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Nano-émulsions radio-opaques iodées 

pour applications précliniques en imagerie par rayons X 

 

La micro-tomodensitométrie à rayons X (dite micro-CT, CT = Computed Tomography), est une 

technique  d’imagerie  de  haute  résolution  qui  consiste  d’une  part  à  mesurer  l’absorption  des  rayons  X  

par les tissus, et d’autre  part  de reconstruire les images et les structures anatomiques en 3 dimensions 

par traitement informatique. Le préfixe micro vient du fait que les scanners, en comparaison avec ceux 

utilisés pour  l’être  humain,  sont  de  dimensions  réduites  et  adaptés  au  petit  animal,  réduisant  aussi  la  

définition   (d’où   la   haute   résolution),   pour   arriver   à  des   voxels   («   pixels   »   3D)   de   93µm    93µm  

93µm. La micro-densitométrie à rayons X est beaucoup utilisée pour tester des petits échantillons sur 

des  petits  animaux  lors  d’études  précliniques  et  sert  depuis  quelques  années  comme  outil  pour  étudier  

l’origine,  la  progression  et  le  traitement  des  maladies  mortelles  humaines. 

 

L’agent  de  contraste  est  une  substance  capable  d’améliorer  la  visibilité  des  structures  d’un  organe  ou  

d’un liquide organique in vivo. Dans le cas de la micro-CT, les tissus mous sont contrastés par des 

éléments lourds. Les produits de contraste iodés commercialisés sont des molécules iodées 

hydrophiles de faibles poids moléculaires qui présentent certaines limites aux applications de la micro-

CT,   telles  que   l’élimination   rapide  par   la  voie   rénale,   le   faible   contraste  vasculaire,   une  distribution  

non spécifique, et occasionnellement une toxicité rénale. Le   temps   de   réalisation   d’une  mesure   en  

micro-CT  est  de  l’ordre  d’une dizaine de minutes, temps durant lequel les produits hydrophiles décrits 

ci-dessus sont éliminés, ce qui rend impossible les mesures. Pour pallier à ces problèmes, différents 

produits  de  contraste  décrits  dans  la  littérature  ont  été  synthétisés  afin  d’avoir  une  longue  rémanence  

vasculaire. Ces produits de contraste sont sous forme galénique de nanoparticules lipidiques ou des 

polymères contenant ou encapsulant des atomes de haut poids moléculaires, e.g. de  l’iode,  de  l’or  ou  

du bismuth. Ces objets nanoparticulaires sont par exemple des liposomes, des nano-émulsions, des 

micelles ou des nanoparticules polymères. 

 

Nous nous sommes proposés dans le cadre de ce   travail   de   thèse   d’étudier   d’une   part   des   nano-

émulsions  iodées  afin  d’avoir  une  longue  rémanence  vasculaire  in vivo, une meilleure biocompatibilité 

et  d’autre  part  de  mettre  au  point  une  synthèse  et  une  formulation  plus  simples  que  celles  des  agents  de 

contraste nanoparticulaires commercialisés (e.g. Fenestra®LC, Fenestra®VC).  L’iode  a  été  choisi  dans  

cette étude en raison de son fort pouvoir contrastant, sa bonne sécurité et son coût relativement bas par 

rapport aux autres substances contrastantes. Les nano-émulsions sont généralement définies comme 

des  gouttelettes  d’huile-dans-eau en présentant un diamètre entre 20 et 300 nm. Elles sont maintenant 

largement utilisées dans les domaines industriel et pharmaceutique, grâce à leur bonne stabilité 

pendant plusieurs mois. De plus, la dispersion des nano-gouttes est très homogène dans la phase 
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continue et leur structure biphasique est appropriée pour être un nano-vecteur de principes actifs 

hydrophobes  et  d’agents  de  contraste  afin  d’avoir  une   libération  prolongée, ciblée ou contrôlée. Les 

procédés de préparation des nano-émulsions comprennent deux grandes méthodes : haute-énergie et 

basse-énergie. Nous nous somme intéressés dans le cadre de ce travail à la formulation de nano-

émulsions par la méthode de basse-énergie,  encore  appelée  méthode  d’émulsification  spontanée.  Les  

mécanismes  d’émulsification  utilisent  les  propriétés  intrinsèques  des  surfactants  et  sont  basés  sur  les  

affinités particulières entre les molécules amphiphiles et les phases aqueuse et lipidique. Cette 

méthode permet de générer des gouttes de tailles nanométriques de façon spontanée sans apport 

d’énergie  (autre  que  celle  pour  homogénéiser  le  mélange),  simplement  en  mélangeant  deux  liquides.  

Les molécules amphiphiles (surfactants non-ioniques) hydrophiles sont solubilisées dans la phase 

huileuse à température ambiante.   Ces   molécules   amphiphiles,   bien   qu’étant   hydrophiles   (balance  

hydrophile-lipophile  ~  14,  pour  celles  que   l’on  a  utilisé)   sont  aussi   solubles  dans   la  phase  huileuse.  

Cependant, le contact de la phase aqueuse induit un déplacement brutal des surfactants de la phase 

huileuse vers la  phase  aqueuse.  Ce  phénomène  de  transfert  est  supposé  être  à  l’origine  de  la  formation  

des nano-gouttes  d’huile  dispersées  dans  l’eau. 

 

L’objectif  de  l’étude était donc de synthétiser des huiles iodées constituant la phase huileuse de nano-

émulsions et ensuite de les utiliser pour réaliser des nano-émulsions formées par la méthode 

d’émulsification   spontanée.  Les nano-émulsions iodées ainsi formulées ainsi que leurs stabilités ont 

fait   l’objet   d’études   particulières   et   de   caractérisations   par   diverses   méthodes.   Leur   toxicité   a   été  

évaluée in vitro. Leurs propriétés contrastantes ainsi que leurs pharmacocinétiques ont été évaluées in 

vivo sur des souris. Trois nouveaux agents de contrastes iodés ont ainsi pu être synthétisés au 

laboratoire. Ceux-ci permettent la préparation aisée de nano-émulsions injectables dotées de propriétés 

contrastes. 

 

La première partie de la thèse comprend un chapitre bibliographie (Chapitre 1) qui introduit tous les 

concepts et le contexte de cette thèse (les agents de contraste nanoparticulaires pour   l’imagerie   à  

rayons X, et la génération et caractérisation des nano-émulsions). Dans le chapitre 1 sont présentés 

différents agents de contrastes nanoparticulaires existants dans la littérature et leurs utilisations pour 

les applications précliniques par micro-CT  ainsi que la génération des nano-émulsions et les 

différentes méthodes de préparation des nano-émulsions. Les résultats expérimentaux sont ensuite 

présentés dans les deux chapitres suivants.  

 

La première huile iodée (Chapitre2.1) a été dévelopée à   partir   d’une   huile   commercialisée   de  

Labrafil® M 1944 CS par la réaction de Wijs. Les nano-émulsions de type huile-dans-eau ont été 

préparées   à   partir   de   molécules   hydrophobes   iodées   par   la   méthode   d’émulsification   spontanée.  

Brièvement, le Labrafil® M  1944  CS   iodé   a   d’abord été mélangée avec le surfactant (Cremophor® 
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ELP) à un SOR (Surfactant Oil Ratio) choisi (SOR = poids de surfactant/ (poids de surfactant+poids 

de   l’huile)    100). Une proportion définie de phase aqueuse (un tampon phosphate) a ensuite été 

ajoutée dans   le   mélange   d’huile-surfactant sous agitation mécanique. Les nano-émulsions ont été 

formées spontanément au moment du mélange des deux phases. Les nano-émulsions stables de 

Labrafil® M 1944 CS iodé ont été obtenues  à  partir  d’un  SOR  =  15%  et  la  teneur  en  iode  était  environ 

de 85 mg I / mL. Un contraste prolongé pendant 4 h a été observé après avoir injecté ces nano-

émulsions de Labrafil® M 1944 CS iodées chez la souris. 

 

La deuxième huile iodée (Chapitre 2.2) a été synthétisée sur la base de la structure de Labrafil® M 

1944 CS (Macrogoglyceridorum oleates),  afin  d’augmenter  la  teneur  en  iode  dans  l’huile  comparée à 

celle obtenue de Labrafil® M 1944 CS. Cette huile reconstituée a été synthétisée en greffant deux 

chaînes   d’acide   gras   sur   une   chaîne   de   polyéthylène glycol 300 (PEG 300) par estérification en 

utilisant du chlorure   de   thionyle.   Le   monochlorure   d’iode était ensuite additionné sur les doubles 

liaisons  des  chaînes  d’acides  gras  insaturés  de  l’huile  reconstituée  par  la  réaction  de  Wijs.  La  structure  

de  l’huile  reconstituée  était  similaire  à  celle  du  Labrafil® M  1944  CS.  Afin  d’être  plus  chargée  en  iode, 

les  acides  gras  de  l’huile  reconstituée  avaient  un  nombre  de  doubles  liaisons  plus  élevé  que  celui  du  

Labrafil® M 1944 CS. La teneur en iode de cette huile reconstituée peut en effet atteindre 33,87%, soit 

être 1,3 fois plus élevé que celle de Labrafil® M 1944 CS iodé. 

 

Les nano-émulsions  de  l’huile  reconstituée  iodée  ont  été  formées  à  partir  d’un  SOR  =  30%.  Les nano-

émulsions ayant une stabilité plus élevée ont été obtenues avec un SOR = 60%. Le pourcentage élevé 

de ce SOR conduit malheureusement à une teneur de 5,4% en iode qui était de ce fait plus faible que 

celle obtenue avec du Labrafil® M 1944 CS iodé puisque dans ce   cas   le   taux  d’iode   était   de  8,3%. 

Dans ce dernier cas, la quantité de surfactant a dû être augmentée pour former des nano-émulsions 

stables  lorsque  l’huile  était  plus  chargée  en  iode.  Ceci  peut  expliquer  la  diminution  de  la  teneur  en  iode  

dans la formulation finale des nano-émulsions   de   l’huile   reconstituée   iodée   par   rapport   à   celle   des  

nano-émulsions de Labrafil® M 1944 CS iodé. Après la mise en contact de ces nano-émulsions iodées 

avec des érythrocytes pendant 1 h, une coagulation du sang a été observée. Suite  à  l’injection de ces 

nano-émulsions iodées chez des souris Suisse, on a enregistré la mort de ces animaux après deux 

minutes. De ce fait, les nano-émulsions constituées de cette huile iodée ont été considérées comme un 

agent de contraste non approprié pour des applications précliniques. 

 

Pour  pouvoir  disposer  d’une  huile  iodée  non-toxique ayant une élimination par la voie hépatique afin 

d’obtenir un pouvoir contrastant spécifique au niveau du foie, une troisième huile iodée a été 

synthétisée. (Chapitre 3.1).   Cette   troisième   huile   iodée   a   été   synthétisée   par   le   greffage   d’une  

molécule iodée (acide 2,3,5-triiodobenzoїque) sur un lipide naturel (α-tocophérol).  L’α-tocophérol a 

été choisi en raison de sa bonne biocompatibilité, de sa structure appropriée pour former des nano-
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émulsions  par  la  méthode  d’émulsification  spontanée  et  de  sa  voie  d’élimination  par  le  foie.  La  partie  

iodée était   différente   de   celle   de   l’huile   reconstituée   iodée   mentionnée   ci-dessus.   L’acide   2,3,5-

triiodobenzoїque a été choisi pour donner un pouvoir contrastant à la molécule hydrophobe synthétisée. 

Cet acide iodé est la substance de base des agents de contraste   iodés  commercialisés.  L’acide  2,3,5-

triiodobenzoїque   a   été   greffé   sur   le   groupement   phénol   de   l’α-tocophérol par une réaction 

d’estérification.   La   synthèse   ne   contient   qu’une   étape   et   le   rendement   de   l’α-tocophérol iodé est 

satisfaisant (plus de 80% après  l’étape  de  purification).  Les  nano-émulsions de type huile-dans-eau ont 

été préparées à partir de cette nouvelle molécule hydrophobe iodée de la même façon que celle qui 

avait été utilisée pour la première huile iodée décrite ci-dessus. Le surfactant utilisé était du 

Cremphor® ELP   et   la   phase   aqueuse   était   constituée   d’un   tampon   phosphate   afin   d’avoir   la  même  

osmolalité que celle enregistrée in vivo. Les nano-émulsions  de  l’α-tocophérol iodée ont été formées à 

partir  d’un  SOR  =  30%  et  les  nano-émulsions ayant une stabilité plus élevée ont été obtenues à partir 

d’un  SOR  =  40%.  La  taille  des  nano-émulsions qui ont un SOR = 40% était environ de 85 nm et la 

teneur en iode a été déterminée à environ 106 mg I / mL soit presque 2 fois plus élevée que celle du 

Fenestra® qui  est  d’environ  55  mg  I / mL. 

 

Avant de réaliser les tests in vivo, chez des petits animaux de laboratoire, la biocompatibilité des nano-

émulsions  contenant  de  l’α-tocophérol  iodé  a  d’abord  été  évaluée  à   l’aide  de   l’étude  de  stabilité  des  

nano-émulsions  en  présence  de  sérum,  du  test  d’hémolyse,  et  du  test  de  cytotoxicité  (test  MTT).  Les  

nano-émulsions iodées ont été mises en contact pendant 5 h avec des érythrocytes de mouton (dans un 

rapport de 10% en volume) pour  mimer  les  conditions  d’injection  in vivo. Le résultat a montré que les 

nano-émulsions n'avaient induit ni hémolyse supérieure à 5% jusqu'à 5 h ni une tendance croissante 

d'hémolyse au cours du temps. Ces nano-émulsions iodées ont montré aussi une très bonne stabilité en 

présence de sérum pendant 20 h. La cytotoxicité du nouvel agent de contraste a été évaluée par le test 

MTT. Les nano-émulsions de l’α-tocophérol iodé ont été mises en contact avec des cellules hépatiques 

de souris (BNL_CL2) pendant 24 h. Les résultats ont indiqué une bonne  biocompatibilité  jusqu’à  une  

concentration de 0,27 mg I /104 cellules, ce qui représente une concentration beaucoup plus élevée que 

celle retrouvée in vivo.  Une  autre  étude  sur  l’aorte  thoracique  de  rat  a  montré  que  les nano-émulsions 

de   l’α-tocophérol   iodé   n’entrainent   pas   d’altération   vasculaire,   notamment   pas   d’altération   de   la  

fonction   d’endothéliale suite à une exposition prolongée (Chapitre 3.2).   L’ensemble   des   résultats  

obtenus a montré que les nano-émulsions   à   base   de   l’α-tocophérol iodé avaient une très bonne 

biocompatibilité.  

 

Suite aux essais de biocompatibilité, nous avons réalisé des essais in vivo sur  des  souris  afin  d’évaluer  

les propriétés contrastantes des nano-émulsions   contenant   de   l’α-tocophérol iodé ainsi que leur 

pharmacocinétique. 0,18 ml des nano-émulsions   de   l’α-tocophérol iodé ont été injectées par voie 

intraveineuse chez des souris Suisse. Des contrastes significatifs ont été observés pendant plus de 9 h 
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au niveau des ventricules cardiaques, des grandes artères et des veines. Le contraste observé au niveau 

du  cœur  9 h après injection signifie que les gouttelettes de nano-émulsions restent dans la circulation 

sanguine. Un contraste significatif a été observé au niveau du foie tout de suite après injection ainsi 

qu’une   forte   accumulation   de   ces   nano-émulsions iodées dans le foie 48 h après injection. La forte 

accumulation   de   l’agent   de   contraste   iodé   au   niveau   du   foie   indiquerait   que   ces   nano-émulsions 

pourraient être éliminées par voie hépatique. Le contraste significatif du foie demeurait plus de 134 

jours   après   l’injection.   Le   contraste   prolongé   après une seule injection du produit de contraste est 

souhaitable de sorte à conduire à une diminution de la toxicité potentielle causée par l'injection répétée 

d'un même produit. 

 

Ce nouvel agent de contraste basé sur des nano-émulsions  contenant  de  l’α-tocophérol iodé présente 

d’excellentes   propriétés   contrastantes   pour   différents   organes.   Un   contraste   prolongé   a   été   observé 

dans la circulation sanguine et une accumulation persistante  s’en  suit  au  niveau  du foie.  L’ensemble  

des résultats obtenus a montré que ce nouvel agent de contraste iodé combine à la fois les propriétés 

d’un  agent  de  contraste  à longue rémanence vasculaire et un agent de contraste spécifique du foie. 

 

En conclusion, ce travail de thèse a eu pour objectif le développement d’agents de contraste iodés sous 

formes de nano-émulsions pour des applications précliniques en imagerie biomédicale. Trois 

différentes huiles iodées ont été synthétisées et utilisées comme partie contrastante dans les nano-

émulsions. Enfin, les nano-émulsions  de  l’α-tocophérol  iodé  nous  ont  permis  d’atteindre  l’objectif  de  

cette thèse. Ces nano-émulsions iodées ont montré une très bonne biocompatibilité et combinent à la 

fois   les   propriétés   d’un   agent   de   contraste   à   longue   rémanence   vasculaire   et   un   agent   de   contraste  

spécifique du foie. 

 

De  nombreuses  perspectives  s’ouvrent  suite  à  ce  travail,  notamment  sur  le système de nano-émulsions 

de   l’α-tocophérol iodé. Dans un premier temps, il   sera   primordial   d’évaluer la toxicité de nano-

émulsions   contenant   de   l’α-tocophérol iodé par des études anatomiques et des études biologiques. 

L’objectif  est  de  compléter  les  études  de  toxicité  à  long terme, ce qui est un des points essentiels pour 

tous les agents de contraste nanoparticulaires. De plus, les nano-émulsions contenant de l’α-tocophérol 

iodé conduisent  à  une  accumulation  hépatique  significative  et  prolongée.  Par  conséquent,  l’évaluation 

du seuil de la toxicité du produit destiné à une imagerie hépatique par injection répétée devient très 

importante. Les  études  ultérieures  seront  axées  sur  l’utilisation  de  ce  nouvel  agent  de  contraste  nano-

émulsionné   contenant   de   l’α-tocophérol iodé dans le cadre de la vectorisation passive du foie. Les 

nanoparticules  s’accumulent  dans  les  sites  sains  du  foie  en  raison  de  la  présence  de  cellules  de  Kupffer  

et des hépatocytes et donnent lieu à une hyper-atténuation du tissu sain et à une hypo-atténuation aux 

sites métastasiques du foie. Les nano-émulsions iodées développées dans le cadre de ce travail 

doctoral pourraient dans ce cas être un agent de contraste co-administré avec un agent anticancéreux 
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hépatique  afin  d’aider  à  évaluer  l’efficacité  thérapeutique au cours du temps sans devoir réinjecter le 

produit de contraste pendant plus de 4 mois chez un même sujet. Les nano-émulsions   de   l’α-

tocophérol iodé développées dans ce travail peuvent aussi être considérées comme un outil pour des 

études de la vectorisation active. Des molécules spécifiques aux différents organes peuvent être 

greffées à la surface de ces nano-émulsions en fonction des cibles. 
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Ce premier chapitre reprend les différents concepts et le contexte de cette thèse. Il est consisté en deux 

grandes parties : 1) la présentation globale des agents de contraste nanoparticulaires et 2) la 

formulation générale des nano-émulsions. Nous présenterons dans un premier temps les différents 

agents de contrastes nanoparticulaires mentionnés dans la littérature et leurs utilisations pour les 

applications précliniques par rayons X. Dans un second temps, nous nous intéresserons à la 

formulation générale et aux différents procédés de préparation des nano-émulsions. 
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Abstract

Micro-computed tomography (micro-CT) is a widely used three-dimensional radiographic imaging technology for

small animal models. This imaging modality is cost-e↵ective, fast, and accurate (allows detecting metastases as small

as 300 µm), appears as an interesting compromise for preclinical research on tumor imaging. However, the main

limitation of micro-CT lies in the poor e�cacy or toxicity of the contrast agents. Moreover, contrast agents for micro-

CT have to be stealth nanoparticulate systems, i.e. preventing their rapid renal clearance. The chemical composition

and physicochemical properties will condition their uptake and elimination pathways, and therefore all the biological

fluids, organs, and tissues trough this elimination route of the nanoparticles will be contrasted. Furthermore, several

technologies playing on the nanoparticles properties, aim to influencing these biological pathways in order to induce

their accumulation onto given targeted sites, organs of tumors. In function of the methodologies carried out, taking

benefit or not of the action of immune system, of the natural response of the organism like hepatocyte uptake or

enhanced permeation and retention e↵ect, or even accumulation due to ligand / receptor interactions, the technologies

are called passive or active targeted imaging. Through the present review, we present the state-of-the-art of targeted

X-ray imaging technologies, discussing the recent advanced of in vivo targeting of nanoparticulate contrast agents,

and the influence of the formulations, nature of the nanocarrier, nature and concentration of the X-ray contrasting

materials, e↵ect of the surface properties, functionalization and bioconjugation.

Key words: Computed tomography, micro-CT, X-ray imaging, targeting, nano-emulsion

1. Introduction

Over the last century, the main progress of medicine lies in the development of medical imaging. Whatever, the

imaging technology (X-ray or computed tomography (CT), echography, magnetic resonance imaging (MRI), positron

emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging), the prin-

ciple still remains the same: to build a two-dimensional (2D) or three-dimensional (3D) image containing useful

information thanks to a contrast within the image, highlighting the physiology or metabolism of the patient. In the
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case the contrast is naturally present, it is generally improved through contrast agents administrated. Then, the dy-

namic behavior of contrast agents in the body allows observing anatomic or pathologic structure, invisible without

contrast agent. If medical imaging has seen an extensive development over the last decades, the contrast agents remain

very limited, and the main limit for human is their toxicity. In addition, for the last years, imagers were specifically

developed for small laboratory animals, for preclinical research, and notably in the field of oncology. This technology

allows reducing the number of animal for experimental protocols, in accordance to the ethical guidelines on animal

experimentation. Some other limitations of preclinical imaging lies in the cost of imagers and specific contrast agents,

but also their toxicity. Moreover, functional imaging based on the radioactive labeling of tissues (PET, SPECT) in-

volves additional drawbacks regarding supply, storage, managing of radioactive animals and wastes. This explains

the great emergence of preclinical optical imaging, which concerns 19% of the images performed. However, optical

imaging (like fluorescence) has a very low signal penetration in the body, which is the main limitation of this tech-

nology for small laboratory animal, even more true for human. Moreover, the low spatial resolution and the absence

of signal for non-labeled tissues do not allow obtaining anatomic images only with the optical modality. This is pre-

cisely why the solution for providing a complete solution passes through its association with another modality. In this

respect, 43% of the images are multimodal. The second most cost-e↵ective and e�cient modality is the computed

tomography (X-ray scanner), but constitutes today only 7% of the medical images done, which is likely linked to the

costs and limits of the X-ray contrast agents. Hence, the most recent apparatuses combine theses two modalities.

In this context the development of non-toxic, cost-e↵ective, and multimodal contrast agent appears as a fundamen-

tal issue in the today’s medical research. Biological targeting of contrast agents definitively enters in these objectives

since it contributes to the e�ciency the imaging properties of the product, along with reducing the amount admin-

istrated, and thus the toxicity and price. In addition and more generally, targeting of tissues, organs, or pathologies,

provides another dimension of the applications of contrast agents. These new contrast agents have to answer the needs

of researchers, that is to say a better detection of tumors and a better follow-up of the response of treatments (49%

and 68% of the images, respectively). Likewise, these technologies allow the visualization of the tumor growth in

time, and therefore allow evaluating the in vivo e�cient of a therapy. Actually, 70% of the medical imaging concern

cancer research. One of the final objectives can be found in medical advances like the image guided mini-invasive

or non-invasive surgery, consisting in operating a patient with using a 3D medical image to guide the surgeon or an

automated robotic system.

To summarize, the design and development of e�cient, cost-e↵ective, and multimodal contrast agent constitutes

major research and economic issues, and especially for cancer research. Moreover, contrast agents for X-ray imaging

modality emerges as a very hot challenge today, since the commercially available solutions are not really satisfactory.

In the present paper, we propose to review in detail contrast agents for CT imaging, and more particularly the CT

targeted imaging technology, which only emerged in the last five years, and potentially o↵ers huge potentials in terms

of advanced diagnosis of tumors and personalized therapies.

CT contrast agents currently used for human are iodinated hydrosoluble molecules. These molecules have some
13



well-known limitations, like a fast renal clearance and acute renal toxicity, giving them incompatible some applica-

tions, and notably the image guided surgery (CT for human) or their use in micro-CT (for small laboratory animal).

As a result, using human CT contrast agent for preclinical imaging is simply impossible insofar as they are rapidly

eliminated from the small laboratory animal (in less than 20 seconds) while the best preclinical imagers need at least

one minute for completing the acquisition (and the standards ones need 12 minutes). This is precisely the reason why

many research e↵orts were led form the last decade to develop specific products in order to increase the residence

time in bloodstream of CT contrast agents. Their optimized properties can be easily summarized in four points as fol-

lows. (i) Contrast agent should present a dimension su�ciently high to reduce or avoid the renal clearance: the X-ray

contrasting atoms have to be encapsulated in a nanocarrier with an ideal size around 100 nm. (ii) These nanopar-

ticles (NPs) must have a functionalized surface conferring stealth properties, which is generally done with grafting

hydrophilic like polyethylene glycol (PEG). (iii) Loading of contrasting atoms should be su�ciently high to allow

their using as CT contrast agent (ideally for iodine, around 100 mg of iodine per mL). (iv) NPs contrast agent should

be non-toxic on the one hand, and should not modify the biological metabolisms after their administration (which is

the case today with the currently available preclinical CT contrast agents, like Fenestra R� or ExiTron R�). However,

the formulation of nanoparticle, in contrast to single contrasting molecules, involves controlling the in vivo stability

of the nanocarriers themselves, their toxicity, as well as other aspect like their elimination from the body.

Specific commercially available contrast agent for micro-CT were developed and exhibit a circulation time in

blood pool of around 4 hours before being progressively eliminated by the liver through the biliary system in 7 days.

Such a product applied to the human would present a considerable advantage for all the image-guided mini-invasive

surgery procedures, since all the images necessary for the operation can be performed with only one administration

of contrast agents, and without associating potential renal toxicity. However, the toxicity of all the available products

is not negligible and prohibits any transposition to human, and the current high price limits their usage for preclinical

research.

Several new strategies of formulation of such nanoparticulate contrast agents for CT preclinical imaging were un-

dertaken from a few decades, giving rise to realistic solutions fulfilling the specifications above-described. However,

any “ideal” solution is proposed, that is to say that each one presents a limiting drawback, like a multi-step chemistry,

multi-step formulation process, a low contrasting atoms concentration, a significant toxicity, or a poor biocompatibil-

ity. The emerging solutions will be found in the optimization of these recent advanced, and this passes through the

simplification of the formulations and increase of the contrast agent encapsulation ratio, meaning that the amount to

be injected is also reduced, which directly consequences in a reduction of the toxicity and side e↵ects. In this context,

targeting the nanocarriers to specific organs, tissues or disease like tumor, not only contribute to the optimization

above-described reducing the amount of contrast agent necessary to obtain an exploitable signal, but also opens a new

dimension allowing emphasizing biological areas not specifically distinguishable with the classical contrast agent,

even in a same organ like hepatic tumors [1]. In the case of tumor or lymph node detections targeted imaging showed

significant preliminary results, giving this technology as very promising for advanced diagnosis and image-guided
14



surgery.

In the present article, we propose to review of the state-of-the-art of the targeted X-ray imaging technology and

their preclinical applications. Even if targeted imaging is an important challenge in numerous medical domains, it is

only from the last years that e↵ective research works on targeted imaging for computed tomography were reported.

This likely due to the very complexity of the challenged, including fulfilling the four points described above from (i)

to (iv), along with the control of the NPs targeting either through a passive targeting of tumors known as “enhanced

permeability and retention e↵ect” (EPR e↵ect), or through the active targeting with ligand / receptor technology. In

a first part, we will focus on the types and formulation of contrast agent nanocarriers, and then, in a second part, we

will review their adaptability to the targeting technologies in function of the biological target, to the choice of the lig-

and / receptor couple, and to the resulting in vivo results, e.g. pharmacokinetics. In this second part, the critical points

involved in the formulation of targeted X-ray contrast agent will be exposed, illustrated with the solutions detailed in

literature, detailing the technologies involved and the experimental limits. The idea is to allow the researcher to find

experimental solutions easily reproducible in function of the biological target, the type of nanocarrier, and the imaging

technology. In a third, we propose a discussion on the most recent advances of targeted imaging and the interest and

potential of combining targeted imaging with drug delivery.

2. Micro-computed tomography

X-ray based imaging, as discussed above, is considered as a good cost-e↵ective compromise, able to provide

high throughput and adequate 3D resolution [2]. Micro-CT is a three-dimensional radiographic imaging technology

having numerous advantages like noninvasive high spatial resolution, allowing to work on small laboratory animal [3,

4]. Based on clinical CT principle, which is the acquisition of the X-ray attenuation through the specimen, micro-

CT apparatuses present a design adapted to the preclinical research on mice or rats [5]. The basic setup consists

of coupling the X-ray source with a high resolution X-ray detector [6–8] following two possible configurations:

(i) Either both source and detectors rotate around the animal or (ii) the specimen is rotated within the fixed source

and detector [9]. The most common commercial apparatuses are designed following the former configuration, which

allows imaging of the animal without tight fixations [2, 8, 10]. The di↵erent projections acquired through di↵erent

angles are analyzed with specific software and give a three-dimensional matrix of voxels, each one containing the

average X-ray attenuation of the area. One significant advantage of micro-CT is the voxel resolution between 1 and

100 µm, decisively adapted to the preclinical applications and much higher than that the one of clinical CT [4, 5, 11,

12].

In this respect, micro-CT scanners provide either anatomic or functional information of specimen with the ap-

propriate contrast agent [13]. In addition, CT imaging is the only structural imaging modality allowing the high

resolution volumetric study of vascular structures. This even permits visualizing of neo-vasculature or angiogenesis

involved in some pathology [4]. Micro-CT is also an important tool for longitudinal imaging of tumor develop-
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ment, by providing a more accurate assessment of metastatic progression and as well emphasizing the e�cacy of

therapeutic treatments [14]. However, a limit of this technology lies in the fact that the classical contrast agent, even

long-circulating or tissue specific contrast agents, do not allow the direct detection of lesions or tumors, and especially

the detection of early metastasis and small lesions. It is due to the generally poor natural contrast between tumor and

healthy tissue. For this reason, many e↵orts are focused on the development of targeted contrast media [15–17]. As

a result the detection volume of early metastasis by targeted contrast agent-loaded NPs can be decreased as small as

⇠ 300 µm [18–20].

