. The
fourth-order scheme clearly outperforms both of them in the turbulent zone though it generates a greater
oscillation in the vicinity of x = 0.6.
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Figure 4.5: One-dimensional Shu-Osher problem at time t = 1.8. Density (top) and velocity (right) obtained
on 800 cells with the fourth-order scheme. The reference solution has been obtained using a first-order
accurate Lagrange-remap scheme on 100,000 cells (see remark 19 page 96).

One-dimensional Noh problem

The Noh problem [67] consists in a shock tube where a cold uniform perfect gas is driven by a piston
with constant speed into a rigid wall (see Figure 4.7). Numerically, we set the following initial condition on
the [0; 0.4] domain:

ρ = 1, p = 10−6, u = −1

with a reflective boundary on the left side and an open one on the right side. This problem is known to be
particularly stringent since the initial pressure is very close to zero: any oscillation that may form would
probably produce unphysical values. We have run computations until time t = 0.6 with the fourth-order
scheme and a CFL coefficient of 0.4, the hyperviscosity model being enabled with following parameters:
Cβ = 10, Cκ = 3. Figure 4.8 plots the density and pressure obtained at final time on 200 cells. Like most
numerical methods, the fourth-order GoHy scheme is subject to the wall heating phenomenon in the vicinity
of the reflective boundary. Nevertheless, we noticed that artificial viscosity can reveal helpful for reducing
wall heating. Indeed, taking large Cκ constants creates an overtemperature on the wall boundary and
allows to catch more accurate solutions as shown in Figure 4.9. But for such Cκ values, we cannot ignore
the stability condition (4.49): computations therefore last longer in this case. Practically, the calculation
with Cκ = 50 lasts 50% longer than the one with Cκ = 3.

Note that the solution to the one-dimensional Noh problem is known analytically, it is for example given
in [67]. At time t = 0.6, the exact density and pressure write:

ρ =

{
4 x < 0.2,
1 x > 0.2,

and p =

{
4/3 x < 0.2,
0 x > 0.2,
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Figure 4.6: Comparison of the acoustic solver, second, third and fourth-order accurate GoHy schemes on
Shu-Osher’s problem: density at time t = 1.8 on 400 cells.

piston

gas

Figure 4.7: Physical setup of the Noh problem.
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Figure 4.8: Density (left) and pressure (right) for the Noh problem at time t = 0.6 on 200 cells.

Figure 4.9: Density for the Noh problem at time t = 0.6 on 200 cells with different values of Cκ: whole
computational domain (left) and zoom on the x ∈ [0; 0.05] region (right).
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Two-dimensional Sod shock tube

We now consider the Sod shock tube in a two-dimensional cylindrically symmetric geometry. The test
problem is now set on the [0; 1]2 square and the initial condition is given by:

(ρ, p) =

{
(1, 1) if 0 ≤ r ≤ 0.5,
(0.125, 0.1) if 0.5 ≤ r ≤ 1

,

The fluid is again initially at rest. The computational domain has reflective boundary conditions along the
x and y axis and open boundary conditions elsewhere. We have run computations until a later time than
the usual t = 0.14 limit. More precisely, this test problem has been run until t = 0.5 in order to let the
shock focalize, be reflected as a divergent shock wave and crosses the contact discontinuity. This approach
will make potential symmetry losses appear very clearly at final time. Figure 4.10 presents the results
obtained for three computations on 1000×1000 cells with the third-order scheme (we restrict to third-order
accuracy here because the fourth-order computation crashes without artificial viscosity) and three different
configurations.

• The first results have been obtained with the base scheme, all artificial viscosity models being disabled.
Note the presence of unsymmetric structures along the x = 0, y = 0 and y = x axis. Some unphysical
Gibbs oscillations also appear on discontinuities.

• The second set of results has been obtained by adding hyperviscosity to the previous configuration
with the following parameters: Cβ = 0.5, Cν = 0.1, Cκ = 2. Hyperviscosity noticeably reduces
oscillations on discontinuities but does unfortunately not completely solve symmetry issues observed
previously.

• The last set of results has been generated with both artificial viscosity models. More precisely, β?

and κ? follow the hyperviscosity model with Cβ = 0.5 and Cκ = 2 whereas the first-order artificial
viscosity model has been used to determine ν? with Cν = 0.1. The two-dimensional density plot
exhibits nice additional improvements in terms of symmetry compared to previous configurations.

Two-dimensional Noh problem

We now consider the Noh problem in cylindrically symmetric geometry. Numerically, the problem is
set up on the [0; 0.4]2 computational domain with reflective left and bottom boundary conditions and open
boundaries elsewhere. We have run computations until time t = 0.6 with the fourth-order scheme, the CFL
coefficient being set to 0.4 and the hyperviscosity model being enabled with following parameters: Cβ = 2,
Cν = 2, Cκ = 20. Figure 4.12 plots the density and pressure at final time. Contrarily to the two-dimensional
Sod problem, we do not observe any symmetry loss here.

Once again, the density field is degraded by a wall heating phenomenon in the vicinity of reflective
boundaries but, as in the one-dimensional case, taking high Cκ values can help to get a more accurate
numerical solution. Figure 4.11 plots the density obtained at time t = 0.6 with the third-order GoHy
scheme, the hyperviscosity model being enabled with Cβ = Cν = 5. It shows that increasing Cκ allows to
noticeably reduce the wall heating effect. But for high Cκ values, the stability condition (4.49) cannot be
ignored and thus increases the restitution time. Practically, the simulation with Cκ = 70 lasts about 30%
longer than the one with Cκ = 25.

Note that the solution to the two-dimensional Noh problem is known analytically, it is for example given
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3rd-order scheme without artificial viscosity

3rd-order scheme + hyperviscosity

3rd-order scheme + both artificial viscosity models

Figure 4.10: Two-dimensional Sod shock tube in cylindrically symmetric planar geometry at time t =
0.5 on 1000 × 1000 cells. Left: zoom on the [0; 0.4]2 domain. Right: slice along the y = x axis. The
reference solution has been obtained using a one-dimensional first-order accurate Lagrange-remap scheme
in cylindrical geometry on 100,000 cells (see remark 19 page 96).
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Figure 4.11: Density for the two-dimensional Noh problem obtained at time t = 0.6 on 400 cells with the
third-order scheme and different values of Cκ: whole computational domain (left) and zoom on the [0; 0.022]
region (right).

in [67]. At time t = 0.6, the exact density and pressure write:

ρ =

{
16 r < 0.2,
1 + 0.6

r r > 0.2,
and p =

{
16/3 r < 0.2,
0 r > 0.2,

where r denotes the radial coordinate.
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Figure 4.12: Two-dimensional Noh problem in cylindrically symmetric planar geometry: density (left) and
pressure (right) obtained at time t = 0.6. From top to bottom: map plot, 2-D plot and slice along the y = x
axis.
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Chapter 5

High-order dimensionally split
Lagrange-remap schemes for ideal
magnetohydrodynamics in planar
geometry

In this chapter, we extend the high-order dimensionally split Lagrange-remap schemes presented previ-
ously in the case of hydrodynamics to the ideal magnetohydrodynamics system given by:

∂t


ρ

ρu

B

ρe

+∇ ·


ρu

ρu⊗ u + P I− (B⊗B)
µ

u⊗B−B⊗ u

(ρe+ P )u− u·B
µ B

 = 0, (5.1)

where B denotes the magnetic field and P the total pressure which is obtained by adding the gas pressure
and the magnetic pressure:

P = p+
B ·B
2µ

.

To that end, we first apply the strategy described in section 4.1 in order to build GoHy schemes for
the one-dimensional ideal MHD system. We then combine these one-dimensional schemes with dimensional
splitting techniques and a reconstruction step on fluxes as explained in section 4.2 in order to form high-
order schemes for the two-dimensional ideal MHD system. We nevertheless have to consider an additional
equation when dealing with multidimensional MHD simulations. Indeed, the magnetic field has to satisfy
the following divergence constraint in this case:

∇ ·B = 0.

Multidimensional numerical solvers which do not guarantee a divergence-free evolution of the magnetic field
may produce unphysical results due to non-zero ∇ ·B terms (see [10]) or even crash before the end of the
computation. It is therefore crucial to enforce the divergence constraint numerically. Several techniques for
preserving ∇ · B = 0 in practical simulations have been proposed in the literature in the last decades. A
few of these methods are summarized below and described more precisely in this chapter.
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• Brackbill and Barnes’ projection scheme [10] consists in projecting the obtained magnetic field after
an iteration of an arbitrary numerical scheme onto a divergence-free space.

• The so-called constrained transport methods which have been firstly introduced by Evans and Haw-
ley [35] consist in building a numerical scheme that preserves at the accuracy of round-off errors a
certain definition of the numerical divergence of the magnetic field.

• Powell [72] proposes an alternative non-conservative form of the ideal MHD system which has been
derived without assuming that ∇ · B = 0. This approach - called the 8-wave formulation - aims at
advecting divergence errors in order to prevent them from accumulating on a fixed grid point and
producing unphysical results.

• Dedner et al. introduce in [29] the so-called hyperbolic divergence cleaning technique which can be seen
as a genelization of Powell’s idea. It consists in adding a new unknown to the ideal MHD system that
satisfies an advection equation whose effect is to propagate divergence errors out of the computational
domain. The improvement provided by the hyperbolic divergence cleaning technique upon the 8-wave
formulation lies in the fact that the resulting system of equations is still in conservative form.

We propose a short study of the advantages and drawbacks of these techniques and focus in particular
on their compatibility with dimensionally split approaches in order to determine which method could be
coupled with GoHy schemes. It turns out that hyperbolic divergence cleaning techniques seem to be the
best suited. We therefore describe how they can be combined with GoHy schemes and in particular how
high-order accuracy can be achieved, which is an innovative feature of this work.

The outline of this chapter is the following. We first describe the construction of the one-dimensional
GoHy Lagrange-remap scheme and its extension to the two-dimensional case. We then focus on how to
enforce a divergence-free evolution of the magnetic field in the two-dimensional case without losing high-
order accuracy. Finally, we provide some performance and parallel efficiency figures and exhibit numerical
results on both smooth and non-smooth test problems taken from the related literature in order to illustrate
the convergence and robustness features of these MHD-GoHy schemes.

5.1 One-dimensional Lagrange-remap schemes for ideal MHD

We first focus on extending GoHy schemes described in the previous chapter to the one-dimensional
ideal MHD system which writes:

∂t



ρ

ρux

ρuy

ρuz

Bx

By

Bz

ρe



+ ∂x



ρux

ρu2
x + P − B2

x
µ

ρuxuy − BxBy

µ

ρuxuz − BxBz
µ

0

uxBy − uyBx

uxBz − uzBx

(ρe+ P )ux − u·B
µ Bx



= 0 (5.2)
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where P is the total pressure:

P = p+
B ·B
2µ

.

To that end, we first rewrite system (5.2) in Lagrangian coordinates and present how to build high-order
accurate Lagrangian and remap fluxes.

Remark 20. In the one-dimensional case, since ∂tBx = 0, the complete finite volume scheme for Bx simply
writes:

(Bx)
n+1

i = (Bx)
n

i where (Bx)
n

i =
1

∆x

∫ x
i+1

2

x
i− 1

2

Bx(x, t) dx.

Note that this approach is only valid in the one-dimensional case: it should not be applied in the multidi-
mensional case as explained in the sequel (see remark 23).

5.1.1 Lagrangian step

We first derive the ideal MHD system in Lagrangian coordinates using the variable change presented
in section 4.1.1. Note that ρ satisfies the same advection equation than in the hydrodynamical case. The
Jacobian of the (x, t)→ (X, t) variable change thus still writes J = ρ0/ρ where ρ0 denotes the initial density.
One can then apply Lemma 1 (see page 60) to the eight following (φ, ψ) couples:

(1, −ux), (ρux, P −B2
x/µ), (ρuy, −BxBy/µ), (ρuz, −BxBz/µ), (B, −Bxu), (ρe, Pux −Bx(u ·B)/µ),

which leads to the one-dimensional ideal MHD system of equations in Lagrangian coordinates:

∂tU + ∂XF(U) = 0 with U =



ρ0τ

ρ0ux

ρ0uy

ρ0uz

ρ0τBx

ρ0τBy

ρ0τBz

ρ0e



and F(U) =



−ux

P − B2
x

µ

−BxBy

µ

−BxBz
µ

−uxBx

−uyBx

−uzBx

Pux − u·B
µ Bx



. (5.3)

At this stage, we build a finite volume scheme for the Lagrangian ideal MHD equations by applying the
strategy described in section 4.1.2 to system (5.3). More precisely, we integrate it over [Xi− 1

2
;Xi+ 1

2
] ×

[tn; tn+1] and thus get the following numerical scheme:

Un+1
i −Un

i

∆t
+

F∗
i+ 1

2

− F∗
i− 1

2

∆X
= 0,

where Un
i is the cell average of U over [Xi− 1

2
;Xi+ 1

2
] at time tn and and F∗

i+ 1
2

the Lagrangian flux at

the Xi+ 1
2

boundary defined by (4.13). Flux terms are then replaced by truncated Taylor expansions and
the resulting time-derivatives are replaced by space-derivatives using the Cauchy-Kovalevskaya procedure.
Expressions for the time-derivatives of τ , u and B can be easily derived from system (5.3) but once again,
one has to pay attention to the pressure term. The following proposition gives an expression of the first
time-derivative of p that is suitable for any equation of state.
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Proposition 8. For any equation of state, the pressure p satisfies the following evolution equation:

∂tp = −(ρc)2

ρ0
∂Xux −

Γ(u ·B)
ρ0τµ

∂XBx, (5.4)

where (ρc)2 denotes the Lagrangian sound speed and Γ the Grüneisen coefficient (see their definitions
page 64).

Proof. The proof is similar to the one given in section 4.1.2 for the hydrodynamic set of equations. It again
relies on the second law of thermodynamics which writes TdS = dε + pdτ . In the case of ideal MHD, the
internal energy is given by:

ε = e− u · u
2
− B ·B

2ρµ
.

By combining this definition with the second law of thermodynamics and the time-derivatives’ expressions
that can be derived from system (5.3), one can see that:

ρ0T∂tS = ∂t(ρ0ε) + p∂t(ρ0τ)

= ∂t(ρe)− ∂t(ρ0u) · u− 1
µ
∂t(ρ0τB) ·B + p∂t(ρ0τ)

= −u ·B
µ

∂XBx.

Since the equation of state satisfies dp = −(ρc)2dτ + (ΓT/τ)dS, the first time-derivative of p then writes:

∂tp = −(ρc)2∂tτ +
ΓT
τ
∂tS = −(ρc)2

ρ0
∂Xux −

Γ(u ·B)
ρ0τµ

∂XBx.

Remark 21. In the case of ideal gases, the Grüneisen coefficient is a constant and its value is Γ = γ − 1.

Nevertheless, the result given by Proposition 8 can lead to different approximate Lagrangian fluxes depend-
ing on the considered context. It can indeed be simplified in several specific cases in order to reduce the
cost of Lagrangian fluxes computations.

• In the one-dimensional case, the divergence constraint implies that ∂XBx = 0. The expression of
the pressure’s time-derivatives given in section 4.1.2 for hydrodynamics thus holds in the case of
one-dimensional ideal MHD. As a matter of fact, the expression of the Lagrangian sound speed’s
time-derivative which had been derived in section 4.1.2 holds too. These write:

∂tp = −(ρc)2

ρ0
∂Xux, and ∂t(ρc)2 = −2(ρc)2G

τρ0
∂Xux. (5.5)

We recall that these expressions are valid for any equation of state and allow to build Lagrangian fluxes
up to third-order accuracy. From fourth-order accuracy, we will assume for the sake of simplicity that
∂tG = 0, which is true for ideal gases (see remark 7 page 66).

• In the multidimensional orthogonal MHD framework, the only possibly non-zero component of the
magnetic field is the one that is perpendicular to the computational domain, i.e. Bz here. Bx and
By are thus identically zero in this context and the spatial derivative of the magnetic field included
in (5.4) can be removed for both dimensional sweeps along the x and y directions. The above-given
time-derivatives’ expressions can therefore be used.
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• In the case of multidimensional MHD computations, the divergence constraint does not imply that
∂XBx = 0 and the expression of the pressure’s time-derivative given by (5.4) thus can not be simplified.
It allows to build Lagrangian fluxes that are valid for any equation of state up to second-order accuracy.
From third-order accuracy, we restrict for the sake of simplicity to ideal gases. In this case, the
Lagrangian sound speed’s time-derivative can be obtained by differentiating its definition:

∂t(ρc)2 = γ∂t

(p
τ

)
since γ is a constant for ideal gases

=
γ

τ
∂tp−

(ρc)2

τ
∂tτ

= −(γ + 1)(ρc)2

ρ0τ
∂Xux −

γΓ(u ·B)
ρ0τ2µ

∂XBx

whereas the time-derivative of G is zero (see remark 7 page 66).

Once the Cauchy-Kovalevskaya procedure has been applied, cell-centered point-wise values of conservative
variables have to be computed by applying formula (4.15) with φ ∈ {1,u, τB, e}. One can then determine
estimations of quantities involved in the truncated Taylor expansion using finite difference formulae (4.16)
and form the high-order accurate Lagrangian fluxes. The Lagrangian scheme finally writes:



(ρ0ux)
n+1

i

(ρ0uy)
n+1

i

(ρ0uz)
n+1

i

(ρ0τBy)
n+1

i

(ρ0τBz)
n+1

i

(ρ0e)
n+1

i


=



(ρ0ux)
n

i

(ρ0uy)
n

i

(ρ0uz)
n

i

(ρ0τBy)
n

i

(ρ0τBz)
n

i

(ρ0e)
n

i


− ∆t

∆x





(
P − B2

x
µ

)∗
i+ 1

2

− 1
µ (BxBy)

∗
i+ 1

2

− 1
µ (BxBz)

∗
i+ 1

2

− (uyBx)∗i+ 1
2

− (uzBx)∗i+ 1
2(

Pux − Bx(u·B)
µ

)∗
i+ 1

2


−



(
P − B2

x
µ

)∗
i− 1

2

− 1
µ (BxBy)

∗
i− 1

2

− 1
µ (BxBz)

∗
i− 1

2

− (uyBx)∗i− 1
2

− (uzBx)∗i− 1
2(

Pux − Bx(u·B)
µ

)∗
i− 1

2




.

(5.6)
We recall that the equation on (ρ0τ) does not need to be solved practically (see remark 9 page 71). Hereagain,
Lagrangian fluxes are automatically generated with the algebraic calculation software Maple.

5.1.2 Remap step

High-order accurate remap fluxes for the ideal MHD system can be built by applying the method
presented in section 4.1.3 for the hydrodynamics equations. The remap scheme then writes:

(ρφ)
n+1

i = (ρ0φ)
n+1

i − ∆t
∆x

(
u∗

i+ 1
2

(ρφ)∗
i+ 1

2

− u∗
i− 1

2

(ρφ)∗
i− 1

2

)
with φ ∈ {1,u, τBy, τBz, e}.

5.1.3 Stability condition

In the case of ideal MHD, the stability condition for the whole Lagrange-remap scheme writes:

∆t ≤ ∆x
max (|ui|+ (cf )i)

. (5.7)
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where cf denotes the fast magnetosonic wave speed:

cf =

√√√√1
2

(
B ·B
ρ

+ c2
)

+

√
1
4

(
B ·B
ρ

+ c2
)2

− c2

ρ2
min

(
B2

x, B
2
y

)
This completes the description of the one-dimensional Lagrange-remap scheme. We now detail its extension
to the two-dimensional case.

5.2 Two-dimensional extension: the divergence constraint

Now that the GoHy high-order Lagrange-remap schemes have been described in the one-dimensional
case, we present their extension to two-dimensional geometries. Basically, it relies on the same recipes than
in the hydrodynamical case: combining dimensional splitting techniques and a reconstruction step on fluxes,
one can easily build high-order accurate numerical schemes for the ideal MHD equations (see sections 4.2.1
and 4.2.2 for more details). Nevertheless, some additional issues arise when dealing with multidimensional
ideal MHD equations. It is indeed well-known that numerical schemes which do not provide a divergence-
free evolution of the magnetic field may lead to unphysical solutions [10]. We thus present in the sequel a
few well-known methods for enforcing numerically ∇·B = 0 and adapt one of these to the Lagrange-remap
schemes presented previously.

5.2.1 Projection scheme

The projection scheme has been proposed by Brackbill and Barnes [10] as a correction to the magnetic
field after the time step has been completed by some arbitrary numerical scheme. It consists in projecting the
B? field provided by the base scheme onto a divergence-free space and relies on the following decomposition
of B? into the sum of a curl and a gradient (Helmholtz decomposition) :

B? = ∇×A +∇φ. (5.8)

where the curl of the vector potential A contains the physically meaningfull part of B?. Taking the
divergence of equation (5.8) leads to the Poisson equation:

∇ ·B? = ∆φ (5.9)

and it is then easy to form a divergence-free B field:

B = B? −∇φ. (5.10)

All in all, the projection scheme consists in solving the Poisson equation (5.9) in order to compute φ and
the corrected magnetic field B. Noce that the numerical divergence of B will be exactly zero only if the
Laplacian operator in (5.9) is evaluated in two steps as the divergence of a gradient with the same discrete
gradient and divergence operators used for calculating ∇ ·B? and ∇φ. Let N denote the desired order of
accuracy, the following high-order accurate operators can be used when dealing with finite volume schemes
on two-dimensional Cartesian meshes:

(∇f)i,j =

 (Dxf)i,j

(Dyf)i,j

 and (∇ · f)i,j = (Dxfx)i,j + (Dyfy)i,j ,
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where Dx and Dy are the following discrete operators:

(Dxψ)i,j =


ψi+1,j − ψi−1,j

2∆x
if N ≤ 2,

8(ψi+1,j − ψi−1,j)− (ψi+2,j − ψi−2,j)
12∆x

if 3 ≤ N ≤ 4,

(Dyψ)i,j =


ψi,j+1 − ψi,j−1

2∆y
if N ≤ 2,

8(ψi,j+1 − ψi,j−1)− (ψi,j+2 − ψi,j−2)
12∆y

if 3 ≤ N ≤ 4.

These lead to the following second-order accurate discrete Laplacian operator:

(∆ψ)i,j =
2ψi,j − (ψi+2,j + ψi−2,j)

4∆x2
+

2ψi,j − (ψi,j+2 + ψi,j−2)
4∆y2

and to the following fourth-order accurate one:

(∆ψ)i,j =
4∑

k=0

ωk

(
ψi+k,j + ψi−k,j

∆x2
+
ψi,j+k + ψi,j−k

∆y2

)
with:

ω0 =
65
144

, ω1 = −ω3 = −1
9
, ω2 = −4

9
, ω4 = − 1

144
.

Note that the required stencil for building a fourth-order accurate estimation of ∆ψ is very wide (it is
indeed made of 17 cells), which presents two majors drawbacks. On the one hand, it makes the projection
scheme expensive for achieving high-order accuracy since the linear system resulting from the discretization
of the Poisson equation (5.9) will have lots of extra-diagonal terms. On the other hand, this approach
generates many unphysical oscillations on discontinuities and thus impacts negatively the global scheme
robustness. We therefore do not resort to the projection scheme for divergence cleaning purposes.

5.2.2 Constrained transport

We now describe the so-called constrained transport (CT) method which basically relies on a staggered
representation of the magnetic field on cell interfaces denoted by b hereafter. Note that we consider the
following form of the magnetic induction equation in this section:

∂tB +∇×Ω = 0 with Ω = −u ∧B.

Original CT method

The initial CT method has been introduced by Evans and Hawley [35] in a finite differences framework.
It consists in insuring ∇ · b = 0 by updating b using a cell corner representation of Ω:

(bx)n+1
i+ 1

2
,j

= (bx)n
i+ 1

2
,j
− ∆t

∆y

(
Ωi+ 1

2
,j+ 1

2
− Ωi+ 1

2
,j− 1

2

)
,

(by)n+1
i,j+ 1

2

= (by)n
i,j+ 1

2

+
∆t
∆x

(
Ωi+ 1

2
,j+ 1

2
− Ωi− 1

2
,j+ 1

2

)
.

(5.11)

which allows to state the following proposition.
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Proposition 9. Let the discrete divergence of b be defined by:

(∇ · b)i,j =
(bx)i+ 1

2
,j − (bx)i− 1

2
,j

∆x
+

(by)i,j+ 1
2
− (by)i,j− 1

2

∆y
. (5.12)

The finite difference scheme (5.11) proposed by Evans and Hawley [35] implies that

(∇ · b)n+1
i,j = (∇ · b)n

i,j

to the accuracy of round-off errors.

Proof. Indeed:

(∇ · b)n+1
i,j − (∇ · b)n

i,j =
∆t

∆x∆y

((
Ωi− 1

2
,j+ 1

2
− Ωi− 1

2
,j− 1

2

)
−
(
Ωi+ 1

2
,j+ 1

2
− Ωi+ 1

2
,j− 1

2

))
+

∆t
∆x∆y

((
Ωi+ 1

2
,j+ 1

2
− Ωi− 1

2
,j+ 1

2

)
−
(
Ωi+ 1

2
,j− 1

2
− Ωi− 1

2
,j− 1

2

))
= 0.

Extension of the original CT method to the finite volume framework

Several successful attempts to adapt the CT approach to finite volume schemes have been presented in
the literature (see the review of CT methods proposed by Tòth in [88] and references therein). We detail
one of these proposed by Dai and Woodward [26] called the field-interpolated CT scheme. Let u? and B?

denote the updated values of the velocity and magnetic field returned by an arbitrary Godunov-type base
scheme. Dai and Woodward’s approach relies on the following cell corner centered representations of u and
B given by:

B
n+ 1

2

i+ 1
2
,j+ 1

2

=
1
8
(
Bn

i,j + Bn
i+1,j + Bn

i,j+1 + Bn
i+1,j+1 + B?

i,j + B?
i+1,j + B?

i,j+1 + B?
i+1,j+1

)
,

u
n+ 1

2

i+ 1
2
,j+ 1

2

=
1
8
(
un

i,j + un
i+1,j + un

i,j+1 + un
i+1,j+1 + u?

i,j + u?
i+1,j + u?

i,j+1 + u?
i+1,j+1

)
.

These values are then used to form cell corner centered representations of Ω:

Ωi+ 1
2
,j+ 1

2
= −u

n+ 1
2

i+ 1
2
,j+ 1

2

∧B
n+ 1

2

i+ 1
2
,j+ 1

2

,

and allow to apply the finite differences scheme given in (5.11). The finite volume representation of the
magnetic field is finally updated by interpolating b:

(Bx)n+1
i,j =

1
2

(
(bx)n+1

i− 1
2
,j

+ (bx)n+1
i+ 1

2
,j

)
,

(By)n+1
i,j =

1
2

(
(by)n+1

i,j− 1
2

+ (by)n+1
i,j+ 1

2

)
.

One can easily notice that the field-interpolated CT scheme does not preserve the cell centered numerical
divergence of B given by:

(∇ ·B)i,j =
(Bx)i+1,j − (Bx)i−1,j

2∆x
+

(By)i,j+1 − (By)i,j−1

2∆y
(5.13)

but it turns out that another representation of ∇ ·B is conserved numerically.
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Proposition 10. Let the discrete divergence of B be defined by the following cell corner centered represen-
tation:

(∇ ·B)i+ 1
2
,j+ 1

2
=

(Bx)i+1,j + (Bx)i+1,j+1 − (Bx)i,j − (Bx)i,j+1

2∆x

+
(By)i,j+1 + (By)i+1,j+1 − (By)i,j − (By)i+1,j

2∆y
.

The field-interpolated CT scheme proposed by Dai and Woodward [26] implies that:

(∇ ·B)n+1
i+ 1

2
,j+ 1

2

= (∇ ·B)n
i+ 1

2
,j+ 1

2

to the accuracy of round-off errors.

Proof. Indeed, from the definition of the magnetic field at time tn+1, one can see that:

(∇ ·B)n+1
i+ 1

2
,j+ 1

2

=
1
4

(
(∇ · b)n+1

i,j + (∇ · b)n+1
i+1,j + (∇ · b)n+1

i,j+1 + (∇ · b)n+1
i+1,j+1

)
where (∇ · b)i,j is given by (5.12). Since (∇ · b) is preserved in each cell by the underlying constrained
transport method (5.11), one necessarily has:

(∇ ·B)n+1
i+ 1

2
,j+ 1

2

= (∇ ·B)n
i+ 1

2
,j+ 1

2
.

