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Marcin CHRUST
Etude numérique de la chute libre
d’objets axisymétriques dans un fluide
newtonien

Résumé
La mémoire présente une étude numérique des trajectoires non-verticales d’objets en
chute ou en ascension libre dans un fluide newtonien initialement au repos. Une méthode
numérique originale combinant une discrétisation spatiale spectrale et la décomposition du
domaine a été implémentée à cet effet. Le code obtenu a été exploité pour apporter de
nouvelles connaissances sur des objets fixes et objets libres. Pour les objet fixes, ellipsöıdes
et cylindres, l’étude très complète des divers états de la transition a permis d’établir un lien
entre le scénario de transition de la sphère et du disque infiniment mince. La simulation
numérique d’objets libres a apporté des résultats très complets sur la chute de disques
minces et de cylindres de faible épaisseur. Plusieurs questions soulevées dans les travaux
précédents ont trouvés des réponses claires. Une étude paramétrique exhaustive, jamais
abordée précédemment, portant sur des ellipsöıdes est décrite dans le dernier chapitre du
mémoire.

mots-clés: chutte libre, transition au chaos, instabilité du sillage, régimes transitionnelles,
bifurcation

Abstract
The manuscript presents a numerical study of non-vertical trajectories of bodies falling
or rising freely in a Newtonian fluid initially at rest. The original numerical method
combining a spectral spatial discretization and the decomposition of the domain was
implemented. The developed code was used to study fixed and freely moving objects. For
the fixed bodies, spheroids and cylinders, a very complete study of various transitional
regimes was carried out and established a link between the transition scenario of a sphere
and of a disc. The numerical simulation of free bodies brought about the results on
path instabilities of discs and cylinders of small thickness. Several questions raised in
previous studies were clearly answered. An exhaustive parametric study, that has never been
taken up before, of freely moving spheroids is described in the last chapter of the manuscript.

keywords: free fall, transition to chaos, wake instability, transitional regimes, bifurcation
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iv RÉSUMÉ DU RAPPORT

Résumé: Etude numérique de la chute li-
bre d’objets axisymétriques dans un fluide
newtonien

La compréhension de l’origine et de la nature des trajectoires non-verticales d’objets en
chute ou en ascension libre dans un fluide initialement au repos est d’une grande impor-
tance dans de nombreux domaines scientifiques et industriels, tels que la météorologie, la
sédimentation ou le génie chimique. Ces trajectoires complexes, telles que celle d’un confetti
virevoltant dans l’air, ont toujours intrigué la communauté des scientifiques. Les grands
noms de la physique s’y sont intéressés, en particulier da Vinci, Newton, Kirchoff, Maxwell
et Eiffel. Plus récemment, des expériences (Willmarth et al. (1964), Field et al. (1997), Fer-
nandes et al. (2007)) ont attiré l’attention sur la pertinence de la théorie des instabilités et
des systèmes dynamiques non-linéaires pour l’explication de ces comportements complexes.
L’approche expérimentale présente néanmoins quelques inconvénients, tels qu’un contrôle
difficile des propriétés physiques du système et des conditions aux limites, ainsi qu’une diffi-
culté pour réaliser des mesures réellement non-intrusives. L’approche numérique s’est avérée
la mieux adaptée à mener cette étude dans le cas d’un objet sphérique (Ghidersa & Dušek
(2000), Jenny et al. (2004), Jenny & Dušek (2004), Kotouč (2008)). La présente thèse s’est
donnée pour objectifs d’adapter le code spectral (ayant été développé pour l’étude de la
chute libre d’objets sphériques Ghidersa & Dušek (2000), Jenny & Dušek (2004)) à la sim-
ulation d’objets axisymétriques de forme plus générale et d’étudier le scénario de transition
à la turbulence de deux classes d’objets axisymétriques, les cylindres et les ellipsöıdes de
révolution.

L’efficacité et la précision du code développé précédemment reposent sur une discrétisation
spatiale en modes de Fourier dans la direction azimutale. Dans le cas d’objets en chute (ou
ascension) libre, l’utilisation d’un domaine de calcul fixe par rapport à l’objet nécessite de
faire subir au domaine les rotations de l’objet. Or, le sillage de l’objet reste essentiellement
vertical et, pour les régimes de transition, de forte amplitude très loin en aval de l’objet.
Dans le cas d’un objet sphérique, la solution adoptée a consisté à modéliser la rotation de
la sphère par une condition de non-glissement à la surface de l’objet. Dans le cas des objets
axisymétriques de forme quelconque traités dans la cadre de cette thèse, nous avons opté
pour l’utilisation d’un domaine cylindrique pour simuler le sillage et d’un domaine résolvant
les détails de l’écoulement proche de l’objet. En conséquence, le domaine cylindrique des
précédentes études a été décomposé en deux parties : un sous-domaine sphérique, contenant
l’objet et tournant avec ce dernier, complété par un sous-domaine cylindrique vertical (cf.
Figure 2.1). Sur chacun des sous-domaines (de géométrie axisymétrique), la discrétisation
spatiale initiale a été conservée. La re-connexion a été faite par une approche de type
’décomposition du domaine sans recouvrement’ (méthode qui n’avait jusqu’alors jamais été
utilisée dans un contexte “spectral”), l’interface sphérique faisant le lien entre les deux sous-
domaines. Elle est discrétisée par un développement en fonctions sphériques. Compte tenu de
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l’optimalité de la représentation du groupe de rotation par la base des fonctions sphériques,
le surcoût de calcul nécessaire pour le raccordement dynamique des sous-domaines est très
faible alors que la précision reste pleinement conservée. Pour le couplage des degrés de lib-
erté de l’objet solide avec ceux de l’écoulement, nous avons adapté la méthode pleinement
implicite de Jenny & Dušek (2004) assurant une stabilité numérique indépendamment de
la masse ajoutée de l’objet, sans surcoût de calcul. La formulation mathématique et la
description de la méthodes numérique font l’objet des chapitres 2 et 3 de la thèse.

Le phase d’exploitation du code ainsi modifié comporte deux volets d’étude, l’un portant
sur les objets fixes et l’autre sur les objets libres. Le cas des objets axisymétriques fixes
est caractérisé par deux paramètres sans dimension, le nombre de Reynolds (Re = U∞d/ν,
où U∞ est la vitesse de l’écoulement loin en amont de l’objet, d le diamètre mesuré per-
pendiculairement à l’axe de l’objet et ν la viscosité cinématique du fluide) et le rapport
d’aspect χ = d/a où a est la longueur de l’axe polaire pour les ellipsöıdes ou la hauteur
pour les cylindres. Dans la suite, on appellera ’disque’ le cas limite d’un cylindre de hauteur
nulle (de rapport d’aspect infini). Au début de la thèse, seuls les cas extrêmes d’une sphère
Jenny et al. (2004) et d’un disque Fabre et al. (2008) avaient été finement explorés. Or, les
deux scénarios correspondants s’avèrent être considérablement différents. Dans une étude
paramétrique extensive, nous avons ainsi entrepris de couvrir la gamme complète des rap-
ports d’aspect (de l’unité à l’infini) des ellipsöıdes et des cylindres. Nous avons ainsi établi le
lien entre les deux cas extrêmes. Alors qu’un des traits remarquables des scénarios relatifs à
la sphère, au disque et au cylindre épais est l’absence d’hélicité dans tous les états ordonnés
de la transition, nous avons mis en évidence un état à hélicité non-nulle pour des rapports
d’aspect intermédiaires (par ex. 1.1 < χ < 2.3 pour les ellipsöıdes). La cartographie très
complète des divers états de la transition en fonction du nombre de Reynolds et du rapport
d’aspect pour des ellipsöıdes et pour des cylindres fait l’objet du chapitre 4 et a été publiée
dans l’article Chrust et al. (2010).

Un travail expérimental récent Szaltys et al. (2011) a constaté l’impossibilité de retrouver
le scénario théorique prédit pour un disque (ou un cylindre plat) placé perpendiculairement
à l’écoulement. L’hypothèse que cette observation provient de l’impossibilité que l’on a
de réaliser une configuration parfaitement axisymétrique a été confirmée en étudiant des
disques inclinés par rapport à l’écoulement. Le scénario théorique n’a été retrouvé que pour
une inclinaison très faible, de moins de 4 degrés. Au-delà, le plan de symétrie sélectionné par
l’inclinaison reste stable. La bifurcation primaire est alors de type Hopf et il est intéressant
de constater que son seuil ne varie pas d’une manière monotone avec l’angle d’inclinaison.
Les détails de cette étude sont donnés au chapitre 5.

La simulation numérique d’objets libres nécessite la résolution des équations de Navier-
Stokes couplées aux équations du mouvement du solide. L’adimensionalisation du problème
est basée sur l’échelle de la force résultant de la masse de l’objet et de sa flottabilité (m−ρV )g
(où m est la masse du solide, V son volume et ρ la masse volumique du fluide). En prenant la
masse de référence ρd3, on obtient l’échelle de l’accélération qui définit l’échelle de la vitesse.
C’est cette échelle de vitesse qui remplace celle de la vitesse de l’écoulement. Le nombre sans
dimension G, exprimant l’inverse de la viscosité adimensionnée et jouant le rôle du nombre
de Reynolds, a été appelé (Jenny et al., 2004) nombre de Galilée. Dans leur expression la
plus générale, les équations couplées peuvent avoir jusqu’à 5 paramètres indépendants. En se
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limitant à des objets homogènes d’une classe donnée (cylindres, ellipsöıdes), on limite ainsi le
nombre de paramètres à 3. Nous avons choisi le nombre de Galilée, le rapport d’aspect et la
masse adimensionnée m∗ = m/(ρd3) définissant l’inertie de l’objet d’une manière équivalente
au moment d’inertie adimensionné de Willmarth et al. (1964) et Field et al. (1997).

Nous avons mené une étude paramétrique pour des disques libres (χ = ∞) couvrant
la plage de masses adimensionnées m∗ variant de zéro à 10. Il y a encore très peu de
résultats numériques portant sur ce problème. La thèse d’Auguste (2010) présente les seuils
d’apparition du mouvement oscillant périodique, vertical en moyenne (appelé zig-zag) pour
6 valeurs du moment d’inertie adimensionnné. Nous avons retrouvé les mêmes seuils. Nous
avons étendu l’étude à l’ensemble du plan des paramètres G,m∗ avec G =

√
m∗gd3/ν allant

jusqu’à 500. Le scénario de transition dépend fortement de m∗ comme le montre la Figure
6.20 du chapitre 6 de la thèse. Nous distinguons les trajectoires suivantes :

1. chute verticale ;

2. état “zig-zag” ;

3. état virevoltant décrit dans la littérature expérimentale comme “tumbling” ;

4. état intermittent (entre un état “zig-zag” et un état “tumbling”) ;

5. états chaotiques caractérisés par des trajectoires tri-dimensionnelles peu éloignées de
la verticale, trouvés également dans Auguste (2010) pour de très petites inerties et
observés aussi expérimentalement Ern et al. (2012);

6. états hélicöıdaux.

Le scénario pour le disque infiniment léger (m∗ = 0) s’est avéré très particulier, car la
chute verticale devient instable suite à l’apparition d’oscillations de basse fréquence à un
nombre de Galilée légèrement inférieur à 80. Très rapidement, les oscillations deviennent
chaotiques (comme décrit au point 5). Un état ordonné “zig-zag” à une fréquence plus
élevée n’est retrouvé que pour G ≥ 180. Cet état co-existe avec l’état chaotique entre
G = 120 et G = 180. L’interaction des deux fréquences pourrait être à l’origine de l’état
chaotique presque vertical susceptible d’expliquer une observation expérimentale très tardive
des oscillations pour un cylindre plat (Fernandes et al., 2007). On constate, de plus, que la
bifurcation donnant naissance à l’état “zig-zag” est sous-critique dans un grand intervalle de
valeurs intermédiaires de m∗ avec une large plage de coexistence des deux états. En accord
avec les observations de Field et al. (1997), nous trouvons que l’état virevoltant domine le
scénario pour les inerties (m∗) élevées.

Un récent article expérimental (Fernandes et al., 2007) a soulevé la question de l’explica-
tion d’une apparition tardive des instabilités observée pour un cylindre plat en ascension
libre sous l’effet de la poussée d’Archimède. Contrairement aux attentes intuitives et à
l’observation faite dans le cas d’un objet sphérique, la trajectoire du cylindre est restée
verticale jusqu’à des nombres de Reynolds auxquels le sillage du même cylindre maintenu
fixe présente déjà des instabilités. Le chapitre 7 présente une explication à la lumière des
résultats de simulations directes. Le phénomène est dû en partie à un effet stabilisant
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des degrés de libertés supplémentaires de l’objet libre. Cet effet surprenant, prédit tout
récemment théoriquement par Fabre et al. (2012), a été confirmé en mettant en évidence le
décalage du seuil de la bifurcation régulière du sillage du cylindre pour des rapports d’aspect
proches de 10. A partir de ce rapport d’aspect, le décalage observé est, cependant, beaucoup
plus important. Il s’explique par le scénario mis en évidence pour le disque infiniment fin
de faible inertie (m∗ ∼ 0) au chapitre 6. Ce sont les états instationnaires de très faible
amplitude qui retardent l’apparition des oscillations expérimentalement observables.

Finalement, le chapitre 8 présente le scénario de transition mis en évidence pour des
ellipsoides applatis de rapports d’aspect variant de l’infini (disques avec une distribution
inhomogène de masse) jusqu’à 1.5 (1 étant le rapport d’aspect d’une sphère parfaite). Le but
de l’étude consiste à établir le lien entre les résultats obtenus pour des disques au chapitre 6 et
le scénario connu pour les objets sphériques. Il s’agit d’une étude paramétrique comportant
trois paramètres: le rapport d’aspect caractérisant la forme, la masse adimensionné m∗ ou,
d’une manière équivalente, le rapport des masses volumiques du solide et du fluide porteur
et le nombre de Galilée. Un grand nombre de simulations est, en conséquence nécessaire,
pour fournir une information complète. Les résultats obtenus permettent de conclure que
le scénario du disque avec les états caractéristiques ’zig-zag’ et ’virevolte’ est limité aux
ellipsoides plats de rapport d’aspect n’excédant pas 3. Pour les ellipsöıdes de forme proche
de celle de la sphère, on retrouve un scénario similaire à celui mis en évidence pour la
sphère avec, cependant, des différences dues à la forme asphérique de l’objet qui l’empêche
de tourner.

Les tests numériques, l’accord avec les résultats déjà connus, ainsi que la richesse des
scénarios mis en évidence justifient l’approche numérique que nous avons adoptée pour cette
étude.
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Chapter 1

Introduction

1.1 Free motion of solid bodies

The nature and origins of non-straight paths of bodies falling or ascending freely in a fluid
have always triggered interest of the scientific community. The origins of the topic date back
to the foundations of the modern mechanics and to such honored names as Newton, Maxwell,
Kirchoff and others. In his revolutionary publication Newton (1726) proposed for the first
time not only the classical laws of motion, the law of universal gravitation and the derivation
of Kepler’s laws of planetary motion, but also described several experiments devoted to the
motion of solids in fluids. In order to measure the resistance of fluids, Newton ”procured a
square wooden vessel” and ”filled it with rain water”, ”and having provided globes made up
of wax, and lead included therein, [...] noted the times of the descents of these globes [...]”.
He observed that ”the globes [...] oscillated about their centers”. In another experimentation
hog’s bladders formed into spherical orbs ”were let fall from the lantern on the top of the
cupola of the same church [St. Paul’s in London] ... But the bladders did not always fall
straight down, but sometimes fluttered a little in the air, and waved to and fro as they were
descending”. Maxwell (1853), in turn, points out that ”every one must have noticed that
when a slip of paper falls through the air, its motion, although undecided and wavering at
first, sometimes becomes regular”. It was incomprehensible and inspiring at the same time,
that a body of a regular shape, initially at rest, freely falling in air could follow a non-straight
path. Another intriguing examples of path instabilities found in daily life are, for instance,
those of confetti falling in the air or of a coin dropped in the water.

Understanding the reasons of non-straight paths of objects falling or rising under the
effect of gravity, buoyancy and hydrodynamic forces in a fluid is a major issue in many
domains of science, as well as in many industrial applications. In meteorology it is, for
example, of interest to predict the trajectories of weather balloons, as they are shaped by
winds and wake instabilities. A French meteorologist Léon Philippe Teisserenc de Bort was
one of the first to use unmanned balloons, which led to the discovery of the stratosphere.
Nowadays they are commonly used (routine releases are scheduled in over 800 locations all
over the world each day) to provide information on the temperature, winds and pressure for
weather forecasting.

1
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Figure 1.1: Launching of a weather balloon. Photo: U.S. Navy.

Another field of applications involve the study of the fall and growth of snowflakes and
raindrops in the atmosphere. Especially important is the understanding of the mechanism
of the build up of hailstones and the prediction of their trajectories to prevent damage
to automobiles, roofs, livestock and crops. Kry & List (1974) found that the growth of
spheroidal hailstones is closely related to their angular motion, which they called symmetric
gyration, in which symmetrically equivalent points on the surface are equally exposed to the
flow.

Sedimentology is a domain of science that involves the study of sediments, which are
natural materials, that are created by weathering and erosion. Subsequently, they are trans-
ported by fluids: winds in air or currents in water. It is of interest to study the processes
that result in their deposition. It is crucial, for instance, to understand the sedimentation
of silt in river banks and the transport of pollutants, which threaten the water quality and
the wildlife. The study of sedimentation and spread of volcanic ashes containing fragments
of pulverized rocks, minerals and volcanic glass (of diameter less than 2mm), created during
volcanic eruptions (Walker, 1981) is particularly important for the aeronautical industry.
The ashes can seriously affect the air traffic due to several reasons (Cassadevall, 1992). One
of them is the reduction of the visibility and of the runway friction coefficients (especially
when the ash is wet). But the most serious is the potential damage to the engines due to
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increased wear. The ashes can also cause damage to ground vehicles by abrading or scratch-
ing the moving surfaces or by clogging the air intake filters. Modeling of the spread and
sedimentation of the ash particles is therefore crucial for taking adequate precaution steps.

Figure 1.2: Eruption of a volcano beneath Iceland’s Eyjafjallajokull glacier. Photo: Icelandic
Coast Guard.

For very small particles, the particle transport problem can be treated in the framework
of statistical physics (see e.g. Russel et al., 1992). Random movement of particles suspended
in a fluid, called the Brownian motion (Einstein & Fürth, 1956), is a simple continuous-time
stochastic process that can be considered as approximation of a random physical process.
For larger particles, the hydrodynamic forces must be accounted for.

Studying of the motion of freely falling objects is also central in biological sciences. The
spread of seeds from plants, for example, have cardinal effects on the structure of plant
populations. Different species have developed various dispersal mechanisms, one of which is
wind dispersal: seeds can be lifted by a breeze and transported to distant locations or they
can fall directly to the ground following complicated paths. These mechanisms play a major
role in migration and mixing of the species and are main factors maintaining the biodiversity
(Augspurger, 1996).

In chemistry, the potential applications involve centrifuges and dust collectors, that ex-
ploit the sedimentation principle (centripetal acceleration causes denser particles to separate
along the radial direction), pneumatic conveyors and chemical reactors including fluidized
beds, the design of which relies on the knowledge of the drag coefficient of suspended parti-
cles.
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Figure 1.3: Fluid-Solid coupling. (1) fluid exerts a hydrodynamic force on the solid and (2)
the solid introduces a disturbance to the fluid.

1.2 Physics of the problem

The motion of a particle immersed in a fluid is governed by mutual interactions of the fluid
and solid phases (known in the literature as Fluid-Solid Interactions, FSI). Fluid exerts a
hydrodynamic force on a particle. At the same time a particle disturbs the flow (see Figure
1.3). In what follows, the volumetric mass and kinematic viscosity of the continuous phase
are considered constant and the fluid is assumed to be incompressible. The flow is then
governed by the Navier-Stokes equations:

∂v

∂t
+ (v · ∇)v = −∇p+ 1

Re
∇2v (1.1)

and

∇.v = 0 (1.2)

where Re = U∞d/ν is the Reynolds number representing inverse of the non-dimensionalized
kinematic viscosity (ν). These equations have to be completed by the initial and boundary
conditions. The domain is considered to be infinite with the fluid being at rest on its limits.
In practice the domain is finite. However, its size should be sufficiently large, so that the
flow is not altered due to the introduced confinement. The interaction between the solid,
which moves with a velocity u and rotates with the angular velocity Ω, and the fluid is due
to the no-slip boundary condition on its surface S. This boundary condition is expressed by:

v|S = u + Ω× r|S (1.3)

where v|S is a velocity of the fluid, that is in contact with the solid and r is the position
vector of a point on its surface.

The difficulty in solving the coupled solid-fluid problem governed by equations (2.56,2.57)
and (1.4), respectively, consists in resolving all the scales present in the problem. Moving
particle introduces the energy to the surrounding fluid, that in turn governs the evolution of
large scale flow structures. The two-way coupling between a particle and continuous phase
is non-trivial and requires careful treatment.
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Calculation of forces (1.7, 1.8 and 1.9 defined in section 1.3) acting on the accelerating
spherical particle submerged in a fluid is a complicated task (Magnaudet, 1997). It was
shown that standard particle models do not predict the trajectories of a spherical particle
that moves with a speed corresponding to transitional regimes (Karamanev & Nikolov, 1992).
The discrepancy appears to be especially striking for light ascending spheres. Nonetheless,
satisfactory results were obtained, when the flow can be considered as uniform on the particle
scale. However, as soon as the scale of structures present in the wake is comparable to that of
a particle (super-critical regimes in the case of a sphere), the flow can be no longer considered
as uniform. The direct resolution of the flow around a particle is then required to account
for the strong coupling of the fluid and solid phases.

1.3 Phenomenological models

Modeling of multi-particle suspensions is an even more challenging task since in addition
to the present solid-fluid interactions it also involves interactions between particles that can
have non-negligible consequences (especially when the concentration is high). The thesis
of Caballina (2002) presents an exhaustive overview of the existing approaches adopted to
solve this complex two-phase problem. The simplest one consists in considering the fluid
and solid phases as an equivalent mono-phase medium, whose volumetric mass is a function
of the concentration of the dispersed phase. The flow is then governed by the homogenized
Navier-Stokes equations and the interactions between two phases are modeled by introducing
a tensor of mixing constraints and the Reynolds tensor associated with the fluctuations of
the velocity induced by the presence of the solid phase. Particles are not resolved and are
considered to be simply convected by the flow. Models based on this approach are called in
the literature Eulerian models. Their validity is limited by the assumption that the scale of
particles is negligible in comparison with the scales present in the flow.

Another approach consists in considering both the fluid and solid phases as distinct
media. The continuous phase is resolved using Eulerian approach through the solution of
the Navier-Stokes equations possibly augmented by a source term modeling the action of
the solid phase on the fluid one to account for the two way coupling. The solid phase is
resolved using the Lagrangian approach consisting in integration of the equation 1.4. The
forces acting on a single particle listed in the equation 1.6 are modeled phenomenologically
(see Tanabe & Kaneko, 1994; Mahadevan et al., 1999; Caballina, 2002).

The three translational degrees of freedom of a particle obey the motion equation 1.4:

m
du

dt
= (m−mf )g + F (1.4)

wherem andmf is a mass of the particle and of a volume of the displaced fluid respectively, u
is the velocity of the center of mass of a particle and g represents a vector of the gravitational
acceleration. In a sub-critical regime, a particle placed in a steady homogeneous flow follows
a vertical path. The driving force (resulting from gravity and buoyancy) is counterbalanced
by the hydrodynamic drag F = FD. The derivative on the left hand side of equation 1.4 is
equal to zero in this case. Non-dimensionalization of the drag force yields the drag coefficient:
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CD =
FD

1
2ρu

2S
(1.5)

In the sub-critical regime, the problem simplifies then to the modeling of the drag force. For
the case of a sphere phenomenological models of CD (Schiller & Neumann, 1933; Brown &
Lawler, 2003) are in a very good agreement with the direct numerical simulations (DNS) as
shown by Magnaudet et al. (1995).

As soon as the velocity of a particle starts to vary, the acceleration effects appear. More-
over, the shear of the flow must often be accounted for. The instantaneous force acting on
a particle contains, along with the drag force FD present before, the supplementary terms:

F = FD + Fma + Fh + FL, (1.6)

where Fma, Fh and FL are the added mass, history and lift forces respectively. The added
mass force accounts for the inertial effects. It is a force exerted by a particle to accelerate
the surrounding fluid. It is expressed by:

Fm = Cmamf (
dv

dt
− du

dt
), (1.7)

with Cma being the added mass coefficient equal to Cma = 1/2 for a sphere (Magnaudet et al.,
1995). The history force, proposed independently by Boussinesq (1985) and Basset (1888),
represents an effort necessary for the flow to adapt to the boundary conditions imposed
by the motion of a particle. It can be expressed using the integral formulation (see e.g.
Magnaudet, 1997):

Fh =

∫ t

0
K(t− τ)(

∂v

∂τ
− ∂u

∂τ
) dτ, (1.8)

where the kernel K(t−τ) depends on the process of the diffusion of the vorticity. Calculation
of the history force is computationally expensive, however, especially for bubbles, it cannot
be neglected when fluctuations of the velocities between phases become important (Rivero
et al., 1991). If the vorticity is present in the flow, the lift force must be also considered. It
is expressed by:

FL = −CLmf (u− v)× ω, (1.9)

where the vorticity in the absence of the rotation of a particle is given by ω = ∇ × v. For
an inviscid fluid and a spherical particle CL = 0.5 according to Auton (1983). For moderate
Reynolds numbers, CL is a function of shear present in the flow Aω = d|ω|/|u−v| and tends
to the asymptotic value as CL = 0.5 − 4.0Re−1 (Komori & Kurose, 1996).

The size of the particle and the boundary layers are, nonetheless, not resolved resulting
in similar drawbacks as those of Eulerian models.

Maxey & Riley (1983) propose a model that resolves the size of the particle accounting
for the disturbance that it introduces to the flow. However, the boundary layer is not yet
resolved. The model applies to small Reynolds numbers at which the scale of the boundary
layer thickness and of the particle size are comparable.
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The above mentioned techniques, rely strongly on the modeling and do not apply to
transitional regimes. Reliable prediction of sedimenting flows can be obtained only if all the
involved scales are taken into account, meaning that particles’ boundary layers have to be
resolved. This can be achieved by direct numerical simulations. However, even today the
simulation of multi-particle flows is too expensive computationally and can be carried out
only on super-computers (Garćıa-Villalba et al., 2012). Hence, before addressing a compli-
cated sedimentation problem, first a single particle problem must solved and understood.
Single particle solutions provide also a useful benchmarking.

Unavailability of accurate theoretical models in the transitional regimes explains why the
free fall of solids was intensively studied experimentally. The development of sophisticated
optical techniques, namely of high-speed imaging, particle image velocimetry (PIV) and of
visualization methods and post-processing tools allowed for a precise tracking of all 6 de-
grees of freedom of the body as well as for the measurement of the velocity field (with the
3d PIV it is now possible to obtain velocity field in a volume). Researchers focused their
attention mainly on the prototypical bodies possessing the axis of symmetry, namely on a
sphere and on a disc. The advantage of considering these geometries is that their wakes are
initially axisymmetric. They are therefore particularly well suited for the stability studies
relying on the linearization of the Navier-Stokes equations around an axisymmetric solution.
Nonetheless, the experimental approach also presents certain drawbacks for theoretical in-
terpretations. Namely, it is difficult to control precisely physical parameters of the system
and the boundary conditions, as well as to access in a non-intrusive manner all the relevant
physical quantities. Another issue are the high costs of experimental equipment.

Having in mind that the path of a freely falling solid is a result of interplay of the fluid and
solid degrees of freedom (commonly known as fluid-structure interaction), it is primordial to
elucidate the transition scenario of their fixed counterparts. Knowledge of the regimes and
bifurcation mechanisms provides a clue to the explanation of the behavior of freely moving
bodies. First attempts to predict the transition in wakes were made in the framework of the
parallel flow theory. The viscous parallel linear analysis of Monkewitz (1988) predicted for
the axisymmetric bodies that the mode with azimuthal wave number m=1 (helical mode)
becomes the most unstable. However, theoretical considerations based on the parallel flow
theory have failed to provide quantitatively reliable predictions for wakes (Dušek et al.,
1994). A fully three dimensional linear stability analysis capable of precise predictions of
the bifurcation thresholds was first given by Natarajan & Acrivos (1993) for the case of a
sphere and a thin disc. They found a regular primary bifurcation threshold and predicted a
secondary Hopf bifurcation. Recent development of numerical methods and rapid increase of
computational power of computers allowed for a fully free dimensional simulations capable
of capturing the breaking of axisymmetry of the wake (Johnson & Patel, 1999; Ghidersa &
Dušek, 2000; Tomboulides & Orszag, 2000).

1.4 Loss of axisymmetry in flows

The wake of axisymmetric bodies for sufficiently low Reynolds numbers is steady and ax-
isymmetric. The subsequent transitions that break the spatio-temporal symmetry of the
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flow might be to some extent predicted by considering the linear stability analysis of the
base flow. A similar situation is to be expected more generally for any axisymmetric flow.
In the context of the sphere wake, a theoretical weakly non-linear model focusing on the
case of a regular bifurcation was given by Ghidersa & Dušek (2000). The case of a Hopf
axisymmetry breaking bifurcation was discussed by Danaila et al. (1998). The interplay of
both bifurcations is analyzed in a recent paper by Meliga et al. (2009). The present section
is limited to the analysis of a single bifurcation.

The axisymmetric flow satisfying Navier-Stokes equations written in cylindrical coor-
dinates (z, r, θ), where z is the axial, r radial and θ azimuthal coordinates respectively, is
independent of θ. The linear stability of the axisymmetric solution can be studied considering
a perturbed flow field (v, p):

v = V+ v′, (1.10)

p = P + p′, (1.11)

where (V, P ), (V ≡ (Vz, Vr, Vθ)
T ) is the axisymmetric solution. (v′, p′) are the infinitesimal

perturbations that can be expressed through the complex eigen-functions Φ and Π associated
with the eigenvalue λ:

v′ = αeλtΦ+ c.c., (1.12)

p′ = αeλtΠ.+ c.c., (1.13)

where α is a small, arbitrary, complex constant. c.c stands for complex conjugate. The
perturbations will be either amplified or damped, according to the sign of the real part of λ,
depending on the solution of the eigenvalue problem:

∇ ·Φ = 0, (1.14)

λΦ+ L[V]Φ +∇Π = 0, (1.15)

obtained by the linearization of the Navier-Stokes equations around the axisymmetric solu-
tion (V, P ). L is a linear operator that commutes with the rotation operator ∂/∂θ, since the
base flow is independent of θ. Hence, the eigenfunctions of both operators can be expressed
in the following form:

Φ(z, r, θ) = σ(m)φm(z, r) e−imθ , (1.16)

Π(z, r, θ) = πm(z, r) e−imθ (1.17)

where σ(m) = diag(1, 1,−isgn(m)) and m is the azimuthal wave number φm(z, r)
≡ (φm,z , φm,r, φm,θ)

T is an array of the azimuthal modes of the axial, radial and azimuthal
velocity respectively. The imaginary factor −isgn(m) is related to the complex representa-
tion of plane rotations discussed by Jenny & Dušek (2004). With the formulation (1.16),
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the eigenvalue problem (1.14) and (1.15) can be decomposed into a sequence of independent
eigenvalue problems in azimuthal sub-spaces:

∇|m| · φm = 0, (1.18)

λmφm +Λm[V]φm + ∇|m|πm = 0. (1.19)

The eigenvalues λm depend on the azimuthal wave number m. If no swirl is present,
i.e. if the axisymmetric flow has no azimuthal velocity, the operator Λm and thus also the
eigenvalues λm are independent of the sign of m: λm = λ|m|. The bifurcation sets in when
the first real part of λ|m| becomes positive. Four distinct cases summarized in Table 1.1 can
be expected depending on the azimuthal wave number and on the imaginary part of the first
eigenvalue to become unstable.

m = 0 m 6= 0
Im(λ) = 0 Steady axisymmetric Steady non-axisymmetric
Im(λ) 6= 0 Unsteady axisymmetric Unsteady non-axisymmetric

Table 1.1: Characteristics of the perturbed flow depending on the azimuthal wavenumber
and on the imaginary part of the first eigenvalue to become unstable.

The axisymmetry gets broken if m > 0 (negative values are equivalent if no swirl is
present). The most unstable eigenvalue is mostly in the m = 1 sub-space, however, Kotouč
et al. (2009b) have evidenced regular bifurcations in m = 2 and m = 3 subspaces in the
opposing flow past a heated sphere. The weakly non-linear effects at a regular axisymmetry
breaking bifurcation were described to the third order of the instability amplitude A by
Ghidersa & Dušek (2000) by a real Landau model:

dA

dt
= (λ− C|A|2)A, (1.20)

where λ is the real positive eigenvalue and C a real constant (as opposed to the Landau
model pertaining to the Hopf bifurcation where the constants are complex). The amplitude
A is, however, complex. The bifurcation is super-critical if C > 0. The growth rate λ of the
instability is proportional to the parameter ε = (Re − Rec,I)/Rec,I close to the threshold
and the saturation amplitude |A| is proportional to

√
ε. The third order model makes it

clear that the phase of the amplitude is arbitrary. A more detailed analysis shows that a
real amplitude A corresponds to a flow having a planar symmetry with respect to the plane
defined by the base flow direction and the real axis in a perpendicular plane. The arbitrary
phase account for the arbitrary orientation of the symmetry plane.

A weakly non-linear theory of the Hopf bifurcation was presented by Danaila et al. (1998).
The cited paper suggests a 5-th order model required for explaining the dynamics of a jet.
Only a third order model will be discussed here. If the unstable eigenvalue in the problem
(1.18,1.19) has a non-zero imaginary part, the instability generates two helical modes of
opposite helicity corresponding to the unstable (γ > 0) complex eigenpair γ ± iω. The
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helical modes are characterized by complex amplitudes A+ and A−. Any two-dimensional
vectorial quantity in the plane normal to the base flow direction, say yOz plane, (e.g. the
lift) is representable as a complex function of time (see Jenny & Dušek, 2004) u+ = uy+ iuz
expressed as:

u+ = A+(t)e
iωt +A−(t)e

−iωt. (1.21)

A weekly non-linear third order approximation of the dynamics of the axisymmetry breaking
by a Hopf bifurcation yields the following equations for the amplitudes A± (Danaila et al.,
1998)

dA±

dt
=
[
γ − (C|A±|2 +D|A∓|2)

]
A±. (1.22)

where C and D are complex constants, the same in both equations with upper and lower
sign to account for the symmetry with respect to the change of the sign of helicity. A simple
calculation shows that Eqs. (1.22) have two types of asymptotic solutions:

a) one of |A+| or |A−| zero, the other equal to (γ/Cr)
−1/2,

b) both modules equal and |A+| = |A−| = [γ/(Cr +Dr)]
−1/2.

(Cr and Dr stand for real parts of C and D. Both Cr and Dr are assumed to be positive.)
For Cr < Dr the solution a) is stable and b) is unstable. The converse is true for Dr < Cr.
The imaginary parts of C and D yield a non-linear shift of angular frequency. As a result,
Eq. (1.21) yields asymptotic states:

u+,∞ =
[
|A+,∞|ei(ω′t−ϕ+) + |A−,∞|e−i(ω′t−ϕ−)

]
(1.23)

where ω′ = ω+∆ω is the angular frequency of the limit cycle and ϕ± phase shifts determined
by the initial perturbation. The trajectory in the complex plane in the case a) is a circle
and in the case b) a straight line the inclination of which is given by the phase shifts, i.e. by
initial conditions. Danaila et al. (1998) show that higher order non-linear effects may results
in states with unequal amplitudes |A+,∞| 6= |A−,∞| yielding a flattened ellipse instead of a
straight line or a circle. (See Figure 1.4.)

In regimes where the modulus of the amplitude of both helical modes is the same we
find a planar symmetry. The net helicity is zero. In the case of wakes of solid bodies, the
lift oscillates with a zero mean value in the same way as Figure 1.4b. In contrast, if the
amplitudes are not equal, the corresponding states will be called “with non zero helicity”.

1.5 Wake of a fixed sphere

Flow around a fixed sphere has received a lot of attention over the past decades. The
understanding of its transitions can be considered as a necessary prerequisite for the study
of freely moving spheres. At the same time, fixed configuration is much simpler to study
owing to the suppression of the body’s degrees of freedom. Non-dimensionalization of the
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Figure 1.4: Paths in the complex plane of the modeled complex velocity of Eq. 1.23 for a) a
single non zero amplitude, A−,∞ = 0, b) two equal amplitudes |A+,∞| = |A−,∞| and c) for
|A−,∞| = 0.9|A+,∞|.

Navier-Stokes equations with the diameter of a sphere and the free stream velocity yields
the Reynolds number as a single parameter of the study.

Figure 1.5: G. Eiffel with the drop test machine. Eiffel tower.
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In spite of the simple geometry of a sphere, its wake can be fully three-dimensional
and can contain complicated vortical structures. It undergoes a series of transitions as the
Reynolds number is increased. For very low Reynolds numbers, the flow exhibits perfect
upstream-downstream symmetry and separates upon increasing the free stream velocity.
The flow maintains axial symmetry and a vortex forms at the rear stagnation point of
the sphere (Magarvey & Bishop, 1961a). The flow separation is widely accepted to occur
at Resep = 20, although different researchers evidence slightly different results: Rimon &
Cheng (1969) suggest Resep = 10 while Taneda (1956) experimentally showed it to occur
at Resep = 24. Streaklines of flow visualizations show a rectilinear thread downstream the
sphere when dye is injected upstream, as a manifestation of axial symmetry.

The primary bifurcation breaks the axial symmetry introducing a steady non axisymmet-
ric wake consisting of a separation bubble followed by two trailing counter-rotating vortices.
Axial symmetry is replaced by a planar symmetry. The double-thread flow structure is easily
visualized with streaklines in experiments in a water channel using the dye injection on the
surface of the sphere as well as evidenced by the PIV measurements. The early experimen-
tal results underestimated the threshold of the first bifurcation. Taneda (1956) found it at
ReI = 130 and identified the next regime as unsteady. Other studies show that the wake be-
comes asymmetric, but remains steady (Magarvey & Bishop, 1961a; Levi, 1980). Magarvey
& Bishop (1961a) found the threshold for ReI = 210, however they did not interpret it as a
breaking of axisymmetry. The results of Ormières & Provansal (1999) (180 < ReI < 200) and
Nakamura (1976) (ReI = 190) were relatively close to the numerical results ReI = 210−212
found by Tomboulides et al. (1993), Johnson & Patel (1999) and Ghidersa & Dušek (2000).
The difference in the first bifurcation threshold between the experimental and numerical re-
sults was attributed by Ormières & Provansal (1999) to the sensibility of the primary regular
bifurcation to the holding. Careful treatment allowed Gumowski et al. (2008) to obtain the
primary bifurcation threshold in agreement with the numerical results.

Figure 1.6: Streaklines showing a bifid wake. The plane of symmetry is imposed by the
holding; Re = 250. Przadka et al. (2008).

The linear stability analysis carried out by Natarajan & Acrivos (1993) and later on
by Ghidersa & Dušek (2000) confirmed the results of the viscous parallel linear analysis of
Monkewitz (1988) showing that the eigenvalue corresponding to the mode with the azimuthal
wave number m = 1 is the first to become unstable. The unstable eigenvalue was found to
be real, i.e. the bifurcation responsible for the first transition is of a regular type.

The secondary, Hopf, bifurcation replaces the steady, planar symmetric flow with un-
steady, however still planar symmetric flow. The unsteady state has not only a zero helicity
but, moreover, the symmetry plane of both bifurcations is the same. This not necessarily
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the case in all configuration, e.g., it does not hold for a thin disc. Streaklines show periodic
shedding of connected hairpin vortices. The transition is numerically predicted to occur at
Re slightly exceeding 270 (Re = 270 Johnson & Patel (1999), Re = 272.3 Ghidersa & Dušek
(2000)). The onset of unsteadiness is observed as fluctuations (peristaltic instability) of the
double thread wake in experiments. Ormières & Provansal (1999) found the threshold at
Re = 273. Gumowski et al. (2008) found, experimentally, that the undulation of the double
thread wake starts at the Reynolds number of Re = 265. When the Reynolds number is
increased, the amplitude of oscillations starts to rise and eventually the vortex shedding with
transversal vorticity is added to the flow in the form of hairpins.

Figure 1.7: Wake behind a sphere in hairpin-shedding regime. Szaltys et al. (2011).

The subsequent stages of transitions are less widely known. Bouchet et al. (2006) evi-
denced numerically the appearance of the second frequency equal to about one third of the
base frequency at the Reynolds number Re ≈ 325 leading to a quasi-periodic state. Upon a
further increase of the Reynolds number, the flow preserves the planar symmetry but under-
goes a sequence of subharmonic bifurcations. Above Re = 350, the symmetry plane is lost
and vortical structures are shed downstream irregularly in random directions. The chaotic
regime was first observed experimentally by Sakamoto & Haniu (1995) for Reynolds numbers
exceeding Re = 420 and numerically by Mittal (1999) for the Reynolds number between 350
and 375.

1.6 Transition scenarios of fixed discs and cylinders

The wake of a thin disc and that of flat cylindrical bodies has been taken up only in a
handful of recent, mostly numerical and theoretical papers. For a cylinder, the aspect ratio
is defined as χ = d/h where d is the cylinder diameter and h the cylinder height. In what
follows, a ”thin disc” is considered to correspond to an infinite aspect ratio while if the body
is cylindrical with non zero height it will be called flat cylinder if χ > 1. It appears that the
transition scenario in these wakes differs considerably from that of the fixed sphere wake,
furthermore the transition process involves new features that do not exist in the sphere wake.
The present literature on the transition from a steady symmetric to a chaotic flow over a
thin disc or a flat cylinder reveals seven transition stages.