To conclude on the limits of the micro-CT technology itself, we have to consider the ionizing e↵ect. Indeed, to

maintain the images quality as the voxel size is decreased, the X-ray exposure must be increased. The dose of a single

anatomical image is around 0.1 Gy. Higher imaging doses of 1.5 Gy have been reported for cardiac gated imaging in

mice but should never exceed 6 Gy, even in multiple sequential scans procedure, because this threshold is considered

as lethal for a small rodent [8].

3. Blood pool contrast agents: A prerequisite for targeted imaging

As discussed in the Introduction section, the clinically water soluble contrast agents are not compatible with

micro-CT applications, hence the necessity to develop surface-controlled NPs containing high Z-number atoms [21–

25]. Once injected, these NPs have to enhance a contrast in the desired biological target, that is to say blood pool,

organ, tissue, or specific site like tumor. In all cases, their rapid elimination from the body has to be avoided.

On the one hand, the control of particle size can reduce renal elimination through glomerular filtration (with pore

diameter from 50 to 100 nm [26]). A diameter distribution centered on values higher than 100 nm generally prevents

such renal elimination. On the other hand, in order to avoid the rapid recognition of these NPs by the immune system,

their surface must be controlled and/or modified to develop stealth properties. This is simply a fundamental parameter

conditioning the biological e�ciency of the contrast agent.

Thus, NPs interface should present hydrophilic properties, resulting in, along with their nanoscale, to minimize

uptake by the mononuclear phagocytes system (MPS) and/or the reticuloendothelial system (RES) [27]. The sur-

face modification can be achieved using biocompatible hydrophilic polymers like polyethylene glycol (PEG) and its

derivatives [28–31].

Besides, it appears that a decrease at minimum of the elimination time of the nanopartculate carriers is simply

a basic condition for designing particles for targeted imaging. Indeed, targeting a carrier is based on the gradual

accumulation at a given biological site, implying a long circulation in bloodstream of these carriers, letting the time

to the specific a�nities with the targeted sites to become visible. In other words, the first step of the formulation of a

targeted contrast agent for micro-CT, is the optimization of the blood pool residence time.

As the nature of the nanocarrier itself has a crucial role in the expected in vivo result, let us first present below the

di↵erent nanoparticles generally used as template for contrast agent encapsulation and surface modification, for the
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fabrication of tools for targeted imaging.

3.1. nano-emulsions

Nano-emulsions consist of suspensions of nano-droplets sizing from 20 to 200 nm, generally oil-in-water emul-

sions [32–37]. Oil-in-water nano-emulsions were shown to be promising template for CT imaging, owing to their

potential for encapsulating high proportion of lipophilic contrast agents, and their great stability in suspension [38–

41]. In addition, with controlling the surface properties (e.g. with using PEGylated surfactants), the opsonization

by RES system is reduced, and the nano-emulsions can exhibit stealth properties, thus prolonging the circulation

time [31, 38].

To date, commercially available nano-emulsions based contrast agent for X-ray imaging were formulated from

poly-iodinated triglyceride (ITG) [38, 42, 43]. Two types exists, either announced as blood pool or hepatocyte-

selective contrast agents for preclinical imaging [44–48]. The former, Fenestra VC R� (vascular contrast), and the

latter, Fenestra LC R� (liver contrast), both present an iodine concentration around 50 mg I/mL [38, 42, 43]. ITG are

formulated in the form of synthetic lipid nano-emulsion, stabilized with phospholipids, cholesterol, and PEGylated

lipids for the blood pool version, are optimized to resemble chylomicron remnants systems [44]. Using PEGylated

nano-emulsions gives a contrast to major vessels, liver parenchyma from vasculature, spleen and even very thin tumor

vessels [43, 49]. Iodinated nano-emulsion based contrast agents constituted an important advance for the users of

micro-CT scanner, and mainly for structural imaging.

Besides the commercial iodinated nano-emulsions described above, some new example were recently reported in

literature. The principle remains simple, and the results can be e�cient: it consists of the synthesis of iodinated oil

at high iodine content, and its formulation in the form nano-emulsions with surface controlled and low toxicity. An

example is given by de Vries et al. [50], where the authors synthesized three iodinated oils through the condensa-

tion of 2,3,5-triiodobenzoic acid to either 2-octanol or 3,7-dimethyl-1-octanol or 2-methyl heptanoic acid. Surfactant

used to stabilize the nano-droplets were: a lipid DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), a Pluronic F68

(PEG-b-poly(propylene oxide)-b-PEG, or a PBD-PEO (poly(butadiene)-b-PEG). Compared to the commercial iodi-

nated nano-emulsions (Fenestra R�), all these emulsions showed a significantly lower toxivity on MTT tests. The most

promising candidate found by these authors were the system PBD-PEO / 3,7-dimethyloctyl 2,3,5-triiodobenzoate. As

a result, they induced an excellent in vivo contrast enhancement of the vasculature with long circulation time (higher

than 3 hours), without any signs of acute toxicity. The last advanced in that field lies in optimized systems combining

simple iodination chemistry, simple nano-emulsification process (spontaneous emulsification), simple surface control

and any toxicity. These novel systems are based on low-energy nano-emulsification processes applied to iodinated

oils [39–41], and they allow reaching iodine concentration around 142 mg Iodine/mL, and half-life in bloodstream

up to 10 h. The first example illustrated in Fig. 1 A is a stealth nano-emulsion formulated from a iodinated vitamin

E by spontaneous emulsification [41]. Vitamin E is taken as non-toxic molecules naturally present in the organism

for the reducing the potential toxicity of the contrast agent. Triiodobenzoic acid was covalently grafted on vitamin E,
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conferring to the core of the nano-emulsion droplets a high iodine content, around 41.8 wt.%, and therefore a great

attenuation properties of the nano-emulsions, as well as a very poor toxicity. Fig. 1 A shows the vasculature 30 min

after i.v. administration, with half life being 10 h. The vascular system clearly appears contrasted over the mouse

body (Fig. 1 A1), the product allow emphasizing the blood compartment in heart (Fig. 1 A2) or the irrigation of the

liver (Fig. 1 A2). In the same way, we have recently design nano-emulsions formulated from commercial iodinated

oil (Lipiodol R� from Guerbet, Paris) generated through spontaneous emulsification. The contrast in the blood com-

partment, showing the organ irrigation, is significantly enhanced as illustrated in Fig. 1 B acquired 30 minutes after

i.v. injection. These two latter examples showed a really cost-e↵ective formulation for potential industrial transposi-

tion, since the nano-emulsification generally involved strong energy supplying (e.g. with high pressure homogenizer),

which can be get round spontaneous processes, for the same result.

Besides, others interesting reports show the potential of these lipid nano-emulsions, owing to their long blood

pool circulation time, for imaging of lymph nodes [51–53]. In addition, since the transport of lipids from intestine to

the blood circulation, by chylomicrons, primarily occurs through the lymphatic system, such nano-emulsions found

application as percutaneous CT lymphographic agent [54]. They selectively and sustainably enhanced the contrast of

lymph nodes after subcutaneous administration, as well as inducing a significant contrast of more distant node groups.

Such targeted imaging persisted until 480 min after injection [54].

Another example of e�cient nano-emulsions for micro-CT imaging lies in functionalized tantalum oxide (TaOx)

containing nano-droplets [55]. In that case, the surface modification consists in a pegylation and optical labeling with

rhodamine-B-isothiocyanate. Nano-emulsions were intravenously administrated in rats showing a prolonged blood

pool contrast enhancement followed by a gradual accumulation of iodine the liver and spleen. It follows therefrom

that TaOx lipid nano-emulsions is e�cient as contrast agent for have potentials for angiography, but also as RES-

targeted imaging, improving the detection of metastases in liver and lymph nodes.

3.2. Liposomes

Liposomal based contrast agents for CT imaging have been developed for 20 years to increase the in vivo resi-

dence time in small animals [22, 56–58]. The first preparations were based on the encapsulation in stealth liposomes

of the above-discussed hydrophilic iodinated contrast agents like iodixanol [59] or iomeprol [60]. The reported con-

centration of iodine of the suspension can vary from 30 mg/mL [22] to higher than 100 mg/mL [61], actually relies

on the liposome preparation and formulations methods. This latter example from Ref. [61] showing the e�ciency

of liposomal-based as contrast agents for blood pool (heart) contrast enhancement is illustrated in Fig. 1 C. Di↵erent

organs, such as aorta, pulmonary vasculature, heart, liver and spleen were well visualized with these iodinated lipo-

somes [21, 61–63]. In the case of long circulating contrast agents, the stealth properties are insured by PEG grafting

onto the liposomes surfaces [61, 62]. Such tools were used to detect and study the pulmonary emboli in rabbits [62].

They showed good and uniform opacification of blood pool, and thus of the pulmonary artery, with a detectable con-

trast enhancement stable until 4 h after injection. Liposome containing hydrophilic contrast agents attained e�cacy
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Figure 1: Micro-CT imaging of blood pool. (A) From Ref. [41]: 3D reconstruction of blood compartment after i.v. administration of long circulating

nano-emulsion in mouse. Acquisition 30 min post-injection, oil: iodinated vitamine E nano-emulsions, process: spontaneous emulsification,

surfactant: PEGylated nonionic Cremophor ELP R�. (A1) whole animal body showing the organ irrigation, (A2) detail on heart, (A3) detail on

the liver vasculature. (B) From Ref. [40]: 3D reconstruction of blood compartment after i.v. administration of long circulating nano-emulsion

in mouse. Acquisition 30 min post-injection, oil: Lipiodol R�, process: spontaneous emulsification, surfactant: PEGylated nonionic Cremophor

ELP R�. (C) From Ref. [41]: Vascular constrast enhancement 60 min after i.v. injection of iodixanol-containing liposome in mouse. (C1) Coronal

section of heart, (C2) maximal intensity projection of cardiac and pulmonary vascular trees. (D) From Ref. [81]: (D1) and (D2) CT angiography

acquired 30 min after i.v. injection of ExiTron nano 12000 R� in mouse. (D1) 3D image reconstruction and (D2) maximum intensity projection in

coronal orientation. (D3) curved maximum intensity projection in coronal orientation before injection (control).
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and safety assessment in human phase-I clinical trial. It is noteworthy that such a formulation involved significant

experimental di�culties resulting in costly production, like the control of the stability of this complex structure, the

control of the iodinated molecule leakage, the formulation and purification.

X-ray contrasting liposomes can also be obtained through the chemical grafting of the contrating atoms onto the

lipids. Iodoliposomes were firstly prepared and used as imaging contrast agent by Elrod et al. [64]. Iodine was located

exclusively within the bilayer, giving a concentration of the solutions around 40 mg I/mL.

3.3. Polymeric nanoparticles

Many di↵erent types of polymeric NPs have been developed as contrast agents in the literature. They may be

sub-classified as dendrimers [65, 66], nanocapsules [67], nanotubes [68] or polymer-coated NPs [69–71].

Dendrimers are a class of highly branched, synthetic macromolecules with well-defined structures [72, 73]. In-

corporation of high Z-number atoms is either done by their grafting onto the particle surface, or through their concen-

tration and encapsulation in the dendrimer core. The literature reports examples for which the formulation is based

on a clinical hydrosoluble iodinated molecule (e.g. iobitridol) grafted onto the outer layer of a dendritic polylysine,

by a condensation reaction with the terminal free amino groups, while the dendrimer core is made with PEG [65].

Likewise, another example [66] presents the formulation of iododendrimers through the grafting of hydrophilic tri-

iodo amino acid (DMAA-IPA) onto the surface of PAMAM dendrimers (G-4-(DMAA-IPA)37). The entrapment of

X-ray contrasting materials within the dendrimer core also appears as an interesting option in the formulation of X-

ray nanoparticulate contrast agents, e.g. by a specific in situ reduction of HAuCl4 forming gold nanocrystals in the

dendrimer core [74–76]. In order to optimize the contrasting properties, combination a several approaches can also

be considered, like the one described by Guo et al. [77] incorporated both gold NPs and iodinated contrast agent

(complexation with diatrizoic acid, DTA) within one single PAMAM dendrimers. These sophisticated nanocom-

plexes showed high X-ray attenuation properties up to twice the one of the clinically available hydrophilic iodinated

molecules like Omnipaque R�. However, to date, the limitation of these dendrimer based X-ray contrast agents is their

poor residence in blood pool, no longer than 30 minutes after injection [65, 75]. This problem found a natural solu-

tion with the surface functionalization with the PEGylation of NPs, e.g. with gold-entrapped dendrimers [78]. Once

intraperitoneal administrated in mice, these latter gold containing PEG-dendrimers have been showed to be e�cient

blood pool contrast agents, but also interestingly e�cient for tumor targeting imaging. The obvious enhancement of

the entire tumor area has been seen until 6 h after injection, in the absence of surface bioconjugation, attributed in that

case to the EPR e↵ect presented above [79].

Let us regard now the other types of polymeric nanoparticles designed as X-ray contrast agents. Even if iodine is

a good compromise between price, toxicity and X-ray attenuation properties, other elements like heavy metals, have

been also shown to be excellent candidates for this purpose, like for instance gold or bismuth [80], due to their good X-

ray absorption properties and chemical stability. In order to facilitate the surface functionalization, or their protection,

stability, metal nanocrystals are often embedded into polymeric NPs, directly improving their in vivo behavior like
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the circulation time in blood pool, described in literature [67] to give significant contrast up to 4 h after injection. The

first bismuth sulphide (Bi2S3) nanoparticles (10-50 nm), coated with polyvinylpyrrolidone (PVP) were developed by

Rabin et al. [24]. One great advantage of using heavy metal is their X-ray adsorption coe�cient definitively higher

than the one of iodine, conferring them better properties for a same concentration. This is the case with PVP-bismuth

sulphide NPs, along with a blood opacification, persisting until 140 min after injection. A commercially available

example (ExiTron nano 12000 R�) is a polymeric nanoparticulate system formulated with alkaline earth metal. A

significant blood contrast enhancement is observed (see Fig. 1 D from Ref. [81]) with half life in blood around 3 h,

before its accumulation in liver for more than 100 days.

On the other hand, the coating of inorganic nanoparticles with macromolecules like polymers is a definite necessity

in order to stabilize the NPs suspension, to prevent the fast recognition by immune system, by also to induce a

specific targeting with the appropriate functionalization. More than half of the published example for that purpose

of X-ray imaging concerns gold nanoparticles [80] since they have excellent X-ray attenuation properties and they

are considered to be biocompatible and nontoxic in vivo [70, 82–88]. Coated gold nanoparticles found numerous

application for targeted imaging, here is a panel of the representative examples and possibilities. Liver-specific contrat

agent: heparin-coated gold nanoparticles [89] showed a maximum accumulation in liver tissue at 2 h post injection

into mice. Lymph node targeting: mixed PEG / antibody (anti CD4) coating gave e�cient result in targeted imaging

of lymph node [90]. Tumor targeting: mixed PEG / peptide (bombesin) showed a specific targeting of human prostate

tumor cells [91]. Bone targeting: glutamic acid coated gold nanoparticles were e�cient for targeting micro-damaged

bone tissue [92].

3.4. Polymeric micelles

Polymeric micelles are formed from self-assembly of amphiphilic block polymers when dispersed in aqueous

media, typically with diameters below 100 nm [93, 94]. One main characteristic is their low critical micelle concen-

tration (CMC), lower than conventional detergents in order to avoiding their disruption when they will be diluted in

bloodstream. This is a fundamental criterion in pharmaceutical applications. Such micellar polymer-based system

can be used as micro-CT blood pool contrast agents with the incorporation of contrasting materials. Polymeric mi-

celles have an inner hydrophobic core and an outer hydrophilic shell, allowing incorporation of various hydrophobic

compounds, which may be drugs, or molecules extending the stability of the micelle for modifying the biodistribution

pattern [38, 73, 95]. Contrast agents can be incorporated within the core and/or covalently grafted onto the polymers

itself [38].

Torchilin and coworkers [25, 96] reported synthesis of iodine-containing amphiphilic bock-copolymer (MPEG-

iodolysine), the hydrophilic part being methoxypolyethyleneglycol (MPEG) (hydrophilic cloud around the micelle)

and the lipophilic one is a poly[✏,N-(triiodobenzoyl)]-L-lysine (PLL) (inner hydrophobic core of the micelle). The

block-copolymer micelles exhibits a size around 80 nm in water, with a iodine content higher 30 wt.% (of the polymer

molecular weight). These iodinated micellar contrast agent injected intravenously gave significant contrast enhance-
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ment of aorta, heart, liver and spleen. In addition, the contrast in blood pool does not show sign of decrease during 3

hours. However, due to the low iodine content compared to other systems (like nano-emulsions), the injected volume

have to be high in respect to the vascular volume in small animals and this appears as a limitation for their use and

commercial development of preclinical imaging.

3.5. Other nanoparticles

Finally, another type of formulations can be classified as nanoparticles like the crystalline nano suspension of

iodinated compounds, like ethyl-3,5-bis(acetylamino)-2,4,6-triiodobenzoate [97, 98]. These NPs were described to be

selectively recognized by macrophages, and thus were injected into hypercholesterolemia rabbits to allow the specific

detection of atherosclerotic plaques in the aorta, by micro-CT [97, 98]. Through di↵erent experimental models, both

ruptured and non-ruptured atherosclerotic plaques can be visualized.

4. Passive targeted imaging

The preferential passive accumulation in tissues is related to the surface properties and size of nanoparticles. In that

way, this phenomenon can induce di↵erences in the accumulation of NPs contrast agent between healthy and damaged

tissues, and therefore can reveal structural information on lesions. This section presents the state-of-the-art of the using

of nanoparticulate X-ray contrast agents for the imaging of lesions, according to their spontaneous accumulation into

the specific sites. Passive accumulation of NPs is performed following di↵erent mechanisms described below, either

mediated by the reticuloendothelial system up to the targeted tissue, or passively accumulated due to cells uptake or

due to specific accumulation based on a�nities of the NPs for the targeted sites.

4.1. Uptake of nanoparticulate contrast agents by reticuloendothelial system (RES)

The liver is a common site of metastases [99] due to its high volume of blood flow, suitable size of sinusoids for

trapping metastatic cells, and rich environment for rapid growth [89]. Non-stealth (i.e. non-PEGylated) nanopartic-

ulate X-ray contrast agents will be rapidly sequestered by the reticuloendothelial system (RES) and in particular by

Kup↵er cells [89, 100]. It is noteworthy that even stealth particles can gradually concentrate in liver for the same

reasons, at the end of life course in bloodstream. In the case of presence of hepatic tumor nodules, and since they are

devoid of RES, they should appear negatively contrasted thanks to the privileged accumulation of NPs contrast agents

in the healthy tissues. Compared to the use of hydrophilic iodinated molecules, this NPs-based technology allows the

detection of lesions with fewer doses [101] and better sensitivity [102, 103].

In this respect, non-PEGylated iodinated liposomes or nanoemulsions are specifically formulated to accumulate in

liver [56, 104, 105], in order to give a hepatic opacification following i.v. injection. Results showed persistent X-ray

contrast of the liver tissues, reached for a lower dosage compared to conventional contrast agents. An example is given

by liposomes composd of iodolipid and lipiodol, encapsulating a water soluble iodinated compound (iopamidol), to

be a RES targeted contrast agents [106]. As a result, their i.v. administration in rats (tail vein) led to a very fast liver
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contrast enhancement, at 6 min post-injection. Moreover, by lasting up to 24 h, this contrast e↵ect was considered

clinically relevant. Likewise, contrast enhancement in spleen appeared immediately after administration, but reached

a maximum of persistence at around 90 min [106].

Similar results are obtained with iodinated copolymeric nanoparticles for hepatic tumors by negative imaging,

i.e. using their specific accumulation in liver healthy tissues to visualize the lesions. Poly-[2-methacryloyloxyethyl(2,3,5-

trriodobenzoate)]-(glycidyl methacrylate) (P(MAOETIB-GMA)) [107, 108] were prepared by emulsion copolymer-

ization of 2-methacryloyloxyethyl (2,3,5-triiodobenzoate) (MAOETIB) using a low proportion of glycidyl methacry-

late (GMA). Significant contrast enhancements of the blood pool, lymph nodes, liver and spleen were observed after

intravenous injection of the NPs suspension in rats. Upon intravenous injection of 300 µL of the suspension, a strong

enhancement of healthy liver tissue rapidly occurred and provided a negative contrast of cancerous liver tissue.

Actually all the other alternatives for liver and spleen imaging take benefit of this passive transport by the RES sys-

tem to reach their target. Numerous examples are provided in literature, notably encapsulating heavy metal as X-ray

contrasting materials [69, 84, 89]. As introduced above for their e�ciency as blood pool contrast agent, commercial

products consisting in NPs encapsulating alkaline earth metal-based contrast agents (ExiTron nano 6000 R� and Ex-

iTron nano 12000 R�) are also used as liver and spleen targeted contrast agent for micro-CT [81]. The former, ExiTron

nano 6000 R�, undergoes a quick uptake by macrophages in the liver and spleen, allowing their visualization for several

months after a single injection of only 100 µL. Illustration of this contrast enhancement using ExiTron nano 6000 R� is

reported in Fig. 2 A. A1 shows the contrast before injection and A2 24 h after a single i.v. administration. On the

other hand, ExiTron nano 12000 R�, has the same composition than ExiTron nano 6000 R�but twice more concentrated,

improving the blood pool contrast and circulation time with half life around 3 h after i.v. injection in mice (as shown

in Fig. 1 D). Interestingly, ExiTron nano 12000 R� also accumulated in lymph nodes and in adrenal glands, inducing a

significant X-ray contrast enhancement of these zones illustrated in Fig. 2 B1 and B2, respectively. This is likely due

to a macrophage uptake of the NPs before reaching the targeted sites.

The same authors took benefit of this RES uptake and NPs liver accumulation in order to detect hepatic metastases

by negative contrast (illustrated in Fig. 3 A). This method allows measuring tumors regions (non-contrasted within the

contrasted organ) as small as 300 µm, and following their growth over time, e.g. shown Fig. 3 A1 to A4, respectively 9,

12, 14 and 19 days after intrasplenic injection of cancer cells (MC38 colon tumor cells). Comparable results, reported

in Fig. 3 B, were observed with iodinated nano-emulsions (Fenestra LC R�) by Almajadub and coworkers [18]. They

observed a significant contrast between healthy tissues (contrasted) and tumor (non-contrasted) in spleen and liver.

Fig. 3 B1 and B2 show healthy spleen, and Fig. 3 B3 to B6 emphasize the presence of tumor region. Generally authors

consider that lipid nano-emulsions are exclusively taken up by hepatocytes, associating them to remnant chylomicron

taken up by the liver through a receptor-mediated apoliporpotein-E process. This example proves that the RES system

also plays a non negligible role in the nano-droplet clearance. It could be more adequate to consider that these di↵erent

elimination mechanisms occurs simultaneously.

23



Figure 2: Micro-CT reticuloendothelial uptake of CT-contrast agent, from Ref. [81]. (A) micro-CT scan of the murine liver before (A1) and 24 h

after (A2) i.v. administration of ExiTron nano 6000 R�. (B) Contrast enhancement of the abdominal and mediastinal lymph nodes (LN) and of the

adrenal glands. (B1) was acquired 4 h after i.v. injection of ExiTron nano 12000 R�, (B2) was acquired 22 days after i.v. injection of ExiTron nano

12000 R�.

4.2. Uptake of nanoparticulate contrast agents by hepatocytes

While macrophages (such as Kupfer cells) are abundant in the liver, hepatocytes are the constitutive cells of the

liver. In that way, if the nanoparticles are hepatocyte-selective like are recognized ITG lipid emulsions (e.g. Fenestra

LC R� discussed above [47, 101]), they will provided di↵erent kinds of results that the ones systems described in the

previous sections, i.e. toxicity, elimination routes, specific organ imaging. Generally, ITG nano-emulsions showed a

blood pool e↵ect at early time points after injection, avoiding the reticuloendothelial system (even if it can be observed

in some examples discussed in the previous seciont), and then is taken up into hepatocytes through a high-volume

receptor-mediated process for metabolization by lipolytic enzymes [109]. ITG metabolites are ultimately eliminated

through the bile [110]. This pathway results in a prolonged and marked liver X-ray opacification [111, 112].

On the other hand, the properties of the liver-specific contrast agent (contrast and elimination time) were observed

to be strongly dependent to the chemical nature of the compounds, likely due to their a�nities for the tissues. Actually,

from the administration, the time needed for the contrast agents to show the maximum accumulation in liver, depends

on the NPs surface properties and size. However, numerous examples prove that the NPs liver clearance will rather

depend on their chemical composition. Indeed, the two examples of Fig. 1 A (from Ref. [41], made with iodinated

vitamin E) and the one form Fig. 1 B (from Ref. [40], made with Lipiodol R�), have exactly the same composition

(made with the same surfactant, Cremophor ELP R� from BASF) and physicochemical properties (similar size range,

similar surface properties), but only di↵ering in the composition of the oily core. These two examples show similar

contrast enhancement of blood pool with half life of 10 h and 4 h respectively, followed by a hepatic uptake. However,
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Figure 3: Micro-CT tumors imaging by negative contrast through the reticuloendothelial uptake of CT-contrast agent. (A) from Ref. [81]: micro-

CT scan after a single injection of ExiTron nano 6000 R� in mouse. (A1) to (A4) illustrate development of liver metastases 9, 12, 14 and 19 days

after intrasplenic injection of MC38 colon tumor cells. (B) from Ref. [18]: tumor imaging in spleen after injection of iodinated nano-emulsions

(Fenestra VC R�). (B1) (B3) (B5) are axial views and (B2) (B4) (B6) are the corresponding 3D reconstructions. (B1)-(B2) is the control mouse

(without tumor), (B3)-(B4) show the spleen tumor 15 days after injection of STC1 tumor cells in the spleen, and (B5)-(B6) show the tumor growth

30 days after the tumor cells injection.

the former (iodinated vitamin E based product) remains accumulated liver 130 days o↵ering a significant contrast

during this prolonged period (illustrated in Fig. 4, 48 h post injection), while the second one (Lipiodol based) is

totally eliminated form the mice body in 2 days. It shows that the in vivo behavior of the nanoparticulate contrast
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Figure 4: Micro-CT liver imaging with hepatocytes-specific contrast agent: vitamin E nano-emulsions, from Ref. [41]. (A1) Left lateral view,

3D rendering, (A1) Sagittal view, maximal intensity projection. (B1) to (B5) show 3D rendering of liver sections, emphasizing the clear contrast

di↵erent between the liver tissues and its vascularization. (B4bis) is the transverse view of maximal intensity projection corresponding to (B4).

agents not only depends of the physico-chemical properties of the formulation itself, but is strongly related to the

chemical nature of the compound, their a�nities for the targeted tissues, and their metabolism. Furthermore, these

two examples can be completed with numerous others like the formulation describe in Ref. [39] made with iodinated

macrogol nano-emulsified with nonionic surfactants, eliminated from the mice body in two days. This passive uptake

and accumulation is illustrated in Fig. 4. Fig. 4 A1 and A2 represent the whole body with a clear delineation of the

hepatic region. Fig. 4 B1 to B5 show the tri-dimensional view and cuts of liver, highlighting the accurate and specific

contrast di↵erence between the hepatic tissue and its irrigation. This result evidences the high potential of the nano-

emulsions technology as targeted CT contrast agents, that allows a clear di↵erentiation between the soft tissues each

other and between soft tissues and biological fluids.

In addition, similarly to the methods worked out with RES-recognized contrast agents, these hepatocyte-selectives

systems can allows detection of tumors by negative staining. Indeed, primary and secondary liver tumor cells do not

internalize ITG like normal liver cells, inducing a significant di↵erence in their attenuation compared to healthy liver

tissue. In fact, tumors cells are deficient in hepatic lipase and then cannot uptake iodinated lipids [18–20, 42]. Here

alse, e�cacy of micro-CT lies in its resolution allowing to detect tumor as small as 300 µm, with a tumor detectability

was superior to 80% [19, 45]. Combining micro-CT with a suitable hepatocyte-selective contrast agent is a solution

for detecting and monitoring multiple liver tumors in mice as early as 7 days after implantation of the cancer cells [19].

Figure 5 A illustrates this method of detection of liver tumor from Ref. [23], showing acquisition 3 h post injection of

Fenestra LC R� in nude mice. The tumors appears negatively contrasted and the 3D reconstruction (Fig. 5 A3) shows

their spacial repartitions in the organ. It is important to note that liver vasculature also appear negatively contrasted (in

red in Fig. 5 A3). This vasculature was also detected in healthy organ like in Fig. 4, and can induce confusion. A simple

solution to this problem is the concomitant use of hepatocyte-selective contrast agent with blood pool contrast agents,
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finally giving rise to the exclusive imaging of hepatic tumors regions [42]. Following this methodology, Aprahamian

and coworkers [113] followed the evolution of hepatic tumor (see Fig. 5 B) without treatment, and treated with a new

antitumoral molecules (Myo-inositol trispyrophosphate). This powerful method allows a very accurate observation of

the tumor location and size, a quantitative in vivo following-up and its potential response to applied treatments.

4.3. Accumulation of nanoparticulate contrast agents through enhanced permeation and retention e↵ect (EPR)

This passive retention e↵ect is based to the fact that tumor vessels are structurally and functionally di↵erent to nor-

mal vessels. They are tortuous, dilated and their endothelium are porous owing to the their unregulated angiogenesis.

These are typical characteristics of tumors or various ischemic and inflammatory diseases [114], and can be exploited

for drug targeting and targeted imaging. However, it is to be noted that the limited size of tumor vessels only induce

slight contrast enhancement, which makes di�cult their direct image directly using classical X-ray based techniques.

Due to their size in nanoscale, nanoparticles show a preferential accumulation in tumors [115–119]. Since nanopartic-

ulate contrast agents consist of discrete distribution of highly concentrated contrasting atoms, their self-accumulation

in the tumor sites result in a local high contrast enhancement.

Numerous example of e�cient use of EPR e↵ect for targeted imaging are reported. The main reason of their

passive accumulation in tumors is their size in the nanoscale.

Liposome containing hydrophilic iodinated molecules (iohexol and gadoteridol) were intravenously administrated

to VX2 sarcoma bearing rabbits [63], see Fig. 6 A. Passive accumulation at tumor sites was achieved through the

EPR e↵ect due to their colloidal size, and lack of e↵ective lymphatic drainage at lesion sites. In Fig. 6 A1 the

region of interest (ROI) is placed in liver as a reference, and in Fig. 6 A2 ROI is located in the tumor site. The

related graphics show similar X-ray attenuation values between both cases, with a maximum arising around 48 h

post-administration, and a contrast enhancement sustained for 10 days. Another example [120] showed that, a dose

of 455 mg iodine per kilogram of body weight of liposomal probe, too low to produce blood vessel visibility in

the normal tissue, is able to accumulate at the tumor sites providing a detectable contrast (illustrated in Fig. 6 B).

