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Abstract

Closing the control loop of a manipulator robot with vision feedback is widely

known. It concerns nowadays all areas of robotics. Such a return can make a com-

parison between a desired state and current state, using visual measurements.

The main objective of this doctoral thesis is to design several types of kinematic

control laws for stereo visual servoing. It strongly involves the formalism of the task

function which is a well-known and useful mathematical tool to express the visual

error as a function of state vectors. Then the proofs of the stability of the closed

loop system and the convergence study of the task functions associated with these

laws through the Lyapunov theory are provided.

We have investigated the decoupling between the rotational and translational

velocities control laws together with the epipolar constraint with a stereo visual

feedback. That is why, the visual measurements and features used in this thesis

are the 3D straight lines. The interests of this type of visual features rely on the

robustness against the noise, and the possibility to represent straight lines or other

features like points or planes pairs by the Plücker coordinates, as a 3D straight line

can be represented as well by two points or the intersection of two planes. This

makes all the control laws designed in this thesis valid for another visual features

like points pair or plane pairs in any relative con�guration.

These control laws have been applied to the motion control of a 6 DOF manipulator

robot, with respect to a rigid or articulated object of interest.

Keywords: Decoupling control laws, Stereo visual servoing, Straight lines.



6

Résumé

L'emploi d'un retour visuel dans le but d'e�ectuer une commande en boucle fer-

mée de robot s'est largement répandu et concerne de nos jours tous les domaines

de la robotique. Un tel retour permet d'e�ectuer une comparaison entre un état

désiré et l'état actuel, à l'aide de mesures visuelles. A cette �n, le formalisme de la

fonction de tâche est un outil mathématique bien connu pour exprimer le retour et

établir l'erreur d'asservissement en fonction des vecteurs d'état.

L'objectif principal de cette thèse consiste à concevoir plusieurs types de lois de

commande cinématiques par vision stéréo. Ceci concerne aussi l'étude de la stabilité

du système en boucle fermée et la convergence des fonctions de tâches associées à

ces lois grâce à la théorie de Lyapunov.

C'est essentiellement le découplage des lois de commandes cinématiques en ro-

tation et en translation qui est recherché ici, selon le nombre d'indices visuels con-

sidérés. Les simulations ont con�rmé les résultats théoriques, avant que ces lois de

commande soient appliquées au déplacement d'un robot manipulateur vis-à-vis d'un

objet d'intérêt rigide ou articulé.

Les mesures visuelles utilisées dans cette thèse sont les lignes droites 3D. Les intérêts

apportés à ce type de mesures visuelles sont la robustesse contre le bruit, et la pos-

sibilité de représenter d'autres primitives comme des couples de points ou de plans

par la modélisation de Plücker. Comme une droite 3D peut être représentée par

deux points ou l'intersection des deux plans, toutes les lois de commande conçues

dans cette thèse sont valables pour d'autres mesures visuelles, comme des couples

de points ou de plans.

Mots clés : Découplage des lois de commande, Asservissement visuel stéréo,

Droites.
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Chapter 1

Introduction

1.1 Motivation

Visual servoing is considered as one of the most important �eld of arti�cial and

robot vision. It aims at providing a mobile system with visual control laws and the

control of the entire closed loop, to give the system more autonomous capabilities.

The visual servoing methods are usually classi�ed in two main categories. The Posi-

tion Based Visual Servoing (PBVS), and the Image Based Visual Servoing (IBVS)1.

In the �rst kind of servoing (PBVS), the goal of the vision system is to estimate the

relative pose (position and orientation) between the camera frame and the object

frame, then compute the error of servoing in the Euclidean space.

While in IBVS, the servoing error is directly de�ned in the image plane. It usually

avoids the system a static error in the �nal pose, because with this kind of servoing,

one does not need the Euclidean recovery nor perspective model of the camera in

the feedback chain.

In this PhD thesis, we hope to make a step forward in the visual servoing �eld,

by designing a novel kind of visual servoing, called "Stereo Visual Servoing" (SVS),

especially dedicated to stereovision systems.

Using a stereo vision system gives many advantages, like the additional information

supplied by the second camera, the depth estimation, without forgetting the possi-

bility of 3D reconstruction for the most types of simple geometrical features (points,

lines, circles, cylinders, ...).

We will go further to the classical visual servoing, by de�ning a stereo servoing

space, which is not an Euclidean space, nor the image plane. This space makes the

features in the two images available to be used by new state vectors.

1 but other hybrid and other partitioned approaches exist and may be equally used for classi�-

cation purpose.

13
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1.2 Problem formulation

The visual servoing aims at closing the control loop with vision feedback. A simple

block diagram of the closed control loop is shown in �gure (1.1)

Figure 1.1: A Simple visual servoing block diagram.

The desired state S∗ in the above block diagram represents the reference vector.

S(t) represents the current state vector, which evolves along the time and is of the

same type of S∗. The goal of the servoing is then to drive S(t) towards S∗. Usually,

at the end of servoing, one would get S = S∗.

The mobile system can be the robot end-e�ector which holds the vision system, in

the "eye-in-hand" con�guration, it can be a mobile object in the �eld of view of a

motionless vision system in the world space - also called the "eye-to-hand" con�gu-

ration -, or both.

The nature of the state vector de�nes the kind of the visual servoing. If the state

vector is a 3D parameter, then, the visual servoing is based on the position (PBVS).

While if the state vector is an image feature, then the visual servoing is expressed

in the image plane (IBVS).

The di�erence between the desired and current state vectors de�nes the error of ser-

voing. This error is then the output of the task function e(t). Sometimes a matrix

C relates the task function with the servoing error e(t) = C(S(t) − S∗). C is then

called the combinaison matrix and it may account for the redundancy or robustness

(statistics) in the error de�nition.

The time derivative of the error gives ė = Ṡ , when S∗ is assumed to be constant

(it can be a time variant in a spatial task [MDGD97]).

The relation between the time derivative of state vector and the camera motion is
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de�ned by a non linear matrix equation

Ṡ = Lsτ .

τ = (V,Ω)T is the kinematic screw of the camera velocity, Ls is called the interaction

matrix related to S, it is often a function of the state (sometimes, the subscript

notation relies on the velocity screw, or part of it). The term feature Jacobian is

also used somewhat interchangeably in the visual servoing literature.

If we wish an exponential decrease of the error (i.e., ė = −λ e) we obtain

Ṡ = Lsτ

Ṡ = −λ e

τ = −λ Ls
+e

Ls
+ is the pseudo inverse of Ls in general cases, and can be the direct inverse of Ls

if it is invertible. In real visual servoing systems, it is impossible to perfectly know

in practice either Ls or Ls+. So an approximation or an estimation of one of these

two matrices must be realized.

We note L̂s
+ for the estimation of the pseudo inverse Ls

+ and L̂s
+
for the pseudo

inverse of the estimation of Ls.

However, the goal of the visual servoing is to recover the kinematic screw τ which

serves as control input vector. So, one needs to �nd the inverse of the interaction

matrix Ls. As the interaction matrix Ls is of dimensions n × m, and generally

n 6= m,m ≤ 6, this matrix does not have a direct inverse, but a pseudo inverse Ls+.

If this pseudo inverse exists, the kinematic screw is given by

τ = −λL̂s+ e .

The principal problem we focus in this thesis is to de�ne Ls+ to control the motion

by means of stereo images, and �rst of all, its existence. The pseudo inverse is given

by Ls
+ = (Ls

TLs)
−1Ls

T, so, the matrix Ls
+ exists when Ls

TLs is invertible.

The dimensions of LsTLs are m×m. With m = 6, �nding an analytical inverse may

be impossible, and proof of its existence is generally very di�cult. This is mainly

due to the high dimensionality of the system.

One suitable way to reduce the dimensions of Ls is to separate the rotational velocity

control law Ω and the transitional velocity control law V. This separation makes

the interaction matrix divided in two interaction matrices LΩ and LV , each of them

is of dimensions up to n× 3 with rigid object of interest.

For visual servoing purpose, not only the existence of the inverse of the interac-

tion matrix is important, but, the behaviour of the system in closed loop is also very
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important. We mean by the system behaviour here, the stability of the system in

the closed loop, and the asymptotic convergence of the task functions. To prove the

asymptotic stability of V,Ω all over the servoing, the separation is not enough. The

control laws must be decoupled, therefore independent task functions for translation

and rotation motion are targeted. This means to de�ne two kinds of state vectors,

one is related to the translation motion, and the other one is related to the rotation

motion.

The changes in the features of the object of interest like points, lines, circles, ...

are related to both motions (rotation and translation), and these features should al-

low to de�ne independent task functions, so to achieve the decoupling of the control

laws.

To do this, the state vectors will be a combination of these features. Then, the objec-

tive is to �nd a time-invariant rotational state vector SΩ relative to the translation

motion, which means

d

dV
SΩ = 0

and a time-invariant translational state vector SV relative to the rotation motion

d

dΩ
SV = 0 .

If such state vectors may be de�ned from the visual mesurements, one get two

independent task functions eΩ(t) = SΩ(t)−S∗Ω for the rotation, and eV (t) = SV (t)−
S∗V for the translation. These two independent task functions will contribute to

design two decoupled velocities control laws

V(t) = −λV L+
V eV (t)

Ω(t) = −λΩ L+
Ω eΩ(t) .

With this full decoupling between the rotational and translational control laws,

it is easier to get an analytical study of stability and convergence. It is worth

pointing out that other separation techniques exist (other than the rotational and

the translational control laws), but the Plücker line modeling is promoting this kind

of decoupling.

1.3 Proposed solution

As already explained, to reduce the dimensions of the interaction matrix Ls, one

needs to separate the kinematic screw τ in two velocities control laws V,Ω. To go

towards the proof of the asymptotic stability of these control laws, they must be
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decoupled. This decoupling can be ensured with independent task functions. To

this purpose, one should build state vectors SV for the translation motion and SΩ

for the rotation motion. These state vectors are depending on the vision system and

on the salient and visible features of the object of interest.

The selected features in this thesis are the 3D straight lines. The vision system used

is a stereo system, because it is useful in the 3D reconstruction of the features, and

in the construction of the state vectors.

For PBVS, we succeeded in designing two pairs of rotational and translational

velocities control laws. The �rst pair depends on the estimation of the relative ro-

tation matrix R, and the relative translation vector t between the current position

frame and the desired one. In this case, the rotational state vector is selected as one

of the rotation matrix R representation, and the translational state vector represents

the translation vector between the two frames origins.

The second pair of velocities control laws is de�ned using the bi-normalized Plücker

coordinates. The rotational state vector SΩ is the direction vector v of the 3D

straight line while the orthogonal distance d is used in the translational state vector

SV .

For the classical IBVS, the state vectors are de�ned in the image plane and we

did not succeed in �nding independent state vectors for rotational and translational

task functions. Then, we de�ne a "stereo space" for expressing the servoing. It

is built from the projective and a�ne properties of the two views. In this space,

the state vectors are a combination of the features in the stereo images pair. Two

independent task functions for rotation and translation motion in the "stereo space"

have been presented. With the given epipoles and the homography of the plane at

in�nity, H∞, one can transfer the feature in one image plane to the other image plane

or the stereo space, to build the state vectors.

1.4 Organization of the manuscript

The manuscript is organized in 3 core chapters, enclosed by an introductory - the

current chapter - and a concluding chapter. Below, a chapter-by-chapter overview

on contributions and impact is given. The organization of the chapters themselves

follows the general guideline: State-of-the-art - Stereo position based visual servoing

from lines - Stereo image based visual servoing from lines.

• State-of-the-art In this chapter, we review some previous works in the lit-

erature concerning some arti�cial vision applications. Considering the visual
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servoing is one of the most important �eld of the arti�cial vision and robotics,

we present several works interested of the position and image servoing specially

the use of multi-cameras. Then we look for the modeling of a 3D straight line,

as it is the visual feature used for all the visual servoings presented in this

thesis. At the end of the state-of-the-art, we present the most close works of

our interest, the decoupling between the velocities control laws.

• Stereo position based visual servoing from lines In this chapter, the

velocities control laws are designed using 3D state vectors. We work on the

decoupling between the rotational and the translational velocities control laws.

To this end, a new state vector is proposed based on the Plücker coordinates

of a 3D straight line. The stability of the system in closed loop and asymp-

totic convergence of the task functions are proved with the help of Lyapunov

functions.

The velocities control laws designed in this chapter are also used to control

the pose of a non-rigid object, in particular, an articulated one. First they

are developed to control the 4 DOF of an object represented by only one 3D

straight line. Then the angular velocity control laws are applied to control

the joints angles of an articulated object, which is assumed to be composed of

several straight lines linked with revolute joints only.

• Stereo image based visual servoing from lines The interaction matrix

proposed in the literature and the interaction matrix designed in our work

are not satisfying for ensuring the global asymptotic stability of the servoing

system.

Then, a decoupling between the translational and the rotational velocities con-

trol laws is proposed so as trying to reduce the local minima. To do that, we

de�ne the stereo space. In this virtual space the two images planes are consid-

ered. That makes the features in the two images available to build the state

vectors.

With the new independent state vectors for translation and the rotation mo-

tion, we design decoupled velocities control laws. Then we prove the global

asymptotic stability (GAS) of the system in closed loop, together with the

improvement in the control behaviour.



Chapter 2

State of the art

The following synopsis on the state-of-the-art aims at situating this work with re-

spect to the main approaches and the key-papers in the �eld. We concentrate on

the visual servoing applications �rst, as it is the domain of the work in this thesis.

2.1 Vision applications

The arti�cial vision science is very large and impossible to cover entirely in this

introduction, but some of its real-time applications which concern the visual servo-

ing attract our attention. Task requirements in arti�cial vision applications have

become increasingly complicated with advanced sciences, especially for robotics.

Navigation and exploration of unknown areas is a fundamental task for a mobile

robot. Avoiding the obstacles without any human intervention makes this task more

complicated. Omnidirectional vision o�ers a large �eld of view and a complete in-

formation about the world surrounding the robot that could allow an autonomous

and safe navigation of the robot only using one catadioptric sensor [Mou05].

With only omnidirectional vision, Merveilleux et al. [MLIM11] realized this task

in real-time. They use the active contours to realize a fast free space extraction,

de�ned as homogeneous area, designed from the elevated parts around the robot in

the image.

The authors have improved energy approximations and weighting parameters de�-

nition, in order to make a fast and adapted contour expansion. Moreover, the active

contour is initialized from the omnidirectional projection of the scene surrounding

the robot. These energy de�nitions and approximations lead to a fast and adequate

evolution of the initial contour to the free space boundaries in real omnidirectional

images.

19



20 CHAPTER 2. STATE OF THE ART

The space applications are one of important tasks of the arti�cial vision. Dion-

net and Marchand have proposed a real-time, robust and e�cient 3D model-based

tracking algorithm for visual servoing in [DM07]. The goal was to develop a robot

demonstrator able to grasp complex objects by visual servoing in space environ-

ment.

The authors used Virtual Visual Servoing (VVS) for the pose computation. The

pose computation is considered as an optimization problem similar to image-based

visual servoing.

They developed a robust and fast 3D tracking algorithms for visual servoing appli-

cations in a space context. Indeed, the algorithm has to tackle several space speci�c

problems, like the lack of computing power, since resource (energy, volume, mass)

and environmental (thermal dissipation, radiation compatibility) constraints limit

all the performances of computers that may be used in space.

Lu and Manduch in [LM05] present new, robust algorithms to detect and precisely

localize curbs and stairways for autonomous navigation. Detection and localization

of border lines are important for two reasons. First, a robot may not be able to ne-

gotiate a curb or, if possible, may need to precisely align with the edge of pavement.

Second, monitoring and following a line represents a simple and e�ective pavement

percept-referenced behavior for urban navigation.

These algorithms combine brightness edge information with 3D data from a stereo

system. The strategy is to use information from both images and geometry, which,

in a stereo system, are perfectly registered together.

In fact, even a single image conveys a good amount of information about the pres-

ence of a curb, since a curb line normally looks like a brightness edge. However,

several other edges, usually co�exist in an image, and thus brightness alone would

not be su�cient for reliable detection.

Their system �nds application in indoor and urban autonomous navigation, where

curbs and stairways are important landmarks for world modeling.

The interest in using cameras in simultaneous localization and mapping (SLAM)

has grown tremendously in recent years. Current visual SLAM research has been

focused on the use of either monocular or stereo vision to obtain 3D information

from the environment.

Paz et al. [PPT08] used the stereo rig as the only sensor for 6 DOF visual mapping

of large environments to be e�ciently and accurately carried out. They show the

advantages of being able to accommodate both monocular and stereo information

in carrying out a 6 DOF SLAM with a hand-held camera. The ability of a stereo

assembly to directly and immediately provide 3D landmark estimates allows to use
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the best available SLAM algorithms and rapidly obtain good results with little e�ort

in the conceptual parts.

Solà et al. [SMDVC08] used multi camera in SLAM too. They consider each camera

as an independent sensor rather than the entire set as a monolithic super sensor.

The visual data are treated by monocular methods and fused by the SLAM �lter.

Several advantages naturally arise as interesting possibilities, such as the desynchro-

nized �ring of the sensors, the use of several unequal cameras, self-calibration, and

cooperative SLAM with several independently moving cameras.

2.2 Visual servoing

Using visual feedback to control a robot is commonly termed "visual servoing"

[HHC96]. The �rst visual servoing systems was reported in the 1970's with Shirai

and Inoue. They developed a method for entering a cubic object using a robot and a

static camera [SI73]. They have shown the value of a feedback loop both to correct

the robot position but also to improve accuracy. As the camera provides the system

with an enormeous quantity of information extracted from a sequence of images, a

two-step iterative scheme had appeared: "static look and move".

With the works of Agin [Agi77], [Agi79], it appears that there, for the �rst time, the

term visual servoing on the assembly of mechanical parts. This is actually what we

call the "dynamic look and move" that allows us to consider objects in the scene in

motion.

In the work of Hill and Park in 1979 [HP79], the position of the end-e�ector of a

robot is controlled through the computation of the relative pose between the visual

sensor and the target: it is the visual servoing based on the 3D position (Position-

Based Visual servoing). Sanderson and Weiss in [SW80] introduce an important

classi�cation of visual servoing structures based on two criteria, space of control

and presence of joint feedback. So in this classi�cation one distinguishes two main

approaches:

• Position based control: the image features are extracted from the image of the

target, and with a modelling, it is used to determine the pose of the target

with respect to the camera frame.

• Image based control: in this kind of servoing, the pose estimation is omitted

(even if the depth appears in the image Jacobian and needs the partial pose

computation), and the control laws are directly expressed in the image plane

[Cha90].

With the work due to Chaumette in [Cha90], both the task function formalism is

applied to the image-based visual servoing, but also a virtual link is establish be-
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tween the camera and the object of interest. Many interaction matrices are then

reported and visual seroing are provided for the related visual features used.

A mixed 2D�3D approach can be used in order to take advantage of both approaches.

This is done in the so-called 2D1
2
D visual servoing (Malis, Chaumette, and Boudet

[MCB99], Chaumette and Malis [CM00]). This approach consists of combining vi-

sual features obtained from the image and several features expressed in the Euclidean

space. For more details, please consult ([MC00],[CH06],[CH07]) for instance.

The notion of task function has been introduced by Samson et al. [SBE91] to de�ne

the error of convergence. The task function measures the di�erence between the

current state vector (or features) and the desired one. The goal of servoing is to

annul the task function value. The desired decrease of the task function is usually

to be at exponential form, primarily to the design of a more e�cient controller.

2.2.1 Position Based Visual Servoing

Doignon et al. in [DAO94a] presented the �rst real-time positioning of a 6 DOF

robot manipulator with a monocular vision, in Strasbourg university. They worked

with the dynamic "look and move" con�guration for real-time low frame rate visual

feedback (Te = 80 ms) by means of points and lines and binary image vision.

The classical visual servoing techniques have been extended in [MCB00], to the use

of several cameras observing di�erent parts of an object. The multi-camera visual

servoing has been designed as a part of the task function approach. The particular

choice of the task function simpli�es the design of the control law and the stability

analysis.

Ly et al. in [LZG10], propose a simple and accurate method for needle localiza-

tion. Using stereo visual servoing techniques based on projective geometry and

perspective invariants. Their method requires no additional sensors (infrared, laser,

ultrasound, MRI, and etc), according to the parameters (intrinsic and extrinsic ma-

trices of cameras, etc), a parameterized experimental model is established. The only

human interaction required by the system is the choice of the needle entry point on

the patient.

The eye-to-hand and eye-in-hand con�gurations are foregathered in [QSL+06], to

realize the visual servoing on Puma 562 manipulator robot with a camera attached

on the end-e�ector and an active stereo rig over the head of the robot manipulator.

Under this con�guration, the target pose can be computed by using the stereo im-

ages, and then the robot can be controlled to track and align with the target.

While the �rst related work is using monocular vision, the two other ones involves

sterovision systems. All of these works highlight a necessary accurate calibration

previously to the pose computation.
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2.2.2 Image Based Visual Servoing

A visual servoing approach to the problem of object grasping and more generally,

to the problem of aligning an end-e�ector with an object is presented by Horaud et

al. in [HDE98]. The authors show how to represent a grasp or more generally, an

alignment between two solids in three-dimensional (3D) projective space using an

uncalibrated stereo system. Such a 3D projective representation is view-invariant

in the sense that it can be easily mapped into an image set-point without any

knowledge about the camera parameters.

Zhang and Ostrowski [ZO02] have presented the motion planning of a wheel robot

directly in the image, rather than transfer the image feature back to the robot

pose. They developed nominal paths that are based in the same space as the sensor

measurements. With this idea, they eliminate unnecessary modeling errors due to

extrinsic camera calibration parameters. They also enlarged the feature space to

demonstrate the feasibility of tracking two targets simultaneously, which helps to

remove the ambiguity in the con�guration space that results from tracking a single

object.

Beside the camera, Krupa et al. [KGdM+03] used laser spot for distance estimation.

They control a 4 DOF medical robot for minimally invasive surgery, that is by means

of a 6 DOF robot with only 4 actuated joints. 1 DOF for rotation controlled with

image servoing of three marks on the surgical instrument tips, while 1 DOF and 2

DOF for the distance and rotation respectively are controlled by the estimation of

the distance between the end of the robot and the projected laser spot on the target.

The surgical instrument is mounted on the end-e�ector of a surgical robot (AESOP

3000). The goal of the automated task is to bring the instrument at a desired

location from an unknown or hidden pose. This approach is successfully validated

in a real surgical environment by performing experiments on living animals in the

surgical training room of IRCAD.

In the �rst paper, only 2 DOF have be controlled by vision feedback while in the

second one the robot has 4 DOF but an external laser source is used beside the

camera to estimate the relative distance (robot end-e�ector - target), like a very

simple structured light system. These examples validate our choice of using stereo

rig to control an object with 6 DOF.

2.2.3 Multi-cameras visual servoing

The most part of visual servoing systems use only one camera for several reasons.

The simplicity of the hardware and software system design (including the mysyn-
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chrinzation of the acquisition), to reduce the necessary time for image processing,

and to reduce the cost of the system. However, the loss of the 3D information can

complicate the design of the control if this information has to be estimated on-line.

Using multi-cameras con�guration is a solution for estimating 3D information. The

target must stay in the �eld of view of all the cameras. The most well-known con-

�guration is the stereo system (i.e. two cameras rigidly linked) since it allows, if

the system is fully calibrated, to get the complete Euclidean reconstruction of the

observed objects.

With more than one camera, 3D reconstruction is possible in general case. Even

in IBVS, the 3D information is useful in visual servoing like in [CBM02] where the

authors show the e�ectiveness of the servoing task can be improved if estimated 3D

features are used instead of raw image data.

Theoretical developments show how 3D control features are extracted from stereo

images, and the interaction matrix is computed for raw pixels, estimated 3D coor-

dinates, and a new feature vector which uses stereo disparity.