• (a): In all investigated configurations, the thin disc (χ = ∞), considered by Natarajan
& Acrivos (1993), Fabre et al. (2008) and Meliga et al. (2009), and flat cylinders of
aspect ratio larger than one, investigated by Fernandes et al. (2007) (χ = 2 through
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Figure 1.8: Steady non-axisymmetric flow behind a fixed cylinder. Stream-wise iso-vorticity
contours. χ = 3, Re = 165. Auguste et al. (2010).

10), Shenoy & Kleinstreuer (2008) (χ = 10) and Auguste et al. (2010) (χ = 3), the
primary bifurcation is regular in the m = 1 azimuthal subspace leading to a steady
non-axisymmetric but planar symmetric state, the symmetry plane of which has an
arbitrary orientation selected by initial conditions (see section 1.4). The breaking
of axisymmetry yields a steady lift oriented in the symmetry plane. This state is
denoted as SS (steady state) in Fabre et al. (2008) and Meliga et al. (2009) and ’steady
asymmetric’ in Shenoy & Kleinstreuer (2008). The threshold of the primary bifurcation
has been given by Fernandes et al. (2007) as a function of χ for cylinders of finite aspect
ratio. In the cited bibliography, there is a good consensus as for the critical Reynolds
number value of Re1 for a thin disc. It is found between 115 and 117. The steady
asymmetric state is visualized in Figure 1.8.

• (b): While the steady non-axisymmetric state is common to all investigated cases,
including that of a sphere, the secondary bifurcation, albeit of Hopf type in all cases,
has been found to lead to a specific periodic state without planar symmetry for a thin
disc and a cylinder of aspect ratio χ = 10. This state is characterized by a ’kinking
of trailing vortices’ past the body (Shenoy & Kleinstreuer, 2008, see) generating an
oscillating component of the lift. While the mean lift lies in the symmetry plane
selected at the primary bifurcation, the oscillating component is perpendicular. As a
consequence, it has been called RSB (reflectional symmetry breaking) by Fabre et al.
(2008), MMπ (mixed mode with phase π) state by Meliga et al. (2009), ’steady 3D
periodic with regular rotation of the separation region’ by Shenoy & Kleinstreuer (2008)
or ’yin-yang’ by Auguste et al. (2010). For the thin disc the critical Reynolds number
Re2 was found between 121 and 125.6. The reflectional symmetry breaking state is
visualized in Figure 1.9.
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Figure 1.9: Periodic flow without planar symmetry behind a fixed cylinder. Stream-wise
iso-vorticity contours. χ = 3, Re = 182. Auguste et al. (2010).

• (c): Alternatively, for χ = 3, Auguste et al. (2010) evidenced a transition to the periodic
state with planar symmetry as observed many times in the sphere wake (Johnson &
Patel, 1999, see e.g.) at the secondary bifurcation. In this state, the lift oscillates in
the symmetry plane and keeps a non zero mean value. It has been called RSP state by
Fabre et al. (2008), MM0 state by Meliga et al. (2009) or ’zig-zig’ by Auguste et al.
(2010). The change of the bifurcated state does not significantly influence the trend
of the critical Reynolds number as a function of the aspect ratio. It was fitted to
a smooth function by Fernandes et al. (2007). The reflectional symmetry preserving
state is visualized in Figure 1.10.

• (d): State (c) is to be distinguished from the periodic state with a zero mean lift
although both have a symmetry plane. The mean value of the oscillating lift in the
periodic state without planar symmetry (b) has been observed to vanish until the planar
symmetry is recovered (but with a symmetry plane perpendicular to that chosen at
the primary bifurcation). The lift oscillates in this symmetry plane with a zero mean
value. This periodic state with a zero mean lift has been observed for the thin disc and
for the cylinder of aspect ratio χ = 10. It is to be noted that the same state arises
in the case when the Hopf bifurcation directly breaks the axisymmetry of the flow,
which happens for the opposing flow in the wake of a heated sphere (see Kotouč et al.,
2009a). In the bibliography concerning discs, this state is called SW (standing wave)
mode (Fabre et al., 2008; Meliga et al., 2009) or ’unsteady with plane of symmetry and
zero lift force’ (Shenoy & Kleinstreuer, 2008). Its threshold has been found at Re ≈140
(Fabre et al., 2008) and 143 (Meliga et al., 2009).The reflectional symmetry preserving
state with a zero mean lift is visualized in Figure 1.11.
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Figure 1.10: Periodic flow with planar symmetry behind a fixed cylinder. Stream-wise iso-
vorticity contours. χ = 3, Re = 182. Auguste et al. (2010).

Figure 1.11: Periodic flow with planar symmetry and zero mean lift behind a cylinder.
Stream-wise iso-vorticity contours. χ = 3, Re = 216. Auguste et al. (2010).
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Figure 1.12: State with a non zero helicity. Stream-wise iso-vorticity contours. χ = 3, Re =
187. Auguste et al. (2010).

• (e): In a single case, that of the cylinder with χ = 3 Auguste et al. (2010), reported
the existence of a state with non zero helicity. The net non zero helicity arises due
to unequal amplitudes of spiral modes appearing in the weakly non-linear analysis of
Fabre et al. (2008) and Meliga et al. (2009) (see section 1.4). On the time scale of
a vortex shedding period, the helicity yields an elliptic path of the lift. The latter
moves periodically in the plane perpendicular to the flow axis so that the lift path can
roughly be described as a slowly oscillating or rotating ellipse. Because of the two scales
present and of the form of the lift trajectory the state is called ’quasiperiodic pulsating’
or ’knit-knot’ by Auguste et al. (2010). Similar states have also been observed in the
opposing flow past a heated sphere by Kotouč et al. (2009a). The state with a non
zero helicity is visualized in Figure 1.12.

• (f): The transition to chaos is preceded by a quasi-periodicity characterized by the
presence of a slower frequency close to 1/3 of the ’leading frequency’ of the previous
regimes Fabre et al. (2008). The same behavior has been observed in the unheated and
heated sphere wake (Bouchet et al., 2006; Kotouč et al., 2009b). A similar modulation
sets in states with non zero net helicity (Kotouč et al., 2009b).

• (g): The chaotic states have no symmetry. The lift coefficient describes a chaotic path
in the plane perpendicular to the flow axis.

In spite of a significant progress in the understanding of the transition scenario of flat
axisymmetric bodies, especially of a thin disc, the existing bibliography does not provide a
more systematic picture taking into account variations of the aspect ratio. For flat cylinders
the parametric study of the first two bifurcation thresholds of Fernandes et al. (2007) can
be improved, extended and refined with account of the progress in identification of more
complex regimes. The linear analysis of Natarajan & Acrivos (1993) takes up the thin disc
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and a sphere as two extreme cases. The link between them is represented rather by oblate
spheroids than by flat cylinders. The former have, however, never been investigated. The
wakes of cylinders and those of spheroids can both be characterized by just two parameters
allowing a relatively easily feasible two parametric study providing an exhaustive picture of
the transition scenario. This missing investigation was undertaken in the framework of this
thesis.

1.7 Freely falling axisymmetric bodies in a fluid initially at

rest

The development of modern experimental techniques over the recent decades and the emer-
gence of numerical methods shed some light on the nature of complex trajectories of axisym-
metric bodies freely falling or rising in a fluid initially at rest. A sphere and flat cylinders
received the most attention, as the transitional regimes of their fixed counterparts were ex-
tensively studied (see sections 1.5 and 1.6). Other geometries, namely the oblate spheroids,
were, according to our knowledge, not studied experimentally because their manufacturing
is more delicate and requires more precision.

1.7.1 Freely falling and rising spheres

The transitional regimes of freely falling spheres can be characterized by two non-dimensional
parameters. The velocity of the fall or ascension of a sphere is uniform only when the wake
is axisymmetric. In the transitional regimes the asymptotic velocity is non-uniform and
the Reynolds number based on this velocity can no longer be used. Instead, the effective
acceleration (resulting from the buoyancy and the mass of the body) yields a velocity scale√

|ρs/ρf − 1|gd, where ρs and ρf is the density of the solid and fluid respectively, g is the
gravitational acceleration and d the diameter of a sphere. This velocity scale replaces the
linear velocity of fixed body configurations. The non-dimensionalization of the Navier-Stokes
equations then brings about a new non-dimensional parameter named the Galileo number
(G):

G =

√
|ρs/ρf − 1|gd3

ν
, (1.24)

where ν is the kinematic viscosity of the fluid. The Galileo number represents the inverse of
the non-dimensionalized kinematic viscosity and plays a role of the Reynolds number in the
Navier-Stokes equations. In a sub-critical regime, corresponding to the vertical trajectory,
the Galileo and Reynolds numbers are directly related through the expression:

CD(Re) =
4G2

3Re2
, (1.25)

where CD is the drag coefficient. The second non-dimensional parameter required to com-
pletely describe the transitional regimes is the solid to fluid density ratio: (ρs/ρf ).

The early stages of the transition of a fixed sphere wake proved to be similar to the
regimes found for freely moving spheres. This similarity was implicitly assumed in the
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earliest studies. Magarvey & MacLatchy (1965) observed the wake of freely falling spheres.
They found that their trajectories deviated from the vertical direction once the wake ceased
to be axisymmetric. In the same way as for the fixed case, the first bifurcation is regular and
marked by the appearance of a non-zero lift force responsible for an oblique path. Goldburg
& Florsheim (1966) found, for Re = 300 (G ≈ 220) and the density ratio (ρs/ρf = 1.12), that
the wake oscillates with a base frequency St ≈ 0.07. Magarvey & Bishop (1961b) studied
immiscible liquid drops and found the unsteady wake for the Reynolds number Re = 350
and density ratios (1 < ρs/ρf = 1.6). They observed that the found characteristic frequency
St = 0.12 is in good agreement with that obtained for a fixed sphere. This result should
be treated, however, with caution as the comparison of the liquid drops with a solid sphere
is not straightforward. The inclusions may deform and the non-slip boundary condition
on their surface is questionable. Lunde & Perkins (1998) studied experimentally spherical
bubbles rising in still tap water for the Reynolds number range from about 700 to 1300.
They observed fluttering planar and helicoidal (spiraling) trajectories. More recently, the
experiments of Wu & Gharib (2002) demonstrated a relation between the shape and path
of small air bubbles rising in clean water. They noticed that bubbles in the diameter range
0.1 − 0.2 cm assume two steady shapes, that of a sphere and of an ellipsoid (depending
on the size of the capillary tube from which they were detached). They found that small
spherical bubbles rise rectilinearly (the Reynolds number based on their diameter is therefore
sub-critical), while the larger ones follow zigzag paths. They observed spiraling paths for
ellipsoidal bubbles and remarked that they moved significantly faster then spherical ones
of equivalent volume. Wu & Gharib (2002) explain their observation by the presence of
impurities at the surface of spherical bubbles. Numerical simulations carried out by Mougin
& Magnaudet (2002) for a rigid spheroidal bubble of aspect ratio (defined as the ratio of
the large to small diameter) χ = 2.5 found that the initial zigzag path transforms upon the
increase of the Galileo number into a spiral confirming the experimental observations of Wu
& Gharib (2002).

The knowledge of the transition scenario in the wake of freely falling spheres gained by the
first experimental and numerical studies of both rigid spheres and deformable or rigid bubbles
was far from being complete until the numerical study (see Jenny et al., 2003, 2004; Jenny
& Dušek, 2004) exploring the whole parametric space spanned by the two non-dimensional
parameters: the density ratio (0 < ρs/ρf < ∞) and the Galileo number 150 < G < 350.
Their results are summarized in a state diagram reproduced in Figure 1.13.

The exhaustive study of Jenny (2003) motivated a subsequent experimental investigation
undertaken by Veldhuis & Biesheuvel (2007), which evidenced the existence of transitional
regimes, whose description (’the main features of the motion of the spheres’) is in good
agreement with numerical results. They remarked, however, the differences in found domi-
nant frequencies in unsteady regimes. For light spheres, the reported frequencies show that
the zigzagging regime observed experimentally is rather the rapidly oscillating one found
to coexist with chaotic states than the slow zig-zag arising when the amplitude of oblique
oscillations makes the trajectory toggle to the opposite side of the vertical. Their visualiza-
tions present a bifid wake, characteristic for a steady asymmetric regime of a fixed sphere,
in wakes of free spheres contrary to the prediction of Jenny (2003).

The extensive experimental study carried out by Horowitz & Williamson (2010a) for
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Figure 1.13: Diagram of the asymptotic states of the trajectory of a free sphere. The vertical
axis is plotted proportionally to (ρ0 − ρ)/(ρ0 + ρ), but is labelled in ρ0/ρ. To the left of
the primary bifurcation (leftmost line) the wake is axisymmetric. The symbols denote the
simulations: +, steady and oblique; ∗, oblique and oscillating regime with low frequency
(0.045 <= f <= 0.068); ×, oblique and oscillating regime with high frequency (f ≈ 0.180);
, zigzagging periodic regime (0.023 <= f <= 0.035); �, three-dimensional chaotic regime.
The domain of coexistence of a chaotic and a periodic state (f = 0.14) is approximately
delimited by the dotted line. Source: Jenny (2003).

freely falling or ascending spheres aimed at determining the critical density ratio ρs/ρ
∗
f

(which they call critical mass m∗
crit) below which a sphere will vibrate (zigzagging periodic

regime). They demonstrated that such critical ratios exist and are essentially constant over
wide ranges of the Reynolds number:

m∗
crit ≈ 0.4, Re = 260 − 1550, (1.26)

m∗
crit ≈ 0.6, Re = 1550 − 15000, (1.27)

Above this critical mass m∗
crit spheres moved basically rectilinearly: vertically or obliquely.

The jump in the critical mass seems reasonable as the dynamics change upon the transition
of the flow from laminar to turbulent. They remarked that, in contrast with previous studies,
over a wide range of density ratios (0.4 < m∗ < 1) spheres rose without oscillations, which
agrees well with predictions of critical mass in vortex induced vibration experiments with
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Figure 1.14: Map of regimes of sphere motion and associated wake patterns in the m∗, Re
plane. Typical trajectories are shown for each regime. Source: Horowitz & Williamson
(2010a).

elastically mounted spheres carried out previously by the authors. The summary of the
results is presented in a form of a map of regimes of sphere motion reproduced here in
Figure 1.14.

Horowitz & Williamson (2010a) define several wake modes characterizing the found
regimes. They are reproduced in Figure 1.15. They found that the wake in the steady
oblique regime m∗ > m∗

crit and Re = 270 − 600 is characterized by the shedding of a single
sided chain of vortex rings, which they define as the ’R’ mode. For greater Reynolds num-
bers Re > 1550 the shedding mode comprised a double-sided chain of vortex rings, referred
to as ’2R’ mode in Figure 1.15. In between, for Reynolds numbers 600 < Re < 1550 and
the concerned mass ratios m∗, they evidenced intermittent oblique motion with the vortex
rings in the body wake being shed with different orientations in an irregular manner. They
discovered that the periodic zigzag motion describes a wake composed of four vortex rings
formed in each cycle of body motion, which they called ’4R’ mode.

The slow zigzagging regime evidenced by Jenny et al. (2004) has never been observed in
the experiments. A possible explanation might be that small imperfections of spheres used
in experiments are sufficient to suppress this state. Moreover, numerical simulations tend
to predict significant qualitative changes for m∗

crit ≈ 1 instead of 0.4. Elucidation of this
disagreement would require a joint experimental and numerical study conducted at the same
time.
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Figure 1.15: The family of periodic wake modes for rising and falling spheres. Source:
Horowitz & Williamson (2010a).

1.7.2 Freely falling and rising discs and cylinders

Freely falling or rising discs and cylinders constitute another class of axis-symmetric bodies,
that have attracted and continue to attract a lot of attention. This is, to a large extent,
due to experimental papers, that serve now as a reference in the field. Field et al. (1997) in
their letter to Nature provided an exhaustive overview (comprising the work of Willmarth
et al. (1964) and of Stringham et al. (1969)) of experimentally evidenced transitional regimes
present in the scenario of thin discs. They identified five parameters relevant in the study:
the disc diameter d, thickness t and density ρs, as well as the fluid density ρf and kinematic
viscosity ν, which yield three non-dimensional parameters: the dimensionless moment of
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Figure 1.16: Trajectories of falling discs, obtained by imaging from the side using a video cam-
era; (a), Steady-falling regime. The arrow represents an extrema of motion. (b), Periodic-
oscillating motion observed and (c). Typically, a disc in this regime will oscillate with larger
and larger amplitude until its angle is so high that it actually flips over. It then tumbles
several times and then suddenly jumps back to oscillating behavior. (d), Tumbling motion,
the disc turns continuously end-over-end while drifting in one direction. Source: Field et al.
(1997).

inertia I∗ = Idisc/ρfd
5 = πρt/64ρfd, the Reynolds number Re = Ud/ν, where U is the mean

vertical disc velocity and the aspect ratio d/t. Considered discs were thin and therefore the
last parameter was neglected as non-significant. The investigation of the dependence of the
disc’s dynamics on the two retained dimensionless parameters allowed Field et al. (1997)
to identify four distinct transitional regimes: ’steady falling’, ’periodic oscillating’, ’chaotic’
and ’tumbling’ represented in Figure 1.16.

The obtained results were presented in a form of a state diagram, reproduced in Figure
1.17, as a function of the two non-dimensional parameters (Re, I∗). The domains of exis-
tence of distinct regimes were clearly delimited and found to agree with the results obtained
previously by Willmarth et al. (1964) and Stringham et al. (1969). In order to gain the
physical insight into dynamics of the disc, Field et al. (1997) interpreted observed regimes
from the point of view of dynamical systems and showed that the transition from the peri-
odic oscillations to the chaotic regime can be illustrated by one dimensional maps with the
angle θ between the disc’s normal and the vertical direction as a single parameter. This
observation confirms that the whole solid-fluid configuration behaves like a low-dimensional
dynamical system. The authors raise also a question whether the evidenced tumbling regime
is periodic in nature as they observed that its rotational period vary in time. Therefore, they
do not exclude that the tumbling regime is also characterized by chaotic dynamics. They
note however, that for high values of I∗ (obtained using paper discs in air) the rotational
period appeared constant.
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Figure 1.17: Phase diagram showing the dynamical behavior of falling discs as a function
of the two parameters I∗ (dimensionless moment of inertia) and Re (Reynolds number)
obtained from experimental data. Filled symbols represent discs with steady falling or chaotic
behavior, and open symbols periodic or tumbling behavior. Grey symbols represent cases
judged to lie on the border between two regimes. Source: Field et al. (1997).
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Figure 1.18: Collage of consecutive three-dimensional positions and orientations for falling
discs from experiments. Three typical motions are shown, from left to right: planar zigzag
(I∗ = 2.95 × 10−3, Re = 1350, d = 30mm),transitional (I∗ = 1.47 × 10−3, Re = 935,
d = 30mm), and spiral (I∗ = 2.15 × 10−3, Re = 630, d = 28mm). Source: Zhong et al.
(2011).

All the trajectories reported by Field et al. (1997) were planar. The recent experimental
study of Zhong et al. (2011) of free thin disc motion revealed the existence of non-planar
trajectories. They identified two new types of motion, for discs having small moments of
inertia I∗, which they called spiral and transitional states. They observed that the initial
planar zigzag motion is destabilized by the growth of the secondary oscillation in the normal
direction. The direction of the rotation begins to drift and the disc starts to rotate about its
symmetry axis which lead eventually to a spiral motion. The axial rotation, essential for the
appearance of the observed non-planar motions, can be triggered more easily for smaller I∗

explaining why they were not reported for higher moments of inertia. Figure 1.18 reproduces
the new states found by Zhong et al. (2011).

Few years ago Fernandes et al. (2007) studied experimentally freely rising rigid cylinders
in a fluid of the density close to that of the solid body (ρs/ρf ≈ 1). They investigated the role
of the Reynolds number based on the mean rise velocity um in the range 80 ≤ Re ≤ 330 on
the dynamics of flat cylinders of the aspect ratio in the range 1.5 ≤ χ ≤ 20. They observed
that the trajectories of the cylinders are essentially two-dimensional. At the critical Reynolds
number Recf1 the steady vertical motion is replaced by the unsteady regime characterized
by the periodic oscillations of the body velocity and orientation. The threshold was found
to depend on the aspect ratio. Figure 1.19 presents the obtained results. Fernandes et al.
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(2007) carried out at the same time direct numerical simulations of the flow past fixed
cylinders. They determined the threshold of the primary regular bifurcation Re∗cf1(χ) that
breaks the axial symmetry of the wake and the threshold Recf2(χ) of the Hopf bifurcation
that leads to wake oscillations. The comparison with fixed bodies allowed them to propose
an explanation of the effect of the body shape on the dynamics of the wake. They noticed
that the appearance of the path instability for thick discs (χ < 6) is triggered by the wake
instability observed for fixed bodies with the critical Reynolds number Rec(χ) being close
to Recf1(χ) and with the characteristic frequency close to the one observed for fixed bodies.
The threshold for thin cylinders (χ > 6) lies, however, significantly above Recf1(χ). The
authors suspect that the instability is delayed due to the flow corrections induced by the
translation and rotation of freely moving bodies. They remark, however, that in a range
Recf1 < Re < Rec the flow might be already unstable causing only tiny oscillations of the
body, that cannot be captured by the experiment. More recently, Ern et al. (2012) reported
the detection of ”tiny, mostly erratic, movements” of thin discs (χ → ∞) in this range
of the Reynolds numbers. These observations agree with the results of direct numerical
simulations carried out by Auguste (2010), who reports the existence of small amplitude
non-vertical regimes preceding the appearance of large planar oscillations (their thresholds
agree well with the results of Fernandes et al. (2007)) for discs of the aspect ratio χ ≥ 10. For
χ = 10, Auguste (2010) found that the primary instability is regular and leads to the steady
oblique regime. This result motivated the theoretical study of Fabre et al. (2012) devoted to
cylinders of various aspect ratios (and a sphere) limited to the case for which the angle of
incidence of the disc remains small. Assuming that the first bifurcation is regular (resulting
in steady wake), by using a weakly nonlinear expansion of the Navier-Stokes equations,
they predicted the existence of the steady oblique regime. Its threshold was found to be
independent of the body-to-fluid density ratio.

The aforementioned studies of the path instabilities of freely falling and rising discs re-
vealed very complex and rich dynamics that is far from being fully understood. In particular,
exhaustive parametric numerical study is still missing. It will be undertaken in the framework
of the present thesis.

1.8 Numerical methods

Accurate and efficient simulations of freely falling or rising discs and, more generally, flat
bodies proved to be a real challenge. Nonetheless, numerical simulations have an important
advantage over experiments consisting in a precise control of the boundary and initial condi-
tions. They are therefore usually better suited to determine asymptotic states, to evidence
bi-stability and to distinguish an inherently chaotic behavior from experimental disturbances
(Ern et al., 2012). Auguste (2010) carried out recently fully three-dimensional direct numer-
ical simulations, using finite volume code, of freely falling cylinders. He achieved a good
agreement with the experimental results obtained by Fernandes et al. (2007). However, for
certain parameters of the study (high non-dimensionalized moment of inertia implying long
oscillation periods and hence long simulation times) the computing time required exceeded
available resources. Indeed, as stated by Ern et al. (2012): “DNS requires the development
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Figure 1.19: Critical Reynolds numbers characterizing the onset of instabilities of short
cylinders of aspect ratio χ. Rec1 is the steady bifurcation of the flow past the fixed body
(DNS), Rec2 is the Hopf bifurcation of the flow past the fixed body (DNS), and Rec is the
onset of the path oscillation of the freely rising body (experiments); the dashed line is an
empirical fit of Rec(χ). Source: Fernandes et al. (2007).
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of specific algorithms capable of solving properly the coupled body-fluid problem and of
dealing with the outflow boundary condition, both with an accuracy compatible with the
usual requirements of stability problems”. These goals are far from being easy to meet. A
high-order method, capable of accurately resolving boundary layers and all scales present
in a flow, having minimal numerical dispersion and dissipation, is required. Moreover, the
numerical method must be as efficient as possible because the investigation of transitional
regimes, responsible for non-straight trajectories, may require simulation of extremely long
physical times.

Jenny & Dušek (2004) developed a spectral-spectral element method for the simulation
of freely moving spheres. Its efficiency relied on the spatial discretization by spectral ele-
ments in the axial-radial plane and Fourier modes in the azimuthal direction. Ghidersa &
Dušek (2000) demonstrated that this discretization perfectly mimics the onset of axisymme-
try breaking in flows (see section 1.4). Use of a body-fitted mesh, allowing for an accurate
resolution of boundary layers, required the whole computational domain to follow the trans-
lational movement of the body. The rotational degrees of freedom were modeled by a non-slip
boundary condition on the rotating sphere’s surface. The used cylindrical domain, repro-
duced in Figure 1.20, was sufficiently elongated in the vertical direction to capture the wake
(it remains essentially vertical in transitional regimes and is still present far downstream of
the body). An appropriate outflow condition minimized the influence of the boundary on
the simulated physics allowing the wake to leave through the remote cylinder basis without
perturbation. The principal innovation presented by Jenny & Dušek (2004) consisted in an
implementation of an implicit coupling of the solid body and fluid equations accounting for
all solid to fluid density ratios (down to zero) and degrading neither the accuracy of the time
discretization nor the efficiency of the algorithm.

The modeling of dynamics of moving bodies requires the resolution of additional, ordinary
differential, motion equations coupled with the partial differential equations of the continuous
phase (see section 1.2). The simplest approach consists in using explicitly (hence comes the
commonly used name ’explicit’ coupling) the flow field at the previous time step to evaluate
the hydrodynamic force and torque at the current step. This weak coupling is frequently
employed for simulation of sedimenting particles (see e.g. Uhlmann, 2008). However, a special
care must be taken for light particles as argued, for instance, by Hu et al. (2001) and Jenny
et al. (2004). The explicit method looses its numerical stability as soon as the particle mass
becomes comparable to its added mass. I.e., for a solid/fluid density ratio of 0.5 in the case
of spheres. For flat objects, like discs, the added mass can very often largely exceed the
actual mass even for sedimenting bodies.

Maxey & Patel (2001) proposed a force coupling method as a simple and efficient numer-
ical model for multi-particle flows. Its application is however limited to small slip velocities
because it does not resolve the flow details at the particle surface. Recently this method,
initially developed for spherical particles, was extended to ellipsoids by Liu et al. (2009).
It was demonstrated to provide approximate results for the particle motion and the flow
field for viscous Stokes flow and small Reynolds numbers in agreement with direct numerical
simulations. Most numerical methods developed for the simulation of multi-particle flows
account for the fluid-solid interaction implicitly.

The fictitious domain methods comprise Immersed Boundary Methods (IBM) and dis-
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Figure 1.20: Computational domain for the simulation of a freely moving sphere. Source:
Jenny & Dušek (2004).

tributed Lagrangian methods (DLM). They can be potentially used for simulation of moving
bodies of arbitrary shape. Therefore their possible domain of applications is far more general
than a single particle problem. Kim et al. (2001) presented an immersed boundary method,
based on a finite-volume approach on a staggered grid with a fractional step discretization
in time, for the simulation of complex geometries. It consisted in introducing a momentum
forcing and mass source/sink on the body surface or inside the body in order to satisfy the
non-slip boundary condition on the immersed boundary and the conservation of mass in cells
containing it. This was achieved by using a stable second-order interpolation scheme for the
evaluation of the momentum forcing on the immersed boundary. Similar approach was pro-
posed by Udaykumar et al. (2001), who employed a mixed Eulerian-Lagrangian framework
to treat the moving immersed boundary as a sharp interface. In fractional step schemes used
in the aforementioned immersed boundary methods, the most time consuming step is the
solution of the pressure Poisson equation. Udaykumar et al. (2001) remedied this important
drawback by using a multigrid method accounting for the presence of the sharp, immersed
boundary.

The distributed Lagrangian method (DLM) of Glowinski et al. (2001) enforces the ve-
locity field of a solid body by constraints satisfied using forcing terms playing the role of
Lagrange multipliers. It is well suited for the simulation of particulate flows accounting for
body–body and body–wall collisions (see Figure 1.21). The immersed boundary method
of Peskin (2002) uses a mixed Eulerian-Lagrangian approach: fluid degrees of freedom are
treated in Eulerian and solid in Lagrangian frame. It was recently applied by Uhlmann
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Figure 1.21: Sedimentation of 6400 particles. Source: Glowinski et al. (2001).
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Figure 1.22: Visualization of the instantaneous flow field (iso-surfaces of positive values
of the Laplacian of pressure, indicating vortex cores) and particle positions in a multi-
particle simulation (Np = 1000). A part of the computational domain is represented. Source:
Uhlmann (2005).

(2005) to study the sedimentation of solid spherical particles in a fluid. An improved effi-
ciency was achieved by incorporation of the Peskin’s delta function approach directly into
the formulation of the fluid-solid interaction force facilitating the transfer between Eulerian
and Lagrangian variables and avoiding the restriction on the time step. The marker points
are fixed only to the solid body surface and thus do not increase the number of degrees of
freedom. This method was successfully employed for the simulation of multi-particle suspen-
sions with the number of particles going up to Np = 105 (see Figure 1.22). Höfler et al. (1998)
developed an approach that enforces the interaction between the solid and the surrounding
fluid through a penalty method instead of the multiplier technique.

A finite element technique based on moving unstructured grid has been developed and
tested in 2D (see Hu, 1996) and 3D (see Hu et al., 2001) as another alternative for simulation
of multi-particle flows. The formulation developed for generalized Galerkin finite elements
used a single variational formulation incorporating both the particle and fluid equations of
motion. The hydrodynamic forces and moments are not computed explicitly and the motion
of solid particle is handled by an arbitrary Lagrangian-Eulerian (ALE) technique. The
method involves dynamic adaptive meshing yielding a moving body fitted mesh (see Figure
1.23). This allows the refinement in the boundary layers. However, the re-meshing brings
about non-negligible additional costs (a Poisson equation to solve) and numerical difficulties
(treatment of geometric singularities). The paper of Hu et al. (2001), presenting the ALE
method, shows that a weak formulation yields a common matrix formulation involving both
solid and fluid degrees of freedom (see the combined fluid-solid formulation of Hu et al., 2001).
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Figure 1.23: Body fitted finite element mesh used for simulation of 100 circular cylinders
(zoomed view). Costly remeshing is required. Source: Hu (1996).

The matrix to inverse is, however, no longer symmetric which increases the computing costs.
The same weak formulation is also applied in the framework of the DLMmethod by Glowinski
et al. (2001) making both the DLM and ALE methods potentially applicable independently
of the added mass.

The fully implicit formulation used by Jenny et al. (2004) benefits from the geometrical
context of a single spherical body and of the Fourier azimuthal decomposition, which make
it possible to obtain an almost negligible increase of computing costs without any tradeoff
concerning the stability of the algorithm.

Since the added mass represents the main obstacle for the explicit solid-fluid coupling, the
Kirchhoff equations have been used to extract the added mass term from the hydrodynamic
force. The method was used to simulate the motion of an undeformable bubble by Mougin
& Magnaudet (2002). This simple approach performs, however, less satisfactorily because it
accounts only for pressure effects on the particle acceleration while, for a non zero time-step
viscous effects are also present.

Recently, a series of numerical simulations focused on the settling motion of non-spherical
bodies. Pan et al. (2005) (see also Pan et al., 2002) presented numerical simulations, using
Lagrangian multiplier based fictitious domain method, of fluid-ellipsoid interactions for an
ellipsoid moving in a narrow channel, as well as of the interactions between a pair of ellipsoids.
They observed, as could have been expected, that a settling ellipsoid moves to the center of a
channel and continues to move with its broad side perpendicular to the main stream direction.
A pair of ellipsoids settle side-by-side interacting with each other periodically. Fonseca &
Herrmann (2005), using a constrained-force technique, studied the settling motion of one
falling oblate ellipsoid. However, the attempt to reproduce the transitional regimes observed
by Field et al. (1997) did not yield convincing results. In particular they could not find the
tumbling regime. The lack of accuracy and the computing costs are still an obstacle for
applying these codes to transitional regimes. A relatively efficient treatment of a moving
geometry applied to the investigation of the path transition of a freely falling sphere based
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on an implementation of the chimera method was recently described by Deloze et al. (2010).
The method is not limited to spherical objects but the fully three-dimensional finite volume
formulation, required by the presence of solid walls, is much heavier and less accurate than
the spectral approach applicable to an unconfined object. In such a case, a moving mesh is
not an absolute necessity.

Shenoy & Kleinstreuer (2010) studied, using a commercial finite-volume based code,
freely falling cylinders of aspect ratios χ = 2 and 4 in a zig-zagging regime. Their entire
spherical domain turned with the solid body and was truncated at a relatively short distance
of 20 diameters from the body. As they set the Dirichlet boundary conditions on the outer
domain surface, the wake was not allowed to leave undisturbed. To see this, it is sufficient
to realize that, at the threshold of the transition in the wake of a sphere (at the Reynolds
number of 212), the velocity deficit is still about 20% at this distance. At the same time,
most of the mesh points were useless because the body perturbs the flow only in a small
fraction of the domain volume.

Bönisch et al. (2005) noted that, if the hydrodynamic force is the main needed result,
a relatively small computational domain may be sufficient provided an outflow condition
respecting the structure of the remote wake is used. It is well known, that the velocity deficit
of the self-similar wake is proportional to the drag. The computation of the drag can thus be
coupled with the outflow boundary condition to obtain an iterative procedure yielding the
drag on a relatively small computational domain. The procedure was improved to account for
non-symmetric flows to a second order of the asymptotic development by Bönisch et al. (2008)
and, though developed for steady flows, it was applied to the simulation of the periodically
oscillating and tumbling two-dimensional plate (Bönisch & Heuveline, 2007). The reliability
of the method was, however, not demonstrated for unsteady flows at high Reynolds numbers
in 3D. Also, very often, information on the wake structure is sought along with the movement
of the body. In this case the simulation of the remote wake remains necessary.

In this thesis, a generalization of the approach developed by Jenny & Dušek (2004), which
proved to be both reliable and efficient for simulation of transitional regimes of a spherical
body (Jenny et al., 2004), to the case of axisymmetric bodies of a more general shape (discs,
cylinders and oblate spheroids) will be presented. This approach is well suited for several
reasons: I.) physics of the problem require a rather long cylindrical domain to capture
the wake of the body; II.) the Fourier azimuthal decomposition appears to best express
the physics of the transition, which explains its rapid convergence. III.) body-fitted mesh
enables considerable local refinement in boundary layers. To accommodate the movement of
the non-spherical body with respect to the vertical cylindrical domain (the rotation of a non-
spherical body modifies the domain symmetry), a new approach based on the decomposition
of the computational domain will be proposed.

1.9 Objectives of this thesis

The purpose of the present thesis can be summarized as follows:

• Development of a reliable, efficient spectral–spectral element code for the simulation
of fixed and freely falling/ascending axisymmetric bodies in a Newtonian fluid,
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Figure 1.24: Trajectory of a freely falling disc of χ = 2 at Re = 240: (a) three-dimensional
trajectory of the disc; (b) motion of the disc in its oscillation plane; (c) vortex structures
behind the disc visualized using the λ2-criterion for single period of oscillation. Source:
Shenoy & Kleinstreuer (2010).
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• Establishment of a link between the transition scenario of a fixed sphere and of a disc
by carrying a parametric study covering the whole range of aspect ratios 1 < χ < ∞
and Reynolds numbers 100 < Re < 400,

• Study of the transitional regimes present in the scenario of freely falling discs, cylinders
and oblate spheroids.
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Chapter 2

Mathematical formulation

2.1 Fixed cylinders and oblate spheroids placed perpendicu-

larly to a uniform flow

We consider fixed rigid cylinders and oblate spheroids, characterized by the aspect ratio
defined for cylinders in section 1.6 and given by χ = d/a for oblate spheroids (where d is
the transverse diameter and a the length of the streamwise axis of the spheroid), placed in
a uniform unconfined flow. The flow of an incompressible fluid past fixed bodies is governed
by the Navier-Stokes equations:

∇ · v = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v. (2.2)

The dynamic pressure field is denoted p, ρ is the density and ν is the kinematic viscosity of
the fluid. The operator ∇ is defined in the Cartesian coordinates (x, y, z) by ∇ = [ ∂.∂x ,

∂.
∂y ,

∂.
∂z ].

The Navier-Stokes equations can be non-dimensionalized using the free-stream velocity
υ∞ as a reference velocity, d the diameter of cylinders or spheroids as a reference length,
ρυ2∞ as a reference pressure and d/υ∞ as a reference time. Then their non-dimensional form
writes (the ∗ symbol used conventionally to denote non-dimensionalized quantities is omitted
here):

∇ · v = 0, (2.3)

∂v

∂t
+ (v · ∇)v = −∇p+ 1

Re
∇2v, (2.4)

where Re is the Reynolds number:

Re =
υ∞d

ν
. (2.5)

37
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The flow past fixed cylinders and spheroids is governed by only two dimensionless pa-
rameters – the Reynolds number and the aspect ratio.

2.2 Cylinders and oblate spheroids freely ascending or falling

in a fluid initially at rest

A solid body immersed in a fluid is buoyed up by the Archimedes force equal to the weight
of the fluid it displaces. It is also subjected to the hydrodynamic forces exerted by the
surrounding fluid. The incompressible flow around the body is governed by the Navier-
Stokes equations. They will be solved in the cylindrical computational domain represented
in Figure 2.1. The cylinder axis is vertical. The center of the body is placed at the cylinder
axis at a distance Lu from the upstream cylinder basis and Ld from the outflow basis. The
radius of the cylindrical domain is denoted Rc. The domain is decomposed into a spherical
sub-domain with center O and radius Rs (d/2 < Rs < Rc) rotating with the body and the
remaining volume of the cylinder. The velocity field v is measured with respect to a fixed
frame (Ofix, xfix, yfix, zfix) with the zfix axis oriented opposite to the vector of the effective
gravitational and buoyant acceleration

geff =

(
ρs
ρ

− 1

)
g, (2.6)

i.e. upward for sedimenting and downward for ascending bodies. In Eq. (2.6), ρs stands for
the average solid density, ρ for the fluid density and g is the vector of gravitational accelera-
tion. The frame (O,xc, yc, zc) of the cylindrical domain is translated with the body velocity
u keeping the axes parallel to the fixed frame, while the axes of the frame (O,xs, ys, zs) of
the spherical sub-domain share partially the body rotation. Due to the axisymmetry of the
body, it is not necessary to transmit the rotation with respect to its symmetry axis to the
local frame. As a consequence, the xs and ys projections of the angular velocity vector ω

of the spherical sub-domain will be equal to the corresponding components of the angular
velocity Ω of the body while the zs projection will be kept zero. The body is thus allowed
to rotate about its axis with a non-zero angular velocity Ω−ω with respect to the spherical
sub-domain. The incompressible Navier-Stokes equations, written for a velocity field defined
with respect to a fixed frame and projected onto a moving frame, take the following form:

∇.v = 0, (2.7)

∂v

∂t
+ [(v − u− ω × r) · ∇]v + ω × v = −1

ρ
∇p+ ν∇2v, (2.8)

where p denotes the pressure field, ρ the density of the fluid and ν represents its kinematic
viscosity. The domain decomposition reduces the mesh deformation to the relative rotation
of the spherical sub-domain. At the same time, the outer sub-domain has a fixed vertical
orientation, which will simplify the treatment of the boundary conditions and facilitate the
physical interpretation of the results.
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Figure 2.1: Geometry of the problem.

The solid body degrees of freedom are governed by the Newton equations of motion.
Written for a velocity field defined with respect to a fixed frame and projected onto a moving
frame, they assume the following form:

m

(
du

dt
+ ω × u

)
= Ffl(v, p) + (m− ρV )g (2.9)

I
dΩ

dt
+ ω × (IΩ) = Mfl (2.10)
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where m is the mass of the body and I is the diagonal tensor of moment of inertia. Ffl

and Mfl are the hydrodynamic force and torque exerted by the fluid, respectively. They
depend on the flow field and thus couple the solid body equations (2.9) and (2.10) with the
equations governing the continuous phase (2.7) and (2.8). They are obtained by integrating
the pressure and shear stress at the body surface:

Ffl =

∫

S
f dS, (2.11)

Mfl =

∫

S
rS × f dS, (2.12)

fi = 2µSi,jnj − p ni, (2.13)

Si,j =

(
∂vi
∂xj

+
∂vj
∂xi

)
, (2.14)

where rS is the position vector of a point on the body surface S, n is a vector normal to the
body surface, f is the stress force per unit surface given by equation (2.13). Eq. (2.10) must
be solved in the system of principal axes of inertia (to get a constant moment of inertia), i.e.
in the rotating system:

I(j)
dΩj

dt
+ ej,k,ℓωkI

(ℓ)Ωℓ =Mflj (2.15)

where ej,k,ℓ is the Levi-Civita symbol, Ωj are the components of the angular velocity of
the rotation of the body, Mflj are components of the hydrodynamic torque in the frame of

principal axes and I(j) are the principal moments of inertia. For axisymmetric bodies we
have I(1) = I(2) ≡ I and I(3) = αI where α 6= 1. E.g., for the disc we have I1 = I2 = md2/16
and I3 = md2/8, i.e. I = md2/16 and α = 2. Again, the axisymmetry with respect to the
3-axis makes it possible to follow only the rotation with respect to the first two axes by the
reference frame of the spherical sub-domain:

ωj = Ωj; j = 1, 2, (2.16)

ω3 = 0. (2.17)

Written in more detail for an axisymmetric body, Eq. (2.15) becomes

I
dΩ1

dt
+ αIΩ2Ω3 = Mfl1 (2.18)

I
dΩ2

dt
− αIΩ1Ω3 = Mfl2 (2.19)

αI
dΩ3

dt
= Mfl3. (2.20)

Introducing complex U(1)-coordinates, Ω+ = Ωx+iΩy andMfl+ =Mflx+iMfly, we replace

Eqs. (2.18) and (2.19) by



2.2. FREE CYLINDERS AND OBLATE SPHEROIDS 41

I
dΩ+

dt
− iαIΩ+Ω3 = Mfl+. (2.21)

The problem of a body moving freely under the effect of gravity, buoyancy and hydro-
dynamic forces in a fluid is thus governed by the set of equations (2.7–2.14). It remains to
cast these equation in a dimensionless form. The Reynolds number, characterizing the flow
past fixed bodies defined in section 2.1, is not a suitable parameter as the terminal velocity
of the body is not know a priori. For the case of a freely moving sphere, Jenny & Dušek
(2004) defined the acceleration scale by the effective gravity geff (2.6). This acceleration
scale defines the reference velocity and time scales:

Uref =

√∣∣∣∣
ρs
ρ

− 1

∣∣∣∣ gd, (2.22)

τ =

√
d

|ρs/ρ− 1| g . (2.23)

The reference velocity scale Uref replaces the velocity scale based on the free-stream velocity
of the flow. The non-dimensionalization of the Navier-Stokes equations with respect to these
reference scales yields only one dimensionless parameter, the Galileo number, that plays the
role of the Reynolds number and expresses the inverse of non-dimensionalized kinematic
viscosity:

Gsphere = G̃ =

√
|ρs/ρ− 1| gd3

ν
. (2.24)

For the moment, we consider the non-dimensionalization of solid body equations sep-
arately for infinitely thin homogeneous discs and bodies of finite volumes (homogeneous
cylinders and oblate spheroids).

a) Disc

For an infinitely thin disc the buoyancy tends to zero. The hydrodynamic force appears
in units ρgd3 and the mass in units ρd3. I.e.

