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Introduction

L'objet principal de cette thèse est une étude combinatoire des noeuds � et, plus
généralement, de la catégorie des enchevêtrements � plongés dans une surface fermée
de genre g épaissie Sg × I. Dans le cas du genre g = 1, les résultats obtenus
nous permettent en particulier de construire une version elliptique de l'intégrale de
Kontsevich, à partir de la notion d'associateur elliptique introduite dans [Enr].

Mais avant d'en détailler davantage le contenu, rappelons tout d'abord en quelques
lignes le contexte général dans lequel s'inscrit ce travail.

Pour distinguer les noeuds, les outils classiques de la topologie algébrique s'avèrent
assez limités. Dans les années 1920, Reidemeister montre que l'étude topologique
des noeuds peut alternativement se réduire à un problème de nature combinatoire,
en identi�ant les classes d'isotopies de noeuds à des diagrammes planaires considé-
rés modulo trois types de mouvements locaux. Une soixantaine d'années plus tard,
la découverte du polynôme de Jones relie ce modèle combinatoire à de nouvelles
perspectives algébriques, qui vont conduire au "boom" des invariants quantiques.

Parallèlement à ces développements, Goussarov et Vassiliev dé�nissent indépen-
damment à la �n des années 1980 la notion d'invariant de type �ni, à partir de
transformations chirurgicales associées aux noeuds singuliers. Tous les invariants
quantiques se trouvent englobés dans cet espace d'invariants, qui est par ailleurs
�ltré ; un invariant de type d pouvant, en un certain sens, être compris comme un
invariant dont la "dérivée d'ordre d+ 1" s'annule [BN95]. La théorie des invariants
de type �ni conduit à s'intéresser aux diagrammes de Jacobi, qui sont des objets
purement combinatoires dont la structure uni-trivalente illustre un lien profond avec
les algèbres de Lie.

En 1993, Kontsevich [Kon93] construit un invariant de noeuds Z à valeurs dans
l'espace des diagrammes de Jacobi qui factorise tous les invariants de type �ni, et
donc en particulier les invariants quantiques. L'invariant Z est dérivé d'une version
universelle de l'équation de Knizhnik�Zamolodchikov (KZ), et prend originalement
la forme d'intégrales itérées di�ciles à calculer explicitement.

L'invariant universel de Kontsevich, aussi bien que l'ensemble des invariants
quantiques, trouvent sans doute leur expression la plus aboutie dans le langage
des catégories tensorielles. Considérons l'espace ambiant tridimensionnel comme
le produit R2 × R du plan par une droite que l'on pense comme une coordonnée
temporelle. Dans un intervalle de temps I, une "tranche" générique de noeud est un
enchevêtrement formé de brins reliant entre eux des points-bases de R2 × ∂I. Les
enchevêtrements parallélisés (framed tangles) sont munis d'une structure de caté-
gorie tensorielle stricte notée T̃ dont les objets sont les suites �nies de signes {+,−},
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la composition est dé�nie par empilement, et le produit tensoriel est obtenu par
adjonction côte à côte. La catégorie T̃ possède en outre une dualité et un twist qui
lui confèrent une structure de catégorie enrubannée. Le théorème de cohérence de
Reshetikhin�Turaev�Shum [Tur10, Shu94], que l'on abrégera ici en "théorème RTS",
a�rme que T̃ peut en fait être vue comme la catégorie enrubannée libre engendrée
par un seul objet. Plus précisément, pour toute catégorie enrubannée stricte C munie
d'un objet V , il existe un unique foncteur F : T̃ → C préservant la structure en-
rubannée et tel que F (+) = V . Ce point de vue peut être considéré comme un ultime
ra�nement du théorème de Reidemeister : à partir d'objets de nature topologique
(les enchevêtrements), on passe à une version combinatoire (leurs diagrammes), puis
en�n à une caractérisation purement algébrique.

Des catégories enrubannées non triviales peuvent être construites explicitement
à partir des groupes quantiques, conduisant ainsi à retrouver le polynôme de Jones,
et plus généralement tous les invariants quantiques.

D'un autre côté, l'intégrale de Kontsevich possède également une expression com-
binatoire [BN97, LM96] qui met en jeu la structure de catégorie enrubannée (non
stricte) des enchevêtrements parallélisés et parenthésés, notée qT̃. Cette construc-
tion généralise le traitement algébrique de la monodromie de l'équation KZ par Drin-
feld, dont l'ingrédient principal est la notion d'associateur, et peut être formulée de
la façon suivante: on observe que la donnée d'un associateur de Drinfeld Φ per-
met de munir la catégorie A des diagrammes de Jacobi d'une structure enrubannée
[Car93, KT98]. L'existence de l'intégrale de Kontsevich combinatoire ZΦ : qT̃→ A
comme foncteur enrubanné devient alors une conséquence du théorème RTS.

L'intégrale de Kontsevich s'étend assez naturellement aux graphes trivalents
[MO97, Lie08, Dan10, BND, CL07]. Par ailleurs, la notion d'invariant de type �ni
se généralise aux objets noués dans une variété de dimension trois quelconque. Des
invariants universels ont ainsi été dé�nis, entre autres, pour les entrelacs dans une
surface à bord épaissie [AMR98, Lie04] ainsi que pour les tresses dans une surface
fermée [GMP04]. Contrairement à l'intégrale de Kontsevich classique, on sait en
revanche [BF04] que de tels invariants ne peuvent pas être construits d'une façon
fonctorielle pour la composition des enchevêtrements.

L'invariant elliptique auquel on s'intéresse ici est de nature di�érente. Il possède
par construction la propriété de fonctorialité, puisqu'il étend une représentation de
monodromie des tresses elliptiques. On s'attend à ce que cet invariant soit universel
pour une �ltration moins �ne que celle de Goussarov�Vassiliev (pouvant être dé�nie
à partir du langage des claspers [Hab00]), et qui généralise en un certain sens la
�ltration des tresses par les puissances de l'idéal d'augmentation.

Les connexions de Knizhnik�Zamolodchikov�Bernard (KZB) sont des général-
isations de la connexion KZ à des surfaces de Riemann de genre supérieur. Ces
connexions sont dé�nies sur l'espace de modules de n points sur une surface de genre
g, qui contient donc à la fois la position des points marqués et la structure complexe
de la surface elle-même.

En 2007, Calaque, Enriquez et Etingof [CEE10] ont introduit une version uni-
verselle de la connexion KZB dans le cas elliptique (g = 1). En �xant un paramètre
elliptique τ dans le demi-plan de Poincaré, celle-ci se restreint à une connexion plate
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sur l'espace de con�guration En de n points sur la courbe elliptique E := C/(Z+τZ),
à valeurs dans une algèbre de Lie graduée t1,n. Son transport parallèle donne lieu
à une représentation Tτ du groupe fondamental de En basé en un point p �xé, qui
s'identi�e au groupe PB1,n des tresses pures à n brins dans le tore :

Tτ : PB1,n
∼= π1(En, p)→ exp(̂t1,n).

Du côté algébrique, la notion d'associateur elliptique introduite dans [Enr] per-
met de construire combinatoirement un invariant de tresses elliptiques parenthésées
à valeurs dans exp(̂t1,n). Un associateur elliptique est un triplet e = (Φ, X, Y ) où
Φ est un associateur de Drinfeld et X,Y sont des séries à deux variables non com-
mutatives satisfaisant certains axiomes reliés à la structure des tresses elliptiques
parallélisées. On peut dé�nir, pour tout paramètre τ , un associateur elliptique
e(τ) = (ΦKZ , Xτ , Yτ ) au-dessus de l'associateur KZ en comparant deux solutions
particulières de l'équation KZB réduite.

Les résultats

Comme dans le cas de l'intégrale de Kontsevich usuelle, on montre l'extension
suivante.

Théorème 1. Il est possible d'étendre la représentation Tτ des tresses elliptiques à
un invariant d'enchevêtrements Zτ , grâce à une formule d'intégrales itérées.

Cet invariant Zτ prend ses valeurs dans une catégorie A1 de diagrammes de
Jacobi dits "elliptiques", comportant des sommets externes linéairement ordonnés
et coloriés par des éléments du premier groupe d'homologie du tore H1 := H1(E;C)
(voir Figure 1). Outre la relation STU, ces diagrammes sont considérés modulo une
relation "STU-like", qui contrôle la façon dont deux sommets externes commutent,
ainsi qu'une relation non locale qui re�ète le fait que la surface E est fermée.

u

v

w

<
<

Figure 1: Un diagramme de Jacobi elliptique pour u, v, w ∈ H1.

La preuve de l'invariance de l'intégrale Zτ (γ) par isotopie de γ est essentiellement
la même que dans le cas usuel, malgré quelques points de véri�cation supplémen-
taires. L'invariant elliptique Zτ contient l'intégrale de Kontsevich Z au sens suivant:
si γ est un entrelacs elliptique contenu dans une boule, alors Zτ (γ) coïncide avec
Z(γ).

On s'intéresse ensuite à une version combinatoire de l'invariant elliptique. D'après
[Enr], un associateur elliptique e = (Φ, X, Y ) fournit déjà un invariant combina-
toire des tresses elliptiques parenthésées. Celui-ci peut être naïvement étendu aux
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enchevêtrements à partir de l'invariant combinatoire ZΦ, en observant que tout
enchevêtrement elliptique peut être obtenu comme une composition d'enchevêtre-
ments dans le disque et de tresses elliptiques. En notant T̃1 (respectivement qT̃1) la
catégorie des enchevêtrements elliptiques parallélisés (parenthésés), on a le théorème
suivant.

Théorème 2. Pour tout associateur elliptique e = (Φ, X, Y ), il existe un unique
foncteur Ze : qT̃1 → A1 qui généralise l'invariant des tresses elliptiques construit à
partir de e, et qui coïncide avec l'intégrale de Kontsevich ZΦ sur qT̃.

En particulier, on peut associer à chaque paramètre elliptique τ un invariant
combinatoire Ze(τ) : qT̃1 → A1 construit à partir de l'associateur elliptique e(τ). En
se basant sur un résultat de [Enr], on montre que la dépendance en τ de l'invariant
Ze(τ) appliqué aux entrelacs est gouvernée par l'action de SL2(C) sur H1

∼= C2.
Dans le cas d'un enchevêtrement général, cette action se conjugue à une opération
intérieure réalisée par certains diagrammes elliptiques non horizontaux.

Pour démontrer le théorème 2 en s'assurant que l'invariant Ze ainsi construit est
bien dé�ni, il nous faut disposer d'une description combinatoire, par générateurs et
relations, de la catégorie T̃1. On cherche à formuler cette description dans le langage
des catégories enrubannées.

La deuxième partie de la thèse atteint cet objectif dans le contexte général d'une
surface fermée Sg de genre g ≥ 0 quelconque. On caractérise la catégorie T̃g des
enchevêtrements parallélisés dans Sg × I par une propriété universelle, à la manière
du théorème RTS.

La première étape consiste en un théorème de type Reidemeister, qui nous permet
de voir un enchevêtrement de T̃g comme un diagramme planaire modulo une relation
d'équivalence engendrée par un nombre �ni de mouvements. On introduit à cet
e�et une catégorie de diagrammes planaires appelés "diagrammes à becs", dont un
exemple se trouve en Figure 2.

>

<

< <

b

a

t

Figure 2: Un diagramme à becs pour a, b ∈ π1.

Les becs du diagramme sont coloriés par une famille de générateurs du groupe
fondamental π1 de la surface privée d'un disque (notée Sg,1), qui indiquent le fait
que le brin e�ectue une boucle dans la surface suivant la classe d'homotopie corres-
pondante. Il apparaît que certaines familles de générateurs bien choisies permettent
de traduire plus simplement que d'autres l'isotopie des noeuds par des mouvements
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d'équivalence simples entre les diagrammes à becs correspondants. Ces "bonnes
familles" sont combinatoirement codées par des graphes de genre g épaissis appelés
fatgraphs. On peut en e�et associer des générateurs de π1 à tout fatgraph plongé
dans la surface Sg,1 en considérant les arcs "duaux" aux arêtes du graphe. Pour tout
fatgraph Γ, on dé�nit donc une catégorie D(Γ) de diagrammes à becs coloriés par
les arêtes de Γ, ainsi qu'une relation d'équivalence R̃ST (Γ) engendrée par:

• les mouvements de Reidemeister R̃,

• d'autres mouvements locaux S, qui contrôlent en particulier la façon dont deux
becs peuvent se croiser,

• des mouvements T qui re�ètent une présentation du groupe fondamental de la
surface Sg.

On démontre ensuite le théorème suivant.

Théorème 3. Pour tout fatgraph Γ de genre g, les catégories T̃g et D(Γ)/R̃ST (Γ)
sont isomorphes.

L'isomorphisme en question dépend d'un plongement du fatgraph dans la surface.

Dans une deuxième partie, on dé�nit la notion de structure de genre g sur une
catégorie enrubannée C. Il s'agit d'un foncteur C → Cg véri�ant certains axiomes qui
sont inspirés d'une version ra�née "en tranches" du théorème 3, et qui dépendent
en particulier du choix d'un fatgraph Γ. Le choix d'un plongement f de Γ dans la
surface Sg détermine une structure de genre g relative au foncteur T̃ → T̃g. On
établit le théorème suivant.

Théorème 4. Soit C une catégorie enrubannée stricte munie d'un objet V . Pour
toute structure de genre g relative à C → Cg, il existe un unique foncteur Ff : T̃g →
Cg respectant la structure et tel que le diagramme suivant commute (où F est le
foncteur du théorème RTS):

T̃ C

T̃g Cg

F

Ff

On montre à partir du Theorème 4 que les notions de structures de genre g issues
de di�érents choix de fatgraphs sont équivalentes.

En�n, il est à noter que les axiomes dé�nissant une structure de genre g ne font
pas intervenir la dualité de C. C'est à partir de cette remarque que l'on déduit
aisément, dans le cas du genre g = 1, que les associateurs elliptiques munissent A1

d'une structure de genre 1, ce qui conduit au théorème 2.
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Plan de la thèse

On rappelle dans le Chapitre 1 la construction sous forme intégrale de l'invariant
Z de Kontsevich ; c'est un modèle que l'on suit dans le Chapitre 2, en l'adaptant au
cas elliptique (théorème 1). Le Chapitre 3 est un rappel de la version combinatoire de
Z : on y présente les deux ingrédients principaux que sont la notion d'associateur de
Drinfeld et la description algébrique des enchevêtrements formalisée par le théorème
RTS. Les deux chapitres suivants s'attachent à généraliser cette description en genre
quelconque, et aboutissent ainsi aux théorèmes 3 et 4. En�n, on croise ces résultats
avec la notion d'associateur elliptique dans le Chapitre 6 pour obtenir une version
combinatoire de l'invariant elliptique (théorème 2).

x



Chapter 1

The Kontsevich integral

In this chapter, we recall the analytic construction of the Kontsevich integral as de-
�ned in [BN95] from Kontsevich's original paper [Kon93]. Our exposition is inspired
from [BN95, CDM12, Les99].

The chapter is organized as follows. Chen's iterated integrals (Section 1.1) pro-
vide an explicit formula for the braid invariant derived from the universal KZ con-
nection (Section 1.2). In Section 1.5, this formula is extended to an invariant of
bd-tangles (de�ned in Section 1.3) with values in a category of Jacobi diagrams (de-
�ned in Section 1.4). A genuine tangle invariant is �nally obtained after a suitable
renormalization (Section 1.5.4).

1.1 Formal connections

We �rst review some general facts about formal connections and the expression of
their parallel transport in terms of iterated integrals.

1.1.1 Chen's iterated integrals

Let A be a completed graded algebra. By this, we mean the product A =
∏
k≥0Ak of

�nite-dimensional complex vector spaces, equipped with the product topology (for
which convergence in A means convergence in each component Ak), and endowed
with an algebra structure such that AkAl ⊆ Ak+l for any k, l ≥ 0. For p ≥ 0, we
denote by A≥p the ideal

∏
k≥pAk. The applications exp : A≥1 → 1 + A≥1 and

log : 1 +A≥1 → A≥1 are de�ned by their usual power series expansions.
Let a : I → A be a piecewise continuous function whose image lies in A≥1.

Following the terminology of [Che61], we consider the formal di�erential equation

d

dt
f(t) = a(t)f(t), f(0) = 1. (1.1.1)

In his work, Chen observes that the (continuous) solution of (1.1.1) can be expressed
in terms of iterated integrals, as a formal analogue of Picard approximation method.

