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RESUME 

L’acide rétinoïque (AR), dérivé actif de la vitamine A, régule de nombreux processus 

biologiques comme la prolifération et la différenciation des cellules, l’embryogénèse et l’homéostasie 

des tissus. L’AR agit en se fixant à des récepteurs nucléaires appelés RAR pour lesquels 3 sous-types 

α, β et γ ont été caractérisés et qui se comportent comme des facteurs de transcription inductibles par 

le ligand. Selon le modèle classique, la transcription des gènes cibles induite par l’AR, nécessite la 

fixation des RAR au niveau de séquences spécifiques des promoteurs et met en jeu des changements 

conformationnels des récepteurs qui, en initiant l’association/dissociation de toute une panoplie de 

corégulateurs, vont permettre le recrutement de la machinerie transcriptionnelle. Cependant, en plus de 

ce modèle génomique et nucléaire bien établi, l’équipe du Dr Cécile Rochette-Egly a montré 

récemment que l’AR a aussi des effets non-génomiques et induit rapidement la voie de signalization 

p38MAPK/MSK1 qui ensuite cible les RAR pour des cascades de phosphorylations. 

Mon travail de thèse porte sur deux nouveaux aspects de la voie de signalization  de l’AR: (i) 

la mise en évidence d’une sous-population de RARα dans les membranes et impliquée dans les effets 

non-génomiques de l’AR (Piskunov and Rochette-Egly, 2011a), (ii) l’interaction de RARα dans le 

noyau avec un nouveau partenaire, la profiline IIA, (Piskunov et al. manuscrit en preparation) et (iii) la 

mise en évidence d’un nouveau rôle de RARα dans l’adhésion cellulaire.   

- J’ai mis en exergue un nouveau concept, la présence de RARα dans des microdomaines 

membranaires, les radeaux lipiques ou “lipid rafts”. J’ai montré que l’activation de la voie de la 

p38MAPK par l’AR résulte de l’interaction de RARα présent dans ces microdomaines avec les 

proteines Gαq. Pour mettre en évidence cette interaction in vivo des proteines endogènes j’ai mis au 

point une technique nouvelle et sensible, appelée « Proximity Ligation Assay » (PLA). Le principe de 

cette technique est très semblable a celui du FRET, mais exploite la capacité de dimérization 

d’oligonucléotides couplés à des anticorps lorsque ceux-ci sont assez proches, comme dans le cas de 

deux anticorps dirigés contre deux proteines d’un même complexe. Cette technique est tres specifique 

et  permet une amplification importante du signal avec une meilleure sensibilité. 

L’interaction RARα/Gαq, comme l’activation de la p38MAPK, ont été corrélés à l’activation 

des gènes cibles des RAR. De tels résultats confirment l’hypothèse du laboratoire selon laquelle les 

effets non-génomiques interfèrent avec les effets génomiques et sont de ce fait indispensables. De 

manière interessante, j’ai aussi montré que dans des cellules de cancer mammaires surexprimant le 

recepteur à activité tyrosine kinase erbB-2, RARα n’interagit pas avec Gαq dans les radeaux lipidiques 

et, par conséquent, la voie de la p38MAPK n’est pas activée. Ces résultats mettent encore en éxerque 

l’importance des effets non-génomiques dans le mécanisme d’action des RAR. Finalement ce travail 

allonge encore la liste des récepteurs nucléaires présents dans les membranes.  



 

- J’ai aussi identifié un nouveau partenaire de RARα, la profiline IIA, en utilisant la technique 

du double hybride dans la levure. La profiline IIA, comme toutes les profilines, est une proteine de 

petite taille (14-17 kDa) aux fonctions multiples et exprimée essentiellement dans les cellules 

nerveuses. J’ai montré que la profiline IIA interagit spécifiquement avec RARα (et non avec les autres 

RAR), et que l’interaction met en jeu le motif N-terminal riche en prolines de RARα et le domaine 

SH3-like de la profiline IIA. J’ai aussi déterminé l’affinité de l’interaction en utilisant la technique 

Biacore. In vivo, cette interaction a été analysée en utilisant la technique PLA et les complexes 

RARα/profiline IIA ont été détectés dans les noyaux. Finalement la profiline IIA s’est révélée être un 

régulateur transcriptionnel de RARα et est recrutée avec RARα au niveau des promoteurs des gènes 

cibles.  

- Finalement, étant donné que RARα n’est pas impliqué dans la différenciation neuronale des 

cellules souches embryonnaires de souris induite par l’AR (Al Tanoury et al, manuscript in 

preparation),  j’ai mis en évidence une nouvelle fonction de RARα dans le contrôle de l’adhésion et de 

l’étalement des cellules. Des expériences sont en cours pour déterminer si RARα contrôle avec la 

profiline IIA l’expression des proteines d’adhésion via des effets génomiques. Cependant, de manière 

inattendue, j ‘ai identifié une nouvelle population de RARα dans le cytoplasme de ces cellules. D’ou 

l’hypothèse de nouveaux effets non-génomiques via l’interaction de RARα avec des proteines 

d’adhésion.  

En conclusion, j’ai montré que RARα peut être exprimé dans trois compartiments 

subcellulaires différents, avec trois fonctions différentes. 

- une population membranaire avec des effets non-génomiques (activation de kinases) 

- une population nucléaire majoritaire impliquée dans des effets génomiques. Dans ce contexte 

j’ai identifié un nouveau partenaire transcriptionnel de RARα, la profiline IIA 

- une population cytosolique qui serait impliquée dans l’adhésion  des cellules 

  



 

SUMMARY 

Retinoic Acid (RA) is the active metabolite of Vitamin A, which modulates a wide variety of 

biological processes such as cell proliferation and differentiation, embryogenesis and homeostasis. 

These effects are mediated by nuclear receptors (RARα, β and γ), which act as ligand-dependent 

regulators of transcription. According to the classical model, RAR-mediated transcription of cognate 

target genes involves the binding of the receptors to specific DNA sequences located in promoters and 

RA-induced conformational changes that initiate cascades of protein-protein associations/dissociations 

leading to communication with the transcriptional machinery. However, in addition to this well-

established nuclear genomic function, recent studies from the laboratory of Dr. Cécile Rochette-Egly 

demonstrated that RA also has non-genomic effects and rapidly induces the p38MAPK/MSK1 

pathway, which then targets RARs for phosphorylation cascades. 

The work of my thesis focused on three novel and original aspects of RA and RARα signaling: 

(i) the characterization of a RARα pool located in membrane lipid rafts and involved in non-genomic 

effects (Piskunov and Rochette-Egly, 2011a), (ii) the interaction of nuclear RARα with a new partner 

profilin IIA (Piskunov et al, manuscript in preparation), and finally (iii) a novel role of RARα in cell 

adhesion. 

- I highlighted a novel paradigm, in which a fraction of the cellular RARα pool is present in 

membrane lipid rafts, where it interacts with G protein alpha Q in response to RA. To explore the 

endogenous RARα/Gαq complexes in vivo and in situ, I set up a new technique called proximity 

ligation assay (PLA). The assay is similar to Fluorescence Resonance Energy Transfer (FRET), but is 

based on the use of two primary antibodies raised in different species that recognize the antigens of 

interest and on species-specific secondary antibodies attached to unique DNA strand that can 

hybridize when in close proximity and then be amplified. The technique is very sensitive and specific. 

This interaction is the signal for the activation of p38MAPK and of the downstream kinase 

MSK1. Both the RARα-Gαq interaction and the p38MAPK pathway have been correlated to the 

activation of RA-target genes, highlighting its physiological relevance. It also corroborates the 

hypothesis raised by the team according to which the non-genomic effects crosstalk with the genomic 

ones. Remarkably, in RA-resistant breast cancer cells characterized by the overexpression of the 

receptor tyrosine kinase erbB-2, RARα associated to the membrane lipid rafts does not interact with 

Gαq and p38MAPK is not activated, outlining again the essential contribution of this non-genomic 

mechanism in RA signaling. Finally this work extends the long list of nuclear receptors already shown 

to be present in diverse membrane structures. 

 - I also identified a new binding partner of RARα, profilin IIA. Profilin IIA, a small (14-17 kDa) 

protein with multiple functions essentially in neuronal cells. However, I found that profilin IIA is also 

present in mouse embryonic fibroblasts (MEF cell line) and in human breast cancer cells (MCF7 cell 



 

line). I demonstrated that profilin IIA interacts specifically with the RARα subtype (and not with the 

other RARs) and that the interaction involves the N-terminal proline-rich motif of RARα and the SH3-

like domain of profilin IIA. I also analyzed the affinity of the interaction by using the Biacore 

technology. The interaction of the endogenous proteins has been analyzed by using the PLA technique 

and found to occur in nuclei. Remarkably, I found that profilin IIA modulates positively the 

expression of RA-target genes and is recruited with RARα to target genes promoters. 

 - Finally, in an attempt to decipher the relevance of the RARα interaction with profilin IIA, the 

laboratory found that RARα is not involved in RA-induced differentiation of ES cells into neurons (Al 

Tanoury et al, manuscript in preparation).  However, I found that RARα controls adhesion and 

spreading of these cells. This might suggest a novel genomic effect of RARα, i.e the control of the 

expression of genes involved in adhesion. However, preliminary experiments indicate that, in these 

cells, as well as in fibroblasts that are well adherent cells, a pool of RARα is present in the cytosol, 

suggesting non-genomic effects. Whether RARα controls adhesion via its interaction with profilin IIA 

or other proteins will require further investigations. 

 In conclusion, I have highlighted that RARα can depict three different subcellular localizations 

with three different functions: 

- A membrane pool for non-genomic effects (activation of kinase cascades) 

- A nuclear pool for genomic effects. In this context I identified a new partner, profilin IIA, which 

acts as coregulator of RARα-mediated transcription 

- A cytotosolic pool which might play a role in cell adhesion   
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LIST OF ABBREVIATIONS 

ABP actin-binding proteins  

ACTR acetyltransferase 

AD activation domains  

ADA2 adaptor protein 2 

ADF actin depolymerasing factor 

ADH alcohol dehydrogenase 

AF activation function 

Akt serine/threonine protein kinase 

AlB1 amplified in breast cancer I 

ANCO1 ankyrin repeats cofactor-1 

AP-1 activator protein-1 

AR Androgen receptor 

ARAT acyl-CoA retinol acyltransferase  

ARNT aryl hydrocarbon receptor nuclear translocator 

ArpM1 actin-related protein M1 

BAF57 barrier-to-autointegration factor 57 

BCMO β-carotene-monooxygenase 

bHLH/PAS helix-loop-helix/Per/ARNT/Sim 

CAFs carcinoma-associated fibroblasts 

CAK CDK-activating kinase  

CAMKII calmodulin-dependent protein kinase II 

CAR constitutive androstane receptor 

CARM1 coactivator-associated arginine methyltransferase1 

Cdk cyclin-dependent kinase 

ChIP chromatin immunoprecipitation 

CoCoA coiled-coil coactivator 

CoRNR corepressor nuclear receptor  

CRABPII cellular retinoic acid binding protein II 

CRBP  cellular retinol binding protein 

CREB  cAMP response element-binding 

c-Src a tyrosine kinase 

CTE COOH-terminal extension 

cycH cyclin H 

CYP26 cytochrome P450 

DAD deacetylase activation domain  

DBD DNA binding domain 

 

DGAT diacylglycerol O-acyltransferase 

DHRS   dehydrogenase/reductase SDR family member 

DR direct repeats  

DRIP205 vitamin D-interacting protein 205 

EB embryoid body 

EGF epidermal growth factor 

Ena/VASP vasodilator-stimulated phosphoprotein 

ER  estrogen receptor   

ERK  extracellular signal-regulated kinase 

ES embryonic stem 

FliI flightless-1 homolog 

FXR farnesoid x receptor 

GAC63 GRIP1-associated coactivator 63 

GPS2 G-protein pathway suppressor 2 

GR glucocorticoid receptor 

GRIP-1 glucocorticoid receptor interacting protein 

GST glutathione S transferase 

GTFs general transcription factors 

HDAC3 histone deacetylase 3 

HID histone interaction domain  

HNF hepatocyte nuclear factor 

Hox homeobox  

IDs interactions domains 

IUPAC-IUB international union of pure and applied 

chemistry – international union of biochemistry 

JNKs c-Jun N-terminal kinases 

LBD ligand binding domain 

LBP  ligand binding pocket 

LCoR ligand-dependent corepressor 

LRAT lecithin retinol acyl transferase 

LXR oxysterols liver X receptor 

MAPK mitogen-activated protein kinase 

MAT1 cyclin-dependent kinase-activating kinase 

(ménage á trois 1) 

MEF-2C myocyte-specific enhancer factor 2C 

MSK1 mitogen- and stress-activated protein kinase 

 



 

NCoA nuclear receptor coactivator complex 

N-CoR nuclear receptor corepressor complex 

NFmB nuclear factor-mB 

NMDA N-methyl-D-aspartate 

NTD N-terminal domain 

p300/CBP CREB-binding protein 

PCAF P300/CBP-associated factor 

pCIP p300/CBP-interacting protein 

Per period 

PI3K phosphoinositide-3-kinase 

PIP2 phosphatidylinositol (4,5)-bisphosphate  

PKA protein kinase A 

PKC protein kinase C 

PLA proximity ligation assay 

PNPLA4 patatin-like phospholipase domain-containing 

protein 4 

PPAR peroxisomal proliferator activated receptor 

PR progesterone receptor 

PRAME preferentially expressed antigen in melanoma 

PRM proline-rich motif  

PRMT1 protein arginine N-methyltransferase 1 

PXR  xenobiotics pregnane X receptor 

RA  retinoic acid 

RAC3 receptor-associated coactivator  

RALDH retinaldehyde dehydrogenase 

RAR retinoic acid receptor 

RAREs retinoic acid response elements  

RBP retinol binding protein 

RDH retinol dehydrogenase 

RETSAT all-trans-retinol 13,14-reductase  

RPE65 retinal pigment epithelium-specific 65 kDa protein 

RXR retinoid x receptor 

SDR short-chain dehydrogenase/reductase 

SH3 Src-homology-3  

 

sim single-minded protein 

SMN survival of  motor neuron 

SMRT  silencing mediator for retinoic acid and thyroid 

hormone receptors 

snRNP small nuclear ribonucleoprotein 

SPR surface plasmon resonance 

SRC steroid receptor coactivators 

SRF  serum response factor 

SUG-1 suppressor of Gal 1 

SWI/SNF SWItch/Sucrose NonFermentable 

TACC1 transforming acidic coiled coil 

TBL1 transducin β-like 1 

TBLR1 TBL1-related protein 1 

TEF-4 transcriptional enhancer factor 4 

TFIIB transcription factor IIB 

THIIH transcription factor IIH 

TIF1α/Trim24 transcription intermediary factor-1 α 

TIF-2 transcriptional intermediary factor 2 

TRAM1 thyroid hormone receptor-activator molecule I 

TRAP220 thyroid hormone receptor-associated protein 

220 

TTR transthyretin 

UGT glucuronosyltransferase 

VAD vitamin A deficiency  

VDR vitamin D receptor 

WASP/WAVE Wiskott-Aldrich syndrome family 

protein/WASP family Verprolin-homologous protein 

WD40 protein containing WD40 (tryptophan-aspartic 

acid) repeat 

WW (tryptophan-tryptophan) 

XPB (Xeroderma Pigmentosum B) ATP dependent 

DNA helicase 
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CHAPTER 1: VITAMIN A AND RETINOIDS 

 

- HEALTH BENEFITS OF VITAMIN A 

 

Vitamin A is very important for the life of all chordates. This vitamin has a large number of 

functions in vision, maintenance of epithelial surfaces, immune competence, reproduction, embryonic 

growth and development. Therefore, in humans, insufficient consumption of vitamin A, called 

Vitamin A Deficiency (VAD) is characterized by ocular features (xerophthalmia) and a generalized 

impaired resistance to infection (Blomhoff and Blomhoff, 2006). 

For children, VAD is one of the major causes of preventable blindness and increases the risk 

of illness and even death from serious childhood infections such as diarrheal disease and measles.  

For pregnant women, VAD causes night time blindness and builds up the risk of maternal 

mortality. In high-risk areas, VAD occurs particularly during the last trimester of pregnancy, when 

demand by both the unborn child and the mother is highest. The impact of VAD on mother-to-child 

HIV transmission needs additional investigation. 

Thus VAD is a public health problem in more than half of all countries, especially in low-

income countries (Africa and South-East Asia) (Figure 1), hard-hitting small children and pregnant 

women. 

 An estimated 250 million preschool children are vitamin A deficient and in vitamin A 

deficient areas a considerable percentage of pregnant women are vitamin A deficient. 

 An estimated 250 000 to 500 000 vitamin A-deficient children lose their sight every year, half 

of them dying within one year (http://www.who.int/en/). 

 

http://www.who.int/en/


 

 

 

Figure 1. Map of the global prevalence of vitamin A deficiency (World Health Organization, 2009). 

 

 

- ORIGIN OF VITAMIN A 

 

No animal species have the potential for de novo synthesis of vitamin A (Retinol). Thus in 

most animals the only source is diet-derived.  

Retinol is derived from carotenoids, which are present in plants and some microorganisms 

(bacteria and fungi) and are responsible for the yellow, orange and red colors of many vegetables, 

fruits, and plants (Fraser and Bramley, 2004). About 600 carotenoids are known in nature, but only 

10% can be metabolized to vitamin A. Among carorenoids, β-carotene has the best biological activity 

(Yeum and Russell 2002). 

Animals obtain vitamin A by consuming plants containing carotenoids or animal tissues that 

store carotenoids such as eggs, poultry and fish (Fraser and Bramley, 2004). Then they converte 

carotenoids to vitamin A. Alternatively, animals can also obtain vitamin A by ingesting animal tissues 

that have already transformed carotenoids into retinol. In general, retinol is stored as retinyl esters in 

fish, avian, and mammalian livers.  

  



 

- NOMENCLATURE, STRUCTURE, AND CHEMICAL PROPERTIES OF 

RETINOIDS 

 

The term “retinoids” was introduced by Sporn et al. in 1976 and later was designated by the 

International Union of Pure and Applied Chemistry – International Union of Biochemistry (IUPAC-

IUB) as a class of compounds consisting of four isoprenoid units joined in a head-to-tail manner. All 

retinoids may be formally derived from a monocyclic parent compound containing five carbon-carbon 

double bonds and a functional terminal group at the terminus of the acyclic portion.  

Retinoids include retinol as well as its analogs and derivatives (Figure 2A). There are six 

biologically active isoforms of vitamin A that include all-trans, 11-cis, 13-cis, 9, 13-di-cis, 9-cis, and 

11, 13-di-cis retinol, all-trans being the main physiological form. The active metabolites of retinol 

include all-trans Retinoic Acid (RA), 9-cis RA, 11-cis retinaldehyde, 3,4-didehydro RA, and perhaps 

14-hydroxy-4, 14-retro retinol, 4-oxo RA, and 4-oxo retinol (Achkar et al., 1996; Buck et al., 1991; 

Napoli, 1996).  

However, some synthetic compounds (Figure 2B) that do not fit with this chemical definition 

are much more active than retinol or retinoic acid in several assays for vitamin A or retinoid activity. 

Therefore it has been proposed that retinoids should be outlined as substances eliciting a particular 

biologic response via binding to and activating a specific receptor or set of receptors (Sporn and 

Roberts 1985). Today the definition of the retinoid term includes not only retinol analogues and 

derivatives (with or without biologic activity), but also a number of compounds that are not 

structurally related to retinol but elicit biological vitamin A or retinoid activity (Blomhoff and 

Blomhoff 2006).  

 



 

 

 

Figure 2: Chemical structure of natural (A) and synthetic (B) retinoids. 

 

  

  



 

Chemically, retinoids are composed of a β-ionone ring, a polyunsaturated side chain and a 

polar end group (Figure 3). Such an amphipathic chemical structure makes them poorly soluble in 

water and provides easy transfer through membrane lipid bilayers. The polar end group can exist at 

several oxidation states, varying from the low oxidation state of retinol to a higher oxidation state in 

RA (Figure 2A). 

 

 

 

 

Figure 3: Structure of retinoids. Adapted from (Hong and Lotan, 1993). 

 

 

- RETINOID METABOLISM 

 

1. Enzymatic Conversion of Proretinoids (Carotenoids) to Retinoids 

 

As early as 1930, it has been reported that β-carotene can be transformed to retinoids within the 

small intestine (Moore, 1930). Later on, two independent groups (Goodman and Huang, 1965; Olson 

and Hayaishi, 1965) showed that one molecule of β-carotene yields two molecules of retinal via a 

central cleavage catalyzed by an enzyme termed ββ-carotene-15, 15’-monooxygenase(BCMO-I) 

(Figure 4).  

Another enzyme, β,β-carotene-9’10’-dioxygenase (BCMO-II) is also able to cleave β-carotene 

(Kiefer et al., 2001). However, BCMO-II catalyzes an asymmetrical cleavage of β-carotene at non-

central double bonds of the polyene chain, yielding apocarotenals like β-apo-8′-, β-apo-10′- and β-apo-

12′-carotenals (Figure 4). This alternative pathway is very important as it implies that, in tissues 

expressing BCOM-II, retinoic acid can be produced in the absence of ‘‘classical RA synthesis 

pathway’’ enzymes, such as alcohol dehydrogenase (ADH), short-chain dehydrogenase/reductase 

(SDR), retinaldehyde dehydrogenase (RALDH) (Simoes-Costa et al., 2008) or certain cytochrome 

P450s (Chen et al., 2000) (see below).  

 



 

 
 

Figure 4: Carotenoids undergo cleavage either symmetrically by BCMOI or asymmetrically by 

BCMOII. Adapted from (D'Ambrosio et al., 2011). 

 

 

2. Enterocyte Esterification of Retinol 

 

Retinal obtained by carotenoid cleavage is then reduced to retinol and taken up by enterocytes. 

Enterocytes also take dietary consumed retinyl esters after hydrolysis into retinol within the intestinal 

lumen (Blomhoff and Blomhoff, 2006).  

In enterocytes, retinol binds to the cellular retinol binding protein II (CRBPII), which is 

specifically highly expressed in the intestinal mucosa. CRBPII belongs to the greater family of fatty 

acid binding proteins and its role is to solubilize fat-soluble retinol (Sporn et al., 1994) (Figure 5). 

Then, the majority of CRBPII-bound retinol is re-esterified via the enzyme lecithin retinol acyl 

transferase (LRAT). The remaining esterification activity would be assumed by two other enzymes 

diacylglycerol acyltransferase 1 (DGAT1) and acyl-CoA:retinol acyltransferase ARAT (D'Ambrosio 

et al., 2011) (Figure 5).  

Afterwards retinyl esters are included into chylomicrons and secreted into general circulation 

(Blomhoff et al., 1982), where they are taken up by hepatocytes (Blomhoff et al., 1982), bone marrow, 

peripheral blood cells, spleen, adipose tissue, skeletal muscle and kidney (Paik et al., 2004). In 

mammals, 50-80% of the body’s overall retinoids are collected in hepatic stellate cells as retinyl esters 

(Blomhoff and Blomhoff, 2006; Fontana and Rishi, 2002) (Figure 5). 

 



 

 

 

Figure 5: Metabolism of vitamin A. In the intestine, carotenoids are converted to retinol, which binds 

CRBP. Then retinol is transformed into retinyl esters, exported into the circulation and taken up by the liver. 

In hepatocytes, retinyl esters are reconverted to retinol and bind RBP for transport to target cells. In stellate 

cells of the liver, retinol is retransformed to retinyl esters for storage. In the bloodstream, the retinol:RBP 

complex is bound to TTR to avoid removing  by the kidney and for guaranteed delivery to target tissues. 

Figure adapted from (Theodosiou et al., 2010).  

 

 

3. Hepatic retinoid metabolism 

 

In hepatocytes, retinyl esters are re-converted to retinol, which then binds retinol binding-protein 

(RBP) and is secreted into circulation. The majority of the retinol:RBP complexes are associated with 

transthyretin (TTR), which prevents elimination by the kidney and ensures delivery to target tissues. 

However, a big part of hepatic retinol is reesterified into retinyl esters and packed within cytoplasmic 

lipid droplets in stellate cells (Blomhoff and Blomhoff, 2006) (Figure 5).  

 

  



 

4. Retinol processing 

 

In target tissues, retinol either associates with CRBP or is transformed into active metabolites. 

Indeed retinol undergoes oxidation to retinaldehyde by enzymes termed retinol dehydrogenases 

(Figure 6) (Gottesman et al., 2001; Pares et al., 2008). These enzymes are members of the ADH 

(alcohol dehydrogenase) or SDR (short-chain dehydrogenase/reductase) families, which depict 

cytosolic and microsomal localizations respectively. Given that the next step, the irreversible oxidation 

of retinaldehyde to retinoic acid, takes place in cytosol, it has been suggested that ADHs would be 

more important than microsomal SDRs for RA synthesis (Duester et al., 2003).  

Then the oxidation of retinaldehyde to RA is carried out by retinaldehyde dehydrogenases 

(RALDHs), such as RALDH 1, 2, 3, and 4 depending on tissue types (Niederreither et al., 2002). 

Finally, newly synthesized RA associates to cellular RA binding proteins types I and II (CRABP-I and 

CRABP-II), and then either enters nuclei for activation of transcription (autocrine) or is transported to  

adjacent target cells (paracrine) (Napoli, 1996).  

 

5. Retinoic acid degradation 

 

Catabolism is necessary to control RA levels in cells and tissues. It occurs mainly through 

enzymes of the Cytochrome P450 enzyme family (CYP26). There are several CYP26 enzymes and the 

first one to be cloned was CYP26A1, which generates several hydroxylated forms of RA, such as 4-

hydroxy retinoic acid, 4-oxo retinoic acid, 18-hydroxy retinoic acid, 5,6-epoxy retinoic acid, and 5,8-

epoxy retinoic acid (Swindell and Eichele, 1999). Other similar enzymes (CYP26B1 and 26C1) have 

been identified later and are also able to metabolize RA (Taimi et al., 2004; White et al., 2000). The 

expression patterns of CYP26A1, CYP26B1, and CYP26C1 normally do not overlap, suggesting 

specific and distinct roles for each enzyme in the catabolism of RA (Reijntjes et al., 2004).  



 

 

 

Figure 6: Biochemical pathway of retinoids. The enzymes responsible for conversion of the retinoids: ADH 

alcohol dehydrogenase, BCMO-I β,β-carotene-15’,15’-monooxygenase, BCMO-II β,β-carotene-9’,10’-

dioxygenase, DGAT diacylglycerol O-acyltransferase, CYP26 cytochrome P450, DHRS   

dehydrogenase/reductase SDR family member, LRAT phosphatidylcholine-retinol O-acyltransferase, PNPLA4 

patatin-like phospholipase domain-containing protein 4, RDH retinol dehydrogenase, RETSAT all-trans-retinol 

13,14-reductase , RPE65 retinal pigment epithelium-specific 65 kDa protein, SDR short-chain 

dehydrogenase/reductase, UGT glucuronosyltransferase. Adapted from (Theodosiou et al., 2010). 

 

 

 

  



 

  



 

CHAPTER 2: NUCLEAR RETINOIC ACID RECEPTORS 

 

The biological effects of RA are mediated through two main families of nuclear receptors, 

which belong to the nuclear receptor superfamily: the retinoic acid receptors (RAR) and the retinoid x 

receptors (RXR). For both RARs and RXRs, there are three subtypes - α, β, and γ. They act as ligand-

inducible transcription factors and usually form RAR/RXR heterodimers.  

Note however that RXRs can also form homodimers and heterodimerize with other nuclear 

receptors. Indeed, RXRs are promiscuous receptors, which have the capacity to form heterodimers 

with several different nuclear receptors such as the receptors for fatty acids [peroxisomal proliferator 

activated receptors (PPAR)], bile acids [farnesoid x receptor (FXR)], oxysterols [liver×receptor 

(LXR)], xenobiotics [pregnane×receptor (PXR), androstanes [constitutive androstane receptor (CAR)], 

and vitamin D [vitamin D receptor (VDR)] (Germain et al., 2006b). 

 

- RETINOIC ACID RESPONSE ELEMENTS (RARES) 

 

RARs together with RXRs form asymmetrically oriented heterodimers, which bind to specific 

DNA sequences, called RA response elements (RAREs), located in the regulatory sequences of target 

genes.  

The classical RAREs are composed of two direct repeats of a core hexameric motif, 

PuG(G/T)TCA, separated by 1 base pair, 2 base pairs or 5 base pairs and named DR1, DR2 and DR5 

respectively (Figure 7) (Germain et al., 2003; Leid et al., 1992; Mangelsdorf and Evans, 1995). Such 

RAREs have been identified in the promoters of a large number of RA target genes involved in a wide 

variety of functions. For example, the classical DR5 elements are found in the promoters of the RARβ2 

gene itself (de The et al., 1990), of the CYP26A1 gene (cytochrome 450, family 26, subfamily a, 

polypeptide 1) (Loudig et al., 2000), and of several Homeobox (Hox) and hepatocyte nuclear factor 

(HNF) genes (Dupe et al., 1997; Qian et al., 2000). Recently, in silico studies revealed new DR5 

RARE-associated genes (Meis2 and Bhlhbe40) (Lalevee et al. 2011). DR2 elements were identified in 

the CRBPI (Cellular retinol binding protein I) and CRABPII (Cellular retinoic acid binding protein II) 

gene promoters (Durand et al., 1992; Smith et al., 1991). The only natural DR1 element has been 

found in the rat CRBPII gene promoter (Mangelsdorf et al., 1991). 

Remarkably, recent ChIP-seq analysis revealed novel natural DR0 and DR8 RAREs, the latter 

being composed of a DR2 juxtaposed to a DR0 (I. Davidson et al, unpublished results).  