Tòth proposes in [88] an alternative CT technique that is more accurate and does not involve any cell
interface representation of the magnetic field anymore. This method, called the field-interpolated central
difference (CD) scheme, consists in computing a time centered averaging of Ω:

Ωi,j = −
un

i,j ∧Bn
i,j + u?

i,j ∧B?
i,j

2
.

in order to update directly the cell-centered representation of the magnetic field according to the following
finite volume scheme:

(Bx)n+1
i,j = (Bx)n

i,j −
∆t
∆y

(
F y

i,j+ 1
2

− F y

i,j− 1
2

)
,

(By)n+1
i,j = (By)n

i,j +
∆t
∆x

(
F x

i+ 1
2
,j
− F y

i− 1
2
,j

)
,

the approximate fluxes being given by:

F y

i,j+ 1
2

=
Ωi,j + Ωi,j+1

2
,

F x
i+ 1

2
,j

=
Ωi,j + Ωi+1,j

2
.

It turns out that the resulting scheme preserves the numerical divergence of B in a more classical sense
than the initial CT method and the field-interpolated CT scheme.
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Proposition 11. Let the discrete divergence of B be defined by the following cell centered representation:

(∇ ·B)i,j =
(Bx)i+1,j − (Bx)i−1,j

2∆x
+

(By)i,j+1 − (By)i,j−1

2∆y
.

The field-interpolated CD scheme proposed by Tóth [88] implies that:

(∇ ·B)n+1
i,j = (∇ ·B)n

i,j

to the accuracy of round-off errors.

Proof. Indeed, one can notice that:

(∇ ·B)n+1
i,j − (∇ ·B)n

i,j = − ∆t
2∆x∆y

(
F y

i+1,j+ 1
2

− F y

i+1,j− 1
2

+ F y

i−1,j− 1
2

− F y

i−1,j+ 1
2

)
+

∆t
2∆x∆y

(
F x

i+ 1
2
,j+1
− F x

i− 1
2
,j+1

+ F x
i− 1

2
,j−1
− F x

i+ 1
2
,j−1

)
,

= − ∆t
4∆x∆y

(Ωi+1,j+1 −Ωi+1,j−1 + Ωi−1,j−1 −Ωi−1,j+1)

+
∆t

4∆x∆y
(Ωi+1,j+1 −Ωi−1,j+1 + Ωi−1,j−1 −Ωi+1,j−1) ,

= 0.

Higher-order CT methods with divergence-free reconstructions

Balsara presents in [1] a method for building divergence-free second-order accurate polynomial approxi-
mations of the magnetic field. This technique is the first step for improving the accuracy of CT-type schemes
that rely on a face-centered representation of the magnetic field. We here focus on the computation of the
divergence-free reconstruction in the (i, j) cell. Let B±

x denote the magnetic field at the cell’s left and right
faces and B±

y the magnetic field at the cell’s bottom and top faces:

B±
x = (Bx)i± 1

2
,j ,

B±
y = (By)i,j± 1

2
.

In order to achieve second-order accuracy, one has to approximate the face-centered representation of the
magnetic field using any linear fitting method:

Bx(x = xi± 1
2
, y) = B±

x + ∆B±
x y,

By(x, y = yj± 1
2
) = B±

y + ∆B±
y x.

Note that due to Ostrogradsky’s theorem, the divergence constraint implies that:(
B+

x −B−
x

)
∆y +

(
B+

y −B−
y

)
∆x = 0. (5.14)

For the sake of simplicity, we assume from now on that xi± 1
2

= ±∆x/2 and yj± 1
2

= ±∆y/2. Balsara
proposes to build a polynomial approximation of the magnetic field in the whole cell, its general form
writes:

Bx(x, y) = a0 + axx+ ayy + axxx
2 + axyxy + ayyy

2, (5.15)

By(x, y) = b0 + bxx+ byy + bxxx
2 + bxyxy + byyy

2. (5.16)
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Since these reconstructions must fit the face-centered linear fittings, one necessarily has ayy = bxx = 0 and:

a0 ± ax
∆x
2

+ axx
∆x2

4
= B±

x , (5.16a)

b0 ± by
∆y
2

+ byy
∆y2

4
= B±

y , (5.16b)

ay ± axy
∆x
2

= ∆B±
x , (5.16c)

bx ± bxy
∆y
2

= ∆B±
y . (5.16d)

At this stage, we have ten unknowns left but only eight linear equations. These are completed by imposing
the divergence constraint in a continuous sense to the approximate magnetic field. Indeed, requiring that

∂x(5.15) + ∂y(5.16) = 0

leads to the following system of equations:

ax + by = 0,
2axx + bxy = 0,
axy + 2byy = 0.

Note that the ax +by = 0 constraint is automatically satisfied provided that (5.14) is satisfied. Indeed, from
(5.16a) and (5.16b), one can show that:

B+
x −B−

x = ax∆x and B+
y −B−

y = by∆y

and thus (
B+

x −B−
x

)
∆y +

(
B+

y −B−
y

)
∆x = (ax + by)∆x∆y.

We finally have a well-posed linear system of ten equations whose solution is given by:

ax = −by =
B+

x −B−
x

∆x
= −

B+
y −B−

y

∆y

ay =
1

2∆y
(
∆B+

x + ∆B−
x

)
bx =

1
2∆x

(
∆B+

y + ∆B−
y

)
axy = −2byy =

1
∆x∆y

(
∆B+

x −∆B−
x

)
bxy = −2axx =

1
∆x∆y

(
∆B+

y −∆B−
y

)
a0 =

B+
x +B−

x

2
− axx

∆x2

4

b0 =
B+

y +B−
y

2
− byy

∆y2

4
.

The resulting approximate magnetic field satisfies the divergence constraint in both discrete and continuous
senses. The reconstruction that is generated by the algorithm presented in this section is second-order
accurate but Balsara has extended it to third and fourth-order accuracy (see [3]).
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Ability of CT methods to be coupled with GoHy schemes

CT-type methods are globally badly suited to dimensionally split schemes. Indeed, they basically rely
on the presevation of the following relation between the divergence and curl operators at a discrete level:

∇ · (∇× v) = 0,

which can hardly be interpreted in a dimensionally split framework. We therefore do not resort to CT
methods for enforcing the divergence constraint in GoHy schemes.

5.2.3 The 8-wave formulation

Numerical solvers which do not guarantee a divergence-free evolution of the magnetic field may crash
when dealing with multidimensional problem because errors generated by high values of ∇ · B tend to
accumulate and produce unphysical results. Powell’s 8-wave formulation aims at propagating these errors,
thus preventing them from accumulating on a fixed grid point. To that end, he introduces an alternative
form of the ideal MHD system which can be obtained by deriving the MHD equations without assuming
that B satisfies the divergence constraint ∇ · B = 0. In this context, the J ∧ B term involved in the
momentum equation (1.15) rewrites:

J ∧B =
1
µ

(∇ · (B⊗B)− (∇ ·B)B)

and the new momentum equation is thus given by:

∂t(ρu) +∇ ·
(
ρu⊗ u + P − B⊗B

µ

)
+
∇ ·B
µ

B = 0.

Moreover, according to [90], Faraday’s equation rewrites:

∇×E = −∂tB− (∇ ·B)u. (5.17)

Injecting equation (5.17) in the generalized Ohm’s law (1.19) then leads to the following magnetic field
equation:

∂tB +∇ · (u⊗B−B⊗ u) + (∇ ·B)u = 0.

Finally, Powell’s alternative ideal MHD system is given by:

∂t


ρ

ρu

B

ρe

+∇ ·


ρu

ρu⊗ u + P I− (B⊗B)
µ

u⊗B−B⊗ u

(ρe+ P )u− u·B
µ B

 = −∇ ·B
µ


0

B

µu

u ·B

 . (5.18)

It is in fact the classical ideal MHD system with an additional right hand side that is proportional to ∇·B.
Numerical experiments show that solving the alternative system (5.18) instead of the initial one (5.1) helps
to improve robustness because the divergence errors do not accumulate on a fixed grid point anymore.

The major drawback of this method is that the improved robustness can only be obtained at the cost of
conservativity due to the presence of the right hand side term in system (5.18). The 8-wave formulation is
thus not well-suited to our approach since one of the main features of finite volume schemes is conservativity
preservation.
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5.2.4 Hyperbolic divergence cleaning

Divergence cleaning techniques have been proposed by Dedner et al. [29] for the ideal MHD equations
after having been applied in a similar way to the Maxwell equations (see works by Munz et al. [65]). These
consists in adding a new unknown function ψ that is coupled to system (5.1) through the following equations:

∂tB +∇ · (u⊗B−B⊗ u) +∇ψ = 0, (5.19)
D(ψ) +∇ ·B = 0, (5.20)

where D is a linear differential operator. Using (5.19) and (5.20), one can show that ψ and ∇ · B satisfy
the same evolution equation provided that both are sufficiently smooth and that D commutes with spatial
and temporal differential operators. Indeed, notice that:

∇ · (5.19) ⇒ ∂t(∇ ·B) + ∆ψ = 0, (5.21)
D(5.21) ⇒ ∂tD(∇ ·B) + ∆D(ψ) = 0, (5.22)
∂t(5.20) ⇒ ∂tD(ψ) + ∂t(∇ ·B) = 0, (5.23)
∆(5.20) ⇒ ∆D(ψ) + ∆(∇ ·B) = 0, (5.24)

and thus:

∂tD(∇ ·B)−∆(∇ ·B) = 0, (5.25)
∂tD(ψ)−∆(ψ) = 0. (5.26)

Divergence cleaning techniques consists in choosing D so that divergence errors are advected out of the
computational domain. The authors propose different such operators but we only consider the so-called
hyperbolic correction here which is the best-suited to GoHy Lagrange-remap schemes since it leads to a
conservative equation for ψ. It consists in taking:

D(ψ) =
1
c2h
∂tψ

so that equation (5.26) is the wave equation:

∂ttψ − c2h∆ψ = 0.

Divergence errors are thus advected to the boundaries with the finite speed ch > 0 that now has to be
determined. Dedner et al. propose to set ch uniformly over the computational domain, its value being
imposed at each cycle by the time step so that ch is as great as possible but does not break the stability
condition of the underlying scheme. This choice of ch may therefore vary in time if the time step varies.
Nevertheless, in the case of GoHy schemes, numerical experiments have shown that such an approach does
not allow to achieve high-order accuracy. The reason for this issue is that D has to commute with both
spatial and temporal differential operators: the only suitable value for ch consequently is a constant one in
space and time. We therefore take:

ch = ωmax (cf (t = 0)) ,

where cf denotes the fast magnetosonic wave speed and ω a real coefficient between 0 and the CFL coefficient.

Remark 22. The ω parameter should be set very carefully to insure stability throughout the whole com-
putation since it can theoretically not be adjusted during the execution. More precisely, if the maximum
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value of cf at time t > 0 is greater than its value at t = 0 by a factor λ, ch should be set according to the
following formula:

ch =
ω

λ
max (cf (t = 0)) .

Of course, it is generally not possible to determine an accurate value of λ. The advection speed ch should
therefore be initialized carefully in order to keep a reasonable safety margin regarding the stability condition.
As a last resort, ch could also be adjusted dynamically during the execution but only a few times, otherwise
high-order accuracy would be lost.

Though the approach described in remark 22 seems unsatisfying at first glance, it reveals reliable in most
practical cases and presents the advantage of being quite cheap in terms of computational cost.

In order to combine the hyperbolic divergence cleaning with GoHy schemes, one has to apply the
following steps. First of all, the Lagrangian step described in section 5.1 has to be completed by the
resolution of the two following equations in order to compute updated values of Bx and ψ.

Remark 23. Due to the presence of a∇ψ term in (5.19), the evolution equation for the tangential component
of the magnetic field (i.e. Bx when performing the resolution along the x-direction and By when dealing
with the y-direction) has to be solved in the multidimensional context, contrarily to the one-dimensional
case (see remark 20).

These Lagrangian equations are obtained by applying Lemma 1 (see page 60) to the (Bx, ψ − uxBx) and(
ψ, c2hBx − uxψ

)
couples, leading to:

∂t(ρ0τBx) + ∂X (ψ − uxBx) = 0, (5.27)

∂t(ρ0τψ) + ∂X

(
c2hBx − uxψ

)
= 0. (5.28)

Lagrangian fluxes for these two equations can then be built as explained in section 5.1. Note that the
Cauchy-Kovalevskaya procedure is slightly modified due to the additional equation and to the presence of
the ψ unknown (whose time-derivative can easily be derived from (5.28)) in the magnetic field equation.
Finally, the additional Lagrangian schemes for Bx and ψ write:

(ρ0τBx)
n+1

i,j = (ρ0τBx)
n

i,j −
∆t
∆x

[
(ψ − uxBx)∗i+ 1

2
,j − (ψ − uxBx)∗i− 1

2
,j

]
,

(ρ0τψ)
n+1

i,j = (ρ0τψ)
n

i,j −
∆t
∆x

[(
c2hBx − uxψ

)∗
i+ 1

2
,j
−
(
c2hBx − uxψ

)∗
i− 1

2
,j

]
.

Once the Lagrangian step has been performed, one can compute remap fluxes as explained in section (4.1.3)
and apply the following remap schemes:

(Bx)
n+1

i,j = (ρ0τBx)
n+1

i,j −
∆t
∆x

[
u∗

i+ 1
2
,j
(Bx)∗

i+ 1
2
,j
− u∗

i− 1
2
,j
(Bx)∗

i− 1
2
,j

]
,

(ψ)
n+1

i,j = (ρ0τψ)
n+1

i,j −
∆t
∆x

[
u∗

i+ 1
2
,j
(ψ)∗

i+ 1
2
,j
− u∗

i− 1
2
,j
(ψ)∗

i− 1
2
,j

]
.

The above-described hyperbolic divergence cleaning technique has been used for performing the numer-
ical computations described in section 5.5. Experiments have shown that it increases the restitution time
of the whole Lagrange-remap scheme of about 10% whatever the order of accuracy, which seems reasonable
in terms of computational cost.
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5.3 Artificial viscosity for the ideal MHD equations

As in the hydrodynamics case, the high-order Lagrange-remap schemes that we developed for the ideal
MHD equations are subject to Gibbs oscillations on discontinuities. To improve robustness, we again add
hyperviscosity to the Lagrangian step. We thus consider the following resistive MHD system:

∂t


ρ

ρu

B

ρe

+∇ ·


ρu

ρu⊗ u + P I− B⊗B
µ

u⊗B−B⊗ u

(ρe+ P )u− u·B
µ B

 =


0

∇ · τ

−η∇× (∇×B)

∇ ·
(
τu + η

µB ∧ (∇×B) + κ∇T
)

 (5.29)

and replace the physical constants β, ν, κ and η (η denotes the resistive conductivity) with artificial ones
(marked with stars) so that consistency with the initial ideal MHD system (5.1) is preserved. We already
described how β?, ν? and κ? have been designed (see section 4.3) and we thus focus on the η? constant in
this section. We propose an hyperviscosity model for η? which is inspired from previous works by Haugen
et al. [43]. With notations defined in section 4.3, it writes:

η? = Cη · 〈|∇rJ |〉 ·∆r+2

where J denotes the norm of the current density. We recall that Cη is a user-defined constant and r is an
integer parameter that is set to 2 for the second and third-order schemes and to 4 for the fourth-order one.
In two-dimensional planar geometries, the ∇× (∇×B) and B ∧ (∇×B) terms respectively write:

∇× (∇×B) = ∂x


0

−Λ

−∂xBz

+ ∂y


Λ

0

−∂yBz

 and B ∧ (∇×B) =


Bz∂xBz +ByΛ

Bz∂yBz −BxΛ

−Bx∂xBz −By∂yBz


with:

Λ = (∇×B) · ez = ∂xBy − ∂yBx.

We thus propose the following discrete cell-centered artificial viscosity terms:

Vx,∗
i,j =



τ xx
i,j

τ xy
i,j

τ xz
i,j

η?
i,jΛi,j

η?
i,j

(
(Bz)i+1,j−(Bz)i−1,j

2∆x

)
(τ xxux)i,j + (τ xyuy)i,j + (τ xzuz)i,j + 1

µη
?
i,j (B ∧ (∇×B))x

i,j + κ?
i,j

(
Ti+1,j−Ti−1,j

2∆x

)


,
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Vy,∗
i,j =



τ xy
i,j

τ yy
i,j

τ yz
i,j

−η?
i,jΛi,j

η?
i,j

(
(Bz)i,j+1−(Bz)i,j−1

2∆y

)
(τ xyux)i,j + (τ yyuy)i,j + (τ yzuz)i,j + 1

µη
?
i,j (B ∧ (∇×B))y

i,j + κ?
i,j

(
Ti,j+1−Ti,j−1

2∆y

)


with notations defined in section 4.3 and:

τ xz
i,j = ν?

i,j

(uz)i+1,j − (uz)i−1,j

2∆x
,

τ yz
i,j = ν?

i,j

(uz)i,j+1 − (uz)i,j−1

2∆y
,

Λi,j =
(By)i+1,j − (By)i−1,j

2∆x
− (Bx)i,j+1 − (Bx)i,j−1

2∆y
,

(B ∧ (∇×B))x
i,j = (Bz)i,j

(Bz)i+1,j − (Bz)i−1,j

2∆x
+ (By)i,jΛi,j ,

(B ∧ (∇×B))y
i,j = (Bz)i,j

(Bz)i,j+1 − (Bz)i,j−1

2∆y
− (Bx)i,jΛi,j .

These allow to build the following artificial viscosity fluxes:

V∗
i+ 1

2
,j

=
1
2

(
Vx,∗

i,j + Vx,∗
i+1,j

)
and V∗

i,j+ 1
2

=
1
2

(
Vy,∗

i,j + Vy,∗
i,j+1

)
.

that have to be added to the right hand side of the Lagrangian scheme (5.6). In terms of computational
cost, artificial viscosity increases the restitution time of about 25% for the second-order scheme, 20% for
the third-order scheme and 10% for the fourth-order scheme, which are reasonable values.

5.4 High performance computing aspects

We have seen previously (see section 4.4) that GoHy schemes for compressible hydrodynamics have been
built so that they are able to take advantage of modern and massively parallel computer architectures. The
same strategy has of course been adopted for ideal MHD schemes. We illustrate this feature in this section
by providing both single core performance and parallel efficiency figures.

5.4.1 Performance figures

We first focus on estimating the single core performance of GoHy schemes. To that end, we applied
the procedure described for the hydrodynamical schemes (see section 4.4.1) to a MHD test problem, more
precisely to the advected MHD vortex problem described in section 5.5. Note that the hyperviscosity
model and the divergence cleaning have been turned on for performance measurements in order to perform
tests that are as representative as possible of real life applications. Both execution times and measured
performances have been reported in Table 5.2. These results are as expected better than those obtained
with the hydrodynamic solver and thus reveal very satisfying. Indeed, the ideal MHD system being far more
complex than the Euler system of equations, the number of floating point operations required for applying
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Scheme Number of FLOPS per cell (Euler) Number of FLOPS per cell (MHD)

2nd-order ≈ 2900 ≈ 5500

3rd-order ≈ 6500 ≈ 16500

4th-order ≈ 14000 ≈ 70000

Table 5.1: Number of floating point operations required to apply the two-dimensional second, third and
fourth-order GoHy schemes in a single cell in both hydrodynamical and magnetohydrodynamical cases.

the whole Lagrange-remap scheme in the ideal MHD case is greater than for the hydrodynamics equations
as shown in Table 5.1. As we explained previously (see remark 18 page 88), this implies that the solver
spends more time in functions that respect the principles we stated in introduction (see page 13): these do
not require any test and operate mostly on contiguous data, thus increasing the global efficiency.

5.4.2 Parallel efficiency figures

We now provide several weak parallel efficiency figures for the second, third and fourth-order accurate
MHD-GoHy schemes. Computations have been performed on the advected MHD vortex test problem
described in section 5.5 using the same testing procedure than in the hydrodynamical case (see page 91).
The hyperviscosity model and the divergence cleaning method have been turned on for parallel efficiency
measurements in order to perform tests that are as representative as possible of real life applications. The
measured parallel efficiencies have been reported in Table 5.3. These are very satisfying: they are indeed
above 95% in all cases.

5.5 Numerical results

To conclude the description of MHD-GoHy high-order dimensionally split Lagrange-remap schemes,
we provide in this section numerical results on various test problems taken from the related literature.
More precisely, we first compute the experimental order of convergence on smooth solutions and then
present results obtained for several non-smooth test problems to illustrate the robustness of the schemes
we developed. The divergence cleaning has been turned on for computations on two-dimensional non-
smooth problems and revealed particularly useful: in most cases, disabling divergence cleaning causes the
computation to crash.

5.5.1 Experimental order of convergence

We first focus on smooth test problems and carry out a convergence analysis. To that end, we consider a
one-dimensional analytical solution proposed by Picard [70] and a two-dimensional one - Balsara’s advected
MHD vortex benchmark [2] - on which we will illustrate the benefits provided by divergence cleaning
techniques.
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SECOND-ORDER SCHEME

Mesh size Execution time Performance

N×N cells wall time (s) µs / cell / cycle GFLOPS % peak

N = 100 2.32 2.32 2.42 22.7%

N = 200 9.56 2.39 2.31 21.6%

N = 400 40.83 2.55 2.14 20.0%

N = 800 186.36 2.91 1.86 17.5%

THIRD-ORDER SCHEME

Mesh size Execution time Performance

N×N cells wall time (s) µs / cell / cycle GFLOPS % peak

N = 100 5.13 5.13 3.35 31.4%

N = 200 20.98 5.23 3.19 29.9%

N = 400 88.85 5.55 2.96 27.8%

N = 800 406.61 6.35 2.58 24.1%

FOURTH-ORDER SCHEME

Mesh size Execution time Performance

N×N cells wall time (s) µs / cell / cycle GFLOPS % peak

N = 100 18.55 18.55 4.02 37.7%

N = 200 72.32 18.08 3.93 36.9%

N = 400 291.36 18.21 3.82 35.8%

N = 800 1230.38 19.22 3.57 33.5%

Table 5.2: Single core performance figures of the two-dimensional MHD-GoHy schemes. Benchmark: 100
simulation steps on the advected MHD vortex test problem, hyperviscosity model enabled. Test platform:
Intel Xeon E5650 CPU @ 2.66 GHz (theoretical peak performance: 2.66 GHz× 4 double precision floating
point operations per cycle = 10.64 GFLOPS).
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SECOND-ORDER SCHEME

Mesh size / process Parallel efficiency for p processes

N×N cells p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

N = 200 100% 97% 97% 97% 97% 96%

N = 400 100% 99% 99% 98% 97% 97%

N = 800 100% 100% 100% 100% 99% 98%

THIRD-ORDER SCHEME

Mesh size / process Parallel efficiency for p processes

N×N cells p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

N = 200 100% 98% 98% 98% 98% 97%

N = 400 100% 99% 99% 99% 98% 97%

N = 800 100% 100% 100% 99% 98% 97%

FOURTH-ORDER SCHEME

Mesh size / process Parallel efficiency for p processes

N×N cells p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

N = 200 100% 99% 99% 98% 98% 98%

N = 400 100% 100% 99% 99% 98% 97%

N = 800 100% 100% 99% 99% 99% 98%

Table 5.3: Parallel efficiency of the two-dimensional MHD-GoHy schemes. Benchmark: 100 simulation
steps on the advected MHD vortex test problem, hyperviscosity model and divergence cleanoing enabled.
Test platform: Intel Xeon E5462 processors @ 2.8 GHz, InfiniBand interconnect @ 20 Gbit/s
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Picard’s one-dimensional analytical solution

We first consider a one-dimensional analytical solution to the ideal MHD system proposed by Picard [70].
Defining:

R(t) = exp
(

5
2
− 5 + 3 ln(t+ 1)

2(t+ 1)

)
,

W (t) = 1 +
3
2

ln(t+ 1),

φ(x, t) = − ln ((t+ 1)R(t))− x

t+ 1
,

it is given by:

ρ(x, t) = exp
(

x

t+ 1

)
R(t),

p(x, t) = ρ(x, t)γ ,

ux(x, t) =
x−W (t)
t+ 1

,

uy(x, t) = sin (φ(x, t)) ,
uz(x, t) = cos (φ(x, t)) ,

By(x, t) =

√
ρ(x, t)
t+ 1

sin (φ(x, t)) ,

Bz(x, t) =

√
ρ(x, t)
t+ 1

cos (φ(x, t)) .

This problem has been set on the [0; 5] computational domain with γ = 2 and Bx = 0, boundary conditions
being imposed by the analytical solution. We have run computations until time t = 10 with the MHD-
GoHy schemes and reported the error measurements between the exact and numerical solutions (estimated
using a L1 norm in space and time) in Table 5.4. These show as expected that the experimental order of
convergence matches the theoretical one and that it is not affected by hyperviscosity.

Two-dimensional advected MHD vortex

We now focus on the two-dimensional advected MHD vortex problem proposed by Balsara [2]. Defining
r2 = (x− u0t)2 + (y − v0t)2, the analytical solution writes:

ρ(x, y, t) = 1,

u(x, y, t) =
1
2π

exp
(

1− r2

2

)
(−y, x, 0)t + (u0, v0, 0)t ,

B(x, y, t) =
µ

2π
exp

(
1− r2

2

)
(−y, x, 0)t,

p(x, y, t) = 1 +
(
µ2(1− r2)− 4π

32π3

)
exp

(
1− r2

)
,

with γ = 5/3 and µ = 4π. This test problem has been set on the [−10; 10]2 computational domain with
periodic boundary conditions and u0 = v0 = 1 so that the vortex is advected along the y = x axis. We
have run computations until time t = 20 with a CFL coefficient of 0.9. Note that divergence cleaning has
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WITHOUT HYPERVISCOSITY

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 5.42e-02 8.70e-03 2.12e-04

N = 200 1.30e-02 2.06 1.08e-03 3.01 1.30e-05 4.03

N = 400 3.20e-03 2.03 1.35e-04 3.00 8.07e-07 4.01

N = 800 7.93e-04 2.01 1.69e-05 3.00 5.02e-08 4.01

N = 1600 1.98e-04 2.00 2.11e-06 3.00 3.13e-09 4.00

WITH HYPERVISCOSITY (Cβ = Cν = Cκ = Cη = 1)

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 5.40e-02 8.60e-03 2.12e-04

N = 200 1.30e-02 2.06 1.08e-03 3.00 1.30e-05 4.03

N = 400 3.20e-03 2.02 1.35e-04 3.00 8.07e-07 4.01

N = 800 7.93e-04 2.01 1.68e-05 3.00 5.02e-08 4.01

N = 1600 1.98e-04 2.00 2.11e-06 3.00 3.13e-09 4.00

Table 5.4: Error in space and time between the analytical and numerical solutions for Picard’s one-
dimensional analytical solution.
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to be enabled to prevent the solver from crashing due to the accumulation of divergence errors as we will
see in the sequel. Table 5.5 reports the error (measured using a L1 norm in space and time) between the
analytical and numerical solutions. Once again, we see that the experimental order of convergence matches
the theoretical one and that it is affected neither by hyperviscosity nor by divergence cleaning.

In order to illustrate the improvements provided by the divergence cleaning technique, we have plotted
in Figure 5.1 the following representation of ∇ ·B:

(∇ ·B)i,j =
(Bx)i+1,j − (Bx)i−1,j

2∆x
+

(By)i,j+1 − (By)i,j−1

2∆y
.

at time t = 4, t = 5, t = 6 and t = 7 for the advected vortex test problem on 200 × 200 cells with
and without divergence cleaning. When the divergence cleaning is disabled, some growing unphysical
perturbations appear in the tail of the moving vortex and make the computation crash at time t ≈ 7.5. No
such unphysical structures can be observed when divergence cleaning is enabled (in this case, divergence
errors are advected and can not accumulate) and the computation can be performed until final time. These
results are confirmed by the plot of the L1 norm of ∇ · B versus time in Figure 5.2: when divergence
cleaning is disabled, the L1 norm of ∇ ·B grows exponentially from time t ≈ 5.5 whereas it stays low when
divergence cleaning is activated.

WITHOUT HYPERVISCOSITY

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 8.27e+01 5.27e+01 6.79e+00

N = 200 2.07e+01 2.00 7.65e+00 2.78 4.07e-01 4.06

N = 400 4.93e+00 2.07 9.81e-01 2.96 2.47e-02 4.04

N = 800 1.20e+00 2.03 1.23e-01 2.99 1.53e-03 4.01

N = 1600 2.99e-01 2.01 1.54e-02 3.00 9.55e-05 4.00

WITH HYPERVISCOSITY (Cβ = 1, Cν = Cκ = Cη = 0.1)

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 8.51e+01 5.52e+01 7.94e+00

N = 200 2.10e+01 2.02 8.00e+00 2.79 4.77e-01 4.06

N = 400 4.95e+00 2.08 1.02e+00 2.97 3.07e-02 4.01

N = 800 1.21e+00 2.04 1.28e-01 3.00 1.96e-03 4.01

N = 1600 2.99e-01 2.01 1.59e-02 3.00 1.22e-04 4.00

Table 5.5: Error in space and time between the analytical and numerical solutions for the two-dimensional
MHD vortex benchmark.