Theorem 1.1.1. [Che61] Equation (1.1.1) has a unique continuous solution f(t)
which can be written in the form

f(t) =

∞∑
m=0

Qm(t) for all t ∈ I, (1.1.2)

1



where the Qm(t) are de�ned inductively by Q0(t) = 1 and

Qm+1(t) =

∫ t

0
a(s)Qm(s)ds.

Note that the above sum converges in A, since the fact that a(t) ∈ A≥1 implies
that Qm(t) ∈ A≥m. The iterated integrals formula (1.1.2) may be thought of as
a generalization of exp(

∫
a) to the non-commutative case. Following this idea, we

have:

Theorem 1.1.2. Let H ⊂ A be a Lie subalgebra with respect to the commutator
bracket, such that H =

∏
k≥1(H ∩ Ak). If a(t) ∈ H for all t ∈ I, then log f(t) ∈ H

for all t ∈ I.

This result is well known. A proof can be found in [Che61, Theorem 2.1] in the
case where a(t) ∈ H ∩ A1. We reprove it in the general case, from its following
generalization in the language of Hopf algebras:

Proposition 1.1.3. If A has a Hopf algebra structure such that a(t) is primitive for
all t ∈ I, then f(t) is group-like for all t ∈ I.

Proof. On the one hand,

d

dt

(
∆f(t)

)
= ∆

( d
dt
f(t)

)
= ∆

(
a(t)f(t)

)
= ∆a(t)∆f(t).

On the other hand,

d

dt

(
f(t)⊗ f(t)

)
=

d

dt
f(t)⊗ f(t) + f(t)⊗ d

dt
f(t)

= a(t)f(t)⊗ f(t) + f(t)⊗ a(t)f(t)

=
(
a(t)⊗ 1 + 1⊗ a(t)

)(
f(t)⊗ f(t)

)
= ∆a(t)

(
f(t)⊗ f(t)

)
.

Since ∆f(t) and f(t)⊗f(t) are solutions of the same di�erential equation and coincide
at t = 0, they coincide for all t ∈ I.

Theorem 1.1.2 then follows by considering the Hopf structure of the enveloping
algebra U(H). If a(t) ∈ H, the solution fU(t) of Equation (1.1.1) in U(H) is group-
like. Recall that the logarithm of a group-like element x is primitive (since ∆ log(x) =
log(∆x) = log(x⊗x) = log

(
(x⊗1)(1⊗x)

)
= log(x)⊗1+1⊗ log(x) as x⊗1 and 1⊗x

commute), and that the Lie algebra of primitive elements of U(H) coincides with H
[Bou72]. Hence log fU(t) ∈ H, and through the morphism U(H) → A induced by
H ⊂ A, we get log f(t) ∈ H.

1.1.2 Formal connections and parallel transport

Let M be a connected complex manifold. In the following, all the paths in M and
all the path homotopies are assumed to be piecewise smooth. We denote by Π1(M)
the fundamental groupoid of M . In our convention, the source and target of a path
α are α(0) and α(1) respectively. It follows that the composition in Π1(M) is the
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opposite of the usual product of paths: we have α2α1 := α1 ∗ α2, where ∗ denotes
the usual concatenation of paths.

We consider a 1-form Ω onM with values in A≥1, which we think of as a "formal
connection" on the trivial A-bundle over M . (If A is the algebra of power series
in non-commutative variables C〈〈x1, . . . , xn〉〉, we recover Chen's notion of "formal
power series connection" [Che77], see also [Lin97].)

De�nition 1.1.4. In this setting, the parallel transport TΩ(α) of Ω along a path
α : I →M is de�ned by TΩ(α) := fα(1) where fα : I → A is the continuous solution
of the formal di�erential equation

d

dt
fα(t) = Ω

(
α′(t)

)
fα(t), fα(0) = 1. (1.1.3)

From Theorem 1.1.1, TΩ(α) can be expressed in terms of iterated integrals. More-
over, TΩ enjoys the following properties.

Lemma 1.1.5. (i) The parallel transport TΩ(α) does not depend on the parame-
trization of the path α.

(ii) If α1 and α2 are two composable paths, then TΩ(α2α1) = TΩ(α2)TΩ(α1) (where
(i) ensures that the left-hand term is well-de�ned).

Proof. (i) If u : I → I is a positive di�eomorphism, fα◦u and fα ◦ u satisfy the same
di�erential equation, hence TΩ(α ◦ u) = TΩ(α). (ii) We have TΩ(α2α1) = f̃α2(1),
where f̃α2 is the solution of the di�erential equation (1.1.3) with f̃α2(0) = TΩ(α1).
Two solutions of (1.1.3) with distinct values at t = 0 di�er by a constant term on
the right. Hence f̃α2(t) = fα2(t)TΩ(α1), and TΩ(α2α1) = TΩ(α2)TΩ(α1).

The homotopy invariance of TΩ is equivalent to an "integrability condition" for
the formal connection Ω, as stated in Theorem 1.1.6 below. This standard fact of
di�erential geometry (see [KN96]) still holds in our formal context; a direct proof
can be found in [Oht02, Proposition 5.2].

Theorem 1.1.6. The parallel transport TΩ is invariant under path homotopy if and
only Ω satis�es dΩ− Ω ∧ Ω = 0.

In this case, the formal connection Ω is said to be �at. It follows from Theorem
1.1.6 and Lemma 1.1.5 that the parallel transport of a �at connection Ω valued in
A≥1 induces a functor

TΩ : Π1(M)→ 1 +A≥1,

where the group 1 +A≥1 is seen as a category with a single object.

1.2 The KZ connection

The Knizhnik�Zamolodchikov (KZ) connection appears in the Wess�Zumino�Witten
model of conformal �eld theory [KZ84]. We recall here its formal version. As a �at
connection on the con�guration space of n points in the plane, it gives rise to a
representation of its fundamental groupoid, which we call here the braid groupoid.
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De�nition 1.2.1. We denote by Cn the con�guration space of n ordered distinct
points on C

Cn := {(z1, . . . , zn) ∈ Cn | i 6= j ⇒ zi 6= zj},

and we de�ne the braid groupoid Bn as the fundamental groupoid of Cn.

De�nition 1.2.2. Let tn be the graded Lie algebra generated in degree one by the
variables tij for 1 ≤ i 6= j ≤ n, subject to the relations tij = tji and Kohno's
in�nitesimal pure braid relations [Koh87]:

[tij , tik + tkj ] = 0, [tij , tkl] = 0 for i, j, k, l all distincts. (1.2.1)

The formal KZ connection ΩKZ is given by the following 1-form on Cn with
values in the graded completion1 of the enveloping algebra Û(tn):

ΩKZ =
1

2πi

∑
1≤i<j≤n

d log(zi − zj)tij . (1.2.2)

The relations (1.2.1) imply:

Lemma 1.2.3. (See for example [Kas95, Proposition XIX.2.1]) The connection ΩKZ

is �at.

The KZ connection thus gives rise to a parallel transport functor

TKZ : Bn = Π1(Cn)→ exp(̂tn) ⊂ Ûtn.

1.3 Tangles and bd-tangles

In this section, we introduce the notion of bd-tangle as a natural generalization of a
braid. Bd-tangles are implicitely considered in [Kon93] and are very similar to Morse
tangles [MS03] (the two corresponding categories are in fact isomorphic). We show
that the equivalence of bd-tangles is generated by some kinds of elementary moves
(Proposition 1.3.8), and relate bd-tangles to usual tangles (Proposition 1.3.11).

1.3.1 Geometric braids

Let us consider a path β = (β1, · · · , βn) : I → Cn representing an element of the
n-th braid groupoid Bn. From a physical point of view, β is seen as the movie of
n particles (labeled from 1 to n) evolving on C, from the time t = 0 to t = 1.
Such a movie can be recorded in the cylinder C × I, where the vertical coordinate
t ∈ I corresponds to the time evolution. More precisely, for all i ∈ {1, . . . , n}, the
path of the i-th particle parametrizes an arc (βi(t), t)t∈I in C× I that is called the
i-th strand of β. The whole recording is then the (ordered) union of the strands.
Slightly abusing notation, it shall also be denoted by β ⊂ C × I and referred to as
the geometric braid associated with the path β.

Two paths in Cn are homotopic if and only if their corresponding geometric
braids are related by an isotopy2 of C × I that �xes the boundary pointwise and

1Here and in the following, for a graded vector space V , we denote by V̂ its degree completion.
2Here and in the following, we may implicitly turn isotopies of embeddings into ambient isotopy,

making use of the isotopy extension theorem ([Hir76], Chapter 8).
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β2 β1
β1

β2· =

t = 0

t = 1

Figure 1.1: The composition of geometric braids and (bd)-tangles.

preserves the horizontal planes C×{t}. (In fact the last "horizontality" requirement
is not necessary [Art47].) The fundamental groupoid Bn can thus be alternatively
seen as the category of geometric braids modulo isotopy, where the composition β2β1

is obtained by gluing β2 above β1 and rescaling the result in C × I, as depicted in
Figure 1.1.

1.3.2 Bd-tangles

The notion of bd-tangle (where "b" and "d" stand for "birth" and "death") arise
from a natural generalization of the above physical picture of a braid. Let us consider
a �nite number of particles evolving on the plane, no longer ordered, and labeled with
a sign + or −. At some time, two dual particles + and − may collide and annihilate,
or conversely, may appear at the same point and split. A bd-tangle corresponds to
the recording of such a movie.

De�nition 1.3.1. A bd-tangle γ ⊂ C × I is a properly embedded compact one-
manifold that satis�es the following conditions:

1. γ is piecewise smooth in the sense that it is decomposed into a �nite number of
smooth oriented arcs joining boundary or inner vertices, such that two adjacent
arcs are not tangent to each other,

2. the arcs of γ are transverse to the horizontal planes C× {t}, t ∈ I.

As in the case of braids, the arcs of γ shall be referred to as the strands of γ. It
follows from the de�nition that the set of local extrema of the height function γ → I
is included in the set of vertices of γ. The inner vertices of γ corresponding to
such local extrema are the bd-vertices of γ. A bd-vertex is a b-vertex if it is a local
minimum and a d-vertex if it is a local maximum of the height function. Two bd-
tangles are bd-equivalent if there is a piecewise-smooth isotopy of C × I that takes
one to the other within the class of bd-tangles, keeping the boundary vertices �xed.

The bd-tangles form a category T bd in the usual way: the objects are the �nite
sets of distinct signed points of C, and the morphisms are bd-equivalence classes of
bd-tangles. The source and target of a bd-tangle γ are its set of bottom endpoints
γ ∩ (C × {0}) and top endpoints γ ∩ (C × {1}) respectively, where an endpoint is
assigned a + if its neighboring strand is oriented upwards, and a − else. As in the
case of geometric braids, the composition γ2γ1 is obtained by gluing γ2 above γ1.

There is a functor Bn → T bd, which consists in seeing a geometric braid as a
bd-tangle with no bd-vertex by orienting its strands upwards and forgetting their
order.
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>

D × u

D × v

>

>

D × u

D × v

Figure 1.2: A move of type d.

1.3.3 Moves of bd-tangles

In this subsection, we show that bd-equivalence is generated by two kinds of moves
of bd-tangles: "horizontal deformations" and "bd-moves" (Proposition 1.3.8). This
statement appears (at least implicitly) in [BN95, CDM12] in the context of Morse
tangles.

De�nition 1.3.2. Let γ be a bd-tangle. Take u, v such that 0 < u < v < 1,
and D ⊂ C a disc. If D × {u, v} contains no vertex of γ and ∂D × [u, v] does not
intersect γ, then the restriction γ ∩ (D × [u, v]) is denoted by γ|D,u,v and is called
a bd-subtangle of γ. A strand of γ|D,u,v is the intersection of a strand of γ with the
cylinder D × [u, v].

Let us introduce three types of elementary bd-subtangles.

De�nition 1.3.3. A bd-subtangle γ|D,u,v is of type i if γ|D,u,v consists of one strand
only. A bd-subtangle γ|D,u,v is of type b (respectively, of type d) if γ|D,u,v consists of
two strands meeting at a b-vertex (respectively, d-vertex).

Each type of bd-subtangle leads to an elementary move of bd-tangles:

De�nition 1.3.4. Two bd-tangles γ and γ′ are related by an x-move (here replace
x with i, b and d) if there exists a disc D ⊂ C and two heights 0 < u < v < 1 such
that:

• γ and γ′ are identical outside of D × [u, v],

• γ|D,u,v and γ′|D,u,v are both bd-subtangles of type x.

See Figure 1.2 for an example of d-move. A bd-move is a b-move or a d-move.

Lemma 1.3.5. Two bd-tangles γ, γ′ are bd-equivalent if and only if they are related
by a �nite sequence of bd-moves and of i-moves.

Proof. We �rst show that any i-move and bd-move can be realized by a bd-equivalence.
The i-move case is obvious. Let us deal with the case of a d-move (the b-move case
being obtained similarly). Assume that γ|D,u,v and γ′|D,u,v are both bd-subtangles
of type d. Since two strands cannot be tangent to each other when they meet at
a death vertex (De�nition 1.3.1), γ|D,u,v and γ

′
|D,u,v admit a "generic" projection π

on a vertical plane, in the sense that π(γ|D,u,v) and π(γ′|D,u,v) have �nitely many
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singularities, all of which are double points where two strands cross transversally.
If both π(γ|D,u,v) and π(γ′|D,u,v) have no crossings, it is immediate that γ and γ′

are related by a bd-equivalence of support D × [u, v]. Else, if π(γ|D,u,v) has one
or more crossings, the height monotonicity of the strands implies that the highest
crossing forms a twist at the top of γ|D,u,v (as on the right part of Figure 1.2). The
number of crossings can thus be reduced by one by "untwisting" the top of γ|D,u,v
through a local bd-equivalence. Iterating this process leads to a bd-subtangle which
is bd-equivalent to γ|D,u,v and whose projection has no crossings. It follows that any
move of type d can be realized by a bd-equivalence.

Conversely, assume that γ and γ′ are bd-equivalent, and let us show that they
are related by a �nite sequence of i-moves bd-moves. Let (γs)s∈[0,1] be a continuous
family of bd-tangles with γ0 = γ and γ1 = γ′. Pick s0 ∈ [0, 1]. There exists a �nite
open cover (Uj) of γs0 , where the Uj 's are the interiors of disc cylinders Dj× [uj , vj ],
such that for all j, γs0 |Dj ,uj ,vj is a bd-subtangle of type xj (for xj =i,b,d). Then,
there exists a neighborhood N(s0) of s0 ∈ I which is small enough so that for all
s ∈ N(s0), γs is still covered by the Uj 's, and for all j, γs|Dj ,uj ,vj is still a bd-
subtangle of type xj . It is a general fact (see for example [EK71, Corollary 1.3]) that
the isotopy (γs)s∈N(s0) can be decomposed into a �nite sequence of local isotopies,
all of which being of support in one of the Uj 's. But such a local isotopy realizes
by de�nition an xj-move. Thus, the isotopy (γs)s∈N(s0) can be expressed as a �nite
sequence of i-moves and bd-moves, and by compacity of I, this is also true for the
whole isotopy (γs)s∈[0,1].

De�nition 1.3.6. A horizontal deformation of a bd-tangle γ is an isotopy of C× I
that is the identity outside C× [u, v], where 0 < u < v < 1 are two heights such that
γ has no bd-vertex in C × [u, v], and that preserves the height function C × I → I
everywhere.

Lemma 1.3.7. Any i-move can be realized as a sequence of horizontal deformations
and of bd-moves.

Proof. An i-move which is performed in the cylinder D× [u, v] is a horizontal defor-
mation unless γ has some bd-vertices whose heights are between u and v. In that
case, a �nite number of b-moves can be performed (in cylinders that do not intersect
D × [u, v]) to drag the b-vertices below the height u, and similarly, d-vertices can
be dragged above the height v by d-moves. The initial i-move is now a horizontal
deformation. Finally, the bd-vertices can be moved back to their initial positions by
performing the inverse bd-moves.

Lemmas 1.3.5 and 1.3.7 imply:

Proposition 1.3.8. Two bd-tangles are bd-equivalent if and only if they are related
by a sequence of horizontal deformations and of bd-moves.

1.3.4 Tangles

We now turn to the "standard" tangles, which are a smooth version of the bd-tangles,
considered up to general isotopy with no height monotonicity condition.
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D × u

D × v

>

D × u

D × v

<
>

<
Figure 1.3: A hump insertion.

De�nition 1.3.9. A tangle γ is a smooth properly embedded compact one-submanifold
γ ⊂ C× I whose arcs coincide with vertical segments (of the form {z}× I) near the
boundary C× ∂I. Two tangles are isotopic if they are ambient isotopic relative to a
neighborhood of the boundary. Isotopy classes of tangles form a category T in the
same way as bd-tangles (the objects are �nite sets of signed points of C).

