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Abstract 

The Short INterspersed Element (SINE) Alus are the most prolific retrotransposons in human. 

With over one million copies, they comprise more than 10% of the human genome and these 

non-autonomous retrotransposons spread by hijacking the transposition machinery of the 

autonomous retrotransposon Long Interspersed Element (LINE1). As a response to 

retrotransposon invasion, organisms developed mechanisms to preserve the integrity of their 

genome, and one of them is RNA editing. RNA editing is the modification of one or more 

bases of an RNA molecule. The most abundant type of editing in mammals is A-to-I editing 

where the ADAR family transforms adenosine into inosine. The main targets of the ADARs 

in human are the Alu elements. Editing of the Alu elements targets them to the paraspeckles, 

thus lead to their sequestration in the nucleus which prevents their interaction with the 

transposition machinery of LINE1. Editing of Alu elements also mutates their internal POLIII 

promoter and their poly-A tail, thus preventing their subsequent transposition. 

The current view on Alu elements is that they are mainly dormant occupants of the genome. 

In the first part of this study, we challenge this view by characterizing their activity. After 

demonstrating that Alu element transcripts can be precisely identified on a large scale with 

current deep-sequencing technology, the primary sequences of Alu elements are screened for 

active internal RNA polymerase III promoter by screening POLIII-CHIPseq data. The length 

and identity of the Alu transcripts are then determined in the cytoplasm and nucleus of cell as 

well as their association with polysomes and chromatin by screening deep-sequencing data 

performed on each one of these cell compartments. Analysis of a transcriptome Atlas of 16 

human tissues reveals that Alu elements transcription is a widespread phenomenon in normal 

tissues which correlates with functional LINE1 elements expression. This suggests that Alu 

element retrotransposition may be a natural mechanism in most normal human tissues. Further 

analyses show that SINE and LINE expression in somatic tissues is not exclusive to human 

but also occurs in mouse. Finally, attempts are made to identify tissue specific insertions in 

the human genome resulting from retrotransposition events. 

In the second part of this study, a new method is developed to understand the full impact of 

RNA editing on Alu transcripts and more broadly on whole transcriptomes by characterizing 

the edited RNA in a high-throughput fashion. In a first unsuccessful attempt, 

immunoprecipitation was used to pull-down RNA associated with the editing enzymes 

ADARs. Further fruitless attempts were then made to pre-purify the complex RNA-ADAR by 
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nuclear fractionation or sucrose gradient before immunoprecipitation. Finally, instead of using 

an antibody-based approach targeting the ADAR proteins, a protocol targeting directly the 

inosine in the RNA molecule was developed. First, the RNA is sequestered on magnetic 

beads. Then an inosine specific cleavage based on RNAseT1 treatment of RNA protected with 

glyoxal and borate allows the separation of the edited RNA from the total RNA. Finally, deep 

sequencing is used to identify edited RNA. 1,822 editing sites are found by this method 

including 28 new editing sites modifying the coding sequences of genes and editing in rRNA, 

snoRNA and snRNA which were never observed before. 
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Résumé de thèse (extended summary, in French) 

Les SINEs (Short Interspersed Element) Alu représentent la famille de rétrotransposons la 

plus prolifique chez l’Homme. Avec plus d’un million de copies, ils occupent environ 10% du 

génome humain [1, 2]. Ces rétrotransposons non-autonomes se sont répandus dans le génome 

en utilisant la machinerie de rétrotransposition de LINE1 (Long INterspersed Element 1), un 

rétrotransposon autonome [3, 4] (Figure 1’). Afin de contrecarrer l’expansion des rétro-

éléments, les organismes ont développés différents mécanismes pour préserver l’intégrité de 

leurs génomes. Le plus proéminent, également utilisé pour lutter contre la réinsertion d’ADN 

viral dans le génome hôte, est l’édition de l’ARN. L’édition de l’ARN est la modification 

d’une ou plusieurs bases d’une molécule d’ARN. Chez les mammifères, la plus courante est la 

déamination de l’adénine en inosine catalysée par la famille de protéine ADAR. L’inosine est 

ensuite lue comme une guanine par les différentes machineries enzymatiques (traduction, 

reverse transcription) [5]. Si le phénomène d’édition de l’ARN a un impact clair sur l’ARN 

messager où il modifie les sites d’épissages [6, 7] ou directement la séquence de la future 

protéine [8], les principales cibles d’ADAR chez l’humain sont les éléments Alu [9]. 

L’édition des éléments Alu conduit à leur séquestration dans le noyau des cellules [10], 

empêchant ainsi leur interaction avec la machinerie de transposition de LINE1. L’édition des 

éléments Alu mute également leurs promoteurs internes, cible de l’ARN polymérase III 

(POLIII), et leurs queues poly-A, prévenant ainsi leur future rétrotransposition [11]. 
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Figure 1’ : Mécanisme de rétrotransposition des éléments Alu par “target-primed reverse 
transcription”. (1) L’élément Alu est transcrit en petit ARN de 300nt depuis son promoteur 
reconnu par POLIII et LINE1 est transcrit par l’ARN polymérase II. (2) Les transcrits LINE1 
et Alu sont exportés vers le cytoplasme. (3) L’ARN polycistronique de LINE1 est traduit en 
ORF1p qui est une protéine chaperonne et ORF2p qui est une endonuclease et une reverse-
transcriptase. Le transcrit Alu interagit avec SRP à proximité des protéines naissantes de 
LINE1. (4) Le transcrit Alu détourne ORF1p et ORF2p pour former un complexe qui migre 
vers le noyau (5). (6) ORF2p coupe l’ADN génomique à un locus contenant le motif TTTTAA. 
(7) la queue poly-A de l’ARN Alu se lie à l’extrémité poly-T de l’ADN génomique et l’ARN 
Alu est utilisé comme modèle par ORF2p. (8) ORF2p coupe le second brin d’ADN génomique 
et (9) l’ADN est réparé en incluant la nouvelle insertion de l’élément Alu. Les mécanismes 
exacts des parties 4, 5, 8 et 9 n’ont pas été validés. 

 

Les éléments Alu sont exprimés dans  la plupart des  tissues somatiques chez  l’humain et  la 

souris. 

A cause de leur nature répétitive, les éléments Alu sont systématiquement exclus de la plupart 

des analyses transcriptomiques et sont difficilement identifiables par les méthodes de biologie 

moléculaire basées sur l’hybridation de sondes (Northern-blot, PCR…). De ce fait, les 

propriétés de ces éléments sont très peu connues. La première partie de cette étude est une 

caractérisation précise de l’expression des éléments Alu réalisée en utilisant le nombre 

croissant de données de séquençage haut-débit disponibles. 

Dans un premier temps, afin de déterminer si les éléments Alu peuvent être caractérisés par 

séquençage haut-débit, leurs séquences ont été comparées systématiquement. Cette analyse a 

révélé que 96.6% des éléments Alu sont uniques dans le génome humain et que 80% des 
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éléments contiennent un segment poly-A de plus de 6 nucléotides. Plus de 90% d’entre eux 

peuvent être précisément identifiés par la plupart des séquenceurs haut-débit de dernière 

génération et les paramètres utilisés communément lors de l’analyse des données. Le segment 

poly-A signifie que la plupart des transcrits Alu peuvent être présents dans les banques de 

données transcriptomiques construites a partir d’ARN poly-adénylé. 

Les éléments Alu ont ensuite été annotés en fonction de (i) leur association avec POLIII, (ii) 

leur localisation dans la cellule et de (iii) leur profil d’expression dans seize tissus humains. (i) 

Pour déterminer quels éléments Alu ont conservé un promoteur reconnu par POLIII, des 

données de CHIPseq de POLIII produites à partir de cellules IMR90hTert ont été analysées. 

455951 loci Alu ont ainsi été trouvés associés avec POLIII dans cette lignée cellulaire. 

Contrairement à de précédentes études, la famille d’éléments Alu la plus représentée est la 

plus ancienne, AluJ, suivit par AluS et enfin AluY. (ii) Pour identifier les éléments Alu 

localisés dans les différents compartiments cellulaires, des données de séquençage de 

fractions polysomales, cytoplasmiques et nucléaires de cellules DLD-1 ont été utilisées. 

42964 éléments Alu ont été identifiés dans un ou plusieurs compartiments. L’analyse de deux 

banques de données supplémentaires de petits ARN (<500nt) associés à la chromatine a 

permis d’identifier 57038 et 27300 éléments Alu associés à la chromatine dans les cellules 

HeLa et fibroblastes respectivement. (iii) Enfin, l’Atlas de transcriptomes humains généré par 

Illumina pour seize tissues a été utilisé pour identifier spécifiquement le répertoire d’éléments 

Alu exprimés dans chaque tissue humain. Apparemment, tous les tissus observés expriment 

des éléments Alu alors qu’ils sont connus pour être fortement mutagènes et sont supposés être 

réprimés dans les tissues somatiques. 

Suivant l’annotation des éléments Alu et la découverte de leur expression dans la plupart des 

tissus humains, l’Atlas de transcriptomes a été utilisé pour explorer l’hypothèse que ces 

éléments rétrotransposent dans les tissues normaux. Etant non-autonome, la retrotransposition 

des éléments Alu est dépendante de l’expression des protéines chaperonnes et de la reverse-

transcriptase/endonuclease du retrotransposons autonome LINE1 (Figure 1’). Seulement 5500 

éléments LINE1 complets persistent dans le génome humain et approximativement 100 

d’entres eux sont capable d’exprimer leurs ORFs et de rétrotransposer. L’expression de ces 

5500 éléments a été suivie dans les 16 tissues de l’Atlas. L’organe exprimant la plus grande 

quantité de LINE1 est le cerveau, suivi par la glande adrénale, les ovaires, le cœur et les 

testicules. Il est important de noter que le cerveau, les glandes adrénales, les ovaires et les 

testicules expriment tous un niveau significatif d’éléments LINE1 et d’éléments Alu, 

suggérant fortement que ces éléments rétrotransposent activement dans ces tissues. 
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Afin de voir si l’expression de ces éléments dans les tissus somatiques est limitée à l’humain, 

neuf transcriptomes de souris ont été investigués. Le génome de la souris contient 564000 

éléments B1 qui, comme les éléments Alu, sont dérivés de l’ARN 7SL, 348000 éléments B2 

dérivés des ARN de transfert et qui présentent des propriétés similaires aux éléments Alu, et 

599000 éléments LINE1. N’ayant pas accès à un atlas de transcriptomes pour la souris, le 

Northern blot a été utilisé pour caractériser la présence de transcrits de LINE1, B1 et B2 dans 

les glandes adrénales, le cerveau, le cœur, les reins, le foie, les poumons, les muscles 

squelettiques, les testicules et le thymus de souris. Comme pour l’humain, LINE1, B1 et B2 

sont exprimés à différents niveaux dans tous les tissues observés. 

L’ensemble des ces résultats suggère fortement que la rétrotransposition est un mécanisme 

utilisé dans la plupart des tissus somatiques et dans les gonades, chez l’humain et chez la 

souris. Etant donné que la rétrotransposition est fortement régulée par le phénomène d’édition 

de l’ARN, nous avons cherché, dans la deuxième partie de cette étude, à caractériser les ARN 

ciblés par ADAR. 

Développement d’une méthode pour identifier les ARN édités par ADAR 

Caractériser les sites d’édition dans un transcrit est une étape primordiale pour comprendre la 

fonction et la régulation du transcrit. La découverte de nouveau sites d’édition s’est faite 

d’abord aléatoirement quand une mutation A/G était systématiquement observée en 

comparant la séquence d’un transcrit avec la séquence génomique correspondante. Ceci a 

ensuite été réalisé à haut-débit en comparant in silico des banques d’EST (Expressed 

Sequence Tags) à la séquence génomique de l’espèce concernée, révélant qu’il est très 

difficile de discerner les sites d’éditions d’erreurs de séquençage ou de SNP (Single 

Nucleotide Polymorphisme) et qu’il est nécessaire d’avoir de très larges banques de données, 

généralement construites a partir de plusieurs individus. Des méthodes expérimentales ont 

aussi été développées. Ohlson et al. ont utilisé la technique d’immunoprecipitation pour 

capturer les ARN liés à ADAR et une puce à ADN pour les identifier. Plus récemment, 

Sakurai et al. ont développé un protocole qui ajoute un groupe cyano-éthyle sur l’inosine pour 

identifier les sites d’éditions : la cyanoethylation de l’inosine stoppe l’élongation du cDNA au 

site édité lors de la rétrotranscription de l’ARN. En comparant ensuite la séquence du cDNA 

traité avec la séquence du cDNA normal, de nouveaux sites d’édition ont pu être observés. 

Finalement, Morse et Bass ont utilisé un traitement au glyoxal et à l’acide borique suivi d’un 

traitement à la RNAse T1 pour couper spécifiquement l’ARN au niveau de l’inosine et ont 

séquencé spécifiquement les ARN coupés. Le problème principal avec ces trois méthodes, 
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c’est qu’elles nécessitent toutes une connaissance de la séquence du transcrit étudié pour 

synthétiser les sondes de la puces à ADN ou les amorces de la PCR. Le but de la seconde 

partie de cette étude fut de mettre au point un protocole permettant d’extraire les ARN édités 

afin de les identifier par séquençage haut-débit sans a priori sur leurs identités. 

Dans un premier temps, nous avons tenté d’adapter le protocole d’immunoprécipitation 

d’Ohlson au séquençage à haut débit. Après plusieurs ajustements, un enrichissement en ARN 

connu pour être édité a été observé, mais la quantité d’ARN non édité ne diminuait pas 

significativement et la quantité d’ARN collecté n’a jamais été suffisante pour être séquencée. 

Afin d’augmenter le rendement de l’immunoprécipitation, deux méthodes de pré-

enrichissement, par gradient de sucrose et par purification du noyau, ont été testées sans plus 

de succès. 

Ensuite, la méthode développée par Morse et Bass a été expérimentée. Dans leur protocole, le 

traitement de l’ARN au glyoxal et à l’acide borique protège les guanines contre la RNAse T1. 

Les inosines, par contre, ne lient pas le glyoxal et restent sensibles au traitement à la RNAse 

T1. Sur cette base, une nouvelle méthode à été développée : d’abord l’ARN est fixé à des 

billes magnétiques par leurs extrémités 3’, ensuite, les billes sont traitées au glyoxal/acide 

borique et à la RNAse T1 pour libérer la région 5’ des ARN contenant une ou plusieurs 

inosines, et enfin, les ARN libérés sont séquencés par séquençage haut débit (Figure 2’). 
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Figure 2’ : Représentation schématique de la purification de l’ARN contenant des inosines. 

 

Une première série d’expériences à déterminée l’efficacité du traitement glyoxal/acide 

borique et RNAseT1, la meilleure façon de lier l’ARN à des billes magnétiques et les 

conditions optimales pour décrocher le glyoxal de l’ARN. Ensuite le protocole final a été 

assemblé et son efficacité a été testée par PCR en estimant le niveau d’enrichissement d’ARN 

ciblé par ADAR. Finalement, le protocole a été utilisé pour extraire les ARN édités du 

cerveau de souris afin de compléter la validation du protocole. L’analyse des données de 

séquençage à haut débit montre que le protocole enrichie efficacement les ARNs contenant un 

ou plusieurs sites d’édition et a permis d’identifier 1822 sites d’éditions, incluant 28 nouveaux 

sites présents dans des séquences codantes qui conduisent à des mutations non-synonymes des 

futur protéines. Des sites d’éditions ont aussi été observés pour la première fois dans les ARN 

ribosomaux, les snoRNA et les snRNA. 
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Chapter 1: Introduction 

The Alu elements 

Prevalence and origin of Alu elements 

Alu elements represent the most prolific primate specific Short Interspersed Nuclear Elements 

(SINE). With over one million copies representing 10.5% of the human genome [1, 2], these 

elements of roughly 300 nucleotides (nt) are derived from 7SL RNA (Figure 1A and B) [12-

15] and retrotranspose by “hijacking” the open reading frame (ORF) 1 and ORF 2 proteins 

encoded by the autonomous retrotransposon long interspersed element 1 (LINE1) (Figure 2) 

[3, 4]. Their incorporation into the primate genome occurred in three successive waves over 

the past 65 million years, and gave rise to three main families [16-18]: the old AluJ which 

arose 60 million year ago (Mya), the intermediate age AluS infiltrated the genome 44 to 32 

Mya, and the youngest AluY 24 to 4 Mya [19]. Due to their ubiquity in the primate’s genomes 

and their species-specific profile Alu sequences have been extensively used for determining 

primate phylogeny, and have helped to characterize the evolutionary relationship between the 

great-apes and humans (for review see: [20]). 
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Figure 1: A) Secondary structure of 7S/L RNA. The RNA is divided in two functional domains 
called S and Alu. The S domain of SRP binds nascent chains carrying a signal sequence while 
they emerge from the ribosome; the Alu domain mediates a transient delay in elongation. 
Boldface indicates the binding sites of SRP9/14 [21, 22]. Three base pairs are formed 
between two loops and are indicated by dots. B) Secondary structure of the full length Alu 
element established on an AluY sequence based on the structure established by [23]. Boldface 
and dots indicate the binding sites of SRP9/14 and the tertiary base pairing between the two 
loops, respectively, by analogy to SRP RNA. Open arrow indicates the 3′ end of scAlu RNA 
(116nt) and closed arrows the 5′ and 3′ ends of sRight RNA (155nt). scAlu and sRight RNAs 
represent monomeric left and monomeric right arms, respectively. Reprinted by permission 
from Oxford University Press: Nucleic Acids Research [24] copyright 2006. 
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Figure 2: Putative mechanism of retrotransposition of Alu elements by target-primed reverse 
transcription. (1) Alu is transcribed from its internal POLIII promoter as small RNA of 
~300nt and LINE1 is transcribed by POLII (in pink) [25]. (2) LINE1 and Alu transcripts are 
exported to the cytoplasm. (3) LINE1 polycistronic mRNA is translated in ORF1p (in orange) 
which is a chaperon protein [26-29] and ORF2p (in blue) which is an endonuclease and a 
reverse-transcriptase [30, 31]. Alu transcript interacts with SRP (in yellow) at the proximity 
of the nascent LINE1 proteins [24]. (4) Alu transcript hijacks ORF1p and ORF2p to form a 
complex which migrates to the nucleus (5). (6) ORF2p cleaves the genomic DNA (gDNA) at 
the following motif: TTTTAA [32]. (7) The poly-A tail of the Alu transcript binds the poly-T 
overhang of the gDNA and the Alu RNA serves as template for the ORF2p reverse-
transcriptase. (8) ORF2p cleaves the second gDNA strand and (9) the DNA is repaired 
including the new Alu insertion (review by [33]). The exact mechanisms of parts (4), (5), (8) 
and (9) have not been validated. 

 

Popular perception of Alu elements 

Along with all repetitive elements, the question as to whether Alus are a genomic parasite 

verses other possible roles as functional integrated genomic elements is still fiercely debated. 

When Barbara McClintock first discovered transposons in the 1950’s [34], she proposed that 

these mobile elements were responsible for programmed genetic changes during complex 

development, and therefore called them controlling elements. Although she was awarded a 

Nobel Prize in 1983 for the discovery of transposons, her original idea that they represented 

regulatory elements was largely ignored [35] and the idea of transposons as gene regulators 

was largely dismissed by the 1980’s. Moreover, due to their widespread distribution amongst 
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eukaryotes and lack of obvious functions, mobile elements were described as selfish parasitic 

elements that escaped natural selection by successfully invading and saturating non-critical 

genomic loci where they had no detrimental effects. Without phenotypic effects, their only 

function would be their own survival within the genomes they infiltrated, and once inserted 

they would be under minimal to no positive selection, with only a small minority being 

exapted into more noble functions [36-38]. This parasitic transposon view was adopted by the 

majority of the scientific world and is still widespread, despite the accumulation of evidence 

of the contrary: first, transposons are not passing through selection untouched; second, 

transposons are not passive occupants of the genome; and third, and most importantly for this 

study, transposons are not massively switched off transcriptionally by evolution but instead 

display regulated transcription in different tissues. Each one of these points is discussed 

below. 

Impact of Alu elements on the genome and the genes 

Rather than showing a random distribution throughout the genome, retrotransposons are 

encountered with some degree of sequence and genomic-context bias. Non-exonic regions 

derived from transposons were shown to be highly conserved and enriched near genes 

associated with the regulation of transcription and development [39]. More specifically, Alu 

elements tend to be encountered in GC-rich and gene-dense regions of the genome [40] and 

are more rapidly eliminated when inserted into AT-rich regions [12], raising the controversial 

idea of a selective advantage brought on by Alu insertions in gene-dense regions [1, 41, 42]. 

Retrotransposons have also been shown to impact highly the genome of their host and their 

expansion played a crucial role in facilitating the rapid evolution of higher eukaryotes [43, 

44]. Indeed, even though most retrotransposons are supposed to be transcriptionally inactive 

components of the genome, they have been shown to increase genomic plasticity and have a 

strong impact on transcriptomes [45]. At the genomic level they constitute recombination sites 

that allow exchange of DNA between and within chromosomes [20, 46], and on the 

transcriptomic level they donate new splice sites for alternative splicing of pre-mRNA [47] or 

new polyadenylation signals [48], act as targets of A-to-I RNA editing (explained in more 

detail below) [9-11, 49-51], create functional chimeric proteins by pseudogene 

retrotransposition into exons [52, 53], and catalyze exon shuffling [54]. As active elements of 

the genome they also promote gene duplications by transposing part of their flanking 

sequences along with themselves [55] or by transposing mRNA [56], and by providing new 

transcription factors binding sites [57, 58] or new promoters [59-61]. As an example of the 



  13

latter, it has been suggested that as many as 20% of all human micro RNAs (miRNA) are 

transcribed from Alu repeat POLIII promoters [62]. 

Transcription of Alu elements 

There are several lines of evidence supporting widespread transcription of retrotransposons. 

The majority of Alu repeats in particular have been shown to contain the necessary POLIII 

promoter sequences required for transcription initiation [63, 64], and in HeLa cells, the 

number of Alu transcript was estimated at ~100-1000 per cell under normal growth conditions 

[65]. Other surveys carried out in a variety of human cells also confirm that Alus are generally 

transcribed at low levels under normal conditions as either full length Alu repeats or in a 

truncated form called small cytoplasmic Alus (scAlu). The latter of these are made up with the 

left Alu monomer alone and arise due to premature POLIII termination sites, RNA 

degradation or processing of full length Alu transcripts [66, 67]. Not surprisingly, the young 

AluY which is supposed to be the family having accumulated fewer mutations, were found to 

be the repeats with the highest expression level in most tissues, although it is also clear that a 

number of older elements (i.e., AluJ), are still capable of driving transcription [66-69]. 

The level of transcription is dynamically regulated at individual Alu loci by DNA 

methylation, chromatin structure, flanking sequences, and promoter sequence variation 

(reviewed by [70]), and the number of transcripts has been shown to increase dramatically in 

response to various cellular stress conditions such as heat shock, cycloheximide treatment and 

viral infection [65, 71]. Alu transcription has also been shown to be up-regulated in some 

cancerous tissues as compared to normal tissues [72]. However, it is important to note that 

most investigations into the expression of Alu repeats have been carried out in immortal cell 

lines rather than in normal tissues [66, 67, 71-74]. This lack of in-depth studies of Alu 

expression in normal human tissues means that the full complement of Alu repeats that are 

actually capable of being transcribed is unknown. 

Activities of Alu elements 

Interaction with SRP 

Full length Alus and scAlus are found in both the nucleus and in the cytoplasm where at least 

some of them are believed to exist as ribonucleoprotein complexes (RNP) comprised of Alu 

RNA bound to the signal recognition particle 9/14 (SRP) [75], which in turn is involved in the 

translocation of nascent proteins to the endoplasmic reticulum. In the nucleus, these RNPs are 
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assembled in the nucleolus where there is evidence that they are post-transcriptionally 

modified at their 3’ ends by removal of some terminal nucleotides and by the addition of a 

single terminal adenylic acid residue prior to export to the cytoplasm [76-78]. 

Alu RNA bound to SRP 9/14 is believed to affect the synthesis of proteins at the stage of 

translation initiation upon binding to ribosomes which delays translation [24, 79], notably, it 

has also been shown that free Alu RNA have the opposite effect on translation and can cause 

an increase in the synthesis of proteins [24, 80]. In addition, the interaction of Alu repeats 

with ribosomes is also believed to be essential for their continuing activity as 

retrotransposons, since the Alu RNA must be in close proximity to an LINE1 transcript that is 

being actively translated on a ribosome in order to “hijack” the proteins encoded by LINE1 

[69]. 

Interaction with POLII 

In addition to the regulatory potential of Alu repeats at the level of protein translation, the 

murine Alu homologue B1 and the murine SINE B2 have also been found to affect the 

transcription of protein-coding genes. They carry out this function by binding directly to 

POLII and inhibiting its transcriptional activity [81-83]. Moreover, in humans the Alu repeats 

may bind POLII via either of the two Alu monomers, however only the right monomer 

appears to be capable of repressing transcription [83]. In mice, the related Sine B1, which 

closely resembles the left Alu monomer, is also able to bind POLII, but it does not affect its 

transcription. Curiously however, the B2 repeat which is derived from a tRNA and therefore 

not related to the human Alu repeat or B1 is able to both bind and silence POLII in a manner 

very similar to that of the right Alu monomer [82, 83]. It is remarkable that such unrelated 

retrotransposons have acquired identical functional properties in human and mice, and it 

underlines the regulatory potential of these repeats. 

The case of BC200 

Another example of Alu repeat exaptation is BC200, an anthropoid primate element that was 

one of the first Alus to show evidence of transcription [84]. It originated from the 

retrotransposition of a monomeric Alu element 35-55 Mya, and has given rise to more than 

200 pseudogenes in the human genome since then [85, 86]. The 200nt long BC200 transcript 

can be subdivided into three parts: a monomeric Alu at the 5’ end, an A rich region in the 

central part, and a BC200 specific sequence derived from the locus of integration at the 3’ end 

[87]. The BC200 transcripts are localized almost exclusively in the dendrites of neurons, 
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although some expression in the germ-cells and some cancerous tissues also occur [84, 87, 

88]. 

BC200 is believed to regulate protein synthesis in the post-synaptic regions of dendrites by 

interacting with at least four proteins involved in translation. First, due to the homology 

between the Alu-derived part of BC200 and 7SL RNA, it is capable of binding to the SRP 

[89]. Second, via its A-rich central region BC200/BC1 may also interact with the poly-A 

binding protein (PABP), a regulator of translation initiation [90]. Third, BC200 and its mouse 

functional homologue BC1 have also been shown to interact and determine the specificity of 

the fragile-X mental retardation protein (FMRP), a translational repressor of specific RNAs at 

synapses. It is believed to fulfill this function by binding to the FMRP protein and linking it to 

specific mRNAs through complementary strand recognition [91]. Finally, BC200/BC1 has 

also been shown to repress translation of mRNAs containing 5’ secondary structures by 

blocking the RNA helicase activity of the eukaryotic initiation factor 4A (eIF4A), thus 

preventing the assembly of the ribosomal complex onto the mRNA [92]. Curiously, BC200 

has two functional homologues derived from different transposition events in two unrelated 

orders: BC1 derived from tRNAAla and G22 derived from a dimeric Alu element, have been 

found in rodents [93-95] and in the Lorisoidea branch of prosimians respectively [96, 97]. 

BC200, the functionally related BC1 and G22 elements, and the similarity between Alus and 

B1s all represent fascinating examples of retrotransposon-derived noncoding RNAs that have 

acquired important regulatory functions in mammals. The observation that three 

evolutionarily unrelated yet functionally similar retrotransposon elements have been 

independently exapted in three different mammalian orders is remarkable, and highlights the 

functional significance of SINE elements in the nervous system and in mammalian evolution. 