 

 



 

  

Figure 7: The classical retinoid response elements are composed of two direct repeats of the hexameric, 

motif 5′-PuG(G/T)TCA spaced by 1 (DR1), 2 (DR2) or 5 (DR5) base pairs. Several examples of natural 

retinoid response elements from the promoters of RA-target genes are shown. Adapted from (Bastien and 

Rochette-Egly, 2004). 

 

 

- STRUCTURE OF RARS 

 

As most nuclear receptors, RARs have a modular structure consisting of 6 regions named A to 

F, from the N-terminal to the C-terminal end (Figure 8) (Chambon, 1996; Laudet and Gronemeyer, 

2002). Some of these regions overlap with functional domains. Indeed, the C and E modules 

correspond to the DNA binding domain (DBD) and the Ligand Binding Domain (LBD), respectively. 

These domains are highly conserved between RARs and nuclear receptors and play critical roles in the 

classical model of RAR transcriptional activity. Oppositely, the A/B, D and F modules are less 

conserved. 

  

DR5 

RARβ2 AG CGTTCA CCGAA AGTTCA CT 

CYP26 TT AGTTCA CCCAA AGTTCA TC 

Hoxa1 CA GGTTCA CCGAA AGTTCA AG 

       

       

DR2 

mCRBP-I GT AGGTCA AA AGGTCA GA 

mCRABP-II CC AGTTCA CC AGGTCA GG 

       

       

DR1 mCRBP-II AC AGGTCA C AGGTCA CA 

       

   PuG(G/T)TCA  PuG(G/T)TCA  



 

 

 

Figure 8: Modular structure of RARs. Adapted from (Rochette-Egly and Germain, 2009). 

 

 

1. DNA binding domain (DBD) 

 

The DBD, which is responsible for sequence-specific DNA recognition, consists of two zinc-

nucleated modules, two α-helices and a COOH-terminal extension (CTE) (Zechel et al., 1994). 

Functionally, the DBD is divided into 4 boxes: the P box within the first helix and the A box in the 

CTE, are responsible for discrimination between the half sites, while the D and T boxes are involved 

in the heterodimerization interface (Figure 9A).   

According to nuclear magnetic resonance and crystallographic studies, when the DBD is 

complexed with DNA, helix 1 and helix 2 cross at right angles and fold into a globular conformation 

to form the core of the DBD (Lee et al., 1993) (Figure 9B). Indeed, helix 1 fits specifically into the 

major groove of the DNA through the P box, while helix 2 and the CTE cooperate to create the 

interface between the heterodimerization partners.  



 

 

 

Figure 9: Structure of the DNA binding domain  

A. Schematic view of the DBD, showing the relative locations of the P-box, D-box, T-box, A-box, Helix 1, 

Helix 2, and the C-terminal extension (CTE). Adapted from (Aranda and Pascual, 2001; Bain et al., 2007). B. 

Structure of a RAR/RXR DBD heterodimer in complex with a DR1 DNA response element. Zn = atome of 

zinc, H1 and H2 = helices 1 and 2. Adapted from (Rastinejad et al., 2000)  pdb1dsz. 

 

 

Depending on the RARE, the heterodimers are differently oriented. For example on DR2 and 

DR5 elements, the RXR partner occupies the 5’ hexameric motif and the RAR partner the 3’ motif (5’-

RXR-RAR-3’) (Chambon, 1996; Laudet and Gronemeyer, 2002). However, for DR1 elements, the 

polarity is opposite, with the RAR in 5’ side and the RXR in 3’ (5’-RAR-RXR-3’) (Figure 10). This 

variation of orientation depending on the DR type, would explain why the activity of the heterodimer 

switches from an activator (DR5) to a repressor (DR1). 

Moreover, also depending on the DR type, different regions of the DBD of each partner 

participate in the dimerization interface, in order to achieve the required binding to the response 



 

elements. Indeed, the binding of RXR-RAR heterodimers to DR5 elements requires the D box of the 

RXR second zinc-finger, and the tip of the RAR first zinc finger. However, binding with reverse 

polarity to the DR1 elements involves the second zinc finger of RAR and the T box of the RXR CTE  

(Renaud and Moras, 2000). 

 

 

 
 

Figure10: Different orientations of RXR/RAR hetodimers depending on the DR type. On DR5 elements, 

the 5’ hexameric motif is occupied by RXR. On DR1 elements, the 5’ hexameric motif is occupied by RAR. 

Adapted from (Bastien and Rochette-Egly, 2004). 

 

 

2. Ligand- binding domain (LBD) 

 

The structures of the RAR LBDs were demonstrated by crystallographic studies (Moras and 

Gronemeyer, 1998; Renaud and Moras, 2000; Wurtz et al., 1996). The LBD is composed of 12 

conserved α helices and a β-turn (located between H5 and H6) (Figure 11). Helices 1-11 are folded 

into a three-layered, anti parallel helical sandwich where H4, H5, H8, H9 and H11 are sandwiched 

between H1, H2 and H3 on one side and H6, H7 and H10 on the other side. In this structure, H12 that 

encompasses the AF-2 activation domain, points away from the LBD core. Functionally, the LBD is 

divided into three main functional domains: the ligand-binding pocket (LBP), the major dimerization 

interface and the ligand-dependent activation function-2 (AF-2).  

 

  



 

 Ligand-binding pocket (LBP) 

  

The ligand-binding pocket (LBP) contains hydrophobic residues mainly from helices H3, H5, H11 

and the β-sheet, which establish van der Waals interactions with the ligand (Klaholz et al., 2000). 

Several crystallographic studies revealed the structural basis of ligand recognition (Bourguet et al., 

2000a; Li et al., 2003; Renaud et al., 1995). The carboxylic group of the retinoid molecules is buried 

deep inside the LBP, engaging hydrogen bonds with specific amino acids of H3 and the β-sheet. The 

rest of the molecule has to adapt to the overall structure of the LBP, which causes the ligand molecule 

to bend to accommodate the RAR LBP.  

 

 

 

Figure 11: The 3D structure of the LBD. Helices are shown as ribbons and labelled from H1 to H12. The 

LBD is consisted of 12 α helices which form a three-layered, antiparallel helical sandwich (on the left side of 

the figure). H4, H5, H8, H9 and H11 are sandwiched between H1, H2 and H3 on one side and H6, H7 and 

H10 on another side. Adapted from (Bourguet et al., 1995) pdb1lbd.  

 

 

  



 

The precise contacts with ligands involve three divergent residues, which are unique for each 

subtype receptor-cognate ligand pair and are located in H3, H5 and H11 (Table 1). Therefore, it has 

been possible to generate subtype-selective ligands (Germain et al., 2004). For example, the unique 

polar residues S232 and M272 located within LBP of RARα and RARγ respectively have been used to 

develop specific ligands for RARα (Am580) or RARγ (BMS270394 or CD666). Via their amino 

group, these ligands form hydrogen bonds with S232 of RARα or M27 of RARγ leading to increased 

affinity and selectivity for RARα and RARγ respectively (Table1). 

 

 

Table 1. Residues within the α-helices H3, H5 and H11 of the different RAR isotypes involved in ligand 

binding 

 

 Heterodimerization surface 

 

The main heterodimerization surface between the RAR and RXR partners is located in the LBD. It 

involves residues from helices H7, H9, H10 and H11, as well as loops L8-9 and L9-10 (Bourguet et 

al., 2000b; Gampe et al., 2000; Pogenberg et al., 2005). The core of the dimer is formed mostly by 

helices H9 and H10, which contribute to more than 75% of the total dimerization surface. In contrast 

to the almost perfect symmetric organization of RXR homodimers (so called butterfly shape), the 

heterodimer interfaces are asymmetric. Indeed, helix H7 of RXR contacts loop L8-9 of RAR, but loop 

L8-9 of RXR and helix H7 of RAR are not involved in the interaction (Figure 12). 

  

             Helices 

               Receptor                                       H3                                            H5                                           H11 

RARα Ser232 Ile270 Val395 

RARβ Ala225 Ile263 Val388 

RARγ Ala234 Met272 Ala397 



 

 

 

Figure 12: The three-Dimensional structure of RXR–RAR heterodimer with 9‑cis-retinoic acid and 

DNA. Pointed lines indicate domains with unresolved structures. Helices are shown as ribbons and labelled 

from H1 to H12 (LBD) or α1 and α2 (DBD). Helix H12 (AF-2) is represented in red in each subunit. The 

short LBD β-strands are labelled S1 and S2. 9-cis-retinoic acid in RAR and RXR LBDs is shown by green 

sticks lines. The orange spheres in the DBD indicate atoms of zinc. Image modified from (de Lera et al., 

2007). 

 

 

Recently Rochel et al revealed new structural features of the RAR-RXR heterodimers architecture 

on different RAREs. They demonstrated that the RXR–RAR–DR5 complex is elongated and 

asymmetric, with two separate DBDs and LDBs connected by a narrow segment (Figure 13 B) 

(Rochel et al., 2011). The RAR–RXR–DR1 complex is similarly elongated but with a larger 

connecting volume between the DBDs and LBDs (Figure 13 A). Interestingly, in both cases (DR5 or 

DR1), the LBD dimers are always positioned at the 5′ end of the target DNA. The observed 

asymmetry of the overall architecture and the relative position of the domains point to the essential 

role played by the hinge domains in establishing and maintaining the integrity of the functional 

structures. 

  



 

 
 

Figure 13: A. RAR-RXR-DR1 complex B. RAR-RXR-DR5 complex. Adapted from (Rochel et al., 

2011). 

 

 

 C-terminal helix 12, named AF-2 

 

The C-terminal helix 12, known as AF-2, regulates the interaction of RARs with coregulators. The 

analysis of the crystal structures of the unliganded and ligand-bound LBDs of RXRα and RARα 

respectively (Bourguet et al., 1995; Renaud et al., 1995), highlighted the conformational flexibility of 

H12 and how AF-2 becomes transcriptionally active (Figure 14 A) (Egea et al., 2001; Steinmetz et al., 

2001). 

In the unliganded receptor (so called apo-conformation), H11 is almost perpendicular to H10 

and points towards the ligand-binding pocket and some of the hydrophobic residues of H11 partially 

fill and stabilize the LBP. H12 extends away from the core LBD, pointing away from the dimer axis at 

an angle of about 45° (Bourguet et al., 1995).  

Upon ligand binding, H11 is repositioned in the continuity of H10, causing the concomitant 

swinging of H12, which moves in a ‘mouse trap’ model and packs tightly against H3 and H4 (Figure 

14B). Consequently the lid of the LBD is sealed and ligand binding is stabilized (Moras and 

Gronemeyer, 1998). Moreover, a new hydrophobic cleft between H3, H4 and H12 is formed, creating 

a defined surface for the interaction with transcriptional coactivators. This liganded conformation is 

referred as “holo” or “active” conformation (Figure 14B). Note that in the case of the RARβ and 

RARγ subtypes, some biochemical studies proposed that even in the absence of ligand, H12 interacts 

with H3 and adopts a constitutively closed conformation that approximately corresponds to the 

conformation of liganded RARα (Farboud et al., 2003; Farboud and Privalsky, 2004; Hauksdottir et 

al., 2003). 



 

 

Figure 14: Three-dimensional structure of LBD and structural changements induced by ligand 

binding. Helices are represented as ribbons and labelled from H1 to H12. A. Structure of the LBD of RXRα 

in apo conformation. Adapted from (Bourguet et al., 1995) pdb1lbd. B. Structure of the LBD of RARγ with 

ligand (holo conformation). Adapted from (Renaud et al., 1995) pdb2lbd.   

 

 

3.  N-terminal AF-1 domain (NTD) 

 

The N-terminal domain (NTD) of RARs (activation function AF-1) corresponds to the A and B 

regions (Nagpal et al., 1993; Nagpal et al., 1992). Within the NTD, the A regions are comparatively 

variable between the different RAR subtypes and isoforms (Chambon, 1996). In contrast, the B region 

is well conserved and holds a proline-rich motif containing phosphorylation sites (see below, Figure 

26 page 42). 

In contrast to the DBD and the LBD, there are still no high-resolution structures available for the 

NTD of RARs and most nuclear receptors. Even the relatively very short NTD of peroxisome 

proliferator-activated receptor-γ (PPAR-γ) failed to show any signature of structure (Chandra et al., 

2008). According to several studies, the NTDs of the Estrogen Receptor (Warnmark et al., 2001), the 

Glucocorticoid Receptor (Warnmark et al., 2001), the Progesterone Receptor (Bain et al., 2000) and 

the Androgen Receptor (Reid et al., 2002) possess an intrinsically disordered (ID) conformation.  

Importantly, intrinsically unstructured proteins are functional and the NTD of RARs has been 

shown to play an important role in the regulation of transcription (Nagpal et al., 1993). Though the 

mechanism of this functionality has not been elucidated yet, it has been shown that disordered 

domains provide the flexibility that is necessary for modifications by kinases or ubiquitin ligases 

(Dyson and Wright, 2005). Such modifications may change structural properties of the domain and 



 

subsequently affect the dynamics of neighboring structural domains (Pufall et al., 2005) and therefore 

interactions with co-regulators and/or DNA (Dyson and Wright, 2005; Liu et al., 2006). In line with 

this, it is interesting to note that the NTD of RARs contains phosphorylation sites located in a proline-

rich motif (PRM). As PRMs have the capacity to bind proteins with SH3 (Src-homology-3) or WW 

(tryptophan-tryptophan) domains (Kay et al., 2000b), one can speculate that the NTD of RARs might 

regulate transcription via the phospho-dependent association or dissociation of coregulators (See 

below chapter 5).  

 

4. D-region 

 

The D domain or hinge region is poorly conserved and serves as a hinge between the DBD and the 

LBD. It has been proposed that its flexibility would permit the adaptation of the RAR/RXR 

heterodimers to different types of RAREs (Glass, 1994; Rochel et al., 2011). In RARs, this domain is 

very small (12 amino acids) and shares 50% of identity between RARα and RARβ and 33% between 

RARα and RARγ. The hinge region would also harbor a  nuclear localization signal (Hamy et al., 

1991). 

 

5. The F-region 

 

The F region is the most carboxy-terminal region of RARs and is absent in RXRs.  It is not 

conserved between RARs and its three-dimensional structure is not known. So far the precise 

functions of region F are not well understood.  It has been proposed that in the absence of ligand this 

region might stabilize the H12 of RARα in open conformation, thus enhancing binding of corepressors 

(Farboud and Privalsky, 2004). According to recent studies, this region would be able to bind specific 

mRNA motifs (Poon and Chen, 2008). Interestingly, the F region is phosphorylated at multiple sites 

and such modificatins might change the properties of RARs (Bastien et al., 2000; Rochette-Egly et al., 

1997). 



 

  



 

CHAPTER 3: THE CLASSICAL MODEL OF RAR-MEDIATED 

REGULATION OF TRANSCRIPTION 

 

The canonical mechanism of action of RARs involves the activation or repression of target-gene 

transcription (Figure 15).  

 

 

 

 

Figure 15: Classical model of activation of RA-target genes. 

A. In the absence of ligand, RARα/RXR heterodimers bind DNA in association with corepressor 

complexes. B. Ligand binding induces the release of corepressors and the recruitment of coactivator 

complexes. C. Upon decompaction of chromatin, the transcriptional machinery, which consists of the 

Mediator, RNA polymerase II and the general transcription factors (GTFs), is recuited to the promoter, 

resulting in the initiation of transcription. Adapted from (Bour et al., 2007b). 

 

  



 

This mechanism is at the basis of the regulation by RARs of gene networks involved in a wide 

number of functions such as homeostasis, development and reproduction. According to such a model, 

genes are silenced through the recruitment of corepressor-containing complexes to unliganded (apo) 

DNA-bound receptors. Conversely, genes are activated subsequent to corepressors release from 

liganded receptors (holo) and recruitment of coactivator complexes (Figure 15). At the molecular 

level, the discrimination between coactivators and corepressors relies in the positioning of H12 within 

the LBD.  

 

- REPRESSION OF TRANSCRIPTION IN THE ABSENCE OF LIGAND 

 

In the absence of ligand, RAR/RXR heterodimers occupy RAREs in association with large 

multiprotein complexes with several enzymatic activities (histone deacetylases, methylases, ubiquitin 

ligases etc), which maintain histones and chromatin in a compacted repressed state. 

Basically, the corepressor core is composed of NCoR (nuclear receptor co-repressor) or SMRT 

(silencing mediator for retinoic acid and thyroid hormone receptors). NCoR and SMRT were the first 

identified corepressors (Chen and Evans, 1995; Lee et al., 1995; Sande and Privalsky, 1996). They 

bind NRs and serve as platforms for the binding of other proteins such as GPS2 (G-protein pathway 

suppressor 2), TBL1 (Transducin β-like 1), TBLR1 (TBL1-related protein 1), HDAC3 (Histone 

deacetylase 3) and Sin3 (Figure 16) (Li et al., 2000; Zhang et al., 2002).  

 

 

 

Figure 16: Corepressors and associated complexes. Core of the complex (pointed) and associated 

complexes. Adapted from (Perissi and Rosenfeld, 2005). 

  



 

Of note is that SMRT is the preferential corepressor of RARs. It is an ubiquitous 270 kDa protein, 

which belongs to a variety of multiprotein complexes containing histone deacetylases. These 

complexes repress transcription by deacetylation of lysine residues located in the N-terminal tails of 

histones. 

NCoR and SMRT are structurally and functionally similar and share about 40% amino-acid 

identity. Both have been shown to repress the transcriptional activity of several nuclear receptors and 

of a variety of unrelated transcription factors involved in several cellular processes. For example 

SMRT represses serum response factor (SRF), activator protein-1 (AP-1), and nuclear factor-mB 

(NFmB), which are all transcription factors involved in stimulation of cell proliferation (Lavinsky et 

al., 1998; Shibata et al., 1997; Zamir et al., 1996). SMRT as well as NCoR display specific domain 

structures (Figure 17).  

 

 

 

 

Figure 17: Schematic N-CoR/SMRT domains with the associated proteins. Adapted from (O'Malley and 

Kumar, 2008). 

 

 

The C-terminus contains corepressor nuclear receptor (CoRNR) boxes, also called NR interactions 

domains (IDs), which interact with the LBD of NRs (Hu and Lazar, 1999; Nagy et al., 1999; Perissi et 

al., 1999). The ID contains the sequence (L/I)XX(I/V)I or LXXX(I/L)XXX(I/L) (where X is any 

amino acid), and forms an extended α helix that interacts with the hydrophobic groove generated by 

H3, L3-4 and H4 of RARs, the N-terminal extension of the motif masking the H12 interaction 

interface (Figure 18). As this surface is topologically related to that involved in coactivator interaction, 

but without H12; this may explain why the binding of corepressors and coactivators is mutually 

exclusive (Hu and Lazar, 1999).  

In contrast, the amino terminus of N-CoR and SMRT contains the domains responsible for 

transcriptional repression (Figure 17). Three repressive regions (RD1, RD2, and RD3) were originally 

described due to their ability to act as autonomous repression domains when assosiated to DNA 

binding proteins (Horlein et al., 1995). RD1 interacts with GPS2 but little is known about the role of 

GPS2 in NR repression (Zhang et al., 2002). RD1 also interacts with TBL1 and TBLR1, which are 

members of the WD40 family. 



 

 

 

Figure 18: Interaction of NR LBDs with corepressors. 

A. Structure of the LBD of PPARα complexed with an antagonist and a CoRNR box. Adapted from (Xu et 

al., 2002) pdb1kkq. B. Structure of apo RXR LBD. Adapted from (Bourguet et al., 1995) pdb1lbd. C. 

Structure of holo RARγ LBD (with an agonist). Adapted from (Renaud et al., 1995) pdb2lbd 

 

 

TBL1 and TBLR1 interact simultaneously with deacetylated histone H4 (Yoon et al., 2003), 

thereby stabilizing the corepressor complex on chromatin and facilitating repression. The other 

repressive domains interact with HDAC3 and with SIN3, a component of the Sin3A corepressor 

complex (Alland et al., 1997; Heinzel et al., 1997; Nagy et al., 1997). Remarkably, SIN3 can recruit 

additional enzymes with repressive activity such as the histone H3K9 methyltransferase 

ESET/SETDB1 and the ATP-dependent chromatin remodeling complex SWI/SNF (Underhill et al., 

2000; Yang et al., 2003). 

 Between RD1 and RD2 there are two SANT (SWI3, ADA2, N-CoR, and TFIIB) motifs, 

which are also important for corepressor function. The first SANT motif forms a deacetylase 

activation domain (DAD), which stably associates with and activates histone deacetylase 3 (HDAC3) 

(Danielian et al., 1992; Umesono et al., 1991). The second one named histone interaction domain 

(HID), interacts directly with unacetylated histone H4 N-terminus tails (Yu et al., 2003). 



 

- ACTIVATION OF TRANSCRIPTION UPON LIGAND BINDING 

 

Ligand binding induces conformational changes of RARα, with reorientation of H12 (Figure 19), 

resulting in the formation of a charge clamp between a conserved glutamate residue in H12 and a 

lysine residue in H3. Such a charge clamp can form hydrogen bonds with the LxxLL motif of 

coactivators. However it does not fit with the extended LxxI/HIxxxI/L motif of corepressors. Thus, it 

has been proposed that the length difference of the interacting motifs might be at the origin of the 

alternative interactions of the hydrophobic cleft in the apo or holo conformations, with corepressors 

and coactivators (Germain et al., 2006b; Perissi et al., 1999).  

 

 

 

 

Figure 19: Conformational changes in LBD and interaction with coactivators. 

A. Structure of the LBD of RXR bound to an agonist and to the NR box of coactivators. Adapted from 

(Lippert et al., 2009)  pdb2zxz. B. Structure of apo RXR LBD. Adapted from (Bourguet et al., 1995) pdb1lbd. 

C. Structure of holo RARγ LBD complexed with a ligand. Adapted from (Renaud et al., 1995) pdb2lbd. 

 

 

According to the classical model of transcriptional activation, ligand binding releases bound 

corepressors and promotes the recruitment of coactivators that serve as a platform for larger 

complexes with chromatin modifying and remodeling activities (Figure 20).  

The coactivators of the p160/SRC (Steroid Receptor Coactivators) family have been the most 

extensively studied among the large spectrum of identified coactivators. This family comprises three 

members: SRC-1 (also referred to as NCoA-1), SRC-2 [NCoA2, TIF-2 (transcriptional intermediary 

factor 2), GRIP-1 (glucocorticoid receptor interacting protein 1)] and SRC-3 [pCIP (p300/CBP-

interacting protein), ACTR (Acetyltransferase), AlB1 (amplified in breast cancer I), TRAM1 (thyroid 



 

hormone receptor-activator molecule I), RAC3 (Receptor-Associated Coactivator 3)] (Chatterjee and 

Kashfi, 2011). 

 

 

 

 

Figure 20: Coactivators and associated complexes. The RAR/RXR heterodimers in holo conformation 

recruit the p160 coactivators, which serve as a platform for chromatin modifying and remodeling complexes. 

Adapted from (Perissi and Rosenfeld, 2005). 

 

 

The p160 SRCs are approximately 160 kDa in size and share an overall of 50-55% sequence 

similarity and 43-48% of sequence identity. Structurally p160/SRCs are composed of several domains 

(Figure 21). The central Receptor-Interacting Domain (RID) contains three LXXLL motifs or NR 

boxes and is responsible for interaction with the hydrophobic cleft of ligand-bound RARs. The C-

terminal transcriptional activation domains (AD1 and AD2) recruit proteins that contribute to 

chromatin remodelling. AD1 is responsible for the recruitment of histone acetyltransferases such as 

p300/CBP (CREB-binding protein) and PCAF (P300/CBP-associated factor) (Chen et al., 1997; 

Stallcup et al., 2003; Torchia et al., 1997). AD2 usually recruits histone methyltransferases such as 

CARM1 (coactivator-associated arginine methyltransferase 1) and PRMT1 (Protein arginine N-

methyltransferase 1) (Chen et al., 1999; Lee et al., 2005; Stallcup et al., 2003). Moreover, the C-

terminal domain of SRCs itself shows a weak HAT activites (Chen et al., 1997; Spencer et al., 1997).   

The N-terminal domain called bHLH/PAS (helix-loop-helix/Per/ARNT/Sim) is highly 

conserved and functions as a third AD (AD3) domain. It serves as a binding site for DNA-binding 

transcription factors such as TEF-4, MEF-2C, p53 and myogenin. Additionally, bHLH/PAS can 

recruit other coactivators including GAC63, CoCoA, FliI, G9a,BAF57  and ANCO1 (Kim et al., 

2003; Lee et al., 2006). 



 

 

 

Figure 21: Schematic representation of functional domains and interacting proteins of p160/SRC 

family. Adapted from (O'Malley and Kumar, 2008). 

 

 

The complexes with enzymatic activities associated to coactivators alter the chromatin 

structure around the promoter of target genes and create modifications of histone tails according to a 

“histone code”. Indeed these modifications create new sites for the recruitment of other complexes 

such as SWI/SNF (SWItch/Sucrose NonFermentable) that also contribute to chromatin remodeling 

using the energy of ATP hydrolysis (Huang et al., 2003; Sims and Reinberg, 2008).  

Finally, chromatin remodeling and modifications pave the way for the recruitment of the 

transcriptional machinery that includes the multisubunit Mediator complex DRIP205/TRAP220, RNA 

polymerase II and the general transcription factors (Bastien and Rochette-Egly, 2004; Dilworth and 

Chambon, 2001; Rochette-Egly, 2005; Rosenfeld et al., 2006). Note that the recruitment of the 

transcription machinery involves interaction of RARs with a specific subunit of the Mediator complex, 

DRIP205/TRAP220, which contains two LxxLL motifs (Lefebvre et al., 2005). 

It must be noted that depending on the target gene’s promoter context, RARs can carry out 

different programs for gene activation. Indeed, recent chromatin immunoprecipitation experiments 

showed that even in the absence of RA, RARα can occupy the promoters of some genes in association 

with the Mediator complex and RNA PolII (Flajollet et al., 2006; Mendoza-Parra et al., 2011; Pavri et 

al., 2005; Perissi et al., 2004). In this case, initiation of transcription relies on the dissociation of cdk8 

(cyclin-dependent kinase 8 inhibitory subunit) from the Mediator complex (Andrau et al., 2006; 

Elmlund et al., 2006) and on the subsequent recruitment of the general transcription factors such as 

TFIIH. 

 

  



 

- UNCONVENTIONAL COREGULATORS OF RARS 

 

In addition to the above classical corepressors and coactivators several other unconventional 

coregulators have been characterized and divided in two groups: (i) corepressors with LXXLL motifs 

and (ii) coregulators devoid of LXXLL motifs. 

 

1. Corepressors with LXXLL motifs 

 

This group includes LCoR (Ligand-dependent CoRepressor), RIP140/NRIP1 (receptor 

interacting protein of 140kDa), PRAME (preferentially expressed antigen in melanoma) and 

TIF1α/Trim24 (transcription intermediary factor-1 α) (Augereau et al., 2006; Epping et al., 2005; 

Fernandes et al., 2003; Hu et al., 2004; Le Douarin et al., 1995). These proteins interact with liganded 

RARs via LXXLL motifs (one in TIF1α, seven in PRAME and nine plus a modified LxxML motif in 

RIP140), but in contrast to the classical coactivators, they attenuate the activity of RARs (Farooqui et 

al., 2003; Heery et al., 1997) via the recruitment of complexes with repressive activity. 

 

2. Coregulators devoid of LXXLL motifs 

 

This group includes: 

SUG-1 (Suppressor of Gal 1) interacts with RARs and participates to chromatin remodeling via its 

ATPases activity. It is also a subunit of the 19S regulatory complex of the 26S proteasome and as such 

it promotes the degradation of RARs and SRC-3 (Ferry et al., 2009; Gianni et al., 2002). 

CRABPII (Cellular Retinoic Acid Binding Protein II) together with cyclin D3 interacts with RARα 

(Bastie et al., 2001; Delva et al., 1999; Despouy et al., 2003), and serves for channeling of RA to the 

receptor (Budhu and Noy, 2002; Dong et al., 1999). 

Cyclin H binds RARα at a specific docking site located in loop L8–9 of the LBD and allows the well-

positioning of its-associated kinase cdk7 which then can phosphorylate the NTD of the receptor (Bour 

et al., 2005a) (see chapter 4). 

TACC1 (transforming acidic coiled coil 1) serves as a scaffold protein and builds up a transcriptional 

complex around RARα (Guyot et al., 2010). 

Actin and actin-binding proteins (ABP). In recent years, more and more attention has focused on the 

role of actin and ABPs in transcriptional regulation (Zheng et al., 2009a). Recently, the group of Dr. 

Rochette-Egly identified vinexin β as a new partner of the RARγ subtype (Bour et al., 2005b). In fact 



 

vinexin β, which contains an SH3 domain, interacts with the NTD of RARγ and functions as a 

repressor via sequestering RARγ out of chromatin (Lalevee et al., 2010a) (see chapter 4, pages 43-44). 

  



 

  



 

CHAPTER 4: NEW PICTURES OF RARS: RARS HAVE NON-

GENOMIC EFFECTS AND ARE PHOSPHOPROTEINS 

 

- THE NON-GENOMIC EFFECTS OF RARS: ACTIVATION OF KINASE 

PATHWAYS 

 

Today, it is becoming increasingly evident that, in addition to their genomic effects, RARs 

also have a number of non-genomic effects. Indeed, recent studies from several laboratories, including 

ours, demonstrated that RA activates rapidly and transiently several kinase cascades. 

RA has been shown to activate Protein Kinase C (PKC) (Kambhampati et al., 2003) and the 

PI3K/Akt pathway (Álvarez et al., 2007; Bastien et al., 2006) in several cell lines. RA also activates 

the MAPK/ERK signaling pathways in several neuronal cell lines such as neuroblastoma cell lines 

(Miloso et al., 2004), hippocampal cells (Chen and Napoli, 2008) and mouse embryonic stem cells 

committed to differentiate into neurons by RA (Stavridis et al., 2010). RA also induces this pathway in 

embryocarcimoma cells (Gupta et al., 2008). 