5.5. Numerical results 127

time t = 4

time t = 5

time t = 6

time t = 7

Figure 5.1: Representation of ∇ · B at different times without (left) and with (right) divergence cleaning
for the advected vortex test problem.



128 Chapter 5. High-order dimensionally split Lagrange-remap schemes for planar ideal MHD

Figure 5.2: Evolution of the L1 norm of ∇ · B versus time with and without divergence cleaning for the
advected MHD vortex test problem.

5.5.2 Ryu-Jones “all seven waves” Riemann problem

We now consider a one-dimensional Riemann problem proposed by Ryu and Jones [73] with the initial
left and right states given by:

(ρ, ux, uy, uz, By, Bz, p)L = (1.08, , 1.2, 0.01, 0.5, 3.6, 2, 0.95),
(ρ, ux, uy, uz, By, Bz, p)R = (1, , 0, 0, 0, 4, 2, 1),

This test problem has been set on the [−0.5; 0.5] domain with open boundary conditions and the following
parameters: Bx = 2, γ = 5/3, µ = 1. We have performed resolution until time t = 0.2 on 600 cells with the
fourth-order scheme and a CFL coefficient of 0.7. Figure 5.5.2 plots several primitive variables at final time
with and without hyperviscosity (when hyperviscosity is enabled, parameters are Cβ = Cν = 1, Cκ = 5 and
Cη = 2). This benchmark is interesting in the sense that it exhibits all kind of MHD waves: three left-going
and right-going waves (a fast shock, a rotational discontinuity and a slow shock) on each side of the contact
discontinuity. Whereas the base scheme generates Gibbs oscillations, we can notice that these are strongly
reduced thanks to hyperviscosity, leading to a satisfying approximation of the exact solution on each kind
of wave.

5.5.3 Orszag-Tang vortex

First proposed for incompressible flows [69], the Orszag-Tang vortex test problem has been adapted for
compressible flows by Dahlburg and Picone [24, 25]. It consists in an initially smooth fluid that evolves
gradually towards turbulence and thus becomes very complex. The initial vortex structure is given by
ρ = 25/9, p = 5/3, u = (− sin y, sinx, 0)t and B = (− sin y, sin 2x, 0)t. The ratio of specific heats is
set to 5/3 and the magnetic permeability to 1. Numerically, we set this test on the [0; 2π]2 domain with
periodic boundary conditions. The resolution is performed on 400 × 400 cells until time t = 3.14 with a
CFL coefficient of 0.7, the hyperviscosity model being enabled with following parameters: Cβ = 5, Cν = 1,
Cκ = 0.01 and Cη = 0.001. Figure 5.4 plots the density, gas pressure, velocity and magnetic pressure
obtained at final time with the fourth-order scheme. It shows a good agreement with numerical founds
given in the literature (see [88, 78] for example).
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ρ ux

uy uz

By Bz

e p

Figure 5.3: Numerical solution of the ”all seven waves” MHD Riemann problem at t = 0.2 obtained with
the fourth-order scheme on 600 cells. The reference solution has been obtained using a first-order accurate
solver for the ideal MHD equations proposed by Bezard et al. [8] on a mesh of 100,000 cells.
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Figure 5.4: Numerical solution of the Orszag-Tang vortex test problem at time t = 3.14 obtained with the
fourth-order scheme on 400× 400 cells.
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5.5.4 Rotor problem

We now consider Tóth’s second rotor problem [88]. It consists in a dense and rapidly spinning disk of
fluid in the center of the domain that launches torsional Alfvén waves and is progressively confined in an
oblong shape due to the presence of a magnetic field. Defining r2 = (x−0.5)2 +(y−0.5)2, the initial density
and velocities are given by:

(ρ, ux, uy) =


(10, −u0(y − 0.5)/r0, u0(x− 0.5)/r0) if r ≤ r0,
(1 + 9f(r), −u0f(r)(y − 0.5)/r, u0f(r)(x− 0.5)/r) if r0 < r ≤ r1,
(1, 0, 0) if r ≥ r1,

where f is a taper function that smoothens the initial profiles:

f(r) =
r1 − r
r1 − r0

.

The initial pressure and magnetic field are uniform: p = 0.5, Bx = 2.5, By = 0. Numerically, this test
problem is set on the [0; 1]2 square with open boundary conditions and the following parameters: r0 = 0.1,
r1 = 0.115, u0 = 1, µ =

√
4π and γ = 5/3. We have run computations on 400×400 cells until time t = 0.295

with the fourth-order scheme and a CFL coefficient of 0.7. Hyperviscosity is enabled with the following
coeffcients: Cβ = 5, Cν = 1, Cκ = 0.01, Cη = 0.001. Figure 5.5 plots the density, gas pressure, velocity and
magnetic pressure obtained at final time and shows a good agreement with numerical results given in the
literature (see [56, 7] for example).

5.5.5 Blast problem

We conclude this chapter with a stringent test problem that has been proposed by Balsara [2]. The
initial condition consists in a central disk of radius 0.1 where the fluid has a large overpressure (p = 1000)
compared to the ambient fluid (p = 0.1), leading to very strong magnetosonic shocks that spread out in
every angular direction. Moreover, the fluid is initially at rest, its density is set to 1 and a magnetic field
with a magnitude of 100 is initialized along the x direction. This benchmark has been set on the [0; 1]2 unit
square with γ = 1.4 and µ = 1. We have run computations on 400× 400 cells with the fourth-order scheme
and a CFL coefficient of 0.6 until time t = 0.01. Hyperviscosity is enabled with Cβ = 10, Cν = 1 and
Cκ = Cη = 0.1. Figure 5.6 plots the density, gas pressure, velocity and magnetic pressure obtained at final
time and shows a good agreement with numerical results given in the literature (see [3, 5] for example).
Note that the computation of fourth-order accurate point-wise values of conservative variables has been
disabled in a few pathologic cells because it sometimes generated negative pressure values. This could be
done without losing conservativity contrarily to a previous version of MHD-GoHy schemes which had been
presented in [93] whose reconstruction step (see section 4.2.2) was performed on conservative variables. This
highlights the flexibility gain (and the increased robustness) obtained by moving transverse reconstruction
operations on fluxes.
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Figure 5.5: Numerical solution of the rotor problem at time t = 0.295 obtained with the fourth-order scheme
on 400× 400 cells.
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Figure 5.6: Numerical solution of Balsara’s blast wave problem at time t = 0.01 obtained with the fourth-
order scheme on 400× 400 cells.
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Chapter 6

Extension to axisymmetric geometries

We propose in this chapter an extension of GoHy schemes to one-dimensional and two-dimensional
axisymmetric geometries. More precisely, we consider the (z, r, θ) system of coordinates in the sequel and
assume that the flow is invariant by rotation around the z-axis, thus cancelling the space derivatives along
the θ-direction. Note that we only describe the construction of numerical schemes for the axisymmetric
ideal MHD equations: schemes for hydrodynamics can easily be obtained by removing the magnetic field’s
contribution.

We encounter two main difficulties when dealing with axisymmetric geometries. On the one hand, we will
see that both hydrodynamics and ideal MHD systems of equations involve a non-conservative source term in
this context. This additional term requires a particular attention since it has to be evaluated in a sufficiently
accurate way in order to build high-order numerical schemes. In this study, we propose to approximate it
using a methodology that is similar to the one used for building high-order accurate Lagrangian fluxes. On
the other hand, we will point out an issue that arises for the computation of high-order Lagrangian fluxes
in the axisymmetric case. These indeed involve 1/r terms that have to be computed at cell interfaces and
thus have to be evaluated carefully along the r = 0 axis. This is not a problem from a theoretical point
of view - solutions that are defined along the r = 0 axis naturally lead to well-defined Lagrangian fluxes
- but from an algorithmic point of view since we resort to an automated procedure (see section 4.1.2) for
computing approximate fluxes. We propose in this chapter a modification of this procedure that avoids the
computation of unphysical values along the r = 0 axis.

The outline of this chapter is the following. We first apply the methodology described in section 4.1.2
to the one-dimensional axisymmetric ideal MHD system. As indicated previously, we insist above all on
the approximation of the non-conservative term and on the automated computation of Lagrangian fluxes
along the r = 0 axis. We then give a few details about the two-dimensional case, in particular about the
axisymmetric extension of the reconstruction step, divergence cleaning techniques and artificial viscosity.
Several numerical results are finally provided on both smooth and non-smooth test problems in order
to illustrate the convergence and robustness features of GoHy schemes. Note that we do not present
performance and parallel efficiency figures in this chapter: these are indeed similar to the ones given in
chapter 5 for the planar case.
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6.1 One-dimensional axisymmetric ideal MHD equations

The one-dimensional ideal MHD equations in axisymmetric geometry write:

∂t



rρ

rρur

rρuθ

rρuz

rBr

Bθ

rBz

rρe



+ ∂r



rρur

rρu2
r + rP − rB2

r
µ

rρuruθ − rBrBθ
µ

rρuruz − rBrBz
µ

0

urBθ − uθBr

rurBz − ruzBr

r(ρe+ P )ur − ru·B
µ Br



=



0

ρu2
θ + P − B2

θ
µ

−ρuruθ + BrBθ
µ

0

0

0

0

0



. (6.1)

We recall that P denotes the total pressure defined by:

P = p+
B ·B
2µ

.

We describe in this section how to build GoHy schemes for the one-dimensional system (6.1). To that end,
it is first rewritten in Lagrangian coordinates and then discretized in the finite volume framework. We insist
in particular on the high-order accurate approximation of the non-conservative term and on the practical
computation of Lagrangian fluxes along the r = 0 axis. We will also see that the equation on Bθ has to be
treated in a specific way since its structure slightly differs from the other ones.

Remark 24. In the one-dimensional case, since ∂t(rBr) = 0, the complete finite volume scheme for Br

simply writes:

(Br)
n+1

i = (Br)
n

i with (Br)
n

i =
1

ri∆r

∫ r
i+1

2

r
i− 1

2

rBr(r, t) dr.

Note that this approach is only valid in the one-dimensional case: it should not be applied in the multidi-
mensional case as explained in the sequel (see section 6.2.2).

6.1.1 Lagrangian step

We first rewrite system (6.1) in Lagrangian coordinates. To that end, we introduce the the (r, t)→ (R, t)
variable change given by:

dr(R, t) = J(R, t) dR+ ur(R, t) dt

which is actually similar to the planar variable change (4.3). The previously mentioned relations between
partial derivatives (see Lemma 1 page 60) are thus suitable in the axisymmetric case. We nevertheless write
them alternatively in order to add the source term’s contribution and obtain the following reference relation
for any (φ, ψ, χ) triple:

[∂t(Jφ) + ∂Rψ − Jχ] (R, t) = [J · (∂tφ+ ∂r(φur + ψ)− χ)] (r, t). (6.2)

The Jacobian can be determined by applying (6.2) to the (rρ, 0, 0) triple, leading to:

∂t (rρJ) = 0.



6.1. One-dimensional axisymmetric ideal MHD equations 137

J is thus given by:

J =
Rρ0

rρ

where ρ0 denotes the initial density. Applying relation (6.2) to appropriately chosen triples, one finally
obtains the one-dimensional ideal MHD system in Lagrangian coordinates:

∂t



Rρ0τ

Rρ0ur

Rρ0uθ

Rρ0uz

Rρ0τBr

JBθ

Rρ0τBz

Rρ0e
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+ ∂R
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µ
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µ Br



= J



0

ρu2
θ + P − B2

θ
µ

−ρuruθ + BrBθ
µ

0

0

0

0

0



. (6.3)

Remark 25. One can notice that the Bθ equation differs from the other ones: its structure is indeed
similar to planar equations studied in previous chapters. It is thus discretized and solved using the planar
Lagrange-remap procedure. Further details about this point are given in section 6.1.3.

We now consider the following set of Lagrangian equations:

∂t(RU) + ∂RF(U) = S(U) (6.4)

with:

U =



ρ0ur

ρ0uθ

ρ0uz

ρ0τBz

ρ0e


, F(U) =
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rP − rB2
r

µ

−rBrBθ
µ

−rBrBz
µ

−ruzBr

rPur − ru·B
µ Br


, S(U) =



ρu2
θ + P − B2

θ
µ

−ρuruθ + BrBθ
µ

0

0

0


.

System (6.4) does not include:

• the equation on (ρ0τ) since there is no need to compute updated values of (ρ0τ) as we indicated
previously (see remark 9 page 71);

• the equation on Br since the complete scheme for Br is trivial in the one-dimensional case (see remark
24);

• the equation on Bθ since it is treated differently (see remark 25).

We discretize system (6.4) on the [Ri− 1
2
;Ri+ 1

2
] regular grid (i.e. with a constant ∆R = ∆r mesh size) using

a finite volume method. This approach leads to the following numerical scheme:

Un+1
i −Un

i

∆t
+

F∗
i+ 1

2

− F∗
i− 1

2

Ri∆R
=

∆t
Ri

S∗i
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where Un
i denotes the following cell average of U over [Ri− 1

2
;Ri+ 1

2
] at time tn:

Un
i =

1
Ri∆R

∫ R
i+1

2

R
i− 1

2

RU(R, tn) dR,

F∗
i+ 1

2

the Lagrangian flux at the Ri+ 1
2

boundary:

F∗
i+ 1

2

=
1

∆t

∫ tn+1

tn
F(U)(Ri+ 1

2
, t) dt,

and S∗i the time-space average of the Lagrangian source term:

S∗i =
1

∆t

∫ tn+1

tn

 1
∆R

∫ R
i+1

2

R
i− 1

2

S(U)(R, t) dR

 dt.
In the axisymmetric case, building a high-order Lagrangian scheme supposes to evaluate high-order accurate
approximations of fluxes and source terms. We propose such approximate terms in the sequel.

Lagrangian fluxes computation

As in the planar case, approximate flux terms are obtained thanks to a truncated Taylor expansion and
the resulting time-derivatives are replaced by space-derivatives using the Cauchy-Kovalevskaya procedure.
While the time-derivatives of τ , u and B can be easily derived from system (6.3), one has once again to pay
attention to the pressure term. From the second law of thermodynamics, one can show that the pressure
satisfies the following evolution equation for any equation of state:

∂tp = −(ρc)2

Rρ0
∂R(rur)−

Γ(u ·B)
Rρ0τµ

∂R(rBr). (6.5)

This result can nevertheless lead to different approximate Lagrangian fluxes depending on the considered
context. It can indeed be simplified in several specific cases in order to reduce the cost of Lagrangian fluxes’
computation.

• In the one-dimensional case, the divergence constraint implies that ∂R(rBr) = 0. The expression of the
pressure’s time-derivative is thus similar to the one given in section 4.1.2 for planar hydrodynamics.
As a matter of fact, the expression of the Lagrangian sound speed’s time-derivative is also similar to
the one that had been derived in the planar hydrodynamical case. These write:

∂tp = −(ρc)2

Rρ0
∂R(rur) and ∂t(ρc)2 = −2ρ(ρc)2G

Rρ0τ
∂R(rur). (6.6)

We recall that these expressions are valid for any equation of state and allow to build Lagrangian fluxes
independently from the equation of state up to third-order accuracy. From fourth-order accuracy, we
assume for the sake of simplicity that ∂tG = 0, which is an assumption satisfied by ideal gases for
example (see remark 7 page 66).

• In the case of multidimensional computations in the orthogonal MHD framework, the only possibly
non-zero component of the magnetic field is the one that is perpendicular to the computational
domain, i.e. Bθ here. Br and Bz are thus identically zero in this context and the spatial derivative
of the magnetic field included in (6.5) can be removed for both dimensional sweeps along the z and r
directions. The above-given time-derivatives’ expressions can therefore be used.
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• In the case of multidimensional MHD computations, the divergence constraint does not imply that
the spatial derivative of the magnetic field included in (6.5) is zero. The expression of the pressure’s
time-derivative given by (6.5) thus cannot be simplified. It allows to build Lagrangian fluxes that are
valid for any equation of state up to second-order accuracy. From third-order accuracy, we restrict for
the sake of simplicity to ideal gases. In this case, the Lagrangian sound speed’s time-derivative can
be obtained by differentiating its definition:

∂t(ρc)2 = γ∂t

(p
τ

)
since γ is a constant for ideal gases

=
γ

τ
∂tp−

(ρc)2

τ
∂tτ

= −(γ + 1)(ρc)2

Rρ0τ
∂R(rur)−

γΓ(u ·B)
Rρ0τ2µ

∂R(rBr)

whereas the time-derivative of G is zero (see remark 7 page 66).

Once the Cauchy-Kovalevskaya procedure has been applied, cell-centered point-wise values of conservative
variables have to be computed according to the following high-order accurate formula:

(ρ0φ)n
i = cN0 · (ρ0φ)

n

i +
bN/2c∑
k=1

cNk ·
(
ri+k

ri
(ρ0φ)

n

i+k +
ri−k

ri
(ρ0φ)

n

i−k

)
for φ ∈ {1,u, τBr, τBz, e}

(Bθ)n
i,j = cN0 · (JBθ)

n

i +
bN/2c∑
k=1

cNk ·
(
(JBθ)

n

i+k + (JBθ)
n

i−k

)
(see section 6.1.3),

(6.7)

where N is the desired order of accuracy. One can then determine estimations of quantities involved in
the truncated Taylor expansion using finite difference approximations given by (4.16) and evaluate the
high-order accurate Lagrangian fluxes as explained in the previous chapters.

Practical computation of Lagrangian fluxes along the r = 0 axis

Computing high-order accurate Lagrangian fluxes with the help of the Cauchy-Kovalevskaya procedure
leads to expressions that involve 1/r terms on cell interfaces and thus have to be evaluated carefully along
the r = 0 axis. This distinctive characteristic of the axisymmetric case does not pose a problem in terms
of definition: solutions that are well-defined at r = 0 theoretically lead to well-defined Lagrangian fluxes.
But it represents a difficulty in terms of discretization: fluxes have to be properly evaluated along the
r = 0 axis so that they do not lead to unphysical numerical solutions. This is all the more an issue when
Lagrangian fluxes are generated using an automated procedure, which is the case for GoHy schemes since
time-derivatives’ calculations can hardly be done by hand from a given order of accuracy. We thus propose
in this section a method for computing approximate fluxes as properly as possible along the r = 0 axis.
It consists in three modifications of the procedure given in section 4.1.2. Note that though the strategy
described below reveals efficient in practice, there is no theoretical evidence that validates it.

1. First of all, time-derivatives involved in numerical fluxes should be computed in one step instead of
evaluating the time-derivative of each variable separately. For example, one should try to evaluate
directly the whole ∂t(rP ) at the r = 0 cell interface instead of computing approximations of ∂tr and
∂tP separately and then mixing them together. Such an approach obviously reduces the number of
1/r terms in approximate Lagrangian fluxes but it also makes their computation more expensive. This
technique should therefore only be used along the r = 0 axis.
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2. There however still may be some 1/r terms left, especially when dealing with high-order Lagrangian
fluxes. Another possible modification consists in interpolating pathological zero-degree terms in one
step instead of interpolating each variable separately. Assume for example that one has to compute a
high-order accurate estimation of p/rα at the r = 0 cell interface from cell-centered point-wise values,
α being a positive exponent. This can be achieved using the following interpolation formula:( p

rα

)
r=0
≈

s∑
k=1

dNeff
0,k ·

[( p
rα

)
r=

(2k−1)∆r
2

+
( p
rα

)
r=

(1−2k)∆r
2

]
with notations defined page 62. Such a manipulation may look trivial but its application becomes chal-
lenging with automatic Cauchy-Kovalevskaya procedures. Practically, we apply it by post-processing
the automatically generated flux terms using a Python script.

3. The last modification concerns the u∗ flux that has to be computed so that the position of Eulerian
cell interfaces can be updated: one has to set u∗ to zero along the r = 0 axis. Indeed, since we
are considering axisymmetric geometries, the r = 0 boundary can be treated as if it was a reflective
boundary along which the normal component of the velocity has to be zero.

Remark 26. Note that it is also possible to simply degrade Lagrangian fluxes at second-order along the
r = 0 axis in order to avoid pathological cases since second-order fluxes do not involve 1/r terms provided
that the first above-described modification has been applied. Though this approach cannot be considered
as a satisfying solution, numerical experiments have shown that it does not affect the order of convergence
in practice.

Approximate source term computation

We present in this section how the S∗i source term can be evaluated high-order accurately. This can be
achieved using a truncated Taylor expansion in both space and time around (Ri, t

n) in the definition of S∗i ,
leading to the following S∗,Ni approximate non-conservative term:

S∗,Ni =
1

∆t

∫ tn+1

tn

 1
∆R

∫ R
i+1

2

R
i− 1

2

[ ∑
k+l<N

(t− tn)k

k!
· (R−Ri)l

l!
·
(
∂k+lS(U)
∂tk∂Rl

)
(Ri, t

n)

]
dR

 dt,
=

∑
k+l<N

[
1

∆t

∫ tn+1

tn

(t− tn)k

k!
dt

]
·

 1
∆R

∫ R
i+1

2

R
i− 1

2

(R−Ri)l

l!

 · (∂k+lS(U)
∂tk∂Rl

)
(Ri, t

n),

=
∑

k+l<N

∆tk

(k + 1)!
·

[
(Ri+ 1

2
−Ri)l+1

∆R(l + 1)!
−

(Ri− 1
2
−Ri)l+1

∆R(l + 1)!

]
︸ ︷︷ ︸

= 0 if l is odd

·
(
∂k+lS(U)
∂tk∂Rl

)
(Ri, t

n).

The approximate non-conservative term thus writes:

S∗,Ni =
∑

k+2l<N

∆tk

(k + 1)!
· ∆R2l

22l+1(2l + 1)!
· ∂

2lSk

∂R2l
(Ri, t

n) where Sk =
∂kS(U)
∂tk

. (6.8)

We propose the following strategy for computing S∗,Ni .

• Replace the time-derivatives involved in (6.8) by applying the Cauchy-Kovalevskaya procedure in
order to form expressions of Sk that can be computed using quantities known at time tn.
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• For the sake of robustness, estimate high-order accurate approximations of the resulting Sk terms at
cell interfaces using the finite difference formula (4.16).

• Evaluate the high-order accurate cell-centered non-conservative term (6.8) by interpolating the cell
interface representation of Sk. This step can be achieved using the following formula:

∂2lSk

∂R2l
(Ri, t

n) =
1

∆r2l

bNeff/2c∑
m=1

dNeff
2l,m

(
Sk

i−m− 1
2

+ Sk
i+m+ 1

2

)
,

the dNeff
2l,m coefficients being given in Table 4.2. Neff denotes here the effectively required order of

accuracy for each term appearing in S∗,N depending on its position in the Taylor expansion. It is
given by:

Neff = N − k − 2l + [(N − k − 2l) mod 2] .

We illustrate the above-described algorithm with the example of the second-order accurate S∗,2 term in the
case of hydrodynamics where the only non-zero component of S appears in the momentum equation and
writes (Jp). The expression of (Jp)∗,2i is given by:

(Jp)∗,2i = (Jp)(Ri, t
n) +

∆t
2

(
∂(Jp)
∂t

)
(Ri, t

n)

= p(Ri, t
n) +

∆t
2

(
∂Jp

∂t

)
(Ri, t

n) since J(t = tn) = 1.

At this stage, we first have to determine an expression of the time-derivative of (Jp). After a few simplifi-
cations, it writes:

∂t(Jp) = −(ρc)2

Rρ0
∂R(rur) + p∂Rur.

We now have to evaluate ∂t(Jp) at cell interfaces. This can be achieved using the following second-order
accurate approximation:

(∂t(Jp))
∗
i+ 1

2
= −1

2

(
(ρc)2i
Ri(ρ0)i

+
(ρc)2i+1

Ri+1(ρ0)i+1

)
·
(
ri+1(ur)i+1 − ri(ur)i

∆R

)
+
(
pi + pi+1

2

)
·
(

(ur)i+1 − (ur)i

∆R

)
.

Note that we have dropped the n superscript in the previous formula for the sake of simplicity, all quantities
being evaluated at time tn. The approximate non-conservative term is finally given by:

(Jp)∗,2i = p(Ri, t
n) +

∆t
4

(
(∂t(Jp))

∗
i+ 1

2
+ (∂t(Jp))

∗
i− 1

2

)
.

Remark 27. Several approximate time-derivatives appear in both Lagrangian fluxes and non-conservative
terms. These are computed only once in order to avoid unnecessary calculations.

6.1.2 Remap step

Once the Lagrangian scheme has been applied, we have at our disposal a set of Lagrangian conservative
variables (ρ0φ) for φ ∈ {1,u, τBz, e} at time tn+1 (we recall that the case of Bθ is discussed in section 6.1.3).
These correspond to Eulerian conservative variables on the non-uniform {rn+1

i+ 1
2

} grid given by:

rn+1
i+ 1

2

= ri+ 1
2

+ (ur)∗i+ 1
2

∆t since ∂tr = ur.
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Indeed, since the Lagrangian variable change is given by Rρ0dR = rρdr, Eulerian and Lagrangian conser-
vative variables satisfy the following exact formula:

Ri∆R (ρ0φ)
n+1

i =
∫ R

i+1
2

R
i− 1

2

R(ρ0φ)(R, tn+1) dR =
∫ rn+1

i+1
2

rn+1

i− 1
2

r(ρφ)(r, tn+1) dr. (6.9)

The remap step aims at projecting these values on the initial regular Cartesian grid. It is based on the
following integral splitting

ri∆r (ρφ)
n+1

i =
∫ r

i+1
2

r
i− 1

2

r(ρφ)(r, tn+1) dr

=
∫ rn+1

i− 1
2

r
i− 1

2

r(ρφ)(r, tn+1) dr

︸ ︷︷ ︸
P

i− 1
2

+
∫ rn+1

i+1
2

rn+1

i− 1
2

r(ρφ)(r, tn+1) dr

︸ ︷︷ ︸
Pi

+
∫ r

i+1
2

rn+1

i+1
2

r(ρφ)(r, tn+1) dr

︸ ︷︷ ︸
P

i+1
2

.

We recall that Pi corresponds to the cell average of (ρφ) on the non-uniform grid {rn+1
i+ 1

2

} which is given

by (6.9) and that the Pi∓ 1
2

terms in the right hand side can be expressed from the so-called remap fluxes
(ρφ)∗

i∓ 1
2

:

Pi∓ 1
2

=
(
rn+1
i∓ 1

2

− ri∓ 1
2

)
(ρφ)∗

i∓ 1
2

with (ρφ)∗
i∓ 1

2

=
1

rn+1
i∓ 1

2

− ri∓ 1
2

∫ rn+1

i∓ 1
2

r
i∓ 1

2

r(ρφ)(r, tn+1) dr.

Since rn+1
i+ 1

2

− ri+ 1
2

= u∗
i+ 1

2

∆t, the remap scheme finally writes:

(ρφ)
n+1

i = (ρ0φ)
n+1

i − ∆t
ri∆r

(
u∗

i+ 1
2

(ρφ)∗
i+ 1

2

− u∗
i− 1

2

(ρφ)∗
i− 1

2

)
.

High-order accurate remap fluxes can be computed as explained in section 4.1.3. The only difference with
the planar case comes from the values of the Hφ

i primitive (4.22). Indeed, in the axisymmetric case, these
are given by:

Hφ
i (xn+1

i−s+ 1
2

) = 0,

Hφ
i (xn+1

i−s+ 3
2

) = ri−s+1∆r(ρ0φ)
n+1

i−s+1,

Hφ
i (xn+1

i−s+ 5
2

) = ∆r
(
ri−s+1(ρ0φ)

n+1

i−s+1 + ri−s+2(ρ0φ)
n+1

i−s+2

)
,

...

Hφ
i (xn+1

i+s− 1
2

) = ∆r
(
ri−s+1(ρ0φ)

n+1

i−s+1 + . . .+ ri+s−1(ρ0φ)
n+1

i+s−1

)
.

with notations defined in section 4.1.3.

Stability condition

In axisymmetric geometry, the stability condition for the whole Lagrange-remap schemes slightly differs
from the planar case. It is indeed given by:

∆t ≤ max
ri∆r

ri+ 1
2
(|ui|+ (cf )i)

.
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where cf denotes the fast magnetosonic wave speed1.