Likewise, di↵erent other examples are reported highlighting EPR for liposomal CT contrast agent, in small animals

bearing breast cancer [21, 121]. In Fig. 6 C, from Ref. [21], shows The tumor vasculature with a liposomal CT

nanoprobe, enhancing contrast in vessels as small as 200-300 microns (C2). Then, in function of time (C3 to C5) the

contrast agent gradually accumulate in the tumor itself by the ERP e↵ect.

5. Active targeted imaging

The more convenient approach lies in a direct visualization of the tumor sites, which is actually linked to the nature

and location of the tumor, and the available contrast agents [122]. We saw in the previous section that the accumulation

into the lesion sites can be passively performed through EPR e↵ect, and allow the direct visualization or tumor area.

In the present section, we will see how this direct accumulation can be induced using specific ligand / receptor
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Figure 5: Micro-CT tumors imaging by negative contrast through the hepatocyte-specific uptake of CT-contrast agent. (A) From Ref. [23]: micro-

CT scan acquired 3 h after injection of Fenestra LC R� in nude mice with developed liver lesions. (A1) Coronal and (A2) sagittal views. The arrow

points the same lesion in all views. (A3) Anterior 3D surface rendering image. The significant contrast di↵erence allow a clear characterization of

the tumors (green), liver lobes (blue) and liver vessels (red). (B) From Ref. [113]:Detection of liver tumors by negative contrast using smultaneously

hepotocyte-selective contrast agent Fenestra LC R�, and also blood pool contrast agent Fenestra VC R� injected at the interval of two days, in order

to exclusively see the contrast di↵erence in the tumor site. (B1) untreated rats and (B2) treated with Myo-inositol trispyrophosphate. The tumor in

2D slices is indicated by an arrow (monochrome images). 3D transparent simulations created by 3D virtual-reality and rendering software (color

images).

interactions, so-called active targeting. Nanoparticles contrast agents are suited for this targeting purpose since their

surface can be easily functionalized with selected ligands, corresponding to receptors over-expressed by malignant
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Figure 6: Micro-CT imaging of enhanced permeation and retention e↵ect. (A) From Ref. [63]: Visual illustration of transverse (left) CT slices of

the rabbit liver (A1) and tumor (A2) acquired at 48 h post-injection. These images are acquired at submillimeter resolution, and they demonstrate

potential for quantification of intraorgan heterogeneity. Bulk organ analysis (middle) was performed on the contoured organ/tissue volumes (in

yellow). The di↵erential mean HU measured in each region of interest at selected time points are reported in the graphs (right). (B) From Ref. [120]:

(B1) X-ray images display 5 days intratumoral fate of probe in rat breast tumor model before 72 h after administration of probe at dose of 455 mg

of iodine per kilogram. After injection, images showed that no blood vessels were visible in normal tissue; spleen, liver, and tumor were clearly

seen. (B2) and (B3) X-ray images of two tumors before (top) and after (others) injection of probe at dose of 455 mg of iodine per kilogram.

(C) Fron Ref. [21]: Dynamics of tumor signal enhancement. Coronal three-dimensional volume-rendered images demonstrating the extravasation

and accumulation of nanoparticle contrast agent within the tumor (yellow arrow). Immediately after administering the nanoparticle contrast agent,

the overall body and tumor vasculature is nicely demonstrated. Tumor accumulation of nanoparticle contrast agent was observed as early as 24 h.

No image-detectable nanoparticle contrast agent signal was observed from the blood-pool at post-120 h (C5) as confirmed by the absence of any

vessels or heart signal on post-120 h image. However, the tumor is clearly enhanced. The only other organs enhanced are the liver and spleen,

which are the organs for nanoparticle contrast agent clearance.

cells [123]. E↵ective ligand / receptor interactions allow enhancing accumulation and residence time of NPs and

contrast-agent in malignant tissues.
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Studies proving the potentials of active targeted imaging were recently published, showing that targeting solution

can be found with functionalizing the NPs surface with monoclonal antibodies [124, 125], peptides [126, 127] or small

molecules like folic acid [128, 129]. This technology allowed visualization, characterization and quantification of the

biological processes at the molecular and cellular levels in human and other animal models [130, 131], and confers

an high contrast to targeted cells [132, 133]. It remains, still today, a promising and complex technology gathering a

high number of interdependent parameter described above in this review, eventually aiming a simple result.

Starting from the contrast agent-loaded functionalizable NPs, a panel of ligands, already proved to be e↵ective

as cancer targeting ligands, can be grafted onto the surface at high concentrations. Typical examples can be found

in peptides like cyclic pentapeptide c(RGDfk) recently showed to be e�cient to target ↵v�3 integrin over-expressed

in cancer cells in vivo [134]. In that case, anticancer loaded polymeric NPs have been fabricated with their external

surrounding layer composed of carboxylic acid function. In substance, this chemical platform allows a general surface

functionalization with a very wide range of molecules like peptides (the case here), proteins, antibodies, etc. In

vivo results showed that active targeting significantly enhanced anticancer activity. The idea developed through this

present section, is that the existing technologies developed for the active targeting for drug delivery are very easily

transposable to targeted imaging. Nevertheless, only a few examples are recently proposed by literature, and some

representative are detailed below.

Peptides represent an important and e�cient family of ligands used for improving the targeted accumulation of

nanocarriers in tumor sites. Grafting of thioctic-acid-modified bombesin peptide on starch-coated gold NPs induces

their specific accumulation on cancer cells in vivo (in prostate-tumor-bearing mice), thanks to their high a�nity

toward gastrin-releasing peptide receptors in vivo that are over-expressed in prostate, breast, and small-cell lung

carcinoma [91].

Another example of peptide driven active targeted imaging is described using E-selectin-binding peptide, which

have a specific a�nity toward E-selectin expressed on activated endothelial cells, and notably in leukocyte rolling

during inflammatory processes or angiogenesis [135, 136]. As illutrated in Fig. 7, from Ref. [137], E-selectin-binding

peptide (ESBP)-targeted iodine containing liposomes were shown by micro-CT imaging to induce a privileged target-

ing to small subcutaneous tumors if compared to the same non-targeted (control) liposomes. A significant contrast

enhancement between targeted and control is visible over time, evidencing the clear role of peptide / receptor interac-

tions. Finally, the residency time of ESBP coated liposomes inside the tumor was about 314 min, whereas it was only

about 90 min for the non-targeted ones.

Active targeted imaging with similar results were obtained with the conjugation of antibodies to the contrast agent

nanocarriers. For example, as illustrated in Fig. 8 from Ref. [138], gold nanoparticles coated with polyethylene glycol

and anti-Her2+ antibody (Herceptin) showed a specific targeted binding to human breast cancer cells over-expressed

Her2+ receptors. After intravenous injection in mice, the highest uptake was showed in the periphery of the tumors,

1.6 fold higher than that another tumor expressing Her2- receptor (control) and 22 fold higher than surrounding

muscle.
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Figure 7: Active targeted CT imaging of tumor with iodinated liposome decorated with E-selectin-binding peptide, from Ref. [137]. Colon

adenocarcinoma cell line HT-29 were injected subcutaneously and allowed to grow for 5-6 days. The transverse view in the tumor region (top) show

a clear contrast enhancement in the tumor region (arrow) and the comparison with non-labeled liposomes (bottom) reveal a statistical di↵erence at

120, 240, and 360 min post-injection. The determination of the blood half-lives gives 121 min for ESBP-liposomes and 71 min for non-labeled

liposomes.

In another example, Anti-CD4 targeted gold nanoparticles exhibited a specific accumulation in the periphery of

lymph nodes in mice, revealed by micro-CT imaging [90]. Functional coating was performed from a PEG (spacer)

with a COOH termination, on which is grafted the antibody. Here also, long circulating properties induced by the PEG

is of prime importance since it prevents the rapid NPs elimination favoring the contact with the targeted tumor sites.

200 µL of a dispersion of gold nanoparticle-anti-mouse CD4 conjugates were injected into mice. As illustrated in

Fig. 9 from Ref. [90], anti-CD4 targeted gold NPs provided higher X-ray opacification of lymp nodes in comparison

to similar gold NPs only coated with PEG, or as well, coated with another (control) antibody IgG2b.

Di↵erent other types of biological molecules equally provide interesting results for developing targeted imaging

technologies. Folic acid coated silica / gold nanorods showed promising in vivo results in that sense [139]. The silica

shell decreases the cytotoxicity, improves the biocompatibility, and facilitates the chemical grafting of folic acid,

connected with 3-aminopropyltrimethoxysilane. Nanorod-SiO2-NH2 is then covalently linked to folic acid. Once

injected in mice, as illustrated in Fig. 10 from Ref. [139], these functional NPs specifically target folic acid receptors

over-expressed in xenografted gastric cancer MGC803 cells [90, 140]. Compared to healthy tissues, strong contrast

was displayed in tumor lesions during 12 h after a single injection, which constitutes direct evidences of the e�ciency

31



Figure 8: Active targeted CT imaging of tumor with gold nanoparticles decorated with anti-Her2+ antibody, from Ref. [138]. Micro-CT sections

from five di↵erent mice bearing Her2+ (top large arrow) and Her2- tumours (bottom small arrow) growing in opposite thighs imaged 20 h after i.v.

injection of 15 nm anti-Her2+ gold nanoparticles. Dose applied was 0.86 g Au/kg. Bar = 5 mm.

of active tumor targeting enhanced by folic acid coating.

To finish, di↵erent other examples of targeted imaging are reported in literature, based on the a�nities between

density lipoprotein (LDL) encapsulating ITG, and LDL cell surface receptor (LDLR) [141] over-expressed in several

tumor types [142–145]. Another targeting strategy took benefit of the avidity of cancer cells for glucose (energy con-

sumption) to induce the NPs targeting. 2-deoxy-D-glucose (2-DG)-labeled gold nanoparticles showed a preferential

accumulation (three time higher than non-coated NPs) toward human alveolar epithelial cancer cell line (A-549) [142–

145].

6. Perspectives: evolution toward theranostic

Nanoparticulate contrast agents for micro-CT play an important role on the detection of structural and functional

abnormalities and for characterizing tumor aggressiveness in small animals. These nanoparticulate contrast agents

presented long circulation time in blood stream and made possible the detection of early metastasis and small lesions

in CT imaging using their passive transport to the targeting sites. Nanoparticulate contrast agents can also be designed

to selectively accumulate into desired tissues or tumor sites by conjugation of tissue-targeting molecules. Besides

targeted imaging, the next step is incorporation in the same functionalized nanocarrier, additional bioactive molecules.

The objective is to perform a simultaneous imaging and drug delivery, in that way o↵ering a very accurate control of

the drug amount delivered, kinetics, with the possibility of adapting the therapy to the patient response [140]. This
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Figure 9: Active targeted CT imaging of tumor with gold nanoparticles decorated with anti-CD4 IgG antibody, from Ref. [90]. X-ray CT images of

mice before (A, B) and 1 h after (C, D) injection of gold nanoparticles (38 nm individual diameter) conjugated to unspecic IgG (C) and anti-CD4

IgG (D). The inlay in A provides orientation of the reformatted plane of the abdomen of the mice, where the arrow points along the viewing

direction. The targeted (anti-CD4 IgG) nanoparticles show clear contrast enhancement of inguinal lymph nodes (red arrows in B and D), whereas

virtually no change is visible for the nonspecic controls (red arrows in A and C). For better visual comparability of X-ray densities, the hind limb

muscles have been labeled and set to a standard brightness value (blue arrows). Average measured X-ray densities of the individual lymph nodes

(red arrows) in Hounseld units (HU) are 47 HU (A), 26 HU (B), 52 HU (C), 121 HU (D).

Figure 10: Active targeted CT imaging of tumor with gold nanorods/silica decorated with folic acid, from Ref. [139]. X-ray images after intravenous

injection of gold nanorod-SiO2-folic acid in nude mice at di↵erent time points. (A) Picture of the tumor tissue; (B) X-ray projection at 0 h; (C) X-ray

projection at 12 h, (D) X-ray projection at 24 h.

new concept has been named theranostic. Literature proposes some recent studies in that field, like the work of Kim

et al. [146] in which the authors present a hybrid gold NPs targeting prostate cancer cells, and also encapsulating

anticancer molecules (doxorubicin). As a result, the cancer cells were significantly targeted, and as well, specifically

destroyed.
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7. Conclusion

Micro-CT is a widely used, cost-e↵ective, fast, and accurate three-dimensional radiographic imaging technology

for small animal models. However, the main limitation of micro-CT lies in the poor e�cacy or toxicity of the contrast

agents currently available. E�cient contrast agents for micro-CT have to be stealth nanoparticulate systems for

preventing their rapid renal clearance, highly loaded in X-ray contrasting materials, stable, and with controlled surface

properties. Through the present article, we review the state-of-the-art of targeted imaging technologies, from blood

pool properties as a prerequisite, to the influence of the composition and physicochemical properties on the in vivo

becoming of the contrast agent. We discussed the di↵erent passive targeted imaging through representative examples

of the literature, and likewise we present the first examples of active targeted imaging only recently published.
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The overview of the existing nanoparticulate contrast agent systems has presented the general context 

of this study: 

- Different types of nanoparticles were studied as contrast agent systems. 

- Hydrophilic commercial contrast agents or synthesized contrast molecules were incorporated 

into nanoparticles to show the in vivo prolonged contrast enhancements in different organs. 

- Nanoparticulate contrast agents showed not only prolonged contrast enhancement in 

bloodstream but also tissue-specific imaging by passive targeting strategy or by active 

targeting strategy on linking targeted molecules. 

 

In order to develop new iodinated nanoparticulate contrast agents having a long circulation time in 

bloodstream, in this study, we decided to focus on the nano-emulsion template. The formulation 

strategy regards firstly, the synthesis of high iodine-containing oils, and secondly, the formulation of 

this oil in the form of nano-emulsion nanodroplets dispersed in water. Nano-emulsions were selected 

owing to their simple preparation process, good stability during several months, suitable structures to 

encapsulate hydrophobic molecules and finally prolonged circulation time and targeted delivery 

properties. In this work we choose the low-energy nano-emulsification method, namely the 

spontaneous nano-emulsification. This method allows the generation of nanometric-scaled droplets 

without energy supply. 

The following paragraph will discuss the theory of nano-emulsions, their characterization methods and 

different types of emulsification process, especially the spontaneous emulsification method. 
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1. Introduction 

Nanotechnology, also called nanoscience, is research focused on multifunctional devices at nanoscale 

from tens to hundred nanometers. Nanotechnology application in medicine is called nanomedicine, 

referring to nanoparticle based drug delivery systems. Scientifically defined nanoparticles are colloidal 

particles of less than 1 µm in diameter. These nanodevices can carry detection signals and/or 

therapeutic cargos to sites of interest1, 2. Many drug candidates present multiple delivery problems in 

vivo such as low solubility or stability, poor pharmacokinetics, adverse effects or undesired toxicity. 

Formulation scientists have struggled to overcome these problems with nanotechnology. Nanoparticle 

based drug delivery systems showed to improve efficacy, reduce toxicity, enhance biodistribution, 

present targeted drug delivery and improve patient compliance compared with conventional dosage 

forms3. These nano-systems with different compositions and biological reactivity have been 

extensively investigated for drug and gene delivery applications. For example, several anti-cancer 

drugs are successfully incorporated into nanocarriers. Brain cancer is one of the most difficult 

malignancies to be detected and treated due to the difficulty of penetrating the blood-brain barrier. 

However, nanoparticle based anti-cancer drug delivery systems are shown to cross the intact blood-

brain barrier and release at therapeutic concentrations in the brain3, 4. Nanovehicles in nanomedicine 

include liposomes, polymeric micelles, nano-emulsions, nanocapsules, dendrimers and nanocrystals 

etc. In this chapter, we will focus on one of the most important nanovehicles nano-emulsions. Nano-

emulsions are suitable systems for drug delivery, given their large surface area, low surface tension 

and small droplet sizes, which can enhance the penetration and absorption of hydrophobic active 

compounds. Submicron droplet sizes and great stability of nano-emulsions make them as a promising 

candidate for practical applications in chemical, pharmaceutical, cosmetic and agro-alimentary fields.   

2. Nano-emulsions 

2.1. Definition of nano-emulsions 

 “In an emulsion, liquid droplets and/or   liquid  crystals  are  dispersed   in  a   liquid”   is   the  definition  of  

emulsions given by the International Union of Pure and Applied Chemistry (IUPAC) states5. Nano-

emulsions are nano-sized emulsions, the upper limit of diameter is 500nm5, 6. They are transparent or 
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translucent systems as shown in Fig.1, named also mini-emulsions8, ultrafine emulsions or sub-

micrometer emulsions7. 

 

            

Fig.1. Nano-emulsions with droplet size of 35nm on the left and macro-emulsions with droplet size of 1µm on the right.  

Unlike micro-emulsions, nano-emulsions are not thermodynamically but kinetically stable systems. 

They can remain stable for several months, because their small droplet sizes and narrow size 

distribution reduce the gravity force and prevent sedimentation and creaming9, 10. The trend of the 

interfacial area minimization is the main physical destabilization of nano-emulsions. This phenomenon 

is caused by flocculation and Ostwald ripening. Coagulation is naturally prevented by steric 

stabilization because of the nano-meter droplet sizes of nano-emulsions. The minimum energy of 

interaction UT between particles can be reached when h=2δ (h is inter-droplet distance, δ is interfacial 

layer thickness), mentioned as U0, presented in Fig.2 6. This energy is directly related to the stability of 

emulsions. The higher the δ/r ratio is, the lower the value of U0 and the higher the stability of emulsion 

systems would be. In the case of nano-emulsions, the ratio of δ/r is much higher than that of macro-

emulsions, which prevents the flocculation phenomenon6, 9.  

 

 

 

 

 

 

 

Fig.2. Influence on steric stabilization by emulsion droplet radius6. 



44 
 

Ostwald ripening is the main mechanism for nano-emulsion breakdown. Small droplets have different 

interfacial tension than bigger ones, which causes the diffusion of oil molecules from small droplets to 

bigger droplets9, 11. Ostwald ripening rate can be reduced by adding small amounts of additives 

depending on the different solubility between dispersed components and additives to the bulk phase. 

Surfactants and co-surfactants can also enhance the stability of nano-emulsion systems and reduce the 

ripening rate. Because the polymeric emulsifiers increase the layer density in the interfacial zone and 

the thickness of barrier at the droplet interface, the diffusion rate of the component from droplets is 

decreased6. 

2.2. Different types of emulsification methods 

Since nano-emulsions are not equilibrium systems, they can only be formed with an input energy. In 

general, methods can be classified based on mechanical devices or the chemical potential of 

components7. Nano-emulsion preparation methods can be divided into two groups: high-energy 

emulsification methods and low-energy emulsification or condensation methods. High-energy 

emulsification methods include high shear stirring, high pressure homogenizers or ultrasounds 

generators. Low-energy emulsification methods make use of phase transitions taking place during the 

emulsification process. There are two routes: the phase inversion method (PIT) and the spontaneous 

emulsification method7, 10, 12, 13.  

2.2.1. High-energy emulsification methods 

In this part, emulsion formation can be considered as a mixing process by different equipment, 

including high-pressure, ultrasonic or rotor-stator, etc14.  

1) Rotor-stator systems 

Coarse emulsions are passed through a narrow gap between a rotor and a stator14, 15. The 

emulsification process is carried out by rotor rotating, which creates a lower pressure to draw the 

liquid in and out. This technique is generally used for high viscosity liquids. The dispersion of droplet 

size is larger than the nano-emulsions formed by sonication and high-pressure homogenizers systems. 

Emulsion droplet size less than 1µm cannot be achieved by these systems14, 16.  

2) High-pressure systems 

Microfluidizer is the most important homogenizer in this device. Macro-emulsions are passed through 

two opposite narrow gaps. A great shearing action is created by high pressure up to 150MPa and 

provides an exceptionally fine emulsion14. The operating pressure and number of passes of the coarse 

emulsion through the interaction chamber of microfluidizer determine the particle size. Smaller 

emulsions can be obtained by increasing the operating pressure or the pass numbers. Microfluidizer 
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can work with small sample volumes for expensive drugs. But, the production is expensive and the 

contamination of the different chambers in the microfluidizer is questionable for its application14, 15, 17.   

3) Ultrasonic systems 

Ultrasonic emulsification is an efficient method by reducing droplet size for nano-emulsion formation 

in small batches7. The main mechanism for this device is the cavitation. Nano-emulsions formed by 

sonication need lower amount of surfactant and lower input energy, but are more stable for a given 

desired diameter9, 17. Their droplet size can achieve 0.2µm. Ultrasonic systems are the most popular 

systems for nano-emulsion production for research purposes.  

4) Advantages and disadvantages of high-energy emulsification methods 

High-energy emulsification methods present several advantages in industrial applications, such as the 

flexible control of droplet size distributions and the ability to produce submicron emulsions from a 

large variety of materials18. The amount of surfactant is lower than that produced by low-energy 

emulsification methods. The main problem of high-energy emulsification methods on nano-emulsion 

production  is  “over-processing”,  which  refers  to  increase in emulsion size by supplying more energy 

due to a high rate of re-coalescence of new droplets14. For ultrasonic systems, only the volume near the 

sonifer is affected by ultrasonic waves, and a weak mechanical stirring in the other part of samples, 

which need the additional mechanism to homogenize the droplet size and generate nano-emulsions for 

high volumes6. 

2.2.2. Low-energy emulsification methods 

By taking intrinsic physicochemical properties of components into the formulation, nano-emulsions 

can be produced almost spontaneously12, 19. Two different methods are described in the literature: (i) 

phase inversion temperature (PIT) method, in which the composition is maintained but has a change in 

temperature. (ii) spontaneous emulsification method6, 7, 10.  

1) Phase inversion temperature (PIT) method 

This method is based on the change in solubility of polyethoxylated nonionic surfactants with different 

temperatures. Surfactants undergo a partitioning coefficient change in function of the temperature, 

including under stirring caused by a phase inversion, the so-called transitional emulsion phase 

inversion.  

This process is generally performed with ethoxylated type nonionic surfactants, which is composed of 

one alkyl chain and one polyethylene oxide chain, which is either hydrophilic or lipophilic according 

to different temperatures. Polyethoxylated type nonionic surfactants become lipophilic when 

temperature increases, as a consequence of the dehydration of the polyoxyethylene chains. The 
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surfactant has more affinity with the aqueous phase at low temperature, inducing the formation of oil-

in-water (O/W) emulsion upon stirring and when the temperature rises, the nonionic surfactant 

becomes lipophilic and water-in-oil (W/O) emulsion is generated. At the HLB temperature, the 

spontaneous curvature becomes close to zero and at equilibrium a bicontinuous micro-emulsion phase 

can be established7.  

The determination of HLB temperature or phase inversion temperature (PIT) is very important for the 

study of nano-emulsion formation. This is carried out by following-up the conductivity of emulsions at 

different temperatures. The conductivity rises when the temperature increases, until it reaches a 

maximum and then suddenly decreases. The PIT temperature is defined as the average between the 

highest and the lowest conductivity values. This temperature varies with different concentration of 

surfactant, is reduced when the surfactant concentration increases. Because the molecules of 

polyethoxylated surfactant present a wide distribution of alkyl chain length and ethylene oxide (EO) 

units, the chains with the lower EO percentage have more affinity with the oily phase. When the 

concentration of surfactant becomes higher, the content of chains with low EO percentage increases 

and the PIT temperature decreases20.  

The minimum interfacial tension is achieved at PIT temperature between 10-2 and 10-5 mNm-1 7, when 

the affinity of the surfactant for each phase is similar. However the system is not stable and the 

coalescence rate is very high. Nano-emulsions are produced by rapidly cooling or heating the 

emulsion system at a temperature much higher than HLB temperature, causing sudden breaking-up of 

the homogeneous oil/surfactant rich phase. Such thermal shock induces a sudden change in the 

surfactant solubility and results in the separation of the oil nano-droplets which are immediately 

stabilized by the surfactant. The obtained nano-emulsions present small droplet sizes and a narrow size 

distribution. By increasing the surfactant concentration, the emulsion droplet sizes decrease. The PIT 

method is considered easy to adapt and forms small and uniform droplet size nano-emulsions at low 

energy cost, free from the toxicity of organic solvent, with a potentially low amount of surfactant7, 21.  

2) Spontaneous emulsification method 

The process of spontaneous emulsification method can be described as adding a mixture of surfactant, 

oil and water-miscible solvent into the aqueous phase22. The initial assumption of spontaneous 

emulsification is that if two bulk liquids are not initially in equilibrium, it is conceivable that dynamic 

processes such as diffusion could produce emulsification when two liquids are brought into contact 

without stirring. The energy source of the spontaneous emulsification method is mainly from the 

interfacial turbulence, the convection driven by interfacial tension gradients which often accompanies 

diffusion of a solute between phases. Interfaces are subject to capillary waves by thermal fluctuations, 

whose amplitude is increased when the surface tension decreases23. The break-off of droplets is 

possible for sufficiently large amplitudes.  
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The establishment of phase diagrams is very important to disclose potential feasibility areas for the 

emulsification and their optimization22.  The phase diagram can help to predict the behavior of the 

liquid at the interface of two immiscible phases brought into contact without stirring. The simplest 

ternary system consists in water, alcohol and oil, mentioned in Fig.3 6. A single-phase region and a 

two-phase region where the aqueous and oily phase coexist are demonstrated in Fig.3. The evolution 

of  the  concentration  within  each  phase  is  knowen  as  the  “diffusion  path”.  The  aqueous  phase (point 1) 

is in contact with the mixture of oil and alcohol (point 4). The dotted segment (2-3) shows the local 

equilibrium at the interface. The difference between Fig.3a and b demonstrates the spontaneous 

emulsification  region  (1’-2), which depends on the composition and natural properties of the alcohol. 

The depth of the spontaneous emulsification region has a great influence on the intensity of the 

process. Higher the interfacial turbulences and dispersion can be achieved when the diffusion path of 

the spontaneous   emulsification   region   is   deeper.  As  mentioned  above,   the   stirring  doesn’t   influence  

the mechanism of spontaneous emulsification itself but greatly increases the rate of emulsification 

process. The emulsification process in surfactant free systems is caused solely by the diffusion 

process. Droplets generated in this model are quickly destabilized; therefore newly formed interfaces 

have to be stabilized by surfactant adsorption6.   

 

 

 

 

Fig.3. Ternary diagram of water/alcohol/oil system. Segment (1-2), diffusion path of aqueous phase. Segment (3-4), diffusion 

path of oily phase. Segment (2-3), interfacial local equilibrium. (a)  No  spontaneous  emulsification  region.  (b)  Segment  (1’-2), 

spontaneous emulsification region6. 

Quaternary systems are established and a more complex of the diffusion path has to be considered 

between the different phases potentially formed in the interfacial region. Fig.46 presents the surfactant 

with a negative and positive Winsor R, defined as the ratio between the inter-molecular interactions 

per unit interfacial area, surfactant-oil/surfactant-water.  The liquid crystalline (LC) phase plays a 

decisive role in the spontaneous emulsification process. In Fig.4a, the case of hydrophilic surfactant (R 

>1), spontaneous emulsification of hydrophilic droplets is the segment (5-5’).   For   the   lipophilic  

surfactant (R<1) in Fig. 4b, spontaneous emulsification region of oily droplets in water is the segment 

(1’-2).   
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Fig.4. Diffusion path of water/alcohol+surfactant/oil system. (a) Hydrophilic surfactant (R >1). Segment (2-3), aqueous sub-

phase. Segment (5-5’),   spontaneous  emulsification   region. (b)  Hydrophobic  surfactant   (R<1).  Segment   (1’-2), spontaneous 

emulsification region6. 

The process of O/W nano-emulsion preparation by spontaneous emulsification method can be 

described as slowly adding the mixture of surfactant and oil into the magnetically stirring aqueous 

phase, normally distilled water or buffer solutions. The rapid diffusion of the hydrophilic surfactant 

from the oily phase to the aqueous phase induces a dramatic increase of the interfacial area and forms 

the metastable emulsion state. The proportion of different components influences the nano-emulsion 

properties, such as size, polydispersity index (PDI) and droplet concentration. Main factors 

influencing nano-emulsion properties are as followed, (i) solvent/oil weight ratio (SOR), SOR = 

100*Wsurfacntant / (Wsurfactant+Woil), which influences the size of nano-emulsions. When the SOR 

becomes higher, the quantity of surfactant rises and the size of nano-emulsions decreases. However, 

when the SOR achieves 75-80%, the decrease of droplet size will be stopped. (ii) surfactant-oil/water 

weight ratio, SOWR = 100*Wsurfactant+oil / (Wsurfactant+oil + Wwater). The SOWR only has influence on 

the droplet concentration of nano-emulsions but no influence on nano-emulsion formation. (iii) 

polydispersity index (PDI), demonstrates the size distribution and the quality of nano-emulsions 

ranged between 0 and 1. The lower is the PDI, the narrower the size distribution and the better is the 

quality of nano-emulsions. The nature of surfactant and its affinity between the oily phase and the 

aqueous phase are also determining factors on nano-emulsion formations. Surfactants have better 

affinity with aqueous phase, ensuring quick and complete diffusion from the oily phase to the aqueous 

phase, which is the basis of this process22. 

3)  Advantages and disadvantages of low-energy emulsification methods 

Low-energy emulsification methods divert intrinsic physicochemical properties of components in the 

nano-emulsion formulation and expend very low energy on the nano-emulsion formation process. The 

nano-emulsions generated present submicron sizes and narrow size distributions. These methods are 

easy to scale-up in pharmaceutical or cosmetic industries and favor work for fragile or thermo-

sensitive drugs. But by using low-energy emulsification methods, we should have a careful selection 
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of surfactant and co-surfactant combination and a carful control of the temperature for the PIT 

method17. 

3. Nano-emulsion characterization methods  

Nano-emulsions and micro-emulsions are both systems ranging in size in the nanometric scale. These 

systems are self-emulsifying drug delivery systems, present simple formation process, and need very 

low amounts of supplied energy. However, these systems of micro-emulsion and nano-emulsion are 

fundamentally different.  

Micro-emulsions are thermodynamically stable systems. Their morphology type and size is strongly 

affected and even destroyed by the change of temperatures or sample dilutions, such as reaching the 

limit of micro-emulsion stability domain (presented in the phase diagram of micro-emulsions in the 

literature) by increasing temperature; strong dilution can cause micelle sizes lower than the CMC 

concentration and destroy the micro-emulsion system. Compared to micro-emulsions, nano-emulsions 

are thermodynamically unstable but kinetically stable systems, which can remain in stable state in 

such stress conditions24.  