Alu elements and editing proteins 

One important feature of Alu repeats that has been characterized in the past few years is their 

ability to interact with RNA editing enzymes. In the cytoplasm scAlu and full length Alu 

elements bind to the C-to-U editing enzyme APOBEC3G. Unexpectedly, this interaction does 

not lead to editing [98] but to the sequestration of Alu elements in high molecular mass 

ribonucleoprotein complexes like the Staufen-containing granules [99], which are involved in 

nuclear-cytoplasmic shuttling and in dendritic RNA targeting in neurons (reviewed in [100]). 

The purpose of this interaction was proposed to be the sequestering of Alu transcripts away 

from the LINE1 machinery required for their retrotransposition, which would inhibit 
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detrimental Alu retrotransposition [101]; however, this interaction results in the inactivation 

of the editing function of APOBEC3G [99]. A more elegant explanation would be the 

transport of Alu transcripts to their “working place” in neurons expressing APOBEC3G [102] 

but this hypothesis remains untested. 

In the nucleus, Alu elements were shown to be the main target of A-to-I editing by the 

adenosine deaminase acting on RNA (ADAR) family of proteins, with 92% of A-to-I editing 

events occurring in Alu elements in human [9]. It was shown that as integral elements of 

RNA, Alus can form a duplex with an adjacent inverted homologue, which promotes 

hyperediting of the RNA secondary structure and leads to retention of the mRNA in the 

nucleus [10]. Editing of Alu by ADAR was also proposed to significantly modify the structure 

and abundance of transcripts by creating alternative splice sites, by changing codons in exons, 

by interfering with the RNAi pathway and by potentially promoting heterochromatin 

formation (reviewed in [11]), also this is supported by less evidence. A more detailed 

description of the interaction between ADAR and repeats can be found in the section entitled 

“A-to-I editing in the untranslated regions of genes”. 

A‐to‐I RNA editing 

RNA editing is the modification of nucleotides in an RNA molecule and was first observed in 

the cytochrome C oxydase subunit II of the Trypanosoma where uracil residues were found to 

be either inserted or deleted in the primary transcript [103]. Shortly after this, a C-to-U editing 

event was described in the apolipoprotein B transcript in mammals [104, 105], as well as A-

to-I editing events in double stranded RNA in Xenopus [106, 107]. Since then, a whole 

diversity of nucleotide modifications have been characterized in all classes of organisms, 

predominantly in tRNA, rRNA and mRNA [108], and amongst these A-to-I editing is 

considered the most prominent type of editing in higher eukaryotes [5]. 

The ADAR family 

Most A-to-I editing in mammals is catalyzed by the Adenosine Deaminase Acting on RNA 

(ADAR) family of proteins, which appeared after the split of protozoan and metazoan and are 

found in all multicellular animals from worms to human, although they are absent in yeast and 

plants [109]. The ADAR proteins are encoded by three genes in vertebrates, ADAR 1, 2 and 3, 

and evolved from the Adenosine Deaminase Acting on tRNA (ADAT) family, which is 

present in all eukaryotes including yeast and plants [110], by acquiring a double stranded 

RNA binding domain. 
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ADAR1 encodes two main isoforms from three distinct promoters [111, 112] (Figure 3). The 

long isoform, ADAR1p150, is transcribed from an interferon inducible promoter [113], 

contains two Z-DNA binding domains Zα and Zβ [114, 115], three dsRNA binding motifs and 

one deaminase domain and is upregulated in infectious conditions [112, 116]. The short 

isoform, ADAR1p110, is transcribed from a constitutive promoter into a splice isoform of 

ADAR1p150 which misses the first Z-DNA binding domain [111, 113]. This isoform 

contains one Z-DNA binding motifs Zβ unable to bind Z-DNA [115, 117] and like 

ADAR1p150, three dsRNA binding domains and one deaminase domain. The two isoforms 

present similar editing activities [118] but their localizations in the cell differ. ADAR1p150 is 

present mostly in the cytoplasm with minimal localization in the nucleus, whereas 

ADAR1p110 is localized to the nucleus and accumulates in the nucleolus [113, 119]. 

Similar to ADAR1p110, ADAR2 also localizes to the nucleus and accumulates in the 

nucleolus [119], and its expression is induced by the transcription factor cAMP response 

element-binding (CREB) [120]. The ADAR2 gene produces many isoforms due to alternative 

splicing [121-123], and amongst these three have been characterized in depth (Figure 3). The 

major splice isoform is ADAR2a, which contains two dsRNA binding domains and a 

deaminase domain, and is the isoform usually used to produce ADAR2 for protein assays 

[124, 125]. ADAR2b is organized the same way but contains an Alu insert in the deaminase 

domain, which reduces the deaminase activity of the protein by approximately two fold [126]. 

Finally, ADAR2R contains an additional exon which adds a single stranded RNA binding 

domain upstream of the dsRNA binding domains [127]. ADAR2 proteins are expressed 

ubiquitously and both ADAR2a and ADAR2b are expressed at similar levels and produce the 

majority of the ADAR2 protein present in the cell [128]. ADAR2R is a minor isoforms whose 

level of transcription is dependent of the tissue: for example, it represents ~10% of the ADAR 

transcripts in the hippocampus, 5% in the colon, 2.5% in skeletal muscle and 1% in heart 

[127]. 

ADAR3 is localized to the nucleus of cells [129], and only one protein has been characterized 

to any degree. Similar to ADAR2a, ADAR3 contains two dsRNA binding domains and one 

deaminase domain but it also possesses an ssRNA binding domain in the N-terminus. ADAR3 

is expressed exclusively in the brain, specifically in the amygdala, the thalamus, the cerebral 

cortex and at a lower level in the cerebellum, the occipital pole, the frontal lobe, the temporal 

lobe, the caudate nucleus and the hippocampus. Since no editing functions have been shown 

in vitro, it was proposed to function as a competitive inhibitor of ADAR1 and 2 [130, 131]. 

However, it is important to note that homodimers, the structure necessary for an editing 
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activity for ADAR1 and 2, could not be obtained in vitro for ADAR3 even though such 

structure are present in vivo [132]. 

Figure 3: Structure of the different isoforms of ADAR proteins in human. The Z-DNA binding 
domains are represented in green, the dsRNA binding domain in red, the deaminase domain 
in blue, the Alu insert in yellow and the R domain with an orange line. 

 

The A‐to‐I editing reaction 

Conversion of A‐to‐I by ADAR 

ADAR1 and ADAR2 convert adenosine to inosine by C6 hydrolytic deamination of 

adenosine in dsRNA [106, 133]. In this reaction, the ADAR dsRNA binding domain first 

recognizes the double stranded structure of a transcript. To be recognized, the double stranded 

region needs to be at least 20nt long (that is two turns of a dsRNA helix), and can be formed 

by two individual RNAs or within the same RNA by a stem-loop [134] or a pseudoknot [135]. 

Next, the ADARs form a homodimer through their dsRNA binding motifs around the dsRNA 

region [136-138] and deaminate the adenosine. If the dsRNA helix is perfect, the A-to-I 

conversion can occur in up to 50% of the A present in the dsRNA [139, 140]. However, 

imperfections in the dsRNA limit A-to-I conversions to specific sites, as observed in the 

glutamate receptor GRIA2 [141, 142] and in the serotonin receptor 5-HT2C [143, 144]. A:C 

mismatches in the dsRNA constitute favored editing sites for both ADAR1 and 2 [145], 
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although the edited A are also selected according to their nearest neighbours, ADAR1 and 

ADAR2 will preferentially edit A with U>A>C>G in 5’ position, and in the 3’ ADAR1 favors 

G>C≈A>U, and ADAR2 G>C>U≈A [146, 147]. Finally, the tertiary structure of the dsRNA 

was also shown to impact the position of the editing site: when adenosines are edited in group, 

all edited nucleotides appear on the same side of the double helix [148]. 

Notably, the sites to be edited are not targeted by ADAR1 or ADAR2 with the same 

efficiency. For example, the serotonin receptor 5-HT2C contains five well characterized 

editing sites identified by the letters A to E [144, 149, 150]. Amongst those, sites A and B are 

predominantly edited by ADAR1, C and D are altered by ADAR2, and site E is edited to a 

lower extent by both enzymes [130, 143, 144, 147, 151]. Similarly, the glutamate receptor 

GRIA2 possesses two editing sites extensively described: the R/G site is edited by both 

ADAR1 and 2 whereas the Q/R site is edited exclusively by ADAR2 [152-154]. This 

disparity in site recognition between the two enzymes is conferred by both their deaminase 

domain and their dsRNA binding domain [145, 147]. 

Factors influencing the conversion 

In addition to the structure of its target, ADAR activity is also constrained by its localization 

in the cell. For example, both ADAR1p110 and ADAR2 localize in the nucleolus, and when a 

transcript to be edited is produced both enzymes delocalize from the nucleolus and migrate to 

the location where the substrate transcript accumulates [119]. It was also shown that a 

transcript expressed directly in the nucleolus could be edited by ADAR2 but not by ADAR1, 

suggesting that ADAR1 is inactive in the nucleolus [155]. The localization of ADAR2 in the 

nucleolus was shown to be dependent of the presence of rRNA and PIN1. The interaction of 

ADAR2 with rRNA is supposed to sequester ADAR2 to the nucleolus on dsRNA fragment 

where it does not produce any editing [156]. The interaction of ADAR2 with PIN1 is 

dependent of two phosphorylations in the N-terminal region of ADAR2 and occurs after the 

binding of ADAR2 to a dsRNA. This protects ADAR2 from degradation promoted by 

ubiquitin ligase WW domain containing protein 2 (WWP2) and increase ADAR2 editing 

activity [157]. 

ADAR activity can be further modulated by several other factors. In Addition to ADAR3 

which can acts as a competitive inhibitor [130, 131], ADAR2 activity is impacted by the IP3 

pathway: an inositol hexakisphophate (IP6) inclusion into ADAR2 structure is necessary for 

proper folding of the active protein [158]. Finally, snoRNAs are also able to inhibit editing by 
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adding a 2’-O-methyl to the nucleotide to be edited, which reduces editing efficiency ~200 

times [159]. This regulation occurs on 5-HT2C whose editing site C is modified by the C/D 

box snoRNA HBII-52, thus reducing the efficiency of the editing at this site [155, 160]. 

Consequences of editing on the transcript 

The replacement of the primary amine of the A by an atom of oxygen to make I drastically 

changes the physicochemical properties of the nucleotide (Figure 4). Indeed, once the A is 

changed into I, it will be read as a G by the translatory machinery and will pair preferentially 

with C in the secondary structure of the RNA [161-163]. Such changes in a transcript directly 

impact its function. 

Figure 4: Chemical structures of the adenosine, the inosine and the guanosine 

 

Editing in the coding sequence (CDS) 

When the editing occurs in the CDS of a transcript, it changes the sequence of the protein and 

potentially its property, which is the case for the glutamate receptor and the serotonin receptor 

that were described previously. In the glutamate receptor subunit GRIA2, A-to-I editing 

changes systematically a genomic encoded glutamine (Q) into an arginine (R) in the second 

transmembrane region of GRIA2 [164]. This change alters the permeability of the channel to 

Ca2+ ions [165] which was later shown to be essential for a normal brain development [166]. 

GRIA2 also contains a second site where arginine is changed to glycine, which modifies the 

kinetics of the receptor; this editing site is also observed in the subunits GRIA3 and GRIA4 

[142]. The coding region of the serotonin receptor 5-HT2C contains five editing sites, A to E, 

modifying three amino acids (aa) located on its second intracellular loop. The first aa to be 

modified in position 156 is a genomic encoded isoleucine converted to a valine when A or A 

and B are edited, or to a methionine when B alone is edited. The second aa in position 158 is 

an asparagine converted to a serine when C is edited, to an aspartate when E is edited and to a 

glycine when both C and E are edited. The last aa in position 160 is an isoleucine converted to 
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a valine when D is edited. The conversion of these aa modify the interaction of the receptor 

with the G protein [144, 150]. Interestingly, a regulatory feedback loop of 5-HT2C was 

proposed where activation of the receptor by serotonin induces the production of IP6, which 

in turn activates ADAR2; activated ADAR2 then edits 5-HT2C transcripts to reduce their 

sensitivity to serotonin [158, 167]. Modifications of the primary sequence of a protein by A-

to-I editing has been observed in other genes primarily involved in nervous system 

development and function [168] such as GABRA3 [169, 170] and KCNA1 [171], and 

Pullirsch and Jantsch reported an additional 38 proteins modified by A-to-I editing [8]. 

A‐to‐I editing in the untranslated regions of genes and ncRNA 

The modification of CDS by A-to-I editing represents a small minority of the editing events, 

as the majority of A-to-I editing occurs in non-coding RNA or non-coding regions of pre-

mRNA, mainly in regions containing repetitive elements such as Alu elements or LINE1 

[172]. In such cases, two closely related repetitive elements oriented sense and antisense to 

each other form the double stranded structure required for ADAR editing [49]. In humans, 

nearly 15,000 editing sites of this kind have been identified in approximately 2,000 genes [9, 

50, 51, 173], with 88% to 92% of editing events occurring in Alu elements integrated into 

longer transcripts [9, 51]. 

Creation and deletion of splicing sites 

Editing in non-coding regions can also modify splicing. For instance, ADAR2 edits its own 

pre-mRNA to create a new splice junction inside an intron, which leads to the production of a 

truncated transcript that would produce a non-functional ADAR2. This mechanism of 

ADAR2 auto-editing was proposed to act as a way to reduce the production of ADAR2 when 

needed [6]. Removal of splice junction by editing has also been observed in Drosophila with 

4F-RNP [7] or in mouse with PTPN6 [174]. Notably, it was shown that 5-HT2C splicing 

pattern was also dependent of editing at specific sites but 5-HT2C does not possess any 

editing site located on splice junction. This suggests that it is the structural change produced 

by editing that modifies splicing [175]. 

Hyperedited RNA in the nucleus and cytoplasm 

The dsRNA structure formed by two repetitive elements in a transcript can lead to its 

hyperediting [176]. Such events were shown to promote the retention of transcripts in nuclear 

paraspeckles, through their interactions with the nuclear RNA binding protein p54nrb and the 
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non coding RNA Neat 1 [10, 177, 178]. The storage of RNA in paraspeckles was proposed to 

be a way of releasing transcripts when required, as illustrated by the cationic amino acid 

transporter 2 (Cat2) in mouse. Cat2 encodes two transcripts, one of which is exported to the 

cytoplasm to be translated (CAT2) and one which contains one repeat in sense orientation and 

three antisense repeats in its extended 3’UTR (CAT2 transcribed nuclear RNA: CTN-RNA). 

As expected, the 3’UTR of CTN-RNA is hyperedited and the transcript is sequestered into 

paraspeckles in the nucleus. Under stress conditions though, the 3’UTR of CTN-RNA is 

cleaved, the transcript is freed from the nucleus and migrates to the cytoplasm where it is 

translated [179]. 

In the cytoplasm, hyperedited transcripts were shown to be cleaved by the Tudor 

Staphylococcal Nuclease (TUDOR-SN), a subunit of the RNA-induced silencing complex 

(RISC) [180], to localize to stress granule along with ADAR1p150 and to down-regulate 

translation in trans [181, 182]. It was suggested that these interactions are part of a mechanism 

of cell survival during stress conditions [181]. However, the full pathway of such mechanism 

is not elucidated yet. 

Editing and miRNA 

miRNAs are transcribed as long primary miRNAs (pri-miRNA), and are processed into ~60–

70-nt precursor miRNAs (pre-miRNA) in the nucleus by the ribonuclease III-like enzyme 

DROSHA. After nuclear export, the pre-miRNAs undergo further processing by DICER into 

~20–22nt mature miRNAs, which are then loaded into RISC. RISC uses the miRNA to scan 

mRNA and block the translation of partially complementary mRNAs, and can also cleave 

mRNA showing higher complementarity (reviewed in [183]). Editing on 47 pri-miRNAs were 

reported so far [184], and A-to-I RNA editing can impact the miRNA pathway in several 

manners. First, by altering the mRNAs, it can create new regions recognized by miRNAs 

[185]. ADAR can also directly target the dsRNA structure formed by the pri-miRNA [186, 

187], the editing of which can block processing of the pri-miRNA by DROSHA [188] or 

processing of the pre-miRNA by DICER [184, 189]. If the edited pri-miRNA is successfully 

processed into a mature miRNA, the editing sites on the miRNA can change the panel of 

genes to be silenced [190]. It may also change the miRNA strand which is loaded in RISC if 

the editing occurs at the extremities of the miRNA [191-193]. 
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Consequences of editing on the organism 

A-to-I editing has critical effects on coding and non-coding transcripts which can directly 

translate into an altered phenotype. For example, the ADAR mutants that have been created 

for several organisms so far highlight the role of ADAR in development and its key 

involvement in nervous system development. In Caenorhabditis elegans, mutants for ceADR1 

and ceADR2 display altered chemotaxis due to an impaired nervous system [194]. In 

Drosophila, adult mutants with dADAR deletion exhibit altered nervous system functions 

such as slow uncoordinated locomotion, abnormal body posture, temperature-sensitive 

paralysis and brain degeneration, effects that can be explained by the lack of editing in ion 

channels of the nervous system [195]; notably, the dADAR mutant phenotype can be rescued 

by the human ADAR2 [196]. In mouse, ADAR2 knock out mutants experience repeated 

epileptic seizures and die in the three weeks after birth, a phenotype due mainly to lack of 

editing at the GRIA2 Q/R site [166]. When the GRIA2 Q/R site is rescued, ADAR2 knock out 

mutants show an increase in IgE level which could potentially modify the response of the 

mouse to allergens, as well as a change in sensorimotor integration linked to the 

neurochemical system, hearing deficit and overexpression of genes involved in 

neuroprotection and synaptic trafficking [197]. Murine ADAR1 knock out mutants manifest 

severe defects in hematopoiesis and die around embryonic day 12 [198-200], and conditional 

deletion of ADAR1 in hematopoietic cells revealed that RNA editing by ADAR1 is also 

primordial for the hematopoiesis in the adult mouse by down-regulating interferon inducible 

transcripts which can lead to apoptosis [201, 202]. In humans certain alleles of ADAR2 and 

ADAR3 are associated with longevity [203], and conversely, dysfunctions of ADAR proteins 

are associated with diseases (for a detailed list of human disease in which ADARs are 

involved refer to Gallo [204, 205]). Mutations in ADAR1 were associated with dyschromatosis 

symmetrica hereditaria [206], underediting of GRIA2 at the Q/R sites due to dysfunction of 

ADAR2 was linked to sporadic amyotrophic lateral sclerosis [207, 208], glyomas [209, 210] 

and epilepsy [211]; and altered editing of 5-HT2C was linked to depression and suicide [212-

214]. Finally, in octopuses, editing was shown to modify a K+ channel in response to cold 

environment leading to the production of a more effective channel to adapt the organism to 

the polar conditions [215]. 

Method to identify the targets 

The characterization of A-to-I RNA editing sites is a critical step to comprehend the functions 

and regulation of a gene, and several approaches have been used to identify these sites. 
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Bioinformatic approach 

Editing sites were first detected serendipitously when A-to-G mismatches were observed by 

comparing the genomic DNA (gDNA) sequence of a gene to its cDNA sequence. Once the 

human genome and the mouse genome were successfully sequenced [1, 216], a more 

thorough comparison was performed by comparing expressed sequence tag (EST) datasets 

against the respective genomes, and in 2004, four teams published the results of this 

comparison. Kim et al. found 2674 edited transcripts across 30 human tissues and 91 edited 

transcripts in mouse [51]. Athanasiadis et al. reported 1445 edited mRNA in 13 human tissues 

[50]. Levanon et al. identified 1637 edited genes in human [9], and Blow et al. recognized 

1727 edited transcripts in the human brain [173]. In their reports, the four teams 

acknowledged the difficulty of distinguishing editing sites from sequencing errors or single 

nucleotide polymorphism (SNP) and applied filters to minimize the impact these factors. 

Another difficulty was that this approach was directly dependent on the tissue and the depth 

of the EST databases. As a result, neither GRIA2 nor 5-HT2C editing sites were detected. 

Experimental approach 

Several “wet lab” approaches were also developed to enrich and identify edited RNAs on a 

moderate scale. Ohlson et al. generated an antibody targeting ADAR2 that would co-

immunoprecipitate RNAs bound to the editing protein, followed by identification of the 

captured RNAs by micro-array (results not available) [217, 218]. Sakurai et al. used inosine 

cyanoethylation to characterize editing events. The cyanoethylation of inosine prevents the 

elongation of cDNA at the inosine when reverse transcribing the RNA. By comparing treated 

cDNA versus untreated cDNA, new editing sites could then be observed. Using specific 

probes, 642 regions were targeted and 5,072 editing sites were found [219, 220]. Morse and 

Bass developed a method using glyoxal and RNAseT1 to specifically cleave RNA at inosine 

sites and followed by sequencing of the cleaved RNAs [221]. Finally, Li et al. used a padlock 

probe to capture sequences of potentially edited RNAs and their gDNA counter-parts, 

followed by deep sequencing of both RNA and gDNA to identify A-to-I editing events. Out 

of the 36,208 sites which were selected for their analysis, they identified 239 edited sites 

[222]. The main issue with all of these methods is that they require prior knowledge of the 

sequence of interest to assess its editing level. Also, the use of specific probes to target the 

chosen sequences is not compatible with high throughput discovery of editing sites. 
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RNA editing and Alu elements encode complexity 

The widespread distribution of Alu elements in the human genome and transcriptome, their 

privileged relationship with editing enzymes, and the preponderance of editing in brain were 

interpreted by Mattick and Mehler as a way to explain the evolution of cognition in human 

[223-225]. The development of complex organisms is mainly regulated by non-coding RNA 

rather than by proteins [223]. Proteins modifying RNA therefore constitute a way to integrate 

environmental conditions at the molecular level in a system where environmental stimuli 

could alter encoded genetic information, which in turn modifies gene regulation and function 

by acting on non-coding RNA. Due to their ability to travel between the dendrites and the 

nucleus, to be edited, and to induce epigenetic and genetic modifications, Alu elements 

expressed in the brain might constitute an interface between the environment and the neurons’ 

genome. Acting on neuronal plasticity and brain development, and being one of the major 

constituents of the human genome, Alu elements were proposed to be the molecular basis of 

long term memory and higher order of cognition and to have been positively selected for on 

this basis [224]. 

In the Mattick and Mehler proposal [224], the mechanism modulating the nervous system is 

similar to the one observed in the adaptive response of the immune system. In the adaptive 

immune system, the genomes of the B lymphocytes are modified at the immunoglobulin (Ig) 

loci by recombination and editing to generate a panel of Ig which provides the organism with 

the most effective antibody against a specific antigen. The B lymphocytes providing the best 

response are then used to degrade the antigen, and are preserved as memory of this response 

in case of a second invasion. By analogy, recoding of DNA in nerve cells was proposed to be 

the main mechanism by which productive or learned changes induced by RNA editing are 

rewritten back to the DNA, which would fix the altered genotype once a particular neural 

circuitry and epigenetic state has been established. In this mechanism, RNA-editing plays a 

primordial role by establishing a certain epigenetic state as a function of the environment by 

altering specific RNA elements; this in turn leads to DNA recoding through DNA repair 

enzymes. 

Consistent with the proposal for a central role of Alu sequences in the development and 

function of the human brain, recent data suggests that a large number of ~300nt long Alu 

elements is over-expressed in the human brain compared to testes (Croft and Mattick, 

unpublished data; Figure 5). A recent study also revealed that Alu elements actually 
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retrotranspose in the normal human brain, thus change of the neuronal genome is not 

exclusive to cancer but also occurs in normal tissue [226]. 

Figure 5: Scatter plots of small RNAs (<300nt) expression level in human brain and testis 
measured by microarray. The microarray was designed by Larry Croft to target human 
miRNA and regions of the human genome predicted to encode RNAs containing stem-loop 
structures. The signals corresponding to Alu sequences are colored in red, miRNAs are in 
blue, control probes (spike-in control, GAPDH, Actin and 5S rRNA with match and mismatch 
probes) are in black and other predictions in yellow. The data were provided by Larry Croft. 

 

Final considerations 

There are 1,194,734 Alu elements in the human genome, which represents approximately 

10% of its total size. Along with the fact that most Alu elements carry a functional promoter, 

and that small Alu transcripts are enriched in human brain, a deep analysis of small Alu 

transcriptions would allow us to uncover a poorly characterized part of the human 

transcriptome; this in turn may provide insight into still to be discovered regulatory networks 

in human brain. 

Alu elements are also part of the majority of the transcripts and represent the main target of 

RNA-editing. By extension, RNA-editing is a mechanism able to reach all cellular processes. 

The prevalence of RNA-editing in human, and specifically in the brain, potentially implicates 

this mechanism as a powerful driver in what differentiates humans from other animals: the 

cognition. Uncovering the targets of RNA-editing will reveal the wide repercussion of such a 
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mechanism on human development, and may help to elucidate the molecular basis of the 

human brain abilities. 

In an original model, Mattick and Mehler proposed that the basis of human cognition is the 

recoding of DNA mediated by RNA-editing and Alu elements. If proved to be true, this 

hypothesis may revolutionize the understanding of the brain development and challenge the 

dogma that genomes constitute stable blueprints of the organisms. 
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Chapter  2:  Characterization  of  small  Alu  elements  in  the  human 

transcriptome 

Several studies have attempted to characterize Alu elements, by determining which ones are 

transcribed [65-67, 227], bind protein complexes [75, 228, 229], control the translation of 

protein [24, 79, 80] or are able to retrotranspose [3]. However, most of these have performed 

their analysis on a limited number of Alu candidates, or have used a consensus sequence 

based on the three main Alu families and pursued subsequent analysis in cell or in vitro 

assays, and thus relate only to a limited subset of Alus amongst the 1,194,734 elements 

present in the genome. Critically, such studies do not allow accurate inferences to be made 

about the role of the majority of these elements. To precisely characterize the properties or 

functions of each Alu element, high-throughput methods are required but since one of the first 

steps in most of high-throughput analyses is to discard all repetitive elements, only a few 

published reports can be found with inclusion of repeats in their datasets [45]. 

In the first part of this thesis, Alu elements were annotated in function of their genomic 

environment and time of apparition; then the view that repetitive elements cannot be 

characterized by deep sequencing was challenged, followed by functional annotation based on 

their potential to bind POLIII and their localization within the cell. Next, sixteen human 

somatic tissues were screened for Alu and LINE1 elements expression to demonstrate that 

retrotransposition is possible in normal tissues. Further retrotransposons screening in mouse 

tissues showed that retrotransposition in somatic tissues may not be limited to human, and 

pair-end transcriptomic datasets were analyzed for chimeric transcripts to identify new 

transposon insertion sites in human. Finally, a database that assembles all the information 

generated in this study was constructed. 

Genomic location and conservation of Alu elements 

The genomic environment of each Alu elements was determined by intersecting Alu elements 

coordinates from Repbase [230] with the coordinates of the promoter region of each gene, the 

5’UTR, the coding exons, the exons from non-coding RNA, introns, and the 3’UTR of the 

University of California Santa Cruz (UCSC) genes dataset [231], and all Alu that did not 

overlap with these regions were considered intergenic. 571,938 Alu elements were located in 

intergenic regions, 600,628 in introns, 8,855 in promoters, 9,343 in 3’UTR, 3,684 in 5’UTR 

and 286 in CDS (Figure 6A). It appeared that Alu elements were enriched in intronic regions 
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with a density of 0.47 Alu elements/kb; the intergenic density is slightly lower with 0.40 

elements/kb, promoters contained 0.20 elements/kb, 3’UTRs 0.22 elements/kb, 5’UTRs 0.18 

elements/kb and the CDS 0.003 elements/kb (Figure 6B). 