RA was also found to activate p38MAPK and the downstream mitogen and stress-activated 

kinase MSK1 in various cell lines such as rat cardiac myoblasts, mouse embryonic fibroblasts, mouse 

embryocarcinoma cells, mammary breast tumor cells and leukemic cells (Alsayed et al., 2001; Bruck 

et al., 2009; Ren et al., 2007).  

According to recent results from the laboratory of C. Rochette-Egly, these effects of retinoic 

acid are transcriptionally independent but involve RARs and more precisely the RARα subtype. 

Indeed no p38MAPK activation was observed in cells knockout for RARα (Bruck et al., 2009). 

However the molecular mechanism of p38MAPK activation by RARs was still unknown at the time of 

my arrival to the laboratory.  

Remarkably, the other nuclear receptors and their cognate hormones are also able to activate 

the MAPK pathways (Piskunov and Rochétte-Egly 2012) (Figure 22). Indeed, most of the steroid 

hormones, estrogens, progestins, and androgens activate the ERK pathway while glucocorticoids and 

vitamin D activate p38MAPK like RA. The interesting point is that the non-genomic effects of these 

hormones were recently found to be mediated by a subpopulation of their cognate receptor present in 

specialized plasma membrane structures such as caveolae and lipid rafts (Marquez et al., 2006; 

Matthews et al., 2008; Norman et al., 2004), that contain lipids, structural proteins like flotillin and 

caveolin, and several proteins involved in signal transduction including heterodimeric G proteins, 

c‑Src, Rho and RAC GTPases and Phosphoinositide 3‑kinase (PI3K) (de Laurentiis et al., 2007; 

Luoma et al., 2008). 



 

 

 

Figure 22: Non-genomic effects of nuclear receptors. A subpopulation of the classical steroid receptors 

(ER, PR, GR, AR) and non‑steroid receptors VDR is associated to cell membranes and initiates cascades of 

kinase activations upon binding of their cognate ligands. Accordingly, liganded non‑steroid receptor VDR 

activates p38MAPK and the downstream MSK1 kinase. Among the steroid receptors, GR bound to 

glucocorticoids also activates p38MAPK but there is no data indicating whether MSK1 is activated or not. 

However, upon the concomitant activation of NMDA‑R under stress conditions, liganded GR activates 

MSK1 but through Erks. The other steroid receptors PR, ER and AR also activate Erks but only PR was 

found to activate the downstream MSK1. In the case of ER and AR another downstream effector of Erks, 

RSK2 would be an interesting candidate. Adapted from (Piskunov and Rochette-Egly, 2011b). 

 

 

In these rafts, steroid NRs are part of protein complexes and activate MAPK signaling through 

interaction with specific signaling proteins. As an exemple, in response to the hormone, ERα rapidly 

activates the Src/p21ras/Erk pathway via direct interaction with the SH2 domain of c‑Src. Progestins 

and androgens also activate this signaling cascade via direct interaction of the cognate receptor with 

the SH3 domain of c‑Src or with ERα which itself activates c‑Src (Castoria et al., 2003; Hagan et al., 

2009; Migliaccio et al., 2000; Migliaccio et al., 1998) (Figure 22).  

 

  



 

- RARS ARE PHOSPHOPROTEINS 

 

A number of studies demonstrated that RARs, like most nuclear receptors, are targets for 

phosphorylation processes (Rochette-Egly, 2003; Rochette-Egly, 2005). Several phosphorylation sites 

and associated kinases have been identified for RARs and RXRs (Table 2).  

 

 

Table 2: RAR and RXR phosphorylation sites and associated kinases. 

 

However the most important and functional phosphorylated residues lie within the LBD and 

the N‑terminal domain (NTD) (Figure 23). The LBD of RARs depicts one main phosphorylation site, 

serine 369 in RARα, which is located in the loop between helices 9 and 10 and belongs to an arginine-

lysine-rich motif. This motif corresponds to a consensus phosphorylation motif for several kinases 

such as cyclic AMP-dependent protein kinase (PKA) and MSK1 and thus may integrate several 

signaling pathways (Gaillard et al., 2006). 

 

 

Receptor Domain/Region Sesidue Kinese Referense 

RARα NTD S77 cdk7/cycH(TFIIH) (Rochette-Egly et al., 1997) 

DBD S96 Akt (Srinivas et al., 2006) 

S115 PKC (Sun et al., 2007) 

S157 PKC (Delmotte et al., 1999) 

T181 JNK (Srinivas et al., 2005) 

Hinge  CAMKIIγ (Si et al., 2007) 

LBD S369 PKA/MSK1 (Bruck et al., 2009; Rochette-Egly et 

al., 1995) 

F region S445, S461 JNK,cdk7 (Rochette-Egly et al., 1997; Srinivas et 

al., 2005) 

RARβ2 NTD   (Rochette-Egly and Germain, 2009) 

RARγ2 NTD S66 p38MAPK (Bastien et al., 2000) 

S68 cdk7/cycH(TFIIH) (Gianni et al., 2002) 

LBD S360 PKA/MSK1 (Rochette-Egly et al., 1995) 

RXRα1 NTD S22 cdk/cyc (Bastien et al., 2002) 

S32 JNK (Mann et al., 2005) 

S61, S75, T87 JNK (Adam-Stitah et al., 1999; Bruck et al., 

2005) 

DBD T162 PKC (Sun et al., 2007) 

LBD S265 JNK (Adam-Stitah et al., 1999; Bruck et al., 

2005; Li et al., 2002) 



 

 

 

Figure 23: Main phosphorylation sites of RARα. The LBD contains a phosphorylation site for the MSK1 

kinase. The N-terminal domain contains a proline-rich motif with a phosphorylation site for Cdk7. Adapted 

from (Rochette-Egly and Germain, 2009). 

 

 

The NTD also contains a phosphorylation site, serine 77 in RARα, which is located at the C-

terminal end of the NTD, in proximity of the DBD. This serine belongs to a proline-rich motif (PRM) 

and therefore corresponds to a consensus site for cyclin‑dependent protein kinases (cdks) and 

Mitogen‑Activated Protein Kinases (MAPKs). The kinase involved in the phosphorylation of this 

residue has been identified in the laboratory (Rochette-Egly et al., 1997). It is the cdk7 kinase, which 

belongs to the cyclin-dependent kinase (CDK)-activating kinase (CAK) subcomplex of TFIIH (general 

transcription factor composed of 10 subunits). Interestingly, the activity of cdk7 depends on the 

association of the kinase with other components of the CAK complex, cyclin H and MAT1 (Giglia-

Mari et al., 2004). Recently, it has been shown in the laboratory that the accurate positioning of the 

cdk7 kinase and thus the phosphorylation of the NTD by cdk7 depends on the docking of cyclin H at a 

specific domain of the LBD, encompassing loop L8-9 and the N-terminal part of H9 (Bour et al., 

2005a; Gaillard et al., 2006). 

 Remarkably, the two phosphorylation sites are conserved between the different RAR subtypes 

in mammals (Samarut et al., 2012). However the phosphorylation site located in the LBD is not 

conserved in the other nuclear receptors (Rochette-Egly, 2003). The phosphorylation site of the NTD 

is not conserved either as none of them depict a stretch of proline residues around the serine residue 

similar to that of RARs.  Nethertheless all nuclear receptors (except VDR due to its very short NTD), 

contain other phosphorylation sites that are substrates for several types of kinases such as cdks, 

p42/p44MAPK, p38MAPK, and c‑Jun N‑terminal kinases (JNKs) (Chen et al., 2008b; Lannigan, 

2003; Rochette-Egly, 2003; Wang et al., 2007; Weigel and Moore, 2007a; Weigel and Moore, 2007b; 

Weigel and Moore, 2007c).  

 

  



 

- RARS PHOSPHORYLATION INVOLVES A CASCADE OF KINASES 

 

Remarkably, the two main serine residues of RARs are rapidly phosphorylated in response to 

RA (Bruck et al., 2009). Recent studies demonstrated that this RA-induced phosphorylation of RARα 

results from a coordinated phosphorylation cascade starting with the phosphorylation of serine 369 by 

MSK1 (Bruck et al., 2009). Interestingly, phosphorylation of this serine increases the flexibility of 

loop L8–9 (Samarut et al., 2012), which is in close proximity and corresponds to the cyclin H binding 

domain (Figure 24). Consequently, the binding of cyclin H and the associated cdk7 to this domain is 

facilitated and the serine located in the NTD can be phosphorylated by cdk7 (Gaillard et al., 2006).  

 

 

 

 

Figure 24: Superposition of the average structures of the RARα LBD unphosphorylated (blue) and 

phosphorylated (red). Adapted from (Samarut et al., 2012). 

 

 

This is a unique example of cooperation between the N- and C-terminal domains of RARs 

through a kinase complex. The docking site of cyclin H and the two phosphorylation sites are 

conserved between RARs, but whether the above cascade is common for all RARs needs to be further 

investigated.  

Remarkably, the cyclin H docking site as well as the serine located in loop L9-10 are not 

conserved in other nuclear receptors and other cdk7 targets, suggesting that the cascade and the 

phosphorylation by cdk7 might be specific for RARs.  

 

  



 

- CONSEQUENCES OF PHOSPHORYLATION ON RARS ACTIVITY 

 

1. RAR phosphorylation and the transcription of RA target genes 

 

Recently, Bruck et al. highlighted a new paradigm in which, in vivo, the RA-induced 

phosphorylation cascade, starting with the rapid activation of p38MAPK and ending with the 

phosphorylation of RARα, is crucial for RARα-mediated transcription (Bruck et al., 2009) (Figure 25). 

Indeed, they demonstrated that the expression of several RA target genes is abolished upon silencing 

of p38MAPK or MSK1 and upon mutation of RAR phosphorylation sites. At the molecular level, the 

MSK1-dependent phosphorylation of S369 located in the LBD of RARα is critical for the binding of 

TFIIH. Moreover, phosphorylation of S77, which is a consequence of S369 phosphorylation and the 

last step of all phosphorylation cascades, promotes the recruitment of RARα to the target genes 

promoters. These results corroborate previous observations in fibroblasts from patients suffering from 

Xeroderma pigmentosum (Keriel et al., 2002). In these cells, which are characterized by mutations of 

a TFIIH subunit, RARα is hypophosphorylated at serine 77 and the RA response is deficient. 

In parallel, activated MSK1 is also recruited to RARα target promoters where it 

phosphorylates histones H3 at serine 10 (Bruck et al., 2009). This phosphorylation process, which is 

coupled to the acetylation of nearby lysine residues (K9 or K14) (Cheung et al., 2000; Clayton et al., 

2000; Lo et al., 2000), and to the recruitment of the chromatin remodeling complex SWI/SNF (Vicent 

et al., 2006) paves the way for the recruitment of RARs and the transcriptional machinery. 

Altogether, these data highlight that there is cooperation between the phosphorylation of 

RARα and that of histones for the recruitment of RARα to RAREs and the initiation of transcription of 

the target genes (Figure 25).  

 

 



 

 

 

Figure 25: Cooperation of genomic and non-genomic effects in the initiation of transcription of RARα 

target genes in response to RA. Adapted from (Bruck et al., 2009). 

  



 

2. RARs phosphorylation and their subcellular localization 

 

Generaly, nuclear receptors display a nuclear localization. However, some of them such as 

AR, GR, and MR are cytoplasmic and translocate to a nuclei upon ligand induction.  

Several processes control the nuclear localization of nuclear receptors among which 

phosphorylation processes. Indeed, recent results indicated that phosphorylation of specific sites 

enhances nuclear localization while phosphorylation of others increases nuclear export (Lombardi et 

al., 2008; Sun et al., 2007; Weigel and Moore, 2007a). Han et al. recently demonstrated that 

phosphorylation of the RARγ NTD by p38MAPK induces the cytoplasmic localization of receptor 

(Han et al., 2009).  

 

3. RARs phosphorylation and binding proteins with WW or SH3 domains 

 

The phosphorylation site located in the NTD of RARs belongs to a proline-rich motif (PRM) 

(Figure 26). 

 

 

 

 

Figure 26: Amino acid sequence of the PRM of RARγ1, RARβ2 and RARα1.  Adapted from (Lalevee 

et al., 2010a). 

 

 

Such motifs are well known to bind proteins with SH3 or WW domains. Moreover, 

phosphorylation of a serine residue located in PRMs has been shown to prevent or favorize 

interactions (Kay et al., 2000b; Macias et al., 2002; Sudol et al., 2001; Zarrinpar and Lim, 2000). 

Indeed, phosphorylation may involve cis-trans isomerization of the proline residues surrounding the 

phosphorylated serines, creating new specific recognition sites for interacting factors (Bao et al., 



 

2004). In this context the peptidyl-prolylisomerase Pin1, an important enzyme with a WW domain and 

involved in the regulation of signaling pathways, transcription and cell cycle progression (Nelson et 

al., 2006) has been shown to interact with the phosphorylated form of the NTD of RARα (Brondani et 

al., 2005). 

Recently, the group of Dr. Rochette-Egly identified and characterized vinexin β as a novel co-

regulator interacting directly with the PRM of RARγ (Bour et al., 2005b). Vinexin β is an actin-

binding protein which plays a role in cytoskeleton organization, cell spreading and intracellular 

signaling. It is an adaptor composed of three SH3 domains without any enzymatic activity (Kioka, 

2002). Only the third C-terminal domain of vinexin β (SH3-3) interacts with a consensus PxxPxR 

motif located in the PRM of RARγ (Lalevee et al., 2010a) (Figure 26). Most interestingly, substitution 

of the second proline of the motif with a leucine, as in RARα, abolishes the interaction and explains 

why vinexin β interacts specifically with the RARγ subtype.  

Vinexin β is present not only in the cytosol but alo in the nucleus where it interacts with the 

non-phosphorylated form of RARγ (Bour et al., 2005b). Then in response to RA, phosphorylation of 

serine 79 (the equivalent of S77 in RARα), which is in the vicinity of the PxxPxR motif, induces the 

dissociation of vinexin β. According to recent unpublished results from the laboratory, 

phosphorylation of this residue would induce subtle changes in the conformation of the polyproline 

helix, decreasing its propensity to interact with the SH3 domain of vinexin β.  

In fact, vinexin β is a repressor of RARγ-mediated transcription. As vinexin β is undetectable 

in chromatin, Lalevée et al. proposed that it would sequester the non-phosphorylated RARγ in an 

inactive state out of chromatin. The dissociation of vinexin β subsequent to the phosphorylation of the 

PRM would allow the recruitment of RARγ to chromatin and thereby the activation of the target genes 

(Lalevee et al., 2010a). 

Knowing that vinexin β is a scaffolding protein with three SH3 domains, which can interact 

with several proteins at the same time, the following model was proposed. Vinexin β and RARγ 

belong to a multiprotein complex in which vinexin β interacts directly with the NTD of RARγ via its 

third SH3 domain and indirectly with the LBD of RARγ through two other SH3 domains and 

intermediary proteins (Lalevee et al., 2010a) (Figure 27). 

 

 



 

 
 

Figure 27: Model for the role of vinexin β in the control of RARγ transcriptional activity. 

A. In the absence of RA, the third SH3 domain of vinexin β (SH3.3) interacts with the non-phosphorylated N-

terminal PRM of RARγ. Through other two SH3 domains, vinexin β might also act as a scaffold linking the 

NTD to the LBD of RARγ via protein complexes (exemplified as X and Y). Such a complex sequesters 

RARγ out of chromatin, thereby impeding transcription. B. Upon RA addition, phosphorylation of the RARγ 

PRM and the conformational changes of the LBD cooperate to induce the dissociation of the vinexin β-based 

complex. C. Once separated from vinexin β-based complex, phosphorylated RARγ can dimerize with RXR 

and occupy the promoters of the target genes to initiate the transcription of RA-target genes. Adapted from 

(Lalevee et al., 2010a). 

  



 

CHAPTER 5: IMPORTANCE OF ACTIN-BINDING PROTEINS 

WITH SH3 DOMAINS 
 

The discovery that RARs can interact with actin-binding proteins such as vinexin β was new 

and rather unexpected. In fact, it is not so surprising as other proteins of the same vinexin family, and 

several other actin-binding proteins such as gelsolin have been shown recently to interact with several 

activators of transcription including nuclear receptors (Table 3) (Zheng et al., 2009a). Moreover, there 

is a growing evidence that actin and actin-binding proteins (ABPs) are present in  nuclei and play an 

important role in key nuclear processes: chromatin remodeling, transcription, DNA repair, DNA 

replication and formation and maintenance of nuclear structure (Figure 28) (For review see (Castano et 

al., 2010)).  

 

 

 

 

Figure 28:  Model showing the actin, actin-binding proteins and actin complexes involved in chromatin 

remodeling, transcription initiation and elongation, DNA repair and replication. Actin and actin-binding 

proteins may function as key proteins bringing together various factors to form a network that can be used in 

several processes in the nucleus. Adapted from (Castano et al., 2010). 



 

How ABPs regulate nuclear processes is not fully understood but they may function as 

adaptors recruiting actin, which is now known to have a structural and/or regulatory role with 

chromatin-remodeling complexes and the RNA polymerase machinery. 
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Direct/ 
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Gelsolin 

Actin filament 
severing and 

capping 
protein 

Involved in gel-to-sol 
transformations;severs and 

caps polymeric actin 
filaments; acts in the actin-
scavenging system; inhibits 

actin polymerization 

AR Co-activator Direct LBD 

Flightless I 
Actin-

remodeling 
proteins 

Possess F-actin-serving activity AR Co-activator Direct  

α-actinin 2 
Bundling 
proteins 

Functions as scaffolds for 
signaling intermediates that 
stimulate actin elongation; 

binding partners for ICAM-1 

AR Co-activator Indirect  

α-actinin 4 
Bundling 
proteins 

Functions as scaffolds for 
signaling intermediates that 
stimulate actin elongation; 

binding partners for ICAM-1 

ER 
VDR 

Co-activator Direct  

Vinexin α 
adaptor 
protein 

Promotes up-regulation of 
actin stress fiber formation 

AR, ERα , ERβ, 
GR 

Co-activator   

Vinexin β 
adaptor 
protein 

Regulates cell spreading RARγ 
Co-

repressor 
Direct 

NH2-
terminal 

Supervillin 

F-actin- and 
membrane-
associated 
scaffolding 

protein 

Regulates cell-substrate 
adhesion; organization of 

muscle co-stameres; stimulus-
mediated contractility of 

smooth muscle and myogenic 
differentiation 

AR Co-activator Direct 
NH2-and 
COOH-

terminal 

Filamin 
Cross-linking 

proteins 

Cytoplasmic transport; 
membrane integrity; cellular 

adhesion 
AR Co-activator Direct Hinge 

Filamin A 
Cross-linking 

proteins 

Cross-links actin filaments; 
recruits F-actin into extended 

networks 
AR 

Co-
repressor 

Direct Hinge 

Transgelin 
Cross-linking 

proteins 
Organizes actin filaments into 

dense meshworks 
AR 

Co-
repressor 

Indirect LBD 

 

Table 3: Actin-binding proteins interacting with Nuclear Receptors. 

Adapted from (Zheng et al., 2009a). 

 

According to recent studies NRs also interact with cytoskeleton proteins out of the nucleus and 

participate to their non-genomic effets. For example the androgen receptor has been shown to interact 

with filamin out of nuclei. As such, AR belongs to a multiprotein complex which is involveved in 

regulation of cell migration (Castoria et al., 2011). 



 

As all RARs contain a PRM in their NTD, the team speculated that they might interact not 

only with vinexin β but also with other actin-binding proteins with SH3 domains. As such proteins are 

generally adaptors, they might link RARs either to big nuclear complexes controlling transcription or 

to extranuclear signaling complexes. 

Recently, the group identified in a yeast two-hybrid screening, a new binding partner of the 

NTD of RARα, profilin IIA, which is also an actin-binding protein with an SH3-like domain. 

Therefore another aspect of my work was to focus on this new unconventional partner. 

 

- PROFILIN 

 

Profilin is a small (MW = 12-16 kDa) ubiquitous actin-binding protein, which was originally 

identified in calf spleen. Its principle role is to form a complex with actin monomers and to inhibit 

their polymerization (Carlsson et al., 1977). Up to date, profilins have been found in all studied 

eukaryotes and their cells, indicating that it is a fundamental actin-binding protein (Witke, 2004).  

 

1. Profilin Isoforms 

 

In mammals, five isoforms of profilin are known: profilin I, IIA, IIB, III and IV (Table 4) 

(Carlsson et al., 1977; Di Nardo et al., 2000; Honore et al., 1993; Hu et al., 2001; Obermann et al., 

2005). While all isoforms of profilin are conserved in terms of function, overall fold and crystallized 

structures, their sequence identity is variable. For example, profilin 1 shares only 37 and 30% amino 

acid homology with profilins III and IV, respectively (Obermann et al., 2005; Witke, 2004).  

However, there are several examples showing that in some species, profilin-deficiency can be 

rescued by reintroducing profilins from another species. Indeed, Rothkegel et al. (Rothkegel et al., 

1996) demonstrated that plants profilin, which share only 22% sequence identity with bovine thymus 

profilin, can functionally substitute the endogenous mammalian profilin. Another study demonstrated 

that defects in cell shape, cytokinesis, and development of Dictyostelium discoideum profilin-deficient 

cells can be rescued by profilins I or II from maize (Karakesisoglou et al., 1996). However, isoforms 

within the same organism differ sufficiently and cannot complement each other. As an example, 

deletion of profilin II isoforms in mice, cause severe neurological abnormalities, despite the presence 

of profilin I (Witke, 2004).  

 

 



 

Profilin 1 is expressed in various tissues except skeletal muscle (Witke et al., 1998). It shows diffuse 

cytoplasmic distribution and dot-like nuclear localization (Giesemann et al., 1999). Profilin I is 

actively involved in the regulation and re/organization of the cytoskeleton and has been involved in 

the regulation of nonmuscle cell motility. 

 

Profilin II is almost exclusively expressed in the central nervous system, but mRNAs encoding this 

isoform has been detected in kidney and muscle (Lappalainen, 2007). Profilin II can be alternatively 

spliced in two isoforms: profilin IIA and IIB. They share the first 107 amino acids but have different 

C-terminal domains. It was shown in mice that profilin IIA is dominantly expressed during 

embryogenesis at stages of rapid brain development (Di Nardo et al., 2000; Lambrechts et al., 2000), 

and mice deficient for this isoform have neurological defects (Witke et al., 2001). The minor IIB-

isoform, similarly to the profilin encoded by Vaccinia virus (Machesky et al., 1994), is unique among 

profilins because it does not show any binding affinity to poly-L-proline. Interestingly, this particular 

profilin also has low affinity for actin, but exceptionaly appears to bind tubulin (Di Nardo et al., 2000). 

 

Profilins III and IV are both testis-specific (Braun et al., 2002; Hu et al., 2001; Obermann et al., 

2005). They are expressed at various stages of spermatogenesis and are differentially regulated during 

postnatal testicular development. They interact with the actin cytoskeleton of developing male germs 

cells at distinct point locations. Their deficiency causes morphological abnormalities in the head of 

sperm and functional defects of acrosome in infertile male (Obermann et al., 2005). 

 

  



 

2. Profilin structure 

 

The structure of profilins has been solved by x-ray crystallography either complexed with β-

actin (Schutt et al., 1993) or separately (Cedergren-Zeppezauer et al., 1994). It consists of a central 

seven-stranded anti-parallel β-pleated sheet and of 4 alpha helices: the N- and C-terminal α-helices 

(named helix 1 and helix 4, respectively) are closely packed on one side while the two short α-helices 

(helix 2 and helix 3) are on the opposite side (Cedergren-Zeppezauer et al., 1994; Schutt et al., 1993) 

(Figure 29).  

 

 

 

 

Figure 29: The three-dimensional structure of mouse profilin IIA. Helices are shown as ribbons and 

labelled from H1 to H4. Adapted from (Kursula et al., 2008) pdb 2v8c. 

 

 

In mammalian profilin, strands 5 and 6 (K90-T97) are connected with a loop, which protrudes 

from the surface of the protein (Schutt et al., 1993) and is positioned close to an actin-binding site. 

Remarkably, profilins also depict an SH3-like domain, which is composed of the N- and C-terminal α-

helices.  

 

  



 

3. Profilin interaction domains 

 

In general, profilins were found to interact with three classes of ligands: (i) actins (Schutt et 

al., 1993) including actin-related proteins (ARPs) (Machesky et al., 1994), (ii) poly-L-proline (PLP) 

stretches (Mahoney et al., 1997) and (iii) phosphatidyl- inositol lipids (Lassing and Lindberg, 1988) 

(Figure 30). 

 

 

 

 

Figure 30: Structure of profilin complexes. Profilins form complexes with actin, proline-rich ligands and 

phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2]. The actin-binding sites (red) and poly-L-proline 

(yellow) are distinct, while the PtdIns(4,5)P2-binding surface (light green) is more spread out over the surface 

of the molecule and overlaps with both actin-binding and poly-L-proline binding. Adapted from (Witke, 

2004). 

 

 

 Actin-binding site 

 

The actin-binding site of profilin consists of amino acid residues located in α-helices 3 and 4, 

β-strands 4, 5, 6 (Figure 31). It also consists of the extended loop regions between β-strands 5 and 6, 

as a double-deletion of two residues (P96 and T97) within this loop, lowers the interaction with actin 

(the Kd value changed from 0.37 μM to 1.15 μM (Hajkova et al., 1997). 

All these residues make contacts with residues in subdomains 1 and 3 at the barbed end of 

actin monomers (Cedergren-Zeppezauer et al., 1994; Schutt et al., 1993). However they can also bind 



 

the most distal subunit of the fast-growing end of filamentous actin (Gutsche-Perelroizen et al., 1999) 

as well as actin related proteins (ARPs) (Mullins et al., 1998)  and postsynaptic scaffolding protein 

gephyrin (Giesemann et al., 2003). 

 

 

 

 

Figure 31: Structure of bovine beta-actin(pink)-profilin(blue) complex. Adapted from (Chik et al., 1996) 

pdb 1hlu. 

 

 

 Polyphosphoinositide lipid binding site and association with plasma membrane 

  

Profilin has two phosphatidylinositol-4,5-bisphosphate (PIP2) interaction sites: one partially 

overlaping with the poly-L-proline binding surface and the other one with the actin-binding surface 

(Jockusch et al., 2007; Lambrechts et al., 2002; Lappalainen et al., 2007; Skare and Karlsson, 2002) 

(Figure 30). The affinity for PIP2 is variable between the profilin isoforms, with profilin I displaying a 

higher affinity than profilins IIA and IIB (Lambrechts et al., 2000).  

The interaction of profilin with PIP2 mediates its association to the plasma membrane. Indeed, 

depletion of membrane PIP2 levels results in a translocation of profilin from the membrane to the 

cytosol. Remarkably, upon restoration of PIP2 plasma membrane levels, profilin translocates back to 

the membrane fraction, suggesting that phosphoinositide metabolism plays a role in the localization of 

profilin (Ostrander et al., 1995).  

 

 

  



 

 Poly-L-Proline binding site 

 

Binding of poly-L-proline involves the N- and C-terminal α-helices of profilins (Figure 32), which 

form a hydrophobic and aromatic core (SH3-like domain). In profilin I, this domain consists of the 

side chains of residues W3, Y6, W31, H133, L134 and Y139 (Bjorkegren et al., 1993; Cedergren-

Zeppezauer et al., 1994; Mahoney et al., 1997; Mahoney et al., 1999; Schutt et al., 1993). In profilin 

IIA it consists of residues Y7, N10, Y134 and F140 (Haikarainen et al., 2009). It has been suggested 

that this difference in amino acid composition would be at the basis of the higher affinity of profilin 

IIA for poly-L-proline ligands (Lambrechts et al., 1995; Lambrechts et al., 1997).  

 

 

 

 

Figure 32:  Mouse profilin IIA  in complex with proline-rich domain (blue). Binding to proline-rich 

domain involves the N- and C-terminal α-helices (red) of profilins. Adapted from (Kursula et al., 2008) pdb 

2v8c.   

 

 

Initially, the ability of profilin to binds poly-L-proline was widely used for the purification of 

profilin and profilin:actin-complex by affinity chromatography on poly-L-proline (Celis, 2006; 

Lindberg et al., 1988). Now, the poly-L-proline binding activity is considered as an important feature 

of profilin and several proline-rich ligands have been identified. The first one to be identified was the 

vasodilator-stimulated phosphoprotein (VASP) (Reinhard et al., 1995), which is a component of focal 

adhesions and is thought to regulate actin polymerization (Krause et al., 2003; Walders-Harbeck et al., 

2002). Several other proline-rich ligands have been identified (Jockusch et al., 2007; Witke, 2004), 

with a variety of proline-rich sequence-motifs with eight to ten prolines, either in continuous sequence 

or interrupted by single glycines (Schlüter et al., 1997). It is also worth to note that the binding of 



 

poly-L-proline by profilin might occur in either polypeptide backbone orientation (Mahoney et al., 

1997; Mahoney et al., 1999). 

 

4. Cellular localization of profilin 

 

Basically, profilins are enriched in cellular areas characterized by high actin dynamics such as 

ruffles, lamellipodia, stress fibers and focal adhesions. Profilins were also found at the surface of 

Listeria monocytogenes after infection of host cells cytoplasm (Buss et al., 1992; Geese et al., 2000; 

Grenklo et al., 2004; Mayboroda et al., 1997; Skare et al., 2003). 