F∗
fl =

Ffl

ρgd3
, (2.25)

M∗
fl =

Mfl

ρgd4
, (2.26)

m∗ =
m

ρd3
, (2.27)

I∗ =
I

ρd5
. (2.28)

The non-dimensionalization of the moment of inertia is in agreement with that of Field et al.
(1997). Instead of taking I∗ as a free parameter we chose rather m∗. We have then:
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I∗ = m∗/16. (2.29)

The non-dimensionalized movement equations become for a disc:

du

dt
+ ω × u =

1

m∗
Ffl(v, p) + kfix (2.30)

dΩ3

dt
=

8

m∗
Mflz (2.31)

dΩ+

dt
− 2iIΩ+Ω3 =

16

m∗
Mfl+ (2.32)

b) Bodies with non-zero volume

For bodies of non-zero volume V the non-dimensionalization with respect to the scales
(2.22) and (2.23) yields:

ρs
ρ

(
du

dt
+ ω × u

)
=

1

V ∗
Ffl(v, p) + kfix (2.33)

ρs
ρ

dΩ3

dt
=

1

αJ∗
Mflz (2.34)

ρs
ρ

(
dΩ+

dt
− iαΩ+Ω3

)
=

1

J∗
Mfl+ (2.35)

where V ∗ = V/d3 and J∗ = I/(ρsd
5). Eqs. (2.30 - 2.32) can be considered as a special

case of Eqs. (2.33 - 2.35) for ρs/ρ = 1, α = 2 and I∗ = m∗/16 with m∗ as free parameter.
However, the limit of the infinite density ratio ρs/ρ is not obvious. For specific classes of
geometry V ∗, J∗ and α can be expressed in terms of the aspect ratio:

• oblate spheroids of aspect ratio χ: (a = d/2, c = d/(2χ)):

V ∗ =
π

6χ
(2.36)

J∗ = V ∗

(
1

χ2
+ 1

)
/20 =

π

χ

(
1

χ2
+ 1

)
/120 (2.37)

α =
2(

1 + 1
χ2

) (2.38)

• cylinders of aspect ratio χ = d/h:
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V ∗ =
π

4χ
(2.39)

J∗ = V ∗

(
1

4
+

1

3χ2

)
/4 =

π

16χ

(
1

4
+

1

3χ2

)
=
V ∗

16

(
1 +

4

3χ2

)
(2.40)

α =
2

1 + 4
3χ2

(2.41)

The two non-dimensionalizations based on the acceleration scale given by the effective
gravity geff , introduced in points a) and b) have the following disadvantage. The asymptotic
terminal velocity strongly depends on non-dimensionalized mass. Indeed, consider the drag
coefficient CD of a disc known to be close to one at sufficiently high Reynolds numbers. Then
the vertical component of the force Ffl equals:

Ffl,z = CD
π

8
ρd2U2

∞ (2.42)

where U∞ is assumed to be (at least approximately) a constant terminal velocity. The
non-dimensionalized version of Eq. (2.42) writes for both ways of non-dimensionalization:

Ffl,z = CD
π

8
U2
∞ (2.43)

Eqs. (2.30) or (2.33) yield the terminal velocity:

Udisc
∞ =

√
8m∗

πCD
; U body

∞ =

√
8V ∗

πCD
(2.44)

The factor
√

8/π is equal about 1.6, but the non-dimensionalized mass and volume m∗

and V ∗ can be very small both for light discs and flat bodies with large aspect ratio. It
is clear that a better non-dimensionalization consists in including the non-dimensionalized
mass in the velocity and acceleration scales. The non-dimensionalized velocity is thus defined
as:

v∗
disc =

v√
m∗gd

(2.45)

for an infinitely thin disc and

v∗
body =

v√
V ∗geffd

(2.46)

with geff defined in Eq. (2.6) for bodies of non-zero volume. With this non-dimensionalization
the Galileo number becomes:

Gdisc =

(
m∗gd3

) 1

2

ν
; Gbody =

(
V ∗geffd

3
) 1

2

ν
(2.47)

This keeps the flow equations (2.56,2.57) formally unchanged but yields movement equa-
tions for a body of non-zero volume:
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V ∗ρs
ρ

(
du

dt
+ ω × u

)
= Ffl(v, p) + kfix (2.48)

αJ∗ ρs
ρ

dΩ3

dt
= Mflz (2.49)

J∗ ρs
ρ

(
dΩ+

dt
− iαΩ+Ω3

)
= Mfl+ (2.50)

The limit of the thin disc is obtained by letting ρs/ρ× V ∗ tend to a finite limit m∗. I.e.,
by introducing m∗ and I∗ = ρs/ρJ

∗ both for thin discs and bodies of non-zero volume we
obtain a common system of movement equations for both cases.

m∗

(
du

dt
+ ω × u

)
= Ffl(v, p) + kfix (2.51)

αI∗
dΩ3

dt
= Mflz (2.52)

I∗
(
dΩ+

dt
− iαΩ+Ω3

)
= Mfl+ (2.53)

To sum up, the non-dimensionalization based on the acceleration scale defined by the effective
gravity geff used in Jenny & Dušek (2004) is no longer convenient as it does not account for
infinitely thin bodies. To accommodate bodies of arbitrary form, including infinitely thin
discs and spheroids having, nominally, a zero volume, we base the non-dimensionalization
on the scale of the force resulting from the weight and buoyancy (m − ρV )g, where m is
the mass and V the volume of the body. Taking a reference mass equal to ρd3 (i.e. non-
dimensionalizing w.r.t. the fluid density and the body diameter) we thus get an acceleration
scale |m− ρV |g/(ρd3) yielding a velocity scale:

Uref =
√

|m∗ − V ∗|gd, (2.54)

where m∗ and V ∗ stand for the non-dimensionalized mass and volume of the body:

m∗ =
m

ρd3
, V ∗ =

V

d3
. (2.55)

The non-dimensionalization using the velocity scale (2.54) and the diameter d yields the
incompressible Navier-Stokes equations, written for a velocity field defined with respect to
a fixed frame and projected onto a frame translating and rotating with the body, in the
following form:

∂v

∂t
+ [(v − u− ω × r) · ∇]v + ω × v = −∇p+ 1

G
∇2v (2.56)

and

∇.v = 0 (2.57)
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where u is the translation velocity and ω the angular velocity of the moving frame. The
Galileo number G appearing in Eq. (2.56) is given by

G =

√
|m∗ − V ∗|gd3

ν
. (2.58)

This definition of the Galileo number applies both for homogeneous and inhomogeneous
bodies and is valid in the limit of zero volume (for infinitely thin discs). For the case of a
sphere, it differs by a factor

√
π/6 ≈ 0.724 from G̃ of Jenny & Dušek (2004).

Boundary conditions on the body surface S account for the translation and rotation with
respect to the fixed frame:

v|S = u + ω × r|S (2.59)

where r is the position vector of a point of the surface.
The full system of Navier-Stokes equations (2.56) and (2.57) and of motion equations

(2.51) through (2.53) depends, in general, on non-dimensional parameters G,m∗, V ∗, I∗, α
and on the shape of the body, often parametrized by the aspect ratio χ. For homogeneous
bodies of well defined shape, the number of parameters reduces to three (G,m∗, χ), e.g.
for homogeneous spheroids and cylinders, or to two (G,m∗) for infinitely thin homogeneous
discs.
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Chapter 3

Numerical method

The content of this chapter was submitted to the Journal of Computational Physics.

3.1 Principles of the spectral–spectral element method

The numerical method used as the basis for the present development was described by
Ghidersa & Dušek (2000) and Jenny & Dušek (2004). The spatial discretization takes ad-
vantage of the axisymmetry of the computational domain for expanding the variables into a
rapidly converging azimuthal Fourier series. The so obtained azimuthal Fourier modes are
functions of only the radial distance r and of the axial projection z. They obey a set of two-
dimensional equations coupled via the advective terms. The discretization in the radial–axial
plane (r, z) uses the spectral element decomposition (Patera, 1984). The time discretization
is chosen in view of solving high Reynolds number flows. In this case the adopted time split-
ting approach, used already by Patera (1984), is both accurate and efficient. The non-linear
terms are treated explicitly (in our case we use the third order Adams-Bashforth method),
which un-couples linear two-dimensional Stokes-like problems in individual azimuthal sub-
spaces numbered by the azimuthal wavenumber m. The latter are solved by splitting the
pressure – velocity coupling into a Poisson pressure equation and a Helmholtz equation for
the velocity. In the literature (e.g. Karniadakis et al. (1991)), the splitting is considered be-
fore the discretization. Kotouč et al. (2008) have noted that, if the whole augmented matrix
of the Stokes-like problem is created, the matrix obtained by multiplying the discretized di-
vergence by the discretized gradient is not exactly the same as that of the diffusion operator.
The so obtained improvement of accuracy was combined with a considerable reduction of
computational costs achieved by replacing the iterative (conjugate gradient) pressure solver
by a direct method.

To facilitate the presentation of the next sub-sections, let us mention the principle of the
spectral element decomposition representing, on its own, an example of a domain decomposi-
tion without overlapping. The spectral elements are discretized by Gauss-Lobatto-Legendre
collocation points (see Karniadakis et al. (1991)). The values at the collocation points are
stored separately for each spectral element. This brings about a redundant storage because
the points at element interfaces physically coincide. E.g., a scalar variable discretized on a

47
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2D mesh composed of K spectral elements with N × N collocation points is stored as an
array of K × N2 components while only n < K N2 variables are independent. Be U the
stored array and V the reduced array of independent variables, the mapping

U = EV (3.1)

is given by copying the same value to all physically superimposed points. (E is a real
matrix composed of zeros and ones.) The number of times the points are superimposed is
called their multiplicity. An elliptic operator A is first discretized without taking account
of the reconnection of the spectral elements, i.e. considering the components of array U as
independent. This results in a discretization matrix A approximating the functional used in
the variational formulation of the solved problem

Au = f ; onD, (3.2)

D being the computational domain, in the following way:

J (u) =
1

2

∫

D
(uAu − uf) dD ≈ 1

2
U †AU − U †MF, (3.3)

where M is a diagonal ‘mass matrix’ accounting for the integration weights and F is the
array of values of the right hand side function f at the collocation points. We use a complex
notation in view of the application to complex Fourier azimuthal modes. To arrive at the
discretized equations, a gradient with respect to independent variables of the approximated
functional is taken, i.e. U is replaced by (3.1). This results in the matrix equation:

E†AEV = E†MF. (3.4)

Since, actually, V is not the stored array, Eq. (3.4) must be expanded onto the redundant
representation U :

EE†AU = EE†MF. (3.5)

The operation EE† amounts to summing the values at the physically identical points and
distributing the result to the stored cells. It is commonly called “direct stiffness sum” (Patera,
1984; Baker, 1983). When used in the conjugate gradient iteration, the matrix operation
on the LHS of Eq. (3.5) needs to be completed by an approximation of the L2 norm of
the residual and by a preconditioner. The residual, e.g., at the beginning of the iteration
procedure, the RHS of Eq. (3.5), cannot be directly used to express the approximated L2

norm F †MF because we do not dispose of the ’raw’ values of F (before the application
of the direct stiffness sum). Let µ be the diagonal matrix with inverse multiplicities at the
diagonal. Then

E†
µE = 1, (3.6)

where 1 is the identity matrix. Moreover, for all ’physical’ U = EV , we have

EE†MU = M̃U. (3.7)
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where M̃ is the diagonal matrix obtained by applying the direct stiffness sum to the diagonal
of the mass matrix M. It can thus be seen that, if we denote Y = EE†MF ,

∫

D
ff dD ≈ F †MF = Y †

µM̃−1Y. (3.8)

The preconditioner uses the diagonal D of the ’raw’ matrix A. If A is replaced by D
on the LHS of Eq. (3.5) the same direct stiffness operation as in Eq. (3.7) results. The
preconditioner P is thus obtained as the diagonal matrix obtained by the inverse of the
result of the direct stiffness sum applied to the ’raw’ diagonal of A:

P = D̃−1 (3.9)

D̃ being defined by Eq. (3.7) with M replaced by D.

3.2 Domain decomposition

The simulation of an arbitrary movement of a disc (or a non-spherical body in general)
requires the splitting up of the computational domain into a cylindrical part with a vertical
axis and a spherical part the axis of which coincides with that of the disc. The translation of
the disc center will be accounted for by translating the whole composite domain with respect
to a fixed frame. The velocity field will be expressed with respect to this frame in the way
described in Jenny & Dušek (2004). Because the falling body is no longer spherical, the
local mesh representing a spherical sub-domain enclosing the disc must rotate with respect
to the cylindrical part. The mapping at this gliding boundary thus involves a rotation of a
spherical surface.

3.2.1 Rotations

A general rotation is described by Euler angles. It is obtained in three stages (see Figure
3.1). Let X,Y,Z be the reference Cartesian coordinate system and be Z ′ the polar axis
of the new one. An arbitrarily oriented unit vector is defined by a polar angle Ψ and an
azimuthal angle Θ as follows:

uZ′ |X,Y,Z =




sin(Ψ) cos(Θ)
sin(Ψ) sin(Θ)

cos(Θ)


 . (3.10)

The respective equatorial planes XOY and X ′OY ′ (O is the sphere center) are represented
by black and blue dashed lines in Figure 3.1. Be OX ′ the half-line at their intersection. To
identify the X-axis with OX ′ it is sufficient to perform a rotation R(3)(α) by an angle α
with respect to the Z-axis where α = Θ − π/2 is the angle between OX and OX ′. Next, a
rotation R(1)(−Ψ) by the angle −Ψ brings OZ to the required direction defined by uZ′ . In
general, the new coordinate system may have equatorial axes X”, Y ” (represented in Figure
3.2) rotated arbitrarily in the new equatorial plane by an angle β. The last rotation is about
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the Z ′ axis i.e. R(3)(β). It makes it possible to orient the new axes so that the unit vector
of the original polar axis is represented in the new frame by coordinates:

uZ |X”,Y ”,Z′ =




− sin(Ψ) cos(Φ)
− sin(Ψ) sin(Φ)

cos(Ψ)


 . (3.11)

This means (see Figure 3.2) that the frame (O,X’,Y’) is to be rotated by the angle β =
(π/2−Φ). In this way we obtain an identity if Ψ → 0 and Φ = Θ. The opposite sign in Eq.
(3.11) can be understood for very small Ψ, for which the planes XOY and X”OY ” almost

coincide. The projection of the vector
−−→
ZZ ′ must be opposite to that of the vector

−−→
Z ′Z.

Figure 3.1: Arbitrary rotation of a system of axes. Z = Zfix, Z
′ = Zsph: old and new polar

axes. Black and blue dashed lines: old and new equators. Xfix, Yfix - old, Xsph and Ysph
- new axes. Black full line: meridian circle for an arbitrary point M . Red dashed and full
lines: equator and meridian circle of M for polar axis X ′.

The elementary rotations R(1) and R(3) (the indices correspond to the numbering of axes
in the order X,Y,Z) are described by matrices of ’passive’ rotations:
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R(1)(ϕ) =




1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ


 , R(3)(ϕ) =




cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


 . (3.12)

The interpretation of the matrix representation is the following. Be {ik}nk=1 and {jk}nk=1 two
bases of an n-dimensional linear space. The transformation matrix V = {Vk,ℓ}nk,ℓ=1 is defined
as: jk =

∑
ℓ Vℓ,kiℓ. As a result, if the coordinates of a vector x are x =

∑
ℓ xℓiℓ =

∑
k x

′
kjk

then xℓ = Vℓ,kx
′
k. This means that, if the transformation V described by the matrix V

is composed with a second one W given by matrix W: km =
∑

kWk,mjk, the resulting
composed transformation W ◦ V is defined by the matrix product in the inverse order VW.
If the transformation of coordinates is considered x′ = V−1x, a direct composition results
(x′ = V−1x, x′′ = V−1x′ ⇒ x′′ = W−1V−1x). The ”passive” rotation matrix describes the
transformation of coordinates induced by the rotation of the system of axes by the angle ϕ.
It corresponds thus to V−1. As the inverse is just the transpose for orthogonal matrices, the
matrices (3.12) are the transpose of ”active” rotation matrices corresponding to V.

As the result:




X
Y
Z


 = [R(ℓ)]T




X ′

Y ′

Z ′


 and




X ′

Y ′

Z ′


 = R(ℓ)




X
Y
Z


 (3.13)

In view of the above remark, the full rotation matrix R(β,Ψ,Φ) mapping 0XY Z onto
OX”Y ”Z ′ is then given by the product:

R(Θ,Ψ,Φ) = R(3)(π/2 − Φ)R(1)(−Ψ)R(3)(Θ− π/2). (3.14)

The triple matrix product can be evaluated to yield explicitly:

R(3)(π/2 − Φ)R(1)(−Ψ) =




sinΦ cos Φ cosΨ − cosΦ sinΨ
− cos Φ sinΦ cosΨ − sinΦ sinΨ

0 sinΨ cosΨ


 , (3.15)

R(3)(π/2− Φ)R(1)(−Ψ)R(3)(Θ− π/2) =


sinΘ sinΦ + cosΘ cos Φ cosΨ − cosΘ sin(Φ) + sinΘ cos Φ cosΨ − cosΦ sinΨ
− sinΘ cos Φ + cosΘ sinΦ cosΨ cosΘ cos(Φ) + sinΘ sinΦ cosΨ − sinΦ sinΨ

cosΘ sinΨ sinΘ sinΨ cosΨ


 (3.16)

The unit vector (3.10) has the coordinates (0, 0, 1)T in the new coordinate system. The
backward transformation to the old coordinate system yields,

[R(Θ,Ψ,Φ)]T




0
0
1


 =




sin(Ψ) cos(Θ)
sin(Ψ) sin(Θ)

cos(Ψ)


 . (3.17)
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Figure 3.2: Choice of axes in the plane normal to OZ ′- axis.

i.e. the vector (3.10), while the forward transformation of the unit vector of the old Z–axis
yields

R(Θ,Ψ,Φ)




0
0
1


 =




− sin(Ψ) cos(Φ)
− sin(Ψ) sin(Φ)

cos(Ψ)


 . (3.18)

which is in agreement with Eq. (3.11). The columns of matrix RT are coordinates of unit
vectors of the new (rotating) frame in the old (fixed) one and, conversely, the columns of R
are coordinates of unit vectors of the old frame in the new one.

As explained in Jenny & Dušek (2004), if the spherical sub-domain is attached to the
freely moving and rotating disc, the movement equations provide, at each times step, an
angular velocity Ω yielding a rotation velocity Ω × x at each position x at the sphere
surface. The components of the Ω vector can be given either in the fixed frame 0XY Z or
in the moving frame. The change of the position of a given fixed point (X ′, Y ′, Z ′)T at the
sphere surface due to the sphere rotation is thus dx = Ω × x dt. In particular, the unit
vectors of the axes of the rotating frame obey the equations

dnk|X,Y,Z

dt
= Ω× nk|X,Y,Z , k = 1, 2, 3. (3.19)

This equation holds in the fixed frame. Conversely, the unit vectors of the fixed frame move
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in the opposite direction with respect to the rotating frame. Their derivatives are given in
the rotating frame by:

dn′
k|X′,Y ′,Z′

dt
= −Ω× n′

k|X′,Y ′,Z′, k = 1, 2, 3 (3.20)

where nk, k = 1 . . . 3 are columns of RT . The determination of the Euler angles results from
the following three steps:

1. Update the rotation matrix by solving Eq. (3.19) or Eq. (3.20),

2. Orthonormalize the columns (by the Gramm-Schmidt orthonormalization) to enforce
orthogonality of the matrix,

3. Compute the angles from the last line and last column of matrix R expressed in Eq.
(3.16).

Since the solid body is assumed to be axisymmetric, the rotation with respect to the OZ ′

axis will not be transmitted to the rotating frame. As a result Ω′
3 = 0.

3.2.2 Mapping of a scalar quantity on the sphere surface

A scalar quantity f will be expanded in two different Fourier series with azimuthal angles
θ and θ′ defined with respect to the Z axis of the old frame and Z ′ axis of the new frame,
respectively. Be (X,Y,Z) and (X ′, Y ′, Z ′) the coordinates of a point x, ‖x‖ = R on a
spherical surface of radius R in the reference and local frames. Then:

f(R sinϕ cos θ,R sinϕ sin θ,R cosϕ) = f(R sinϕ′ cos θ′, R sinϕ′ sin θ′, R cosϕ′) (3.21)

where ϕ and ϕ′ stand for the respective polar angles. The (truncated) complex azimuthal
expansions implemented in the code (Jenny & Dušek, 2004) write:

f(R sinϕ cos θ,R sinϕ sin θ,R cosϕ) =

M∑

m=−M

cm(R sinϕ,R cosϕ) e−imθ

f(R sinϕ′ cos θ′, R sinϕ′ sin θ′, R cosϕ′) =

M ′∑

m=−M ′

c′m(R sinϕ′, R cosϕ′) e−imθ′

(3.22)

where cm(r, z) and c′m(r′, z′) are the Fourier modes computed in each frame. The truncation
is, so far, supposed to be different (M andM ′) in each frame. The purpose of next subsections
is to establish a transformation relation between both sets of Fourier coefficients.
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3.2.3 Rotations R(3)(π/2− Φ) and R(3)(Θ− π/2)

A rotation R(3)(α) is accounted for trivially. Be f̂(X̂, Ŷ , Z) the function transformed by a
rotation by angle α around the Z − axis:

f̂(R sinϕ cos θ̂, R sinϕ sin θ̂, R cosϕ) =
∑

m

ĉm(R sinϕ,R cosϕ) e−imθ̂ . (3.23)

The rotation of the frame by an angle α around the Z − axis amounts to seeking the same
value of the function

f(R sinϕ cos θ,R sinϕ sin θ,R cosϕ) =
∑

m

cm(R sinϕ,R cosϕ) e−imθ . (3.24)

at θ̂ = θ − α. Replacing θ = θ̂ + α in expansion (3.24) and comparing to (3.23), we obtain:

ĉm = e−imα cm. (3.25)

Specifically for α = π/2 − Φ and α = Θ − π/2, we obtain ĉm = eim(Φ−π/2) cm and ĉm =
e−im(Θ−π/2) cm, respectively. The principal task consists thus in representing the rotation
R(1)(Ψ).

3.2.4 Rotation R(1)(−Ψ)

In contrast to the previous subsection, this rotation is not with respect to the third axis,
that of the azimuthal expansion. We must thus proceed in three stages:

1. map the expansion with respect to the Z-axis to that with respect to the X-axis,

2. rotate by angle −Ψ (multiplication by eimΨ - see the previous subsection),

3. map back to an expansion with respect to the Z ′ − axis.

The second stage being trivial and the third one being the inverse of the first one, we
shall focus on the change of polar axes. Theoretical considerations show that the optimal
representation of the rotation group is obtained by an expansion into spherical harmonic
functions (Hecht, 2000). Therefore, in order to obtain an optimal efficiency of expansion on
a spherical surface, we shall use spherical harmonic functions as an expansion basis. Be ϕ
the polar angle and θ the azimuthal angle. The spherical harmonic functions are defined as
(Hecht, 2000):

Yℓ,m(ϕ, θ) =

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cosϕ) e−imθ ; m ≥ 0, (3.26)

Yℓ,−m(ϕ, θ) = (−1)m Yℓ,m(ϕ, θ); m < 0 (3.27)

where Pm
ℓ are the associated Legendre functions defined in the same way as in the Matlab

documentation. (We take the complex conjugates in comparison with the bibliography.) The
spherical functions are normalized on the unit sphere surface:
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∫ π

0

∫ π

−π
Yℓ′,m′(ϕ, θ)Yℓ,m(ϕ, θ) sinϕdϕdθ = δℓ,ℓ′δm,m′ . (3.28)

Assume a function to be expanded in a series of spherical harmonic functions defined by the
polar axes OZ (Eq. 3.29) and OX (Eq. 3.30).

f(ϕ, θ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓ,m Yℓ,m(ϕ, θ), (3.29)

f(ϕ′, θ′) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

a′ℓ,m Yℓ,m(ϕ
′, θ′). (3.30)

For a real function f(ϕ, θ), the following symmetry condition holds (due to Eq. 3.27):

aℓ,m = (−1)m aℓ,−m. (3.31)

We seek the transformation yielding the expansion in a series of spherical functions with polar
axis OX given the expansion with polar axis OZ. The new Z ′-axis is brought to coincide
with the X-axis by a π/2 rotation about the Y -axis. We obtain the following transformation

of the unit position vector
−−→
OM (Note that OX ′ becomes opposite to OZ.):

−−→
OM =




sin(ϕ) cos(θ)
sin(ϕ) sin(θ)

cos(ϕ)


 =




cos(ϕ′)
sin(ϕ′) sin(θ′)

− sin(ϕ′) cos(θ′)


 . (3.32)

This defines the following transformation:

cos(ϕ) = − sin(ϕ′) cos(θ′), (3.33)

θ = arg(cos(ϕ′) + i sin(ϕ′) sin(θ′)). (3.34)

Projection of the expansion (3.29) onto the basis of spherical functions with polar axis OX
yields:

a′ℓ′,m′ =
∞∑

ℓ=0

ℓ∑

m=−ℓ

dℓ′,m′;ℓ,m aℓ,m (3.35)

where

dℓ′,m′;ℓ,m =

∫ π

0

∫ π

−π
Yℓ′,m′(ϕ, θ)

Yℓ,m [acos(− sin(ϕ) cos(θ)), arg(cos(ϕ) + i sin(ϕ) sin(θ))] sinϕdϕdθ

=

∫ 1

−1

∫ π

−π
Ỹℓ′,m′(z, θ)

Ỹℓ,m

[
−
√

1− z2 cos(θ), arg(z + i
√

1− z2 sin(θ))
]
dzdθ (3.36)
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where Ỹ stands for a spherical function expressed as a function of cos(ϕ). The matrix d
is actually a rotation matrix in the angular momentum representation. As such it can be
calculated algebraically. (Eq. 3.36 is not suitable for practical calculation, but served as an
alternative expression for debugging.) It is blockwise diagonal

dℓ′,m′;ℓ,m = d
(ℓ)
m′,m(π/2) δℓ,ℓ′ , (3.37)

where (Hecht, 2000)

d
(ℓ)
m′,m(−π/2) =

[
(ℓ−m)!(ℓ−m′)!

(ℓ+m)!(ℓ+m′)!

]1/2 ℓ−m∑

n=max(0,m′−m)

(−1)n+m−m′

× (ℓ+m+ n)!

(ℓ−m− n)!(m+ n−m′)!n!

(
1

2

)m+n

(3.38)

and d
(ℓ)
m′,m(π/2) = d

(ℓ)
m,m′(−π/2). The transformation matrix d is a representation of a

rotation identifying the Z-axis with the X-axis. It is thus unitary. Moreover, the matrix
elements (3.38) happen to be real

dTd = 1 (3.39)

where dT stands for the transpose and 1 is the identity matrix. I.e. the inverse transforma-
tion of (3.35) is simply defined by the transposed matrix.

The sought rotation R(1)(−Ψ) is thus obtained in the following way:

1. Switch from the polar axis OZ to OX using Eqs. (3.30) and (3.35).

2. Rotate by angle −Ψ around OX. (see Eq. 3.25)

a′′ℓ′,m′ = eim
′Ψa′ℓ′,m′ (3.40)

3. Switch back to polar axis OZ using the inverse transformation (3.35).

Formally stated in any l-subspace

R
(1)
(ℓ)(−Ψ) = d(ℓ)R

(3)
ℓ (−Ψ)

(
d(ℓ)

)†
, (3.41)

where

R
(3)
ℓ (α) = diag(e−im′α)m=−ℓ,...ℓ. (3.42)

is the diagonal matrix representing the rotation with respect to the Z−axis in the ℓ subspace
(subspace spanned by spherical functions {Yℓ,m}ℓm=−ℓ).
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3.3 Complete rotation matrix

The complete rotation matrix R(Φ,Ψ) is thus also a direct sum of matrices in ℓ-subspaces
having the form:

R(Φ,Ψ,Θ)ℓ = R
(3)
ℓ (π/2 −Φ)d(ℓ)R

(3)
ℓ (−Ψ)

(
d(ℓ)

)†
R

(3)
ℓ (Θ− π/2). (3.43)

It is composed of three trivial diagonal operations and a twofold multiplication by a matrix
independent of rotation angles.

3.4 Transformation from the spectral – spectral-element dis-

cretization to the expansion into spherical functions

The azimuthal Fourier coefficients on the right hand sides of Eqs. (3.22) are originally
discretized in cylindrical coordinates along the θ = 0 meridian. At an arbitrary latitude
ϕ = acos(z) their values are given by the Lagrange interpolation between the collocation
points situated at the corresponding spectral element face. Assume that ϕ lies on the k-th
element ’face’ of the ’object’ defining the sphere surface. (The element ’faces’ – sides in 2D
– are listed in two ’objects’ specifying the interface in the data file .rea.) Then

cm(R sinϕ,R cosϕ) =
n∑

j=1

h
(k)
j (ϕ)cm(R sinϕ

(k)
j , R cosϕ

(k)
j ) ≡

n∑

j=1

h
(k)
j (ϕ)c

(k)
m;j (3.44)

where ϕ
(k)
j stand for collocation points and h

(k)
j for Lagrange interpolants (hj(ϕi) = δj,i).

The expanded function will be considered real, thus the knowledge of components associated
to positive index m ≥ 0 is sufficient for their characterization. The azimuthal part of the
expansion into spherical functions is already provided by the Fourier azimuthal expansion
of the spectral – spectral element discretization. It remains to project onto the normalized
associated Legendre functions. The expansion into associated Legendre functions writes:

cm(R sinϕ,R cosϕ) =
ℓmax∑

ℓ=m

aℓ,m P̂
m
ℓ (ϕ). (3.45)

where P̂m
ℓ are the normalized associated Legendre functions P̂m

ℓ (ϕ) = Yℓ,m(ϕ, θ = 0) satis-
fying the orthogonality condition

∫ π

0
P̂m
ℓ (ϕ) P̂m

ℓ′ (ϕ) sinϕdϕ =
1

2π
δℓ,ℓ′ (3.46)

The coefficients aℓ,m are obtained as

aℓ,m = 2π

∫ π

0
P̂m
ℓ (ϕ) cm(R sinϕ,R cosϕ) sinϕdϕ. (3.47)

The Gaussian integration using the collocation points
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ϕ
(k)
j =

ϕ
(k)
1 + ϕ

(k)
n

2
+
ϕ
(k)
n − ϕ

(k)
1

2
ξj ξj ∈ [−1, 1] (3.48)

on the interface approximates this relation by the sum

aℓ,m =
∑

k,j

2π w
(k)
j T

(m)
ℓ;k,j c

(k)
m;j ; ℓ ≥ m (3.49)

where k sums over the faces at the interface and j over the internal collocation points, and

T
(m)
ℓ;k,j = P̂m

ℓ (ϕ
(k)
j ). (3.50)

The integration weights w
(k)
j in Eq. (3.49) are given by the Gauss-Lobatto-Legendre integra-

tion except in the first and last element along the meridian, which lie at the domain axis and
in which the collocation points are those of a Gauss-Lobatto-Jacobi quadrature accounting
for the factor r in the expansion for volume elements in cylindrical coordinates. The weight
function sinϕ is included in the integration weights in all elements. The values at element

interfaces are equal: c
(k)
m;n = c

(k+1)
m;1 (in the local numbering on the interface). The inverse

transformation from the spherical function expansion back to collocation points is given by
(3.45).

c
(k)
m;j =

ℓmax∑

ℓ=m

P̂m
ℓ (ϕ

(k)
j ) aℓ,m. (3.51)

The transformation relations (3.49), (3.50) and (3.51) can be written in matrix form as:

a = 2πTT Wc, (3.52)

c = T a, (3.53)

where

c = {cm}Mm=0 (3.54)

T = ⊕M
m=0Tm; Tm = {P̂m

ℓ (ϕi)}i,ℓ (3.55)

W = ⊕M
m=0Wm; Wm = {wiδi,j}i,j (3.56)

(In Eqs. (3.55) and (3.56) a global numbering along the meridian of the sphere {i} = {k, j}
has been introduced.) From equations (3.52) and (3.53), we get

TTWT =
1

2π
1. (3.57)

Note that the direct sums (3.55) and (3.56) sum over azimuthal m–subspaces, whereas the
rotation matrix is a direct sum of ℓ–subspaces

R = ⊕ℓmax

ℓ=0 Rℓ. (3.58)
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3.4.1 Test of the rotation of a scalar quantity on a spherical surface

In order to validate the transformation from the spectral-spectral element discretization to
the expansion into spherical functions and the rotation of a scalar function on the spherical
surface, the following test was carried out. The axial component of the velocity field of
the steady asymmetric flow past a fixed disc was interpolated on the spherical surface and
rotated by an angle ψ with respect to the x-axis. The results of the test are summarized
in the Table (3.1). The rotated azimuthal expansion is truncated at ℓmax to avoid loss of
information.

The results show that the error decreases with increasing ℓmax and that for ℓmax = 20
about 1% of accuracy is ensured for all rotation angles.

lmax/ψ π/18 π/9 π/6 π/3 π/2

12 0.0159 0.0168 0.0179 0.0299 0.0342
16 0.0076 0.0076 0.0081 0.0127 0.0580
20 0.0064 0.0058 0.0060 0.0056 0.0140

Table 3.1: The maximum error defined as max|f ′(ϕ′, θ′) − f(ϕ, θ)|, where f ′(ϕ′, θ′) =∑
m c

′
m(ϕ′)e−imθ′ and f(ϕ, θ) =

∑
m cm(ϕ)e−imθ . The number of azimuthal modes of cm

is equal to ℓmax. Radius of the sphere: R = d.

The rotation of the u-component of the velocity field with respect to x-axis by an angle
ψ = −π/4 is illustrated in Figure 3.3.

3.5 Mapping of a vector field on the sphere surface

Along with a scalar quantity, it will be necessary to map a vector field on the spherical
surface. A vector field v is represented in cylindrical coordinates as:

v = vzk3 + vrur + vθuθ (3.59)

where, in Cartesian coordinates with the OZ axis identical with the z-axis of cylindrical
coordinates,

k3 =




0
0
1


 , ur =




cos θ
sin θ
0


 , uθ =




− sin θ
cos θ
0


 . (3.60)

The Cartesian vector coordinates are closely related to spherical harmonics. If we denote
the coordinates of the unit vector (3.32) x, y and z, respectively, and if we introduce x± =
x± iy, it is easily seen that (see Eqs. (3.26) and (3.27))

Y1,−1 =

√
3

8π
x+; Y1,0 =

√
3

4π
z; Y1,1 = −

√
3

8π
x−. (3.61)
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(a), u-component of the velocity field interpolated on

a sphere of radius 1

θ

φ

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

(b), u-component of the velocity field after the

rotation with respect to x-axis by ψ = −π/4

Figure 3.3: Rotation of the u-component of the velocity field with respect to x-axis by an
angle −ψ

Be ṽ± = vr ± ivθ the cylindrical U(1) coordinates. The Cartesian U(1) coordinates corre-
sponding to vz, ṽ± (see Jenny & Dušek, 2004) are vz, ṽ±e

±iθ. To obtain quantities trans-
forming like Y1,µ, it is thus more convenient to define the normalized Cartesian coordinates
v̂µ:

v̂±1 = ∓ 1√
2
ṽ∓e

∓iθ; v̂0 = vz (3.62)

transforming like Y1,µ. To see how Y1,µ exactly transform, knowing the transformation of
a1,µ, let us write:
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1∑

µ=−1

a1,µ Y1,µ =
1∑

µ=−1

a′1,µ Y
′
1,µ =

1∑

µ=−1

1∑

ν=−1

r(1)µ,ν a1,ν Y
′
1,µ (3.63)

where r
(1)
µ,ν is the representation of the rotation group in the ℓ = 1 subspace. It is immediately

seen that

Y1,ν =
1∑

µ=−1

r(1)µ,νY
′
1,µ ⇔ Y ′

1,µ =
1∑

ν=−1

r
(1)
µ,νY1,ν, (3.64)

i.e. the transformation is given by the inverse of the transposed matrix which is the complex
conjugate one. As the result, we have

v̂′µ′ =
∑

µ∈{−1,0,1}

r
(1)
µ′,µv̂µ =

∑

µ∈{−1,0,1}

v̂µ (r
(1))†µ,µ′ (3.65)

i.e. the transformation can also be regarded as the multiplication by the transpose of the
inverse (Hermitian conjugate) matrix.

The azimuthal decomposition of the cylindrical components of the vector field is defined
as:

vz =

∞∑

m=−∞

cz,m(z, r)e−imθ , (3.66)

ṽ± =
∞∑

m=−∞

c±,m(z, r)e−imθ , (3.67)

where the coefficients with negative indices in expansion (3.66) and the whole component v−
are redundant but needed for complex matrix operations. The coefficients cz,m, c±,m(z, r)
are those implemented in the code. Introducing the expansion (3.67) we have

v̂±1 ≡
∞∑

m=−∞

ĉ±,m(z, r)e−imθ = ∓ 1√
2

∞∑

m=−∞

c∓,m(z, r)e−i(m±1)θ

= ∓ 1√
2

∞∑

m=−∞

c∓,m∓1(z, r)e
−imθ . (3.68)

This yields the relation:

ĉ±,m(z, r) = ∓ 1√
2
c∓,m∓1(z, r). (3.69)

The array of coefficients c±,m(z, r) is truncated so that 0 ≤ m ≤ M . This defines the
coefficients ĉ−,m(z, r) for −1 ≤ m ≤ M − 1 and ĉ+,m(z, r) for 1 ≤ m ≤ M + 1. In order
not to loose information it is necessary to take the maximal ℓ at least equal to M + 1
and not M as it would be the case if only scalar functions were expanded. (The idea to
accommodate c−,M (z, r) by considering that the expansion is cyclic with 2M + 1 points
around the axis: c−,M (z, r) = c−,−M−1(z, r), i.e. ĉ+,M+1(z, r) = −ĉ−,M(z, r) appeared to
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be misleading because it placed an item belonging to the M + 1-th space to the M − th
subspace.) Expanding further ĉ±,m(z, r) in the basis of associated Legendre functions:

ĉ±,m(R cosϕ,R cosϕ) =
∑

ℓ≥|m|

P̂m
ℓ (cosϕ) â

(±1)
ℓ,m (3.70)

we get

ṽ∓e
∓iθ = ±

√
2
∑

ℓ

∞∑

m=−ℓ

â
(±1)
ℓ,m Yℓ,m(ϕ, θ) (3.71)

As for the component vz, the standard scalar expansion

cz,m(R cosϕ,R cosϕ) =
∑

ℓ≥|m|

P̂m
ℓ (cosϕ)a

(z)
ℓ,m (3.72)

vz =
∑

ℓ

∞∑

m=−ℓ

a
(z)
ℓ,m Yℓ,m(ϕ, θ) (3.73)

can be used. This yields the coefficients â
(0)
ℓ,m = a

(z)
ℓ,m. The new expansion coefficients represent

a tensorial product of ℓ = 1 and ℓ representations. They transform following the formula
(see Eq. 3.64):

â′
(µ′)
ℓ,m′ =

1∑

µ=−1

ℓ∑

m=−ℓ

r(1)µ′,µr
(ℓ)
m′,mâ

(µ)
ℓ,m (3.74)

where r
(ℓ)
m′,m stands for the rotation matrix elements in the ℓ-subspace.

The resulting algorithm thus uses the same rotation matrices as those obtained in Sec.

3.2.4. If the vectorial expansion â
(µ)
ℓ,m is stored in three columns corresponding to µ = −1, 0, 1

the operation in Eq. (3.74) assumes the matrix form:

â′
(ℓ)

= r(ℓ) a(ℓ) (r(1))†. (3.75)

3.6 Principle of the domain decomposition

To allow for the rotation of the spherical sub-domain, both sub-domains will be un-coupled
on the surface of the sphere |r| = Rs. The same spectral – spectral-element discretization
as in Jenny & Dušek (2004) can be applied separately to each of the sub-domains. The
discretization of the radial-axial plane of both sub-domains can be generated by a single
spectral-element mesh such as that represented in Figure 4.1 for an infinitely thin disc. The
half circle generating a spherical interface by rotation about the domain axis is represented by
a thick line. For reasons discussed below, the half-circle is assumed to separate two circular
layers of spectral elements of constant thickness. The meshing need not be conformal across
the interface but, for testing, it is useful to have a mesh applicable to a non-decomposed
domain. In what follows, the decomposition of the domain D will write:
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D = D1

⋃
D2; D(0)

1

⋂
D(0)

2 = ∅ (3.76)

where D1 will denote the spherical sub-domain and D2 the remaining cylindrical one. D1 and
D2 are considered as closed sets. The common spherical interface D1

⋂D2 will be denoted

I. (D(0)
j , j = 1, 2 denote the interior of the sets.)

Figure 3.4: The spectral element decomposition of the radial-axial plane. The represented
mesh contains 277 elements. It was used for an infinitely thin disc. The thick line shows the
position of the spherical interface. In this example, the interface radius is 2.6d. Upstream,
downstream extensions and the radius of the cylindrical domain are equal to Lu = 12d, Ld =
25d, Rc = 8d, respectively.