There is a functor T bd → T which sends a bd-tangle γ to a smooth tangle that is
piecewise smoothly isotopic to γ by "smoothing" its vertices and by "straightening"
its endpoints. (Note that this functor is well de�ned since two piecewise smoothly
isotopic smooth tangles are smoothly isotopic.)

1.3.5 Hump insertion

The functor T bd → T is surjective, but not injective. The �rst obstruction that pre-
vents two isotopic bd-tangles from being bd-equivalent is the number of bd-vertices
of each component, which is an obvious bd-equivalence invariant. But the isotopy
class together with the number of bd-vertices is not su�cient to distinguish all the
bd-tangles. It turns out that there exists two isotopic bd-knots having the same
number of bd-vertices but which are not bd-equivalent (see [Bir76]). However, it
seems intuitively clear that if one increases the number of bd-vertices of two iso-
topic bd-knots by inserting a su�ciently large number of "humps", they will become
"�exible" enough to be bd-equivalent.

Let (γ,X) be a bd-tangle with a distinguished connected component X. We
construct from this pair a new bd-tangle hX(γ) in the following way.

Take a cylinderD×[u, v] in the interior of C×I, such that γ|D,u,v is a bd-subtangle
of type i contained in the component X. Then hX(γ) is obtained from γ by replacing
γ|D,u,v with a "hump" as depicted in Figure 1.3. More precisely, a "hump" means
a connected bd-subtangle embedded in a rectangle [a, b] × [u, v] (where [a, b] is a
diameter of D) that contains exactly one birth and one death vertex.

Lemma 1.3.10. Up to bd-equivalence, the above construction of hX(γ) depends only
on (γ,X).

Proof. Up to bd-equivalence, a small hump can slide along a strand of a bd-tangle.
Moreover, a hump can pass through a d-vertex by switching its height with the height
of the d-vertex of the hump, as depicted in Figure 1.4. A hump can pass through
a b-vertex in a similar way. Therefore, a small hump can slide everywhere along its
connected component in γ, and thus hX(γ) depends only of the component X.
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Figure 1.4: Passing a hump through a death vertex.

Since a hump is isotopic to a bd-subtangle of type i, any pair of bd-tangles related
by a hump insertion are isotopic. Conversely, we have the following "stabilization"
theorem:

Proposition 1.3.11. Let γ and γ′ be two isotopic bd-tangles. Then if X1, . . . , Xr and
X ′1, . . . , X

′
r denote the isotopic components of γ and γ′ respectively, there exists non-

negative integers n1, . . . , nr and n′1, . . . , n
′
r such that hn1

X1
· · ·hnrXr(γ) is bd-equivalent

to h
n′1
X′1
· · ·hn

′
r
X′r

(γ′).

We do not prove this fact. A sketch of proof can be found in [MS03, Lemma
3.2], in the context of Morse knots. Here, the same arguments can be used, replacing
"Morse knot" by "bd-tangles".

1.4 Jacobi diagrams

In this section, we recall the de�nition and the basic properties of Jacobi diagrams
which form the target of the Kontsevich invariant. These uni-trivalent diagrams
play a central role in quantum topology as they are both related to the chord di-
agrams arising from the Vassiliev-Goussarov theory of �nite-type invariants and to
the commutator calculus of metrized Lie algebras [BN95].

We �rst de�ne the category P of patterns. Here, patterns are one-dimensional
cobordisms which are thought of as the underlying skeletons of the tangles.

De�nition 1.4.1. A pattern is a compact one-manifold P whose boundary ∂P is
split into two linearly ordered sets ∂−P and ∂+P . Patterns form a category denoted
by P. The objects are words in {+,−} and the morphisms are patterns. The source
and target of P are −∂−P and ∂+P respectively, which are seen as words in {+,−}
as sequences of oriented points (an endpoint is assigned a + if the orientation of
P points towards this point). The composition P2P1 is obtained by gluing the i-th
point of ∂−P2 to the i-th point of ∂+P1 for each i.

De�nition 1.4.2. A Jacobi diagram is a pattern P of P equipped with a �nite
abstract graph D whose vertices are either univalent and attached to a point of the
interior of P , or trivalent and oriented (that is, equipped with a cyclic ordering of its
three adjacent half-edges). Moreover, each component ofD is required to be attached
to P . In the �gures, D is represented by dashed lines, and the vertex orientation is
always induced by the counterclockwise orientation of the sheet of paper. An edge
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whose both extremities are attached to P is called a chord. The degree of a Jacobi
diagram D is de�ned as:

deg(D) :=
1

2
(number of vertices of D) ∈ N.

Let A(P ) be the graded vector space generated by the Jacobi diagrams of pat-
tern P , up to the (homogeneous) relation STU depicted in Figure 1.5. We set
(A/FI)(P ) := A(P )/FI, where FI is the "framing independence" relation depicted
in Figure 1.6.

Remark 1.4.3. Since each component of the graph of a Jacobi diagram is connected
to its pattern, the STU relation implies the IHX and AS relations depicted in Figures
1.7-1.8 (see [BN95, Theorem 6]).

= +

Figure 1.5: The STU relation.

= 0

Figure 1.6: The FI relation.

= +

Figure 1.7: The IHX relation.

+ = 0

Figure 1.8: The AS relation.

Let us recall a standard notation. A Jacobi diagram of pattern P having an edge
attached to a box which covers some strands of P is seen as an element of A(P ) as
depicted in Figure 1.9. If the box covers no strands, the corresponding element is 0.
We generalize this notation to the "mixed" case, where the box covers both strands
of P and dashed edges of the diagram. If the i-th line is a (non oriented) dashed
edge, we take εi = +1.

The STU, IHX and AS relations imply the following lemma, which is a straight-
forward generalization of [CDM12, Lemma 5.2.9] to the mixed case.

10



:=· · ·

n∑
i=1

εi

1 ni

· · · · · ·

Figure 1.9: The box notation, where εi = +1 if the orientation of the i-th strand
agrees with the arrow inside the box (in this case, if the strand goes upwards) and
εi = −1 otherwise.

Lemma 1.4.4. A box can slide over a part of a Jacobi diagram. For example, if D
is any part of a Jacobi diagram, we have

D. . . = D. . .

Using the box notation, we introduce two operations on Jacobi diagrams ofA(P ),
which are relative to the choice of a union of connected components C of the pattern
P .

De�nition 1.4.5. The coproduct ∆C(D) is de�ned by doubling the components
of C while replacing each univalent vertex that is attached to C with a box whose
arrow follows the orientation of C. The antipode SC(D) is de�ned by replacing each
univalent vertex that is attached to C with a box whose arrow follows the orientation
of C, and then by reversing the orientation of C.

Coproduct and antipode are well-de�ned modulo STU.

De�nition 1.4.6. We de�ne the category A of Jacobi diagrams as follows. The
objects are �nite sequences of signs. A morphism of A is an element of A(P ) for
some pattern P , and the source and target of such a morphism are those of P . The
product of two composable Jacobi diagrams is de�ned by taking the composition of
their patterns together with the union of the two graphs, and the composition in
the category A is de�ned by extending the product of Jacobi diagrams linearly. We
de�ne the category A/FI similarly by considering the quotient spaces A(P )/FI.

We introduce the following de�nition to formalize the structure of A relative to
the category P of patterns.

De�nition 1.4.7. Let G and C be two categories with same objects. C is said to
be a G-category if it is equipped with a functor F : C→ G which is the identity on
objects. Moreover, C is linear as a G-category if

• for any morphism g of G, F−1(g) is equipped with a structure of a vector space
which we denote by C(g),

• for any composable pair of morphisms (g1, g2) of G, the restriction of the
composition in C to C(g1)×C(g2)→ C(g2g1) is bilinear.

11



A linear G-category C is N-graded if C(g) =
⊕

k≥0 C(g)k is N-graded for any mor-
phism g of G, and the composition takes C(g1)k1 ×C(g2)k2 to C(g2g1)k1+k2 . In this
case, the degree completion Ĉ of C is de�ned in the obvious way.

The category A is a graded linear P-category.
Let ↑n be identity of (+, . . . ,+) (n times) in P; that is, the pattern made of n

"vertical" segments oriented upwards. We set A(↑n) =: A(n). The composition of
diagrams endows the vector space A(n) with a structure of a graded algebra.

Just as tangles generalize braids, the category of Jacobi diagrams can be seen as
an enlargement of the algebra Utn. More precisely, we have the following Lemma.

Lemma 1.4.8. There is a unique graded algebra morphism ιn : Utn → A(n) sending
tij to the Jacobi diagram made of a horizontal chord linking the i-th to the j-th
segment for any i 6= j.

tij 7−→

1 i j n

. . . . . . . . .

Proof. We have to check that ιn factors through the relations [tij , tkl] = 0 and
[tij , tik + tkj ] = 0 where i, j, k, l are all distinct. The �rst relation is immediate,

=

i j k l i j k l

and the second relation is a particular case of Lemma 1.4.4:

=

i j k i j k

Remark 1.4.9. Although not obvious, it turns out that ιn : Utn → A(n) is injective
(see [BN96, Corollary 4.4], or equivalently, [HM00, Theorem 16.1]).

In fact, the category A will be considered in the algebraic context only (from
Chapter 3). Here we introduce another version of patterns and Jacobi diagrams,
whose endpoints are embedded in C (just as tangles of T ), to be used in the analytic
approach (Chapters 1-2).

De�nition 1.4.10. A pattern on C is a compact one-manifold P equipped with an
embedding ∂P ↪→ C× ∂I. Pattern on C form a category denoted by P in the same
way as tangles; that is, there exists a forgetful functor T → P which sends a tangle
γ to its underlying pattern (obtained by seeing γ as an abstract one-manifold and
keeping track of the embedding of ∂γ in C× ∂I only).

12



De�nition 1.4.11. We de�ne the category A of Jacobi diagram in the same way
as A/FI by replacing the category P with P. In particular, A is a graded linear
P-category.

Of course, the distinction betweenA/FI and A is a matter of detail as they di�er
"at the level of objects" only. Let us introduce the following notation to formulate
this idea more precisely.

De�nition 1.4.12. For an algebra A and a setM , we denote by A{M} the category
whose set of objects is M and whose morphisms are the triples (x1, a, x0) ∈ M ×
A×M , such that the source and target of (x1, a, x0) are x0 and x1 respectively, and
the composition is given by (x2, b, x1)(x1, a, x0) = (x2, ba, x0).

There is an obvious functor A(n){Cn} → A which embeds the bottom and top
endpoints of a diagram D ∈ A(n) via the two associated con�gurations of Cn.
Further, the algebra morphism ιn : Utn → A(n) gives rise to a functor Utn{Cn} →
A(n){Cn}. By composition, we obtain a functor Utn{Cn} → A. Finally, observe
that the parallel transport of the KZ connection can be seen as a functor TKZ : Bn →
Ûtn{Cn} by keeping track of the position of the endpoints of the braids.

1.5 The Kontsevich integral of bd-tangles

In this section, we recall the construction of the "preliminary" invariant Zbd : T bd →
A which extends the parallel transport of the KZ connection in the sense that the
following diagram commutes.

Bn Ûtn{Cn}

T bd Â

TKZ

Zbd

(1.5.1)

We then recall how the Kontsevich integral Z : T → Â is obtained from Zbd.

1.5.1 Complex iterated integrals

Let us �rst introduce some notation.
Given a collection f1, . . . , fm of piecewise-continuous complex functions de�ned

on an open real interval ]u, v[, we de�ne the iterated integral Im
(u,v)(fm, . . . , f1) as

the following integral over the open m-simplex

∆m
(u,v) = {(t1, . . . , tm) ∈ Rm | u < t1 < . . . < tm < v},

Im
(u,v)(fm, . . . , f1) :=

∫
∆m

(u,v)

fm(tm) · · · f1(t1)dt1 · · · dtm.

For m = 0, we set I 0
(u,v)(∅) = 1 by convention. (We use this speci�c notation

to make a distinction between these iterated integrals and those of Theorem 1.1.1.
Here, Im

(u,v)(fm, . . . , f1) is complex valued and may not necessarily converge since
the domain of integration is open.) Let us give a useful convergence criterium.
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Lemma 1.5.1. We use the notation f(ε) ∼ g(ε) to mean that f(ε) and g(ε) are
proportional near ε = 0 (that is, f(ε)/g(ε) has a �nite limit di�erent from 0 as
ε→ 0). Assume that the functions f1, . . . , fm satisfy

• fk(u+ ε) ∼ (1 or 1/ε), fk(v − ε) ∼ (1 or 1/ε) for any k,

• f1(u+ ε) ∼ 1, and fm(v − ε) ∼ 1.

Then Im
(u,v)(fm, . . . , f1) converges.

Proof. Let us focus on the singularity near the boundary point u (the case of v is
obtained similarly by symmetry of the situation). We show recursively that for any
k, I k

(u,u+ε)(fk, . . . , f1) ∼ εp with p ≥ 1. We have I 1
(u,u+ε)(f1) =

∫ u+ε
u f1(t)dt ∼ ε.

Assume I k
(u,u+ε)(fk, . . . , f1) ∼ εp. Then

I k+1
(u,u+ε)(fk+1, . . . , f1) =

∫ u+ε

u
fk+1(t)I k

(u,t)(fk, . . . , f1)dt

∼ εp+1 if fk+1(u+ ε) ∼ 1

∼ εp if fk+1(u+ ε) ∼ 1/ε.

Iterated integrals enjoy the following property.

Lemma 1.5.2. For any u ≤ t ≤ v, we have

Im
(u,v)(fm, . . . , f1) =

m∑
k=0

Im−k
(t,v) (fm, . . . , fk+1)I k

(u,t)(fk, . . . , f1)

if the integral on the right-hand side converges.

Proof. This follows from the decomposition ∆m
(u,v) =

⋃m
k=0 ∆k

(u,t) × ∆m−k
(t,v) (up to a

measure zero set).

1.5.2 Construction of Zbd

Throughout this section, γ ⊂ C × I is a �xed bd-tangle. For simplicity, we assume
that the bd-vertices of γ are of pairwise distinct heights. These heights are called
the special heights of γ and are denoted by 0 < v1 < v2 < . . . < vr < 1. We set
v0 := 0, vr+1 := 1. Between two successive heights vj and vj+1, each strand of γ is
fully determined by a couple (z, ε) where z :]vj , vj+1[→ C is the function such that
{(z(t), t) | t ∈]vj , vj+1[} parametrizes the strand and ε = +1 if the strand is oriented
upwards, ε = −1 otherwise.

De�nition 1.5.3. Let m ≥ 0 be an integer. An m-con�guration C on γ is the
choice of

• a decomposition of m into r+ 1 nonnegative integers m = m0 +m1 + . . .+mr

(this decomposition leads to an identi�cation

{1, . . . ,m} ∼= {(j, k) | 0 ≤ j ≤ r, 1 ≤ k ≤ mj} =: LC ,

de�ned by the lexicographic order, where the elements (j, k) of LC are called
the levels of C),
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• for each level (j, k) ∈ LC , an unordered pair of distinct strands (zjk, ε
j
k) and

(z̄jk, ε̄
j
k) of γ of height in ]vj , vj+1[.

To keep the notation light, we shall omit to write down the indices j, k unless
necessary: it is left to the reader to replace z with zjk, and so on, in any sentence
starting with "for each level (j, k)".

The set of m-con�gurations on γ is �nite, and denoted by Cm(γ).
We associate to any m-con�guration C a "coe�cient" ZC(γ) ∈ C∪∞ as follows.

For each level (j, k), de�ne f jk :]vj , vj+1[→ C by

f jk(t) =
εε̄

2πi

d

dt
log
(
z(t)− z̄(t)

)
, (1.5.2)

and set

ZC(γ) :=
r∏
j=0

I
mj
(vj ,vj+1)(f

j
mj , . . . , f

j
1 ). (1.5.3)

We also associate to the con�guration C a degree m Jacobi diagram DC as follows.
Pick m heights t = tjk, one for each level (j, k), satisfying

vj < tj1 < tj2 < . . . < tjmj < vj+1.

Then, for each level (j, k), connect the two corresponding points (z(t), t) and (z̄(t), t)
of γ with a chord. The result is seen as a Jacobi diagram DC ∈ A(γ). (Here and
in the following, we slightly abuse notation and write A(γ) for A(P ) where P is the
pattern of γ.)

We �nally de�ne:

Zbd(γ) :=
∞∑
m=0

∑
C∈Cm(γ)

ZC(γ)DC ∈ Â(γ). (1.5.4)

Lemma 1.5.4. If C is a con�guration on γ such that DC does not vanish in A(γ),
then the iterated integrals of ZC(γ) converge, so that the formula (1.5.4) makes sense.