The formulation process of these two systems is also different. For nano-emulsions, the order of 

formulation is very important. They can be only formed if surfactants are first mixed with the oily 

phase   and   then   adding   the   aqueous   phase   into   the   mixture.   On   the   contrary   only   “macroscopic”  

emulsions can be formed in the opposite procedure, in which surfactants are mixed with aqueous 

phase before adding the oily phase. In the case of micro-emulsions, they are strictly identical no matter 

what order in which the compounds are mixed. This point constitutes a preliminary test for 

characterizing the nature of the dispersion obtained24.  

To clarify the confusion between nano-emulsion and micro-emulsion systems, two main experimental 

procedures can serve to identify the nature of nano-systems: (1) the size distribution of nano-systems 

can be measured by the dynamic light scattering (DLS), which requires a sample dilution (water) 

before starting the measurement. This dilution can result its change of size of the swollen micelles in 

micro-emulsion systems, which invalidates the result of characterization or even destroys the micelles. 

But this procedure is suitable for nano-emulsion systems, because the dilution does not influence the 

droplet size and size distribution of nano-emulsions. (2) changing the temperature presents a great 

effect on structure and size of micro-emulsions, which can even cross a boundary when rising the 

temperature. However, the rise of temperature has no immediate effect on the state of nano-

emulsions24.  
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4. Parenteral nano-emulsions 

More than 40% active substances are hydrophobic bioactive compounds, which are difficult to 

formulate using conventional approaches25. In the case of nano-emulsions, the hydrophobic substance 

is dissolved in an oily phase dispersed in an aqueous phase as nano-droplets with narrow size 

distributions17. These systems are considered as new vehicles for hydrophobic bioactive compound 

administration because they provide safer and more patient-compliant dosage forms with enhanced 

dissolution, improved efficacy and reduced side effects26.  

Parenteral administration is one of the most important routes in drug research. The development of the 

parenteral formulation of new chemical molecules is necessary for understanding the behavior of new 

chemical molecules inside the body. Parenteral administration is the best route for emergency cases, 

due to its direct access to the bloodstream and rapid onset of action as well as targeting specific organs 

and tissues27, 28.  

Conventional approaches for parenteral formulation of hydrophobic bioactive compounds are the use 

of co-solvents or oily vehicles. Co-solvent systems present several limitations for parenteral 

administration, such as the precipitation of the drug upon dilution27, 28, pain at the moment of injection 

and hemolysis in some cases. The oily vehicle systems using fixed oil or medium chain triglycerides 

are only suitable for intramuscular administration but not for intravenous administration and rapid 

onset of action27.    

Modern approaches for parenteral delivery of hydrophobic bioactive compounds are nanoparticles, 

such as micelles, liposomes and micro- or nano-emulsions. As a new vehicle for hydrophobic 

bioactive compounds delivery by parenteral administration, nano-emulsions have interesting features, 

such as submicron droplet sizes, greater surface area, ability to solubilize considerable amounts of 

drugs, good physical stability, ease of manipulation, scale-up and low cost27. However, nano-

emulsions bring the risk of emboli formation after administration, rapid growth of microorganisms and 

few excipients are available for parenteral administration. 

Suitable excipients for parenteral administration have to be biocompatible, sterilizable, non-pyrogenic 

grade, non-irritant and non-hemolytic.  In the case of nano-emulsion systems, components in two 

phases and properties of surfactant are considered as the main factors for an available parenteral 

formulation.  

1) Oily phase of nano-emulsions  

The selection of appropriate oil for nano-emulsion formulation is very important. The rule of the oil 

selection is based on (i) the solubility of drug in the oily phase. A good solubility helps to achieve 

larger drug loading in nano-emulsions. Drug solubility can be increased by increasing the chain length 
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of oily phase29. (ii) The properties of the selected oil for the emulsification process. Shorter chain 

triglycerides and fatty acid esters such as Labrafac® CC (Caprylic/Capric Triglyceride) or vitamin E 

are easier to emulsify than longer chain triglycerides such as soybean oil or olive oil. A qualified oily 

phase of nano-emulsion systems presents a good solubility of the drugs and ease to emulsify27.   

2) Surfactants  

A suitable surfactant can make the emulsification process easier and enhance the nano-emulsion 

stability. The selected surfactant should be compatible with the drug and has a good solubility for the 

drug. Natural surfactants are better than synthetic surfactants, since the nocuous of several surfactants, 

such as Cremophor EL, a PEG 35 castor oil, could cause anaphylactic shocks and histamine release30. 

The selection of the surfactant is based on the concentration and the type of the nano-emulsion to be 

formulated. The quantity of surfactant should be as low as possible due to the nocuous properties. Low 

HLB surfactant or high HLB surfactants are selected for the W/O and O/W types of nano-emulsions, 

respectively. Some surfactants are considered as suitable components for parenteral administration, 

such as Tween® 80 (Polysorbate 80), Tween® 20 (Polysorbate 20), Span® 20 (Sorbitan monolaurate), 

Brij® 96 (Polyoxyethylene 10 oleoyl ether), Cremophor® ELP (Polyoxyl 35 castor oil), Solutol® HS 15 

(Macrogol 15 Hydroxystearate) and lcithins etc27.  

3) Aqueous phase 

A proper nano-emulsion formulation should be iso-osmotic to the blood and have a neutral pH. In 

general, the aqueous phase of nano-emulsions is a buffer solution with the blood osmolarity (280-

320mOsm/kg) and suitable pH (4-11) for injection.  

The size of nano-emulsions for parenteral route should be smaller than the red cells to avoid capillary 

embolism in vivo. The submicron droplet sizes of nano-emulsions could achieve long blood circulation 

time in vivo. Nano-emulsion systems are interesting parenteral delivery systems for hydrophobic 

drugs, owing to its good solubilization, low-viscosity, less pain at the injection site and the availability 

to filtrated sterilization technique.  

5. Conclusion 

Early and accurate diagnosis of clinical conditions and an efficient treatment without side effects are 

the major goal of medicine. Nanotechnology makes the medicines closer to this purpose. Nano-

emulsions can improve the solubility of hydrophobic compounds and their bioavailability. These 

nano-systems increase the circulation time of hydrophobic bioactive compounds in vivo and can have 

targeted delivery. The design of multifunctional nano-emulsions should be developed in potential 

therapy areas, where one particle is suitable for both diagnosis and therapy purposes. The same 

particle may contain an imaging agent to monitor the drug transport process, a function to evaluate the 
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therapeutic efficacy of a drug, a specific cellular penetration moiety and a therapeutic agent 

simultanously31. Another crucial factor of nano-emulsion evaluation for in vivo applications is the 

toxicity studies. Their submicron droplet sizes, large surface area, chemical composition and geometry 

could also be factors for potential hazard to human health. Further studies are required to demonstrate 

the risks associated with exposure to nanoparticles. An ideal nano-emulsion system should be secreted 

or degraded without any toxic side effects32. Nano-emulsions are excellent potential drug delivery 

systems in nanomedicine field.  
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3. Conclusion 

Ce chapitre bibliographique a permis d'introduire le contexte de ce travail de thèse et les principaux 

concepts théoriques, principalement focalisé sur des agents de contraste iodés sous la forme de nano-

émulsions lipidiques. L’objectif  de  l’étude  a  été de synthétiser des huiles iodées constituant la phase 

huileuse de nano-émulsions et ensuite de les utiliser pour formuler des nano-émulsions par la méthode 

d’émulsification spontanée. Les propriétés les plus recherchées pour de tels agents de contrastes, 

concernent principales les une action prolongé au niveau sanguin et/ou spécifique du foie. Comme 

décrit ci-dessus, le surfactant PEGylé,   disposé   à   l’interface   des gouttes de nano-émulsions permet 

d’éviter   la   reconnaissance des nano-émulsions par le système immunitaire et donc leur confère une 

longue rémanence vasculaire in vivo. De plus, la nature chimique des composants de ces 

nanoparticules peut leur permettre de s'accumuler spécifiquement au niveau hépatique selon un 

phénomène   d’accumulation passive. Les chapitres suivants visent à présenter les différentes études 

expérimentales réalisées dans ce cadre. 
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Blood Pool Contrast Agents 

based on Iodinated Nano-Emulsions 
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Dans ce chapitre nous nous intéresserons aux agents de contraste iodé à longue rémanence vasculaire 

sous forme de nano-émulsions. Les nano-émulsions iodées de type huile-dans-eau sont fabriqués par la 

méthode   d’émulsification spontanée. La phase huileuse consiste en un composé lipophile contenant 

des  molécules   capables   d’atténuer   les   rayons  X   (il   va   s’agir   d’huile iodée). Dans ce chapitre, deux 

nouvelles huiles iodées ont été développées par notre équipe. La première huile iodée a été effectuée à 

partir   d’une huile commercialisée de type macrogol (le Labrafil® M 1944 CS). La deuxième huile 

iodée est une huile iodée synthétisée, dont la structure chimique est basée sur celle du 

Labrafil® M 1944 CS,   mais   qui   contiendra   davantage   de   molécules   d’iodes   que   pour   ce premier 

exemple. 

 

 

 

 

 



59 
 

2.1. Agent de Contraste à Longue Rémanence Vasculaire – Nano-émulsions de  

Labrafil® M 1944 CS iodé 

La  première  partie  de  ce  chapitre  est  focalisée  sur  l’étude  de  nano-émulsions contenant le Labrafil® M 

1944 CS iodé. Le Labrafil® M 1944 CS est une huile commercialisée ayant une structure appropriée 

pour former des nano-émulsions   par   la   méthode   d’émulsification   spontanée.   L’iode   a   été   ensuite  

introduit  par  la  réaction  de  Wijs  en  qui  consiste  à  fixer  du  chlorure  d’iode  ICl  sur  les  doubles liaisons 

des  chaînes  d’acides  gras du Labrafil® M 1944 CS. Les nano-émulsions de Labrafil® M 1944 CS iodé 

ont une teneur en iode était environ de 85 mg I/mL, ce qui est remarquable comparé aux produits sur 

le marché. La couche hydrophile autour des gouttes   d’huile   iodée   a   été   réalisée   en   associant   un  

surfactant PEGylé, le Cremophor® ELP,  qui  permet  d’éviter  la  reconnaissance  des  nano-émulsions par 

le système immunitaire, et ainsi de leur conférer une longue rémanence vasculaire in vivo. 
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The context of the this research is the development of nanoparticulate systems exhibiting long

circulation times in the blood pool, loaded with X-ray contrasting compounds, to be used as blood

pool contrast agents in computed tomography. This study presents an original, new and simple

formulation of radiopaque nano-emulsions composed of iodinated oil, formed by a spontaneous

emulsification method. As a result, extremely monodisperse, iodinated nano-droplets were generated,

ranging in size from 20 to 190 nm, presenting an iodine concentration of around 85 mg I/mL, and

coated with a polyethylene glycol shell which ensured their stealth properties against the immune

system in the blood stream. In vivo assays demonstrated a significant contrast effect, along with a long

residence in the blood pool. This study highlights novel nano-formulations used as efficient contrast

agents for preclinical X-ray imaging applications, along with simple and efficient alternatives for the

generation of iodinated nano-emulsions.

1 Introduction

Micro-computed tomography (micro-CT), is a very powerful

and non-invasive tool used to establish high-resolution images

with isotropic voxels in relatively short scan times. This techno-

logy is particularly suitable for visualizing and differentiating

bones and related inorganic constituents from the organic (soft

tissue). It is possible to extend the scope of micro-CT application

to soft tissue by using X-ray opaque, exogeneous compounds to

provide contrast by their selective biodistribution.

Radiopacity is achieved using atoms with high atomic number.

Most contrasting agents are composed of iodine because this specie

offers a good compromise between contrasting power, safety and

cost.1 Contrast agents used for human applications are hydro-

soluble, organic, iodinated molecules. Even if these contrast agents

are cleared very quickly from large and small animals, they are

effective in humans since clinical CT scanners for human are very

fast (e.g. five seconds to acquire 15 cm thick volume). However,

their use appear limited with micro-CT systems since they tend to

be very slow in comparison (e.g. ten minutes to scan a mouse).

Hence the need to have long circulating agents.2

We recently reviewed in detail1 the different strategies for the

formulation of blood pool contrast agents as well as the potential

and methods for improving their biocompatibility and pharmaco-

kinetic properties. We then presented an overview of the toxicology

of these nanoparticulate contrast agents. Formulations are mainly

constituted of liposomes,3,4 chylomicrons,5 micelles,6 dendrimers7

or polymeric nanoparticles.8,9

The general methods used to confer long-circulating properties

to contrast agents involve the control of nanoparticle stability

and surface properties.10–17 Although the results are promising,

it is worth noting the complexity of the chemistry involved

in such formulations, which greatly limits their transposition in

this specific field, posing problems even when it comes to

potential industrial scale-ups and commercialization (only 2

are available).

Associated with the use of biocompatible excipients, nano-

emulsions are prime candidates for our imaging aims and

specifications. Not only are these dispersions extremely homo-

geneous, but they also present very useful stability properties and

can remain stable for months.18

Nano-emulsion generating processes are generally divided into

two groups. The first one comprises ‘‘high-energy’’ processes

based on the use of specific devices (high pressure homogenizers,

sonifiers, rotor/stator apparatus and so on), supplying enough

energy to increase the water/oil interface in order to attain

nanometric range droplet sizes. Due to the simplicity of the

process, such methods are the most widespread in nano-emulsion

formulation. Nevertheless, they are limited by significant

inherent drawbacks such as very low energy yields which present

a potential problem for industrial scale-up, or difficult condi-

tions of formulation, likely to induce the degradation of fragile

molecules during the encapsulation process.
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In this study, we have chosen to focus on the second group of

nano-emulsion generating methods using ‘‘low-energy’’ pro-

cesses. The principle is very simple, based on spontaneous

emulsification mechanisms described elsewhere.19 It consists in

bringing into contact two liquid phases, both at thermodynamic

equilibrium. One is an organic phase solubilizing hydrophilic

compounds (surfactants, solvents etc.) and the other is an

aqueous medium. When mixed, the system is in a state of non-

equilibrium, resulting in very rapid diffusion of the surfactants

and/or solvents (hydrophilic species) from the organic to the

aqueous phase. This then generates nano-emulsion droplets. It is

worth noting that, unlike microemulsions, nano-emulsions are

not thermodynamically stable, but present great kinetic stabi-

lity.20 Nano-emulsion droplets are similar to Brownian particles

in that they are stable for months, destabilized only by the very

slow Ostwald ripening.18 To summarize, the formulation of

nano-emulsions by means of this method is extremely straight-

forward, simply involving the mixing of two liquids with no

need for energy or specific devices. It is a solvent-free process

requiring a low amount of surfactant, and results in very stable

nanodispersion. The simplicity of the process makes it suitable

for quick formulation just prior to administration. It would be

easy, for instance, to mix two ampoules containing these two

phases. This premise is the basis of the present study. Here we

present an original formulation of nano-emulsions based on a

novel approach, involving extremely simple spontaneous emul-

sification of iodinated amphiphiles. The low-energy nano-

emulsification process is used, with an iodinated oil as the

hydrophobic phase. Oil iodination is performed following the

one-step Wijs reaction, in which the oil molecules with non-

conjugate double bonds take up the amount of iodine chloride in

a short time, forming iodochloro compounds. In addition to the

simplicity of the whole process, this study aims to highlight

another salient point: the particular location of the iodine atoms,

right in the middle of each hydrophobic chain. So here is a

solution that potentially influences the physicochemical proper-

ties of the iodinated compounds and is very simple to use.

Despite these advantages, it is hardly dealt with in the literature,

where it is more common to read about iodine binding at the

extremities of the molecule. In this work, we therefore wanted to

point out the potential and efficiency of this chemical configura-

tion. After in-depth chemical characterization and studying the

influence of the formulation parameters on the nano-emulsion

features and stability, an in vivo evaluation of this iodinated

nanoparticle contrast agent is performed in mice.

2 Materials and methods

2.1 Materials

The chemicals used in this study were purchased from com-

mercial sources, in accordance with European Pharmacopoeia,

and were used without further purification. Iodine monochloride

(98%), Na2S2O3 (99%), cyclohexane (99.9%) and sodium

hydroxide (99%) were obtained from Sigma (Saint Louis,

USA). Potassium iodide (99%) was purchased from Fluka

(Saint Louis, USA), NaH2PO4-2H2O (98%) from Merck

(Darmstadt, Germany) and dichloromethane (99.95%) from

Carlo Erba (Val-de-Reuil, France). Nonionic surfactant from

BASF (Ludwigshafen, Germany), i.e. Cremophor ELP, batch

29054609T0, was kindly provided by Laserson (Etampes,

France) and used as received. This nonionic highly polyethoxy-

lated surfactant is a polyoxiethylated-35 castor oil with a number

of ethylene oxide groups given around 35, that is to say with a

molecular weight around 1500 g?mol21. This surfactant is be a

mixture of different oligomers of molecular weights following

a Poisson-like distribution centered on the one of announced by

the manufacturer. These amphiphiles exhibit a hydrophilic-

lipophilic balance, HLB, around y12–14, and create the PEG

layer surrounding the nano-emulsions droplets from their

hydrophilic PEG moiety. Finally, the hydrophobic phase, i.e.

Labrafil M 1944 CS1 (Oleoyl Macrogolglycerides), batch

0807541, was obtained from Gattefossé (Saint-Priest, France).

2.2 Methods

2.2.1 Synthesis of iodinated oil. As presented above, the

covalent incorporation of iodine into the oil molecules was

performed by the Wijs reaction.21 The hydrophobic phase,

Labrafil M 1944 CS1 (20 g), was first dispersed in cyclohexane

(80 mL). Iodine monochloride (0.09 mol) was then added to this

mixture. The dark red solution was magnetically stirred,

protected from light and maintained at (40 ¡ 1) uC for 1 h.

Next and with continued stirring, the excess of Wijs reagent was

deactivated by mixing it with an aqueous solution of potassium

iodide (100 mL at 0.06 mol). This resulted in the formation of an

I2 precipitate, which was eliminated and converted into hydro-

philic iodides by adding sodium thiosulfate. The organic phase

was washed 3 times with 300 mL of deionized water before

removing the organic solvent by rotary evaporation (MD 4C +

AK + EK, Vacuubrand, Wertheim, Germany) at (40 ¡ 1) uC.

A light brown iodinated oil was finally obtained. Elemental

analysis: C, 50.70%; H, 7.87%; O, 10.04%; I, 24.53%; Cl, 6.86%.

The NMR analysis (the spectra are provided as Supplementary

Information, ESI{) was reported as follows: 1H NMR (CDCl3) d
0.84 (t, 6H, CH3), d 1.20 to 1.22 (m, 35H, the other CH2 of fatty

acid), d 1.48 (m, 4H, CH2 in b of COOR), d 1.55 (m, 4H, CH2 in

a of CHCl and CHI), d 2.25 (t, 4H, CH2 of fatty acid in a of

COOR), d 3.61 (m, 9H, the other CH2 of poly(ethylene glycol)),

d 4.08 (m, 6H, CH2 of poly(ethylene glycol) in a of COOR and

CHCl), 4.45 (m, 1H, CHI). 13C NMR (CDCl3) d 14.121 (C-18), d
22.659 (C-17), d 24.923 (C-3), d 26.7 (C-7 and C-12), d 31.0

(other C of the fat acid), d 34.054 (C-2), d 34.415 (C-8), d 37.532

(C-11), d 42.435 (C-9), d 63.377 (C-19), d 65.604 (C-10), d 70.4

(other C of the poly(ethylene glycol)), d 173.721 (C-1). For the
13C NMR, carbon assignments were done according the two

following criteria: (i) C correspond to fatty acids carbons and C9
to poly(ethylene glycol) carbons, and (ii) C carbons numbering

goes from COOR (number 1) to CH3 (number 18). HRMS

(ES+): two predominant products were found with a Gaussian

distribution of three times 44 Da (corresponding to an ethylene

glycol monomer) on both sides m/z 1217.39497 (M+K+, 15.58)

and 791.27352 (M+K+, 84.42).

2.2.2 Formulation of iodinated nano-emulsions. First, various

amounts of iodinated oil and nonionic surfactant were mixed at

a controlled temperature of (70 ¡ 1) uC. Their respective

proportions were an important parameter for the control of the

droplet size and polydispersity index, PDI, (see below). Next,
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this mixture was added to the aqueous phase (a phosphate

buffer) and magnetically stirred until a homogeneous, bluish,

translucent suspension was obtained (i.e. in a few seconds). The

mechanism on which the method was based is described in

detail in our recent work.19 The formulation parameters were

rationalized through the (i) surfactant/oil weight ratio: SOR =

100 6 wsurfactant/(wsurfactant + woil), and (ii) surfactant-oil/water

weight ratio: SOWR = 100 6 wsurfactan+oil/(wsurfactan+oil + wwater).

The value of the SOWR was kept constant at 40% throughout

this study, since its influence on nano-emulsion formation is

negligible (it only influences droplet concentration19). In addi-

tion, the pH and osmolarity of the suspension were strictly

controlled and adapted for compatibility with parenteral

administration. Finally, sample sterilization was performed by

filtration through a 0.22mm fluoride of polyvinylidene hydro-

philic (PVDF) membrane (Millipore, Molsheim, France). All the

formulations were repeated five times.

2.2.3 Characterization. Elemental analysis was performed with

an appropriate instrument and approximately 20 mg of dried

samples. For the 1H and 13C NMR spectra, chloroform-d

chemical shifts were expressed in ppm downfield from tetra-

methylsilane used as an internal standard. Mass spectra were

obtained by the electro-spray method (University of Strasbourg,

Service Commun d’Analyses Chimiques).

The hydrodynamic diameters and PDI of the nano-droplets

were obtained by dynamic light scattering (DLS) using a

Malvern NanoZS instrument (Orsay, France). The helium/neon

laser, 4 mW, operated at 633 nm, with the scatter angle fixed at

173u and the temperature maintained at 25 uC. PDI is a measure

of the broadness of size distribution derived from the cumulant

analysis of DLS data according to ISO 13321 : 1996; for a single

Gaussian population with standard deviation, s, and mean size,

xPCS, thus PDI = s2/x2
PCS is the relative variance of the distribu-

tion. In other words, it shows the quality of the dispersion.

Values ¡0.1 reflect very good monodispersity and quality of

the nanoparticulate suspensions. Zeta potential measurements

were performed with the same apparatus. Measurements were

performed three times for each point.

The viscosity of iodinated oil was measured with a rotational

viscometer (DV I+, Brookfield, Boston, Massachusetts, USA) at

25 uC, whereas for nano-emulsions, it was determined by means

of a capillary Ostwald viscometer, at 37 uC.

The reproducibility of the nano-emulsion formulations was

studied by repeating the experiments five times. The pH,

osmolarity, size, zeta potential and PDI were determined for

each sample.

AFM measurements were performed using a commercial

microscope (the Solver Pro-M, from NT-MDT Inc., Moscow).

Sample preparation protocol was following: 100 mL of a diluted

iodinated nano-emulsion suspensions (oil concentration

y0.3 wt.%) was deposited on the freshly cleaved mica substrate,

followed by the addition of 10 mL of a MgCl2 stock solution to

obtain a final concentration of 10 nM. The measurements were

performed 10 min after sample preparation to allow the

interactions between oil droplets and mica. All measurements

were conducted in liquid phase (MilliQ water) by using the

tapping mode. The cantilevers used were NSG03 type (NT-MDT

Inc., Moscow) with a typical spring constant of 1.7 N/m, a

resonance frequency of 32 kHz in liquid, and a tip curvature

radius of 10 nm. Images were acquired with a resolution of

512 6 512 and a scan rate of 2 Hz.

2.2.4 Stability study. The in vitro stability study of iodinated

nano-emulsions was performed by following-up the pH, osmola-

rity, size and PDI of samples stored at (4 ¡ 2) uC. At each point

(0, 1, 2, 3, 14, 30, 60 and 90 days), the formulations were visually

observed in order to detect possible creaming. Then they were

stirred for 30 s using a Vortex device prior to measuring.

2.2.5 Nano-emulsion stability in FBS. The incubation with fetal

bovin serum (FBS) was performed by mixing 0.1 mL of selected

nano-emulsions with 1 mL of FBS. The mixture was homo-

genized and incubated at (37 ¡ 1) uC under gentle agitation.

Visual observation were performed 5 min, 12 h, and 24 h after

mixing. Two formulations of iodinated nano-emulsions were

tested, SOR = 15% and SOR = 30%.

2.2.6 Micro-CT imaging. The micro-CT scanner used in this

study was a GE Healthcare apparatus, eXplore speCZT

Fig. 1 Diagram of the nano-emulsion formulation process (top), and

morphology of the nano-droplets formed (bottom).
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Vision1 (Waukesha, USA). Parameters for X-ray imaging were:

70 kV, 32 mA and 10 ms. The quantification, in Hounsfield units

(HU), was performed by the image-processing software,

MicroView by GE Healthcare (Waukesha, USA).

In vitro measurements were performed on iodinated oil and

nano-emulsions. An in vivo evaluation of the products was

carried out using a nude mice model (weight ca. around 20 g),

anaesthetized with isoflurane during administration of the

product and throughout the CT scans. 200 mL of nano-emulsions

were intravenously injected in the tail-vein, and CT scans were

performed at 5, 75 and 210 min after administration. The whole

experiment were repeated with five different mice.

The experiments were performed in accordance with the

Committee on Animal Research and Ethics of the University

of Lyon-1.

3 Results

3.1 Iodinated nano-emulsions

The principle of generating nano-emulsions, illustrated in Fig. 1,

shows the simplicity of the process. Once the organic and

aqueous phases were in contact with each other, the hydrophilic

species solubilized in oil (i.e. nonionic surfactants) underwent a

very rapid diffusion towards water. This resulted in a demixing

of the lipophilic molecules in the form of nanometric-scaled

droplets, immediately stabilized by the surfactants. The mor-

phology of the resulting droplets (bottom part of Fig. 1) was

simply an iodinated oily core surrounded by a nonionic

surfactant layer, thus developing a ‘‘hairy’’ surface due to the

PEG moiety of the amphiphiles.

In order to grasp and optimize the formulation of nano-

emulsions, it was necessary to study the influence of the formula-

tion parameters on the resulting nano-emulsion properties. This

is illustrated in Fig. 2, by showing the relationship between both

SOR and size, and SOR and PDI. The nano-emulsification of

iodinated and non-iodinated Labrafil M 1944 CS1 was also

compared, using the same surfactant (Cremophor ELP1) and

aqueous phase. This is reported in Fig. 2.

Fig. 2 Nano-emulsions formulated with non-iodinated oil (open circles)

and iodinated oil (filled squares). Surfactant = Cremophor ELP1, oil =

(native or iodinated) Labrafil M 1944 CS1. Hydrodynamic diameters

are plotted against the surfactant oil weight ratio (SOR). Inset: The

corresponding polydispersity indices are plotted vs. SOR.

Table 1 Data on the reproducibility of representative (SOR = 15%,
SOWR = 40%) nano-emulsion features. Size, PDI, pH, osmolarity:
Nano-emulsions were formulated using iodinated Labrafil M 1944 CS1,
Cremophor ELP1 and phosphate buffer as the aqueous phase.

Mean value Standard deviation (%)

Size (nm) 120 2
PDI 0.066 0.032
pH 7.26 0.12
Osmolarity (mOsm/L) 277 1

f potentiala (mV) 233.3 0.5
f potentialb (mV) 235.2 0.7
a Formulation using iodinated Labrafil M 1944 CS1, Cremophor
ELP1. b Formulation using non-iodinated Labrafil M 1944 CS1,
Cremophor ELP1.

Fig. 3 (a) AFM tapping mode images in liquid phase of iodinated nano-

emulsions (SOR = 15%). Nano-emulsion droplets were deposed on mica

substrate. (b) Section of a nano-emulsion droplet corresponding to the

white line in (a).
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The formulation chosen to be used as the blood pool contrast

agent was a compromise between the quality of the dispersion

(i.e. low size and PDI) and amount of surfactant. The formulation

parameters were SOR = 15% and SOWR = 40%, and the result of

its characterization is reported in Table 1, showing a significant

reproducibility of the experiments. The very low PDI values

indicate the extreme monodispersity of the nano-emulsion. Zeta

potentials measured on iodinated and non-iodinated nano-

emulsions disclose a significant negative surface charge as well as

similar values for both systems. This is finally coherent with the

chemical nature of the compounds used (oil can contain free fatty

acid) and with the fact that chemical bounding of iodine has not

influence on the surface charge.

Further characterization of these nano-emulsions (SOR = 15%)

were conducted using the AFM microscopy (atomic force

microscopy) in liquid conditions and tapping mode for less

invasive imaging. Fig. 3 presents a typical topographical image

of nano-emulsion droplets deposed on atomic flat mica surface.

The oil droplets appear regular in shape and size, which is actually

coherent with the log-normal distribution and low PDI values

disclosed by the dynamic light scattering measurements (¡0.1, see

Fig. 4). As well, the droplet size given by the AFM picture is

coherent with the DLS results (dh = (120 ¡ 2) nm). The images

were acquired in low force mode to minimize the morphological

distortion of the sample, we observed a surface shadowing effect

induced by the interactions between the tip with a soft sample.

Section analysis show a typical diameter around (150 ¡ 20) nm.

3.2 Stability study

An in vitro stability study was performed for 90 days at (4 ¡ 2) uC,

on two representative iodinated nano-emulsions sized 120 and

Fig. 4 In vitro stability at (4 ¡ 2) uC for 3 months of nano-emulsions formulated with iodized/chlorinated Labrafil M 1944 CS1, Cremophor ELP1
(non-ionic surfactant) using phosphate buffer as the aqueous phase. Nano-emulsion 1 (filled circles) was formulated with a SOR of 10% and a

phosphate buffer with an osmolarity of 330 mOsm/L and nano-emulsion 2 (open circles) was formulated with a SOR of 15% and a phosphate buffer

with an osmolarity of 270 mOsm/L. The size (a) and PDI (b) of both emulsions were measured at 0, 1, 2, 3, 7, 14, 30, 60 and 90 days and pH (c) and

osmolarity (d) were measured at 0, 7, 14, 30, 60 and 90 days.
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180 nm, formulated with controlled pH and osmolarity-compatible

with the parenteral administration route. This study includes the

follow-up of the hydrodynamic diameter, PDI, pH and osmolarity,

and the results are reported in Fig. 4.