Figure 6: A) Genomic location of Alu elements in the human genome (hg19). Alu elements 
inserted in intergenic regions are represented in blue, introns in red, promoters in green, 
3’UTRs in yellow, 5’UTRs in orange and CDS in brown. The y-axis is the number of Alu. B) 
Relative coverage of each genomic location by Alu elements. The y-axis is the number of Alu 
elements per kilobase of genomic location. 

 

To estimate the time of apparition of each Alu element, homologues were searched for in the 

genomes of Marmoset, Rhesus, Orangutan and Chimpanzee that split from Human 35-40Mya, 

23-25Mya, 14Mya and 6Mya respectively [232]. 253,425 Alu elements were present in the 

genome before the separation of the new world monkey from other primates at 35-40Mya, 

mostly AluJ and AluS but also the less prolific ancestral families FAM, FLAM and FRAM 

(Figure 7). At the separation of the old world monkey from the other primates at 23-25Mya, 

359,202 additional Alu elements were integrated in the primate genome, the majority of them 

being from the AluS family. At the split between Orangutan and other primates, around 

14Mya, 223,786 other Alu elements have appeared which was also the point when the 

majority of the AluY population appeared. At 6Mya, the separation period of chimpanzee and 

human, the rate of expansion was reduced for all the families, and only 84,986 Alu elements 

integrated into the genome. Finally, since the separation of chimpanzee and human, 43,209 

Alu elements have appeared in the human genome (Figure 7). 
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Figure 7: Time of integration (in million years) of the human Alu elements in the genome per 
family: FAM in orange, FLAM in light blue, FRAM in yellow, AluJ in red, AluS in blue and 
AluY in green. The time of integration is based on the conservation of the human Alu elements 
in Marmoset, Rhesus, Orangutan and Chimpanzee and the phylogeny of primates calculated 
by Marques-Bonet et al. [232]. 

 

Alu elements are mostly unique and can be identified by deep sequencing 

Although Alu repeats are quite similar in their primary sequences, systematic comparison of 

all human Alu sequences showed that 96.6% of Alu elements present a unique sequence in the 

human genome (personal data and [233]). In this thesis, transcriptomic data generated by deep 

sequencing was used to identify transcribed Alu elements. To assess the extent to which Alu 

elements can be accurately identified with this technology, the number of Alu elements that 

could be identified by a uniquely mapping tag was calculated, as a function of the length of 

the tag and the number of mismatches allowed (Figure 8A). Over 90% of Alu elements could 

be uniquely identified by sequence reads of at least 60nt when allowing for two mismatches, 

which corresponds to the length given by most current deep-sequencers. The first generation 

of deep-sequencers returned sequences of 36nt long, and at this length up to 94% of Alu 

elements can still be uniquely identified when the mapping is performed without mismatches; 

if two mismatches are permitted for the mapping, this number drops to 66%. Moreover, since 

most of the transcriptomic data available was from poly-adenylated RNA, the number of Alu 

elements containing a poly-A segment was also estimated as this would render them prone to 

poly-A RNA purification techniques (Figure 8B). 80% of Alu elements (957,596 elements) 

contained a poly-A segment of at least six adenosines and 50% of Alu elements contained 

nine or more adenosines (Figure 8B). According to this analysis the transcriptional state of 
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most Alu elements can be determined by screening deep-sequencing datasets even if those 

datasets are generated with first generation deep-sequencers or from poly-A purified RNA. 

Figure 8: A) Proportion of Alu elements that can be identified by a unique tag in function of 
the length of the tag assuming zero to three mismatches. B) Number of Alu elements 
containing a poly-A segment of the length indicated on the x-axis. 

 

 

Transcription of Alu elements by POLIII 

Alu elements detected in transcriptomic data can be derived from POLII transcription of 

genes containing Alu insert or by POLIII from transcription of the Alu element itself due to its 

internal promoter. To determine which elements were more likely to be transcribed by 

POLIII, publically available POLIII CHIP-seq data from IMR90hTert cells (human lung 

fibroblasts) [234] was analyzed for Alu elements binding. The pull-down assays were 

performed using antibodies targeting either POLIII directly or two sub-units necessary for the 

building of POLIII complex on the promoter, BDP1 and BRF1. The DNA associated with the 
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proteins was sequenced with Illumina with a protocol returning 35nt long sequences (Table 1) 

[234]. The dataset was generated initially to identify genes transcribed by POLIII and Canella 

et al. focused mainly on rRNA, tRNA and others genes but no deep analysis of Alu elements 

bond to POLIII was performed. The dataset was reanalyzed targeting mainly Alu elements, 

detecting 455,950 elements that associated with at least one of the above POLIII proteins in 

IMR90hTert cells (Figure 9A). It was estimated that 64% of these elements contained the B-

box necessary for transcription [63], and 25.2% contained both an A-box and B-box (Figure 

9B). It is also important to note that 24.2% of the Alu elements that associated with POLIII 

did not contain POLIII internal promoter. This may reflect experimental bias or an unknown 

POLIII binding site, or may be the consequence of Alu loci pull-down along an adjacent 

POLIII transcribed gene. 

Table 1: POLIII Chip-seq data summary (analyzed from [234]). 

Dataset 
Number of 

tags 
Mappable tags 

Tags mapping to 
Alu elements 

Number of 
Alu elements 

POLIII  37,655,093  15,799,677  306,777  229,498 

BRF1  25,293,242  16,801,904  320,925  183,835 

BDP1  20,335,637  13,490,225  292,081  197,184 

Figure 9: A) Venn diagram representing the number of Alu elements present in the POLIII 
(red), the BRF1 (blue) and the BDP1 (green) Chip-seq dataset. B) Venn diagram representing 
the percentage of Alu elements detected by Chip-seq containing an A-box (green) or a B-box 
(red). 

 

Previous studies reported that the young AluY family is the family predominantly transcribed 

in NTera2D1 pluripotent cells [67, 68]. However, the analysis on IMR90hTert cells reveals 
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that the old AluS and AluJ families are more frequently associated with POLIII than the 

young AluY family, with 55%, 34% and 21% of the members of each family found associated 

with the POLIII complex respectively (Figure 10), which in turn suggests that the old AluS 

and AluJ families are more frequently transcribed than the young family AluY. To determine 

if this observation was due to removing all repetitive elements from the analysis, multi-

mapping tags were included in a secondary mapping analysis that returned highly similar 

results (Pearson coefficient between uniquely mapping tags and all tags is 0.933). 

Figure 10: Proportion of each Alu family associated with the POLIII complex in the CHIP-
seq experiment conducted on IMR90hTert cells (POLIII, BRF1 and BDP1 combined) [234]. 
The proportion is the ratio between the number of elements associated with POLIII, BRF1 or 
BDP1 and the number of member of each family (FAM in orange, FLAM in light blue, FRAM 
in yellow AluJ in red, AluS in dark blue and AluY in green). The p-values were measured 
using a one-tailed two proportion z-test: *** for p-value < 0.0001. 

 

Alu elements are transcribed as small transcripts 

Alu elements transcripts from 100nt to 300nt long have been previously reported [65-67], but 

their identification was rendered tedious because of their repetitive nature, as well as the 

hybridization based technology used for their detection. Current deep-sequencing technology 

allows this problem to be bypassed but the 50 to 350nt fraction of RNA is usually avoided in 

transcriptomic analyses due to the presence of tRNAs, 5S and 5.8S rRNAs, snoRNAs and 

snRNAs which reduces sequencing depth. Hence, this fraction is usually removed from RNA 

preparations by gel or column purification, to enrich for miRNA and other such small RNA 

fractions, or longer RNAs like mRNA and long non-coding RNAs. A direct consequence of 
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these enrichment steps is that very little information is available about the content of the 100-

300nt fraction of RNA, and no deep-sequencing dataset is available to interrogate - in an 

unbiased manner - the extent of Alu element expression; similarly, no deep-sequencing 

protocol is currently available to prepare a deep-sequencing library of this type. 

To address this need a protocol to extract and deep-sequence specifically RNA from 50 to 

350nt long was developed. First, the RNA is pre-fractionated on a sucrose gradient, followed 

by a more precise size-fractionation by polyacrylamide gel electrophoresis (PAGE). The 

extracted RNA is then treated with tobacco acid pyrophosphatase (TAP) and T4 

polynucleotide kinase (PNK) to remove the 5’ cap which prepares the extremity of the RNA 

for deep sequencing. Finally the RNA is deep-sequenced using a strand specific protocol that 

sequences the 5’end of RNA. This protocol was used with RNA from THP1 cells, a human 

acute monocytic leukemia cell line. This deep sequencing method returned 4,789,283 tags of 

36nt representing 967,207 different sequences. 

As expected, the majority of the reads were derived from rRNA and tRNA, which represented 

55% and 9% of the dataset respectively (Figure 11A). 17,026 tags mapped to Alu elements, 

and 76% of these were uniquely mapping. The most abundant family detected was the AluS 

(59% of the Alu) which also represents the most numerous family in the human genome (58% 

of the Alu elements in hg19 are from the AluS family), followed by the old AluJ family with 

22% of the Alu elements detected, and finally the young AluY representing 15% of the 

elements expressed in THP1 small RNA (Figure 11B). In terms of expression level, the AluJ 

family was significantly expressed at the highest level with an average of 0.93 read per 

kilobase per million of tags (RPKM), followed by AluS and AluY families which were 

expressed at the same level of 0.77 RPKM. These results are concordant with the POLIII chip 

data previously analyzed, in the sense that the family with the highest level of expression (i.e. 

AluJ) is also the family the most commonly found associated with POLIII. However, these 

results challenge previous observations that concluded the AluY family is the only one which 

remains transcribed [67-69]. Notably, the fact that the old AluJ and AluS families remain 

transcribed at a significant levels, even though the majority of them have lost their abilities to 

retrotranspose [69], suggests another function for these elements. 
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Figure 11: A) Distribution of reads from 5’end deep sequencing of the 50 to 350nt fraction of 
THP1 RNA. Eight categories were distinguished in the dataset: rRNA in red, tRNA in blue, 
snoRNA and miRNA in green, snRNA in yellow, LINE1 in white, Alu elements in black, others 
in light blue correspond to all tags mapping to other regions that the ones mentioned, and 
ambiguous in brown correspond to all tags mapping to more than one category. B) 
Distribution of the number of different Alu elements detected per Alu family (AluJ in red, AluS 
in blue, AluY in green, FAM in brown, FLAM in yellow and FRAM in black). C) Average 
expression (in RPKM) of each Alu family; AluJ in red, AluS in blue and AluY in green. The p-
values were measured using a one-tailed z-test: *** for p-value < 0.0001 and ^ for p-value > 
0.05 (not significant). 

 

Localization of Alu transcripts 

Alu elements can be detected in both the nucleus and the cytoplasm of NTera2Dl pluripotent 

cells, with a higher abundance of Alus in the cytoplasm [68]. These results were first 

confirmed by Northern blot analysis of nuclear and cytoplasmic fractions extracted from Hela 

and THP1 cells (Figure 12). scAlu elements of ~100nt long were detected only in the 

cytoplasm of Hela and THP1 cells, as expected [75]; larger bands of 280 and 300nt, 

corresponding to full length Alu elements, were detected in both the cytoplasm and nucleus of 
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Hela and THP1 cells, although expression seems more abundant in cytoplasm compared to 

nucleus for THP1. 

Figure 12: Northern blot probing total RNA (Tot.), the cytoplasmic (Cyto.) fraction and the 
nuclear (Nucl.) fraction of Hela and THP1 cells for Alu elements using the probe Alu4. The 
RNA profiles are in Appendix 1. 

 

Alu elements seem to be predominant in the cytoplasm of both THP1 and Hela cells. To 

identify which Alus are localized in the cytoplasm or the nucleus, publically available deep-

sequencing datasets from the nuclear, cytoplasmic and polysomale fractions of DLD-1 

(colorectal adenocarcinoma cell line) were analyzed [235]. These datasets were generated 

with Illumina that returned 36nt long reads, and since they were not detecting small 

transcripts specifically, a pipeline was elaborated to be able to remove Alu expressed as part 

of a bigger transcript and select only Alu elements expressed as independent element 

(materiel and methods). 42,964 Alu elements were identified in either one or more of these 

datasets (Table 2): 11,111, 7,031 and 17,213 were observed exclusively in the nucleus, the 

cytoplasm and the polysomes respectively; 2,248 Alu elements were observed in the three 

fractions (Figure 13A). The relative abundance of Alu elements in each fraction was estimated 

by summing the RPKM. The cytoplasmic fraction returned an RPKM sum of 2,577, the 

polysomes 4,777 and the nucleus 3,581 (Table 2). In accordance with the previous Northern 

blot, Alu elements seem to be more abundant in the cytoplasm (polysomes + cytoplasmic 

fractions) with a sum of RPKM of 7354 to be compared to 3581 for the nucleus. 

Table 2: Summary of the deep-sequencing data of the different cell compartments of DLD-1 
cells (analyzed from [235]). 

Dataset  Number of tags  Mappable tags  Mapping Alu 
Number of Alu 

detected 
Sum RPKM 

Nucleus  47,120,831  31,774,535  27,399  17,100  3,581 

Cytoplasm  46,354,139  31,585,388  19,579  12,022  2,577 

Polysome  54,901,628  32,519,458  37,564  23,697  4,778 
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Two other datasets aiming at identifying chromatin associated RNA (CAR) were also 

screened for Alu elements. The first dataset was generated by extracting total chromatin from 

Hela cells, isolating the small RNA (<500nt) and deep-sequencing this fraction with GAII 

(Illumina). This dataset contained 13,218,503 reads 65nt long and identified 57,038 Alu 

elements. Using a similar protocol, Mondal et al. also sequenced chromatin associated RNA 

from fibroblasts [236], and their dataset contained 7,924,072 reads of 36nt long and identified 

27,300 Alu elements; 5,729 Alu elements were found associated with chromatin in both 

datasets (Figure 13B). It is important to note that the localization of each Alu element might 

be dependent of the tissue in which it is expressed; this was well reflected over the datasets 

analyzed, where some Alus were detected in all compartment explored or also in cytoplasm of 

DLD-1 and associated with chromatin in HeLa and fibroblast. 

Figure 13: A) Venn diagram representing the number of Alu elements present in the 
cytoplasm (red), the polysomes (blue) or the nucleus (green) of DLD1 cells. B) Venn diagram 
representing the number of Alu elements overlapping between the two CAR datasets. 

 

Transcription of Alu elements in normal tissues 

Alu elements are discarded from most transcriptomic studies due to their repetitive nature. As 

such, there are only few reports of direct detection or sequencing of Alu element transcripts in 

cell lines [66-69, 75] and even fewer in normal tissues [72]. One paper investigated the 

expression level of Alu elements between normal liver and hepatocellular carcinoma and 

observed a higher expression of Alu elements in the tumor, but also detected POLIII 

transcribed Alu elements in normal liver tissue [72]. In a first step, four human tissues (brain, 

liver, skeletal muscle and testis) were assayed by Northern blot analysis with two Alu specific 
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probes to screen for Alu element transcripts of ~300nt. Mouse brain RNA which doesn’t 

contain full length Alu elements, was used to assess the specificity of the probes. Both probes 

gave strong bands around 100nt and 300nt in the four human tissues (Figure 14). The human 

brain and testis seem to contain a lot of small Alu elements since the signal is saturated. 

However, two different types of Alu elements were observed in these two tissues: Alu 

elements between 100nt and 200nt were primarily detected in human testis whereas human 

brain tissue expressed mostly Alu elements between 200nt and 400nt. Human liver and 

skeletal muscle appeared to express Alu elements in a more moderate manner and sharp bands 

of 100nt and 300nt long are detected in both tissues. Mouse brain RNA that does not contain 

Alu elements, does not show any band for Alu4 probe clearly indicating a strong specificity. 

One band around 300nt is, however, observed for Alu8 indicating that this probe may not be 

as specific as expected and we should rely more on the result given by probe Alu4. 

Figure 14: Northern blot probing the RNA from four human tissues (brain, liver, skeletal 
muscle and testis) and one mouse tissue (brain) for Alu elements with the probe Alu 4 and Alu 
8. mmu – mouse; hsa – human. The RNA profiles are in Appendix 1. 

 

We have shown that normal tissues also express Alu elements and produce transcripts 

between 100nt and 300nt as observed in human cell lines, suggesting a transcription directed 

by POLIII. To identify which Alu elements are expressed in specific tissues, we screened 

transcriptomic data on sixteen normal human tissues (adipose, adrenal, brain, breast, colon, 

heart, kidney, liver, lung, lymph, ovary, prostate, skeletal muscle, testis, thyroid and white 

blood cells) produced by Illumina (GEO accession number in Appendix 2). The Atlas 

comprises sixteen unstranded deep-sequencing datasets of 75nt long reads from poly-

adenylated RNA and one stranded dataset of 100nt long reads from a mix of the RNAs from 
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which the sixteen tissues were depleted for rRNA (Table 3 and Figure 15). 465,160 Alu 

elements were detected across the sixteen tissues, the vast majority of which were present in 

one tissue only (Figure 16A). The tissue with the highest diversity of Alu elements was the 

adrenal tissue, with 193,573 elements detected. Adrenal tissue was also the tissue that 

presented the highest number of tissue-specific Alu elements (Figure 16B) and the highest 

level of expression with an RPKM sum of 53,042 (Table 3). Since transcription of Alu 

elements is stimulated by stress conditions [65, 71], it is notable that the organ expressing the 

largest panel of Alu elements is also the organ in charge of producing stress hormones when 

stimulated by stress conditions. 

Table 3: Summary of the Illumina tissue atlas. 

Library  Number of tags  Mappable tags  Mapping Alu  Nb of Alu detected  Sum RPKM 

100nt  430,504,182  300,584,754  832,960  160,088  10,718 

Adipose  76,269,225  69,161,694  291,503  77,780  16,250 

Adrenal  76,171,569  67,379,978  937,215  193,573  53,042 

Brain  64,313,204  55,956,508  333,018  121,280  22,770 

Breast  77,195,260  69,356,954  461,749  116,412  25,287 

Colon  80,257,757  72,722,629  252,998  55,299  13,256 

Heart  76,766,862  69,401,226  241,973  90,514  13,228 

Kidney  79,772,393  70,463,602  444,656  84,469  24,070 

Liver  77,453,877  69,089,131  173,143  43,148  9,380 

Lung  81,255,438  74,092,257  371,504  50,128  18,905 

Lymph  81,916,460  71,388,339  525,414  54,900  28,021 

Ovary  81,003,052  73,255,949  515,432  143,579  27,043 

Prostate  83,319,902  77,176,702  339,977  51,751  16,695 

Skelmusc  82,864,636  76,294,703  244,096  15,297  12,827 

Testes  82,044,319  74,983,397  405,462  118,688  20,573 

Thyroid  80,246,657  72,265,772  461,993  108,235  24,662 

Whiteblood  82,785,673  76,047,837  256,148  26,094  12,687 
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Figure 15: Boxplot representing the distribution of the RPKM for all Alu elements detected in 
each tissue in the Illumina datasets. The width of each box is proportional to the number of 
Alu detected in each dataset. 

 

Figure 16: A) Distribution of the Alu elements as a function of the number of tissues in which 
they are expressed. B) Distribution of the Alu elements expressed in one tissue only, in 
function of the tissue in which they are expressed. 
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Expression of LINE1 elements in human tissues 

As previously mentioned, the role of Alu transcripts is normal human tissue is largely unclear. 

To explore the hypothesis that Alu elements retrotranspose in normal human tissues LINE1 

expression was investigated, since Alu elements need the two proteins expressed by the full 

length LINE1 to be reverse transcribed back into the genome. Although the vast majority of 

LINE1 are 5’end truncated, contain internal rearrangements or harbor debilitating mutations 

in their ORFs [1, 237], about 5,500 of them remain full-length (i.e. ~6kb - Figure 17) and 

amongst these, 80 to 100 were shown to express these two key proteins and to be 

retrotransposable [238]. 

Figure 17: Size distribution of human LINE1 over 2kb. The length of LINE1s were calculated 
using the genomic coordinate of all human LINE1s (repeat masker hg19 [230, 239]). 

Size distribution of human L1 over 2kb

0

400

800

1200

1600

2000

2 3 4 5 6 7 8

Size  (kb)

N
u
m
be
r 
of
 L
1

 

The expression of the full length LINE1 in the 16 normal human tissues datasets from 

Illumina was determined. The organs with the highest abundance of full-length LINE1 

transcripts were brain, adrenal, ovary, heart and testes with more than 15,000 tags for each 

tissue (Figure 18A). In terms of diversity of full length LINE1s expressed brain comes first, 

with more than 2,800 different elements expressed; followed by adrenal, ovary, heart and 

testes which expressed around 2,000 LINE1s each (Figure 18A). Like Alu elements most 

LINE1s are tissue specific (Figure 18B), but unlike Alu elements the brain expressed the most 

tissue specific LINE1s (Figure 18C). Interestingly, adrenal, brain, ovary and testis express 

both a significant level of LINE1 and Alu elements, strongly suggesting that those elements 

retrotranspose actively in normal tissues. 
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Figure 18: A) Diversity in number of different LINE1 expressed (in blue) and B) level of 
expression in number of tags mapping to LINE1 (in red) of full length LINE1 (>5.9kb) across 
16 human tissues. C) Distribution of the LINE1 elements as a function of the number of 
tissues in which they are expressed. D) Distribution of the LINE1 elements expressed in one 
tissue only, as a function of the tissue in which they are expressed. 

 

SINE and LINE1 expression in mouse tissues 

The mouse genome contains ~564,000 B1 elements that are derived from 7SL RNA. B1 

elements are similar to Alu elements but are only ~140nt long, and correspond to the left arm 

of Alu elements [240] (Figure 19A); there are ~348,000 B2 elements which are 

retrotransposons derived from tRNA, each around 180nt long (Figure 19B) and which present 

similar properties to Alus [81, 241, 242]; and ~599,000 LINE1 elements are present in the 

mouse genome [216], with 15,399 of them being longer than 5kb (Figure 19C). 
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Figure 19: Size distribution of three transposon families in mouse. A) Number of SINE B1 in 
function of their size in base. B) Number of SINE B2 in function of their size in base. C) 
Number of LINE1 (L1) in function of their size in kilobase. The length of each repeat was 
calculated from its bed coordinate of all the mouse B1, B2 and LINE1 (repeat masker mm9 
[230, 239]). 

 

Given the lack of deep-sequencing data on the transcriptome of a large panel of mouse tissues, 

Northern blot analysis was performed using RNA from mouse adrenal, brain, heart, kidney, 

liver, lung, skeletal muscle, testes and thymus tissues to observe the expression of mouse 

retrotransposons. For B1, bands around 70nt were observed in all tissues except for adrenal 

tissue, and 300nt bands were observed ubiquitously (Figure 20A). The majority of B1 were 

around 150nt in size, the 70nt bands correspond to truncated B1, and the 300nt band may be 

due to cross-hybridization with 7S/L RNA or another transcript containing B1 sequences. The 

Northern blot probe targeting B2 shows a band around 100nt that is specific to brain, bands 

around 150nt in all tissues that may correspond to the full length B2 and bands around 300nt 

that may correspond to transcript containing B2 (Figure 20B). Finally, for LINE1, the bands 

around 2kb correspond to the transcripts from truncated LINE1 loci. The bands around 4-5kb 

expressed in all tissues and bands over 6kb expressed mainly in brain, correspond to the full 

length LINE1 (Figure 20C). Similar to human, the Northern blot analysis indicates that the 

SINE and LINE1 are co-expressed in a wide panel of tissues, suggesting that 

retrotransposition has the potential to occur in somatic tissues in mouse. 
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Figure 20: Northern-blot analysis of mouse RNA extracted from adrenal, brain, heart, kidney, 
liver, lung, skeletal muscle, testes and thymus with a probe targeting B1 (A), B2 (B) and 
LINE1 elements (C). The loading controls are in Appendix 1. 

 

New insertion of retroelements in specific tissues 

Given the above, evidence demonstrated that SINEs and full length LINE1s are co-expressed 

in many tissues in human and in mouse, evidence for tissue specific retrotransposition was 

looked for by screening each genome for new insertion events. 

Analysis of retroelements insertion by Southern blot 

It was rationalized that new tissue specific B2 insertions could be visualized as specific bands 

using Southern-blot analysis and restriction fragment length polymorphism (RFLP). Genomic 
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DNA isolated from 9 mouse tissues (adrenal, brain, kidney, heart, liver, lung, testis, thymus 

and skeletal muscle) was digested with Msp1 and probed with a B2 probe. However, no tissue 

specific bands were detected, most likely because the method is not sensitive enough to detect 

a B2 insertion event which may only occur in a restricted number of cells within each tissue 

(Figure 21). 

Figure 21: RFLP of nine mouse tissues (adrenal, brain, kidney, heart, liver, lung, testis, 
thymus and skeletal muscle). The DNA was digested by MspI and probed with an 
oligonucleotide targeting B2. 

 

Analysis of retroelements insertion by deep‐sequencing data analysis 

The Illumina tissue atlas provided extensive pair-end transcriptomic data on 16 human tissues 

(adipose, adrenal, brain, breast, colon, heart, kidney, liver, lung, lymph, ovary, prostate, 

skeletal muscle, testis, thyroid and whiteblood). To look for new insertions, we screened for 

pairs mapping uniquely to the genome but unrelated (that is, they would map to different 

chromosomes or on the same strand), these instances were referred as chimeric pairs, and 

were used to build a library of chimeric transcripts. It is important to note that this library is 

based on transcriptomic data. It is not possible to deduce from this dataset if the chimeric 

transcripts are due to some sort of RNA recombination or expression of a recombined gene. 

Another important consideration is that all tissues used in the Illumina tissue atlas come from 

different individuals, meaning that a tissue specific chimeric transcript may be either the result 
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of a tissue specific recombination event or the product of a new allele specific to the 

individual. 

282,389 loci were identified in the chimeric pairs dataset across the sixteen tissues. On 

average, 6.3% of the mapped pairs have unrelated mates across the 16 datasets. However, a 

refined analysis to confirm the distinct location of each mate of the pairs revealed that most of 

these chimeric transcripts were from the result of mapping errors. In these cases, the proper 

pair was not found because one of the mates contained mismatches which caused it to map 

perfectly to another incorrect location (data not shown). 

This means that direct sequencing is not efficient to detect new insertions in the genome, and 

an enrichment step is necessary. Recently, new insertions were discovered in human brain by 

coupling capture-arrays with deep sequencing. In this method, Baillie et al. [226] designed an 

array with probes targeting Alu and LINE1 elements, captured fragmented gDNA from five 

regions of the brains of three donors, and performed pair-end deep sequencing on the captured 

gDNA. Similar to our analysis the unpaired mates were selected to identify new insertions, 

and 7,743 LINE1 and 13,692 Alu elements insertion events were discovered in a tissue 

specific fashion. The newly inserted Alu elements were derived 83% from the AluY family 

and 17% from the AluS family, but it is important to note that all the probes present on the 

array were designed on AluY elements. 