The de-coupling of the sub-domains is obtained by removing all the collocation points
lying on the half circle, which determines the interface. The discretization of the interface
by the expansion into spherical harmonics will allow us to re-connect the two sub-domains
dynamically. Be u(ϕ, θ) a scalar function defined on a sphere parametrized by the polar
angle ϕ and the azimuthal angle θ. The spherical function expansion is defined as

u(ϕ, θ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓ,m Yℓ,m(ϕ, θ), (3.77)

where Yℓ,m are the spherical functions specified in section 3.2.4. The coefficients of the
expansion, truncated at some ℓmax, will be considered to form an array denoted a. The
problem

Au = f ; on D1

⋃
D2 (3.78)

with a Dirichlet boundary condition on a part ∂DD of its external boundary

u|∂D2,D
= 0 (3.79)

and a Neumann condition on the rest of this boundary

∂u

∂n

∣∣∣∣
∂(D2−D2,D)

= 0 (3.80)

is equivalent to the variational problem defined by the functional
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J (u) =
1

2

∫

D1∪D2

uAu dD −
∫

D1∪D2

uf dD. (3.81)

The domain decomposition splits the integrals into two terms

J (u) = J1(u) + J2(u), (3.82)

J1(u) =
1

2

∫

D1

uAu dD1 −
∫

D1

uf dD1, (3.83)

J2(u) =
1

2

∫

D2

uAu dD2 −
∫

D2

uf dD2. (3.84)

The sub-domains cannot be reconnected by a Neumann condition

∂u

∂n

∣∣∣∣
I∩D1

= λ (3.85)

∂u

∂n

∣∣∣∣
I∩D2

= −λ (3.86)

because the part of the problem arising on D1 would have only a Neumann boundary con-
dition and would thus not have a unique solution. For this reason, the reconnection of the
sub-domains will be defined by a Dirichlet boundary condition. To allow for the rotation of
the sub-domain D1 inside D2, we shall require:

a2 = Ra1 (3.87)

where R is the rotation matrix at the interface (3.58), expressed in the representation of the
spherical functions a, mapping the interior D1∩I onto the exterior sub-domain D2∩I and ak,
k = 1, 2 are the arrays of coefficients of spherical function expansion obtained by restricting
the discretized solution Uk onto the interface and by expanding it using the transformation
T defined by Eqs. (3.49), (3.50) and (3.55,3.56):

U1|I = T1a1; U2|I = T2a2. (3.88)

Due to the continuity condition at the interface expressed by Eq. (3.87) we can denote a1 ≡ a
and a2 = Ra. As the result, the spectral element representation at the interface is given by

U1|I = T1a; U2|I = T2Ra. (3.89)

(In Eq. (3.89) Tk stand for the transformation matrix (3.55)). The discretized counterpart
of the functional (3.82) – (3.84) is given by the function

J(U1, U2) =
1

2

(
U †
1A1U1 + U †

2A2U2

)
−
(
U †
1M1F1 + U †

2M2F2

)
. (3.90)

where A1,A2 are matrices discretizing the operator A on each sub-domain (in the spectral
element discretization), M1,M2 are the corresponding mass matrices and Uk, Fk k = 1, 2 are
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the discretized solutions and right hand sides. On the outer Dirichlet boundary, the values
of the solution are imposed and are thus not considered as part of the solution array U2.
Assuming a zero Dirichlet boundary condition, these values do not appear in the discretized
formulation, otherwise they contribute to the RHS term. At the interface, Eqs. (3.89)
represent Dirichlet boundary conditions for the partial problems in the sub-domains. Such
a problem has a unique solution even on D1. Since the values U1|I and U2|I are given via
the coefficients a of the spherical function expansion they are no longer parts of the sought

solution. The latter is now composed of Û1, Û2, values in D(0)
1 and D(0)

2 , respectively and
of the array a. Separating the values at the interface from those inside the sub-domains
(UT

k = (ÛT
k , Uk|TI ) we can rewrite the discretized functional (3.90) by inserting

U1 =

(
Û1

T1a

)
, U2 =

(
Û2

T2Ra

)
(3.91)

for U1 and U2. The resulting functional depends on Û1, Û2 and a:

J(Û1, Û2, a) =
1

2

(
Û †
1Â1Û1 + 2Û †

1A1,IT1a+ a†TT
1A1,IIT1a

+ Û †
2Â2Û2 + 2Û †

2A2,IT2Ra+ aTR†TT
2A2,IIT2Ra

)

−
(
ÛT
1 M̂1F1 + ÛT

2 M̂2F2 + aT (TT
1 M1,IF1 +R†TT

2M2,IF2)
)
.

(3.92)

In Eq. (3.92) the matrices A1 and A2 were decomposed in the following way:

A1 =

[
Â1 A1,I

AT
1,I A1,II

]
, A2 =

[
Â2 A2,I

AT
2,I A2,II

]

M1 =

[
M̂1

M1,I

]
, M2 =

[
M̂2

M2,I

]
. (3.93)

Â1 stands for the restriction to D(0)
1 , A1,I for the mapping from the interface to D(0)

1 and
A1,II is the restriction to the interface. The same holds for A2. The sought equations result

as gradients with respect to Û1, Û2 and a:

Â1Û1 + A1,IT1a = M̂1F1 (3.94)

Â2Û2 + A2,IT2Ra = M̂2F2 (3.95)

TT
1 A

T
1,I Û1 +R†TT

2A
T
2,I Û2 +

(
TT

1A1,IIT1 +R†TT
2 A2,IIT2R

)
a

= TT
1 M1,IF1 +R†TT

2 M2,IF2. (3.96)

We disregarded so far the reconnection at spectral element interfaces discussed in section
3.1. In the same way as at the spherical interface, there is a redundancy in storing values at



66 CHAPTER 3. NUMERICAL METHOD

all collocation points. As a matter of fact, in each sub-domain, only an array of independent
values Vk, k = 1, 2 is relevant. This array is at the basis of the direct solver already imple-
mented. Let us note Ek the extension to the representation at collocation points consisting
in mapping the same independent variable to all physically identical collocation points:

Ûk = EkVk (3.97)

Denote V the whole array of independent variables:

V =




V1
V2
a


 . (3.98)

Eqs. (3.94 - 3.96) become

ET
1 Â1E1V1 + ET

1 A1,IT1a = ET
1 M̂1F1 (3.99)

ET
2 Â2E2V2 + ET

2 A2,IT2Ra = ET
2 M̂2F2 (3.100)

TT
1A

T
1,IE1V1 +R†TT

2 A
T
2,IE2V2 +

(
TT

1 A1,IIT1 +R†TT
2A2,IIT2R

)
a

= TT
1 M1,IF1 +R†TT

2M2,IF2. (3.101)

The formalism generalizes directly to the vector case. In this case, the arrays V1, V2 stand
for the values of the whole vector field and a for the vectorial spherical function expansion
coefficients detailed in Sec. 3.5

3.7 Conjugate gradient solver

An iterative solver of Krylov type, like that of the conjugate gradients, requires only to define
the operation by the discretized operator A. The latter is obtained by Eqs. (3.99, 3.100)
and (3.101) by taking either of Eqs. (3.99, 3.100) at a point inside the sub-domains and
the equation (3.101) at a point at the interface. At the interface, Eq. (3.101) represents
a generalized direct stiffness sum involving the transposed matrices of spherical function
expansions and the rotation at the interface.

The formulation (3.99, 3.100) and (3.101) requires a special storage of the coefficients
a along with each field. However, these coefficients are used to compute two sets of values
at the collocation points at the interface, which carry the same information. The complete
fields in each sub-domain are the result of the following matrix operation:
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U = BV ⇔




Û1

T1a

Û2

T2Ra


 =




1 0 0
0 0 T1

0 1 0
0 0 T2R







Û1

Û2

a




=




E1 0 0
0 0 T1

0 E2 0
0 0 T2R







V1
V2
a


 (3.102)

Eqs. (3.99, 3.100) and (3.101) are then equivalent to

B†ABV = B†MF (3.103)

where
A = A1 ⊕A2 M = M1 ⊕M2 (3.104)

and

B =




E1 0 0
0 0 T1

0 E2 0
0 0 T2R


 (3.105)

If the storage of values a is to be avoided we can store the arrays of the form U as is
also the case in the collocation point representation of the original version. Eq. (3.103) then
becomes:

BB†AU = BB†MF (3.106)

BB† playing the role of the original direct stiffness sum.

BB† =




E1E
T
1 0 0 0

0 T1T
†
1 0 T1R

†T†
2

0 0 E2E
T
2 0

0 T2RT†
1 0 T2T

†
2


 . (3.107)

The modified direct stiffness sum consists in applying the original direct stiffness sum inside
the sub-domains and in replacing the non-connected values U1,I and U2,I at the interface

by (T1T
†
1U1,I + T1R

†T†
2U2,I) and (T2RT†

1U1,I + T2T
†
2U2,I). For a non-trivial rotation R

this operation couples the azimuthal modes. As the result, the conjugate gradient algorithm
must be applied to the whole arrays including all azimuthal modes. This contrasts with
the previous version of the code, where each mode was treated separately. The rotation is
applied at each iteration.

We have seen that the conjugate gradient algorithm requires the computation of the
L2-norm of a residual multiplied by a mass matrix and regularized by the direct stiffness
sum. The expression (3.8) relied on Eq. (3.6). In order to obtain a similar expression for
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the decomposed domain, we must reconsider the computation of the L2-norm. Eq. (3.8)
becomes simply

B†
µB = 1 (3.108)

provided the matrix µ is modified in the following way:

µ = diag(µ1, πW1, µ2, πW2), (3.109)

where ‘diag’ stands for a diagonal matrix. It is composed of the values of the inversed mul-
tiplicities in the interior of the sub-domains and of the quadrature weights of the numerical
integration multiplied by π at the interface. To get Eq. (3.108) we use (see Eq.(3.57))

TT
kWkTk =

1

2π
. (3.110)

3.7.1 L2 norm

Let us express the L2 norm

∫

D
uu dD. (3.111)

needed for the implementation of the conjugate gradient method. Taking account of Eqs.
(3.91) and (3.97), we have the discrete approximation (see also Eq. (3.92))

∫

D
uu dD = U †

1M1U1 + U †
2M2U2 =

V †
1 E

T
1 M̂1EV1 + V †

2 E
T
2 M̂2EV2 + a†TT

1 M1,IT1a + a†R†TT
2M2,IT2Ra. (3.112)

For a concentric layer of elements on both sides of the interface, the mass matrix at the
interface M1,I , M2,I is proportional to the surface weight matrix W (Eq. (3.56)). As
a result, due to the orthogonality relation (3.46), both matrix products TT

1 M1,IT1 and
TT

2 M2,IT2 are proportional to the identity matrix. Denote:

TT
1 M1,IT1 = k11, TT

2 M2,IT2 = k21. (3.113)

Since also R†R = 1, we have R†TT
2 M2,IT2R = k21. Taking aℓ,m = 0 except for a0,0 = 1,

we get

kj =
Tr(Mj,I)

4π
, j = 1, 2. (3.114)

As the result: ∫

Ω
uu dΩ = Û †

1M̂1Û1 + Û †
2M̂2Û2 + (k1 + k2)a

†a. (3.115)

The RHS of Eq. (3.106) results from an application of the generalized direct stiffness
sum. The question is how to calculate its L2 norm. To see this, let us replace F by the array
U of Eq. (3.105):
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B†MU =




ET
1 M̂1E1V1

ET
2 M̂2E2V2(

TT
1M1,IT1 +R†TT

2M2,IT2R
)
a




=




ET
1 M̂1E1 0 0

0 ET
2 M̂2E2 0

0 0 (k1 + k2)1


V (3.116)

where the matrix in Eq. (3.116) is diagonal. Denote m = (mT
1 ,m

T
2 , (k1 + k2)1I)

T , where
mk = diag(ET

k M̂kEk), k = 1, 2 and 1I is an array of ones of length equal to the number of
coefficients of the expansion at the interface. The array m̃ is its counterpart distributed to
collocation points:

m̃ =




E1m1

(k1 + k2)1I,1
E2m2

(k1 + k2)1I,2


 . (3.117)

It arises by applying the direct stiffness sum to the array of the (diagonal) elements of
the mass matrix inside the sub-domains. Its elements at the interface are replaced by the
constant value (k1 + k2). Denote, further, the diagonal matrix M̃ = diag(m̃). We have:

BB†MU =




E1E
T
1 M̂1E1V1

(k1 + k2)T1a

E2E
T
2 M̂2E2V2

(k1 + k2)T2Ra


 = M̃U (3.118)

As a consequence if we denote Y = BB†MU we get

Y †µM̃−1Y = U †MBB†µM̃−1BB†MU =

U †MBB†µBV = U †MBV = U †MU. (3.119)

3.7.2 Preconditioner

The default preconditioner is the inverse of the diagonal of the inverted matrix A. In the
space of independent unknown variables, the form of the preconditioner derives from Eqs.
(3.94, 3.95, 3.96) if A1,A2 of Eq. (3.93) are replaced by

D1 =

[
D̂1 0
0 D1,I

]
, D2 =

[
D̂2 0
0 D2,I

]
(3.120)

where D̂1,D1,I , D̂2,D2,I are diagonal blocs. In the representation (3.98):
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DV =




D̂1Û1

D̂2Û2(
TT

1 D1,IT1 +R†TT
2 D2,IT2R

)
a


 (3.121)

The matrix TT
1 D1,IT1+R†TT

2 D2,IT2R is close to diagonal with constant diagonal elements
similarly as the matrices (3.113). The matrices TT

1 D1,IT1 and TT
2D2,IT2 appear to be

almost a multiple of a unit matrix, like the matrices (3.113):

TT
1 D1,IT1 ≈ d11; TT

2D2,IT2 ≈ d21 (3.122)

where d1 and d2 are the averages of the diagonal values. The approximations (3.122) are
accurate only with about 10−3 accuracy. Nevertheless, we can use the diagonal preconditioner

PV =




D̂−1
1 Û1

D̂−1
2 Û2
1

d1+d2
a


 (3.123)

This tradeoff presents no problem for a preconditioner, whose role is to accelerate the con-
vergence. We arrive, again, at a diagonal matrix the inversion of which is trivial.

3.7.3 Preconditioned conjugate gradient algorithm

The preconditioned conjugate gradient algorithm for the solution of the problem BB†Ax =
BB†Mf can be summed up in following steps:

• initial condition: x = x0 (usually x0 = 0),

• r = BB†Mf −BB†Ax0,

• n = r†µM̃
−1
r,

• x = x0,

• p′ = Pr,

• p = p′

• ρ = (r†p′)

• i = 0

repeat

• i = i+ 1

if i > 1

• w = µM̃
−1
r,

• p′ = Pr,
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• ρ′ = ρ,

• ρ = (r†p′),

• n = r†w,

• β = ρ/ρ′,

• if n < ǫ then i = i− 1, exit loop,

• p = βp+ p′, endif

• w = BB†Ap

• α = ρ/(p†w)

• u = u+ αp

• r = r − αw

end repeat

3.7.4 Case of the vector field

The formalism of the section 3.6 generalizes to a vector field by replacing the scalar arrays Uj,
j = 1, 2, by vector arrays U z

j , U
−
j , U

+
j , which implies the description of values inside the sub-

domains by arrays V z
j , V

−
j , V

+
j and those at the interface by spherical expansion coefficients

â
(µ)
ℓ,m specified in Sec. 3.2.4. The variational formulation is based on the expression of the

scalar product
∫
Ω v ·wdΩ:

∫

D
v ·wdD =

∫

D

[
vzwz +

1

2
(v+w+ + v−w−.)

]
dD (3.124)

The two terms inside the parentheses on the RHS of Eq. (3.124) are actually identical
and each of them represents the transverse norm whence comes the factor 1/2. The same
structure of expressions appears when the azimuthal expansion with coefficients c±,m is
introduced:

∫

D
v ·wdD =

∞∑

m=−∞

∫

D

[
cz,mc

′
z,m +

1

2
(c+,mc

′
+,m + c−,mc

′
−.m)

]
.dD (3.125)

The prime stands for the coefficients of the vector field w. Note, however, that the factor
1/2 disappears when the modes ĉ (Eq. (3.69)) are introduced:

∫

D
vwdD =

∞∑

m=−∞

∫

D

[
cz,mc

′
z,m + (ĉ+,mĉ′+,m + ĉ−,mĉ′−.m)

]
.dD (3.126)

As a result, we recover standard Euclidean scalar products and the same expansion relations
(3.70) as for the scalar case. This makes the generalization of operations at the interface
straightforward.
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The iterative solver being applied to the vector field, the essential items of the algorithm
are the inverse multiplicity matrix µ (Eq. 3.109) and the regularized mass matrix M̃ (see
Eqs. 3.117, 3.118). In view of what has been said, these matrices are applied identically
to each of the vectorial components of ĉ. Since the transformation to c±,m is given by a
global constant factor (±

√
2) the same matrices apply to original azimuthal components. In

the implemented algorithm we work with original c±,m modes. To account for the factor
2 defining the correct scalar product (3.125), the vectorial matrix µvect will be defined by
taking the direct sum of matrices

µvect = µ⊕ 1

2
µ⊕ 1

2
µ. (3.127)

3.8 Direct solver

The pre-existing direct pressure solver was based on the LDL decomposition of the pressure
matrix. The decomposition was done once for all at the beginning of the computation. This
strategy holds only for a fixed geometry. A moving mesh implies a continuously evolving
pressure matrix. If the version using the multiplication of the discretized divergence times
the discretized gradient is used, the motion of the geometry affects the pressure matrix
inside the two sub-domains. This would require a new complete decomposition at each time
step. For this reason, we go back to the standard approach using the discretized Laplace–
Poisson operator. The small loss of accuracy is compensated by a sufficiently refined mesh.
In this formulation, if the interface collocation points are masked, the spectral element
decomposition in the interior of the sub-domains is insensitive to the motion at the interface.
Assuming the real symmetric ”raw” matrices (acting separately inside each spectral element)
in the sub-domains j = 1, 2 to be decomposed as:

Aj =

[
Âj Aj,I

AT
j,I Aj,II

]
, (3.128)

where Âj is a restriction to the interior of the sub-domain, Aj,I represents the coupling of
the interior with the interface and Aj,II is the restriction to the interface, we can rewrite the
matrix B†AB on the LHS of Eq. (3.103) in the following way:

B†AB =

[
Â G
G† AII

]
, (3.129)

where Â is the restriction to the interior of the sub-domains

Â =

[
Â1 0

0 Â2

]
, (3.130)

and

G =

[
A1,IT1

A2,IT2R

]
, (3.131)
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and

AII = TT
1 A1,IIT1 +R†TT

2 A2,IIT2R. (3.132)

We decompose also the right hand side of Eq. (3.103) as (F̂ , FI)
T , where:

F =

(
M̂1F1

M̂2F2

)
(3.133)

FI = TT
1 M1,IF1 +R†TT

2M2,IF2 (3.134)

(3.135)

The problem (3.103) writes then as

ÂÛ +Ga = F (3.136)

G†Û +AIIa = FI (3.137)

where Û is the array of values at the collocation points in the interior of sub-domains and a
is the array of spherical function expansion coefficients. The latter is the solution of:

(G†Â−1G−AII)a = G†Â−1F − FI . (3.138)

The size of the problem (3.138) is relatively small because it is given by the number of
coefficients of the spherical function expansion. After a has been computed, Û results from
Eq. (3.136), which can be solved by the pre-existing direct pressure solver.

3.9 Implementation of the direct solver

The aim of the implementation is to restrict the number of inversions of the large matrices
Â1, Â2. The way how to do becomes obvious if the matrix G†A−1G is written in more
detail:

G†Â−1G = TT
1 A

T
1,IÂ

−1
1 A1,IT1 +R†TT

2 A
T
2,IÂ

−1
2 A2,IT2R (3.139)

The matrices Pk = TT
kA

T
k,IA

−1
k Ak,ITk, k = 1, 2 can be computed simultaneously by solving

the equation

Âpℓ,m = fℓ,m. (3.140)

where fℓ,m = [A1,I{P̂m
ℓ (ϕ

(k)
j )}|I,1, A2,I{P̂m

ℓ (ϕ
(k)
j )}|I,2] result from the action of the matrix

A on the Legendre functions expressed at the collocation points at both sides of the interface.
These arrays can be computed once for all at the beginning of the computation. The matrix
AII (Eq. (3.132)) depends also only on Legendre functions P̂m

ℓ at the interface. The matrix
on the LHS of Eq. (3.137) thus writes:

D = (G†Â−1G−AII) = C1 + R†C2R (3.141)
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where
Ck = TT

kA
T
k,IÂ

−1
k Ak,ITk − TT

kAk,IITk; k = 1, 2 (3.142)

are independent of the rotations R. It is to be noted that the matrices Ck are diagonal in
m. I.e.

C
(k)
ℓ,m;ℓ′,m′ = C

(k,m)
ℓ,ℓ′ δm,m′ . (3.143)

As explained, the matrices Ck can be generated once for all without updating at each time
step. This computation follows the algorithm:

Proceed within an m-loop, k = 1, 2:

1. Map the columns of matrices Tk to an array of initially empty pressure fields and apply
the pressure operator (AkTk).

2. Extract values at interface (Ak,IITk) and mask them in the remaining array (Ak,ITk).

3. Apply the direct pressure solver inside the sub-domains toAk,ITk (results in Â−1
k Ak,ITk).

4. Multiply the result by the transposed of the (previously saved) matrices Ak,ITk (results

in TT
kA

T
k,IÂ

−1
k Ak,ITk).

5. Multiply Ak,IITk by the transposed of Tk (results in TT
kAk,IITk) and subtract from

the matrices obtained at the previous step (results in Ck).

6. C
(k,m)
ℓ,ℓ′ are (ℓmax−m+1)× (ℓmax−m+1) matrices. Store them within a single column

array of size

∑

m

(ℓmax −m+ 1)× (ℓmax −m+ 1) = (ℓmax + 1)(ℓmax + 2)(2ℓmax + 3)/6.

The rotation matrix elements R
(ℓ)
m,m′ are stored in blocks of the size (2ℓ + 1) × (2ℓ + 1)

arranged column-wise for ℓ = 0 . . . ℓmax. The total size of the array is also (ℓmax+1)(2ℓmax+
1)(2ℓmax + 3)/3.

The resulting matrix on interface 2 is to be rotated to interface 1 to form the term
D = R†P2R. (The negative indices m < 0 have to be considered in the rotation matrix in
spite of their redundancy.) The rotation writes as follows:

aℓ,m =

ℓ∑

m′=−ℓ

R
(ℓ)
m,m′(−Φ,−Ψ,−Θ)

∑

ℓ′≥|m′|

P(2,|m′|)
ℓ,ℓ′

ℓ′∑

m′′=−ℓ′

R
(ℓ′)
m′,m′′(Φ,Ψ,Θ) a′ℓ′,m′′ (3.144)

This corresponds to a matrix multiplication: aℓ,m =
∑

ℓ′,|m′|≤ℓ′ D
(2)
ℓ,m;ℓ′,m′ a′ℓ′,m′ where the

matrix elements D
(2)
ℓ,m;ℓ′,m′ are given by:

D
(2)
ℓ,m;ℓ′,m′ =

∑

|m′′|≤min(ℓ,ℓ′)

R
(ℓ)
m′′,m(Φ,Ψ,Θ)P(2,|m′′|)

ℓ,ℓ′ R
(ℓ′)
m′′,m′(Φ,Ψ,Θ). (3.145)
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The matrix (3.139) is obviously Hermitian. The term corresponding to the inside of the
interface (inside the spherical sub-domain) is singular because it corresponds to solving for
the pressure inside a domain with Dirichlet velocity boundary conditions. The cylindrical
sub-domain outside the interface has, however, a Neumann velocity condition at the outflow
where the pressure is defined, itself, by a Dirichlet condition p = 0. As a result, the term
denoted (2) outside the interface is non-singular and ensures thus that the whole matrix can
be inverted. The later can be inverted directly or by conjugate gradients. The direct inversion
becomes quickly too costly, even for matrices 256 × 256 corresponding to the truncation at
ℓmax = 15. In contrast, the conjugate gradient method converges very rapidly with the
preconditioner given by the diagonal of the matrix.

Further savings of CPU time were obtained by reformulating the problem in terms of
real and imaginary parts of coefficients aℓ,m. This removes the redundancies of the complex
formulation and yields a real matrix to be inverted.

3.10 Time integration of solid body equations

3.10.1 Update of solid body velocities

We try to adapt as closely as possible the algorithm of strong coupling presented in Jenny
& Dušek (2004). Its formulation is fully implicit. I.e., when solving at the step (n+ 1) Eqs.
(2.33 - 2.35) the flow field used to compute the force and torque is assumed to be taken at
the same step:

m∗

(
u(n+1) − u(n)

∆t
+ ω(n+1) × u(n+1)

)
= Ffl(v

(n+1), p(n+1)) + kfix (3.146)

I∗α
Ω
(n+1)
3 − Ω

(n)
3

∆t
= Mflz(v

(n+1), p(n+1)) (3.147)

I∗

(
Ω
(n+1)
+ − Ω

(n)
+

∆t
− iαΩ

(n+1)
+ Ω

(n+1)
3

)
= Mfl+(v

(n+1), p(n+1)) (3.148)

The solution is possible due to the linearity of the dependence of the flow field and of the
hydrodynamic forces on the boundary conditions. The latter (Eq. (2.59)) depend linearly on
the velocities. As explained in Jenny & Dušek (2004) it is sufficient to compute the residual

of Eqs. (2.33 - 2.35) for an intermediate flow field v
(n+1)
0 , p

(n+1)
0 obtained with boundary

conditions corresponding to u(n) and Ω(n) at the previous time step:

R =




Ffl(v
(n+1)
0 , p

(n+1)
0 ) + kfix

Mflz(v
(n+1)
0 , p

(n+1)
0 )

Mfl+(v
(n+1)
0 , p

(n+1)
0 )


 . (3.149)

The update X = (∆u,∆Ω)T results as the solution of a set of 6 equations obtained from

Eqs. (3.146 - 3.148) by replacing the updates of forces Ffl(v
(n+1) − v

(n+1)
0 , p(n+1) − p

(n+1)
0 )

and torques Mfl(v
(n+1) − v

(n+1)
0 , p(n+1) − p

(n+1)
0 ) by the matrix operation:
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(
Ffl(v

(n+1) − v
(n+1)
0 , p(n+1) − p

(n+1)
0 )

Mfl(v
(n+1) − v

(n+1)
0 , p(n+1) − p

(n+1)
0 )

)
= AX (3.150)

the 6 by 6 matrix A being obtained by solving the Stokes-like problem of the implicit part
of the algorithm with boundary conditions on the body corresponding to unit velocities and
angular velocities in the direction of principal axes and by computing the corresponding force
and torque. In what follows, we call A the force matrix. For a fixed mesh, this procedure is
to be done just once unless the time step changes. In the present case, it might seem that
it has to be repeated at each time step because of the continuous rotation of the spherical
sub-domain. It is, however, not necessary to use an exact matrix. Indeed, for sufficiently
large density ratio ρs/ρ a weak coupling is satisfactory. The weak coupling consists in a fully

explicit formulation with v(n+1), p(n+1) replaced by v
(n+1)
0 , p

(n+1)
0 . This amounts to taking

A = 0. The role of the implicit formulation is mainly to account for the acceleration of
the fluid due to pressure (added mass) and due to viscosity (effect proportional to the time
step).

For the purpose of convergence a sufficient approximation is satisfactory. Following
possibilities were tested:

1. The matrix can be created solely on the spherical sub-domain with a zero Dirichlet
boundary condition at the interface.

2. The matrix can be computed separately on the large cylindrical domain better repre-
senting an unconfined situation, but not accounting for the body rotation

3. Due to the axisymmetry of the computational domain all cases of rotation are covered
if the body is rotated continuously by 90 degrees around the axis perpendicular to the
axis of the cylindrical domain. If the variation of the obtained matrix elements is not
very significant, it may be sufficient to cover the interval of angles ψ ∈ [0, π/2] by a
small number of points and to generate the matrix by interpolation for any angle ψ .

As shown in the following section, it is sufficient to compute the matrix for a spherical
domain with the polar axis aligned with that of the cylindrical sub-domain because the
rotation of the spherical domain has a negligible influence on the results. Moreover, the
matrix is practically (almost up to machine precision) diagonal which facilitates its inversion.
For simplicity of implementation the alternative 3 with angle Ψ = 0 was retained

The U(1) coordinates, the diagonality of the matrix A and its isotropy in the plane
normal to the symmetry axis (A1,1 = A2,2 and A4,4 = A5,5) make it possible to avoid matrix
inversion in the equations for angular velocity. Indeed, solve, firstly, Eq. (3.147) becoming

I∗α
∆Ω3

∆t
− A6,6∆Ω3 = Mflz(v

(n+1)
0 , p

(n+1)
0 ) (3.151)

and yielding the update Ω
(n+1)
3 = Ω

(n)
3 +∆Ω3. Secondly, solve Eq. (3.148), i.e.:

I∗
(
∆Ω+

∆t
− iα∆Ω+Ω

(n+1)
3

)
− A4,4∆Ω+ = Mfl+(v

(n+1)
0 , p

(n+1)
0 ) + iαΩ

(n)
+ Ω

(n+1)
3 . (3.152)
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providing the update Ω
(n+1)
+ = Ω

(n)
+ +∆Ω+.

The translation velocity equations do not uncouple. An exact solution of Eq. (3.146) is
obtained by solving 3 coupled equations:

(
m∗

∆t
+m∗G−Au

)
∆u = Ffl(v

(n+1)
0 , p

(n+1)
0 ) + kfix −m∗ω(n+1) × u(n) (3.153)

where Au = diag(A1,1, A2,2, A3,3) and

G =




0 0 Ω
(n+1)
2

0 0 −Ω
(n+1)
1

−Ω
(n+1)
2 Ω

(n+1)
1 0


 . (3.154)

An approximate solution is obtained by treating the u+ equation

m∗

(
∆u+
∆t

− iΩ
(n+1)
+ ∆uz

)
− A1,1∆u+ = Ffl,+(v

(n+1)
0 , p

(n+1)
0 ) + kfix,+ + im∗Ω

(n+1)
+ u

(n)
+

(3.155)

explicitly, i.e. by setting ∆uz = 0 in this equation. The so obtained update u
(n+1)
+ =

u
(n)
+ +∆u+ can be used in equation

m∗∆uz
∆t

− A3,3∆uz = Ffl,z(v
(n+1)
0 , p

(n+1)
0 ) + kfix,z −m∗

(
ω(n+1) × ũ(n+1)

)
z

(3.156)

where ũ(n+1) = (u
(n+1)
1 , u

(n+1)
2 , 0)T .

Alternatively, Eq. (3.146) can be solved explicitly by replacing the new velocity u(n+1)

by the old one u(n) in the term ω(n+1) × u(n+1). This amounts to leaving out the matrix
m∗G on the LHS of Eq. (3.153) and reducing the inversion to a diagonal matrix. All three
possibilities were tested and were found to yield indistinguishable results. The simplest,
third, alternative was retained.

3.10.2 Results of tests of the computation of the force matrix

The tests of generation of the matrix A brought the following conclusions for the disc at
G = 100, ∆t = 0.001 and the radius of the spherical domain equal to one. The results are
presented for ∆tA because its leading terms (due to pressure effects) are independent of ∆t
and correspond to added mass coefficients. The element ∆tA1,1 is very close to the added
mass of the disc.

1. The matrix is very close to diagonal. The largest non-diagonal element is equal to 1.2
× 10−11 (the largest diagonal element being 0.33).

2. The variation of the matrix due to the rotation of the spherical sub-domain is negligible.
The relative variation of its diagonal elements for rotation of the spherical sub-domain
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Figure 3.5: Relative variation of diagonal elements of the added mass matrix. The legend
indicates the component (fx, fy, fz - force, mx,my,mz - torque).

about the x−axis by angles ψ in the interval [0, π/2] is represented in Figure 3.5 for
the truncation of the azimuthal and spherical harmonic expansion at the mode 4. The
largest relative variation, that of the matrix element A1,1 relative to the z−component
of the force induced by a unit variation of velocity in the z−direction, does not exceed
0.5 × 10−5. This can be explained by a confinement of the acceleration and pressure
field essentially inside the spherical domain. This limits the effect of rotation with
respect to the cylindrical domain.

3. The length of the spherical harmonic expansion has also a limited effect. Again, this
is a consequence of the confinement of the acceleration flow field. Indeed, even if
the sub-domains are not rotated with respect of one to the other, the connection at
the interface might bring errors if the expansion is truncated at a too low number ℓ.
If the flow field does not reach significantly beyond the interface, the expansion has
practically no effect. This is actually the case as can be seen if the matrix obtained
with the highest mode of expansion ℓmax = 7 is compared to that obtained for just
ℓmax = 1, the smallest value necessary to capture the hydrodynamic force and torque.
The largest relative error is obtained for the A5,5 and A6,6 elements: 0.28%. For A1,1

it is 0.06%.

This would allow us to re-use the algorithm developed for the sphere where the added
mass matrix was computed with the azimuthal expansion truncated to m ≤ 1. The
saving in computing time is, however, negligible in view of the rareness of time step
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shear and, pure added
i pressure mass

1 0.3313 0.3293∗

2 0.0034 0
3 0.0034 0
4 0.00049 0
5 0.0111 0.0109
6 0.0111 0.0109

Table 3.2: Diagonal elements of the force matrix ∆tAi,i, i = 1 . . . 6 at G = 100 and for
∆t = 0.001 (i = 1, 2, 3 correspond to added masses and i = 4, 5, 6 to ’added moments
of inertia’). Middle column values accounting for shear, right column pure pressure effects.
∗The theoretical value of the added mass of a disc in an infinite domain is 1/3 - see Sherwood
& Stone (1997).

updates in an established simulation.

4. The effect of shear is not negligible. In Table 3.2 we present the diagonal elements of
the matrix ∆tA compared to those of the pure added mass matrix (accounting only
for pressure effects).

5. The acceleration field and the associated pressure is represented in Figs. 3.6, 3.7. It is
clearly seen that the perturbation hardly extends more than one disc diameter.

The tests show that it is sufficient to compute the matrix of forces A without accounting
for the actual rotation of the sub-domain and, to simplify its inversion, it can be considered
as practically diagonal. In real computation these approximations result in negligible degra-
dation of the residual of the movement equations (3.146, 3.147, 3.148) from the machine
precision to about 10−10.

3.11 Rotation of the spherical sub-domain and computation

of the final velocity and pressure fields

Assuming the moving object to be non-spherical we face the problem of following its move-
ment by the spherical sub-domain. The arbitrary orientation of the spherical sub-domain
with respect to the cylindrical one has been described in the static case by the expansion
into spherical harmonics. In the case of a freely moving body the issue consists in advancing
the sub-domain rotation without deteriorating the accuracy of the solution of the movement
equations (3.146, 3.147, 3.148). At the end of a time step, we require that Eqs. (3.146,
3.147, 3.148) be satisfied in the updated frame. As a result, the rotation of the frame of
the spherical sub-domain must be carried out before solving the movement equations. The
algorithm of the time step runs thus as follows:
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Figure 3.6: The acceleration field generated by a unit acceleration of the disc in the right
direction. Upper figure: iso-lines, lower figures: streamwise and transverse profiles.
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• Compute the advective terms accounting for the domain rotation according to Eq.
(2.8). The computation of advective terms is performed in the frame of the previous
time-step.

• Rotate the frame of the spherical sub-domain. The rotation is obtained using the

angular velocity vector Ω of the frame and the time step dt: n
(n+1)
j = n

(n)
j +dtΩ×n

(n)
j .

This relation holds in the fixed frame and nj are columns of the matrix RT . In the

rotating frame, n′
j
(n) are columns of the matrix R. They are rotated using the relation:

n′
j
(n+1) = n′

j
(n) − dtΩ × n′

j
(n). This relation corresponds to the linearization of the

rotation. The resulting matrix RT = [n′
1,n

′
2,n

′
3] is thus not exactly orthogonal. The

orthogonalization is obtained by the Gramm-Schmidt procedure. Then the Euler angles
are computed from the matrix R and the rotation matrices in ℓ ≤ ℓmax subspaces are
updated.

• Solve for the velocity and pressure fields with boundary conditions given by the body
velocities at the previous time step and compute the new velocities by solving the
motion equations of the body as described in Sec. 3.10.1.

• Originally the new velocities were used to define new boundary conditions and the
velocity and pressure fields were recomputed by solving the full Stokes problem in the
same way as at the previous stage. This doubles, however, the computing costs and
is not necessary to do. Instead, it is sufficient to use the fact that the sought solution
differs only by the boundary conditions at the body surface. The field updates depend
linearly on the updates of the velocities. The relation can be written as (see Jenny &
Dušek (2004)): ∆U(n+1) = SX,∆P(n+1) = TX where X is the array of six velocity
updates (∆U, ∆Ω) and S and T are matrices of flow accelerations that are computed
while generating the force matrix A. The matrices S and T are stored and used to
compute the velocity and pressure field updates directly. The latter are added to the
intermediate fields obtained with previous body velocities which yields in updated fields
with virtually no additional costs.

3.12 Numerical tests

3.12.1 Fixed disc placed perpendicularly to the flow

A parametric study of the transition scenario in the wake of flat cylinders and spheroids
placed perpendicularly to the flow was given in Chrust et al. (2010) (see also chapter 4).
The mesh represented in Figure 4.1 is practically the same as that used for an infinitely thin
disc in Chrust et al. (2010), where the dependence on the size of the domain, on the breakup
into spectral elements, on the number of collocation points per spatial direction and on the
truncation of the azimuthal Fourier expansion were discussed. It was shown that the following
parameters: number of spectral elements Nel = 256 for a disc, Nel = 230 for a cylinder χ = 1,
number of Gauss-Lobatto-Legendre collocation points in each direction (z, r) N = 6, number
of azimuthal Fourier modesm = 4 and upstream, downstream extension as well as the radius
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of the cylindrical domain equal to Lu = 12d, Ld = 25d and Rc = 8d, respectively, yield a
precision better than 1% in the determination of the critical Reynolds numbers of the first
two bifurcations. In this sub-section, we test the influence of the truncation of the spherical
function expansion ℓmax and of the radius of the spherical domain. We compare the critical
Reynolds numbers of the primary, regular and of the secondary, Hopf bifurcations obtained
with the domain decomposition with those found with the original code used in Chrust et al.
(2010). The purpose is to show that the interface connecting the decomposed sub-domains
does not perturb the computation. The primary bifurcation thresholds are summarized for
an infinitely thin disc χ = ∞ and for a thick cylinder χ = 1 in Tables 3.3 and 3.4, respectively.
The thresholds depend very weekly on the radius of the spherical sub-domain. It is seen that
the truncation of the expansion into spherical functions at ℓmax = 15 is already sufficient to
obtain a better than 1% precision for the infinitely thin disc. The sensitivity to the radius
is very likely due to the presence of localized flow structures. This variation (at ℓmax = 15)
is stronger for the thick cylinder. However, very rapidly, with moderately increased ℓmax,
virtually the same threshold is obtained independently of the spherical sub-domain radius.
For the disc, the obtained critical Reynolds number lies within 0.03% from the value obtained
in a computation without domain decomposition. For the thick cylinder of aspect ratio χ = 1
the largest discrepancy for ℓmax = 25 does not exceed 0.6%. The agreement is even better
for the secondary bifurcation threshold.

Rs�ℓmax 15 20 25

1.00 117.16 117.13 117.12
1.35 116.55 117.09 117.13
1.70 116.05 117.07 117.13
2.00 116.51 117.33 117.13

Table 3.3: Threshold of the primary bifurcation of an infinitely thin disc χ = ∞ perpendicular
to the flow. Influence of the radius Rs of the spherical domain and of the truncation ℓmax of
the spherical function expansion on the bifurcation threshold. The threshold of the primary
bifurcation obtained with the original code is equal to ReI = 117.17 (see Chrust et al. (2010)
and chapter 4)

3.12.2 Fixed disc inclined by 30 degrees with respect to the flow direction

The capability of the numerical method to resolve a fully three-dimensional geometry was
tested for a fixed disc with its axis inclined by 30 degrees with respect to the flow direction.
Iso-lines of the streamwise component of the velocity field are represented in Figure 3.8
at Re = 120. The spherical interface (represented by the circle) has a radius of 1d. At
Re = 120, the flow oscillates periodically generating an oscillating lift force having a non-
zero mean value. The order of the expansion into spherical functions given by ℓmax = 15
is sufficient to obtain iso-lines that are perfectly smooth across the interface. Figure 3.9
represents iso-surfaces of the streamwise component of the vorticity. Again, the interface
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Rs�ℓmax 15 20 25 15 25

1.00 274.81 274.06 274.15 358.59 358.78
1.35 265.15 274.43 274.34 – –
1.70 272.75 275.26 275.26 – –
2.00 243.19 274.62 275.95 337.2 358.91

Table 3.4: Threshold of the primary (left of the vertical line) and secondary bifurcation
of a cylinder χ = 1 perpendicular to the flow. Influence of the radius Rs of the spherical
domain and of ℓmax on the bifurcation threshold. Threshold of the primary and secondary
bifurcation obtained with the original code is equal to ReI = 274.16 and ReII = 358.89. “–”
marks non considered cases.

Figure 3.8: Disc χ = ∞, Re = 120 inclined by ϕ = 30o w.r.t. the flow direction. Streamwise
component of the velocity field. The circle marks the interface between the two sub-domains.
ℓmax = 15, Rs = 1.

between the two sub-domains is not visible, indicating that it does not perturb the flow.
To provide a quantitative test of the numerical sensitivity to the presence of the interface,

we report, in Table 3.5, the decay rate for several values of the radius Rs and for two
truncations ℓmax of the expansion into the spherical functions obtained close to the threshold
of the Hopf bifurcation triggering the oscillations. The variation in the column ℓmax = 25
corresponds to a maximum error in the determination of the critical Reynolds of ≈ 0.06 as
can be inferred from the value of the bifurcation threshold and from the decay rates.