Andersson [And89] has probably made one of the �rst robot control system with

stereo vision. The application is dedicated to a robot playing table tennis. He takes

advantage of redundant degrees of freedom in the task, as well as in the robot. New

sensor data, proprioception, and internal feedback are fused to produce a system

that continually optimizes its task plan.

In other application, the 3D reconstruction or 3D informations are not the goal of a

stereo rig, only the redundancy of the image features in di�erent cameras are useful

to build an interaction matrix by stacking the two camera Jacobians [MC01]. The

null space of this interaction matrix is empty, which ensures the convergence toward

the desired images.

Ruf and Horaud [RH99], avoid the very di�cult metric calibration for some

robotic applications. They presented an approach to model the geometry of a pan-

tilt mechanism relative to a weakly calibrated stereo-rig, mounted on top of it. This

active sensor is useful for several applications like the tracking of moving objects,

3D reconstruction, and visual servoing. The authors introduce a new approach and

a new mathematical framework to represent both the camera-pair geometry and

the pan-tilt mechanism in projective space. The proposed method is highly accu-

rate. The proposed mathematical formalism for the modeling of a kinematic chain

is sound and complete.

Chandraker et al. [CLK09] present a fast and robust algorithms for estimating

the structure and motion using a stereo vision, with straight lines as features. The

visual input for these algorithms stems from a calibrated stereo rig.
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These algorithms use only two or three lines for motion estimation. Rather than

resorting to a non-linear minimization, they reduce the problem to a small polyno-

mial system of low degree, which can be solved faster.

The use of calibrated stereo cameras also makes it possible to come up with simpler

solutions that �rstly reconstruct the 3D lines for each stereo pair and then compute

a rotation and translation to align them.

2.2.4 The interaction matrix

The interaction matrix is very important in the behaviour of the control law. Here

some works discussed the importance of this matrix and proposed some solutions

for the convergence of the system in the closed loop.

Marey and Chaumette [MC08] analyze and compare �ve image based visual servoing

control laws. Three of them are classical ones, while two new ones are proposed.

They found that all control laws used in image-based visual servoing have their

respective drawbacks and strengths. In some cases, a control law is not able to

converge while the others succeed. In other cases, all classical control laws may fail.

They propose a new con�guration, this con�guration has been found by studying a

new control scheme built to try to achieve its global asymptotic stability.

Thanks to the interaction matrix, image features are predicted in [AC09], which

helps in IBVS for large displacements or rotations around the optical axis. The dif-

ference between the reference features and the predicted features is to be minimized

over the predicted horizon in regard to the camera velocity screw inputs. Another

research work did not use the interaction matrix, and that because the di�culty of

de�ned this matrix, they replace it by an image Jacobian estimated on line during

the servoing.

Miura et al. [MHGdM05] used the modi�ed simplex optimization techniques for

a positioning task by visual servoing. This method does not need a model of the

robot and does not require the estimation of Jacobian matrices. Since the simplex

method took many iterations near the minimum, a Nelder and Mead-like method

with a recursive least squares algorithm for Jacobian matrix estimation was also

introduced in order to have quicker convergence near the minimum. This approach

is adaptive, and stable near the target if the motions of the robot guarantee suf-

�cient excitation. The Jacobian estimation was carried out using obtained images

at the vertices during the simplex iterative search. Once the simplex had roughly

converged, the process switched to the Newton-like optimization method. They suc-

cessfully demonstrated the proposed scheme with simulations and experiments.

In [RMLH99], in contrast to classical approaches, the entire system is modeled by
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means of projective geometry. The authors have shown how to projectively represent

a kinematic model and how to recover from image measurements only, with no need

of metric information.

This representation of robot kinematics is predestined for visual control of a robot

in order to perform basic reaching, grasping, or manipulation tasks. In comparison

to other works, this approach has a several advantages. Visual servoing can be done

along trajectories covering the whole visible con�guration space. This formalism

opens perspectives for the design of "visual mechanisms".

Pari and Sebastiàn [PS09] developed two methods for estimating the image Jacobian

by using line features. The �rst one takes into account the orientation of normal

vector to the interpretation plane of the line, and the second one utilizes the normal

representation of the line in the image, but taking into account the Mahalanobis

distance to compensate the large di�erence in magnitude of features. Both methods

estimate the image Jacobian with the last N realized moves method. In another

work, Pari et al. [PSSA08], describes a comparative study of performance between

the estimated image Jacobian that comes from taking into account the epipolar

geometry of a system of two cameras and the well-known analytic image Jacobian

that is utilized for most applications in visual servoing.

Experiments in static and dynamic cases were carried out and showed that the

performance of estimated Jacobian by using the properties of the epipolar geometry

is such as good and robust against noise as the analytic Jacobian. This fact is

considered as an advantage because the estimated Jacobian does not need laborious

previous work prior to the control task in contrast to the analytic Jacobian does.

With estimated image Jacobian to relate the kinematic screw, the convergence is

obtained in the simulations and experiments, but not proved in theoretical studies.

This evaluates our e�orts for decoupling the control laws and reducing the interaction

matrix dimensions, for simplifying the analytical solutions of proving the stability

and convergence of the system in closed loop.

2.2.5 Visual servoing of an articulated object

Previously, non-rigid motion has been classi�ed into three categories describing dif-

ferent levels of constraints on the movement of a body: articulated, elastic and �uid

[ACLS98]. In this work the �rst class of non-rigid motion is considered.

An "articulated" object is de�ned as a multi-body system composed of at least two

rigid components and at most six independent degrees of freedom between any two

components [CMC05].

Modeling humans from images involves recovering both body-shape and motion.

Most existing approaches can be classi�ed as addressing one or the other of these
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two problems, Pan and Liu [PL08] have presented a model of elastic articulated

objects based on revolving conic surface and a method of model-based motion esti-

mation. The 3D deformation parameters are determined by corresponding 2D image

points and contours with volume invariable constraint from a sequence of stereo im-

ages.

Ru� and Horaud [RH99] give a kinematic-chain method for the estimation of articu-

lated motion with an uncalibrated stereo rig. They introduce the notion of projective

kinematics which allows rigid and articulated motions to be represented within the

transformation group of projective space. The authors link the inherent projective

motions to the Lie-group structure of the displacement group. The minimization

is determined in projective space and is therefore invariant to camera calibration

parameters.

A novel kinematic set approach has been proposed by Comport et al. [CMC07].

Their approach consists in symmetrically modeling the motion and the velocity of

an articulated object. The advantages of this new model include improved preci-

sion, robustness and e�ciency, leading to real-time performance. The author uses

the Pfa�an velocity constraints for modeling the joint con�guration. Then they

build a general Jacobian Matrix using the con�guration and location of a joint.

This matrix relates individual rigid body velocities to an underlying minimal sub-

space.

2.2.6 Stereo system calibration

With one camera, it is not so easy to obtain the pose without extra information

from another sensor, or without a model of the object of interest.

A stereo rig helps to deal with unknown object or environment like in Darius

Burschka and Gregory D. Hager [BH05], Guo et al. [GMM09]. They present a

vision-based system for tra�c sign detection and road boundary detection method

by combining homography estimation and MRF-based belief propagation to cope

with challenging scenarios such as unstructured roads with unhomogeneous surfaces.

Annett Chilian and Heiko Hirschmüller [CH09] have presented a navigation algo-

rithm for mobile robots in unknown rough terrain. The algorithm is solely based on

stereo images and is suitable for wheeled and legged robots. The navigation system

is able to guide the robot along a short and safe path to a goal speci�ed by the

operator and given in coordinates relative to the starting point of the robot.

Using two cameras or a stereo rig is very useful for 3D reconstruction and depth

estimation, that can be used for the visual servoing purposes. But, if one needs

precession in the 3D estimation, the stereo rig must be calibrated, to estimate the
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intrinsic and extrinsic parameters.

In the literature, many works are concerned with camera calibration ([Tsa87],

[Zha99], [DA99]) and stereo calibration ([ZBR95], [HC98], [KR00]). Hartley [Har97b]

proposed a simpli�ed derivation for Kruppa's equations. This derivation is based on

the Singular Value Decomposition of the Fundamental matrix. In [LD00], additional

details about this derivation were presented.

Other self-calibration methods rely on retrieving the homography of the plane at

in�nity [PG99], the absolute quadric ([Har97a], [HA96]) or constraining the Essen-

tial matrix [Fus01]. All the above cited methods require at least three images of the

same scene. In order to simplify the self-calibration process and improve its accu-

racy, more recent methods introduced additional constraints from the scene and/or

the camera thus reducing the minimum number of images to only two.

Mouaddib et al. [MSEY05], de�ne a stereo rig using one camera and multiple mir-

rors. This way is interesting to create catadioptric omni-directional stereo vision

using several mirrors and a single camera.

2.3 Straight line as visual feature

Straight lines are not as widely used as geometrical points in visual servoing. Points

are easy to represent in 3D space and in 2D image plane. In spatial servoing tasks,

one can add a distinguishable mark to the object of interest to create useful features

in the object image. The problem of using points in visual servoing is the precision,

the detection of the points in the image is not robust against noise. Morover, adding

several marks on the object of interest is not always possible.

Straight lines are used for tracking ([HT98], [ZF90]), for visual servoing [ECR92],

[HCM95], [Hag97], or for position estimation ([LHF90],[DAO94b]) and their recon-

struction has been well studied (see e.g. [Can86] for image detection, [SZ97] for

matching and [SA90], [TK95], [Zha94] for structure and motion).

There are Two di�culties for using 3D straight line in the visual servoing. Firstly,

there is no parameterization for straight lines representing their 4 DOF by 4 global

parameters. Secondly, there is no universally agreed distance between straight lines.

Two principals advantages for using lines in visual servoing, the �rst one is the

robustness against the noise. The second advantage is the possibility to represent

points (in couples) by straight lines, like what one can see in the work of Solá et al.

in [SVCD09]. With recent real-time algorithms for extracting and tracking straight

lines ([DC00], [TN00]), the lines are more used as visual features, in visual servoing,

and real-time applications.
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The natural existence of the 3D straight lines in the robot environment and the

high precision of their detection in the image make them salient feature in visual

servoing. The other advantage of the straight lines is the possibility to equally rep-

resent some other visual features like points pairs and planes pairs.

In mobile robotic, lines are useful because of their natural existence in the motion

�eld, Li et al. [LXXX03] used white lines on the ground to detect the position and

the orientation of a mobile robot.

The estimation of 3D motion and structure from sequences of images is a di�cult

problem, because of its instability. Many algorithms have been proposed to solve

the problem of motion recovery. Some of these algorithms use straight line corre-

spondences.

Yen and Huang [LH88] iteratively solve a set of nonlinear equations for the motion

parameters. Navab and Faugeras in [NF97], are concerned with the problem of re-

covering the relative displacements of a camera by using line matches in three views.

They have provided a clear description of the geometric and algebraic connections

between the basic equations that constrain the camera displacements and the criti-

cal sets of lines.

Bartoli and Sturm [BS01] proposed several methods for estimating 3D motion

from line correspondence, based on Plücker coordinates. The Plücker matrix repre-

sentation is quadratic, and that provides some tricky computations in the transfor-

mation, which therefore can not be estimated linearly from line matches.

To overcome this problem, they derive a motion representation to transfer the

Plücker coordinates linearly between two bases. The transformation is represented

by a 6 × 6 matrix called "3D line motion matrix". Using this representation, sev-

eral estimators are derived for 3D motion from line reconstructions. The motion

representation allows straight lines to be transferred and reprojected from the �rst

reconstruction onto the images of the second one. Optimization criteria can there-

fore be expressed in image-related quantities.

Ly et al. [LDV10], use lines to estimate the translation of moving vision system,

after recovering the camera rotation using vanishing points of parallel lines sets.

Their algorithm can be applied in navigation of autonomous robots besides the con-

ventional devices such as global position system (GPS) and international navigation

system (INS). They use straight lines as features for several reasons: such features

are typically more stable than points and are less likely to be produced by clutter or

noise, especially in man-made environment. Compared to point features, lines are
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less numerous but more informative, they have geometrical and topological charac-

teristics which are useful for matching.

A sequential algorithm for the straight lines recovery in projective space is pro-

posed and implemented by Seo and Hong in [SH96]. They represent the 3D straight

lines by Plücker coordinates. A constraint among three views are developed and

used for re�ning the camera matrices through a nonlinear minimization method.

Hage Abdelkader et al. [AMAM06] presented a new approach for homography-

based visual servoing using 3D straight lines. A partial Euclidean reconstruction is

obtained from a generic homography matrix linearly estimated from the geometrical

relationship between polar lines and conic curves. The polar lines and the informa-

tion extracted from the homography are then used to design a control law which

allows to fully decouple rotational motions from translational motions.

Wang et al. [WLW08] proposed a new controller for dynamic image based visual

servoing of robot manipulator using lines. When the intrinsic and extrinsic param-

eters of the camera are not calibrated, they proposed a new method similar to the

Plücker coordinates to represent projections of the lines features. They prove the

asymptotic convergence of the image error using the Lyapunov theory.

2.3.1 Geometric modeling of a 3D straight line

Because of its 4 DOF, there is no simple representation found for the 3D straight

line. Notice that a 3D point has 3 DOF, and represented by its Cartesian coordinate

(x, y, z) or homogeneous coordinates (x, y, z, 1). A plane Π has 3 DOF too, and can

be represented by a four components vector (a, b, c, d)T de�ned up to a scale.

The most known representations of a 3D straight line [AEH02] are:

1. A 3D straight line is de�ned by a point and a direction (or two points): In this

case, the 3D straight line L is represented by a point, P0 = (x0, y0, z0)T ∈ L,
and a direction u = (a, b, c)T .

Every point from the straight line P ∈ L is given by P = P0 + αu (α ∈ R).

In the case of two points P0, P1, the 3d straight line is de�ned by P0 and

u = P0− P1.

This representation requires to �nd a distinguished point (or two) on the 3D

straight line. Indeed, this representation uses 5 parameters (the vector u is

de�ned up to a scale), to de�ne a line which has 4 DOF, see �gure (2.1 -a).

2. A 3D straight line is the intersection of two planes: This representation de�nes
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a 3d straight line as a set of points satisfying two plane equations:

Π1 : a1x+ b1y + c1z + d1 = 0

Π2 : a2x+ b2y + c2z + d2 = 0

The plane can be represented by a vector Π = (u, d)T with u is a normalized

vector (||u|| = 1) normal to the plane Π and d is the orthogonal distance

between the origin of the frame and the plane. This representation uses 6

parameters to de�ne the 3D straight line, see �gure (2.1 -b).

3. The (a; b; p; q) representation: This representation is a minimal variant of the

others previous:

x = az + p

y = bz + q

It represents a 3D straight line that is neither parallel to the optical axis, nor

parallel to the image plane. To take into account all the 3D straight lines in

the 3D space, one has to make permutations over x, y and z.

4. The Plücker representation: Given a 3D straight line L, its Plücker coordinates

are two algebraically dependent vectors (v, w) such that vTw = 0 [Plu65]. v

is the line direction vector and w is a vector with a direction perpendicular

to the interpretation plane (Π) contains the straight line and the origin of the

frame, �gure (2.1 -c).

Adding a constraint like ||v|| = 1 to this representation, with the relation

vTw = 0, make this representation minimal, as we get two vectors with two

constraints, reduce the representation parameters to 4 free parameters.

(a) (b) (c)

Figure 2.1: Line representations. a) Two Points or one point with a direction vector.

b) Two planes. c) Plücker coordinates.
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2.3.2 Plücker coordinates and other representations

One of the most important property of Plücker coordinates is the possibility to �nd

these coordinates from other representations.

Given two 3D points M̃ and Ñ on a 3D line L represented by their homogeneous

coordinates

M̃ =


xm

ym

zm

1

 Ñ =


xn

yn

zn

1


a (4× 4) matrix L, named the Plücker matrix, is built as

L ≡ M̃ÑT − ÑM̃T ≡

[
[w]× v

−vT 0

]

This matrix is independent of the position of the two points on the line. With [w]×

is the anti-symmetric matrix generated by vector w, represented as

[w]× =

 0 −wz wy

wz 0 wx

−wy wx 0


In the same way, if the straight line is represented by a point and a vector, (P0, u),

the Plücker coordinates (v, w) are expressed by v = u and w = P0× u.

Now, given a 3D straight line L de�ning by the intersection of two planes Π1 and

Π2, the dual of the Plücker matrix, L?, also represents the 3D line, and is expressed

by

L? ≡ Π1 Π2
T − Π2 Π1

T ≡

[
[v]× w

−wT 0

]

L and L? are related with a simple rule (L L? = 0). It is a suitable representation

since one may easily deal with any geometrical transformations H, as the transformed

Plücker matrix L′ is simply expressed by L′ ≡ H L HT and v′, w′, v, w are linearly

linked.

The two matrices are anti-symmetric, homogeneous and singular (rank(L) = 2 and

rank(L?) = 2).

With the derivation of the characteristic polynomial of L, one can easily show that

the eigenvalues are {±i µ, 0, 0} with µ =
√
vTv + wTw and µ can be arbitrarily

set to any non-zero value in order to normalize L.

The relation between the representation of the same 3D straight line in two frames
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is simple due to Plücker matrix L, it is given by the matrix equation L′ ≡ H L HT, L′

is the Plücker matrix in the new frame.

Finally, by selecting the Plücker coordinates to represent the 3D straight line, we

get two advantages. The �rst advantage is the total independent of the points,

which keeps the high precession of this feature in the image. The second is the easy

transformation between frames.

2.3.3 Normalized and bi-normalized Plücker coordinates

The vectors (v, w) are de�ned up to a scale factor (same for the two vectors). In nor-

malized Plücker coordinates the vector v is normalized by (||v|| = 1), which makes

the norm of the vector w equal to the orthogonal distance between the frame origin

and the line (||w|| = d).

In bi-normalized Plücker coordinates [AEH02], the two vectors are normalized (||v|| =
1, ||w|| = 1), and the distance d is an independent parameter now, this means the

3D straight line can be also represented by (v, w, d).

To illustrate the geometrical meaning of every parameter in the bi-normalized Plücker

coordinates, �gure (2.2 -a) shows an ensemble of lines with the same direction v.

One can see that if only the direction of the line is known, an in�nite number of

parallel straight lines can be represented.

The vector w represent the ensemble of coplanar straight lines in the plane de�ned

by w, �gure (2.2 -b) shows ensemble of straight lines represented by w.

Finally, if the orthogonal distance d between the straight line and the frame origin

is the only known parameter, the ensemble of straight lines represented by this dis-

tance are the lines tangent of a ball with radius d, see �gure (2.2 -c).

Figure (2.3) shows a 3D straight line L, de�ne in Cartesian frame (origin O), in this

�gure, the line and the origin O de�ne the plane Π, the direction vector v ported

on the line L, the vector w orthogonal on the plane Π, and the distance d between

O and L.

2.3.4 Perspective projection of 3D straight line

The image l of a 3D straight line L in a perspective camera (�gure 2.4) is de�ned

(see [HZ00] for example), by the equation

[l]× ≡ Pc L PTc

with L: is the Plücker matrix and Pc: is the (3 × 4) camera matrix, de�ned by

Pc = K P Tco
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Figure 2.2: a) v is known. b) w is known. c) d is known.

Figure 2.3: The Plücker coordinates (v, w) of a 3D straight line L.

L ≡

[
[w]× v

−vT 0

]
P =

 1 0 0 0

0 1 0 0

0 0 1 0

 Tco =

[
R t

0T 1

]

K: holds the intrinsic parameters of the camera.

Tco: is the homogeneous transformation matrix from the line frame to the camera

frame.
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R, t: are respectively, the rotation matrix, and the translation vector, between the

line frame and the camera frame origins.

Figure 2.4: The image l of a 3D straight line L, and the transformation matrix Tco.

The stereo system consists of two cameras called, right and left cameras. For the

right camera, the index (r) will be used, and the index (l) used for the left camera.

Figure (2.5) shows the right and left images of a 3D straight line.

Figure 2.5: Stereo images (lr, ll), of a 3D straight line L.

In this �gure, three frames are de�ned, one for the 3D straight line L (the object),
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and two for the cameras. Rr, tr are the rotation and translation from the right camera

to the object, Rl, tl are the rotation and translation from for the left camera.

The image equations are given by:

[lr]× ≡ Pr L PTr

[ll]× ≡ Pl L PTl

By developing these equations, we obtain the relation between line image and

Plücker coordinates:

[lr]× ≡ Pr L PTr ≡ Kr P Tr L TTr PT KTr

[lr]× ≡ [Kr Rr | Kr tr]

[
[w]× v

−vT 0

][
RTr KTr

tTr KTr

]

[lr]× ≡
[
Kr Rr [w]× − Kr tr v

T|Kr Rr v
] [ RTr KTr

tTr KTr

]

[lr]× ≡ Kr Rr [w]× RTr KTr − Kr tr v
T RTr KTr + Kr Rr v t

T
r KTr

Since the matrix K is invertible, we get

K−1
r [lr]× K−Tr ≡ Rr [w]× RTr + tr v

T RTr − Rr v t
T
r

1

det(Kr)
[KTr lr]× ≡ [Rr w]× − tr (Rr v)T + (Rr v) tTr

using baT − abT = [a× b]×, we have after omit det(Kr) as we have an equivalence

relation

[KTr lr]× ≡ [Rr w]× + [tr × Rr v]×

KTr lr ≡ Rr w + tr × Rr v

�nally

lr ≡ K−Tr [Rr w + tr × Rr v] (2.1)

same for the left camera

ll ≡ K−Tl [Rl w + tl × Rl v] (2.2)
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The equations (2.1, 2.2) show the relationship between the Plücker coordinates (v, w)

of a 3D straight line, and its stereo 2D image lines, through the stereo rig intrinsic

and extrinsic parameters.

Hager in [Hag97] represent the 3d straight line by a �xed point P and a direction

vector v, with this representation, the stereo images of a 3d line are given by

lr ≡ Rr (v × (P − Cr))

ll ≡ Rl (v × (P − Cl))

which are the same equations (2.1, 2.2) as w = P × v.

2.3.5 3D estimation of the Plücker coordinates from stereo

With a pair of images, the 3D estimation of the Plücker coordinates of the 3D

straight line is possible. The equations (2.1, 2.2) de�ne the line images as a function

of the Plücker coordinates (v, w). These equations are de�ned up to scale. Trying

to inverse these equations to retrieve (v, w) as functions of (lr, ll) will de�ne (v, w)

with two di�erent factors.

So it is necessary to use the geometry of the stereo images of a 3D straight line, in

order to estimate its Plücker coordinates.

Figure (2.6) shows two planes (Πr,Πl) generated by the two cameras centers and

the 3D line. The intersection of these two planes de�nes the 3D straight line, so

according to [HZ00] the planes equations are

Πr ≡ PTr lr

Πl ≡ PTl ll

and Pr, Pl are given by

Pr ≡ Kr P Tr ≡ [Kr Rr | Kr tr]

Pl ≡ Kl P Tl ≡ [Kl Rl | Kl tl]

Now, recall the de�nition of the dual Plücker matrix L?

L? ≡

[
[v]× w

−wT 0

]
≡ Πr Πl

T − Πl Πr
T
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Figure 2.6: Intersection of two planes generated by the cameras centers and the 3D

straight line.