Because of their ability to interact with membrane-bound phospholipids, profilins have also 

been observed in close association with a variety of membrane organelles such as Golgi-derived 

vesicles (Dong et al., 2000; Finger and Novick, 1997) and endocytotic machinery (Gareus et al., 

2006). 

Surprisingly, profilins have been reported to be also present in the nucleus. Indeed, profilin I 

has been detected in nuclei of human fibroblasts (Skare et al., 2003), rat kidney epithelial cells 

(Lederer et al., 2005a), bovine oocyte germinal vesicles and early embryos (Rawe et al., 2006). In 

addition, Birbach et al showed that profilin II accumulates in the nucleus of hippocampal neurons in 

response to NMDA receptor signaling (Birbach et al., 2006). Finally, the testis-specific profilin III was 

found in the nucleus of testicular germ cells, complexed with ArpM1 (actin-related protein M1).  

 

5. Profilin functions 

 

 Role in actin dynamics and cell signaling 

 

 The main function of profilins is to regulate the dynamics of actin assembly and organization. 

Indeed, they are key factors for actin filaments treadmilling, which is a dynamic process of actin turn 

over in vivo, primarily by monomer addition and growth at the fast-growing (barbed) ends and by 

monomer loss and shortening from the slow-growing (pointed) ends (Littlefield et al., 2001).  

 Profilins sequester actin monomers in the absence of free actin filament barbed ends and 

promote the assembly of ATP-actin monomers to filaments when barbed ends are available (Pantaloni 

and Carlier, 1993) (Figure 33). Then via interactions with polyproline-rich proteins (formins, 

Ena/VASP, WASP/WAVE), profilins localize monomers of ATP-actin to the sites of rapid actin 

filament assembly in cells (Reinhard et al., 1995; Evangelista et al., 1997).  



 

 

 

Figure 33: Regulation of actin filament treadmilling by ADF and profilin. Top panel: basic slow 

treadmilling of pure actin assembled at a steady state in ATP. Monomer-polymer exchange occurs at both 

ends of the filament (ADP-actin and ATP-actin labaled as D and T respectively); nucleotide exchange takes 

place on monomeric actin only. Bottom panel: enhancement of treadmilling by a synergistic action of 

ADF/cofilin and profilin. ADF (shown in blue) binds to ADP-F-actin and causes a structural destabilization 

of the actin-actin interactions in the filament, which results, at steady state, in a large increase in the rate of 

dissociation of ADP-actin from the pointed ends. Profilin binds preferentially ATP-G-actin, accelerates 

nucleotide exchange on G-actin and forms a complex with ATP-G-actin that associates to barbed ends. 

Addition of profilin to F-actin at steady state in the presence of ADF thus shifts all binding equilibrium 

toward the predominant profilin-ATP-G-actin, thus facilitating the vectorial turnover of actin filaments. 

Adapted from (Carlier, 2010). 

  

  

 In addition, through their ability to bind PIP2, profilins are coupled to ligand-induced 

transmembrane-receptor signaling (Lindberg et al., 2008; Sohn and Goldschmidtclermont, 1994) and 

thus connect closely signaling pathways and actin organization (Ridley et al., 2003). Indeed, activation 

of transmembrane receptors cause dramatic remodeling of cytoskeleton with rapid formation of actin 

filaments (Chinkers et al., 1979). It has been proposed that fluctuations in the concentration of PIP2 at 

the membrane might cause profilin shuttling between membranes and cytosol (Figure 34). Therefore, 

profilin could be a potent mediator of external signals to microfilaments (Machesky and Poland, 1993; 

van Rheenen et al., 2007). Thus, through its participation to the formation of actin filaments, profilin is 

involved in membrane associated processes such as lamellipodial protrusion during locomotion, cell 

adhesion and spreading cytokinesis and morphogenesis (Jockusch et al., 2007). 



 

 

 

Figure 34:  Multiple functional connections of plasma membrane assosiated and cytoplasmic profilin. The 

release of profilin from membrane is regulated by the level of PIP2 and determines the formation of profilin-

G-actin complex. Released from the membrane, profilin (center) bind ATP-G-actin and adds G-actin to 

nascent actin filaments and participates in the generation of actin filaments as needed for adhesion complexes 

(left) and lamellipodial actin networks (right). Adapted from (Jockusch et al., 2007). 

 

 

 Finally, several molecular genetic studies demonstrated that profilin is important for proper cell 

function and viability in unicellular and multicellular eukaryotes. Indeed, knockout of profilin 

drastically impaired cell growth in Saccharomyces cerevisiae (Haarer et al., 1990) and led to cell death 

in Schizosaccharomyces pombe, Dictyostelium discoideum and Drosophila melanogaster 

(Balasubramanian et al., 1994; Haugwitz et al., 1994; Verheyen and Cooley, 1994). Profilin is also 

crucial for embryonic development as mouse embryos homozygous for profilin I disrupted gene 

(profilin (-/-)) die even before the development of the blastula at the two-cell stage. Concerning 

heterozygous embryos, (profilin (-/+)), they survive but display a reduced viability (Witke et al., 

2001). 

 

 Profilin in the nucleus 

 

In addition to its well established cytoplasmic localization, profilin has been found in the 

nucleus and reported to be involved in regulation of transcription (Lederer et al., 2005a).  Indeed 

profilin reduces repressive transcription activity of p42POP-Myb-related transcription factor.   



 

Moreover, profilin was found to accumulate in subnuclear structures such as gems, Cajal 

bodies and Speckles (Birbach et al., 2006; Giesemann et al., 1999; Rawe et al., 2006; Skare et al., 

2003). This localization of profilin in pre-mRNA processing components, in addition to its interaction 

with the survival of motor neuron (SMN) protein, which is important in the formation of small nuclear 

ribonucleoproteins (snRNPs), suggests a role for profilin in the maturation of mRNA.  

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 



 

  



 

The main focus of the group of Dr. Cécile Rochette-Egly over the last several years is to 

understand the role of post translational modifications, mainly phosphorylations, on the activity of 

nuclear retinoic acid receptors. In that context, the group  

- highlighted that RARs become rapidly phosphorylated in response to RA  

- identified the phosphorylated residue 

- demonstrated that the RA-induced phosphorylation of RARs involves the p38MAPK 

pathway 

-  Evidenced that phosphorylation is crucial for RAR transcriptional activity (see Figure 35) 

 

 

 

 

Figure 35: In response to RA, p38MAPK (a) and MSK1 (b) are activated. MSK1 phosphorylates histones at 

H3S10 (c) and RARα at a serine located in the LBD (d). Subsequently, the cyclin H subunit of the CAK 

subcomplex of TFIIH is recruited to an adjacent domain (e), allowing the formation of a RARα/TFIIH 

complex and the phosphorylation of the NTD by the cdk7 kinase (f). Phosphorylation of NTD might promote 

association/dissociation of coregulators (g). Finally, RARα phosphorylated and associated with TFIIH and is 

recruited to response elements located in the promoter of target genes (h). 

  



 

Such results raised several questions: 

- How RA activates the p38MAPK pathway? As the RA-induced activation of p38MAPK is 

rapid and transcriptionnally independent, the hypothesis was that this effect is non-genomic, as already 

described for other nuclear receptors (Marquez et al., 2006; Matthews et al., 2008; Norman et al., 

2004) 

- How phosphorylation controls RAR-mediated transcription? As the last phosphorylation 

event of the cascade concerns a serine residue located in a proline rich motif of the NTD, one could 

speculate that phosphorylation of this residue controls the association/dissociation of coregulators with 

SH3 domains. 

Recently, the group identified in a yeast two-hybrid screening, profilin IIA as a new binding 

partner of the NTD of RARα. Profilin IIA is an actin-binding protein, which as several other proteins 

with SH3 domains, interacts with proline-rich motifs (PRMs) of a huge variety of proteins (Gareus et 

al., 2006; Mahoney et al., 1999). Most importantly, profilin IIA has been identified in the nucleus of 

several cell types and shown to interact with transcription factors (Lederer et al., 2005a). The precise 

mechanism by which profilin IIA regulates transcription is still ill-defined. However, one can suggest 

that, similarly to vinexin β (Lalevee et al., 2010a), profilin IIA functions as an adaptor, recruiting actin 

and/or other nuclear proteins with a structural and/or regulatory role within chromatin and/or the 

transcriptional machinery (Bettinger et al., 2004; Wang et al., 2006). 

 

 In this context, the objectives of my thesis have been to attempt to answer these two 

questions, i.e. decipher at the molecular level:  

 

- How RARs activates the p38MAPK pathway through non-genomic effects 

- How profilin IIA interacts with RARα and controls its transcriptional properties  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  



 

1.  NOVEL NON-GENOMIC EFFECTS OF RA: ACTIVATION OF 

THE P38MAPK PATHWAY VIA A MEMBRANE-ASSOCIATED 

POOL OF RARα (PUBLICATION 1) 

 

Recent results from the group demonstrated that RA rapidly and transiently activates the 

p38MAPK pathway in several cell lines such as MCF7, Hela, MEF and F9 cells (Bruck et al., 2009). 

By analogy with other nuclear receptors we hypothesized that it occurs through a non-genomic effect. 

 

- RA ACTIVATES P38MAPK VIA GαQ PROTEINS AND A POOL OF RARα 

PRESENT IN MEMBRANE LIPID RAFTS 

 

The first question was what is upstream of p38MAPK. First of all, we found that Rho-GTPases 

such as Rac and Rock, which are upstream of p38MAPK, were also activated in response to RA 

(Publication1, Figures 1e and 1f). Then, as Rho-GTPases activation involves upstream G proteins 

alpha Q (Gαq) that interact with scaffolding proteins in membranes (Mizuno and Itoh, 2009; Sugawara 

et al., 2007), we analyzed whether Gαq proteins are involved in the rapid RA-induced activation of the 

p38MAPK pathway by using the siRNA strategy. No activation of p38MAPK was observed after 

knockdown of Gαq (Publication 1, Figures 2a and 2c), indicating that the rapid activation of the 

p38MAPK pathway by RA involves Gαq. 

Then we asked whether the RA-induced activation of p38MAPK is RAR-dependent. Taking 

advantage of different cell lines invalidated or knockdown for one specific RAR subtype we 

demonstrated that the activation of p38MAPK in response to RA, involves specifically the RARα 

subtype (Publication1, Figures 1b, 2b and 2c). Moreover, in MEFs knockout for the three RARs, 

p38MAPK was restored only upon re-expression of RARα WT (Publication1 Figures 1c and 1d). Thus 

the rapid activation of p38MAPK by RA appears to involve RARα, in addition to Gαq. 

Remarkably, Gαq proteins as well as most signal components are concentrated in specific 

highly ordered membrane micro domains termed “lipid rafts” (Pike, 2003; Simons and Toomre, 2000), 

which orchestrate intracellular signaling pathways and thus are considered as signaling centers. 

Therefore, we investigated whether these membrane domains contain RARα. We isolated lipid rafts 

from MCF-7 cells and found that they do contain RARα (but not RARγ or RARβ) in addition to 

flotillin-2, a marker of lipid rafts, and signaling proteins such as Rock-2, PKCσ and Gαq (Publication 

1 Figure 3b). However, the amount of RARα present in lipid rafts was very low compared with the 

amount of RARα present in nuclei as assessed in immunofluorescence experiments, (Publication 1, 

Figure 3d). Indeed, only low amounts of RARα were found to colocalize with Flotillin-2 out of nuclei 



 

(Publication 1, Figure 3f and 3g). Collectively, these results converge to a novelty in the field, i.e. a 

small population of RARα is present out of nuclei in membrane lipid rafts.  

Then, the next question was which domain/region/sequence is responsible for targeting RARα 

to membranes. Given that the three RAR subtypes differ essentially in their NTD, one can speculate 

that this domain might specifically target RARα at the membrane. To verify this hypothesis we took 

advantage of F9 cells reexpressing RARα WT or deleted of the NTD (RARα∆NTD) in a RARα null 

background (Rochette-Egly et al., 2000). Remarkably, RARα∆NTD could not be detected in lipid 

rafts, indicating that the NTD would be involved in targeting RARα to membranes (Publication 1, 

Figure 3h). 

 

- RARα INTERACTS WITH GαQ IN VITRO AND IN VIVO 

 

Given that Gαq proteins colocalize with RARα in lipid rafts, we investigated whether the two 

proteins can interact with each other. We found that, in vitro, recombinant RARα and Gαq interact 

with each other in GST pull down and coimmunoprecipitation experiments. Remarkably, the 

interaction was increased in response to RA. Endogenous RARα and Gαq also interacted in vivo in 

immunoprecipitation experiments performed with lipid rafts (Publication1, Figures 3a-c).  

However, due to the low amounts of RARα in lipid rafts, the RARα/Gαq complexes were rather 

difficult to detect. Therefore we set up a “Proximity Ligation Assay” (PLA), which can reveal 

transient interactions between endogenous proteins even when present at very low levels (Soderberg et 

al., 2006). Rabbit anti-RARα and mouse anti-Gαq antibodies were used, followed by species-specific 

secondary antibodies, called PLA probes, each attached with a unique short DNA strand. When the 

PLA probes are in close proximity, the DNA strands can be joined through the addition of a circle-

forming DNA oligonucleotide that can be amplified using a polymerase. Then the amplified products 

are revealed with labeled complementary oligonucleotide probes and are easily visible as bright red 

spots under a fluorescence microscope. This technique allowed us to visualize in situ a rapid and 

transient increase (10-15 min after RA addition) in the number of RARα/Gαq complexes. Remarkably, 

the complexes were found out of the nuclei, confirming that the non-genomic effects of RA involve a 

pool of extra nuclear RARα (Publication1, Figure 5). It is important to note that the increased 

interaction between RARα and Gαq occurred specifically in response to RA. Indeed, in response to 

EGF, which also activates p38MAPK through Gαq, no interaction between RARα and Gαq could be 

detected (Publication1, Figure 7a-g).   

 



 

- RARα INTERACTS WITH GαQ ONLY IN CELLS THAT RESPOND TO RA VIA 

THE ACTIVATION OF P38MAPK  

 

Then the question was whether the RA-induced interaction between RARα and Gαq was a 

general phenomenom. 

In fact, the formation of RARα-Gαq complexes was observed in epithelial and fibroblastic cells, 

which respond to RA by the activation of p38MAPK. However, in other cells, such as neuronal cells 

(human neuroblastoma SH-SY5Y cell line), RARα, though present in lipid rafts, doesn’t interact with 

Gαq in response to RA and p38MAPK is not activated (Figure 36). Of note is that in neuronal cells 

RA rather activates the Erk pathway through Src and PI3K (Chen and Napoli, 2008; Dey et al., 2007; 

Masia et al., 2007; Pan et al., 2005; Zanotto-Filho et al., 2008). Thus, depending on the cell type, it 

appears that RA can activate various MAPK pathways via different membrane-associated complexes. 

 

 

 

 

Figure 36: A. Immunoblotting analysis of the different gradient fractions from SH-SY5Y cells, showing that 

RARα is present with Flotillin-2 and Gαq in lipid rafts. B. Analysis of RARα/Gαq complexes in SH-SY5Y 

cells by immunofluorescence microscopy in combination with in situ proximity ligation assay (PLA). 

 

  



 

  



 

2. THE NON-GENOMIC EFFECTS OF RA CONTROL THE 

GENOMIC ONES (Publication 1) 

 

Given that RARs are basically ligand-dependent regulators of gene transcription, we asked 

whether the actors of the non-genomic effects, i.e. Gαq and the downstream p38MAPK/MSK1 

pathway, cross-talk with the genomic ones.  

Remarkably, knockdown of Gαq, p38MAPK and MSK1 decreased the RA-induced expression 

of several RA-target genes, as well as the antiproliferative action of RA (Publication1, Figure 9). Such 

results highlight the importance of the Gαq/p38MAPK/MSK1 pathway and thus of the non-genomic 

effects of RA for the genomic effects, i.e., RAR-target genes expression and growth arrest. 

Corroborating this conclusion, we found that in cells that are resistant to the antiproliferative effect of 

RA and exemplified by the human erbB-2 positive breast cancer cells, BT474, SKBR3, MDA-MB453 

and MDA-MB361 cells no interaction could be detected between RARα and Gαq either in the absence 

or presence of RA and p38MAPK was not activated (Publication1, Figure 8). 

 

Conclusion  

We highlighted a novel unconventional localization of RARα in membrane lipid rafts. We also 

demonstrated that this membrane pool interacts with Gαq proteins in response to RA and is 

responsible for the non-genomic effects of RA, i.e. the activation of the p38MAPK pathway. The other 

novelty is that these non-genomic effects are required for genomic ones. 

 

  



 

  



 

3. PROFILIN IIA, A NOVEL COREGULATOR OF RARα 

(publication 2) 

 

The main consequence of the non-genomic effects of RA, i.e. the activation of the 

p38MAPK/MSK1 pathway, is a phosphorylation cascade targeting RARs. This cascade starts with the 

phosphorylation of the LBD by MSK1 (downstream of p38MAPK), and ends with the 

phosphorylation by cdk7/cyclin H of another serine residue, located in a proline-rich motif (PRM) of 

the NTD. Phosphorylation of this second residue proved to be crucial for the transcriptional activity of 

RARs, but the question is how.  

Now it is increasingly evident that phosphorylations induce subtle conformation changes of 

adjacent domains (Bao et al., 2004) or the cis-trans isomerization of adjacent proline residues. The 

result is the creation of new recognition sites for interacting factors (Bao et al., 2004). Thus a 

significant effort in the laboratory has been made to identify and characterize co-regulators that 

interact directly with the PRM of RARs in a phosphorylation-dependent manner. Such an effort led to 

the discovery, in yeast two-hybrid screenings, of new coregulators with SH3 domains: Vinexin β for 

the RARγ subtype (Lalevee et al., 2010a), and profilin IIA for RARα. During my thesis I deciphered 

the mechanism and the relevance of the RARα/profilin IIA interaction.   

 

- PROFILIN IIA INTERACTS WITH THE N-TERMINAL PRM OF RARα BUT 

INDEPENDENTLY OF ITS PHOSPHORYLATION  

 

In a first step, the data obtained by yeast two-hybrid screening were corroborated in GST pull 

down and coimmunoprecipitation experiments using recombinant WT or mutated proteins 

(Publication 2, Figure 2A). These experiments confirmed that profilin IIA interacts specifically with 

the RARα subtype and not with RARβ or RARγ. We also deciphered further the mechanism of the 

interaction and demonstrated that it involves the PRM of RARα located in the NTD and the SH3-like 

domain of profilin IIA (Publication 2, Figure 2B-D).  

The PRM of RARα involved in the interaction with profilin IIA contains a serine residue 

(S77), which can be phosphorylated in vitro and in vivo. Therefore we aimed at investigating whether 

phosphorylation of this residue modulates the interaction as previously described for RARγ/vinexin β. 

In fact, coimmunoprecipitation experiments revealed that profilin IIA interacts as efficiently with 

RARα, whatever S77 is substituted with a glutamic acid (RARαS77E) or an alanine (RARαS77A), 

which mimic the phosphorylated and non-phosphorylated forms respectively (Publication 2, Figure 



 

3A). Moreover, the interaction was not affected upon RA addition, which induces RARα 

phosphorylation (Publication 2, Figure 3B-C).  

Then by using Surface Plasmon Resonance (SPR) we measured the equilibrium affinity of the 

interaction, using GST-profilin IIA and synthetic peptides corresponding to the proline-rich motif of 

RARα. The use of peptides in which S77 is phosphorylated confirmed that phosphorylation does not 

affect the affinity (Publication 2, Table1). 

 

- PROFILIN IIA INTERACTS WITH RARα IN NUCLEI 

 

Profilin IIA is an actin-binding protein, which is not expressed in all cell types. Indeed, profilin 

IIA is well known to be expressed mainly in brain and neuronal cells (Birbach, 2008; Michaelsen et 

al., 2010). Accordingly, in immunoblotting experiments, we detected significant levels of profilin IIA 

in human neuroblastoma cells (SH-SY5Y cell line) and mouse hippocampus cells (HT22 cell line) 

(Publication 2, Figure 4A). Interestingly, significant levels of profilin IIA were also detected in mouse 

embryonic fibroblasts and human breast cancer cell lines (MCF7 and SKBR3 cell lines) (Publication 

2, Figure 4A). In contrast, profilin IIA was hardly detected in mouse embryocarcinoma cells (F9 and 

P19 cell lines) and no profilin IIA was found in human acute promyelocytic cells (NB4 cell line), 

(Publication 2, Figure 4A). 

In immunofluorescence experiments, profilin IIA was detected mainly in the nucleus 

(Publication 2, Figure 4B) where it colocalized with RARα (Figure 5A). Therefore we investigated 

whether endogenous profilin IIA and RARα interact with each other in nuclei, using the proximity 

ligation assays (PLA) described above, which allows the detection in situ of interacting endogenous 

proteins. RARα/profilin IIA complexes were seen in the nuclei of MCF7 cells and MEFs (Publication 

2, Figure 5B). The number of these complexes did not change after RA addition up to 1 hour, in line 

with the absence of regulation of the interaction upon RARα phosphorylation.  

Altogether these results indicate that profilin IIA interacts with RARα in nuclei, independently 

of RARα phosphorylation.  

 

- PROFILIN IIA AND RARα: ROLE IN THE TRANSCRIPTION OF RARα 

TARGET GENES 

 

Given that profilin IIA interacts with RARα in the nuclei of MCF7 cells and MEFs, one could 

speculate that this actin-binding protein is involved in the transcription of RA target genes. 

Corroborating this hypothesis, we found that knockdown of profilin IIA decreases the RA-induced 



 

expression of several genes as assessed by qRTR-PCR (Publication 2, Figure 6). Moreover, in ChIP 

experiments, profilin IIA was recruited with RARα to the promoter of these genes. Finally, ChIP 

western experiments revealed that profilin IIA coimmunoprecipitates with RARα in chromatin 

(Publication 2, Figure 7).  

 

Conclusion 

We characterized a new coregulator of RARα, profilin IIA, which is an actin-binding protein. 

Profilin IIA interacts with the N-terminal proline-rich motif of RARα but independently of its 

phosphorylation. The interesting point is that profilin IIA is present in chromatin and is involved in the 

transcription of some RA-target genes. However the in vivo relevance of the RARα/profilin IIA 

interaction (in cell differentiation/proliferation) remains to be investigated. 

 



 

  



 

4. NEW UNCONVENTIONAL ROLE OF RARα IN CELL 

ADHESION (UNPUBLISHED RESULTS)  

 

- RARα KNOCKOUT CELLS ARE DEFICIENT IN ADHESION 

 

Then the challenge was to investigate the role of RARα (with profilin IIA) in the RA response. 

As mammal models are quite complex, we selected mouse embryonic stem (ES) cells, which 

differentiate into neurons after RA addition, recapitulating early stages of mouse embryogenesis 

(Bibel et al., 2004b). These cells are an experimental paradigm and arer extensively used as a model to 

investigate RA signaling in vitro. ES cells express the different RAR subtypes and ES cells either WT 

or invalidated for the different RARs are available in the laboratory (Al Tanoury et al, manuscript in 

preparation).  Most interestingly, disruption of the whole RARα gene (RARα-/- cells) did not affect 

the ability of ES cells to commit into neuronal lineages after RA treatment. Indeed, RARα-/- cells 

have kept their ability to become neural progenitors characterized by β-tubulinIII (Figure 37f). They 

have also kept their ability to develop a dense neuritic network within 2-3 days after dissociation and 

plating of embryonic bodies (Figure 37 c and f). This is in contrast to the targeted disruption of the 

whole RARγ gene (RARγ-/- cells) that severely blunted the RA response so that neurons with fine and 

long processes were almost absent (Figure 37b,e) (Al Tanoury et al, manuscript in preparation). 

 

 

 

 

Figure 37: WT, RARγ-/- and RARα-/- mouse ES cells were compared for their ability to differentiate 

into neuronal cells in response to RA as assessed by immunofluorescence analysis of β tubulin III (Tuj1). 

  



 

However we found that RARα-/- cells (and not RARγ-/- cells) were severely impaired in 

adhesion. Indeed differentiated neurons were elongated but did not adhere efficiently to the substrtae. 

Moreover, the undifferentiated cells did not adhere and did not spread on laminin-coated coverslips as 

assessed by spreading-adhesion assay (Figure 38). Indeed, while WT ES cells are fast well-spreading 

cells, RARα-/- cells remain compact and round, without substantial spreading. 

 

 

 

 

Figure 38. Spreading-adhesion assay. Mouse ES cells (WT, RARα-/- or RARγ-/-) were allowed to 

adhere for 3 hours onto laminin-coated coverslips and then fixed and stained for F-actin. 

 

  



 

 

- A NOVEL UNCONVENTIONAL LOCALIZATION OF RARα IN THE 

CYTOSOL OF NEURONAL AND FIBROBLASTIC CELLS  

 

Unexpectedly, in immunofluorescence experiments performed with our highly specific 

purified rabbit polyclonal antibodies (Buchanan et al., 2011), we observed that RARα is present in the 

cytosol of ES cells either pluripotent (Figure 39a-c) or differentiated into neurons (Figure 39d-f). 

 

 

 

 

Figure 39: Nuclear and cytosolic localization of RARα. Immunofluorescence experiments showing that 

RARα is present in nuclei and also in the cytosol of mouse ES cells either undifferentiated or 

differentiated into neurons. 

 

 

Remarkably, RARα was also detected in the cytosol of other neuronal cells such as 

neuroblastoma cells (SH-SY5Y cell line) and hippocampus cells (HT22 cell line) (Figure 40 a-h). 

Moreover RARα was also detected in the cytosol of MEFs (Figure 40 i-l). In contrast, in these cells, 

RARγ was strictly nuclear (Figure 40 compare pannels l and t). The specificity of our antibodies was 

confirmed by using MEF RAR (αβγ) -/- (Figure 40 m-p and u-x). Note that these KO cells were more 

round than the WT ones, corroborating the role of RARs in cell adhesion and spreading. 

  



 

 

 

Figure 40: Nuclear and cytosolic localization of RARα. Immunofluorescence experiments showing 

mainly nuclear and additional cytosolic RARα in MEFWT, HT-22 and SH-SY5Y cells. In contrast RARγ 

in MEFWT cells is strictly nuclear. Negative MEFKO cells are depleted in all RARs.  

 

  



 

- THE POOL OF CYTOSOLIC RARα IS INCREASED IN CARCINOMA-

ASSOCIATED FIBROBLASTS (CAFS) 

 

In the context of the study of the consequences of aberrant kinases activity on RARs 

phosphorylation in tumors, the laboratory succeeded to generate primary cultures of carcinoma-

assosiated fibroblasts (CAFs) from erbB-2 positive breast cancer surgery sections (obtained in 

collaboration with the hospital) and to keep these cells viable after several passages.  The interesting 

point is that these CAFs express higher amounts of cytosolic RARα than normal fibroblasts (Figure 

41). Moreover the localization of RARα in CAFs was rather speckled than diffused. 

As CAFs play a key role in tumor invasion and metastasis, one can be suggested that increased 

amounts of cytosolic RARα might be linked to these processes. 

 

 

 

 

Figure 41: Nuclear and cytosolic localization of RARα. Immunofluorescence experiments showing 

mainly nuclear and additional cytosolic RARα in normal human fibroblasts (R5) and carcinoma-

associated fibroblasts (CAFs) isolated from the stroma of highly invasive erbB-2 positive breast cancer 

tumors. 

 

 

Conclusion 

Here, we highlighted a novelty in the field of RARα, i.e. an unconventional localization in the 

cytosol and a role in cell adhesion. 

  



 

- MATERIALS AND METHODS (UNPUBLISHED) 

 

Antibodies and reagents 

 

Mouse monoclonal antibodies recognizing neuronal class III β-tubulin (Tuj1) were from 

Covance (Eurogentec France). Purified rabbit polyclonal antibodies raised against the F region of 

RARα (RPα(F)) are described in publication 2. Purified rabbit polyclonal antibodies against RARγ 

were described earlier (Lalevee et al., 2010a). Fluorescent green 488 phalloidin was from Biotium, 

Inc. Hayward USA.  

 

Mouse embryonic stem cells  

 

Wild type mouse ES cells were derived from the 129 sub-strain. RARα-/- and RARγ-/- 

knockout ES cell lines were previously described (Lohnes et al., 1993; Lufkin et al., 1993).  

ES cell lines were cultivated and differentiated as described (Bibel et al., 2007; Bibel et al., 

2004a). Briefly, they were kept undifferentiated by repeated splitting on feeders (inactivated mouse 

embryonic fibroblasts) in ES cell culture medium (DMEM supplemented with GLUTAMAX-I, 15% 

FCS, 700 U leukemia Inhibitory Factor (LIF), gentamicin and β-mercaptoethanol at 37 °C and 5.5 % 

CO2). Then after deprivation of feeders, embryoid bodies (EB) were formed by plating 4x10
6
 cells 

onto non adherent bacterialogical petri dishes (Greiner, cat.no. 633102) in 15 ml EB medium (DMEM 

supplemented with GLUTAMAX-I, 10% FCS, non essential amino acids, gentamicin and β-

mercaptoethanol). Medium was changed every 2 days and RA (2-5μM) was added after 4 days. Then 

after another 4 days, EB were dissociated and plated into laminin-precoated culture dishes in N2 

medium [DMEM/ Ham-F12 (1:1), supplemented with N2 (Fisher Scientific), BSA (50 mg/ml) and 

penicillin/streptomycin]. N2 medium was changed after 1 day and replaced by neurobasal medium 

supplemented with B27 (Fisher Scientific) after 2 additional days. 

MEFs were cultured as described before (Piskunov and Rochette-Egly, 2011a). HT22 and SH-

SY5Y cells were cultured according to standard procedures (Ha et al., 2010). 