3.12.3 Freely ascending sphere of density ratio ρs/ρ = 0.5.

In the case of spherical particles, it has become common to define the Galileo number G̃ =√
|ρs/ρ− 1|gd3/ν, that differs by the factor of

√
π/6 from the Galileo number defined for

discs (Eq. 2.58). In this subsection we mention the Galileo number G̃ introduced in Jenny
et al. (2004) with the value of G in parentheses. A sphere of density equal to half that of the
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Figure 3.9: Disc χ = ∞, Re = 120 inclined by ϕ = 30o w.r.t. the flow direction. Streamwise
component of the vorticity. Isovalue level equal to 0.2. ℓmax = 15, Rs = 1.

Rs�ℓmax 15 25

1.00 -0.0346 -0.0339
1.35 -0.0348 -0.0347
1.70 -0.0371 -0.0341
2.00 -0.0362 -0.0343

Table 3.5: Decay rate of the oscillations of the fixed disc inclined by ϕ = 30o with respect
to the free stream direction at Re = 105. The bifurcation threshold lies at Recrit = 110.

fluid was shown in Jenny et al. (2004) to undergo a regular bifurcation at the Galileo number
G̃ = 156.1 (G = 113.0) leading to a steady oblique regime. At G̃ = 173.2 (G = 125.3), a
secondary, Hopf bifurcation triggers periodic oscillations and the oblique oscillating regime
sets in. At G̃ = 178 (G = 128.8) the zig-zagging regime appears intermittently before
becoming periodic at higher Galileo numbers. These three regimes were used for testing
the new algorithm. The advantage of the spherical body for this purpose is that it can be
simulated both in a fixed, non-decomposed domain, and in the decomposed domain. In the
latter case, the spherical sub-domain can be considered fixed with an arbitrary orientation
with respect to the cylindrical one or moving, following the sphere rotation. This enables a
series of very severe tests. The sphere rotation is only due to shear effects. As the result,
its time scale is much slower than that of the periodic oscillations, which makes it possible
to see the effect of a monotonous rotation of the computational domain in oblique regimes.
Moreover, the zig-zagging state was shown to be extremely sensitive to small perturbations
(see Jenny et al. (2004)), the question is thus if it is faithfully reproduced by the new
numerical method.

At the Galileo number G̃ = 160 (G = 115.8), the solid-fluid system is just above the
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no interface ψ = 0, ψ = 0, ψ = 90o, ψ = 90o,
ℓmax = 15 ℓmax = 31 ℓmax = 15, ℓmax = 31

uh 0.0880 0.0857 0.0875 0.0620 0.0892
Ω 0.0158 0.0146 0.0158 0.0112 0.0160

Table 3.6: Sphere G̃ = 160 (G = 115.8). Fixed spherical sub-domain of radius Rs = 2
rotated by angle ψ with respect to the vertical. uh – asymptotic horizontal velocity, Ω –
asymptotic rotation velocity of the sphere.

threshold of the steady oblique regime. In Figure 3.10 (b) the black dashed line represents
the settling of the horizontal velocity to its steady non-zero value starting from an initial
condition corresponding to the (unstable) vertical ascension. This reference simulation is
obtained without domain decomposition. After a short overshoot, the steady state is rapidly
reached without practically any secondary oscillations. During the oblique ascension the
sphere slowly turns in the plane of the trajectory. If we introduce the domain decomposition
and let the spherical sub-domain rotate at the same angular velocity as the solid body itself to
simulate a computation necessary for a non-spherical body, we notice a very high sensitivity
to the radius for an insufficient spherical function expansion (ℓmax = 15). This sensitivity
is easy to understand especially for the radius Rs = 3. In this case, when the rotation
angle reaches 90 degrees (see the red full line in Figure 3.10a) the axisymmetry breaking
instability decays and the sphere ceases to rotate before, eventually, starting to rotate and
to drift in the opposite direction. The reason is the localized intersection of the wake with the
interface, which is not sufficiently resolved if the spherical function expansion is truncated
at ℓmax = 15. If the radius of the interface is taken equal to 1d (blue full line), the steady
oblique regime is quite well captured with only a slight decrease of the horizontal velocity
at the moment when the wake leaves the spherical sub-domain perpendicularly to the polar
axis. This fact is confirmed in Table 3.6 showing the variation of the obtained value of the
horizontal and rotation velocities depending on the orientation of the spherical sub-domain
(taken fixed) and on the truncation of the spherical function expansion. The problem is
overcome by taking ℓmax = 31. In Figure 3.10 c) the dashed black line representing the
result without domain decomposition is still reported. The red full line, that corresponding
to the problematic value of the radius Rs = 3, becomes very rapidly horizontal and is close
to the value obtained without interface. Table 3.7 provides some quantitative information.
It shows, that the initial amplification rates are well captured even for ℓmax = 15, which
is explained by an initial small angle between the polar axis of spherical domain and the
vertical direction.

Higher above the threshold, at G̃ = 170 (G = 123.0), the effect of the domain rotation
is still significant for ℓmax = 15 and Rs = 3 (see Figure 3.11 b). This Galileo number still
corresponds to the steady oblique regime but it approaches the onset of the secondary –
Hopf bifurcation, which makes the decaying oscillations well visible. The average rotation
velocity of the sphere is slower (Figure 3.11 a) and when the rotation angle reaches 90 degrees
the oscillations are re-excited. Again, the behavior is significantly better for Rs = 1. For
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Figure 3.10: Sphere G̃ = 160 (G = 115.8). a) The rotation angle as a function of time. Red
full line: ℓmax = 15, Rs = 3, red dashed line: ℓmax = 31, Rs = 3, blue line: ℓmax = 15, Rs = 1.
b) ℓmax = 15: red line - Rs = 3, blue line - Rs = 1. Black dashed line: computation without
interface. c) ℓmax = 31, same meaning of lines as in b).
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Rs γ1 uh ∆uh
1.00 0.1054 0.0847 0.0759

0.1070 0.0858 < 0.0001

2.00 0.1115 0.0860 0.1675
– – –

3.00 0.0990 0.0798 0.1611
0.1068 0.0887 < 0.0001

no interface 0.1083 0.0880 0

Table 3.7: Sphere G̃ = 160 (G = 115.8). γ1 linear amplification rate of the axisymmetry
breaking bifurcation, uh - asymptotic value of the horizontal velocity, ∆uh fluctuation due
to the domain rotation. First lines: ℓmax = 15, second lines ℓmax = 31.

ℓmax = 31 the lines corresponding to both Rs = 3 and Rs = 1 are superimposed on the
result obtained without domain decomposition.

Rs γ1 γ2 f2 uh ∆uh
1.00 0.2723 -0.0414 0.0782 0.1425 0.0045

0.2736 -0.0404 0.0765 0.1456 < 0.0001

2.00 0.2887 -0.0316 0.0811 0.1370 0.0050
– – – – –

3.00 0.2739 -0.0283 0.0757 0.1340 0.0040
0.2746 -0.0405 0.0799 0.1462 < 0.0001

no interface 0.2765 -0.0396 0.0786 0.1465 0

Table 3.8: Sphere G̃ = 170 (G = 123.0). γ1 linear amplification rate of the axisymmetry
breaking bifurcation, γ2 linear decay rate of the Hopf bifurcation, f2 frequency of oscillations,
uh - asymptotic value of the horizontal velocity, ∆uh fluctuation due to the domain rotation.
First lines: ℓmax = 15, second lines ℓmax = 31.

At G̃ = 175 (G = 126.6) the regime is oblique oscillating. The insufficient accuracy of
the discretization at the interface for Rs = 3 and ℓmax = 15 results in an overestimation of
the amplitude and of the period of oscillations. A significant improvement is obtained for
ℓmax = 31. The Tables 3.8 and 3.9 sum up the quantitative data.

The ‘zig-zagging’ regime is captured for all tested cases of discretization of the interface.
Interestingly enough, the sensitivity to the truncation of the spherical function expansion
and to the radius Rs is much weaker. This can be, at least partly, explained by the fact that
the rotation angle does not exceed 0.23 radians, therefore the spherical sub-domain rotation
is very limited.

The results of tests in the configuration of a freely ascending sphere show that ℓmax is the
decisive parameter for reaching a good accuracy. The variation of the radius Rs can serve
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Figure 3.11: G̃ = 170 (G = 123.0). The meaning of the lines is the same as in Figure 3.10.
a) rotation angle, b) horizontal velocity, ℓmax = 15, c) horizontal velocity, ℓmax = 31.
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Figure 3.12: G̃ = 175 (G = 126.6). The meaning of the lines is the same as in Figure 3.10.
a) rotation angle, b) horizontal velocity, ℓmax = 15, c) horizontal velocity, ℓmax = 31.
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Rs f2 uh Auh

1.00 0.0809 0.1544 0.0408
0.0797 0.1535 –

2.00 0.0791 0.1473 0.0418
– – –

3.00 0.0770 0.1459 0.0539
0.0818 0.1567 0.0370

no interface 0.0792 0.1560 0.0424

Table 3.9: Sphere G̃ = 175 (G = 126.6). f2 frequency of oscillations, uh - mean value of
the horizontal velocity, Auh

amplitude of oscillations of the horizontal velocity. First lines:
ℓmax = 15, second lines ℓmax = 31.

Rs AΨ Auh
AΩ f3

1.00, ℓmax = 15 0.1586 0.3017 0.0577 0.0347

2.00, ℓmax = 15 0.1367 0.3022 0.0540 0.0354

3.00, ℓmax = 15 0.1611 0.2854 0.0503 0.0353

3.00, ℓmax = 31 0.1560 0.3010 0.0552 0.0356

no interface 0.1522 0.2982 0.0544 0.0346

Table 3.10: Sphere G̃ = 185 (G = 133.9). AΨ - amplitude of the rotation angle, Auh
-

amplitude of the horizontal velocity oscillations, AΩ - amplitude of the angular velocity
oscillations, f3 - frequency.

for testing whether ℓmax is large enough for the results to be insensitive to the size of the
radius (within reasonable limits, say between 1 and 3).

3.12.4 Freely falling discs and cylinders

The main purpose of the algorithm is to simulate the free movement of non-spherical bodies.
The results of tests for a freely falling infinitely thin disc are presented in Tables 3.11 through
3.13. The primary bifurcation of a freely falling disc is of the Hopf type for all values of
non-dimensionalized mass m∗. Table 3.11 checks if the domain extent, found sufficient for a
fixed disc and for a free sphere, is still satisfactory for a freely falling disc by computing, close
to the bifurcation threshold, the amplification rate and the frequency of the flutter of the
disc for variable radius Rc of the cylindrical domain, upstream and downstream lengths Lu

and Ld, while keeping the radius of the spherical domain and the truncation of the spherical
function expansion at the interface fixed. As can be seen, the size of the domain defined by
Rc = 8, Lu = 12 and Ld = 25 used already for the sphere is more than sufficient because the
maximal difference of the found amplification rates corresponds to a maximal error in the
determination of the critical Galileo number of less than 0.1.
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Figure 3.13: Zig-zagging regime at G̃ = 185 (G = 133.9). (a) Rotation angle as a function
of time. (b) Horizontal velocity.

Rc Lu Ld γ f

8 12 25 0.0359 0.3376
10 12 25 0.0355 0.3375
12 12 25 0.0353 0.3375

8 12 30 0.0359 0.3376
8 12 35 0.0358 0.3376

8 24 25 0.0358 0.3375

Table 3.11: Test of the influence of the extent of the domain for a thin disc χ = ∞,m∗ = 0.1,
Rs = 1, ℓmax = 15, G = 70. The bifurcation threshold lies at Gcrit = 64.2.

Table 3.12 shows the sensitivity of the amplitude and of the frequency of the horizontal
velocity of a fully saturated fluttering state to the variation of the radius of the spherical sub-
domain and to the truncation of the spherical function expansion at the interface (similarly
as for the sphere in the previous sub-section). The same table (last column) shows also their
effect on the determination of the bifurcation threshold. Unlike for the sphere, the results are
practically insensitive to these parameters, which means that the truncation at ℓmax = 15
ensures a very good accuracy.

For freely falling discs, very few data are available in the literature. A noteworthy
exception is the PhD thesis Auguste (2010) reporting the thresholds for 5 different values
of the non-dimensional moment of inertia I∗ (i.e., for 5 values of m∗; recall the relation for
thin discs: I∗ = m∗/16). The numerical method of Auguste (2010) is completely different.
It is based on a 3D finite volume discretization and uses no domain decomposition. A
whole domain rotates with the disc (similarly as in Shenoy & Kleinstreuer (2010) where flat
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Rs Auh
(G = 80) fuh

(G = 80) Gcrit

1.00 0.9921 0.3801 64.11
0.9956 0.3796 64.19

2.00 0.9911 0.3799 64.41
0.9934 0.3794 64.17

3.00 0.9919 0.3798 –
0.9934 0.3795 –

Table 3.12: Auh
(G = 80) and fuh

(G = 80): amplitude and frequency of oscillations of
horizontal velocity for a thin disc χ = ∞,M∗ = 0.1 at G = 80. Gcrit: critical Galileo
number. Upper lines: ℓmax = 15, lower lines: ℓmax = 31.

cylinders are considered). For this reason, the comparison with the results Auguste (2010)
is particularly valuable. The agreement reported in Table 3.13 is very satisfactory.

I∗ Arcr Arcr of Auguste (2010)

0.004 36.15 33
0.012 25.71 24
0.048 16.69 16
0.160 14.64 14
0.480 17.26 14–18

Table 3.13: Primary bifurcation thresholds expressed in terms of the Archimedes number

Ar =
√

3
4πG for a thin disc χ = ∞. Third column: values reported in Auguste (2010).

Our method has the capability to simulate all three, experimentally observed Field et al.
(1997), regimes as can be seen in Figure 3.14. We are able to run simulations up to G = 500
without any problem of numerical stability for all values of m∗. The numerical performance
of the method is very satisfactory. A relevant criterion is given by the computing costs of
a physical period of oscillations. The simulation of a period of flutter of a thin disc with
15 azimuthal Fourier modes (and ℓmax = 15) requires only 25% more CPU time than the
simulation of a period of an oblique oscillating regime of a sphere with 7 azimuthal Fourier
modes and without interface.
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(a), m∗ = 0, G = 180 (b), m∗ = 0.25, G = 110 (c), m∗ = 0.5, G = 140

Figure 3.14: Side view of plane trajectories of thin discs: (a) periodic zig-zag path, (b)
intermittent regime, (c) tumbling (auto-rotation) of a disc. The red dashed line marks the
direction of a half axis of the disc, which makes it possible to distinguish the tumbling from
a flutter.



Chapter 4

Parametric study of the transition

in the wake of oblate spheroids and

flat cylinders

The content of this chapter was published in Chrust et al. (2010).

4.1 Known facts

The present section sums up bibliographic data already discussed in chapter 1 with special
focus on the wakes of oblate spheroids and flat cylinders. Such rearrangement helps in
understanding the motivation of the described investigation.

The pioneering linear analysis of the breaking of axisymmetry in wakes of axisymmetric
bodies of Natarajan & Acrivos (1993) focused on two prototypical bodies: a sphere and a
disc. While the wake of a sphere has been the topic of extensive experimental research, that
of a thin disc and that of flat cylindrical bodies has been taken up only in a handful of recent,
mostly numerical and theoretical papers presented in section 1.6 of the introduction chapter.
Let us recall that the geometry of flat cylinders and oblate spheroids is characterized by a
single dimensionless parameter - the aspect ratio χ. For a cylinder, it is defined as χ = d/h
where d is the cylinder diameter and h the cylinder height. A ’thin disc’ is considered to
correspond to an infinite aspect ratio while if the body is cylindrical with non-zero height
it will be called flat cylinder if χ > 1. For an oblate spheroid, the aspect ratio is defined
as χ = d/a (with d the diameter and a the length of the polar axis). For fixed bodies, the
limit of infinite aspect ratio describes the same configuration, that of a thin disc, both for
spheroids and cylinders.

The existing results have shown that the transition scenario in the wakes of discs and
flat cylinders of a large aspect ratio differs considerably from that of the fixed sphere wake.
The transition process involves several new states that do not exist in the sphere wake.
While for the case of a sphere, the secondary Hopf bifurcation leading to a periodic state,
conserves the symmetry plane selected at the primary bifurcation (see chapter 1.5), for the
case of a disc the secondary bifurcation, also of the Hopf type, breaks the symmetry of the

95
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flow (see Figure 1.9 representing the axial vorticity of the wake). The symmetry of the
flow can be more simply understood by representing the lift vector in the plane normal to
the flow direction. Although the mean lift lies in the symmetry plane chosen arbitrarily
at the first bifurcation, the oscillating component is perpendicular (see Figure 4.9 below).
We shall call this state periodic state without planar symmetry. In the literature, it has
been called RSB (reflectional symmetry breaking) by Fabre et al. (2008), MMπ (mixed
mode with phase π) state by Meliga et al. (2009), ’steady 3D periodic with regular rotation
of the separation region’ by Shenoy & Kleinstreuer (2008) or ’yin-yang’ by Auguste et al.
(2010). With increasing of the Reynolds number the mean value of the lift decreases until
it vanishes. This leads to a periodic state with planar symmetry. This new periodic state
with a zero mean lift has, however, a symmetry plane perpendicular to that selected at the
first bifurcation (see Figure 1.10) unlike for the wake of a sphere. Subsequently the wake
becomes chaotic. All these states are characterized by the absence of helicity explained (see
Danaila et al. (1998), Meliga et al. (2009), Fabre et al. (2008) and section 1.4) by an equal
amplitude of modes with positive and negative helicity. For cylinders of intermediate aspect
ratio states with non-zero net helicity have also been reported. We shall call them state
with non-zero helicity. They are absent both in the transition scenario of a sphere and of
a thin disc. Auguste et al. (2010) finds them for a flat cylinder of aspect ratio χ = 3. The
state described by Auguste et al. (2010) is marked by the presence of two characteristic
time scales. The helicity yields an elliptic path of the lift (on the time scale of the vortex
shedding), which itself moves periodically in the plane perpendicular to the flow axis (on a
slow time scale). Therefore the lift path can be described as a slowly oscillating ellipse (see
Figure 4.15 below).

The theoretical works of Fabre et al. (2008) and Meliga et al. (2009) shed light on the
underlying non-linear interactions explaining the transition scenario of flat axisymmetric
bodies. As mentioned in section 1.6 this configuration is characterized by two parameters:
the aspect ratio and the Reynolds number. The existing bibliography does not provide an
exhaustive investigation of this parameter space for cylinders and the case of spheroids has
never been studied excepting Zastawny et al. (2012) who have carried out Direct Numerical
Simulations of oblate spheroids, perpendicular and inclined to the incoming uniform flow
direction, of the aspect ratio χ = 5, 2.5 and 1.25. However, they do not provide the details
of the transition scenario, as their purpose was to derive the correlations for the lift, drag
and torque coefficients. For flat cylinders the parametric study of the first two bifurcation
thresholds of Fernandes et al. (2007) can be improved, extended and refined with account of
the progress in identification of more complex regimes. The linear analysis of Natarajan &
Acrivos (1993) takes up the thin disc and a sphere as two extreme cases. The link between
them is represented rather by oblate spheroids than by flat cylinders.

4.2 Specificities of numerical implementation

We consider fixed cylinders and oblate spheroids, characterized by the aspect ratio χ defined
in the previous section, placed with their rotation axis parallel to a uniform flow. The flow
of an incompressible fluid past these bodies is governed by the non-dimensionalized three-
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dimensional Navier-Stokes equations (2.3) and (2.4) depending on the Reynolds number
(2.5).

The equations are solved in a cylindrical coordinate system (z, r, θ), with the z-axis
parallel to the free-stream direction, r the distance to the axis and θ the azimuthal angle.
The equations 2.3 and 2.4 are discretized using the spectral–spectral-element discretization
of Ghidersa & Dušek (2000). (Its review is presented in chapter 3.1.) The method combines
the Fourier expansion in the azimuthal direction with a spectral-element discretization in
the axial-radial (z, r)-plane. The cylindrical computational domain of radius R = 8d extends
12d upstream and 25d downstream of the considered objects. The extent of the domain has
many times been tested in previous work. It must account for flow conditions depending on
the considered Reynolds numbers. E.g. for low Reynolds numbers much larger domains must
be used (see e.g. Kotouč et al., 2009a). At Reynolds number exceeding 100 the mentioned
domain dimensions together with no-stress boundary conditions at the outflow and lateral
boundary were, however, always found to be sufficient. This was tested by determining the
instability thresholds. The extent of the domain was shown to guarantee an error smaller
than one percent of the obtained critical Reynolds numbers. The (z − r)-plane is broken up
into spectral elements with N Gauss-Lobatto-Legendre collocation points in each direction
(z, r). An example of the break up of the axial-radial plane into spectral elements is presented
in Figure 4.1. The azimuthal direction is discretized by Fourier expansion. The flow is forced
by a uniform Dirichlet boundary condition at the inflow basis of the cylindrical domain.

3  4  11  
12  

Figure 4.1: Spectral element discretization of the radial-axial plane of the computational
domain of an oblate spheroid of χ=2. The inflow is situated at left. The cylindrical compu-
tational domain of radius R = 8d extends 12d upstream and 25d downstream.

The spectral-element break-up of the (z − r)-plane had to be adapted to the new con-
figuration. Especially for that of the thin disc and for the cylindrical bodies for which the
flow conditions at the body surface differ from that of a sphere. The mesh had to be refined
close to the sharp edges to accurately capture the sharp gradients. The mesh modifications
as compared to the mesh presented in Ghidersa & Dušek (2000) are limited roughly to a
domain of radius 1d. Figure 4.2 presents the details of the mesh in the close surrounding of
an infinitely thin disc. As can be noticed, the mesh is well refined in the vicinity of the tip of
the disc in order to correctly resolve the resulting steep gradients. At the same time, it is to
be noted that the time step, and therefore the simulation cost, depends directly on the size of
the smallest mesh element. They are linked through the Courant–Friedrichs–Lévy condition
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Figure 4.2: The details of the mesh for a disc (χ = ∞). The disc is marked by a thick black
line. The mesh is well refined in the proximity of the disc.

that has to be fulfilled to assure the stability of our time discretization scheme treating the
advective terms explicitly using the third order Adams-Bashforth scheme. Figures 4.3 and
4.4 present the details of the mesh used for flat cylinders of the aspect ratio χ = 6 and 1.
Figure 4.5 shows the details of the mesh used for a thin, while figure 4.6 presents the mesh
used for a thick oblate spheroid of the aspect ratio χ = 6 and 1.25, respectively. Details
of the meshes for intermediate aspect ratios are omitted due to their similarity to the cases
presented above. For each considered configuration several meshes have been developed and
tested for the dependence of the primary and secondary thresholds on the number of col-
location points. A bad mesh yields a solution sensitive to the refinement within spectral
elements. The retained meshes contain 199 – 241 elements. Table 4.1 indicates the number
of spectral elements used to discretize the axial-radial plane of the computational domain for
flat cylinders and oblate spheroids depending on their aspect ratios. Let us mention that the
case of infinite aspect ratio is treated as an object of exactly zero thickness. For this purpose,
a slight adaptation of the code was necessary to uncouple spectral elements separated by the
line representing the solid object (see Figure 4.2).

The numerical tests consisted in determining the influence of the number of the Gauss-
Lobatto-Legendre collocation points N on the first and second bifurcation threshold and
the influence of the number of azimuthal modes m on the secondary instability threshold.
The results for the thin disc are presented in Table 4.2. They show that 6 collocation
points and an azimuthal expansion truncated at m = 4 provide values that are almost
insensitive to further mesh refinement and that agree with bibliographic data. The precise
thresholds of the primary and secondary bifurcations were obtained by post-treating the
transients of the simulations carried out in their proximity. In particular, we extract the
decay/growth rates immediately below/above the threshold and we subsequently estimate
the threshold be the linear interpolation. Alternatively, the growth rates of the primary
bifurcation were computed by solving the eigenvalue problem for the linearized Navier-Stokes
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Figure 4.3: The details of the mesh for a flat cylinder of the aspect ratio (χ = 6). The mesh
is well refined in the proximity of the cylinder.

Figure 4.4: The details of the mesh for a thick flat cylinder of the aspect ratio (χ = 1). The
mesh is refined in the proximity of the corners of the cylinder.
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Figure 4.5: The details of the mesh for a thin oblate spheroid of the aspect ratio (χ = 6).
The mesh is refined close to the equator of the spheroid.

Figure 4.6: The details of the mesh for a thin oblate spheroid of the aspect ratio (χ = 1.25).
The mesh is refined at the surface of the spheroid to resolve the boundary layer and its
detachment.
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χ cylinders oblate spheroids

∞ 249 249
6 231 231
4 223 –
3 227 215

2.25 223 215
2 231 215

1.92 – 215
1.85 – 215
1.8 219 215
1.5 227 199
1.25 – 215
1 215 215

Table 4.1: Number of spectral elements used for the discretization of the axial-radial plane of
the computational domain for flat cylinders and oblate spheroids depending on their aspect
ratios.

N=6 N=8

Re1 117.17 116.92
Re2 125.18 (4) 125.15 (6) 125.12 (4) 125.11 (6)

Table 4.2: Mesh test results for a thin disc. The values in brackets indicate the number of
azimuthal modes of a Fourier expansion. (N stands for the number of collocation points in
spectral elements.) Re1 denotes the critical Reynolds number of the primary bifurcation,
Re2 that of the secondary bifurcation.

equations obtained by limiting simply the azimuthal expansion to the mode m = 1 as
explained in Ghidersa & Dušek (2000). The matrix of the problem is stored in sparse form
and the least stable eigenvalue is determined by the shift-invert Arnoldi method in Matlab.
Both approaches, that of monitoring the transients and the eigenvalue computation, yield
exactly the same result but the eigenvalue computation is much more efficient.

4.3 Results

4.3.1 Transition states

In chapter 1.6 we listed seven states ((a) through (g)) that have been described in the bibliog-
raphy as representing the stages of transition in the wake of thin discs. The transition stages
we observed in the wake of oblate spheroids are very similar. The parametric investigation
presented below (see the two following subsections) shows that the classification of chapter
1.6 is valid for the whole parameter domain investigated for oblate spheroids, namely χ ≥ 1.
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We provide sample illustrations of analogs of the states reported in the bibliography on
cylindrical bodies in the case of oblate spheroids. Converged states obtained after the decay
of transients are represented. The time evolution (including the transients) was monitored
by plotting the three components of the hydrodynamic force and the flow field at several
points of the wake. The lift coefficient is represented in the figures as best illustrating the
nature of the states.

Figure 4.7 presents the iso-contours of the streamwise component of the vorticity for an
oblate spheroid of the aspect ratio χ = 1.25 at the Reynolds number Re = 225. The wake
is steady and planar symmetric. It resembles the steady non-axisymmetric state found for
a sphere, discs and cylinders. The symmetry plane is selected by an initial condition. The
breaking of initial axisymmetry yields a non-zero lift oriented in the plane of symmetry. The
wake is characterized by the presence of the two counter-rotating vortices.

Figure 4.7: Steady asymmetric state (a). Iso-contours of the streamwise component of the
vorticity. Oblate spheroid χ = 1.25, Re = 225.

Similarly as for a disc and thin cylinders, the periodic state without planar symmetry - (b)
was found for thin oblate spheroids. Figure 4.8 presents the iso-contours of the streamwise
component of the vorticity for an oblate spheroid of the aspect ratio χ = 6 and the Reynolds
number Re = 145. The steady asymmetric state is replaced via a Hopf bifurcation, by the
unsteady state without the plane of symmetry. The mean lift lies in the symmetry plane
selected at the first bifurcation but oscillates in the perpendicular plane, as shown in Figure
4.9.

For thick spheroids, we found the periodic state with a planar symmetry - (c) character-
ized by the lift force oscillating with a non-zero mean value in the symmetry plane selected
at the first bifurcation as was observed many times in the sphere wake (Johnson & Patel,
1999) and more recently for a cylinder of aspect ratio χ = 3 by Auguste et al. (2010). The
axial vorticity of the wake of this state is represented in Figure 4.10. Note that the vortical
structures in Figure 4.10 are shifted upward with respect to the flow axis. This yields a
non-zero mean lift in the plane of the figure. The projection of the lift coefficient on the
plane perpendicular to the free stream direction is plotted in Figure 4.11.

Similarly as for thin cylinders, for thin oblate spheroids, we found that the mean lift of
the periodic state without planar symmetry - (c) decreases with the increase of the Reynolds
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Figure 4.8: Periodic state without planar symmetry (b). Iso-contours of the streamwise
component of the vorticity. Oblate spheroid χ = 6, Re = 145.
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Figure 4.9: Periodic state without planar symmetry (b). Projection of the lift coefficient on
the plane perpendicular the the body symmetry axis. The mean lift has a non-zero value.
The lift oscillations are in the plane perpendicular to the symmetry plane selected at the
primary bifurcation. Oblate spheroid χ = 6, Re = 145. The cross marks the point of the
zero lift.

number until the periodic state with a zero mean lift - (d) is reached. The new state has a
plane of symmetry, however, this plane is perpendicular to the symmetry plane selected at
the primary bifurcation. The wake oscillates with a zero mean lift. The axial vorticity of the
wake is visualized in Figure 4.12. The vortical structures are shedded symmetrically below
and above the flow axis represented by the dashed line. The projection of the lift coefficient
on the plane perpendicular to the free stream direction is plotted in Figure 4.13. The
simulation was obtained by letting the state represented in Figure 4.9 evolve from Re = 145
to Re = 183. In figure 4.14 we represent these two states, the periodic state without planar
symmetry at Re = 145 and the periodic state with a zero mean lift at Re = 183 as well as
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Figure 4.10: Periodic state with planar symmetry (c). Iso-contours of the streamwise com-
ponent of the vorticity. Oblate spheroid χ = 1.25, Re = 268.
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Figure 4.11: Periodic state with planar symmetry (c). Projection of the lift coefficient on
the plane perpendicular to the body symmetry axis. The mean lift has a non-zero value.
The symmetry plane selected at the first bifurcation is conserved. Oblate spheroid χ = 1.25,
Re = 268.

the steady asymmetric state at Re = 135. While, the symmetry plane was oriented roughly
-45 degrees with respect to the horizontal axis at Re = 135, its position is given by an angle
of +45 degrees at Re = 183.

We also evidenced the state with non-zero helicity - (e) for oblate spheroids of interme-
diate aspect ratios 1.1 < χ < 2.2. As already mentioned, the state with non-zero helicity
was reported only once as the ’knit-knot’ mode at χ = 3 and Re = 187 in the wake of a
cylinder (Auguste et al., 2010). Many cases of similar states have, however, been evidenced
in the opposing flow past a heated sphere at moderate Richardson numbers by Kotouč et al.
(2009b). As a rule, the domain of stability of purely bi-periodic states is very restricted. The
main period is the ’leading frequency’ of vortex shedding linked to the Hopf bifurcation and
the secondary one the (sometimes very slow) frequency characteristic for the ’migration’ of
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Figure 4.12: Periodic state with a zero mean lift (d). Iso-contours of the streamwise compo-
nent of the vorticity. Oblate spheroid χ = 6, Re = 183.
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Figure 4.13: Periodic state with a zero mean lift (d). Projection of the lift coefficient on
the plane perpendicular to the body symmetry axis. The mean lift has a zero value. The
symmetry plane is perpendicular to the symmetry plane selected at the first bifurcation.
Oblate spheroid χ = 6, Re = 183.

the ellipse representing the projection of the lift onto the plane perpendicular to flow axis at
the scale of one vortex shedding period. The states of non-zero helicity have usually more
complicated quasi-periodic dynamics before becoming chaotic. Very often, at least in the
opposing flow past a sphere, the ellipse is very flat which means that there still remains a
slightly distorted symmetry plane of the wake. The latter either slowly oscillates or rotates
(see Figure 19 of Kotouč et al. (2009b)). In the case of oblate spheroids we evidenced both a
rotating (see Figure 4.16 for χ = 1.25 Re = 283) and oscillating version (see Figure 4.17 for
χ = 1.85 Re = 190) of the state with non-zero net helicity. In the ’rotating’ case the path of
the lift describes an ellipse slowly rotating with constant angular velocity in one direction,
in the ’oscillating’ case, its rotation stops and reverses back so that the ellipse axis oscillates
only within a limited angle. The main difference between figure 19 of Kotouč et al. (2009b)
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Figure 4.14: Projection of the lift coefficient on the plane perpendicular to the body sym-
metry axis for an oblate spheroid of aspect ratio χ = 6 at Re = 135 (red circle), Re = 145
(blue line) and Re = 183 (red line). The cross marks the point of zero lift.

and the present figure 4.16 consists of the non-zero mean lift taken over one short vortex
shedding period. Such a state was also evidenced in opposing flow but only in its rotating
version.

Figure 4.15: State with a non-zero helicity (e). Iso-contours of the streamwise component
of the vorticity. Oblate spheroid χ = 1.25, Re = 283.

The onset of chaos is not always quite clear cut. If states with well defined symmetry, (c)
and (d), become chaotic, the onset of chaos is associated to the loss of this symmetry. The
chaotic state described by Shenoy & Kleinstreuer (2008) arises from state (d) and that of
Auguste et al. (2010) from state (c). Auguste et al. (2010) demonstrate clearly that a quasi-
(multi-) periodicity (with a possible subharmonic lock-in) precedes the onset of chaos. The
same observation has been made for a sphere (Bouchet et al., 2006). The exact limit between
a multi-periodic and a chaotic state is difficult to set, which makes the onset of chaos difficult
to identify in helical states (e) in which the symmetry is already absent. Nevertheless we
observe again a characteristic subharmonic that distorts the traveling ’ellipse’ of the lift path.
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Figure 4.16: State with a non-zero helicity (e). Projection of the lift coefficient on the plane
perpendicular to the body symmetry axis. The lift vector describes a rotating ellipse. Oblate
spheroid χ = 1.25, Re = 283.
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Figure 4.17: State with a non-zero helicity (e). Projection of the lift coefficient on the plane
perpendicular to the body symmetry axis. The lift vector describes an oscillating ellipse.
Oblate spheroid χ = 1.85, Re = 190.

The latter becomes more and more complicated as large time scale modulations set in until
both the time plots and the lift path become completely disorganized. To sum up, unlike
for other thresholds that can be determined potentially with arbitrary precision, the line
delimiting the onset of chaos in the state diagrams presented below is to be understood as
approximate. Figure 4.18 presents a plot of the projection of the lift coefficient on the plane
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perpendicular to the body symmetry axis for the case of an oblate spheroid of the aspect
ratio χ = 1.5 at the Reynolds number Re = 310. It describes a chaotic path.
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Figure 4.18: Chaotic state (g). Projection of the lift coefficient on the plane perpendicular
the the body symmetry axis describing a chaotic path. Oblate spheroid χ = 1.5, Re = 310.

4.3.2 State diagram for oblate spheroids

To obtain the state diagram in the Re − χ parameter plane we investigated around three
hundreds of regimes. The transition scenario for oblate spheroids (see Figure 4.20) can be
roughly divided into a sphere-like and a thin-disc-like one. The difference starts to appear at
the secondary bifurcation, the primary steady non-axisymmetric state (a) being present in
the qualitatively same form for all aspect ratios. The sphere-like and thin-disc-like states are
separated by the sub-domain of states (e) with non-zero helicity extending from the secondary
bifurcation threshold at χ ≈ 2 almost to the sphere case χ = 1. We have taken a special care
to see why the states of non-zero helicity have never been evidenced in the sphere wake. It
appears that the corresponding (e)-sub-domain is cut off between 1/χ = 0.9 and 0.95. The
most striking feature of the thin-disc-like scenario is that the secondary bifurcation leading
to the periodic state without planar symmetry (b) appears to be subcritical. Any subcritical
bifurcation has two characteristic features (Strogatz, 1994, ch. 8.2): a bistability interval
below the linear instability threshold and a super-exponential growth above the threshold.
An example of super-exponential growth is presented in Fig. 4.19. The bi-stability band
is represented by the red filled area in fig. 4.20. The subcriticality seems to be closely
linked to the Hopf bifurcation to the (b)-state. It is, however, difficult to trace it to the
point at which the bifurcation to the non symmetric state meets that to the symmetric one
(slightly above χ = 2 for spheroids and close to χ = 4 for cylinders) because the bi-stability
interval becomes very narrow. At χ = 2.25 it either no longer exists or is narrower than one
Reynolds number unit. The bi-stability interval is represented graphically for several aspect
ratios of spheroids and a cylinder of χ = 6 in Figure 4.21. The amplitudes of oscillations of
the lift coefficient are plotted. A non-zero amplitude is synonymous of the state (b). The
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Figure 4.19: Logarithmic plot of the amplitude of the oscillation of the lift coefficient of a
thin disc (χ = ∞) at Re = 126 (full line) compared to the purely exponential growth (dashed
line obtained by a linear fit of the initial stage of growth). Note the super-exponential growth
in the time interval t ∈ [1950, 2350] time units.

interval of stability of the steady state (a) is represented by dashed lines traced along the
horizontal axis (zero amplitude). The same bi-stability can also clearly be seen in the plot
of the mean lift as a function of the Reynolds number. The curves of the steady lift in
the state (a) do not connect continuously to that of the mean lift in the unsteady periodic
state (b) and the intervals of existence of both states overlap (see Figure 4.22). The limits
of the bistability interval are also provided in Table 4.3. The upper bistability limits were
traced in the following way. First an established steady asymmetric state (a) was computed.
Subsequently we increased the Reynolds number by ∆Re = 1 using the converged steady
state as an initial condition and waited until the transients disappear. Next, the Reynolds
number was incremented and the previous computation was used an initial condition for the
new one. We had to pay attention for the initial condition to be only very weakly perturbed.
We continued the procedure until the oscillations appeared. In the proximity of the threshold
we were able to extract the decay/growth rates. This made it possible to find it precisely
by interpolation. The lower threshold limit was found in a similar way. We decreased the
Reynolds number by one each time using as an initial condition an established oscillating
state until the oscillations disappeared. The values in brackets reported in Table 4.3 are the
last Reynolds number values at which the oscillations were maintained.

4.3.3 State diagram for flat cylinders

The state diagram for flat cylinders of aspect ratio χ ≥ 1 is represented in Figure 4.23. It
can be seen that the intermediate scenario involving states with non-zero helicity does not
extend beyond χ = 1.8 and that the thin-disc-like scenario is limited by an aspect ratio
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Figure 4.20: State diagram for oblate spheroids. A stands for axisymmetric state. The letters
a through g in the legend refer to the same states as in chapter 1.6. The filled triangles (c),
and diamonds (e) represent pre-chaotic states with a subharmonic modulation. They can be
either with non-zero helicity (diamonds) or with planar symmetry (triangles). The narrow
filled band represents the domain of bi-stability at the subcritical bifurcation.

spheroids cylinders

χ Re′2 Re2 χ Re′2 Re2
∞ [124] 125.2 ∞ [124] 125.2
6 [136] 137.7 6 [148] 150.1
3 [154] 155.7 4 [164] 165.6

Table 4.3: Linear stability thresholds Re2 and lower bounds of bi-stability Re′2 (Re′2 < Re2)
of the subcritical Hopf bifurcation for oblate spheroids and flat cylinders. (The values in
brackets are closest integer upper bounds, i.e. the bistability interval starts at least at these
values.)
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Figure 4.21: Oscillation amplitude ∆CL of the lift coefficient as a function of the Reynolds
number for oblate spheroids of χ = ∞, 6, 3 and a flat cylinder of χ = 6 (see the legend). The
stability interval of the steady non-axisymmetric state is represented by dashed lines along
the horizontal axis. Their linear instability thresholds are plotted as empty triangles.
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Figure 4.22: Mean lift as a function of Reynolds number for oblate spheroids of χ = ∞, 6, 3
and a flat cylinder of χ = 6 (see the legend).
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Figure 4.23: State diagram for cylinders. The meaning of the symbols is the same as in the
caption of Figure 4.20. The band of bi-stability at the subcritical bifurcation is still present
for 1/χ ≤ 0.25.

slightly smaller than 4. The first two thresholds, fitted by Fernandes et al. (2007) to straight
lines in terms of 1/χ, are in agreement with our data close to χ = ∞ but deviate from
the thresholds evidenced in Figure 4.23 at χ = 2. However, a closer look on Figure 13 of
Fernandes et al. (2007) shows that the really computed values at χ = 2 lie clearly above the
fit. There is a very good agreement of the thresholds of all described states in the papers
by Fabre et al. (2008) and Meliga et al. (2009). The thresholds of Shenoy & Kleinstreuer
(2008) are systematically above those of Figure 4.23. The difference grows considerably with
the Reynolds number. The comparison of our results with those reported in the literature
is provided in Table 4.4.