Suppose A = Πr Πl
T, so by developing this equation we get

A = [Kr Rr | Kr tr]T lr l
T
l [Kl Rl | Kl tl]

=

[
RTr KTr

tTr KTr

]
lr l

T
l [Kl Rl | Kl tl]

=

[
RTr KTr lr l

T
l Kl Rl RTr KTr lr l

T
l Kl tl

tTr KTr lr l
T
l Kl Rl tTr KTr lr l

T
l Kl tl

]

=

[
A11 A12

A21 A22

]

which means [
[v]× w

−wT 0

]
≡

[
A11 − AT11 A12 − AT21

A21 − AT12 A22 − AT22

]
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So, the vector v is expressed as

[v]× ≡ A11 − AT11

≡ RTr KTr lr l
T
l Kl Rl − RTl KTt ll l

T
r Kr Rr

≡ RTr KTr lr (RTl KTt l)
T − RTl KTt ll (RTr KTr lr)

T

≡ [RTl KTl ll × RTr KTr lr]×

and �nally

v ≡ RTl KTl ll × RTr KTr lr (2.3)

For the vector w, we have

w ≡ A12 − AT21

which gives

w ≡ RTr KTr lr l
T
l Kl tl − RTl KTl ll l

T
r Kr tr (2.4)

Equations (2.3) and (2.4) provides a solution for the Plücker coordinates v, w from

the stereo images lr, ll. They are de�ned up to a common scale.

The equation (2.3) is found in [Hag97] with the same form.

2.3.6 Singularity case

Recall the formula of the direction vector (2.3),

v ≡ RTl KTl ll × RTr KTr lr .

This equation represents in the general case a vector, but if the two terms of the

cross product RTr KTr lr and RTl KTl ll are equivalent, this equation is equal to zero,

and the direction of the 3D line is unknown.

This case means that the two orthogonal vectors of the two planes (Πr,Πl) in �gure

(2.6) are parallel, which means the two planes are parallel too (identical because

they share a common line).

These two planes de�ned by the line and the two cameras centers, if they are iden-

tical, means the two cameras centers are coplanar with the 3D line L. This is a

singularity for the 3D reconstruction of the line from its stereo images.

For the second vector in Plücker coordinates

w ≡ RTr KTr lr l
T
l Kl tl − RTl KTl ll l

T
r Kr tr

it can be written as w ≡ d1 ∗ RTl KTl ll − d2 ∗ RTr KTr lr with d1 = lTr Kr tr,

d2 = lTl Kl tl. This vector is unknown, if the 3D line is coplanar with the two

cameras centers, because d1 = d2 = 0. It is unknown if the 3D line goes through the

reference frame origin, but this case is included in the �rst case.

To resume, the singularity of recovering a 3D straight line from its stereo images

will be found if the 3D straight line is coplanar with the two camera centers.
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2.3.7 Kinematic modeling

The motion analysis of straight lines has been studied by many authors. For instance

Mitiche [Mit94] provides relationships between the apparent motion and the 3D

camera displacement with straight lines and single camera. Rives in [RE87] and

Navab in [NFV93] described the time derivation of a 3D straight line represented

by Plücker coordinates in relation with the kinematic screw τ = (Ω,V) by the

equations:

v̇ = Ω× v + α v

ẇ = Ω× w + V × v + α w

The parameter α can be determined if a constraint was added like ||v|| = 1 (so

v̇Tv = 0) in normalized Plücker coordinates. With this constraint we obtain α = 0.

v̇ = Ω× v (2.5)

ẇ = Ω× w + V × v (2.6)

These equations show that the direction of the 3D line is independent to the trans-

lation velocity V, that helps in constructing a decoupled control law for rotation or

fully cascaded control laws for rotation and translation velocities.

With the bi-normalized Plücker coordinates ((v, w, d), ||v|| = 1, ||w|| = 1), Andr-

e� in [AEH02] isolates the variation of the direction of the planar vector (w) from

the variation of its norm (the distance d), so the kinematic of the 3D straight line

represented by bi-normalized Plücker coordinates is given by [AEH02] ẇ

v̇

ḋ

 =

 −
1
d
(v × w) wT − [w]×

03×3 − [v]×
(v × w)T 0T

 τ (2.7)

where τT = (VT,ΩT).

2.4 Pose estimation

The estimation of the pose (position and orientation) and the motion is considered

as important application of the arti�cial vision. The image information is used for

"positioning" an object with respect to the camera frame.

The recovery of the 3D geometric information from 2D images is a fundamental

problem in computer vision. When only one view is available, the appearance or

the relative arrangement of the object features of interest should be modelled in

a symbolic description so as to be compared with the image descriptors thanks to

a similarity criterion [Doi07]. Geometric-based approaches restrict the search for
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correspondence to a sparse set of geometrical features. They use numerical and

symbolic properties of entities available. To automatically compute a rigid-body

transformation (the pose), it is necessary to match a 3D model features with part of

the visible 2D image features, a process referred to as the correspondence problem,

and for the past four decades, the model-based pose estimation of objects with a

simple geometry has been intensively studied. In the following, we report only few

works about the pose estimations, as there is a vaste literature on this subject (see

[Doi07] for a review).

Doignon and de Mathelin in [DdM07] have addressed the problem of estimating

the pose of a straight homogeneous circular cylinder (SHCC) from a single per-

spective view of its surface outlines. The cylinder is modelled by a singular matrix

composed with the Plücker coordinates of the symmetry axis and the cylinder ra-

dius. The apparent contour of the cylinder serves as input data. The perspective

projection of a SHCC is related to the pose parameters. The authors have presented

a degenerated conic-based �tting approach and they have provided both a closed-

form solution and a numerical minimization.

In [DAAAM08] the authors present novel methods for high speed pose and ve-

locity computation from visual sensor. Usually, camera video rate is limited by the

transmission interface bandwidth. Reducing the image resolution to decrease the

video �ow tightens a lot the �eld of view of the camera for a given accuracy of

the end-e�ector pose estimation. The proposed approach solves the problem of the

video rate transmission by increasing the information density instead of the data

rate transmission. Instead of transmitting the whole image and then selecting a re-

gion of interest (ROI), it is more interesting to inverse the process by �rst selecting

the ROI position, and then to transmit it. The idea of the authors is to use the

image artifacts for real-time high speed object pose and velocity computation based

on non-linear least squares minimization.

To estimate the motion of the robot, several methods have been proposed using

traditional navigation equipments such as Global Positioning System (GPS) or/and

Inertial Navigation System (INS). However, these sensors su�er from many limita-

tions. In order to overcome those limits, a vision based approach of the navigation

problem has been proposed. The goal is to estimate location and/or orientation

of the robot when GPS or inertial guidance is not available. Using conventional

cameras, that have a relative small �eld of view, may lead to important di�cul-

ties. Therefore, Bazin et al. [BDVK10] estimate the motion by decoupling rotation

and translation in catadioptic vision. The proposed system provides two strong ad-

vantages over the existing methods: �rst, it can implicitly handle the di�culty of
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planar/non-planar scenes, and second, it is computationally much less expensive.

The rotation is computed by an e�cient algorithm based on the detection of dom-

inant bundles of parallel catadioptric lines and the translation is calculated from a

robust 2-point algorithm.

Determining the pose of a mobile robot from the image invariant is the method

used by Charron et al. in [CLIM05] with omnidirectional images. Their approach is

based on the recognition of panoramic images to recover the pose of a mobile robot.

The goal is to make the robot recognizing places by the help of an omnidirectional

camera. The idea is to determine a mapping to extract intrinsic features on the

local environment of the robot, i.e. features that remain unchanged if the robot

position and/or orientation locally changes in the scene. The approach consists in

using integral invariant features computed on omnidirectional images and showing

their interest in a context of mobile robots localization.

The integral method used to build the invariant has the advantage of being more

straightforward than di�erential or geometrical methods. The integral method re-

quires neither image segmentation as in geometrical methods nor derivative compu-

tation as in di�erential methods. Moreover, the invariant is also robust to rotations

although they are not considered in the initial transformation group.

The main advantage of this method is that it allows to take into account the real

movements of the robot to build the invariants.

In 1989, Dhome et al. in [DRLR89] de�ne an analytical solution to the problem

of the determination of the 3D object attitude in space from a single perspective

image. Its principle is based on the interpretation of a triplet of any image lines as

the perspective projection of triplet of linear ridges of the object model, and on the

search of the model attitude consistent with these projections. The corresponding

solutions are obtained by the resolution of an four-degree equation (a polynomial

equation of degree eight with only even terms) and some simple but e�cient rules

are given to reduce the number of solutions.

With n known points in two frames, Umeyama in [Ume91] presented a method to

estimate the rotation matrix between the two frames. This method based on a least

square minimization.

Daniilidis [Dan96],[Dan99] presented a uni�ed and fast way of formulating with

dual-quaternions � algebraic counterparts of screws � for both the rotational and

the translational relative between the desired and the current poses.

In ([WHB96],[HEK96]), features are detected in an image and used to estimate the

current camera pose. A pose error is then computed in the Cartesian task space,

and this error is used by the control system. With the technique of Lowe in [Low87],
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an e�cient and fast minimization algorithm provides the 6 pose parameters with a

gradient descent. The camera pose was obtained by Rivera-Rios et al. in [RRSM05]

via a nonlinear program that minimizes the total mean square error of the length

measurements while satisfying the sensor constraints. They present a probabilistic

analysis of the e�ect of the localization errors on the dimensional measurements of

the line entities for a parallel stereo setup.

In PBVS, it is well known that the visibility of the object of interest is not guaranteed

during the servoing time. A modi�ed PBVS has been proposed in [TMCG02] which

allows to keep the object frame origin in the �eld of view (FOV). However, in most

cases it is not guaranteed either that all points remain in the FOV or the camera

motion converges to the desired con�guration from any feasible initial one.

2.5 Decoupling the control laws

Decoupling or non-interactive control has attracted considerable research attention

since the 1960's when control engineers started to deal with multivariable systems.

The theory and design techniques for decoupling control is now, matured for linear

time-invariant systems.

In many complex industrial processes, the coupling among control loops often in-

validates conventional single-loop controllers. Decoupling controls was initially de-

veloped for deterministic linear systems. Typical approaches included design of

pre-compensator that transforms the controlled transfer function matrix into a di-

agonal matrix or diagonal dominance [Kav57], or the design of state feedback to

reach decoupling of state equations [FW67].

The goal of decoupling control is to eliminate complicated loop interactions, so that

a change in one process variable will not interact with changes in other process vari-

ables. This makes an advantage to the control loop, to be easily implemented and

tuned. Note that in a system heavily dependent on the coordination of all loops,

the failure of one component may lead to the failure of the overall structure.

In 1999, Andre� et al. ([And99],[AEH00],[AEH02]) used 3D straight lines to design

a partial decoupled velocities control laws for a monocular PBVS. This work's appli-

cation was concerning the improvement the automatic welding of ship parts, whose

relative position is not exactly known in advance.

By representing the 3D straight line using bi-normalized Plücker coordinates (v, w, d),

the authors obtain a naturally partial decoupling between the rotation velocity con-

trol and the translation velocity control from the kinematics of a 3D straight line.

The rotational task function is de�ned using the direction vector eΩ = [v1×v∗1, ..., vn×
v∗n]T. This task function is independent to the translation motion. Then, the rota-

tional velocity control law is given by Ω = −λΩ

∑
i vi × v∗i . After the end of the
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rotational servoing, the direction vectors vi are converging toward their desired val-

ues v∗i . Then, the translation task function eV = v × (w − w∗) is a pure translation

error. The translational control law V = −λV
∑

i
1
di

(vi × wi)T w∗i wi moves the

system to the desired position.

In the practical application of welding the orthogonal trihedral, a commercial laser

device is used as measurements for the depth estimation.

Abdelkader et al. [AMAM06] present a new approach for 21
2
D homography-based

visual servoing using 3D straight lines imaged with central catadioptric cameras.

Their work concerned the design of a control law which allows to fully decoupled

rotational motions from translational motions.

To this end, they designed two independent state vectors for rotational and trans-

lational motions. The rotational state vector is sΩ = θu, that is the angle/axis

representation of the rotation matrix R between the current and desired frames,

while the translational state vector is sV = [log(d1), log(d2), log(d3)]T. In this vec-

tor, di is the orthogonal distance between the 3D straight line Li and the frame

origin.

The rotation matrix R and the ratios di
d∗i

have been estimated from the correspon-

dence between four couples of polar lines (li, l∗i , i = 1..4). The task function e to

regulate to 0 is then given by

e =

(
sV − s∗V
sΩ − s∗Ω

)
=


log(d1

d∗1
)

log(d2
d∗2

)

log(d3
d∗3

)

θu

 .

This servoing is an hybrid-based one because the rotational state vector sΩ is a 3D

vector, while the translational state vector sV is estimated from visual measure-

ments, every depth ratio is estimated from the current and desired images, as it

is with oriented projective space: d
d∗

= r′
n∗×KTl∗i
Rn∗×KTli (d∗ is the normal vector of the

interpretation plane π∗, r′ = 1 + t∗Td RTn∗, and t∗d is the desired translation).

These two works concerned the monocular visual servoing. The �rst one was a

partial decoupled PBVS, and the authors used a laser pointer for estimating the

depth, while the object of interest consists of three orthogonal straight lines. The

second was a full decoupled hybrid visual servoing. The authors need four 3D

straight lines to estimate the matrix of rotation and the ratio of depth.

In our work, we will use the stereo vision for visual servoing. This allows to reduce

the number of 3D straight lines needed to control the camera motion with respect

to the object of interest, and to achieve the full decoupling between rotational and
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translational velocities control laws in both PBVS and IBVS. There are other ben-

e�ts from the stereo vision measurements, they will be pointed out through out the

thesis report.
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Chapter 3

Stereo position based visual servoing

from lines

This section addresses the position based visual servoing (PBVS). The vision system

used to close the control loop is a stereo rig. The object of interest is modeled by a

set of 3D straight lines, represented by the Plücker coordinates.

Figure (3.1) shows a simple block diagram for the closed loop of (PBVS).

Figure 3.1: Position Based Visual Servoing (PBVS) block diagram.

The notation P ∗ denotes the desired pose, and P̂ is the estimation of the current one.

P ∗ and P̂ are relative poses (position and orientation) between the vision system

and the object in the vision �eld. P ∗ is assumed to be constant in most applications

of PBVS while P̂ is a time variant. The challenge of the vision system is to estimate

P̂ during the servoing time.

47
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3.1 Position based visual servoing using [R, t]

In this kind of servoing the state vectors are, the relative rotation and the relative

translation, between the current stereo rig frame Fc and the desired stereo rig frame

Fc∗ .

Malis in [Mal98], has proposed the fully decoupling control laws for rotational and

translational velocities by

V = −λV RTt (3.1)

Ω = −λΩ θu (3.2)

with λV , λΩ ∈ R+ are the gains of the closed loop. R is the relative matrix of rotation

between Fc and Fc∗ .

t is the relative translation vector between the origin c of Fc and the origin c∗ of Fc∗ .

θu gives the angle/axis parameterization for the rotation:

θ = arccos((tr(R)− 1)/2)

u =

 R(3, 2)− R(2, 3)

R(1, 3)− R(3, 1)

R(2, 1)− R(1, 2)

 /(2 sin(θ)).

V,Ω are the translational and rotational velocities de�ned in the stereo rig frame

Fc.

The camera trajectory is a pure straight line in the Euclidean space, because the

state vectors represent Cartesian coordinates, as the translational state vector is

sV = RTt and the rotational state vector is sΩ = θu, when the desired state

vectors are null s∗V = 0, s∗Ω = 0. So the task functions are:

eV = RTt

eΩ = θu

The global asymptotic stability GAS of these control laws are proved if θ 6= kπ, k ∈ Z
in [Mal98]. The Euclidean relative pose [R, t] between the current pose and the

desired pose, is estimated using Plücker coordinates of the 3D straight lines, as we

will see in the next section.

The control laws used in this kind of servoing will be called " Euclidean control

laws".
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3.1.1 Pose estimation from lines

In the previous section, the " Euclidean control laws" are de�ned from the relative

rotation and the relative translation [R, t].

Figure (3.2) shows an object that consists of 3D straight lines L1, ..., Ln, represented

by a set of Plücker coordinates
(
(ov1,

ow1), ..., (ovn,
own)

)
at the object frame Fo

which is the stereo rig frame Fc∗ at the desired pose. This object is represented in

the current stereo rig frame Fc, by
(
(cv1,

cw1), ..., (cvn,
cwn)

)
.

The goal of the PBVS is to guide the stereo rig from its current pose Fc, to the

Figure 3.2: Initial and desired relative Object-Camera pose.

desired pose Fc∗ . The relative current Object-Stereo rig pose is given by P = [R, t]

and the desired one is P ∗ = [R∗ = I, t∗ = 0]. That means Fc∗ = Fo.

We need to �nd the rigid transformation de�ned with the homogeneous matrix

T =

[
R t

0 1

]
between the current and the desired stereo rig frames.

The relation between Plücker matrix cLj for the straight line Lj in the current stereo

rig frame Fc, and the Plücker matrix oLj of the same straight line Lj in the object

frame Fo is given by oLj ≡ T cLj T
T [HZ00].

To transfer the equivalent sign into equal sign, the Plücker matrices cLj,
o Lj are

normalized to have ||cvj|| = 1, ||ovj|| = 1.

So the equation becomes oLj = T cLj T
T. By developing this equation (we will remove
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the stereo rig frame index (c.) for simplifying the text)[
[owj]×

ovj

−ovTj 0

]
=

[
R t

0 1

] [
[wj]× vj

−vjT 0

] [
RT 0

tT 1

]

=

[
R[wj]× − tvjT Rvj

−vjT 0

] [
RT 0

tT 1

]

=

[
R[wj]×R

T − t(vjTRT) + (Rvj)t
T Rvj

−vjTRT 0

]
so,

ovj = Rvj (3.3)

and,

[owj]× = R[wj]×R
T − t(vjTRT) + (Rvj)t

T

[owj]× = [Rwj]× + [t× Rvj]×

owj = Rwj + t× Rvj (3.4)

The equation (3.3) is showed in [LHF90], but the authors use the three Euler angles

to represent the rotation matrix R, for that they need three 2d to 3d line correspon-

dences to �nd the angles.

We now recall the important lemma of Umeyama [Ume91], which gives a solution

by the least squares for the estimation of the rotation matrix between two groups

of points in a space of dimension m.

Suppose A and B are two (m× n) matrices, R is the rotational (m×m) matrix and

UDVT is the decomposition in singular values of ABT (UUT = VVT = I, D = diag(di),

d1 ≥ d2 ≥ · · · ≥ dm ≥ 0), so the minimum of ||A− RB||2 in function of R is expressed

by

min
R
||A− RB||2 = ||A||2 + ||B||2 − 2 tr(DS)

with

S =


I if det(U) det(V) = 1,

diag(1, · · · , 1,−1) if det(U) det(V) = −1

The minimum of the above criterion is given by R = USVT. Proof and details are

in [Ume91].
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Considering equation (3.3), the two matrices A and B can be expressed with the

Plücker coordinates v, therefore with A = [ov1, · · · ,o vn], and B = [v1, · · · , vn]. Of

course, this solution is not possible if there is only one line (n = 1), or if all the lines

are parallel (v1 = v2 = · · · = vn).

After the estimation of the rotation matrix R, we now look for the estimation of

the translation vector t between the current and desired stereo rig frames. This can

be done using equation (3.4):

owj = Rwj + t× Rvj
owj −Rwj = −ovj×t
owj −Rwj = −[ovj]×t

De�ne qj = Rwj − owj as the matrix R is known

Q =


q1

...

qn

 and H =


[ov1]×
...

[ovn]×


we get a linear system of n equations of the form

Ht = Q .

A solution for this system (with t as unknown) is given by (with the least squares)

t = H+Q .

This solution is de�ned if and only if H+ exists, for that, and as H+ = (HTH)−1HT

then HTH must be invertible.

HTH =


[ov1]×
...

[ovn]×


T 

[ov1]×
...

[ovn]×



= − [[ov1]×, . . . , [
ovn]×]


[ov1]×
...

[ovn]×


= −[ov1]2× − . . .− [ovn]2×

It is evident that HTH is not invertible in the case of one line (n = 1), since [ov]2× is

of rank 2. In the case of two lines (n = 2), we get

det(HTH) = 2 ||ov1 × ov2||2
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so, if the two lines are not parallel, the matrix HTH is invertible.

In the general case (where n > 1), the matrix HTH is invertible if and only if there

are at least two non parallel lines in the object.

To resume, the relative rotation matrix R between the current and �nal stereo

rig frames is given by R = USVT, and the relative translation vector t between the

frames origins is given by t = H+Q.

In the next section, what is the maximum rotation and translation between the

initial and �nal frame, that can be estimated using the Plücker coordinates, and

stereo vision.

3.1.2 Domain of the state vectors

In the previous section, the rotation matrix R and the translation vector t had been

estimated from the knowledge of the Plücker coordinates of the straight lines in the

initial and �nal pose.

The estimation of the rotation matrix is de�ned by the equation (3.3) ov = Rv, with

||ov|| = ||v|| = 1.

Now, recall the equations (2.3, 2.4), which de�ne the Plücker coordinates v, w from

a pair of stereo image.

v ≡ RTl KTl ll × RTr KTr lr

w ≡ RTr KTr lr l
T
l Kl tl − RTl KTl ll l

T
r Kr tr

In these equations, (v, w) are de�ned up to common scale. The constraint ||v|| = 1

place the scale, but not the sign, which means (v, w) and (−v,−w) are correspond-

ing to the same line and the same image lines lr, ll. So the equation (3.3) ov = Rv,

is not valid until the sign of v is well de�ned.

Given an object represented by n 3D straight lines, de�ned in the �nal pose by
ovj,

owj, j = 1..n. Then, by adding the constraint ovj
Tvj > 0 , j = 1..n, one can

de�ne the sign of the direction vector vj. But this constraint reduce the domain of

rotation angle of each line to be less than π/2 (Acute angle).

After selecting the sign of vj. The sign of wj is de�ned because it is the same sign

of vj.

No such problem for the translational estimation, but it suppose that the rotation

matrix R is known, so, the translation estimation is not valid if the rotational esti-

mation is wrong.

In the next section, the estimated rotation and translation R, t, will be used to de�ne

the state vectors.
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3.1.3 Velocity control laws

After the estimation of the rotation matrix R and the translation vector t, the veloc-

ity control laws presented in section (3.1) are ready to conduit the system towards

the desired pose.

The error of servoing (the task function) is de�ned by the di�erence between the

current state vector and the desired one. The rotational state vector is sΩ = θu and

the translational state vector is sV = RTt.

So the rotational task function is eΩ = θu as the desired state vector is null s∗Ω = 0

and the translational task function is eV = RTt as the desired state vector is null

s∗V = 0.

Figure (3.3) shows the block diagram of the PBVS using θu, RTt as state vectors.

Figure 3.3: PBVS using [R, t] for pose representation.

In this �gure, the desired pose P ∗ is represent by the desired state vectors [ORc∗ =

I, Otc∗ = 0].

The normalized Plücker coordinates of the straight lines at the object frame
(
(ovj,

owj)

j = 1..n
)
are compared with those in the current pose

(
(cvj,

cwj) j = 1..n
)
, so as

to calculate the relative rotation and the translation ([R, t]) between the current and

desired state vectors.

[R, t] de�ne the rotational and translational task functions, then the velocity control

laws V,Ω.
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3.1.4 Simulations with Euclidean control laws

The goal of the simulations is to ensure the decoupling and the global asymptotic

stability (GAS) convergence of the servoing using the "Euclidean control laws" de-

�ned in section (3.1.3).

Ω = −λΩθu

V = −λV RTt

Many simulations have been done, with di�erent con�gurations for the stereo rig,

and di�erent con�gurations of the object of interest in the initial and desired po-

sition. But as the results are always the same, we present here one simulation for

con�guration similar to the practical tests, and repeat it with noise or with error of

calibration.

As the simulation does not interested of the robot dynamic, the robot is considered

as a perfect integrator.

The stereo system consists of two parallel identical cameras. The homogeneous

matrices of transformation between the two cameras and the stereo rig frame Fc are

Rr = Rl = I, tr = −tl = (0.1, 0, 0)T.