6.1.3 Solving the Bθ equation

We now focus on the particular treatment of the Bθ equation which writes:

∂tBθ + ∂r(urBθ − uθBr) = 0. (6.10)

We have seen previously (see remark 25) that it is similar to planar equations studied in previous chapters.
It is thus reasonable to solve it using the planar Lagrange-remap procedure described in sections 4.1.2 and
4.1.3. Introducing the (r, t)→ (R, t) Lagrangian variable change, equation (6.10) rewrites:

∂t(JBθ) + ∂R(−uθBr) = 0. (6.11)

We integrate equation (6.11) over [Ri− 1
2
;Ri+ 1

2
] × [tn; tn+1] and thus obtain the following finite volume

scheme:
(JBθ)

n+1

i = (JBθ)
n

i −
∆t
∆r

[
(−uθBr)∗i+ 1

2

− (−uθBr)∗i− 1
2

]
(6.12)

where the (JBθ)
n

i,j denotes the planar cell average:

(JBθ)
n

i,j =
1

∆R

∫ R
i+1

2

R
i− 1

2

(JBθ)(R, tn) dR.

Note that computing cell-centered point-wise values of Bθ has to be performed using the planar formula
(4.15):

(Bθ)n
i,j = (JBθ)n

i,j since J(t = tn) = 1

= cN0 · (JBθ)
n

i +
bN/2c∑
k=1

cNk ·
(
(JBθ)

n

i+k + (JBθ)
n

i−k

)
.

At this stage, Lagrangian fluxes have to be computed using the procedure described in section 6.1.1 in order
to update cell averages of (JBθ) according to the finite volume scheme (6.12). The resulting values now
have to be projected on the initial grid. To that end, we consider the following integral splitting:

∆r(Bθ)
n+1

i =
∫ r

i+1
2

r
i− 1

2

Bθ(r, tn+1) dr =
∫ rn+1

i− 1
2

r
i− 1

2

Bθ(r, tn+1) dr +
∫ rn+1

i+1
2

rn+1

i− 1
2

Bθ(r, tn+1) dr +
∫ r

i+1
2

rn+1

i+1
2

Bθ(r, tn+1) dr.

The second right hand side term is evaluated using an exact formula which is similar to (6.9). It writes:∫ rn+1

i+1
2

rn+1

i− 1
2

Bθ(r, tn+1) dr =
∫ R

i+1
2

R
i− 1

2

JBθ(R, tn+1) dR = ∆R(JBθ)
n+1

i ,

since the (r, t)→ (R, t) variable change satisfies dr = JdR. The remaining terms are remap fluxes:

(Bθ)∗i+ 1
2

=
1

rn+1
i+ 1

2

− ri+ 1
2

∫ rn+1

i+1
2

r
i+1

2

Bθ(r, tn+1) dr,

which have to be computed using the planar procedure described in section 4.1.3. The remap scheme for
Bθ is finally given by:

(Bθ)
n+1

i = (JBθ)
n+1

i − ∆t
∆r

(
u∗

i+ 1
2

(Bθ)∗i+ 1
2

− u∗
i− 1

2

(Bθ)∗i− 1
2

)
. (6.13)

1In the case of hydrodynamics, cf is the sound speed.
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6.2 Two-dimensional extension

Now that the GoHy high-order Lagrange-remap schemes have been described in the one-dimensional
case, we present their extension to the two-dimensional axisymmetric ideal MHD system which is given by:

∂t



rρ

rρur

rρuθ

rρuz

rBr

rBz

rρe


+ ∂r



rρur

rρu2
r + rP − rB2

r
µ

rρuruθ − rBrBθ
µ

rρuruz − rBrBz
µ

0

rurBz − ruzBr

r(ρe+ P )ur − ru·B
µ Br


+ r∂z



ρuz

ρuzur − BzBr
µ

ρuzuθ − BzBθ
µ

ρu2
z + P − B2

z
µ

uzBr − urBz

0

(ρe+ P )uz − u·B
µ Bz


=



0

ρu2
θ + P − B2

θ
µ

−ρuruθ + BrBθ
µ

0

0

0

0



∂tBθ + ∂r(urBθ − uθBr) + ∂z(uzBθ − uθBz) = 0.

We rewrite it in the following general form: ∂tU + ∂rFr + r∂zFz = S,

∂tBθ + ∂r(urBθ − uθBr) + ∂z(uzBθ − uθBz) = 0.
(6.14)

Once again, the two-dimensional extension basically relies on high-order accurate dimensional splitting
techniques which here consist in solving successively: ∂tU + ∂rFr = S

∂tBθ + ∂r(urBθ − uθBr) = 0
and

 ∂tU + r∂zFz = 0

∂tBθ + ∂z(uzBθ − uθBz) = 0

with appropriately weighted time steps. As in the planar case, this strategy has to be combined with a
reconstruction step and the resolution of an additional equation in order to advect divergence errors. Both
the fluxes reconstruction and hyperbolic divergence cleaning slightly differ from the planar case. We present
their axisymmetric version in this section.

6.2.1 Fluxes reconstruction

First of all, we recall that the Bθ equation is discretized in a planar framework: the planar reconstruction
step presented in section 4.2.2 can therefore be applied without any modification to the Lagrangian and
remap schemes (6.12) and (6.13). We now focus on the reconstruction step in the axisymmetric case for
the remaining variables. We recall that the Lagrangian and remap fluxes that operate on two-dimensional
cell averages actually are cell averages of the one-dimensional fluxes. More precisely, one has to compute:

Fi+ 1
2
,j =

1
rj∆r

∫ r
j+1

2

r
j− 1

2

rFi+ 1
2
(r) dr when solving system (6.14) along the z direction,

Fi,j+ 1
2

=
1

∆z

∫ z
i+1

2

z
i− 1

2

Fj+ 1
2
(z) dz when solving system (6.14) along the r direction,
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where F denotes either the Lagrangian or the remap flux. The reconstruction formula given in the planar
case (4.39b) can obviously be used to compute the Fi,j+ 1

2
fluxes along the r direction. On the contrary,

an alternative formula is required for determining the z-wise Fi+ 1
2
,j fluxes. We propose the following

reconstruction function:

Π−1
(
Fi+ 1

2

)
= q0Fi+ 1

2
(rj) +

bN/2c∑
k=1

qk

(
rj+k

rj
Fi+ 1

2
(rj+k) +

rj−k

rj
Fi+ 1

2
(rj−k)

)
= Fi+ 1

2
,j +O

(
∆rN

)
which allows to build high-order accurate two-dimensional fluxes, the q coefficients being given in Table 4.2.2.
This formula has been obtained by applying the planar reconstruction operator (4.39b) to (rF) and then
dividing the result by rj .

Remark 28. Note that the reconstruction procedure for the r direction not only has to be applied to
Lagrangian and remap fluxes but also to the approximate source terms.

6.2.2 Hyperbolic divergence cleaning in the axisymmetric case

Following the method proposed by Dedner et al. [29], as explained in section 5.2.4, hyperbolic divergence
cleaning techniques consist in adding an unknown denoted by ψ which is coupled to the ideal MHD system
through:

∂tB +∇ · (u⊗B−B⊗ u) +∇ψ = 0, (6.15)

∂tψ + c2h∇ ·B = 0. (6.16)

We have seen in section 5.2.4 that ψ satisfies the same evolution equation than ∇ ·B which actually is the
wave equation:

∂ttψ − c2h∆ψ = 0.

As a matter of fact, the additional equation on ψ allows to advect divergence errors to the boundaries with
the finite speed ch > 0. In this study, ch is defined from the fast magnetosonic wave speed at t = 0 (see
remark 22 page 117). In the axisymmetric case, equations (6.15) and (6.16) rewrite:

∂t(rBr) + ∂r(rψ) + r∂z (uzBr − urBz + ψ) = ψ, (6.17a)
∂t(rBz) + ∂r (rurBz − ruzBr + rψ) + r∂zψ = 0, (6.17b)

∂t(rψ) + c2h∂r(rBr) + c2hr∂z(Bz) = 0. (6.17c)

Equations (6.17a)-(6.17c) can be solved along the z-direction using the planar MHD-GoHy schemes that
have been described in chapter 5. We thus focus in the sequel on the resolution of (6.17a)-(6.17c) along the
r-direction. The corresponding r-wise Lagrangian schemes write:

(ρ0τBr)
n+1

i,j = (ρ0τBr)
n

i,j −
∆t
Ri∆r

[
(rψ − rurBr)

∗
i+ 1

2
,j − (rψ − rurBr)

∗
i− 1

2
,j

]
+

∆t
Ri

(ψ)∗i,j ,

(ρ0τBz)
n+1

i,j = (ρ0τBz)
n

i,j −
∆t
Ri∆r

[
(−ruzBr)

∗
i+ 1

2
,j − (−ruzBr)

∗
i− 1

2
,j

]
,

(ρ0τψ)
n+1

i,j = (ρ0τψ)
n

i,j −
∆t
Ri∆r

[(
c2hrBr − rurψ

)∗
i+ 1

2
,j
−
(
c2hrBr − rurψ

)∗
i− 1

2
,j

]
.
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Once updated values of the Lagrangian conservative variables have been computed, the following remap
schemes has to be applied for φ ∈ {Br, Bz, ψ}:

φ
n+1
i,j = (ρ0τφ)

n+1

i,j −
∆t
ri∆r

[
(ur)∗i+ 1

2
,j
(φ)∗

i+ 1
2
,j
− (ur)∗i− 1

2
,j
(φ)∗

i− 1
2
,j

]
.

Remark 29. The Br equation could actually be treated in a conservative way using the following formulation:

∂tBr + ∂rψ + ∂z (uzBr − urBz + ψ) = 0. (6.18)

In this case, the structure of the evolution equation (6.18) would be similar to the one for the Bθ equation
that we studied in section 6.1.3. One could therefore imagine to solve both Br and Bθ equations in the
same framework, i.e. using planar GoHy schemes. Nevertheless, we have not tested this approach yet and
thus restrict to the non-conservative form of the Br equation given previously.

The above-described hyperbolic divergence cleaning technique has been used for performing the numer-
ical computations described in section 6.4. Experiments have shown that, as in the planar case, it increases
the restitution time of the whole Lagrange-remap scheme of about 10% whatever the order of accuracy,
which seems reasonable in terms of computational cost.

6.3 Viscosity fluxes in the axisymmetric case

As in the case of hydrodynamics, the high-order Lagrange-remap schemes that we developed for the
axisymmetric ideal MHD equations are subject to Gibbs oscillations on discontinuities. To improve robust-
ness, we therefore again add hyperviscosity fluxes to the Lagrangian step. We recall that we thus consider
the following resistive MHD system:

∂t


ρ

ρu

B

ρe

+∇ ·


ρu

ρu⊗ u + P I− B⊗B
µ

u⊗B−B⊗ u

(ρe+ P )u− u·B
µ B

 =


0

∇ · τ

−η∇× (∇×B)

∇ ·
(
τu + η

µB ∧ (∇×B) + κ∇T
)

 (6.19)

and replace the physical constants β, ν, κ and η with artificial ones (marked with stars) so that consistency
with the initial ideal MHD system (5.1) is preserved. In the (z, r, θ) system of coordinates, the symmetric
viscous stress tensor τ writes:

τ = ν
(
∇u + (∇u)T

)
+
(
β − 2

3
ν

)
(∇ · u)I,

=


a ∂zuz + b

(
∂rur + ur

r

)
ν(∂ruz + ∂zur) ν∂zuθ

a ∂rur + b
(

ur
r + ∂zuz

)
ν
(
∂ruθ − uθ

r

)
aur

r + b(∂rur + ∂zuz)

 ,
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where a =
(
β + 4

3ν
)

and b =
(
β − 2

3ν
)
. Discrete expressions of the τ tensor’s components in the two-

dimensional axisymmetric case are given by:

τ zz
i,j =

(
β?

i,j +
4
3
ν?

i,j

)(
(uz)i+1,j − (uz)i−1,j

2∆z

)
+
(
β?

i,j −
2
3
ν?

i,j

)(
(ur)i,j+1 − (ur)i,j+1

2∆r
+

(ur)i,j

rj

)
,

τ zr
i,j = τ rz

i,j = ν?
i,j

(
(ur)i+1,j − (ur)i−1,j

2∆z
+

(uz)i,j+1 − (uz)i,j−1

2∆r

)
,

τ zθ
i,j = ν?

i,j

(
(uθ)i+1,j − (uθ)i−1,j

2∆z

)
,

τ rr
i,j =

(
β?

i,j +
4
3
ν?

i,j

)(
(ur)i,j+1 − (ur)i,j−1

2∆r

)
+
(
β?

i,j −
2
3
ν?

i,j

)(
(uz)i+1,j − (uz)i−1,j

2∆z
+

(ur)i,j

rj

)
,

τ rθ
i,j = ν?

i,j

(
(uθ)i,j+1 − (uθ)i,j−1

2∆r
− (uθ)i,j

rj

)
,

τ θθ
i,j =

(
β?

i,j +
4
3
ν?

i,j

)
(ur)i,j

rj
+
(
β?

i,j −
2
3
ν?

i,j

)(
(ur)i,j+1 − (ur)i,j−1

2∆r
+

(uz)i+1,j − (uz)i−1,j

2∆z

)
.

In this context, the ∇× (∇×B) and the B ∧ (∇×B) terms respectively write:

∇× (∇×B) =


1
r∂r (rΛ)

−∂zΛ

−∂r

(
∂rBθ + Bθ

r

)
− ∂z(∂zBθ)

 ,

and:

B ∧ (∇×B) =


Bθ∂zBθ +BrΛ

Bθ

(
Bθ
r + ∂rBθ

)
−BzΛ

−Bz∂zBθ −Br

(
Bθ
r + ∂rBθ

)
 ,

with:
Λ = (∇×B) · eθ = ∂zBr − ∂rBz.

Considering the unknown vector U = (ρ0uz, ρ0ur, ρ0uθ, ρ0τBz ρ0τBr, ρ0τBθ, ρ0e), we propose the
following discrete cell-centered artificial viscosity terms:

Vz,∗
i,j =


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i,j

(
(Bθ)i+1,j−(Bθ)i−1,j

2∆z

)
(τ zzuz)i,j + (τ zrur)i,j + (τ zθuθ)i,j + 1

µη
?
i,j (B ∧ (∇×B))z

i,j + κ?
i,j

(
Ti+1,j−Ti−1,j

2∆z

)


,
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Vr,∗
i,j =


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i,j
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i,j
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(Bθ)i,j+1−(Bθ)i,j−1
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)
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µ η
?
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i,j + rjκ
?
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(
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
,

with the following notations:

Λi,j =
(Br)i+1,j − (Br)i−1,j

2∆z
− (Bz)i,j+1 − (Bz)i,j−1

2∆r
,

(B ∧ (∇×B))z
i,j = (Bθ)i,j

(
(Bθ)i+1,j − (Bθ)i−1,j

2∆z

)
+ (Br)i,jΛi,j ,

(B ∧ (∇×B))r
i,j = (Bθ)i,j

(
(Bθ)i,j+1 − (Bθ)i,j−1

2∆r
+

(Bθ)i,j

rj

)
− (Bz)i,jΛi,j .

These allow to build the following artificial viscosity fluxes along z and r directions:

V∗
i+ 1

2
,j

=
1
2

(
Vz,∗

i,j + Vz,∗
i+1,j

)
and V∗

i,j+ 1
2

=
1
2

(
Vr,∗

i,j + Vr,∗
i,j+1

)
.

Moreover, a viscous source term VS? has to be added to S? in the axisymmetric case when performing the
resolution along the r direction. It writes:

VS?
i,j =

(
0, −τ θθ

i,j , τ rθ
i,j , 0, 0, 0, 0

)t
.

Note that there is no need to design new artificial constants: these proposed in sections 4.3 and 5.3 are
suitable for axisymmetric geometries.

6.4 Numerical results in axisymmetric geometry

To conclude the description of MHD-GoHy schemes in axisymmetric geometry, we provide in this section
numerical results on various test problems taken from the related literature. More precisely, we first compute
the experimental order of convergence on smooth test problems and then present results obtained for several
non-smooth test problems to illustrate the robustness of the schemes we developed.

6.4.1 Experimental order of convergence

We first focus on smooth test problems and carry out a convergence analysis. To that end, we consider
Kidder’s isentropic compression problem [53] in spherically symmetric geometry and a two-dimensional
analytical solution proposed by Picard [71].
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Two-dimensional axisymmetric hydrodynamics: Kidder’s isentropic compression problem in
spherically symmetric geometry

We first consider Kidder’s isentropic compression problem in spherically symmetric geometry which
provides an analytical solution to the two-dimensional axisymmetric hydrodynamics equations. Since this
benchmark has already been studied in the planar case (see section 4.5.1), we here simply recall the density,
pressure and velocity profiles. Defining R =

√
r2 + z2, φ = atan(z/r) and:

ρ0(R) =
(
r22 −R2

r22 − r21
ργ−1
1 +

R2 − r21
r22 − r21

ργ−1
2

) 1
γ−1

,

the exact solution is given by:

ρ(R, t) = ρ0

(
R

h(t)

)
· h(t)

2
1−γ ,

p(R, t) = p2

(
ρ(R, t)
ρ2

)γ

,

ur(R, t) = − tR cosφ
τ2h(t)2

,

uz(R, t) = − tR sinφ
τ2h(t)2

.

The spherical symmetry is achieved by taking γ = 5/3 and we choose following parameters: p1 = 1, p2 = 100
and ρ2 = 1. Computations have been run for r ∈ [r1; r2] = [0; 1] until time t = 0.5τ with a CFL coefficient
of 0.9. The computational domain has reflective boundary conditions along the z and r axis, the boundary
conditions being imposed by the analytical solution elsewhere. We have reported the error between the
analytical and numerical solutions (measured using a L1 norm in space and time) in Table 6.1 with and
without hyperviscosity. One can notice that these results are very satisfying: the experimental order of
convergence perfectly matches the theoretical one and it is not affected by hyperviscosity.

Two-dimensional axisymmetric ideal MHD: Picard’s [70] analytical solution

We now focus on an analytical solution to the two-dimensional axisymmetric ideal MHD equations
provided by Picard [71]. Defining R =

√
r2 + z2, C0 = (3γ − 1)/2 and f(t) = (C0t+ 1)−1, it writes:

ρ(z, r, t) =

[
γ

γ − 1

(
f(t)

3(γ−1)
C0 +

f(t)2
√
r2 + z2

2(C0 − 1)

)] 1
γ−1

,

p(z, r, t) = ρ(z, r, t)γ ,

(uz, ur, uθ)(z, r, t) = f(t) · (z, r, 0)t,

(Bz, Br, Bθ)(z, r, t) = (rz + z2)−
3
2 · (z, r, 0)t.

This test problem has been set on the [1; 6]× [0; 5] computational domain with γ = 2, boundary conditions
being imposed by the analytical solution. We have run computations until time t = 0.1 and reported
the error measurements (evaluated using a L1 norm in space and time) between the exact and numerical
solutions in Table 6.2. These show that the experimental order of convergence matches the theoretical one
and that it is affected neither by hyperviscosity nor by divergence cleaning.
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WITHOUT HYPERVISCOSITY

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 1.96e-04 1.27e-05 1.68e-07

N = 200 4.92e-05 1.99 1.55e-06 3.03 1.03e-08 4.03

N = 400 1.23e-05 2.00 1.91e-07 3.02 6.40e-10 4.01

N = 800 3.07e-06 2.00 2.38e-08 3.01 4.01e-11 4.00

N = 1600 7.69e-07 2.00 2.96e-09 3.00 2.53e-12 3.99

WITH HYPERVISCOSITY (Cβ = Cν = Cκ = 1)

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 2.21e-04 1.29e-05 1.71e-07

N = 200 5.22e-05 2.08 1.58e-06 3.03 1.06e-08 4.02

N = 400 1.27e-05 2.04 1.96e-07 3.01 6.58e-10 4.01

N = 800 3.12e-06 2.02 2.44e-08 3.01 4.13e-11 4.00

N = 1600 7.74e-07 2.01 3.05e-09 3.00 2.60e-12 3.99

Table 6.1: Error measured using a L1 norm in space and time between the analytical and numerical solutions
for Kidder’s isentropic compression test problem in two-dimensional axisymmetric geometry.
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WITHOUT HYPERVISCOSITY

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 1.11e-03 2.03e-05 6.29e-08

N = 200 2.71e-04 2.03 2.21e-06 3.01 3.86e-09 4.02

N = 400 6.71e-05 2.01 3.12e-07 3.01 2.41e-10 4.00

N = 800 1.67e-05 2.00 3.89e-08 3.00 1.50e-11 4.00

N = 1600 4.16e-06 2.00 4.86e-09 3.00 9.40e-13 4.00

WITH HYPERVISCOSITY (Cβ = Cν = Cκ = Cη = 1)

Mesh size 2nd-order 3rd-order 4th-order

(N×N cells) error order error order error order

N = 100 1.09e-03 7.81e-06 6.29e-08

N = 200 2.69e-04 2.02 9.70e-07 3.01 3.86e-09 4.02

N = 400 6.69e-05 2.01 1.21e-07 3.01 2.41e-10 4.00

N = 800 1.67e-05 2.01 1.51e-08 3.00 1.50e-11 4.00

N = 1600 4.16e-06 2.00 1.88e-09 3.00 9.40e-13 4.00

Table 6.2: Error measured using a L1 norm in space and time between the analytical and numerical solutions
for Picard’s analytical solution to the axisymmetric two-dimensional ideal MHD system.
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6.4.2 Non-smooth test problems

Now that the convergence features of GoHy schemes for the axisymmetric case have been illustrated, we
focus on two non-smooth test problems - the Sod shock tube and the Noh problem - in both cylindrically and
spherically symmetric geometries which respectively correspond to one-dimensional and two-dimensional
axisymmetric geometries. Note that these two benchmarks have been already been described in the planar
case (see section 4.5.2), we thus do not recall initial conditions in the sequel.

Sod shock tube (axisymmetric hydrodynamics)

We first consider the one-dimensional Sod shock tube problem in cylindrically symmetric geometry that
we set on the r ∈ [0; 1] domain with a reflective left boundary and an open right one. Figure 6.1 plots
the density and pressure obtained at time t = 0.14 with the fourth-order scheme and a CFL coefficient
of 0.7. When hyperviscosity is enabled, the artifial coefficients are Cβ = 2 and Cκ = 5. These results
highlight the impact of hyperviscosity on oscillations (these have been noticeably reduced, leading to a
satisfying approximation of the exact solution) and tend to validate the usage of artificial viscosity in the
axisymmetric case.

We now consider the two-dimensional Sod shock tube problem in spherically symmetric geometry that
we set on the [0; 1]2 computational domain with reflective bottom and left boundary conditions and open
boundaries elsewhere. We have run this benchmark until time t = 0.5 with the fourth-order scheme and
a CFL coefficient of 0.7 on 1000 × 1000 cells. Figure 6.2 plots the density at final time with two different
artificial viscosity configurations.

• The first one only resorts to hyperviscosity with following parameters: Cβ = 1, Cν = 0.1 and Cκ =
2. The corresponding results show that Gibbs oscillations have been reduced but they also reveal
symmetry losses, especially in the vicinity of the z and r axis.

• The second one consists in designing β? and κ? with the hyperviscosity model whereas ν? is deter-
mined by the first-order artificial viscosity model, the artificial constants being the same than for
the first configuration. This strategy clearly improves symmetry preservation, leading to a satisfying
approximate solution.

Noh problem (axisymmetric hydrodynamics)

We now examine the behaviour of GoHy schemes on the stringent Noh problem that we first set in
cylindrically symmetric geometry on the [0; 0.4] computational domain with a reflective left boundary and
an open right one. Figure 6.3 plots the density and pressure obtained at time t = 0.6 on 400 cells with the
fourth-order scheme and a CFL coefficient of 0.4, the hyperviscosity model being enabled with Cβ = 5 and
Cκ = 7. Like its planar version, the axisymmetric Lagrange-remap scheme encounters some wall heating
issues in the vicinity of the reflective boundary that can be treated by combining the hyperviscosity model
with high values of Cκ (see Figure 6.4).

The Noh problem is now considered in spherically symmetric geometry. We set it on the [0; 0.4]2 domain
with reflective bottom and left boundaries and open boundaries elsewhere. We have run computations until
time t = 0.6 with the fourth-order GoHy scheme and a CFL coefficient of 0.4, the hyperviscosity model
being enabled with following parameters: Cβ = 5, Cν = 1, Cκ = 20. Figure 6.5 plots the density and
pressure obtained at final time on 400 cells. We observe the same behaviour than in the one-dimensional
case: one the one hand, taking large values of Cκ noticeably reduces wall heating (see Figure 6.7) and,
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Figure 6.1: One-dimensional Sod shock tube in cylindrically symmetric geometry at time t = 0.14. Density
(left) and velocity (right) obtained on 400 cells with the fourth-order scheme. The reference solution has
been obtained using a first-order accurate Lagrange-remap scheme cylindrical geometry [30] on 100,000
cells.

on the other hand, the approximate solution converges towards the exact one when refining the mesh (see
Figure 6.6).

As we have seen in the planar case, the solution to the Noh problem is known analytically [67]. At time
t = 0.6, the exact density and pressure write for the one-dimensional problem write:

ρ =

{
16 r < 0.2,
1 + 0.6

r r > 0.2,
and p =

{
16/3 r < 0.2,
0 r > 0.2,

whereas they are given in the two-dimensional case by:

ρ =

64
√
z2 + r2 < 0.2,(

1 + 0.6√
z2+r2

)2 √
z2 + r2 > 0.2,

and p =

{
64/3

√
z2 + r2 < 0.2,

0
√
z2 + r2 > 0.2.

Two-dimensional axisymmetric MHD implosion problem

We conclude this chapter with a test problem taken from [59] that represents an imploding sphere
in axisymmetric geometry. The initial spherically symmetric configuration is split between an outer low-
density and high-pressure shell and an inner high-density and low-pressure region. More precisely, it is
given by:

(ρ, p) =

{
(10, 1) if 0 ≤

√
z2 + r2 ≤ 0.8,

(1, 1000) if 0.8 ≤
√
z2 + r2 ≤ 2.

The fluid is initially at rest. A uniform magnetic field is set along the z-direction with a magnitude of 40. The
other parameters are γ = 5/3 and µ = 4π. Numerically, this test problem is set on the (z, r) ∈ [−2; 2]× [0; 2]
domain with a reflective boundary condition along the r = 0 axis and open boundaries elsewhere. We have
run computations on 1600 × 800 cells until time t = 0.07 with the third-order GoHy scheme and a CFL
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4th-order scheme + hyperviscosity

4th-order scheme + both artificial viscosity models

Figure 6.2: Density obtained for the two-dimensional Sod shock tube in spherically symmetric geometry at
time t = 0.5 on 1000×1000 cells. Left: zoom on the [0; 0.6]2 domain. Right: slice along the z = r axis. The
reference solution has been obtained using a one-dimensional first-order accurate Lagrange-remap scheme
in spherical geometry [30] on 100,000 cells.



6.4. Numerical results in axisymmetric geometry 155

Figure 6.3: Density (left) and pressure (right) for the Noh problem in cylindrically symmetric geometry at
time t = 0.6 on 400 cells.

Figure 6.4: Density for the cylindrically symmetric Noh problem at time t = 0.6 on 400 cells with different
values of Cκ: whole computational domain (left) and zoom on the [0; 0.05] region (right).
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density pressure

Figure 6.5: Two-dimensional Noh problem in spherically symmetric geometry: density (left) and pressure
(right) obtained at time t = 0.6. From top to bottom: map plot, surface plot and slice along the z = r axis.
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Figure 6.6: Density (top) and pressure (bottom) along the z = r axis for the Noh problem in spherically
symmetric geometry at time t = 0.6 on different meshes: whole computational domain (left) and zoom on
the left state (right).

Figure 6.7: Density along the z = r axis for the two-dimensional Noh problem at time t = 0.6 on 400 cells
with different values of Cκ: whole computational domain (left) and zoom on the [0; 0.05] region (right).
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coefficient of 0.5. The fourth-order scheme was unfortunately not able to pass this test, showing that
robustness still has to be improved in the axisymmetric case. Figures 6.8 and 6.9 plot the density and
pressure distributions as well as the r and z-components of the magnetic field, respectively at time t = 0.05
and t = 0.07. These show a good agreement with numerical results given in the literature [59]. One can
also notice that the symmetry properties of Bz and the antisymmetry properties of Br with respect to the
z = 0 axis are preserved.
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Figure 6.8: Numerical results for the implosion test problem obtained at time t = 0.05 with the third-order
MHD-GoHy scheme (zoom on the (z, r) ∈ [−1; 1]× [0; 1] domain).

Figure 6.9: Numerical results for the implosion test problem obtained at time t = 0.07 with the third-order
MHD-GoHy scheme (zoom on the (z, r) ∈ [−1; 1]× [0; 1] domain).