4.4 Conclusions

We presented an exhaustive parametric study of the transition scenario in the wake of oblate
spheroids and of flat cylinders placed with their rotation axis parallel to the uniform flow.
We find a significant qualitative similarity between both configurations. At large aspect
ratios (χ > 2.3 for spheroids and χ ≥ 4 for cylinders), the secondary bifurcation giving
rise to a periodic state without planar symmetry is subcritical with a hysteresis interval



4.4. CONCLUSIONS 113

χ Re1 Re2 / St2 Re3 / St3 Re4 / St4 Re5 / St5 Re6
∞ [1] ≈115 ≈121 ≈140

0.119
∞ [2] 116.9 125.3 143.7∗

0.121 0.118
∞ [3] 116.92 ([124],125.2) [142,143] [165,170]

0.120 0.118

10 [4] 135 155 172 280
0.113

10 [3] 129.6 (136.3,138.7) 154.4 188.8
0.115 0.114

3 [5] ≈159.4 ≈179.8 [184,185] [190,191] ≈215 ≈240
0.109

3 [3] 159.65 [181,182] [185,190] [195,198] [220,230] [235,240]
0.112 0.112 0.112 0.111

Table 4.4: Bifurcation thresholds. Numbers in brackets indicate authors: [1] Fabre et al.
(2008), [2] Meliga et al. (2009), [3] present study, [4] Shenoy & Kleinstreuer (2008), [5]
Auguste et al. (2010). ∗ result obtained using asymptotic expansion. At χ = 10, the values of
the present study are obtained by interpolation between χ = ∞ and χ = 6. Re2 is understood
as the critical Reynolds number for the loss of stability of the steady non-axisymmetric state.
Values in italics below the critical Reynolds numbers: Strouhal numbers of the oscillations at
the corresponding threshold. For the quasi-periodic state at χ = 3, Re = Re4 the dominant
frequency is indicated.
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of about two Reynolds number units. For small aspect ratios (χ ≥ 1 are considered), the
sphere-like scenario is recovered only at aspect ratios very close to one for spheroids, while
for cylindrical bodies the same holds for χ ≤ 1.7. For intermediate aspect ratios, a domain
of states with non-zero net helicity separates states typical for the sphere wake from those
of an infinitely thin disc. The presented state diagrams sum up the stability domains of
all observed transitional states and may thus serve as a tool for determining the expected
asymptotic state for any numerical or experimental configuration involving oblate spheroids
and flat cylinders. Beyond this practical aspect they may provide a basis for theoretical
reflection that has already been developed for thin discs in the papers by Fabre et al. (2008)
and Meliga et al. (2009). The subcriticality of the secondary Hopf bifurcation can to some
extend be neglected but, if it is to be taken into account, the weakly non-linear models must
be developed to a higher order. It is very likely unobservable experimentally. But, as we
argue in the next chapter, the whole ’thin-disc-like’ scenario is difficult, if not impossible, to
evidence experimentally. Finally, the detailed knowledge of the transition scenario of fixed
objects provides an indispensable reference for simulations of freely falling discs. This topic
has gained a significant attention of the scientific community since the experimental paper
by Field et al. (1997). It will be considered in next chapters.

The results of this chapter have been published in the paper by Chrust et al. (2010).



Chapter 5

Effect of the inclination on the

transition scenario in the wake of

fixed discs and flat cylinders

5.1 Existing background

It is remarkable that the transition in the wakes of a fixed disc and thin flat cylinder of
the aspect ratio χ = 10, placed in a uniform flow, differs significantly in Direct Numerical
Simulations (DNS) of Fabre et al. (2008) and Shenoy & Kleinstreuer (2008), respectively,
from that observed for a sphere (see Johnson & Patel, 1999). The results of the previous
chapter (see also Chrust et al., 2010) revealed that the transition scenario of a thin disc applies
to flat cylinders of the aspect ratio χ ≥ 4. However, at the same time, the experimental
results obtained by Szaltys et al. (2011) for a fixed flat cylinder of the aspect ratio χ = 6,
which we shall call in what follows a flat cylinder did not confirm the numerical predictions
and showed rather a transition scenario qualitatively similar to that observed for a sphere.

Direct Numerical Simulation of Chrust et al. (2010) carried out for a flat cylinder of the
aspect ratio χ = 6 showed that the initial axisymmetric state is replaced by a steady planar
symmetric state via a regular bifurcation in the m = 1 azimuthal subspace at the Reynolds
number ReInum = 137.86. The orientation of the symmetry plane is arbitrary and is selected
by the initial conditions. The flow is characterized by the appearance of two counter-rotating
vortices. The breaking of axisymmetry yields a steady lift oriented in the symmetry plane.
This state is denoted as SS (steady state) by Fabre et al. (2008) and Meliga et al. (2009)
and ’steady asymmetric’ by Shenoy & Kleinstreuer (2008). The threshold of the primary
bifurcation has been given by Fernandes et al. (2007) as a function of χ for cylinders of finite
aspect ratio. Szaltys et al. (2011) found experimentally the threshold for a flat cylinder of
the aspect ratio χ = 6 slightly lower than that predicted by DNS - at the Reynolds number
ReIexp = 125.

While the steady asymmetric state is found both experimentally and numerically for
the case of a thin flat cylinder, the secondary bifurcation, albeit of the Hopf type in the
two cases, has been found to lead to two qualitatively different states. DNS of Chrust

115
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et al. (2010) revealed a specific periodic state without planar symmetry, which was reported
for the first time for a thin disc by Fabre et al. (2008) and a cylinder of the aspect ratio
χ = 10 by Shenoy & Kleinstreuer (2008). This state is characterized by a ’kinking of trailing
vortices’ past the body generating an oscillating component of the lift. While the mean lift
lies in the symmetry plane selected at the primary bifurcation, the oscillating component is
perpendicular. As a consequence, it has been called RSB (reflectional symmetry breaking) by
Fabre et al. (2008), MMπ (mixed mode with phase π) state by Meliga et al. (2009), ’steady
3D periodic with regular rotation of the separation region’ by Shenoy & Kleinstreuer (2008)
or ’yin-yang’ by Auguste et al. (2010). For a thin disc, this state appears at ReIInum = 125.18
(see Chrust et al. (2010)) and persists up to Re3num ≈ 143. Figure 5.1 represents this state
for the case of a disc at Re = 135. The plot of the projection of the lift coefficient on the
plane perpendicular to the free stream direction at the same Reynolds number is shown in
Figure 5.2. For the mentioned flat cylinder (χ = 6) the bifurcation threshold was found at
ReIInum = 150.0. Chrust et al. (2010) reported the Strouhal number, St = fd/U , where f
is the characteristic frequency and U the free stream velocity, at the onset of oscillations
StIInum = 0.112. On the other side, Szaltys et al. (2011) evidenced in experiments that the
Hopf bifurcation leads to a periodic state with planar symmetry observed many times in the
wake of a sphere (see e.g. Johnson & Patel, 1999). They found the Strouhal number at the
onset of oscillations of StIIexp = 0.16. In this state, the lift has a non-zero mean value and
oscillates in the symmetry plane. It is the RSP state of Fabre et al. (2008), MM0 state of
Meliga et al. (2009) or ’zig-zig’ state of Auguste et al. (2010). The reflectional symmetry
preserving state observed experimentally for a cylinder χ = 6 is presented in Figure 5.3.

Figure 5.1: Thin disc perpendicular to the free stream direction, χ = ∞, Re = 135. Periodic
state without planar symmetry. Iso-contours of the streamwise component of vorticity.

Direct Numerical Simulation (Chrust et al., 2010) for a thin cylinder predict, upon a
further increase of the Reynolds number, the appearance of the periodic state with zero mean
lift, which is not present in the scenario of a sphere, nor in the scenario found experimentally
for this configuration by Szaltys et al. (2011). The mean value of the lift in periodic state
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Figure 5.2: Thin disc perpendicular to the free stream direction, χ = ∞, Re = 135. Periodic
state without planar symmetry. Projection of the lift coefficient on the plane perpendicular
to the body symmetry axis. The mean lift has a non-zero value. The lift oscillations are
perpendicular to the symmetry plane selected at the primary bifurcation.

Figure 5.3: Flat cylinder χ = 6. Periodic state with planar symmetry and non-zero mean lift
observed experimentally. The wake is visualized using a fluoresceine dye. Left: side view,
right: top view.

without planar symmetry progressively decreases to finally disappear. The wake recovers the
symmetry plane, that is oriented perpendicularly to that chosen at the primary bifurcation.
This periodic state with a zero mean lift has already been observed for a disc and a cylinder of
the aspect ratio χ = 10 by Fabre et al. (2008) and Shenoy & Kleinstreuer (2008), respectively.
This state is called SW (standing wave) mode (Fabre et al., 2008; Meliga et al., 2009) or
’unsteady with plane of symmetry and zero lift force’ (Shenoy & Kleinstreuer, 2008). Chrust
et al. (2010) found its threshold (for the mentioned flat cylinder of aspect ration 6) at the
Reynolds number Re3num = 166.0.

Szaltys et al. (2011) observed the periodic state with a non-zero mean lift up to a Reynolds
number Reqpexp = 185, above which a second frequency equal to about a half of the base
frequency appeared. They noticed a regular hairpin shedding with irregularities midway
between hairpin heads. For the case of a disc, Fabre et al. (2008) demonstrated that the
transition to chaos is preceded by a quasi-periodicity characterized by the presence of a
slower frequency close to 1/3 of the ’leading frequency’ of the previous regimes. Auguste
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et al. (2010) showed clearly that a quasi- (multi-) periodicity (with a possible subharmonic
lock-in) precedes the onset of chaos for a case of a flat cylinder χ = 3. Identical observation
has been made for a sphere by Bouchet et al. (2006). The exact limit between a multi-
periodic and a chaotic state is difficult to set. Chrust et al. (2010) provide for a cylinder of
the aspect ratio χ = 6 approximate threshold of the appearance of chaos at the Reynolds
number Rechaosnum ≈ 200.

The purpose of this chapter is to present a joint experimental and numerical study that
shall elucidate the reasons of the disagreement in the transition scenario predicted by DNS
and observed experimentally for a flat cylinder χ = 6. We presume that the impossibility
to observe experimentally the periodic state without planar symmetry, as evidenced by
DNS, stems from the difficulty of realization of a perfectly axisymmetric configuration in
experiments. In other words, we suspect that the holding of the cylinder artificially maintains
a given plane of symmetry of the wake. It is to be noted, that the cylinder axis is never
perfectly parallel to the free stream direction, as it is the case in numerical simulations and
the fixing tube enhances this effect. Therefore we shall study the influence of the inclination
angle on the observed transition scenario. According to our knowledge, such study has never
been done before. Two cases are studied numerically: a disc χ = ∞ and a flat cylinder
χ = 6. In the experiments, we consider only the case of the cylinder of aspect ratio χ = 6.

A similar configuration has already been investigated experimentally by Calvert (1967)
who studied thin discs inclined to the flow, so that their symmetry axis made an angle
between 10o and 50o with the free stream direction. However, the considered Reynolds num-
bers between 500 and 1000 are significantly higher than those corresponding to transitional
regimes, which are of our interest. He observed strong vortex shedding at angles of incidence
exceeding 20o. As the angle was increased, the vortex shedding frequency rose. The vortices
were shed always from the same location on the disc - the trailing edge, and their orientation
did not change. This was not the case for a disc placed perpendicularly, for which the flow
was already turbulent.

The experimental part of this work was carried out at the École Supérieure de Physique
et de Chimie Industrielles (ESPCI) in the Laboratoire de Physique et Mécanique des Milieux
Hétérogènes (PMMH) in Paris by Lukasz Klotz and Tomasz Bobiński under the supervision
of Sophie Goujon-Durand and José Eduardo Wesfreid. The origins of this cooperation date
back to my internship at ESPCI that I did during my master studies. My internship was
dedicated to development of the algorithm of the decomposition of the streamwise component
of the vorticity field obtained from the Particle Image Velocimetry (PIV) measurements
into Fourier modes. The analysis of amplitudes of Fourier modes proved to be useful in
determining the transition thresholds and, moreover, shed light on the transition scenarios
of a sphere and of a flat cylinder as demonstrated by Szaltys et al. (2011). At the same time,
our study of the thin cylinder revealed the differences in the transition scenario compared
to the one predicted by DNS. I am thankful to Sophie Goujon-Durand and José Eduardo
Wesfreid for inviting me several times to Paris to carry out this joint work.
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5.2 Numerical implementation

We consider fixed axisymmetric flat cylinders and a thin disc with their axis of revolution
inclined by an arbitrary angle φ with respect to the direction of the asymptotic uniform flow.
The flow of an incompressible fluid past these bodies is governed by the same Navier Stokes
equations (2.3) and (2.4) non-dimensionalized with respect to the inflow velocity U and the
diameter d.

The Reynolds number Re is defined as Re = Ud/ν. The second dimensionless parameter,
the aspect ratio introduced in the previous section, completely defines the geometry of the
cylinder. We closely adapt the numerical method used by Ghidersa & Dušek (2000) for the
case of a sphere and, more recently, by Chrust et al. (2010) for the study of the transition in
the wake of fixed flat cylinders and oblate spheroids placed with their rotation axis parallel
to the uniform flow.

In the previous chapter the geometrical configuration was axisymmetric which made it
possible to use the code of Ghidersa & Dušek (2000) and Jenny & Dušek (2004) without
modification. The inclination of the cylinder with respect to the uniform flow direction
breaks, however, the axisymmetry of the configuration. The cylindrical domain is therefore
decomposed into a spherical sub-domain with center O and radius Rs (d/2 < Rs < Rc)
containing the body and the remaining volume of the cylinder and the domain decomposition
described in chapter 3, albeit in its static version, is used. The new version of the code was
tested in the intended configuration in several ways described in the next sub-sections.

5.2.1 Test of the influence of the spherical function expansion order ℓmax

and of the radius of the spherical sub-domain Rs on the thresholds in

the transition of a fixed disc and thick cylinder χ = 1 perpendicular

to the flow

Two new numerical parameters arise from the domain decomposition, namely, the radius of
the spherical sub-domain Rs and the order of expansion in spherical harmonic functions on
the interface ℓmax. The later is responsible for the accuracy of the connection at the spherical
interface. We closely adapt the mesh used for an infinitely thin disc by Chrust et al. (2010)
limiting the modifications to a relatively small region in the proximity of the disc. The new
mesh for a thin disc and its details in the proximity of the body are presented in Figures 5.4
and 5.5, respectively. Figure 5.6 shows the details of the mesh for the flat cylinder χ = 6,
that was used in the present study. The mesh for a thick cylinder χ = 1 is essentially the
same as the one presented in chapter 4.2 (see Figure 4.4). Its modification was limited to
the addition of the concentric layers of elements in the proximity of the object. Note the
thick dark line that marks the interface between the two sub-domains. In the paper Chrust
et al. (2010) we tested the meshes for the dependence on the size of the domain, on the
breakup into spectral elements, on the number of collocation points per spatial direction and
on the truncation of the azimuthal Fourier expansion. It was demonstrated that the choice
of the following parameters: number of spectral elements Nel = 256 for a thin disc and
Nel = 230 for a thick cylinder χ = 1, number of Gauss-Lobatto-Legendre collocation points
in each direction (z, r) N = 6, number of azimuthal Fourier modes m = 4 and upstream,
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Figure 5.4: Thin disc χ = ∞. Spectral element discretization of the radial-axial plane of the
computational domain. The inflow is situated on the left. The cylindrical computational
domain of radius R = 8d extends 12d upstream and 25d downstream. The mesh contains
Nel = 278 spectral elements. The interface at Rs = d is marked by a thick line.

Figure 5.5: Thin disc χ = ∞. Details of the spectral element discretization of the radial-axial
plane of the computational domain. The interface at Rs = d is marked by a thick line.

downstream extension as well as the radius of the cylindrical domain equal to Lu = 12d,
Ld = 25d and Rc = 8d, respectively, yield a precision better than 1% in the determination
of the critical Reynolds numbers of the first two bifurcations.

Our present concern is to show that the spherical interface reconnecting the two sub-
domains does not perturb the computation. Therefore, we tested the influence of the trun-
cation of the spherical harmonic function expansion order ℓmax and of the radius of the
spherical sub-domain on the thresholds of the primary, regular and of the secondary, Hopf
bifurcations in the case of a thin disc and a thick cylinder χ = 1. The results found with the
domain decomposition were compared to those obtained with the original code used in the
paper Chrust et al. (2010) already in chapter 3. Tables 3.3 and 3.4 summarize the primary
bifurcation thresholds for a thin disc χ = ∞ and for a thick cylinder χ = 1, respectively. It
can be inferred that the truncation of the expansion into spherical functions at ℓmax = 15
is already sufficient to obtain the precision better than 1% for the thin disc. The thresholds
depend only very weakly on the radius of the spherical sub-domain Rs. This sensitivity to
the radius can be explained very likely by the presence of localized flow structures in the
vicinity of the body. At ℓmax = 15, this variation is much stronger for the thick cylinder the
surface of which is closer to the spherical interface. Nevertheless, with moderately increased
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Figure 5.6: Cylinder χ = 1. Details of the spectral element discretization of the radial-axial
plane of the computational domain. The mesh contains Nel = 252 spectral elements. The
interface at Rs = d is marked by a thick line.

ℓmax, virtually the same threshold is obtained independently of the spherical sub-domain
radius. For the disc, the obtained critical Reynolds number lies within 0.03% from the value
obtained in a computation without domain decomposition. For the thick cylinder of aspect
ratio χ = 1 the largest discrepancy for ℓmax = 25 does not exceed 0.6%. The agreement is
even better for the secondary bifurcation threshold.

5.2.2 Fixed disc inclined by 30 degrees with respect to the flow direction

As a next test the configuration of the fixed disc inclined by 30 degrees with respect to
the flow direction described in section 3.12.2 was considered. We computed the flow field
above the Hopf bifurcation threshold at Re = 120 and we investigated the sensitivity of the
decay rate just below the threshold at Re = 105, the critical Reynolds number being 110.
The results showed that the numerical interface et Rs = 1 is invisible in flow visualizations
at Re = 120 and that a truncation of the spherical function decomposition at interface at
ℓmax = 15 assures a precision better than 1% in the determination of the critical Reynolds
number.

5.3 Experimental setup

The experiments were carried out in a low velocity horizontal water channel with a square
test cross-section 100x100 [mm] and a length of 860 [mm]. A typical free stream velocity
ranged from 4 to 40 [mm/s], which in the case of the considered cylinder, corresponded
to the Reynolds number range 50 − 500 (for ambient temperature T=20 [0C]). The precise
calibration of the flow meter allowed for the determination of the Reynolds number with a
precision of ±5%. The investigated cylinder had a diameter of d = 12 [mm] and a thickness
of h = 2 [mm] resulting in the aspect ratio of χ = 6. It was mounted in the central part
of the test section cross section by rigid tubes that supplied fluoresceine dye used for the
flow visualization. The dye was ejected through a horizontal slit on the downstream face of
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Figure 5.7: Holding details. Cylinder diameter d = 12 [mm], thickness h = 2 [mm]. The
arrows indicate the possible adjustment directions of the holding tubes. The cylinder is
inclined to the flow by the angle φ. The length of the vertical tube was adjusted to keep the
cylinder in the middle of the cross section of the test section for all tested inclination angles.

the cylinder. The blockage ratio (defined as area of the cross-section of the cylinder/area
of the cross-section of the channel) was below Br=1.2% in the perpendicular configuration.
To account for the inclination of the cylinder, the rigid tubes were bent appropriately. The
maximum inclination of 150 was allowed by the used holding set-up. The details of the
mounting are presented in Figure 5.7. The velocity measurements were carried out using
Particle Image Velocimetry.

5.4 Results

We have carried out a series of Direct Numerical Simulations for a thin disc χ = ∞ and
a flat cylinder χ = 6 for the Reynolds numbers corresponding to the transitional regimes.
We investigated the influence of the inclination φ (rotation around x-axis), measured as the
angle between the axis of symmetry of the body and the uniform flow direction, on the
transition scenario and bifurcation thresholds. We considered the angles of inclination in
the range 0o − 50o for a disc and 0o − 60o for a thin cylinder. Simultaneously we carried
out experiments for a flat cylinder χ = 6 and angles of inclination going from 0o to 15o

degrees. In the next subsection we present the numerical results obtained for a thin disc.
Subsequently, we compare the numerical and experimental results found for a thin cylinder.

For the thin disc we investigated the effect of a slight inclination on the scenario observed
for a disc placed exactly perpendicularly to the flow direction.
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5.4.1 Infinitely thin disc very slightly inclined with respect to the free

stream direction

We have mentioned that the intriguing scenario predicted by direct numerical simulation
has never been observed experimentally. It is thus, in particular, interest to consider very
small inclination angles and see if there is a the critical inclination angle φ∗ above which the
the periodic state without planar symmetry, observed for the disc perpendicular to the free
stream direction (see Figs. 5.1 and 5.2), is suppressed.

We examined small angles of inclination of 0.0057o, 0.057o, 0.57o (1e − 04, 1e − 03 and
1e − 02 radian, respectively), 2o and 4o. We chose to rotate the disc about the x-axis.
Even the smallest inclination results in a non-zero lift but it does not mean that the effects
comparable to those of the primary (regular) bifurcation disappear. The inclination removes
only the arbitrariness of the selection of the symmetry plane of the resulting flow. The
instability enhances the lift and makes it approach progressively the same curve as for the
perfectly axisymmetric geometry. In our configuration the lift was positive in the direction of
y-axis for Reynolds numbers below the threshold of unsteadiness. In figure 5.8 we represent
the values of the lift coefficients obtained at 4 values of the Reynolds number for three small
values of inclination angle close to the first two critical Reynolds numbers corresponding
of a disc placed exactly perpendicularly to the flow direction. At a Re = 115 < Re1 the
lift is essentially due to the inclination as can be from the proportionality of the lift to
the inclination angle. This contrasts with what happens at Re = 125 when all the three
values are practically superimposed on that corresponding to φ = 0o. The lift is virtually
independent of the (small) inclination. (At the Re = 120 we obtained the saturated value
only at χ = 1e − 02 radian.) The same is true at Re = 135 for the mean value of the lift of
the oscillating state (only one converged state was obtained).

It can be considered that if the inclination is sufficiently small the effects of the regular
bifurcation are dominant and the role of the inclination is reduced to the selection of the
symmetry plane. The question is what happens at the onset of the Hopf bifurcation. As
will be seen in the next section, for larger angles (φ ≥ 4o) the oscillating state keeps the
planar symmetry defined by the inclination. The mean lift (due mainly to the inclination
itself) is non-zero and the lift oscillates in the symmetry plane as is the case in what we
called ’periodic oscillating state with planar symmetry and non-zero mean lift’ in the case of
the fixed sphere wake. How does the ’periodic state without planar symmetry’ characteristic
for the disc placed perpendicularly to the flow become ’periodic with planar symmetry and
non-zero mean lift’ when the disc is slightly inclined? The answer is given by Figures 5.9 and
5.10 obtained for the smallest considered inclination of 0.0001 radian (0.006o) by running a
simulation at Re = 135 starting from the initial condition corresponding to the steady state
at Re = 125 (blue circle at Re = 125 in Figure 5.8). The most striking feature is that, in spite
of the tiny value of the inclination angle, the oscillations set in in the symmetry plane (along
the y−axis) which contrasts with the case of an exactly zero inclination, when the lift starts
immediately to oscillate perpendicularly to its steady value. The symmetry plane seems to
be sufficiently stable to allow the Hopf bifurcation to saturate. This occurs after about 200
time units. At the same time the oscillations wipe out, through non-linear interaction, the
initially non-zero mean lift. The state becomes periodic with planar symmetry and zero
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Figure 5.8: Lift coefficient for varying inclination close to the onset of instabilities. Mean
value above the threshold of unsteadiness. (Critical Reynolds numbers of the first two
bifurcations in the wake of a perpendicularly placed disc: Re1 = 117, Re2 = 125.)

mean lift. However, as the oscillations develop, the symmetry of the state becomes unstable
as can be seen on the Cx-component of the lift represented in the right Figure 5.9. The
growth rate in the x-direction is clearly driven by the amplitude of the oscillating mode as
can be seen from the fact that it becomes constant at the same time as the amplitude of
Cy. Due to too perfect initial symmetry (initial value of Cx of the order of 10−14) it was
time consuming to obtain a saturation of the amplification of the Cx component. It has,
nevertheless been approximately obtained. The plane of the oscillations remains conserved
but it is progressively shifted in the direction of the x axis which yields a non-zero mean
value of Cx. The finally obtained state is thus again without symmetry and with a non-zero
mean lift as it is the case for a perfectly perpendicularly placed disc.

The instability of the symmetric state was monitored by evaluating the growth rate of
the x component of the lift as a function of the inclination angle (without attempting to
reach the saturation). The growth rate only slightly decreases from 0.023 at 10−4 (0.006o)
radian to 0.022 at 10−2 radian (0.6o). At 2o we could not yet decide whether a growth
was present but at 4o the x-component of the lift remained of the order of 10−14 while the
oscillations of the y component had reached saturation. It can be admitted that starting
form an inclination of 4o the Hopf bifurcation conserves the symmetry plane and a state
with non-zero mean lift and oscillations in the symmetry plane arises.

The scenario of exactly perpendicular disc being limited to small inclinations it is not
surprising that it can hardly be confirmed in experiments where the disc holding modifies
the flow and the disc inclination is not controlled with enough accuracy.
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Figure 5.9: Thin disc inclined by φ = 0.006o at Re = 135. y- (left figure) and x- (right
figure) component of the lift coefficient as a function of time. Note the linear scale of the
left figure and the semi-logarithmic scale of the right figure.
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Figure 5.10: Thin disc inclined by φ = 0.006o at Re = 135. Projection of the lift coefficient
on the plane perpendicular to the free stream direction. The oscillations leave the initial
symmetry plane and settle with a mean value perpendicular to the initial steady value. (The
x-component is plotted along the vertical axis.)

5.4.2 Infinitely thin disc inclined with respect to the free stream direction

by more than 4o.

As we have already seen, starting form an inclination of about 4 degrees the symmetry
with respect to the plane selected by the direction of the inclination is conserved. The
first bifurcation is of the Hopf type. The transition is from the steady planar symmetric
state, represented in Figure 5.11 for a disc inclined by φ = 4o, characterized by two counter-
rotating vortices, to the periodic state with a non-zero mean lift conserving the initial plane
of symmetry. The vorticity in the wake in this state is represented for the same angle of
inclination of the disc in Figure 5.12. The inclination influences the critical Reynolds number
of the onset of oscillations.

The threshold of the Hopf bifurcation is not a monotonic function of the inclination angle
of the disc. Figure 5.13 represents the instability threshold as a function of φ. At first, the
threshold decreases with the inclination angle before reaching a minimum for φmin ≈ 20o.
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Figure 5.11: Disc inclined with respect to the free stream direction by φ = 4o at Re = 120.
Axial vorticity iso-surfaces at levels 0.2. Steady asymmetric state.

Figure 5.12: Disc inclined to the free stream direction by φ = 4o at Re = 135. Axial
vorticity iso-surfaces at levels 0.1. Periodic state with a non-zero mean lift. The initial plane
of symmetry is conserved. The first bifurcation is of the Hopf type.
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Figure 5.13: Thin disc χ = ∞. Threshold of the Hopf instability as a function of the
inclination angle φ. Left figure: Re = Ud/ν, right figure: Re = Ud cos(φ)/ν.

Afterwords, the threshold starts to grow rapidly. The growth is partly due to the definition
of the Reynolds, which does not account for the decreasing perpendicular cross section of
the disc. Nevertheless a qualitatively similar curve is obtained if the Reynolds is based on
d cos(φ).

Table 5.1 reports the values of the Strouhal number at the threshold of unsteadiness.
In calculation of the Strouhal numbers the diameter of the disc was chosen as the charac-
teristic length scale (not its projection on the plane perpendicular to the flow). As can be
inferred from the table, the Strouhal number at the threshold of instability triggering the
periodic state after initial decrease observed for φ = 10o, grows with the inclination angle.
In agreement with the observation of Calvert (1967), we noticed the increase of the strength
of the vortex structures (level of vorticity) with the inclination φ. The Strouhal number
varies significantly only in the close proximity of the onset of unsteadiness (see Figure 5.14).
We therefore compare the Strouhal numbers obtained relatively far from the threshold, at
Re = 250, for inclination angles varying from 0o to 40o with the values obtained by Calvert
(1967) at Reynolds numbers between 3500 and 5000, assuming that the Strouhal number no
longer varies in the turbulent domain. As can be seen in Figure 5.15, our data is in good
agreement with the experimental results.

The periodic state with planar symmetry was observed to persist upon the increase of
the Reynolds number for all considered angles of inclination φ > φ∗ until the transition to
chaos.

As already mentioned in the caption of Figure 5.14, we evidenced chaotic states for disc
inclinations of 10o and 20o starting from Re = 250. As can be seen in Figure 5.16 the
transition to chaos breaks both the periodicity and the planar symmetry of the wake.
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Figure 5.14: Strouhal number as a function of the Reynolds number. For Re > 150 the
Strouhal number varies slowly with the Reynolds number. For φ = 10o and 20o the flow is
already chaotic and Re = 250. The represented Strouhal number corresponds to one of the
two dominant peaks of the frequency spectrum.
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Figure 5.15: Strouhal number as a function of the inclination angle φ. Comparison of
numerical results obtained at Re = 250 with the values given by Calvert (1967) obtained at
Reynolds numbers between 3500 and 5000.
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φ [o] Recrit St

0 125.2 0.120
10 116.1 0.113
20 102.6 0.132
30 110.0 0.171
40 136.9 0.239
50 205.4 0.352

Table 5.1: Critical Reynolds and Strouhal number at the onset of the periodic state as a
function of the inclination angle φ.
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Figure 5.16: Thin disc χ = ∞ inclined by φ = 10o. Chaotic state at Re = 300. Left figure:
x- component of the lift coefficient as a function of time, right: x versus y- component of the
lift coefficient.

5.4.3 Flat cylinder of the aspect ratio χ = 6 inclined to the free stream

direction

The thresholds of the Hopf bifurcation were determined by experimental measurement in the
wake of a flat cylinder χ = 6. The angle of inclination of the cylinder, measured as the angle
between its axis of symmetry and the free stream direction, was varied from 0o to 15o. We
estimate the precision with which we could set the inclination of the cylinder to be ±2o. At
the same time, these thresholds were computed by direct numerical simulation of a cylinder
of the same aspect ratio for an extended range of inclinations going from 0o to 60o in the
same as for the disc in the previous section.

The transition scenario, found numerically (see Chrust et al., 2010) and experimentally
(see Szaltys et al., 2011), for the considered flat cylinder placed perpendicularly in a uniform
flow was discussed in chapter 5.1. It is qualitatively the same as for a thin disc. Theoretically,
the symmetry plane selected by the first bifurcation in numerical simulations is arbitrary and
depends only on initial conditions. This is not the case in experiments. The mounting (see
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Figure 5.17: Flat cylinder χ = 6. Threshold of the Hopf bifurcation as a function of the
inclination angle φ. (Re = Ud/ν.)

Figure 5.7) selects the symmetry plane. In our case, the tubes holding the cylinder lay in a
vertical plane aligned with the free stream direction. Their influence forced the symmetry
plane to lie in this plane (see Figure 5.3). Gumowski et al. (2008) demonstrated for the
case of a sphere, that if the plane defined by the holding is not aligned with the free stream
direction, the symmetry plane selected at the primary bifurcation is distorted. Moreover,
this distortion is conserved by the secondary Hopf bifurcation. Szaltys et al. (2011) found
that the same occurs for the flat cylinder. The orientation of the symmetry plane selected
by the mounting remains unaltered until the transition to chaos.

The thresholds of the Hopf bifurcation obtained numerically and experimentally are
compared in Figure 5.17. In experiments, the thresholds were found basing on the fluorescein
dye visualization. The results are in acceptable agreement, namely, at φ = 15o the agreement
is very good. As the angle of inclination is increased, the intensity of the vortex shedding
rose facilitating the determination of the thresholds. For the case of a cylinder perpendicular
to the free stream direction, the onset of visible shedding of vortex structures was preceded
by the ondulation of the two counter-rotating vortices. The difference with the numerical
result might stem from the fact that it was difficult to precisely capture their onset. Also the
stabilizing effect of the holding was probably stronger. We could not perform experiments
for inclination angles exceeding 15o due the limitations of our holding. However, as can be
inferred from the numerical results, thresholds of the Hopf bifurcation follow a similar trend
as for thin discs. The threshold initially decreases and reaches the minimum for φmin ≈ 20o

before it starts to grow rapidly. The Strouhal numbers found numerically at the instability
thresholds are given, along with the critical Reynolds numbers, in Table 5.2.
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φ [o] Recrit St Stexp

0 150.0 0.120 0.158
5 – – 0.177
10 143.5 0.117 0.179
15 – – 0.172
20 136.5 0.130 –
30 140.0 0.154 –
40 158.9 0.205 –

Table 5.2: Strouhal number at the onset Recrit of the periodic state as a function of the
inclination angle φ for a cylinder of the aspect ratio χ = 6. St indicate numerical and Stexp

experimental results, respectively. Strouhal numbers found experimentally are higher than
those predicted by our DNS. Similar overestimation of Strouhal numbers was observed for a
sphere. It is related to the blockage effect of the water tunnel.

5.5 Conclusions

We have demonstrated that the transition scenario predicted by DNS for flat cylinders of
aspect ratio χ ≥ 4 is purely theoretical. As evidenced for the case of a disc, a slight
disturbance of the axisymmetry of the problem, results in a significant change. Above the
Hopf bifurcation threshold, the inclination of the disc does not select the direction of the
mean lift but of the plane of its oscillations. The long transients of the phenomenon indicate
a weak stability of the resulting state making it unlikely to resist experimental disturbances.
Moreover, for the inclination angles exceeding about 4 degrees, the periodic state without
planar symmetry, characteristic for a disc placed perpendicularly to the free stream direction,
is suppressed even in numerical simulations. It is replaced by a periodic state with a planar
symmetry qualitatively similar to the one observed in the wake of a sphere. We thus infer
that the impossibility to observe experimentally the theoretical scenario for the considered
geometries (see Fabre et al., 2008) stems from the influence of the holding and of a small
uncontrolled inclination of the cylinder in the realized experiments. Their effect is to force
the symmetry plane of the wake for all states present in the transition scenario until the
appearance of chaos.

At the same time, we investigated the effect of the inclination on the Hopf bifurcation
threshold in the wake of a disc and a cylinder of the aspect ratio χ = 6. Our numerical and
experimental results are in good agreement for an inclined flat cylinder. The dependence
of the transition thresholds on the Reynolds number is a non-monotonic function of the
inclination angle. Both for a disc and a flat cylinder, a small inclination initially promotes
the transition to the periodic state. However, beyond a certain inclination, which for both
configurations was found to be the same, φ∗ ≈ 20o the trend reverses as the inclination tends
to have a stabilizing effect.



132 CHAPTER 5. INCLINED DISCS AND FLAT CYLINDERS



Chapter 6

Numerical simulation of the

dynamics of freely moving discs

The content of this chapter was submitted to the Physical Review Letters.

6.1 Present status of knowledge

An efficient numerical method has allowed recently Jenny & Dušek (2004) to identify the
complete scenario of the transition of freely falling spherical particles. It was demonstrated,
that a sequence of well defined ordered states, depending on two dimensionless parameters,
the Galileo number (see Eq. 2.24) and the solid to fluid density ratio, and changing through
bifurcations, lead to deterministic chaos. The predicted scenario was confirmed to a large
extent by experiments of Veldhuis & Biesheuvel (2007), who evidenced qualitatively similar
transitional regimes (see chapter 1.7). In contrast with spherical particles, few numerical
results exist for non-spherical bodies. In this chapter, we focus our attention on freely falling
infinitely thin discs (we recall that a disc is defined as a flat cylinder of infinite aspect ratio
χ = ∞). Examples of motion of such bodies can be found in a daily life. Everybody
has observed the fluttering or tumbling motion of confetti falling in the air or of a coin
dropped in water. It is intriguing in its own right, but also important for the understanding
of particle dispersion in many practical applications. Field et al. (1997) interpreted the
variety of motion regimes of falling discs, observed in their own and earlier (Willmarth et al.,
1964; Stringham et al., 1969) experiments, from the viewpoint of the theory of deterministic
chaos (Strogatz, 1994). They identified four distinct states depending on two dimensionless
parameters, the non-dimensionalized moment of inertia I∗ (see Eq. 2.28) and the Reynolds
number based on the mean vertical velocity and presented a state diagram identifying the
stability regions of these states in the Re−I∗ parameter plane. For low Reynolds numbers the
fall was found to be steady and vertical. The wake remained axisymmetric. Depending on
I∗, for small values, a periodic fluttering or, for higher, a tumbling state was observed. Both
were found to be planar. The fluttering state was characterized by the authors as periodic
oscillations, with the disc inclination angle φ, defined as an angle between its normal and the
vertical direction, never exceeding π/2. The tumbling motion was described as a side-way
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drifting of a disc rotating in a given direction. The authors couldn’t determine if this state is
periodic. The two mentioned states were found to be separated by a region of ’chaotic’ states
characterized by an intermittent switching between flutter and tumbling. More recently,
Fernandes et al. (2007) found experimentally small amplitude states, that were described
later by Ern et al. (2012) as ”possibly irregular or even chaotic”. The observed amplitudes
were so small that, initially, these states were considered as vertical (see Fernandes et al.,
2007). The more recent identification as chaotic states stems from the results of Direct
Numerical Simulations carried out by Auguste (2010), who reported the existence of small
amplitude non-vertical regimes preceding the appearance of large planar oscillations. Zhong
et al. (2011) identified, experimentally, a new type of motion. They observed that, for discs
with very small inertia I∗, the initial planar zigzag motion (flutter) is not stable and that non-
planar, spiral trajectories develop instead. To sum up, four different ordered regimes have
been identified so far, but a systematic investigation of their stability and of the transitions
between them is still missing.

Numerical simulations allow an exact control of boundary conditions and provide very
detailed mathematical solutions. In experiments, it is difficult to precisely control the physi-
cal properties of the system and the initial and boundary conditions. For instance, the fluid
remains non-quiescent unless it was left to settle down for a sufficiently long time in between
two observations. Moreover, measurements of physical quantities in a non intrusive manner
are far from being trivial in most cases. As a result, experimental observations reflect a much
more complex reality. They are less reproducible and less suited for theoretical analysis than
Direct Numerical Simulation. For this reason, experiments and simulations are complemen-
tary and both are needed for a perfect understanding of the phenomena (see Jenny & Dušek,
2004; Veldhuis & Biesheuvel, 2007; Horowitz & Williamson, 2010b, for the case of a sphere).
While in the case of a spherical body numerical results preceded the experiment, the above
cited work of Willmarth et al. (1964); Stringham et al. (1969); Field et al. (1997) and Zhong
et al. (2011) opened the way for the investigation of the behavior of discs. The problem of
both accurate and efficient, three-dimensional, simulation of falling discs and, more generally,
flat bodies turned out to be a real numerical challenge (Ern et al., 2012). In this chapter,
we fill this gap by employing our spectral–spectral-element method described in chapters 2
and 3 to systematically explore the transition scenario of infinitely thin discs freely moving
in an initially quiescent Newtonian fluid.

6.2 Specific mathematical formulation and implementation of

the numerical method

In this section we briefly specify the general mathematical formulation and the numerical
implementation described in chapters 2 and 3. An infinitely thin disc of finite mass m can
be considered to be made of an infinitely dense material and to have a zero volume. From
this viewpoint the buoyancy effects would be negligible as it is the case for experiments in
the air. In water, however, the solid/fluid density ratio of usual materials remains small
and buoyancy cannot be neglected. A more general interpretation of the formula (2.54) thus
consists in writing
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Uref =
√
m∗geff discd, (6.1)

where the effective gravitational acceleration is defined as

geff disc =

∣∣∣∣1−
ρ

ρs

∣∣∣∣ g. (6.2)

Note that this definition is not the same as the one given Eq. (2.6) which is that used for
spheres in Jenny et al. (2004) where, specifically, very light spheres of density much smaller
than that of the fluid were focused on and which can be applied to objects made of very light
materials. In the present case, thin discs made of a considerably lighter material than the
fluid are to be considered as objects of zero non-dimensionalized mass and only solid density
starting from ρs slightly smaller than ρ to ρs ≫ ρ is of interest. Such a definition makes it
possible to account for experimental implementations using materials of comparable density
to that of the fluid allowing larger spatial scales for the same Galileo numbers.

The solved equations are Eqs. (2.56, 2.57) where the Galileo number is

G =

√
m∗geff discd3

ν
. (6.3)

and the movement equations of the solid body (2.51) through (2.53). Here we consider
homogeneous discs for which Eq. (2.29) applies and α = 2.

The numerical method has been described in chapter 3. For the simulation of discs the
spectral element decomposition of the axial - radial plane represented in Figure 4.1 was
used. The detail of the mesh close to the disc is given in Figure 6.1. A still larger zoom
on the elements at the edge of the disc is in Figure 4.2. The mesh 4.1 has, however, been
modified, as compared to that in Figure 4.2 in order to allow for a variation of the radius
of the spherical interface up to 3. Recall that the treatment of the interface requires that
there are two concentric layers of spectral elements on both sides. The results of tests of the
sensitivity of the simulation to the choice of the values of numerical parameters were given
in section 3.12.4 (see Tables 3.11 and 3.12). They led us to the following choice of numerical
parameters (see Figure 2.1 for the meaning of symbols): Lu = 12d, Ld = 25d and Rc = 8d, 6
collocations points per spatial direction in spectral elements, M = 15 azimuthal modes and
equal to the truncation of the spherical function expansion ℓmax. For all the simulations the
radius of the spherical interface was set equal to 1d as also indicated in Figure 6.1.

The two parameters, the Galileo number G and the dimensionless mass m∗ define a
two-parameter plane that was investigated in the domain G ≤ 500 and 0 ≤ m∗ ≤ 10.

6.3 Results

DNS takes all physically relevant degrees of freedom into account, including those of the
fluid flow, with a controlled accuracy. In spite of that, the numerical solution behaves like
a low-dimensional dynamic system obeying bifurcation theory. This makes it possible to
characterize its dynamics by a set of bifurcating asymptotic states. However, some caution
is needed in their physical interpretation. They correspond to stable asymptotic regimes



136 CHAPTER 6. DYNAMICS OF FREELY MOVING DISCS

Figure 6.1: Thin disc χ = ∞. Details of the spectral element discretization of the radial-axial
plane of the computational domain. The interface at Rs = d is marked by a thick line.

reached in an infinite time horizon by a system for a fixed set of state parameters. In
practical situations “infinite” means extremely diverse time scales given by the stability of
the state. The latter decreasing dramatically close to bifurcations and at the onset of chaos,
not all bifurcating states are really observable in laboratory experiments.