The intrinsic parameters of the two cameras used in these simulations are

Kr = Kl =

 1200 0 300

0 1200 200

0 0 1


These matrices supposed to be exact (the stereo system is perfectly calibrated) ex-

cept for the simulations with errors of calibration.

The object of interest consists of three non coplanar straight lines. The current

relative pose between the object and the stereo rig is represented by the normalized

Plücker coordinates of the 3 straight lines in the object v1, w1, v2, w2, v3, w3. While

the desired pose is de�ned by the desired rotation matrix R∗ = I and the desired

translation vector t∗ = 0.

The �nal relative pose between the object and the stereo rig is represented by the nor-

malized Plücker coordinates of the 3 straight lines of the object (v1(∞), v2(∞), v3(∞),

w1(∞), w2(∞), w3(∞)). The gains of the close loop are λΩ = λV = 0.15.

The servoings of the rotation and translation are done simultaneously and that due

to the full decoupling between them.
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Figure (3.4) shows the �rst series of simulations for the control laws de�ned in

section (3.1.3).

In this simulation, the rotation between the initial and �nal pose for each line in the

object of interest is less than π/2.

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Simulation results for the PBVS using the "Euclidean control laws".

The object of interest consists of three 3D straight lines. The horizontal axis of

the �gures is the iteration number. a) Rotation velocity (deg/s). b) Rotation error

(rotational task function eΩ) (deg). c) Rotation trajectory. d) Translation velocity

(m/s). e) Translation error (translational task function eV ) (m). f) Translation

trajectory. The errors (the task functions) are null at the end of servoing, which

show the asymptotic convergence of state vectors.

Figures (3.4 - a, d) show an exponential decrease of the rotational and the transla-

tional velocities. This is the desired behaviour of the system in the closed loop.

The asymptotic convergence of the task function is illustrated in �gures (3.4 - b, e).

Finally, as the state vectors are de�ned in the Euclidean space, the trajectory of the

stereo rig frame origin is linear, as one can see in �gure (3.4 - f), also the trajectory

of the rotation angle θ (�g. 3.4 - c).

Let us add white noise for the image, which provides an error in the estimation

of the 2D line parameters in right and left image.
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To do this, we generate 100 points for each 2D line, then add a random value in the

domain [−1, 1] for the points coordinates in pixel, after that we estimate the 2D line

parameters using the least squares method.

Figures (3.5 - a, b), show the convergence of rotational and translational velocities

with a small oscillation magnitude near the equilibrium point.

Figures (3.5 - c, d), show the asymptotic convergence of the rotational and transla-

tional task functions, but with non null error at the end of servoing, about (0.2 deg)

in rotation and (2 cm) in translation.

(a) (b)

(c) (d)

Figure 3.5: Simulation results for the PBVS using the "Euclidean control laws"

in the presence of white noise. The object of interest consists of three 3D straight

lines. The horizontal axis of the �gures is the iteration number. a) Rotation velocity

(deg/s). b) Translation velocity (m/s). c) Rotation error (rotational task function

eΩ) (deg). d) Translation error (translational task function eV ) (m). The errors

(the task functions) are almost null with small perturbations at the end of servoing,

which show the asymptotic convergence of state vectors.

In the next simulations, we propose to include some calibration errors, in the

rotation between the two camera frames about ±1 deg, in translation between the
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camera centers about ±2 mm, about ±0.2 mm in the focal length, and ±2 pixels in

the image centers.

As one can see in �gures (3.6 - a, b), the control laws are not a�ected by the errors

of calibration, and they decrease to zero. While the task functions (the error of

servoing) are very a�ected, one can see a static error about 12 cm of translation and

2deg of rotation (�g. 3.6 - c, d).

(a) (b)

(c) (d)

Figure 3.6: Simulation results for the PBVS using the "Euclidean control laws" with

calibration errors. The object of interest consists of three 3D straight lines. The

horizontal axis of the �gures is the iteration number. a) Rotation velocity (deg/s).

b) Translation velocity (m/s). c) Rotation error (rotational task function eΩ) (deg).

d) Translation error (translational task function eV ) (m). The errors (the task

functions) are not null at the end of servoing, because of the calibration errors.

While the control laws are decreasing to zero with no e�ect of the calibration errors.
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3.1.5 Experiments on robot platform for the Euclidean con-

trol laws

The Euclidean control laws are applied to a 6 DOF robot to control the relative pose

between the end-e�ector of the robot and the object of interest in the view �eld of

the stereo rig.

The Adept Viper S650 robot has 6 axes and 6 revolute joints, which gives 6 DOF

in the Euclidean space (see �gure 3.7).

Figure 3.7: The Adept Viper S650 robot.

Providing the robot with the "Cerebellum Automation" hardware package of am-

pli�ers and controllers, without forgetting the software library "CIDE" make the

velocity control of the robot available through a �re-wire 1394 connection with high

speed command transformation.

The stereo rig consists of two USB2 identical cameras "SUMIX SMX-150M", pro-

vided with a 8mm objective, they can acquire images of size 1280 × 1024 pixel at

27.5fps.

The two cameras are �xed in parallel con�guration at the robot end-e�ector (see

�gure 3.7). The acquired image size is 600× 400 pixel at 75fps.

The object of interest is a white triangle painted on a black background, the three

edges of the triangle are considered as the three 3D straight lines of the object.

Figures (3.8 - a, b) show the right and left images of the object of interest in the

initial pose, and �gures (3.8 - c, d) show the right and left images of the object of

interest in the desired pose.

To segment the image, we use a Canny detector to extract the pixels of every

line, then we use a robust line estimation to estimate the parameters of the line.

This robust estimation randomly chose two points of the line, estimate the line pa-
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(a) (b) (c) (d)

Figure 3.8: The object of interest. a) Right image in the initial pose. b) Let image

in the initial pose. c) Right image in the �nal pose. d) Left image in the �nal pose.

rameters using these two points, and test the maximum number of other points that

belong to this line with a distance less than one pixel. The pair of points who verify

the maximum number of in-lines serves to compute the line parameters.

To maintain a high frame rate, a Canny-based fast edges detector (within a

tracked area of interest) and a RANSAC-based line �tting have been implemented

in C++ with Linux and multi-threading instructions (one thread per robust line

�tting) and executed with a Core 2 Duo 2.67 Ghz PC.

For practical reasons, and as the goal of the experience is to validate the global

asymptotic stability of the system in the closed loop using the Euclidean control

laws, the initial and desired poses are de�ned using the 3D estimation of the lines

Plücker coordinates in the stereo images.

The stereo rig captures the image lines at the desired pose. The normalized

Plücker coordinates v(∞), w(∞) are estimated from the stereo image for each line.

Then the stereo rig is moved to the initial pose before the starting of the servoing.

The reference frame origin is de�ned at the center between the two cameras, so the

extrinsic stereo matrices are given by

Rr = Rl =

 1 0 0

0 1 0

0 0 1

 , tr = −tl =

 0.1

0

0



The intrinsic stereo matrices are de�ned using the cameras technical speci�cations

(focal length, sensor length, and image size), we have

Kr = Kl =

 1200 0 300

0 1200 200

0 0 1


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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Experimental results for the Euclidean control laws. The object of interest

consists of three 3D straight lines. The horizontal axis of the �gures is the time

in second. a) Rotational velocity (deg/s). b) Rotation error (deg). c) Rotation

trajectory (the angle θ trajectory). d) Translational velocity (mm/s). e) Translation

error(mm). f) Translation trajectory (motion of the origin of the stereo frame). The

errors (the task functions) are almost null at the end of servoing, which shows the

asymptotic convergence of state vectors.

Figure (3.9) shows the experiment results. The stability of rotational and trans-

lational velocities is shown in �gures (3.9 - a, d), with a small perturbation during

the servoing and especially near the equilibrium point. One can see the similarity

to the simulation results in the case of adding white noise.

Figures (3.9 - b, e), show the asymptotic convergence of the rotational and trans-

lational task functions, with a small error at the end of servoing, about (0.5deg) in

rotation and (4mm) in translation.

Finally, the trajectory of the robot end e�ector is shown in �gures (3.9 - c, f). One

can see a line trajectory for the translation and for the rotation in the Euclidean

space.

There is no static errors in the �nal pose of the stereo rig has been done because the

estimation of the desired pose using the stereo rig, in the same way of the estimation

of the current pose during the servoing.
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3.2 Position based visual servoing using Plücker co-

ordinates

In the previous section, the Plücker coordinates are used to estimate the relative

rotation matrix R and the relative translation vector t between the current and

the desired poses. The goal of this section is to design decoupled controls laws for

rotation and translation, without pose estimation.

The object of interest consists of n straight lines (L1, ..., Ln) represented by the

Plücker coordinates
(
(vj, wj) j = 1..n

)
at the current pose, and

(
(v∗j , w

∗
j ) j = 1..n

)
at the �nal or desired pose.

The control laws designed in this section will be called " Plücker coordinates control

laws".

3.2.1 Rotational velocity control law Ω

To design a state vector for rotation control law, we recall the equation (2.5) which

de�nes a direct relation between the rotation velocity Ω and the kinematic of the

direction vector v, v̇ = Ω× v.
By extending this equation for n lines we get:

v̇1 = Ω× v1 = −[v1]×Ω
...

v̇n = Ω× vn = −[vn]×Ω

For translating these n equations in one matrix equation, we de�ne

q =


v̇1

...

v̇n

 and HΩ =


−[v1]×

...

−[vn]×


which makes the equation form like q = HΩ Ω. The solution of this equation is

given by Ω = H+
Ω q. In section (3.1) we saw that the only condition for the existence

of H+
Ω is to have at least two non parallel lines in the object.

To carry out that control law, we de�ne a rotational task function

eΩ =


v1 − v∗1

...

vn − v∗n

 (3.5)

and we suppose an exponential decrease of the form ėΩ = −λΩ eΩ. As the desired

pose is invariable (constant during the servoing), then, the time derivation of the
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task function is ėΩ = (v̇T1 , . . . , v̇
T
n )T and the rotation control law is

Ω = −λΩ H+
Ω eΩ (3.6)

Discussion

This selection of the task function is classical. It de�nes the error as the di�erence

between the state vectors (the direction vectors vj in this case), and the desired

state vectors (v∗j ).

Like in the previous section (3.1.2), the sign of the vectors vj is not de�ned, so, the

rotation for each line of the object, between the initial and the �nal poses is assumed

to be less than π/2.

3.2.2 Stability and convergence of the rotational control law

To prove the stability of the closed control loop with the rotation control law de�ned

in (3.6), and the asymptotic convergence of the task function (3.5), we use the

Lyapunov function L(t) = 1/2||eΩ(t)||2 and study the sign of its time derivative

L̇(t)

L̇(t) = ėTΩeΩ

=


v̇1

...

v̇n


T

v1 − v∗1
...

vn − v∗n



=


Ω× v1

...

Ω× vn


T

v1 − v∗1
...

vn − v∗n



=


−[v1]×Ω

...

−[vn]×Ω


T

v1 − v∗1
...

vn − v∗n


= (HΩΩ)TeΩ = ΩTHTΩeΩ

Given Ω = −λΩ H+
Ω eΩ we �nd ΩT = −λΩ eTΩ HΩ (HTΩHΩ)−1 so

L̇(t) = −λΩ eTΩ HΩ (HTΩHΩ)−1HTΩ eΩ

To determine the sign of the Lyapunov function derivation, we start with (HTΩHΩ)−1,

and we prove that HTΩHΩ is positive de�nite, so its invert is positive de�nite too.
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∀ a ∈ R∗3

aTHTΩHΩa = aT
[
[v1]×, . . . , [vn]×

] 
−[v1]×

...

−[vn]×

 a
= −aT

∑
i

[vi]×[vi]×a

= −
∑
i

aT[vi]×[vi]×a

=
∑
i

||vi × a||2 > 0

If there are two distinct vectors (vi, vj) that is, two non parallel lines in the object,

the matrix HTΩHΩ will be positive de�nite.

Now the part eTΩ HΩH
T
Ω eΩ

eTΩHΩH
T
ΩeΩ =


v1 − v∗1

...

vn − v∗n


T 
−[v1]×

...

−[vn]×



−[v1]×

...

−[vn]×


T

v1 − v∗1
...

vn − v∗n



=



−[v1]×

...

−[vn]×


T

v1 − v∗1
...

vn − v∗n




T 
−[v1]×

...

−[vn]×


T

v1 − v∗1
...

vn − v∗n



=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

−[v1]×

...

−[vn]×


T

v1 − v∗1
...

vn − v∗n


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
[
[v1]×, . . . , [vn]×

]
v1 − v∗1

...

vn − v∗n


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣∑

i

vi × v∗i

∣∣∣∣∣
∣∣∣∣∣
2

We will prove that
∑

i vi × v∗i = 0 if and only if vi = v∗i (proof and details are in

[AEH02]).

Note that vi∗ = Rvi, using the representation axis/angle θu of the rotation matrix R
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and Rodrigue's formula, we can write

v∗i = vi cos(θ) + (u× vi) sin(θ) + (uTvi)(1− cos(θ))u

so vi × v∗i = vi × (u× vi) sin(θ) + (vi × u)(uTvi)(1− cos(θ))

vi × v∗i =
(
u− (uTvi)vi

)
sin(θ) + (vi × u)(uTvi)(1− cos(θ))

Now, taken (u, u × vi, u × (u × vi)) as an orthogonal basis, and projecting the last

equation to this basis, we get

vi × v∗i =

[(
1− (uTvj)

2
)

sin(θ)

]
u

−
[(
uTvi)(1− cos(θ)

)]
u× vi

+

[(
1− (uTvj)

3
)

sin(θ)

]
u× (u× vi))

Then, if
∑

i vi × vi∗ = 0 we get
∑

i

(
1− (uTvj)

2
)

sin(θ) = 0.

If there are two non parallel lines in the object of interest, then there exists i such

that (uTvi)
2 < 1. So the only solution is sin(θ) = 0, that means θ = 0 as the angles

are acutes, then vi = vi
∗.

That proves the global asymptotic stability of the rotation control law Ω = −λΩ H+
Ω eΩ

for any positive real number λΩ > 0.

3.2.3 Translational velocity control law V

As the vector w is depending on the orientation between the initial and the desired

poses, it can not be directly used as a state vector for translation, if we look for a

full decoupled control laws.

In [AEH02], Andre� et al. use the bi-normalized Plücker coordinates to verify a

cascaded control. They used the vector v × (w − w∗), ||w|| = 1 so as to de�ne the

translation error after the end of the rotation servoing (Ω = 0, v = v∗).

To de�ne a task function for the translation, which is independent of rotation task

function eΩ, for that we calculate, ẇTw = uTV.

Note that ẇTw = 1
2
d
dt
||w||2 = 1

2
d
dt
wTw. Or recall the equation in [AEH02] which

de�nes the time derivation of the distance d of a line: ḋ = uTV with ||u|| = 1, as in

normalized Plücker coordinates d = ||w||.
Let us de�ne d2 = wTw as a state vector for the translation, and the desired one

will be d2∗, now for n lines,

ẇT
1w1 = uT1 V

...

ẇT
nwn = uTnV
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Suppose HV = [u1, ..., un]T, the task function is then chosen as

eV =
1

2


d2

1 − d2∗
1

...

d2
n − d2∗

n

 (3.7)

for an exponential decrease of the task function given by ėV = −λV eV we get the

translation velocity control law

V = −λV H+
V eV (3.8)

Note: We can use the time derivation of the distance ḋi = uTi V with ||ui|| = 1, in

this case, the task function eV and the interaction matrix HV are de�ned by

eV =


d1 − d∗1

...

dn − d∗n

 HV =


uT1
...

uTn

 ||ui|| = 1

3.2.4 Stability and convergence of the translational control

law

To prove the stability of the servoing closed loop with the translational control law

given in (3.8), and the asymptotic convergence of the task function (3.7), we use the

Lyapunov function L(t) = ||eV (t)||2 and study the sign of its time derivative L̇(t)

L̇(t) = 2 ėTV eV

=


ẇT

1w1

...

ẇT
nwn


T

d2
1 − d2∗

1
...

d2
n − d2∗

n



=


uT1 V
...

uTnV


T

d2
1 − d2∗

1
...

d2
n − d2∗

n


= (HV V)TeV = VTHTV eV

Using the control law de�ned in (3.8) for the translational velocity, we obtain

V = −λV H+
V eV

VT = −λV eTV HTV (HTV HV )−1

L̇(t) = −λV eTV HTV (HTV HV )−1HTV eV
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First, we show that, the matrix (HTV HV )−1 is positive de�nite,

∀ a ∈ R∗3

aTHTV HV a = aT[u1, . . . , un]


uT1
...

uTn

 a
= aT[u1u

T
1 + . . .+ unu

T
n ]a

=
∑
i

aTuiu
T
i a =

∑
i

||aTui||2

So, if there are three non coplanar vectors ui, the matrix (HTV HV ) is de�nite positive,

so the matrix (HTV HV )−1 exist and de�nite positive.

Now, the part eTV HV H
T
V eV will be developed to show if it is de�nite positive,

eTV HV = (e1, . . . , en)


uT1
...

uTn

 =
∑
i

eiu
T
i

HTV eV = [u1, . . . , un]


e1

...

en

 =
∑
i

eiui

so eTV HV H
T
V eV =

∣∣∣∣∑
i

eiui
∣∣∣∣2

One can see that eTV HV H
T
V eV can be null even if eV 6= 0, because the dimension of

the input vector (dim(s∗V ) = n). The dimension of the system (translation system)

is 3, so if n > 3 we will have a controllability problem.

To guarantee the asymptotic convergence, the input vector dimension must be equal

to the system dimension (n = 3).

Notice that if n = 3, the matrix HV is of dimensions 3 × 3, so H+
V = H−1

V if the

vectors (u1, u2, u3) are not coplanar. the time derivation of the Lyapunov function

is L̇ = −λV eTV eV < 0. That prove the asymptotic convergence of the translational

task function.

Figure (3.10) shows the block diagram of the servoing closed loop using Plücker

coordinates as 3D state vectors.

In this �gure, the full decoupling of the velocities control laws is clear, using the

direction vectors vi for the rotational task function, and the norm of the vectors

wi (the distance d) for the translational task function. The desired pose is de�ned
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by the bi-normalized Plücker coordinates for each line (v∗i , d
∗
i , i = 1..n), and the

current pose is estimated from the image (lri , l
l
i, i = 1..n) and the stereo rig matrices

(Rr, Rl, tr, tl, Kr, Kl).

Figure 3.10: Block diagram of the servoing closed loop using Plücker coordinates as

state vectors.

3.2.5 Simulations with "Plücker coordinates control laws"

The goal of these simulations is to show the global asymptotic stability GAS of the

system in closed loop, using "Plücker coordinates control laws"

Ω = −λΩH
+
ΩeΩ

V = −λV H+
V eV

Many simulations have been done, with di�erent con�gurations for the stereo rig,

and di�erent con�gurations of the object of interest in the initial and desired po-

sition. But as the results are always the same, we present here one simulation for

con�guration similar to the practical tests, and repeat it with noise or with error of

calibration.

Like what we proposed in the simulations of the "Euclidean control laws", the

robot is considered as a perfect integrator. The stereo system consists of two parallel

identical cameras. The homogeneous matrices of transformation between the two

cameras and the stereo rig frame are Rr = Rl = I, tr = −tl = (0.1, 0, 0)T.
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The intrinsic parameters of the two cameras used in these simulations are

Kr = Kl =

 1200 0 300

0 1200 200

0 0 1


These matrices supposed to be exact (the stereo system is perfectly calibrated) ex-

cept for the simulations with errors of calibration.

The object of interest consists of three non coplanar straight lines. The current rel-

ative pose between the object and the stereo rig is represented by the bi-normalized

Plücker coordinates of the 3D straight lines in the object v1, d1, v2, d2, v3, d3. The

desired pose is de�ned by the desired bi-normalized Plücker coordinates of the 3D

straight lines in the object v∗1, d
∗
1, v

∗
2, d
∗
2, v

∗
3, d
∗
3.

The closed loop gain are set to λΩ = λV = 0.15.

As the rotational task function and the translational task function do not have units,

we will illustrate the angle θ in the axis/angle representation of the rotation matrix

to display the rotation error (just like the task function of the "Euclidean control

laws"). The error of translation is represented by the Euclidean distance between

the current frame origin and the �nal one.

Figure (3.11) shows the simulation results of the proposed position based visual

servoing using "Plücker coordinates control laws".

Figures (3.11 - a, d) show the rotational and the translational velocities, their com-

ponents decrease to zero, and make the system look like a �rst order system.

The asymptotic convergence of the servoing error is shown in �gures (3.11 - b, e).

The task functions decrease in exponential way as desired.

As the task functions (rotation and translation) are de�ned in Plücker coordinates

space, the trajectory of the stereo rig (end e�ector of the robot) in the Euclidean

space is not a straight line, can be seen in �gures (3.11 - c, f).

Adding a white noise to the lines image (less than 1pixel), does not destruct the

stability of the closed loop as one can see in �gures (3.12 - a, b), but the errors in the

�nal pose may be signi�cant for the translational control law, while the rotational

control law better resists (�gures 3.12 - c, d).

One can measure an error about 5cm in the translation, this error is between the

�nal poses with and without noise. An error about 0.5deg in the rotation between

the �nal poses with and without noise.

Now, we test the e�ect of the calibration errors, for that we perform the same

simulations in the case of "Euclidean control laws", and the results are reported in
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Simulation results for the PBVS using the "Plücker coordinates control

laws". The object of interest consists of three 3D straight lines. The horizontal axis

of the �gures is the iteration number. a) Rotation velocity (deg/s). b) Rotation error

(represented by θ) (deg). c) Rotation trajectory. d) Translation velocity (m/s). e)

Translation error (Euclidean distance) (m). f) Translation trajectory. The errors of

convergence are null at the end of servoing, which show the asymptotic convergence

of state vectors.

�gure (3.13).

As one can see in �gure (3.13 - a, b), the control laws are not greatly a�ected by

the errors of calibration, and they still decreased to zero. The task functions (the

error of servoing) are very a�ected, one can see a static error of about 40 cm in

translation and 2 deg in rotation (�g. 3.13 - c, d).
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(a) (b)

(c) (d)

Figure 3.12: Simulation results for the PBVS using the "Plücker coordinates control

laws" after adding white noise to the image. The object of interest consists of three

3D straight lines. The horizontal axis of the �gures is the iteration number. a)

Rotation velocity (deg/s). b) Translation velocity (m/s). c) Rotation error (θ) (deg).

d) Translation error (distance between the current and �nal frames origins) (m). The

errors of convergence are almost null at the end of servoing, the velocity control laws

are decreasing to zero, the system is stable.
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(a) (b)

(c) (d)

Figure 3.13: Simulation results for the PBVS using the "Plücker coordinates control

laws" with uncalibrated stereo system. The object of interest consists of three 3D

straight lines. The horizontal axis of the �gures is the iteration number. a) Rotation

velocity (deg/s). b) Translation velocity (m/s). c) Rotation error (θ) (deg). d)

Translation error (Euclidean distance between the current and �nal frames origins)

(m). The translation error is very large, and the rotation error is important, these

errors are not the convergence error, we always have an asymptotic convergence, but

this is static error, due to the bad calibration of the stereo system.
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3.2.6 Experiments on platform robot using the "Plücker co-

ordinates control laws"

Similarly to the "Euclidean control laws", we experiment the "Plücker coordinates

control laws" with the help of the Viper S650 robot, using the same stereo rig.

The desired and the current poses are de�ned by the 3D reconstruction from the

stereo image for the straight lines of the object of interest.

The goal is to move the embedded stereo rig at the robot end-e�ector, from the

initial pose to the desired pose using the "Plücker coordinates control laws".

Figure (3.14) displays the experimental results.