160 Chapter 6. Extension to axisymmetric geometries



161

Part III

Towards direct drive ICF computations
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Chapter 7

Discretization of diffusion and source
terms operators

The two-temperature resistive MHD model described in chapter 1 that has been derived for performing
direct drive ICF simulations relies on mathematical operators of different natures. While the previous part
has been devoted to designing numerical methods for the hyperbolic operator, we discuss in this chapter the
discretization of the remaining operators, namely the thermal and resistive conduction operators and the
source terms that take magnetic field generation as well as Hall and Nernst effects into account. In order
to be coupled with GoHy schemes through an operator splitting strategy, numerical methods presented in
the sequel are built in the same finite volume framework. In particular, the treatment of the Bθ equation
in the axisymmetric case is coherent with the approach described in section 6.1.3.

This study being devoted to the case of two-dimensional geometries, we will see in section 7.2 that the
only possibly non-zero component of the magnetic field is the one that is orthogonal to the computational
domain, i.e. Bz in the planar case and Bθ in the axisymmetric one. We thus restrict to the orthogonal
MHD framework in the sequel.

The numerical schemes described in this chapter do not aim to achieve high-order accuracy like the
previously presented GoHy schemes. We actually propose classical first-order accurate finite volume dis-
cretizations of the considered diffusion and source term operators. Our objective simply is to allow the
numerical resolution of the complete two-temperature resistive MHD model derived in chapter 1 at a rea-
sonable computational cost. In practice, even second-order accurate schemes would be too costly. Indeed,
the operator splitting strategy proposed in chapter 2 should be second-order accurate too - and thus more
expensive - and the implementation of diffusion schemes would reveal very difficult due to the complexity of
Braginskii’s conductivity and resistivity tensors given in section 1.6. A part of these developments have been
performed during the 2010 CEMRACS summer school and have been published as part of the CEMRACS
proceedings [92].

The outline of this chapter is the following. We first propose finite volume numerical methods for the
systems of equations that govern thermal and resistive conduction. In this context, attention will be paid
to the estimation of conductivity and resistivity tensors at cell interfaces. Then we give a few details about
the implementation of these schemes and present several numerical results on smooth and non-smooth test
problems in order to validate diffusion schemes. We finally describe the strategy that has been adopted for
dealing with magnetic field generation and Hall and Nernst effects.
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7.1 Diffusion schemes

7.1.1 Thermal conduction

We first consider in this section the system of equations that governs thermal conduction. According to
the operator splitting presented in chapter 2, it is given by (2.3) and writes:

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρeεe) +∇ · qe = 3me
mi
neνeikB(Ti − Te),

∂t(ρiεi) +∇ · qi = 3me
mi
neνeikB(Te − Ti),

∂tB = 0.

The density, velocity and magnetic field components being constant, we now focus on the electronic and
ionic temperatures equations. Since ε = CvT for both ions and electrons (where Cv is a constant), these
write:

ρeCve∂tTe +∇ · qe = 3
me

mi
neνeikB(Ti − Te), (7.1a)

ρiCvi∂tTi +∇ · qi = 3
me

mi
neνeikB(Te − Ti). (7.1b)

We recall that the electronic and ionic heat fluxes are defined by:

qe = −kB

(
κe · ∇Te

)
− kB

e

(
β · J

)
Te, (7.2a)

qi = −kB

(
κi · ∇Ti

)
, (7.2b)

where the thermoelectric tensor β and the conductivity tensors κe and κi are given by Braginskii’s closure
relations (see section 1.6). Equations (7.1a) and (7.1b) being very similar, we only discuss from now on the
case of the electronic temperature equation whose detailed form writes:

ρeCve∂tTe + ∂1 (qe · e1) +
1
xα

2

∂2 (xα
2qe · e2) = 3

me

mi
neνeikB(Ti − Te) (7.3)

with notations introduced in Appendix C. Equation (7.3) is now discretized in the finite volume framework
as indicated previously. To that end, we first multiply it by xα

2 and then integrate it over the (i, j) cell
[(x1)i− 1

2
; (x1)i+ 1

2
]× [(x2)j− 1

2
; (x2)j+ 1

2
], which leads to the following semi-discrete numerical scheme:

Cve · (xα
2 )j · (ρe)i,j · ∂t(Te)i,j +

1
∆x2

[
(xα

2 )j+ 1
2
(qe · e2)i,j+ 1

2
− (xα

2 )j− 1
2
(qe · e2)i,j− 1

2

]
+

(xα
2 )j

∆x1

[
(qe · e1)i+ 1

2
,j − (qe · e1)i− 1

2
,j

]
= 3

kBme

mi
· (xα

2 )j · (ne)i,j · (νei)i,j ·
[
(Ti)i,j − (Te)i,j

] (7.4)

where (Te)i,j denotes the cell average of Te over the (i, j) cell:

(Te)i,j =
1

(xα
2 )j∆x2

∫ (x2)
j+1

2

(x2)
j− 1

2

xα
2

 1
∆x1

∫ (x1)
i+1

2

(x1)
i− 1

2

Te(x1, x2, t) dx1

 dx2.
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In the specific two-dimensional case with B = Be3, the expression of the electronic heat flux using notations
introduced in Appendix C is given by:

qe = −kB


κ⊥e ∂1Te − κ∧e ∂2Te

κ⊥e ∂2Te + κ∧e ∂1Te

0

− ckBTe

eµ


β⊥

xα
2
∂2 (xα

2B) + β∧∂1B

−β⊥∂1B − β∧

xα
2
∂2 (xα

2B)

0

 .

We now combine the finite volume scheme (7.4) with a semi-implicit time discretization as suggested in
introduction (see page 15). More precisely, the relaxation term is written implicitly and the electronic
temperature terms that appear in (7.2a) are taken at time tn+1. The resulting numerical scheme writes:

Cve · (xα
2 )j · (ρe)i,j ·

(Te)
n+1

i,j − (Te)
n

i,j

∆t
+

1
∆x2

[
(xα

2 )j+ 1
2
(qe)∗i,j+ 1

2

− (xα
2 )j− 1

2
(qe)∗i,j− 1

2

]
+

(xα
2 )j

∆x1

[
(qe)∗i+ 1

2
,j
− (qe)∗i− 1

2
,j

]
= 3

kBme

mi
· (xα

2 )j · (ne)n
i,j · (νei)n

i,j ·
[
(Ti)

n+1

i,j − (Te)
n+1

i,j

]
.

(7.5)

Remark 30. The time discretization given in (7.5) is only semi-implicit because the conductivity tensor κe

which is evaluated at time tn depends on Te as indicated in its definition (see page 32).

The approximate heat fluxes along the x1 and x2 directions are respectively given by:

(qe)∗i+ 1
2
,j
≈ (qe · e1)i+ 1

2
,j ,

=− kB ·
(
κ⊥e

)n

i+ 1
2
,j
·

(
(Te)n+1

i+1,j − (Te)n+1
i,j

∆x1

)
− kB

e
·
(
β · J

)
i+ 1

2
,j
·

(
(Te)n+1

i,j + (Te)n+1
i+1,j

2

)

+ kB ·
(
κ∧e
)n
i+ 1

2
,j
·

(
(Te)n+1

i+1,j+1 + (Te)n+1
i,j+1 − (Te)n+1

i+1,j−1 − (Te)n+1
i,j−1

4∆x2

)
,

(qe)∗i,j+ 1
2

≈ (qe · e2)i,j+ 1
2
,

=− kB ·
(
κ⊥e

)n

i,j+ 1
2

·

(
(Te)n+1

i,j+1 − (Te)n+1
i,j

∆x2

)
− kB

e
·
(
β · J

)
i,j+ 1

2

·

(
(Te)n+1

i,j + (Te)n+1
i,j+1

2

)

− kB ·
(
κ∧e
)n
i,j+ 1

2
·

(
(Te)n+1

i+1,j+1 + (Te)n+1
i+1,j − (Te)n+1

i−1,j+1 − (Te)n+1
i−1,j

4∆x1

)
,

with:(
β · J

)
i+ 1

2
,j

= +
c

µ
·
(
β∧
)n
i+ 1

2
,j
·
(
Bn

i+1,j −Bn
i,j

∆x1

)

+
c

µ
·
(
β⊥
)n

i+ 1
2
,j
·

(xα
2 )j+1

(
Bn

i+1,j+1 +Bn
i,j+1

)
− (xα

2 )j−1

(
Bn

i+1,j−1 +Bn
i,j−1

)
4(xα

2 )j∆x2

 ,

(
β · J

)
i,j+ 1

2

=− c

µ
·
(
β∧
)n
i,j+ 1

2
·

(
(xα

2 )j+1B
n
i,j+1 − (xα

2 )jB
n
i,j

(xα
2 )j+ 1

2
∆x2

)

− c

µ
·
(
β⊥
)n

i,j+ 1
2

·
(
Bn

i+1,j+1 +Bn
i+1,j −Bn

i−1,j+1 −Bn
i−1,j

4∆x1

)
.
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Remark 31. The value of the heat flux being imposed by boundary conditions along the x2 = 0 axis, the
(xα

2 )j+ 1
2

denominator in the expression of (β · J)i,j+ 1
2

does not lead to pathologic approximations in the
axisymmetric case.

The cell interface representations of the conductivity tensors’ components have been determined so that
the heat flux is continuous across cell interfaces as explained in Appendix D. They are given by harmonic
means:

κ⊥
i+ 1

2
,j

= 2
κ⊥i,j · κ⊥i+1,j

κ⊥i,j + κ⊥i+1,j

, κ∧
i+ 1

2
,j

=
κ⊥i,j · κ∧i+1,j + κ∧i,j · κ⊥i+1,j

κ⊥i,j + κ⊥i+1,j

,

κ⊥
i,j+ 1

2

= 2
κ⊥i,j · κ⊥i,j+1

κ⊥i,j + κ⊥i,j+1

, κ∧
i,j+ 1

2

=
κ⊥i,j · κ∧i,j+1 + κ∧i,j · κ⊥i,j+1

κ⊥i,j + κ⊥i,j+1

,

Regarding the thermoelectric tensor, the following cell interface representations that resort to arithmetic
means have been implemented:

β⊥
i+ 1

2
,j

=
β⊥i,j + β⊥i+1,j

2
, β∧

i+ 1
2
,j

=
β∧i,j + β∧i+1,j

2
,

β⊥
i,j+ 1

2

=
β⊥i,j + β⊥i,j+1

2
, β∧

i,j+ 1
2

=
β∧i,j + β∧i,j+1

2
.

Remark 32. In order to guarantee the continuity of the heat flux across cell interfaces, one should use the
cell interfaces representations of the thermoelectric tensor given by:

β⊥
i+ 1

2
,j

= −
β⊥i,j · β∧i+1,j + β∧i,j · β⊥i+1,j

β∧i,j + β∧i+1,j

, β∧
i+ 1

2
,j

= −2
β∧i,j · β∧i+1,j

β∧i,j + β∧i+1,j

,

β⊥
i,j+ 1

2

= −
β⊥i,j · β∧i,j+1 + β∧i,j · β⊥i,j+1

β∧i,j + β∧i,j+1

, β∧
i,j+ 1

2

= −2
β∧i,j · β∧i,j+1

β∧i,j + β∧i,j+1

.

as explained in Appendix D. These have not been tested in our implementation.

Solving the evolution equations (7.1a) and (7.1b) using the finite volume scheme (7.4) finally consists in
solving a linear system whose unknowns are the cell averages of Ti and Te. In the general case, this linear
system does not seem to have any interesting property that could help its numerical resolution. It is in
particular unsymmetric as shown below.

Proposition 12. In the general case, the semi-implicit finite volume scheme (7.4) leads to an unsymmetric
linear system.

Proof. Let (me)i,j denote the non-zero matrix coefficients of the line that corresponds to the (i, j) cell for
the Te unknown. One can notice that:

(me)
i,j
i+1,j+1 =

kB

4∆x1∆x2

(
(xα

2 )j

(
κ∧e
)n
i+ 1

2
,j
− (xα

2 )j+ 1
2

(
κ∧e
)n
i,j+ 1

2

)
whereas:

(me)
i+1,j+1
i,j =

kB

4∆x1∆x2

(
(xα

2 )j+1

(
κ∧e
)n
i+ 1

2
,j+1
− (xα

2 )j+ 1
2

(
κ∧e
)n
i+1,j+ 1

2

)
.

This shows that the considered matrix is unsymmetric since:

(me)
i,j
i+1,j+1 6= (me)

i+1,j+1
i,j .
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We therefore resort to a stabilized biconjugate gradient algorithm (BiCGStab) [74] for solving the heat
conduction system. Nevertheless, when all of the κ∧ terms are zero (i.e. when the conductivity tensor
is diagonal, which occurs in particular in the absence of magnetic field), one can show that the above-
mentioned linear system is symmetric and definite positive, allowing the usage of a more classical conjugate
gradient (CG) algorithm [74].

Proposition 13. If the conductivity tensor is diagonal, solving the semi-implicit finite volume scheme (7.4)
with the heat flux q defined by q = −κ · ∇Te leads to a symmetric and definite positive linear system.

Proof. If κ is a diagonal tensor, the heat conduction scheme for the (i, j) cell writes:

Cve · (xα
2 )j · (ρe)n

i,j ·
(
(Te)

n+1

i,j − (Te)
n

i,j

)
− ν1

[
κ⊥

i+ 1
2
,j

(
(Te)

n+1

i+1,j − (Te)
n+1

i,j

)
− κ⊥

i− 1
2
,j

(
(Te)

n+1

i,j − (Te)
n+1

i−1,j

)]
−ν2

[
(xα

2 )j+ 1
2
κ⊥

i,j+ 1
2

(
(Te)

n+1

i,j+1 − (Te)
n+1

i,j

)
− (xα

2 )j− 1
2
κ⊥

i,j− 1
2

(
(Te)

n+1

i,j − (Te)
n+1

i,j−1

)]
= 3

kBme

mi
· (xα

2 )j · (ne)n
i,j · (νei)n

i,j ·
(
(Ti)

n+1

i,j − (Te)
n+1

i,j

)
with:

ν1 =
(xα

2 )jkB∆t
∆x2

1

and ν2 =
kB∆t
∆x2

2

.

Using notations introduced in the previous proof, the off-diagonal matrix terms that operate on Te write:

(me)
i,j
i±1,j = −ν1κ

⊥
i± 1

2
,j
,

(me)
i,j
i,j±1 = −ν2(xα

2 )j± 1
2
κ⊥

i,j± 1
2

.

The off-diagonal term (mei)
i,j
i,j that operates on Ti (the coupling term) is given by:

(mei)
i,j
i,j =

kBme

mi
· (xα

2 )j · (ne)n
i,j · (νei)n

i,j .

The matrix is thus clearly symmetric since:

(me)
i,j
i±1,j = (me)

i±1,j
i,j ,

(me)
i,j
i,j±1 = (me)

i,j±1
i,j ,

(mei)
i,j
i,j = (mie)

i,j
i,j .

Note that all of these off-diagonal matrix coefficients are negative. Moreover, the diagonal term writes:

(me)
i,j
i,j = Cve(x

α
2 )j(ρe)n

i,j −
(
(me)

i,j
i+1,j + (me)

i,j
i−1,j + (me)

i,j
i,j+1 + (me)

i,j
i,j−1 + (mei)

i,j
i,j

)
,

it is thus necessarily positive. The matrix that is associated to the thermal conduction solver is consequently
diagonally dominant, indeed:∣∣∣(me)

i,j
i,j

∣∣∣− (∣∣∣(me)
i,j
i+1,j

∣∣∣+ ∣∣∣(me)
i,j
i−1,j

∣∣∣+ ∣∣∣(me)
i,j
i,j+1

∣∣∣+ ∣∣∣(me)
i,j
i,j−1

∣∣∣+ ∣∣∣(mei)
i,j
i,j

∣∣∣) = Cve(x
α
2 )j(ρe)n

i,j

which is a strictly positive term. Being strictly diagonally dominant with positive diagonal terms, it is thus
definite positive.
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7.1.2 Resistive conduction

We now deal with the system of equations that governs resistive conduction. According to the operator
splitting presented in chapter 2, it is given by (2.4) and writes:

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρeεe)− (ρ · J) · J = 0,

∂t(ρiεi) = 0,

∂tB + c ∇× (ρ · J) = 0,

but we rather consider in this study its total energy formulation (2.5) given below in order to preserve
conservativity: 

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρiεi) = 0,

∂t(ρe) + c
µ∇ ·

(
(ρ · J) ∧B

)
= 0,

∂tB + c ∇× (ρ · J) = 0.

The density, velocity and ionic internal energy being here constant, we now focus on the magnetic field and
total energy evolution equations:

∂tB + c ∇× (ρ · J) = 0, (7.6a)

∂t(ρe) +
c

µ
∇ ·
(
(ρ · J) ∧B

)
= 0. (7.6b)

We recall that the current density J writes:

J =
c

µ
∇×B.

As suggested in introduction (see page 15), we propose to solve the resistive conduction system thanks to
a semi-implicit time scheme, more precisely using the following discretization:

Bn+1 −Bn

∆t
+ c ∇×

(
ρ

n · Jn+1
)

= 0, (7.7a)

(ρe)n+1 − (ρe)n

∆t
+
c

µ
∇ ·
(
(ρ · J)n+1 ∧Bn+1

)
= 0. (7.7b)

Remark 33. Note that the magnetic field and the total energy are not coupled anymore in (7.7a)-(7.7b) due
to the semi-implicit time scheme. We therefore first solve the magnetic field equation and then update the
total energy using values of the magnetic field at time tn+1.

We now rewrite equations (7.6a)-(7.6b) in the two-dimensional orthogonal MHD framework, i.e. with
B = Be3. In this specific case, the expressions of the ρ · J and (ρ · J)∧B terms using notations introduced
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in Appendix C are respectively given by:

ρ · J =
c

µ


ρ⊥

xα
2
∂2 (xα

2B) + ρ∧∂1B

−ρ⊥∂1B − ρ∧

xα
2
∂2 (xα

2B)

0

 and (ρ · J) ∧B = −cB
µ


ρ⊥∂1B + ρ∧

xα
2
∂2 (xα

2B)
ρ⊥

xα
2
∂2 (xα

2B) + ρ∧B∂1B

0

 .

In this context, equations (7.6a) and (7.6b) thus rewrite:

∂tB +
c2

µ

[
∂1

(
−ρ⊥∂1B −

ρ∧

xα
2

∂2 (xα
2B)

)
− ∂2

(
ρ⊥

xα
2

∂2 (xα
2B) + ρ∧∂1B

)]
= 0, (7.8a)

∂t(xα
2 ρe)−

c2

µ2

[
xα

2∂1

(
Bρ⊥∂1B +B

ρ∧

xα
2

∂2 (xα
2B)

)
+ ∂2

(
Bρ⊥∂2 (xα

2B) + xα
2Bρ

∧∂1B
)]

= 0. (7.8b)

These will now be discretized using a finite volume method combined with the semi-implicit time discretiza-
tion introduced in (7.7a)-(7.7b).

Magnetic field equation

At this stage, we integrate equation (7.8a) over [(x1)i− 1
2
; (x1)i+ 1

2
]× [(x2)j− 1

2
; (x2)j+ 1

2
] in order to form

the following semi-implicit conservative finite volume scheme:

B
n+1
i,j −B

n
i,j

∆t
+
c2∆t
µ∆x1

(
R∗

i+ 1
2
,j
−R∗

i− 1
2
,j

)
− c2∆t
µ∆x2

(
R∗

i,j+ 1
2

−R∗
i,j− 1

2

)
= 0 (7.9)

where Bn
i,j denotes the planar cell average of B over the (i, j) cell at time tn (note that this choice is

coherent with the particular treatment of the Bθ equation in the axisymmetric case, see section 6.1.3):

B
n
i,j =

1
∆x1∆x2

∫ (x1)
i+1

2

(x1)
i− 1

2

∫ (x2)
j+1

2

(x2)
j− 1

2

B(x1, x2, t
n) dx2 dx1. (7.10)

The resistivity flux is denoted R∗, its value along the x1 and x2 directions being respectively given by:

R∗
i+ 1

2
,j

= − (ρ⊥)n
i+ 1

2
,j

(
Bn+1

i+1,j −B
n+1
i,j

∆x1

)

− (ρ∧)n
i+ 1

2
,j

(xα
2 )j+1

(
Bn+1

i+1,j+1 +Bn+1
i,j+1

)
− (xα

2 )j−1

(
Bn+1
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 ,

R∗
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2

= (ρ⊥)n
i,j+ 1

2

(
(xα

2 )j+1B
n+1
i,j+1 − (xα

2 )jB
n+1
i,j

(xα
2 )j+ 1

2
∆x2

)
+ (ρ∧)n
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2
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i+1,j+1 +Bn+1
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4∆x1

)
.

Remark 34. The value of the resistivity flux being imposed by boundary conditions along the x2 = 0 axis,
the (xα

2 )j+ 1
2

denominator in the expression of R∗
i,j+ 1

2

does not lead to pathologic approximations in the
axisymmetric case.
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The cell interface representations of the resistivity tensor have been determined so that the resistivity flux
is continuous across cell interfaces as explained in Appendix D. They are given by:

ρ⊥
i+ 1

2
,j

= 2
ρ⊥i,j · ρ⊥i+1,j

ρ⊥i,j + ρ⊥i+1,j

, ρ∧
i+ 1

2
,j

=
ρ⊥i,j · ρ∧i+1,j + ρ∧i,j · ρ⊥i+1,j

ρ⊥i,j + ρ⊥i+1,j

,

ρ⊥
i,j+ 1

2

= 2
ρ⊥i,j · ρ⊥i,j+1

ρ⊥i,j + ρ⊥i,j+1

, ρ∧
i,j+ 1

2

=
ρ⊥i,j · ρ∧i,j+1 + ρ∧i,j · ρ⊥i,j+1

ρ⊥i,j + ρ⊥i,j+1

.

Solving the evolution equation (7.8a) using the finite volume scheme (7.9) finally consists in solving
a linear system whose unknowns are the cell averages of B. As in the case of thermal conduction, this
linear system does not seem to have any interesting property that could help its numerical resolution. It
is in particular unsymmetric. We therefore resort again to a BiCGStab algorithm for solving the resistive
conduction system.

Total energy equation

We finally build a semi-implicit finite volume scheme for the total energy equation. To that end, we
integrate equation (7.8b) over [(x1)i− 1

2
; (x1)i+ 1

2
]× [(x2)j− 1

2
; (x2)j+ 1

2
] and thus obtain the following conser-

vative numerical scheme that can be used to compute updated values of the total energy once the magnetic
field equation has been solved:

(ρe)
n+1

i,j − (ρe)
n

i,j

∆t
− c2

µ2

[
1

∆x1

(
E∗

i+ 1
2
,j
− E∗

i− 1
2
,j

)
+

1
(xα

2 )j∆x2

(
E∗

i,j+ 1
2

− E∗
i,j− 1

2

)]
= 0. (7.11)

Here, (ρe)
n

i,j denotes the following cell average of (ρe) over the (i, j) cell at time tn:

(ρe)
n

i,j =
1

(xα
2 )j∆x2

∫ (x2)
j+1

2

(x2)
j− 1

2

xα
2

 1
∆x1

∫ (x1)
i+1

2

(x1)
i− 1

2

(ρe)(x1, x2, t
n) dx1

 dx2.

E∗ denotes the total energy flux, its value along the x1 and x2 direction is respectively given by:
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)
.

Remark 35. The value of the E∗ flux being imposed by boundary conditions along the x2 = 0 axis,
the (xα

2 )j+ 1
2

denominator in the expression of E∗
i,j+ 1

2

does not lead to pathologic approximations in the
axisymmetric case.
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Joule heating

As indicated previously, we here solve the total energy formulation of the resistive conduction system
instead of its internal energy formulation in order to preserve conservativity. This choice departs from
classical approaches which usually deal with the electronic internal energy equation:

∂t(ρeεe) = (ρ · J) · J. (7.12)

Equation (7.12) represents the Joule heating phenomenon: due to resistivity, a part of the magnetic energy
is transformed into heat and increases the electronic temperature. The electronic internal energy variation
is indeed positive since:

(ρ · J) · J =


ρ⊥J1 − ρ∧J2

ρ⊥J2 + ρ∧J1

0

 ·


J1

J2

0

 = ρ⊥J2
1 + ρ⊥J2

2 .

This property should be preserved by the considered discretization. In our case, the electronic internal
energy is updated from the total energy and magnetic field values:

(ρeεe)n+1 = (ρe)n+1 −
(
Bn+1

)2
2µ

and we state the following proposition.

Proposition 14. If the magnetic field and total energy are updated using the finite volume schemes (7.9)
and (7.11) and if the resistivity tensor is diagonal (i.e. if the ρ∧ component is identically zero), the electronic
internal energy variation given by

(ρeεe)n+1 − (ρeεe)n = (ρe)n+1 − (ρe)n −

((
Bn+1

)2
2µ

− (Bn)2

2µ

)
(7.13)

is positive.

The proof of this proposition is given in Appendix E. If the resistivity tensor is not diagonal, we show in
Appendix E that the electronic internal energy variation (7.13) may be positive provided that the space
step is small enough and that both the ρ∧ component and the magnetic field are smooth enough.

7.1.3 Diffusion schemes implementation

The diffusion schemes that have been presented in this chapter rely on semi-implicit time schemes.
Dealing with diffusion operators therefore consists in solving a linear system whose size S is equal to:

S = number of cells× number of variables

The number of variables is equal to two for the thermal conduction operator (the Ti and Te temperatures)
and to one for the resistive conduction term (the third magnetic field component). The size S being
possibly very large (we have reached up to S ≈ 1.3 · 108 in numerical experiments), these linear systems
will be implemented using sparse storage schemes [81].

All in all, the resolution of the thermal and resistive conduction terms requires a parallel sparse linear
system solver which is able to deal with large problems and to provide a high performance level. Several
existing linear algebra libraries may fit our needs but none of the ones we have examined revealed suitable.
We have therefore chosen to develop our own iterative solvers, more precisely CG and BiCGStab algorithms
whose descriptions can for example be found in [74]. We give in this section a few details about the practical
implementations of these solvers.
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Matrix storage format

The sparse matrices’ implementation is based on the so-called sparse coordinate format. In this case,
matrices are represented by three tables that respectively store the row index, the column index and the
value of non-zero coefficient.

Iterative solvers implementation

Iterative solvers mainly rely on two linear algebra functions: the matrix vector product and the dot
product. In order to get a high performance level, these are performed using Intel’s Math Kernel Library [47]
that provides very efficient implementations of the matrix vector and dot products. More precisely, we use
the sequential mkl dcoomv (double precision matrix vector product) and ddot (double precision dot product)
functions. The MKL functions have then been adapted to the domain decomposition method we resort to.

• The matrix vector product is preceded by a boundary conditions call that fill ghost cells layers for all
artificial boundaries (i.e. for boundaries that are shared by two processes, not for the physical ones).
It simply consists in a data sharing step (using MPI Send / MPI Recv instructions) with immediate
neighbours. This allows each process to perform a local matrix vector product on variables that
correspond to its own physical cells. The linear system is thus completely distributed - the only
redundancy indeed comes from ghost cell layers - and our implementation is consequently eligible for
massively parallel architectures.

• The dot product is followed by a collective reduction operation (using a MPI Allreduce instruction)
so that the dot product is computed over the whole domain and known on each process.

Preconditioning

Iterative solvers are combined with a Jacobi preconditioner which is not the most efficient one but
presents the advantage of being very cheap (about 2% of the total computation time) and completely
scalable. Indeed, in our implementation, no communication step is needed for applying the Jacobi precon-
ditioner.

The preconditioning step should nevertheless be improved in future works in order to reduce the number
of iterations in iterative solvers and thus increase performance. Several sophisticated preconditioners can be
found in the related literature [89] (incomplete LU factorization, SSOR technique, multigrid preconditioner):
these should be implemented and evaluated in terms of appropriateness to massively parallel computer
architectures.

7.1.4 Accuracy of semi-implicit diffusion schemes

We discuss in this section the accuracy of the diffusion schemes that have been presented previously
for the thermal and resistive conduction systems. For the sake of simplicity, we here consider the following
generic diffusion equation in the two-dimensional planar case:

∂tT +∇ · q = f with q = −κ · ∇T. (7.14)

Note that the explanations given below also hold for the resistive conduction system, we therefore do not
discuss the accuracy of resistive conduction schemes separately.
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Applying the methodology that has been introduced in section 7.1.1, one obtains the following finite
volume discretization of the diffusion equation (7.14):

T
n+1
i,j − T

n
i,j

∆t
+

1
∆x

(
q∗
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2
,j
− q∗
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2
,j
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1
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(
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2
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2

)
= f

n+1
i,j (7.15)

where the approximate flux q∗ is respectively given on vertical and horizontal cell interfaces by:
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.