Proof. Let C be a con�guration such that DC does not vanish in A(γ), and let
j ∈ {0, . . . , r}. We show that the integral I

mj
(vj ,vj+1)(f

j
mj , . . . , f

j
1 ) converges. Since

the derivatives of the strands d
dtz

j
k(t) and

d
dt z̄

j
k(t) are bounded, the functions f

j
k have

no singularity near the boundary, unless the strands zjk and z̄jk meet at a b-vertex
of height vj or at a d-vertex of height vj+1. In the �rst case (using the notation of
Lemma 1.5.1), f jk(vi + ε) ∼ 1/ε. Observe that this situation cannot occur for k = 1,
as the chord of the diagram DC joining the strands zj1 and z̄j1 would be an isolated
chord, and DC would vanish in A(γ) due to the FI relation. In the second case,
f jk(vj+1 − ε) ∼ 1/ε. For the same reason as above, this cannot occur for k = mj .
We are left to the situation of Lemma 1.5.1, which implies that I

mj
(vj ,t)

(f jmj , . . . , f
j
1 )

converges.

Zbd is invariant under height rescaling (as it corresponds to a change of variables
in the integrals), and we have the following.

Lemma 1.5.5. If (γ, α) is a composable pair of tangles, then Zbd(γα) = Zbd(γ)Zbd(α).
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Proof. Let C be an m-con�guration on γα, and DC the associated Jacobi diagram.
Let u denote the highest special height of α and v be the lowest special height
of γ, so that u, v are two consecutive special heights of γα. A chord of DC is
said to be undecided if its height is between u and v. Let n denotes the number of
undecided chords, and for any k = 0, . . . , n, de�ne (DC′(k), DC′′(n−k)) ∈ A(γ)×A(α)
as the pair of Jacobi diagrams obtained by splitting DC while seeing the k highest
undecided chords on γ and the n − k lowest ones on α. By de�nition, we have for
any k = 0, . . . , n,

DC = DC′(k)DC′′(n−k). (1.5.5)

On the other hand, Lemma 1.5.2 implies

ZC(γα) =
n∑
k=0

ZC′(k)(γ)ZC′′(n−k)(α). (1.5.6)

Putting the identities (1.5.5) and (1.5.6) together leads to the result.

Lemma 1.5.6. The diagram (1.5.1) commutes. That is, if β is a braid, Zbd(β)
coincides with the parallel transport of the KZ connection TKZ(β) seen in A(β).

Proof. We brie�y check that∫
0≤t1≤...≤tm≤1

Ω(β̇(tm)) · · ·Ω(β̇(t1))dt1 · · · dtm =
∑

C∈Cm(γ)

Im
(0,1)(fm, . . . , f1)DC ,

where Ω denotes the KZ connection, and the left-hand side of the equality is seen
in A(β). Starting from the left-hand side, replace each Ω(β̇(tk)) with its de�ning
formula (1.2.2) and develop the whole product: this leads to a sum over the set of m-
con�gurations. For any con�guration C, take the tij 's together out of the integral:
this forms the diagram DC . The associated complex integral coe�cient coincides
with Im

(0,1)(fm, . . . , f1).

Lemma 1.5.7. Let α∪ γ be a disjoint union of two bd-tangles, and let α∪ γ denote
the bd-tangle obtained by reversing the orientation of α. We then have

Zbd(α ∪ γ) = SαZ
bd(α ∪ γ),

where Sα is the antipode de�ned on the part α of the pattern α ∪ γ.

Proof. This immediately follows from the de�nition of Zbd =
∑
ZCDC , according

to which every vertex of DC comes with a coe�cient ε = ±1 in ZC which depends
on the orientation of the strand the vertex is attached to.

1.5.3 Invariance of Zbd

In this section, we prove the following theorem.

Theorem 1.5.8. Zbd is invariant under bd-equivalence and thus de�nes a functor
Zbd : T bd → Â.

Using Proposition 1.3.8, it is enough to show that Zbd is invariant under hori-
zontal deformations and bd-moves.

16



Lemma 1.5.9. Zbd(γ) is invariant under horizontal deformation of γ.

Proof. Using Lemma 1.5.5, it is enough to show Lemma 1.5.9 in the case where γ
has no bd-vertex. If γ is a geometric braid, the invariance of Zbd(γ) under horizontal
deformation is immediate from Lemma 1.5.6 together with the fact that TKZ is a
braid invariant. Otherwise, γ can be turned into a geometric braid by reversing the
orientation of some of its strands, and the conclusion follows from Lemma 1.5.7.

Lemma 1.5.10. Zbd(γ) is invariant under bd-move of γ.

Proof. Let us consider the case of a b-move (the other case works in a similar way).
Let γ and γ′ be two bd-tangles which are related by a b-move in the cylinderD×[u, v].
We denote by h, h′ ∈ (u, v) the heights of the corresponding b-vertices of γ and γ′.
Let us �rst assume that γ (and thus γ′) has no other bd-vertices of height in [u, v].
Take w ∈ (u, v) such that w > h and w > h′.

For any ε > 0, one can assume, up to horizontal deformation of γ of support
D × [h + ε, v] and horizontal deformation of γ′ of support D × [h′ + ε, v], that γ
and γ′ are identical above the height w, that the two strands (z+,+) and (z−,−) of
γ|D,u,v satisfy, for any t ∈ [h+ ε, w],

1. |z+(t)− z−(t)| ≤ εM ,

2. | ddt(z+(t)− z−(t))| ≤M |z+(t)− z−(t)|,

(for some �xed positive constant M that does not depend on ε), and that the two
strands (z′±,±) of γ′|D,u,v satisfy the same conditions (replacing h with h′), as depicted
below.

z− z+

z′+ z′−

h+ ε
h

h′ + ε
h′

w

We consider a con�guration C on γ such that DC 6= 0 and DC has at least one
chord attached to γ|D,u,v. The lowest chord attached to γ|D,u,v, say, of level (j, l),
does not connect the two strands z+ and z− (otherwise, the chord would be isolated
and DC would vanish). It follows that such kind of con�gurations always come by
pairs (C+, C−) where C+ and C− are identical except at the level (j, l), where the
chord of DC+ connects the strand z+ to another strand z, and the chord of DC−

connects z− to z. For any level (j, k), we denote by (f±)jk the functions associated
to the con�gurations C± (we have (f+)jk = (f−)jk := f jk except at the level (j, l)).
For any t ∈ (h,w], the conditions 1 and 2 imply that |(f+)jl (t) + (f−)jl (t)| → 0 as
ε→ 0. It follows that for any k ∈ {l, . . . ,mj},

I k
(h,w)(f

j
k , . . . , (f+)jl + (f−)jl , . . . , f

j
1 )→ 0 as ε→ 0.
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Using Lemma 1.5.2, this means that the contribution of the bd-subtangle γ|D,u,w to
ZC+(γ) +ZC−(γ) tends to 0 as ε→ 0. Moreover, since DC+ = DC− , we obtain that
the contribution of γ|D,u,w to Zbd(γ) tends to 0 as ε → 0. The same argument can
be applied to γ′. Since Zbd is invariant under horizontal deformation, we conclude
that Zbd(γ) = Zbd(γ′).

In the case where γ has some other bd-vertices of height in [u, v], a �nite number
of b-moves can be performed to drag the b-vertices below the height u, and similarly,
d-vertices can be dragged above the height v by d-moves. Since these moves can be
arbitrary "thin" (in the sense that the two moving strands can satisfy the conditions
1 and 2 for any ε), this procedure keeps the Kontsevich integral of the new bd-tangle
arbitrary close to its initial value. We are thus left to the assumption of the beginning
of the proof. Finally, the bd-vertices can be moved back to their initial positions by
performing the inverse bd-moves.

1.5.4 The normalization

Let S1 denote the pattern of made of an oriented circle. Recall that we have the
following (see for example [Oht02, Proposition 6.3]; the proof consists essentially in
checking that the product and action below are well-de�ned. This can be done using
Lemma 1.4.4).

Lemma 1.5.11. (i) A(S1) has a commutative algebra structure whose product is
given by the connected sum of the two circles.

(ii) Let (P,X) be a (non empty) pattern equipped with a distinguished connected
component X ⊂ P . We have an action ]X of A(S1) on A(P ) by taking the
connected sum of the circle to the component X.

Up to bd-equivalence, there exists a unique bd-knot U ⊂ R × I ⊂ C × I with
exactly two b-vertices, and hence two d-vertices (see Figure 1.10).

U :=

Figure 1.10: The bd-knot U .

We set H := Z(U) ∈ Â(S1).

Lemma 1.5.12. For any bd-tangle γ with a component X, and using the notation
of Section 1.3.5 for the hump insertion, we have

Zbd
(
hX(γ)

)
= H]XZ

bd(γ).

Proof. The hump insertion is performed between two heights u < v. Up to bd-
equivalence, we can assume that the strands of γ are vertical between the heights u
and v. Then, the strands of the hump by which hX(γ) di�ers from γ can be made
"almost vertical". By this, we mean that their derivatives can be taken arbitrary
close to zero up to bd-equivalence. By performing such a bd-equivalence, we see
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that the coe�cients of the chord diagrams of Zbd
(
hX(γ)

)
having at least one "long

chord" linking the hump to another vertical strand of γ tends to zero. The lemma
follows by applying the same argument to one of the humps of the bd-knot U .

As the degree zero part of H is the unit S1 of the complete algebra Â(S1), H is
invertible.

De�nition 1.5.13. Let γ be a bd-tangle, and let X1, . . . , Xr denote its connected
components. Let pi be the number of d-vertices of the component Xi. We de�ne

Z(γ) := H−p1]X1 · · ·H−pr]XrZbd(γ).

Theorem 1.5.14. Z de�nes a functor T → Â.

Proof. Let γ and γ′ be two bd-tangles that are isotopic as smooth tangles, and de-
note byX1, . . . , Xr their components. From Proposition 1.3.11, there exist n1, . . . , nr

and n′1, . . . , n
′
r such that hn1

X1
· · ·hnrXr(γ) is bd-equivalent to h

n′1
X1
· · ·hn

′
r
Xr

(γ′). More-
over, since the number of d-vertices of a given component is invariant under bd-
equivalence, we have ni + pi = n′i + p′i for any i. From Lemma 1.5.12,

Hn1]X1 · · ·Hnr]XrZ
bd(γ) = Hn′1]X1 · · ·Hn′r]XrZ

bd(γ′).

By de�nition,

Hn1+p1]X1 · · ·Hnr+pr]XrZ(γ) = Hn′1+p′1]X1 · · ·Hn′r+p
′
r]XrZ(γ′),

hence Z(γ) = Z(γ′) and Z is an invariant of tangles. Since the number of d-vertices
of the product of two bd-tangles γ2γ1 is the sum of the number of d-vertices of γ1

and γ2, it is immediate that Z is a functor.
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Chapter 2

An elliptic Kontsevich integral

Here we develop here an "elliptic version" of Chapter 1, leading to the analytic con-
struction of a Kontsevich-type invariant for tangles in the thickened torus. We �rst
recall the universal elliptic Knizhnik�Zamolodchikov�Bernard (KZB) connection in-
troduced in [CEE10]. This is a �at connection on the con�guration space of n points
on the elliptic curve E := C/(Z+ τZ) with values in the genus one analog t1,n of the
Lie algebra tn. The parallel transport of this connection gives rise to a representa-
tion TKZB of the elliptic braid groupoid B1,n. After de�ning the categories T1, T bd

1

and A1, A1 of elliptic (bd-)tangles and Jacobi diagrams, we give an integral formula
extending TKZB to an invariant Zbd

τ of elliptic bd-tangles with values in A1. As
in the former case, Zbd

τ can be renormalized to produce an invariant Zτ of elliptic
smooth tangles. If γ is an elliptic link which is contained in a ball, then the elliptic
invariant Zτ (γ) coincides with the usual Kontsevich invariant Z(γ).

Throughout this chapter, we �x an elliptic parameter τ in the Poincaré upper
half plane H = {z ∈ C | =(z) > 0}. The corresponding lattice Λ := Z + Zτ de�nes
an elliptic curve E := C/Λ.

a

b

0 1

τ 1 + τ

We de�ne the loops a and b on E as the projections of the oriented segments [0, 1]
and [0, τ ] respectively. Let x := [a] and y := [b] be their homology classes, and
H1
∼= Cx ⊕ Cy the �rst complex homology group of E. The intersection pairing

H1 ⊗H1 → C, for which x, y is a symplectic basis, is denoted by 〈·, ·〉.

2.1 The Lie algebra t1,n

We de�ne the graded Lie algebra t1,n, which has been introduced by Bezrukavnikov
[Bez94] as the Lie algebra associated with the lower central series of the pure braid
group of the torus.

De�nition 2.1.1. Let t1,n be the graded Lie algebra presented by the degree one
generators vi (for any v ∈ H1 and i ∈ {1, . . . , n}), the degree two generators tij (for
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any i 6= j ∈ {1, . . . , n}), the linearity relation (v+λw)i = vi +λwi and the following
relations (2.1.1-2.1.3) for any v, w ∈ H1 and any distinct i, j, k ∈ {1, . . . , n}.

[vi, wj ] = 〈v, w〉tij , (2.1.1)

[vi, tjk] = 0, (2.1.2)

[xi, yi] = −
∑
j 6=i

tij . (2.1.3)

Lemma 2.1.2. The relations of De�nition 2.1.1 imply that
∑n

j=1 vj is central in
t1,n, and

tij = tji, [vi + vj , tij ] = 0,

as well as the in�nitesimal pure braids relations

[tij , tkl] = 0 and [tij , tik + tkj ] = 0.

In particular, there is a Lie algebra morphism tn → t1,n sending tij ∈ tn to
tij ∈ t1,n. This morphism multiplies the degree by two.

Proof. Relations (2.1.3) and (2.1.1) imply [xi,
∑n

j=1 yj ] = 0, and from (2.1.1), we
also have [yi,

∑n
j=1 yj ] = 0. Since the xi's and the yi's generate t1,n, it follows that∑n

j=1 yj is central. Similarly, we show that
∑n

j=1 xj is central. Hence,
∑n

j=1 vj
is central for any v. The relation tij = tji follows from tij = [xi, yj ] = −[yj , xi] =
−〈y, x〉tji = tji. Using (2.1.2), we have [vi+vj , tij ] = [

∑n
s=1 vs, tij ] = 0 and [tij , tkl] =

[tij , [xk, yl]] = 0. Last, we have [tij , tik + tkj ] = [tij , [xi, yk] + [xj , yk]] = [tij , [xi +
xj , yk]] = −[xi + xj , [yk, tij ]]− [yk, [tij , xi + xj ]] = 0.

2.2 A universal elliptic KZB connection

Let π : C→ E be the projection, and Cn,τ be the orbit con�guration space

Cn,τ = {(z1, . . . , zn) ∈ Cn | i 6= j ⇒ π(zi) 6= π(zj)}.

In this section, we de�ne the universal elliptic KZB connection as a t̂1,n-valued
formal connection on Cn,τ with some elliptic equivariance properties.

Let θτ denotes the classical Jacobi theta function

θτ (z) =
∑
n∈Z

eπiτ(n+ 1
2

)2e2πi(n+ 1
2

)(z+ 1
2

), z ∈ C.

The function θτ is holomorphic on C. Its set of zeros, which are all simple, coincides
with the lattice Λ. Moreover, θτ satis�es the following elliptic properties:

θτ (z + 1) = −θτ (z) = θτ (−z) and θτ (z + τ) = −e−πiτe−2πizθτ (z). (2.2.1)

From θτ , we de�ne the following meromorphic function Fτ in two complex variables
(introduced by Kronecker [Kro81]).

Fτ (z, x) =
θ′τ (0)θτ (z + x)

θτ (z)θτ (x)
. (2.2.2)
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The functional equations (2.2.1) imply:

Fτ (z + 1, x) = Fτ (z, x) and Fτ (z + τ, x) = e−2πixFτ (z, x). (2.2.3)

It follows from (2.2.2) that Fτ (z, x) − 1/z − 1/x is regular near (z, x) = (0, 0).
Therefore, we can de�ne a family of meromorphic functions Ψk, k ≥ 0, on C by the
expansion:

Fτ (z, x)− 1

x
=
∞∑
k=0

Ψk(z)(2πix)k.