Generation of a database of Alu elements 

All the information generated in this chapter was assembled in a table that contained each of 

the 1,194,734 Alu elements and for each described: (i) a unique identifier, (ii) the family, (iii) 

the bed coordinates, (iv) the presence of a POLIII promoter A-box and B-box, (v) the 

genomic context, (vi) the conservation, (vii) the expression in small RNA from THP1, (viii) 

the association with POLIII complex in IMR90hTert cells, (ix) the localization in DLD-1 

cells, (x) the association with chromatin in HeLa and fibroblast cells and (xi) the level of 

expression in sixteen human tissues (table description in Appendix 2). Overall, 670,209 Alu 

elements were not detected in any of the 23 transcriptomic datasets analyzed (untranscribed 

group), suggesting that they are switched off, and leaving 524,526 Alu elements that are 

transcribed in at least one of the tissues investigated (transcribed group). Amongst the 26 

datasets, only two analyzed directly the fraction containing Alu elements transcribed as small 

RNA (<500nt): the THP1_smallRNA and CAR_HeLa libraries; 73,097 Alu elements were 

detected in these two datasets (small RNA group) (Figure 22A). 
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The comparison of the content in POLIII promoters, for the transcribed verses untranscribed 

Alu element groups, revealed that transcribed elements have a slightly higher propensity to 

contain an effective promoter than the elements that are not transcribed (67% for transcribed 

Alu and 64% for untranscribed Alu: Figure 22B). Also, comparison of the family content of 

the transcribed and untranscribed groups showed that the old AluJ are significantly more 

abundant in the transcribed group than in the untranscribed group (30% versus 24% 

respectively). This trend is even more obvious when looking at Alu elements from the small 

RNA group in which AluJ represents 38% of the dataset. The young AluY, however, is more 

abundant in the untranscribed group compared to the transcribed group and the small RNA 

group with 15%, 8% and 6% respectively. 
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Figure 22: A) Out of all the Alu elements (blue circle), the number of Alu elements that are 
detected in the database when considering only transcriptomic datasets (orange circle) and 
transcriptomic datasets on small RNA <500nt (red circle). B) Percentage of elements 
containing an effective POLIII promoter (an A-box and a B-Box or a B-Box only) for the 
elements detected as not transcribed (blue), transcribed (orange) and transcribed in the small 
RNA datasets (red). C) Distribution of the elements per family (in %) for the elements 
detected as not transcribed (blue), transcribed (orange) and transcribed in the small RNA 
datasets (red). The p-values were measured using a one-tailed two proportion z-test: *** for 
p-value < 0.0001, ** for p-value < 0.001, * for p-value < 0.05 and ^ for p-value > 0.05 (not 
significant). 
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Materials and methods 

Alu elements sequences, coordinates and annotations 

The Alu elements library was built from the human genome (hg19/GRCh37 February 2009) 

using repeat masker [230]. The library contained 1,194,734 elements and a unique identifier 

was allocated to each element. The genomic context of each element was determined by 

intersecting the Alu elements positions with the positions of promoters (1000nt before 

transcription start site), 5’UTRs, exons, introns or 3’UTRs of the UCSC genes track 

containing 77,614 gene entries for hg19. All loci failing to map any of these regions were 

considered as intergenic. Alu elements were allocated to a region if at least 80% of their 

lengths overlapped with the genomic region. The conservation in primates was determined by 

intersecting the Alu elements coordinates with the coordinates of the blocks of conservation 

between human and chimpanzee, orangutan, marmoset and rhesus uploaded from the UCSC 

genome browser Primate Chain/Net track for hg19. 

Estimation of the probability for an Alu mapping tag to be uniquely mapping 

Bins of sequences from 15nt long to full length were generated from the Alu library. These 

bins were collapsed and tags presenting a unique occurrence were mapped with 0, 1, 2 or 3 

mismatches with Bowtie [243] against the Alu masked human genome (hg19) to remove all 

tags mapping elsewhere in the genome. The non-mapping tags represented the uniquely 

mapping tags. The number of Alu elements identified by these tags was counted and the ratio 

[number of Alu identified by unique tags / number of Alu identified] was calculated for each 

bin. 

Identification of A‐box, B‐box and poly‐A segment in Alu elements sequences 

Each Alu sequence retrieved from repeat masker in hg19 was screened first for containing this 

tag “GWTYRANNC” for the B-box and then for the following tag “KGGCNNRGTNS” for 

the A-box [63]. Finally each Alu sequence was screened for poly-A elements 2 to 40nt long. 
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Deep sequencing of the fraction 50 to 350nt from THP1 RNA 

Pre‐fractionation of total RNA in a sucrose gradient 

A 5% to 20% w/v sucrose gradient was set up in 8.9mL ultracentrifuge tubes (Beckman 

Coulter #361623). Four solutions of RNAse free sucrose at 5%, 10%, 15% and 20% were 

prepared in 1x TBE with RNAseOUT 100U/mL and 1mM DTT. 2mL of each solution 

beginning by the 20% sucrose solution up to the 5% sucrose solution were successively 

poured in the ultracentrifuge tube and deep frozen in dry ice. The frozen gradient was then 

equilibrated at 4˚C for 30hours. 100µg of THP1 total RNA in 1x TBE was load on the top of 

the gradient [244]. The gradient was then sealed and centrifuged for 15hrs at 25000rpm at 

4˚C. 500µL fractions were extracted carefully from top to bottom. The quality of the 

fractionation was then assessed by running 5µL of each fraction on a 1.5% agarose gel 

containing ethidium bromide. The RNA from the five low sucrose density fractions 

(determined on the gel) was then extracted by phenol/chloroform pH4. After centrifuging 

15min at 12000g at 4˚C, the supernatants were collected, 2.5vol. of ethanol 100%, 1/10 vol. of 

sodium acetate and 1µL of glycoblue 20mg/mL were added and samples were incubated 

overnight at -20˚C and then centrifuged at 12000g at 4˚C for 25min. The pellets were washed 

two times with 70% cold EtOH, dried and finally all pellets were pulled in 32uL of DEPC 

water. 

Precise RNA fractionation by PAGE 

The RNA was mixed with 1vol. of loading buffer (95% formamide, 18mM EDTA, 0.025% 

SDS, 0.00025% of Xylene cyanol and 0.00025% of bromophenol blue), denatured at 65˚C for 

5min and run on a polyacrylamide gel (8% acrylamide/bis-acrylamide (19/1), 1x TBE and 

480g/L urea) in 1xTBE at 150V for 40min. The gel was then stained 10min in 1x TBE 

containing ethidium bromide (5µg/L) and the band corresponding to the fraction 70 to 400nt 

length RNA was visualized and cut under UV light. The gel band was then shredded in small 

pieces with an RNAse free blade and the RNA was eluted from the gel fragments overnight at 

room temperature in 150µL of elution buffer (20mM Tris pH 7.7, 150mM NaCl, 0.2mM 

EDTA pH 8.0, 0.5% v/w SDS). The eluted RNA was purified and precipitated by 

phenol/chloroform and ethanol precipitation as described previously and resuspended in 15μl 

DEPC-treated water. 



  52

Treatment of the extremities of the RNA for deep sequencing 

The RNA was then treated with 20U of tobacco acid pyrophosphatase (Epicentre #T19050) 

for 1hr at 37˚C in 20µL following manufacturer’s instructions. 6µL of 5x ligation buffer 

(250mM Tris-HCl pH 7.6, 50mM MgCl2, 5mM ATP, 5mM DTT, 25% w/v PEG8000) and 

30U of T4 polynucleotide kinase (NEB #M0201S) were added to the TAP treated RNA, the 

mix was incubated 1hr at 37˚C and the RNA was cleaned and precipitated by 

phenol/chloroform and ethanol precipitation as described previously and re-suspended in 15μl 

DEPC-treated water. The RNA was deep-sequenced with Illumina using a protocol returning 

36nt long read corresponding to the 5’end of the transcripts. 

Identification of Alu elements in deep‐sequencing datasets 

For each dataset screened, the following procedure was employed: first the dataset was 

uploaded in fasta format for the first generation of deep-sequencing data or in fastq format for 

the more recent data. The 3’ adapters were trimmed and the tags were collapsed using the 

fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). The dataset was then 

mapped with Bowtie [243] against the human genome (hg19) from which Alu elements have 

been masked using an in house algorithm (maskOutFa). The remaining unmappable tags were 

then mapped with Bowtie against a splice junction library build from Gencode, UCSC, Refseq 

and Emsembl gene prediction to get rid of all tags mapping spliced mRNA. Finally, the 

remaining unmappable tags were mapped against the Alu library; uniquely mapping tags and 

multi-mapping tags were treated separately. RPKM (Read per Million tags per kilobase) were 

calculated for each Alu elements using the total number of mapping tags (against masked 

hg19, splice library and Alu library) and the length of each Alu elements to normalize the 

score. Finally, to exclude Alu elements included in longer transcripts, all Alu elements were 

mapped to a transcriptome index build with Cufflinks [245], integrating the data from the 16 

tissues. Each analysis considered only the transcripts <500nt long. 

Design of probes targeting Alu elements for Northern blot 

One consensus sequence per Alu family (AluY, AluS, AluJ, FRAM, FLAM and FAM) was 

generated with all the family members using Clustalw [246]. 30 oligo-nucleotides of 25nt 

were designed per Alu consensus sequences. Each probe was then rated in function of the 

number of Alu elements it targets (which needs to be high), its similarity with 7SL RNA 

(which needs to be null), then the number of times it maps to non-Alu related regions of 
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human region (which needs to be low) and finally the number of ESTs it maps to and the 

secondary structure. 2 probes out of 180 generated were selected for Northern blot (Table 4) 

Table 4: Properties of the probes selected for Northern blot. Columns 2 to 7 represent the 
fraction of each family detected by each probe, column 8 the number total of Alu elements 
detected, column 9 the number of unrelated loci in the genome, column 10 the number of 
unrelated transcripts and column 11 the secondary structure of the probe. 

Name  Alu S  Alu J  Alu Y  FAM  FRAM  FLAM  Nb Alu 
Unrelated 
targets 

ESTs 
2nd 
struct 

Alu4  8.1%  0.5%  86.1%  0.1%  0.0%  0.2%  183,891  106  11  weak 

Alu8  9.8%  0.0%  82.8%  0.0%  0.1%  0.1%  189,169  95  7  moderate 

Northern blot on nuclear and cytoplasmic fraction of Hela cells and THP1 cells 

The fractionation of the THP1 RNA and Hela RNA was done by Anupma Choudhary 

(University of Queensland, Institute for Molecular Bioscience, lab-book 4940, pages 54, 73 

and 88), the efficiency of the fractionation was assessed by observing the RNA profile (tRNA, 

5S and 5.8S rRNA were observed only in the cytoplasm whereas bands corresponding to 

snRNA remained in the nucleus) and by PCR using snoRNA primers and tRNA primers. 

Respectively, 10ug, 1.04ug, 8.96ug of total, nuclear and cytoplasmic RNA from THP1 and 

26.67ug, 6.67ug and 20ug of total, nuclear and cytoplasmic RNA from HeLa cell were loaded 

in a 4M urea 8% polyacrylamide gel. The amount of RNA loaded on the gel was adjusted for 

each sample to correspond to the amount of RNA present in cytoplasm and nucleus in the two 

kinds of cells: the ratio nucleus RNA/cytoplasmic RNA is 0.116 for THP1 cells and 0.33 for 

Hela cells. After migration of the RNA at 200V for 3hrs, the gel was transferred on a 

nitrocellulose membrane (GE Healthcare Hybond N-+) with a semi-dry transfer unit and 

incubated overnight with Alu4 probe radioactive labeled using terminal transferase 

(NEB#M0315) and alpha 32P-dCTP (Perkin Elmer #NEG513H-500uCi). The picture of the 

membrane was taken using a phosphoimager. 

Northern blot on RNA from four human tissues and one mouse tissue 

5ug of human brain, testis, skeletal muscle and liver (Ambion tissue panel #AM6000) and 5ug 

of mouse brain RNA (negative control) were run in a gel, transferred and probed with Alu 4 

and Alu 8 as described previously. 
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Northern blot on mouse RNA 

Total RNA from adrenal, brain, heart, kidney, liver, lung, skeletal muscle, testes and thymus 

were extracted from freshly dissected organs from a mouse BL6C57 male using Trizol 

(Invitrogen #15596-026) according to the manufacturer’s instructions. For small RNA 

Northern-blot, 5μg of RNA of each tissue were run in a urea gel and transferred as previously 

described and probed with a B2 probe (TCCTGCTTGGACCAGCCTCA) or a B1 probe 

(TGTAGCTTTAGCTGGCCCAGAACT). For Northern-blot on large RNA, 5μg total RNA 

from the 9 tissues were denatured in 1X MOPS (0.1M MOPS, 50mM EDTA pH8.0, 200mM 

Na-acetate pH7), 50% formamide and 5% formaldehyde for 15min at 65˚C and  run on a 

MOPS-agarose gel (1X MOPS, 1% formaldehyde) in 1X MOPS at 70V for 2 hours. The gel 

was then transferred on a nitrocellulose membrane and probed with a LINE1 probe 

(CCCCTACGCACCCTCTCCCA) as previously described. 

Extraction of chromatin associated RNA from HeLa cell 

Extraction of the nuclei of HeLa cells 

HeLa cells were grown in 4 flasks of 400mL at 37˚C in 5% CO2 in DMEM containing 4mM 

L-glutamate, 4.5mg/ml glucose and 0.11mg/ml sodium pyruvate, supplemented with 100U/ml 

Penicillin and 100μg/ml Streptomycin until >90% confluence (approx. 107 cells per dish). The 

cells were collected by trypsinization, rinsed twice with PBS and resuspended in 5mL of 

buffer A (10mM Hepes, pH7.9, 10mM KCl, 1.5mM MgCl2, 0.5mM DTT). After 5min of 

incubation on ice, the suspension was transferred in a pre-cooled 7mL Dounce tissue 

homogenizer (Wheaton Scientific Product Cat no: 357542) and homogenized ~30 times using 

a tight pestle (Kontes pestle B: 0.0010" - 0.0030" clearance), while keeping the homogenizer 

on ice. The homogenized cells were then collected at 218g (1000 rpm, Beckman GS-6 

centrifuge, GH-3.8 rotor) for 5 min at 4°C. The pellet contained enriched, but not highly pure, 

nuclei. The nuclear pellet was resuspended in 3ml of S1 (0.25M Sucrose, 10mM MgCl2), 

layered over 3ml of S3 (0.88M Sucrose, 0.5mM MgCl2) and centrifuged at 3000g (3500 rpm, 

Beckman GS-6 centrifuge, GH-3.8 rotor) for 15min at 4°C. This pellet contained pure nuclei. 

Extraction of the chromatin 

The sucrose gradient was prepared according to the protocol developed by Luthe [244] in 

8.9mL ultracentrifuge tubes (part number 361623, tube polyallomer, optiseal 8.9mL, 

16x60mm). Two solutions of RNAse free sucrose at 5% and 40% were prepared in a solution 
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of 100mM NaCl, 10mM Tris-HCl (pH 8.0), 0.2 mM EDTA, 10mM vanadyl ribonucleoside 

complex, 50U RNaseOUT/mL and 1mM DTT. 4mL of 40% and 5% sucrose were 

successively poured and deep frozen in dry ice in the ultracentrifuge tube. The frozen gradient 

was then equilibrated at 4°C for 30hours. 

The pure nuclei were resuspended in 2mL of PXL lysis buffer (1X PBS, 0.1% SDS, 0.5% 

deoxycholate, 0.5% NP-40, one tablet of protease inhibitor cocktail (Roche), 100U 

RNaseOUT/mL and 1mM DTT per 10mL solution) and treated 5min at 37°C with 4µL of 

micrococcal nuclease 0.2U/uL (Sigma N3755) and 20µL of 0.1M CaCl2. The reaction was 

stopped by adding 200µL of 0.5M EDTA and incubating on ice for 2min. The nuclei were 

then disrupted by pipetting and centrifuged at 8000g for 2min at 4°C to pellet insoluble 

nucleus components. The soluble chromatin was loaded on a sucrose gradient (5% to 40% 

sucrose) and centrifuged for 15hrs at 22000rpm at 4°C. The gradient was then fractionated in 

500uL fractions and dot-plot was used to determine which fractions contained histones. The 

RNA from the selected fractions was extracted with Trizol LS (Invitrogen #10296-028) 

according to the manufacturer’s instructions. 

Extraction of the small RNA associated with the chromatin 

The RNA from the selected fractions was run in a urea-PAGE (see the section deep 

sequencing of the fraction 50 to 350nt from THP1 RNA described previously) and small RNA 

<500nt from the early fractions of the gradient containing high percentage of sucrose and 

heavy complexes were cut out from the gel, eluted in elution buffer (20mM Tris pH7.7, 

150mM NaCl, 0.2mM EDTA pH8.0, 0.5% v/W SDS) overnight at room temperature. The 

eluted RNA was deep-sequenced with Illumina using a protocol returning 65nt long stranded 

reads (v1.5 Illumina). 

New genomic insertion of retroelements 

Restriction Fragment Length Polymorphism 

Genomic DNA was extracted from freshly dissected tissues (adrenal, brain, kidney, heart, 

liver, lung, testis, thymus and skeletal muscle) from one mouse BL6C57 male according to 

Strauss protocol [247]. The Southern-blot was performed according to Brown protocol [248]. 

For each tissue, 10μg of gDNA was treated with 40U of MspI (NEB # R0106S) overnight at 

37˚C, the enzyme was then deactivated for 20min at 80˚C and the samples were run in a 0.7% 

agarose 1XTBE gel. The gel was depurinated 10min in 0.25M HCl, rinsed in water and 
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treated by 0.5M NaOH and 1M NaCl to denature the DNA. The gel was then transferred by 

capillarity on a nitrocellulose membrane (GE Healthcare Hybond N-+) using 0.025M NaPO4 

pH6.5. The membrane was cross-linked with 120mJ of UV and prehybridized at 55˚C for 2hrs 

in 1% BSA, 1mM EDTA, [0.5M Na]HPO4 pH7.2 and 7% SDS. The B2 probe used for the 

mouse northern was treated with terminal transferase as previously described and the 

membrane incubated with the radiolabelled probe overnight at 55˚C. The membrane was 

washed 4x10min at 55˚C with 1mM EDTA, [40mM Na]HPO4 pH7.2 and 1% SDS. The 

picture of the membrane was taken using a phosphoimager. 

Deep sequencing based approach 

To look for new genomic insertion, the 50nt long pair-end dataset on 16 human tissues from 

Illumina (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE30611) was 

screened for pairs for which the two mates mapped uniquely to the genome but are unrelated 

(on different chromosomes, on the same strand). First, the original fastq file were mapped 

using Tophat [249] selecting for uniquely mapping tags. Then, the tags for which both mates 

were mapped but labeled as unpaired were selected using SAMtools [250]. Each tag of the 

unmated pairs of tags was classified as intronic, exonic, 3’UTR, 5’UTR, Alu element, LINE1, 

other repeat (repeat masker without LINE1 and Alu) or intergenic and the chimeric transcripts 

built by these unrelated pairs were built using Cufflinks [245]. The 50 transcripts presenting 

the highest number of chimeric pairs were looked at in the UCSC genome browser [251] and 

each component of the chimera was remapped using Blat [252]. 
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Chapter 3: Identification of RNA edited by ADAR proteins 

A-to-I RNA editing was first discovered when A-to-G substitutions were systematically 

observed in the comparison between transcripts encoding certain ion channels and ligand-

gated receptors and their genomic counter-parts. This phenomenon was later discovered as 

being essential for normal life in metazoans and, more specifically, was critical for the 

development of the nervous system in mammals. Extensive genome-wide comparisons 

between cDNA and gDNA emphasized the fact that A-to-I editing is not a mechanism limited 

to a few genes but occurs throughout the transcriptome. 

To more precisely characterize A-to-I editing in the transcriptome, a protocol to identify the 

targets of A-to-I editing enzymes on a large scale and in an unbiased way was developed. 

Initial analyses attempted to isolate RNAs associated with ADAR proteins using an 

immunoprecipitation protocol, as described by Ohlson et al [217, 218] followed by deep 

sequencing of the isolated transcripts. However, despite successive refinements and 

optimizations of this protocol, the technique was not robust enough to reach the level of 

enrichment and quantity of RNA required. An alternate strategy was then developed based on 

an adaptation of Morse and Bass’ protocol for deep sequencing. Proof of concept experiments 

performed on mouse brain RNA successfully assessed the enrichment of edited targets by 

PCR, were followed by deep sequencing analysis, comparison to known editing sites and 

screened for new editing sites. 

Isolation of RNA bound to the ADAR proteins 

Standard immunoprecipitation 

The first approach attempted to identify RNA associated with ADAR proteins using co-

immunoprecipitation (co-IP), based on the protocol developed by Ohlson et al. [217, 218]. 

Briefly, fresh mouse brain was dissected and lysed and an ADAR1 or ADAR2 specific 

antibody bound to magnetic beads was added to the lysate. RNA-ADAR-antibody-magnetic 

beads complexes were collected with a magnet and the RNA extracted from the complex 

(Figure 23). The specificity of the immunoprecipitation was then estimated by PCR using 

primers that target transcripts which are known to be edited, such as GRIA2 R/G, GRIA2 

Q/R, ADAR2 and 5HT2C compared to unedited transcripts like ARPP0 and mGluRA; 

Western-blot analysis was also performed. 
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Figure 23: Outline of the immunoprecipitation protocol. RNA is represented by red lines and 
ADAR protein by green triangles. 

 

After successive refinements of the protocol including modification of the brain lysate 

preparation (lysate buffer from Boyer et al. [253]) and final RNA extraction (using Trizol as 

described by Niranjanakumari [254]), the RT-PCR showed clear enrichment of GRIA2 in the 

ADAR1 co-IP, and similarly ADAR2, 5HT2C and GRIA2 were present in the ADAR2 co-IP 

as compared to the negative control IP- performed with pre-immune serum (Figure 24). 

However, Western-blot analysis failed to show any ADAR1 or ADAR2 protein in the co-IP 

(data not shown), perhaps because the amount of protein present in the IP was too low to be 

detected. Another concern was the strength of the signal of the nonspecific targets RPLP0 and 
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mGluRA in the IP, for which the bands detected were stronger than the specific targets 

GRIA2, ADAR2, and 5HT2C; this suggested that subsequent sequencing would return many 

nonspecific transcripts. 

Figure 24: RT-PCR followed by PCR amplification of co-IP purified RNAs associated with 
ADAR1 and ADAR2 in mouse brain. A) PCR signal of cDNA enriched from ADAR1 co-IP 
with GRIA2 R/G, GRIA2 Q/R and RPLP0 primers. B) PCR signal of cDNA enriched from 
ADAR2 co-IP with ADAR2, 5HT2C, GRIA2 R/G, ARPP0 and mGluRA primers. 

 

Immunoprecipitation using sucrose gradient purified fractions 

One way to reduce the amount of nonspecific transcript in the co-IP and increase the yield is 

to pre-purify the complex of interest. This reduces the complexity of the lysate and increases 

the concentration of the complex compared to nonspecific elements prior to co-IP. The first 

method of pre-purification attempted was by sucrose gradient, which can separate 

ribonucleoprotein complexes (RNP) according to their density. First, mouse brain lysate was 

fractionated on a sucrose gradient ranging from 5% to 30%. Detection of fractions that 

contained ADAR2 complexes was carried out by blotting an aliquot of each fraction on 

nitrocellulose, followed by detection using specific antibodies targeting ADAR2. Fractions 

containing ADAR2 were pooled and IP using ADAR2 antibodies was carried out. The dot 

plot on each fraction of the sucrose gradient revealed that ADAR2 RNPs migrated in fractions 

12 through 19; the gradient fractions were also probed with antibodies targeting H3 and 

GAPDH and showed that GAPDH migrated to fractions 1 through 10, and H3 to fractions 19 

through 23 (Figure 25A). This clearly indicated that the sucrose gradient was reducing the 

complexity of the lysate by removing all the complexes of lower or higher density than the 

ADAR2. Fractions 12 through 19 (those containing ADAR2) were pooled to perform the 

ADAR2 IP; a negative control IP using IgG was also performed, and Western-blots were used 

to monitor the enrichment of ADAR2 in the IP. The Western-blot analysis using antibodies 

targeting POLII and SUZ12 showed that the ADAR2 IP was efficient at removing unrelated 

protein from the mix: the strong signal observed in the pool of fractions for SUZ12 and POLII 
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completely disappeared in the IP product. The Western-blot analysis with an antibody 

targeting ADAR2 showed bands corresponding to ADAR2 in the fraction 12-19 pool, a weak 

band in the ADAR2-IP product, and no band in the IP-IgG (Figure 25B). The reduction in 

nonspecific target and detection of ADAR2 in the ADAR2-IP indicated that ADAR2 was 

specifically pulled down, although the weak ADAR2 signal in the Western-blot analysis 

indicated that IP enrichment was generally low, and subsequent extraction and analysis of 

RNA from this sample did not return any detectable signal by PCR (data not shown). This 

may be due to the integrity of the ADAR2-RNA being lost due to the buffer used for the 

fractionation, which could explain the detection of the ADAR2 protein but lack of associated 

RNA. 

To control for this the original buffer used for the sucrose gradient was depleted in EDTA and 

supplemented with 100mM NaCl and 2mM MgCl2 (i.e. physiological conditions) which could 

help to preserve the structure of the RNP. The results from this experiment demonstrated that 

the migration profile of the different proteins detected was completely different from that 

observed without NaCl and MgCl2. Instead of being spread throughout the low-density 

fractions, GAPDH was concentrated in fractions 5 to 7, whereas ADAR2 was spread from 

fractions 3 to 17 (Figure 25C). This suggests that under physiological conditions, GAPDH 

assembles into homogeneous complexes of the same density, whereas ADAR2 assembles in 

heterogeneous complexes across all densities. This is consistent with a specific function and a 

limited number of partners for GAPDH, and a wide range of targets of different sizes for 

ADAR2. Unfortunately, this also implies that sucrose gradient fractionation is not a robust 

approach to concentrate ADAR2 RNP. 
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Figure 25: A) Dot-plot screening for ADAR2, H3 and GAPDH in the 24 fractions of a sucrose 
gradient from 5% to 30% sucrose in which mouse brain lysate was separated. B) Western-
blots targeting POLII and Suz12 or ADAR2 in the pool of fractions 12 to 19 from the sucrose 
gradient, in ADAR2 IP performed on this pool and in IP- with IgG). C) Dot-plot screening for 
ADAR2 and GAPDH in the 17 fractions of a sucrose gradient from 5% to 30% sucrose 
containing 100mM NaCl and 2mM MgCl2 in which mouse brain lysate was separated. 

 

Immunoprecipitation using isolated nuclei 

ADAR proteins are present in both the nucleus and the cytoplasm of cells. However, A-to-I 

editing of mRNA is believed to occur mainly in the nucleus prior to splicing. Since the 

sucrose gradient demonstrated limited capacity to enrich for ADAR2 RNP, IP was attempted 

on nuclei extracted from mouse brain. In a preliminary experiment, ADAR2 location was 

investigated by dot-plot screening of the nuclear and cytoplasmic fraction of HeLa (Figure 

26A). The two cellular fractions were separated as follows [255]: cells were first ruptured in a 

mild lysis buffer using a dounce homogenizer with a tight interstice that breaks the 
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cytoplasmic membrane but leaves the nuclei intact. A centrifugation step then separated the 

cytoplasmic fraction (supernatant) from the nuclei (pellet), and the cytoplasmic fraction was 

collected. The nuclei were then rinsed twice, “filtered” on a sucrose cushion and lysed with 

sonication using a strong lysis buffer. The soluble fraction of the lysed nuclei was collected. 

Dot-plot analysis (Figure 26A) showed a clear enrichment of GAPDH in the cytoplasmic 

fraction of HeLa cells, with the majority of ADAR2 remaining in the nucleus. 

This protocol was then adapted to total tissue, where the cells from the tissue were separated 

using a dounce homogenizer with a large interstice before following the procedure described 

above. Each step of the protocol showed an enrichment of ADAR2 and a reduction of 

GAPDH that was used as a cytoplasmic marker (Figure 26B). This indicated that nuclei 

fractionation was an efficient method to enrich for ADAR RNP before the IP. 