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Experimental results for the "Plücker coordinates control laws". The

object of interest consists of three 3D straight lines. The horizontal axis of the �gures

is the time in second. a) Rotational velocity (deg/s). b) Rotation error (deg). c)

Rotation trajectory (the angle θ trajectory). d) Translational velocity (mm/s). e)

Translation error(mm). f) Translation trajectory (motion of the origin of the stereo

frame). The errors (the task functions) are almost null at the end of servoing, which

show the asymptotic convergence of state vectors.

These results are similar to the previous results using "Euclidean control laws". Fig-

ures (3.14 - a, d) show the stability of the rotational and the translational velocities.

When �gures (3.14 - b, e) show the asymptotic convergence of the rotational and

translational task functions.
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The trajectory of the robot end-e�ector in the Euclidean space is displayed in �gure

(3.14 - f). This trajectory is not a straight line, and that is expected as the trans-

lational task function is de�ned in Plücker coordinates space.

Same to the angle of rotation θ, its trajectory is not linear, see �gure (3.14 - c).

The rotation velocity (�g. 3.14 - a) is similar to the rotation velocity with the "Eu-

clidean control laws" experiment (�g. 3.9 - a), and that is expected as in the two

cases the direction vectors v are used to calculate the task function.

At the end of the servoing, we have about (0.5 deg) in rotation and (5 mm) in

translation which is similar to the results in Euclidean control laws experiment.

The perturbation at the translation velocity (�g. 3.14 - b) is more signi�cant than

that in the rotation velocity or that in the translation velocity using Euclidean

control laws (�g. 3.14 - b), that is expected too, as the distance is the most disturbed

for stereo rig.

3.3 The Plücker coordinates and Euclidean control

laws

3.3.1 Introduction

In this chapter, two kinds of control laws are designed, they are two pairs of decou-

pled control laws, for controlling the translation velocity and the rotation velocity.

The �rst is called "Euclidean control laws" given by the equations (3.1, 3.3)

V = −λV RTt

Ω = −λΩ θu

and the second is called "Plücker coordinates control laws" given by the equations

(3.8, 3.6)

V = −λV H+
V eV

Ω = −λΩ H+
ΩeΩ

They use 3D state vectors in the input, and require a 3D estimation of the current

state vectors, so they carry out a static error at the end of servoing.

Every pair of these controls laws have its own drawbacks and advantages, we will

explain them in this section.
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3.3.2 The �nal pose

Given an object represented by ovi,
owi, i = 1..n at the desired pose. The question

is, does one have the same �nal pose for the stereo rig what ever the kind of control

laws used in servoing?

We saw that, in the case of using "Euclidean control laws", at the end of servoing

one has ovi = c∗vi,
owi = c∗wi, i = 1..n.

But, in the case of using "Plücker coordinates control laws", at the end of servoing

one has ovi = c∗vi, ||owi||2 = dc
∗2
i , i = 1..n. Let's use the notation w∞i for the second

vector of Plücker coordinates of the object straight lines in the �nal pose.

To prove the equivalence between the two �nal poses, we need to prove that the

vectors owi are equal to wi(∞) for i = 1..n.

Proof

We have w∞T
i w∞i = owT

i
owi and ovi = v∗i = vi. We need to prove w∞i = owi.

Suppose that the two �nal poses are di�erent, which mean the "Plücker coordinates

control laws" lead the stereo rig to di�erent pose cp 6= c∗ from that one reached by

the "Euclidean control laws". So one has a rotation matrix R and translation vector

t between the two poses.

Recall the equation (3.4) ovi = Rv∗i , but
ovi = v∗i , so if the object has two non parallel

lines, one gets R = I.

Now, recall the equation (3.4)

owi = Rw∞i + t× Rv∗i
owi = w∞i + t× vi

owi − w∞i = t× vi

we will prove that t = 0 so w∞i = owi

(owi − w∞i )T(owi − w∞i ) = ||t× vi||2

owT
i
owi + w∞T

i w∞i − 2owT
i w
∞
i = ||t× vi||2

writing this equation in two ways:

2owT
i
owi − 2owT

i w
∞
i = ||t× vi||2

2owT
i (owi − w∞i ) = ||t× vi||2

2owT
i (t× vi) = ||t× vi||2

2tT(vi × owi) = ||t× vi||2 (1)
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and

2w∞T
i w∞i − 2w∞T

i
owi = ||t× vi||2

2w∞T
i (w∞i − owi) = ||t× vi||2

−2w∞T
i (t× vi) = ||t× vi||2

−2tT(vi × w∞i ) = ||t× vi||2 (2)

(1) − (2) =⇒

2tT(vi × owi) + 2tT(vi × w∞i ) = 0

tT(vi × owi + vi × w∞i ) = 0

tT(vi × (owi + w∞i ) = 0

there are 4 solutions for the last equation

• owi = −w∞i , this is the mirror pose, which means all the lines are behind the

vision system, this is impossible practically.

• vi ≡ (owi + w∞i ) which is impossible because vi ⊥ owi

• t ⊥ (vi × (owi + w∞i ) ∀i that is impossible, if there are three non coplanar

vectors oui = vi × owi

• t = 0 which means w∞i = owi.

So, the two pairs of control laws, guide the stereo rig to the same �nal pose (cp = c∗).

3.3.3 The advantages and the drawbacks

The two pairs of control laws ("Euclidean control laws" and "Plücker coordinates

control laws") are fully decoupled, and verify the global asymptotic convergence of

the state vectors in the closed loop.

The Euclidean control laws are general kinematic pose control laws. They do not

interest the type of the state vectors, they only need the estimation of the relative

rotation matrix R and the relative translation vector t between the current and the

desired poses.

With "Euclidean control laws", the trajectory of the stereo rig frame is linear in the

Euclidean space.

The main drawbacks of the Euclidean control laws can be seen in the translation

task function eV = RTt. The estimation of the translation error is depending on the

estimation of the rotation error, which makes the rotation error is accumulated in

the translation error.
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The "Plücker coordinates control laws" are speci�ed for the Plücker coordinates

state vectors. The task functions de�ned the di�erence between the current and the

desired state vectors.

There are two main drawbacks with the Plücker coordinates control laws. First,

using the distance as state vector for translation, causes an important perturbation

in the control, because of the big e�ect of the noise at the distance estimation. Sec-

ond, the trajectory of the frame origin in the Euclidean space is not a straight line,

because the task functions are de�ned in the Plücker coordinates space.

Finally, the "Plücker coordinates control laws" need only the knowledge of the di-

rection vectors vi and the distance di of the object in the desired pose, while the

"Euclidean control laws" need both vectors vi and wi.

3.4 Object with two straight lines

The object of interest in this case consists of only two straight lines L1, L2, and the

goal is to servo the relative pose (object - stereo rig).

As we know (section 3.1.1), two non parallel lines are enough to de�ne the 6 DOF in

the Euclidean space, so, the "Euclidean control laws" de�ned in (3.1, 3.3), are still

valid to perform the visual servoing with an object consisting of only two straight

lines.

The rotation control law in The "Plücker coordinates control laws" given by the

equation (3.6) is de�ned with two non parallel straight lines, so it is valid in this

task too.

The translation control law given by the equation (3.8), needs at least three dis-

tances di to be de�ned, but, two non parallel lines are also enough to de�ne the 3

DOF of translation, so they must be enough to de�ne the translation control law.

In this section, we are interested to �nd the coordinates of the closest two points

of these lines. These points can be useful for de�ning additional state vector for

translational visual servoing.

Given two 3D straight lines (L1, L2), represented by their normalized Plücker co-

ordinates, we look for the coordinates of the most close points of each line on the

other line, see �gure (3.15).

Suppose m1 ∈ L1 is the closest point of the straight line L1 to the straight line L2,

and m2 ∈ L2 is the closest point of the straight line L2 to the straight line L1.

One can de�ne the two points m1,m2 using the normalized Plücker coordinates of
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Figure 3.15: The minimal distance dl between two straight lines L1, L2. m1 ∈
L1,m2 ∈ L2 are the two closest points.

these two lines as:

m1 ∈ L1 =⇒ m1 = u1 + αv1 with α ∈ R , u1 = v1 × w1

m2 ∈ L2 =⇒ m2 = u2 + βv2 with β ∈ R , u2 = v2 × w2

with u1 = v1 × w1 is a known point on L1, and v1 is the direction on this line, the

same for u2, v2.

The parameters (α, β), de�ne a minimal distance dl between the two straight lines.

To compute them, we look for minα,β ||m1 −m2||2.
Let f(α, β) = 1

2
||m1 −m2||2. Then ∂f

∂α
= 0, and ∂f

∂β
= 0.

f(α, β) =
1

2
||u1 − u2 + αv1 − βv2||2

∂f

∂α
= vT1 (u1 − u2 + αv1 − βv2)

∂f

∂β
= −vT2 (u1 − u2 + αv1 − βv2)



78CHAPTER 3. STEREO POSITION BASED VISUAL SERVOING FROM LINES

with the notation γ = vT1 v2

vT1 u1 − vT1 u2 + α− βvT1 v2 = 0 that is

α− γβ = vT1 u2 (1)

−vT2 u1 + vT2 u2 − αvT2 v1 + β = 0 that is

β − γα = vT1 u2 (2)

(1) + γ ∗ (2) =⇒ α(1− γ2) = vT1 u2 + γvT2 u1

(2) + γ ∗ (1) =⇒ β(1− γ2) = vT2 u1 + γvT1 u2

=⇒ α =
vT1 u2 + γvT2 u1

1− γ2
and β =

vT2 u1 + γvT1 u2

1− γ2

It is easy to verify that ( ∂
2f
∂α2 = 1 > 0) and (∂

2f
∂β2 = 1 > 0), then this extrema is

a local minimum.

Then, the two closest points of the two straight lines are

m1 = u1 +
1

1− γ2
(vT1 u2v1 + γvT2 u1v1) (3.9)

m2 = u2 +
1

1− γ2
(vT2 u1v2 + γvT1 u2v2) (3.10)

If γ = 1, then vT1 v2 = 1, which means (v1 = v2) the two straight lines are parallel.

In this case we get m1 = u1 and m2 = u2.

Finally, we can note that the Euclidean distance between L1, L2 is given by

dl = ||m1 −m2|. (3.11)

Now, a third (virtual) line L3 is computed using the points m1,m2. Even if these

points are not real in the scene, and that there is no way to detect them in the

images, they can be computed thanks to the 3D reconstruction of the normalized

Plücker coordinates of the two �rst lines.

Then, the virtual third line L3 can be de�ned as follows:

v3 =
m1 −m2

||(m1 −m2)||

w3 = m1 × v3

If m1 = m2 then L3 is de�ned by v3 = v1 × v2 and w3 = m1 × v3.

Finally, this third line can be included in the task function eV and in the translation

control law V.
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3.5 One-line servoing

Considering the 3D straight line as the primitive unit of the articulated object, we

are interested of the servoing of the relative pose between the stereo rig and the

object represented by one straight line.

Since the geometry of a straight line is de�ned with 4 free parameters (4 DOF in the

3D Euclidean space). Then, the control laws de�ned above are not valid to serve

the pose of this straight line.

The pose servoing of one 3D straight line is important too, because many objects (or

object axis) can be represented by one straight line like pens, and the right circular

cylinders [DdM07].

To look for translational and rotational control laws, by projecting the equations

(2.5, 2.6) to the basis (v, w, u = v × w, ||v|| = 1) one obtains:

v̇Tv = 0 (3.12)

v̇Tw = uTΩ (3.13)

v̇Tu = −wTΩ (3.14)

ẇTv = −uTΩ (3.15)

ẇTw = uTV (3.16)

ẇTu = ||w||2vTΩ− wTV (3.17)

Equation (3.12) is useless and it considers the constraint ||v|| = 1. The equations

(3.13), (3.15) are equivalent as they consider the constraint vTw = 0.

So we have four equations which represent the kinematic of the 4 DOF of a 3D

straight line in the normalized Plücker coordinates basis (v, w, u).

In these equations one notes that the rotation velocity Ω can be observed on the

axis v by the equation (3.17), the axis w by the equation (3.14), and the axis u by

the equation (3.15). However the translation velocity V can be observed on the axis

w, u only by the equations (3.17, 3.16), and it is impossible to observe the translation

motion on the axis v.

That is why the projection of the translation velocity on the direction axis will

consider null VTv = 0, and it may be controlled by additional translation control

law if necessary.

Now, still having 5 components of the kinematic screw and 4 DOF for the motion of

a straight line. We have the possibility to add one constraint to design the velocity

control law.

This constraint can be useful to eliminate the coupling between the rotation velocity

and the translation velocity in the equation (3.17), for example

• wTV = 0: with this constraint, the 4 DOF of the straight line are divided in
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3 DOF for the rotation motion given by v̇Tu = −wTΩ, ẇTv = uTΩ, ẇTu =

||w||2vTΩ, and 1 DOF for the translation given in the equation ẇTw = uTV,

which is related to the orthogonal distance d of the 3D straight line with

respect to the frame origin.

• vTΩ = 0: the equation (3.17) becomes ẇTu = −wTV. The 4 DOF of the

straight line are divided in 2 DOF for the rotation motion and 2 DOF for the

translation motion.

3.5.1 Control laws with 3 DOF for rotation and 1 DOF for

translation

In this case, we directly refereed to use the bi-normalized Plücker coordinates

[AEH02], (v, wn, d) for the line in the current pose, and v∗, w∗n, d
∗ in the desired

pose.

To servo the distance d, we de�ne the task function eV = (d − d∗). Then the

translation velocity control law is

V = −λV (d− d∗)u. (3.18)

Note: u = v × wn, ||u|| = 1.

To prove the stability of this control law and the asymptotic convergence of the task

function, let's use the Lyapunov function L(t) = ||eV (t)||2

L̇(t) = ėTV eV = ḋ(d− d∗)

= VTu(d− d∗) as ḋ = VTu (equation (2.7))

= −λV (d− d∗)uTu(d− d∗)

= −λV (d− d∗)2 uTu = 1

L̇(t) < 0.

So, the translation velocity control law V = −λV (d − d∗)u globally stabilizes the

system in the closed loop, and the distance d converges asymptotically towards d∗.

Back to the equation (2.7) [AEH02], the part related to wn has its kinematic given

by

ẇn = −1

d
(v × wn)wT

nV − wn ×Ω

ẇn = Ω× wn −
1

d
u(wT

nV)

ẇn = Ω× wn +
λV (d− d∗)

d
u(wT

nu) wT
nu = 0

ẇn = Ω× wn.
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This means that the kinematic of the vector wn is like the kinematic of the direction

vector v.

These two vectors (v, wn) are enough to de�ne the rotational control law designed

in section (3.2.1), Ω = −λΩH
+
ΩeΩ which is asymptotically stable. The rotational

task function eΩ and the interaction matrix HΩ are given by

eΩ =

(
v − v∗

wn − w∗n

)
HΩ =

[
−[v]×

−[wn]×

]

With this proposition of the state vectors, the full decoupling is performed between

Ω and V. At the end of the servoing we get d = d∗ using the translational control

law, and v = v∗, wn = w∗n using the rotational control law.

This pair of control laws will be named "3R1t".

3.5.2 Simulation results

The goal of these simulations is to verify the asymptotic convergence of the state vec-

tors (v, w, d), towards their desired values (v∗, w∗, d∗). The translation and rotation

velocities used in the servoing are:

Ω = −λΩH
+
ΩeΩ

V = −λV (d− d∗)u

Many simulations have been done, with di�erent con�gurations for the stereo rig,

and di�erent con�gurations of the object of interest in the initial and desired po-

sition. But as the results are always the same, we present here one simulation for

con�guration similar to the practical tests, and repeat it with noise.

Like what we proposed in the simulations in the previous chapter (3), the robot

is considered as a perfect integrator.

The stereo system consists of two parallel identical cameras. The homogeneous

matrices of transformation between the two cameras and the stereo rig frame are

Rr = Rl = I, tr = −tl = (0.1, 0, 0)T.

The intrinsic parameters of the two cameras used in these simulations are

Kr = Kl =

 1200 0 300

0 1200 200

0 0 1


These matrices are supposed to be exact if nothing else proposed (the stereo system

is perfect calibrated).
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The object of interest consists of a 3D straight line. The current relative pose

between the object and the stereo rig is represented by the bi-normalized Plücker

coordinates of the 3D straight line (v, w, d). The desired pose is de�ned by the de-

sired bi-normalized Plücker coordinates of the 3D straight line (v∗, w∗, d∗).

The closed loop gains are set to λΩ = λV = 0.15.

As the rotational task function does not have unit, we will illustrate the angle θ

in the axis/angle representation of the rotation matrix to display the rotation error

(just like the task function of the "Euclidean control laws").

Figure (3.16) shows the simulation results of the visual servoing for one-line ob-

ject.

(a) (b) (c)

(d) (e) (f)

Figure 3.16: Simulation results for the PBVS of one-line object using 3 DOF for

rotation and 1 DOF for translation. The object of interest consists of a 3D straight

line. The horizontal axis of the �gures is the iteration number. a) Rotation velocity

(deg/s). b) Rotation error θ (deg). c) Rotation trajectory. d) Translation velocity

(m/s). e) Translation error (translational task function eV ) (m). f) Translation

trajectory. The errors (the task functions) are null at the end of servoing, which

show the asymptotic convergence of state vectors.

The simulation results in this case are similar to those in the general case (with 6

DOF and object with more than one line).



3.5. ONE-LINE SERVOING 83

One can see the stability of the velocities control laws in the closed loop (�g. 3.16-

a, d), and the asymptotic convergence of the task functions (�g. 3.16- b, e).

The trajectory of the stereo rig frame is shown in (�g. 3.16- c, f).

This simulation is repeated after adding a white noise to the image lines. Figure

(3.17) shows the results.

(a) (b)

(c) (d)

Figure 3.17: Simulation results for the PBVS of one-line object using 3 DOF for

rotation and 1 DOF for translation, after adding a white noise to the image lines.

The object of interest consists of a 3D straight line. The horizontal axis of the �gures

is the iteration number. a) Rotation velocity (deg/s). b) Rotation error θ (deg). c)

Translation velocity (m/s). d) Translation error (translational task function eV )

(m). The errors (the task functions) are almost null at the end of servoing, which

show the asymptotic convergence of state vectors.

The e�ect of the noise on the stability of the system in the closed loop, and the

asymptotic convergence of the task functions is very small. Figures (3.17 - a, c) show

the velocities in rotation and translation. They are decreasing to zero although the

presence of the noise in the images.



84CHAPTER 3. STEREO POSITION BASED VISUAL SERVOING FROM LINES

One can note an error of about 0.5 deg in rotational task function and an error of

about 1 cm in the translation task function, see �gures (3.17 - b, d).

3.5.3 Experimental results

The di�erence between this case and the other experiments in the equipment is only

the object of interest, as the same robot and the same stereo rig are used.

The extrinsic stereo matrices are given by

Rr = Rl =

 1 0 0

0 1 0

0 0 1

 , tr = −tl =

 0.1

0

0



The intrinsic matrices are de�ned using the cameras technical speci�cations (focal

length, sensor length, and image size), we have

Kr = Kl =

 1200 0 300

0 1200 200

0 0 1



The current and the desired poses are de�ned by the bi-normalized Plücker coordi-

nates of the 3D straight line (the object of interest), using the stereo images of this

object in the current and desired poses, see �gure (3.18).

(a) (b) (c) (d)

Figure 3.18: The stereo image of the object of interest (which consists of one 3D

straight line). a) Right image in the initial pose. b) Let image in the initial pose.

c) Right image in the �nal pose. d) Left image in the �nal pose.

The object of interest is a white rectangle, and the background is black. We use a

threshold �lter to separate the object pixels in the image and estimate the image

line parameters (image binarization).

Figure (3.19) shows the stability of the control closed loop, and the asymptotic

convergence of the task functions.
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(a) (b) (c)

(d) (e) (f)

Figure 3.19: Experiment results for the PBVS of one-line object using 3 DOF for

rotation and 1 DOF for translation. The object of interest consists of a 3D straight

line. The horizontal axis of the �gures is the time in second. a) Rotation velocity

(deg/s). b) Rotation error θ (deg). c) Rotation trajectory. d) Translation velocity

(mm/s). e) Translation error (translational task function eV ) (mm). f) Translation

trajectory. The errors (the task functions) are almost null at the end of servoing,

which show the asymptotic convergence of state vectors.

The disturbance is very signi�cant in the behaviour of the velocity control laws (�g.

3.19 - a, b). The task functions errors (�g. 3.19 - c, d) are not negligible (about 1

deg in rotation and 2 mm in translation).

This is due to the absence of redundancy in state vectors, as the object of interest

consists of only one 3D straight line, which makes the signal-to-noise ratio (S/N)

low. Nevertheless, we get the convergence of the state vectors toward their desired

values.
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3.5.4 Control laws with 2 DOF for rotation and 2 DOF for

translation

In this case, the proposed constraints are vTΩ = 0, and vTV = 0. The 3D straight

line is represented by normalized Plücker coordinates (v, w) in the current pose, and

(v∗, w∗) in the �nal pose.

Starting with the equation (2.5) v̇ = Ω× v, so

v × v̇ = v × (Ω× v)

v × v̇ = Ω− (vTΩ)v but vTΩ = 0

Ω = v × v̇

With a rotational task function eΩ = v− v∗ and an exponential decrease suppose of

the form ėΩ = −λΩeΩ we get the rotation velocity control law

Ω = λΩ v × v∗ (3.19)

For the translational velocity control law, recall the equation (2.6)

ẇ = Ω× w + V × v

v × ẇ = v × (Ω× w) + v × (V × v)

v × ẇ = (vTw)Ω− (vTΩ)w + V − vTV

V = v × ẇ

For the task function, chosen eV = w−w∗ and exponential decrease (ėV = −λV eV ),
the translational velocity control law is designed by

˙eV = ẇ = −λV eV
ẇ = −λV (w − w∗)

v × ẇ = −λV v × (w − w∗)

Then,

V = −λV v × (w − w∗) (3.20)

These control laws are de�ned in [AEH02] using the bi-normalized Plücker coordi-

nates and monocular vision.

Ω and V verify the global asymptotic stability of the system in closed loop, but

they are not fully decoupled, so, one can use them in a sequential control.

This pair of control laws will be named "2R2t".

3.5.5 Simulation results

In this simulation, the visual servoing is divided in two phases. In the �rst phase,

only the rotational control law Ω = λΩv × v∗ is used in the closed loop.
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The second phase starts after we have the convergence of the vector v toward v∗. In

the second phase, the translational control law V = −λV v× (w−w∗) is applied to

the closed loop to verify the convergence of the vector w toward w∗. We will repeat

the previous simulation using the "2R2t" control laws to compare the results with

the simulation using "3R1t" control laws.

The object of interest consists of a 3D straight line. The current relative pose

between the object and the stereo rig is represented by the normalized Plücker

coordinates of the 3D straight line (v, w). The desired pose is de�ned by the desired

normalized Plücker coordinates of the 3D straight line (v∗, w∗).

The closed loop gains are set to λΩ = λV = 0.15.

(a) (b) (c)

(d) (e) (f)

Figure 3.20: Simulation results for the PBVS of one-line object using 2 DOF for

rotation and 2 DOF for translation. The object of interest consists of a 3D straight

line. The horizontal axis of the �gures is the iteration number. a) Rotation velocity

(deg/s). b) Rotation error (rotational task functioneΩ) (no unit). c) Rotation trajec-

tory. d) Translation velocity (m/s). e) Translation error (translational task function

eV ) (no unit). f) Translation trajectory. The errors (the task functions) are null at

the end of servoing, which show the asymptotic convergence of state vectors.

Figure (3.20) shows the simulation results of the visual servoing for one-line object.

The simulation results in this case are similar to those in the general case (with 6
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DOF and object with more than one line).

One can see the stability of the velocities control laws in the closed loop (�g. 3.20-

a, d), and the asymptotic convergence of the task functions (�g. 3.20- b, e), which

means, at the end of servoing we have v = v∗ and w = w∗. The trajectory of the

stereo rig frame is shown in (�g. 3.20- c, f).