The samples exhibit a great stability in time, which is totally

coherent with the expected behavior for nano-emulsions. The sizes

are centered around the initial one, along with low and constant

PDI values lower than 0.1. However, in both formulations we

observed similarly fall of the pH and osmolarity: A slow decrease

of the pH values appeared, reaching about 6.8 pH at 90 days,

along with an increase in osmolarity around 40 mOsm/L, after

having been stable for one month. These results reveal a slight,

gradual, regular release from the nano-emulsion droplets, of a

substance impacting on the pH, and thus also resulting in an

increase in osmolarity. This may be a leakage of iodine.

3.3 In vitro evaluation

In this section, the in vitro X-ray attenuation of our iodinated

nano-emulsion and of commercial nano-emulsions (Fenestra

VC1), were evaluated by establishing a calibration curve. A

commercial hydrophilic contrast agent, XenetiX1, was used as a

reference, at a concentration of 300 mg I/mL. The results are

shown in Fig. 5 and the corresponding values reported in Table 2.

These results confirm the significant attenuation induced by

iodinated nano-emulsions, providing values even higher than

53%, more than for the commercial products (Fenestra VC1
at around 55 mg I/mL,22 which we confirmed, see Table 2).

The higher attenuation is due to higher iodine content. The

stability of iodinated nano-emulsions in fetal bovine serum was

evaluated and reported in Table 3. The samples appear very

stable and homogeneous up to 12 h, and the bigger nano-

emulsion (SOR = 15%) shows the first signs of destabilization

(slight precipitation) around 24 h, whereas the smaller nano-

emulsion remains very stable.

3.4 In vivo evaluation of iodinated nano-emulsions

The selected iodinated nano-emulsions described above (SOR =

15% and SOWR = 40%, sized 120 nm see Table 1) were

intravenously injected in mice. The results presented in Fig. 6

and Fig. 7, show pictures focused respectively on the heart and

kidney, acquired 75 min after injecting the nano-emulsions. A

clear vascular contrast is obtained, providing clear images of the

blood pool and thus proving the potentials of such iodinated

nano-emulsions as blood pool contrast agents for preclinical

imaging by disclosing their significant X-ray attenuation power.

Fig. 8 reports the temporal evolution profile of X-ray attenua-

tion in the heart and liver, through three representative acquisi-

tions to the point when the signal is no longer detectable. The

mean attenuation is calculated using a cylindrical volume (region

of interest) placed inside the left ventricle and the hepatic

parenchyma (in yellow on the figure).

4 Discussion

The main challenge for this study is to achieve a simple and

efficient chemical iodination, with a negligible impact on both

the physico-chemical properties of the oil and the emulsification

process.

In the literature, the solution to this problem has generally

been to graft iodine atoms to the extremities of the oily molecules

using multi-step chemistry,22 in order to avoid the potential

change in their solubility and their interaction with the different

compounds of the formulation. Iodinated triglycerides (ITG)

were formulated with this aim in mind, and used as the iodinated

hydrophobic phase in the formulation of blood pool contrast

agents. As regards the application of nano-emulsions as blood

pool contrast agents, only a few formulations are proposed,

Fig. 5 In vitro X-Ray visibility of the iodinated nano-emulsions

(120 nm), water, air, and various dilutions of a commercial hydrophilic

contrast agent, XenetiX1 at 300 mg I/mL. (Top) raw data from the

microCT apparatus, and a diagram of the dilutions. (Bottom) resulting

calibration curve established with XenetiX1.

Table 3 In vitro stability of iodinated nano-emulsions in fetal bovine
serum. ‘‘++’’ = the sample appears homogeneous without visual
aggregation, ‘‘2’’ = a slight precipitation is observed

5 min 12 h 1 day

Iodinated NE SOR 15% ++ ++ 2
Iodinated NE SOR 30% ++ ++ ++

Table 2 Values of X-ray attenuation corresponding to the samples
presented in Fig. 5. The Iodine concentration was determined using the
calibration curve, see details in the text

Opacification (HU)
Iodine concentration
(mg I/mL)

Water 250.75 ¡ 109.24 —
Air 21007.04 ¡ 114.86 —
Iodinated nano-emulsion 3083.28 ¡ 130.03 85.52 ¡ 0.51
Fenestra VC1 2003.55 ¡ 120.95 55.63 ¡ 0.24
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commercialized and registered, such as for example Fenestra

VC1 and Fenestra LC1.5 These products are chylomicron-like

in design and either include a specific PEG coating (for blood

pool contrast agents) or not (for hepatocyte-selective contrast

agents). The oily core of the nano-droplet comprises ITG, syn-

thesized using multi-step chemistry, binding the tri-iodobenzene

functions to the hydrophobic extremity of medium chain

triglycerides. The nano-emulsions are thus generated using a

high-energy process.

The current study proposes a simpler and more efficient

alternative, combining (i) one-step chemistry, and (ii) a quick,

spontaneous nano-emulsification process. The chemical charac-

terization confirms complete iodination of the unsaturated sites

by Wijs reaction. In this study, the hydrophobe used as the oil

core for nano-emulsion droplets was selected by means of the

two following criteria: (i) good compatibility with the low-energy

spontaneous nano-emulsification method (before and after

iodination), and (ii) the presence of non-conjugate double bonds

in its chemical structure to facilitate iodine incorporation.

Labrafil M 1944 CS1, a mixture of PEGylated fatty acids,

totally suits these requirements, allowing full iodination follow-

ing Wijs reaction and thus producing the iodinated oily

compounds illustrated in Fig. 9.

According to the European Pharmacopoeia, Labrafil M 1944

CS1 iodine value is between 24 and 38 g expecting a theoretical

maximum range of iodine between 19 to 27.5 wt%. Now as seen

before, iodinated Labrafil M 1944 CS1 contains 24.53% of

iodine and according to the 1H NMR and 13C NMR, it does

not have any double-bound. Thus, we can conclude that Wijs

reaction is complete.

Although the iodine is in the middle of each oily chain, its

impact on the nano-emulsion formulation process, as shown

in Fig. 2, appears to be relatively reduced. The spontaneous

emulsification process is not affected by the new properties of the

oil and seems, in fact, to be more efficient, giving rise to smaller

droplets with a thinner size distribution. This may be due to the

slight modifications in the oil hydrophobicity caused by the

presence of iodine, which in turn results in slight changes in

the affinities between the oil and the surfactants, a critical point

of the nano-emulsification process.19 These appear to be minor

variations, probably due to the length of the fatty chains, which

counterbalance the chemical perturbation. The lower the oil

proportion in the oil/surfactant mixture (i.e. the higher the SOR),

the lower the resulting nano-emulsion droplet size and PDI.

Since the affinities between the oil and the surfactants during

the emulsification process impact on the transfer velocity of the

diffusing molecules, closely linked to the droplet size, the

iodinated oily molecules can be said to show an enhanced

hydrophobicity compared to native ones. This then results in

inducing a faster diffusion of the surfactants during the

Fig. 6 Images illustrating the contrast enhancement obtained 75 min after IV injection. (A) Whole body coronal view crossing heart (h), liver (L) and

bladder (b), showing the dual elimination route. (B) Four cavity slice through the heart (obtained after reorientation), lines indicate positions of

corresponding transverse slices (see below). (C) Transverse slice through the base of the heart: right atrium (ra), aortic valve plane (v), left atrium (la).

(D) Transverse slice through the middle of the heart : right ventricle (rv) and left ventricle (lv). (E) Transverse slice through the apex of the heart. (F)

Slice through the left ventricle showing the beginning of the aortic cross (a).

798 | RSC Adv., 2011, 1, 792–801 This journal is ! The Royal Society of Chemistry 2011

D
ow

nl
oa

de
d 

on
 1

4 
M

ay
 2

01
2

Pu
bl

ish
ed

 o
n 

25
 A

ug
us

t 2
01

1 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

1R
A

00
04

8A

View Online

http://dx.doi.org/10.1039/c1ra00048a


emulsification process, resulting in smaller nano-emulsion

droplets. However, the formulation of nano-emulsions is not

conditioned by a specific organization of lipids (as is the case

for liposome formulation for instance) and this explains the

robustness of the process against such chemical modifications.

The stability of the nano-suspensions formed, presented in

Fig. 4, shows how compatible the results are with the target

applications. Furthermore, the simplicity of the formulation

process renders this technology suitable for extemporaneously

prepared applications. In other words, users will easily be able to

formulate the nano-emulsification on their own, by simply

mixing the two pre-sterilized and appropriately packaged phases

(organic and aqueous), and then following the appropriate

protocol. It will thus be possible to create nano-emulsions just

before use. Finally, as shown in Fig. 4, the formulated nano-

emulsions remain very stable for the first month of storage, the

pH overall is ¢7.0 and the osmolarity remains stable. This

concretely means that once formulated by users, the iodinated

suspensions remain stable for a reasonable period and may be

used for performing experiments.

To summarize, in comparison to the other types of iodinated

contrast agents these low-energy iodinated nano-emulsions

offered many advantages, but also, they can be complementary

and considered as alternatives to metal nanoparticle (e.g. gold or

bismuth nanoparticles23–27) contrast agents. However, the great

advantage of the nano-emulsified forms remains in the stability

Fig. 7 Anatomical details of kidney vascularization at 75 min after IV injection: (A) Sagittal slice through the lombar spine, lines indicate positions of

corresponding coronal slices. (B) Coronal slice through the dorsal part of the kidneys, showing the abdominal course of the aorta (aa) and the right and

left dorsal muscular branches (rdmd and ldmb respectively). (C) Coronal slice 1.5 mm lower than (B) showing the right renal artery (ra). (D) Coronal

slice 5 mm lower than (C) showing the venous side of kidney vascularization: left renal vein (rv) and left ovarian vein (ov), as well as the contrasted urine

in the renal pelvis (rp).
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of the oil droplets as it is shown in Fig. 4 of the manuscript.

Indeed, the stability of nano-emulsions is governed by the

thermodynamic properties of the system inducing a strong

colloidal repulsion of the droplets, whereas it is often a problem

for the other types of nanoparticulate contrast agents, needing

specific surface modification in order to increase the colloidal

stability. Other advantages lies in the very simple spontaneous

nano-emulsion formulations, the very simple chemistry followed

for the iodine incorporation. Likewise, due to the use of nonionic

PEGylated surfactants, no specific step of chemical surface

functionalization is needed to obtain the aimed stealth pro-

perties, as it is often the case in the formulation of blood pool

contrast agents. Finally, all of these properties are basic advant-

ages of the nano-emulsified systems, however, the high iodine

loading even increase the interest of using such a system as blood

pool contrast agent.

The in vitro experiments shown in Fig. 5 reveal iodinated

nano-emulsions to be sufficiently loaded with iodine to meet

the requirements of their target application as blood pool

contrast agents. In the literature, the iodine concentrations of

blood pool contrast agents are shown to range from 22 to

y100 mg/mL,3,5,8,9,28–31 thus placing the present iodinated nano-

emulsions in the upper range of existing systems. A further

significant advantage of the present formulation is the combina-

tion of its simplicity (spontaneous emulsification) with its high

iodine concentration, where other spontaneously formed systems

(micelles or polymeric nanoparticles) only have a reduced

amount of iodine once in suspension.8,9,28 Regarding now the

nano-emulsion behavior in presence of blood serum, the results

disclosed in Table 3, giving the suspension stable up to 12 h is

fully compatible with use as blood pool contrast agent, since

nano-emulsions are gradually eliminated from the body within a

time lower than 12 h.

The in vivo evaluation (Fig. 6, Fig. 7 and Fig. 8) confirms that,

once injected (i.e. once diluted in the blood pool), the iodinated

nano-emulsions still show significant X-ray attenuation and

thus a notable vascular contrast. Fig. 6 (A) clearly highlights

the vascularization of the heart (h), liver (L) (even showing a

reverse contrast of the gallbladder), arterial and venous system.

Fig. 6 (B) to (F) show the delineation of the cardiac muscles,

emphasizing the right atrium (ra), aortic valve plane (v), left

atrium (la), right and left ventricle (rv and lv), and aorta (a). The

Fig. 8 Follow-up of the attenuation, measured in Hounsfield Units (HU), for the left ventricle and liver after IV injection of the contrast agent. (A)

Three-slice view showing the cylindrical region of interest (ROI) in yellow, in the left ventricle where all the measurements were taken. (B) Three-slice

view showing the cylindrical ROI in the hepatic parenchyma where all the measurements were taken. The chosen ROI did not contain large vessels. (C)

The attenuation over time curve showing the mean for each ROI, with administration of the IV injection at the origin of the time axis. As references, the

values of the X-ray attenuation in these two ROI were also measured before the IV injection: 5 and 15 HU, respectively for heart and liver.

Fig. 9 Structure of the two predominant molecules in the iodinated oil.

These two predominant molecules correspond to oleoyl macrogol-6-

glycerides iodinated/chlored by the Wijs reaction. Iodine and chlorine are

linked at oleic acid double bound during this complete reaction.
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first indications of the elimination mechanism also appear in this

figure through the concomitant presence of contrasting materials

in the bladder (b) and liver (L). This result indicates that one

of the elimination routes of these 120 nm nano-emulsions is

through the kidneys. This is coherent in as far as the glomerule

pore diameters are in the same size range, from 50 to 100 nm,32

enabling glomerular filtration of this nano-emulsion. This is

confirmed by imaging the kidney vascularization, as illustrated

in Fig. 7, clearly showing the aorta (aa) right and left dorsal

muscular branches (rdmd and ldmb respectively), the right renal

artery (ra), and finally the venous side of kidney vascularization:

the left renal vein (rv) and left ovarian vein (ov), as well as the

contrasted urine in the renal pelvis (rp).

As expected, the temporal in vivo follow-up of the X-ray

attenuation presented in Fig. 8 confirms the gradual decrease of

the iodinated nano-emulsion concentration in the blood pool.

The persistence of the signal for up to 4 h shows the long-

circulating properties of the nano-droplets, confirming their

suitability for use as a tool for preclinical imaging of the vascular

system of small laboratory animals. This result is comparable to

those reported in the literature, obtained using blood pool

contrast agents of various types, e.g. liposomes, chylomicrons,

micelles.3,5,28,29,31 Finally, the attenuation observed in the liver

slightly increases between the first and the second acquisition,

but appears globally constant throughout the experiments. This

result indicates an undeniable hepatic uptake, but, given the

decrease of the X-ray attenuation in the heart, it could suggest

the involvement of a different elimination route. This actually

confirms the observation in Fig. 6 with the marked contrast in

the bladder (b) indicating the elimination of nano-emulsions via

the kidneys by glomerular filtration, along with a slighter

contrast in the liver (L). Such a concomitant elimination of

nano-emulsions could simply be related to their size distribution.

Although the low polydispersity index (PDI = 0.066) indicates a

thin log-normal distribution centered on 120 nm, a large share of

the droplets range in the size of the glomerule pore (see above)

and the bigger emulsion droplets will be captured by the

reticuloendothelial system.

5 Conclusion

This study presents an original, new formulation of radiopaque

nano-emulsions composed of iodinated oil, formed by a

spontaneous emulsification method. The advantages of this

method are mainly the simplicity of the chemical reaction of oil

iodination (Wijs reaction) and the generation of nano-emulsions,

along with significant results in terms of in vivo contrasting and

stealth properties. Furthermore, this work elucidates the link

between the formulation parameters and the properties of the

nano-emulsions obtained. When injected in nude mice, the

iodinated nano-emulsions, formulated by spontaneous emulsifi-

cation, provide a significant contrast of the blood pool, along

with stealth properties (X-ray attenuation visible up to 4 h)

making them suitable for use as a blood pool contrast agent.
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2.2. Agent de Contraste à Longue Rémanence Vasculaire – Nano-émulsions d’huile  

reconstituée iodée 

Les nano-émulsions de Labrafil® M 1944 CS iodé présentées dans la section 2.1 ont montré un 

contraste prolongé au niveau sanguin après injection chez les souris. Dans cette section, une nouvelle 

huile iodée construite sur la base de la structure du Labrafil® M 1944 CS a été synthétisée par notre 

équipe, afin d’augmenter  la  teneur  en  iode  dans  l’huile  comparée à celle obtenue avec du Labrafil® M 

1944 CS. Cette huile reconstituée a été préparée en  greffant  deux  chaînes  d’acide gras sur une chaîne 

de polyéthylène glycol 300. Des   atomes   d’iode ont   ensuite   été   greffés   sur   la   structure   de   l’huile,  

toujours par réaction de Wijs. Cette huile reconstituée a une structure similaire à celle du 

Labrafil® M 1944 CS.  En  partant  du  fait  que   le  nombre  de  doubles   liaisons  sur  des  chaînes  d’acides  

gras est supérieur à celui du Labrafil® M 1944 CS seul,  la  quantité  finale  d’iode  par  molécule  d’huile  a  

également été accrue. 
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Blood Pool Contrast Agent based on Nano-emulsions of Iodinated Reconstituted Oil 

1. Introduction 

Significant and prolonged contrast enhancement was observed in the bloodstream for more than 2h 

after injection of 200 µL nano-emulsions of iodinated Labrafil® M 1944 CS1 as demonstrated in the 

chapter 2.1. The iodine content in these nano-emulsions was about 85 mg I/mL. In order to further 

enhance the contrast capacity of iodine-containing nano-emulsions, we decided to develop new 

iodinated oil presenting a similar structure of Labrafil® M 1944 CS (i.e. compatible with spontaneous 

emulsification) but in which higher iodine content can be grafted. Hereby, reconstituted oil was 

synthesized based on the structure of Labrafil® M 1944 CS by grafting two fatty acid chains onto the 

hydroxide groups of polyethylene glycol 300. As the iodine was added by saturating the double bonds 

of fatty acids in Labrafil® M 1944 CS, the number of double bonds in fatty acid chains should be 

increased to finally achieve higher iodine content. Thus, the major fatty acid in reconstituted oil was 

composed on the triply unsaturated fatty acid of linolenic acid instead of the mono-unsaturated fatty 

acid of oleic acid in Labrafil® M 1944 CS. Iodine was then incorporated into the synthesized 

reconstituted oil as the same way of Labrafil® M 1944 CS by the Wijs reaction. The increased double 

bonds in fatty acids allowed us to introduce more iodine than Labrafil® M 1944 CS. And the contrast 

capacity of nano-emulsions of iodinated reconstituted oil will be enhanced at the same SOR and 

SOWR due to this higher iodine content. 

2. Experimental section 

2.1. Materials  

Linseed oil (Fagron, France), polyethylene glycol 300 (PEG 300) (Sigma Aldrich, France), thionyl 

chloride (Sigma Aldrich, France), iodine monochloride (Sigma Aldrich, France), potassium iodide 

(Sigma Aldrich, France), sodium thiosulfate (Sigma Aldrich, France), Cremophor® ELP (free sample 

from BASF Ludwigshafen, Germany), Phosphate Buffered Saline (PBS) (Eurobio, France), sheep 

erythrocytes (Dutscher, France). 

1H spectra was obtained with a Bruker Top Spin 3.0 400 MHz spectrometer. CDCl3 chemical shifts are 

expressed in ppm downfield from tetramethylsilane as internal standard. 

2.2. Synthesis of reconstituted oil  

The synthesis of reconstituted oil comprises two mainly steps: 1) the saponification of linseed oil to 

obtain its free fatty acids and 2) the esterification between fatty acids and polyethylene glycol 300, 

demonstrated in schema 1. 
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1) Saponification of linseed oil 

Reconstituted oil was composed by the multi-unsaturated fatty acids, especially triple unsaturated fatty 

acid of linolenic acid, to achieve higher iodine content. The free multi-unsaturated fatty acids were 

obtained by the saponification of linseed oil (containing more than 50% of triple unsaturated α-

linolenic acid and about 15% of double unsaturated linoleic acid). Briefly, linseed oil (47g, 0.05mol) 

was firstly mixed with 80ml ethanol and then six equivalents of sodium hydroxide solution 3mol/L 

(0.3mol, 100 ml) were added into the mixture. The flask was stirred at 60°C until the mixture became 

red and transparent. Fatty acids were extracted with ethyl acetate and citric acid 10% until the pH of 

the aqueous phase was 1. Then, the extraction was made with saturated NaCl solution and dried over 

anhydrous Na2SO4. The organic phase containing fatty acids was kept and the solvent was removed by 

vacuum. Obtained fatty acids are brightly yellow oil. 

2) Synthesis of reconstituted oil 

Reconstituted oil was then synthesized by grafting fatty acids of linseed oil onto the hydroxide groups 

of PEG 300. Briefly, fatty acids of linseed oil (21g, 0.075mol) were firstly dissolved in 

dichloromethane and then thionyl chloride (8.2ml, 0.11mol) was slowly added at 0°C. The mixture 

was stirred at room temperature during 1h and then the solvent was removed in vacuum to eliminate 

byproducts of the reaction. The mixture is re-dissolved in dichloromethane and is added slowly to 

PEG 300 (9g, 0.03mol) into the mixture. The flask was stirred at room temperature during 24h. 

Reconstituted oil was then extracted twice with ethyl acetate and a solution of sodium bicarbonate 

10%, once with saturated NaCl solution and dried over anhydrous Na2SO4. The organic phase of 

reconstituted oil is kept and the solvent is removed in vacuum. Obtained reconstituted oil was brightly 

red oil. 
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Scheme 1. Chemical scheme for the synthesis of reconstituted oil from fatty acids of linseed oil and PEG 300. 

 

2.3. Synthesis of iodinated reconstituted oil 

Iodine was introduced into the reconstituted oil by the Wijs reaction,2, 3 hereby the same way of the 

iodination of Labrafil® M 1944 CS as shown in scheme 2. Reconstituted oil (9g, 0.01mol) and iodine 

monochloride (7.3g, 0.045mol) were firstly dissolved in cyclohexane, protected from light and stirred 

at 40°C during 1h. Then, to eliminate the excess of iodine monochloride, the mixture was reacted with 

an excess solution of potassium iodide (1.25g, 0.0075mol) and another solution of sodium thiosulfate 

(2.4g, 0.015mol), respectively. Iodinated reconstituted oil was then extracted three times with 

dichloromethane. The phase of dichloromethane was kept and the solvent was removed in vacuum. 

Obtained iodinated reconstituted oil was red and very viscous oil. Elemental analysis: C, 40.07%; H, 

5.92%; O, 10.67%; I, 33.87%; Cl, 9.47%. 

O O O O O O O O
O O

+ ICl

O O O O O O O O
O O

I
Cl

I
Cl

I
Cl

I
Cl

Reconstituted oil Iodinated reconstituted oil  

Scheme 2. Chemical scheme for the synthesis of iodinated reconstituted oil via Wijs reaction. 
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2.4. Preparation of nano-emulsions of iodinated reconstituted oil 

Nano-emulsions of non-iodinated and iodinated reconstituted oil were formulated by the spontaneous 

emulsification method as previously described in the literature.4, 5 Iodinated reconstituted oil (oily 

phase) was firstly mixed with the non-ionic hydrophilic surfactant, Cremophor® ELP. Phosphate 

buffered saline (PBS) (aqueous phase) was then added into the oil / surfactant mixture under gentle 

magnetic stirring. Nano-emulsions formed immediately once these two phases were brought into 

contact. The optimized formulation was chosen to give a compromise between the nano-emulsion size 

and monodispersity, and the iodine content. In this work, the SOR (surfactant / oil weight ratio) varied 

from 20% to 60% for the non-iodinated reconstituted oil and from 30% to 60% for the iodinated 

reconstituted oil. The SOWR (surfactant + oil / water weight ratio) was kept at 40% for both non-

iodinated and iodinated reconstituted oil, since the value of the SOWR induced negligible influences 

on the formation of nano-emulsions. The pH and osmolarity of nano-emulsions were strictly 

controlled and adapted for the requirements of parental administration. 

 

2.5. Hemolysis assay 

The biocompatibility of nano-emulsions of iodinated reconstituted oil to the blood was assessed by a 

hemoglobin release assay.6, 7 Sheep erythrocyte sample was firstly diluted into phosphate buffered 

saline (PBS) and washed by three cycles of centrifugation (400 rcf, 10min) and resuspension. The 

solution of rinsed red blood cell (RBC) was then diluted with PBS to give a RBC suspension of 1×108 

RBC/mL and immediately used to evaluate the hemolytic properties of the iodine-containing nano-

emulsions as follows: 20 µL of nano-emulsions were added to 180 µL of erythrocyte suspension, in 

96-well microplates. The sample was incubated for 1 h at 37°C with orbital shaking. The precipitated 

RBCs at the bottom of microplates were observed under optical microscope. The blank sample was 

obtained from the untreated erythrocytes. 

2.6. In vivo experiments 

The in vivo experiments were performed in Swiss mice. Before acquisition, mice were anesthetized 

with isoflurane. Then, nano-emulsions of iodinated reconstituted oil (SOR = 60%, SOWR = 40%) 

were intravenously injected in the tail vein, with an injection volume corresponding to 10% of the 

blood volume. 

3. Results  

3.1. Synthesis of reconstituted oil 

As it can be seen in Scheme 1, reconstituted oil was synthesized from the saponification of linseed oil. 

Fatty acids of linseed oil were then grafted onto the hydroxide groups of PEG 300 occurred at the two 

sides of the chain. To decrease the reaction time and optimize the yield of reconstituted oil, fatty acids 
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of linseed oil were firstly converted to acyl chloride with thionyl chloride. PEG 300 was then reacted 

with the acyl chloride to form the reconstituted oil. The structure of reconstituted oil has been 

investigated through detailed 1H NMR analyses, as shown in Fig. 1. The peaks appeared in the 

reconstituted  oil’s  NMR  spectra  between  3.5  and  4.3  ppm  attributed  to  the  CH2 protons of PEG 300, 

which demonstrated the addition of fatty acids onto the PEG 300 chains after the esterification. The 

yield of the reaction was achieved to be more than 70%. 

3.2. Synthesis of iodinated reconstituted oil 

Wijs reaction is widely used to determine the iodine value on saturating non-conjugated double bonds 

in molecules with iodine monochloride. The introduction of the iodine should modify the oil 

hydrophobicity. For the Labrafil® M 1944 CS, this enhanced hydrophobicity seemed to be more 

efficient to formulate nano-emulsions with smaller droplets and thinner size distribution at the same 

SOR. Thus, the iodination of reconstituted oil was also performed following the Wijs reaction. As 

shown in Fig. 1,  the  disappeared  peak   located  at  5.35  ppm  in   the   iodinated  reconstituted  oil’s  NMR  

spectra demonstrated the saturation of the double bonds in fatty acids by the iodine monochloride. The 

iodine content in the reconstituted oil was achieved at 33.87%. 
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Figure1. 1H NMR spectra (CDCl3) of (a) linseed oil, (b) free fatty acids of linseed oil, (c) reconstituted oil and (d) iodinated 
reconstituted oil. 

 

(a) Linseed oil 

(b) Fatty acids of linseed oil 

(c) Reconstituted oil 

(d) Iodinated reconstituted oil 

-CH=CH- 

-CH2- of PEG 
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3.3. Formulation of nano-emulsions of iodinated reconstituted oil 

Nano-emulsions of non-iodinated and iodinated reconstituted oil were both prepared by the 

spontaneous emulsification method by using the surfactant of Cremophor® ELP and the aqueous phase 

of the phosphate buffered saline (PBS), as shown in Fig. 2. Nano-emulsions of iodinated reconstituted 

oil showed larger sizes than nano-emulsions of non-iodinated reconstituted oil at the same SOR. The 

optimized formulation of nano-emulsions of iodinated reconstituted oil was finally selected at 

SOR = 60% and SOWR = 40%, due to the smaller sizes of 128 nm close to 100 nm and the higher 

stability compared with other SOR. However, at this higher SOR = 60% and SOWR = 40%, the final 

iodine content in the formulation was 5.4%, which was less than the one of Labrafil® M 1944 CS of 

8.3%. 

 

Figure 2. Nano-emulsions formulated with reconstituted oil and iodinated reconstituted oil. Surfactant: Cremophor® ELP, 
oily phase: reconstituted oil or iodinated reconstituted oil. Hydrodynamic diameters are plotted against the surfactant oil 
weight ratio (SOR).  
 
3.4. Hemolysis assay 

To be suitable for in vivo administration, nano-emulsions should be stable in the blood and mild to 

membrane of circulating erythrocytes. The biocompatibility of these iodine-containing nano-emulsions 

in the blood was evaluated by the hemolysis assay. Nano-emulsions of iodinated reconstituted oil 

formulated with Cremophor® ELP at SOR = 60% and SOWR = 40% were incubated with sheep red 

blood cells (RBCs) during 1 h. The ratio of iodine-containing nano-emulsions to erythrocyte solution 

corresponded to the injected ratio into mice (10% of the blood volume). The blood coagulation at the 

bottom of the microplate was observed by optical microscope after 1 h incubation, as shown in Fig. 3. 
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This result demonstrated that nano-emulsions of iodinated reconstituted oil were not biocompatible 

with the erythrocytes. Since the nano-emulsions were formulated with the PBS, their osmolarity 

(287 mOsm/L) and pH value (6.8) were appropriate for the intravenous injection requirements; the 

phenomenon of the blood coagulation produced by the nano-emulsions could be induced by the 

components presented in the formulation. 

   
Figure 3. Red blood cell observation by optical microscopy. Isolated RBCs (on the left) and aggregated RBS incubated with 

nano-emulsions of iodinated reconstituted oil during 1h (on the right). 

 

3.5. In vivo experiments  

The nano-emulsions of iodinated reconstituted oil were intravenously injected into three Swiss mice. 

The palpitation of mice was observed immediately after the injection of the iodine-containing nano-

emulsions. The mice died in two minutes after the injection. 
 

4. Discussion 

In order to further enhance the contrast capacity or to decrease the injection volume, oil with higher 

iodine content was developed in this work. The synthesized reconstituted oil had similar structure of 

Labrafil® M 1944 CS and was constituted by higher unsaturated fatty acids. The iodine content in 

purified reconstituted oil was around 33%, thereby 1.3 times higher than in iodinated Labrafil® M 

1944 CS. 

The iodinated reconstituted oil was then used to prepare nano-emulsions by the spontaneous 

emulsification method. The results demonstrated that nano-emulsions of iodinated reconstituted oil 

had larger sizes than nano-emulsions of non-iodinated reconstituted oil at the same SOR, which 

observation was very different from the result of iodinated Labrafil® M 1944 CS,1 described in the 

previous chapter. Briefly, the introduction of iodine in the Labrafil® M 1944 CS increased the oil 

hydrophobicity and changed the affinity between the surfactant and the oil. This enhanced oil 

hydrophobicity of Labrafil® M 1944 CS after iodination induced faster diffusion of the surfactant from 

the oily phase to the aqueous phase and resulted in smaller nano-emulsion droplets at the same SOR. 