The IP was then carried out as described previously, with ADAR2 antibodies on lysates 

prepared from the purified nuclei and using pre-immune serum as a negative control for the 

IP; Western-blot analysis targeting ADAR2 did not show any bands in the co-IP products 

(data not shown). The PCR on 5HT2C, ADAR2 and GRIA2 Q/R did not show enrichment in 

the co-IP compared to negative control, although GRIA2 R/G was successfully enriched in the 

co-IP. Finally, the levels of mGluRA and RPLP0 were observed to decrease in the co-IP, 

although by marginal amount. The nuclei fractionation step did not notably improve the yield 

and quality of the enrichment by co-IP, meaning that the successful characterization of edited 

transcripts on a transcriptome-wide scale required a fundamentally different approach. 
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Figure 26: A) Dotplot screening for ADAR2 and GAPDH in HeLa cell nuclear and 
cytoplasmic fractions. B) Dotplot screening for ADAR2 and GAPDH in the different fractions 
produced during the nucleus purification from mouse brain. C) RT-PCR targeting 5HT2C, 
ADAR2, Gria2 Q/R and R/G, mGluRA and RPLP0 transcripts in ADAR2 IP (IP+) and 
negative control made with nonspecific IgG (IP-). 

 

Development of a new method to purify edited RNA using Glyoxal/RNAseT1 

cleavage 

Due to limited success with the immunoprecipitation another approach was required. 

Critically, instead of targeting ADAR proteins to isolate the A-to-I edited RNA, the inosine in 

the modified RNA was directly targeted. The protocol developed aimed to extract RNA 

containing inosine, followed by sequencing of the purified RNA to identify editing sites and 

quantify the level of editing. First, the RNA was biotinylated and bound to magnetic beads, 

followed by treatment with glyoxal and borate to protect guanosine against RNAseT1 [221] 

(Figure 27A), and then by treatment with RNAseT1. The RNAseT1 cleaved the RNA off 

from the beads at the 3’end of inosine nucleotides. The RNAs freed from the beads were 

collected (I-RNA), which represented the 5’ side of the editing site and contained the inosine 

at their 3’ends. The RNAs still bound to the beads were eluted (B-RNA), and this sample 

contained the RNAs that remained intact because they do not contain inosine and the 3’ side 

of the RNAs that were cleaved. The edited sites were then identified by deep-sequencing the 

I-RNA and B-RNA (Figure 27B). 
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Figure 27: A) Guanosine forms a stable complex with glyoxal and borate that protects 
guanosine against RNAseT1 cleavage. Inosine fail to bind glyoxal in a stable fashion and 
remains cleavable by RNAseT1 [221, 256]. B) The strategy for separating RNA containing 
inosine from normal RNA before identification. 
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Protocol optimization 

Specificity of the Glyoxal/RNAseT1 cleavage 

To assess the efficiency and specificity of the cleavage using the glyoxal/RNAseT1 approach, 

primers were designed to amplify GRIA2 at both the Q/R site which is edited at 100% in 

brain [141, 164], and upstream of this site as well. qPCR was then used to query the level of 

the two targets to optimize the glyoxal/RNAseT1 treatment. The optimal amount of RNAseT1 

and glyoxal necessary for a specific cleavage of edited sites was determined empirically by 

performing a series of RNA cleavages with varying amounts of both glyoxal and RNAseT1. 

The results from this indicated that treating RNA with glyoxal altered the stability of the 

RNA: a reduction of the level of GRIA2 non-edited site was observed when treating RNA 

with 1.5µL or 6µL of glyoxal without RNAseT1 treatment (Figure 28A, 0µL RNAseT1); 

however, the glyoxal efficiently protected the RNA against RNAseT1 treatment. Without 

glyoxal protection, the level of GRIA2 decreased 4 times, 13 times and 41 times (calculated 

with the following formula: 2^(Ct XµL RNAseT1 - 0µL RNAseT1)) when treated by 1µL, 2µL and 4µL 

of RNAseT1 respectively, whereas the level of GRIA2 remained stable at a Ct value of ~25.1 

and 25.4 upon protection by 1.5µL and 6µL of glyoxal respectively for any amount of 

RNAseT1 (Figure 28A). Comparison of the level of the GRIA2 edited site with the level of 

normal site across the series of RNA cleavage experiments revealed that the cleavage was 

indeed specific (Figure 28B): a reduction of the level of the edited site was observed when 

treating the RNA with glyoxal and RNAseT1, the optimal conditions being 4µL of RNAseT1 

and 1.5µL or 6µL of glyoxal, which cleaved up to 45% of the edited site [calculated with the 

following formula: 1- (edited site / normal site)]. 
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Figure 28: A) Variation of the level (in Ct value) of GRIA2 normal site upon glyoxal and 
RNAseT1 treatments of mouse brain RNA. B) Variation of the level of GRIA2 site Q/R relative 
to the variation of the level of GRIA2 upstream Q/R as a function of the amount of RNAseT1 
and glyoxal used to treat the mouse brain RNA. 

 

Binding of total RNA to magnetic beads 

Before cleavage with RNAseT1, the RNA needed to be attached to magnetic beads to separate 

the edited RNA from the unedited pool. A common way to reversibly bind two molecular 

entities together is with streptavidin and biotin, where one entity is bound to biotin and the 

second to streptavidin. When mixed together the biotin quickly forms a strong non-covalent 

bond with streptavidin (Kd ~ 4*10-14M), which can be reversed using deionized water at 

temperature greater than 60˚C [257]. 
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Although streptavidin coated magnetic beads are available commercially, the RNA still needs 

to be conjugated to biotin. Since the glyoxal/RNAseT1 treatment cleaves RNA at the 3’end of 

the inosine [256], the biotin must be incorporated at the 3’end of the RNA so that the inosine 

on the RNA strand which is freed from the bead can be isolated. Fortunately, several methods 

are available to bind biotin to RNA, such as enzymatic treatment with terminal transferase 

[258], poly(A)polymerase [259], and poly(U)polymerase [260], all of which can add 

biotinylated nucleotides to the 3’end of RNA [261, 262]. Chemically, the 3’end of RNA can 

also be oxidized, transforming the 3’end cis-diol into two aldehydes able to form a covalent 

bond with biotin-hydrazide [263]. To determine which treatment was the most efficient way 

to incorporate biotin into RNA each method was tried on total mouse brain RNA and the level 

of incorporation was estimated by dot-plot with streptavidin-HRP to detect the biotinylated 

RNA. The chemical binding of biotin to RNA was by far the most efficient being the only one 

detected by streptavidin-HRP (Figure 29A). This method also generally preserved the 

integrity of the RNA, as demonstrated by comparing the RIN scores [264] of the biotinylated 

RNA to total RNA (7.80 verses 8.10 respectively; data not shown). 

Next, the impact of the linkage between the biotinylated RNA and beads was tested by 

analyzing the profile of the RNA before and after magnetic beads binding, a negative control 

was done with streptavidin coated magnetic beads and non-biotinylated RNA (Figure 29B). 

The bioanalyzer profile of the biotinylated RNA eluted from magnetic beads revealed an 

intensity reduction for the RNAs over 2000nt compared to the total biotinylated RNA, which 

indicated that the binding of RNA to the beads was slightly biased toward short RNA. In 

addition, the RNA bands remained sharp on the profile, indicating that the binding of RNA on 

the beads did not impact the integrity of the RNA. 
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Figure 29: A) Dot-plot of mouse brain RNA biotinylated with four different methods and 
detected with streptavidin-HRP. B) Bioanalyzer profile of total RNA, total RNA incubated 
with streptavidin coated magnetic beads then eluted, and biotinylated total RNA incubated 
with streptavidin coated magnetic beads and then eluted. 

 

Interaction between glyoxal and the biotin‐streptavidin bond 

To establish if the RNA needed to be attached to the beads before or after the glyoxal 

treatment, the impact of the glyoxal treatment on the biotin-streptavidin bond was observed by 

treating biotinylated RNA with glyoxal and detecting it with streptavidin-HRP. The dot-plot 

indicated that glyoxal reduced binding of streptavidin to biotin by a factor of 4, since the 

intensity of the 2.5μg glyoxal treated RNA showed an intensity equivalent to ~25% of the 

intensity of non-treated RNA (Figure 30). This result was reproduced also in the binding 

efficiency of the magnetic beads: 1mg of beads typically binds 2.6µg of biotinylated RNA, 

but this decreased to 1.38µg when the biotinylated RNA was treated with glyoxal beforehand. 

In addition, the binding efficiency measured for untreated RNA was 4 times lower than the 

efficiency announced by the manufacturer (10µg of nucleic acid/mg of beads), although this 

could be explained by the fact that the binding capacity was inversely related to the molecule 

size, and that total RNA is predominantly composed of large RNA species (manufacturer 

instructions for Invitrogen #653-05). 
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Figure 30: Dot-plot of biotinylated RNA detected by streptavidin-HRP. Series of untreated 
biotinylated RNA (from 1 corresponding to 2.5µg of RNA to 1/16 corresponding to 156ng of 
RNA) and 2.5µg of biotinylated RNA treated with glyoxal were spotted on the blot. The 
intensity of the biotinylated RNA treated with glyoxal was compared to the dilution series to 
estimate the impact of the glyoxal treatment on the biotin-streptavidin interaction. 

 

Removal of the glyoxal 

One key requirement of the glyoxal/RNAseT1 protocol was that it was necessary to remove 

glyoxal after isolating the RNA to reverse transcribe it for sequencing [221]. To find the 

optimal pH and temperature for glyoxal removal, glyoxalated RNA was cleaned at pH6 or 

pH7 at either 25˚C or 65˚C for 3hrs. If glyoxal was not removed from the RNA with the 

cleaning step, it was expected that no signal would be detected in the RT-PCR since glyoxal 

blocks reverse-transcriptase. Based on this experiment it appeared that the best condition to 

remove glyoxal from RNA was 65˚C at pH7 (Figure 31). 

Figure 31: RT-PCR targeting β-actin of mouse brain RNA which was successively treated 
(G+) or not treated (G-) with glyoxal and cleaned at 25˚C or 65˚C at pH6 or pH7, or not 
cleaned (No treatment) as indicated. The detection of a band in the glyoxal treated sample 
means that the conditions allow a successful removal of the glyoxal. 

 

Evaluation of the extraction protocol 

The experimental results established above were synthesized into a complete protocol, taking 

into account the optimal conditions determined previously and the potential biases introduced 

by each step (refer to the Supplemental Materials for a more detailed protocol description). 

The performances in terms of amount of RNA recovered and specificity of the RNA are 

presented below. 
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Extraction of edited RNA 

Starting with 30µg of mouse brain RNA, the glyoxal/RNAseT1 protocol produced 400ng to 

600ng of B-RNA and 50ng to 80ng of I-RNA. However, current deep-sequencing 

technologies require at least 100ng of RNA for library preparation, meaning that the protocol 

needs to be scaled to reach that amount. It is important to note that the amount of I-RNA 

collected is directly dependent on the prevalence of editing in the tissue; for example, the 

same experiment done on mouse liver RNA, which contains less editing sites [265], provided 

~8ng of I-RNA for the same amount of B-RNA. 

Specific enrichment of known targets of the editing enzymes 

To assess the efficiency of inosilated RNA extraction using this protocol, the amounts of 

known edited transcripts in the I-RNA fraction were compared to their amounts in B-RNA. 

GRIA2, HTR2C, the potassium voltage-gated channel KCNA1 and the γ-amino-butyric acid 

receptor GABRA3 are extensively reported as targets of the ADAR proteins and are all 

expressed in the mouse brain. GRIA2 is edited at 100% at the Q/R site in brain [141, 164]. 

5HT2C contains at least four different editing sites, each one being edited at various levels 

from 40% to 80% [144]. KCNA1 is edited at the site I/V at ~47% by ADAR2 [168, 171]; and 

GABRA3 is edited at the site I/M by both ADAR1 and ADAR2 at 50% in new born mice, and 

up to ~100% in adult mice [169, 170]. Their levels of enrichment were compared to the 

enrichment of β-actin, GAPDH, PPIA and ATP5E for which no editing was reported in the 

DARNED database [266] and RPLP0 which was specifically used as a negative control in 

previous experiments on A-to-I editing [217, 218]. GABRA3, 5HT2C, GRIA2 and KCNA1 

showed from 3 fold to 6 fold enrichment whereas the levels of ATP5E, PPIA, RPLP0 and 

GAPDH decreased in I-RNA (ratio I-RNA/B-RNA <1) indicating that the protocol allowed 

an efficient enrichment of edited RNA (Figure 32). Out of the five negative controls, β-actin 

was the only one being enriched in the I-RNA with almost 2-fold enrichment. This may 

indicate that β-actin is edited at a low level in mouse brain. 
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Figure 32: Enrichment of GRIA2, 5HT2C, KCNA1, GABRA3, RPLP0, β-actin, GAPDH, PPIA 
and ATP5E in I-RNA compared to B-RNA in mouse brain by qPCR. 
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Deep sequencing of the I‐RNA and B‐RNA 

Illumina deep sequencing was performed on 200ng of I-RNA and 500ng of B-RNA to 

produce 65nt paired-end sequences. The I-RNA was sequenced without fragmentation or size 

selection to obtain the 3’end of each edited transcript, which contained the inosine; the B-

RNA library was prepared with the fragmentation step to remove the 3’end biotin. The I-RNA 

sequencing produced 34,623,034 pairs of sequences and the B-RNA 83,049,769 pairs. The 

discrepancy between the numbers of sequences of the two libraries could be explained by the 

difference in the preparation. The B-RNA library preparation included fragmentation and size 

selection, which meant that the library was homogeneous and the sequencing optimal. This is 

in contrast to the I-RNA library which did not include either fragmentation or size selection, 

producing a heterogeneous library that contained both long and short sequences which could 

reduce the sequencing efficiency. 

Raw sequence analysis 

The deep-sequencing analysis returned 8 sets of sequences corresponding to the two lanes for 

each end of each library (Table 5). The nucleotide content of the reads from the I-RNA library 

showed a strong bias toward cytosine at the first base of the 3’end, a bias that was not 

observed in the 5’end (Figure 33). The 3’end reads corresponded to the reverse sequence of 

the cleaved RNA 3’end, which meant that the bias toward cytosine in the sequence 
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corresponded to a bias towards guanine in the library. This bias confirmed that the RNAseT1 

cleavage was specific to guanine and inosine. 

Table 5: Files details generated by the deep sequencing of I-RNA and B-RNA libraries 

Library  End sequenced  Sense of the reads  File name  Number of tags 

I‐RNA lane1  5’end  Sense  mmu_Brain_I_RNA_a_read1_sequence.txt  22,024,909 

I‐RNA lane1  3’end  Antisense  mmu_Brain_I_RNA_a_read2_sequence.txt  22,024,909 

I‐RNA lane2  5’end  Sense  mmu_Brain_I_RNA_b_read1_sequence.txt  12,598,125 

I‐RNA lane2  3’end  Antisense  mmu_Brain_I_RNA_b_read2_sequence.txt  12,598,125 

B‐RNA lane1  5’end  Sense  mmu_Brain_B_RNA_a_read1_sequence.txt  45,201,504 

B‐RNA lane1  3’end  Antisense  mmu_Brain_B_RNA_a_read2_sequence.txt  45,201,504 

B‐RNA lane2  5’end  Sense  mmu_Brain_B_RNA_b_read1_sequence.txt  37,848,265 

B‐RNA lane2  3’end  Antisense  mmu_Brain_B_RNA_b_read2_sequence.txt  37,848,265 
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Figure 33: Proportion of each base, thymine in red, cytosine in blue, adenine in green and 
guanine in black in function of the position in the reads of the I-RNA libraries (from top to 
bottom: lane1 5’end, lane1 3’end, lane2 5’end and lane2 3’end). 
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Identification of editing sites 

To identify the exact position of the edited sites and the edited transcripts the libraries were 

mapped to the mouse genome, and the coordinates of the edited sites were extracted from the 

I-RNA tags by identifying those reads that mapped to the genome with an A to G mismatch at 

their 3’ extremities. All tags from B-RNA and I-RNA libraries overlapping these edited sites 

were selected and aligned to each other, and the number of A and G present at the edited site 

were tallied to calculate the percentage of editing at each edited position (Figure 34). 

Figure 34: Outline of the algorithm used to identify A-to-I edited sites 

 

The mapping strategy 

Several algorithms are available to map deep-sequencing data (reviewed in [267]). To 

maximize the detection of editing sites two algorithms were compared: BWA [268] and 

Tophat [249]. The results given by the two mapping strategy are given in Table 6. It is 

important to note that Tophat map tags more thoroughly than BWA since Tophat looks for 

splice junctions. Tophat detected 2.3 times more tags with an A-to-G mismatch and 1.4 times 

more editing sites than BWA (Figure 35A). The analysis of the mismatches present at the 5’ 

and 3’ends of the mapping tags of the I-RNA library showed enrichment for A-to-G 

mismatches over all other mismatches in 3’end, a result which confirmed that our method 

enriched for RNAs containing inosine (Figure 35B). 



  75

Table 6: Result of the mapping of the I-RNA and B-RNA libraries with BWA and Tophat. 

  BWA  Tophat 

I‐RNA mapping tags (from 34,623,034 pairs of tags) 
13,661,778 

(39.4%) 

15,093,027 

(43.6%) 

B‐RNA mapping tags (from 83,049,769 pairs of tags) 
76,985,712 

(92.7%) 

75,213,148 

(90.6%) 

Number of 3’end extremities from I‐RNA (number of loci)  1,526,719  1,398,042 

Number of A to G mismatches at the 3’end extremities of I‐RNA 
(number of tags) 

24,965  58,206 

Number of loci identified by a uniquely mapping tag containing an 
A‐to‐G mismatch in 3’end 

9,231  12,644 

Figure 35: A) Distribution of the mismatches at the 3’end of the tags from the I-RNA library 
mapped with BWA (in blue) and Tophat (in red). B) Distribution of the mismatches at the 
5’end (in blue) and at the 3’end (in red) of the tags from the I-RNA library mapped with BWA. 
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Filtering of the edited loci 

The following analyses were carried out using the tags mapped using Tophat. The Tophat 

alignment algorithm provided a file in bam format [250] from which it was possible to extract 

the exact location of the mismatch, and to measure the number of tags covering this location 

and the number of each kind of mismatches. This information was collected for each one of 

the 12,644 loci from the I-RNA library presenting an A-to-G mismatch in their 3’ extremity, 

and assembled in a table (table available in supplemental material, description of the table in 

Appendix 6). The following filtering was then applied to the data: all the loci that only 

contained one A-to-G mismatch or were covered by less than five tags were discarded. On the 

2,891 remaining loci, all loci presenting less A-to-G mismatches than A-to-T and A-to-C 

together were also discarded which returned 1,971 loci. Amongst those, 1,069 possessed the 

condition required (detailed in material and method) to perform a z-test to determine if the 

number of A-to-G mismatches is significantly higher than the sum of the number of the two 

other mismatches. 983 loci returned a p-value < 0.0001, 20 loci < 0.001 and 20 loci < 0.05, 

and 46 loci had a non-significant enrichment in A-to-G mismatch and were discarded. Of the 

843 loci that did not have the conditions required for statistical analysis, all loci that presented 

at least five times more A-to-G mismatches than any other were kept, thus rescuing 799 loci. 

All together, this analysis returned a total of 1,822 edited loci (data available in supplemental 

material, description of the table in Appendix 6). 

Characterization of the editing sites 

To characterize the 1,822 edited loci, their locations were intersected with the locations of the 

SINEs, the LINE1s, the rRNAs, the snoRNAs, the snRNAs, the miRNAs and the UCSC 

genes with a distinction between coding genes and non-coding genes (Figure 36A). 56% of 

the loci covered coding genes and 10% non-coding genes. In the coding genes, most of the 

edited sites were intronic (81%) and only 5% were present in coding exons. In the non-coding 

genes, 78% of the sites were present in the exons and only 22% in the introns. This suggested 

that the primary role of editing in coding genes is to modify the splicing pattern of the 

transcript whereas in non-coding gene it is to modify the sequence of the mature RNA which 

may have an impact on its structure and target recognition. In the 895 loci seating in the 

introns of the UCSC gene database, 103 were localized in LINE1, 27 in SINE, 63 in rRNA, 

33 in snoRNA and 26 in snRNA. Finally, 573 loci came from transcripts that were not 

referenced by the UCSC gene database. 40% of them came from rRNA, 6% from snRNA, 5% 

from SINE and 4% from LINE1 (Figure 36A). 
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The frequency of nucleotides surrounding the 1,822 edited sites was then estimated; it 

appeared that editing shows a preference for sites with the following neighbors: U>A>G>C in 

5’ and G>A>C>U in 3’ (Figure 36B) which is similar to previous findings [146, 147]. 

Figure 36: A) Identification of the transcripts containing the editing sites. The pie chart 
represent the number of editing sites located in UCSC coding genes in red, in UCSC non-
coding genes in yellow, ambiguous loci in black (unclear if it is coding or not) and loci which 
are not covered by any genes (other) in blue. For each category, except for ambiguous, the 
location was characterized further in the bar graphs: for the coding genes the sites were 
distributed in three classes, intron in red, CDS in yellow and UTR in blue; for the non-coding 
genes in two category, exon in blue and intron in red; and for the category other, loci were 
distributed in LINE1 in light blue, SINE in brown, snRNA in pink, rRNA in green and 
unclassified loci in other in orange. B) Nucleotide density map in 5’ (position -1) and 3’ 
(position 1) of the editing site, the graph was constructed using WebLogo [269]. 
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Editing sites in the CDS of protein coding genes 

48 editing sites were found in the coding regions of 40 genes, 8 of them produced 

synonymous mutation, leaving 35 genes where the editing produced a change in amino acid 

(Table 7). Among these, several targets were already known, like Gria2 site R/G [152-154], 

Kcna1 [171], Gabra3 [169, 170], 3 of the 5 sites present on 5Ht2c [144, 149, 150], Grik2 

[270], Cyfip2 [271], Blcap [271] and Cadps [222]. The site Gria2 Q/R described previously 

was not present in this dataset even though it is edited at 100% [141, 164]. Further analysis at 

this specific site revealed that it was excluded because of its low coverage. 

In term of frequency of editing, Gabra3 was measured to be edited at 100% with coverage by 

16 tags, which was concordant with previous reports for adult mouse brain [169, 170]. For 

5Ht2c, the editing frequency decreased from site A to site D, 75% for A, 50% for B and 33% 

for D, which was mainly explained by experimental biases on editing sites that were nearby to 

each other (12nt between site A and site D): the cleavage in site A reduced the coverage in B 

and even more in D. Further examination of our datasets at the 5Ht2c sites revealed that the C 

site was also detected but was discarded because of low coverage. For Kcna1, we measured 

an editing frequency of 53%, which was close to the 47% previously reported [168, 171]. 

Overall, 28 new edited sites that changed the protein sequence of 26 genes were discovered. 

Table 7: List of the coding genes for which a non-synonymous mutation occurs when they are 
edited. Freq. : frequency of A-to-I editing; Gene symbol: the ones which are underlined have 
been previously described and the ones in red are reported as edited in the DARNED 
database for human [266]; gCodon: genomic encoded codon; eCodon: edited codon; 
Mutation: amino acid substitution created by the editing (aa from genome/aa from edited 
codon); * this codon possess two edited site which can produce two different aa. 

Location  Freq.  Strand  Gene symbol  gCodon  eCodon  Mutation 

chrX:143604228‐143604229  0.75  +  5Ht2c site A  ATA  GT[A/G]*  I/V 

chrX:143604230‐143604231  0.50  +  5Ht2c site B  ATA  [A/G]TG*  I/[M/V] 

chrX:143604240‐143604241  0.33  +  5Ht2c site D  ATT  GTT  I/V 

chr4:42290071‐42290072  0.17  +  AK048672  TAT  TGT  Y/C 

chr11:30119575‐30119576  0.81  ‐  AK137356  AAG  GAG  K/E 

chr4:116310362‐116310363  0.96  ‐  Akr1a4  AGG  GGG  R/G 

chr3:107990695‐107990696  0.09  +  Amigo1  AAG  GAG  K/E 

chr18:34459717‐34459718  1.00  +  Apc  AAG  GAG  K/E 

chrX:8470505‐8470506  0.40  +  B630019K06Rik  TAC  TGC  Y/C 

chr2:157383884‐157383885  0.37  ‐  Blcap  TAT  TGT  Y/C 

chr2:157383875‐157383876  0.32  ‐  Blcap  CAG  CGG  Q/R 



  79

Location  Freq.  STD  Gene symbol  gCodon  eCodon  Mutation 

chr14:13244095‐13244096  0.38  ‐  Cadps  GAG  GGG  E/G 

chr2:71872179‐71872180  1.00  +  cAMP‐GeFII  ATC  GTC  I/V 

chr9:110158808‐110158809  0.95  +  Cspg5  ACT  GCT  T/A 

chr11:46086144‐46086145  0.85  ‐  Cyfip2  AAG  GAG  K/E 

chr7:17470695‐17470696  1.00  +  Dact3  AGG  GGG  R/G 

chr4:68459718‐68459719  0.57  ‐  Dbc1  ACA  GCA  T/A 

chr15:54701754‐54701755  0.95  ‐  Enpp2  AAG  GAG  K/E 

chr14:46102178‐46102179  0.06  ‐  Fermt2  AAG  GAG  K/E 

chr10:13232535‐13232536  1.00  +  Fuca2  AGA  GGA  R/G 

chrX:69690630‐69690631  1.00  ‐  Gabra3  ATA  ATG  I/M 

chr3:80496207‐80496208  0.77  ‐  Gria2  AGA  GGA  R/G 

chr6:64225893‐64225894  1.00  +  Grid2  AGC  GGC  S/G 

chr10:48992581‐48992582  0.92  ‐  Grik2  TAC  TGC  T/C 

chr10:48992594‐48992595  0.73  ‐  Grik2  ATT  GTT  I/V 

chr17:27639739‐27639740  0.20  ‐  Grm4  CAG  CGG  Q/R 

chr3:96024192‐96024193  0.06  +  Hist2h2ab  AAG  GAG  K/E 

chr3:96024435‐96024436  0.09  ‐  Hist2h2ac  AAC  AGC  N/S 

chr9:40612739‐40612740  0.01  +  Hspa8  AAG  GAG  K/E 

chr6:126592175‐126592176  0.53  ‐  Kcna1  ATT  GTT  I/V 

chr15:74939114‐74939115  0.95  ‐  Ly6c2  AAG  AGG  K/R 

chr8:96703791‐96703792  1.00  +  Mt1  GAG  GGG  E/G 

chr14:32001840‐32001841  0.07  ‐  Nisch  GAG  GGG  E/G 

chr11:79316468‐79316469  0.01  ‐  Omg  ACG  GCG  T/A 

chr9:25109124‐25109125  0.98  +  Sept7  TAC  TGC  Y/C 

chr16:91656333‐91656334  0.50  +  Son  AGG  GGG  R/G 

chr16:91655859‐91655860  0.25  +  Son  ACC  GCC  T/A 

chr8:26128628‐26128629  1.00  +  Tm2d2  AGG  GGG  R/G 

chr9:64083672‐64083673  1.00  +  Uchl4  AAA  GAA  K/E 

chr18:24119047‐24119048  0.25  +  Zfp397  AAA  AGA  K/R 

Editing sites in the non‐coding sequence of protein coding genes 

Hyperediting of RNA was shown to lead to the sequestration of transcripts in paraspeckles 

which can later be released by cleavage under certain conditions (e.g. Cat2 [179]). Following 

this, an in silico analysis predicted 107 coding genes in which specific cleavage of 

hyperedited region may occur [272]. The editing of five of these genes were confirmed in our 

analysis as containing editing sites in 3’UTR and introns: Dlgap4 (NM_146128.5) contained 2 
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editing sites in introns, Abcb4 (NM_008830.2) and Snupn (NM_178374.3) one each in intron, 

Tox4 (NM_023434.3) two in 3’UTR overlapping a B1 element, and Tapbp (NM_009318.2) 

four in 3’UTR overlapping two B1 elements. 