The poles of Ψk coincide with Λ for k = 0 and with Λ \ Z for k ≥ 1.
We give an explicit formula for Ψk(z) in the domain |=(z)| < |=(τ)|. Let us set

ξ := e2πiz, η := e2πix and q := e2πiτ . As shown by Zagier [Zag91], Fτ (z, x) can be
expressed as the following double series1 in the domain de�ned by |=(z)| < |=(τ)|
and |=(x)| < |=(τ)|:

Fτ (z, x) = (2πi)

1− 1

1− ξ
− 1

1− η
−

∞∑
m,n=1

(ξmηn − ξ−mη−n)qmn

 .

For |=(z)| < |=(τ)|, the functions Ψk can thus been expressed by:

Ψ0(z) = 2πi

1

2
+

1

ξ − 1
−
∑
m,n≥1

(
ξm − ξ−m

)
qmn

 , and

Ψk(z) =
2πi

k!

Bk+1

k + 1
−
∑
m,n≥1

nk
(
ξm − (−1)kξ−m

)
qmn

 for any k ≥ 1.

Here, Bk stands for the k-th Bernoulli number de�ned by t
et−1 =

∑∞
k=0Bk

tk

k! .

We consider the formal connection Ωτ on Cn,τ with values in t̂1,n given by:

Ωτ =

n∑
i=1

xidzi +
1

2πi

n∑
i,j=1
i<j

∞∑
k=0

Ψk(zij)(adyi)
k(tij)dzij , (2.2.4)

where zij := zi − zj .
Remark 2.2.1. Let us check that the above de�ned Ωτ coincides with the original2

connection given in [CEE10, Section 1.2], by:

n∑
i=1

xi +
1

2πi

n∑
j=1
j 6=i

∞∑
k=0

Ψk(zij)(adyi)
k(tij)

 dzi.

Since θτ (−z) = −θτ (z), we have Fτ (−z,−x) = −Fτ (z, x), hence Ψk(−z) = (−1)k+1Ψk(z).
Moreover, it follows from the relations [yi + yj , tij ] = 0 and [yi, yj ] = 0 that

(adyi)
k(tij) = (−1)k(adyj)

k(tij).

1We have set Fτ (z, x) = 2πiFZag
τ (2πiz, 2πix) where FZag

τ is the function introduced in [Zag91].
2After application of the automorphism of t1,n given by xi 7→ yi

2πi
and yi 7→ −xi.
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Using these two identities:

Ωτ =

n∑
i=1

xidzi +
1

2πi

n∑
i,j=1
i<j

∞∑
k=0

Ψk(zij)(adyi)
k(tij)dzij

=
n∑
i=1

xidzi +
1

2πi

n∑
i,j=1
i<j

∞∑
k=0

(Ψk(zij)(adyi)
k(tij)dzi + Ψk(zji)(adyj)

k(tij)dzj)

=
n∑
i=1

xidzi +
1

2πi

n∑
i,j=1
i 6=j

∞∑
k=0

Ψk(zij)(adyi)
k(tij)dzi.

Proposition 2.2.2. [CEE10, Proposition 1.2] The connection Ωτ is �at.

Let (δi)1≤i≤n denote the canonical basis of Cn. We de�ne a morphism of Z-
modules ρ : Λn → t1,n by ρ(δi) = 0 and ρ(τδi) = yi for all i ∈ {1, . . . , n}.

The relations (2.2.3) imply the following.

Lemma 2.2.3. [CEE10, Lemma 1.1] The connection Ωτ is Λn-equivariant in the

sense that Ωτ (z + λ) = e−ad
(
ρ(λ)
)
Ωτ (z) for all z ∈ Cn,τ and all λ ∈ Λn.

2.3 Elliptic braids and tangles

Let E ⊂ E be the complement of the two loops a∪b, and B ⊂ C the lift of E de�ned
by B := {r+sτ | 0 < r < 1 and 0 < s < 1}. We denote by En := (π× . . .×π)(Cn,τ )
the con�guration space of n ordered points of E, and we also set En := En ∩ En.

De�nition 2.3.1. We de�ne an elliptic n-strand braid as a path β : I → En whose
endpoints β(0) and β(1) lie in En. The elliptic n-strand braid groupoid B1,n is then
the groupoid consisting of the homotopy classes of elliptic n-strand braids.

Let β : I → En be an elliptic braid, and let β̃ : I → Cn,τ be a lift of β. Since
the endpoints β(0) and β(1) lie in En, there is a unique pair λ0, λ1 ∈ Λn such that
β̃(0)− λ0 and β̃(1)− λ1 are in Bn.

Let Tτ (β̃) ∈ exp(̂t1,n) denote the parallel transport of the �at connection Ωτ

along the path β̃.

Lemma 2.3.2. eρ(λ1)Tτ (β̃)e−ρ(λ0) is independent of the choice of the lift β̃ of β.

Proof. Any lift of β is of the form β̃ + λ where λ ∈ Λn. We have to show that
Tτ (β̃) = eρ(λ)Tτ (β̃ + λ)e−ρ(λ). By de�nition, Tτ (β̃) = f

β̃
(1) where f

β̃
(0) = 1 and

d

dt
f
β̃
(t) = Ωτ (

˙̃
β(t))f

β̃
(t),

and Tτ (β̃ + λ) = f
β̃+λ

(1) where f
β̃+λ

(0) = 1 and

d

dt
f
β̃+λ

(t) = Ωτ (
˙̃
β(t) + λ)f

β̃+λ
(t)

= e−ad
(
ρ(λ)
)
Ωτ (

˙̃
β(t))f

β̃+λ
(t)

= e−ρ(λ)Ωτ (
˙̃
β(t))eρ(λ)f

β̃+λ
(t),
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where the second equality follows from Lemma 2.2.3. Hence

d

dt
eρ(λ)f

β̃+λ
(t) = Ωτ (

˙̃
β(t))eρ(λ)f

β̃+λ
(t).

Since eρ(λ)f
β̃+λ

and f
β̃
satisfy the same formal di�erential equation, they di�er by

multiplication by a constant on the right:

f
β̃+λ

(t) = e−ρ(λ)f
β̃
(t)eρ(λ), (2.3.1)

and the lemma follows.

For an elliptic braid β, we de�ne (slightly abusing notation) Tτ (β) ∈ exp(̂t1,n)
by

Tτ (β) := eρ(λ1)Tτ (β̃)e−ρ(λ0).

Tτ (β) is well-de�ned from Lemma 2.3.2. The homotopy lifting property and the
�atness of Ωτ imply that Tτ (β) is invariant under homotopy of β. One can easily
check that we have thus de�ned a functor

Tτ : B1,n → exp(̂t1,n).

We end this section with the de�nition of the elliptic versions P1, T1 and T bd
1 of

the categories of patterns, tangles and bd-tangles.

De�nition 2.3.3. The categories P1, T1 and T bd
1 are de�ned as P, T and T bd

respectively by replacing the base surface C with the elliptic curve E, and (as in
the case of elliptic braids) requiring the endpoints of any elliptic pattern, tangle or
bd-tangle to lie in E ⊂ E (so that the objects of P1, T1 and T bd

1 are the �nite sets
of signed points of E).

All the de�nitions and results of Sections 1.3.2, 1.3.3 and 1.3.5 can be directly
transposed to the elliptic context.

2.4 Elliptic Jacobi diagrams

We de�ne the category of elliptic Jacobi diagrams which form, as a "diagrammatic
enlargement" of the completed enveloping algebra Ût1,n, the target of the elliptic
Kontsevich integral constructed in the next section. Elliptic Jacobi diagrams are
similar to the genus one symplectic Jacobi diagrams introduced by Habiro in [Hab00]
(see also [HM09]), except that our diagrams are attached to patterns.

De�nition 2.4.1. An elliptic Jacobi diagram of pattern P ∈ P is a �nite graph D
whose vertices are

• univalent and attached to a point of the interior of the pattern P ,

• or trivalent and oriented,

• or univalent and labeled with an element of H1.
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u

v

w

<
<

Figure 2.1: An elliptic Jacobi diagram where u, v, w ∈ H1.

w

v

< −
v

w

< = 〈v, w〉

Figure 2.2: The STU-like relation.

In the third case, the vertex is said to be external. The other vertices are internal.
The set of external vertices is linearly ordered. In the �gures, this order is symbolized
by < and is induced by the height t ∈ I (higher vertices being always greater than
the lower ones). See Figure 2.1. Again, each connected component of D is required
to be attached to the pattern P . The degree of an elliptic Jacobi diagram D is
de�ned as:

deg(D) := number of internal vertices of D.

In what follows, we introduce the category A1 of elliptic Jacobi diagrams as a
quotient of a "preliminary" category A∂

1 .

De�nition 2.4.2. Let A∂
1(P ) be the graded vector space generated by the elliptic

Jacobi diagrams of pattern P , up to the (homogeneous) relations STU, STU-like
(Figure 2.2), and to the multilinearity of labels. We de�ne a category A∂

1 as follows.
A morphism of A∂

1 is an element of A∂
1(P ) for some pattern P , and the source

and target of such a morphism are those of P . The product D2D1 of two elliptic
Jacobi diagrams of composable patterns is obtained by taking the composition of
the patterns together with the union of the two graphs (the external vertices of
D2D1 coming from D2 being considered greater than those coming from D1). The
composition in A∂

1 is obtained by extending the product of Jacobi diagrams linearly.

The category A∂
1 is a graded linear P-category in the sense of De�nition 1.4.7.

As in [HM09], a diagram with ordered external vertices labeled by either an
element ofH1 or the symbol "ω" shall be seen as an elliptic Jacobi diagram according
to the following rule:

ω :=

<
<

...

...

y

x

<
<

<

...

...
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ω

<

+
· · ·

· · ·

D

· · ·

· · ·

D

Figure 2.3: The generators of I1(P ). In this sum, the two diagrams are identical
except on their top parts. See Figure 1.9 for the "box" notation.

De�nition 2.4.3. Let I1(P ) ⊂ A∂
1(P ) be the subspace generated by the sums

depicted in Figure 2.3, for any part D of a Jacobi diagram of pattern P .

Lemma 2.4.4. The collection of subspaces I1(P ) de�nes a two-sided ideal I1 of the
linear P-category A∂

1 , in the sense of the following de�nition.

De�nition 2.4.5. A two-sided ideal I in a linear G-category C is a collection of
subspaces I(f) ⊂ C(f) associated to any morphism f of G, such that C(f2)I(f1) ⊂
I(f2f1) and I(f2)C(f1) ⊂ I(f2f1) for any pair of composable morphisms (f1, f2) of
G. If I is a two-sided ideal of C, the linearG-category C/I is de�ned by (C/I)(f) :=
C(f)/I(f) for any morphism f of G, and the composition in C/I is induced by the
composition in C.

Proof of Lemma 2.4.4. By construction, we have I1(P2)A∂
1(P1) ⊂ I1(P2P1), since

stacking a generator of I1(P2) above an arbitrary diagram of A∂
1(P1) leads to a

generator of I1(P2P1) (see Figure 2.3). Let us show that A∂
1(P2)I1(P1) ⊂ I1(P2P1).

From two successive applications of the STU-like relation, we have (as stated in
Lemma 7.1 of [HM09]):

ω

v

< −
v

ω

< = −v

Thus, on the one hand:

D
v1

vr

· · ·

· · ·

...

ω

= D−
v1

vr

· · ·

· · ·

... + D
v1

vr

· · ·

· · ·

...

ω

Recall that a box can be slided over a part D of a Jacobi diagram without external
vertices (Lemma 1.4.4). Thus, on the other hand:
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D
v1

vr

· · ·

· · ·

... = D
v1

vr

· · ·

· · ·

... + D
v1

vr

· · ·

· · ·

...

Finally, the sum of the left-hand sides of the two last equalities, which represents an
arbitrary diagram D of A∂

1 stacked over an arbitrary generator of I1, lies in I1.

De�nition 2.4.6. We de�ne the category A1 as the quotient A∂
1/I1. Again, the

category A1/FI is de�ned by considering the morphisms of A1 up to the FI relation
of Figure 1.6.

There is a functor A→ A1 which consists in seeing a usual Jacobi diagram D as
an elliptic Jacobi diagram with no external vertex. Note that this functor multiplies
the degree by two. We do not know whether A → A1 is injective, but at least we
have the following.

Lemma 2.4.7. Let P ∈ P be a pattern whose source is empty or whose target is
empty. Then A(P )→ A1(P ) is injective.

Proof. The proof is inspired from [CHM08, Lemma 8.4]. We prove the lemma in the
case where P is of empty target (the opposite case being obtained in a symmetric
way). An unordered elliptic Jacobi diagram D is de�ned in the same way as an
elliptic Jacobi diagram, except that the external vertices of D are labeled with x, y
and are not ordered. The vector space spanned by unordered elliptic Jacobi diagrams
on P modulo the STU relation is denoted by A∂

x,y(P ). We de�ne a linear map
ϕ : A∂

x,y(P ) → A∂
1(P ) where ϕ(D) is obtained from D by taking any x-vertex to

be greater than any y-vertex. Using the multilinearity of labels and the STU-like
relation, we see that ϕ is surjective. Conversely, we de�ne a linear map ψ : A∂

1(P )→
A∂
x,y(P ) as follows. Using the multilinearity of labels, it is enough to de�ne ψ(D)

in the case where D is labeled with x, y only. In this case, ψ(D) is the sum of all
ways of connecting some x-vertices of D to some greater y-vertices. The map ψ
factors through the STU-like relation, and ψ ◦ ϕ is the identity. Hence ϕ and ψ are
isomorphisms.

We haveA∂
x,y(P ) ∼= A(P )⊕A′x,y(P ), whereA′x,y(P ) is spanned by the unordered

elliptic Jacobi diagrams having at least one external vertex. Through the isomor-
phism ψ, we get A∂

1(P ) ∼= A(P ) ⊕ ψ
(
A′x,y(P )

)
. Moreover, since the target of P

is empty, we have I1(P ) ⊂ ψ
(
A′x,y(P )

)
, and A(P ) → A1(P ) = A∂

1(P )/I1(P ) is
injective.

As previously, we set A1(n) := A1(↑n) and we see A1(n) as a graded algebra.
In this context, Lemma 1.4.8 generalizes as follows.

Lemma 2.4.8. There is a unique graded algebra morphism ι1,n : Ut1,n → A1(n)
sending vi (for any v ∈ H1, 1 ≤ i ≤ n) to the elliptic Jacobi diagram made of a
single chord linking the i-th segment to an external v-vertex.
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vi 7−→
ι1,n

1 i n

v

Moreover, the following diagram commutes:

Utn A

Ut1,n A1

ιn

ι1,n

Proof. Let us check that the relations of De�nition 2.1.1 are satis�ed at the level of
elliptic Jacobi diagrams. Relation (2.1.1):

i j

w

v
−

i j

v

w
STU-like

=

i j

〈v, w〉

Relation (2.1.2):

i j k
v

=
i j k

v

Relation (2.1.3):

i

y
x

−
i

x

y
STU
=

i

y
x

+
i

y
x

−
i

x

y

STU-like
=

i

y
x

+
i i j

I1= −
n∑
j=1

j 6=i

We do not know whether ι1,n is injective.
As in Chapter 1, we introduce the "embedded endpoints" version of elliptic Jacobi

diagrams.

De�nition 2.4.9. We de�ne the categoryA1 in the same way asA1/FI by replacing
the category P with P1. In particular, A1 is a graded linear P1-category.

As previously, we have functors

Ut1,n{En} → A1(n){En} → A1,

where the �rst arrow is induced by the algebra morphism ι1,n : Ut1,n → A1(n).
Again, we see the parallel transport Tτ of the elliptic KZB connection as a functor
B1,n → Ût1,n{En} by keeping track of the position of the endpoints of the braids.
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2.5 Construction of Zbd
τ

Our goal in this section is to extend the elliptic braid invariant Tτ to an invariant of
elliptic bd-tangles Zbd

τ in the sense that the following diagram commutes:

B1,n Ût1,n{En}

T bd
1 Â1

Tτ

Zbd
τ

(2.5.1)

Throughout this section, γ ⊂ E × I is a �xed elliptic bd-tangle. We de�ne the
a-wall of E × I as the annulus a × I ⊂ E × I, and the b-wall as b × I ⊂ E × I. A
wall-crossing point of γ is a point where γ intersects a wall. Up to an arbitrary small
perturbation of γ by bd-equivalence, we can assume that

• γ does not intersect the segment 0× I = (a ∩ b)× I,

• γ crosses the walls transversally,

• the wall-crossings points of γ (which are thus of �nite number) are all distinct
from the bd-vertices of γ,

• the wall-crossings points together with the bd-vertices (which form the set of
special points of γ) are of distinct heights v1 < v2 < . . . < vr (the special
heights of γ). We set v0 := 0, vr+1 := 1.