The finite volume scheme (7.14) is theoretically first-order accurate because of the semi-implicit time dis-
cretization which only allows to achieve first-order accuracy in time. In order to improve this point, one
would have to consider the following discretization of equation (7.14):
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)
,

where the second-order accurate approximate heat flux q∗,2 on vertical cell interfaces (the expression of the
approximate heat flux on horizontal cell interfaces being similar, we do not detail it) is given by:
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.

In this case, computing T at time tn+1 would suppose to solve a non-linear system of equations since κ
generally depends on T (see remark 30). This could for example be done by first linearizing the non-
linear system with the help of a Newton-Raphson method and then solving the resulting linear system.
This approach seems to be quite easy to set up if the conductivity tensor is a diagonal tensor but its
implementation reveals tricky otherwise, in particular in our case due to the complexity of Braginskii’s
conductivity tensors expressions. It may also considerably increase the computational cost of the thermal
conduction scheme. This is why we restrict in this study to first-order accurate semi-implicit discretizations.

Remark 36. The above described method for achieving second-order accuracy considerably differs in terms
of implementation of the semi-implicit approach we adopted. In order to keep a clear and easily maintainable
code, it therefore has not been implemented, even in simple cases like the two diffusion problems that are
considered in section 7.1.5.

7.1.5 Numerical results

We conclude this section with some numerical results that aim at validating the diffusion schemes
presented previously. We focus in particular on two smooth diffusion problems and carry out a convergence
analysis. Note that the conductivity tensor is diagonal for both of these problems: the linear system that
comes from the semi-implicit time discretization is thus symmetric definite positive thanks to Proposition 13
in these cases and it is solved using a CG algorithm.
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Analytical solution to a thermal conduction equation

In this section, we deal with the following thermal conduction equation in two-dimensional axisymmetric
geometry:

∂tT −∇ ·
(
νT ν−1∇T

)
= 0. (7.16)

Let ρ =
√
z2 + r2. A spherically symmetric analytical solution to equation (7.16) is given in [60], it writes:

T (ρ, t) =
φ(ρ, t)
λ(t)3

with φ(ρ, t) =

[
1−

(
ρ

λ(t)

)2
] 1

ν−1

and λ(t) =
(

2ν(3ν − 1)
ν − 1

t+ 1
) 1

3ν−1

.

We here take ν = 3.5 and set this test problem on the (z, r) ∈ [0; 1]2 computational domain (the analytical
solution is therefore well defined since ρ/λ(t) ≤ 1 ∀t). with Neumann boundary conditions along the z = 0
and r = 0 axis and Dirichlet boundary conditions elsewhere (in this case, the exact solution is imposed
along boundaries). We have carried out a convergence analysis: calculations have been performed until
time t = 0.1 with the two-dimensional axisymmetric thermal conduction scheme on different meshes and
the error between the analytical and numerical solutions has been measured using a L1 norm in space and
time. The time step is set to ∆t = 10−3 for the computation on 100 × 100 cells and is divided by 2 each
time the mesh is refined. The error measurements and the corresponding experimental order of convergence
have been summarized in Table 7.1. They show that the thermal conduction scheme is first-order accurate,
which matches expectations as explained in section 7.1.4.

Analytical solution to a resistive conduction problem

We now deal with the following resistive conduction equation in two-dimensional planar geometry:

∂tB +∇× (∇×B) = 0. (7.17)

An analytical solution to equation (7.17) is given by:

B = exp(−t) sin (2πx) sin (2πy) ez.

We have set this problem on the (x, y) ∈ [0; 1]2 computational domain with homogeneous Dirichlet boundary
conditions and we have carried out a convergence analysis using the procedure described for the previous
benchmark. Error measurements between the exact and numerical solutions as well as the corresponding
experimental order of convergence have been reported in Table 7.1. Once again, they exhibit a first-order
convergence which matches expectations as explained in section 7.1.4.

A non-smooth anisotropic diffusion problem in planar geometry

We finally consider a diffusion test problem proposed by Hermeline [44] that is associated to the following
anisotropic diffusion equation in planar geometry:

∂tu−∇ · (κ(u)∇u) = 0 with κ(u) =

 κ1(x, y) κ2(x, y)u

−κ2(x, y)u κ1(x, y)


where the κ1 and κ2 values are given by:

(κ1, κ2) =

{
(10−2, 10−1) if x ≤ 0.5,
(10−3, 10−5) if x > 0.5.
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DIFFUSION SCHEMES

Mesh size Thermal conduction Resistive conduction

(N×N cells) error order error order

N = 100 2.61e-03 2.26e-05

N = 200 1.36e-03 0.95 1.13e-05 1.00

N = 400 6.83e-04 0.99 5.72e-06 0.99

N = 800 3.46e-04 0.99 2.87e-06 0.99

N = 1600 1.74e-04 0.99 1.44e-06 0.99

Table 7.1: Error measured using a L1 norm in space and time between the analytical and numerical solutions
for the smooth thermal conduction and resistive conduction problems respectively described page 174 and
page 174.

Due to the anisotropic nature of the κ(u) tensor, the linear system that comes from the semi-implicit time
discretization is non-symmetric. We therefore resort in this case to a BiCGStab iterative solver. As in [44],
we consider the following initial and boundary conditions:

IC

{
u(t = 0) = −1 if y ≥ 0.5,
u(t = 0) = 0 if y < 0.5,

BC

{
u = −1 along the y = 1 boundary,
∇u · n = 0 along other boundaries,

and set this test problem on the [0; 1]2 computational domain. Figure 7.1 presents numerical results obtained
at time t = 0.5 on 100×100, 200×200, 400×400 and 800×800 cells with the finite volume thermal conduction
scheme. These show a good agreement with the numerical results presented in [44]. Figure 7.2 shows a slice
of the previous results along the y = 0.4 axis: it exhibits nice convergence properties.

7.2 Source terms treatment

We deal in this section with the source terms equations (2.7) that are responsible for the magnetic field
generation and govern the Hall and Nernst effects. These write:

∂tρ = 0,

∂t(ρu) = 0,

∂t(ρiεi) = 0,

∂tB− c ∇× S = 0,

∂t(ρe)−∇ ·
(

pe+ρeεe

ene
J + c

µS ∧B
)

= 0,

where S = Sself + SHall + SNernst. We recall the definitions of the Sself (magnetic field generation), SHall

(Hall effect) and SNernst (Nernst effect) terms below:

Sself =
1
ene
∇pe, SHall = − 1

ecne
J ∧B, SNernst =

1
e
β · ∇ (kBTe) .
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Figure 7.1: Numerical solution of Hermeline’s diffusion problem at time t = 0.5 on several mesh sizes.

Figure 7.2: Slice along the y = 0.4 axis on the numerical solution of Hermeline’s diffusion problem at time
t = 0.5. From left to right: whole computational domain, zoom on the [0; 0.3] region and zoom on the
[0.47; 0.53] region.
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Remark 37. As in the case of resistive conduction, we consider the total energy formulation for the source
terms equations. This approach departs from classical internal energy formulations (see [9] for example)
but allows to preserve conservativity. In this context, once the magnetic field and total energy equations
have been solved, the electronic internal energy is updated using the following formula:

(ρeεe)n+1 = (ρe)n+1 − Bn+1 ·Bn+1

2µ
,

since ∂t(ρiεi) = 0.

The density, velocity and ionic internal energy being here constant, we now focus on the magnetic field and
total energy evolution equations:

∂tB− c ∇× S = 0, (7.18a)

∂t(ρe)−∇ ·
(
pe + ρeεe
ene

J +
c

µ
S ∧B

)
= 0. (7.18b)

In the two-dimensional case with B = Be3 and using notations introduced in Appendix C, the Sself, SHall

and SNernst terms rewrite:

Sself =
1
ene


∂1pe

∂2pe

0

 , SHall =
B

eµne


∂1B

1
xα
2
∂2(xα

2B)

0

 , SNernst =
kB

e


β⊥∂1Te − β∧∂2Te

β⊥∂2Te + β∧∂1Te

0

 .

In this context, the magnetic field and total energy equations are given by:

∂tB − c∂1 (S · e2) + c∂2 (S · e1) = 0, (7.19a)

∂t(ρe)− ∂1

[(
pe + ρeεe
ene

J +
c

µ
S ∧B

)
· e1

]
− 1
xα

2

∂2

[
xα

2

(
pe + ρeεe
ene

J +
c

µ
S ∧B

)
· e2

]
= 0. (7.19b)

We now describe how these equations have been discretized. As suggested in introduction (see page 15), an
explicit time scheme will be used.

7.2.1 Magnetic field equation

We deal in this section with the the magnetic field equation. We first discuss the discretization of the
magnetic field generation source term and then extend the chosen approach to the complete equation.

Discretization of the magnetic field generation source term

We here focus on the following evolution equation for the magnetic field where we have neglected the
Hall and Nernst effects:

∂tB− c∇× Sself = 0. (7.20)

Practically, self-generated magnetic field terms will appear as soon as ∇ne and ∇pe are not colinear since:

∇× Sself = ∇×
(

1
ene
∇pe

)
= − 1

en2
e

∇ne ∧∇pe. (7.21)

In the case of two-dimensional geometries, the only possibly non-zero component of ∇ne ∧ ∇pe is the one
that is orthogonal to the computational domain, namely the z component in the planar case and the θ
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component in the axisymmetric case. This is what motivates our study of the specific case B = Be3.
Indeed, one can show that if B is initially zero, the only magnetic field component that may appear when
solving the complete system of equations presented in chapter 1 is the orthogonal one.

The relation given by (7.21) naturally raises the question of the ∇× Sself term’s discretization. Indeed,
it seems a priori interesting to preserve the property of avoiding magnetic field generation when ∇ne and
∇pe are colinear at the discrete level. This can for example be achieved with the followig non-conservative
finite difference discretization of equation (7.20) which is the one used in [9]:
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+
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e (n2
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n
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n
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= 0 (7.22)

where:

(∂1φ)n
i,j =

φn
i+1,j − φn

i−1,j

∆x1
and (∂2φ)n

i,j =
φn

i,j+1 − φn
i,j−1

∆x2
. (7.23)

The finite difference scheme (7.22) indeed clearly leads to Bn+1
i,j = Bn

i,j if: (∂1ne)
n
i,j

(∂2ne)
n
i,j

 = λ

 (∂1pe)
n
i,j

(∂2pe)
n
i,j

 .

Nevertheless, this property heavily depends on the gradient operator’s discretization. Practically, it turns
out in numerical experiments for which ∇ne and ∇pe are theoretically colinear that the magnetic field only
remains zero in regions where the discrete gradients given by (7.23) are aligned with the mesh, i.e. along
the horizontal, vertical and 45̊ directions. In all other directions, magnetic field terms that are only due to
numerical approximations appear. There is consequently no need to use the finite difference scheme (7.22)
and sacrifice conservativity.

Another way to proceed - which actually is the one that we have adopted - consists in resorting to a
classical conservative finite volume discretization of (7.20) which does not guarantee that the magnetic field
will remain zero if ∇ne and ∇pe are colinear:
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Here, Bn
i,j denotes the following planar cell average of B over the (i, j) cell at time tn:
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Discretization of the complete magnetic field equation

Applying the finite volume discretization to the complete magnetic field equation (7.19a) leads to the
following numerical scheme:

B
n+1
i,j −B

n
i,j

∆t
− c

∆x1

(
S∗

i+ 1
2
,j
− S∗

i− 1
2
,j

)
+

c

∆x2

(
S∗

i,j+ 1
2

− S∗
i,j− 1

2

)
= 0.

Introducing:

(SHall)
∗
i+ 1

2
,j ≈ (SHall · e2)i+ 1

2
,j ,

=
1
eµ

(
Bn

i,j +Bn
i+1,j

(ne)n
i,j + (ne)n

i+1,j

)(xα
2 )j+1

(
Bn

i+1,j+1 +Bn
i,j+1

)
− (xα

2 )j−1

(
Bn

i+1,j−1 +Bn
i,j−1

)
4(xα

2 )j∆x2

 ,

(SHall)
∗
i,j+ 1

2
≈ (SHall · e1)i,j+ 1

2
,

=
1
eµ

(
Bn

i,j +Bn
i,j+1

(ne)n
i,j + (ne)n

i,j+1

)(
Bn

i+1,j+1 +Bn
i+1,j −Bn

i−1,j+1 −Bn
i−1,j

4∆x1

)
,

(SNernst)
∗
i+ 1

2
,j ≈ (SNernst · e2)i+ 1

2
,j ,

= +
kB

e
(β⊥)n

i+ 1
2
,j

((Te)n
i+1,j+1 + (Te)n

i,j+1 − (Te)n
i+1,j−1 − (Te)n

i,j−1

4∆x2

)
+
kB

e
(β∧)n

i+ 1
2
,j

((Te)n
i+1,j − (Te)n

i,j

∆x1

)
,

(SNernst)
∗
i,j+ 1

2
≈ (SNernst · e1)i,j+ 1

2
,

= +
kB

e
(β⊥)n

i,j+ 1
2

((Te)n
i+1,j+1 + (Te)n

i+1,j − (Te)n
i−1,j+1 − (Te)n

i−1,j

4∆x1

)
− kB

e
(β∧)n

i,j+ 1
2

((Te)n
i,j+1 − (Te)n

i,j

∆x2

)
,

the approximate fluxes S∗
i+ 1

2
,j

and S∗
i,j+ 1

2

are respectively given by:

S∗
i+ 1

2
,j

= (Sself)
∗
i+ 1

2
,j + (SHall)

∗
i+ 1

2
,j + (SNernst)

∗
i+ 1

2
,j ,

S∗
i,j+ 1

2

= (Sself)
∗
i,j+ 1

2
+ (SHall)

∗
i,j+ 1

2
+ (SNernst)

∗
i,j+ 1

2
.

7.2.2 Total energy equation

We finally discuss the case of the total energy equation (7.19b). Like the magnetic field equation, it is
discretized using a conservative finite volume method combined with an explicit time scheme which writes:
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and the approximate fluxes for the total energy equation are given by:
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Chapter 8

A direct drive ICF deceleration phase
benchmark

We conclude this study with a test problem taken from [80] that aims at simulating the deceleration phase
of an ICF shell in the direct drive context. It is thus particularly representative of concrete plasma physics
applications. Several numerical results obtained on this ICF test problem with different configurations are
given in the sequel. We present in particular simulation results for the complete two-temperature resistive
MHD model derived in chapter 1 using a combination of all previously presented schemes. In order to
emulate the presence of initial sphericity deviations and to see the development of self-generated magnetic
field terms, a numerical perturbation is introduced in the considered initial condition.

The outline of this chapter is the following. We first describe the considered ICF test problem - in
particular its initial condition and numerical setup - and explain how a slight sphericity deviation can be
introduced numerically. We then compare our numerical results for an hydrodynamics + heat conduction
configuration with those provided by a one-dimensional reference code (the so-called LP code [49, 80]) in
spherical geometry in order to validate the thermal conduction scheme and the underlying physical model.
We also illustrate the benefits of the first-order artificial viscosity model described in section 4.3.2 in terms
of symmetry preservation on a purely hydrodynamical problem. Numerical results for the complete two-
temperature resistive MHD equations are finally proposed for the perturbed ICF test problem in order to
study self-generated magnetic field terms and to evaluate their effects on the flow.

Part of the simulation results given in the sequel have already been presented in the proceedings of the
2010 CEMRACS summer school [92].

8.1 Benchmark description

We first describe the test problem that we consider in the sequel for simulating the deceleration phase
of an ICF shell in the direct drive context. This benchmark has been taken from [80]. The initial condition
describes a spherical ICF capsule of radius 0.0313 cm at the beginning of the deceleration phase. More
precisely, the capsule is at this stage made of a cryogenic DT layer of 0.0113 cm thickness which encloses
an inner sphere of radius 0.021 cm filled with DT gas. It is initially surrounded by an isotemperature
low-density and low-pressure gas that actually aims at emulating vacuum. According to the assumptions
stated in chapter 1, both electrons and ions follow here a perfect gas law with γe,i = 5/3 and the plasma
is assumed to be fully ionized. The average mass of DT is set to 3

2mp where mp is the mass of a proton.
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Numerically, the initial velocity, total gas pressure, density and electronic pressure profiles in CGS units
are given by:

• for r ≤ 0.018 cm:

u(1)(r) =− 6.01121 · 108 r − 8.59652 · 1011 r2 + 9.00161 · 1013 r3 − 2.55503 · 1015 r4,

p(1)(r) = 1.1364 · 1014 − 1.4741 · 1015 r + 2.5482 · 1018 r2 − 2.6914 · 1020 r3 + 8.3432 · 1021 r4,

ρ(1)(r) = p(1)(r) · 2.586759 · 10−15 ·
(
1− 1.7226 · 104 r2.56061

)−1
,

p(1)
e (r) = p(1)(r) · (9.44575 · 1018 − 3.00077 · 1020 r) · (3.3336 · 1019 − 1.00185 · 1021 r − 2.02242 · 1022 r2)−1,

• for 0.018 cm < r ≤ 0.021 cm:

u(2)(r) =− 1.176725 · 1011 + 2.40071 · 1013 r − 1.83229 · 1015 r2 + 6.19924 · 1016 r3 − 7.84614 · 1017 r4,

p(2)(r) =− 9.90683 · 1017 + 2.04304 · 1020 r − 1.57663 · 1022 r2 + 5.39767 · 1023 r3 − 6.91788 · 1024 r4,

ρ(2)(r) = 0.251956− 1.99589 · 104 r3 + (97.3135− 4.61145 · 103 r)−1,

p(2)
e (r) = (−3.812829 · 1012 r5 + 3.758976 · 1011 r4 − 1.481416 · 1010 r3 + 2.916974 · 108 r2

− 2.869374 · 106 r + 1.127981 · 104) · p(2)(r),

• for 0.021 cm < r ≤ 0.0313 cm:

u(3)(r) = 2.4198 · 109 − 3.73623 · 1011 r + 2.10716 · 1013 r2 − 5.24689 · 1014 r3 + 4.88108 · 1015 r4,

p(3)(r) = 5.5673 · 1016 − 8.3122 · 1018 r + 4.5695 · 1020 r2 − 1.0932 · 1022 r3 + 9.619 · 1022 r4,

ρ(3)(r) = 270.52− 4.3198 · 104 r + 2.3752 · 106 r2 − 5.17461 · 107 r3 + 3.6722 · 108 r4,

p(3)
e (r) = 0.5 · p(3)(r),

• for 0.0313 cm < r ≤ 0.04 cm:

u(4)(r) = min(u(3)(r), 0),

ρ(4)(r) = exp
(
−1.20269 · 103 (r − 0.0313)

)
,

p(4)(r) = 2.443754 · 1013 ρ(4)(r),

p(4)
e (r) = (p(3)

e /ρ(3)
e )(r = 0.0313) · ρ(4)

e (r).

These initial profiles (which are plotted in Figure 8.1) actually have been obtained by computing non-
linear fittings of discrete numerical results provided by a one-dimensional ICF code [12]. More precisely,
this ICF code has been used for simulating the implosion of an ICF capsule up to the beginning of the
deceleration phase starting from a configuration that is particularly representative of realistic experiments.
At the moment where the velocity has reached its maximum value (which is about 4.5 · 107 cm/s as shown
in Figure 8.1), the discrete one-dimensional density, velocity and pressure profiles have been saved. These
have then been interpolated in order to generate the above given analytical profiles. This approach allows
us to perform realistic ICF implosion simulations without taking into account all the physical phenomena
involved in such processes, especially the laser absorption since laser beams have already been shut down
at the beginning of the deceleration phase.
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Figure 8.1: Initial profiles of the ICF benchmark taken from [80].
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The deceleration phase of this spherically symmetric ICF implosion is here simulated in axisymmetric
geometry until time t = 6·10−10 s (i.e. t = 600 ps) with the two-dimensional solver that has been developed.
The considered problem is Rayleigh-Taylor unstable, especially for simulation times between 500 ps and
600 ps. The computational domain is a 0.04 cm wide square in the (z, r) plane with reflective boundary
conditions along the z = 0 and r = 0 axis and open boundary conditions elsewhere. The following execution
parameters are common to all simulation results presented in this chapter:

• The Lagrangian and remap fluxes used in GoHy schemes are computed at third-order accuracy.

• The polynomial reconstruction (4.15) that aims at computing high-order accurate cell-centered point-
wise values of conservative variables is here disabled.

• The dimensional splitting set of coefficients used in multidimensional GoHy schemes is Godunov’s
first-order accurate splitting sequence (4.30).

• The Lagrangian and remap fluxes reconstruction steps (4.45) and (4.46) are disabled.

• Divergence cleaning is here unnecessary since computations are performed in the orthogonal MHD
framework: the only possibly non-zero component of the magnetic field is the one that is orthogonal
to the comptutional domain. The divergence constraint is thus automatically satisfied.

8.2 Introducing perturbations

We have seen in introduction that self-generated magnetic field terms may appear during direct drive
ICF processes in case of sphericity deviations on the surface of the ICF shell, these being generally due
either to the non-uniformity of the laser irradiation and/or to shell rugosity. In order to represent these
sphericity deviations in numerical simulations, we introduce as in [80] a slight perturbation along the radial
direction in the previously given initial condition. Let:

rε(r) = r +Al(r)Pl(cos θ) with Al(r) = A0 exp
(
−l
∣∣∣∣ rri − 1

∣∣∣∣) ,
where A0 is the initial perturbation amplitude, ri = 0.021 cm the location of the gas/shell interface, l the
mode number and Pl the Legendre polynomial with θ the angle between the radial and symmetry axis.
Perturbed initial conditions Uε are then defined by:

Uε (rε(r)) = U(r)

with U(r) = (ρ, pe, p, u)t(r) given in section 8.1.

8.3 Numerical results

8.3.1 Comparison with a one-dimensional reference code

In order to validate the solver that we have developed, in particular the heat conduction scheme and the
underlying physical model, we first compare our two-dimensional axisymmetric simulations with converged
one-dimensional numerical results obtained with the one-temperature LP code [49, 80] in spherical geom-
etry. In this case, the test problem is initialized as indicated in section 8.1 but both ionic and electronic
temperatures are here computed according to the following formula:

Ti = Te =
p

ρCv(γ − 1)
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with Cv = 6.471255 · 107 and γ = 5/3. Only the hyperbolic and thermal diffusion systems are considered
here so that no magnetic field term may appear. For practical computations, the CFL coefficient is set to
0.7 and the hyperviscosity model is enabled with Cβ = 0.8. Figure 8.2 plots the results obtained with both
codes at time t = 600 ps. It shows a good agreement between both simulations, the results of our two-
dimensional axisymmetric solver appearently converging towards those of the one-dimensional LP reference
code.

8.3.2 Impact of the first-order artificial viscosity model

In order to illustrate the benefits provided by the first-order artificial viscosity model that has been
described in section 4.3.2, we now present numerical results obtained with the hydrodynamical solver and
the below given execution parameters.

• The hyperviscosity model is enabled with Cβ = 0.8 and Cκ given by:

Cκ =


0.1 t ≤ 230 ps,
0.2 230 ps ≤ t ≤ 250 ps,
0.1 250 ps ≤ t ≤ 600 ps.

• The CFL coefficient is set according to the following table:

CFL =


0.7 t ≤ 430 ps,
0.6 430 ps ≤ t ≤ 480 ps,
0.4 480 ps ≤ t ≤ 500 ps,
0.7 500 ps ≤ t ≤ 600 ps.

In Figure 8.3, we compare two unperturbed simulations on different meshes where the evanescent first-
order artificial viscosity model is respectively disabled (left side) and enabled with Cν = 0.4 (right side).
These numerical results clearly show that symmetry preservation is improved when the first-order artificial
viscosity model is activated. Indeed, the unphysical high-frequency structures that appear with Cν = 0 are
completely smeared out thanks to artificial viscosity. Figure 8.4 plots simulation results that have been
obtained in the perturbed case with A0 = 10−4 cm. It shows even better improvements since the unphysical
small scale structures grow faster in the presence of an initial perturbation but are still efficiently removed
by introducing artificial viscosity.

8.3.3 Study of self-generated magnetic field terms

We now study numerical results obtained for the complete two-temperature resistive MHD model. To
that end, the GoHy schemes are coupled with diffusion operators and source terms discretizations through
an operator splitting strategy.

Impact of self-generated magnetic field terms

We first compare simulations for different amplitudes of the initial perturbation with and without
magnetic field generation. Figure 8.5 plots the density and electronic temperature obtained for the perturbed
ICF test problem at time t = 600 ps on 4000× 4000 cells with two different configurations.

• The left hand side results have been obtained by solving only the hyperbolic and heat conduction
systems so that no magnetic field terms appear.
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Figure 8.2: One-temperature ICF test problem. Comparison between one-dimensional LP code [49, 80]
results and two-dimensional axisymmetric simulations (slice along the z = r axis) at time t = 600 ps: zoom
on the [0; 0.01] region (left) and on the [0.004; 0.008] region (right).
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Figure 8.3: Effect of the evanescent first-order artificial viscosity ν? coefficient on the two-temperature ICF
test problem at time t = 600 ps (zoom on the [0; 0.008]2 square). Density obtained with the hydrodynamical
solver (no heat conduction) on 1000× 1000, 2000× 2000, 4000× 4000 and 8000× 8000 cells for A0 = 0 with
Cν = 0 (left) and Cν = 0.4 (right).
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Figure 8.4: Effect of the evanescent first-order artificial viscosity ν? coefficient on the two-temperature ICF
test problem at time t = 600 ps (zoom on the [0; 0.008]2 square). Density obtained with the hydrodynamical
solver (no heat conduction) on 1000×1000, 2000×2000, 4000×4000 and 8000×8000 cells for A0 = 10−4 cm
with Cν = 0 (left) and Cν = 0.4 (right).
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• The right hand side results have been obtained by considering the complete two-temperature resistive
MHD model, i.e. the orthogonal MHD equations, the thermal and resistive conduction systems and
the source terms’ contributions. In this case, some self-generated magnetic field terms appear. They
are plotted in Figure 8.6

In both cases, simulations have been performed with the hyperviscosity model (with Cβ = 0.8, Cν = 0.4
and Cκ = 0.05) and a CFL coefficient of 0.7.

As expected, Figure 8.6 shows that magnetic fields are generated around both sides of spikes where the
electronic temperature gradient is the steepest. It also indicates that the higher the initial perturbation
amplitude is, the higher the magnitude of the magnetic field. For A0 = 10−3, the computed magnetic field
is about 50 MG, a value that is comparable to magnitudes given in the related literature [42]. According
to Figures 8.5 and 8.7, self-generated magnetic field terms have a very little impact: they seem to slightly
reduce the perturbations growth rates (especially along the z axis as shown in Figure 8.7) but do not modify
the topology of the flow.

Nernst effect contribution

The source terms system that has been studied in section 7.2 takes the Hall and Nernst effects’ contri-
butions into account. Practically, numerical experiments have shown that the Hall effect does not have a
visible impact on numerical results in the case of the ICF test problem. On the contrary, we have observed
that the Nernst effect noticeably modifies the magnetic field. Figure 8.8 plots simulations results obtained
for the ICF test problem at time t = 600 ps on 4000 × 4000 cells. Computation parameters are the same
than in the previous section. The left hand side results have been obtained by solving the complete two-
temperature resistive MHD model while the Nernst effect has been disabled for the right hand side ones.
Figure 8.8 shows that the Nernst effect convects the magnetic field into smaller regions and thus makes
it reach significantly higher magnitudes. For example, starting from a perturbed initial condition with
A0 = 10−3 cm, the maximum magnitude of the magnetic field at time t = 600 ps is about 30 MG when the
Nernst effect is not taken into account whereas this value reaches more than 50 MG in the opposite case.

Convergence analysis

We finally carry out a short convergence analysis on numerical results obtained with the complete two-
temperature resistive MHD model. Figure 8.10 plots the density, electronic temperature and magnetic field
obtained at time t = 600 ps with an initial perturbation of amplitude A0 = 5 · 10−4 cm for different mesh
sizes. On the one hand, it shows that the numerical results on 1000× 1000 cells seem slightly less accurate
than those obtained on finer meshes, especially in zones where non-linear Rayleigh-Taylor instabilities
develop. On the other hand, the numerical results obtained on 2000×2000 and 4000×4000 cells can hardly
be distinguished in Figure 8.10, which tends to show that these are close to convergence.