However, when the iodinated reconstituted oil had higher iodine content and became more 
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hydrophobic, viscous and heavier, the mechanism of the nano-emulsification process was changed. 

Even the enhanced hydrophobicity of iodinated oil could favorite the transfer velocity of the surfactant 

from the oily phase to the aqueous phase, the viscous and heavier iodinated reconstituted oil need 

more surfactant to formulate nano-sized and relatively stable emulsions. Nano-emulsions of iodinated 

reconstituted oil were not obtained at a SOR below 30% and the sizes at other SOR were relatively 

large. Stable nano-emulsions were obtained at higher SOR of 50% and 60%. Optimized formulation of 

nano-emulsions of iodinated reconstituted oil was kept at SOR = 60% and SOWR = 40%, due to the 

smaller sizes and better stability. The size of nano-emulsions at SOR = 60% was around 128 nm, 

nearly the pharmacokinetically optimal diameter for in vivo applications.8 However, the iodine content 

in these nano-emulsions was only 5.4%, which was less than the iodine content of 8.3% in the nano-

emulsions of iodinated Labrafil® M 1944 CS at SOR = 15%, even though the iodine content in the 

reconstituted oil was 1.3 times higher. 

 

On the other side, these nano-emulsions of iodinated reconstituted oil produced the aggregation of 

erythrocytes and the death of mice, demonstrating that these nano-emulsions were not biocompatible. 

Thereby, we proposed some hypothesis for the reason of the blood coagulation and for the nano-

emulsion toxicity. The formulation of nano-emulsions of iodinated reconstituted oil was composed by 

three components: the oily phase of iodinated reconstituted oil, the hydrophilic surfactant of 

Cremophor® ELP and the aqueous phase of phosphate buffered saline. The phosphate buffered saline 

is an isotonic buffered solution commonly used in biological research. It is suitable for the parental 

administration. The surfactant of Cremophor® ELP is a purified form of Cremophor® EL, a nonionic 

solubiliser made by reacting castor oil with ethylene oxide in a molar ratio of 1:35. Unlike the 

Cremophor® EL produced several side effects,9 this purified form of Cremophor® ELP is suitable for 

the parental applications.10, 11 Thus, the aqueous phase of phosphate buffered saline and the 

commercial nonionic surfactant should not be the factors to induce the blood coagulation and the 

death. The un-biocompatibility of these nano-emulsions was perhaps introduced by the high iodine 

and chloride content of reconstituted oil and the decreased stability of the nano-emulsions compared to 

the nano-emulsions of iodinated Labrafil® M 1944 CS. 

 

5. Conclusion 

In this work, we developed a novel synthesized oil with a higher iodine content based on the structure 

of Labrafil® M 1944 CS in order to enhance the contrast capacity of nano-emulsions. The synthesized 

reconstituted oil contained more double bonds in fatty acid chains and the iodine content in the 

reconstituted oil was around 33%. However, stable nano-emulsions were obtained at a relatively high 

SOR of 60% with the Cremophor® ELP. Thus, the final iodine content in the nano-emulsions of 

iodinated reconstituted oil was 5.4%, less than in nano-emulsions of iodinated Labrafil® M 1944 CS of 

8.3% at SOR = 15%, even though the iodine content in the oil was much higher. Furthermore, nano-
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emulsions of iodinated reconstituted oil produced the aggregation of erythrocytes and the death of 

mice. Thus, we can conclude that the nano-emulsions of iodinated reconstituted oil formulated with 

the Cremophor® ELP could not be considered as a suitable nanoparticulate contrast agent for the 

preclinical applications. 

 

Therefore, with the obtained results, we can conclude that a suitable nano-emulsion based contrast 

agent for the preclinical applications should present the following criteria: 1) all the components in the 

formulation should be biocompatible; 2) synthesized iodinated oil should present a suitable structure 

to form nano-emulsions by the spontaneous emulsified method; 3) nano-emulsions need to contain a 

great quantity of X-ray contrasting materials, ideally around 100 mg of iodine per milliliter of 

suspension to be administrated; 4) nano-emulsions must be stable for storage and have a high in vivo 

stability, which also affects the stealth properties and residence time in the blood pool; 5) in spite of 

the high loading of contrast agents, the nano-emulsion must remain non-toxic and neutral to the 

biological metabolism.  
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3. Conclusion 

Dans ce chapitre nous   avons   exploré   de   nouvelles   voies   pour   la   formulation   d’agent   de   contraste   à  

longue  rémanence  vasculaire  pour  l’imagerie  préclinique  à  rayon  X.  Deux nouvelles huiles iodées ont 

été synthétisées et ensuite utilisées comme partie contrastante dans les nano-émulsions. Les nano-

émulsions de Labrafil® M 1944 CS formées à un SOR = 15% et SOWR = 40% ont montré un 

contraste prolongé au niveau sanguin pendant plus de 2h chez les souris. Afin  d’améliorer encore le 

pouvoir contrastant et de diminuer la quantité injectée, nous avons synthétisé une nouvelle huile iodée 

contenant une teneur en iode supérieure à celle du Labrafil® M 1944 CS a été synthétisée. Toutefois, 

les nano-émulsions  d’huile  reconstituée  iodée  se  sont  révélées  être  un  agent  de  contraste non approprié 

pour des applications précliniques. En effet, les nano-émulsions   stables   d’huile   reconstituée   ont   été  

obtenues avec un SOR relativement élevé de 60% et la teneur en iode dans la formulation finale était 

inférieure à celle du Labrafil® M 1944 CS. De plus, ces nano-émulsions d’huile  reconstituée  iodée ont 

provoqué une coagulation du sang après mise en contact avec des érythrocytes pendant 1h et ont 

entrainé la mort des souris. Néanmoins, avec  l’ensemble  des  résultats  obtenus  avec  l’huile  reconstituée 

iodée, nous avons pu définir quelques critères nécessaires pour l’obtention d’un agent de contraste 

efficace et injectable, à savoir : 1) tous les composants dans la formulation doivent être 

biocompatibles; 2) l'huile synthétisée iodée doit présenter une structure appropriée pour former des 

nano-émulsions  par   la  méthode  d’émulsification  spontanée;;  3)   la   teneur  en  iode  doit  être  importante 

dans  l’huile  iodée  et  aussi  dans  la  formulation  finale  de nano-émulsions (environ 100 mg I / mL). 
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Chapter 3. 

Liver Specific Blood Pool Contrast Agents 

based on Nano-Emulsions of Iodinated  

α-tocopherol 
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3.1. Nouvel agent de contraste iodé à longue rémanence vasculaire et spécifique du foie – 

nano-émulsions de 2,3,5-triiodobenzoate  d’α-tocophérol 

 
Dans cette partie, nous décrirons la synthèse  d’une  huile  iodée  non-toxique, et sa formulation sous la 

form de nano-émulsions, fortement chargées en iode donnant un bon contraste in vivo. Nous nous 

intéressons dans   cette   partie   à   des   agents   de   contraste   iodés   qui   pourraient   d’abord   présenter   une  

longue rémanence vasculaire et à  leur  voie  d’élimination,  principalement la voie hépatique, conduisant 

finalement à un pouvoir contrastant spécifique au niveau du foie. Une nouvelle huile iodée a ainsi été 

synthétisée   par   le   greffage   d’une   molécule   iodée   (acide   2,3,5-triiodobenzoїque)   sur   le   groupement  

hydroxyde   d’un   lipide   naturel   (α-tocophérol). Les nano-émulsions de type huile-dans-eau ont été 

ensuite  préparées  à  partir  de  cette  nouvelle  molécule  lipophile  iodée  par  la  méthode  d’émulsification  

spontanée.  L’ensemble  des  résultats  obtenus  de  cette  étude  a  montré  que   les  nano-émulsions  de  l’α-

tocophérol iodée étaient considérées comme un agent de contraste approprié pour les applications 

précliniques en imagerie biomédicale. 
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Abstract

Micro-computed tomography (micro-CT) is an emerging imaging modality, due to the low cost of the imagers as well

as their e�ciency in establishing high-resolution (1 to 100 µm) three-dimensional images of small laboratory animals

and facilitating rapid, structural and functional in vivo visualization. However use of a contrast agent is absolutely

necessary when imaging soft tissues. The main limitation of micro-CT is the low e�ciency and toxicity of the

commercially available blood pool contrast agents. This study proposes new, e�cient and non-toxic contrast agents

for micro-CT imaging. This formulation consists of iodinated vitamin E (↵-tocopheryl 2,3,5-triiodobenzoate) as an

oily phase, formulated as liquid nano-emulsion droplets (by low-energy nano-emulsification), surrounded by a hairy

PEG layer to confer stealth properties. The originality and strength of these new contrast agents lie not only in their

outstanding contrasting properties, biocompatibility and low toxicity, but also in the simplicity of their fabrication:

one-step synthesis of highly iodinated oil (iodine constitutes 41.7% of the oil molecule weight) and its spontaneous

emulsification. After i.v. administration in mice (8.5% of blood volume), the product shows stealth properties towards

the immune system and thus acts as an e�cient blood pool contrast agent (t1/2 = 9.0 h), exhibiting blood clearance

following mono-exponential decay. A gradual accumulation predominantly due to hepatocyte uptake is observed and

measured in the liver, establishing a strong hepatic contrast, persistent for more than four months. To summarize, in

the current range of available or developed contrast agents for preclinical X-ray imaging, this agent appears to be one

of the most e�cient.
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1. Introduction

In recent years, various medical imaging technologies have been specifically developed for pre-

clinical research, notably in the field of oncology. In accordance with ethical guidelines on animal

experimentation, these new research tools help reduce the number of animals used for experimen-

tal protocols. Generally speaking, all imaging modalities have specific limitations that constrain

their scale of use and development. If the prohibitive price of imagers or the cost and toxicity of

the contrast agents are limiting factors, the supply, storage and management of radioactive animals

and wastes (with nuclear imaging, PET, SPECT) are no less problematic. Optical imaging is an

emerging modality, very promising due to the relatively lost cost of imagers, but with drawbacks

such as very low signal penetration in the animal body, a low spatial resolution and no signal for

non-labeled tissues (thus making it impossible to obtain anatomic images). Multimodal imaging

is therefore an increasingly popular solution, making the most of the complementarities between

various modalities. The second most e�cient and cost-e↵ective modality after optical imaging is

computed tomography (X-ray scanner). However, the main limitation of X-ray imaging for pre-

clinical research is the high cost, low e�ciency and non-negligible toxicity of the contrast agents.

The present study focuses on the development of an X-ray contrast agents aimed at overcoming

these limitations.

Micro-computed tomography (micro-CT) is an imaging modality which enables rapid three-

dimensional, radiographic, structural and functional visualization in small laboratory animals [1–

4]. Compared to clinical CT, the resolution of micro-CT is significantly better, from 1 to 100 µm [5–

7], allowing, for instance, the clear detection of metastasis sizing around 300 µm [8–10]. However,

the acquisition time of a micro-CT apparatus is slow, around 10-20 minutes for a full high reso-

lution autoradiogram, whereas the same result can be achieved within seconds with a clinical

CT scan on humans [11, 12]. X-ray contrast agents developed for humans and used in clinical CT

scans are hydrophilic iodinated molecules with a low molecular weight and therefore undergo very

fast blood elimination via the kidneys, mainly due to glomerular filtration. For this reason, they are

not adapted to preclinical research with micro-CT. Moreover, clinical contrast agents administered

at high doses or with repeated injections (to allow micro-CT imaging) have severe drawbacks,

leading to acute kidney toxicity, a tendency to extravasate, and allergic reactions [13–15]: thus
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they should clearly be avoided for micro-CT imaging.

Over the past decades, new micro-CT compatible contrast agents have been developed for

X-ray imaging [16–25]. Their particularity is a long residence time in the bloodstream and/or

an ability to target specific organs or lesions. In order to prevent renal clearance, these contrast

agents have generally been formulated as nanoparticulate systems. The optimized properties of

such contrast agents can easily be summarized in five points: (i) in order to avoid being eliminated

by the kidneys, contrast agents need to be formulated in the form of nanoparticulate systems

(liposomes, nano-emulsions, dendrimers, polymeric nanoparticles etc.) with a minimal size of

around 100 nm [11, 25–32]. (ii) in order to confer them with stealth properties, their surfaces

have to be controlled or functionalized by grafting on hydrophilic polymers such as polyethylene

glycol (PEG) [33–37]. An extended circulation time in the bloodstream is directly linked to the

nanometric size range of the contrast agents along with the surface functionalization, preventing

rapid opsonization by the reticulo-endothelial system (RES) [34]. (iii) nanocarriers need to contain

a great quantity of X-ray contrasting materials (commonly iodine), ideally around 100 mg (or

more) of iodine per milliliter of suspension to be administrated [25, 28, 31]. (iv) NP suspensions

must be stable for storage and have a high in vivo stability, which also a↵ects the stealth properties

and residence time in the blood pool. (v) in spite of the high loading of contrast agents, the NP

suspension must remain non-toxic and neutral to the biological metabolism.

Micro-CT contrast agents are of prime interest in both structural and functional imaging, en-

abling the detection of lesions through the specific targeting of tissues, e.g., tumors. Targeting

tissues, organs or pathologies serves as a new tool to meet the needs of researchers. It can notably

provide a better detection of tumors and a follow-up of treatment response allowing the visual-

ization of the tumor growth in time, and thus the in vivo e�ciency of a therapy. 70% of medical

imaging involves cancer research and the design and development of e�cient, cost-e↵ective, tar-

geted contrast agents constitutes a major research and economic concern. Contrast agents for

X-ray imaging modalities are a challenge today: they o↵er huge potential in terms of advanced

diagnosis of tumors and personalized therapies and yet commercial solutions available to date are

far from satisfactory.

In this study, we propose an e�cient new non-toxic contrast agent for preclinical X-ray imag-

ing. The idea was (i) to base the formulation on non-toxic lipophilic molecules naturally present
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in the body: ↵-tocopherol (i.e. vitamin E) (ii) to graft a high ratio of X-ray contrasting material

(tri-iodobenzene) on their chemical structure using the simplest chemical reaction, and (iii) to for-

mulate nano-emulsions with this iodinated lipid by low-energy nano-emulsification methods with

a PEGylated non-ionic surfactant. We chose iodine since it is a compromise between safety, toxi-

city and cost [28]. This simple process results in the formulation of highly iodinated ↵-tocopheryl

2,3,5-triiodobenzoate nano-emulsions. When administered intravenously to mice, they show out-

standing contrast enhancements, first of the blood compartment and then of the liver tissues

through a passive targeting mechanism, and without apparent toxicity. In addition to experiments

on the micro-CT imaging and in vivo contrasting properties, a complete characterization was per-

formed: in vitro biocompatibility studies (hemolysis tests, stability in serum), cytotoxicity studies

(MTT), in vitro cellular uptake assays, physico-chemical characterization of the nano-emulsions

(size distribution, transmission electron microscopy and evaluation of the iodine content), and

finally an in vivo follow-up of the contrast agent bio-distribution.

2. Experimental section

2.1. Materials

2,3,5-Triiodobenzoic acid, ↵-tocopherol, 4-dimethylaminopyridine, N,N’-dicyclohexylcarbo-

diimide, dichloromethane, ethyl acetate, cyclohexane and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetra-zolium bromide (MTT) solutions were purchased from Sigma Aldrich, France. Non-ionic

surfactant (Cremophor ELP R�) from BASF (Ludwigshafen, Germany), was kindly donated by

Laserson, Etampes, France. Cremophor ELP R� is a parenteral grade nonionic surfactant made

by reacting ethylene oxide to castor seed oil at an ethylene oxide to oil molar ratio of 35 [38].

The product mainly consists of a PEG chain (35 ethylene glycol units) grafted onto a molecule of

castor oil. Phosphate bu↵ered saline (PBS) and sheep erythrocytes were obtained from Eurobio,

France.

2.2. Methods

2.2.1. Synthesis and characterization of ↵-tocopheryl 2,3,5-triiodobenzoate

The 2,3,5-triiodobenzoic acid (5 g, 0.01 mol), 4-dimethylaminopyridine (0.18 g, 0.0015 mol)

and N,N’-dicyclohexylcarbodiimide (2.3 g, 0.011 mol) were sequentially added at room temper-

ature to a solution of DL-↵-tocopherol (3.5 g, 0.008 mol) in dicholoromethane (250 mL). The
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reaction mixture was stirred overnight at room temperature and the dicyclohexylurea and other

precipitates were removed by filtration. The organic phase was then washed twice with saturated

aqueous NaHCO3, once with saturated NaCl solution and dried with anhydrous Na2SO4. The

solvent was removed in vacuum and the oil was then purified by the gradient elution method on

silica gel using cyclohexane and ethyl acetate as an eluent. Reaction yields were around 80 %.

The synthesis scheme of ↵-tocopheryl 2,3,5-triiodobenzoate is reported in Fig. 1. The resulting

product was a light, yellowish viscous oil with a high iodine content of around 41.7%.
1H spectra were obtained with a Bruker Top Spin 3.0 400 MHz spectrometer. CDCl3 chemical

shifts are expressed in ppm downfield from tetramethylsilane as the internal standard. The purified

↵-tocopheryl 2,3,5-triiodobenzoate was then characterized by means of NMR and mass analysis:
1H NMR (CDCl3, �/ppm): 8.34 (s, 1H, H6), 8.05 (s, 1H, H4), 2.63 (t, 2H, H14), 2.15 (s, 6H, H31,

H32), 2.10 (s, 3H, H30), 1.83 (m, 2H, H15), 1.59 (m, 3H, H20, H24, H28), 1.28 (s, 3H, H33), 1.27 (m,

18H, all CH2), 0.89 (d, 9H, 3CH3), 0.88 (d, 3H, 1CH3). Mass spectrometry was done in positive

mode (APCI+) with CAMAG TLC-MS, Agilent Technologies LC/MSD SL. m/z 913.5 ([M+H]+).

2.2.2. Preparation of iodinated nano-emulsions

Nano-emulsions of iodinated ↵-tocopherol were formulated by the spontaneous nano-emulsifi-

cation method, as described previously [39–41]. In short, pure ↵-tocopheryl 2,3,5-triiodobenzoate

(0.75 g), was firstly mixed with the non-ionic hydrophilic surfactant (0.5 g), and maintained at

room temperature. Phosphate bu↵ered saline (PBS), used as an aqueous phase (1.88 g), was then

added to the surfactant / oil mixture under gentle magnetic stirring. This optimized formulation

was chosen to give a compromise between the nano-emulsion size and monodispersity, and the

iodine content of the suspension. As a result of the process optimization described below (in

Fig. 2 (a)), this compromise led to a droplet diameter of around 85 nm, with the following formu-

lation parameters: surfactant / oil weight ratio (SOR) = 40%, and (surfactant + oil) / water weight

ratio (SOWR) = 40% (see Ref. [40] for details on the formulation process). The ↵-tocopheryl

2,3,5-triiodobenzoate content in the nano-emulsions (i.e. injectable product) was about 24 wt.%.

The schematic representation of a nano-emulsion droplet is reported in Fig. 1. Finally, nano-

emulsions were sterilized by filtration (0.22 µm membrane, Millex-GP, polyethersulfone (PES)

membrane, Millipore, Molsheim, France) before intravenous administration.
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Figure 1: (top) Synthesis of ↵-tocopheryl 2,3,5-triiodobenzoate. (bottom) Schematic representation of an iodinated nano-emulsion droplet.

2.2.3. Characterization of nano-emulsions

2.2.3.1. Dynamic light scattering (DLS)

Size distributions and polydispersity indices (PDI) were measured by DLS with a Malvern ap-

paratus (NanoZS R�, Malvern, Orsay, France). The helium / neon laser, 4 mW, was operated at

633 nm, with the scatter angle fixed at 173� and the temperature maintained at 25�C. DLS data

were analyzed using a cumulants-based method.

2.2.3.2. Transmission electron microscopy (TEM)

Since iodine is a contrasting material for electrons, samples were used without any staining agent.

They were diluted (1/10) with MilliQ water, a drop of the suspension was placed on a carbon

grid (carbon type-A, 300 mesh, copper, Ted Pella Inc. Redding, U.S.A.), and dried at 40�C.

Observations were carried out using a Philips Morgagni 268D electron microscope.

92



2.2.4. Biocompatibility studies

Biocompatibility studies of the contrast agent were performed through (i) stability studies of

iodinated nano-emulsions in fetal bovine serum (FBS), and also (ii) by evaluating their hemolytic

properties.

2.2.4.1. Stability of nano-emulsions in FBS

Iodinated ↵-tocopherol nano-emulsions (0.1 mL) were added into FBS (0.9 mL), homogenized

and incubated at 37�C under gentle orbital shaking. The nano-emulsion concentration in FBS

was selected to correspond to the one in blood after i.v. administration (see in vivo experimental

conditions below in section In vivo experiments). Nano-emulsion stability was monitored through

size distribution in function of the incubation time (i.e. 1h, 2h, 3h, 5h, 16h and 20h). The samples

were constantly homogenized during the time course of the incubation to avoid possible large ag-

gregates to sediment. Before analysis, the eventual presence of aggregates was examined visually.

In this experiment, we never noticed any flocculation of materials. Moreover, DLS measurements

were combined with a quantification of the scattered light (expressed in kilo count of photons per

second, Kcps). All sample, even after 20 h incubation provided similar level of scattered lights,

around 150-200 Kcps, with detected particles of constant sizes. This simply means that the con-

centration of the nano-emulsion droplets does not change with time, e.g. indicating a high stability.

2.2.4.2. Hemolysis assays

Hemolysis assays were done according to a described procedure [42]. In short, sheep erythrocytes

were firstly diluted in phosphate bu↵ered saline (PBS) and washed three times (by three centrifu-

gation runs (400 rcf, 10 min) / washing / re-suspension). The solution of rinsed erythrocytes was

diluted with PBS up to the concentration of 1 · 108 erythrocytes / mL, and immediately used to

evaluate the hemolytic properties of the iodinated nano-emulsions as follows: 20 µL of nano-

emulsions were added to 180 µL of erythrocyte suspension, in 96-well microplates. Then, sam-

ples were incubated for 1h, 2h, 3h, 4h and 5h at 37�C with orbital shaking, and then centrifuged

(at 2000 rpm) for 10 mins. Subsequently, hemoglobin release in the supernatant was measured

by U.V. spectrophotometry at 414 nm with a microplate reader (Labsystems iEMS Reader MF,

Helsinki, Finland). Full hemolysis control and blank samples were obtained with a solution of
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Triton X-100 (1 wt.%) and from the supernatant of untreated erythrocytes, respectively.

2.2.4.3. Cytotoxicity assays

BNL-CL2 cells were seeded in 96-well plates at a concentration of 1 · 104 cells per well in 100 µL

of medium (Dulbecco’s Modified Eagle’s Medium, DMEM) containing 10% fetal bovine serum,

1 wt.% glutamine, 1 wt.% of commercial solution of penicillin and streptomycin (PAN Biotech.

GmbH, Aidenbach, Germany). The BNL-CL2 cells were then incubated overnight at 37�C under

a controlled atmosphere (5% CO2 and 95% air). Next, contrast agents were incorporated, by

substituting the culture medium for a similar one containing variable concentrations of iodinated

nano-emulsions, corresponding to 0.00053, 0.0053, 0.053, 0.13, 0.27, 0.40 and 0.53 mg I/104

cells. After an incubation of 24 h, the medium was removed and the adherent cell monolayers

were washed with PBS. Then, the wells were filled with cell culture medium containing MTT,

incubated for 4h at 37�C, and the formazan crystals formed were dissolved in 200 µL DMSO. U.V.

absorbance was measured at 570 nm by spectrophotometry with a microplate reader. Experiments

were carried out in triplicate, and expressed as a percentage of viable cells compared to the control

group.

2.2.4.4. In vitro cellular uptake assay

BNL-CL2 cells were seeded in 24-well plates at 0.9 · 105 cells per well, in 1 mL of DMEM

medium, and incubated overnight at 37�C in a controlled atmosphere (5% CO2 and 95% air).

Next, iodinated nano-emulsions were added to the wells (at a concentration of 25 mg I/mL, or

0.13 mg I/104 cells), and incubated for 2 h at 37�C in a controlled atmosphere (5% CO2 and

95% air). After this incubation time, the cells were (i) washed six times with PBS to remove

nano-emulsions from the culture medium, and (ii) treated with trypsine (100 µL) per well, and

transferred to glass tubes containing PBS and citric acid at 2%(v./v.). Finally, cells were extracted

by a methanol / chloroform mixture (1:1), and the chloroform phase was collected. The presence

of ↵-tocopheryl 2,3,5-triiodobenzoate was evidenced by thin layer chromatography (TLC) using a

cyclohexane / ethyl acetate mixture (10:1) as an eluent.
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2.2.5. Micro-CT imaging

As a preliminary remark, the experiments were performed in agreement with the Committee of

Animal Research and Ethics of the University of Lyon-1.

2.2.5.1. In vitro experiments

The iodine content of the nano-emulsions was accessed through the quantification of their ra-

diopacity. These experiments were performed with a micro-CT scanner (1076 Skyscan R�, Kartu-

izersweg, Belgium). Experimental parameters were: X-ray: 49 keV, 129 µA; resolution: 35 µm;

pitch: 0.4�; aluminium filters: 0.5 and 632 ms. The acquisition with nano-emulsions also served to

establish the quantification curve, correlating iodine concentration and radiopacity, produced with

a commercial hydrophilic contrast agent (XenetiX 300 R�, i.e. iobitridol).

2.2.5.2. In vivo experiments

In vivo experiments were performed with a micro-CT scanner (INVEON R�, Siemens, Munich,

Germany). The experimental X-ray parameters were: 50 keV, 500 µA; resolution: 111.25 µm;

pitch: 2�; aluminium filters: 0.5 and 900 ms. The acquisitions were performed on 3 Swiss mice.

Before acquisition, mice were anesthetized with isoflurane. Then, nano-emulsions were intra-

venously injected (using a catheter) in the tail-vein, with an injection volume corresponding to

8.5% of the blood volume (i.e. 6.2 µL of nano-emulsions per gram of mouse). Scans were per-

formed before administration, immediately after injection, 30 min, 1h, 2h, 3h, 4h, 6h, 1 day, 2 days,

3 days, 6 days, 12 days, 19 days, 27 days, 34 days, 48 days, 55 days, 59 days, and 134 days. The

Micro-CT raw data were treated with OsiriX viewer, to establish 2D maximum projection slices

and 3D volume rendering images, and then to quantify the signal by placing the region of interests

(ROI) in the heart, liver and bladder.

3. Results and discussion

Lipid nano-emulsions are of increasing interest in the formulation of pharmaceutics, drug de-

livery systems and contrast agents. This is largely due to the fact that they act as a general platform

for nano-medicines, providing simple solutions to complex problems. In fact, nano-emulsions al-

low for the months-long stable dispersion of lipids in an aqueous phase in the form of droplets
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ranging in size from 20 to 300 nm. Furthermore, the formulation process can be very simple, as

seen in the current study, consisting simply in bringing into contact two phases {surfactant + oil}
and {water}, resulting in the instant generation of a very stable oil dispersion in the aqueous phase.

Similarly, the use of PEGylated surfactants in this process provides not only a strong oil / wa-

ter interface stabilization, but also a very e�cient surface functionalization of the lipid droplets,

conferred with the required stealth properties. In this case nano-emulsions allow for the stable

dispersion of highly concentrated iodine in water encapsulated in PEGylated lipid nano-droplets.

Besides the straightforwardness of the formulation process, another major advantage of the method

of production of these contrast agents is the simplicity of the iodinated oil one-step synthesis, as

illustrated in Fig. 1. These clear advantages make the system a promising candidate for industrial

scaling-up.

Let us now consider the physicochemical characterization of the nano-emulsions generated. As

presented above in the experimental section, the selected formulation should be a compromise be-

tween size (hydrodynamic diameter, dh), polydispersity (PDI) and iodine concentration of the final

suspension. When the SOR is increased, the size and PDI decrease, thus increasing the quality of

the suspension. However, when the SOR is increased, the quantity of oil decreases, as does the io-

dine concentration in the final suspension. Bearing this in mind and aiming for a formulation with

maximum iodine content and the best possible quality of suspension, the optimized formulation

requires a particle size big enough to allow for a high iodine concentration but with properties (dh

and PDI) small enough to be compatible with the in vivo application. The optimum formulation

was disclosed by studying the relationship between the SOR and the nano-emulsion properties (dh

and PDI), as illustrated in Fig. 2 (a) and indicated by the arrow. This formulation corresponds to

SOR = 40% and gives a value of dh around 85 nm, and a PDI = 0.16. The corresponding size

distribution is reported in Fig. 2 (b).

TEM micrographs are reported in Fig. 2 (c), and disclose important information on the droplets

structure and internal morphologies. Fig. 2 (c1) and (c2) respectively show individuals (in fact

most representative of the sample) and flocculated nano-emulsion droplets. The size of the objects

clearly appears coherent with the DLS measurements shown in Fig. 2 (b). Moreover, as iodinated

oil is a contrasting material for electron microscopy (appearing dark on the picture), these exper-

iments are important in that they disclose new and never previously observed information on the
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Figure 2: Physico-chemical characterization of the iodinated nano-emulsions. (a) Process optimization: hydrodynamic diameter (dh) and polydis-

persity indices (PDI, labeled for each point in the graph), are plotted as a function of the surfactant to oil weight ratio (SOR). The arrow indicates

the optimum formulation (SOR = 40%) selected for the in vivo studies. (b) Size distribution of the optimum formulation (arrow in graph (a),

for SOR = 40%). (c) Transmission electron microscopy: all micrographs present nano-emulsions for SOR = 40% (arrow in graph (a), and size

distribution in (b)). (c1) Shows individuals and (c2) flocculated nano-droplets. (c3) Shows the evolution of the droplets along the TEM experiments,

thus helping to understand their morphologies and composition (see details in the text): (left) individual droplets, and (right) follow-up of these

droplets along the acquisitions.

structure and morphology of lipid nano-emulsion droplets. Pictures (c1) and (c2) reveal a “two-

domains” structure: (i) one is very contrasting located in the particle core, and (ii) the other one,

less contrasting, is located at the periphery of the nano-droplets (indicated by arrows in picture

(c2)). This surrounding layer is also clearly evident between the flocculated droplets, corrobo-

rating the intrinsic stability of the nano-emulsion droplets towards coalescence. The thickness of

this light layer was evaluated around 11 nm (in picture (c1)). This phenomenon can in fact be ex-

plained simply: on the one hand (as shown in Fig. 1 (bottom)), the droplets are composed of two

compounds: iodinated oil and nonionic surfactants. On the other hand, the TEM measurements

are conducted in a strong vacuum, inducing particular phase behavior between the oily phase and

nonionic surfactant, bringing the system below the cloud point cp↵, as illustrated in the phase dia-
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gram presented in Ref. [41] (Fig. 1 (top), at a thermodynamic state below T(cp↵), bearing in mind

that at such a low pressure, the temperature axis shifts towards higher values). As a result, the

oil and nonionic surfactant are immiscible, allowing us to observe that the surfactant location is

exclusively in the peripheral region of the droplets. This hypothesis is confirmed by following the

observation along the TEM acquisitions (Fig. 2 (c)). Under the electron beam, maybe due to a

local temperature increase (and viscosity decrease), the two liquid phases move and the lightest

surfactant regions gradually merge, creating bigger hydrophilic domains migrating towards the

center of the droplets. This also highlights the liquid state of the nano-droplets. To conclude, the

formulation proposed in this study is compatible with a nano-emulsion structure including a core

composed of liquid iodinated oil, stabilized with nonionic surfactants. As regards the characteri-

zation of nano-emulsions in general, these results are unprecedented and were made possible by

the high iodine content of the oily phase.