Between two consecutive special heights vj and vj+1, each strand of γ is fully de-
termined by a pair (z, ε) where z :]vj , vj+1[→ B ⊂ C is the function such that
{(z(t), t) | t ∈]vj , vj+1[} parametrizes the strand (here we identify E = E \ (a ∪ b)
with its lift B), and ε = +1 if the strand is oriented upwards, ε = −1 otherwise.

De�nition 2.5.1. An m-con�guration C on γ is the choice of

• a decomposition of m into r+ 1 nonnegative integers m = m0 +m1 + . . .+mr

(recall that this leads to an identi�cation

{1, . . . ,m} ∼= {(j, k) | 0 ≤ j ≤ r, 1 ≤ k ≤ mj} := LC ,

where the elements (j, k) of LC are the levels of C),

• a partition of LC into two subsets LC = L1
C ∪ L2

C ,

• for each (j, k) ∈ L1
C , a strand (zjk, ε

j
k) of γ of height ]vj , vj+1[,

• for each (j, k) ∈ L2
C , an unordered pair of distinct strands (zjk, ε

j
k) and (z̄jk, ε̄

j
k)

of γ of height ]vj , vj+1[, together with an integer ηjk ≥ 0.

The (in�nite) set of m-con�gurations on γ is denoted by Cm(γ).
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As previously, we do not specify the indices (j, k) of z, ε and η as far as there is
no fear of confusion.

To each m-con�guration C on γ, we associate a "coe�cient" Zτ,C(γ) ∈ C ∪ ∞
as follows. For each level (j, k), we de�ne the function f jk :]vj , vj+1[→ C by

f jk(t) = ε
d

dt
z(t) if (j, k) ∈ L1

C , (2.5.2)

and

f jk(t) =
εε̄

2πi
Ψη

(
z(t)− z̄(t)

) d
dt

(
z(t)− z̄(t)

)
if (j, k) ∈ L2

C . (2.5.3)

Remark 2.5.2. In the case where (j, k) ∈ L2
C and η is odd, the function f jk is well-

de�ned only up to sign. Indeed, recall that Ψk(−z) = (−1)k+1Ψk(z). Hence f jk
depends up to sign on the choice of an ordering of the pairs of strands (z, z̄), which
are by de�nition non-ordered. Anyway, this ambiguity will soon disappear.

We set

Zτ,C(γ) :=

r∏
j=0

I
mj
(vj ,vj+1)(f

j
mj , . . . , f

j
1 ). (2.5.4)

We also associate to the m-con�guration C a series DC ∈ A1(γ)≥m of elliptic
Jacobi diagrams of degree at least m in the following way. Pick m heights t = tjk,
one for each level (j, k), satisfying

vj < tj1 < tj2 < . . . < tjmj < vj+1.

Then,

• for each (j, k) ∈ L1
C , link the point (z(tjk), t

j
k) ∈ γ to an x-vertex with a chord,

• for each (j, k) ∈ L2
C , link the points (z(tjk), t

j
k) and (z̄(tjk), t

j
k) with a chord, and

attach a number η of y-vertices on it to form a "comb" as depicted in Figure
2.4,

• link each a-wall crossing point of γ to an external vertex (provisionally) col-
ored with exp(y) if =

(
d
dtz(t)

)
< 0 (where z is the complex function that

parametrizes the strand near the wall-crossing point), and with exp(−y) in the
opposite case,

• substitute:

exp(y)  y+
y
y+ 1

2 + . . .

exp(−y)  y− y
y+ 1

2 + . . .

The external edges of DC are ordered according to the heights of the points of γ
they are attached to. Note that we do not need to specify any ordering among the
bunch of y-vertices coming from the same comb: the STU-like relation says that any
choice leads to the same result in A1(γ).
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Remark 2.5.3. The orientation of the trivalent vertices of Figure 2.4 depends on the
choice of a speci�c order of the pairs (z, z̄). Because of the AS relation, switching
this order switches the sign of DC if and only if η is odd. Therefore, the sign
indetermination of Zτ,C(γ) (Remark 2.5.2) and of DC annihilate when taking the
product Zτ,C(γ)DC .

y
y

y

. . .

η times ...

z(tjk) z̄(tjk)

Figure 2.4: A "comb" linking z(tjk) to z̄(t
j
k). As depicted here, the orientation of the

trivalent vertices of the comb is given by the following cyclic order "half-edge going
to z̄(tjk)"→ "half-edge going to z(tjk)"→ "half-edge going to the external y-vertex".

Finally, we set:

Zbd
τ (γ) :=

∞∑
m=0

∑
C∈Cm(γ)

Zτ,C(γ)DC ∈ Â1(γ).

Note that for any degree d, the number of con�gurations C ∈ ∪m≥0Cm(γ) such
that deg(DC) = d is �nite. It remains to prove the following Lemma to verify that
Zτ (γ) is well de�ned.

Lemma 2.5.4. If C is a con�guration such that DC does not vanish as a morphism
of A1, then the iterated integrals of Zτ,C(γ) converge.

Proof. The proof goes essentially as for Lemma 1.5.4. Let C be a con�guration such
that DC does not vanish in A1, and let j ∈ {0, . . . , r}. We show that the integral
I
mj
(vj ,vj+1)(f

j
mj , . . . , f

j
1 ) converges. Recall that:

• the derivatives of the strands d
dtz(t),

d
dt z̄(t) are bounded,

• the functions Ψs(z) are regular near z = 0 for any s > 0,

• the function Ψ0 has a simple pole at z = 0.

It follows that for any level (j, k), the function f jk is bounded on (vj , vj+1), unless
we are unlucky: (j, k) is in L2

C , η = 0 and the strands zjk and z̄jk meet at a b-vertex
(in which case f jk(vj + ε) ∼ 1/ε) or at a d-vertex (in which case f jk(vj+1− ε) ∼ 1/ε).
Nevertheless, the �rst situation cannot happen for k = 1, and the second situation
cannot happen for k = mj , because DC would contain an isolated chord and thus
would vanish. Lemma 1.5.1 allows us to conclude.

As in the former case, Zbd
τ is invariant under height rescaling, and we have the

following Lemma.
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Lemma 2.5.5. If (γ1, γ2) is a composable pair of elliptic bd-tangles, then Zbd
τ (γ2γ1) =

Zbd
τ (γ2)Zbd

τ (γ1).

Proof. The proof goes exactly as in the case of Zbd (Lemma 1.5.5).

Proposition 2.5.6. The diagram (2.5.1) is commutative; that is, if β is an elliptic
braid, then Zbd

τ (β) coincides with the parallel transport of the KZB connection Tτ (β)
seen in Â1.

Proof. Let us �rst assume that β, when seen as a bd-tangle, has no wall-crossing
point. In this case, Tτ (β) is by de�nition the parallel transport of Ωτ along the lift
β̃ : I → Bn of β. It can then be checked that∑
C∈Cm(β)

Im
(0,1)(fm, . . . , f1)DC =

∫
0≤t1≤...≤tm≤1

Ωτ (
˙̃
β(tm)) · · ·Ωτ (

˙̃
β(t1))dt1 · · · dtm

(where the left-hand side of the equality is seen in Â1) in the same way as in the
proof of Lemma 1.5.6, by observing that the "combs" of DC correspond to the terms
(adyi)

k(tij) in the expression of Ωτ . Indeed, by k iterations of the STU relation, we
have

(adyi)
k(tij) 7−→

ι1,n
y
y

y

. . .

k times ...

i j

.

Now, assume that β has some wall-crossing points of distinct heights 0 < w1 <
. . . < ws < 1, and let β̃ : I → Cn,τ be a lift of β. Considering the decomposition
I = [0, w1] ∪ [w1, w2] ∪ · · · ∪ [ws, 1], one can write β̃ as a composition of paths
β̃ = (β̃s + λs) · · · (β̃0 + λ0) where for each i ∈ {0, . . . , s}, λi ∈ Λnτ is the unique
translation such that β̃i is a path in Bn. By de�nition (see Section 2.3), we have:

Tτ (β) = Tτ (β̃s)e
ρ(λs−λs−1)Tτ (β̃s−1) · · ·Tτ (β̃1)eρ(λ1−λ0)Tτ (β̃0).

It remains to notice that the insertion of the factors eρ(λi+1−λi) corresponds to the
insertion of the vertex labeled with exp(y) and exp(−y) at the level of the α-wall
crossings points in the construction of the morphism DC .

We state the analog of Lemma 1.5.7.

Lemma 2.5.7. Let α∪ γ be a disjoint union of two elliptic bd-tangles, and let α∪ γ
denote the bd-tangle obtained by reversing the orientation of α. We then have

Zbd
τ (α ∪ γ) = SαZ

bd
τ (α ∪ γ).

Proof. For any con�guration C, each vertex ofDC which is attached to a given strand
of the pattern comes either from a level (j, k) (and is associated with a coe�cient
ε = ±1 in ZC which depends on the orientation of this strand) or from a wall-
crossing point (in which case the labeling with exp(y) or exp(−y) also depends on
the orientation of the strand).
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2.6 Invariance of Zbd
τ

In this section we brie�y check the following:

Theorem 2.6.1. Zbd
τ is invariant under bd-isotopy.

According to Proposition 1.3.8, the proof can be decomposed into two steps,
namely the invariance under horizontal deformation and under bd-moves. The proofs
are essentially the same as in the usual Kontsevich integral case.

Lemma 2.6.2. Zbd
τ (γ) is invariant under horizontal deformation of γ.

Proof. The proof is parallel to that of Lemma 1.5.9, using Lemma 2.5.5 and Lemma
2.5.7 in place of Lemma 1.5.5 and Lemma 1.5.7 respectively.

To complete the proof of Theorem 2.6.1, it remains to show:

Lemma 2.6.3. Zbd
τ (γ) is invariant under bd-moves of γ.

Proof. Up to horizontal deformation, the bd-moves can be assumed to be arbitrary
thin (as formulated in the proof of Lemma 1.5.10). If a bd-move is performed in a
cylinder that is contained in E × I or that crosses the b-wall only, then the proof
goes essentially as in Lemma 1.5.10. If the bd-move crosses the a-wall, the only
contribution of the move to Zbd

τ (γ) is the pair of external vertices labeled with
exp(y) and exp(−y). Since these two vertices are consecutive on the pattern, they
can be simpli�ed as depicted below.

exp(y)

exp(−y)
=

a-wall a-wall

2.7 Relation between Zbd
τ and Zbd

Let γ be an elliptic bd-link with no wall-crossing points; that is, γ lies in E × I. By
identifying E with its lift B ⊂ C, γ can also be seen as a bd-link in C×I. Therefore,
both the usual and the elliptic Kontsevich integrals Zbd(γ) and Zbd

τ (γ) make sense.

Proposition 2.7.1. If γ ⊂ E × I is a bd-link, then Zbd
τ (γ) = Zbd(γ).

Proof. For any 0 < ε ≤ 1, let hε : B → B be the homothety of ratio ε and center
0. We denote by εγ := (hε × idI)(γ) ⊂ B × I the corresponding "thin" bd-link. For
any ε ∈ (0, 1], γ is obviously bd-equivalent to εγ, Hence Zbd

τ (γ) = limε→0 Z
bd
τ (εγ).

Let us show that limε→0 Z
bd
τ (εγ) = Zbd(γ). Let C be a con�guration on γ, which is

seen as a family of con�gurations on εγ for any 0 < ε ≤ 1. Let (j, k) be a level of
the con�guration C. If (j, k) ∈ L1

C , then f
j
k → 0 as ε→ 0. If (j, k) ∈ L2

C and η ≥ 1,
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we still have f jk → 0 (since the functions Ψη are regular at z = 0). Therefore, the
coe�cient Zτ,C(εγ) tends to zero unless for any level (j, k) of C, we have (j, k) ∈ L2

C

and η = 0. In this case, since Ψ0 has a simple pole with residue 1 at z = 0, we see
by comparing Formulae (1.5.2) and (2.5.3) that Zτ,C(εγ) and ZC(εγ) = ZC(γ) have
the same limit as ε→ 0.

Remark 2.7.2. In fact, the same proof still holds if γ ⊂ E × I is a bd-string-knot ;
that is, a bd-tangle such that ∂γ = z0×∂I for some z0 ∈ E. In the case of a general
bd-tangle γ ⊂ E × I of source X and target Y , the relation can be generalized as

Zbd
τ (γ) = cY Z

bd(γ)c−1
X ,

with cX := limε→0 Z
bd
τ (lεX)−1Zbd(lεX), where for 0 < ε ≤ 1, we denote by lεX the

bd-tangle made of oriented segments linking each point of X × 0 on the bottom to
the corresponding point of hε(X)× 1 on the top.

2.8 The normalization

Let us go back to the notations of Section 1.5.4.
One cannot a priori de�ne an algebra structure on A1(S1) in the same way as

on A(S1). However, we still have:

Lemma 2.8.1. Let (P,X) be a (non empty) pattern equipped with a distinguished
connected component X ⊂ P . We have an action ]X of A(S1) on A1(P ) by taking
the connected sum of the circle to the component X.

Proof. Just as in the case of Lemma 1.5.11, we see that this action is well-de�ned
using the fact that "boxes can slide over a part of a Jacobi diagram without external
vertices" (Lemma 1.4.4).

Moreover, Lemma 1.5.12 still holds for the elliptic invariant Zbd
τ .

Lemma 2.8.2. We have

Zbd
τ

(
hX(γ)

)
= H]XZ

bd
τ (γ).

Proof. The proof is parallel to that of Lemma 1.5.12.

De�nition 2.8.3. Let γ be an elliptic bd-tangle, and let X1, . . . , Xr denote its
connected components. Let pi be the number of d-vertices of the component Xi. We
de�ne

Zτ (γ) := H−p1]X1 · · ·H−pr]XrZbd
τ (γ).

In the same way as in Section 1.5.4, it follows from Lemma 2.8.2 that:

Theorem 2.8.4. Zτ de�nes a functorial invariant of elliptic tangles T1 → Â1.
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Chapter 3

The combinatorial Kontsevich

invariant

In this chapter, we recall the combinatorial construction of the Kontsevich invariant
ZΦ depending on a Drinfeld associator Φ (see [BN97, LM96]). The construction is
formulated in the language of Drinfeld-Cartier's quantization of in�nitesimal cate-
gories [Car93] (see also [Kas95, KT98]), and goes in three steps. First, Reshetikhin�
Turaev�Shum's coherence Theorem [Tur10, Shu94], which asserts that qT̃ can be
seen as the free ribbon category generated by one object, allows us to turn the prob-
lem of �nding tangle invariants into the problem of �nding ribbon structures on
monoidal categories (Section 3.2). On the diagrammatic side, the key properties of
the category A can be encoded by the notion of in�nitesimal braiding (Section 3.4).
Now, if we are given a Drinfeld associator Φ, then we are able to produce a braiding
from an in�nitesimal one, and further, to endow A with a ribbon structure. As an
application of Shum's Theorem, this gives rise to a functor ZΦ : qT̃ → A (Section
3.5).

In Section 3.6, we recall Drinfeld's construction of an associator ΦKZ from the
KZ connection. We denote ZKZ := ZΦKZ

, and we relate the analytic invariant Z of
Chapter 1 to ZKZ in Section 3.7.

3.1 Framed tangles

In Chapter 1, we have de�ned a category of tangles T whose objects are the �nite
sets of signed points of C. For the combinatorial approach, we restrict ourselves to
the unit disk D2 ⊂ C in which we use the real coordinates (x, y) (and the coordinates
(x, y, t) for the cylinder D2 × I). We also �x some base points on D2 to reduce the

number of objects: for n ≥ 1, we denote by bn =
(

1−n
n+1 ,

3−n
n+1 , . . . ,

n−1
n+1

)
the sequence

of n points uniformly distributed on the segment from (−1, 0) to (1, 0), and b0 := ∅.

De�nition 3.1.1. Let T be the full subcategory of T made of tangles γ ⊂ D2 × I
whose source and target are of support bm and bn for some m,n ≥ 0. Since the base
points of bn are linearly ordered from left to right along the x-axis, the set of objects
of T are identi�ed with the set of �nite sequences of signs {+,−}.

We de�ne the category T̃ of framed tangles.
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R1 R̃1

R2 R3

Figure 3.1: The Reidemeister moves, and the modi�ed R̃1.

De�nition 3.1.2. If γ is a tangle of T, a framing of γ is the homotopy class relative
to the boundary of a nonzero normal vector �eld on γ ⊂ C × I, such that all the
vectors based on ∂γ are of coordinate (x, y, t) = (0,−1, 0). A framed tangle γ̃ is a
tangle γ equipped with a framing. Since the composition (as tangles) of two framed
tangles is endowed with a framing, we can equip the set T̃ of framed tangles with a
category structure such that there exists a forgetful functor T̃→ T.