It seems nevertheless difficult to state conclusions from the map plots given in Figure 8.10 since differ-
ences are very slight. We therefore plot in Figure 8.11 two slices of the above-described numerical results,
one along the z = r axis and the other along the r = 0.00119 cm axis where the magnetic field reaches
its maximum value at z ≈ 0.003 cm. On both slices, the density and electronic temperature profiles seem
to exhibit convergent behaviours towards simulation results obtained on the finest mesh (4000× 4000 cells
here). But the magnetic field profiles have to be discussed more carefully.

• On the one hand, the behaviour observed on the density and temperature profiles seems to be con-
firmed by the slice of the magnetic field along the z = r axis (though finer results would be needed in
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Figure 8.5: Two-temperature ICF test problem at time t = 600 ps on 4000 × 4000 cells (zoom on the
[0; 0.008]2 square). Density and electronic temperature without/with (left/right) self-generated magnetic
field terms. From top to bottom: A0 = 10−4, 5 · 10−4 and 10−3 cm.

Figure 8.6: Magnetic field obtained for the perturbed two-temperature ICF test problem at time t = 600 ps
on 4000× 4000 cells (zoom on the [0; 0.008]2 square). From left to right: A0 = 10−4, 5 · 10−4 and 10−3 cm.
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Figure 8.7: Contour plots of the density profiles shown in Figure 8.5. Results with and without self-
generated magnetic field terms are respectively plotted in red and blue. From left to right: A0 = 10−4,
5 · 10−4 and 10−3 cm.

order to state conclusions for the region located around 0.001 cm).

• On the other hand, the slice of the magnetic field map along the r = 0.00119 cm axis shows that
numerical results clearly differ in the vicinity of z = 0.006 cm. However, this could simply be a
consequence of the instability that develops along the z axis around z = 0.006 (see Figure 8.10). This
structure may indeed modify the magnetic field profiles in a larger region on coarse meshes due to
numerical dissipation and thus impact the magnetic field profiles along the r = 0.00119 cm axis.

• The magnetic field slice along the r = 0.00119 axis provides another interesting information. It indeed
shows that the magnetic field reaches comparable magnitudes (about 45 MG) whatever the mesh size.

Convergence analysis for multidimensional datasets cannot rely exclusively on informations provided by
slices since all multidimensional effects cannot be represented faithfully on one-dimensional plots. The
previous study therefore has to be interpreted carefully. These results nevertheless seem to indicate that
convergence has not been reached on 4000 × 4000 cells yet. This diagnostic is confirmed by the evolution
of the L1 norm of the magnetic field versus time shown in Figure 8.9 for the three considered mesh sizes.
One can notice that the magnetic field norm plots seem to coincide up to t ≈ 450 ps but then slightly
differ, which actually was predictable since the deceleration phase is heavily Rayleigh-Taylor unstable for
500 ps ≤ t ≤ 600 ps.

Figure 8.9 shows another satisfying behaviour. It plots the L1 norm of the magnetic field versus time
in the absence of an initial perturbation. In this case, the generated magnetic field is unphysical in the
sense that it is only due to numerical approximations. Fortunately, Figure 8.9 indicates that the norm of
the magnetic field is reduced for unperturbed simulations when the mesh is refined.
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Figure 8.8: Magnetic field obtained for the perturbed two-temperature ICF test problem at time t = 600 ps
on 4000 × 4000 cells (zoom on the [0; 0.008]2 square) with (left) and without (right) Nernst effect. From
top to bottom: A0 = 10−4, 5 · 10−4 and 10−3 cm.
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Number of cells Number of processes Grind time Restitution time Efficiency

1000× 1000 25 3.19 1333

2000× 2000 100 3.32 2750 96%

4000× 4000 400 3.41 6499 94%

8000× 8000 1600 3.69 15379 86%

Table 8.1: Measured grind time (in microseconds per cell per time step) and restitution time (in seconds)
for the simulations presented in section 8.3.2. The efficiency is given relatively to the computation on
1000× 1000 cells.

Figure 8.9: L1 norm of the magnetic field versus time for the ICF test problem on 1000× 1000, 2000× 2000
and 4000× 4000 cells: perturbed case with A0 = 5 · 10−4 cm (left) and unperturbed case (right).

8.4 Performance and parallelism aspects

We conclude this chapter with a few remarks about performance and parallellism aspects. The simula-
tions described in this chapter have been performed on the CEA Tera 100 supercomputer.

8.4.1 Hydrodynamics simulations

Hydrodynamics simulations presented in section 8.3.2 have been performed with 200 × 200 cells per
process. The measured grind time has been summarized in Table 8.1 for the considered mesh sizes (from
1000×1000 to 8000×8000 cells). Note that we do not distinguish computations performed with or without
first-order artificial viscosity since the restitution time is similar for both cases. These performance figures
show that the parallel efficiency still reaches satisfying values on 1600 processes.
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1000× 1000 cells 2000× 2000 cells 4000× 4000 cells

Figure 8.10: Numerical results to the two-temperature ICF test problem with A0 = 5 · 10−4 cm at time
t = 600 ps on 1000 × 1000, 2000 × 2000 and 4000 × 4000 cells (zoom on the [0; 0.008]2 square). From top
to bottom: density, magnetic field and electronic temperature.
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slice along the z = r axis slice along the r = 0.00119 axis

Figure 8.11: Slices along the z = r and r = 0.00119cm axis of the numerical results presented in Figure 8.10.
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Number of cells Number of processes Grind time Restitution time

1000× 1000 100 27.9 1260

2000× 2000 400 35.2 3162

4000× 4000 1600 52.5 9423

8000× 8000 6400 93.7 33623

Table 8.2: Measured grind time (in microseconds per cell per time step) and restitution time (in seconds)
for the simulations presented in section 8.3.3 on the perturbed ICF test problem with A0 = 10−4.

8.4.2 Simulations on the complete two-temperature resistive MHD model

Computations presented in section 8.3.3 for the complete model have been performed with 100 × 100
cells per process. The measured grind time has been summarized in Table 8.2 for the perturbed ICF test
problem with A0 = 10−4 and mesh sizes going from 1000× 1000 to 8000× 8000 cells. Note that we do not
compute the parallel efficiency here since the number of iterations in the BiCGStab algorithm varies with
the mesh size: results given below therefore cannot be compared. We can nevertheless state the following
remarks.

• The grind time is a lot greater than in the pure hydrodynamical case due to the semi-implicit treatment
of diffusion terms which clearly has to be optimized.

• We infer that the grind time could be noticeably lowered using a more efficient preconditioner than the
implemented Jacobi preconditioner. Another interesting point would be to decorrelate the number
of iterations in the iterative solver from the number of cells, which seems possible using multigrid
techniques [89].

• Even if performance still has to be improved, these results show that the solver that we have developed
is able to deal with a huge number of processes and can provide results for the complete model on
very fine meshes is a reasonable restitution time (approximately 9 hours for the 8000 × 8000 cells
computation).

8.5 Conclusions on the ICF deceleration phase benchmark

We have presented in this section preliminary numerical results for the complete two-temperature resis-
tive MHD model on an ICF test problem in both perturbed an unperturbed cases. On the one hand, we
have seen that the magnetic field which is generated in the absence of an initial perturbation and is only due
to numerical approximations is reduced in L1 norm when the mesh is refined. On the other hand, numer-
ical results obtained from a perturbed initial condition seem convincing and in accordance with published
workds (see [42] for instance). Magnetic fields are generated around both sides of spikes of Rayleigh-Taylor
modes, reach magnitudes up to 50 MG depending on the initial perturbation amplitude and seem to slighlty
reduce the instabilities growth rates compared to classical two-temperature simulations.

These growth rates now have to be determined more accurately, which requires numerical results that
are closer to convergence. This could be achieved by improving the preconditioning step so that the solver
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that has been developed is able to run faster and thus to deal with even finer meshes. Convergence could
also be accelerated by building second-order accurate schemes for the diffusion and source term operators.
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Conclusions

Nous avons établi dans cette étude un modèle de MHD résistive à deux températures avec prise en
compte des termes de champ magnétique auto-généré basé sur des relations de fermeture de Braginskii [11]
et sur un modèle de collisions de Decoster [28]. Afin de faciliter sa résolution, celui-ci a été décomposé en
plusieurs sous-systèmes selon la nature de l’opérateur mathématique sous-jacent que nous avons reformulés
en énergie totale afin de garantir la conservativité. Nous avons ensuite proposé des méthodes numériques
adaptées à chaque opérateur permettant la résolution du modèle complet en deux dimensions d’espace sur
grille cartésienne en géométries plane et axisymétrique. Celles-ci ont été implémentées dans un code de
simulation qui a été parallélisé à l’aide d’une méthode de décomposition de domaine.

Nous avons tout d’abord traité le cas de l’opérateur hyperbolique - c’est-à-dire des équations de l’hydro-
dynamique ou de la MHD idéale selon que l’on tienne compte ou non des termes de champ magnétique - pour
lequel nous avons proposé une nouvelle classe de schémas numériques GoHy d’ordre élevé en espace et en
temps en régime non linéaire sur grille cartésienne dans le formalisme Lagrange + projection. Ceux-ci ont
fait l’objet de plusieurs publications [32, 93].

La principale innovation de cette nouvelle souche de schémas est qu’elle a été conçue afin de tirer
parti des calculateurs modernes massivement parallèles. Les schémas GoHy reposent ainsi sur une méthode
monodimensionnelle particulièrement efficace faisant appel à un schéma en temps direct (ce qui limite le
nombre d’appels aux conditions de bord - et donc les phases de communication - et à l’équation d’état)
et à des méthodes d’interpolation centrées peu coûteuses. Celle-ci est étendue au cas bidimensionnel à
l’aide de techniques de splitting directionnel d’ordre élevé. Le traitement par directions alternées constitue
une approche novatrice pour les ordres strictement supérieurs à 2 qui présente un avantage significatif en
termes de performances : celle-ci permet en effet la mise en œuvre d’implémentations dites cache-oblivious
favorisant la réutilisation des données présentes dans le cache du processeur. Par ailleurs, le contrôle des
oscillations inhérentes aux schémas d’ordre élevé et la préservation de la symétrie sont assurés par des
méthodes de viscosité artificielle ne nécessitant aucun test - contrairement aux méthodes classiques de type
limiteur - dont le coût est par conséquent modéré.

En pratique, nous avons montré que l’ordre expérimental de convergence des schémas GoHy correspond
à l’ordre théorique et que leur robustesse est satisfaisante. Surtout, nous avons mis en évidence leur capacité
à tirer parti des calculateurs modernes par des mesures de performance et d’efficacité parallèle. Les schémas
GoHy sont capables d’exploiter jusqu’à 40% de la puissance crête des processeurs actuels tandis que l’effi-
cacité parallèle de notre implémentation atteint 95% sur 256 processus, ce qui constitue des résultats tout
à fait satisfaisants.

Afin de permettre la simulation de processus d’implosion de capsule FCI en attaque directe, nous avons
combiné les schémas GoHy avec des méthodes de type volumes finis permettant la prise en compte des termes
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de conduction thermique et résistive, des termes de champ magnétique auto-généré et des contributions des
effets Hall et Nernst. Dans cette partie de notre étude, l’aspect ordre élevé a été mis de côté, l’objectif étant
simplement de résoudre le modèle complet en un temps de calcul raisonnable. Une attention particulière a
donc été portée à l’implémentation de ces schémas, notamment au traitement semi-implicite des termes de
diffusion qui suppose la résolution de systèmes linéaires creux de grande taille.

Le code de calcul ainsi obtenu nous a permis d’effectuer des simulations numériques sur un cas test
particulièrement représentatif de processus d’implosion concrets décrivant la phase de décélération d’une
capsule FCI. Dans ce contexte, nous avons émulé la présence de défauts de sphéricité à la surface de la co-
quille en introduisant une perturbation numérique à l’aide de polynômes de Legendre. Plusieurs conclusions
peuvent être tirées de ces expérimentations numériques.

– D’une part, les efforts consentis en termes d’implémentation ont permis de mener des simulations sur
des maillages très fins. En pratique, nous avons été capables d’effectuer des calculs pour le modèle
complet de MHD résistive à deux températures sur des maillages de 64 millions de mailles (soit près
de 400 millions d’inconnues) distribués sur 6400 coeurs, ce qui montre la capacité du solveur développé
à tirer parti des supercalculateurs modernes. Les résultats numériques ainsi obtenus ne sont toutefois
pas tout à fait convergés.

– D’autre part, les simulations effectuées ont permis d’étudier les termes de champ magnétique auto-
généré. Ceux-ci atteignent des magnitudes de plusieurs dizaines de mégagauss mais ne modifient
pas la topologie du plasma. Le taux de croissance des instabilités est très légèrement réduit mais
de tels niveaux de champ magnétique ne semblent pas modifier considérablement la distribution de
température.

L’implémentation des schémas GoHy est désormais utilisée par plusieurs équipes comme benchmark
permettant d’évaluer les performances des architectures récentes dans le domaine du calcul hautes perfor-
mances.

Perspectives

À l’issue de cette étude, plusieurs points demandent encore à être approfondis. Du point de vue
numérique, l’un des axes d’amélioration consisterait à discrétiser les opérateurs de diffusion et les termes
sources à l’ordre 2. Une telle approche serait probablement très coûteuse et son implémentation se révèlerait
difficile en raison de la complexité des relations de fermeture de Braginskii mais elle pourrait accélérer la
convergence et permettre une estimation précise des taux de croissance des instabilités au cours de la phase
de décélération à l’instar de ce qui a été fait dans [80].

Dans ce but, il serait par ailleurs bénéfique d’optimiser les performances de notre solveur, notamment
dans le cadre de la résolution des termes de conduction thermique et résistive. En effet, le préconditionnement
du système linéaire généré par notre approche semi-implicite est actuellement effectué par une méthode de
Jacobi dont nous avons vu qu’elle est peu efficace et nécessiterait d’être remplacée par un préconditionneur
plus sophistiqué, de type multigrille par exemple.

Enfin, nous avons vu que les termes de champ magnétique auto-généré atteignent des magnitudes très
importantes mais n’ont pas d’effet visible sur le plasma. Ceux-ci devraient en revanche avoir une grande
influence sur le transport des particules chargées en les faisant s’enrouler autour des lignes de champ
magnétique. Le dépôt d’énergie serait alors plus important au voisinage du point chaud. Il semblerait donc
intéressant de coupler le code de simulation que nous avons mis en place avec un code de transport. Des
collaborations visant à réaliser ce couplage ont déjà été initiées.
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Conclusions

We have derived in this study a two-temperature resistive MHD model based on Braginskii’s closure
relations [11] and Decoster’s collisions model [28] that takes self-generated magnetic field terms into account.
In order to ease its resolution, the complete system has been split in several subsystems according to the
nature of the underlying mathematical operator. These subsystems have been reformulated in total energy in
order to guarantee conservativity. We then have discussed the discretization of each operator and proposed
appropriate numerical methods in order to allow the resolution of the whole model on two-dimensional
planar and axisymmetric geometries. The resulting schemes have been implemented in a simulation code
which has been parallelized using a domain decomposition method.

We have first discussed the case of the hyperbolic operator - namely the hydrodynamics or ideal MHD
equations depending on whether magnetic fields are taken into account or not - for which we have proposed
the so-called GoHy class of schemes. Built in the Lagrange-remap formalism, these schemes are high-order
accurate in both space and time in the non-linear regime on Cartesian grids. The principles of GoHy
schemes have been described in several papers, firstly in the case of hydrodynamics [32] and then for the
ideal MHD equations [93].

The most innovative feature of this new class of schemes is that it has been designed in order to
take advantage of modern massively parallel computer architectures. GoHy schemes therefore rely on a
particularly efficient one-dimensional scheme that uses a one-step temporal scheme (which limits the number
of boundary conditions - and thus communication phases - and equation of state calls) and exclusively resorts
to centered (and thus cheap) interpolation methods. They have been extended to the two-dimensional
case thanks to high-order accurate dimensional splitting techniques. This dimensionally split strategy
is an innovative approach for orders that are strictly greater than 2 that presents a major advantage
from the performance point of view. It indeed allows the development of cache-oblivious implementations
that mostly operate on data located in the processor’s cache memory. Besides, GoHy schemes have been
combined with artificial viscosity models for controlling oscillations phenomena that naturally occur with
high-order schemes and preserving symmetry. Contrarily to classical limiting techniques, such artificial
viscosity approaches do not impose to perform conditional tests and thus reveal relatively cheap in terms
of computational cost.

We then have carried out some practical tests. In particular, we have seen that the experimental
order of convergence of GoHy schemes matches the theoretical one and that their robustness features are
satisfying. Above all, we have illustrated the ability of GoHy schemes to take advantage of modern computer
architectures through performance and parallel efficiency measurements. These are indeed able to exploit
up to 40% of recent processors’ peak performance while the parallel efficiency of our implementation reaches
95% on 256 processes.
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In order to allow the simulation of ICF implosion processes in the direct drive context, we have combined
GoHy schemes with finite volume methods for solving the thermal and resistive conduction terms and
taking the magnetic field generation as well as the Hall and Nernst effects into account. In this part of
our study, we have not focused on achieving high-order accuracy but rather on solving the complete two-
temperature resistive MHD model in reasonable restitution times. We therefore have proposed classical
first-order accurate discretizations of the above-mentioned operators and have paid particular attention
to their implementation, especially to the semi-implicit treatment of diffusion terms since it implies the
resolution of large sparse linear systems.

The code that has been developed has finally been used for performing numerical simulations on a
test problem that accurately describes the deceleration phase of an ICF capsule. In this context, we have
emulated the presence of sphericity deviations on the outer surface of the shell by introducing numerical
perturbations with the help of Legendre polynomials. Several conclusions can be stated about the numerical
experiments that we have carried out.

• On the one hand, we have been able to perform computations for the complete two-temperature
resistive MHD model with our simulation code on very fine meshes, more precisely up to meshes of
64 million cells (i.e. almost 400 million unknowns) distributed among 6400 processes, showing the
ability of the solver we have developed to take advantage of modern supercomputers. However, it
seems that the numerical results that have been obtained have still not reached convergence.

• On the other hand, we have been able to study self-generated magnetic field terms on the basis of
preliminary simulation results. We have seen that these reach magnitudes of several tens megagauss
but do not modify the topology of the plasma. The instabilities growth rates are slightly reduced but
such levels of magnetic field do not seem to noticeably modify the temperature distribution.

The GoHy schemes’ implementation is now used by several teams as a benchmark for assessing perfor-
mances of recent computer architectures in the area of high performance computimg.

Perspectives

Several points could be improved in the work that we have presented. From the numerical point of view,
one of the improvement paths would consist in building second-order schemes for solving the diffusion and
source terms operators. This approach would probably lead to expensive numerical methods in terms of
implementation and computational cost but it could help accelerating convergence and allow the accurate
estimation of instabilities growth rates as in [80].

To that end, it would also be beneficial to carry out further performance optimizations, especially in
the frame of the thermal and resistive conduction systems resolution. Indeed, we have seen that the Jacobi
preconditioner used until now to reduce the number of iterations in iterative solvers in not efficient enough
and should be replaced with a more sophisticated one (multigrid preconditioner for example).

Finally, we have seen that self-generated magnetic field terms reach very high magnitudes but only have
slight effects on the plasma. Yet, these should have a strong impact on the transport of charged particles,
trapping them around magnetic field lines and making them deliver more energy in the vicinity of the hot
spot. It would therefore seem interesting to couple the simulation code that we have developed with a
particle transport code. Collaborations that aim at doing so have already been initiated.



203

Appendix A

From kinetic to fluid equations

For the sake of simplicity, we drop the α subscript and take c = 1 hereafter. Let f(x,v, t) denote a
distribution function whose evolution is governed by the Botzmann equation:

∂tf + v · ∇xf +
Ze

m
(E + v ∧B) · ∇vf =

∑
β

C(f, fβ). (A.1)

Before deriving the fluid equations from (A.1), we recall a few definitions:

n =
∫
f dv density,

nu =
∫
fv dv momentum,

ne =
1
2

∫
f |v|2 dv total energy,

P = m

∫
f(v − u)⊗ (v − u) dv constraint tensor,

q =
m

2

∫
f |v − u|2(v − u) dv heat flux,

Rβ = m

∫
Cβ(f, fβ)(v − u) dv mean change in momentum due to collisions,

Qβ =
m

2

∫
Cβ(f, fβ)|v − u|2 dv mean change in internal energy due to collisions.

We also assume in the sequel that f is zero for infinite velocities and that the integral of the collision term
over the velocity space is zero: ∫

C(f, fβ) dv = 0 ∀β. (A.2)

A.1 Mass continuity equation

We first integrate the Boltzmann equation (A.1) over the velocity space. Since x and v are independent
variables, we thus obtain:

∂t

∫
f dv +∇x ·

∫
fv dv +

Ze

m

∫
(E + v ∧B) · ∇vf dv = 0. (A.3)

Note that E does not depend on v and that the i-th component of v ∧ B does not depend on vi. We
therefore have the following relation:

(E + v ∧B) · ∇vf = ∇v · (f(E + v ∧B)) . (A.4)
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Moreover, since f is zero for infinite velocities, equation (A.3) rewrites:

∂t

∫
f dv +∇x ·

∫
fv dv = 0

i.e. ∂tn+∇ · (nu) = 0.

A.2 Momentum equation

We now multiply the Boltzmann equation (A.1) with mv and integrate it over the velocity space:

m∂t

∫
fv dv +m∇x ·

∫
f(v ⊗ v) dv +

Ze

m

∫
((E + v ∧B) · ∇vf)v dv =

∑
β

∫
C(f, fβ)v dv. (A.5)

Using (A.4) and an integration by parts, one can show that:∫
((E + v ∧B) · ∇vf)v dv =

∫
(∇v · f (E + v ∧B))v dv,

= −
∫

(fE + fv ∧B) dv,

= −n (E + u ∧B) .

Moreover, since:

m

∫
f(v ⊗ v) dv = m

∫
f ((v − u + u)⊗ (v − u + u)) dv,

= m

∫
f ((v − u)⊗ (v − u)) dv +mnu⊗ u,

= P +mnu⊗ u,

equation (A.5) rewrites:

∂t(mnu) +∇x ·
(
mnu⊗ u + P

)
− Zne

m
(E + u ∧B) =

∑
β

∫
C(f, fβ)v dv.

The right hand side can be expressed in terms of the mean change in momentum, indeed:

m

∫
C(f, fβ)v dv = m

∫
C(f, fβ)(v − u + u) dv,

= Rβ +mu
∑
β

∫
C(f, fβ) dv,

= Rβ according to (A.2),

so that the fluid momentum equation finally writes:

∂t(mnu) +∇x ·
(
mnu⊗ u + P

)
=
Zne

m
(E + u ∧B) +

∑
β

Rβ.



A.3. Total energy equation 205

A.3 Total energy equation

We finally multiply equation (A.1) with m|v|2
2 and integrate it over the velocity space:

m

2

∫
f |v|2 dv +

m

2
∇x ·

∫
f |v|2v dv +

Ze

2m

∫
f |v|2∇v · (E + v ∧B) dv =

m

2

∑
β

∫
C(f, fβ)|v|2 dv. (A.6)

Once again, combining (A.4) and an integration by parts helps to show that:∫
f |v|2∇v · (E + v ∧B) dv = −2

∫
fv · (E + v ∧B) dv,

= −2
(∫

fv dv
)
·E− 2

∫
fv · (v ∧B) dv,

= −2nu ·E since v and v ∧B are orthogonal vectors.

We now develop the following term:∫
f |v|2v dv =

∫
f |v|2(v − u + u) dv,

= 2neu +
∫
f |v|2(v − u) dv,

= 2neu +
∫
f |v − u + u|2(v − u) dv,

= 2neu +
∫
f |v − u|2(v − u) dv + 2

(∫
f(v − u)⊗ (v − u) dv

)
u + |u|2

∫
f(v − u) dv.

One can easily note that the last right hand side term is zero and thus:

m

2

∫
f |v|2v dv = mneu + Pu + q.

Equation (A.6) then rewrites:

∂t(mne) +∇x ·
(
mneu + Pu + q

)
− Zneu ·E =

∑
β

∫
C(f, fβ)|v|2 dv.

The right hand side can be expressed in terms of the mean changes in momentum and total energy, indeed:

m

2

∫
C(f, fβ)|v|2 dv =

m

2

∫
C(f, fβ)|v − u + u|2 dv

=
m

2

∫
C(f, fβ)|v − u|2 dv +mu ·

∫
C(f, fβ)(v − u) dv + |u|2

∫
C(f, fβ) dv

= Qβ + u ·Rβ according to (A.2),

so that the fluid total energy equation finally writes:

∂t(mne) +∇x ·
(
mneu + Pu + q

)
− Zne(u ·E) =

∑
β

(Qβ + u ·Rβ) .
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Appendix B

Building a third-order accurate
dimensional splitting method

Third-order accurate splitting methods can be built by taking p = 3 in equation (4.32). In order to
determine splitting sequences that allow to reach third-order accuracy, we compare the Taylor expansion of
the exact operator:

exp (∆t(A+ B))

with the Taylor expansion of the approximate operator:
3∏

i=1

exp (ai∆tA) · exp (bi∆tB))

and identify the coefficients in both expressions. We thus obtain the following non-linear system (CX
denotes the coefficient that is in factor of the X term):

CA = a1 + a2 + a3 = 1,

CB = b1 + b2 + b3 = 1,

2CA2 = a2
1 + a2

2 + a2
3 + 2a1a2 + 2a1a3 + 2a2a3 = 1,

2CB2 = b21 + b22 + b23 + 2b1b2 + 2b1b3 + 2b2b3 = 1,

CAB = a1b1 + a1b2 + a1b3 + a2b2 + a2b3 + a3b3 = 1/2,

CBA = b1a2 + b1a3 + b2a3 = 1/2,

6CA3 = a3
1 + a3

2 + a3
3 + 3a2

1a2 + 3a2
1a3 + 3a2

2a1 + 3a2
2a3 + 6a1a2a3 = 1,

6CB3 = b31 + b32 + b33 + 3b21b2 + 3b21b3 + 3b22b1 + 3b22b3 + 6b1b2b3 = 1,

2CA2B = a2
1b1 + a2

1b2 + a2
1b3 + a2

2b2 + a2
2b3 + a2

3b3 + 2a1a2b2 + 2a1a3b3 + 2a1a2b3 + 2a2a3b3 = 1/3,

2CAB2 = a1b
2
1 + a1b

2
2 + a1b

2
3 + a2b

2
2 + a2b

2
3 + a3b

2
3 + 2a1b1b2 + 2a1b2b3 + 2a1b1b3 + 2a2b2b3 = 1/3,

2CB2A = b21a2 + b21a3 + b22a3 + 2b1b2a3 = 1/3,

2CBA2 = b1a
2
2 + b1a

2
3 + b2a

2
3 + 2b1a2a3 = 1/3,

CABA = a1b1a2 + a1b1a3 + a2b2a3 + a1b2a3 = 1/6,

CBAB = b1a2b2 + b1a2b3 + b1a3b3 + b2a3b3 = 1/6.
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We consider the equations coming from the A, B, BA, B2A and A2B coefficients as reference equations:



a1 + a2 + a3 = 1,

b1 + b2 + b3 = 1,

a2b1 + a3b1 + a3b2 = 1/2,

b21a2 + b21a3 + b22a3 + 2b1b2a3 = 1/3,

a2
1b1 + a2

1b2 + a2
1b3 + a2

2b2 + a2
2b3 + a2

3b3 + 2a1a2b2 + 2a1a3b3 + 2a1a2b3 + 2a2a3b3 = 1/3.

(B.1)

Note that systems (B.1) and (4.35) are equivalent since:

2CB2A = b21a2 + b21a3 + b22a3 + 2b1b2a3

= b21a2 + a3(b1 + b2)2,

and:

2CA2B = a2
1b2 + a2

1b3 + a2
2b2 + a2

2b3 + a2
3b3 + 2a1a2b2 + 2a1a3b3 + 2a1a2b3 + 2a2a3b3

= b3(a2
1 + a2

2 + a2
3 + 2a1a2 + 2a1a3 + 2a2a3) + b2(a2

1 + a2
2 + 2a1a2) + b1a

2
1

= b3(a1 + a2 + a3)2 + b2(a1 + a2)2 + b1a
2
1

= b3 + b2(a1 + a2)2 + b1a
2
1.