As the servoing of one 3D straight line controls only 4 DOF in the Euclidean

space, it is expected that the two pairs of control laws ("3R1t", "2R2t") de�ne two

di�erent trajectory in the Euclidean space, which can be seen in (3.20- c, f) and

(3.16- c, f).

This simulation is repeated after adding a white noise to the image lines, the noise

is generated by adding a random value in the range [−1,+1] pixel to every point in

the line image, then estimate the line parameter with the least square minimization.

Figure (3.21) shows the results.

The e�ect of the noise on the stability of the system in the closed loop, and the

asymptotic convergence of the task functions is very small. Figures (3.21 - a, c)

show the velocities control laws. They are decreasing to zero although the presence

of the noise in the images.
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(a) (b)

(c) (d)

Figure 3.21: Simulation results for the PBVS of one-line object using 2 DOF for

rotation and 2 DOF for translation, after adding a white noise to the image lines.

The object of interest consists of a 3D straight line. The horizontal axis of the �gures

is the iteration number. a) Rotation velocity (deg/s). b) Rotation error (rotational

task functioneΩ) (no unit). c) Translation velocity (m/s). d) Translation error

(translational task function eV ) (no unit). The errors (the task functions) are almost

null at the end of servoing, which show the asymptotic convergence of state vectors.
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3.6 Articulated object

In this section, we address the servoing from an articulated object which consists

of rigid parts and motorized revolute joints only. As many kinds of serial robot

manipulator consists of rigid parts and revolute joints.

The goal of the PBVS in this section is to control the relative pose between the

stereo rig and the articulated object, and to control the joints in the object simul-

taneously.

The articulated object is represented by a sequence of n 3D straight lines L1, ..., Ln,

between every two successive parts Li, Li+1, there is a revolute joint represented by

its angle ψi.

The relative current and desired poses (Articulated object - Stereo rig) are repre-

sented by a set of normalized Plücker coordinates (vi, wi) for i = 1..n.

Figure (3.22) shows a simple representation of an articulated object with n parts

and n− 1 joints.

Figure 3.22: An articulated object which consists n 3D straight lines L1, ..., Ln, and

n− 1 revolute joints ψi. The axes Zi represents the rotation axes.
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3.6.1 Object with one revolute joint

With two non parallel straight lines, the 6 DOF in the Euclidean space can be con-

strained. Every straight line is de�ned with 4 DOF in the Euclidean space, so if the

two straight lines are non rigid (form an articulated object), more than 6 DOF can

be controlled.

The object of interest is represented by two 3D straight lines L1, L2, and a revolute

joint ψ between them. We suppose that this joint is motorized. The angular velocity

of the joint is Ωψ.

The goal is to control the 6 DOF of the relative pose (Articulated object - Stereo

rig), and the 1 DOF of the joint ψ simultaneously, so 7 DOF in total.

We suppose the stereo rig is embedded on a 6 DOF robot end-e�ector. The part

L1 of the articulated object is �x in the object frame, and the part L2 is provided

with a rotational velocity around the axis Z, which is perpendicular to the two 3D

straight lines L1, L2.

Figure (3.23) shows such an articulated object, which consists of two parts L1, L2,

and a revolute joint between them. Figure (3.23-a) shows the initial pose of the ob-

ject in the stereo rig frame, and the initial value of the joint ψ. Figure (3.23-b)

shows the same object at the desired pose, one can see the change in the angle ψ at

the end of servoing.

(a) (b)

Figure 3.23: The initial and the �nal relative pose between the object and the stereo

rig, with the angle ψ between the two parts. a) The initial pose and initial value of

the angle. b) The �nal pose and �nal value of the angle.
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Let v1, w1, v2, w2 be the normalized Plücker coordinates of L1, L2 in the stereo rig

frame, then

Z =
v1 × v2

||v1 × v2||
rotation axis between L1 and L2

ψ = arccos(vT1 v2) ψ ∈]− π/2 .. π/2[ the angle between L1 and L2

The Plücker coordinates of L1, L2 in the desired pose are ov1,
ow1,

o v2,
ow2, in the ob-

ject frame. This immediately de�nes the �nal value of ψ∞ by ψ∞ = arccos(ov1
Tov2).

The value of the angle ψ is independent of the reference frame used to represent

v, w. The angular velocity control law Ωψ of the joint angle ψ is a scalar (1 DOF),

so it is independent from the reference frame too.

The possibility of measuring the angle ψ during the servoing, de�nes the joint task

function by:

eψ = ψ − ψ∞. (3.21)

Then, with an exponential decrease of the task function(ėψ = −λψeψ, λψ ∈ R+),

the angular velocity of the angle ψ is Ωψ = ψ̇, given by:

Ωψ = −λψeψ (3.22)

The proof of the stability and the asymptotic convergence of the joint angle ψ toward

the �nal value ψ∞ is very simple:

L(t) = 1/2||eψ(t)||2

L̇(t) = ėψeψ

= Ωψeψ

= −λψeψeψ
< 0.

Now, for controlling the relative pose (Articulated object - Stereo rig). The vec-

tors ov1,
ow1 considered the direct images of v1, w1 by Euclidean transformation [R, t]

between the current and the desired pose, while the vectors ov2,
ow2 are not the di-

rect images of v2, w2 with the same Euclidean transformation [R, t] until ψ = ψ∞.

As the angle ψ between v1 and v2 is observable, one does not need to wait for the

end of the angular servoing to start the pose servoing (cascaded control). Consid-

ering �gure (3.22) we know that ov2,
ow2 are the images of v′2, w

′
2 by the Euclidean

transformation [R, t], which in turn are the images of v2, w2 by a simple rotation

ϕ = ψ∞ − ψ around the axis Z.

The vectors v′2, w
′
2 can be estimated using Rodrigues' rotation formula as follows:

v′2 = v2 cos(ϕ) + (Z × v2) sin(ϕ) + (ZTv2)Z(1− cos(ϕ))

w′2 = w2 cos(ϕ) + (Z × w2) sin(ϕ) + (ZTw2)Z(1− cos(ϕ))
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then the two vectors sets ov1,
ow1,

o v2,
ow2 and v1, w1, v

′
2, w

′
2 de�ne two rigid non

parallel 3D straight lines in the current and desired pose, which allows to involve,

either the "Plücker coordinates control laws"

Ω = −λΩH
+
ΩeΩ

V = −λV H+
V eV

or the "Euclidean control laws"

Ω = −λΩθu

V = −λV RTt

Figure (3.24) shows a block diagram of the closed loop for the articulated object

control.

Figure 3.24: The block diagram of the closed loop for the articulated object control
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3.6.2 Simulation results of PBVS for an articulated object

Like the previous simulations, the robot is considered as a perfect integrator. The

stereo system consists of two parallel identical cameras embedded on the robot end-

e�ector.

We consider that the object of interest consists of two 3D straight lines linked with

a revolute joint between them. The current pose is represented by (v1, w1, v2, w2), so

the current angle ψ is given by, ψ = arccos(vT1 v2). The desired pose is represented

by (ov1,
ow1,

o v2,
ow2), the �nal angle is given by ψ∞ = arccos(ov1

Tov2).

The goal of this simulation is to show the stability and the asymptotic convergence

of all the velocities control laws designed in the previous section.

In this simulation, the "Euclidean control laws" are controlling the velocities of the

6 DOF of the robot end-e�ector (so the stereo rig). The angular velocity Ωψ de�ned

in (3.22) is controlling the joint angle ψ.

Figures (3.25 - a, b) show the behaviour of the rotational and translational velocities

control laws, one can see that the system (robot end-e�ector) has the same behaviour

in the case of articulated object and the case of rigid object.

The asymptotic convergence of the pose task functions is shown in �gures (3.25 - c,

d).

Figures (3.25 - e, f), show the angular velocity and the joint angle value ψ during

the servoing.

With this simulation, one can see that the possibility of the 3D reconstruction

provided by the stereo vision, allows the servoing of a non rigid object to be similar

to that of a rigid object, because it is possible all the time to evaluate the changes

in the object.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Simulation results for the PBVS of an articulated object. The object

of interest consists of two 3D straight lines linked with a revolute joint. The hori-

zontal axis of the �gures is the iteration number. a) Rotation velocity (deg/s). b)

Translation velocity (m/s). c) Rotation error (rotation task function) (deg) . d)

Translation error (translation task function) (m). e) Angular velocity (deg/s). f)

Joint angle value ψ (deg). The joint angle ψ converges toward the �nal value ψ∞.

The pose task functions converge to zero (asymptotic convergence).
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3.6.3 Experiments on articulated object

The articulated object is made with two rigid segment of di�erent colors, linked

together by a step motor, as seen in �gure (3.26).

Figure 3.26: The articulated object consists of two rigid parts linked with a step

motor.

The two parts axes are represented by two 3D straight lines. The goal is to control

the relative pose (Stereo rig - Articulated object) and the joint angle of the object

simultaneously.

The Euclidean control laws were used to control the relative pose (Stereo rig -

Articulated object), and the joint angle velocity is controlled by the angular velocity

Ωψ = −λψeψ.
Figures (3.27 - a, b, c, d), show the velocities and the convergence errors of the

relative pose. The curve are very perturbed, that because, the object consists of

only two straight lines (rather than three lines in the previous experiments) which

makes the signal-to-noise ratio low, and, the parts of the object are thick which

makes their representation by a straight line not perfect.

Figure (3.27 - f) shows the asymptotic convergence of the joint angle ψ toward its

�nal value ψ∞ = 15deg. The stability of the angular velocity control law is shown

in �gure (3.27 - e).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.27: Experimental results for the PBVS of an articulated object. The ob-

ject of interest consists of two parts linked with a step motor. The horizontal axis

of the �gures is the time in second. a) Rotation velocity (deg/s). b) Translation

velocity (mm/s). c) Rotation error (deg) . d) Translation error (mm). e) Angular

velocity (deg/s). f) Joint angle value ψ (deg). The joint angle ψ converges toward

the �nal value ψ∞ = 15deg. The pose task functions converge to zero (asymptotic

convergence). The disturbance is very important and that because of the number of

the state vectors and the coarse model of the articulated object.
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3.6.4 Object with several revolute joints

We address here the manipulator robots which consists of several axes linked by

revolute joints.

The velocities control laws de�ned in the previous section (3.6) can be extended to

an articulated object modelled with n straight lines and n − 1 revolute joints, if

every rotation axis Zi is perpendicular to the two straight lines Li, Li+1 (see �gure

3.22).

The 3D straight lines are represented in the object frame by a set of Plücker coor-

dinates ov1,
ow1, ...,

o vn,
own, and in the stereo rig frame by v1, w1, ..., vn, wn.

The joints angles ψ1, .., ψn−1 can be estimated by

cos(ψi) = vTi vi+1 i = 1 .. n− 1

as the �nal angles ψ∞i can be estimated too in the same way, then the (n− 1) task

functions and control laws can be de�ned by

eψi = ψi − ψ∞i (3.23)

Ωψi = −λψieψi (3.24)

The velocity control laws (Ω,V), which serve the relative pose (Articulated object

- stereo rig) will be computed using the �rst and second straight lines L1, L2 only,

exactly like in the case of an articulated object with one joint. That because, the

vectors ov3,
ow3 are the images of v”3, w”3 by the Euclidean transformation [R, t],

v”3, w”3 are the images of v′3, w
′
3 by a rotation ϕ2 = ψ3 − ψ∞3, and v′3, w

′
3 are the

images of v3, w3 by a transformation depending on ϕ1 = ψ2 − ψ∞2. The relation

between ov4,
ow4 and v4, w4 is more complicated.

So it will be not recommended to use L3, ..., Ln to enhance the estimation of [R, t].

That because the errors in the estimation of all the joints angles will accumulate in

the estimation of [R, t].

So, as two straight lines are enough to de�ne the velocity control laws (Ω,V), we

will use the two straight lines L1, L2 only, for control the relative pose between the

articulated object and the stereo rig.

3.6.5 Simulation results for an articulated object with two

joints

Like the previous simulations, the robot is considered as a perfect integrator. The

stereo system consists of two parallel identical cameras embedded on the robot end-

e�ector.

The articulated object is modelled with three 3D straight lines, and two revolute
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joints. The objective of the simulation is to control the two joints angles ψ1, ψ2, and

the relative pose (Articulated object - Stereo rig) simultaneously.

For the pose servoing, only the �rst two straight lines are used, so no di�erence are

expected from the case of object with one joint. That what �gures (3.28 - a, b, c,

d) show for the rotational and translational task functions and velocities.

The angles (ψ1, ψ2) converge towards their �nal values (�g. 3.28 - f, h), and their

angular velocities Ωψ1,Ωψ2 are decreasing in an exponential way towards zero (�g.

3.28 - e, g).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.28: Simulation results for the PBVS of an articulated object with 2 joints.

The object of interest consists of three 3D straight lines linked with two revolute

joints. The horizontal axis of the �gures is the iteration number. a) Rotation velocity

(deg/s). b) Translation velocity (m/s). c) Rotation error (rotation task function)

(deg) . d) Translation error (translation task function) (m). e) Angular velocity Ωψ1

(deg/s). f) Angle value ψ1 (deg). g) Angular velocity Ωψ2 (deg/s). h) Angle value

ψ2 (deg). The joints angles ψ1, ψ2 converge toward their �nal values. The pose task

functions converge to zero (asymptotic convergence).
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3.7 Conclusion

In this chapter, an overview on the pose based visual servoing (PBVS) from straight

lines is presented. By the estimation of the relative pose between the stereo rig and

the object of interest, we could use the "Euclidean control laws" in the visual closed

loop.

V = −λV RT t

Ω = −λΩ θ u

The "Euclidean control laws" are fully decoupled, and verify the global asymptotic

stability of the system in closed loop.

These velocity control laws are simulated and applied to a robotic platform. The

results are illustrated and analyzed in this chapter.

Without estimation for the rotational matrix R or the translational vector t, the

"Plücker coordinates control laws" are valid to control the mobile object or the robot

end-e�ector in the vision closed loop.

The direction vector v represents the rotation state vector, and the orthogonal dis-

tance d or the norm of the vector w represents the translation state vector. These

state vectors are independent and verify the decoupling between the rotation and

the translation velocities.

V = −λV H+
V eV

Ω = −λΩ H+
Ω eΩ

The global asymptotic stability (GAS) of the system with "Plücker coordinates con-

trol laws" are proved. Then many simulations have been carried out to check the

theoretical studies, and show the GAS of the system in closed loop, before applying

the "Plücker coordinates control laws" to a robotic platform.

The "Plücker coordinates control laws" are modi�ed to be suitable for the special

objects which consist of one 3d straight line. Two pairs of velocity control laws are

designed, one of them is fully decoupled, and the other is partially decoupled.

We present the simulation for the PBVS on one 3D straight line with and without

noise for both pair of velocities.

Experiments on a robot manipulator are presented. The goal was to control the

relative pose (3D line - stereo rig). The velocity control laws are

Ω = −λΩ H+
ΩeΩ

V = −λV (d− d∗)u
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and guide the robot end-e�ector to the desired pose.

Then, a new application for the stereo PBVS is presented, the visual servoing of

an articulated object. The goal was to control the joints of the articulated object

and the relative pose (Articulated object - stereo rig) simultaneously.

We start with a simple articulated object, which consists of two 3D straight lines

and one revolute joint. With this kind of object, there are 7 DOF to be controlled.

6 DOF of them are concerning the relative pose (Articulate object - Stereo rig), and

the seventh to control the revolute joint of the object.

A new task function is designed to de�ne the error of angular servoing eψ = ψ−ψ∞.
Then the angular velocity control law is given by Ωψ = −λψeψ.
The possibility of estimating the joint angle during the servoing, makes the articu-

lated object as a rigid object by computing the virtual pose of the 3D straight lines

using Rodrigues' rotation formula.

The simulations and the experiments on a robot manipulator show the global asymp-

totic stability of the visual closed loop and the angular closed loop.

These task functions and velocity control laws are generated for servoing an articu-

lated object with several revolute joints. The �rst two 3D straight lines are used to

estimate the Euclidean transformation [R, t] just like in the case of a simple articu-

lated object.

The simulations show the convergence of all the joint angles ψi towards their �nal

values in the desired pose.
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Chapter 4

Stereo image based visual servoing

from lines

In PBVS, the vision system was considered as a pose sensor. It needs to estimation

the Euclidean relative pose between the object of interest and the vision system.

To do that, one must use the metric camera model, represented by the intrinsic and

extrinsic parameters, which requires the vision system calibration.

Although the new algorithms for calibration, and the height precession of the metric

camera model estimation, this model is not perfect, and there is no way to get an

exact measurement of the object pose.

The estimated pose is the feedback of the vision closed loop (�g. 3.1). So the error in

this pose causes an error in the �nal pose of the system. This error is called "static

error", because it is constant and does not related to the di�erence with initial and

�nal poses.

The Image based visual servoing (IBVS) does not need pose estimation (but some

components may need to partially retrieve the pose), then does not require the

metric camera model. So, the static error due to the pose estimation will be null.

In this kind of servoing, the state vector is de�ned in the image plane. The error is

the di�erence between the state vector in the current image and the desired one.

Figure (4.1) shows the block diagram of classical IBVS. The symbol F ∗ denotes the

desired features, and F̂ is the actual image features.

The camera model does not appear in the feedback chain, it may be rather part of

the direct chain, but this does not cause a static error in the system convergence.

The error of servoing in the closed loop of an IBVS is given by

e = S(t)− S∗

S is the state vector, it can be a feature S = F or a combination of features

S = f(F ).

The goal of this chapter is to design decoupled control laws for translation velocity

103
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Figure 4.1: Image based visual servoing (IBVS) block diagram. The di�erence be-

tween the current and desired features generate the control laws, and drives the robot

which holds the vision system toward the desired image.

and rotation velocity, by the help of the stereo vision and Plücker coordinates for

straight lines.

4.1 Interaction matrices for lines

In this section, we present some interaction matrices de�ned in the literature for

the line state vector, and a new interaction matrix generated by the lines equations

(2.1, 2.2)

lr ≡ K−Tr [Rr w + tr × Rr v]

ll ≡ K−Tl [Rl w + tl × Rl v]

Then several simulations will be presented to evaluate the behaviour of the system,

for every interaction matrix.

4.1.1 Others interaction matrices

Chaumette in his PhD thesis [Cha90] de�ned three interaction matrices according

to the straight line representation:

1. The 3D straight line is represented by normalized Plücker coordinates v, w and

the 2D image line represented by the normalized Plücker coordinates lv, lw too.
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With lv = (w2/4,−w1/4, 0)T = (L2,−L1, 0)T and lw = (w1/4, w2/4, w3/4)T

= (L1, L2, L3)T, 4 =
√
w2

1 + w2
2.

The interaction matrix for this representation is of dimensions 3× 6 for each

3D straight line, and is given by



LI(1) =
[ L1L2v3/4 L2

2v3/4 −(L1L2v1 + L2
2v2)/4

L1L2L3 L2
2L3 −L2 ]

LI(2) =
[ −L2

1v3/4 −L1L2v3/4 (L1L2v2 + L2
1v1)/4

L2
1L3 −L1L2L3 L1 ]

LI(3) =
[ (v2 + L2L3v3)/4 −(v1 + L1L3v3)/4 (L1L3v2 − L2L3v1)/4

L2(1 + L2
3) −L1(1 + L2

3) 0 ]


(4.1)

The matrix lines are dependent because of the quadratic constraint L2
1+L2

2 = 1.

2. The 3D straight line is represented by the intersection of two planes, these two

planes are de�ned by two 4 components vectors (a1, b1, c1, d1)T and (a2, b2, c2, d2)T.

The 2D image line l is represented by an angle θ and a distance ρ, l =(
cos(θ), sin(θ),−ρ

)T
.

The interaction matrix is of dimensions 2× 6 for each line and is given by

 LI(ρ) =
[
λρ cos(θ) λρ sin(θ) −λρρ (1 + ρ2) sin(θ) −(1 + ρ2) cos(θ) 0

]
LI(θ) =

[
λθ cos(θ) λθ cos(θ) −λθρ −ρ cos(θ) −ρ sin(θ) −1

] (4.2)
with

λρ =
[
(c2a1 − c1a2) cos(θ) + (c2b1 − c1b2) sin(θ)

]
/
√
A2 +B2

λθ = (a2b1 − a1b2)/
√
A2 +B2

A = a1d2 − a2d1 , B = b1d2 − b2d1 , C = c1d2 − c2d1

3. The 3D straight line is represented by the intersection of two planes. These two

planes are de�ned by two 4 component vectors (a1, b1, c1, d1)T and (a2, b2, c2, d2)T.

The 2D image line l is represented by (a,b). This representation is minimal

but needs to use two equations according to the pose of the line in the image:

line most vertical: Y = aX+b (a = −A/B, b = −C/B) → l = (a,−1, b)T.

line most horizontal: X = aY +b (a = −B/A, b = −C/A) → l = (−1, a, b)T.

The interaction matrix is then given by

 LI(a) =
[
λ1a −λ1 λ1b 1 + b2 a −ab

]
LI(b) =

[
λ2a −λ2 λ2b ab −b −1− a2

]  (4.3)
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with λ1 = −(b1b+ c1)/d1 and λ2 = −(b1a+ a1)/d1 if d1 6= 0,

or λ1 = −(b2b+ c2)/d2 and λ2 = −(b2a+ a2)/d2 if d1 = 0.

The second and third interaction matrices (4.2, 4.3) are identical, because the 3D

straight line is represented in the same way, and so the 2D image line, the only

di�erence is the norm of the 2D image line.

The �rst matrix is closer to our work. It involves the Plücker coordinates for a 3D

straight line. We will use this matrix for simulation experiments and to compare

the results with our work.

4.1.2 The stereo interaction matrix

Here, a new interaction matrix will be designed using the normalized Plücker co-

ordinates to represent a 3D straight line. The image lines are represented by two

3-component vectors lr = (ar, br, cr)
T, ll = (al, bl, cl)

T.

The relations between the image lines and the Plücker coordinates of the 3D straight

line are given in the equations (2.1, 2.2)

lr ≡ K−Tr [Rr w + tr × Rr v]

ll ≡ K−Tl [Rl w + tl × Rl v] .

These two equations are de�ned with two di�erent and arbitrary scale factors. To

�nd the time derivative of these equations and de�ne the scale factors, we will

estimate the Plücker coordinates v̂, ŵ of the 3D straight line using the equations

(2.3, 2.4)

v̂ ≡ RTl KTl ll × RTr KTr lr

ŵ ≡ RTr KTr lr l
T
l Kl tl − RTl KTl ll l

T
r Kr tr

The notation (̂.) means that the Plücker coordinates v̂, ŵ should be seen either as

estimations of the real v, w or internal observers, then with some nominal values for

intrinsic parameters. Moreover, v̂, ŵ have only ONE common scale factor, and to

bene�t to the straight line kinematic de�ned in (2.5, 2.6)

˙̂v = Ω× v̂
˙̂w = Ω× ŵ + V × v̂ ,

the scale factor will be selected to verify ||v̂|| = 1.

Now, our state vectors are designed from the equations (2.1, 2.2) after de�ning the

scale factors verifying ||v̂|| = 1.

sr = K−Tr [Rr ŵ + tr × Rr v̂]

sl = K−Tl [Rl ŵ + tl × Rl v̂]
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These state vectors (sr, sl) are equivalent to the image lines (lr, ll), but with a precise

scale factor. The desired state vector (s∗r, s
∗
l ) are selected in the same way as with

the desired image.