 

 

 

 



 

Immunofluorescense experiments were performed as described earlier (Piskunov and 

Rochette-Egly, 2011a)  

 

Spreading and motility assays 

 

Adhesion and spreading of mouse ES cells were analyzed by plating cells onto laminin-coated 

coverslips. Cells were allowed to adhere for 3 hours and washed three times in PBS. Then cells were 

fixed in 4% paraformaldehyde, permeabilized in 0,5% Triton X-100 and stained with 488 phalloidin 

(Biotium, Inc. Hayward USA). 

 

 

  



 

  



 

 

 

 

 

 

 

 

  



 

  



 

My work revealed three novelties in the field of the RARα subtype: 

- A pool of RARα is present in membrane lipid rafts. This membrane fraction of RARα is 

involved in non-genomic effects, i.e. the activation of the p38MAPK pathway, which cross talk 

with the genomic ones. 

- Profilin IIA an actin-binding protein, has been identified as a new partner of nuclear 

RARα. It positively modulates the genomic effects of RARα.  

- RARα plays a novel unconventional role in cell adhesion. The function of another 

unconventional pool of RARα in the cytosol is proposed. 

 

- A POOL OF RARα IS PRESENT IN LIPID RAFTS FOR NON-GENOMIC 

EFFECTS 

 

In this study we discovered a novel unconventional localization of RARα in membrane lipid 

rafts, which are signaling centers. This was new in the field of RARs and added a new element to the 

cohort of nuclear receptors (ER, GR, PR, AR, VDR), which were already shown to be localized in 

lipid rafts (Figure 42) (Huhtakangas et al., 2004; Luoma et al., 2008; Marquez et al., 2006; Matthews 

et al., 2008; Pedram et al., 2007; Piskunov and Rochette-Egly, 2011b) . 

  

 

 

 

Figure 42: Non-genomic effects of nuclear receptors. A subpopulation RARα as well as the other nuclear 

receptors (ER, PR, GR, AR VDR) is associated to cell membranes and initiates cascades of kinases upon 

binding of their cognate ligands. Adapted from (Piskunov and Rochette-Egly, 2011b). 

  



 

The important point is that RARα is recruited to the plasma membrane via its NTD, but the 

mechanism of this recruitment is still undefined and would require further investigation.  

One possibility might be that membrane anchoring involves posttranslational modifications of 

the NTD, such as palmitoylation and myristoylation, a covalent attachment of fatty acids, such as 

palmitic acid or a myristoyl group (derived from myristic acid) (Krauss, 2008), as described for the 

steroid receptors (Pedram et al., 2007). Unfortunately the NTD of RARα does not depict any motif for 

these modifications (Pedram et al., 2007), eliminating such a mechanism.  

Another possibility would be that membrane recruitment involves the interaction of the N-

terminal PRM of RARα with profilin IIA, which belongs to the actin cytoskeleton associated to 

membranes and which also interacts with phosphatidyl-inositol lipids (see introduction). However, 

according to our results, no profilin IIA could be detected in lipid rafts.  

The last possibility might be that RARα, like the other nuclear receptors, is targeted to 

membranes via the binding of its proline-rich motif to other SH3-domain containing membrane-

associated proteins such as c-Src tyrosine kinase (Le Romancer et al., 2011; Migliaccio et al., 2000; 

Migliaccio et al., 1998). The other interesting point is that in response to its ligand, RARα localized in 

lipid rafts interacts with Gαq proteins and then activate Rho-GTPases and the p38MAPK pathway 

(Figure 43).  

 

 

 

Figure 43: Model of the activation of the p38MAPK pathway through RARα and Gαq located in 

membranes. Question marks show that it is still unclear how RARα is anchored to the plasma membrane 

and what is the mechanism of GTPases activation via Gαq. Adapted from (Piskunov and Rochette-Egly, 

2011a).  

  



 

However, the steps between Gαq and Rho-GTPases have not been elucidated yet. Further 

investigations should be required to determine whether, similarly to the steroid receptors, there is a 

rapid increase in intracellular calcium concentration [Ca2+] and the activation of effector molecules 

such as PKC, PKA, PI3K/AKT, Phospholipase C, c-Src, Raf etc (Mizuno and Itoh, 2009).  

Nevertheless, according to our results, the integrity of lipid rafts composition is required for the 

RA-induced interaction between RARα and Gαq, and thus for the activation of p38MAPK. As an 

example, no interaction was observed in erbB-2 positive cells (Figure 44). One can suggest that high 

levels of erbB-2 in membranes alter the organization of rafts and therefore affect the formation of the 

multiprotein complexes which include RARα and Gαq. In line with such a hypothesis, the EGF 

pathway, which also involves Gαq proteins, was also affected. Note that in these cells, caveolin-1, a 

component of lipid rafts is frequently down regulated (Park et al., 2005) corroborating that the 

integrity of the rafts is required for the activation of signaling pathways. 

 

  

 

 

Figure 44: Models of RA signaling in erbB2 positive and negative breast cencer cells. A. In erbB2 

negative cells, RA induces formation of RARα/Gαq complexes and subsequently p38MAPK/MSK1 

pathway which is resulting in various biological activities. B. In erbB2 positive cells, RA does not induce 

formation of RARα/Gαq complexes therefore p38MAPK/MSK1 pathway is blocked. 

  



 

Remarkably, the RA-induced activation of p38MAPK via RARα and Gαq protein was observed 

only in epithelial and fibroblastic cells and not in neuronal cells where RA activates erks (Chen and 

Napoli, 2008; Dey et al., 2007; Masia et al., 2007; Pan et al., 2005; Zanotto-Filho et al., 2008). This 

raises the hypothesis that as for the other nuclear receptors, different kinases can be activated by a 

same ligand via different membrane molecular complexes, depending on their functional significance 

(Losel and Wehling, 2003; Norman et al., 2004). As an example, in breast cancer cells and in response 

to its cognate ligand, the estrogen receptor ERα, activates the Erk pathway through complexes 

containing c-Src and the regulatory subunit of PI3K (p85α) (Le Romancer et al., 2008; Migliaccio et 

al., 1998). In contrast, in neuronal cells, ER rather activates Protein Kinase C through Gαq and 

phospholipase C (Qiu et al., 2003). In the same line of idea, depending on the cell type, VDR activates 

either the RhoA-Rock-p38MAPK pathway (Ordonez-Moran et al., 2008) or the Raf/Erk pathway 

(Losel and Wehling, 2003; Norman et al., 2001). 

 

- RELEVANCE OF THE NON-GENOMIC EFFECTS OF RARα: CROSS TALK 

WITH THE GENOMIC EFFECTS 

 

According to our data, Gαq and the downstream effectors, p38MAPK and MSK1 have an 

important role in the transcription of RA-target genes and in the antiproliferative effects of RA. This is 

in line with a general concept that Gαq proteins as well as several components of lipid rafts control not 

only the signaling pathways but also transcription and cell growth (Lai et al., 2008; Staubach and 

Hanisch, 2011; White et al., 2008). Moreover MAPKs are now considered as integrators dispensing 

decisions to the downstream cellular and transcrriptional machineries that coordinately manage major 

cellular fates, including cell proliferation (or inappropriate proliferation/malignant transformation), 

differentiation, or death (Figure 45). In line with this concept and according to other work from the 

laboratory, RA-activated p38MAPK targets several transcriptional actors. Indeed p38MAPK 

phosphorylates RARs coactivators such as SRC-3 and influences the dynamics of their 

association/dissociation (Ferry et al., 2011). Moreover, p38MAPK also activates MSK1, which 

initiates coordinated phosphorylation cascades that target RARs and histones (Bruck et al., 2009). In 

fine these phosphorylations cooperate for RARs recruitment to DNA via modifications of the 

chromatin environment according to the histone code and via changes in the affinity of RARs for their 

response elements (Figure 46). According to these data, it is tempting to speculate that, in erbB-2 

positive cells, the absence of activation of the p38MAPK pathway might be one of the reasons among 

several others, of the resistance of these cells to RA. 

 

 



 

 

 

Figure 45: Biological relevance on non-genomic effects of NRs. Nuclear receptors (yellow liganded red 

oval at the membrane) interact with a variety of signaling proteins (various colored shapes) resulting in 

activation of MAPKs, which then can regulate cell proliferation (altering activation of cell cycle proteins and 

causing production of new DNA and proteins), differentiation (the production of new proteins for an altered 

function), or cell death (by initiating caspase cascades or other forms of active cell death mechanisms). 

Adapted from  

 

 

Of note is that other nuclear receptors such as ER, AR, GR and PR, are also phosphorylated by 

MAPKs, in response to steroid hormones (Chen et al., 2008a; Faus and Haendler, 2006; Lannigan, 

2003) and that MSK1 also contributes to histone phosphorylation and chromatin remodeling (Vicent et 

al., 2006; Vicent et al., 2010; Vicent et al., 2009) with characteristic downstream consequences on 

target genes expression (Weigel and Moore, 2007a) (Figure 46). 

Altogether these data corroborate our results and converge towards the concept that the non-

genomic effects of RARs are required for the genomic ones. 

 



 

 

 

Figure 46: Convergence of genomic and non-genomic effects of nuclear receptors. Progestins 

activate the Src/Ras/Erk pathway via membrane associated PR, leading to accumulation of activated Erk 

in the nucleus. Then a nuclear population of PR becomes phosphorylated by activated pErk, which also 

phosphorylates MSK1. A “PR‑activated complex” composed of pPR, pErk and pMSK1 is recruited to the 

promoter, followed by histone H3 phosphorylation and acetylation. The BAF complex is also recruited 

through direct interaction with PR and is anchored to chromatin through the histone marks. Due to a lack 

of kinetic experiments, a precise order of events cannot be proposed. Right). Upon RA binding, a 

subpopulation of membrane RAR activates the p38MAPK/MSK1 pathway. Activated MSK1 

phosphorylates RARα at S369 located in the LBD, subsequently facilitating the docking of cyclin H, 

which forms with cdk7 and MAT1 the CAK subcomplex of the general transcription factor TFIIH. 

Within the RARα‑TFIIH complex, cdk7 phosphorylates RARα at S77 located in the N‑terminal domain. 

Finally, the phosphorylated RARα/TFIIH complex is recruited to response elements located in the 

promoter of target genes. MSK1 is also recruited, but separately of the RARα–TFIIH complex, and 

phosphorylates histones H3. 

 

 

 

  



 

- NUCLEAR RARα INTERACTS WITH AN ACTIN-BINDING PROTEIN, 

PROFILIN IIA 

 

 The fact that phosphorylation of the NTD is crucial for the transcriptional activity of RARα 

led us to find phospho-dependent partners of this domain. Up to now, only a few proteins have been 

reported to interact with the N-terminal domain of nuclear receptors including RARs 

(Boonyaratanakornkit et al., 2001; Bour et al., 2007a; Bour et al., 2005; Zhao et al., 2009).  

With that aim, we isolated profilin IIA, an actin-binding protein with an SH3-like domain. 

However, we found that the interaction of profilin IIA with RARα is not affected by the 

phosphorylation of the serine residue flanking the proline motif. This is in contrast to the traditional 

model in which phosphorylation of serine residues flanking the proline motifs have the ability to 

positively or negatively regulate the binding of SH3 domains (Kay et al., 2000a; Lalevee et al., 

2010b). It is also in contrast to our previous report where we demonstrated that phosphorylation of the 

serine residue flanking the proline stretch of RARγ induces the dissociation of vinexin β.  

 

- PROFILIN IIA MODULATES THE TRANSCRIPTIONAL ACTIVITY OF RARα 

 

In fact, our results challenged the hypothesis that profilin IIA would control the activity of 

RARα via a mechanism different from that which was described for vinexin β and RARγ. Indeed, we 

found that, in contrast to vinexin β, profilin IIA participates positively to the transcription of RARα 

target genes. Such results are in line with another study showing that nuclear profilin also modulates 

the activity of other transcription factors (Lederer et al., 2005b). Moreover, profilin IIA is present in 

chromatin and is recruited with RARα to the promoters of target genes in response to RA.  

Most importantly, our results also corroborate the evergrowing evidence that actin, actin-

related proteins and actin-binding proteins are constituents of nuclear protein complexes and play a 

role in transcription (Bettinger et al., 2004; Jockusch et al., 2006; Zheng et al., 2009b). Indeed, a 

number of actin-binding proteins have been shown to regulate the activity of several transcription 

factors including nuclear receptors through the recruitment of multiple components of transcription 

complexes such as chromatin-remodelling, histone acetyl transferase complexes (Archer et al., 2005; 

Blessing et al., 2004; Gettemans et al., 2005). Such a role of actin-binding proteins in transcription 

complexes emerged only recently but up to now there are no data showing that profilin IIA belongs to 

nuclear complexes.  

However, on can propose that, profilin IIA might have a role in regulating the properties of 

nuclear actin through its ability to promote ADP to ATP exchange in G-actin (Fenn et al., 2011; Kast 

and Dominguez, 2011). Such a role might explain why nuclear forms of actin are prominently found in 

monomeric states within transcription complexes.  Nevertheless, it will require further experiments to 

test whether profilin IIA has such a role in maintaining the pool of monomeric actin in the nucleus, 



 

when complexed with RARα at RA-target genes promoters. Moreover, it would be interesting to 

address whether profilin IIA also modulates the activity of the coregulatory complexes of RARα 

through nucleotide-dependent conformational transitions. Finally, whether the interaction of RARα 

with profilin IIA can be modulated by other processes than RA signaling or RARα phosphorylation 

would provide important insights into the role of this adaptor in RA signaling. 

In conclusion this study opened new concepts and avenues in the regulation of RA-target 

genes transcription via an actin-binding protein interacting with the NTD of the RARα subtype. 

However the biological relevance of profilin IIA remains unclear and requires further investigations. 

 

- NOVEL UNCONVENTIONAL ROLE OF RARα IN CELL ADHESION 

 

 Then in order to find out the in vivo biological relevance of the RARα interaction with 

profilinIIA, we looked for a biological model. As mammal biological models are rather complex, we 

selected mouse ES cells, which are well known to undergo neuronal differentiation in response to RA. 

WT ES cells are available at the IGBMC and express RARα. However, according to recent studies 

from the laboratory, RARα is not involved in RA-induced neuronal differentiation of ES cells. Indeed, 

invalidation of RARα did not affect the ability of these cells to form neurons (Al Tanoury et al, 

manuscript in preparation). Surprisingly, we found that these RARα-/- ES cells were severely impaired 

in adhesion and spreading. This result brought us to the conclusion that RARα may have a role in cell 

adhesion and spreading. Two main molecular mechanisms can be proposed for this RARα-dependent 

process: 

- RARα might control the expression of proteins involved in adhesion via genomic effects. 

Therefore, recently we lunched RNA-seq experiments using WT and RARα-/- cells that will give 

some indications soon. Whether profilin IIA is involved in such genomic process as a corregulator of 

RARα is still unknown and will require further profilin IIA gain and loss of function experiments. 

- By analogy with the androgen receptor, which was shown to be involved in cell migration via 

its association with filamin A (Castoria et al., 2011), RARα might also be involved in adhesion and 

cell spreading through non-genomic effects via its interaction with cytoskeleton actin-binding proteins. 

One candidate could be profilin IIA, which is known to be involved in cell adhesion (Murk et al., 

2009). In this line of idea, we found that a pool of RARα is present outside of nuclei, in the cytosol of 

ES cells as well as of several neuronal cells and fibroblasts. Unfortunately, profilin IIA was hardly 

detectable in the cytosol of these cells with our antibodies in immunofluorescense experiments. 

RARα/profilin IIA complexes were also hardly detectable in the cytosol, eliminating such a 

possibility. Nevertheless, one cannot exclude that RARα interacts with other actin-binding proteins 

and/or proteins involved in matrix adhesion (integrin, talin, α-actinin, filamin, vinculin etc.) through 



 

adaptors with SH3 or WW domains. Such a hypothesis will require further experiments. 

Finally, the striking point of this study is that CAFs depict higher amounts of cytosolic RARα 

than normal fibroblasts. As these cells are highly invasive, it strengthens our hypothesis concerning a 

role for RARα in cell adhesion and migration. 

Now the challenge will be to investigate how RARα controls cell adhesion and to discriminate 

between the genomic and/or non-genomic effects. This will implicate the identification of potential 

adhesion genes by RNA-seq and or new partners in the cytosol. Finally, it opens new avenues in 

tumor invasion with RARα as a novel potential marker for prognosis.  
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A retinoic acid receptor RARa pool present in membrane lipid rafts forms

complexes with G protein aQ to activate p38MAPK

A Piskunov and C Rochette-Egly

Department of functional genomics and cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM,
U964; CNRS, UMR7104; Université de Strasbourg, Illkirch Cedex, France

Retinoic acid (RA) regulates several gene programs by
nuclear RA receptors (RARs) that are ligand-dependent
transcriptional transregulators. The basic mechanism for
switching on transcription of cognate-target genes involves
RAR binding at specific response elements and a network
of interactions with coregulatory protein complexes. In
addition to these classical genomic effects, we recently
demonstrated that RA also induces the rapid activation of
the p38MAPK/MSK1 pathway, with characteristic down-
stream consequences on the phosphorylation of RARs and
the expression of their target genes. Here, we aimed at
deciphering the underlying mechanism of the rapid non-
genomic effects of RA. We highlighted a novel paradigm
in which a fraction of the cellular RARa pool is present in
membrane lipid rafts, where it forms complexes with G
protein alpha Q (Gaq) in response to RA. This rapid RA-
induced formation of RARa/Gaq complexes in lipid rafts
is required for the activation of p38MAPK that occurs in
response to RA. Accordingly, in RA-resistant cancer cells,
characterized by the absence of p38MAPK activation,
RARa present in membrane lipid rafts does not associate
with Gaq, pointing out the essential contribution of
RARa/Gaq complexes in RA signaling.
Oncogene advance online publication, 7 November 2011;
doi:10.1038/onc.2011.499

Keywords: retinoic acid; RAR; p38MAPK; G alpha Q;
lipid rafts

Introduction

Retinoic acid (RA), a pleiotropic signaling molecule
derived from vitamin A, regulates critical genetic
programs that control development and homeostasis,
cell proliferation and differentiation, as well as cell death
or survival (Clagett-Dame and Knutson, 2011). This is
the basis for the use of RA in cancer therapy (Altucci
et al., 2007). These effects of RA are mediated by
specific nuclear receptors, RA receptors (RARs), which
consist of three subtypes, a (NR1B1), b (NR1B2) and

g (NR1B3) (Germain et al., 2006a, b). The basics of
RARs’ structure and function have been recapitulated in
several reviews (Laudet and Gronemeyer, 2001; Bastien
and Rochette-Egly, 2004; Rochette-Egly and Germain,
2009). Briefly, RARs are multidomain proteins with a
central DNA-binding domain linked to an N-terminal
domain (NTD) and a C-terminal ligand-binding
domain. Classically, RARs function as ligand-inducible
transcriptional regulators, heterodimerized with retinoid
X receptors (RXRs). As such they regulate the expres-
sion of subsets of target genes involved in cell
proliferation and differentiation (Duong and Rochette-
Egly, 2011; Samarut and Rochette-Egly, 2011). The
basic mechanism for switching on gene transcription by
RA relies on the binding of RAR/RXR heterodimers to
specific sequence elements located in the promoters of
target genes and on ligand-induced conformational
changes, which cause the association/dissociation of a
complex and ever-growing network of coregulatory
proteins (Lefebvre et al., 2005; Rochette-Egly and
Germain, 2009).

In addition to this scenario, recent studies highlighted
a novel paradigm in which, in vivo, RA also induces the
rapid activation of p38MAPK and of the downstream
MSK1 (Alsayed et al., 2001; Gianni et al., 2002; Bruck
et al., 2009). Most importantly, the activation of the
p38MAPK/MSK1 pathway proved to be crucial for
fine-tuning the expression of RAR-target genes through
the phosphorylation of RARs and their coregulators
(Gianni et al., 2002, 2006; Bruck et al., 2009). Most
interestingly, the activation of p38MAPK by RA occurs
very rapidly (within minutes), suggesting a non-genomic
action of RA and RARs, as described for steroid
hormone receptors (Losel and Wehling, 2003; Vasude-
van and Pfaff, 2008). Therefore, we aimed at decipher-
ing the underlying mechanism of these rapid non-
genomic effects. Here, we showed that a fraction of
the cellular RARa pool is present in membrane lipid
rafts, which are microdomains of cell membranes
enriched not only in cholesterol and sphingolipids but
also in signal-transducing molecules, such as flotillins, G
proteins-coupled receptors, heterotrimeric G proteins,
Rho and Rac GTPases, and their effectors (Pike, 2003;
de Laurentiis et al., 2007; Sugawara et al., 2007; Yao
et al., 2009). In lipid rafts, G proteins consist of three
subunits a, b and g, and transmit signals to downstream
effector molecules such as phospholipase C, protein-
kinase C and p38MAPK (Mizuno and Itoh, 2009).
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We identified G protein alpha Q (Gaq), a member of the
Ga group, as a new RARa interacting protein in lipid
rafts. Finally, both RARa and Gaq were found to
mediate the activation of p38MAPK, with characteristic
downstream consequences on the expression of the RA-
target genes and on cell growth.

Results

RA activates p38MAPK through RARa and Gaq
P38MAPK was rapidly and transiently activated follow-
ing RA treatment of several cell lines such as human
mammary cancer cells (MCF7 cells), HeLa cells, mouse
embryocarcinoma cell lines (F9 cells) and mouse
embryonic fibroblasts (MEFs) (Figures 1a–d). Simulta-
neously, the upstream Rho-GTPases Rac and Rock
were also strongly activated in response to RA (Figures
1e and f).

Now considerable evidence indicates that Rho-
GTPases activation involves upstream Gaq that inter-
acts with scaffolding proteins in membranes (Sugawara
et al., 2007; Mizuno and Itoh, 2009). Therefore, we
analyzed whether Gaq is involved in the rapid RA-
induced activation of the p38MAPK pathway. With this
aim, Gaq was knocked down with specific small
interfering RNAs (siRNAs) in MCF7 and HeLa cells.
No activation of p38MAPK was observed in both cell
lines (Figures 2a and c), suggesting that the rapid
activation of the p38MAPK pathway may be mediated
by Gaq. Most interestingly, the activation of p38MAPK
was also inhibited upon RARa knockdown in these two
cell lines (Figures 2b and c), suggesting that the rapid
activation of the p38MAPK pathway may be mediated
by both Gaq and RARa. In line with this, p38MAPK
was abrogated in F9 cells knockout for RARa (F9
RARa�/�) but not in F9 RARg�/� and RARb�/�
cells (Figure 1b). Finally, in MEF knockout for the
three RARs, MEF (RARa, b, g)�/� p38MAPK was
restored upon re-expression of RARa WT, but not of
RARg WT (Figures 1c and d).

RARa is present with Gaq in membrane lipid rafts
There is increasing evidence that intracellular signaling
pathways are orchestrated by specific, highly ordered
membrane microdomains termed as ‘lipid rafts’ (Simons
and Toomre, 2000; Pike, 2003). Indeed, lipid rafts are
enriched in a large array of signal transduction
components, suggesting that they would be ‘signaling
centers’. As the rapid activation of p38MAPK by RA
involves RARa, we isolated these membrane subfrac-
tions in order to investigate whether they contain RARa
in addition to the signaling molecules.

MCF7 cells were disrupted and lipid rafts were
extracted using a unique technique based on their
relative insolubility in certain detergent conditions.
Then lipid rafts were isolated by virtue of their high
buoyancy when centrifuged on a discontinuous sucrose
density gradient (Ostrom and Insel, 2006; Waugh and
Hsuan, 2009) (Figure 3a). Such a technique has the

advantage of isolating buoyant rafts with their natural
composition. Moreover, protein interactions and func-
tions are maintained. As expected, after centrifugation,
a faint light-scattering band, which consists of the
buoyant lipid rafts material was visible at the 35%
sucrose–5% sucrose interface (Ostrom and Insel, 2006).
Then all sucrose gradient fractions were collected,
resolved by SDS–polyacrylamide gel electrophoresis
and analyzed by immunoblotting for lipid raft-asso-
ciated proteins. Fractions 4 and 5, which correspond to
buoyant rafts (Ostrom and Insel, 2006) contained
flotillin-2, a marker of lipid rafts (Stuermer, 2011)
(Figure 3b). They also contained other proteins that are
well known to participate in signaling events, such as
Rock-2, PKCd and Gaq, (Figure 3b), corroborating
that these fractions correspond to lipid rafts and are
signaling centers.

Figure 1 p38MAPK is activated in response to RA. (a–d) Analysis
of p38MAPK activation (phospho p38MAPK ELISA (enzyme-
linked immunosorbent assay)) in RA-treated MCF7 cells, HeLa
cells, F9 cells (either WT, RARa�/�, RARg�/� and RARb�/�)
and mouse embryonic fibroblasts (MEFs) [WT, RAR (a, b, g)�/�,
or re-expressing RARaWT or RARgWT in the RAR (a, b, g) null
background). (e, f) Analysis of Rac-1 and Rock-2 activities in
MCF7 cells (e) and HeLa cells (f) treated with RA for the indicated
times. All results are the mean±s.d. of duplicates from three
distinct experiments.
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Most interestingly, RARa (and not RARg and RARb)
could be detected in the same fractions corresponding to
lipid rafts (Figure 3b). Of note is that the amount of
RARa present in lipid rafts was very low compared with
the amount of RARa present in the bottom fractions
(fractions 8–12), which contain the rest of the cellular
material, including the nuclear components. Indeed, in
immunofluorescence experiments performed with MCF7
cells, RARa was detected essentially in nuclei (Figure 3d).
However, low levels of RARa were also detected out of
nuclei and colocalized with flotillin-2 (Figures 3f and g).
Collectively, these results converge to the conclusion that a
small population of RARa is present out of nuclei in
membrane lipid rafts.

Then the question is, how RARa (and not RARb nor
RARg) is targeted to membranes. Given that the three
RAR subtypes depict a very high degree of identity in the
sequence of their DNA-binding domains and ligand-
binding domains, one can speculate that the NTD might
specifically target RARa at the membrane. Therefore, we
analyzed whether RARa deleted for this domain (RAR-
aDNTD) was present or not in lipid rafts, taking
advantage of the F9 cells re-expressing RARa WT or
DNTD in a RARa null background (Rochette-Egly et al.,
2000). Remarkably, in contrast to RARa WT, RAR-
aDNTD could not be detected in lipid rafts isolated from
the corresponding rescue F9 cell line, indicating that the
NTD would be involved in targeting RARa to mem-
branes. In contrast, RARa deleted from the AF-2 domain
(RARaDH12) could be detected in rafts isolated from F9
cells expressing this mutant (Rochette-Egly et al., 2000)
(Figure 3h), validating our conclusions.

RARa interacts with Gaq in vitro and in vivo
Given that Gaq proteins colocalize with RARa in lipid
rafts and are involved in the activation of the p38MAPK
pathway, we investigated whether both proteins can
interact with each other. First, the ability of RARa to
interact with Gaq was analyzed with the recombinant
proteins in in vitro protein–protein interaction and
coimmunoprecipitation experiments. Recombinant

GST (glutathione S-transferase)-RARa expressed in
E.coli and bound to glutathione-sepharose beads inter-
acted with in vitro-translated Gaq (Figure 4a, lane 5).
A similar interaction was observed with a constitutively
active form of Gaq (Figure 4a, lane 6). These results
were confirmed in coimmunoprecipitation experiments
performed with extracts from COS-1 cells over expres-
sing RARa and Gaq, and treated or not with RA.
Indeed, some Gaq was detected in the RARa immuno-
precipitates in the absence of RA (Figure 4b, lane 4).
Most interestingly, the efficiency of the interaction
increased markedly after addition of RA (Figure 4b,
lanes 5–8). Altogether, these results indicate that RARa
can form complexes with Gaq and that these complexes
are increased in the presence of RA.

Finally, whether endogenous RARa and Gaq form
complexes in vivo in lipid rafts was investigated. High
amounts of lipid rafts were prepared from RA-treated
MCF7 cells and immunoprecipitated with RARa anti-
bodies. As shown in Figure 4c, Gaq could be detected in
RARa immunoprecipitates corroborating that RARa and
Gaq belong to a same complex in membrane lipid rafts.

Visualization of endogenous RARa/Gaq complexes,
in situ, by proximity ligation
Next, in situ proximity ligation assay (PLA) (Soderberg
et al., 2006) was used to explore further the endogenous
RARa/Gaq complexes. The assay is similar to fluores-
cence resonance energy transfer and allows the detection
of proteins in sufficient proximity (o40 nm). It is based
on the use of two primary antibodies raised in different
species that recognize the antigens of interest. Then
species-specific secondary antibodies, called PLA
probes, each with a unique short DNA strand attached
to it, are added. When the PLA probes are in close
proximity, the DNA strands can be joined through the
subsequent addition of a circle-forming DNA oligonu-
cleotide that is amplified by rolling circle amplification
using a polymerase. After the amplification reaction,
several-hundred fold replication of the DNA circle has
occurred, and labeled complementary oligonucleotide

Figure 2 G protein alpha Q and RARa are required for the RA-induced activation of p38MAPK (mitogen-activated protein kinase).
Knockdown of Gaq or RARa with specific small interfering RNAs (siRNAs) in MCF7 cells (a, b) and HeLa cells (c) inhibit the
activation of p38MAPK that occurs in response to RA. The results are the mean±s.d. of three experiments. The efficiency of the
knockdown was checked by immunoblotting.