Another aspect of nano-emulsion characterization includes evaluating the iodine concentration

within the injectable nano-droplet suspension. This was performed using a quantification curve

using a commercial clinical hydrophilic contrast agent (XenetiX R�, i.e. iobitridol). These results

are reported in Fig. 3, and show an iodine concentration in the ↵-tocopheryl 2,3,5-triiodobenzoate

nano-emulsions of around 106 mg I/mL. This is significant when compared to a commercial iodi-

nated nano-emulsion (Fenestra VC R�), generally taken as a reference contrast agent for micro-CT,

which has a value of 53 mg I/mL. It would thus appear that the new formulation proposed here is

twice as concentrated as commercially available references.

The following section deals with the in vitro evaluation of nano-emulsion biocompatibility. In

order to be compatible with in vivo administration, nano-emulsions have to be stable in blood

(stability assays are reported in Fig. 4 (a)), and neutral towards the membrane of circulating ery-

throcytes (hemolysis assays are reported in Fig. 4 (b)). Results for the iodinated nano-droplet

suspension incubated with FBS show a high stability (Fig. 4 (a)), without significant size vari-

ation or droplet aggregation, and an incubation time of up to 20 hrs. Subsequently, iodinated

nano-emulsions were incubated with erythrocytes at a concentration slightly higher than the one

in blood after an i.v. injection (i.e. 10 mg I/mL and 9.0 mg I/mL, respectively) in order to ob-

serve and follow potential cell hemolysis (Fig. 4 (b)). The results reveal that, even after 5 hrs

of incubation, there is no sign of erythrocyte hemolysis. In short, these in vitro assays evidence
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Figure 3: In vitro evaluation of the radiopacity of ↵-tocopheryl 2,3,5-triiodobenzoate nano-emulsions. A quantification curve made with various

dilutions of iobitridol (Xenetix R�, a commercial hydrophilic contrast agent at 300 mg I/mL) served as a reference (filled circles). Values of the

X-ray attenuation of ↵-tocopheryl 2,3,5-triiodobenzoate nano-emulsion (SOR = 40% and SOWR = 40%) and of Fenestra VC R�taken as a reference,

are indicated with filled squares on the figure

Figure 4: In vitro evaluation of the iodinated nano-emulsion biocompatibility (formulation parameter: SOR = 40%, SOWR = 40%). (a) Monitoring

of the droplet size incubated in FBS, “C.” is the control sample without serum. (b) Monitoring of erythrocyte hemolysis in contact with the

nano-emulsions

clear biocompatibility of the iodinated nano-emulsions, which should remain stable after in vivo

injection, without any adverse hemolytic event.

In vitro cytotoxicity experiments (i.e. MTT assays) were conducted on BNL-CL2 embryonic

murine hepatocyte cell lines. This cell type was selected because, with a passive targeting mech-
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Figure 5: In vitro assays on BNL-CL2 embryonic murine hepatocyte cell lines. (a) Cytotoxicity MTT experiments, cells were incubated for 24 hrs

with various concentrations of iodinated ↵-tocopherol nano-emulsions: 0.53 · 10�3, 5.3 · 10�3, 53 · 10�3, 0.13, 0.27, 0.40, 0.53 mg I/104 cells. The

arrow indicates the maximum hepatic concentration expected after administration with in vivo imaging for a mouse of 30 g (i.e. 4.6 · 10�3 mg I/104

cells after i.v. injection of 8.5% of the blood volume). (b) In vitro iodinated ↵-tocopherol nano-emulsion uptake by BNL-CL2 hepatocyte cells.

Concentration: 0.13 mg I/104 cells. (left) Control: pure ↵-tocopheryl 2,3,5-triiodobenzoate, (middle) iodinated nano-emulsions incubated with

BNL-CL2 cells, (right) control: BNL-CL2 cells only.

anism, the usual elimination route of lipid emulsions passes through the liver [25]. In the present

study, this hepatic elimination is confirmed, not only by the in vivo micro-CT imaging which dis-

closes a high and persistent contrast agent accumulation in the liver tissues, but also by the cellular

uptake assays that confirm the hepatocyte internalization of the iodinated ↵-tocopherol. Viability

results are reported in Fig. 5, and clearly disclose low toxicity of the iodinated nano-emulsions.

For instance, the maximum iodine concentration expected in the liver after the dose administrated

with in vivo imaging for a mouse of 30 g, i.e. 4.6 · 10�3 mg I/104 cells (indicated by the arrow in

Fig. 5 (a)) is two orders of magnitude lower than the lethal dose 50 (LD 50), around 0.40 mg I/104

cells. By highlighting the low toxicity of the iodinated nano-emulsions, the results corroborate the

biocompatibility demonstrated above.

In order to check if the iodinated nano-droplets are internalized by hepatocytes, and thus to

disclose the possible elimination mechanism of the lipid contrast agent, we undertook in vitro

celllular uptake assays with the same BNL-CL2 hepatocyte cell lines. The concentration of nano-

emulsion chosen (0.13 mg I/104 cells) was low enough to avoid cell toxicity, but high enough to

induce a clear signal on the TLC plate. The plate is reported in Fig. 5 (b), showing the comparison

between the controls (pure iodinated oil, and pure extracted cells) and the cells incubated with
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Figure 6: In vivo micro-CT imaging after i.v. injection of iodinated ↵-tocopherol nano-emulsions in mice. (a) Representative coronal and sagittal

sections, (a1) before, (a2) immediately after injection showing blood pool contrast enhancement, and (a3) and (a4) showing liver contrast enhance-

ment, at 48 h and 55 days after injection, respectively. (b) Representative transverse slices (b1) through the heart, lung and vertebra, and (b2)

including the liver, from pre-injection to 134 days post-injection. For a given time, to allow the visual comparison, all the images were reported

with similar brightness / contrast conditions.

nano-emulsions, thoroughly washed, and then extracted. The TLC plate shows the presence of

exogenous ↵-tocopheryl 2,3,5-triiodobenzoate for the cells incubated with nano-emulsion, with a

retardation factor Rf = 0.84. This evidences nano-emulsion uptake by hepatocytes.

In this last section, let us look at the application of these new iodinated nano-emulsions as

contrast agents for preclinical micro-CT in vivo imaging. After the administration of a single i.v.

dose (8.5% of the blood volume, see experimental details above), we observed two main imaging

phases: (i) the first is blood pool imaging with a significant circulation time and a half-life of

around 9.0 h and (ii) the second phase is a strong contast enhacement in the liver, persistent for

more than 4 months after a single injection, that is to say, much longer than all the published

results with lipid contrast agents. Results are presented in Fig. 6 and show coronal and sagittal

views (a1) before injection, (a2) 30 minutes after injection, (a3) 48 hrs after injection, and (a4)

55 days after injection. Fig. 6 (b) show transverse slices, through the heart, lung and vertebra (b1),
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and a transverse slice including the liver (b2). A representative timescale was chosen, from the

first measurement after injection (0 h), to 134 days, showing the actual e�ciency of the contrast

agents. Experiments were stopped after 134 days, still with a significant contrast enhancement in

the liver tissues (illustrated below).

Immediately after injection, a significant contrast enhancement arises in the cardiac ventricles,

the major arterial, the venous structures, intra-pulmonary vessels (see Fig. 6 (a1) and (b1)), and

the liver vasculatization (see Fig. 6 (b2) post-injection). The contrast agent concentration in the

blood pool was quantitatively monitored, by locating the region of interest (ROI) in the heart

(results reported in Fig. 7 (a)). Significant values of X-ray attenuation in the blood pool were

observed immediately after injection, �HUblood(0 h) = �HUblood
0 ⇠ 245 HU, and up to 6 hrs after

injection, �HUblood(6 h) ⇠ 186 HU (with �HU(t) = X-ray attenuation after injection at time t

– X-ray attenuation before injection, in Hounsfield Units (HU)). Experimental data are accurately

fitted with mono-exponential decay (see the curve fit in Fig. 7 (a), R = 0.989), giving the flowing

equation:

�HU(t) = �HUblood
0 · e�kblood ·t (1)

where �HUblood
0 is the initial value and of the contrast enhancement in blood (after injection), here

�HUblood
0 = 245 HU, and kblood is the elimination rate constant, here kblood = 0.077 h�1. As a

result, the value of half life in blood is t1/2 = ln(2)/kblood = 9.0 h, corresponding to a contrast

of �HU(t1/2) = 125 HU. This result confirms the visual observations of the high X-ray contrast

enhancement, as well as the e�ciency of this new contrast agent for micro-CT. Moreover, the

mono-exponential fit also indicates that the blood clearance is almost exclusively performed via a

single route which, judging from Fig. 6, appears to be the hepatic route. Indeed, at 48 hrs post-

injection, the picture shows a strong contrast enhancement of the liver tissues (see Fig. 6 (a3) and

(b2)), with clear delineation of the hepatic region and accurate di↵erentiation between the hepatic

tissue and the liver irrigation. Immediately after the administration of nano-emulsions, contrast

enhancement also appears in the liver at �HUliver(0 h) = �HUliver
0 ⇠ 88 HU (likely due to liver

vascularization) and gradually increases, to become very pronounced at 48 hrs post-injection. In

addition, the spleen and lymph nodes also appear contrasted (see coronal and transverse slices

in Fig. 8), with a significant contrast at 48 hrs post-injection, persistent like the one in liver.
102



Figure 7: Quantification of the X-ray attenuation after i.v. administration of iodinated ↵-tocopherol nano-emulsions in mice. (a) Follow-up of

�HU(t) (= X-ray attenuation at time t – X-ray attenuation before injection) over time. Regions of interest (ROI) were placed in heart (filled

circles), liver (open squares), and bladder (open rhombus). (b) Injected dose of iodine per organ in function of time. Initial blood dose was

extrapolated to be 100%. Sum is the sum of the blood and liver curves.

Representative points, 48 hrs and 55 days were reported in Fig. 8 showing lymph nodes, liver

and spleen. The hepatic contrast still appears largely higher than the ones in spleen or lymph

nodes, indicating that the lipid nano-droplets are indeed predominantly taken up by the hepato-
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Figure 8: Micro-CT scans evidencing the contrast enhancement in the spleen (solid arrow) and in lymph nodes (arrowhead), 48 hrs and 55 days

after i.v. injection of iodinated ↵-tocopherol nano-emulsions in mice. Liver was also indicated with open arrow.

cytes and not by the reticuloendothelial system (RES) [25, 31]. This in turn corroborates not only

the results generally observed for the elimination process of lipid nano-emulsions, but also those

exposed above in Fig. 5 (b). This predominant hepatocyte uptake can be explained by consider-

ing the bio-distribution of ↵-tocopherol, known to be packaged in chylomicrons (with a similar

structure to nano-emulsion droplets), then sequestered and secreted by the liver. A parallel can

be drawn between non-iodinated ↵-tocopherol and an iodinated nano-suspension, thus helping to

explain the in vivo passive accumulation in the liver tissues observed here by micro-CT. Subse-

quently, the quantitative follow-up of the contrast enhancement in hepatic tissues (see Fig. 7 (a),

ROI in liver), disclosed a persistent signal from 24 hrs up to more than 4 months (experiments were

arbitrary stopped after 4 months), without clinical signs of toxicity or perturbation of the behavior

in mice. This shows that during this period, iodinated ↵-tocopherol is very slowly eliminated from

the body, a trend visible in Fig. 7 (a). Here again, experimental data was successfully fitted by an

exponential function (reported in Fig. 7 (a), R = 0.996) of the form:

�HU(t) = �HUliver
0 + �HUliver

1 ·
⇣
1 � e�kliver ·t

⌘
(2)
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where �HUliver
0 is the initial value of the contrast enhancement in liver (after injection), here

�HUliver
0 = 88 HU, �HUliver

1 is the contrast enhancement at the end of the accumulation pro-

cess, here at 72 hrs, �HUliver
1 = 361 HU, and finally kliver is the accumulation rate constant, here

kliver = 0.054 h�1. Moreover, the close values of the elimination rate constant kblood and the ac-

cumulation rate constant kliver indicate that the two kinetics are comparable, and corroborate the

hypothesis that accumulation in the liver is the exclusive mechanism for blood clearance. It is

important to note here, that this long retention time in liver, limits application of these iodinated

vitamin E nano-emulsions at a preclinical imaging stage, and we cannot rule out human applica-

tion. Likewise, the follow-up of �HU(t) in the bladder is reported in Fig. 7, and provides values

fluctuating around zero throughout the experiment. This clearly indicates that the product is not

excreted by the renal route and that the only route of elimination is the hepatic one, thus corrobo-

rating the results disclosed above.

The comparison between the blood and hepatic contrast will be achieved, if the X-ray attenu-

ation signals are normalized for the mass of their respective compartments, blood and liver. This

will allow the comparison of their respective dose of iodine and help evaluate the quantity lost in

the other organs during the experiment. For a mouse of 30 g, blood and liver masses were respec-

tively estimated at 2.3 g and 1.7 g. Based on the experimental data of Fig. 7 (a), these normalized

results, along with their sum, are presented in Fig. 7 (b). It appears that the last normalized dose

of iodine in the liver reaches the intensity of the initial one in the blood. This means that the entire

dose is recovered and a very low quantity of contrast agent is lost. It is worth noting that the sum

of the curve decreases by a quantity corresponding to the initial value of the liver contrast. This

signal may be due to liver vascularization at early times.

Finally, 3D volume rendering of the blood vessels (30 min post-injection) and the liver (48 h

post-injection), are presented in Fig. 9 (a) and (b), respectively. These image reconstructions show

the potential of this contrast agents for structural imaging in micro-CT. Figure 9 (a) presents the

visualization of the vasculature and organ irrigation. The ribs were partially removed to make

clearly appears the inner blood network, heart left and right ventricles, the thoracic and abdominal

aorta, hepatic portal vein and vena cava, renal vein and iliac arteries, and (b2) shows the whole

liver, and (b3) to (b8) show di↵erent cuts of liver, highlighting the accurate and specific contrast

di↵erence between the hepatic tissue (yellow) and its irrigation (red). 3D movies of these volume
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Figure 9: 3D volume rendering, (a) 30 min and (b) 48 hrs after i.v. injection of iodinated ↵-tocopherol nano-emulsions in mice. (a1) Presents

the blood network showing an overview on the blood pool, detailed and annotated in (a2) and (a3). Annotations: (aar) aortic arch, (rv) right

ventricle, (lv) left ventricle, (li) location of liver, (vc) vena cava, (hpv) hepatic portal vein, (ta) thoracic aorta, (aa) abdominal aorta, (rev) renal

vein and (ia) iliac arteries. A movie is available as supplementary data (movie1.mov). (b) Liver 3D imaging, (b1) and (b2) show the whole animal

body at di↵erent camera angles, and (b3) to (b8) show liver sections, emphasizing the clear di↵erence of contrast between the liver tissues and its

vascularization; (b7) is the transverse slice corresponding to (b6). A movie is available as supplementary data (movie2.mov).

rendering representations are proposed as supplementary information. Beyond the graphical ren-

dering, such results evidence the high potential of nano-emulsion technology for use as targeted

CT contrast agents, allowing a clear delineation between soft tissues themselves and between soft

tissues and biological fluids.
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4. Conclusion

This study presents a non-toxic contrast agent for preclinical micro-CT imaging. This for-

mulation consists of iodinated vitamin E (↵-tocopheryl 2,3,5-triiodobenzoate) as an oily phase,

formulated in the form of liquid nano-emulsion droplets (by low-energy nano-emulsification), sur-

rounded by a hairy PEG layer, thus conferring stealth properties. The originality and strength of

these new contrast agents lie not only in their outstanding contrasting properties, biocompatibility

and low toxicity, but also in the simplicity of their fabrication: one-step synthesis of the highly

iodinated oil (iodine constitutes 41.7% of the oil molecule weight) and its spontaneous emulsi-

fication. After i.v. administration in mice (8.5% of blood volume), the product shows stealth

properties towards the immune system and thus behaves as an e�cient blood pool contrast agent

(t1/2 = 9.0 h). Further, it exhibits blood clearance following mono-exponential decay. A gradual

accumulation predominantly due to hepatocyte uptake is observed and measured in the liver, es-

tablishing a strong hepatic contrast, persistent for more than four months. For all these reasons,

in the current range of available or developed contrast agents for preclinical X-ray imaging, this

agent seems to be one of the most e�cient. The step beyond in preclinical imaging, will be their

evaluation as contrast agent of hepatic lesions like tumors, as well as the studies of potential in-

terference in the liver metabolism. On the other hand, as the long retention time in liver is a main

strength for preclinical imaging, and could be a limitation for human transposition. As seen here,

the accumulation of the contrasting system in the hepatocyte is likely driven by the chemical na-

ture of the iodinated ↵-tocopherol and not necessarily by the nanodroplet formulation. One can

imagine that nanodroplet incorporating a contrasting agent with a body clearance via faster hepatic

elimination after long circulation time in blood, might become more compatible for imaging of the

human specie.
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3.2. Evaluation de la fonction d’endothéliale à l’exposition prolongée de nano-émulsions 

de 2,3,5-triiodobenzoate d’α-tocophérol 

 

Les nano-émulsions d’α-tocophérol iodée ont montré un contraste significatif et prolongé au niveau 

sanguin (chapitre 3.1). La rémanence de ces composés au niveau sanguin nous a conduits à évaluer 

l’innocuité des nano-émulsions iodées sur la fonction des cellules de l’endothélium vasculaire. Nous 

avons ensuite réalisé une étude sur l’aorte thoracique de rat pour déterminer les influences sur la 

fonction endothéliale et la réactivité vasculaire à l’exposition prolongée de nano-émulsions d’α-

tocophérol iodé. 

 

 

!



 

 

 

ORIGINAL RESEARCH 

Do iodinated nano-emulsions designed for preclinical vascular imaging alter the 

endothelial function in rat aorta? 

Nicolas ANTON1, Marina ATZENHOFFER2, François DAUBEUF3, Xiang LI1, Valérie B. SCHINI-

KERTH2, Barbara DELMOTTE2, Thierry F. VANDAMME1, Thierry CHATAIGNEAU2,4,* 

 

Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, 

France: 
1UMR 7199 CNRS, Laboratoire de Conception et Application de Molécules Bioactives, Equipe de 

Pharmacie Biogalénique; 
2UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Equipe Pharmacologie et 

Physiopathologie Cardiovasculaires; 
3UMR 7200 CNRS, Laboratoire d’innovation Thérapeutique, Equipe de Chimie-Biologie Intégrative; 
4UMR 7199 CNRS, Laboratoire de Conception et Application de Molécules Bioactives, Equipe de 

Biophysicochimie des Récepteurs-Canaux. 

 

  



 

 112 

 

Abstract:  

 

This study proposes a new methodology to evaluate the putative consequences of the long-lasting 

circulation in the blood pool of nanoparticulate systems widely used in nanomedicine, Indeed, the 

blood pool contrast agent for micro-computed tomography, i.e. iodinated nano-emulsions, have 

recently been developed, for their great potential in medical applications such as advanced diagnosis, 

image-guided surgery, personalized medicine or theragnostics. Stealth nanoparticles exhibit a low 

recognition by the reticuloendothelial system, resulting in a prolonged circulation in the bloodstream 

and long-lasting contact with the endothelial cells. Therefore, the aim of the present study is to 

determine whether this prolonged interaction could induce an alteration of the endothelial function and 

vascular smooth muscle reactivity. The Iodinated nano-emulsions were intravenously injected in rats. 

After one hour of contrast agent circulation in the blood pool, the rats were anesthetized and the 

thoracic aorta was removed for the study of vascular reactivity. These animals were compared with 

control (untreated) rats and a third group of rats receiving an injection of phosphate buffered saline (i.e. 

dispersing phase of the nano-emulsions). Phenylephrine-induced concentration-dependent contractions 

of the isolated rat thoracic aorta were not modified whatever the group. Sodium nitroprusside (a NO 

donor)-induced relaxations of endothelium-denuded aorta were also unaltered in response to the 

different administrations. In contrast, in comparison with control animals, endothelium-dependent NO-

mediated relaxations to acetylcholine and red wine polyphenols were significantly impaired in thoracic 

aorta from PBS-treated rats, but not in animals receiving the iodinated nano-emulsion. In addition, 

neither isoprenaline-induced nor levcromakalim-induced relaxations were modified in the aorta from 

the three groups of animals. These findings indicate that even with a long-lasting residence time of the 

iodinated nano-emulsion in the blood flow, these iodinated nano-emulsions do not alter the endothelial 

function and thus can be used as contrast agent for preclinical vascular imaging on small laboratory 

animals. 
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1. Introduction 

 

Over the last decades, the formulations of nano-scaled drug delivery systems have received extensive 

attention. The main reasons lie in the huge possibilities offered by these ranges of particle sizes in 

terms of interactions with the biological media, targeting, biological barrier crossing, tissues 

penetration and improving the bioavailability of encapsulated drugs. Alternatively, nano-scaled objects 

with controlled surface properties can exhibit stealth properties towards immune system, resulting in 

long-lasting time of circulation in bloodstream with a very slow elimination. According to the 

biomedical applications, the residence time of the product in the bloodstream may represent a major 

critical point. Generally, depending on their size range, the nano-carriers are eliminated from the blood 

either through the renal clearance, the reticuloendothelial system (RES) uptake or the hepatic uptake. 

The elimination route by kidneys is due to the glomerular filtration, with pore diameter ranging from 

50 to 100 nm.1 On the other hand, particles with bigger sizes will be recognized by the immune system 

or by the hepatocytes and eliminated by the liver. However, functionalizing the surface of the 

nanocarrier with hydrophilic polymer like polyethylene glycol (PEG) can significantly modify their 

pharmacokinetic parameters. Systems with long-lasting circulation are generally formulated in order to 

target organs or tumors (through active or passive mechanisms), thus increasing the time in which the 

targeted sites are in contact with the nanocarriers. Recent developments concern the nano-

encapsulation of contrast agents such as stealth or targeted nanocarriers that open new possibilities in 

term of advanced diagnosis, image-guided surgery, and even personalized medicine or theragnostics 

(when they co-encapsulate a drug). In fact, one of the very hot challenges corresponds to the 

development of blood pool contrast agents for preclinical micro-computed tomography (micro-CT), i.e. 

X-ray scanner. For this purpose, stealth nanocarriers are developed that encapsulate a contrast agent 

(like iodine) and provide a contrast enhancement of the blood compartment. As shown in our previous 

studies,2,3,4 this is particularly important for micro-CT since nano-encapsulated contrast agents 

constitute the only available solution to suitably enhance the imaging contrast in the blood pool of 

small laboratory animals. To date, only few products are commercially available for that purpose, and 

they formulated as polymeric rare earth-based nanoparticles (Exitron Nano®) or iodinated nano-

emulsions.3 Commercially available iodinated nano-emulsions, namely Fenestra VC® (ART Inc., 

Montréal, Canada), are largely used as contrast agents for micro-CT; these are iodinated lipid 

(concentration around 55 mg I/mL) formulated in the shape of nano-droplets. However, to reach 

interesting levels of contrast and long-lasting circulation times, the experimental protocols still require 

drastic conditions like the administration of high volumes, generally about 10 % of the blood volume. 

In this same line, we recently developed5 a new generation of iodinated nano-emulsions (based on 

iodinated α-tocopherol surrounded by a polyethylene glycol (PEG) layer) twice more concentrated than 

the commercial references, and showing a low (actually negligible) toxicity. As a result, after i.v. 

administration of these nano-emulsions in mice, these objects display stealth properties towards 



 

 115 

immune system, and therefore exhibit a long-lasting circulation time in bloodstream. Thus, the X-ray 

contrast in blood pool is enhanced, providing outstanding visualization of the small animal vasculature, 

a very helpful and desirable tool, for example, for vascular and tumor angiogenesis imaging, as well as 

for the cardiac function.5 Moreover, In addition, this technology allows a quantitative monitoring of 

the contrast agent in blood, providing the kinetics of blood clearance, as well as of the products 

elimination from the animal body (i.e. imaging and monitoring the presence of contrast agent in the 

different organs, liver, spleen, etc.). The present study has focused on the application as blood pool 

contrast agents of the new generation of iodinated α-tocopherol nano-emulsions presented above. 

These long lasting circulating systems are very promising for their imaging properties, as well as for 

their biocompatibility and low toxicity in vitro. However, due to the long-lasting residence time in 

bloodstream, it is conceivable that such a nano-system could interact with, or even alter, the monolayer 

of endothelial cells lining the vascular wall at the interface with the lumen. These potential effects on 

the endothelial function can be disclosed, following i.v. injection of the nano-emulsions, and 

significant circulation time in the blood, by monitoring the vascular reactivity, ex vivo. Actually, the 

endothelial cells control the vascular tone of the underlying smooth muscle cells by the production of 

endothelium-derived relaxing factors.6 These factors include nitric oxide7,8 (NO), prostacyclin9 and 

the endothelium-derived hyperpolarizing factor (EDHF) which is associated with hyperpolarization of 

vascular smooth muscle cells.10,11 

NO is the major relaxing factor in large arteries such as rat aorta,12 and it is produced by the activation 

of endothelial NO synthase in response to several stimuli including acetylcholine, bradykinin and 

blood flow-dependent shear stress. Endothelial NO induces the relaxation of the underlying vascular 

smooth muscle cells mainly by the activation of soluble guanylyl cyclase and formation of the second 

messenger cGMP.6 Under pathophysiological conditions, endothelium-dependent NO-mediated 

relaxation is often impaired.13 

The purpose of the present study is therefore to determine whether the prolonged exposure of the 

endothelium to iodinated nano-emulsion, designed for vascular imaging, alters the endothelial function 

and vascular smooth muscle reactivity, in rat aorta. Actually, since the main objective of such 

formulations is a long-lasting circulation time in the organism, studying the repercussion on the 

endothelial function appears as a critical parameter of innocuousness towards the organism. In this 

context, the present study is crucial because this aspect has, to date, never been investigated. The 

present study has been performed with iodinated α-tocopherol nano-emulsions, intravenously given to 

rats in experimental conditions similar to those of in vivo imaging experiments.5 Finally, the choice of 

the circulation time in blood stream (in this case, 1 hour post-injection) is perfectly compatible with the 

time allowing the experimental imaging and including the preparation of the animal in micro-CT 

scanner after contrast agent injection and acquisition time. 
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2. Materials and methods 

2.1. Materials 

2,3,5-Triiodobenzoic acid, α-tocopherol (vitamin E), 4-dimethylaminopyridine, N,N’-

dicyclohexylcarbodiimide, dichloromethane, ethyl acetate, cyclohexane, Nω-nitro-L-arginine methyl 

ester, indomethacin, acetylcholine, sodium nitroprusside, levcromakalim, phenylephrine and 

isoprenaline were all purchased from Sigma-Aldrich. Nonionic surfactant Cremophor ELP® from 

BASF (Ludwigshafen, Germany) was a generous gift from Laserson (Etampes, France). Phosphate 

Buffered Saline (PBS) was purchased from Eurobio (France).  

Red Wine Polyphenols (RWPs) were dissolved in a solution of ethanol and deionized water (50 % v/v) 

at a stock concentration of 100 mg/mL. A stock solution of indomethacin (10 mmol/L) was prepared in 

a sodium bicarbonate solution. The other compounds were dissolved in deionized water. 

Concentrations are expressed as final concentrations (mol/L or mg/mL) in the bath solution. 

 

2.2. Methods 

2.2.1. Synthesis of α-tocopheryl 2,3,5-triiodobenzoate 

As described in detail elsewhere,5 iodinated lipophilic molecules used as lipid core of the nano-

emulsions is composed of vitamin E (DL-α-tocopherol) on which 2,3,5-triodobenzoic acid has been 

grafted through a reaction of esterification. Briefly, 2,3,5-triodobenzoic acid, 4-dimethylaminopyridin 

and N,N’-dicyclohexylcarbodiimide were sequentially added at room temperature to a solution of  DL-

α-tocopherol in dicholoromethane. The reaction mixture was stirred overnight at room temperature and 

the solvent was removed under vacuum; the reaction yield was about 80%. The crude oil was then 

purified by gradient elution method on silica gel with cyclohexane and ethyl acetate as eluent. The final 

product is a light yellowish viscous oil containing 41.7% of iodine. 

 

2.2.2. Formulation and characterization of nano-emulsions 

Iodinated nano-emulsions were formulated by spontaneous emulsification method, as previously 

described.14,15,16 Briefly, α-tocopheryl 2,3,5-triiodobenzoate (oil phase) was mixed with hydrophilic 

surfactant of Cremophor ELP®. Phosphate buffered saline (PBS) (aqueous phase) was added into the 

stirred oil/surfactant mixture. Nano-emulsions formed immediately once these two phases are 

homogenized. Optimized formulation conditions were given by (i) the surfactant to oil ratio, 

SOR = 40%, (with SOR = surfactant weight / (surfactant weight + oil weight) x 100 and (ii) the 

surfactant-oil to water ratio, SOWR = 40% (with SOWR = (surfactant weight + oil weight) / 

(surfactant weight + oil weight + water weight) x 100). Finally, the formulation were carried out in 

order to be physiologically compatible, that is to reach a pH = 7.4 and an osmolarity around 280 

mOsm/L. These parameters were systematically controlled after each formulation. The same optimized 
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nano-emulsion formulations (i.e. with the same experimental parameters) were used for all the in vivo 

experiments, imaging experiments and vascular reactivity studies. 