The interaction matrix can be de�ned from the lattest equations, as follows:

sr = K−Tr [Rr ŵ + tr × Rr v̂]

sr = K−Tr Rr
[
ŵ + RTr tr × v̂

]
ṡr = K−Tr Rr

[
˙̂w − cr × ˙̂v

]
cr is the camera right center

ṡr = K−Tr Rr [Ω× ŵ + V × v̂ − cr × (Ω× v̂)]

ṡr = K−Tr Rr [−[ŵ]×Ω− [v̂]×V + [cr]×[v̂]×Ω]

ṡr = K−Tr Rr [−[v̂]×V − ([ŵ]× − [cr]×[v̂]×)Ω]

So, supposing Mr = KrRr, Ml = KlRl, the interaction matrix for a stereo images of a

3D line is given by

LI =

[
−M−Tr [v̂]× M−Tr [cr]×[v̂]× − M−Tr [ŵ]×

−M−Tl [v̂]× M−Tl [cl]×[v̂]× − M−Tl [ŵ]×

]
(4.4)

This is a singular interaction matrix for the 3D line of dimensions 6 × 6, as it is a

rank-4 matrix. The time derivative of the state vectors S = (sTr , s
T
l )T can be related

with the kinematic screw τ = (VT,ΩT)T by Ṡ = LIτ

˙(
sr

sl

)
=

[
−M−Tr [v̂]× M−Tr [cr]×[v̂]× − M−Tr [ŵ]×

−M−Tl [v̂]× M−Tl [cl]×[v̂]× − M−Tl [ŵ]×

](
V

Ω

)

With two 3D lines, one can obtain an interaction matrix LI of dimensions 12 × 6

which may has a left pseudo inverse if the two lines are not parallel (cf. chapter 3).

In the case of n straight lines in the scene, the interaction matrix LI will be of

dimensions 6n×6, and the task function e will be of dimensions 6n. The expression

for LI and e are

LI =



−M−Tr [v̂1]× M−Tr [cr]×[v̂1]× − M−Tr [ŵ1]×

−M−Tl [v̂1]× M−Tl [cl]×[v̂1]× − M−Tl [ŵ1]×
...

...

−M−Tr [v̂n]× M−Tr [cr]×[v̂n]× − M−Tr [ŵn]×

−M−Tl [v̂n]× M−Tl [cl]×[v̂n]× − M−Tl [ŵn]×


e =



sr1 − s∗r1
sl1 − s∗l1

...

srn − s∗rn
sln − s∗ln


The next section presents the simulation results and comparisons of these two stereo

IBVS, using the interaction matrix de�ned by Chaumette (Eq. 4.1) and this new

interaction matrix (Eq. 4.4).
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4.2 Simulation results

This section presents the simulations results of the system behaviour in the closed

loop, after applied the control law

τ = −λ L̂I
+e.

with the interaction matrix de�ned by Chaumette (Eq. 4.1), and the new interaction

matrix de�ned in the previous section (Eq. 4.4).

As the simulation does not interested of the robot dynamics, the robot is considered

as a perfect integrator. The stereo system consists of two parallel identical cameras.

The object of interest consists of three non coplanar straight lines.

The intrinsic parameters of the two cameras are

Kr = Kl =

 1200 0 300

0 1200 200

0 0 1


The goal of the simulations is to verify the stability and the convergence of the

closed loop system in the perfect case, and the global behaviour with the presence

of a white noise.

As known, the IBVS is robust against calibration errors, so the simulations will not

interested in the servoing behaviour with calibration errors.

4.2.1 Simulation for the interaction matrix de�ned by Chaumette

For this simulation, the interaction matrix used is the one de�ned by Chaumette for

3D straight lines represented by Plücker coordinates (Eq. 4.1).

The gain of the control law is set to λ = 0.45. No white noise is added to the image

lines.

The simulation results show the existence of local minima, like the example shown

in �gure (4.2).

To be familiar with the state vectors, we present the initial and desired state vectors

in the right image:

l1 =

 0.9959

−0.0905

−0.1516

 l2 =

 0.3363

−0.9417

0.2892

 l3 =

 0.8944

0.4472

−0.0958



l∗1 =

 0.9995

0.0320

−0.0623

 l∗2 =

 0.2853

−0.9584

0.1707

 l∗3 =

 0.8391

0.543

0.0436


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(a) (b)

(c)

Figure 4.2: Simulation results for the IBVS using the interaction matrix de�ned by

Chaumette (Eq. 4.1). Case of non convergence: the object of interest consists of

three 3D straight lines. The horizontal axis of the �gures is the iteration number. a)

Rotational velocity (deg/s). b) Translational velocity (m/s). c) Convergence error

(task function e). The error (the task function) is not null at the end of servoing,

which means that the system converges toward a local minimum.

Although the decreasing of rotational and translational velocities to zero (�g. 4.2 -

a, b), the state vectors do not reach their desired values, and that is shown in (�g.

4.2 - c).

This �gure (�g. 4.2 - c) represents the norm of the error of convergence (the task

function e).

Now we change the desired state vectors, to reduce the distance between the initial

and the �nal poses. The asymptotic convergence is shown in �gure (4.3). The real
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(a) (b)

(c)

Figure 4.3: Simulation results for the IBVS using the interaction matrix de�ned by

Chaumette (Eq. 4.1). Case of convergence: the object of interest consists of three

3D straight lines. The horizontal axis of the �gures is the iteration number. a)

Rotational velocity (deg/s). b) Translational velocity (m/s). c) Convergence error

(task function e). The error (the task function) is asymptotic convergence.

di�erence in this case is the asymptotic convergence of the task function e shown in

(�g. 4.3 - c). This di�erence is due to the small di�erence between the initial and

the desired state vectors.

As one can see, the norm of the task function in this case in the �rst iteration is

about 0.45 (�g. 4.3 - c) but in the last case it is about 0.9 (�g. 4.2 - c). Figures

(4.3 - a, b) show the velocity control laws. There are no di�erence in the behavior

of the velocities in the two cases (asymptotic convergence or convergence toward a

local minimum).
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4.2.2 Simulation for the stereo interaction matrix

The stereo interaction matrix LI de�ned in (4.4) considered as a big matrix (6 × 6

for each 3D straight line). It is so di�cult to go on with a theoretical analyses, for

that, the simulation results will be the assistant to evaluate the behaviour of the

velocities designed using this stereo interaction matrix.

The gain of the control law is set to λ = 0.25, no white noise has been added to the

image lines.

The simulation results show the existence of local minima, like in the simulation

results in the previous section. An example of convergence toward a local minimum

is shown in �gure (4.4).

(a) (b)

(c)

Figure 4.4: Simulation results for the IBVS using the stereo interaction matrix (Eq.

4.4). Case of non convergence: the object of interest consists of three 3D straight

lines. The horizontal axis of the �gures is the iteration number. a) Rotational ve-

locity (deg/s). b) Translational velocity (m/s). c) Convergence error (task function

e). The error (the task function) is not null at the end of servoing, which means

that the system converge towards a local minimum.
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Figures (4.4 - a, b) show the rotational and the translational velocities. We separate

these two �gures for better display, not for the decoupling (they are not decoupled).

All the velocities components (except Ωz) increase at the start of servoing simula-

tion and reach their maximum before they decrease to zero.

Figure (4.4 - c) shows the task function error. One can observe the convergence of

the task function toward a non null value, that means a local minimum has been

reached.

Figure (4.5), shows an example of a stereo IBVS with asymptotic convergence.

The current state vectors converges toward their desired values.

Figures (4.5 - a, b) show the rotational and translational velocities. They reveal a

pike near the 25th iteration because of a singularity in one 3D straight line of the

object of interest, but the closed loop system is still stable. In �gure (4.5 - c), one

can observe the asymptotic convergence of the task function.

This simulation is repeated with the presence of white noise in the images. The

noise is modeled by adding a randoms value (less than one pixel) to the coordinates

of each pixel in the image line, then reestimate the lines coordinates with the least

square method. The results are displayed in �g. 4.6.

Even if the error at the end of servoing is very small (�g. 4.6 -c), the observed

disturbances in the velocities (�g. 4.6 -a, b) are very signi�cant, and especially the

translational velocity control (b).

The white noise added to the image is not very important (less than one pixel for

each point coordinates in the image line), so one can consider this control laws are

not very robust against the noise.

Other simulations have been performed with di�erent objects (2, 3, 4, ... straight

lines) and di�erent initial and �nal state vectors, sometimes we get the asymptotic

convergence, and sometimes a local minimum is reached.

In both cases, the simulations results show an undesired behaviour of the system in

closed loop. That is clear in the velocities curves (�g. 4.5 - a, b) and (�g. 4.4 - a, b),

beside the big e�ect of the noise (�g. 4.6 - a, b). As one wish a �rst degree system

behaviour, and that means an exponential decrease of the velocity components.

The di�culty in developing the interaction matrix together with the bad be-

haviour of the system in the servoing closed loop, make a serious need of decoupling

the control laws for rotation and translation, which makes the theoretical analyses

of the interaction matrix relevant and easier.
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(a) (b)

(c)

Figure 4.5: Simulation results for the IBVS using the stereo interaction matrix (Eq.

4.4). Case of convergence: the object of interest consists of three 3D straight lines.

The horizontal axis of the �gures is the iteration number. a) Rotational velocity

(deg/s). b) Translational velocity (m/s). c) Convergence error (task function e).

The error (the task function) is almost null at the end of servoing (there is a small

disturbance due to the white noise), which means that the system is asymptotically

convergent.

In the next section, we will look for a method for decoupling the two control laws

(rotation, translation), and this will involve the de�nition of new state vectors.
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(a) (b)

(c)

Figure 4.6: Simulation results for the IBVS using the stereo interaction matrix (Eq.

4.4). Case of convergence in the presence of white noise in the image: the object of

interest consists of three 3D straight lines. The horizontal axis of the �gures is the

iteration number. a) Rotational velocity (deg/s). b) Translational velocity (m/s).

c) Convergence error (task function e). The error (the task function) is null at the

end of servoing, which means that the system is asymptotic convergence.
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4.3 Stereo Visual Servoing (SVS)

In the previous section, the stereo image lines (lr, ll) are considered as state vectors

and used directly in the task function. This makes the stereo system no more than

a vision system with two cameras, and the interaction matrix is a stacking of two

Jacobian of the image pair. This visual servoing diagram is a classical IBVS.

In this section, we rather try here to transfer this classical IBVS into the Stereo

Visual Servoing SVS. This can be done by de�ning a new state vectors S in a new

space called stereo servoing space, a kind of virtual space which is not the Euclidean

space nor image planes.

In the stereo servoing space, the stereo image lines (lr, ll) are the visual measure-

ments. The state vectors must be separated to de�ne independent task functions for

rotation and translation. The independent task functions de�ne decoupled control

laws for rotation and translation velocities.

In the Euclidean space, the stereo rig is characterized by the rotation matrix (R)

between the right and left camera frames, and the translation vector (t) between

their origins. Beside this extrinsic parameters, there are the intrinsic parameters,

represented by the camera matrices Kr and Kl, which transfer the measurements in

the plan image to measurements in the camera frame.

Calibration of a stereo rig in the Euclidean space means the estimation of these

matrices. Whatever the method used and the precision obtained for the estimation

of these parameters, the perfect values will never reach, and that because, the met-

ric model of the camera is an approximate model. This approximation and errors

usually yield a static error with a PBVS.

The stereo image can be related by a projective matrix called the fundamental

matrix F, while the in�nite homography H∞ bring the a�ne property of the stereo

image.

The fundamental matrix F is independent of scene structure. It can be computed

from correspondences of imaged scene points alone, without requiring knowledge of

the camera internal parameters or relative pose.

The in�nite homography H∞ is the a�ne transformation from the plane at in�nity

π∞ to one of the image planes of the stereo system. It can be computed from the

correspondence of at least three vanishing points and the epipoles [BZR95].

Then, to reduce the static error, we propose in the next paragraph to de�ne new state

vectors to cope with the calibration trouble holdings and the control decoupling.
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4.3.1 New State Vectors

The new state vectors will be a combination of the visual measurements using F and

H∞. Recall the kinematic of a 3D line de�ned in (2.5) and (2.6)

v̇ = Ω× v

ẇ = Ω× w + V × v

These equations show a partial decoupling between the rotational velocity and the

translational velocity. The time derivation of the direction vector v is depending

on the rotational velocity only. The goal is to de�ne state vectors with kinematics

equivalent to the 3D straight line kinematics. For that, recall the Plücker coordinates

v, w given in the equations (2.3) and (2.4)

v ≡ RTl KTl ll × RTr KTr lr

w ≡ RTr KTr lr l
T
l Kl tl − RTl KTl ll l

T
r Kr tr

The image lines pair lr, ll are vectors of three components with 2 DOF. One can

add a constraint on the norm of each line. These constraints are chosen so as to

simplify the equation (2.4) and to help to de�ne a state vector equivalent to w. The

constraints we propose are:

lTr Kr tr = −1

lTl Kl tl = 1

With the notations Mr = KrRr, Ml = KlRl, H∞ = Ml M
−1
r , and m = det(Mr) the equation

(2.3) becomes

v ≡ MTl ll × MTr lr

v ≡ mM−1
r (M−Tr MTl ll × lr)

v ≡ mM−1
r (HT∞ ll × lr)

Take S1 = HT∞ ll × lr
v ≡ m M−1

r S1 (4.5)

and for the equation (2.4)

w ≡ MTr lr + MTl ll

w ≡ MTr (lr + M−Tr MTl ll)

w ≡ MTr (lr + HT∞ ll)
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Take S2 = lr + HT∞ ll

w ≡ MTr S2 (4.6)

To normalize the vector v with ||v|| = 1 the scale factor is chosen as q = ||mM−1
r (HT∞ ll×

lr)||. The new state vectors are

sΩ = S1/q (4.7)

sV = S2/q (4.8)

Then, the normalized Plücker coordinates v, w are given by

v = mM−1
r sΩ (4.9)

w = MTr sV (4.10)

The equations (4.7, 4.8) show new stereo state vectors. These state vectors are not

de�ned in the right image plane, nor in the left image plane. They are de�ned in

the stereo space.

The equations (4.9, 4.10) show an equality between the 3D vectors v, w and the

stereo state vectors sΩ, sV . That is important to de�ne the kinematic of the stereo

state vectors, which will be equivalent to the kinematic of v and w.

In the next section, we will discuss the constraints proposed to design these state

vectors.

4.3.2 Discussion about the constraints

In the previous section, we proposed constraints on the norm of the image lines lr, ll.

Here, one wants to know if these constraints are possible during all the servoing.

The constraints are lTr Kr tr = −1 and lTl Kl tl = 1, what are satis�ed if lTr Kr tr = 0

or lTl Kl tl = 0 ?

If lTr Kr tr = 0, the equation (2.4) is w ≡ RTr KTr lr l
T
l Kl tl but lTl Kl tl is a scalar,

then w ≡ RTr KTr lr.

We know that the vector normal of the plane generated by the right camera center

and the image line lr so the 3D straight line is given by wr ≡ KTr lr in the right

camera frame.

Transferring this vector to the stereo frame gives wr ≡ RTr KTr lr = w !!!

This means that this plane, generated by the right camera center and the 3D straight

line, contains the stereo frame origin too.
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The stereo frame is a virtual frame, so if we chose the stereo frame origin on the

line between the two cameras, which means Cr = −αCl, the two cameras centers will

be in the same plane with the 3d straight line in this case, and this is a singularity

case excepted in this work.

With the same analysis for the second constraint lTl Kl tl = 0, we conclude that these

constraints are always valid.

4.3.3 The state vectors kinematics

From the equation (4.9) we can write

v = mM−1
r sΩ

sΩ =
1

m
Mrv

ṡΩ =
1

m
Mrv̇

ṡΩ =
1

m
Mr(Ω× v) = − 1

m
Mr[v]×Ω

but, [v]× = [mM−1
r sΩ]× = MTr [sΩ]×Mr, and MrM

T
r = KrRrR

T
r K

T
r = KrK

T
r , so

ṡΩ = − 1

m
KrK

T
r [sΩ]× Mr Ω (4.11)

This equation shows the independency of the state vector sΩ from the translation

velocity.

Now, the equation (4.10), gives

w = MTr sV

sV = M−Tr w

ṡV = M−Tr ẇ

ṡV = M−Tr (Ω× w + V × v)

ṡV = −M−Tr [w]×Ω− M−Tr [v]×V

but, [w]× = [MTr sΩ]× = mM−1
r [sΩ]×M

−T
r , so

ṡV = −mK−Tr K−1
r [sV ]×M

−T
r Ω − m[sΩ]×MrV (4.12)

Equations (4.11) and (4.12) are useful to de�ne a partial decoupled control laws for

rotation and translation or sequential control as we will see in the next section.
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4.4 Sequential control laws

The kinematic of the state vectors sΩ, sV given by the equations (4.11) and (4.12),

veri�es a partial decoupling between the rotation and the translation velocities.

Therefore to design the control laws, we now start by �rstly de�ning two task func-

tions.

The di�erence between the state vector sΩ(t) in the current stereo image, and the

one s∗Ω in the desired stereo image, de�nes the rotational task function for one 3D

straight line as the following:

eΩ(t) = sΩ(t)− s∗Ω . (4.13)

While with the translational task function, one can do similar choice considering

the error between the current state vector sV (t) and the desired one s∗V for one 3D

straight line too

eV (t) = sV (t)− s∗V . (4.14)

With these task functions, the rotational and translational control laws can now be

designed separately.

4.4.1 The rotation control law

Supposed an exponential decrease to the rotation task function given in (4.13), which

means ėΩ = −λΩ eΩ. This gives ṡΩ = −λΩ eΩ as ṡ∗Ω = 0, λΩ ∈ R+.

ṡΩ = − 1

m
KrK

T
r [sΩ]× Mr Ω = −λΩ eΩ

Let hΩ = − 1
m
KrK

T
r [sΩ]×Mr, be a (3×3) matrix, then the rotation control law is given

by

Ω(t) = −λΩ h+
Ω eΩ .

In the case of a unique line, the matrix h+
Ω does not exist. Let's de�ne the task func-

tion and the interaction matrix for the general case of n lines. Then, we will look

for the minimal number n of state vectors necessary to invert the interaction matrix.

Given n current state vectors sΩ1, ..., sΩn and n desired ones s∗Ω1, ..., s
∗
Ωn, the task

function and the interaction matrix are

eΩ =


sΩ1 − s∗Ω1

...

sΩn − s∗Ωn

 HΩ =


− 1
m
KrK

T
r [sΩ1]×Mr
...

− 1
m
KrK

T
r [sΩn]×Mr


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The new form of the rotational control law is

Ω = −λΩ H+
Ω eΩ (4.15)

This control law can be de�ned only if the matrix H+
Ω = (HTΩHΩ)−1HTΩ exists.

4.4.2 Stability and convergence of rotation control law

To prove the stability of the closed loop system with the rotation control law de�ned

in (4.15), and the convergence of the task function (4.13), we use the Lyapunov

function L(t) = 1/2||eΩ(t)||2 and we study the sign of its time derivative:

L̇(t) = ėTΩeΩ

=


ṡΩ1

...

ṡΩn


T

eΩ

=


− 1
m
Mr [v1]×Ω

...

− 1
m
Mr [vn]×Ω


T

eΩ

= (HΩΩ)TeΩ = ΩTHTΩ eΩ

We have Ω = −λΩ H+
Ω eΩ so ΩT = −λΩ eTΩ HΩ (HTΩ HΩ)−1, then

L̇(t) = −λΩ eTΩ HΩ (HTΩ HΩ)−1 HTΩ eΩ

To look for the sign of L̇(t) the matrix HTΩ HΩ must be invertible and its inverse should

be positive de�nite, but it is known that any positive de�nite matrix is invertible,

and its inverse is positive de�nite too, so it is enough to prove that HTΩ HΩ is positive

de�nite.

HTΩHΩ =
1

m2


Mr [v1]×

...

Mr [vn]×


T 

Mr [v1]×
...

Mr [vn]×


= − 1

m2

∑
i

[vi]×M
T
r Mr[vi]×
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Therefore, for any vector a ∈ R∗3, we have

aT HTΩHΩ a = −aT
∑
i

[vi]×M
T
r Mr[vi]×a

= −
∑
i

aT[vi]×M
T
r Mr[vi]×a

=
∑
i

(Mr[vi]×a)T Mr[vi]×a

=
∑
i

||Mr vi × a||2

So HTΩHΩ is positive de�nite if there are at least two non-parallel vectors vi, vj, which

means that (HTΩHΩ)−1 always exists and is positive de�nite too.

Now the part eTΩ HΩ HTΩ eΩ is positive semi-de�nite because any matrix of the form

AAT is positive (semi de�nite) which means that the control law is globally stable.

At this stage, to study the convergence, we must look for the equilibrium points.

eTΩHΩ = − 1

m


sΩ1 − s∗Ω1

...

sΩn − s∗Ωn


T 

Mr [v1]×
...

Mr [vn]×


= − 1

m

∑
i

eTi Mr[vi]× with ei = sΩi − s∗Ωi

and HTΩeΩ = 1
m

∑
i [vi]×M

T
r ei.

Finally, the scalar eTΩ HΩH
T
Ω eΩ = 1

m2

∣∣∣∣∑
i [vi]×M

T
r ei
∣∣∣∣2 ≥ 0, which means L̇ ≤ 0.

It is null when ei = 0 for all i, but we can not guarantee that it is unique. There

are maybe other local minima (equilibriums points), which veri�es the equation∑
i [vi]×M

T
r ei = 0. So the control law Ω = λΩ m H+

Ω eΩ globally stabilizes the system

in the closed loop, but the asymptotic convergence of the rotational servoing error

is not ensured.

4.4.3 The translation control law

In the sequential control, we suppose that the translation servoing is started after

the rotational servoing was �nished, and the current rotation state vectors are con-

verging toward the desired state vectors.

The translation task function given in (4.14), with an exponential decrease supposed

to this function (ėV = −λV eV ) give ṡV = −λV eV , as ṡ∗V = 0.

ṡV = −λV eV

ṡV = −m[sΩ]×MrV because Ω = 0
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Let the (3× 3) matrix hV = −m[sΩ]×Mr then, the translation control law is given by

V = −λV h+
V eV .

Again, for a unique line (one state vector), the matrix h+
V did not exist. So let's

de�ne the task function and the interaction matrix for the case of n lines.

For n current state vectors sV 1, ..., sV n and their desired values s∗V 1, ..., s
∗
V n. The task

function and the interaction matrix are

eV =


sV 1 − s∗V 1

...

sV n − s∗V n

 HV =


−m[sΩ1]×Mr

...

−m[sΩn]×Mr


Then, the translational control law is

V = −λV H+
V eV . (4.16)

This control law can be de�ned if the matrix H+
V = (HTV HV )−1HTV exists.

4.4.4 Stability and convergence of translation control law

To prove the stability of the closed loop system with the translation control law de-

�ned in (4.16), and the convergence of the task function (4.14), we use the Lyapunov

function L(t) = 1/2||eV (t)||2 and study the sign of its time derivative:

L̇(t) = ėTV eV

= (ṡv1, . . . , ṡvn)T eV

=


−M−Tr [v1]×V

...

−M−Tr [vn]×V


T

eV

= −(HV V)TeV

= −VTHTV eV

Given V = λV H+
V eV , VT = λV eTV HV (HTV HV )−1, then

L̇(t) = −λV eTV HV (HTV HV )−1 HTV eV .

To look for the sign of the time derivative of Lyapunov function, we started with

(HTV HV ), and similarly to the rotation case, it is positive de�nite, if there are at least
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two non-parallel lines in the set of the object lines.

Now the part eTV HV H
T
V eV is positive semi-de�nite which means that the control

closed loop is globally stable.

Now to study the convergence, we seek for the equilibrium points

eTV HV =


sV 1 − s∗V 1

...

sV n − s∗V n


T 

M−Tr [v1]×
...

M−Tr [vn]×


= −

∑
i

eTi M
−T
r [vi]×

and HTV eV =
∑

i [vi]×M
−1
r ei.