RARa/Gaq complexes in lipid rafts
A Piskunov and C Rochette-Egly

3

Oncogene



Figure 3 RARa is present in membrane lipid rafts. (a) Schematic
representation of the rafts isolation procedure by sucrose gradient
centrifugation. (b) Immunoblotting analysis of the different
gradient fractions showing that RARa is present with Flotillin-
2, Gaq and other signaling components in lipid rafts. (c–g)
Confocal microscopy analysis of MCF7 cells fixed and triple
stained with 4,6-diamidino-2-phenyl indole (DAPI) (blue, c), anti-
RARa antibody (green, d), and anti-Flotillin-2 antibody (red, e).
The merge images overlapping the red, green and blue fluorescence
(f, g) show that though mainly nuclear, RARa can be detected out
of nuclei and colocalizes with flotillin-2. (h) Immunoblotting
analysis of lipid rafts (fractions 4 and 5) isolated from F9 cells
expressing RARa, that is, WT, DNTD or DAF-2 in a RARa null
background, and showing that RARaDNTD cannot be detected
in rafts.

Figure 4 G protein alpha Q interacts with RARa both in vitro and
in vivo. (a) In vitro translated Gaq and a constitutively active form
of Gaq (Gaqa) were incubated with glutathione S-transferase
(GST) or GST-RARa immobilized on glutathione-sepharose
beads. Bound Gaq was analyzed by immunoblotting. (b) COS-1
cells were transfected with the RARa vector along with Gaq and
treated with RA for the indicated times. Extracts were incubated
with mouse monoclonal RARa antibodies and protein
G-sepharose beads. Immunocomplexes were resolved by
SDS–polyacrylamide gel electrophoresis and immunoblotted with
RPa (F) and Gaq antibodies. The two bottom panels correspond
to 5% of the amount of immunoprecipitated extracts. Lanes 1 to 3
correspond to the immunoprecipitation controls. (c) Lipid rafts
were prepared from 2� 108 MCF7 cells treated with RA for 10min.
The light scattering bands, which consist of the buoyant lipid rafts
material were collected and immunoprecipitated with monoclonal
RARa antibodies. Bound Gaq was analyzed by immunoblotting.
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probes highlight the product. The resulting high
concentration of fluorescence in each single-molecule
amplification product is easily visible as a distinct bright
spot when viewed under a fluorescence microscope.

Here, rabbit anti-RARa and mouse anti-Gaq anti-
bodies were used under the PLA conditions to explore,
in situ, endogenous RARa/Gaq complexes, in MCF7
cells treated with RA for different times. Quite few
RARa/Gaq complexes were detected in the control
untreated cells (Figures 5b and c). Considerable higher

amounts of complexes were seen in the RA-treated cells
with a peak around 10min (Figures 5e and f), which
corresponds to the peak of p38 MAPK activation. Most
interestingly, the signals were out of nuclei. Then the
number of spots returned to control values at 30min
(Figures 5h and i). Spots number was quantified using the
Blobfinder V3.2 software (Centre for Image Analysis,
Uppsala University, Sweden, http://www.cb.uu.se/Bamin/
BlobFinder/) and the average values±s.d. from at least
two experiments are shown (Figure 5j). No signal was seen

Figure 5 Analysis of RARa/Gaq complexes in MCF7 cells by immunofluorescence microscopy in combination with in situ proximity
ligation assay (PLA). (a–i) PLA is highly specific for detecting physically interacting protein–protein complexes (red, panels b, e, h).
DNA was counterstained with 4,6-diamidino-2-phenyl indole (DAPI) (blue, panels a, d, g). The merge between blue and red is also
shown (panels c, f, i). A few RARa/Gaq complexes are shown in control MCF7 cells (b, c). The amount of complexes increased
markedly out of nuclei in MCF7 cells treated with RA for 10min (e, f) and returned to control values at 30min (h, i). (j) Statistical
analysis of the signals using the Blobfinder V3.2 software.
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when each primary antibody was used individually,
validating the specificity of the technique. Similar results
were obtained with several other RA-treated cells such as
HeLa cells and MEF (Figure 6). Collectively, these results
confirm that endogenous RARa is present in a complex
with endogenous Gaq out of nuclei, in response to RA.

Note, however, that the increased number of RARa/
Gaq complexes was observed specifically in response to
RA. Indeed, the activation of the p38MAPK pathway
that occurs in response to epidermal growth factor
(EGF) through Gaq proteins (Figure 7a), does not
involve RARa (Figure 7a). Accordingly, no increase in
RARa/Gaq complexes could be observed in response to
EGF as assessed in a PLA (Figure 7b).

In erbB-2 positive breast cancer cells, p38MAPK is not
activated in response to RA and RARa does not form
complexes with Gaq
Then, we asked whether RA-resistant cells exemplified
by the human erbB-2 positive breast cancer cells also

depict an activation of p38MAPK and the formation of
RARa/Gaq complexes in response to RA. First, the
erbB-2 positive cells, BT474, SKBR3, MDA-MB453
and MDA-MB361 cells (Tari et al., 2002) (Figure 8a)
were compared with MCF7 cells for p38MAPK activa-
tion in response to RA. Remarkably, in these cell lines
p38MAPK activation was decreased or abrogated up to
60min after RA addition (Figure 8b).

Then, we concentrated on BT474 cells, which
depict the highest levels of erbB-2 and are completely
defective in p38MAPK activation. Membrane lipid
rafts were isolated from these cells and were analyzed
by immunoblotting. Both RARa and Gaq could be
detected in lipid rafts from these cells (Figure 8c).
However, no RARa/Gaq complexes could be visualized
in situ by proximity ligation (Figures 8e–j), whereas a
high amount of complexes were seen in MCF7 cells
under the same conditions (Figures 8k–p). Note that the
ability of EGF to activate p38MAPK was also
abrogated in BT474 cells (Figure 8d), though this

Figure 6 Analysis of RARa/Gaq complexes in mouse embryonic fibroblasts (MEFs) by immunofluorescence microscopy in
combination with in situ proximity ligation assay (PLA). (a–f) The number of red dots corresponding to the RARa/Gaq complexes
increases in MEFs treated with RA for 10min as in Figure 5. (g) Statistical analysis as in Figure 5j.

RARa/Gaq complexes in lipid rafts
A Piskunov and C Rochette-Egly

6

Oncogene



pathway does not involve the formation of RARa/
Gaq complexes (see Figure 7). Collectively, these data
highlight the importance of the initial formation of
RARa/Gaq complexes in lipid rafts for p38MAPK
activation in response to RA. They also suggest that the
signaling pathways, involving Gaq proteins, are affected
in erbB-2 positive cells (see Discussion).

The integrity of the Gaq/p38MAPK pathway is required
for the full RA-induction of RARa-target genes and the
antiproliferative action of RA
According to our previous work, activation of the
p38MAPK/MSK1 pathway is significant for the activa-
tion of RARa-target genes in several cell lines, including
MCF7 cells and MEF (Bruck et al., 2009). Then, we
asked whether upstream Gaq is required for the

induction of RA-target genes. In MCF7 cells, RA
treatment enhances the expression of the Hoxa-1 and
Btg2 genes, which are the paradigm of the RA-target
genes as assessed by quantitative real time–PCR.
Knockdown of Gaq decreased the RA-induced expres-
sion of both genes (Figures 9a and b). Most interest-
ingly, it also reduced the antiproliferative action of RA
(Figure 9c) in line with other studies (Lai et al., 2008;
White et al., 2008). Of note is that knockdown of the
downstream effectors p38MAPK and MSK1 also
decreased the RA-induced expression of RA-target
genes, though less efficiently than the knockdown of
RARa (Figure 8c), corroborating our previous studies
(Bruck et al., 2009). Collectively, these results highlight
the importance of the Gaq/p38MAPK/MSK1 pathway
for RAR-target gene expression and growth arrest that
occur in response to RA.

Figure 7 P38MAPK (mitogen-activated protein kinase) activation that occurs in response to epidermal growth factor (EGF) does not
involve RARa. (a) Analysis of the EGF-induced activation of p38MAPK in MCF7 cells knockdown for Gaq or RARa with specific
small interfering RNA (siRNAs). (b–g) EGF does not induce the formation of RARa/Gaq complexes in MCF7 cells, as assessed by
immunofluorescence microscopy in combination with in situ proximity ligation assay (PLA).
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Discussion

Rapid responses, such as the activation of signaling
pathways, are initiated at the plasma membrane in lipid
rafts and then amplified by cascades of activation of
downstream effectors including G proteins, Rho family
small GTPases, phospholipase C, the Src family tyrosine
kinases and p38MAPK. As RA activates very rapidly
the p38MAPK pathway, we speculated that this effect
would be non-genomic and mediated by a membrane-
associated RAR. Here, we provide evidence that in
various mammalian epithelial and fibroblastic cells, the
RARa subtype, which is normally found in the nucleus,

is also present in plasma membranes. Moreover,
membrane-associated RARa forms complexes with
Gaq to generate rapid p38MAPkinase activation in
response to RA (see Figure 9e).

First of all, to find out the mechanism of activation of
the p38MAPK pathway by RA, we investigated, which
RAR subtype is involved and whether this RAR could
be detected in membrane lipid rafts that are ‘signaling
centers’. Taking advantage of cell lines invalidated for
one specific RAR subtype or re-expressing a specific
RAR in a triple RAR (a, b, g) null background, we
demonstrated that the activation of p38MAPK in
response to RA, involves specifically the RARa subtype.

Figure 8 In erbB-2 positive breast cancer cells, p38MAPK (mitogen-activated protein kinase) is not activated in response to RA and
RARa does not form complexes with Gaq. (a) ErbB-2 expression in MCF7, SKBR3, BT474, MDA-MD453 and MDA-MB361 human
breast cancer cells. (b) Comparison of p38MAPK activation in RA-treated MCF7 and erbB-2 positive cells. (c) Lipid rafts prepared
from BT474 cells contain RARa and Gaq. (d) In BT474 cells, p38MAPK is not activated in response to epidermal growth factor
(EGF), as assessed by immunoblotting analysis of active phospho p38MAPK. (e–j) In BT474 cells, RARa does not form complexes
with Gaq in response to RA, as assessed by immunofluorescence microscopy in combination with in situ proximity ligation assay
(PLA). (k–p) RARa/Gaq complexes in RA-treated MCF7 cells as assessed by in situ PLA.
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However, in immunofluorescence confocal studies,
RARa was present essentially in nuclei and was hardly
detected in plasma membranes, despite some spots
suggesting a colocalization of RARa with flotillin-2, a
marker of lipid rafts. In fact, RARa could be detected in
detergent-insoluble membrane lipid rafts that are con-
centrated by sucrose equilibrium density gradients and
that are enriched in components of signal transduction
pathways (Pike, 2003; de Laurentiis et al., 2007). RARa
was detected in the same low-density buoyant fractions
as flotillin and Gaq. The fact that RARa colocalizes with
flotillin-2 in lipid rafts is a novelty in the field. It is also in
line with the new concept in which most of the classical
so-called nuclear steroid and non-steroid receptors (ER,
GR, PR, AR, VDR) can be found in specialized plasma
membrane structures such as caveolae and lipid rafts
(Huhtakangas et al., 2004; Marquez et al., 2006; Pedram
et al., 2007; Luoma et al., 2008; Matthews et al., 2008).

How RARa is recruited to the plasma membrane is
still ill-defined. Indeed, in contrast to the other steroid
receptors, RARa does not depict any palmitoylation
motif that would facilitate its membrane localization
(Pedram et al., 2007). However, according to our results,
the N-terminal domain that is not conserved between
RARs, appears to be necessary for targetting specifically
RARa to lipid rafts. In addition, RARa present in lipid
rafts forms complexes with Gaq proteins and the
number of these complexes is increased in response to
RA. These complexes were seen in vitro with the
recombinant proteins by GST pull down and coimmu-
noprecipitation and were corroborated in vivo, with the
endogenous proteins in coimmunoprecipitation experi-
ments performed with enriched lipid rafts. In fact, the
originality of the present study resides in the use of a

‘PLA’, which can reveal transient endogenous protein
complexes even when present at very low levels
(Soderberg et al., 2006). Such a technique allowed
us to visualize, in situ, a rapid and transient increase
(10–15min after RA addition) in RARa/Gaq com-
plexes. It also revealed that the complexes are out of the
nuclei, confirming the hypothesis that the non-genomic
effects of RA involve a pool of extra nuclear RARa.

The interesting point is that Gaq is involved with
RARa in the activation of p38MAPK (Figure 8d). This
is a novelty in the field of the non-genomic effects of RA
and is in agreement with the well-known role of Gaq in
the activation of the p38MAPK pathway (Sugawara
et al., 2007; White et al., 2008; Mizuno and Itoh, 2009).
It is worth noting that this pathway was activated by
RA in epithelial and fibroblastic cells but not in
neuronal and sertoli cells, where RA rather activates
the p42/p44MAPK (Erk) pathway through Src and
PI3K (Pan et al., 2005; Dey et al., 2007; Masia et al.,
2007; Chen and Napoli, 2008; Zanotto-Filho et al.,
2008). Thus, the mechanism of the non-genomic effects
of RA appears to involve different membrane-associated
complexes, depending on the MAPK pathway that is
RA-activated and on the cell type. Similarly, the non-
genomic effects of the other nuclear receptors involve
different kinases and different membrane molecular
complexes, depending on their functional significance
(Losel and Wehling, 2003; Norman et al., 2004). As an
example, in breast cancer cells and in response to its
cognate ligand, the estrogen receptor ERa activates the
Erk pathway through complexes containing c-Src and
the regulatory subunit of PI3K (p85a) (Migliaccio et al.,
1998; Le Romancer et al., 2008). In contrast, in neuronal
cells, ER rather activates protein kinase C through Gaq

Figure 9 Gaq is required for the RA-induction of the Hoxa1 and Btg2 genes and for the antiproliferative action of RA. In MCF7
cells, the RA-induced expression of the Hoxa-1 (a) and Btg2 (b) genes is decreased upon knockdown of Gaq, as assessed by
quantitative real time–PCR. (c) Knockdown of Gaq also decreases the antiproliferative action of RA. (d) Knockdown of the
downstream effectors p38MAPK (mitogen-activated protein kinase) and MSK1 also decreases the RA-induced expression of the Btg2
gene. The results are the mean±s.d. of three individual experiments. (e) Model of the activation of the p38MAPK pathway through
RARa and Gaq located in membranes.
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and phospholipase C (Qiu et al., 2003). In the same line
of idea, depending on the cell type, VDR activates either
the RhoA-Rock-p38MAPK pathway (Ordonez-Moran
et al., 2008) or the Raf/Erk pathway (Norman et al.,
2001; Losel and Wehling, 2003).

The present study also corroborates the new concept,
according to which the non-genomic effects of RA
influence the genomic effects (Rochette-Egly and
Germain, 2009; Piskunov and Rochette-Egly, 2011).
Indeed, our results indicate that the knockdown of Gaq
and its downstream effectors, p38MAPK and MSK1,
decreases the expression of RAR-target genes. The
modes of interaction between the non-genomic and
genomic effects of RA are complex, but according to
other studies from our laboratory, the downstream
effectors of the non-genomic effects, p38MAPK and
MSK1, phosphorylate the actors of the genomic action
of RA, that is, histones, RARs and their coregulators
such as SRC-3 (Gianni et al., 2002, 2006; Bruck et al.,
2009). As such, the RA-induced phosphorylation
cascades control protein–protein and DNA–protein
interactions, and the dynamics of transcription. Thus,
one can conclude that the non-genomic effects of RA
cross talk with the genomic processes for assuming the
specificity of RAR-target genes expression.

Finally, our results highlight that in RA-resistant breast
cancer cells characterized by aberrant receptor tyrosine
kinase expression and/or activity (exemplified by erbB-2
breast cancers), the formation of RARa/Gaq complexes is
suppressed, resulting in the abrogation of the non-
genomic effects of RA, that is, the activation of
p38MAPK. Remarkably, other signaling pathways invol-
ving Gaq proteins, such as the EGF pathway, are also
affected in such cells. It is important to note that most
signaling pathways are controlled by essential scaffolding
proteins of lipid rafts such as caveolin-1 (Sugawara et al.,
2007; Staubach and Hanisch, 2011). Moreover, caveolin-1
is frequently downregulated in erbB-2 positive cells (Park
et al., 2005). Therefore, one can speculate that the
integrity of lipid rafts composition would be required
for the formation of Gaq-based complexes including
RARa/Gaq complexes, and thereby for the activation of
the signaling pathways. Whether there is a correlation
between these observations and the resistance of such
cancer cells to the antiproliferative action of RA would
require further investigations, but is out of the scope of
this study. Nevertheless, our results and others (Lai et al.,
2008; White et al., 2008; Staubach and Hanisch, 2011)
suggest that Gaq proteins, as well as several components
of lipid rafts, would have an important role in the control
of not only gene expression but also cell growth.

Materials and methods

Plasmids, antibodies and reagents
The pSG5-based expression vector for RARa and the
prokaryotic pGEX-2T vector encoding RARa fused to GST
were previously described (Bour et al., 2005). The pcDNA3.1
Gaq vectors (WT and constitutively active) were purchased
fromMissouri S&T cDNAResource Center (Rolla, MO, USA).

Mouse monoclonal antibodies (Ab10a (A) and Ab9a(F)) as
well as rabbit polyclonal antibodies (RPa(F)) raised against
RARa were described earlier (Gaub et al., 1992). Rabbit
polyclonal antibodies against PKCd (C-17), goat polyclonal
antibodies against b-actin (C-11) and Rock-2 as well as mouse
monoclonal antibodies against Gaq and Flotillin-2 were
obtained from Santa Cruz Biotechnology Inc. (Santa Cruz,
CA, USA). The rabbit polyclonal antibodies against RARa (C-
20), used in the immunofluorescence experiments were also
from Santa Cruz. Antibodies against p38 MAPK, phospho-p38
MAPK (Thr180/Tyr182) and HER2/ErbB2 antibodies were
purchased from Cell Signalling Technology (Danvers, MA,
USA). Rabbit polyclonal antibodies against GAPDH were
from Sigma Aldrich Chemie (Saint Quentin Fallavier, France),
as well as all trans RA and epidermal growth factor (EGF).

Cell culture, proliferation, transfections and
immunoprecipitations
MCF7, BT474, SKBR3, MDA-MB453, MDA-MB361 and
HeLa cells were cultured under standard conditions. MEFs with
all three RARs deleted and re-expressing RARa WT or RARg
WT were previously described (Bruck et al., 2009). Mouse
embryocarcinoma cells (F9 cells), WT, RARa�/�, RARg�/�
and RARb�/�, were previously described (Taneja et al., 1997;
Faria et al., 1999), as well as F9 cells re-expressing RARa, WT,
DNTD and DAF-2 in a RARa null background (Rochette-
Egly et al., 2000). COS-1 cells were transiently transfected using
the FuGENE 6 reagent (Roche, Meylan, France) according to
the manufacturer’s protocol. When they have reached 80–90%
confluency, cells were treated with RA (10�7 M) or EGF (100ng/
ml), after 24h in a medium containing 1% fetal calf serum
(Bruck et al., 2009). Extracts were prepared, immunoblotted or
immunoprecipitated as described (Bruck et al., 2009).
Cell proliferation was analyzed by using the XTT (2,3-bis-(2-

methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide)
assay kit according to the manufacturer’s instructions (Roche
Diagnostics).

Detection of active p38MAPK, Rac1 and Rock2
Phosphorylated p38MAPK was detected by using a phospho
p38MAPK (Thr (P)-180/Tyr (P)-182) ELISA kit (Biosource
Invitrogen Corporation). Where indicated it was also analyzed
by immunoblotting with antibodies recognizing specifically the
active phosphorylated form of p38MAPK. Activation of
Rho family GTPases was analyzed using the Rac1,Rac 3 and
3 G-LISA Rac activation assay Biochem Kit (Cytoskeleton,
Denver, CO, USA), and the Rock activity assay kit (Cell
Biolabs, San Diego, CA, USA).

GST pull-down assays
Equimolar amounts of GST and GST-fusion proteins expressed
in Escherichia coli were purified on glutathione-sepharose 4B
beads (Amersham Biosciences, GE Healthcare Europe GmbH,
Branch France, Velizy-Villacoublay, France) and incubated as
previously described (Bour et al., 2005), with in vitro-translated
Gaq produced in Quick Coupled Transcription/Translation
System (Promega, Charbonnières les Bains, France).

Small interfering RNA
The ON-TARGET plus SMART pool siRNA against human
Gaq (M-008562-00-0005), human RARa (L-003437-00-0005),
human p38MAPKa (L-003512-00), human MSK1 (M-004665-
01) and the control non-targeting siRNA pool (D-001206-13) were
purchased from Dharmacon (Thermo Fisher Scientific, Illkirch,
France). Cells were transfected with siRNAs (50nM) according to
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the manufacturer’s protocol and treated with RA (10�7M) 48h
post-transfection. Then at the indicated times, the cells were
harvested and subjected to RNA and protein analysis.

Rafts Isolation
Membrane lipid rafts were isolated using the procedure
described in Ostrom and Insel (2006) and Waugh and Hsuan
(2009). Briefly, 6� 107 cells grown in petri dishes were washed
twice in phosphate-buffered saline and then lyzed for 1min on
ice in 1ml of 10mM Tris–HCl (pH 7.4) containing 1% (v/v)
Triton X-100, 1mM EDTA, 0.5mM ethylene glycol tetraacetic
acid and protease/phosphatase inhibitors. Then the cell lysate
was scrapped, transferred to a 2-ml Dounce homogenizer and
homogenized with 10 strokes on ice. The lysate was adjusted to
2ml and an equal volume of 80% sucrose was added. The two
solutions were then mixed thoroughly by pipetting up and
down several times to give a final concentration of 40%
sucrose in a 4-ml volume. Then 4ml of 30% sucrose and 4ml
of 5% sucrose were layered carefully. After centrifugation at
240 000� g for 16 h at 4 1C, samples were collected from the
top of the tube as 1-ml fractions (12 fractions in total).
Fractions were analyzed by SDS–polyacrylamide gel electro-
phoresis and immunoblotting. A faint light-scattering band,
which consists of the buoyant lipid rafts material, was often
visible at the 35%-5% sucrose interface (fractions 4 and 5).
For further immunoprecipitation of rafts proteins, rafts

were prepared from 2� 108 cells. After sucrose gradient
centrifugation, fractions corresponding to rafts were collected,
centrifuged (100 000� g for 1 h at 4 1C) and the final pellet was
resuspended in immunoprecipitation buffer.

Immunofluorescence
Cells grown on coverslips were fixed in 4% paraformaldehyde
–phosphate-buffered saline for 20min, permeabilized with
0.5% Triton X-100 and blocked with 1% bovine serum
albumin in phosphate-buffered saline for 30min. Then the cells
were incubated with the primary antibodies, followed by
ALEXAFluor 448 or 555 conjugated secondary antibodies
(Invitrogen, Villebon sur Yvette, France). Nuclei were
counterstained with 4,6-diamidino-2-phenyl indole (Sigma-
Aldrich Chimie). Cells were analyzed by fluorescence micro-
scopy using a LEICA DMRX microscope (LEICA Micro-
systems, Rueil Malmaison, France) equipped with a LEICA
True Confocal Scanner TCS SP. The used objective was Leica
HCX PL APO 63� 1.40 LBL.

Proximity ligation assay (PLA)
Cells were grown on coverslips, fixed, permeabilized, blocked
and incubated with primary antibodies (anti-RARa and anti

Gaq), as described for immunofluorescence experiments.
Duolink II (Eurogentec, Angers, France) in situ PLA was
performed according to the manufacturer’s protocol. PLA
probes were incubated for 1 h at 37 1C, followed by hybridiza-
tion, ligation, amplification and detection. Nuclei were
counterstained with 4,6-diamidino-2-phenyl indole. Slides were
analyzed by fluorescence microscopy using a LEICA
DM4000B microscope (LEICA Microsystems) equipped with
a Cool SNAP photometric camera. The used objective was
Leica HCX PLAN APO 40x0, 75 PH 2. The number of
fluorescent signals and nuclei in an image were counted, and
were statistically analyzed using the Blobfinder V3.2 software
from the Centre for Image Analysis at Uppsala University
(http://www.cb.uu.se/Bamin/BlobFinder/). Statistical signifi-
cance was accepted when Po0.05 using one-tailed Student t
test. Values are presented as means±s.d.

RNA isolation and quantitative real time–PCR
Total RNAs were isolated and subjected to quantitative real
time–PCR as described (Bruck et al., 2009). All primers are
QuantiTect Primer Assays from Qiagen (Courtaboeuf, France,
Hs_BTG2_1_SG QuantiTect Primer Assay QT00240247;
Hs_HOXA1_1_SG QuantiTect Primer Assay QT00011963).
Transcript levels were normalized according to b-actin
transcripts, which are unresponsive to RA.
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ABSTRACT 

Nuclear retinoic acid (RA) receptors (RARs) are ligand-dependent regulators of 

transcription. Their transcriptional activity relies mainly on their recruitment to 

specific DNA response elements and on their interactions with several coregulators 

at the ligand-binding domain. However, the N-terminal domain (NTD) also plays a 

role through its phosphorylation. Here, using a yeast two-hybrid system, we isolated 

profilin IIA as a novel partner of the NTD of the RARα subtype. Profilin IIA is a small 

ubiquitous actin-binding protein with an SH3-like domain. We demonstrated that 

the SH3-like domain of profilin IIA interacts with the proline-rich motif (PRM) 

located in RAR NTD. The interaction was not affected by the phosphorylation of 

the serine residue located in the PRM or by RA addition. In vivo, profilin IIA 

modulates positively RAR-mediated transcription of several target genes. In the 

absence of RA, profilin IIA interacts with RARα in nuclei. In response to RA, profilin 

IIA is corecruited with RARα to the promoters of RA-target genes and modulates 

their expression.  
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INTRODUCTION 

Retinoic Acid (RA) influences the differentiation, proliferation and apoptosis of 

a variety of cell types through modifications in the expression of target genes. The 

effects of RA are mediated by specific nuclear receptors, RA receptors (RARs), which 

consist of three subtypes  and  and function as ligand-dependent regulators of 

transcription heterodimerized with other nuclear receptors, the Retinoid X 

receptors (RXRs) (for reviews see (Bastien & Rochette-Egly, 2004; Rochette-Egly & 

Germain, 2009; Samarut & Rochette-Egly, 2012)).  

The basic mechanism for switching on gene transcription by RAR/RXR 

heterodimers relies on binding to specific elements located in the promoters of 

target genes and on ligand-induced conformational changes that cause the 

association/dissociation of a complex network of coregulatory proteins (Rochette-

Egly & Germain, 2009). At the end, these events alter the chromatin structure 

surrounding the promoter of target genes and pave the way for the recruitment of 

the transcriptional machinery. 

However, in addition to this classical scenario, which is directed by the LBD, it 

is now evident that, the N-terminal domain (NTD), although of naturally disordered 

structure, also plays a role, increasing the complexity of RAR-mediated transcription 

mechanisms (Ang et al, 2005; Bour et al, 2007; Liu et al, 2006). In this context, we 

recently highlighted that the NTD of RARs depicts a proline-rich motif (PRM) 

containing a serine residue, which becomes rapidly phosphorylated subsequently to 

non-genomic effects of RA, i.e. the activation of kinase cascades (Bruck et al, 2009; 

Lalevee et al, 2010; Piskunov & Rochette-Egly, 2011). In fine, phosphorylation of this 

residue drives the recruitment of RARs to promoters (Bruck et al, 2009; Lalevee et 

al, 2010). 

The interesting point is that PRMs are well known to bind proteins with SH3 or 

WW domains (Ball et al, 2005; Freund et al, 2008; Kay et al, 2000). In that context 

we found that the PRM of the RAR subtype interacts with vinexin (Bour et al, 

2005b; Lalevee et al, 2010), an adaptor protein with SH3 domains, which is 

generally associated as a scaffold to complexes involved in cytoskeleton 

organization and signal transduction. However it is also one of the growing number 

of actin-binding that are nuclear and modulate transcription (Kast & Dominguez, 

2011; Zheng et al, 2009) and we found that vinexin represses the transcriptional 
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activity of RAR through sequestering the non phosphorylated form of the receptor 

out of gene promoters (Lalevee et al, 2010). Remarkably, vinexin dissociates in 

response to RA subsequently to RAR phosphorylation, making the phosphorylated 

form of RAR able to occupy promoters and to initiate transcription. This was the 

first report of a RAR corepressor association/dissociation out of promoters and 

regulated by phosphorylation.  

Here, we aimed at identifying new partners of the NTD of the RAR subtype, 

which like RAR, depicts a N-terminal PRM with a phosphorylation site (Samarut et 

al, 2011). Yeast two-hybrid screenings led to the identification of profilin IIA as a 

novel partner of the NTD of RAR. Profilin IIA is an other cytoskeleton actin-binding 

protein with an SH3-like domain, and is a regulator of the actin microfilament 

system (Haikarainen et al, 2009; Jockusch et al, 2007). We demonstrated that the 

interaction involves the SH3-like domain of profilin IIA and the PRM of RAR and 

we determined the affinity of the interaction. However, the role of profilin IIA in 

transcription proved to be different from that of vinexin and the classical 

coregulators. Indeed profilin IIA is present in the nucleus, is recruited with RAR to 

the promoters of target genes and modulates positively RAR-mediated 

transcription. However the interaction of profilin IIA is not modulated by the 

phosphorylation of RAR or by RA, suggesting a novel regulation mechanism.  
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MATERIALS AND METHODS 

 

Plasmids and reagents 

The pSG5-based expression vectors for mouse RARα1 (WT, S77A, S77E, ∆A 

and ∆AB) and RAR1 have been previously described as well as the prokaryotic 

pGEX-2T vectors encoding RARα1 (WT, DEF and ABC) RAR2 and RARγ1 fused to 

glutathione S-transferase (GST) (Bour et al, 2005a; Nagpal et al, 1992). The yeast 

pBTM116mod plasmid encoding N-terminal domain of RARS77A fused to the 

LexA-DNA-binding domain was described in (Bour et al, 2005b).  