Editing sites in rRNA 

343 editing sites were located in regions annotated as rRNA, among them, 30 presented an 

editing frequency over 0.5. Of those sites, 24 were located in 28S rRNA and 6 in the 18S 

rRNA. To precise the site of editing in the rRNA sequence, the tags defining editing sites 

were mapped to the mouse 45S rRNA precursor and then to human 28S and 18S rRNAs for 

which extensive information was available about the modifications occurring [273]. 

Intriguingly, it turned out that the six A-to-G mismatches found in the 18S rRNA regions 

corresponded to G in the 45S rRNA precursor and in the human 18S sequences; the same was 

observed for 21 editing sites found in the 28S rRNA regions and in the human 28S rRNA 

sequence, only three A-to-G mismatches corresponded to A in the mouse precursor and in the 

human 28S sequences (the sequences of the human 28S and 18S rRNA annotated with the 

editing sites discovered here, the methylation and pseudouridylation sites and the small RNAs 

initiating the modifications are described in Appendix 7). It is important to note that, at this 

stage, only uniquely mapping tags were used, and that they were paired-end tags, which mean 

that the loci identified were highly reliable. These observations suggested that most of the 

editing observed in rRNA corrected nucleotides which mutated to adenosine in the new rRNA 

locus compared to the 45S precursor rRNA. 17 of the 30 edited sites were located nearby 

modified sites (methylation or pseudouridylation; i.e. Appendix 7), modifications which are 

dependent on the base-pairing of a complementary snoRNA [274, 275]; thus, editing at these 

sites may alter the modification process when modifying a conserved nucleotide and 

disrupting the base-pairing, or restore the modification process when the editing change a 

mutated nucleotide back to the conserved nucleotide and restore the base-pairing. 

Editing sites in snoRNA 

The mouse snoRNAs are not well annotated and the coordinates of only 170 snoRNAs are 

available for mouse [276] whereas 381 are known for human [277]. To maximize the 

detection of editing sites in mouse snoRNAs, the editing sites were intersected with the mouse 

snoRNAs and also the human snoRNAs for which orthologous sequences were found in 

mouse. 29 A-to-I editing sites were located in 13 snoRNAs and, among these, 11 sites were 

on snoRNAs that were not annotated in mouse (Table 8). 
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The editing sites present on Snord45c and Snora22 were located in the regions involved in the 

target recognition. For Snora22, the nucleotides 87 and 88 located in the stem loop above the 

pseudouridylation site were edited (Figure 37A). The editing site in Snord45c was located in 

the region pairing with the 18S rRNA, on the A pairing with the U adjacent to the methylated 

nucleotide A159 (Figure 37B). The consequence of such editing may be critical for the 

functions of the snoRNA; however the level of editing at these sites remained really low with 

editing frequencies below 1% (Table 8). Coincidentally, the nucleotide located in position 

4974 on the 28S rRNA in 5’ of the uridine modified by Snora22, was shown previously to be 

edited in mouse in an rRNA gene containing an A at this position (Figure 37A). Similarly, the 

snoRNA Snord5 is edited and catalyze the methylation of the C2409 of 28S rRNA, a site 

located 15 nucleotides upstream of a conserved A-to-I editing site (i.e. Appendix 7). This can 

be due to blind chance, or it might also suggest some concomitance between the A-to-I editing 

and other modifications of rRNA. Co-localization of ADAR protein with rRNA and snoRNA 

in the nucleolus was previously demonstrated [119] but its signification remains largely 

unclear. The sequences of all the edited snoRNA with their edited loci are in Appendix 8. 

Figure 37: A) Region from the human snoRNA Snora22 pairing with the 28S rRNA to modify 
the uridine U4975 to pseudouridine. B) Region from the human snoRNA Snord45c pairing 
with the 18S rRNA to modify the adenine A159 to methylated A159. The red arrows indicate 
the location of the editing site discovered in this thesis, the green arrow represents a position 
which was previously found edited in mouse 28S rRNA. The drawings are modified from the 
snoRNABase (http://www-snorna.biotoul.fr). 
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Table 8: List of the editing sites located in snoRNA. Freq. : frequency of editing; Predicted 
targets from the snoRNABase [277]. 

Location  Strand  Freq. 
Mouse 
snoRNA 

Human 
orthologue 

Type  Predicted target 

chr5:130295500‐130295501  +  0.007  N/A  snora22  H/ACA 
U4966 and U4975 

of 28S rRNA 

chr5:130295501‐130295502  +  0.002  N/A  snora22  H/ACA 
U4966 and U4975 

of 28S rRNA 

chr1:87983952‐87983953  +  0.024  N/A  snora26  H/ACA  28S rRNA U4522 

chr12:60235135‐60235136  +  0.011  N/A  snora26  H/ACA  28S rRNA U4522 

chr10:90581200‐90581201  ‐  0.482  N/A  snora53  H/ACA  Unknown 

chr11:69482390‐69482391  ‐  0.004  N/A  snord10  C/D 
U6 snRNA C77 and 
28S rRNA C3787 

chr7:67024349‐67024350  ‐  0.009  N/A  snord116  C/D  Unknown 

chr7:67029393‐67029394  ‐  0.014  N/A  snord116  C/D  Unknown 

chr9:15118582‐15118583  +  0.007  N/A  snord5  C/D  28S rRNA C2409 

chr7:51505898‐51505899  +  0.005  N/A  snord88b  C/D  28S rRNA C3680 

chr6:71832598‐71832599  ‐  0.006  N/A  snord94  C/D  U6 snRNA C62 

chr12:112779253‐112779254  +  0.010  Snora28  snora28  H/ACA 
U815 and U866 of 

18S rRNA 

chr12:112779265‐112779266  +  0.040  Snora28  snora28  H/ACA 
U815 and U866 of 

18S rRNA 

chr7:106631332‐106631333  ‐  0.010  snord15a  snord15a  C/D  28S rRNA A3764 

chr7:106631336‐106631337  ‐  0.005  snord15a  snord15a  C/D  28S rRNA A3764 

chr7:106631351‐106631352  ‐  0.031  snord15a  snord15a  C/D  28S rRNA A3764 

chr7:106631352‐106631353  ‐  0.005  snord15a  snord15a  C/D  28S rRNA A3764 

chr7:106631377‐106631378  ‐  0.009  snord15a  snord15a  C/D  28S rRNA A3764 

chr7:106628117‐106628118  ‐  0.001  snord15b  snord15b  C/D  28S rRNA A3764 

chr2:144091786‐144091787  ‐  0.013  Snord17  snord17  C/D  28S rRNA U3797 

chr2:144091787‐144091788  ‐  0.081  Snord17  snord17  C/D  28S rRNA U3797 

chr2:144091789‐144091790  ‐  0.052  Snord17  snord17  C/D  28S rRNA U3797 

chr2:144091790‐144091791  ‐  0.006  Snord17  snord17  C/D  28S rRNA U3797 

chr2:144091799‐144091800  ‐  0.068  Snord17  snord17  C/D  28S rRNA U3797 

chr2:144091858‐144091859  ‐  0.108  Snord17  snord17  C/D  28S rRNA U3797 

chr2:144091873‐144091874  ‐  0.008  Snord17  snord17  C/D  28S rRNA U3797 

chr19:8800422‐8800423  +  0.003  Snord22  snord22  C/D  Unknown 

chr3:153575103‐153575104  ‐  0.006  snord45c  snord45c  C/D  18S rRNA A159 
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Editing sites in snRNA 

60 editing sites were located in 25 distinct snRNAs: eleven from the U2 family, five from the 

U3, two from the U4, four from the U5, two from the U14 and one from the U17; 59 of these 

sites were edited at less than 3% and the last site, on a U2, was edited at 99.6%. Alignment of 

the eleven U2 homologues that presented editing sites revealed that the highly edited site 

corresponded to a guanosine in most U2 sequences (position 81 on Figure 38). This may 

indicate that editing corrects a deleterious mutation at this precise site as observed previously 

in the rRNA. U2 snRNA contained 11 additional A-to-I editing sites and 13 sites that were 

modified by snoRNAs (Figure 38). The methylation site C61, modified by Scarna2 [277], is 

three nucleotides downstream the editing site A64 which is located in the site recognized by 

Scarna2 (Figure 39). Similarly, the pseudouridylation site U89, modified by Scarna1 [277], is 

six nucleotides downstream the editing sites A95 which is located in the site recognized by 

Scarna1 (Figure 38 and Figure 39). This means that one of the modifications might modulate 

the efficiency of the other one. The modifications occurring on the six snRNAs are presented 

in Appendix 9. 

Figure 38: Sequence composition of the snRNA U2 built with the eleven sequences containing 
edited sites, aligned with ClustalW [246] and generated with WebLogo [269]. The 
nucleotides which are pseudouridylated or methylated by snoRNA (data from [277]) are 
boxed in green and the nucleotides which are edited in red. 
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The analysis of the secondary structure of snRNA U2 revealed that none of the editing sites 

were present in the region of U2 which interact with snRNA U6 or the mRNA during splicing 

[278, 279] which suggested that editing of U2 does not impact its splicing function (Figure 

39). It also revealed that none of the editing sites were present in a stem-loop of at least 20nt 

long and seven of the twelve editing sites were located in loops (Figure 39), which indicated 

that editing in snRNA U2 was dependent of its binding to a partner to form the double 

stranded structure necessary for its editing [134]. 

Figure 39: Secondary structure of the family snRNA U2 from Rfam [280, 281] annotated with 
pseudouridylation and methylation sites (outlined in green; data from [277]), A-to-I editing 
sites (outlined in red), the nucleotides interacting with ScaRNAs are indicated with a blue 
line, the names of the ScaRNAs responsible of the modifications are in blue, and the 
nucleotides interacting with the mRNA and snRNA U6 during splicing are outlined in yellow 
[278, 279]. 
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Materials and methods 

Purification of edited RNA by co‐immunoprecipitation 

Preparation of the beads 

For each IP, 100μL of Dynabeads M-280 sheep anti-rabbit IgG 10mg/mL (Invitrogen 

catalogue #112-03D) were prepared. First the beads were washed 3 times in block solution 

(1X PBS, 0.5% BSA) and incubated with 10μg of target specific antibody (IP+) or pre-

immune serum (IP-) for at least 2hrs. The mix was then washed 3 times with the block 

solution and resuspended in 50μL of block solution. For the ADAR IP the following 

antibodies were used: ADAR1 (Santa Cruz biotechnology #sc-33179) and ADAR2 (Santa 

Cruz Biotechnology #sc-33180). 

Brain lysate preparation 

For standard IP 

One brain from a BL6C57 male was homogenized in 3mL 1X HBSS and 0.01M HEPES (pH 

7.3) with a glass grinder. The suspension was aliquoted in 2*1.5mL and centrifuged 10 min at 

600g at 4˚C. The supernatants were discarded and the pellets were washed in 1mL ice cold 1X 

HBSS and resuspended in 0.5mL PXL (1X PBS, 0.1% SDS, 0.5% (v/v) sodium deoxycholate, 

0.5% (v/v) NP-40, 1X protease inhibitor cocktail (Roche #11836170001), RNAseOut 

100U/mL (Ambion #10777-019) and 0.5μL DTT 100mM). The two suspensions were 

sonicated by applying 2*5min 30s pulse 30s pause at high power in ice with a Bioruptor 200 

(Diagenode #UCD-200 TO) and centrifuged at 10,000g for 20min at 4˚C, the supernatants 

were cleared for 30min at 4˚C on a rotating platform with 100μL Dynabeads M-280 coupled 

with sheep anti-rabbit IgG (Invitrogen #112-03D) washed 3 times with block solution as 

described above. The cleared lysates were collected after placing the tube on a magnetic stand 

for 2min. 

Including the sucrose gradient purification step 

The first sucrose gradient containing EDTA was prepared as follow: first the tube containing 

the sucrose gradient (Beckmann Coulter #361623) was treated RNAse free 1h with 2N NaOH 

solution and then washed thoroughly with sterile water. 2mL of RNAse free sucrose solution 

containing 30%, 22%, 14% and 5% sucrose in [5mM HEPES-NaOH pH 7.4, 0.2mM EDTA, 
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1X of protease inhibitor (Roche #11836170001), 50U/mL RNaseOUT (Invitrogen #10777-

019) and 1mM DTT] were successively poured in the tube and frozen in dry ice. The sucrose 

gradient was then stabilized at 4˚C for 24hrs. 1mL of brain lysate prepared as described in the 

section “Brain lysate preparation for standard IP” was delicately poured over the sucrose 

gradient and the sucrose gradient was centrifuged for 15hrs at 22000rpm at 4C. The sucrose 

gradient was then fractionated in ~350µL fractions from bottom to top by piercing a hole at 

the bottom of the tube using a needle. 

A dot-plot was done to assess which fractions contain ADAR2, H3 or GAPDH complexes as 

follow: a nitrocellulose membrane Hybond-P (Amersham #RPN2020F) large enough to 

contain 30 dots (10*3cm) was conditioned for 10min in methanol and then put in transfer 

buffer for at least 1min. The membrane was then put on a glass slide and 5µL of each fraction 

was deposited on the membrane. Once the membrane was dry, it was blocked in [10% skim 

milk, 1X TBS, 0.1% Tween 20] at RT for 2hrs, incubated with primary antibody (1/1,000) 

targeting ADAR2 (Santa Cruz Biotechnology #sc-33180), H3 (Cell Signaling Technology 

#9715) or GAPDH (Trevigen #2275-PC-1) in [2% skim milk, 1X TBS, 0.1% Tween 20] for 

at least 2hrs at RT or overnight at 4˚C, washed 3 times 5min in [1X TBS, 0.1% Tween], 

incubated 30min at RT in [10% skim milk, 1X TBS, 0.1% Tween 20], incubated with the 

secondary antibody [1/2,000 for anti-rabbit HRP-antibody (Invitrogen #62-6120) in [2% skim 

milk, 1X TBS, 0.1% Tween 20] for 1hr at RT, washed 3 times 10min in [1X TBS, 0.1% 

Tween], soaked for 1min in ECL solution (VWR #GEHRPN2132) and exposed to a 

photosensitive film (Fuji Medical X-RAY Film RX 18X24CM 100SHTS, Fujifilm #497690). 

The fraction containing ADAR2 complexes were then pooled to perform the IP as described 

in the pull-down part described below. 

The second sucrose gradient containing NaCl and MgCl2 was prepared as described for the 

sucrose gradient containing EDTA by replacing the sucrose solution by the following 

solution: 100mM NaCl, 10mM Tris pH 8.0, 2mM MgCl2, 2mM vanadyl ribonucleoside, 

50U/mL RNaseOUT (Invitrogen #10777-019) and 1mM DTT. 

Including the nuclei fractionation step 

To extract the nuclei from total brain, first 2 mouse brain were homogenized in 6mL of ice 

cold HBSS with a Dounce homogenizer (Wheaton Scientific #357542) using the loose pestle 

(0.114 ±0.025mm clearance). The cells from the homogenate were pelleted at 2500rpm for 3 

min at 4°C, rinsed with 6mL of ice cold HBSS, resuspended in 5ml of Buffer A [10mM 
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Hepes pH 7.9, 10mM KCl, 1.5mM MgCl2, 0.5mM DTT] and incubated on ice for 5 min. The 

cell suspension was then transferred to a pre-cooled 7 ml Dounce tissue homogenizer 

(Wheaton Scientific #357542) and homogenized with 30 strokes using the tight pestle (0.05 

±0.025mm clearance), while keeping the homogenizer on ice. The homogenized cells were 

centrifuged at 218g (1000 rpm, Beckman GS-6 centrifuge, GH-3.8 rotor) for 5 min at 4°C. 

The pellet contained enriched, but not highly pure, nuclei. The supernatant contained the 

cytoplasmic fraction. The nuclear pellet was resuspended in 3 ml of [0.25M Sucrose, 10mM 

MgCl2], layered over 3 ml of [0.88 M Sucrose, 0.5 mM MgCl2] and centrifuged at 3000g 

(3500 rpm, Beckman GS-6 centrifuge, GH-3.8 rotor) for 15 min at 4°C. The supernatant was 

discarded. The pellet contained pure nuclei, and was resuspended in 1.5mL of PXL and 

prepared as described in the protocol for standard IP. 

Pull down 

Each aliquot of cleared lysate was mixed either with the 50μL of beads incubated with the 

specific antibody (IP+) or with the 50μL of beads incubated with the pre-immune serum (IP-) 

and incubated overnight at 4°C on a rotating platform. The beads were then rinsed 3 times in 

500μL of cold wash buffer [1× PBS, 2 mM MgCl2, 15mM EDTA, 1% NP-40, 0.5% Tween-

20, 1X protease Inhibitor Cocktail (Roche #11836170-001)], and once with 1mL of cold 1× 

PBS. The complexes antibody/specific targets were then eluted from the beads in 100μL [1× 

PBS, 1% SDS] at 65°C for 10min and the supernatants were collected for protein and RNA 

extraction.  

RNA and protein purification  

The RNA and proteins from the IP+ and IP- eluates were extracted using Trizol LS 

(Invitrogen #10296-028) according to the manufacturer instruction. Briefly, each sample 

volume was adjusted to 250μL with DEPC water, mixed with 750μL of Trizol LS, incubated 

at room temperature (RT) for 5 min, mixed with 200μL of chloroform, incubated 2-3min at 

RT and centrifuged at 12000g for 15min at 4°C. The suspension separated into two phases, 

the colorless aqueous phase contained the RNA and the pink organic phase and the interphase 

contained the proteins. 

The RNA was precipitated by adding 500μL of isopropanol to the aqueous phase, incubating 

10min at RT and centrifuging at 12000g for 10min at 4°C. The pellet was rinsed once with 

70% ethanol, air-dried and resuspended in 10μL of DEPC-water. 



  88

The proteins were extracted from the organic phase by adding first 300μL of 100% ethanol to 

the organic phase, incubating 2-3min at RT, centrifuging at 2,000g for 5min at 4°C. The 

proteins were then precipitated by mixing the supernatant with 1.5mL isopropanol, incubating 

10min at RT and centrifuging at 12,000g for 10min at 4°C. The pellet was washed 3 times in 

[95% ethanol, 0.3M guanidine hydrochloride], once in 100% ethanol, air-dried and 

resuspended in 100μL 1% SDS. After resuspension, the insoluble material was sedimented by 

centrifuging at 12,000g for 10min at 4°C. The proteins were ready for the Western-blot. 

Reverse‐transcription and PCR 

The RNA from IP+ and IP- were treated with 2U of DNaseI (Invitrogen #18068-015) 

according to the manufacturer instructions and cleaned with MinElute cleanup-kit (Qiagen 

#74204) according to the following instruction (the standard protocol from Qiagen excludes 

the RNAs < 200nt, this protocol retains them): each DNaseI I treated sample was adjusted to 

100μL with DEPC water and mixed with 350μL buffer RLT and 675μL 100%EtOH. The mix 

was passed through a column inserted in a collection tube by centrifuging 15s at 8,000g, the 

flow through was discarded. The column was then washed with 500μL buffer RPE and with 

500μL of 80% EtOH. The column was dried by centrifuging at full speed for 1 min with the 

lid of the column open, and then placed in a new collection tube. The RNA was eluted with 

14μL of DEPC-water placed directly on the column and centrifugation for 1min at full speed. 

The RNA was then reverse transcribed with the superscript III kit (Invitrogen #18080-051) 

according to manufacturer instruction using random hexamers. 

As indicated for each IP, the abundance of GRIA2 site R/G, GRIA2 site Q/R, 5HT2C, 

mGluRA, RPLP0 or ADAR2 were queried by PCR. Each reaction was performed in 20μL 

containing 1μL of cDNA, 0.25μM of primers forward and reverse (sequences in Appendix 4), 

1X PCR buffer (fisher biotec #TAQ-1), 1.25mM MgCl2, 1 unit of Taq polymerase (fisher 

biotec #TAQ-1) with the following program: 95˚C for 2min, [95˚C for 30s, 60˚C for 30s, 

72˚C for 30s] for 35 cycles, 72˚C for 7min. PCR products were then run in a 1.5% agarose gel 

containing ethidium bromide. 

SDS‐PAGE and Western‐blot 

The two phases gel used in the SDS-PAGE and Western-blot was prepared the following way: 

first, the separating gel mix (10% acrylamide/bis 30:0.8, 0.4M Tris-HCl pH8.8, 0.1% SDS, 

0.05% APS, 0.05% TEMED) was poured in a vertical gel cast. Then, the stacking gel mix 

(4% acrylamide/bis 30:0.8, 0.4M Tris-HCl pH6.8, 0.1% SDS, 0.05% APS, 0.05% TEMED) 
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was poured on top of the polymerized separating gel and the comb was placed in the gel cast. 

Once polymerized, the gel was incubated overnight at 4˚C to complete the polymerization. 

20μL of the purified proteins (IP+ and IP-) were denatured at 95˚C for 5 min in 1X Laemmli 

dye (80mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 0.2g/L Bromophenol blue, 0.5% B-

mercaptoethanol) and loaded on the gel. Each sample was loaded in 2 wells, one for the SDS-

PAGE and one for the Western-blot. The gel was then run at 200V in Laemmli running buffer 

(3.03g/L Tris base, 14.4g/L glycine, 1g/L SDS) until the dye goes out of the gel. The gel was 

then divided in two parts, one performed Western-blot and the other for Coomassie blue 

coloration. 

The gel part to be stained was incubated 20min at RT in Coomassie blue solution (1g/L 

Coomassie brilliant blue powder, 50% methanol, 10% acetic acid) and rinsed in 10% acetic 

acid until the band reach the desired definition. 

The gel part to be blotted was incubated in transfer buffer for 10min (15% methanol, 3.03% 

Tris w/v, 14.4 % glycine w/v). A nitrocellulose membrane Hybond-P (Amersham 

#RPN2020F) the same size than the gel was conditioned for 10min in methanol and then put 

in transfer buffer for at least 1min. 6 pieces of Whatmann paper the same size than the gel 

were soaked in transfer buffer. The following mounting [3*Whatmann paper, membrane, gel, 

3xWhatmann paper] was assembled in a semi-dry transfer unit (Hoefer SemiPhor TE-77), the 

membrane facing the anode grid and the gel facing the cathode grid. The transfer was carried 

out at 0.8mA/cm2 for 2hrs. The membrane was then blocked in [10% skim milk, 1X TBS, 

0.1% Tween 20] at RT for 2hrs, incubated with primary antibody (1/1,000) in [2% skim milk, 

1X TBS, 0.1% Tween 20] for at least 2hrs at RT or overnight at 4˚C, washed 3 times 5min in 

[1X TBS, 0.1% Tween], incubated 30min at RT in [10% skim milk, 1X TBS, 0.1% Tween 

20], incubated with the secondary antibody [1/2,000 for anti-rabbit HRP-antibody (Invitrogen 

#62-6120) and 1/10,000 for protein A-HRP (Invitrogen #10-1023)] in [2% skim milk, 1X 

TBS, 0.1% Tween 20] for 1hr at RT, washed 3 times 10min in [1X TBS, 0.1% Tween], 

soaked for 1min in ECL solution (VWR #GEHRPN2132) and exposed to a photosensitive 

film (Fuji Medical X-RAY Film RX 18X24CM 100SHTS, Fujifilm #497690). 
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Purification of edited RNA by Glyoxal/RNAseT1 cleavage 

Protocol optimization 

Specificity of the Glyoxal/RNAseT1 cleavage 

Mouse brain RNA was combined with glyoxal according to the following conditions: 

Tube  1 to 4  5 to 8  9 to 12 

Mouse brain RNA 1ug/μL  2.5μL  2.5μL  2.5μL 

NaPO4 100mM pH7  10μL  10μL  10μL 

DMSO  50μL  50μL  50μL 

Deionized Glyoxal 40%  ‐  1.5μL  6μL 

Water  37.5μL  37.5μL  37.5μL 

The samples were incubated for 45min at 37˚C, mixed with 100μL of 1M sodium borate 

pH7.5 and precipitated with 1mL of 100% ethanol by centrifuging at 17,000g for 15min at 

4˚C. The pellets were dried thoroughly under vacuum and resuspended in 21μL of Tris-borate 

buffer (10mM Tris-HCl pH7.8, 1M sodium borate pH7.5). 

The RNAseT1 (Ambion #AM2283) was added to each sample as follow: 

Tubes  1, 5, 9  2, 6, 10  3, 7, 11  4, 8, 12 

RNAseT1 1U/μL  0μL  1μL  2μL  4μL 

DEPC water  4μL  3μL  2μL  0μL 

All tubes were incubated 30min at 37˚C and the treatment was stopped by adding 500μL of 

phenol/chloroform, vortexing, and completing the volume up to 1mL with DEPC water. The 

emulsion was centrifuged 10min at 13,000g at 4˚C. The phenol extraction was repeated on the 

aqueous phase, and then the RNA in the aqueous phase was precipitated with 1μL of 

glycoblue 15mg/mL (Ambion #AM9516), 1/10 vol. of sodium acetate 3M and 0.7vol. of 

isopropanol. Samples were incubated 5min at RT and centrifuged at 17,000g for 15min at 

4˚C. The pellets were washed three times with 70% ethanol, air-dried and resuspended in 

500μL of DEPC water. The phenol extraction was repeated on the 500μL RNA to get rid of 

the excess borate before removing the glyoxal. The pellets were carefully resuspended in 

40uL of water (the pellet may be hard to resuspend), 10μL of 100mM sodium phosphate 

pH7.0 and 50μL DMSO. The samples were incubated 3hrs at 65˚C to remove the glyoxal. The 

volume of each sample was adjusted to 500μL with DEPC water and precipitated with sodium 

acetate and isopropanol as described previously. The pellets were resuspended in 10μL of 

DEPC water, 8μL of RNA was reverse-transcribed with random hexamers and qPCR were 
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performed using the primers GRIA2 and GRIA2 Q/R (sequences in supplemental 

information) as described below in the PCR paragraph of this section. 