This section is organized as follows. In the next sub-section 6.3.1 we present the mor-
phology of the states identified in the investigated domain 25 ≤ G ≤ 500 and 0 ≤ m∗ ≤ 10
of the parameter plane.In the section 6.3.2 we discuss the state diagram characterizing the
transition scenario in the (m∗, G) plane. Finally we discuss the found transition scenario in
section 6.3.3.

6.3.1 States present in the scenario of the transition to chaos

The scenario is characterized by a limited number of bifurcating states for which we attempt
to provide a quantitative description in terms of the following quantities wherever they apply:
the amplitude of the path oscillations in the horizontal direction ∆s, the mean horizontal and
vertical velocities uh and uz, and their amplitudes of oscillations Auh

and Auv , respectively,
the inclination angle φ, defined as the angle between the axis of the disc and the vertical
direction and its maximum value φmax, the angular velocity of rotation (about a horizontal
axis) ωh, the Strouhal number St = fd/uz, where f is the oscillation frequency (obtained
mostly from the horizontal velocity). The Reynolds number used by other authors (see Field
et al., 1997; Fernandes et al., 2007) is obtained simply by multiplying the Galileo number by
uz.

The simplest state - steady vertical fall requires no further comments. It is characterized
by uh = Auh

= Auz = φmax = ωh = ∆s = St = 0. The terminal velocity u∞ = uz equivalent
to a constant terminal Reynolds number depends only on the Galileo number and can be
obtained by a simple axisymmetric computation by determining the drag compensating the
weight and buoyancy of the disc.
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Periodic fluttering state

The trajectory of the fluttering state lies in a plane arbitrarily selected by initial conditions.
The average direction of the trajectory is vertical and the disc center describes a zig-zagging
path about the vertical direction. Its symmetry axis rotates with an angular velocity normal
to the plane of the trajectory and oscillates about zero with values not exceeding 90 degrees.
The period of oscillations of uh, ωh and φ is the same, while the vertical velocity uz oscillates
with a double frequency. The onset of this state was tracked by observing one of these
parameters, usually the horizontal velocity uh. Figure 6.2 shows the saturated fluttering
state by representing uh (top), uz (middle) and φ (bottom) for m∗ = 0.1 at G = 90. Both
Auh

and Auz in the saturated state have a constant non-zero value. The period of oscillations
of uh and φ is 2.606 (in units given by the non-dimensionalization described in chapter 2).
This corresponds to a non-dimensional frequency of 0.384 and, with account of the mean
value -1.241 of the vertical velocity, to a Strouhal number equal to St = 0.309. The vertical
component of the velocity oscillates at twice the frequency of the horizontal component.
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Figure 6.2: m∗ = 0.1, G = 90. (top) Horizontal component of the velocity; (middle) vertical
component of the velocity; (bottom) inclination of the disc defined as an angle between the
disc axis and the vertical direction.

Figure 6.3 shows a typical trajectory. A disc oscillates periodically back and forth. The
maximum angle of rotation φmax does not exceed π/2. Otherwise, the disc flips over the
edge and starts to tumble. It is interesting to note that the amplitude of the vertical velocity
oscillations can exceed the mean value. E.g., for m∗ = 0.1 and G > 200 we observed that,
as the disc approached its extreme lateral position, it began to climb.

For small m∗ (m∗ ≤ 0.1) the maximum inclination angle of the disc φmax never exceeds
π/2. E.g., for m∗ = 0 it reaches a maximum value of slightly less than 24o at G = 200 and
decreases to 22o at G = 500 (see Figure 6.5 a)). In contrast when the fluttering state gives
way to tumbling (intermittent) the maximum angle grows to π/2 when the disc starts to
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Figure 6.3: Fluttering periodic state, m∗ = 0.1, G = 200, z – vertical position, x, y –
horizontal positions as multiples of d. The red dashed line represents a half-axis of the disc.

tumble. This provides a useful method for delimiting precisely the stability of the fluttering
state (see Figures 6.5 a) and c)).

Figure 6.4 shows the wake of a disc in a saturated periodic fluttering regime for m∗ = 0.1
at G = 200 by representing the axial vorticity iso-surfaces at levels 0.9. In one oscillation
period a pair of vortices is shedded from the disc, each with the opposite orientation.

Tumbling state

The flutter does not usually transits directly to a stable tumbling state but switches inter-
mittently from flutter to tumbling which results in an intermittent chaos described in the
next section. The exactly periodic tumbling state is characterized by the rotation of the disc
over edge in one direction. This results in an oblique trajectory. The angular velocity ωh

and the horizontal velocity uh are oscillating functions of time with a non-zero mean value
characterizing the rotation direction and the horizontal drift. Two typical situations are
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m∗ G uz ∆uz ∆uh ∆ωh ∆s/d St φmax[rad]

0 140 -1.376 0.271 1.024 1.381 0.271 0.426 0.380
0 150 -1.374 0.307 1.109 1.467 0.287 0.437 0.392
0 160 -1.362 0.333 1.177 1.526 0.298 0.446 0.401
0 170 -1.371 0.356 1.237 1.570 0.308 0.454 0.408
0 180 -1.367 0.377 1.296 1.608 0.317 0.464 0.414
0 200 -1.363 0.401 1.380 1.649 0.328 0.477 0.415
0 300 -1.343 0.476 1.682 1.712 0.370 0.528 0.407
0 400 -1.328 0.530 1.885 1.709 0.399 0.562 0.390
0 500 -1.292 0.546 2.035 1.693 0.411 0.598 0.380

0.05 75 -1.316 0.225 0.733 1.240 0.266 0.317 0.466
0.05 80 -1.307 0.292 0.854 1.420 0.299 0.326 0.523
0.05 90 -1.301 0.370 1.001 1.588 0.338 0.330 0.578
0.05 100 -1.285 0.423 1.108 1.6781 0.366 0.345 0.599

0.1 80 -1.250 0.408 0.991 1.648 0.370 0.304 0.685
0.1 90 -1.241 0.460 1.093 1.718 0.400 0.310 0.711
0.1 100 -1.232 0.502 1.181 1.759 0.427 0.306 0.731
0.1 200 -1.199 0.972 2.097 1.863 0.797 0.292 0.962
0.1 300 -1.255 1.333 2.778 1.876 1.199 0.246 1.102
0.1 400 -1.291 1.601 3.297 1.855 1.578 0.216 1.174
0.1 500 -1.339 1.839 3.759 1.826 1.974 0.190 1.227

0.25 90 -1.347 0.924 1.602 2.213 0.749 0.182 1.362

0.5 38 -1.166 0.106 0.343 0.865 0.209 0.208 0.555
0.5 50 -1.254 0.365 0.737 1.626 0.410 0.184 1.057

0.75 45 -1.271 0.284 0.595 1.482 0.379 0.154 1.040
0.75 50 -1.377 0.432 0.774 1.791 0.527 0.131 1.340

1 40 -1.222 0.160 0.396 1.107 0.287 0.160 0.867

2 34 -1.165 0.043 0.173 0.568 0.165 0.137 0.532
2 38 -1.243 0.095 0.267 0.856 0.251 0.123 0.822

10 45 -1.250 0.006 0.050 0.173 0.094 0.067 0.332

Table 6.1: Some quantitative data for selected periodic fluttering states. Meaning of symbols:
uz - mean vertical velocity, ∆uz, ∆uh, ∆ωh - amplitude of oscillations of the vertical and

horizontal component of velocity and of the angular velocity, respectively, ∆s =
√

(s2x + s2y)

- maximum horizontal displacement, where sx and sy are displacements in the x− and y−
direction, respectively, St - the Strouhal number and φmax is the maximal inclination of the
disc.
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Figure 6.4: Fluttering periodic state, m∗ = 0.1, G = 200. Axial vorticity iso-surfaces at
levels 0.9.

encountered. For small values of m∗ < 0.75 the disc go through distinct phases of a rotation
and a flight over edge (see Figure 6.6). Figure 6.7 shows uh (top), uz (upper-middle), ωh

(bottom-middle) and φ (bottom) for m∗ = 0.5 at G = 160. As can be seen from the figure,
two (negative) peaks (a larger followed by a smaller one) correspond each to a half turn.
During this phase, the disc does not practically fall and, during the first half turn, it reaches
the maximal horizontal velocity. After completion of the turn, the angular velocity reaches
a zero value. The horizontal velocity passes through a minimum before starting to increase
gradually while the vertical velocity strongly accelerates. The rotation angle lies clearly
midway between the dotted lines marking the vertical position of the disc axis, i.e. the disc
axis is horizontal. For disc with substantial inertia the oscillations of the above mentioned
quantities, that is uh, uz and ωh, are practically harmonic (see Figure 6.8) and the ampli-
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Figure 6.5: a) Fluttering periodic state, m∗ = 0. Maximum inclination of the disc φmax as a
function of the Galileo number. b) Same as in Figure a) for m∗ = 0.75. The limit of stability
of the fluttering state can be estimated at G ≈ 53.5. c) G = 200, maximum inclination angle
as a function of m∗. The disc starts to tumble at m∗ ≈ 0.163.
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m∗ G uz ∆uz uh ∆uh ωh ∆ωh St

0.75 90 -1.224 0.504 -0.929 0.351 1.292 0.721 0.315
0.75 100 -1.202 0.534 -0.929 0.349 1.317 0.689 0.333
0.75 120 -1.159 0.485 -0.940 0.349 1.393 0.632 0.366
0.75 140 -1.126 0.472 -0.941 0.347 1.442 0.592 0.392
0.75 160 -1.101 0.466 -0.943 0.346 1.480 0.567 0.412
0.75 200 -1.067 0.461 -0.941 0.347 1.533 0.538 0.443
0.75 300 -1.014 0.451 -0.939 0.343 1.599 0.502 0.490
0.75 400 -0.987 0.449 -0.937 0.344 1.626 0.487 0.515

1 80 -1.267 0.424 -0.631 0.203 0.875 0.477 0.283
1 100 -1.213 0.397 -0.858 0.270 1.259 0.570 0.320
1 150 -1.139 0.367 -0.863 0.264 1.389 0.479 0.381
1 200 -1.099 0.359 -0.861 0.259 1.463 0.441 0.418
1 300 -1.059 0.352 -0.858 0.257 1.529 0.423 0.458
1 400 -1.035 0.353 -0.859 0.258 1.552 0.418 0.476

2 50 -1.412 0.283 -0.690 0.167 0.865 0.595 0.176
2 54 -1.399 0.280 -0.702 0.165 0.894 0.563 0.187
2 58 -1.374 0.264 -0.712 0.163 0.921 0.534 0.199

5 40 -1.497 0.158 -0.499 0.104 0.600 0.421 0.113

10 50 -1.474 0.079 -0.459 0.056 0.565 0.219 0.118
10 80 -1.419 0.061 -0.538 0.044 0.765 0.141 0.170
10 150 -1.330 0.047 -0.584 0.035 1.035 0.088 0.246
10 200 -1.297 0.045 -0.594 0.033 1.143 0.076 0.279

Table 6.2: Some quantitative data for selected tumbling states from the state diagram of
Figure 6.20. Meaning of symbols: uz, uh and ωh - mean vertical, horizontal and angular
velocity, ∆uz, ∆uh, ∆ωh - amplitude of oscillations of the vertical and horizontal component
of velocity and of the angular velocity, respectively, St - the Strouhal number.

tude of oscillations of the velocities is small compared to mean values. The disc describes a
practically rectilinear oblique trajectory while rotating regularly about a horizontal axis.

Figure 6.9 shows the vortical structures in the wake of a disc in a tumbling regime for
m∗ = 0.5 at G = 160 by representing the axial vorticity iso-surfaces at levels 1.1.

Intermittent and tumbling - zigzagging regimes

For m∗ < 2, the tumbling and periodic fluttering states are separated by a region of inter-
mittent states. In this region none of both states is stable. The flutter is no longer limited
to an amplitude smaller than 90o and the tumbling is not yet stable enough to persist in a
periodic regime. The rotation stops at irregular intervals and changes the direction. The
duration of tumbling stages is clearly random in Figure 6.10 showing the horizontal velocity
uh (top) and angular velocity ωh (bottom) for m∗ = 0.25 at G = 110. As can be seen,
the disc switches randomly the direction of the rotation and of the side-wise motion. The
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Figure 6.6: Tumbling state, m∗ = 0.5, G = 160, z – vertical position, x, y – horizontal
positions as multiples of d. The red dashed line represents a half-axis of the disc.
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Figure 6.7: m∗ = 0.5, G = 160. uh: Horizontal component of the velocity; uz: vertical
component of the velocity; ωh: angular velocity; φ: inclination of the disc defined as the
angle between the disc axis and the vertical direction as functions of time. The dotted lines
in the bottom graph mark the rotation by kπ, where k = 1, 2, ...
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Figure 6.8: m∗ = 10, G = 150. For the meaning of symbols, see caption of Figure 6.7.
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Figure 6.9: Tumbling state, m∗ = 0.5, G = 160. Axial vorticity iso-surfaces at levels 1.1.

random trajectory of the disc is presented in Figure 6.13. It can be seen that at some point
the disc has not enough inertia to continue turning in a given direction and therefore begins
to turn in the opposite one.

At the same value of m∗ = 0.25, but at higher Galileo number G = 300, we evidenced a
periodic version of the same behavior. The switching of the sign of the angular and horizontal
velocity occurs periodically. The simulation of Figure 6.12 was restarted using a periodic
tumbling state as an initial condition. It shows that the disc tumbles by 2π periodically in
opposite directions. This results again in a zig-zagging trajectory.

Quasi-vertical states

We found two distinct states characterized by a very small amplitude Auh
of the horizontal

velocity component and of other characteristics distinguishing them from a vertical fall (ωh

and φ), namely a periodic and a chaotic state. We call them the quasi-vertical periodic
(QVP) and chaotic (QVC) states, respectively. A quasi-vertical periodic state resembles the
periodic flutter. It is also planar. However, the Strouhal numbers are equal to about 1/3
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Figure 6.10: Intermittent state, m∗ = 0.25, G = 110. (top) Horizontal component of the
velocity; (bottom) the angular velocity ωh.

the Strouhal numbers of the large amplitude flutter and the amplitude of the horizontal
component of the velocity is small and its maximum observed value was Auh

< 0.05. As
a consequence the amplitude of the horizontal displacement of the disc was also very weak
∆s < 0.07d. The maximum inclination φmax of the disc never exceeded 3o for all observed
cases.

Figure 6.14 shows uh (top), uz (middle) and φ (bottom) for m∗ = 0.05 at G = 80 as
functions of the time. The linear growth rate of the amplification is γ = 0.0228. The
amplitudes of the horizontal component of the velocity, as well as of the inclination angle
begin to saturate to small asymptotic values uh ≈ 0.022 and φmax ≈ 0.009 [rad] (≈ 0.5o).
The Strouhal number is equal to St = 0.107.

Very weak oscillations of the disc are hard to distinguish from disturbances caused by
the initial perturbation of the surrounding fluid in experiments. For m∗ = 0, the interval
of periodic quasi-vertical regimes is very limited and the trajectories become chaotic and
fully three dimensional. Figure 6.15 shows the onset of a typical chaotic quasi-vertical
trajectory. For all the investigated cases, the trajectories displayed only a weak departure
from the vertical trajectory (< 0.1d for a vertical distance of 100d). The maximum inclination
angle was always φmax < 5o and the horizontal component of velocity was uhmax

< 0.08.
Subsequently, for higher Galileo numbers the periodic flutter, described above, appears. It
was demonstrated that for m∗ = 0 this state co-exists with the quasi-vertical chaotic state
for G ≈ 130 − 180 and for m∗ = 0.05 it co-exists with the quasi-vertical periodic and the
steady vertical state. It can be conjectured that the competition of two pairs of complex
conjugate eigenvalues related to the frequency of quasi-vertical periodic and of the periodic
fluttering state might explain the early onset the quasi-vertical chaotic state.

The Strouhal numbers based on the frequency of oscillations of uh for the quasi-vertical
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Figure 6.11: Intermittent state, m∗ = 0.25, G = 110, z – vertical position, x, y – horizontal
positions as multiples of d. The red dashed line represents a half-axis of the disc.

periodic states and the periodic flutter as a function of the Galileo number for m∗ = 0 are
represented in Figure 6.16. For infinitely light discs, both states are present. Two dash-
dotted lines delimit the quasi-vertical chaotic region. The blue dashed line marks the lower
limit of the appearance of the periodic flutter.

Three-dimensional states

Zhong et al. (2011) evidenced experimentally the existence of ’spiral’ states in the transition
scenario of thin discs. They identified two new types of motion, which they call spiral and
transitional states, for discs having small moments of inertia I∗. They observed that the



6.3. RESULTS 149

220 230 240 250 260 270
−3

−2

−1

0

1

2

3

ω
h

t

(a) (b)

220 230 240 250 260 270
−4

−3

−2

−1

0

1

2

3

4

u h

t

(c)

250 255 260 265 270
−100

−95

−90

−85

−80

−75

z

t

(d)

Figure 6.12: m∗ = 0.25, G = 300. Subharmonic transition from the tumbling to the
tumbling-zigzagging state. a) angular velocity ωh; b) inclination angle φ in radians; c)
horizontal component of the velocity uh; d) vertical position z. The dotted lines in the
graph b) mark the rotation by kπ, where k = 1, 2, ...

m∗ G uz ∆uz ∆uh ∆ωh ∆s St φmax[rad]

0 90 -1.439 0.003 0.046 0.019 0.043 0.105 0.019
0 100 -1.444 0.004 0.055 0.030 0.061 0.100 0.022

0.05 85 -1.436 0.002 0.036 0.014 0.037 0.107 0.015

Table 6.3: Some quantitative data for selected quasi-vertical periodic states. For the meaning
of the symbols see caption of Table 6.1.
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Figure 6.13: Tumbling-zigzagging state, m∗ = 0.25, G = 300, z – vertical position, x, y –
horizontal positions as multiples of d. The red dashed line represents a half-axis of the disc.

initial planar zigzag motion is destabilized by the growth of a secondary oscillation in the
normal direction. The disc starts to rotate about its symmetry axis which leads eventually
to a spiral motion. They characterize the found states using a factor ǫ expressing the ratio
of the short axis to long axis of an ellipse resulting from the projection of trajectories on a
horizontal plane described during one period. The planar motion corresponds to ǫ = 0 and
the spiral motion corresponds to ǫ = 1. The transitional states correspond to intermediate
values of ǫ.

We also evidenced similar states in our DNS. For m∗ = 0.05 (which corresponds to
I∗ = 3.125E − 03) we observed that the planar zig-zag state quickly becomes unstable and
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Figure 6.14: m∗ = 0.05, G = 80. uh: horizontal component; uz vertical component of the
non-dimensionalized velocity; φ inclination of the disc defined as the angle between the disc
axis and the vertical direction in radians

−0.05
0

0.05 −0.05
0

0.05

−200

−150

−100

−50

0

y
x

z

Figure 6.15: m∗ = 0.0, G = 120. Quasi-vertical chaotic trajectory of the disc. z – vertical
position, x, y – horizontal positions as multiples of d.

a transition to the spiral state takes place. Figure 6.17 shows the spiral trajectory found
for m∗ = 0.05 at G = 300. It is characterized by a constant angle of inclination of the
disc equal to φ ≈ 25o. The disc rotates about its axis with a constant angular velocity
ωz = 0.635. The projection of the trajectory on the horizontal plane is a circle of radius
r/d = 0.37. The vertical component of velocity is equal to uz = −1.07. The Strouhal number
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Figure 6.16: Strouhal number as a function of the Galileo number. Magenta markers - quasi-
vertical periodic state; green markers - quasi vertical chaotic state, the Strouhal number was
estimated using the main peak of the frequency spectrum and the mean vertical velocity; blue
markers - periodic flutter state. The dash dotted lines delimit the interval of quasi-vertical
chaotic states, the dashed line represents the lower limit of stability of the flutter.

based on the frequency of oscillations of the horizontal component of the velocity and on
the vertical velocity is St = 0.533. Figure 6.18 shows the wake by representing the axial
vorticity iso-surfaces at levels 0.35.

For other investigated values of m∗ < 0.5 the departure of trajectories from the plane
was extremely slow especially for low values of Galileo numbers and led to transitional
states, which can all be expected to reach the established spiral motion. Zhong et al. (2011)
reported the existence of three dimensional states only for m∗ < 0.13. We found that for a
sufficiently high Galileo number the planar trajectories become unstable whatever the non-
dimensionalized mass 0 ≤ m∗ ≤ 10. In particular, we found that the tumbling state has its
spiral counter-part, which can be called spiral tumbling state (ST). Its trajectory, found for
m∗ = 0.5 at G = 400, is represented in Figure 6.19. The projection of the trajectory on the
horizontal plane describes a large circle of radius r/d = 13. The pitch angle of the spiral is
equal to α = 42.5o. Other characteristics are summed up, together with those of the spiral
state described above in Table 6.4.

6.3.2 State diagram

We swept the whole (m∗, G) parameter space in the range represented in the state diagram
of Figure 6.20. The simplest state, stable at low values of G, is the vertical fall at a con-
stant terminal velocity. The disc axis remains parallel to the vertical direction and all flow
characteristics are steady. The state is a fixed point in terms of bifurcation theory. It is
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Figure 6.17: m∗ = 0.05, G = 300; Left: spiral state; Right: trajectory showing transition
from planar periodic fluttering state to a spiral state.
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regime m∗ G Re ∆Re/Re f φ[o] α[o] r/d

spiral 0.05 300 320 0 0.57 24.9 0 0.37
ST 0.5 400 425 0.99 0.26 – 42.5∗∗ 13

Table 6.4: Some quantitative data for selected three dimensional regimes in diagram 6.20.
ST: spiral tumbling; spiral: spiral state. Re: mean Reynolds number, ∆Re/Re rela-
tive amplitude of fluctuations of vertical velocity, f : non-dimensional frequency (in units√

|m∗ − V ∗|g/d), φ inclination angle of the axis (maximum for periodic variation), α mean
angle w.r.t. vertical direction , r/d: horizontal deviation from the vertical direction: maxi-
mum for flutter, constant horizontal radius of trajectory for spiral regimes, ∗∗ pitch angle of
a spiral trajectory).

characterized by a zero horizontal velocity, a zero angular velocity and a zero angle of the
disc axis with respect to the vertical direction. Any of these quantities can be used for mon-
itoring the stability of this state. For the case of a disc even the primary instability presents
complex features, in contrast to a spherical body (for which it was of a regular type). This
instability was investigated for increasing G for 10 values of m∗ ranging from zero to 10.

The bifurcation responsible for the loss of stability of the steady state is of the Hopf
type for all m∗. It is sub-critical for m∗ between 0.1 and 1, which implies co-existence of
the vertical fall and of the next, fluttering, periodic state in a finite region of the phase
space. The fluttering state conserves a planar symmetry with a symmetry plane arbitrarily
selected by initial conditions. The bistability poses the problem of dependence of the final
state on the initial conditions or, in other words, on the attraction basin. It was tracked by
increasing and then decreasing the Galileo number while using one simulation as the initial
condition for the next one. The stability of asymptotic states was monitored using one of
the above-mentioned quantities, mostly the horizontal velocity.

As can be seen in the state diagram (ser Figure 6.20) the case of m∗ = 10 is peculiar. The
primary bifurcation is supercritical and also leads to the periodic fluttering state. However,
the next bifurcation, yielding the tumbling state, is strongly subcritical. As the result, the
tumbling states coexists with both the fluttering and the vertical state in a very significant
interval of Galileo numbers. The region of co-existence of the periodic flutter and of the
tumbling state extends for 2 < m∗ ≤ 10. Its lower and upper limits are marked by the red
and blue lines in the diagram, respectively.

For m∗ < 0.1 the primary bifurcation is also super-critical but yields completely different
dynamics than for m∗ ≤ 0.1. A very weakly oscillating fluttering state sets in and rapidly
becomes chaotic. The very small periodic and chaotic oscillations make the movement of the
disc practically indistinguishable from vertical motion. We called these states quasi-vertical
periodic and quasi-vertical chaotic (QVP, QVC). The data in Table 6.3 show that they are
virtually unobservable experimentally because the trajectory deviates from a straight vertical
at most by a few percent of the disc diameter and the amplitude of the disc oscillations barely
exceeds 1 degree. The domain of quasi-vertical states significantly delays the onset of a visible
flutter. For m∗ = 0, we evidenced that the quasi-chaotic state persists until G ≈ 180, above
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Figure 6.18: Spiral state, m∗ = 0.05, G = 300. Axial vorticity iso-surfaces at levels 0.35.

which higher frequency, strong amplitude oscillations set in. This experimentally observable
flutter co-exists with quasi-vertical chaotic states. The lower limit of the interval of bistability
of these two states is equal to G ≈ 130, which agrees very well with the threshold found
by Fernandes et al. (2007) for thin discs χ > 20 for small values of I∗. It can be assumed
that the quasi-vertical state is responsible for the delay of the onset of oscillations observed
in experiments. It can also be expected that the experimentally observed threshold will be
sensitive to experimental noise. For m∗ = 0.05 the scenario is similar to that observed for
m∗ = 0. The first bifurcation leads to the quasi-vertical periodic state, characterized by a low
frequency and a small amplitude. This state is than directly replaced by a regular periodic
flutter (higher frequency, significant amplitude). The quasi-vertical chaotic state was not
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Figure 6.19: m∗ = 0.5, G = 400; Spiral tumbling state. The disc is enlarged by a factor of 2
in the left figure, but it is on scale in the zoom of the right figure.
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Figure 6.20: State diagram in the G−m∗ plane. The symbols denote regimes investigated by
simulations. The full lines delimit the stability domains. Black color: vertical fall (crosses)
and limit of stability of the vertical fall. Blue circles and blue lines: fluttering state, red
triangles and lines: tumbling state. Green squares: intermittent state. Magenta (triangular
domain at m∗ < 0.1) - quasi-vertical states: asterisks - slow periodic, diamonds - chaotic.
Three-dimensional (helical) trajectories are represented by filled symbols. Dashed lines are
those Field et al. (1997) and Willmarth et al. (1964). Their colors establish the correspon-
dence with the full lines resulting from the present numerical simulations. For m∗ < 0.1
we associate the experimentally observed onset of flutter with a transition from a quasi-
vertical regime, which explains the magenta color of the dashed line. The horizontal scale
is logarithmic and the vertical one is given by log(m∗ + 0.01) so as to allow m∗ = 0 to be
plotted.
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observed at this value of m∗. By decreasing the Galileo number, we found this periodic state
to co-exist with the quasi-vertical periodic and with the steady vertical states.

The state diagram (Fig. 6.20) shows that the dynamics of the discs is dominated by three
ordered states: steady vertical fall and two periodic states (limit cycles), the fluttering state
and the tumbling state. DNS makes it possible to dissipate all doubts about the periodicity
of the tumbling state. The three dominant stability domains mentioned present overlaps
related to sub-critical bifurcations and, at the same time, leave a significant domain, that of
intermittency, uncovered. Such a situation has not been observed for a spherical body. This
requires a different representation of the stability domains in the state diagram as compared
to the case when only super-critical bifurcations are present and the states cannot co-exist.
In Figure 6.20, the boundaries of the stability domains are represented by the solid colored
lines delimiting them on two sides. For example, the fluttering state is stable in the whole
domain delimited by the two blue lines. Only for m∗ ≥ 1 where the primary bifurcation
is super-critical the blue line is superimposed to the upper limit of stability of the vertical
state and is thus not represented. The red line delimits the region where the tumbling state
is stable. The separation lines have not been traced arbitrarily, their position was deduced
through interpolation of the decay or amplification rates of neighboring states. Only ordered
states are represented in this manner. As a consequence, the domain of the intermittent state,
considered as resulting from the absence of stability of both the flutter and the tumbling, is
delimited by the blue and red lines. At lower Galileo numbers, all trajectories except those
of the quasi-vertical chaotic state found for m∗ = 0, are plane. At higher Galileo numbers,
two types of helical trajectories (descrption is given in the previous sub-section) arise. They
are closely related to the neighboring plane trajectories: the spiral trajectories described by
Zhong et al. (2011) result form the destabilization of the flutter and the new helical tumbling
results from the planar tumbling state. They are represented by filled symbols of the same
shape as that used for the corresponding plane trajectory.

The figure of the state diagram 6.20 also features the stability limits of Field et al. (1997).
For the transformation of the Reynolds numbers of the diagram of Field et al. (1997) to the
Galileo numbers, the Reynolds - Galileo number dependence of the numerical simulation
has been used. Due to the difficulty of controlling the initial condition in experiments, the
sub-critical features escaped so far experimental observation. In particular, the upward shift
of the onset of flutter for light discs (small m∗) can now be explained by the quasi-vertical,
experimentally unobservable, regimes. Note that the dashed magenta line in Figure 6.20
falls well inside the bistability region of quasi-vertical and fluttering states. At G > 100,
note the very good agreement of the lines delimiting the intermittent state from the side of
both lower and higher non-dimensionalized masses. The fact that no unsteady states have
been found experimentally below G = 80 is intriguing. We tried to find an explanation by
comparing the characteristic vertical scale of amplification rates of the instabilities leading
from the vertical fall to unsteady states to the vertical height of experimental set up of Field
et al. (1997) but the amplification rates become large enough even at low Galileo numbers
for the observation of the unsteady states to be expected even on limited vertical distances.
The question has to be clarified in the future by a campaign of simultaneous experiments
and simulations. Discs with high inertia (m∗ > 1) have not been investigated previously but
the trend towards tumbling has been reported.
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6.3.3 Remarks

DNS provides more complete information on the transition scenario than can be obtained by
experimental observations. The agreement between the numerical and experimental data is
not perfect but is quite reasonable, especially as far as stability limits of fluttering and tum-
bling states at higher Galileo numbers are concerned. However, the absence of experimental
observations of non-vertical states at small Galileo numbers (G < 80) and at larger values
of m∗ (m∗ > 0.1) needs to be clarified. The state diagram does not provide all the relevant
information. We have already mentioned the difficulty of observing the weakly oscillating
chaotic regime for light discs. An explanation cannot be given without quantitative indica-
tion of the amplitudes of the oscillations of such states. Table 6.3 shows that the trajectories
of the quasi-vertical states actually deviate from a vertical line by only a few percent of the
disc diameter and the amplitude of disc rotation remains of the order of a degree. Laboratory
observations of falling discs are limited by the vertical height of the experimental set up, as
a consequence, slowly growing instabilities remain unnoticed. Therefore, amplification rates
may represent valuable information. The experimental literature (see Ern et al., 2012, for
a complete review) does not report the existence of bistable states. This can be explained
by the fact that in experiments it is difficult to control precisely the initial and boundary
conditions. Moreover, the fluid medium is not perfectly quiescent, which perturbs the system
and promotes the development of instabilities.

6.4 Conclusions

We revisited, completed and extended the widely known phase diagram of Field et al. (1997)
by data concerning very light and very dense discs. We found the four states reported therein.
Our instability thresholds are to a large extent in good agreement with the experimental
data. For m∗ < 0.1 we found a domain of co-existence of quasi-periodic and fluttering
states. Its lower limit agrees very well with the experimental data. The appearance of
the weakly oscillating states, which are unobservable in experiments, explains the delay of
the transition observed for small m∗ by Willmarth et al. (1964) for discs and recently by
Fernandes et al. (2007) for flat cylinders of the aspect ratio χ ≥ 10. We report also a similar
trend to observe tumbling states for higher values of m∗. However, we found significant
differences in the onsets of instabilities for intermediate values of m∗. Our DNS indicate
that the transition to the periodic fluttering and to the intermittent states occurs earlier
than in experiments. This delay of onset of instabilities in experiments requires further
explanation. We dissipated all doubts concerning the periodicity of the tumbling state.
Finally we evidenced non-planar states reported by Zhong et al. (2011) and showed that at
high Galileo numbers all trajectories become three-dimensional. In particular we discovered
a new spiral tumbling state characterized by a regular helical trajectory of a very large
diameter followed by the tumbling disc.

DNS yields details not only on the dynamics of the solid body but, as we have shown on
examples of fluttering and tumbling regimes, also on that of the wake and its structure. The
complete information thus obtained is of fundamental importance for the understanding of
complex multi-particle flows. Accurate single particle simulations provide also a useful tool
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for the benchmarking of numerical codes designed for multi-particle flow simulations.



Chapter 7

Oscillatory motion and wake

instability of freely rising cylinders

In spite of the fact that the considered cylinders are rising, we retain the downward orienta-
tion of the vertical axis in the same way as in previous chapter.

7.1 History of the topic

Recent focus of the scientific community on freely falling particles was triggered to a large
extent by the experimental paper of Field et al. (1997) (comprising the results of their own
and earlier experiments: Willmarth et al. (1964); Stringham et al. (1969)). They demon-
strated for the case of thin discs that, in spite of complicated mutual interactions of the
solid and fluid degrees of freedom, the whole two-phase configuration behaves like a low-
dimensional dynamical system obeying bifurcation theory. Four distinct states: steady fall,
periodic fluttering, chaotic and tumbling (see chapter 6 for review) were shown to cover in
non-overlapping manner the phase space spanned by two characteristic, dimensionless pa-
rameters: the non-dimensional moment of inertia I∗ and the Reynolds number based on the
mean vertical velocity um. One of the intriguing features of the presented scenario was the
upward shift of the threshold of the primary bifurcation leading to a fluttering periodic state
for low values of I∗. Namely for I∗ < 5e − 03, the onset of flutter is situated above the
threshold of the onset of oscillations in the wake of a fixed disc. In the previous chapter, it
was shown that the explanation is given by the existence of a regime characterized by oscil-
lations of small amplitude (we called these regimes quasi-vertical states) shifting the onset of
large, experimentally detectable oscillations to higher Galileo number. The threshold of the
quasi-vertical regime lies well below the threshold of the oscillations of the wake of a fixed
disc, which is in agreement with the observation made for a free sphere (see Jenny et al.,
2003) where the additional degrees of freedom of the body destabilize the system.

Investigation of bubbly flows (Magnaudet & Eames, 2000) and the problem of the specific
behavior of light spheres (Karamanev & Nikolov, 1992) brought the study of rising bodies in
the spotlight. The simulations of the light spheres, proved, however, to be difficult to repro-
duce experimentally because of the high sensitivity of the transition scenario to experimental

161
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disturbances and imperfections, e.g. those of the mass distribution of the body (see Jenny
et al., 2004). A comparative experimental (Ellingsen & Risso, 2001) and numerical (Mougin
& Magnaudet, 2002) investigation of deformable bubbles presents, in its turn, the difficulty
of simulation of the moving geometry. As a convenient configuration, allowing, moreover,
the choice of convenient spatial scales, marginally buoyant rigid flat cylinders have been
considered by Fernandes et al. (2007). Fernandes et al. (2007) carried out experiments with
freely rising cylinders of aspect ratio (defined as diameter to thickness ratio) χ ranging from
1.5 to 20 immersed in salt water of a density slightly higher than that of the solid body.
They worked with a solid/fluid density ratio ρs/ρ ≈ 0.99, where ρ is the fluid and ρs the
solid density, respectively. They investigated the effect of the aspect ratio χ and of the mean
terminal rise velocity, measured in terms of the terminal Reynolds numbers, on the dynamics
of rising cylinders. The range of observed terminal Reynolds numbers was 80 ≤ Re ≤ 330.
They found for all considered aspect ratios that the first bifurcation replaced the steady
vertical fall by a periodic oscillatory motion along plane zig-zagging trajectory called peri-
odic fluttering state in chapter 6. For χ > 5, the threshold Rec of the periodic oscillations
was found to lie, in agreement, with expectations, below the primary bifurcation thresh-
old Recf1 (that of the regular bifurcation leading to a steady non-axisymmetric state) of a
fixed cylinder of the same aspect ratio. Similarly, the observed Strouhal numbers, defined
as St = fd/um, where f is the frequency of oscillations and um the mean terminal velocity,
were found in good agreement with the Strouhal number obtained numerically above the
threshold of the secondary, Hopf, bifurcation in the wake of fixed cylinder: Stc ≈ Stcf2. In
contrast, the results obtained for higher aspect ratios were highly intriguing. They observed
that the threshold Rec was shifted considerably upwards (namely for χ ≥ 10) which led
to the surprising conclusion that the degrees of freedom of the free body delay the onset
of instability. Recently, Direct Numerical Simulation (Auguste et al., 2010) of a free flat
cylinder χ = 10 revealed a series of low amplitude states preceding the onset of large regular
oscillations. On the other hand, Fabre et al. (2012) showed, under the assumption that a
regular bifurcation destabilizes the vertical path of a flat disc of aspect ratio 3 and 10 and ∞,
that the additional degrees of freedom can have, indeed, a stabilizing effect. The threshold
of the steady oblique state are independent of the density ratio of the cylinder and are higher
(in terms of, equivalently, the Reynolds, Archimedes or Galileo number) than those of the
regular bifurcation of the same cylinder held fixed.

In this chapter we investigate the configuration of the experiments of Fernandes et al.
(2007) by Direct Numerical Simulations. We consider flat cylinders of density ratio (ρs/ρ =
0.99) for the range of aspect ratios 2 < χ < ∞. In particular, we attempt to explain the
delay of the transition to the periodic fluttering state observed for large χ. We determine
the domain of stability of the quasi-vertical states evidenced for thin discs in the previous
chapter and we look for aspect ratios for which the theory of Fabre et al. (2012) can be
practically applied, i.e. those at which the primary bifurcation leads to the steady oblique
state.
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7.2 Mathematical formulation and numerical implementation

We consider the cylinders as bodies of finite volume. Their mathematical characteristics
are given by Eqs. (2.39) through (2.41) in section 2.2. The formulas of Eqs. (2.39) through
(2.41) are used in Eqs. (2.48) through (2.50) which are solved together with the Navier-Stokes
equations (2.56, 2.57), where the Galileo number is defined as:

Gbody =

√
V ∗geffd3

ν
(7.1)

with V ∗ the non-dimensionalized volume (2.39) and geff the modulus of the effective gravi-
tational acceleration (2.6).

In section 3.12 we demonstrated for the case of a sphere and of a thin disc, as extreme
cases, that the upstream and downstream extension as well as the radius of the cylindrical
domain Lu = 12d, Ld = 25d and Rc = 8d are sufficient for obtaining a very satisfactory
mesh independence. In the same section, the effect of all other numerical parameters has
been tested and the results were transposed to the present situation. The radial-axial plane
was broken up into spectral elements by modifying only the subdomain of radius 1 around
the cylinder represented by a rectangle of height d/2 = 0.5 and of width d/χ. An example
(represented for χ = 2 is given in Figure 7.1. The number of spectral elements varies
from 252 to 278 depending on the aspect ratio. The number of Gauss-Lobatto-Legendre
collocation points in each direction (z, r) was taken N = 6. For discs, a maximal number
of azimuthal Fourier modes of m = 15 was shown to provide a satisfactory truncation both
inside the subdomains and at the connecting interface where it was used to truncate the
spherical function expansion at ℓmax = 15. The radius of the spherical sub-domain was
taken Rs = 1. The considered aspect ratios are summed up in Table 7.1 along with the used
number of spectral elements and the corresponding non-dimensionalized mass and moment
of inertia specified for the density ratio of 0.99. To avoid errors, the determination of the
non-dimensionalized mass and moment of inertia was automatically coupled to the mesh
geometry fixing the aspect ratio.

7.3 Results

We investigated the transition scenario of freely rising rigid flat cylinders immersed in a fluid
of density close to that of the solid body (ρs/ρ = 0.99) similarly as in the experiment of
Fernandes et al. (2007) for aspect ratios listed in Table 7.1. We swept the two-parameter
χ − G space by varying the Galileo number for fixed values of χ. Figure 7.10 sums up the
results in the form of a state diagram.

7.3.1 Evidenced regimes

Periodic flutter (PF)

The periodic flutter does not qualitatively differ from the regime already described in chapter
6. The trajectory is plane, vertical in the average and oscillates about the vertical direction.
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χ Nel m∗(ρs/ρ = 0.99) I∗(ρs/ρ = 0.99)

2 252 3.8877e-01 3.2398e-02
4 252 1.9439e-01 1.3162e-02
6 252 1.2959e-01 8.3994e-03
8 252 9.7193e-02 6.2011e-03
8.5 252 9.1476e-02 5.8227e-03
9 252 8.6394e-02 5.4885e-03
9.5 252 8.1847e-02 5.1910e-03
10 246 7.7754e-02 4.9244e-03
∞ 278 0 0

Table 7.1: Considered aspect ratios χ, number of spectral elements of the break up of the
radial-axial plane (Nel), non-dimensionalized mass m∗ and non-dimensionalized moment of
inertia I∗ for the density ratio ρs/ρ = 0.99.

Figure 7.1: Thick flat cylinder χ = 2. Details of the spectral element discretization of the
radial-axial plane of the computational domain. The interface at Rs = d is marked by a
thick line.
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It can be described as a zig-zagging path. The vortical structures of the wake (see Figure
7.2) are shedded with a symmetry plane corresponding to the plane of the trajectory. The
fluttering state is characterized by strong oscillations of the cylinder axis with respect to the
vertical direction. All other characteristics of the body dynamics (the horizontal and vertical
velocity components and the horizontal angular velocity) oscillate with the same frequency
(see Figure 7.3).

Weakly oblique steady and oscillating states

For aspect ratios varying from 9 to 10 the primary bifurcation is a regular supercritical
bifurcation in similarly as for a sphere. The first bifurcating state is thus steady oblique.
Its domain of stability is, however, very limited and the oblique trajectories are mostly
oscillating in more or less complicated ways: periodic, quasi-periodic, intermittent. Their
common feature is their planarity. Moreover, the horizontal drift is extremely weak and the
oscillations are small. We shall call all such regimes as weakly oblique. Figure 7.4 represents
the onset of a typical weakly oblique trajectory, periodic in the selected case χ = 8.5,
G = 100. In this case, the Hopf bifurcation sets in before the regular one. The regular
bifurcation generates a non-zero mean value of the asymptotic regime. This results in an
oblique trajectory. However, note the horizontal scale in Figure 7.5. The angle with respect
to the vertical direction is actually only about 0.001 radian. The most visible feature of the
instability is the direction of the axis of the cylinder. Its mean inclination and amplitude
is about 0.03 radians (less than 2 degrees). As the result, this regime can be classified
in the same category as the quasi-vertical regimes described in chapter 6 and in the next
paragraph. The weakly oblique regimes can also practically periodically switch between
an oblique steady and oblique oscillating trajectory (see Figure 7.6) or they can be chaotic
intermittently oblique (see Figure 7.8). The randomness of the switching of the drift direction
makes the trajectory vertical on the large time scales.