Drs M. Noda and H. Kitayama (Xu et al, 2007) provided the pcDNA3.1-profilin 

IIA vector. The cDNA of profilin IIA was amplified by PCR from the pCDNA3.1 vector 

and inserted into XhoI/BamHI-digested pSG5 containing the epitope B of human 

estrogen receptor as a tag (a gift from T. Lerouge). It was also inserted into 

EcoRI/BamHI-digested pGEX-2T. Profilin IIA (Y7A/N10D) and profilin IIA 

(Y134S/F140A) in pSG5-B10 were constructed by double PCR amplification. All 

constructs were generated using standard cloning procedures and were verified by 

restriction enzyme analysis and automated DNA sequencing.  

Mouse GIPZ lentiviral shRNAmir control (RHS4346) or targeting profilin IIA 

(RMM4532-NM_019410), as well as On-target plus SMART Pool human PFN2 (L-

063038-01) and non targeting siRNA (D-001210-01-05) were from Thermofisher 

Scientific. All-trans Retinoic Acid was from Sigma-Aldrich. 

 

Antibodies 

Rabbit polyclonal antibodies raised against the F region of RARα (RP(F)) 

were described earlier (Bruck et al, 2009) and were purified by application onto 

sulfolink gel columns (Thermo Scientific Pierce) coupled with the corresponding 

synthetic peptides (Buchanan et al, 2011; Vernet et al, 2006). Mouse monoclonal 

antibodies recognizing specifically RAR phosphorylated at position S77 (MAb 27) 

have been described previously (Bruck et al, 2009; Gaillard et al, 2006), as well as 

antibodies against the epitope B of the N-terminal domain of the estrogen receptor 

(B10) (Ali et al, 1993). Mouse monoclonal antibodies against profilin IIA (sc-

1000955), goat antibodies against β-actin (sc-1615) and rabbit polyclonal 

antibodies against RAR for ChIP experiments (sc-551-X) were from Santa Cruz 
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Biotechnology Inc. (USA). Mouse monoclonal antibodies recognizing GAPDH 

(MAB374) were from Merk-Millipore.  

 

Yeast two-hybrid screening 

Yeast two-hybrid screening was performed as previously described (Bour et 

al, 2005b), using the L40 reporter strain harboring the HIS3 and LacZ reporter 

genes, both under the control of LexA binding sites. The mouse embryo (12.5 days 

pc) cDNA library in yeast VP16-AAD fusion vector pASV3 was introduced by lithium 

acetate transformation into the reporter strain expressing the LexA-

RAR1(A/B)(S77A) fusion protein from the pBTM116mod vector. Approximately 

2.106 yeast transformants were screened for their ability to grow on medium 

lacking histidine and containing 30 mM 3 amino-1,2,4 triazole (3-AT) (ICN 

Pharmaceuticals, France) and to express -galactosidase. After several rounds of 

replica plating on selective medium, library plasmids were recovered from the 

positive clones, amplified, subjected to restriction analysis and sequenced. 

 

GST Pull-down Assays 

Equimolar amounts of GST and GST fusion proteins expressed in Escherichia 

coli were purified on glutathione-Sepharose 4B beads (Amersham Biosciences) and 

incubated with COS-1 cell extracts expressing B-tagged profilin IIA protein as 

described (Bour et al, 2005b).  

 

 Surface Plasmon resonance measurements.  

 SPR experiments were carried out with a BIAcore T100 instrument and 

research grade CM5 sensor chips (Altschuh et al, 2006; Lalevee et al, 2010). The 

ligand (GST-profilin IIA) was captured via anti-GST antibodies that were 

immobilized on the sensor surface using standard amine coupling procedures and 

following the manufacturer's instructions. Synthetic peptides corresponding to the 

proline-rich motif of RAR or RAR (with S77 phosphorylated or not) (Table 1) 

were diluted in running buffer (HBS EP: 10 mM Hepes (pH 7.4), 150 mM NaCl, 3.4 

mM EDTA, 0.005% (v/v) surfactant P20) and injected over the surface in a 

continuous flow at 25°C.  
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Cells, Transfections and Immunoprecipitations 

COS-1 cells, human neuroblastoma SH-SY-5Y cells, human acute 

promyelocytic leukemia (NB4) cells, mouse hippocampus HT22 cells, human breast 

cancer cells (MCF7 and SKBR3 cell lines), mouse embryocarcima cells (F9 and P19 

cell lines) and mouse embryonic fibroblasts (MEF WT and MEF RAR()-/- ) 

(Bruck et al, 2009) were cultured according to standard procedures. 

COS-1 cells, MCF7 cells and MEFs were transiently transfected using the 

Lipofectamine 2000 reagent (Invitrogen), according to the manufacturer's protocol. 

When 80–90% confluent, cells were treated with RA (10-7 M) after 24 h in a 

medium containing 1% fetal calf serum. Extracts were prepared, immunoblotted or 

immunoprecipitated as described (Bruck et al 2009).  

 

Immunofluorescence 

Cells grown on coverslips were fixed in 4% formaldehyde (PFA)-PBS for 20 

minutes, permeabilized with 0,1% Triton X-100 and blocked with 1% BSA in PBS for 

30 minutes. Then the cells were incubated with the primary antibodies, followed by 

ALEXAFluor™ 448 or 555 conjugated secondary antibodies (Invitrogen). Cells were 

also incubated with fluorescent green 488 phalloidin (Biotium, Inc. Hayward USA). 

Nuclei were counterstained with DAPI (Sigma-Aldrich Chimie, France). Cells were 

analyzed by fluorescence microscopy using a LEICA DMRX microscope equipped 

with a LEICA True Confocal Scanner TCS SP. The used objective was Leica HCX PL 

APO 63x1.40 LBL. 

 

Proximity Ligation Assay (PLA) 

Duo link II (Eurogentec, France) in situ proximity ligation assay (PLA) was 

performed according to the manufacturer's protocol and as previously described 

(Ferry et al, 2011; Piskunov & Rochette-Egly, 2011). Cells were grown on coverslips, 

fixed, permeabilized, blocked and incubated with primary antibodies (rabbit anti-

RAR and mouse anti profilin IIA) as described for immunofluorescence 

experiments then PLA probes were incubated for 1 h at 37°C, followed by 

hybridization, ligation, amplification and detection. Nuclei were counterstained with 

Dapi. Slides were analyzed by fluorescence microscopy using a LEICA DM4000B 

microscope equipped with a Cool SNAP Photometric camera. The used objective was 
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Leica HCX PLAN APO 40x0, 75 PH 2.  

 

RNA isolation and quantitative RT-PCR was performed as described (Ferry 

et al, 2009). Primer sequences are as follows: Mouse RARβ2:  5’- 

TTTGGCACGTAGGCTGTTGG-3’and  5’-GAGCGAGCCTGGAAAATGGT-3’; Mouse 

Cyp26A1:  5′-GGGCTTACTTTGCAAGAGCA-3′ and 5′-GAAGGCCTCCTCCAAATGGA-3′; 

Mouse GAPDH:  5′-GTCTTCTGGGTGGCAGTGAT -3′ and 5′-

CTGCACCACCAACTGCTTAG -3′. Human primers were from QIAGEN SA:  BTG2 

QUANTITECT PRIMER ASSAY QT00240247, CYP26A1 QUANTITECT PRIMER ASSAY 

QT00026817, and ACTIN  QUANTITECT PRIMER ASSAY QT00095431. 

 

Chromatin immunoprecipitation (ChIP) and ChIP western experiments 

ChIPs were performed with sub confluent MCF7 cells and MEFs as previously 

described (Bruck et al, 2009; Ferry et al, 2011; Ferry et al, 2009). The primers pairs 

used for qPCR amplification are as follows: Mouse 36B4 5’-TTTGCTGTACT 

GACTCGGTGA-3’ and 5’-CCTCCCACAACAAAACAACC-3’; Human 36B4, 5’-

AGGACTCCATGTTCCCAAAG-3’ and 5’-CGCAGCCAATAGACAGGAG-3’; Mouse 

Cyp26A1: R2, 5′-AAACAGGAGCAGGCTGAACT-3′ and 5′-CGCTGCCACTGTCATATCTT-

3′; R1, 5′-GGTAACTCGGAGCTCTGCAC-3′ and 5′-CCAGGTTACTGCCCACGTTA-3′; 

Human Cyp26A1: R1, 5′-GCGGAACAAACGGTTAAAGA-3′ and 5′-

GCAGTACAGGTCCCAGAGCTT-3′; R2, 5′-GAGTTCACTCGATGTCACG-3′ and 5′-

ATCGCGCTGGAGGTAATTCT-3′; Mouse RARβ2: 5’-CGATCCCAAGT TCTCCCTTC-3’ 

and 5’-CAGACTGGT TGGGTCATTTG-3’; Human BTG2:  5′- 

CCCGGCTACACTGTATATTGACTTGG -3′ and 5′- GGGTTTCATCACGTTGGTCAGGAT -

3′. 

Occupancy of the promoters was calculated by normalizing the PCR signals 

from the immunoprecipitated samples to the signals obtained from the input DNA.  

For ChIP-Western experiments, the precipitated chromatin complexes were 

proceeded as described (Bruck et al, 2009) and bound proteins were revealed by 

immunoblotting.  
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RESULTS 

Profilin IIA, a new partner of the N-terminal domain of RAR  

In order to identify proteins that interact with the N-terminal domain (NTD) 

of RAR, a yeast two-hybrid screen of a mouse embryo cDNA library was performed 

as previously described (Bour et al, 2005b), using as a bait the NTD (A and B 

regions) of mouse (m) RAR in which the phosphorylatable serine residue (S77) 

was substituted with an alanine (RAR(AB)(S77A) (Fig. 1B). Among the positive 

clones we isolated, one contained a 430 kb cDNA insert displaying 96% sequence 

identity to human profilin IIA (NM_053024.3). This DNA fragment encoded a 140 

amino acids protein that corresponds to full length profilin IIA (Fig. 1C). The 

encoded protein contained the N- and C-terminal sequence regions that form an 

SH3-like domain involved in the binding of poly-L-proline stretches.  

 

The SH3-like domain of profilin IIA interacts specifically with the N-

terminal PRM of RAR.  

The data obtained by yeast two-hybrid screening were further investigated in 

in vitro protein-protein interaction assays using recombinant GST-RAR expressed 

in E-Coli and bound to glutathione-sepharose beads. When expressed in E. Coli, GST-

RARWT is not phosphorylated at S77 within the NTD. After incubation with 

extracts from COS-1 cells over expressing B-tagged profilin IIA, GST-RARWT 

interacted with profilin IIA (Fig. 2A). We also assessed whether profilin IIA could 

interact with the other RAR subtypes. Interestingly we did not observe any 

significant binding of profilin IIA with RAR1 and RAR2 in GST pull down 

experiments (Fig. 2A). 

Profilin IIA being characterized by the presence of an SH3-like domain 

known to interact with PRMs (Kursula et al, 2008), we investigated whether the 

PRM of RAR (located in the B region of the NTD) is indeed involved in the 

interaction. First we corroborated the yeast two-hybrid data by showing that 

profilin IIA interacts with the isolated N-terminal (A to C) regions and not with the 

C-terminal (D-F) ones of RAR fused to GST (Fig. 2B). Then a synthetic peptide 

corresponding to the PRM of RAR, PI 80 (Table 1) was generated and assayed for 

its ability to prevent the interaction between RAR and profilin IIA. PI 80 efficiently 
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disrupted the interaction (Fig. 2C), indicating that profilin IIA interacts with RAR 

via the PRM located in the B region of the receptor. These results were confirmed in 

coimmunoprecipitation experiments performed with extract from COS-1 cells over 

expressing B-10 tagged profilin IIA and RAR deletion mutants. Indeed deletion of 

the whole NTD (A and B regions) and not of the A region abrogated the interaction 

of RAR with profilin IIA (Fig. 2D) 

Finally we investigated whether the SH3-like domain of profilin IIA is indeed 

involved in the interaction. The SH3-like domain of profilin IIA encompasses the N 

and C terminal helices (Haikarainen et al, 2009). Given that two residues in the C-

terminal helix (Tyr 134 and Phe140) and two in the N-terminal one (Tyr 7 and Asn 

10) have been shown to be important for the interaction with proline-rich ligands 

(Haikarainen et al, 2009) (Fig. 2E), we investigated whether mutation of these 

residues abrogates the interaction with RAR. We found that profilin IIA mutated at 

the two residues located in the N-terminal helix [Profilin IIA(Y7S/N10D)] as well as 

profilin IIA mutated at the C-terminal ones [Profilin IIA(Y134S/F140A)] have lost 

their ability to interact with RAR in GST-pull down experiments (Fig. 2F). 

Collectively all these results confirm that the SH3-like domain of profilin IIA 

interacts specifically with the PRM of RAR, located in the NTD. 

 

Profilin IIA interaction is not affected by RAR phosphorylation.  

The PRM of RAR involved in the interaction with profilin IIA contains a 

serine residue (S77), which can be phosphorylated in vitro and in vivo (Bruck et al, 

2009; Rochette-Egly et al, 1997). Therefore, we aimed at investigating whether 

phosphorylation of S77 modulates the interaction of RAR with profilin IIA.  

First, coimmunoprecipitation experiments were performed with COS-1 cells 

over expressing B-tagged profilin IIA in combination with RAR WT or RAR 

mutants with S77 substituted with a glutamic acid (RARS77E) or an alanine 

(RARS77A), which mimic the phosphorylated and non-phosphorylated forms 

respectively (Fig.1A). After immunoprecipitation of the extracts with B10 

antibodies, immunoblotting of RAR showed that the RAR mutants interacted as 

efficiently as RARWT with profilin IIA (Fig.3A, lanes 10-12).  
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In transfected COS-1 cells, RA induced the rapid phosphorylation of RAR at 

S77 as assessed by immunoblotting after immunoprecipitation of RAR with a 

monoclonal antibody recognizing specifically RAR phosphorylated at this residue 

(Fig. 3B). However the interaction of RAR with profilin IIA was not affected upon 

RA addition (Fig.3C, lanes 12-16). Altogether these results converge towards the 

conclusion that the interaction is not modulated by the phosphorylation of RAR at 

S77.  

 

Affinity of the interaction between profilin IIA and the PRM of RAR.  

We used Surface Plasmon Resonance (SPR) to measure the equilibrium 

affinity and kinetic parameters of interaction of profilin IIA with synthetic peptides 

corresponding to the PRM of RAR (Table 1) (Lalevee et al, 2010). Affinity between 

profilin IIA and peptide PI 80 that corresponds to the non-phosphorylated form was 

calculated with the simple Langmuir 1:1 model and the Biacore T100 evaluation 

software (v 1.1.1), and found to be 0,1 mM (Table 1). Affinity for peptide PI 81 in 

which S77 is phosphorylated was similar, in line with the in vivo results. A 10 times 

lower affinity was found for peptide PI121, which corresponds to the PRM of RAR, 

corroborating the specificity of the interaction.  

 

Endogenous Profilin IIA and RAR interact in the nuclei of neuronal and 

fibroblastic cells.  

Then we aimed at determining whether profilin IIA interacts with RAR in vivo.  

Profilin IIA is well known to be expressed mainly in brain and neuronal cells 

(Birbach, 2008; Michaelsen et al, 2010). Accordingly, significant levels of profilin IIA 

were detected by immunoblotting in human SH-SY-5Y neuroblastoma cells line and 

mouse hippocampus HT22 cells (Fig. 4A lanes 2 and 3). Profilin IIA was also present 

in mouse embryonic fibroblasts (MEFs) (Fig.4A, lanes 4 and 5) and in human breast 

cancer cells (MCF7 and SKBR3 cell lines) (Fig.4A, lanes 8 and 9). In contrast, profilin 

IIA was hardly detectable in mouse embryo carcinoma cells (F9 and P19 cell lines) 

(Fig. 4A, lanes 1 and 6) and no profilin IIA could be detected in human acute 

promyelocytic leukemia (APL) cells (NB4 cell line, Fig. 4A, lane 7).  

The presence of profilin IIA in SH-SY-5Y, HT22, MCF7 cells and MEFs was 

corroborated in immunofluorescence experiments (Fig. 4B). Most interestingly, in 
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all these cells, profilin IIA was nuclear (Fig.4B), like RAR (Fig. 5A), raising the 

question whether profilin IIA interacts with RAR in the nuclear compartment.  

With that aim we performed proximity ligation assays (PLA), which allow the 

detection in situ of interacting endogenous proteins (Ferry et al, 2011; Piskunov & 

Rochette-Egly, 2011; Soderberg et al, 2006). Rabbit anti-RAR and mouse anti-

profilin IIA antibodies were used followed by species-specific secondary antibodies, 

called PLA probes, each attached with a unique short DNA strand. When the PLA 

probes are in close proximity, the DNA strands can be joined through the addition of 

a circle-forming DNA oligonucleotide that can be amplified using a polymerase. 

Then the amplified products are revealed with labeled complementary 

oligonucleotide probes and are easily visible as bright red spots under a 

fluorescence microscope.  

RAR/profilin IIA complexes were seen in the nuclei of MCF7 cells and MEFs 

(Fig.5B). The number of complexes did not change after RA addition up to 1 hour 

(Fig. 5B, compare panels f and I and panels l and o), in line with the absence of 

regulation of the interaction in response to RA and upon RAR phosphorylation (see 

Figure 3). No signal was seen when each primary antibody was used individually 

and with MEF invalidated for RARs (Fig.5B, panels a-c), validating the specificity of 

the technique.  

Altogether these results indicate that profilin IIA interacts with RAR in the 

nuclei of fibroblastic and breast cancer cells. 

 

Profilin IIA modulates the transcriptional activity of RAR 

Then the question is the functional role of the nuclear RAR-profilin IIA 

interaction. With that aim we analyzed the consequences of profilin IIA knockdown 

on the expression of RA-target genes.  

MEFs respond to RA through the expression of several target genes such as 

the Cyp26A1 and RAR2 genes as assessed by quantitative RT-PCR (Fig. 6A). The RA-

induced expression of these genes was previously shown to depend on RAR (Bruck 

et al, 2009). Transfection of MEFs cells with an shRNA targeting profilin IIA reduced 

significantly the protein levels of profilin IIA, without affecting RAR levels, as 

shown by immunoblotting (Fig. 6A). Remarkably, when profilin IIA was reduced, the 
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RA-induced expression of both Cyp26A1 and RAR2 genes was significantly down-

regulated (Fig. 6A), indicating that profilin IIA plays a positive role in the expression 

of these target genes. 

Similar results were obtained with MCF7 cells, which also respond to RA 

through RAR-mediated expression of several genes such as Cyp26A1 and Btg2 

(Bruck et al, 2009; Ferry et al, 2011; Piskunov & Rochette-Egly, 2011). Knockdown 

of profilin IIA with specific siRNA significantly reduced the RA-induced expression 

of Btg2 (Fig. 6B). However the expression of Cyp26A1 was not affected (Fig. 6B). 

Altogether, these results indicate that profilin IIA plays a positive role in the 

expression of RARαtarget genes but that this effect can differ depending on the cell 

type. 

 

Profilin IIA is recruited with RAR to the promoters of RA-target genes 

Given that profilin IIA modulates positively the expression of RAR target 

genes, one can hypothesize that profilin IIA is recruited with RARat the promoters 

of these genes. Therefore ChiP experiments were performed with MEF and MCF7 

cells to assess the occupancy of the promoters. Antibodies directed against RAR or 

profilin IIA were used to immunoprecipitate RAR and/or profilin IIA-bound DNA 

fragments that were further analyzed by quantitative PCR using specific pairs of 

primers spanning the RAREs (Fig. 7A). The specificity of the experimental conditions 

was checked in the absence of antibodies and with the promoter of the control 36B4 

gene, which does not contain any RARE.  

In MEFs, at 1 hour after RA addition, there was an enrichment of RAR bound 

at the RAR2 promoter region (Fig. 7B), in line with previous studies (Bruck et al, 

2009). Concerning the cyp26A1 gene promoter, which contains two functional DR5 

RAREs, a proximal one (R1) and a distal one (R2) (Fig. 7A), the R2 region was also 

specifically enriched after RA addition (Fig. 7B) (Bruck et al, 2009). Interestingly, 

after RA addition, there was also an enrichment of profilin IIA bound at the RAR2 

promoter and the R2 promoter region of Cyp26A1 (Fig. 7C). 

ChIP experiments performed with MCF7 cells also showed that both RAR 

and profilin IIA are recruited to the promoter region of the Btg2 gene (Fig. 7D and 

7E). However, in the case of the Cyp26A1 gene promoter, RAR only was recruited 
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and not profilin IIA, in line with the inability of the latter to modulate the expression 

of this gene in this cell line (Fig. 7D and 7E).  

Altogether these results indicate that profilin II can be recruited with RAR 

to the promoters of some target genes  

Finally profilin IIA interaction with RAR in chromatin was analyzed in ChIP 

western experiments. As shown in Figure 7F, immunoprecipitated profilin IIA 

interacted with RAR. This interaction was not affected after RA addition, 

corroborating the in vitro coimmunoprecipitation (see Figure 3) and PLA results 

(see Figure 5).  
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DISCUSSION 

 

Up to now, only a few proteins have been reported to interact with the N-

terminal domain of nuclear receptors including RARs (Boonyaratanakornkit et al, 

2001; Bour et al, 2007; Bour et al, 2005b; Zhao et al, 2009). The novelty of the 

present study is the isolation of profilin IIA as a novel coregulator of the RAR

subtype. Profilin IIA is a small (MW = 12-16 kDa) actin-binding protein that was 

originally identified as a key regulator of the actin microfilament system, especially in 

the cytoplasm of neuronal cells (Haikarainen et al, 2009; Jockusch et al, 2007). Here we 

present evidence that profilin IIA is also present in nuclei of several non-neuronal 

cells, where it interacts with the NTD of RARα and controls positively its 

transcriptional activity.  

The main characteristic of the profilin IIA protein is the presence of an SH3-

like domain, which is known to interact with PRMs (Ball et al, 2005; Kursula et al, 

2008). RARs contain such a PRM in their NTD (Lalevee et al, 2010). Although this 

PRM is well conserved between RARs (Samarut et al, 2011), according to our data, 

the interaction with profilin IIA appears to concern only RAR and not the other 

RAR subtypes. Similarly the interaction of vinexin, another protein with an SH3 

domain, was specific for the RAR subtype and did not concern RAR. It must be 

noted that PRMs adopt a secondary structure known as poly proline II helix (PPII), 

which is determined by the pattern and number of the consecutive proline residues 

and by the presence of other amino acids interleaved with the proline residues. The 

PRM of RAR differs from that of RAR by the substitution of one of the 5 

consecutive prolines by a leucine. This may be at the basis of the specific interaction 

of each RAR with a particular SH3 domain.  

 According to our data, the interaction of profilin IIA with RAR is not affected 

by the phosphorylation of the serine residue flanking the PRM. This was in contrast 

to the traditional model in which phosphorylation of serine residues flanking the 

proline motifs have the ability to positively or negatively regulate the binding of SH3 

domains (Kay et al, 2000; Lalevee et al, 2010). It is also in contrast to our previous 

report where we demonstrated that phosphorylation of the serine residue flanking 

the proline stretch of RAR induces the dissociation of vinexin. Nevertheless, such 
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results challenge the hypothesis that profilin IIA would control the activity of RAR 

via a mechanism different from that, which was described for vinexin and RAR.   

 An important clue in the present study is that profilin IIA participates 

positively to the transcription of RAR-target genes. Moreover profilin IIA is present 

in chromatin and is recruited with RAR to the promoters of target genes in 

response to RA. Such results are in line with another study showing that nuclear 

profilin plays a role in transcription (Lederer et al, 2005). Most importantly, they 

also corroborate the ever-growing evidence that actin, actin-related proteins and 

actin-binding proteins are constituents of nuclear protein complexes and play a role 

in transcription (Bettinger et al, 2004; Jockusch et al, 2006; Zheng et al, 2009). 

Indeed a number of actin-binding proteins have been shown to regulate the activity 

of several transcription factors including nuclear receptors through the recruitment 

of multiple components of transcription complexes such as chromatin-remodeling, 

histone acetyl transferase complexes (Archer et al, 2005; Blessing et al, 2004; 

Gettemans et al, 2005). Such a role of actin-binding proteins in transcription 

complexes emerged only recently and up to now there are no data showing that 

profilin IIA belongs to nuclear complexes. However on can propose that, as in the 

cytoplasm, profilin IIA might have a role in regulating the properties of nuclear actin 

through its ability to promote ADP to ATP exchange in G-actin (Fenn et al, 2011; 

Kast & Dominguez, 2011). Such a role might explain why nuclear forms of actin are 

prominently found in monomer states within transcription complexes.  

Nevertheless it will require further experiments to test whether profilin IIA 

has such a role in maintaining the pool of monomer actin in the nucleus, when 

complexes with RAR at RA-target genes promoters. Moreover, it would be 

interesting to address whether profilin IIA also modulates the activity of the 

coregulatory complexes of RAR through nucleotide-dependent conformational 

transitions. Finally whether other processes than RA signaling can modulate the 

interaction of RARa with profilin IIA or RAR phosphorylation would provide 

important insights into the role of this adaptor in RA signaling. 

In conclusion this study opened new concepts and avenues in the regulation 

of RA-target genes transcription via an actin-binding protein interacting with the 

NTD of the RAR subtype. 
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LEGENDS TO FIGURES 

 

Figure 1: Profilin IIA a new partner of the  N-terminal domain of RAR 

A. Schematic representation (not to scale) of the RAR1 protein with the known 

functional domains and the N-terminal phosphorylation site. The RAR PRM with 

S77 substituted with alanine or glutamic acid residues is also shown. B. Schematic 

representation of the LexA-RAR(A/B) proteins used as a bait in the yeast two-

hybrid experiments. C. Alignment of the protein sequence deduced from our isolated 

mouse clone with those of human profilin IIA and IIB.  

 

Figure 2: The SH3-like domain of Profilin IIA interacts with the N-terminal 

PRM of RAR 

A. In vitro pull down experiments showing that B10-profilin IIA over expressed in 

COS-1 cells, interacts with RAR but not with the other RAR and RAR subtypes. B. 

In vitro, B10-profilin IIA interacts with the N-terminal A-C regions and not with the 

C-terminal DEF regions of RAR fused to GST. C. Immobilized GST-RAR proteins 

were incubated with B10-profilin IIA in the absence or presence of increasing 

amounts of the synthetic peptide PI80 corresponding to the PRM of RAR. D. COS-1 

cells were transfected with the B10-profilin IIA vector along with RAR either WT, 

∆A or ∆AB and whole cell extracts were incubated with B10 antibodies. 

Immunocomplexes were resolved by SDS-PAGE and incubated with RP(F) and B10 

antibodies. Lanes 1-6 correspond to 5% of the amount of immunoprecipitated 

extracts. E. Amino acid sequence of the N-terminal and C-terminal ends of profilin 

IIA. The mutations affecting the interaction with proline rich ligands are shown. F. In 

vitro pulldown experiments showing that the profilin IIA mutants (Y7S/N10D) and 

(Y134S/F140A) do not interact with RARfused to GST. 

 

Figure 3: Phosphorylation of the serine residue located in the PRM of RAR 

does not affect the interaction with profilin IIA 

A. Coimmunoprecipitation experiments showing that in transfected COS-1 cells, 

substitution of serine 77 with a glutamic acid or an alanine does not affect the 

interaction of RAR with profilin IIA. B. In transfected COS-1 cells RA induces the 



23 

 

rapid phosphorylation of RAR at S77. Phosphorylated RAR was 

immunoprecipitated with monoclonal antibodies recognizing specifically the 

receptor phosphorylated at S77 and immunoblotted with RP(F). Bottom panel 

corresponds to the inputs. C. Coimmunoprecipitation experiments showing that 

after RA addition, the interaction between RAR and profilin IIA is not affected. 

 

Figure 4. Profilin IIA is expressed in the nuclei of neuronal cells, fibroblasts 

and breast cancer cell lines  

A. immunoblotting experiments showing that profilin IIA is expressed in human SH-

YH-5H neuroblastoma cells, mouse HT22 hippocampus cells, MEF, MCF7 and SKBR3 

breast cancer cells, but not in mouse embryo carcinoma cells (P19 and F9 cell lines) 

and acute promyelocytic leukemia cells (NB4 cell line). 

B. Immunofluorescence experiments showing that profilin IIA is present mainly in 

the nuclear compartments of SH-YH-5H, HT22, MEF and MCF7 cells. Cells were 

double stained with DAPI (blue) and profilin IIA antibodies (red). The merge images 

overlapping the blue and red are shown.  

 

Figure 5: Nuclear Profilin IIA interacts with RAR  

A. immunofluorescence experiments showing the nuclear localization of both RAR 

and profilin IIA in MEFs (panels a-d) and MCF7 cells (e-h). Cells were triple stained 

with DAPI (blue), profilin IIA (red) and RAR (green) antibodies. The merge images 

overlapping the red, green and blue fluorescence are shown (panels d and h).  

B. PLA (Proximity Ligation Assay) showing the profilin IIA/RAR complexes (red) in 

MEFs WT (panels d-i), MEF RAR KO (panels a-c) and MCF7 cells (panels j-o) treated 

or not with RA for 1 hour. DNA was counterstained with Dapi (blue). The merge 

between blue, green and red is also shown (panels c, f, I, l, o). 

 

Figure 6: Profilin IIA participates in the transcription of RA-target genes  

A. Silencing of profilin IIA decreases the RA-induced expression of the cyp26A1 and 

RARb2 genes in MEFs as monitored by quantitative qRT-PCR. B. Silencing of profilin 

IIA decreases the RA-induced expression of the Btg2 gene but not of the cyp26A1 

one in MCF7 cells. In all cases, values are the mean ±SD of three different 

experiments. Knockdown efficiency was controlled by immunoblotting.  
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Figure 7: Profilin IIA occupies with RAR the promoters of target genes  

A. Schematic representation of the promoter regions of the Cyp26A1, RAR2 and 

Btg2 genes with the primer pairs used for qPCR amplification. B and C. Kinetic ChIP 

experiments performed with RA-treated MEFs and showing the recruitment of 

RAR (B) and profilin IIA (C) to the R1 and R2 regions of the cyp26A1 gene 

promoter, to the RAR2 gene promoter and to the control 36B4 gene. Values (% of 

the inputs) correspond to a representative experiment among 3. 