As is well known, any equivalence class of tangles of T admits a representative
γ whose projection under π : (x, y, t) 7→ (x, t) is generic in the sense that its only
singularities are transverse crossings. A tangle diagram (as de�ned for instance in
[Kas95], Chapter XII.3) is such a projection π(γ) equipped with the distinction
between over and under strand at each crossing. Tangle diagrams up to planar
isotopy form a category D with same objects as T . A surjective functor ϕ : D→ T
is de�ned by seeing the diagram in D2 × I via (x, t) 7→ (x, 0, t) and slightly pushing
the under-strand "behind" the over-strand at each crossing. The kernel of ϕ is
generated by the Reidemeister moves R1, R2 and R3 depicted in Figure 3.1. In
the framed case, a surjective functor ϕ̃ : D → T̃ is de�ned from ϕ by setting the
normal vectors to be (0,−1, 0) everywhere on the tangle (according to the so-called
"blackboard framing" convention). The kernel of ϕ̃ is generated by the modi�ed
Reidemeister moves R̃1, R2 and R3.

3.2 Ribbon categories

Let (C,⊗,1) be a monoidal category. At �rst, we assume that C is strict; that is, the
tensor product is associative: (U ⊗ V )⊗W = U ⊗ (V ⊗W ) for any triple of objects
U, V,W . To shorten the notation, we shall simply write UV for the tensor product
of objects U ⊗ V .

In this setting, let us recall the notions of duality, braiding and twist leading to
the de�nition of a ribbon category.

A duality on C is a rule that associate to each object V an object V ∗ and two
morphisms bV : 1→ V ⊗ V ∗ and dV : V ∗ ⊗ V → 1 satisfying

(idV ⊗ dV )(bV ⊗ idV ) = idV , (3.2.1)

(dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗ . (3.2.2)
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A braiding on C is a commutativity constraint c (that is, a family of isomorphisms
cU,V : UV → V U for each pair of objects U, V which is natural in the sense that
cU ′,V ′(f ⊗ g) = (g ⊗ f)cU,V for any pair of morphisms f : U → U ′ and g : V → V ′)
satisfying for any objects U, V,W :

cUV,W = (cU,W ⊗ idV )(idU ⊗ cV,W ), (3.2.3)

cU,V W = (idV ⊗ cU,W )(cU,V ⊗ idW ). (3.2.4)

By convention, we set c−1
U,V := (cV,U )−1. A braided monoidal category is a monoidal

category equipped with a braiding.
A twist on a braided monoidal category (C, c) is a natural family of isomorphisms

θV : V → V satisfying, for any objects U, V ,

θUV = cV,UcU,V (θU ⊗ θV ). (3.2.5)

De�nition 3.2.1. A ribbon category is a braided monoidal category (C, c) equipped
with a twist θ and a duality (∗, b, d) compatible in the sense that for any object V ,

(θV ⊗ idV ∗)bV = (idV ⊗ θV ∗)bV . (3.2.6)

There is a standard graphical calculus for ribbon categories (see for instance
[Tur10]), where a morphism f : U1⊗U2⊗ . . .⊗Um → V1⊗V2⊗ . . .⊗Vn is represented
by boxes of the form

,

f

· · ·

· · ·

U1 U2 Um

V1 V2 Vn

the composition gf is depicted by gluing g above f , and the tensor product f ⊗ g
by putting f and g side by side. The braiding, twist and duality morphisms are
represented by

cU,V =

U V

; c−1
U,V =

U V

; θV =

V

; θ−1
V =

V

;

bV =

V V ∗

; dV =

V ∗ V

.

As suggested by the graphical calculus, the category T̃ of framed tangles is
endowed with a ribbon structure. The tensor product of two framed tangles γ1 ⊗ γ2

is de�ned by setting γ1 and γ2 side by side along the x-axis and rescaling the result
to get back in D2 × I, as suggested in Figure 3.2. The dual of an object V =
(ε1, . . . , εk) of T̃ (where εi = ±1) is V ∗ = (−εk, . . . ,−ε1), and the morphisms bV ,
dV , the braiding cU,V and the twist θV are the images under ϕ̃ of the following planar
diagrams:
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γ1 γ2 γ2γ1⊗ :=

Figure 3.2: The tensor product of tangles.

bV =

V V ∗

dV =

V ∗ V

cU,V =

VU

θV =

V

We are now ready to state the universal property satis�ed by FT with respect to
ribbon categories. This result has been proved by Reshetikhin and Turaev [RT90] in
the context of Hopf algebras, and reformulated by Shum [Shu94] for general ribbon
categories. Other references are [Tur10] and [Yet01].

Theorem 3.2.2. Let C be a strict ribbon category equipped with an object V . There
exists a unique monoidal functor F : T̃ → C preserving the braiding and the twist,
and such that F (+) = V , F (−) = V ∗, F (b(+)) = bV , and F (d(+)) = dV .

Remark 3.2.3. The functor F does not preserve the duality in general. Indeed, the
equality (+)∗∗ = (+) does not necessarily hold in C when replacing (+) with V .
However, there is a canonical isomorphism α : V → V ∗∗ (see for example [Tur10,
I.2.6]) and:

F (d(−)) = dV ∗(α⊗ idV ∗) =

V V ∗

, F (b(−)) = (idV ∗ ⊗ α)bV ∗ =

V ∗ V

.

The interest of Theorem 3.2.2 is twofold. First, it asserts that any ribbon cate-
gory produces an invariant of framed tangles (and thus formalizes the way quantum
groups, whose representations form ribbon categories, give rise to knot invariants
[RT90]). Second, it provides a justi�cation for "manipulating morphisms of a rib-
bon category just as framed tangles up to isotopy" via the graphical calculus, which
makes the computations easier.
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3.3 The non-strict case

Let us now turn to the case of a non necessarily strict monoidal category C. We
denote by aX,Y,Z : (XY )Z → X(Y Z) the associativity constraint which satis�es the
pentagon relation:

(
(WX)Y

)
Z W

(
X(Y Z)

)
(
W (XY )

)
Z W

(
(XY )Z

)

(WX)(Y Z)

aW,X,Y ⊗ idZ

aW,XY,Z

idW ⊗ aX,Y,Z

aWX,Y,Z aW,X,Y Z

(For simplicity we still assume that 1⊗V = V = V ⊗1 for any object V .) From Mac-
Lane coherence theorem [ML98], any two compositions of associativity constraints
between the same source and target are identical. Therefore, the notions of braided
category and ribbon category can be unambiguously generalized to the non strict case
by inserting the appropriate associativity constraints in the axioms (3.2.1)-(3.2.6).

De�nition 3.3.1. We de�ne the categories qT (and qT̃) of quasi (framed) tangles,
or parenthesized (framed) tangles, as follows. The set of objects of qT and qT̃ is
the set of fully parenthesized words in {+,−}. For any pair of parenthesized words
U, V , the sets of morphisms qT(U, V ) and qT̃(U, V ) are identi�ed with T(U, V ) and
T̃(U, V ) respectively, where U and V are obtained by forgetting the parentheses of
U and V .

The category qT̃ of parenthesized framed tangles is endowed with a structure
of non-strict ribbon category, where for any triple of parenthesized words U, V,W ,
the associativity morphism aU,V,W is the quasi tangle of source (UV )W and target
U(VW ) that corresponds to the identity in T̃.

aU,V,W =

(U V ) W

U (V W )

Theorem 3.2.2 is generalized to the non-strict case as follows.

Theorem 3.3.2. Let C be a ribbon category equipped with an object V . There exists
a unique monoidal functor qF : qT̃ → C preserving the associativity constraint, the
braiding and the twist, and such that qF (+) = V , qF (−) = V ∗, qF (b(+)) = bV and
qF (d(+)) = dV .

Proof. Modulo existence, the uniqueness of qF follows from its de�ning conditions
(since any quasi-tangle can be written as a composition of tensor products of braid-
ing, duality, associativity and identity morphisms). Let us construct qF explicitly
from the functor F of Theorem 3.2.2.
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Mac Lane coherence theorem asserts that one can construct, from the monoidal
category C, an equivalence of monoidal categories η : Cstr → C where Cstr is strict
(see [Kas95, XI.5]). The objects of Csrt are the �nite sequences S = (V1, . . . , Vk) of
objects of C. If V and V ′ are objects of C which are both obtained by parenthesizing
the same sequence S in two di�erent ways, we denote by aV→V ′ : V → V ′ the unique
morphism of C that is written as a composition of associativity morphisms. We set
η(S) = η(V1, · · · , Vk) := (· · · ((V1V2)V3) · · · )Vk, and Cstr(S, S′) := C(η(S), η(S′)).
The tensor product of two objects S and T of Cstr is the concatenation ST , and the
tensor product of two morphisms f : S → S′ and g : T → T ′ of Cstr is

f ⊗ g = aη(S′)η(T ′)→η(S′T ′)(η(f)⊗ η(g))aη(ST )→η(S)η(T ).

The ribbon structure on C induces a ribbon structure on Cstr by

cS,T := aη(T )η(S)→η(TS)cη(S),η(T )aη(ST )→η(S)η(T ),

and so on.
Applying Theorem 3.2.2 to the strict ribbon category Cstr equipped with the

object (V ) seen as a sequence of length one, we obtain a functor F : T̃→ Cstr. The
composition

qT̃ T̃ Cstr CF η

is denoted by pF : qT̃ → C. For a parenthesized word X, we de�ne qF (X) as the
object of C obtained from X by substituting V to + and V ∗ to −. For a quasi-tangle
γ : X → Y , we �nally set

qF (γ) = aη(F (Y ))→qF (Y )pF (γ)aqF (X)→η((F (X)).

qF is a monoidal functor and satis�es the conditions of Theorem 3.3.2.

3.4 In�nitesimal braidings

The notion of in�nitesimal braiding is an "in�nitesimal version" of a braiding in a
monoidal category, and encodes the structure of the category A of Jacobi diagrams.
For more details, see [KT98].

De�nition 3.4.1. Let S be a strict monoidal category. A braiding σU,V in S is a
symmetry if it satis�es σV,UσU,V = idU,V for any objects U, V . A symmetric category
is a strict monoidal category equipped with a symmetry.

De�nition 3.4.2. Let G be a category and (S, σ) be a symmetric graded linear
G-category with duality. An in�nitesimal braiding in S is a natural family of endo-
morphisms tU,V : UV → UV of S such that tU,V is of degree one in the vector space
S(idUV ) and

σU,V tV,UσU,V = tU,V , (3.4.1)

tUV,W = idU ⊗ tV,W + (σV,U ⊗ idW )(idV ⊗ tU,W )(σU,V ⊗ idW ). (3.4.2)

In the sequel, an in�nitesimal G-category will refer to a symmetric graded linear
G-category with duality equipped with an in�nitesimal braiding.
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Let S be an in�nitesimal category and let V be an object of S. The Casimir
operator of V is the endomorphism CV of V de�ned by

CV = −(idV ⊗ dV )(tV,V ∗ ⊗ idV )(bV ⊗ idV ). (3.4.3)

We then have

tU,V =
1

2
(CUV − CU ⊗ idV − idU ⊗ CV ). (3.4.4)

Lemma 3.4.3. [KT98, Corollary 5.3] The category A is endowed with a structure
of an in�nitesimal P-category, with:

bV =

V V ∗

dV =

V ∗ V

σU,V =

VU U V

tU,V =

The naturality of t follows from the fact that boxes can slide over a part of a
Jacobi diagram (Lemma 1.4.4).

In our setting, [KT98, Theorem 5.4] can be formulated as follows.

Theorem 3.4.4. Let S be an in�nitesimal G-category with a distinguished object
V . There exists a unique monoidal functor G : A → S preserving the symmetry,
the in�nitesimal braiding and such that G(+) = V , G(−) = V ∗, G(b(+)) = bV and
G(d(+)) = dV . Moreover, there is a functor P→ G such that the following diagram
commutes.

A S

P G

G

3.5 Drinfeld associators

ADrinfeld associator is a formal series Φ(A,B) ∈ exp(̂f(A,B)) (where f̂(A,B) denote
the degree completion of the free Lie algebra generated by A and B) satisfying the
pentagon equation in exp(̂t4):

Φ(t12, t23 + t24)Φ(t13 + t23, t34) = Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23)

and the hexagon equations in exp(̂t3):

exp
(
(t13 + t23)/2

)
= Φ(t13, t12) exp(t13/2)Φ(t13, t23)−1 exp(t23/2)Φ(t12, t23),
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exp
(
(t13 + t12)/2

)
= Φ(t23, t13)−1 exp(t13/2)Φ(t12, t13) exp(t12/2)Φ(t12, t23)−1.

Remark 3.5.1. As shown in [Fur10, BND12], the pentagon equation is enough if the
coe�cient of AB in Φ(A,B) is 1

24 .

The data of a Drinfeld associator allows us to to construct a ribbon category
from an in�nitesimal one.

Theorem 3.5.2. (see for instance [Car93]) Let S be an in�nitesimal category whose
duality morphisms are denoted by (b0V , d

0
V ) for any object V . There exists a unique

ribbon structure on the degree completion Ŝ with:

cX,Y = σX,Y exp(tX,Y /2)

aX,Y,Z = Φ(tX,Y ⊗ idZ , idX ⊗ tY,Z)

θX = exp(CX/2)

bV = b0V and dV = d0
V ◦ (λ−1

V ∗ ⊗ idV )

where λV ∗ is the automorphism of V ∗ de�ned by

λV ∗ = (d0
V ⊗ idV ∗) ◦ Φ−1(tV ∗,V ⊗ idV ∗ , idV ∗ ⊗ tV,V ∗) ◦ (idV ∗ ⊗ b0V ).

Using this construction, we de�ne a ribbon structure on the category Â of Jacobi
diagrams. There is thus a unique functor

ZΦ : qT̃→ Â

satisfying the conditions of Corollary 3.3.2. This functor is what we call the combi-
natorial Kontsevich invariant.

Moreover, ZΦ(θ(+)) = exp(C(+)/2) vanishes in Â/FI since the Casimir element
C(+) forms an isolated chord. Therefore, ZΦ induces an invariant of quasi-tangles
(that we still denote by ZΦ)

ZΦ : qT→ Â/FI.

3.6 The KZ associator

In this subsection, we brie�y recall from [Dri89, Dri90] the de�nition of the KZ
associator ΦKZ in terms of the solutions of the reduced KZ equation:

dG

dz
=

(
A

z
+

B

z − 1

)
G, (3.6.1)

with values in the algebra of power series C〈〈A,B〉〉 in two non-commuting variables
A and B, having set A := A/2πi, B := B/2πi.

Lemma 3.6.1. [Dri89, Dri90] There exist unique solutions G0(z) and G1(z) of
Equation (3.6.1), analytic in the domain {|z| < 1, |z − 1| < 1} and with the asymp-
totic behavior G0(z) ∼ zA as z → 0 and G1(z) ∼ (1− z)B as z → 1.
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The KZ associator is the ratio ΦKZ := G1(z)−1G0(z) of these two special so-
lutions. ΦKZ(A,B) satis�es the axioms of a Drinfeld associator (Section 3.5), and
therefore de�nes an invariant of tangles

ZKZ := ZΦKZ : qT̃→ A.

Lemma 3.6.2. (See for example [CDM12, Lemma 10.1.9].) We have

ΦKZ = lim
ε→0

ε−BGε(1− ε)εA,

where Gε(z) is the solution of (3.6.1) satisfying Gε(ε) = 1.

In the next subsection, we give a generalization of the above lemma, relating the
combinatorial invariant ZKZ to the analytic invariant Z.

3.7 Regularizing factors and relation between ZKZ and

Z

Let w be a parenthesized word of length n. For 1 ≤ i 6= j ≤ n, we denote by
w(i, j) = w(j, i) ∈ {1, . . . , n} the number of pair of parentheses in which both the
i-th and the j-th symbol of w are included. For example, if w = (+((−+)−)), then
w(1, 2) = 1, w(2, 4) = 2 and w(2, 3) = 3.

De�nition 3.7.1. Let w be a parenthesized word of length n, and k ∈ {1, . . . , n−1}.
We set

ck(w) =
∑

1≤i<j≤n
w(i,j)=k

tijεiεj ∈ tn,

where εi ∈ {−1,+1} is the i-th symbol of w. Note that if w(i, j) = k and w(j, j′) > k,
then w(i, j′) = k. Therefore, it follows from the in�nitesimal braid relations (1.2.1)
that the ck(w) commute with each other for all k. Let ε ∈ (0, 1]. We de�ne

ρw(ε) :=

n−1∏
k=1

εkck(w) ∈ exp(̂tn).