Quasi-vertical periodic and chaotic regimes (QVP,QVC)

With increasing Galileo number, the oscillation amplitude (slightly) grows and the mean
value completely disappears. In this category we classify all quasi-vertical states with no
mean horizontal drift. A modulation appears before the onset of chaos. The resulting states
are of the same nature as those evidenced for a thin disc and called quasi-vertical (periodic
and chaotic). In Figure 7.7 we show a quasi-periodic case of a quasi-vertical state. The
already mentioned intermittent state (see Figure 7.8) has also no mean drift. The chaotic
trajectories are fully three-dimensional (see Figure 7.9).

7.3.2 State diagram

Figure 7.10 sums up all the simulated regimes in the χ−G two-parameter plane. The different
states described in section 7.3.1 are marked by different symbols. The limits of stability of
these states were determined using the transients at the neighboring points yielding a more
accurate estimation of their position.
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Figure 7.2: Periodic fluttering state. Left: χ = 2, G = 130, axial vorticity iso-surfaces at
levels 0.75. Right: χ = 9, G = 160, axial vorticity iso-surfaces at levels 0.8.
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Figure 7.3: Periodic fluttering state: χ = 2, G = 130. uh: Horizontal component of the
velocity; vertical uz: component of the velocity; ωh: angular velocity; φ: inclination of the
disc defined as the angle between the disc axis and the vertical direction as functions of time.
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Figure 7.4: Weakly oblique oscillating state: χ = 8.5, G = 100. For the meaning of symbols
see caption of Figure 7.3.
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Figure 7.5: Weakly oblique oscillating state: χ = 8.5, G = 100. Left: trajectory correspond-
ing to the time interval represented in Figure 7.4. Right: zoom on the end.
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Figure 7.6: Weakly oblique state with slow beatings: χ = 9.5, G = 110. Top: for the
meaning of symbols see caption of Figure 7.3. Bottom: trajectory.
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Figure 7.7: Quasi-vertical quasi-periodic state: χ = 8.5, G = 120. Left: for the meaning of
symbols see caption of Figure 7.3. Right: trajectory.
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Figure 7.8: Quasi-vertical planar intermittent state: χ = 9.5, G = 130. Trajectory.
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Figure 7.9: Quasi-vertical chaotic state: χ = 10, G = 150. Trajectory.

For aspect ratios χ < 8 the primary bifurcation is a Hopf one yielding directly a flutter
(periodic oscillating state with large amplitude of oscillations) from a steady vertical state
(steady vertical ascension). The lowest critical Galileo number is reached between χ = 4 and
χ = 6 (see Table 7.2). Using the computed vertical velocity at the bifurcation threshold,
critical Reynolds numbers were also determined. For χ = 8 the stabilizing effects of the
additional degrees of freedom of the free body shift the onset of flutter to the threshold of
the secondary instability in the wake of a fixed cylinder. Table 7.3 provides quantitative
characteristics of the investigated regimes.

For aspect ratios 8.5 ≤ χ ≤ 10 the threshold of the primary instability in the wake of freely
moving cylinders (cyan line in Figures 7.10 and 7.11) lies above the secondary bifurcation

χ Gcrit Recrit Recf1 Recf2 St Stfixed
2 106.51 167.32 185.37 216.6 0.092 0.105
4 86.92 128.09 148.49 166.0 0.111 0.111
6 86.49 127.04 137.86 150.0 0.119 0.114
8 95.18 142.39 132.54 143.1 0.131 –

Table 7.2: Thresholds of the onset of the periodic flutter expressed in terms of the Galileo
and terminal Reynolds number and the corresponding Strouhal numbers for aspect ratios
χ ≤ 8. For comparison the thresholds Recf1 and Recf2 of the first two bifurcations and
Strouhal numbers Stfixed found in the wake of fixed cylinders at the onset of oscillations
are provided. For smaller aspect ratios, the free body degrees of freedom have clearly a
destabilizing effect.
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Figure 7.10: State diagram in the 1/χ−G plane. The symbols denote regimes investigated
by simulations. The full lines delimit the stability domains. Brown color: lower limit of
stability of the fluttering state. Cyan line: threshold of the onset of quasi-vertical states.
Black line: upper limit of stability of quasi-vertical chaotic states. Blue dashed line: limit of
stability of steady oblique (SO) states. Black crosses: vertical state. Blue circles: periodic
flutter state. Blue filled triangles: steady oblique state (SO). Green triangles: oblique states
(OO). Magenta symbols - weakly oscillating periodic vertical states: asterisks, diamonds -
quasi-vertical chaotic states.
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Figure 7.11: Detail of the state diagram in the χ−G plane. See caption of Figure 6.20 for
the meaning of lines and symbols.
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χ G Re Auh
/d φmax[rad] St

2 120 194.59 0.124 0.130 0.093
2 140 214.49 0.198 0.241 0.103
2 160 241.73 0.237 0.323 0.107

4 100 144.04 0.091 0.137 0.125
4 120 171.38 0.126 0.217 0.138

6 100 142.96 0.057 0.127 0.144
6 120 168.99 0.108 0.230 0.169
6 140 194.96 0.156 0.307 0.180
6 160 221.00 0.224 0.385 0.190

8 100 150.48 0.022 0.060 0.131
8 120 175.06 0.080 0.132 0.167
8 140 197.01 0.210 0.285 0.202
8 160 221.42 0.333 0.405 0.218
8 180 246.53 0.450 0.492 0.229

Table 7.3: Quantitative data for periodic fluttering state of thick cylinders χ ≤ 8. Meaning
of symbols: Auh

- amplitude of the horizontal component of the velocity, φmax - maximal
inclination angle, defined as the angle between the axis of the cylinder and the vertical
direction, St - Strouhal number.

threshold in the wake of fixed bodies (see Tables 7.4 and 7.5 and Figure 7.12). For the
freely moving cylinder of aspect ratio χ = 8.5 the primary bifurcation is still a super-critical
Hopf bifurcation setting in at G = 97.66 (Re = 147.91) but it leads to a different state (see
Figure 7.4). It is a weakly oblique (slightly drifting) periodic state oscillating with a small
amplitude and a frequency roughly half that of the periodic flutter setting in at higher Galileo
number. At Galileo numbers smaller than 130, the amplitude of the horizontal component
of the velocity and the maximum inclination of the cylinder remain small (Auh

< 0.045 and
φmax < 6o). The Strouhal number is equal to St ≈ 0.13. Further increase of the Galileo
number leads, eventually, to the appearance of large amplitude oscillations corresponding to
the periodic flutter. The critical Galileo number is Gcrit ≈ 130 (Re = 187) . The Strouhal
number at the onset is St ≈ 0.19. The bifurcation yielding the flutter at this aspect ratio is
supercritical.

For cylinders of aspect ratio χ = 9, 9.5 and 10, the primary bifurcation was found to be
regular. It leads to a steady oblique (SO) state. At χ = 9 it was identified using only the
transients developing from a vertical regime. Converged steady oblique state was obtained
at χ = 9.5 and 10 (see Table 7.5). For the aspect ratio χ = 10, Fabre et al. (2012) predict
a threshold ReFTM = 143.94. We find Gcrit = 95.37, which corresponds, with account of
the vertical velocity at the threshold (uz = 1.50) to Re = 143.3. As can be seen from Table
7.5, the domain of stability of the steady oblique state is very narrow. As a consequence
of a Hopf bifurcation, it is replaced by an oblique oscillating state similarly as for a free
sphere. Subsequently this state becomes oblique quasi-periodic, intermittent (vertical in the
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χ G Re Auh
/d φmax[rad] St

8.5 100 152.00 0.013 0.040 0.133
8.5 110 168.40 0.035 0.073 0.130
8.5 120 185.48 0.042 0.100 0.129
8.5 130 186.95 0.146 0.200 0.191
8.5 140 197.53 0.226 0.283 0.207
8.5 160 221.57 0.365 0.408 0.225

Table 7.4: Quantitative data for a cylinder of aspect ratio χ = 8.5. At G = 130 a significant
increase of the amplitude of the horizontal velocity Auh

/d, maximum inclination angle φmax

and of the Strouhal number is observed. The threshold of the secondary bifurcation in the
wake of a fixed cylinder of the same aspect ratio is Recf2 = 141.86.

average) and, finally, chaotic. The maximum inclination φmax and amplitude of horizontal
displacements remaining small, all these regimes can be qualified as quasi vertical, similarly
as the QVP and QVC regimes evidenced for a thin disc for m∗ < 0.05. The bifurcation
giving rise to the large amplitude periodic fluttering state becomes sub-critical between
aspect ratios 9.5 and 10. The bi-stability region of quasi-vertical states and of the flutter
widens rapidly towards large aspect ratios. At χ = 10 its width represents already 10 units
of Galileo number and, as seen in chapter 6, for a thin disc, it extends from G = 130 to
almost G = 180. The upper limit of the bistability is represented by the black line in Figures
7.10 and 7.11.

The scenario found at χ = 10 is already quite close to that of an infinitely thin disc. For
χ → ∞, the represented regimes are taken from the state diagram 6.20 of chapter 6. It is
therefore logical to represent the state diagram 7.10 in terms of 1/χ rather than χ. In the
interval 8 ≤ χ ≤ 10 there are important changes of the scenario within a small variation of
the aspect ratio. The zoom of this subdomain of the parameter space is provided in terms
of χ (see Figure 7.11).

7.3.3 Comparison with experimental results

Using the computed asymptotic mean vertical velocities, we can establish a correspondence
between the Galileo numbers of Figure 7.10 and the Reynolds numbers determined in ex-
periments. In Figure 7.12 we report the limits of stability of individual regimes described
in section 7.3.1 in the χ − Re parameter plane. In the same way as in Figure 13 of Fer-
nandes et al. (2007), these limits are to be compared with the thresholds of the primary
and secondary bifurcations in the wake of fixed cylinders. Although there is little difference
between our results of chapter 4 and those represented in Fernandes et al. (2007) we use our
results published in the paper Chrust et al. (2010). The red and blue solid lines marking
the threshold of the primary and secondary bifurcations in the wake of fixed cylinders are
represented by red and blue solid lines, respectively. The primary bifurcation is regular and
leads to a steady asymmetric state (see chapter 1.6) characterized by a planar symmetric
wake and a non-zero lift. The secondary one is a Hopf bifurcation. For cylinders of aspect



176 CHAPTER 7. FREELY RISING CYLINDERS

χ state G Re Auh
/d φ∗max[rad] St

(u∗h)

9 OO 100 150.64 0.005 0.057 0.121
9 OO 110 169.39 0.027 0.088 0.125
9 QVC 120 187.42 0.041 0.09 –
9 PF 130 188.44 0.143 0.175 0.193
9 PF 140 197.88 0.243 0.285 0.213
9 PF 150 209.52 0.322 0.357 0.223
9 PF 160 221.68 0.396 0.417 0.231

9.5 SO 100 150.51 0.008 0.057 –
9.5 QVC 110 166.10 0.022 0.080 –
9.5 QVC 120 181.29 0.041 0.095 –
9.5 QVC 130 197.60 0.060 0.105 –
9.5 PF 140 198.24 0.260 0.290 0.218
9.5 PF 150 209.58 0.348 0.364 0.229
9.5 PF 160 221.66 0.426 0.425 0.238

10 SO 97 145.79 0.008 0.047 –
10 OO 100 150.50 0.016 0.065 0.120
10 OO 110 166.10 0.035 0.090 0.131
10 QVC 120 182.52 0.040 0.095 –
10 QVC 130 199.55 0.070 0.110 –
10 QVC 150 232.50 0.084 0.115 –
10 PF 140 198.80 0.245 0.282 0.222
10 PF 150 210.75 0.336 0.366 0.234
10 PF 160 221.52 0.412 0.427 0.244
10 PF 180 246.42 0.592 0.520 0.255
10 PF 200 270.32 0.701 0.572 0.270

Table 7.5: Quantitative data for cylinders of aspect ratio χ = 9, 9.5 and 10. Meaning of sym-
bols: SO - steady oblique state, OO - oblique oscillating state, QVC - quasi-vertical chaotic
state and PF - large amplitude periodic flutter state. ∗: For SO state the value in the col-
umn Auh

, (uh) denotes the asymptotic value of the horizontal velocity component and φmax

is the constant asymptotic inclination, for OO and QVC the corresponding values denote
the maximum of the horizontal velocity component and maximal inclination, respectively.
For PF state Auh

denotes the amplitude of oscillations and φmax the maximal inclination of
a cylinder. (Thresholds of the secondary bifurcation in the wake of fixed cylinders of aspect
ratios 9, 9.5 and 10: Reχ=9

cf2 = 140.81, Reχ=9.5
cf2 = 139.88 and Reχ=10

cf2 = 139.05). Primary

bifurcation thresholds of free cylinders: Gχ=9
crit = 95.54 (Reχ=9

crit = 144.08), Gχ=9.5
crit = 95.36

(Reχ=9.5
crit = 143.78), Gχ=10

crit = 95.37 (Reχ=10
crit = 143.27).
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Figure 7.12: Critical Reynolds numbers characterizing onsets of instabilities for flat cylinders
of aspect ratio χ. Red and blue lines mark the regular and secondary bifurcations in the
flow past fixed bodies (Chrust et al., 2010). For χ ≥ 4 the bifurcation is subcritical and
the upper and lower bistability limits are represented. Freely moving cylinders: the dotted
brown line represents the onset of periodic flutter (PF) state. Filled brown squares along
with error bars represent onset of PF of Fernandes et al. (2007). Dotted cyan line marks
the onset of small amplitude states. For χ ≥ 10 the periodic flutter and quasi vertical states
coexist in the region delimited by brown and black dotted lines.
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ratio χ < 4 it leads to a periodic state with a planar symmetry and is supercritical. At large
aspect ratios χ ≥ 4 a periodic state without planar symmetry appears through a subcritical
bifurcation. The blue line splits to represent the lower and upper limit of the bistability
region (see Chrust et al., 2010). The full black squares with intervals of experimental error
bars denote the onset of path instabilities reported in Fernandes et al. (2007).

Figure 7.12 clearly shows that the experimentally observed onset of path instability cor-
responds to the primary bifurcation only for aspect ratios smaller than 8. The sudden rise of
threshold observed between χ = 6 and 10 is due, in the interval 6 ≤ χ ≤ 8, to the stabilizing
effect of the free body degrees of freedom, shifting the primary stability threshold above the
onset of the first two bifurcations in the wake of a fixed body and, in the interval 8 ≤ χ ≤ 10
to the onset of weakly oblique states difficult to discern from the vertical one. For aspect
ratios χ ≥ 10 there exists a wide bi-stability domain of quasi-vertical and oscillating states.
The experimental noise seems to have been strong enough to excite the oscillation as soon
as the Reynolds number reached the lower limit of the bi-stability.

7.4 Conclusions

We have carried out Direct Numerical Simulations for flat cylinders, of aspect ratio χ ranging
from 2 to ∞, immersed in a fluid of a density close to that of the solid phase ρs/ρ = 0.99
reproducing the experiments of Fernandes et al. (2007), which had been conducted for a
similar configuration. In experiments only the onset of the large amplitude periodic fluttering
state was determined. For χ ≥ 6 a significant upward shift of the threshold, far above the
thresholds of the first bifurcations in the wake of fixed cylinders, was reported. The results of
our simulations confirm the theoretical prediction of situations where the primary instability
threshold is shifted upward due to a stabilizing effect of the additional degrees of freedom of
a free body. However, this effect only partly explains the experimentally observed upward
shift of the flutter. The main effect, observed at large aspect ratios, is due to several quasi-
vertical regimes (steady oblique, oblique oscillating, quasi-vertical periodic (zig-zagging) and
quasi-vertical chaotic) either unobservable or discarded in experiments as inessential side-
effects.



Chapter 8

Oblate spheroids freely falling or

rising in a Newtonian fluid

8.1 Introduction

The aim of this chapter is to study the influence of the aspect ratio on the transition scenario
of oblate spheroids. The problem depends on three independent parameters: the aspect ratio
χ, the solid/fluid density ratio ρs/ρ and the Galileo number. In order to keep a continuous
transition to infinitely thin spheroids we replace the solid/fluid density ratio ρs/ρ by the
non-dimensionalized mass m∗. The extreme case of infinitely thin spheroids is very close
to the thin disc investigated in detail in chapter 6. The only difference is that in the limit
χ→ ∞ the mass is not distributed in a homogeneous manner which yields a different m∗/I∗

ratio (20 instead of 16, see Eqs. (2.37) and (2.40)). A sphere of aspect ratio χ = 1 can
be considered as the other extreme case. It is, however, to be expected that the limit of
χ→ 1 will be non-trivial. If we assume that vertical paths of spheroids of aspect ratio close
to one become unstable due to a regular bifurcation, a perfectly spherical body can easily
rotate (and the regular bifurcation is, indeed, accompanied by a rotation, while even a small
asphericity can be expected to prevent the rotation yielding an oblique state similar to that
evidenced for a cylinder of aspect ration 10 in chapter 7).

Since for spheroids no data are available concerning the transition scenario we covered
the three-dimensional box G < 200, 0 ≤ m∗ ≤ 1, 0 ≤ 1/χ < 1 by a practically homogeneous
mesh of regimes defined by values: m∗ = O, 0.1, 0.25, 0.5, 0.75, 1, χ = ∞, 6, 3, 2, 1.5 and 30 <
G < 200, incremented by 10 or 25 (with some refinement close to the primary bifurcation
threshold in some cases starting from higher Galileo numbers for small aspect ratios). 344
simulations are available so far. They provide a coarse view on the transition scenario.

8.2 Numerical implementation

The numerical implementation required a specific mesh for each aspect ratio. In the same
way as for cylinders, the meshes tested and used for fixed spheroids (see chapter 4) were
adapted for the implementation of the spherical interface. The radius of the interface was
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close to 1d for all simulations. All simulations were run with the azimuthal Fourier and the
spherical function expansion truncated at m = 15 and ℓmax = 15, respectively.

8.3 Preliminary discussion of raw results

The presentation of the results is organized by planes of constant aspect ratio.

8.3.1 χ = ∞
As expected, the differences between the scenario for homogeneous thin discs and for infinitely
flat spheroids are marginal. The so far obtained coarse results covering them∗−G parameter
plane did not allow for the fine investigation of bi-stability domains expected to lie along
the line of the primary bifurcation for m∗ > 0.1. The line m∗ = 0 is copied from the state
diagram 6.20. As compared to Figure 6.20, the thresholds (represented by solid lines) in
Figure 8.1 are only slightly shifted upward (towards higher Galileo numbers). The scenario
is dominated by the periodic flutter (blue circles) and by the tumbling regime (red triangles)
separated by intermediate regimes at which the body switches intermittently or periodically
between the flutter and the tumbling.

8.3.2 χ = 6

At χ = 6 we found a considerable extension of the domain of quasi-vertical states (delimited
by the magenta dash-dotted line in Figure 8.2. The finite thickness of the body enables
steady oblique and steady oscillating states similarly as for the flat cylinder investigated in
chapter 7. Figure 8.3 shows the development of a steady oblique state close to threshold
(at G = 92) of the primary bifurcation for m∗ = 0.1 (ρs/ρ = 1.15). Only at a slightly
higher Galileo number (G = 94) we evidenced an oblique oscillating regime. Again, two
units of the Galileo number higher, the mean value of the horizontal velocity (and of the
angle of inclination of the spheroid) vanishes and a vertical oscillating (zig-zagging) state sets
in. The amplitude of oscillations remains, however, small (0.05 radian for the inclination
angle) which distinguishes this and other similar states classified as quasi-vertical periodic
form the periodic flutter. In Figures 8.6 and 8.7 a typical periodic flutter is represented in
terms of the velocity components and of the inclination angle and as a visualization of the
positions of the spheroid along the trajectory over about a period. Unlike in a quasi-vertical
state, the amplitude of the inclination is very significant. The state approaches actually a
tumbling with an amplitude close to π/2. Unlike for thin discs (and spheroids) we did not
find a significant difference between the frequencies of the periodic quasi-vertical and periodic
fluttering states. The transition between them still necessitates a finer investigation.

The domain of intermittent or periodical switching between tumbling and flutter, result-
ing in changes of the drift direction is narrower than for thin spheroids of infinite aspect
ratios. A typical intermittent state is represented in Figures 8.8 and 8.9.

A periodic tumbling state is represented in Figures 8.10 and 8.11. Unlike for a thin disc,
we no longer find stages of an almost horizontal flight at this aspect ratio.
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Figure 8.1: State diagram for the infinitely thin spheroid χ = ∞ in the G − m∗(ρs/ρ)
plane. The symbols denote regimes investigated by simulations. The full lines delimit the
stability domains. Black line: limit of stability of the steady vertical state. Blue line: limit
of stability of periodic fluttering states. Red line: lower limit of stability of tumbling states.
Black crosses: vertical state. Blue circles: periodic flutter state. Green squares - intermittent
regimes. Red triangles - tumbling regimes. Magenta symbols - weakly oscillating periodic
vertical states: asterisks, diamonds - quasi-vertical chaotic states.
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Figure 8.2: State diagram for a spheroid χ = 6 in the G − m∗(ρs/ρ) plane. The symbols
denote regimes investigated by simulations. The full lines delimit the stability domains.
Black line: limit of stability of the steady vertical state. Magenta dashed-dotted line: limit of
stability of quasi-vertical states (QVP,QVC). Blue line: limit of stability of periodic fluttering
states. Red line: lower limit of stability of tumbling states. Black crosses: vertical state.
Blue circles: periodic flutter state. Green squares - intermittent regimes. Red triangles -
tumbling regimes. Magenta symbols - weakly oscillating periodic vertical states: asterisks,
diamonds - quasi-vertical chaotic states. Blue triangles: steady oblique state (SO). Green
triangles: oblique oscillating states (OO). Magenta symbols - weakly oscillating periodic
vertical states: asterisks, diamonds - quasi-vertical chaotic states.



8.3. PRELIMINARY DISCUSSION OF RAW RESULTS 183

100 200 300 400
−5

0

5
x 10

−3

u h

100 200 300 400
−1.6

−1.5

−1.4

u z

100 200 300 400
−1

0

1
x 10

−3

ω
h

100 200 300 400
0

0.05

0.1

t

φ 
[r

ad
]

Figure 8.3: χ = 6, m∗ = 0.1 (ρs/ρ = 1.146), G = 92. Steady oblique state (SO). Meaning
of symbols: uh and uz - horizontal and vertical component of the velocity, respectively, wh

- angular velocity, φ - inclination of the spheroid, defined as the angle between its axis and
the vertical direction.
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Figure 8.4: χ = 6, m∗ = 0.1 (ρs/ρ = 1.146), G = 94. Oblique oscillating state (OO). See
caption of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.5: χ = 6, m∗ = 0.1 (ρs/ρ = 1.146), G = 96. Quasi-vertical periodic state. See
caption of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.6: χ = 6, m∗ = 0.5 (ρs/ρ = 5.730), G = 150. Periodic flutter. See caption of Figure
8.3 for the meaning of lines and symbols.
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Figure 8.7: χ = 6, m∗ = 0.5 (ρs/ρ = 5.730), G = 150. Periodic flutter. Trajectory
corresponding to the time interval represented in Figure 8.6.
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Figure 8.8: χ = 6, m∗ = 0.5 (ρs/ρ = 5.730), G = 200. Intermittent state. See caption of
Figure 8.3 for the meaning of lines and symbols.



8.3. PRELIMINARY DISCUSSION OF RAW RESULTS 189

Figure 8.9: χ = 6, m∗ = 0.5 (ρs/ρ = 5.730), G = 200. Intermittent state. Trajectory
corresponding to the time interval represented in Figure 8.8.
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Figure 8.10: χ = 6, m∗ = 0.75 (ρs/ρ = 8.594), G = 150. Periodic tumbling state. See
caption of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.11: χ = 6, m∗ = 0.75 (ρs/ρ = 8.594), G = 150. Periodic tumbling state. Trajectory
corresponding to the time interval represented in Figure 8.10.
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8.3.3 χ = 3

Next we considered the aspect ratio χ = 3. The G − m∗ parameter plane is represented
in Figure 8.12. The scenario is significantly different as compared to χ = 6. We found no
intermittent states and only one tumbling state was evidenced in the investigated domain.
The difference between ’quasi-vertical’ and ’fluttering’ states is no longer obvious. In Figure
8.13 we represent an example of a periodic regime of a spheroid ascending along a wavy, in the
average vertical, trajectory. The term of flutter no longer applies. Firstly, the round shape
hardly evokes a fluttering object, secondly the amplitude of oscillations of the inclination
angle remain small. We did not evidence oblique states at the primary bifurcation threshold.
The primary bifurcation is a Hopf one for all investigated values of m∗ and the transients
of the regimes close to the primary bifurcation threshold do not carry, neither, any trace
of a close to unstable real eigenvalue. In contrast to the case of χ = 6, the oblique states
set in at rather higher Galileo numbers (see Figures 8.14 and 8.15). At still higher Galileo
number a complicated quasi-periodicity (with a still plane trajectory) lets expect a close
transition to chaos (Figures 8.16 and 8.17). It is to be noted that the inclination angle of the
spheroid remains very small (about 0.1 - 0.2 radian). It remains to clarify how the tumbling
state develops (see Figure 8.18, note the positive sign of the angular velocity indicating the
tumbling rotation and the rotation of the axis of the spheroid visible in Figure 8.19).

8.3.4 χ = 2

For the aspect ratio χ = 2 we evidenced again a competition between a regular and a Hopf
bifurcation (see Figure 8.20). Unlike for χ = 6 the primary bifurcation is regular for higher
m∗ (density ratios) and of the Hopf type for smaller m∗ (density ratio). The threshold of
the regular bifurcation is (in agreement with the theory) independent of the inertia of the
body. The corresponding critical Reynolds number was found to be 153.5, i.e. slightly higher
than the critical Reynolds of the regular bifurcation in the wake of a fixed spheroid of the
same shape (151.5). No tumbling state was evidenced for this aspect ratio. An example of
settling to a steady oblique regime with a constant inclination (of about 0.09 radian) is given
in Figure 8.21. At higher Galileo numbers the mean value of early oblique regimes decays to
yield zig-zagging states (vertical in the mean - Figure 8.22). For m∗ < 0.75 they set in at the
primary Hopf bifurcation. The periodic zig-zagging state becomes oblique and quasi-periodic
at higher G and m∗ (see Figures 8.23 and 8.24). The investigation should, very likely, be
enlarged in this direction to evidence an onset of chaos and of fully three-dimensional paths.

8.3.5 χ = 1.5

The smallest investigated aspect ratio was χ = 1.5. In this case the primary bifurcation
is regular virtually for all non-dimensionalized masses (except 0). The inertia independent
threshold lies at Re = 170, still a little higher than the threshold of the primary bifurcation
of a fixed spheroid (169). The sphere-like scenario fills a larger domain of the parameter
plane. An example of settling to a steady oblique state is represented in Figure 8.26. The
vertically zig-zagging state has the same frequency as the oblique oscillating state. It has
thus nothing in common with the slow zig-zagging state of a perfect sphere. (An example
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Figure 8.12: State diagram for a spheroid χ = 3 in the G −m∗(ρs/ρ) plane. The symbols
denote regimes investigated by simulations. The full lines delimit the stability domains.
Black line: limit of stability of vertical state. Red line: lower limit of stability of tumbling
states. Black crosses: vertical state. Blue circles: periodically oscillating state, vertical in
the average. Blue triangles: weakly oblique periodic fluttering state. Magenta triangles:
quasi-periodic states. Red downward pointing triangle: tumbling regime.
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Figure 8.13: χ = 3, m∗ = 0 (ρs/ρ = 0), G = 125. Periodic oscillating state. Trajectory.
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Figure 8.14: χ = 3, m∗ = 0.25 (ρs/ρ = 1.432), G = 150. Oblique periodic oscillating state.
See caption of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.15: χ = 3, m∗ = 0.25 (ρs/ρ = 1.432), G = 150. Oblique periodic oscillating state.
Trajectory corresponding to the time interval represented in Figure 8.14.
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Figure 8.16: χ = 3, m∗ = 0.75 (ρs/ρ = 4.297), G = 200. Quasi periodic state. See caption
of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.17: χ = 3, m∗ = 0.75 (ρs/ρ = 4.297), G = 200. Quasi periodic state. Trajectory
corresponding to the time interval represented in Figure 8.16.
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Figure 8.18: χ = 3, m∗ = 1 (ρs/ρ = 5.730), G = 200. Periodic tumbling state. See caption
of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.19: χ = 3, m∗ = 1 (ρs/ρ = 5.730), G = 200. Periodic tumbling state. Trajectory
corresponding to the time interval represented in Figure 8.18.
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Figure 8.20: State diagram for a spheroid χ = 2 in the G −m∗(ρs/ρ) plane. The symbols
denote regimes investigated by simulations. The full lines delimit the stability domains.
Black line: lower limit of stability of periodic state. Blue line: lower limit of stability of
steady oblique states (SO). Blue dashed line: limit of stability of steady oblique states (SO).
Black crosses: vertical state. Blue circles: periodic zig-zagging states. Blue triangles: weakly
oblique zig-zagging states. Blue filled triangles: steady oblique states (SO). Green triangles:
oblique oscillating states (OO). Magenta triangles: quasi-periodic states. Threshold of the
steady oblique state: Gχ=2

crit = 93.39 (Reχ=2
crit = 153.47). Threshold of the primary bifurcation

of a fixed spheroid: Reχ=2
cf1 = 151.45.
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Figure 8.21: χ = 2, m∗ = 0.75 (ρs/ρ = 2.865), G = 100. Steady oblique state (SO). Meaning
of symbols: uh - horizontal component of the velocity, φ - inclination of the spheroid, defined
as the angle between its axis and the vertical direction.
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Figure 8.22: χ = 2, m∗ = 0.5 (ρs/ρ = 1.910), G = 150. Periodic oscillating state. See
caption of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.23: χ = 2, m∗ = 1 (ρs/ρ = 3.820), G = 200. Quasi periodic state. See caption of
Figure 8.3 for the meaning of lines and symbols.
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Figure 8.24: χ = 2, m∗ = 1 (ρs/ρ = 3.820), G = 200. Quasi periodic state. Trajectory
corresponding to the time interval represented in Figure 8.23.



8.4. CONCLUSION 203

of a zig-zagging state for this aspect ratio is in Figure 8.27. Again a likely beginning of
a transition to chaos is captured in the upper left corner of the investigated region of the
parameter plane (Figures 8.28 and 8.29).

8.4 Conclusion

In spite of several open questions that require a finer and more complete investigation of
the parameter space, the results presented above convey an idea about the evolution of the
transition scenario from thin discs to almost spherical bodies. The flat body scenario can be
considered as limited by the aspect ratio of 3. Beyond this aspect ratio, the earliest stages
of transition are close to that observed for a perfect sphere except for the lack of rotation in
oblique states. The absence of rotation may be a significant feature distinguishing imperfect
spheres (spheroids of aspect ratio of almost one) from perfect ones. A fine investigation of
the regular bifurcation for a progressively varying aspect ratio tending to one will be carried
out. (An arbitrary selected single value of m∗ should be sufficient for this purpose.)
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Figure 8.25: State diagram for a spheroid χ = 1.5 in the G−m∗(ρs/ρ) plane. The symbols
denote regimes investigated by simulations. The full lines delimit the stability domains.
Black line: lower limit of stability of periodic state. Blue line: lower limit of stability
of steady oblique states (SO). Blue dashed line: limit of stability of steady oblique states
(SO). Green dashed line: limit of stability of oblique oscillating states (OO). Black crosses:
vertical state. Blue circles: periodic flutter state. Blue triangles: weakly oblique periodic
fluttering state. Blue filled triangles: steady oblique states (SO). Green triangles: oblique
oscillating states (OO). Magenta triangles: chaotic states. Threshold of the steady oblique
state: Gχ=2

crit = 99.31 (Reχ=2
crit = 170.14). Threshold of the primary bifurcation of a fixed

spheroid: Reχ=2
cf1 = 168.89.
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Figure 8.26: χ = 1.5, m∗ = 0.75 (ρs/ρ = 2.149), G = 110. Steady oblique state (SO). See
caption of Figure 8.21 for the meaning of lines and symbols.
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Figure 8.27: χ = 1.5, m∗ = 1 (ρs/ρ = 2.865), G = 175. Periodic oscillating state. See
caption of Figure 8.3 for the meaning of lines and symbols.
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Figure 8.28: χ = 1.5, m∗ = 1 (ρs/ρ = 2.865), G = 200. Quasi periodic state. See caption of
Figure 8.3 for the meaning of lines and symbols.
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Figure 8.29: χ = 1.5, m∗ = 1 (ρs/ρ = 2.865), G = 200. Quasi periodic state. Trajectory
corresponding to the time interval represented in Figure 8.23.
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Chapter 9

Conclusions and perspectives

The present thesis was devoted to the study of transitional regimes in the wakes of axisym-
metric bodies, fixed with their axis both parallel and inclined to the free stream direction
and to path instabilities of bodies freely moving under the action of buoyancy, gravity and
hydrodynamic forces.

The crucial starting point of this thesis was the adaptation of the efficient and accurate
spectral-spectral element code used previously for the study of spherical particles to the study
non-spherical bodies. Indeed, as shown in the bibliographic review, the absence of available
sufficiently efficient and accurate numerical method was the decisive obstacle explaining
the absence of numerical results on this topic. The goal was achieved by decomposing the
cylindrical computational domain into a spherical subdomain rotating with the object and
the remaining cylindrical part. The interface between the two subdomains was discretized by
expansion in spherical functions. The optimality of the representation of the rotation group
in the basis of spherical functions minimized the computational cost necessary to dynamically
reconnect the two subdomain within an implicit algorithm assuring both a sufficient stability
and very high accuracy. Within both subdomains, the spectral azimuthal expansion, used
for many years with success by the research team, was applied. The code was validated by
reproducing the scenarios of fixed cylinders and of a freely moving sphere obtained with the
previous version of the code.

The study of fixed bodies, although important in its own right, helped to a large extent to
shed light on the origins of complex trajectories found later on for freely moving counterparts.
At the beginning of the present study, only the transition scenarios of extreme cases of a
fixed sphere and of a fixed infinitely thin disc were well explored. Interestingly, they were
found to differ significantly. There were also few results published on the transition of flat
cylinders of intermediate aspect ratios of χ = 10 and 3. However, the link between the
scenario of a disc and a sphere was missing. We established the connection between the
two bodies by studying the transition in the wake of oblate spheroids of intermediate aspect
ratios 1 ≤ χ ≥ ∞. This choice of body shape was not only original (to our knowledge
we were the first to study these geometries) but it sheds more light on the effect of aspect
ratio than the study of flat cylinders. Nevertheless, we have also considerably completed
the knowledge on the wake of flat cylinders for the same range of aspect ratios. We found a

209
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significant qualitative similarity between both configurations. At large aspect ratios (χ > 2.3
for spheroids and χ ≥ 4 for cylinders), the secondary bifurcation giving rise to a periodic
state without planar symmetry is subcritical with a small, but clearly identified hysteresis
interval of about two Reynolds number units. For small aspect ratios (χ ≥ 1 are considered),
the sphere-like scenario is recovered only at aspect ratios very close to one for spheroids. For
cylindrical bodies the same scenario holds for χ ≤ 1.7. For intermediate aspect ratios, a
domain of states with non zero net helicity separates states typical for the sphere wake from
those of an infinitely flat disc.

Although reproduced by several independent numerical studies, the transition scenario
predicted numerically for the wake of a disc placed perpendicularly to the flow direction
has never been confirmed experimentally. We decided to address this question by joint
experimental and numerical investigation. (The experimental part of the work was done at
the PPMH laboratory of ESPCI in Paris.) We demonstrated that the scenario predicting the
appearance of the periodic state without planar symmetry at the secondary Hopf bifurcation
in the wake of an infinitely thin disc is purely theoretical. Experiments show that the
observed scenario is qualitatively similar to that of a sphere. We linked this result to the
impossibility of realization of a perfect axisymmetric configuration due to holding constraints.
Therefore, using the possibility of simulating axisymmetric bodies inclined arbitrarily with
respect to the flow direction, we considered discs (and cylinders of aspect ratio χ = 6)
with their symmetry axis weakly inclined to the free stream direction. We evidenced that
the theoretical scenario can be found only for very small inclination angles φ < 4o (still
the influence of the holding in experimental set-up might lower this threshold), otherwise
the periodic state without planar symmetry is suppressed. At angles larger or equal than
4o the experimentally evidenced sphere-like scenario was numerically confirmed. Moreover,
the investigation was completed by a study of the effect of larger inclination angles (up to
50o) on the onset of unsteadiness and on the Strouhal number of arising oscillations. Old
experimental results of Calvert (1967) were very faithfully reproduced, confirming the weak
dependence of the Strouhal number on the Reynolds number.

Our work was originally mainly motivated by the intriguing behavior of thin bodies
(falling discs, cards, leafs) that had been recurrently the topic of a large number investiga-
tions ranging from simple observations to highly theoretical papers. The paper by Field et al.
(1997) was even published in Nature. The efficiency of the developed code has allowed us to
run many hundreds of simulations yielding an extensive parametric study of the transition
scenario of freely falling infinitely thin discs. We explored the parameter space spanned by
dimensionless masses 0 < m∗ < 10 and Galileo numbers 30 < G < 500. We confirmed the
existence of four well-known states reported in experiments of Field et al. (1997). Their sta-
bility domains were found to be in a relatively good agreement with those reported therein
but could be determined with a much better accuracy. For m∗ < 0.1 we found a domain
of co-existence of quasi-periodic and fluttering states important for the explanation of other
experimental data discussed in the framework of our study of flat cylinders. For the discs, it
allowed us to explain the intriguing upward shift of the onset of path oscillations observed
for discs of weak inertia by Willmarth et al. (1964) for discs and recently by Fernandes et al.
(2007) for flat cylinders of the aspect ratio χ ≥ 10. For discs characterized by more sig-
nificant inertia (higher values of non-dimensionalized mass m∗) we evidenced the tumbling
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states. We could dissipate all doubts (see Field et al. (1997)) concerning their periodicity.
For intermediate values of m∗ we found the transition to periodic fluttering and to the inter-
mittent state at lower Galileo (Reynolds) numbers than in experiments. This disagreement
is to be elucidated by further carrying out analyzing experimental studies, similarly as we
have done for inclined fixed cylinders. Perhaps the most intriguing feature of the evidenced
scenario is the role of sub-critical bifurcations leading to several sub-domains of co-existence
of regimes, be it the already mentioned quasi-vertical and fluttering ones or the vertical
and periodic fluttering states for 0.1 < m∗ < 1 and the tumbling and fluttering states for
discs with high inertia. We witnessed also the existence of three dimensional, spiral states
reported by Zhong et al. (2011). We demonstrate that for all considered m∗ for high Galileo
numbers all trajectories lose their initial planarity. We discovered a new spiral tumbling
state characterized by a regular helical trajectory of a very large diameter accompanied by
the tumbling disc. The obtained results can be expected to have a similar impact as those
published in the research team several years ago on the scenario of freely falling or ascending
spheres Jenny et al. (2004).

As another application we addressed the open question raised by the experiments of
Fernandes et al. (2007) devoted to the study of the transition of freely rising (ρs/ρ=0.99) flat
cylinders of aspect ratios 2 ≤ χ ≤ ∞. Fernandes et al. (2007) evidenced an intriguing upward
shift (towards higher Reynolds numbers) of the onset of observed path instabilities for flat
cylinders of aspect ratio larger than 6. By our numerical parametric study we demonstrated
that the observed shift of the onset of periodic fluttering states for thin cylinders χ > 6 is
related in part (for aspect ratios up to 10) to the stabilizing effects of the additional degrees
of freedom of the free body (confirming recent theoretical predictions of Fabre et al. (2012))
and (for aspect ratios larger or equal to 10) to the bi-stability domain of small amplitude
states: steady oblique, oblique oscillating, quasi vertical periodic and chaotic, discarded
as experimental noise with the fluttering regime. We showed that the lower limit of the
bi-stability domain agrees exceptionally well with the experimental results.

Eventually, we have carried out an extensive parametric study of the transition scenario
of freely moving oblate spheroids of aspect ratios χ = ∞, 6, 3, 2 and 1.5, the purpose of which
is to establish the link between the transition scenario of an infinitely thin disc, studied in
the framework chapter 6 of the present thesis, and the scenario of a spherical particle. For
each aspect ratio we explored the parameter space spanned by the dimensionless mass m∗

and the Galileo number G in the range 0 ≤ χ ≤ 1 and 50 ≤ G ≤ 200 >, respectively. In
spite of the fact that the results need to be refined and more accurately interpreted before
publication, it can be said that χ ≤ 3 the found scenario can be considered as a thin-disc
like, while that observed for χ ≥ 2 resembles that of free spheres.

The present thesis provides a very complete picture of the transition scenarios of fixed
and freely moving spheroids and of flat cylinders of aspect ratios ranging from 1 to ∞
demonstrating the abundance of transitional states preceeding chaos. Our direct numerical
simulations yield not only the global picture of transition scenarios, but also provide extensive
information on the transitional regimes themselves by listing important characteristics and
giving details of the wake structures. Therefore this thesis might serve as a reference both
for the study of complex multi-particle flows and for benchmarking of multi-purpose multi-
particle codes. Last but not least, the large quantity of data demonstrate the efficiency of
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the developed numerical tool.
Nevertheless, a few points still require clarification and further studies. As already men-

tioned, the reported early onset of periodic flutter compared to the experimental data should
be elucidated, possibly by carrying our a joint experimental-numerical study. We shall
also continue the study of freely moving oblate spheroids for aspect ratios in the range
1 < χ < 1.5. Finally we considered freely moving flat cylinders for only one density ratio
leaving scenarios pertaining to other ratios uncovered.
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