We now would like to show that the other non-linear equations that have been obtained by identifying
coefficients in the Taylor expansions of the exact and approximate operators can actually be obtained from
the five reference equations given in (B.1). Indeed:

2CA2 = (a1 + a2 + a3)2

= 1,

6CA3 = (a1 + a2 + a3)3

= 1,

2CB2 = (b1 + b2 + b3)2

= 1,

6CB3 = (b1 + b2 + b3)3

= 1,
CAB = a1b1 + a1b2 + a1b3 + a2b2 + a2b3 + a3b3

= a1(b1 + b2 + b3) + a2(b2 + b3) + a3b3

= a1 + a2(1− b1) + a3(1− b1 − b2)
= (a1 + a2 + a3)− (b1a2 + b1a3 + b2a3)
= 1− 1/2
= 1/2,
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CBAB = b1a2b2 + b1a2b3 + b1a3b3 + b2a3b3

= b1a2b2 + (b1a2 + b1a3 + b2a3)b3
= b1a2b2 + (b1a2 + b1a3 + b2a3)(1− b1 − b2)
= (b1a2 + b1a3 + b2a3)− (b21a2 + b21a3 + 2b1b2a3 + b22a3)
= 1/2− 1/3
= 1/6,

2CAB2 = a1b
2
1 + a1b

2
2 + a1b

2
3 + a2b

2
2 + a2b

2
3 + a3b

2
3 + 2a1b1b2 + 2a1b2b3 + 2a1b1b3 + 2a2b2b3

= (a1 + a2 + a3)(b1 + b2 + b3)2 − (a2b
2
1 + a3b

2
1 + a3b

2
2 + +2a3b1b2 + 2a2b1b2 + 2a2b1b3 + 2a3b1b3 + 2a3b2b3)

= 1− (a3(b1 + b2)2 + a2b
2
1 + 2(a2b1b2 + a2b1b3 + a3b1b3 + a3b2b3))

= 1− (1/3 + 1/3)
= 1/3,

2CBA2 = b1a
2
2 + b1a

2
3 + b2a

2
3 + 2b1a2a3

= (a1 + a2 + a3)2(b1 + b2 + b3)− (2CA2B + 2CBAB)
= 1− (1/3 + 1/3)
= 1/3,

CABA = a1b1a2 + a1b1a3 + a2b2a3 + a1b2a3

= a2b2a3 + (b1a2 + b1a3 + b2a3)a1

= a2b2a3 + (b1a2 + b1a3 + b2a3)(1− a2 − a3)

= (b1a2 + b1a3 + b2a3)− (b1a2
2 + b1a

2
3 + b2a

2
3 + 2b1a2a3)

= 1/2− 1/3
= 1/6.

This shows that the ai and bi coefficients that allow to build a third-order accurate splitting method are
solution of the following system of non-linear equations:

a1 + a2 + a3 = 1,

b1 + b2 + b3 = 1,

a2b1 + a3b1 + a3b2 = 1/2,

a2b
2
1 + a3(b1 + b2)2 = 1/3,

b3 + b2(a1 + a2)2 + b1a
2
1 = 1/3.
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Appendix C

Unified notations for planar and
axisymmetric cases

This appendix aims at introducing a unified system of notations that is suitable for both planar and
axisymmetric cases. First of all, we define the so-called geometry indicator parameter denoted by α whose
value is given by:

α =

{
0 in the planar case,
1 in the axisymmetric case.

We also propose to consider from now on the following vector basis:

(e1, e2, e3) =

{
(ex, ey, ez) in the planar case,
(ez, er, eθ) in the axisymmetric case.

(C.1)

The integer subscripts introduced in (C.1) will be used for denoting spatial coordinates:

(x1, x2, x3) =

{
(x, y, z) in the planar case,
(z, r, θ) in the axisymmetric case,

as well as vector components:

u = (u1, u2, u3) =

{
(ux, uy, uz) in the planar case,
(uz, ur, uθ) in the axisymmetric case,

and spatial derivatives along a given direction:

∂if =
∂f

∂xi
, i ∈ {1, 2, 3}.

Remark 38. Note that (e1, e2, e3) forms a direct basis in both planar and axisymmetric cases.

We finally provide the expression of several operators for the specific two-dimensional case in Table C.1
using the unified system of notations (C.1).
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Operator Vector basis

definition (ex, ey, ez) (ez, er, eθ) (e1, e2, e3)

∇ · u (divergence) ∂xux + ∂yuy ∂zuz + 1
r∂r (rur) ∂1u1 + 1

xα
2
∂2 (xα

2u2)

∇× u (curl)


∂yuz

−∂xuz

∂xuy − ∂yux




1
r∂r (ruθ)

−∂zuθ

∂zur − ∂ruz




1
xα
2
∂2 (x2u3)

−∂1u3

∂1u2 − ∂2u1



T · u with h = e3

(see page 30)


T⊥ux − T∧uy

T⊥uy + T∧uy

0




T⊥uz − T∧ur

T⊥ur + T∧ur

0




T⊥u1 − T∧u2

T⊥u2 + T∧u1

0



Table C.1: Expression of several operators for the two-dimensional case in planar geometry, axisymmetric
geometry and using the unified system of notations introduced in (C.1).
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Appendix D

Estimation of the thermoelectric,
conductivity and resistivity tensors at
cell interfaces

We consider in this appendix a set of two adjacent cells Ω1 and Ω2 separated by a vertical edge Γ =
∂Ω1 ∩ ∂Ω2 and adopt the following notations:

• φi denotes the cell-centered value of φ in the Ωi cell;

• φ? denotes the value of φ on the cell interface Γ;

• φ± denote the value of φ on the vertices of Γ.

Remark 39. The approximations of the thermoelectric, conductivity and resistivity tensors on horizontal
edges being similar to their approximations on vertical edges, we only discuss the case of vertical edges
below.

D.1 Conductivity tensor and thermoelectric tensor approximations

We here deal with the following diffusion equation:

∂tT +∇ · q = 0,

where the heat flux q writes:

q = −κ · ∇T with κ =

 κOrth −κ∧

κ∧ κ⊥

 .

In the two-dimensional case, using notations introduced in Appendix C, the heat flux writes:

q = −


κ⊥∂1T − κ∧∂2T

κ⊥∂2T + κ∧∂1T

0

 .
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Using basic approximations, the normal component of the heat flux in the Ω1 and Ω2 cells is given by:

(q · n)1 = −κ⊥1
(
T? − T1

∆x1/2

)
+ κ∧1

(
T+ − T−

∆x2

)
,

(q · n)2 = −κ⊥2
(
T2 − T?

∆x1/2

)
+ κ∧2

(
T+ − T−

∆x2

)
.

For the sake of conservativity, the normal component of the heat flux has to be continuous across Γ, imposing
that:

(q · n)1 = (q · n)2,

which leads to the following expression of T?:

T? =
κ⊥1 T1 + κ⊥2 T2

κ⊥1 + κ⊥2
− ∆x1

2∆x2

(
κ∧1 (T+ − T−)− κ∧2 (T+ − T−)

κ⊥1 + κ⊥2

)
. (D.1)

Injecting (D.1) in the heat flux definition leads to:

q · n = −
(

2
κ⊥1 κ

⊥
2

κ⊥1 + κ⊥2

)
T2 − T1

∆x1
+
(
κ⊥1 κ

∧
2 + κ⊥2 κ

∧
1

κ⊥1 + κ⊥2

)
T+ − T−

∆x2
,

which motivates the choice of the following cell interface representation of the conductivity tensor κ:

κ⊥Γ = 2
κ⊥1 κ

⊥
2

κ⊥1 + κ⊥2
, κ∧Γ =

κ⊥1 κ
∧
2 + κ⊥2 κ

∧
1

κ⊥1 + κ⊥2
.

We now apply the same methodology to the following term that is involved in the electronic heat flux:

Te(β · J) = Te


β⊥

xα
2
∂2 (xα

2B) + β∧∂1B

−β⊥∂1B − β∧

xα
2
∂2 (xα

2B)

0

 . (D.2)

Using basic approximations, imposing the continuity of (D.2) leads to the following estimation of B?:

B? =
β∧1 B1 + β∧2 B2

β∧1 + β∧2
− ∆x1

2∆x2

(
β⊥1 (B+ −B−)− β⊥2 (B+ −B−)

β∧1 + β∧2

)
, (D.3)

and thus to the following cell interface representation of the thermoelectric tensor β:

β⊥Γ = −β
⊥
1 β

∧
2 + β⊥2 β

∧
1

β∧1 + β∧2
, β∧Γ = −2

β∧1 β
∧
2

β∧1 + β∧2
.

D.2 Resistivity tensor approximations

We deal in this section with the following resistive conduction equation:

∂tB +∇×
(
ρ · J

)
= 0 with J = ∇×B
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with B = Be3. In the two-dimensional case, using notations introduced in Appendix C, the ρ · J term
writes:

ρ · J =
c

µ


ρ⊥

xα
2
∂2 (xα

2B) + ρ∧∂1B

−ρ⊥∂1B − ρ∧

xα
2
∂2 (xα

2B)

0


Using basic approximations, the tangential component of the resistivity flux in the Ω1 and Ω2 cells is given
by:

(
(ρ · J) · t

)
1

= −ρ⊥1
(
B? −B1

∆x1/2

)
− ρ∧1

(
(x2)α

+T+ − (x2)α
−T−

((x2)α
+ + (x2)α

−)∆x2/2

)
,

(
(ρ · J) · t

)
2

= −ρ⊥2
(
B2 −B?

∆x1/2

)
− ρ∧2

(
(x2)α

+T+ − (x2)α
−T−

((x2)α
+ + (x2)α

−)∆x2/2

)
.

For the sake of conservativity, the tangential component of the resistivity flux has to be continuous across
Γ, imposing that: (

(ρ · J) · t
)
1

=
(
(ρ · J) · t

)
2
,

which leads after a few manipulations to the following resistivity tensor expressions on the cell interface Γ:

ρ⊥Γ = 2
ρ⊥1 ρ

⊥
2

ρ⊥1 + ρ⊥2
, ρ∧Γ =

ρ⊥1 ρ
∧
2 + ρ⊥2 ρ

∧
1

ρ⊥1 + ρ⊥2
.
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Appendix E

Positivity of the electronic internal
energy variation for the resistive
conduction operator

In this section, we aim at showing that the following electronic internal energy variation:

Ai,j =
(ρeεe)n+1

i,j − (ρeεe)n
i,j

∆t
=

(ρe)n+1
i,j − (ρe)n

i,j

∆t
− 1

∆t


(
Bn+1

i,j

)2

2µ
−

(
Bn

i,j

)2

2µ


used for updating the (ρeεe) when dealing with resistive conduction is positive. In this context, we recall
that the magnetic field B and the total energy E are updated according to the following finite volume
schemes:

B
n+1
i,j −B

n
i,j

∆t
+
c2∆t
µ∆x1

(
R∗

i+ 1
2
,j
−R∗

i− 1
2
,j

)
− c2∆t
µ∆x2

(
R∗

i,j+ 1
2

−R∗
i,j− 1

2

)
= 0, (E.1)

(ρe)
n+1

i,j − (ρe)
n

i,j

∆t
− c2

µ2

[
1

∆x1

(
E∗

i+ 1
2
,j
− E∗

i− 1
2
,j

)
+

1
(xα

2 )j∆x2

(
E∗

i,j+ 1
2

− E∗
i,j− 1

2

)]
= 0 (E.2)

where the R∗ and E∗ fluxes are defined in section 7.1.2. One can notice that:(
Bn+1

i,j

)2
−
(
Bn

i,j

)2 =
(
Bn+1

i,j −B
n
i,j

)(
Bn+1

i,j +Bn
i,j

)
=
(
Bn+1

i,j −B
n
i,j

)(
2Bn+1

i,j − (Bn+1
i,j −B

n
i,j)
)

= 2Bn+1
i,j

(
Bn+1

i,j −B
n
i,j

)
−
(
Bn+1

i,j −B
n
i,j

)2

so that Ai,j is given by:

Ai,j =
(ρe)n+1

i,j − (ρe)n
i,j

∆t
−
Bn+1

i,j

µ

(
Bn+1

i,j −Bn
i,j

∆t

)
︸ ︷︷ ︸

A′i,j

+
1

2µ∆t

(
Bn+1

i,j −B
n
i,j

)2
. (E.3)
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The last right hand side term in (E.3) being positive, we discuss the sign of A′i,j from now on. Its detailed
form is given by:

A′i,j = +
c2

µ2

[
1

∆x1

(
E∗

i+ 1
2
,j
− E∗

i− 1
2
,j

)
+

1
(xα

2 )j∆x2

(
E∗

i,j+ 1
2

− E∗
i,j− 1

2

)]
−
Bn+1

i,j

µ

[
c2∆t
µ∆x2

(
R∗

i,j+ 1
2

−R∗
i,j− 1

2

)
− c2∆t
µ∆x1

(
R∗

i+ 1
2
,j
−R∗

i− 1
2
,j

)]
.

(E.4)

Injecting the definition of the R∗ and E∗ fluxes in (E.4) leads after a few manipulations to the following
expression of A′i,j :

A′i,j = A⊥i,j +
c2

2µ2(xα
2 )j∆x1∆x2

A∧i,j ,

where A⊥i,j is the following positive term:

A⊥i,j = +
c2

2µ2∆t∆x2
1

[
(ρ⊥)n

i+ 1
2
,j

(
Bn+1

i+1,j −B
n+1
i,j

)2
+ (ρ⊥)n

i− 1
2
,j

(
Bn+1

i−1,j −B
n+1
i,j

)2
]

+
c2(ρ⊥)n

i,j+ 1
2

2µ2∆t(xα
2 )j(xα

2 )j+ 1
2
∆x2

2

(
(xα

2 )j+1B
n+1
i,j+1 − (xα

2 )jB
n+1
i,j

)2

+
c2(ρ⊥)n

i,j− 1
2

2µ2∆t(xα
2 )j(xα

2 )j− 1
2
∆x2

2

(
(xα

2 )j−1B
n+1
i,j−1 − (xα

2 )jB
n+1
i,j

)2
,

and A∧i,j is given by:

A∧i,j = + (ρ∧)n
i,j+ 1

2

(
(xα

2 )j+1B
n+1
i,j+1 − (xα

2 )jB
n+1
i,j

)
(Bn+1

i+ 1
2
,j+ 1

2

−Bn+1
i− 1

2
,j+ 1

2

)

− (ρ∧)n
i+ 1

2
,j
(Bn+1

i+1,j −B
n+1
i,j )

(
(xα

2 )j+ 1
2
Bn+1

i+ 1
2
,j+ 1

2

− (xα
2 )j− 1

2
Bn+1

i+ 1
2
,j− 1

2

)
+ (ρ∧)n

i,j− 1
2

(
(xα

2 )jB
n+1
i,j − (xα

2 )j−1B
n+1
i,j−1

)
(Bn+1

i+ 1
2
,j− 1

2

−Bn+1
i− 1

2
,j− 1

2

)

− (ρ∧)n
i− 1

2
,j
(Bn+1

i,j −B
n+1
i−1,j)

(
(xα

2 )j+ 1
2
(Bn+1

i− 1
2
,j+ 1

2

− (xα
2 )j− 1

2
Bn+1

i− 1
2
,j− 1

2

)
)
.

If the resistivity tensor is diagonal, (i.e. if ρ∧ is identically zero), Ai,j is equal to the a sum of two positive
terms:

Ai,j =
1

2µ∆t

(
Bn+1

i,j −B
n
i,j

)2
+A⊥i,j ,

it is thus necessarily positive. Otherwise, Ai,j writes:

Ai,j =
1

2µ∆t

(
Bn+1

i,j −B
n
i,j

)2
+A⊥i,j +

c2

2µ2(xα
2 )j∆x1∆x2

A∧i,j .

Assuming that ∆t is of the order of the average mesh size ∆ and that both the resistivity tensor compo-
nent (ρ∧)n and the magnetic field Bn+1 are smooth enough, we now perform a Taylor expansion around
((x1)i; (x2)j) in the expression of A∧i,j . After a few manipulations, it shows that:

c2

2µ2(xα
2 )j∆x1∆x2

A∧i,j = O
(
∆2
)
.

In this case, Ai,j is thus positive provided that ∆ is small enough.
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Appendix F

Formal derivation of the order of
accuracy of the Lagrange-remap GoHy
scheme using Maple (third-order
hydrodynamics)

We first initialize Maple, state that ∆t is of the order of ∆x (according to the stability condition of
GoHy schemes) and declare an EOS procedure for applying the equation of state, i.e. for calculating the
pressure from the other quantites. Here, we consider the case of a perfect gas law.

> restart;
> # dt is of the order of dx
> dt:=alpha*dx;
> # equation of state procedure
> EOS:=proc(rho,u,rhoe)
> return (gamma-1)*(rhoe-rho*u^2/2);
> end proc;

For the sake of simplicity, we define the following myexpand procedure that aims at transforming expressions
in polynomials of the ∆x parameter.

> # accuracy parameter for Taylor expansions
> # has to set high enough to avoid undesired simplifications
> myorder:=6;
> myexpand:=proc(expression)
> return expand(convert(series(expression,dx,myorder),polynom));
> end proc;

The formal proof of accuracy consists in applying the whole Lagrange-remap scheme in a single cell which
is here assumed to be [−∆x/2;∆x/2] and whose mid-point is denoted x. We now initialize cell averages of
conservative variables. The formula given in the CellAverage procedure has been obtained by calculating
a truncated taylor expansion of cell averages around x.

> CellAverage:=proc(var,k)
> c1:=k*dx;
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> c2:=(k^2/2+1/24)*dx^2;
> c3:=(k/24+k^3/6)*dx^3;
> return var + c1*diff(var,x) + c2*diff(var,x$2) + c3*diff(var,x$3);
> end proc;
>
> rhoAV:=k->CellAverage(rho(x,t),k);
> rhouAV:=k->CellAverage(rho(x,t)*u(x,t),k);
> rhoeAV:=k->CellAverage(rhoe(x,t),k);

Cell-centered point wise values of conservative variables are computed according to formula (4.15).

> AVtoCC:=proc(var,k)
> return expand(13/12*var(k)-var(k-1)/24-var(k+1)/24);
> end proc;
>
> rhoCC:=k->AVtoCC( rhoAV,k);
> rhouCC:=k->AVtoCC(rhouAV,k);
> rhoeCC:=k->AVtoCC(rhoeAV,k);

These allow to compute cell-centered point-wise values of all the necessary primitive variables, i.e. τ , u, p
and (ρc)2. Since we consider the case of an ideal gas, the fundamental derivative G is constant and equal
to (γ + 1)/2 (see remark 7 page 66).

> tauCC:=k->myexpand(1/rhoCC(k));
> uCC:=k->myexpand(rhouCC(k)*tauCC(k));
> pCC:=k->myexpand(EOS(rhoCC(k),uCC(k),rhoeCC(k)));
> rc2CC:=k->myexpand(gamma*rhoCC(k)*pCC(k));
> G:=(gamma+1)/2;

Approximate time-derivatives now can be computed on cell interfaces as explained in section 4.1.2. To
that end, we first introduce procedures for computing high-order accurate cell interface representations of
quantities involved in approximate fluxes according to formula (4.16). These procedures are named Dab
where a and b respectively correspond to the m and Neff parameters in (4.16).

> D02:=proc(var,k)
> return expand((var(k)+var(k-1))/2);
> end proc;
>
> D04:=proc(var,k)
> return expand((9*var(k)+9*var(k-1)-var(k+1)-var(k-2))/16);
> end proc;
>
> D12:=proc(var,k)
> return expand((var(k)-var(k-1))/dx);
> end proc;
>
> D22:=proc(var,k)
> return expand((var(k+1)+var(k-2)-var(k)-var(k-1))/(2*dx^2));
> end proc;
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We recall that (see section 4.1.2):

∂tu = − 1
ρ0
∂Xp,

∂tp = −(ρc)2

ρ0
∂Xu,

∂ttu =
(ρc)2

ρ2
0

∂XXu−
(ρc)2

ρ3
0

(∂Xu)(∂Xρ0) +
1
ρ2
0

(∂Xu)
(
∂X(ρc)2

)
,

∂ttp =
2(ρc)2G
τρ2

0

(∂Xu)
2 +

(ρc)2

ρ2
0

∂XXp−
(ρc)2

ρ3
0

(∂Xρ0)(∂Xp).

> dt1u:=k->myexpand(-D02(tauCC,k)*D12(pCC,k));
> dt1p:=k->myexpand(-D02(rc2CC,k)*D02(tauCC,k)*D12(uCC,k));
> dt2u:=k->myexpand(D02(tauCC,k)*(D02(rc2CC,k)*(D02(tauCC,k)*D22(uCC,k)+D12(uCC,k)*

D12(tauCC,k))+D02(tauCC,k)*D12(uCC,k)*D12(rc2CC,k)));
> dt2p:=k->myexpand(D02(rc2CC,k)*D02(tauCC,k)*(2*G*D12(uCC,k)^2+D02(tauCC,k)*D22(pCC,k)+

D12(tauCC,k)*D12(pCC,k)));

These time-derivatives can now be used to form Lagrangian fluxes.

> uStar:=k->myexpand(D04(uCC,k)+dt/2*dt1u(k)+dt^2/6*dt2u(k));
> pStar:=k->myexpand(D04(pCC,k)+dt/2*dt1p(k)+dt^2/6*dt2p(k));
> puStar:=k->myexpand(D04(pCC,k)*D04(uCC,k)+dt/2*(D02(uCC,k)*dt1p(k)+D02(pCC,k)*dt1u(k))

+dt^2/6*(D02(uCC,k)*dt2p(k)+D02(pCC,k)*dt2u(k)+2*dt1u(k)*dt1p(k)));

Updated values of Lagrangian conservative variables at the end of the Lagrangian step now can be computed.

> rhouLS:=k->expand(rhouAV(k)-dt/dx*( pStar(k+1)- pStar(k)));
> rhoeLS:=k->expand(rhoeAV(k)-dt/dx*(puStar(k+1)-puStar(k)));

The next step consists in computing remap fluxes. To that end, we first introduce xN and xStar which
respectively represent the initial and updated positions of Eulerian cell interfaces.

> xN:=k->(2*k-1)*dx/2;
> xStar:=k->xN(k)+dt*uStar(k);

The Lagrange interpolating polynomial P defined in section 4.1.3 is built by the following procedure.

> P:=proc(x,var,k)
> num1:=(x-xStar(k-1))*(x-xStar(k+1))*(x-xStar(k+2));
> num2:=(x-xStar(k-1))*(x-xStar(k)) *(x-xStar(k+2));
> num3:=(x-xStar(k-1))*(x-xStar(k)) *(x-xStar(k+1));
> den1:=(xStar(k) -xStar(k-1))*(xStar(k) -xStar(k+1))*(xStar(k) -xStar(k+2));
> den2:=(xStar(k+1)-xStar(k-1))*(xStar(k+1)-xStar(k)) *(xStar(k+1)-xStar(k+2));
> den3:=(xStar(k+2)-xStar(k-1))*(xStar(k+2)-xStar(k)) *(xStar(k+2)-xStar(k+1));
> H1:=dx*var(k-1);
> H2:=dx*var(k)+H1;
> H3:=dx*var(k+1)+H2;
> return num1/den1*H1 + num2/den2*H2 + num3/den3*H3;
> end proc;



222 Appendix F. Formal derivation of the order of accuracy of the third-order GoHy scheme

It allows to compute high-order accurate remap fluxes according to (4.25). Note that we here assume that
u∗ is strictly positive on all cell interfaces for choosing the upwinding cell.

> rhoRF:=k->myexpand(P(xStar(k), rhoAV,k-1) - P(xN(k), rhoAV,k-1));
> rhouRF:=k->myexpand(P(xStar(k),rhouLS,k-1) - P(xN(k),rhouLS,k-1));
> rhoeRF:=k->myexpand(P(xStar(k),rhoeLS,k-1) - P(xN(k),rhoeLS,k-1));

At this stage, updated Eulerian conservative variables obtained at the end of the remap step can be computed
in the considered cell (whose index is 0).

> rhoRS:=myexpand( rhoAV(0)-1/dx*( rhoRF(1)- rhoRF(0)));
> rhouRS:=myexpand(rhouLS(0)-1/dx*(rhouRF(1)-rhouRF(0)));
> rhoeRS:=myexpand(rhoeLS(0)-1/dx*(rhoeRF(1)-rhoeRF(0)));

These have to be compared with exact solutions. In order to compute exact solutions, we first determine
expressions of the Eulerian conservative variables time-derivatives by applying the Cauchy-Kovalevskaya
procedure to the Eulerian hydrodynamics equations.

> # rules for the Cauchy-Kovalevskaya procedure
> DTRHO :=diff(rho(x,t),t) =-diff(rho(x,t)*u(x,t),x);
> DTRHOE:=diff(rhoe(x,t),t)=-diff(rhoe(x,t)*u(x,t)+EOS(rho(x,t),u(x,t),rhoe(x,t))*

u(x,t),x);
> DTU :=diff(u(x,t),t) =(-diff(rho(x,t)*u(x,t)^2+EOS(rho(x,t),u(x,t),rhoe(x,t)),x)+

u(x,t)*diff(rho(x,t)*u(x,t),x))/rho(x,t);
> # time derivatives computation
> dt1rho :=expand(subs([DTRHO,DTU,DTRHOE],diff(rho(x,t),t)));
> dt2rho :=expand(subs([DTRHO,DTU,DTRHOE],diff(dt1rho,t)));
> dt3rho :=expand(subs([DTRHO,DTU,DTRHOE],diff(dt2rho,t)));
> dt1rhou:=expand(subs([DTRHO,DTU,DTRHOE],diff(rho(x,t)*u(x,t),t)));
> dt2rhou:=expand(subs([DTRHO,DTU,DTRHOE],diff(dt1rhou,t)));
> dt3rhou:=expand(subs([DTRHO,DTU,DTRHOE],diff(dt2rhou,t)));
> dt1rhoe:=expand(subs([DTRHO,DTU,DTRHOE],diff(rhoe(x,t),t)));
> dt2rhoe:=expand(subs([DTRHO,DTU,DTRHOE],diff(dt1rhoe,t)));
> dt3rhoe:=expand(subs([DTRHO,DTU,DTRHOE],diff(dt2rhoe,t)));

Exact solutions are finally computed using the following approximations which have been obtained by
applying a Taylor expansion in both space and time around (x,t) to the exact cell average of (ρu) and
(ρe) at time t+ ∆t.

> rhoExact:=expand( rhoAV(0)+dt* dt1rho+dt^2/2* dt2rho+dt^3/6* dt3rho+
dt*dx^2/24*diff( dt1rho,x$2));

> rhouExact:=expand(rhouAV(0)+dt*dt1rhou+dt^2/2*dt2rhou+dt^3/6*dt3rhou+
dt*dx^2/24*diff(dt1rhou,x$2));

> rhoeExact:=expand(rhoeAV(0)+dt*dt1rhoe+dt^2/2*dt2rhoe+dt^3/6*dt3rhoe+
dt*dx^2/24*diff(dt1rhoe,x$2));

The exact solutions are finally compared.

> subs([dx=0],expand((rhoRS-rhoExact)/dx));
subs([dx=0],expand((rhoRS-rhoExact)/dx^2));
subs([dx=0],expand((rhoRS-rhoExact)/dx^3));
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0
0
0

> subs([dx=0],expand((rhouRS-rhouExact)/dx));
subs([dx=0],expand((rhouRS-rhouExact)/dx^2));
subs([dx=0],expand((rhouRS-rhouExact)/dx^3));

0
0
0

> subs([dx=0],expand((rhoeRS-rhoeExact)/dx));
subs([dx=0],expand((rhoeRS-rhoeExact)/dx^2));
subs([dx=0],expand((rhoeRS-rhoeExact)/dx^3));

0
0
0

Since the result of these expressions is zero, the Lagrange-remap scheme studied here is formally proved to
be third-order accurate.
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[38] G.A. Gerolymos, D. Sénéchal, and I. Vallet. Very high-order WENO schemes. J. Comp. Phys.,
228:8481–8524, 2009.

[39] N. Godel, S. Schomann, T. Warburton, and M. Clemens. GPU accelerated Adams-Bashforth multirate
Discontinuous Galerkin simulation of high frequency electromagnetic fields. IEEE Transactions on
Magnetics, 46:2735–2738, 2010.

[40] S.K. Godunov. A finite difference method for the numerical computation of discontinuous solutions of
the equations of fluid dynamics. Mat. Sb., 47:271–290, 1959.

[41] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high-order essentially non-oscillatory
schemes, III. J. Comp. Phys., 71:231–303, 1987.

[42] A. Hata, K. Mima, A. Sunahara, H. Nagatomo, and A. Nishiguchi. Dynamics of self-generated magnetic
fields in stagnation phase and their effects on hot spark formation. Plasmas and Fusion Research,
1(20):1–6, 2006.

[43] N.E.L. Haugen. Hydrodynamic and hydromagnetic energy spectra from large eddy simulations. Phys.
of Fluids, 18, 2006.

[44] F. Hermeline. A finite volume method for the approximation of diffusion operators on distorted meshes.
J. Comp. Phys., 160:481–499, 2000.
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