D and E. Same kinetic ChIP experiments, showing that profilin IIA is recruited with 

RAR to the Btg2 promoter but not to the Cyp26A1 one in RA-treated MCF7 cells. 

F. ChIP western experiments performed with MEFs treated or not with RA for 1 

hour. The complexes immunoprecipitated with profilin IIA or RAR antibodies were 

immunoblotted with RAR and profilin IIA antibodies.  
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Peptide Amino Acid sequence Description Affinity for 
Profilin IIA 

PI 80 EEIVPSPPPLPRIYK Non phosphorylated PRD of RAR 0,1 mM 

PI 81 EEIVPSPPPLPRIYK 
                   I 

            P 

PRD of RAR 
phosphorylated at S77 

0,1 mM 

PI 121 EEMVPSSPSPPPPPRVYK Non phosphorylated PRD of RAR 1 mM 

 

Table 1: SPR analysis of the interaction between GST-profilin IIA and synthetic peptides 

corresponding to the phosphorylated and non phosphorylated PRM of RAR and RAR. 

GST and GST-profilin IIA were immobilized on a sensor chip. Peptides were injected at 

different concentrations (0,5-5x10-4 M) for 60 s. GST signal [relative units (RU)] was 

substracted from the GST-profilin IIA signals. Nonlinear curve fitting of the equilibrium 

responses vs peptide concenration was used to derive equilibrium Kd values.   







Chapter

MSK1 and Nuclear Receptors Signaling
Aleksandr Piskunov and Cécile Rochette‑Egly*

Abstract

Nuclear receptors for steroid and non‑steroid hormones act through both genomic and 
non‑genomic mechanisms. Genomic events involve binding to cognate specific DNA 
sequences and subsequent recruitment of a battery of coregulators at the promoter. 

Non‑genomic events involve the rapid activation of kinase cascades and steroid as well as non‑steroid 
hormones trigger NR‑mediated activation of the MAPK/MSK1 pathway. Here we review the recent 
insights concerning the crosstalk between the genomic and non‑genomic actions of NRs, focusing 
on the mechanisms of MSK1 activation and influence on NR‑target genes transcriptional regulation.

Introduction
Nuclear receptors (NRs) form a super family of ligand‑regulated transcription factors, which 

regulate various physiological functions from development and reproduction to homeostasis and 
metabolism. This super family includes receptors for steroid hormones [Estrogen receptors (ER), 
Progesterone receptors (PR), Androgen receptors (AR) and Glucocorticoid receptors (GR)] and for 
non‑steroid ligands [Vitamin D receptor (VDR), Retinoic Acid receptors (RAR), Retinoic X receptors 
(RXR) and the Peroxisome Proliferator Activated Receptors (PPAR)]. They also include a large 
number of so‑called orphan receptors for which ligands do not exist or have not been identified yet.1‑3

Classically NRs are known to act through genomic events, which involve binding of liganded 
homo or heterodimerized NRs to cognate specific DNA sequences followed by recruitment of 
coactivators and remodeling of chromatin at the promoter sequences of the activated genes.1,4

In addition to these so‑called genomic effects, steroid and non‑steroid hormones and their 
cognate NRs crosstalk with kinase cascades activated by signals impinging on membrane receptors. 
As an example, progestins and retinoic acid (RA) have been shown to activate the Mitogen‑Activated 
Protein Kinase (MAPK) pathways and the downstream Mitogen‑ and Stress‑activated protein 
Kinase 1 (MSK1).5,6 Traditionally, the non‑genomic and genomic effects of steroid and 
non‑steroid hormones have been considered as independent pathways. However it appeared that 
hormone‑activated MSK1 is involved in the regulation of NR‑target genes by phosphorylating NRs 
themselves and/or chromatin associated proteins. Here we will review the current knowledge on 
MSK1 activation by steroid and non‑steroid hormones and on MSK1 molecular targets, focusing 
on recent insights into the role of MSK1 in transcriptional regulation of NR‑target genes.

The Classical Picture of NRs: Ligand‑Dependent Regulators  
of Transcription

NRs have a well‑defined domain organization and structure, consisting mainly of two highly 
conserved and structured domains: the central DNA‑binding domain (DBD) linked to the 
C‑terminal Ligand‑Binding Domain (LBD). The structure of the DBDs and LBDs has been 
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determined by nuclear magnetic resonance and crystallographic studies1,2,7 (Fig. 1). Briefly, the 
DBD contains two typical cysteine‑rich zinc‑binding motifs and two a‑helices, which cross at 
right angles and fold into a globular conformation to form the core of the DBD. In contrast, the 
LBD is more complex because it contains not only the ligand‑binding pocket, but also the main 
dimerization domain and a hydrophobic cleft involved in coregulators binding. The LBD shows 
a common fold comprising 12 conserved a‑helices and a short b‑turn, separated by exposed and 
flexible loops and arranged in three layers to form an antiparallel alpha‑helical sandwich.

Figure 1. Structural organization of nuclear receptors. Nuclear receptors consist mainly of a 
central DNA‑binding domain (DBD) linked to a C‑terminal ligand‑binding domain (LBD) and 
an N‑terminal domain (NTD). The DBD (PDB1DSZ)77 is composed of two zinc‑nucleated 
modules, two a‑helices and a COOH‑terminal extension. Helices cross at right angles to form 
the core of the DBD. This structure provides sequence‑specific DNA recognition. The LBD 
(PDB1LBD)78 is composed of 12 conserved a‑helices and a b‑turn separared by exposed and 
flexible loops. In RARs, loop L9–10 contains a serine residue, which can be phosphorylated 
by MSK1. Phosphorylation of this residue increases the flexibility of the nearby loop L8–9 and 
the N‑terminal part of H9 and thereby the docking of cyclin H to this domain. The N‑terminal 
domain (NTD) is natively disordered and contains several serine residues within proline‑rich 
motifs, which can be phosphorylated by cdks or MAPKs.
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Gene induction by NRs is based on a complex network of NRs conformational changes 
and dynamic interactions with coregulatory proteins.2,7,8 Ligand binding is the first and crucial 
molecular event that switches NRs from inactive to active state by inducing conformational changes 
in the LBD. These changes favor the dimerization of NRs and increase their DNA affinity. They 
also create a new surface for coactivators binding, which initiates an ordered and coordinated 
dissociation and/or recruitment of a series of coregulator complexes with different enzymatic 
activities including Histone Acetyl‑ and Methyl‑Transferases, and DNA‑dependent ATPases.9 
In fine, these events alter the chromatin structure surrounding the promoter of target genes and 
pave the way for the recruitment of the transcription machinery including RNA Polymerase II 
and general transcription factors.

NRs Are Phosphoproteins
In addition to this scenario NRs are targets for phosphorylation processes, which modulate 

their transcriptional activity.8,10 A number of studies demonstrated that the majority of the 
phosphorylated residues lie within the N‑terminal domain (NTD) (Fig. 1). The phosphorylation 
sites located in the NTD of NRs are serine residues surrounded by prolines and therefore 
correspond to consensus sites for cyclin‑dependent protein kinases (cdks) and Mitogen‑Activated 
Protein Kinases (MAPKs). Accordingly, the NTD of PR, ER, AR, GR, RARs and PPARs were 
reported to be substrates for cdks, p42/p44MAPK (also called Erk1/2), p38MAPK, and c‑Jun 
N‑terminal kinases ( JNKs).10‑16 Note that VDR is an exception, probably due to its very short NTD.

It must be noted that, in contrast to the DBDs and LBDs, the NTDs of NRs are not conserved 
and there are still no high‑resolution structures available. Several biochemical studies coupled to 
structure prediction algorithms suggested that the NTDs of any member of the NR family are 
naturally disordered,17,18 providing the flexibility that is needed for modifications by enzymes such 
as kinases.19 Such modifications would induce changes in the structural properties of the domain 
with profound impacts on its interactions with coregulators and/or on the dynamics of adjacent 
structural domains.5,20

Interestingly, loops between the a‑helices of the LBDs are exposed and flexible and thus are 
accessible for phosphorylation processes. As an example, in the LBD of RARs, loop L9–10 contains 
a serine residue located within an arginine/lysine rich motif, which corresponds to a consensus 
phosphorylation site for several kinases including MSK15,21 (Fig. 1).

A New Picture of NRs: NRs Are Associated to the Cell Membrane  
and Activate MAPK Signaling Pathways

It is becoming increasingly evident that NRs induce rapid non‑genomic responses in addition to 
their classical genomic effects. These non‑genomic effects involve the rapid and transient activation 
of several kinase cascades mediated by a subpopulation of NRs anchored at the cytoplasmic side 
of the cell membrane.

Indeed, most of the classical steroid receptors (ER, PR, GR, AR) have been found in 
specialized plasma membrane structures such as caveolae and lipid rafts22‑24 that contain lipids, 
structural proteins like flotillin and caveolin, and several proteins involved in signal transduction 
including heterodimeric G proteins, c‑Src, Rho and RAC GTPases and Phosphoinositide 
3‑kinase (PI3K).25,26 The membrane localization of steroid NRs depends on post‑translational 
modifications and it has been shown that palmitoylation of a highly conserved nine‑amino acids 
motif in the LBD is critical for membrane localization of ER and PR via caveolin‑1 association.27 
In addition, steroid NRs are part of membrane molecular complexes, which differ depending 
on the cell type and context and contain c‑Src, the regulatory subunit of PI3K (p85a) and 
heterodimeric Ga proteins.25,28,29 In response to the hormone, ERa rapidly activates the Src/
p21ras/Erk pathway via direct interaction with the SH2 domain of c‑Src (Fig. 2). Progestins and 
androgens also activate this signaling cascade via direct interaction of the cognate receptor with 
the SH3 domain of c‑Src or with ERa which itself activates c‑Src30‑33 (Fig. 2). Note however that, 
in response to glucocorticoids, GR does not activate Erk but p38MAPK and JNKs11,34 (Fig. 2).
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Non‑steroid receptors such as VDR and RARs have been also found associated to cell membrane 
fractions, in association with caveolin‑1,35 PI3K,36 c‑Src37 or G alpha Q proteins.38 However, 
vitamin D39 and RA5,40‑42 rather activate p38MAPK (Fig. 2). Activation of this pathway occurs 
very rapidly through the transient activation of small GTPases such as RhoA and its immediate 
effector ROCK43 or RAC‑137,40 suggesting a non‑genomic activation event similar to that described 
for steroid receptors. Of note is that this process appears to be cell specific as RA has been shown 
to activate Erks in neuronal and Sertoli cells.36,44‑46

NRs Activate MSK1, Downstream of Erk and p38MAPK
Among the targets of NRs‑activated Erk and p38MAPK, there is MSK1 (Mitogen‑ and 

stress‑activated protein kinase), which presents a large structural analogy with the N‑terminal ribosomal 
S6 kinase (RSK) domain.47‑49 MSK1 is predominantly localized in the nucleus and is composed of 

Figure 2. A subpopulation of the classical steroid receptors (ER, PR, GR, AR) and non‑steroid 
receptors (VDR and RARs) is associated to cell membranes and initiates cascades of kinase 
activations upon binding of their cognate ligands. Accordingly, liganded non‑steroid 
receptors RAR and VDR activate p38MAPK and the downstream MSK1 kinase. Among the 
steroid receptors, GR bound to glucocorticoids also activates p38MAPK but there is no data 
indicating whether MSK1 is activated or not. However, upon the concomitant activation of 
NMDA‑R under stress conditions, liganded GR activates MSK1 but through Erks. The other 
steroid receptors PR, ER and AR also activate Erks but only PR was found to activate the 
downstream MSK1. In the case of ER and AR another downstream effector of Erks, RSK2 
would be an interesting candidate.
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two kinase domains connected with a linker region. A C‑terminal docking domain assures binding of 
activating Erk or p38MAPK, which then phosphorylates a threonine residue located in the C‑terminal 
kinase domain. Then this activated C‑terminal kinase domain phosphorylates a serine in the N‑terminal 
kinase domain, which at the end is responsible for the phosphorylation of MSK1 substrates.

After activation by the steroid hormone progestin, phosphorylated Erk translocates to the 
nucleus and forms a complex with nuclear PR homodimers. Then Erk binds and phosphorylates 
MSK150 leading to its activation6 (Fig. 2 and Fig. 3, left). Non‑steroid hormones such as RA and 
Vitamin D also activate MSK1 downstream of p38MAPK 5,39,43 (Fig. 2), in line with the fact that 
MSK1 can be activated through both Erks and p38MAPK. Whether VDR and RAR form with 
p38MAPK and MSK‑1 trimeric complexes has not been elucidated yet and will require further 
investigations.

In conclusion, it appears that steroid and non‑steroid NRs are able to activate the MAPK/MSK1 
pathway in response to their cognate hormone. However whether this mechanism is general has not 
been demonstrated yet. Indeed, ER and estrogens do not activate51 or rather inactivate52 MSK1. It is 
interesting to note that p90 ribosomal S6 kinase (RSK), which is another member of the subfamily 
of MAPK‑activated protein kinases downstream of Erk47 and which is overexpressed in several 
cancers including breast cancers,53 has been shown to bind and phosphorylate ER.12,54 Whether 
ER and estrogens activate RSK instead of MSK1, will require further investigations (Fig. 2).

Concerning AR and androgens, there are still no data concerning MSK1. However, as for ER, 
RSK would be an interesting candidate53,55,56 (Fig. 2). Similarly, whether GR and glucocorticoids 
activate MSKs or not has not been reported yet. Note however that an activation of the Erk/
MSK1 pathway has been observed in neurons upon concomitant activation of GR and the 
N‑methyl‑D‑aspartate receptor (NMDA‑R) in stress processes57,58 (Fig. 2).

RARa Is Phosphorylated by MSK1 While the Other NRs Are Targets  
for the Upstream MAPK

MSK1 was originally shown to phosphorylate several transcription factors including CREB, 
ATF1 and Nuclear Factor‑kB p65 (NF‑kB).48,49 Similarly, MSK1 phosphorylates rapidly RARa at 
a serine residue (S369) located in loop L9–10 within the LBD5,7 (Fig. 1). This serine is an exposed 
residue located in a flexible loop and belongs to an Arginine‑Lysine‑rich motif that corresponds to 
a consensus phosphorylation motif for several kinases including MSK1. The interesting point is 
that phosphorylation of this serine initiates a coordinated phophorylation cascade (Fig. 3, right). 
Indeed, our laboratory recently demonstrated that phosphorylation of S369 by MSK1 increases 
the dynamics/flexibility of the nearby loop L8–9,59 which corresponds to the docking site of cyclin 
H60 (Fig. 1) that forms with cdk7 and MAT1, the CAK subcomplex of the general transcription 
factor TFIIH. Consequently, the binding efficiency of cyclin H is increased, allowing the right 
positioning of the cdk7 kinase and the phopshorylation of serine 77 located in the NTD by this 
kinase.21 To our knowledge, it was the first example of cooperation between the N‑and C‑terminal 
domains of RARs through a kinase complex. The serine in L9–10 and the docking site of cyclin 
H are conserved between RARs but not in other NRs indicating that this kinase cascade would 
be RAR specific.59

Note that in contrast to RAR, PR within the trimeric PR/Erk/MSK1 complex is phosphorylated 
by Erk and not by MSK1.6 However, concerning VDR, there are no data showing whether it is 
phosphorylated by MSK1 or by the upstream p38MAPK. Finally, concerning the other NRs such 
as ER, AR and GR, which were not found to activate MSK1 in response to the hormone, they are 
phosphorylated by MAPKs.11,12,61

MSK1 Participates in the Activation of NR‑Target Genes  
and Is Recruited at the Promoters of NR‑Target Genes

Steroid and non‑steroid hormones are well known to activate the expression of several target 
genes.1,3,4,62,63 Traditionally, this genomic action has been considered as independent of the 
non‑genomic effects. However, it now emerges that the two pathways converge in the modification 
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of structural components of the chromatin. Indeed MSKs are well known to facilitate gene 
relaxation47,49 and a number of studies indicated that inhibition of MSK1 abolished the induction 
of progestin‑, RA‑ or Vitamin D‑target genes.5,6,43

One of the well characterized example of transcriptional control by progestins is the promoter 
of the mouse mammary tumor virus (MMTV), which is organized into positioned nucleosomes 
with one nucleosome (nucleosome B) covering the hormone response element (HRE) and 
which is induced upon hormone treatment.50,64,65 Though progestin activation of the MMTV 
promoter is sensitive to Erk and MSK1 inhibition, this behavior does not represent an exception, 
as about 25% of the hormonally‑regulated genes are also sensitive to Erk inhibition in microarrays 
analysis.65 Series of chromatin immunoprecipitation experiments indicated that phosphorylated 
PR complexed with Erk and MSK1 is rapidly recruited to the MMTV promoter nucleosome 
containing the HRE6 (Fig. 3, left).

A similar strategy has been followed for RA‑target genes and it has been demonstrated 
that phosphorylated RARa and MSK1 are also rapidly recruited to RA response elements5 
(Fig. 3, right). However, MSK1 was not associated with RARa, in contrast to what was reported 
for PR. In fact, TFIIH, the second kinase complex of the MSK‑1 initiated kinase cascade, was 
found associated with RARa at the promoters.5 Unfortunately, there is no data indicating whether 
MSK1 is also recruited to the promoters of VDR‑target genes.

MSK 1 Regulates the Chromatin Environment  
of NR‑Target Promoters

Once recruited to target promoters, liganded NRs are known to induce an ordered and 
cyclical recruitment of coactivator complexes with enzymatic activities, which modify histones 
and remodel chromatin in an ATP‑dependent manner.66,67 Given that MSK1 is also recruited 
to NRs‑target promoters, the question was whether the kinase also contributes to histone 
phosphorylation and chromatin remodeling at these promoters, as previously described for 
genes implicated in cell transformation.49,68

It has been found that, concomitantly to the recruitment of the ternary PR/Erk/MSK1 
complex to nucleosome B of the MMTV promoter, histone H3 becomes phosphorylated at 
serine 10 by MSK1 (Fig. 3, left), an event coupled to acetylation of lysine 14 by pCAF and 
displacement of the repressive complex containing HP1g.6,64,69 BAF complexes (SWI/SNF 
ATP‑dependent chromatin remodeling complexes) are also recruited to the promoter (Fig. 3, 
left) through a direct interaction with the activated PR and H3K14 acetylation participate 
in anchoring the complex to the promoter.69 Unfortunately no precise order of the different 
events can be proposed up to now.69 Nevertheless, BAF uses the energy of ATP hydrolysis to 
initiate nucleosome remodeling and to remove H2A/H2B dimers from nucleosome B, allowing 
binding of further PR molecules, coactivators and the transcriptional machinery including 
RNA polymerase II.64

Figure 3, viewed on following page. Left) Progestins bind a subpopulation of membrane‑anchored 
PR complexes, and activate the Src/Ras/Erk pathway, leading to accumulation of activated Erk 
in the nucleus. Then a nuclear population of PR becomes phosphorylated by activated pErk, 
which also phosphorylates MSK1. A “PR‑activated complex” composed of pPR, pErk and 
pMSK1 is recruited to the promoter, followed by histone H3 phosphorylation and acetylation. 
The BAF complex is also recruited through direct interaction with PR and is anchored to 
chromatin through the histone marks. Due to a lack of kinetic experiments, a precise order 
of events cannot be proposed. Right) Upon RA binding, a subpopulation of membrane RAR 
activates the p38MAPK/MSK1 pathway. Activated MSK1 phosphorylates RARa at S369 
located in the LBD, subsequently facilitating the docking of cyclin H, which forms with 
cdk7 and MAT1 the CAK subcomplex of the general transcription factor TFIIH. Within the 
RARa‑TFIIH complex, cdk7 phosphorylates RARa at S77 located in the N‑terminal domain. 
Finally, the phosphorylated RARa/TFIIH complex is recruited to response elements located 
in the promoter of target genes. MSK1 is also recruited, but separately of the RARa–TFIIH 
complex, and phosphorylates histones H3.
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Most interestingly, there are similarities between PR and RARa. Indeed the recruitment of 
RARa to target promoters was also concomitant with histone phosphorylation and acetylation 
and the subsequent recruitment of the transcriptional machinery5 (Fig.  3, right). However, 
whether MSK1 also controls the recruitment/dissociation of other complexes will require further 
investigations. Of note is that histone H3 phosphorylation‑acetylation was also observed in 
response to concomitant activation of GR and NMDA‑R.57

MSK1: a Novel Regulator of NR‑Target Genes?
MSK1 is well known to be activated by many physiological and pathological stimuli and to 

regulate gene transcription at multiple levels.49 Indeed, MSK1 targets directly several transcription 
factors such as CREB, ATF‑1 and NF‑kB and induces histone phosphorylation, chromatin 
relaxation and facilitated recruitment of other coregulators at the cognate target promoters.70

The present review points out that MSK1 is also activated by several steroid and non‑steroid 
hormones and regulates the expression of the cognate NR‑target genes by regulating the 
transcriptional activity of NRs and by interfering with chromatin environment. Indeed 
MSK1‑mediated phosphorylation of H3 contributes to several NR‑target genes induction, very 
probably as a chromatin mark accounting in cooperation with other histones modifications 
for the dissociation of repressive complexes and/or the recruitment of chromatin‑remodeling 
complexes.5,6,69 Thus one can propose that MSK1‑mediated phosphorylation events might act 
as a “transcriptional clock” fine‑tuning the dynamics of chromatin so that at the end the correct 
proteins are present with the right activity, at the right place and at the right time.

Then the question is whether all NR‑target genes promoters are modified and remodeled 
through H3 phosphorylation by MSK1. Another question is whether MSK1 is also involved in 
the phosphorylation of NRs coregulators, given that most coactivators and corepressors are known 
to be also targets for phosphorylation processes.7

Future Applications
NRs and Cancer: a Versatile Role of MSK1

Steroid hormone receptors are well established in the etiology of many cancers including 
classical hormone‑dependent cancers like breast and prostate cancer. MSKs are also well known 
to play a role in cell proliferation and malignant transformation through transcription regulation 
of the immediate early genes c‑fos and junB,68,70 ER8171 and the Nur77, Nurr1 and Nor1 orphan 
nuclear receptors,72 coupled with histone H3 phosphorylation at specific loci and AP‑1 activation.

In line with this, the non‑genomic progestin signaling to MSK1 has been correlated with 
tumor proliferation.6 In addition, given that MAPK signaling is hyperactivated in several cancers 
such as breast and prostate cancer,47,73 one can speculate that signaling to MSK is also increased, 
potentiating the proliferative effects of ER, PR and AR. Knowing this, MSK‑specific drugs would 
have therapeutic effect in such cancers where MSK deregulation is clearly involved. Note however, 
that in other cancer types such as colon cancer, the p38MAPK/MSK1 pathway rather cooperates 
with vitamin D and VDR for the expression of genes involved in tumor suppression.39 Thus, 
depending on the type of cancer and on the NR, the MAPK/MSK1 pathway can have opposite 
effects on cell growth, restricting the use of MSK specific drugs in cancer therapy.

NRs and MSK1 Inhibition
Evidence has accumulated over the past few years that the action of NRs is not restricted to 

the regulation of cognate target gene expression, but also concerns several other gene programs 
by interfering with other transcription factors. A well‑known example is the anti‑inflammatory 
action of GR and glucocorticoids of which the action mechanism is mainly based on interference 
with the activity of the transcription factor NF‑kB. Indeed, in response to inflammatory cytokines, 
the classical NF‑kB activation pathway determines the expression of various pro‑inflammatory 
genes. The transactivation of NF‑kB is fine‑tuned by MSK1, which phosphorylates NF‑kB 
p65 and histone H3 S10 at inflammatory genes promoters.49,74 All these events participate in 
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the establishment of a transcription‑prone chromatin environment. Recent research by Beck et 
al.75 demonstrated a completely new aspect of the anti‑inflammatory action of glucocorticoids. 
Indeed, they found that glucocorticoids counteract MSK1 recruitment at inflammatory gene 
promoters, through the formation of a complex between activated MSK1 and GR, followed by a 
subcellular relocalization of activated MSK1 to the cytoplasm. The subsequent absence of MSK1 
at inflammatory gene promoters leads to impaired phosphorylation of histone and transcription 
factor components, resulting in a lack of activation of MSK1‑dependent NF‑kB‑driven promoters.

Another well known example is the inhibition of AP‑1 by certain NRs such as GR, ER 
and RARs.1,7 AP‑1 complexes (heterodimers of the proto‑oncogene products c‑Fos and c‑Jun) 
regulate the expression of several genes involved in oncogenesis and cell transformation. Most 
interestingly, a network of phosphorylation processes involving MSK1 controls the activity of AP‑1 
complexes.68 Though the molecular basis of the anti‑AP‑1 activity of GR and RARs has remained 
elusive,1,7 one cannot exclude a nucleocytoplasmic shuttling of MSK1 as above. Nevertheless, 
nucleocytoplasmic shuttling of MSK appears to be another new action mechanism for certain 
NRs, opening perspectives for novel therapeutic strategies.76

Conclusion
It is clear that MSK‑mediated chromatin remodeling plays a role in many physiological and 

pathological processes and the list of the agents that can activate the MAPK/MSK signaling 
pathway is still growing. In this context, hormones and their cognate NRs can activate this pathway, 
which then contributes to the activation of target genes. However, depending on the NR, MSK1 
activation has been related to cell growth6 or differentiation.39 Moreover, under certain conditions, 
NRs do not activate but inhibit MSK1 and thereby the activity of several genes regulated by this 
kinase. Therefore it does not appear to be a general rule for the cross talk between NRs and MSKs 
and MSK‑specific drugs should have therapeutic benefits only in specific NR‑related cancers or 
diseases.
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RESUME 

 

Les récepteurs nucléaires de l’acide rétinoïque (AR) appelés RAR, se comportent comme des 

facteurs de transcription inductibles par le ligand. La transcription des gènes cibles induite par l’AR, 

nécessite la fixation des RAR au niveau de séquences spécifiques des promoteurs et met en jeu des 

changements conformationnels des récepteurs qui contrôlent l’association/dissociation de toute une 

panoplie de corégulateurs. Cependant, en plus de ce modèle génomique et nucléaire bien établi, 

l’équipe du Dr Cécile Rochette-Egly a montré récemment que l’AR a aussi des effets non-génomiques 

et induit rapidement la voie de signalisation p38MAPK/MSK1 qui ensuite cible les RAR pour des 

cascades de phosphorylations et module la transcription des gènes cibles.  

Pendant mon travail de thèse, j’ai mis en exergue trois nouveaux concepts originaux du 

mécanisme d’action du sous-type RARα. 

J’ai montré qu’une sous-population de RARα est présente dans des microdomaines 

membranaires, les radeaux lipiques ou “lipid rafts”où elle interagit avec les proteines Gαq. Cette 

interaction est le signal des effets non génomiques de l’AR, l’activation de la voie de la p38MAPK. 

Ces effets ont été corrélés à l’activité des gènes cibles de l’AR, prouvant ainsi leur necessité.  

J’ai identifié un nouveau partenaire de RARα, la profiline IIA. J’ai analysé le mécanisme 

moléculaire de l’interaction et démontré qu’elle a lieu dans le noyau. La profiline IIA s’est révélée être 

un régulateur des effects génomiques de RARα et est recrutée avec RARα au niveau des promoteurs 

des gènes cibles.  

Finalement j’ai mis en évidence une nouvelle fonction de RARα dans le contrôle de l’adhésion 

et de l’étalement des cellules. D’où l’hypothèse de nouveaux effets génomiques de RARα avec la 

profiline IIA dans le contrôle de l‘expression des proteines d’adhésion. Cependant, de manière 

inattendue, j ‘ai identifié une nouvelle population de RARα dans le cytoplasme de ces cellules. D’où 

l’hypothèse de nouveaux effets non génomiques dans le cytoplasme, via l’interaction de RARα avec 

des proteines d’adhésion.  

 

SUMMARY 

 

Nuclear retinoic acid (RA) receptors (RARs) are ligand-dependent regulators of transcription. 

Their transcriptional activity relies mainly on their recruitment to specific DNA response elements and 

on their interactions with several coregulators at the ligand-binding domain.  In addition to these 

classical genomic effects, the team of C. Rochette-Egly demonstrated that RA also induces the rapid 

activation of the p38MAPK/MSK1 pathway with characteristic downstream consequences on the 

phosphorylation of RARs and the expression of their target genes.  

Here I highlighted three novel paradigms in the field of the RARα subtype. 

I found that a fraction of the cellular RARα pool is present in membrane lipid rafts, where it 

interacts with G protein alpha Q in response to RA. This interaction is the signal for nongenomic 

effects, i.e. the activation of p38MAPK and of the downstream kinase MSK1. These effects have been 

correlated to the activation of RA-target genes, highlighting its physiological relevance.  

I identified a new binding partner of RARα, profilin IIA. I deciphered the mechanism of the 

interaction and found that it occurs in nuclei. Remarkably, profilin IIA modulates positively the 

genomic effects of RARα and is recruited with RARα to target genes promoters. 

Finally, in an attempt to decipher the relevance of the RARα interaction with profilin IIA, I 

found that RARα controls cell adhesion and spreading. This might suggest a novel genomic function 

of RARα and profiling in the control of the expression of genes involved in adhesion. However, 

preliminary experiments indicate that a pool of RARα is present in the cytosol, suggesting also novel 

nongenomic effects. Whether RARα controls adhesion via its interaction in the cytosol proteins 

involved in adhesion will require further investigations. 
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