Binding of total RNA to streptavidin coated magnetic beads 

The different Biotinylation methods were performed on mouse brain total RNA. For the 

terminal transferase treatment, 10µg of RNA was mixed with 50U of terminal transferase 

(NEB # M0315S) in the buffer provided by the manufacturer with 0.2mM biotin-ATP (Perkin 

Elmer #NEL544001EA), incubated for 1hr at 37˚C, cleaned with phenol chloroform as 

described previously and resuspended in 10µL of DEPC water. For the poly(A)polymerase 

treatment, 10µg of RNA was mixed with 5U of poly(A)polymerase (NEB # M0276S) in the 

buffer provided by the manufacturer with 0.05mM biotin-ATP (Perkin Elmer 

#NEL544001EA) and 0.05mM ATP, incubated for 30min on a temperature gradient from 

30˚C to 60˚C [261], cleaned with phenol chloroform and resuspended in 10µL of DEPC 

water. For the poly(U)polymerase, 10µg of RNA was mixed with 10U of poly(U)polymerase 

(NEB # M0337S) in the buffer provided by the manufacturer with 0.1mM biotin-ATP (Perkin 

Elmer #NEL544001EA) and 0.1mM ATP, incubated 1hr at 37˚C, cleaned with phenol 

chloroform as described previously and resuspended in 10µL of DEPC water. Finally, for the 

labeling using biotin-hydrazide, 10µg of RNA was oxidized with 10mM sodium periodate 

freshly prepared in 100mM sodium acetate for 90min et RT in the dark, the reaction was 

stopped with 250mM KCl (final concentration) for 10min on ice. The RNA was cleaned with 

phenol chloroform as described previously, resuspended in 90μL of 100mM sodium acetate 

pH5, mixed with 10μL of 40mM biotin-hydrazide (Sigma B7639) dissolved in DMSO and 

incubated 4hrs at RT in the dark. The RNA was cleaned with phenol chloroform and 

resuspended in 10µL of DEPC water. The concentration of each sample is measured with a 

NanoDrop 1000 Spectrophotometer (ThermoFisher Scientific) and adjusted to 0.5µg/µL. The 

efficiency of the biotinylation was determined by dot-plot as follow: 2.5µg of biotinylated 

RNA and 20pmol of biotinylated probe for the positive control (the sequence does not matter, 

the following one was used: atccaagtactaaccaggcccgaccctgc-biotin) were plotted on a 

membrane Hybond–N+ (Amersham #RPN119B). The membrane was blocked for 2hrs at RT 

in [1x PBS, 0.1% Tween 20, 10% skim milk], incubated 1hr with 1/2500 HRP-avidin 

(Invitrogen #43-4323) in [1x PBS, 0.1% Tween 20, 2% skim milk], washed 3 times in [1x 

PBS, 0.1% Tween 20], soaked for 1min in ECL solution (VWR #GEHRPN2132) and exposed 

to a photosensitive film (Fuji Medical X-RAY Film RX 18X24CM 100SHTS, Fujifilm 

#497690). 
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To assess the efficacy of the interaction magnetic beads – biotinylated RNA, 5µg of RNA 

biotinylated with biotin-hydrazide were incubated for 30min at RT on a rotating platform with 

0.5mg of streptavidin coated magnetic beads (Invitrogen #653-05) treated to be RNAse free 

following manufacturer instruction in 1xB&W buffer (5mM Tris-HCl pH7.5, 0.5mM EDTA, 

1M NaCl). The beads were washed twice with 1xB&W buffer. The RNA was eluted from the 

beads 5min at 65˚C in [95% formamide, 10mM EDTA], cleaned with phenol chloroform, 

resuspended in DEPC water and the quantity and quality of the RNA was determined by 

running a bioanalyzer nanochip (Agilent #5067-1511). 

Interaction between glyoxal and the biotin‐streptavidin bond 

10µg of biotinylated RNA prepared with biotin-hydrazide was treated with 6µL of 40% 

glyoxal and 1M sodium borate and resuspended in 10µL Tris-borate buffer as described 

previously. 2.5µg of treated RNA and series of untreated biotinylated RNA (2.5µg, 1.25µg, 

0.625µg, 0.313µg and 0.156µg) were blotted on a membrane Hybond–N+ and revealed as 

described previously. 

Removal of the glyoxal 

5 tubes (tubes 1 to 5) containing 2.5µg of mouse brain total RNA, 6µL of Deionized Glyoxal 

40%, 10mM Na-PO4 pH7 and 50% DMSO in 100µL and 5 tubes ( tubes 6 to 10) containing 

2.5µg of mouse brain total RNA, 10mM Na-PO4 pH7 and 50% DMSO in 100µL were 

incubated for 45min at 37˚C, mixed with 100μL of 1M sodium borate pH7.5 and precipitated 

with 1mL of 100% ethanol by centrifuging at 17,000g for 15min at 4˚C. The pellets were 

dried thoroughly under vacuum and resuspended in 21μL of Tris-borate buffer (10mM Tris-

HCl pH7.8, 1M sodium borate pH7.5). Each sample was then cleaned by adding 500μL of 

phenol/chloroform, vortexing, and completing the volume up to 1mL with DEPC water. The 

emulsion was centrifuged 10min at 13,000g at 4˚C. The phenol extraction was repeated on the 

aqueous phase, and then the RNA in the aqueous phase was precipitated with 1μL of 

glycoblue 15mg/mL (Ambion #AM9516), 1/10 vol. of sodium acetate 3M and 0.7vol. of 

isopropanol. Samples were incubated 5min at RT and centrifuged at 17,000g for 15min at 

4˚C. The pellets were washed three times with 70% ethanol, air-dried and resuspended in 

500μL of DEPC water. The phenol extraction was repeated on the 500μL RNA to get rid of 

the excess borate before removing the glyoxal. 
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The pellets were carefully resuspended according to the following table: 

Tube  1 and 6  2, 3 and 7, 8  4, 5 and 9, 10 

NaPO4 100mM pH6    10μL   

NaPO4 100mM pH7      10μL 

DMSO    50μL  50μL 

Water  8μL  40μL  40μL 

Samples 1 and 6 were kept at -20˚C. The samples 2, 4, 7 and 9 were incubated 3hrs at 25˚C 

and the samples 3, 8, 5 and 10 were incubated 3hrs at 65˚C. The volume of each sample, 

except for samples 1 and 6, was adjusted to 500μL with DEPC water and precipitated with 

sodium acetate and isopropanol as described previously. The pellets were resuspended in 8μL 

of DEPC water and all samples (1 to 10) were reverse-transcribed with random hexamers. 

PCRs were performed in 20μL containing 1μL of cDNA, 0.25μM of β-actin primers forward 

and reverse (sequences in Appendix 3), 1X PCR buffer (fisher biotec #TAQ-1), 1.25mM 

MgCl2, 1 unit of Taq polymerase (fisher biotec #TAQ-1) with the following program: 95˚C 

for 2min, [95˚C for 30s, 60˚C for 30s, 72˚C for 30s] for 35 cycles, 72˚C for 7min. PCR 

products were then run in a 1.5% agarose gel containing ethidium bromide. 

Preparation of the I‐RNA and B‐RNA 

A detailed protocol is described in Appendix 5. Briefly, 30μg total RNA was biotinylated, 

coated with glyoxal and boric acid and bond to streptavidin coated magnetic beads. The RNA-

magnetic beads complexes were then treated with RNAseT1 to cleave the inosinylated RNA 

(I-RNA) off the beads, and the I-RNA was collected. The RNA bound to the beads (B-RNA) 

was eluted using formamide. The glyoxal was removed by heating from both I-RNA and B-

RNA and both samples were cleaned. In order to perform 3’end sequencing on the I-RNA, the 

I-RNA need 3’end OH and 5’end phosphate, therefore, the I-RNA was treated by TAP to 

remove the potential 5’cap and by PNK to repair the extremities.  

PCR 

To assess the efficiency of the enrichment in inosilated RNA, the quantity of the following 

transcripts were queried by PCR in B-RNA and I-RNA: GRIA2, 5HT2C, KCNA1, GABRA3, 

RPLP0, β-actin, GAPDH, PPIA and ATP5E. The primers (sequence in Appendix 4) were 

designed upstream of the editing sites for GRIA2, 5HT2C, KCNA1 and GABRA3. 30ng of I-

RNA and 30ng of B-RNA were reverse transcribed with the superscript III kit (Invitrogen 

#18080-051) according to manufacturer instruction using random hexamer. Real time PCR 
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was performed in triplicate using SYBR Green PCR Master Mix (Applied Biosystems 

#4309155), 0.5uL of cDNA and 0.25μM primers in 10μL on the ViiA7 Real-Time PCR 

System (Applied Biosystems). The enrichment of a given target in I-RNA compared to B-

RNA was calculated according to the following formula: enrichment = 2(Ct
B-RNA

 – Ct
I-RNA

) in an 

experiment performed in triplicate on RNA from the same mouse brain. 

Library preparation 

The library preparation and deep sequencing were done by Genework 

(http://www.geneworks.com.au). The I-RNA library was prepared on 200ng I-RNA using the 

Illumina TruSeq Small RNA kit (Illumina #RS-200-0012) and the library size selection was 

achieved using AMPure beads (Beckman Coulter #A63880) to select for insert >100nt. The I-

RNA library was sequenced on two lanes, generating pair-end reads of 2*65nt. The B-RNA 

library was prepared on 500ng B-RNA using the Illumina TruSeq RNA kit (Illumina #FC-

122-1001) and sequenced on two lanes generating pair-end reads of 65nt. 

Deep‐sequencing data analysis 

The nucleotide density of the raw sequences was measured using the Fastqc software 

developed by Babraham Bioinformatics 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Both libraries were then mapped as 

paired-end libraries to the mouse genome assembly NCBI37/mm9 

(ftp://ftp.ensembl.org/pub/release-64/fasta/mus_musculus/dna/) using BWA [268] and Tophat 

[249] allowing three mismatches for the mapping of the I-RNA library and two mismatches 

for the mapping of the B-RNA library. The sequences were then further analyzed using bash 

scripts and the samtools package [250] (scripts available upon request) to select uniquely 

mapping tags, to count the number of 3’end extremities, to estimate the ratio of each MM in 

3’end and 5’end, to count the number of loci containing an A-to-G MM in 3’end in the I-RNA 

library. The location of each A-to-I MM was then extracted, and the coverage (number of tags 

covering this locus) and number of each MM at this exact position were determined. 

The loci were then filtered according to the following criteria: (i) contain more than two A-to-

G MM, (ii) are covered by more than five tags from both the I-RNA library and the B-RNA 

library, (iii) contain more A-to-G MM than any other MM, (iv) if the z-test can be done 

(detail below), the p-value measured by a z-test for the amount of A-to-I MM compared to the 

other must be < 0.05, or if the z-test is not relevant, the locus must contain at least five times 

more A-to-G MM than any other one. 
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The one-tailed two proportion z-test was performed as follow: the proportion of A-to-G 

mismatch (Pa = number of A-to-G MM / number of tags) and the proportion of other 

mismatches (Pb = number of A-to-C and A-to-T MM / number of tags) were calculated. The 

Z-score was then determined applying the following formula with N being the number of tags 

covering the locus. 

 

This test was applied only to loci for which P*N ≥ 5 and Q*N ≥ 5. The p-values were then 

compiled by comparing the Z-score to the Standard normal table. 

Characterization of editing in rRNA 

For each site edited at more than 50% and overlapping with region annotated as rRNA (repeat 

masker: [230]), the full rRNA sequence of the locus was collected and aligned to the mouse 

45S rRNA precursor (NR_046233.1), the mouse 28S rRNA (NR_003279), the mouse 18S 

rRNA (NR_003278.3), the human 18S rRNA (X03205) and the human ribosomal DNA 

complete repeating unit (U13369.1) using ClustalW [246]. The BioEdit alignment editor 

[282] was used to assign the exact edited location in mouse to human 18S and 28S rRNAs and 

these locations were reported on the rRNA modification map realized by Piekna-Przybylska et 

al. [273] (for 28S rRNA: 

http://people.biochem.umass.edu/fournierlab/3dmodmap/hum28sseq.php and for 18S rRNA: 

http://people.biochem.umass.edu/fournierlab/3dmodmap/hum18sseq.php). 
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Chapter 4: Discussion 

Alu elements and ADAR proteins are two highly connected entities, whose expansions 

correlated strongly with an increase in complexity, and particularly in the human brain. The 

first one, Alu element, can regulate protein translation, RNA transcription and has the 

potential to modify the genome. It constitutes the main target of the second one, the ADAR 

proteins that modify the sequence of Alu element, thereby restraining Alu activities. The roles 

that each of them play in the organism remain far from being elucidated, for instance no 

information is available about the transcriptional fate of Alu element, and the targets of 

ADARs are far from being all identified. The aim of this thesis was to extend the knowledge 

about Alu elements and the targets of ADAR proteins to have a better understanding of their 

involvement in the regulation of complexity. 

Characterization of Alu elements 

The first chapter of this thesis focused on identifying and characterizing the active Alu 

elements. Two factors needed to be considered before starting the characterization: first, Alu 

elements are repetitive elements, which mean that all the methods relying on hybridization 

could not be used to identify them precisely. Thus, sequencing appeared to be the only 

reliable method. Second, Alu elements are the most abundant repeat in the human genome 

with more than one million copies, which means that high-throughput methods were required 

to reach anywhere near the characterization of all the elements. Conveniently, deep-

sequencing technology, a method allying sequencing and high-throughput, became available 

approximately at the beginning of this project [283] and alongside more and more deep-

sequencing datasets were published. 

In a first part, a preliminary analysis of each Alu element sequence, coordinates and 

conservation permitted the annotation of Alus in function of their genomic environment, their 

time of apparition and number of identical sequences in the human genome, revealing that 

48% of them are located in intergenic regions and 50% in introns. A similar study reported 

previously that 66% of Alu elements were located in intron [284], but the analysis was 

performed on a previous version of the human genome (hg17 NCBI35) which lacked 

approximately 50Mb and 100,000 Alu elements compared to hg19 on which this analysis was 

performed. 
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Following this, an in silico analysis of the sequences of Alu elements revealed an important 

point: the majority of Alu elements preserved enough unique features to be identified 

precisely by deep sequencing according to the performance of the latter. Confident that deep 

sequencing could identify Alu elements, the first dataset analysis was conducted to evaluate 

the potential of Alu elements to bind POLIII and, thus, be transcribed from their internal 

promoters. It appeared that POLIII recognized 455,950 Alu elements, 64% of them having the 

B-box necessary for initiating their transcriptions. However, binding of POLIII does not prove 

that transcription occurs. To identify the panel of Alu elements that are transcribed as 

independent elements, a protocol was developed to sequence specifically the fraction of RNA 

containing Alu transcripts of 100 to 300nt, and applied to THP1 RNA. This allowed the 

identification of approximately 17,000 Alu elements actively transcribed as independent 

elements in this cell line. 

In a next step, the question of the cell localization of these transcripts was addressed. If 

present in the nucleus, Alu elements may regulate POLII or retrotranspose into the genome; if 

present in the cytoplasm, they may regulate translation. Three sets of data were used: the first 

one on DLD-1 cells, sequenced the RNA localized in the nucleus, the cytoplasm or the 

polysomes [235], the second one in fibroblasts, sequenced the RNA associated to chromatin 

and the third one, generated in house, sequenced the small RNA <500nt associated with 

chromatin in HeLa cells; 111,844 Alu elements transcripts could be allocated to cell 

compartments. 

The last screening of Alu elements in deep-sequencing data aimed at profiling Alu elements 

expression in sixteen normal human tissues. 465,160 elements were detected in a least one of 

the tissue and the tissue expressing the highest diversity of Alu elements was the adrenal, 

followed by the ovary, the brain and the testis. The same data were also screened for full 

length LINE1 expression to see if the material necessary for Alu retrotransposition is also 

present in normal tissue, and, surprisingly, full length LINE1 elements were found at their 

highest level in adrenal, brain, ovary and testis, suggesting that Alu retrotransposition in 

normal tissue was happening. To observe if this phenomenon was limited to organism 

presenting higher order of cognition, mouse tissues were tested for SINEs and LINE1 

expression revealing that mouse also co-expressed autonomous and non-autonomous 

retrotransposons in most of its tissues. 

Finally, two approaches were attempted to show active retrotransposition in tissues: for the 

first one the gDNA from nine tissues from one mouse were compared by RFLP to look for 
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disparities, and for the second one, pair-end transcriptomic data were screened to find 

transcripts issued from loci containing a new insertion. None of the two methods worked, the 

first one was not sensitive enough to detect insertions which are probably happening at a low 

level and for the second one, the pipeline used to extract transcripts issued from new insertion 

enriched actually for mapping artifacts. Shortly after this analysis, Baillie et al. [226] showed 

that retrotransposition was occurring actively in normal human brain by using a method 

probing the genomes of matched tissues from the same individual like we did in our first 

approach, with deep sequencing to look for chimeric pair of tags similarly to what we did in 

our second approach. This study clearly confirmed that retrotransposition was happening in 

normal somatic tissues in human. 

Characterization of the target of editing enzymes 

The second chapter of this thesis aimed at identifying by an experimental approach and in a 

high throughput fashion, the transcripts that are A-to-I edited by the ADARs. First, antibodies 

were used to pull-down ADARs with the associated RNAs. In a first attempt, a standard 

immunoprecipitation protocol was used [217, 218] but did not produce enough RNA and the 

level of enrichment was not satisfying. Then, several pre-enrichment steps were tested to 

reduce the complexity of the tissue lysate and increase the binding efficiency of the antibody: 

sucrose gradients containing EDTA were efficient for concentrating ADAR proteins in 

distinct sucrose fractions and separating ADARs from other proteins such as H3 and GAPDH, 

however no RNA could be extracted from the ADAR fractions, probably because the 

conditions did not preserve the structure of the complexes ADAR-RNA; sucrose gradients 

without EDTA and containing NaCl and MgCl2, to be closer to physiological conditions, 

preserved the structure of the complexes containing ADARs, however were inefficient at 

concentrating the complexes; and finally, nucleus fractionation was efficient at enriching for 

ADAR protein, yet it did not improve the efficiency of the IP. 

Another strategy was then considered to target directly the inosine in the edited RNA in a 

method where RNAs were first immobilized on magnetic beads, then a glyoxal/RNAseT1 

treatment cleaved specifically the edited RNAs at their inosine, thus separating edited RNAs 

from the normal RNA, and at last, the RNAs were identified using deep sequencing. Each 

components of the method were optimized, the complete protocol compiled and used to 

characterize the RNAs that are edited in mouse brain. Analysis of the data from the deep 

sequencing revealed that the protocol was enriching for A-to-G mismatches and identified 

precisely editing sites. 1,822 editing sites in mouse brain RNA were identified by this method: 
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1,249 sites were present on known genes, among them, 48 editing sites were in coding region 

of genes including 28 sites that changed the sequence of the protein and were not reported in 

previous studies, 895 sites were seating in intronic regions of genes and 306 sites were in 

UTRs or in non-coding genes; 573 sites were in intergenic regions. A-to-I editing sites were 

also characterized in RNA families where they have never been observed before, 343 sites 

were located in 18S and 28S rRNAs, 29 sites in snoRNAs and 60 sites in snRNAs. 

Limitation of the study 

The first part of this thesis aimed at characterizing the expression of Alu elements as 

independent element was based mainly on observations of data produced by deep sequencing 

that were initially generated to interrogate long poly-adenylated transcripts (i. e. DLD-1 

dataset, fibroblast dataset and human transcriptomic Atlas), Only two datasets truly identified 

independent Alu transcripts by excluding physically during the library preparation all long 

RNAs that could contain Alu in their sequences (i.e. THP1 dataset and CAR dataset on 

HeLa). To distinguish independent Alu transcripts from Alu included in longer transcripts in 

the poly-A datasets several filters were applied during the analyses (chapter 2, material and 

method, Identification of Alu elements in deep-sequencing datasets) to remove all tags 

mapping to Alu elements but overlapping with known transcripts (e.g. UCSC genes) and 

uncharacterized transcripts longer than 500nt that correspond to a database of transcripts built 

with the Illumina dataset. These steps introduced a bias in the analyses of these datasets by 

excluding systematically all Alu elements overlapping with exons. For instance, 20,680 Alu 

elements were found in the HeLa and THP1 datasets and were completely absent from all the 

other transcriptomic datasets, mainly because they were overlapping with larger transcripts. A 

second bias was introduced by the fact that all these poly-A datasets were generated with 

protocols that did not give any information about the strand of the transcript, meaning that all 

Alu elements located in antisense of exons were also excluded and that it was not possible to 

distinguish between transcripts coming from Alu elements and transcripts coming from the 

antisense of Alu elements. Again, this bias was not present in the two in-house datasets that 

were generated with protocols preserving the strand information. Finally, a last bias needs to 

be considered, it is the propensity of Alu elements to be edited. When analyzing the chimeric 

transcripts from pair-end data (chapter 2; New insertion of retroelements in specific tissues; 

Analysis of retroelements insertion by deep-sequencing data analysis), false mapping were 

discovered for 6.3% of the tags for which sequence polymorphism lead to their mis-mapping. 

Since Alu elements are repetitive, editing of their sequences can easily lead to false 
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identification of the Alus expressed, and since nothing is known about the editing of the 

independent Alu transcripts, this bias is hard to rectify, however all the tools necessary to 

address this problematic were developed during this thesis (see future directions). 

In the second part of this thesis, the protocol developed to characterize A-to-I editing sites 

showed good concordance with sites previously reported in term of precision of the site 

location and level of editing. However, the deep sequencing of the edited RNA revealed that 

the protocol could be improved. For instance, in theory, each pair of tag from the I-RNA 

library is issued from an editing event; 1,398,042 loci were identified in the I-RNA library, 

approximately 50% of them have a G in 3’end (Figure 33) and only 12,644 loci corresponded 

to an A-to-G mismatch when mapped to the genome (Table 6). First, the fact that only 50% of 

the I-RNA 3’end possesses a G, whereas the protocol is meant to identify cleaved sites which 

should all be read as guanosine, could be explained by degradation occurring after the 

cleavage, probably during the removal of the glyoxal for 3hrs at 65˚C, leading to the cleavage 

of the 3’end nucleotides. This effect could be reduced by adding EDTA in the solution to 

avoid fragmentation due to heat and the presence of dications. To remove glyoxal without 

heating the sample, other possibilities that need to be tested would be the use of high 

concentration of competitors such as GTP, or the use of a chemical reaction transforming the 

glyoxal into a compound that does not interact with RNA. Second, the fact that only 12,644 

loci with an A-to-G mismatch were identified could be explained by an incomplete protection 

of the guanosine by the glyoxal: if the RNA was not treated with a sufficient amount of 

glyoxal, unprotected guanosines would be cleaved like inosine thus increasing the number of 

tags that did not identify an editing site. The amount of glyoxal required for an optimal 

cleavage of inosine was determined experimentally (Figure 28), however only two 

concentrations were tested and repeating the experiment including more conditions may allow 

a more precise estimation of the optimal concentration of glyoxal. A last concern with this 

protocol is that so far it has been tried only on mouse tissues. Initially, it was decided to 

develop the method on mouse tissue for several evident facts such as the cost and availability 

of the tissue compared to human tissue and the fact that the mouse genome which is available 

is from the strain of mouse used in our experiment (C57BL/6J), which means that 

heterogeneity observed between transcripts and genome are more likely to be due to editing 

than allelic differences between the gDNA donor and RNA donor. However, realizing this 

experiment on mouse also rendered hard the comparison between our data and previous high 

throughput analyses which were all realized in human. For instance, the DARNED database 

on editing sites in human lists 42,042 A-to-I sites in the human genome hg19 [266], of which 
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only 1,794 have orthologous positions in the mouse genome mm9 and this does not mean that 

the orthologous site is edited in mouse: the intersection of our data with these 1,794 sites 

return 13 loci edited in mouse which are all located in exons of protein coding genes. Also, 

the mouse brain transcriptome is edited at a lower extent than the human brain transcriptome, 

which means that the protocol may behave differently with the human brain RNA which 

contains at least 17 times more inosine than mouse brain RNA [285]. 

Future directions 

This thesis described precisely the expression pattern and cell localization of 524,526 Alu 

elements in human and an efficient method to characterize A-to-I editing sites. However, 

several experiments are required to complete this study. 

First, considering the biases described previously for the Alu transcription analysis, the 

investigation of the expression of Alu transcripts in normal human tissue would benefit from 

using the protocol developed in this thesis on RNA from THP1. This would allow a more 

comprehensive identification of transcriptionally active Alu elements. Following this, another 

direction that need to be addressed, is the function of Alu elements transcription. Attempts 

were made to characterize the elements able to retrotranspose, and Baillie et al. developed a 

capture-seq method to identify them [226], however our attempts failed and Baillie et al. 

limited their study to brain. We proved here that Alu elements are expressed in a broad range 

of human tissues and in a tissue specific fashion, it would be interesting to use our results to 

design a capture-array targeting Alu expressed in specific tissues to probe the genome of these 

tissues for new insertions of Alu element. We have also shown that retroelements were 

expressed in mouse normal tissues; it is of high importance to confirm this finding. If 

retrotransposition can be observed in mouse normal tissues, knock-out experiments can be 

designed to reveal the importance of such mechanism in tissue development and function. 

Second, the characterization of editing sites was performed in mouse brain RNA only. Efforts 

should be made to apply this protocol to human brain where editing was shown to be crucial 

for its normal function. In addition, the editing of snRNA, snoRNA and rRNA should be 

confirmed and may help elucidating the regulation and selectivity of these elements. 

Finally, the question of the editing of independent Alu transcripts should be addressed. If 

demonstrated, this would show that independent Alu transcripts can regulate editing in trans, 

giving a new role to Alu elements. Presently, it is known that Alu elements promote editing 

when two inverted repeats are integrated in a longer transcript: they form a double stranded 
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structure which is targeted by ADAR. If a transcript contain only one repeat, it is unlikely that 

it will form the double stranded structure required by ADAR, excepting if an independent Alu 

transcript is coupled with the integrated Alu element. Using the protocol developed on THP1 

to enrich for RNA < 500nt followed by the protocol using glyoxal to identify editing sites 

would be a good approach to investigate the editing of independent Alu transcripts. 

Conclusion 

This thesis aimed at characterizing Alu elements transcription and A-to-I RNA editing in 

human to clarify the role they play in human biology. In the first part, the first comprehensive 

database on Alu elements was generated giving detailed information for each Alu elements 

such as location, conservation, genomic environment, cell localization and level of expression 

in normal human tissues. The generation of this database revealed that the old Alu families, 

AluJ and AluS, were expressed at a larger extent than the young AluY; this observation was 

supported by POLIII CHIP-seq data and deep sequencing of small RNA, although it is in 

contradiction with previous reports [67-69]. It also revealed that Alu elements were expressed 

in a broad range of normal tissues, actually at least 15,000 different Alu elements were 

observed in each tissue investigated (i.e. the tissue expressing the least Alu elements was 

skeletal muscle with 15,297 elements; Table 3); and extension of the analysis to LINE1 

indicated that full length LINE1 were co-expressed with Alu elements in all tissue observed, 

rendering retrotransposition possible. On this basis, I propose that retrotransposition is a 

tightly regulated mechanism in normal tissue that aims at modifying the core of the genome. 

This proposition is supported by previous reports describing genomic mosaicism promoted by 

retrotransposons in several part of the human brain [226, 286-289]. In addition, I propose that 

this mechanism is occurring in most tissues and is not exclusive to human but also occurs in 

mouse. 

In the second part, a new protocol was developed to identify the RNA edited by ADAR at the 

transcriptome scale and was used to characterize the mouse brain RNA editome. 1,822 editing 

sites were characterized, the majority of which were located in intronic regions similarly to 

what is observed in human [172]. A-to-I editing was detected for the first time in rRNA, 

snoRNA and snRNA, an observation rendered possible by applying the protocol on total RNA 

instead of polyadenylated RNA or known genes as it is usually done in the targeted approach 

previously described [9, 50, 51, 173, 217-220, 222]. In order to fully understand the impact of 

A-to-I editing on Alu elements, I suggest continuing this study by applying this protocol to 

RNA from human brain or adrenal, two somatic tissues expressing high level of Alu elements. 
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This will characterize not only the editing of genes expressed in these tissues but also the 

editing occurring on independent Alu transcripts which may have an impact on their 

propensity to retrotranspose. 