Finally,

eTV HV H
T
V eV =

∣∣∣∣∑
i

[vi]×M
−1
r ei

∣∣∣∣2 ≥ 0

L̇ ≤ 0 .

Like for the rotational control law, the task function converges towards zero, but

may stop at another local minimum, an equilibrium point veri�es
∑

i [vi]×M
−1
r ei = 0.

4.4.5 Simulations for sequential control laws

This section presents the simulation results of the system behaviour in the closed

loop, using the translational and rotational control laws (equations 4.16, 4.15)

V = λV H+
V eV

Ω = λΩ m H+
Ω eΩ

As the simulation does not interested of the robot dynamics, the robot is considered

as a perfect integrator. The stereo system consists of two parallel identical cameras.

The object of interest consists of three non coplanar straight lines. The intrinsic

parameters of the two cameras are same as the previous simulations in section 4.2.

The goal of the simulations is to verify the stability and the convergence of the

closed loop system in the perfect case, and with the presence of a white noise. Many

simulations have been done, with large rotation and translation between the initial

and �nal state vectors, all the results show the GAS, even that the theoretical study

did not prove that. But we will present one simulations (with and without noise),

as no interest of showing many simulations with the same results.

In all simulations, the gains are set to λV = λΩ = 0.15. Figure (4.7) illustrates an
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Simulation results for the SVS with sequential control, rotational servoing

�rst, then translational servoing. The object of interest consists of three 3D straight

lines. The horizontal axis of the �gures is the iteration number. a) Rotational

velocity (deg/s). b) Rotation angles (deg). c) Rotation error (task function eΩ). d)

Translation velocity (m/s). e) Translation values (m). f) Translation error (task

function eV ). The rotational and translational errors (the task functions) are null

at the end of servoing, which means that the system asymptotically converges.

example with large rotation and translation. In the �rst phase of the simulation,

the rotation was controlled alone, then the translation servoing is started λΩ = 0.

Figures (4.7 - a, d) show the rotational and translational velocities. One can see

the di�erence from the case of the coupled control laws, and how much the system

is close to a �rst-order dynamic system. The �nal pose is shown in �gures (4.7 - b,

e). It is really a large rotation and a large translation achieved by the system (the

trajectory traveled by the end e�ector is very long).

Finally, �gures (4.7 - c, f) show the asymptotic convergence of the rotation and the

translation task functions. The state vectors are converging toward their desired

values.

This simulation is repeated with the presence of white noise in the image. We

add a random value (less than one pixel) for each point in the image lines, then, the

image lines are estimated by the least square method. The results are �gured in (�g.

4.8). Figures (4.8 - a, d) show the rotational and translational velocities. One can



4.4. SEQUENTIAL CONTROL LAWS 125

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Simulation results for the SVS with sequential control, rotational servoing

�rst, then translational servoing. Case of image with white noise. The object of

interest consists of three 3D straight lines. The horizontal axis of the �gures is

the iteration number. a) Rotational velocity (deg/s). b) Rotation angles (deg). c)

Rotation error (task function eΩ). d) Translation velocity (m/s). e) Translation

values (m). f) Translation error (task function eV ). The rotational and translational

errors (the task functions) are almost null at the end of servoing, which means that

the system asymptotically converges.

see that the noise did not a�ect the stability of the system, and the one can notice

that these sequential control laws are more robust against the white noise than the

coupled control laws experimented in section 4.2. The �nal pose is shown in �gures

(4.8 - b, e), these �gures show the large rotation and the large translation achieved

by the end e�ector of the robot.

Finally, �gures (4.8 - c, f) show the asymptotic convergence of the rotational and

translational task functions. The error in the translational task function is more

a�ected by the noise, that because the error of rotation task function is not null at

the end of the rotation servoing.

With this simulation, we �nish the sequential control laws, and now, we will look

for state vectors to achieve the full decoupled control laws.
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4.5 Decoupled control laws

The sequential control laws need to divide the visual servoing in two phases. In the

�rst phase, the rotational control law works to servo the rotation error, after that,

the second phase starts with the translational control law to serve the translation

error. This takes almost twice the time for servoing, and as the simulation show,

the error in the rotation task function accumulates in the translation error. These

reasons show how it is important to design fully decoupled control laws.

The rotation control law de�ned in (4.15) is independent of the translational

error, so it is suitable for the full decoupled servoing.

We need to de�ne a translational state vector independent of the rotational error.

To do that, recall the equations (4.10), (4.12)

w = MTr sV

ṡV = −M−Tr [w]×Ω− M−Tr [v]×V

developing this equation yields

MTr sV = w

MTr ṡV = Ω× w + V × v

(MTr sV )T(MTr ṡV ) = wT(Ω× w + V × v)

(MTr sV )T(MTr ṡV ) = (v × w)TV

sTV MrM
T
r ṡV = uTV

But MrMTr = KrRrR
T
r K

T
r = KrK

T
r , so s

T
V KrK

T
r ṡV = uTV

KrK
T
r = ω−1 is the image of the absolute conic placed at the plane at in�nity π∞.

Using

s =
1

2
||KTr sV ||2 (4.17)

ṡ = sTV KrK
T
r ṡV = uTV (4.18)

We can de�ne the translation task function e = s − s∗. Assuming an exponential

decrease of the error (ė = −λe) de�ning a translation control law in the case of n

state vectors

V = −λ H+ e (4.19)

with

e =


s1 − s∗1

...

sn − s∗n

 H =


uT1
...

uTn


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This control law is independent of the rotational error. So, one can start the servoing

for both control laws simultaneously.

4.5.1 Stability and convergence of decoupled translation con-

trol law

Considering the Lyapunov function L(t) = 1/2||e||2, its time derivative L̇(t) is

L̇(t) = ėTe

=
(
ṡ1 · · · ṡn

)
e

=
(
uT1 V · · · uTnV

)
e

= (HV)Te

= VTHTe

With V = −λ H+e, we �nd VT = −λeTH(HTH)−1 so

L̇(t) = −λ eTH(HTH)−1HTe .

To study the sign of the time-derivative of the Lyapunov function, we start with

HTH. In fact, one can easily see that HTH =
∑

i uiu
T
i . Furthermore, for any vector

a ∈ R3, we have

aTHTHa = aT
∑
i

uiu
T
i a =

∑
i

aTuiu
T
i a

=
∑
i

||aTui||2

which is positive de�nite if and only if there are three non coplanar vectors ui.

Now, computing eTHHTe:

eTH =


s1 − s∗1

...

sn − s∗n


T

uT1
...

uTn


=

∑
i

ei u
T
i as ei = si − s∗i is a scalar.

and, HTe =
∑

i ei ui So

eTHHTe = ||
∑
i

eiui||2 ≥ 0

========> L̇(t) ≤ 0
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The time derivative of the Lyapunov function is not negative de�nite, because of the

dimension of the input vector (s1, . . . , sn)T. If we consider an object with only three

visual features n = 3 (or if we select three of the most relevant ones), we get an

interaction matrix H of dimensions 3× 3, then H+ = H−1 and the translation control

law is V = −λ H−1 e. The Lyapunov derivative provides L̇(t) = −λeTe < 0,

which means the convergence of the task function e is asymptotic.

Finally, we note that we need only three state vectors to de�ne this translation

control law.

4.5.2 Simulations for decoupled control laws

This section presents the simulation results of the system behaviour in the closed

loop, after applied the translational and rotational control laws (equations 4.19,

4.15)

V = λ H+e

Ω = λΩ m H+
Ω eΩ

As the simulation does not interested of the robot dynamics, the robot is considered

as a perfect integrator. The stereo system consists of two parallel identical cameras.

The object of interest consists of three non coplanar straight lines. The intrinsic pa-

rameters of the two cameras are the same as for the previous simulations in section

4.2.

The goal of the simulations is to verify the stability and the convergence of the

closed loop system in the perfect case, and with the presence of a white noise. Many

simulations have been done, with large rotation and translation between the initial

and �nal state vectors, all the results are in accordance with the GAS, even that the

theoretical study did not prove that. Again we present only one (with and without

noise).

In all simulations, the gains of the control laws are set to λ = λΩ = 0.15.

An example of full decoupled SVS with large rotation and translation is illustrated

in �gure (4.9). In this simulation, both of rotation and translation servoing are

started together, simultaneously.

Figures (4.9 - a, d) show the rotational and translational velocities, one can see all

the velocity components decrease to zero, their time evaluation are close to a �rst-

order system. The large rotation (about 60deg) and the large translation (about

15m) achieved by the system are shown in (4.9 - b, e). Finally the asymptotic

convergence of the rotational and translational task functions without static error
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Simulation results for the full decoupled SVS. The object of interest con-

sists of three 3D straight lines. The horizontal axis of the �gures is the iteration

number. a) Rotational velocity (deg/s). b) Rotation angles (deg). c) Rotation er-

ror (task function eΩ). d) Translation velocity (m/s). e) Translation values (m).

f) Translation error (task function e). The rotational and translational errors (the

task functions) are null at the end of servoing, which means that the system asymp-

totically converges.

is shown in (4.9 - c, f).

This simulation is repeated with adding a white noise to the image measurements

(lri, lri, i = 1, 2, 3) in the same way presented in previous section 4.2. The results

are shown in �gure (4.10).

Figures (4.10 - a, d) show the rotational and translational velocities. The noise does

not a�ect the stability of the system. The Euclidean �nal pose is displayed in �gures

(4.10 - b, e), to see the large rotation and translation achieved by the end e�ector

of the robot in this simulation.

Finally the asymptotic convergence of the rotational and translational task functions

with a small error due to the noise is shown in (4.10 - c, f).

With this simulations, we �nish the stereo visual servoing (SVS) using two types

of control laws, the �rst is the sequential control laws which are partially decoupled,

the second is fully decoupled control laws. With the decoupled control laws, the

global stability of the system in closed loop is proved, and the system behaviour is
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Simulation results for the full decoupled SVS after adding a white noise

to the image lines. The object of interest consists of three 3D straight lines. The

horizontal axis of the �gures is the iteration number. a) Rotational velocity (deg/s).

b) Rotation angles (deg). c) Rotation error (task function eΩ). d) Translation ve-

locity (m/s). e) Translation values (m). f) Translation error (task function e). The

rotational and translational errors (the task functions) are almost null at the end of

servoing, which means that the system asymptotically converges.

close to a �rst-order system. We did not prove the asymptotic convergence of the

task functions, but we have derived the formula of the equilibrium points. Simula-

tions with large rotation and large translations have been done without convergence

toward a local minimum, we always get an asymptotic convergence.
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4.6 Conclusion

This chapter is addressing the IBVS with sterovision and 3D lines. First, we started

with the classical IBVS from lines, using interaction matrix de�ned by Chaumette,

and using a stereo interaction matrix de�ned in this chapter. The idea was to de�ne

the velocity screw of the stereo system by τ = −λ LI
+e.

The simulations results are not convincing. There was minima local, large rotation

or large translation are not possible, analytical solution or theoretical prove of sta-

bility and convergence are very di�cult with the high dimensions of the interaction

matrices.

These reasons creates a real need of new interaction matrices, with small dimensions,

easy to develop for obtaining its pseudo-inverse.

The solution is the decoupling between the rotational and translational velocities

control laws. The classical IBVS is converted into stereo visual servoing (SVS). The

pair of images (stereo image) forms together the space of work. New state vectors

are de�ned from a combination of visual measurements in the stereo image and

thanks to the in�nite homography.

For that end, the Euclidean model of the camera which contents the intrinsic and

extrinsic parameters is replaced by in�nite homography H∞ and the Fundamental

matrix F.

In the stereo space, the new state vectors sΩ, sV are proposed to de�ne partially

decoupled control laws for rotation and translation.

V = λV H+
V eV

Ω = λΩ m H+
Ω eΩ

The global stability of the system in closed loop are proved, while the asymptotic

convergence was not proved, but the analytic expression of the equilibrium points

has been provided.

The simulations show the asymptotic convergence of the state vectors towards their

desired value, even with large rotations and large translations.

The work is continued with the de�nition of a translational state vector and a

translational task function independent of rotation error. This task function allows

to design a translational control law fully decoupled to the rotational control law.

V = −λ H+ e

Simulations with large rotation and large translation are done for all the control

laws presented in this chapter and the results are illustrated in every section.
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Chapter 5

Conclusions and Perspectives

In this �nal chapter, a summary of the thesis is given. Then some future works are

highlighted. The main theoretical results are presented according to their position

in the thesis.

5.1 Conclusions

The work we have presented here tried to solve the problems presented in the intro-

duction. It concerns the decoupling between the rotational and translational control

laws, for stereo vision-based robot control. To this end, we investigated the stereo

visual servoing from straight lines. The work is addressing the two famous kinds

of visual servoing, position based visual servoing (PBVS) and image based visual

servoing (IBVS), to de�ne new velocities control laws and to look for a better be-

haviour of the servoing.

After denoting the problem of decoupling control in the introduction, we illustrate

some interesting works in the literature, which show the importance of video servo-

ing in the vision applications and mobile robots. Then some works related to the

geometrical modeling and the kinematics of a 3D straight line are reported. We

�nished the chapter with some works about the decoupling control laws.

Our work started in chapter 3, in this chapter, the object of interest is represented

by 3D straight lines, and we select the Plücker coordinates to represent these 3D

lines. We gives some explanations about the choice of this representation among

others.

The 3D information is needed in PBVS, and in IBVS. These 3D measurements

are always available in our servoings thanks to the stereo vision, while all the draw-

backs of using stereo system like enormeous data �ow and system calibration are

133
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overcome nowadays. For example, in our practical experiments, we have acquired

75fps from each camera, let's say 150 images by second, of dimensions 600 × 400.

The image processing and the robot controller are executed in real time.

The stereo system enabled to decrease the necessary number of 3D straight lines

(the features) to de�ne the 6 DOF of a rigid real object in the Euclidean space. Even

for an object of interest composed with only one straight line, with a stereo rig, we

succeeded in servoing the relative position (Object - stereo rig) with less degrees of

freedom.

We did not focused the work on the calibration of the camera parameters, nor the

calibration of the stereo system, but the e�ect of the calibration errors are included

in the simulations results for every control law designed according to the PBVS ap-

proach. It is important to get an accurate calibrated system, especially for practical

experiments with PBVS, but we voluntarily considered that calibration is out of the

scope of this thesis work.

In this chapter we provide a survey on the PBVS techniques, starting by com-

puting the transformation matrix between two Euclidean position of a 3D straight

line, then use the (classical) "Euclidean control laws"

V = −λV RT t ,

Ω = −λΩ θu

to control the camera motion velocities with respect to a rigid object and for servo-

ing the relative pose (Object - stereo rig). The independency between the rotational

and the translational state vectors (sΩ = θ u, sV = RT t), implies the decoupling

between the rotational and the translational velocities control laws. These velocities

control laws are verifying the global asymptotic stability (GAS) of the system in the

closed loop.

The Plücker coordinates of a 3D straight line can used directly in the state vectors.

The rotational state vector is the direction vector v, sΩ = v, and the translational

state vector is the orthogonal distance d between the straight line and the frame

origin (or the norm of the vector w), sV = d. Then two independent task functions

have been designed according to the number of state vectors, that is the number of

required visual features. This independency in the task functions allows the design

of fully decoupled velocities control laws:

V = −λV H+
V eV ,

Ω = −λΩ H+
Ω eΩ ,
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with

HV =


uT1
...

uTn

 , HΩ =


−[v1]×

...

−[vn]×

 ,

and

eV =


d1 − d∗1

...

dn − d∗n

 , eΩ =


v1 − v∗1

...

vn − v∗n

 .

These two control laws are called "Plücker coordinates control laws".

The global asymptotic stability (GAS) of the system provided with the "Plücker

coordinates control laws" is proved with the help of Lyapunov theory. The proof

was possible and simple to establish, due to the decoupling between the rotational

and translational velocities control laws, which reduces the dimensions of the state

representation of the system in the closed loop.

Simulation results con�rmed the theoretical studies. They con�rm the GAS of

the system in the closed loop for many con�gurations. Adding a white noise to the

line parameters does not a�ect much the asymptotic stability of the system, the �nal

precision is largely depending on the number of features used in the estimations of

the inverse of the interaction matrix. These results prove the robustness of these

control laws against the noise and the errors of features estimation.

The "Euclidean control laws" and the "Plücker coordinates control laws" are ap-

plied to a 6 DOF robot manipulator of type Adept Viper S650. This robot has

6 axes (6 revolute joints), which means 6 DOF in the joint space. As it is a full

anthropomorphic manipulator, it has also 6 DOF in the Euclidean space. The goal

of the experiments were to control the relative pose between the robot end-e�ector

(which holds the stereo rig) and the object of interest. The results were very similar

to those of simulations with a synthetic white noise.

The PBVS applied to a non-rigid object is considered as an interesting application

for the stereo PBVS presented in this chapter. First, we designed the velocity control

laws for an object composed with only one 3D straight line:

Ω = −λΩ H+
ΩeΩ ,

V = −λV (d− d∗)u

with

eΩ =

(
v − v∗

w − w∗

)
and HΩ =

[
−[v]×

−[w]×

]
.
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These velocities control laws are fully decoupled and verify the GAS of the system

in closed loop. That was proved through the Lyapunov theory then shown by sim-

ulations and experiments on the robot Viper S650.

Second, we addressed the visual servoing of an articulated object. The goal was

to control both the joints of an articulated object and the relative pose (articulated

object - stereo rig) simultaneously. For this application, we have considered a simple

articulated object, consisting of two 3D straight lines and one revolute joint. This

object is modelled with 7 DOF, in the Euclidean space. 6 DOF were concerning the

relative pose (articulated object - stereo rig) to servo, and the seventh DOF is used

to control the revolute joint of the object.

An additional task function is designed to de�ne the error of the joint angle eψ =

ψ − ψ∞. Then the angular velocity control law is given by Ωψ = −λψeψ.
The Rodrigues' rotation formula gives back the articulated object into rigid object

after the estimation of the joint angle. This allows to turn to the "Euclidean control

laws" for the position servoing of the object relative to the stereo rig.

The simulations and the experiments on a robot manipulator and a real articulated

object show the global asymptotic stability of the visual closed loop and the angular

closed loop.

For a more complex articulated object (with several articulations), we use the �rst

two 3D lines to estimate the Euclidean transformation [R, t], then control the relative

pose (articulated object - stereo rig) using the "Euclidean control laws", just like in

the case of a single articulated object.

The simulations show the convergence of all the joint angles ψi towards their �nal

values in the desired angular position, and the convergence of the robot end-e�ector

toward the desired position and orientation.

The IBVS has been presented in the chapter 4. This chapter divides the IBVS

in two categories, the classical IBVS, and the stereo IBVS which is noted as SVS.

In the IBVS, we look for the interaction matrix L and applied the velocity control

law τ = −λL+e with e is the task function. This task function is de�ning the ser-

voing error through the di�erence between the current state vector s and s∗ in the

desired one.

In the classical IBVS, the state vector is de�ned in the image plane or planes (stereo

vision), while in the SVS, we have de�ned our own state vectors in a "stereo space"

thanks to the homography at in�nity, H∞, the epipoles and the measurements issued

from the two images.

The classical IBVS with Plücker modeling is called and simulated in this thesis,
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�rst with the interaction matrix de�ned in Chaumette's thesis [Cha90], then by pro-

viding a new interaction matrix with observers.

The simulation results are not convincing, as there were several local minima. Be-

sides the theoretical analysis of the stability and the convergence were very di�cult

with these interaction matrices.

These reasons show a real need of new interaction matrices, with low dimensions,

easy to develop for obtaining its pseudo inverse.

The decoupling between the rotational and translational velocities control laws

makes the dimensions of the interaction matrix divided in two parts, and we al-

ways got an interaction matrix with dimensions of n× 3 rather than n× 6 without

decoupling. With this dimension reduction, the analytical analyses of the interac-

tion matrices were possible, and the theoretical prove of stability and convergence

were done with the help of the Lyapunov theory. To do that, The classical IBVS

is converted into a Stereo Visual Servoing (SVS). The two images (stereo images)

are used together to build the "stereo space". New state vectors are de�ned in that

space from a combination of visual measurements in the two images and the knowl-

edge of the two-views a�ne and projective properties.

The Euclidean model of the camera represented with the intrinsic and extrinsic ma-

trices (K, R, t) is replaced by a model which involves the in�nite homography H∞ and

the Fundamental matrix F (or the epipoles).

The �rst pair of state vectors sΩ = (HT∞ ll × lr), sV = (lr + HT∞ ll) de�ned in the

stereo space, are used to design partially decoupled control laws for rotational and

translational velocities:

V = λV H+
V eV ,

Ω = λΩ m H+
Ω eΩ

with

HV =


M−Tr [v1]×

...

M−Tr [vn]×

 , HΩ =


Mr[v1]×

...

Mr[vn]×


and

eV =


sV 1 − s∗V 1

...

sV n − s∗V n

 , eΩ =


sΩ1 − s∗Ω1

...

sΩn − s∗Ωn


The global stability of the system in closed loop has been proved, but not the

asymptotic convergence, the analytical form of the equilibrium points was found.
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The simulations show the convergence for the state vectors for large rotation and

translation motions.

To look for further decoupling, a new translational state vector s = 1
2
||KTr sV ||2 has

been designed. This state vector is independent from the rotation motion, but

needs the knowledge of the camera calibration parameters. Then the translational

task function e = s − s∗ de�nes the translational servoing error. With this new

translational state vector we designed a new translational velocity control law

V = −λ H+ e with H =


uT1
...

uTn

 .

With these two translational velocity control laws and the rotational velocity control

law, we have performed several simulations with large rotation and large translation

motions. The results have been largely illustrated and discussed in every section.

5.2 Contributions

The main contributions of this PhD thesis are:

• The design of decoupled rotational and translational velocities control laws,

for the stereo image based visual servoing. That is done in the "stereo space"

using the homography at in�nity H∞ and the epipoles (or the fundamental

matrix).

• The de�nition of new state vectors for the rotational and translational motion,

in both position based and image based stereo servoing. These new state

vectors are used in the task functions to design partial and full decoupled

velocities control laws.

• A �rst step to the visual servoing of an articulated object. All the studied

joints of the articulated object studied here are revolute.

• A true stereo position based visual servoing (4 DOF) with only one-line object.

• The computation of the transformation matrix between two poses using the

Plücker coordinates of a straight line.

• The extension of the Umeyama's lemma to be used with Plücker coordinates

for lines.

• The computation of the coordinates of the two closest points of two 3D straight

lines represented by the normalized Plücker coordinates, and the minimal dis-

tance between these lines.
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• The implementation of a fast real-time position based stereo visual servoing,

applied to the 6 DOF Adept Viper S650 robot manipulator.

Here, maybe the end of this thesis, however many things remain to be done, and

immediate perspectives of the presented scienti�c and technical methodology are

manifold.

5.3 Perspectives

At the end of this work, we would like to propose some future perspectives of this

work:

• 3D Visual tracking may be tackled with IBVS. It has a wide application in the

industry, media, medical, and other environments. This gives a wide range

of applications to the new control laws, in particular for those in the SVS

category.

• The stereo visual servoing (SVS) de�ned in this thesis is a new approach in

visual servoing. It can be developed and used in the servoing tasks that we

did in position based visual servoing, like the visual servoing on an articulated

object, and the visual servoing with one 3D straight line.

• In this thesis, we were interested in a simple application with articulated object

with revolute joints only, but other types of joints with manipulator robots and

mobile robots could be investigated. The approach proposed here could be

extended to carry out the visual servoing an articulated object with prismatic

joints or ball joints.

• The servoing with one straight line gives us a way to identify the type of

the joint for an articulated or deformable object. This can be done without

the help of image processing or object recognition, but rather by performing

several virtual stereo visual servoings.

• Study of the trajectory of the visual indexes in SVS. It is known that the visual

indices are always visible in the VSBI but not with SVS nor PBVS.
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