Size distributions and polydispersity indices (PDI) were obtained by dynamic light scattering with a 

Malvern apparatus (NanoZS®, Malvern, Orsay, France). The helium / neon laser, 4 mW, was operated 

at 633 nm, with the scatter angle fixed at 173° and the temperature maintained at 25°C. Transmission 

electron microscopy (TEM) observations were carried out using a Philips Morgagni 268D electron 

microscope. Samples were used without any staining agent (thanks to iodine), and were diluted (1/10) 

with MilliQ water. A drop of the nano-droplets suspension was placed on a carbon grid (carbon type-

A, 300 mesh, copper, Ted Pella Inc. Redding, U.S.A.), and dried at 40°C. 

 

2.2.3. Preparation of Red Wine Polyphenols (RWPs) 

RWPs dry powder, obtained from French red wine (Corbières A.O.C., France), was provided by Dr. M. 

Moutounet (Institut National de la Recherche Agronomique, Montpellier, France) and analyzed by Dr. 

P.-L. Teissedre (Département d’Oenologie, Université de Montpellier, France). For the preparation of 

RWPs dry powder, phenolic compounds were adsorbed on a preparative column and alcohol was 

desorbed. The alcoholic-eluent was evaporated; the concentrated residue was lyophilized and finely 

sprayed to obtain RWPs dry powder. One liter of red wine produced 2.9 g of RWPs which contained 

471 mg/g of total phenolic compounds expressed as gallic acid. The extract contained 8.6 mg/g 

catechin, 8.7 mg/g epicatechin, dimers (B1: 6.9 mg/g, B2: 8.0 mg/g, B3: 20.7 mg/g and B4: 0.7 mg/g), 

anthocyanins (malvidin-3-glucoside: 11.7 mg/g, peonidin-3-glucoside: 0.66 mg/g and cyanidin-3-

glucoside: 0.06 mg/g) and phenolic acids (gallic acid: 5.0 mg/g, caffeic acid: 2.5 mg/g and caftaric 

acid: 12.5 mg/g). 

 

2.2.4. In vivo rat and mouse administration of iodinated nano-emulsions 

Male wistar rats were anesthetized by intraperitoneal administration of pentobarbital (60 mg/kg). Then, 

they were placed in lateral decubitus on an electric blanket. A segment of 5 mm of the left tail vein was 

isolated. Blood flow was stopped with two ligatures of cotton thread, each placed at the extremity of 

the isolated segment of vein. The vein was perforated using a 25 gauge needle and a polyethylene 

tubing (0.28mm) placed on a 25 gauges needle was inserted into the tail vein. The superior ligature 

(head side) was removed to push the catheter from 1 cm into the vein. Then, the catheter was stabilized 

by tightening the superior ligature. Three groups of rats were designed according to their treatment: 

one control group (control) was not injected whereas two others received an injection of either 

phosphate buffer solution (PBS) or nano-emulsion and were named afterward PBS and NanoE, 

respectively. Injection of 500 µL nano-emulsion or PBS was performed slowly (from 90 to 120 sec); 
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thereafter, the catheter was withdrawn and the superior ligature was tightened. Rats were maintained 

on the electric blanket during 1 hour before the investigation of vascular reactivity. 

In vivo imaging experiments were performed in Swiss mice of about 30 g. Before injection, they were 

anesthetized with isoflurane, then, α-tocopheryl 2,3,5-triiodibenzoate nano-emulsions (SOR = 40%, 

SOWR = 40%) were intravenously injected, using a catheter, in the tail-vein, and with an injection 

volume of 0.18 mL (i.e. 6.2 µL of nano-emulsions per gram of mouse). 

 

2.2.5. Micro-computed tomography 

In vivo imaging experiments were performed with a micro-CT scanner (INVEON®, Siemens, Munich, 

Germany). The experimental X-ray parameters were: 50 keV, 500 µA; resolution: 111.25 µm; pitch: 

2°; aluminium filters: 0.5 and 900 ms. Acquisitions were performed on 3 Swiss mice. Scans were 

performed before administration, immediately after injection, as well as 30 min, 1h, 2h, 3h, 4h, 6h, 1 

day, 2 days, 3 days, 6 days, 12 days, 19 days, 27 days, 34 days after injection. The Micro-CT raw data 

were treated with OsiriX viewer, to establish 2D maximum projection slices and 3D volume rendering 

images, and then to quantify the signal by placing the region of interests (ROI) in the heart. 

 

2.2.6. Vascular reactivity studies 

In order to investigate the putative effects of the iodinated nano-emulsion on endothelium and vascular 

smooth muscle reactivity, rat aorta has been chosen because it is a well-validated model for the 

exploration of endothelial function. 

Therefore, after 1 hour of circulating PBS or nano-emulsion in the blood flow, rats were euthanized 

and the thoracic aorta was excised and bathed in Krebs bicarbonate solution (in mmol/L: 118,0 ; KCl 

4,7 ; CaCl2 2,5 ; MgSO4 1,2 ; NaHCO3 23,0 ; KH2PO4 1,2 ; glucose 11,0 ; pH 7,4 ; 37°C) for 

dissection. The aorta was cleaned of connective tissue and cut into rings (2 mm in length). Rings were 

suspended in organ baths containing oxygenated (95% O2, 5% CO2) Krebs bicarbonate solution for the 

determination of changes in isometric tension. The rings were stretched step by step until an optimal 

resting tension of 2 g was reached and then allowed to equilibrate for at least 60 min. After the 

equilibration period, the rings were exposed to high K+-containing Krebs bicarbonate solution (80 

mmol/L) until reproducible contractile responses were obtained. High K+ solution was prepared by 

equimolar substitution of NaCl with KCl. Thereafter, the rings were precontracted with phenylephrine 

(1 µmol/L) to about 80% of the maximal contraction to high K+ solution and the relaxation to 

acetylcholine (1 µmol/L) was determined. 

After washout and a further 30-min equilibration period, rings were submitted to increasing cumulative 

concentrations of phenylephrine (0.1 nmol/L to 10 µmol/L) in the presence of indomethacin (10 

µmol/L) in order to rule out vasoactive prostanoids. 
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In another set of experiments, rings were contracted with phenylephrine (1 µmol/L) before a 

concentration-relaxation curve to either sodium nitroprusside (0.1 nmol/L to 10 µmol/L), acetylcholine 

(0.1 nmol/L to 100 µmol/L), RWPs (0.1 µg/mL to 0,1 mg/mL), isoprenaline (0.1 nmol/L to 30 

µmol/L), or levcromakalim (0.1 nmol/L to 3 µmol/L) was constructed. Sodium nitroprusside- and 

levcromakalim-induced relaxations were examined in endothelium-denuded rings of rat aorta. 

Acetylcholine-, RWPS-and isoprenaline-induced relaxations were recorded in the presence of 

indomethacin (10 µmol/L) in order to rule out the formation of vasoactive prostanoids. In some 

experiments, rings were exposed to L-NAME (300 µmol/L), a NO synthase inhibitor, for about 45 min 

before contraction with phenylephrine and application of cumulative concentrations of acetylcholine. 

Contractions were expressed in grams. Relaxations were expressed as a percentage of the contraction 

induced by phenylephrine (1 µmol/L). 

 

2.2.7. Statistical analysis 

Values are expressed as means ± SEM. n indicates the number of animals. Statistical analysis was 

performed with Student’s t-test for paired data or ANOVA followed by Bonferroni posttests to 

compare two treatments where appropriate. Values of p < 0.05 were considered to be statistically 

significant. 

 

3. Results 

3.1. Nano-emulsions: characterization and blood pool contrast agent application in micro-CT 

Representative results of the physico-chemical characterization and biomedical imaging are reported in 

Fig. 1 (see also Ref. 5 for more details). Fig. 1 (A) shows a schematic representation of the nano-

emulsion droplets, composed of an iodinated oily core surrounded and stabilized by a layer of 

PEGylated nonionic surfactants. Due to the high iodine weight ratio of the oily molecule, the 

suspension is particularly charged in contrast agent, with a iodine concentration of about 

106 mg I/mL.5 DLS experiments disclose a monodispersed size distribution centered around 85 nm, 

with a narrow peak, reported in Fig. 1 (B). This result is confirmed by the TEM micrographs 

(Fig. 1 (C)), which even, reveals the less contrasted surrounding layer of surfactants. On the other 

hand, the PEGylated layer confers stealth properties to the nano-droplets, towards the RES, and 

therefore their long-lasting circulation properties in bloodstream, of fundamental importance for the 

current objectives of the formulation. This is illustrated in Fig. 1 (D), showing the blood contrast 

enhancement ∆HU monitored in function of time (i.e. difference between contrast at time t and contrast 

before injection, ROI was placed in heart). Contrast enhancement is clearly significant, for a few hours, 

making this contrast agent fully compatible with its use as a blood pool contrast agent for micro-CT. 
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The blood clearance appears to follow a monoexponential decay (the corresponding curve fit is also 

indicated in the graph), with a value of half-life in blood-pool at t1/2 = 9.0 h. However, the optimized 

conditions for imaging the animal vasculature is the region of maximal contrast enhancement, that is 

the initial period just after injection, or more largely within the first hour post-injection (indicated with 

an arrow in the figure).  

 

 

 

 
 

Figure 1: Physico-chemical characterization of iodinated nano-emulsions. (A) Schematic representation of the 

nano-emulsion droplets structure. (B) Size distribution obtained by DLS measurements. (C) TEM micrographs of 

iodinated nano-emulsion droplets. (D) X-ray attenuation of blood (∆HU) in function of time, i.e. iodine 

concentration in blood versus time. (E) Micro-CT scans, maximal intensity projections, coronal sections (top) and 

transverse slices through the heart (bottom); (E1) before injection and (E2) post-i.v. injection in mice. (F) 3D 

volume rendering, 30 min after i.v. injection in mice. Magenta arrow head show the heart, and green arrow head 

the thoracic aorta. 
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This is precisely the period which has been chosen in the current study to stop the circulation of the 

nano-emulsion in blood pool, and thus to start with vascular reactivity experiments. In addition, in vivo 

images, coronal views and transverse slices of the mouse were reported in Fig. 1 (E). The figure 

emphasizes the natural X-ray attenuation before administration (E1), and 30 min post-injection (E2), 

magenta arrowheads indicate the heart. The vascularization is clearly visible in (E2), showing views of 

the left and right ventricles. Contrast enhancement was also visible in liver, likely due to the strong 

vascularization of this organ. Finally, Fig. 1 (F) shows three-dimensional volume-rendering which has 

been reconstructed from the raw data presented in Fig. 1 (E2) and presenting the whole contrast 

enhancement in the animal body; this figure illustrates the heart (magenta arrowhead), artery (green 

arrowhead), but also the iliac arteries, vena cava, hepatic portal vein, renal veins, and liver irrigation. 

These results simply confirm the high potential of these vascular contrast agents, and thus the 

important need to investigate the putative effects of their prolonged residence time in blood, on the 

endothelial function. 

 

 

 
 

Figure 2: In vivo administration of phosphate-buffer saline or iodinated nano-emulsion does not alter 

phenylephrine-induced contractions of rat aorta. Phenylephrine-induced contractions were recorded in isolated rat 

aorta from control male Wistar rats (Control) or rats receiving a tail-vein injection of either 500 µL phosphate-

buffer saline (PBS) or 500 µL iodinated nano-emulsion. Experiments were performed in the presence of 

indomethacin (10 µmol/L) in order to rule out vasoactive prostanoids. Results are shown as mean ± SEM; n 

indicates the number of rats for each group. 
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3.2. Effects of in vivo administration of iodinated nano-emulsion on phenylephrine-induced 

contractions in isolated rat aorta 

Cumulative concentrations of phenylephrine induced concentration-dependent contractions of isolated 

rat thoracic aorta (Fig. 2). The contractile response, examined ex vivo, was not modified after 1 hour 

exposure to either PBS or iodinated nano-emulsion in comparison to control conditions (Fig. 2). 

 

3.3. Effects of in vivo administration of iodinated nano-emulsion on NO-sensitivity of vascular smooth 

muscle 

The putative effects of iodinated nano-emulsion on vascular smooth muscle sensitivity to NO was 

investigated using sodium nitroprusside, an NO donor. 

Sodium nitroprusside induced concentration–dependent relaxations in endothelium-denuded isolated 

rat aorta from control rats (Fig. 3). These relaxations were not different in the aorta from the three 

groups of animals (Fig. 3). These results indicate that vascular smooth muscle sensitivity to NO is 

unaltered following PBS or nano-emulsion administration to rats. 

 

 
 

Figure 3: In vivo administration of phosphate-buffer saline or iodinated nano-emulsion does not impair sodium 

nitroprusside-induced realxations of rat aorta. Sodium nitroprusside-induced relaxations were recorded in isolated 

rat aorta without endothelium from control male Wistar rats (Control) or rats receiving a tail-vein injection of 

either 500 µL phosphate-buffer saline (PBS) or 500 µL iodinated nano-emulsion (NanoE). Relaxations are 

expressed as a percentage of the contraction induced by phenylephrine (1 µmol/L). Results are shown as mean ± 

SEM; n indicates the number of rats for each group. 
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Figure 4: Effects of in vivo administration of phosphate-buffer saline or iodinated nano-emulsion on 

acetylcholine-induced relaxations of rat aorta. (A) Acetylcholine-induced relaxations were recorded in isolated 

rat aorta from control male Wistar rats (Control) or rats receiving a tail-vein injection of either 500 µL phosphate-

buffer saline (PBS) or 500 µL iodinated nano-emulsion (NanoE). Results are shown as mean ± SEM; n indicates 

the number of rats for each group. *indicates a significant difference vs Control (p<0.05) and ‡ indicates a 

significant difference vs NanoE (p <0.05). (B) Effect of L-NAME (300 µmol/L) on the maximal relaxant effect 

(Emax) of acetylcholine recorded at a concentration of 100 µmol/L in the isolated aorta from the three group of 

rats. Results are shown as mean ± SEM of 8 to 10 rats for each group. *indicates a significant difference (p 

<0.05). Acetylcholine-induced endothelium-dependent relaxations were recorded in the presence of indomethacin 

(10 µmol/L) in order to rule out the formation of vasoactive prostanoids. Relaxations are expressed as a 

percentage of the contraction induced by phenylephrine (1 µmol/L). 
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3.4. Effects of in vivo administration of iodinated nano-emulsion on acetylcholine-induced NO-

mediated relaxations 

The potential effect of the different treatments on NO-mediated relaxations was also examined in 

isolated rat aorta. 

Acetylcholine induced concentration-dependent relaxations in the isolated thoracic aorta from the three 

groups of rats (Fig. 4A). These relaxations were significantly reduced in aortic rings from animals 

treated with PBS (Fig. 4A). In contrast, in thoracic aorta from rats treated with iodinated nano-

emulsion, acetylcholine-induced relaxations were restored to levels similar to those of control 

condition (Fig. 4A). 

The contribution of NO to acetylcholine-induced endothelium-dependent relaxations was investigated 

in the aorta from the three groups of rats. Whatever the group, acetylcholine-induced endothelium-

dependent relaxations were abolished in the presence of L-NAME, an endothelial NO synthase 

inhibitor (Fig. 4B) indicating that they are entirely mediated by NO. 

 

3.5. Effects of in vivo administration of iodinated nano-emulsion on RWPs-induced NO-mediated 

relaxations 

RWPS induce the relaxation of vascular smooth muscle in part by the activation of the endothelial PI3-

kinase/Akt pathway leading to the production of NO.14 The potential effect of the different treatments 

on this pathway was also investigated ex vivo in the present study. 

As illustrated in Fig 5A, RWPs-induced endothelium-dependent relaxation was significantly inhibited, 

at the highest concentration (0.1 mg/mL), following the treatment of the rats with PBS in comparison 

to control conditions. In contrast, in the aorta from animals treated with the iodinated nano-emulsion, 

these relaxations were not different from that observed in vessels from control animals (Fig 5A). 

The contribution of NO to RWPs-induced endothelium-dependent relaxations was also examined in the 

aorta from the three groups of rats. In isolated thoracic aorta from the three groups of rats, RWPs-

induced relaxations were abolished in the presence of L-NAME (Fig. 5B) confirming that they are also 

entirely mediated by NO. 
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Figure 5: Effects of in vivo administration of phosphate-buffer saline or iodinated nano-emulsion on RWPs-

induced relaxations of rat aorta. (A) RWPs-induced relaxations were recorded in isolated rat aorta from control 

male Wistar rats (Control) or rats receiving a tail-vein injection of either 500 µL phosphate-buffer saline (PBS) or 

500 µL iodinated nano-emulsion (NanoE). Results are shown as mean ± SEM; n indicates the number of rats for 

each group. *indicates a significant difference vs Control (p<0.05). (B) Effect of L-NAME (300 µmol/L) on the 

maximal relaxant effect (Emax) of RWPs recorded at a concentration of 30 µg/mL in the isolated aorta from the 

three group of rats. Results are shown as mean ± SEM of 7 to 9 rats for each group. *indicates a significant 

difference (p <0.05). RWPs-induced endothelium-dependent relaxations were recorded in the presence of 

indomethacin (10 µmol/L) in order to rule out the formation of vasoactive prostanoids. Relaxations are expressed 

as a percentage of the contraction induced by phenylephrine (1 µmol/L). 

B. Control PBS NanoE 

* * * 

A. 

* 
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Figure 6: In vivo administration of phosphate-buffer saline or iodinated nano-emulsion does not modify 

isoprenaline- and levcromakalim-induced realxations of rat aorta. Isoprenaline-induced relaxations (A) and 

levcromakalim-induced relaxations (B) were recorded in isolated rat aorta from control male Wistar rats 

(Control) or rats receiving a tail-vein injection of either 500 µL phosphate-buffer saline (PBS) or 500 µL 

iodinated nano-emulsion (NanoE). Isoprenaline-induced relaxations were recorded in the presence of 

indomethacin (10 µmol/L) in order to rule out the formation of vasoactive prostanoids whereas that to 

levcromakalim wer recorded in endothelium-denuded aorta. Relaxations are expressed as a percentage of the 

contraction induced by phenylephrine (1 µmol/L). Results are shown as mean ± SEM; n indicates the number of 

rats for each group. 

A. 

B. 
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3.6. Effects of in vivo administration of iodinated nano-emulsion on isoprenaline- and Levcromakalim-

induced relaxations 

In order to determine whether the treatments were able to alter NO-independent mechanisms of 

relaxation, relaxations were induced by either isoprenaline, a beta adrenergic receptor agonist, or 

levcromakalim, an activator of ATP-sensitive potassium channels, in isolated rat aorta.  

Neither isoprenaline-induced (Fig. 6A) nor levcromakalim-induced relaxations (Fig. 6B) were altered 

by the different treatments.  

 

4. Discussion 

 

The present findings demonstrate that iodinated nano-emulsions are very efficient as blood pool 

contrast agent since they are characterized by a long-lasting circulation in blood pool with t1/2 = 9.0 h 

and are devoided of apparent toxicity or clinical trouble visible in the animal. Our previous studies5 on 

in vitro biocompatibility and toxicity assays have already indicated that these nano-emulsions were 

fully biocompatible, i.e. stable in serum for 20 h, and did not induce the hemolysis of erythrocytes after 

5 h incubation. Likewise, MTT assays on BNL-CL2 embryonic murine hepatocyte cell lines, show a 

negligible toxicity. However, even these in vitro classical experiments are important, but do not take 

into account the potential effects on the endothelial barrier, particularly exposed in the case of long-

circulating contrast agents. In this respect, the present study proposes an important and unprecedented 

investigation, very originally applied to such long-circulating nano-emulsion experiments, in order to 

follow a potential impact on the endothelial function. Indeed, we have investigated the putative effects 

of an i.v. administration of a iodinated nano-emulsion to rats on endothelial function in thoracic aorta, 

ex vivo. As a result, even after a long-lasting residence time in the blood flow, nano-emulsions are 

perfectly harmless for the vascular system. 

The results indicate that neither PBS nor the iodinated nano-emulsion had an effect on the contractile 

response of the aortic smooth muscle to phenylephrine, an α1 receptor agonist, in the isolated aorta. 

Therefore, contractile responsiveness is preserved between groups. 

The experiments with L-NAME confirm numerous previous studies indicating that acetylcholine-

induced relaxations are mainly mediated by NO in the rat aorta.12 These endothelium-dependent NO-

mediated relaxations were unaltered in vessels from rats treated with the iodinated nano-emulsion 

indicating that the contrast agent is probably safe in vivo. Similar results were observed with RWPs 

which also induce endothelium-dependent NO-mediated relaxations but mainly through the endothelial 

PI3-kinase/Akt pathway.17,18 Altogether, these results indicate that the iodinated nano-emulsion does 

not alter the activation of endothelial NO synthase in response to either acetylcholine or RWPs. In 

contrast, in vivo administration of PBS significantly impaired endothelium-dependent NO-mediated 

relaxations to acetylcholine and RWPs, in comparison to control rats. In addition, as sodium 

nitroprusside-induced NO mediated relaxations were unaffected by PBS, it seems that the toxic effect 
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of PBS is limited to the endothelial cells, probably at the level of NO formation, and that the sensitivity 

of smooth muscle to NO is unaffected. 

Furthermore, despite the presence of PBS in the composition of the iodinated nano-emulsion (as 

continuous phase), this nano-emulsion seems able, to some extent, to restore the endothelium-

dependent relaxations to acetylcholine and RWPs. This result highlights a possible protective effect of 

the nano-emulsion, which remains to be precisely determined. 

The present findings provide also evidence that PBS and the iodinated nano-emulsion do not alter other 

mechanisms of relaxation in isolated rat aorta. Indeed, whatever the agent used to induce relaxations, 

isoprenaline (a β receptor agonist) or levcromakalim (an activator of ATP-sensitive potassium 

channels), relaxations were unaltered confirming that PBS and the iodinated nano-emulsion are 

perfectly innocuous towards the vascular smooth muscle. 

 

5. Conclusion 

This study proposes original results and methodology regarding the impact of lipid nano-systems 

characterized by a long-lasting circulation in bloodstream, on the endothelial function. Iodinated nano-

emulsions, efficient blood pool contrast agents for preclinical X-ray imaging (micro-CT), were selected 

as a model for this study. After i.v. administration, half-life in blood pool was measured at t1/2 = 9.0 h, 

and since the optimized conditions for performing vascular imaging are the earliest times (within the 

first hour), we studied the endothelial function at 1 hour post-injection. The exact cellular mechanism 

by which PBS reduces endothelium-dependent relaxations to acetylcholine remains to be investigated. 

However, there is no vascular injury resulting in damage to the endothelial lining of blood vessel walls 

in response to the long-lasting circulation of the iodinated nano-emulsion in the blood flow in vivo, 

when compared with PBS. The iodinated nano-emulsion could rather be protective for the 

endothelium. These results indicate that this technology is probably safe for a residence time of the 

iodinated nano-emulsion in the blood flow allowing imaging in vivo. Therefore, it is proposed that this 

iodinated nano-emulsion could be used for preclinical vascular imaging. 
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3. Conclusion!

Une huile iodée à base d’α-tocophérol a été synthétisée dans cette étude et a permis de réaliser des 

nano-émulsions ayant des propriétés contrastantes. Les nano-émulsions d’α-tocophérol iodé ont une 

taille 85 nm et contiennent 106 mg I/mL (SOR = 40% et SOWR = 40%). Ces nano-émulsions ont été 

injectées chez des souris Suisse. Ce nouvel agent de contraste présente d’excellentes propriétés 

contrastantes pour les différents organes. Les résultats du test in vivo ont montré un contraste prolongé 

au niveau sanguin pendant plus de 9 h et un contraste spécifique du foie pendant plus que 134 jours 

après une seule injection. Les tests biologiques et l’étude sur l’aorte thoracique de rat ont montré que 

ces nano-émulsions d’α-tocophérol iodé avaient une très bonne biocompatibilité au niveau cellulaire et 

au niveau sanguin. Ces nano-émulsions iodées pourraient donc être considérées comme un agent de 

contraste iodé approprié pour des applications précliniques en imagerie biomédicale. 
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Annexe 1  

 

 

 

 

 

 

 

1H NMR spectra (CDCl3) of (a) Labrafil® M 1944 CS, (b) Iodinated Labrafil® M 1944 CS 

(a) Labrafil® M 1944 CS 

(b) Iodinated                
Labrafil® M 1944 CS 

(CDCl3) 

(CDCl3) 

-CH=CH- 
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Annexe 2 

 

 

 

 

1H NMR spectra (DMSO-d6, CDCl3) of (a) 2,3,5-triiodobenzoic acid, (b) α-tocopherol and (c) tocopheryl 2,3,5-
triiodobenzoate. 

 

(a) 2,3,5-triiodobenzoic acid 

(b) α-tocopherol 

(c) Tocopheryl 2,3,5-triiodobenzoate 

(CDCl3) 

(DMSO-d6) 

(CDCl3) 
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This PhD work aimed at the development of contrast agents based on iodine-containing nano-

emulsions for preclinical applications in biomedical imaging. The main purposes of this work were the 

development of 1) new contrast agents based on iodine-containing nano-emulsions 2) long circulating 

contrast agents 3) liver specific contrast agents achieved by the passive accumulation. Three iodinated 

oils were synthesized and used as the oily phase of nano-emulsions in this work. All the nano-

emulsions were formulated by the spontaneous emulsification method. 

Firstly, nano-emulsions of iodinated Labrafil® M 1944 CS and nano-emulsions of iodinated 

reconstituted oil were prepared and studied as the blood pool contrast agents. Iodine was introduced by 

saturating the double bonds of fatty acids in the Labrafil® M 1944 CS. Stable nano-emulsions of 

iodinated Labrafil® M 1944 CS were obtained at SOR = 15% and SOWR = 40% and were injected 

intravenously in mice. Significant contrast enhancement in the bloodstream was observed immediately 

after injection. The persistence of the contrast signal in the heart for up to 4h showed the long 

circulating properties of these iodine-containing nano-emulsions and confirmed their suitability to be 

used as a blood pool contrast agent. The remarkable contrast enhancement observed in the bladder 

indicated that the elimination route of these nano-emulsions was via the kidney. To further enhance 

the contrast capacity of iodine-containing nano-emulsions, reconstituted oil was synthesized based on 

the structure of Labrafil® M 1944 CS. Iodine was then added as the same way of Labrafil® M 1944 CS 

by the Wijs reaction. The final iodine content in reconstituted oil was around 33%. However, the 

iodinated reconstituted oil became more viscous and heavier when iodine content was higher and the 

stable nano-emulsions were obtained at a relatively high SOR of 60%. Thus, the final iodine content in 

the nano-emulsions of iodinated reconstituted oil was only 5.4%, which was less than in nano-

emulsions of Labrafil® M 1944 CS of 8.3%. In addition, nano-emulsions of iodinated reconstituted oil 

were finally considered as non-injectable, due to the induction of blood coagulation and the death of 

mice. However, with the results of this study, we can obtain the criteria to be as a suitable 

nanoparticulate contrast agent for the preclinical applications: 1) all the components in the formulation 

should be biocompatible; 2) synthesized iodinated oil should present suitable structure to form nano-

emulsions by the spontaneous emulsified method; 3) nano-emulsions need to contain a great quantity 

of X-ray contrasting materials, ideally around 100 mg of iodine per milliliter of suspension to be 

administrated; 4) nano-emulsions must be stable for storage and have a high in vivo stability, which 

also affects the stealth properties and residence time in the blood pool; 5) in spite of the high loading 

of contrast agents, the nano-emulsion must remain non-toxic and neutral to the biological metabolism.  

 

The second purpose of this PhD work was the development of biocompatible blood pool contrast 

agents based on the nano-emulsions, and ideally presented liver specific contrast properties by a 

passive accumulation. Nanoparticulate contrast agents which demonstrate prolonged contrast 
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enhancement in the bloodstream at early time points after injection and can later progressively 

accumulate in the liver tissues are desired for the preclinical applications of micro-CT. Because, the 

liver is a common site of metastases and the use of nanoparticulate contrast agents allows detecting 

liver lesions at its earlier stage and improves the sensitivity of the detection. Hereby, the third 

iodinated oil based on the α-tocopherol was developed. Stable nano-emulsions of iodinated α-

tocopherol were obtained at SOR = 40%. The size of these iodine-containing nano-emulsions was 

around 85nm and the iodine content was about 106 mg I / mL. The hemolysis assay and the 

cytotoxicity test showed the good biocompatibility of these iodine-containing nano-emulsions and 

their suitability for intravenous injection. Nano-emulsions of iodinated α-tocopherol were then 

injected intravenously in Swiss mice. Clear blood pool contrast enhancement persisted up to 9h and 

significant contrast enhancement in the liver was observed immediately after injection. A gradual 

accumulation predominantly due to hepatocyte uptake is observed and measured in the liver, 

establishing a strong hepatic contrast, persistent for more than four months without inducing clinical 

toxicity. These results showed that the nano-emulsions of iodinated α-tocopherol were suitable 

candidates to be used as the blood pool contrast agent and the liver specific contrast agent at the same 

time for the preclinical applications of the micro-CT. Another study of prolonged exposure of the 

endothelium to iodinated nano-emulsion in rat aorta demonstrated that there was no vascular injury 

resulting in damage to the endothelial lining of blood vessel walls in response to the long-lasting 

circulation of the iodinated nano-emulsion in the bloodstream in vivo. The iodine-containing nano-

emulsions could rather be protective for the endothelium compared with PBS. Therefore, it is 

proposed that this nano-emulsion system could be used for vascular imaging in preclinical purposes. 

To that extent, it could be interesting to continue the work with the nano-emulsions of iodinated α-

tocopherol. The first step should be the evaluation of the toxicity of these iodine-containing nano-

emulsions by the anatomical and biological studies. Objective is to evaluate the toxicity induced by the 

repeat injection and the toxicity of the product in long-term. Furthermore, the nano-emulsions of 

iodinated α-tocopherol demonstrated significant and prolonged hepatic accumulation. Therefore, the 

evaluation of the toxicity threshold of the iodine-containing nano-emulsions for the liver tissues seems 

to be very important. 

 

Finally, since the nano-emulsions of iodinated α-tocopherol demonstrated good biocompatibility and 

showed prolonged and significant contrast enhancement in both bloodstream and liver tissues, they 

could be considered as a basic module in future studies. This nano-system could be further developed 

and added other specific properties: 1) since the passive accumulation of these nano-emulsions in the 

liver site, they can be co-administrated with an liver specific anticancer drug to evaluate its therapeutic 

efficacy over time without re-injection of the contrast medium for more than 4 months in the same 
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subject. 2) Another interesting and unexplored target is the pancreas. This organ is very difficult to be 

contrasted by the micro-CT, and actually, any contrast agent can achieve contrasting properly. The 

development of the nanoparticulate contrast agents specific to the pancreas seems to be very important 

for the technology of micro-CT. The active targeted properties to the pancreas could be added by 

cross-linking the anti-body or other specific molecules on the different compounds of nano-emulsions, 

in order to have the specific contrast enhancement in the pancreas by active targeting. 
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