This project was initiated based on the hypothesis that editing and Alu elements expression 

play a role in the regulation of the cognition, a human brain specific trait distinctive by its 

complexity. Evidence that both phenomena occur at a lesser extent in mouse and in other 

tissues suggests that their synergy fulfill also other roles than cognition, but it is undeniable 

that they lead to a more complex system by increasing its plasticity. To conclude, this thesis 

only started to clarify the role that Alu elements and A-to-I editing could play in complex 

mechanisms by identifying the different performers. To complete this study, several questions 

remain to be answered. What are the roles and partners of all those Alu transcripts? Can they 

retrotranspose in somatic tissues? Are they edited? Can they regulate editing? How Alu 

elements and editing are controlled? If this thesis did not address any of these questions, it 

gave the tools necessary to answer several of them. 
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Appendix 1: Loading controls of the Northern blots 

To assess the integrity and amount of RNA used for the Northern-blots, the profile of small 

RNA were observed for Northern blots on the human and mouse SINEs (A, B and C) and the 

profile of GAPDH was observed for the mouse LINE1 Northern-blot (D). For the small RNAs 

(A, B and C)The bands remain really sharp for the small RNAs and the intensity of the bands 

are of similar intensity, meaning that the RNAs were loaded in similar quantity and were not 

degraded during the migration in denaturating condition. One exception is observed in (A) 

where the total HeLa cell RNA signal seems saturated, which may be due to RNA degradation 

or overloading of the gel. For the mouse long RNAs in (D), the difference observed in the 

intensity of the bands means either that the RNAs were not loaded in equal quantity or that the 

transfer on membrane was not homogeneous. The bands remain however sharp, so no RNA 

degradation occurred before or during the migration. 
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Appendix 2: Alu database 

The database of Alu elements generated in this study is a table summarizing the information 

in 42 columns for each of the 1,194,735 Alu elements of the human genome (hg19). In each 

row, the data are separated by a single tabulation and the first row of the table is the label of 

each column. It is advised to read the table in a command line interface. The table compressed 

with 7-zip is on the attached DVD under the following name: Alu_database.7z. 

Description of the table: 

Col. #  Col. name  Description 
GEO accession number or link 
to the deep‐sequencing data 

1  Alu_ID  Unique identifier.   

2  Family  Family of the Alu elements.   

3  CHR  Chromosome name.   

4  CHR_BEG 
Position of the left most nucleotide on the 

chromosome. 
 

5  CHR_END 
Position of the right most nucleotide on the 

chromosome. 
 

6  Strand  Strand on which is located the Alu element.   

7  Length_(nt)  Length of the element in nucleotide.   

8  Nb_of_occurence 
Number of time the element’s sequence exist in the 

genome. 
 

9  POLIII_A‐box  Presence of the A‐box region of the POLIII promoter.   

10  POLIII_B‐box  Presence of the B‐box region of the POLIII promoter.   

11  Genomic_context 
Location of the Alu element in promoter, 5’UTR, 

exon, intron, 3’UTR or intergenic. 
 

12  Age 
Time of apparition of the element in Million years 

ago (Mya). 
 

13  Alu_ID  Unique identifier.   

14  THP1_smallRNA 
Coverage of the element by tags from deep 

sequencing of RNA from THP1 of 50nt to 350nt long 
(in read per kilobase per million of reads: RPKM) 

In house data 

15  CHIP_BDP1 
Coverage of the element by tags from CHIPseq done 
on the POLIII complex subunit BDP1 in IMR90hTert 

cells (in RPKM). 
GSM454596: 

16  CHIP_BRF1 
Coverage of the element by tags from CHIPseq done 
on the POLIII complex subunit BRF1 in IMR90hTert 

cells (in RPKM). 
GSM454597 

17  CHIP_POLIII 

Coverage of the element by tags from CHIPseq done 
on the POLIII complex subunit POLIII (In read per 
kilobase per million of reads RPKM) in IMR90hTert 

cells (in RPKM). 

GSM454595 
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Col. #  Col. name  Description 
GEO accession 

number or link to the 
deep‐sequencing data 

18  Cytoplasmic 
Coverage of the element by tags from cytoplasmic RNA 

sequencing in DLD1 cells (in RPKM). 

http://www.h‐
invitational.jp/downlo

ad/h‐
dbas/cyt.fa.tar.gz 

19  Nuclear 
Coverage of the element by tags from nuclear RNA 

sequencing in DLD1 cells (in RPKM). 

http://www.h‐
invitational.jp/downlo

ad/h‐
dbas/nuc.fa.tar.gz 

20  Polysomal 
Coverage of the element by tags from polysomal RNA 

sequencing in DLD1 cells (in RPKM). 

http://www.h‐
invitational.jp/downlo

ad/h‐
dbas/pol.fa.tar.gz 

21  CAR_HeLa 
Coverage of the element by tags from the sequencing of 
RNA associated with chromatin in HeLa cells (in RPKM). 

In house data 

22  CAR_fibroblast 
Coverage of the element by tags from the sequencing of 
RNA associated with chromatin in fibroblasts (in RPKM). 

GSM530678 

23  Alu_ID  Unique identifier.   

24  100nt 
Coverage of the element by tags from the sequencing of 
a pool of 16 human tissues with a protocol returning 

100nt long read (in RPKM). 
GSM759522‐37 

25  Adipose 
Coverage of the element by tags from the sequencing of 
RNA from human adipose with a protocol returning 75nt 

long read (in RPKM). 
GSM759490 

26  Adrenal 
Coverage of the element by tags from the sequencing of 
RNA from human adrenal with a protocol returning 75nt 

long read (in RPKM). 
GSM759492 

27  Brain 
Coverage of the element by tags from the sequencing of 
RNA from human brain with a protocol returning 75nt 

long read (in RPKM). 
GSM759494 

28  Breast 
Coverage of the element by tags from the sequencing of 
RNA from human breast with a protocol returning 75nt 

long read (in RPKM). 
GSM759496 

29  Colon 
Coverage of the element by tags from the sequencing of 
RNA from human colon with a protocol returning 75nt 

long read (in RPKM). 
GSM759498 

30  Heart 
Coverage of the element by tags from the sequencing of 
RNA from human heart with a protocol returning 75nt 

long read (in RPKM). 
GSM759500 

31  Kidney 
Coverage of the element by tags from the sequencing of 
RNA from human kidney with a protocol returning 75nt 

long read (in RPKM). 
GSM759502 

32  Liver 
Coverage of the element by tags from the sequencing of 
RNA from human liver with a protocol returning 75nt 

long read (in RPKM). 
GSM759504 
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Col. #  Col. name  Description 
GEO accession 

number or link to the 
deep‐sequencing data 

33  Lung 
Coverage of the element by tags from the sequencing of 
RNA from human lung with a protocol returning 75nt 

long read (in RPKM). 
GSM759506 

34  Lymph 
Coverage of the element by tags from the sequencing of 
RNA from human lymph node with a protocol returning 

75nt long read (in RPKM). 
GSM759508 

35  Ovary 
Coverage of the element by tags from the sequencing of 
RNA from human ovary with a protocol returning 75nt 

long read (in RPKM). 
GSM759510 

36  Prostate 
Coverage of the element by tags from the sequencing of 
RNA from human prostate with a protocol returning 75nt 

long read (in RPKM). 
GSM759512 

37  Skelmusc 
Coverage of the element by tags from the sequencing of 

RNA from human skeletal muscle with a protocol 
returning 75nt long read (in RPKM). 

GSM759514 

38  Testes 
Coverage of the element by tags from the sequencing of 
RNA from human testes with a protocol returning 75nt 

long read (in RPKM). 
GSM759516 

39  Thyroid 
Coverage of the element by tags from the sequencing of 
RNA from human thyroid with a protocol returning 75nt 

long read (in RPKM). 
GSM759518 

40  Whiteblood 
Coverage of the element by tags from the sequencing of 

RNA from human whiteblood cells with a protocol 
returning 75nt long read (in RPKM). 

GSM759520 

41  Alu_ID  Unique identifier.   

42  Sequence  Sequence of the element.   
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Appendix 3: Poster presented at the GRC 

The work on the development of the protocol to identify edited RNA with glyoxal and 

RNAseT1 was presented with the following poster at the Gordon Research Conference and at 

the Gordon Research Seminar on RNA editing in Galveston (Texas) in January 2011. 
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Appendix  4:  List of PCR primers  targeting mouse genes used  in  the glyoxal 

protocol 

Target   Forward primer  Reverse primer  Length   Used in (*) 

5HT2C  TGCCCCTGTCTCTGCTTGCAA   ACCGGTCCAGCGATATGGCG  138  Glyo 

ATP5E  CCGGTTTGAGGCTACTCTGA  AGATCTGGGAAAACCGGATG  117  Glyo 

β‐actin  CCACAGCTGAGAGGGAAATC  TCTCCAGGGAGGAAGAGGAT  108  Glyo 

GABRA3  TGTCCCTGCCCGCACAGTCT  TCCATGGCCGTCGCGTATGC  108  Glyo 

GAPDH  AACTTTGGCATTGTGGAAGG  GGATGCAGGGATGATGTTCT  132  Glyo 

GRIA2  TCGAAGCCATTCATGAGCCTTGGA  AGTGTGCCACTCGTAGGGGCTA  186  Glyo 

KCNA1  AGAAGGGCGAGCAGGCCACT  TCAGCTTCTTCCGCCTCCGC  220  Glyo 

PPIA  GCTGGACCAAACACAAACG  CGCAAGTCAAAAGAAATTAGAGC  205  Glyo 

5HT2C  AGATATTTGTGCCCCGTCTG  CTTAGTCCGCGAATTGAACC  141  IP 

ADAR2  TGTGGCTAAAGGAAGCTCGT  ATGTTGTCCAGATTGCGGTT  253  IP 

GRIA2 Q/R  CAGCAGATTTAGCCCCTACG  AGCCGTGTAGGAGGAGATGA  226  IP & Glyo 

GRIA2 R/G  ATTCCAAAGGCTACGGCATC  TTTTCAATTTGTCCAACAGGC  108  IP 

mGluRA  CCAGAGCTGGTGCTGGTCAGCTCTCG  GAAGTATATACGACCACTGTCATC  203  IP 

RPLP0  GCAGTGGAAGTCCAACTACTTC  TGAGGTCCTCCTTGGTGAACAC  266  IP & Glyo 

*The primers used in the IP were designed to cover editing sites and are indicated by IP. The primers used in the 
glyoxal method were designed upstream of the editing sites and are indicated by Glyo. 
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Appendix 5: Detailed protocol for the extraction of RNA containing inosine 

Oxidation of the 3’end of RNA 

1. Mix 30ug of RNA (in 225μL) with 75μL of 0.5M Na-acetate and 75μL of 50mM 

sodium periodate (freshly prepared) in 375μL. (sodium periodate MM=213.89g/mol, 

solution of 10.695g/L for 50mM). 

2. Incubate 90min at RT in the dark. 

3. Stop the reaction with 113μL of 1M KCl and place on ice for 10min. 

4. Adjust the volume to 750μL with 262μL of DEPC water. 

5. Add 1vol. of phenol/chloroform/isoamyl-alcohol (25/24/1) and mix well. 

6. Centrifuge 10min at 13000g at 4˚C. 

7. Precipitate the RNA with 1/10 vol. of sodium acetate 3M and 0.7vol. of isopropanol. 

1μL of glycoblue 10mg/mL may be added to the mix to be able to see the pellet more 

easily. 

8. Incubate at RT for 5min and centrifuge at max speed (17krpm) for 15min at 4°C. 

9. Remove the supernatant. 

10. Wash the pellet 3 times in 70% EtOH. If the pellet is dispersed during the wash 

centrifuge at max speed for 2min. 

11. Air dry the pellet for 5-10min. 

Biotinylation of the RNA 

12. Resuspend the pellet in 675μL of 100mM NaOAc pH5. 

 NB: the pellet may be really hard to resuspend, I have found easier to resuspend it 

first in a smaller volume of DEPC water, then adjust the concentration of sodium acetate 

to 100mM and then to adjust the volume to 675μL with 100mM NaOAc pH5. 

13. Add 75μL of 40mM (~10mg/mL) biotin-hydrazide (Sigma B7639) dissolved in 

DMSO. 
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14. Incubate 4hrs at RT in the dark. 

15. Phenol extract the RNA as described previously from steps 5 to 11 of this protocol. 

16. Resuspend the pellet in 20μL of DEPC water. 

17. Measure the concentration of RNA with the nanodrop. 

 NB: you can assess the Biotinylation of the RNA by dot-plot: plot 0.5 to 1μg of RNA on 

a Northern membrane, let the drop dry, and incubate the membrane in a solution of 

1XPBS, 0.1%Tween20 and 10% milk at room temperature for 1hr on a shaker. Incubate 

the membrane in a solution of 2% milk in PBS 1X / Tween20 0.1% containing 1/2000 

dilution of avidin-peroxidase. Wash the membrane 3 times 10min with PBS 1X / Tween20 

0.1% and reveal the membrane with ECL reagent following the manufacturer instruction. 

Magnetic beads treatment 

First the beads (Dynabeads M-270 Invitrogen #653-05) need to be treated to be RNAse free, 

and then they are incubated with the RNAs. 100μL of beads can bind up to 2.5ug of total 

RNA. 50μL of beads are used for 5ug of biotinylated RNA. 

18. Wash 50μL of beads (per sample) for 2min with 800μL of DEPC treated NaOH 0.1M 

and NaCl 0.05M. 

19. Place the bead on the magnetic stand for 2min and remove the supernatant. 

20. Repeat the NaOH treatment once. 

21. Wash the beads twice with 0.1M DEPC treated NaCl in the same volume than in step 

1. 

22. Resuspend the beads in 25μL of Tris-borate buffer (10mM Tris-HCl pH 7.8, 1M 

sodium borate pH 7.5). 
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Inosine specific RNAseT1 treatment 

23. Add the following reagents to a tube (can be scaled in separate tubes according to the 

amount of RNA used): 

Tube  1 

2.5ug biotin‐RNA in water  34μL 

Na‐PO4 100mM pH7  10μL 

DMSO  50μL 

Glyoxal 40%  6μL 

24. Incubate the tube for 45min at 37°C. 

25. Add 100μL of 1M sodium borate pH7.5 to each sample. 

26. Precipitate the sample with 1mL of EtOH 100%. 

27. Centrifuge the tubes at maximum speed for 15min at 4°C, and dry the pellet very well 

(speedvac for 20min). 

28. Resuspend the sample (2*2.5ug) in 25μL of Tris-borate buffer (10mM Tris-HCl pH 

7.8, 1M sodium borate pH 7.5). 

29. Pool the 25μL samples in the 25μL of beads and incubate the tube for 30min at RT 

with gentle mixing  

 NB: you can collect the supernatant to assess the diminution of biotinylated RNA in 

the sample. 

30. Rinse the beads gently, twice with 1mL of Tris-borate buffer (10mM Tris-HCl pH 7.8, 

1M sodium borate pH 7.5) and resuspend them in 47μL of Tris-borate buffer. 

31. Add 3μL of RNAseT1 (Ambion #AM2280) to your sample. 

32. Incubate the tubes at 37°C for 30min, resuspend the beads gently every 5min. 

33. Collect the supernatant (this is the I-RNA), adjust the volume to 100uL with DEPC 

water. 

34. Clean-up the I-RNA with MinElute cleanup-kit (Qiagen #74204): add 350μL of buffer 

RLT and 675μL 100%EtOH to 100μL sample. Add 700μL of the mix on a column 
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inserted in a collection tube, centrifuge 15s at >8000g, discard flow through, pipet the 

remaining sample on the column and centrifuge 15s at >8000g, discard flow through. 

Wash the column with 500μL buffer RPE and centrifuge 15s at >8000g, discard flow 

through, repeat the wash step with 500μL of 80% EtOH and centrifuge 15s at >8000g, 

discard flow through and collection tube, place column in a new collection tube and 

centrifuge at full speed for 1 min with the lid of the column open. Place the column in 

a new collection tube, add at least 14μL of DEPC-water directly on the column and 

centrifuge for 1min at full speed to collect the RNA. (The column has a retention 

volume of 2μL). 

35. Resuspend the beads in 100μL of a solution of 95% formamide and 10mM EDTA 

(2μL EDTA 0.5M), and heat the sample 5min at 65C to dissociate the RNA from the 

beads (to be done under the fume hood, heating formamide make cyanide). Collect the 

beads eluate (this is the B-RNA) and extract as described step 34. 

36. Adjust the volume of I-RNA and B-RNA to 100μL with DEPC water and repeat the 

column cleaning as described step 34 of this protocol (the columns can be reused 

given that they are cleaned with 500uL DEPC water right after first use) to get rid of 

the excess borate before removing the glyoxal. 

37. Elute the I-RNA and B-RNA in 42μL of water (40 μL remain after elution), add 10μL 

of 100mM sodium phosphate pH7.0 and 50μL DMSO per tubes. 

38. Incubate all samples for 3hrs at 65C. 

39. Clean up the sample as described step 34 of this protocol, elute in 17μL DEPC water. 

40. Measure the concentration of the samples with a nanodrop or bioanalyzer. If well 

resuspended, you’d expect around 400 to 600ng of B-RNA and around 50 to 80ng of 

I-RNA when you start with 25ug of biotinylated RNA. 
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TAP and PNK treatment of the I‐RNA 

41. Mix 15uL of I-RNA with 5μL of 10X TAP buffer, 4μL of TAP (Epicentre #T19050) 

in a 50μL reaction. 

42. Incubate 1hr at 37ºC and then place the sample at -20ºC to stop the reaction. 

43. Clean up the sample as described step 34 of this protocol, elute in 17μL DEPC water. 

44. Mix 15μL of TAP treated supernatant RNA or 15μL of beads RNA with 6μL of 5X T4 

DNA ligase buffer (check the composition, it needs to contain ATP) (250mM Tris-

HCl pH 7.6, 50mM MgCl2, 5mM ATP, 5mM DTT, 25% w/v PEG8000) and 3μL of 

T4 polynucleotide kinase (NEB #M0201S), adjust the volume to 30μL with water. 

45. Incubate 1hr at 37ºC. 

46. Clean up the sample as described step 34 of this protocol, elute in 17μL DEPC water. 

The I-RNA is ready for deep sequencing. 

Important if deep-sequencing these RNAs: the cleavage of the inosine by RNAse T1 

leave a phosphorylated 3’end. It is important to treat the RNA from the supernatant 

with PNK (NEB #M0236S) in order to be able to ligate adapters for generating the 

deep-sequencing library. For deep-sequencing the RNA bond to the beads, those ones 

contain a biotin and are oxidized on their 3’end which completely prevent a 

consecutive ligation of adapters. To deep-sequence these beads RNA, I suggest to 

reverse transcribe them with random hexamer and deep-sequence the cDNA generated. 
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Appendix 6: Editing sites in mouse brain 

All the editing sites characterized by the glyoxal protocol were compiled in two excel tables 

(sheets Raw data and Significant data in the excel file Edited_position_in_mouse_brain.xls in 

the enclosed DVD) which present the same criteria for all the 12,644 A-to-G mismatches 

found in the 3’end of the I-RNA library in table and for the subset of 1,882 editing sites which 

remain after the filtering described in the material and method, a part from the last column 

which is present only in the significant data sheet. 

Description of the tables: 

Col. #  Col. name  Description 

1  Site  Coordinate of the locus in the format {chromosome:chromosome right 
coordinate – chromosome left coordinate}. 

2  STD  Strand on which is present the site. 

3  G in I‐RNA  Number of G counted at this locus in the I‐RNA library. 

4  G in all  Number of G counted at this locus in both I‐RNA and B‐RNA libraries. 

5  A in all  Number of A counted at this locus in both I‐RNA and B‐RNA libraries. 

6  C and T in all  Number of C and T counted at this locus in both I‐RNA and B‐RNA libraries. 

7  Tag #  Number of tags covering this locus. 

8  A freq.  Frequency of A at this locus. 

9  T freq.  Frequency of T at this locus. 

10  G freq.  Frequency of G at this locus. 

11  C freq.  Frequency of C at this locus. 

12  p‐value  P‐value for the comparison of A frequency against C and T frequency: “^” if not 
significant, “*” if below 0.05, “**” if below 0.001, “***” if below 0.0001 and N/A 
if non measurable. 
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Appendix 7: Editing sites and other modifications on rRNA 

The location of the A-to-I editing sites discovered in this thesis, presenting a editing 

frequency >0.5, and present in mouse rRNA were reported on the sequences of the human 

28S and 18S rRNAs for which a detailed map of modification is available [273]. The 

sequences with methylation (m) and pseudouridine (ψ) mark and the snoRNA responsible for 

the modification were taken from [273], A-to-I editing sites newly discovered in orthologue 

sequences were implemented to the sequences in green when the modified adenosine was 

conserved from the identified locus to the human 28S rRNA and in red when the adenosine 

was replaced by a guanosine in the human 28S rRNA. 

 



  137



  138

 



  139

Appendix 8: Editing sites on snoRNA 

Below are the sequences of the snoRNAs containing editing sites (A), the C/D box and ACA 

box are indicated in red and the site recognizing the targets are in blue. The sequences and 

target site are taken from the snoRNABase [277]. 

>snora28 

acactctgtggcagatgaacaaaaccgtctgacacaatttgagcttgctatagcaagaaagtctaacctattccggtgttctctttccccat

gagacAagccgttatatAggctctaacaaa 

>snord15a 

cttcgatgaagaggtgatgacgagtctgagtaggaagtgttgtctttgtccaagatgcctcactAtgctgcgttctgtggcacagctgaA

AgcactgtggtcaaaAgaaActtcctaaagatgaccaagaggcatttgtctgagaagg 

>snord15b 

cttcagtgatgacacgatgacgagtcagaatggccacgtcttgctcttggtccctgtcagtgccatgttctgtggtgctgtacatggttccc

ttggcaaAagtgtcctgcgcactgattgatttagaggcatttgtctgagaagg 

>snord17 

ctgtttatccattcgctgagtacgctgctctgaccttcttcccagtctcggttcctgttctgggAgcttggggctgagtAgccaccagccc

tgctctctgcagtgttctattgtggattgcttgtgtgctggcaggctActactggtAAgAAtggctagtgtcagcagggatggctcctc

tctgggttccatctcaccaagatgagtggtgcaaatctgat 

>snord22 

tccccatgaagaaatgttcacacgtcctacttcctgtcctagctccagagcctgaaaaggtgaacccActggggctggctgggggaaa

agaggaaactttgttccagaaggaactgtctgagggat 

>snord45c 

ggcatgtattctgaatctaaagttgattataaaccactttagctctagaAttactctgaga 

>snora22 

ttgcacagtgaacacccaagtgtgctttatagttcccttggctttgaccctgtgctagagcattgcctgctcttctcctctgcattAAaagg

aatatttatccttttaaatgtattcagaaagccagcacatta 
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>snora26 

gtgcccttttaaggttgacccagtgctttaagaggctaacacagaagggtaaagtaagtctccataaaacccagagaAgagactggaa

agctcctctttggatcctgtctggagtcacaact 

>snora53 

aacatgcttccttagatccacctttgtggatgaatcttgaactgagttccacttgtaaacttcttgtttcttgtggttccAgtagtcaaagaaac

atccagcaacttttttggttgtatagtcaaaggtgcttgagtcattggcatgtaagagaaatatacctgcatgttagtctaacgttctgataga

aatgacatgcatttatgctgccatttgttactatcaggactcgactcgtgtgcggacattt 

>snord10 

gctctgtgatggagcccatgcgtgtcatctgagcctctggcttccctgccagtgcagccctggcagtgtcctacttcccagggctgttgtc

tgcctggcgggaAggtcctgggcaaaggatcagtctttgtactctgagagcagacta 

>snord116 

taggttgatgatgacttacatatatacgttttttttttttttttggaaaggtgaacaaaatgagtgaaaactcagtaccatcatcctcatctaactg

Aggtcca 

>snord5 

gttcagatgatgaatttaactgttcaactgctgaatgataacgggcatgaactaaaacttaattctgAcagag 

>snord88b 

ttggggaccccgtgatgtccagcactgggctctgactgcccctgaggacacggtgcaccccgggacctttgacatccggAgttctga

ggggccccac 

>snord94 

caggctgtgatgattggcgcaggggtacggacctcagctgagtcatgggagctgaatgtatgtgtttctcctttgtcctgcatgtggcAg

gctgatggggagcacttacatgagactgttgcctcaatctgagcctg 
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Appendix 9: Editing sites on snRNA 

The sequence composition of the snRNAs U2 (A), U3 (B), U4 (C), U5 (D), U14 (E) and U17 

(F) was built with the sequences containing edited sites, aligned with ClustalW [246] and 

generated with WebLogo [269]. The nucleotides which are pseudouridylated or methylated by 

snoRNA (data from [277]) are indicated by a green contour and the nucleotides which are 

edited by a red contour. 
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Pierre Cattenoz 

Caractérisation de 
l’expression des éléments 

Alu et du phénomène 
d’édition de l’ARN chez 

l’humain et la souris 

 

Résumé 

Dans la 1ère partie de cette étude, l’analyse de données de séquençage haut-débit révèle que ~40% des éléments Alu 
sont reconnus par POLIII, qu’ils sont présents en tant que petits ARN dans le cytoplasme et le noyau des cellules, 
que certain d’entre eux sont associés à la chromatine, et que la transcription des éléments Alu est un phénomène 
courant dans les tissus somatiques qui concorde avec l’expression d’éléments LINE1 fonctionnels. Ceci suggère que 
la rétrotransposition peut être un mécanisme normal dans la plupart des tissus humains. Enfin, l’analyse de 
l’expression des éléments Alu et LINE1 chez la souris montre que la transcription de rétrotransposons n’est pas 
spécifique de l’humain. 

Dans la seconde partie de cette étude, une nouvelle méthode a été développée pour explorer l’impact de l’édition de 
l’ARN sur le transcriptome en identifiant les ARN édités par séquençage haut-débit. Dans un premier temps, un 
anticorps ciblant ADAR a été utilisé pour extraire les ARN associés aux protéines de l’édition. Cette méthode 
n’étant pas suffisamment efficace, une autre stratégie, qui extrait directement les ARN contenant de l’inosine, a été 
développée : dans un premier temps, l’ARN est fixé à des billes magnétiques par leurs extrémités 3’, ensuite, les 
billes sont traitées au glyoxal/acide borique et à la RNAse T1 pour libérer la région 5’ des ARN contenant une ou 
plusieurs inosines, et enfin, les ARN libérés sont séquencés par séquençage haut débit. En utilisant cette méthode, 
1822 sites d’éditions ont été identifiés dans l’ARN de cerveau de souris, incluant 28 nouveaux sites présents dans 
des séquences codantes qui conduisent à des mutations non-synonymes des futures protéines. Des sites d’éditions 
ont aussi été observés pour la première fois dans les ARN ribosomaux, les snoRNA et les snRNA. 

Résumé en anglais 

In the first part of this study, we challenged the view that Alu elements are dormant occupant of the genome by 
characterizing their activity. Deep-sequencing data analyses revealed that ~40% of Alu elements can bind POLIII, 
they present a definite localization in the cell and associate with chromatin and polysomes, and that Alu elements 
transcription is a widespread phenomenon in normal tissues which correlates with functional LINE1 elements 
expression. This suggested that Alu element retrotransposition may be a natural mechanism in most normal human 
tissues. Further analyses showed that SINE and LINE expression in somatic tissues was not exclusive to human but 
also occurs in mouse. Finally, attempts were made to identify tissue specific insertions in the human genome 
resulting from retrotransposition events. 

In the second part of this study, a new method was developed to understand the full impact of RNA editing on 
transcriptomes by characterizing the edited RNA in a high-throughput fashion. First, immunoprecipitation was 
attempted to pull-down RNA associated with the editing enzymes ADARs. Since this method was inefficient, 
another approach purifying directly the edited RNA was developed. First, the RNA was sequestered on magnetic 
beads. Then an inosine specific cleavage based on RNAseT1 treatment of RNA protected with glyoxal and borate 
allowed the separation of the edited RNA from the total RNA. Finally, deep sequencing was used to identify edited 
RNA. 1,822 editing sites were found in mouse brain RNA by this method, including 28 new editing sites modifying 
the coding sequences of genes and editing in rRNA, snoRNA and snRNA which were never observed before. 

Key words: RNA, retrotransposons, deep-sequencing, ADAR, SINE, Alu elements, inosine, editing. 