The element ρw(ε) is called the regularizing factor of w.

Let [a, b] ⊂ C be an oriented segment. Let (z1, . . . , zn) be a sequence of n
paths zj : (0, 1] → [a, b] such that for any 0 < ε ≤ 1, the points z1(ε), . . . , zn(ε) are
distributed from a to b according to the order z1 < . . . < zn. We say that (z1, . . . , zn)
is of asymptotical behavior w if |zi(ε)− zj(ε)| ∼ εw(i,j)−1 as ε→ 0.

Let γ ⊂ C× I be a tangle of T whose bottom and top endpoints are on the seg-
ments [a, b]×∂I. We denote by s0 = (s0

1, . . . , s
0
n) and t0 = (t01, . . . , t

0
m) the sequences

of bottom and top endpoints (ordered from a to b). We �x a parenthesization on
the sequences s and t, and we denote by γwv the corresponding parenthesized tangle
of qT, of source and target given by the parenthesized words v and w respectively.
Let s = (s1, . . . , sn) and t = (t1, . . . , tm) be sequences of paths (0, 1] → [a, b] with
si(1) = s0

i , tj(1) = t0j for all i, j, and of asymptotical behavior v and w respectively.
We set:

γwv (ε) := (t|[ε,1])
−1γs|[ε,1],

where t|[ε,1] and s|[ε,1] are seen as tangles.
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Theorem 3.7.2. [CDM12, Theorem 10.3.7] We have

ZKZ(γwv ) = lim
ε→0

ρw(ε)−1Z
(
γwv (ε)

)
ρv(ε),

where the right-hand side of the equality is seen as a morphism of Â/FI using the
linear ordering of the endpoints along the segment [a, b].

Corollary 3.7.3. If γ is a link, ZKZ(γ) = Z(γ).
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Chapter 4

Beak diagrams and RST moves

This chapter is the �rst step of the combinatorial study of surface tangles. We
show that surface (framed) tangles can be represented by some kinds of planar
diagrams called beak diagrams. Beak diagrams are considered up to the RST (or
R̃ST ) equivalence relations, which contain the well-known Reidemeister moves.

4.1 Surface tangles

In Section 3.1, we have de�ned the categories of (framed) tangles T and T̃. These
tangles lie in the unit disc cylinder D2 × I, and their bottom and top endpoints are
uniformly distributed along the diameter [−1, 1]× {0} of the disc.

In this chapter, we consider a closed surface Sg of genus g ≥ 0, equipped with a
�xed embedding of the disc D2 ⊂ Sg. A (framed) tangle on Sg is the straightforward
generalization of a (framed) tangle on D2 obtained by replacing D2 with Sg. Again,
the bottom and top endpoints of such tangles are required to be uniformly distributed
along the segment [−1, 1]× {0} ⊂ D2 ⊂ Sg.

Isotopy classes of tangles and framed tangles on Sg form the categories Tg and T̃g

respectively. Just as in the disc case, the objects of Tg, T̃g are the �nite sequences
of signs, and Tg, T̃g are P-graded. Moreover, we have functors

T→ Tg and T̃→ T̃g,

that consist in seeing a (framed) tangle on D2 as a (framed) tangle on Sg via the
embedding D2 ⊂ Sg.

4.2 Beak diagrams

Our goal is now to represent tangles on Sg as planar diagrams. One could imagine
several ways to achieve this, using various kind of diagrams. The notion of beak
diagram introduced in this section is well suited for our purpose.

De�nition 4.2.1. Let X be a set. A beak diagram labeled with X is a planar
diagram embedded in the rectangle {(x, t) | x ∈ [−1, 1), t ∈ [0, 1]} that looks like an
ordinary tangle diagram except that its strands may coincide with the left border
{x = −1} along short segments (see Figure 4.1). Such segments are called the beaks
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Figure 4.1: On the left, a genuine beak diagram for α, β ∈ X. On the right, the way
it may be drawn in the sequel.

of the diagram and are labeled with elements of X. Beak diagrams are considered
up to planar isotopy. Here, "planar isotopy" means isotopy of the rectangle, �xing
the top and bottom edges {t = 1} and {t = 0} pointwise.

It results that the left border {x = −1} is �xed, but not necessarily pointwise. In
particular, the beaks may slide along the left border, but their heights cannot switch.
In the following pictures, beaks may not appear as segments (unless it is relevant to
keep in mind they actually are), but rather as points1 which can be thought of as
"microscopic" segments.

De�nition 4.2.2. Beak diagrams labeled withX are endowed with a category struc-
ture in the obvious way: the objects are the �nite sequences of signs, the morphisms
are the planar isotopy classes of beak diagrams, and the composition d2d1 is ob-
tained by gluing the bottom of d2 above the top of d1, as in the case of tangles. This
category is denoted by D(X).

For any set X, there is a functor D→ D(X) which consists in seeing an ordinary
tangle diagram as a beak diagram without beaks. Moreover, any map X → Y
induces a functor D(X)→ D(Y ).

Let Sg,1 be the surface with one boundary component obtained by removing the
interior of D2 from Sg. We set p := (−1, 0) ∈ ∂D2, and π1 := π1(Sg,1, p). We denote
by USg,1 the unit tangent bundle - made of non-vanishing tangent vectors on Sg,1. A
path in USg,1 can be seen as a "framed path" of Sg,1. Set π̃1 := π1(USg,1, p), where
the basepoint p is equipped with the tangent vector (0,−1). We have the central
extension

0→ Z→ π̃1 → π1 → 1, (4.2.1)

where the image of Z is generated by the positive twist

θ ∈ π̃1

de�ned by [0, 1] 3 t 7→ θ(t) = e2πitp. Any non-vanishing vector �eld Sg,1 → USg,1
gives rise to a section π1 → π̃1. We also de�ne

∂ ∈ π̃1

1Hence the terminology "beak".
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as the boundary loop ∂D2 oriented from the positive orientation of D2 and equipped
with the constant framing (0,−1).

Let us now construct two functors

ϕπ1 : D(π1)→ Tg and ϕπ̃1 : D(π̃1)→ T̃g

such that the following diagram commutes (where ϕ, ϕ̃ are de�ned in Section 3.1,
and D(π̃1)→ D(π1) is induced by the canonical projection π̃1 → π1).

D T̃ T
ϕ̃

D(π̃1)

D(π1)

T̃g Tgϕπ̃1

ϕ

ϕπ1

We de�ne ϕπ1 as follows. Start from a beak diagram d of D(π1). The diagram
d lies in the rectangle [−1, 1) × I. Embed this rectangle in the cylinder D2 × I by
(x, t) 7→ (x, 0, t). The beaks of d are now segments of the form {p}× [u, v] ⊂ ∂D2×I,
where 0 < u < v < 1. As in the usual case, separate the strands of d at each
crossing by slightly pushing the under-strand "behind" - that is, in the positive y-
coordinate area. Finally, replace each beak {p} × [u, v] with an arc parametrized by
[0, 1] 3 s 7→

(
α(s), u + s(v − u)

)
∈ Sg,1 × I, where α : [0, 1] → Sg,1 is a loop whose

homotopy class is the label of the beak, as depicted below.

α  α

(Note that the parametrization of this arc, increasing from u to v, may not coincide
with the orientation of the resulting tangle, which is as usual determined by the
orientation of the beak diagram.) By choosing an appropriate representative loop α,
this produces a smooth tangle in Sg × I, which we declare to be ϕπ1(d).

For d in D(π̃1), we construct ϕπ̃1(d) by taking ϕπ1(d) with the framing to be
(0,−1, 0) inside D2 × I (according to the blackboard convention), and the framings
of the arcs running outside of D2 × I to be determined by the labels α ∈ π̃1 of their
corresponding beaks.

We will see in Section 4.5 that the functors ϕπ1 and ϕπ̃1 are surjective. By con-
struction, ϕπ1 (respectively, ϕπ̃1) factors through the three (modi�ed) Reidemeister
moves of Figure 3.1. Moreover, ϕπ̃1 clearly factors through the following local moves
involving the beaks,
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α

β
↔ βα

1 ↔

θ ↔

as well as the move

∂ ↔
· · · · · · · · · · · ·

This last move is not local, but involves a whole horizontal slice of the diagram. On
the right hand side, the strand coming from the beak ∂ goes around all the other
strands.

The rest of the chapter is aimed at describing the kernel of ϕπ̃1 and ϕπ1 with a
set of equivalence moves on beak diagrams, generalizing the Reidemeister theorem.
To do so, we �rst restrict ourselves to beak diagrams labeled with a �nite family of
generators of π̃1. It turns out that certain well-chosen families lead to particularly
easily de�nable sets of equivalence moves. These nice families are combinatorially
encoded by fatgraphs.

4.3 Fatgraphs and their markings

The objects we call "fatgraphs" in the sequel are known as once-bordered fatgraphs
in the litterature. Once-bordered fatgraphs have been introduced in [BKP09] and
[God07] to adapt constructions and results of Harer [Har86, Har88] and Penner
[Pen87, Pen88] to the bordered case.

Let us start with de�ning once-bordered fatgraphs from a set-theoretical point
of view.

De�nition 4.3.1. A once-bordered fatgraph Γ is a �nite linearly ordered set (Γ,≤)
equipped with a �xed-point free involution e→ e that switches the �rst and the last
elements of Γ.

The elements e ∈ Γ are the edges of Γ. The �rst edge min(Γ) is the tail of Γ, and
is denoted by t. We have max(Γ) = t by de�nition. The predecessor and successor
of an edge e (if such elements exist) are denoted by e− 1 and e+ 1 respectively. We
de�ne the permutation σ of Γ \ {t} by

σ(e) := e− 1.

The orbits of σ are the vertices of Γ. A vertex v is thus a cyclically ordered set; we
write v = (e1, . . . , ek) for v = {e1, . . . , ek} and σ(ei) = ei+1 (i ∈ Z/kZ). The orbits
{e, e} of the involution are the non-oriented edges of Γ.

As suggested by the terminology, any once-bordered fatgraph Γ gives rise to a
thickened graph S(Γ), that is, an oriented surface equipped with a decomposition
into disks and bands joining them. The construction is as shown in Figure 4.2:
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Figure 4.2: Construction of the thickened graph S(Γ).

t∂

t
∂

t−

d∂

d
∂

a∂

a∂

c∂

c∂

b∂

b
∂

Figure 4.3: The genus one surface S(Γ) associated to the fatgraph Γ = {t < a <
b < c < a < d < b < c < d < t}.

• To each vertex v = (e1, . . . , ek), associate a polygon with k oriented edges
labeled with e+

1 , e
+
2 , . . . , e

+
k counterclockwise.

• To each non-oriented edge {e, e}, associate a band with four oriented edges
labeled with e−, e∂ , e−, e∂ clockwise.

• Finally, glue the edges e+ and e− pairwise for all e 6= t, according to their
orientations.

Observe that the linear order ≤ on Γ is recovered by following the boundary of
S(Γ) clockwise starting from the arc t− (see for example Figure 4.3). Therefore,
S(Γ) is a surface with exactly one boundary component. Moreover, the genus g(Γ)
of S(Γ) can be obtained combinatorially by the Euler formula:

−2g(Γ) =

∣∣∣∣Γ \ {t}σ

∣∣∣∣− |Γ|2 .
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In the following, we restrict ourselves to genus g once-bordered fatgraphs. For short,
"fatgraph" is understood as "genus g once-bordered fatgraph" from now

on.

De�nition 4.3.2. Let Γ be a fatgraph, and let G be a group equipped with a
distinguished element h ∈ G. A (G, h)-marking of Γ is a map m : Γ→ G satisfying:

• (edge relations) for any oriented edge e ∈ Γ,

m(e)m(e) = h

• (vertex relations) for any vertex v = (e1, . . . , ek),

m(ek)m(ek−1) · · ·m(e1) = h.

In the particular case h = 1, the notion of (G, 1)-marking coincides with the
notion of "abstract G-marking" introduced in [BKP09].

Remark 4.3.3. The edge relations imply that h commutes with m(e) for any edge e:

hm(e) = m(e)m(e)m(e) = m(e)h.

It follows that the vertex relation for v = (e1, . . . , ek) does not depend on the choice
of a "�rst" edge e1 in the cyclically ordered set v.

De�nition 4.3.4. An embedding of a fatgraph Γ is an isotopy class of embeddings
f : S(Γ) ↪→ Sg,1 such that f

(
S(Γ)

)
∩ ∂Sg,1 = f(t−) and p /∈ f(t−). An embedded

fatgraph (Γ, f) is a fatgraph together with an embedding.

In the sequel, we may identify S(Γ) with its image in Sg,1 and omit to mention
f explicitly when there is no fear of confusion. Figure 4.4 represents an embedded
fatgraph in the genus one case, where the torus S1 has been cut along the arcs e∂ .

Observe that for any embedded fatgraph Γ, the complement Sg,1 \ S(Γ) is con-
tractible (since S(Γ) is of genus g).

In [BKP09], a (π1, 1)-marking of γ is associated to any embedding f of Γ. Here,
we extend the construction to the framed case. For this, let us �rst introduce the
notion of "simply framed path". Let P be a polygonal disc, and let p0 and p1 be
two nonzero vectors that are tangent to the boundary ∂P and based at two distinct
points of ∂P . A framed path α̃ : [0, 1] → UP joining p0 to p1 is said to be simply
framed in P if the underlying path α : [0, 1] → P is smooth, simple, and if the
framing of α̃ is nowhere tangent to α. One may think of a simply framed path in
P as a path induced from the embedding of a ribbon r : [0, 1] × [0, 1] → P , with
α̃(t) = d

dsr(t, s)|s=0. In the following, simply framed paths are depicted from this
point of view, where r(t, 0) is drawn with a solid line and r(t, 1) with a dashed line
(see Figure 4.4). Note that such a simply framed path α̃ exists if and only if the
vectors p0 and p1 induce opposite orientations on ∂P , and in that case, α̃ is unique
up to homotopy in UP .

Let (Γ, f) be an embedded fatgraph. For each edge e, we �x a nonzero vector
p(e) tangent to the arc e∂ ⊂ Sg,1 and directed according to its orientation.
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De�nition 4.3.5. For any edge e, we de�ne µf (e) ∈ π̃1 as the composition of paths

µf (e) = (p⇐ p(e)← −p(e)⇐ −p←↩ p),

where:

• −v ←↩ v denotes the "half-twist" ([0, 1] 3 t 7→ eπitv),

• v ← w is the unique simply framed path in a band of the thickened graph
S(Γ),

• v ⇐ w is the unique simply framed path in the complement Sg,1\int(S(Γ)∪D2).

See Figure 4.4.

t∂

t
∂

t∂

e∂

e∂

t
∂

e∂

e∂

(−p(e)⇐ −p)

(p⇐ p(e))

(−p←↩ p)p

D2

(p(e)← −p(e))

Figure 4.4: The framed path µf (e) (here, e < e).

Lemma 4.3.6. The map µf : Γ→ π̃1 is a (π̃1, θ)-marking. In other words, we have

µf (e)µf (e) = θ for any edge e, (4.3.1)

µf (ek)µf (ek−1) · · ·µf (e1) = θ for any vertex v = (e1, . . . , ek). (4.3.2)

Moreover, we have
µf (t) = θ−1∂−1. (4.3.3)

Proof. Let us show (4.3.1). We have

µf (e)µf (e) = (p⇐ p(e)← −p(e)⇐ −p←↩ p⇐ p(e)← −p(e)⇐ −p←↩ p).

Using the obvious general relations (w ← v ←↩ −v) = (w ←↩ −w ← −v) and
(w ⇐ v ←↩ −v) = (w ←↩ −w ⇐ −v), we obtain

µf (e)µf (e) = (p⇐ p(e)← −p(e)⇐ −p⇐ −p(e)← p(e)⇐ p←↩ −p←↩ p).
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Since (v ← w ← v) = 1 and (v ⇐ w ⇐ v) = 1, we �nally get

µf (e)µf (e) = (p←↩ −p←↩ p) = θ.

Let us now show (4.3.2). By de�nition of the vertex v = (e1, . . . , ek), we have
ei+1 = ei − 1. As depicted here,

ei+1
∂

e∂i

p =

ei+1
∂

e∂i

we have (
− p(ei+1)⇐ −p←↩ p⇐ p(ei)

)
=
(
− p(ei+1)⇐ p(ei)

)
.

It follows that

µf (ek)µf (ek−1) · · ·µf (e1) =

p⇐ p(ek)← −p(ek)⇐ p(ek−1)← −p(ek−1) . . . p(e1)← −p(e1)⇐ −p←↩ p.

As shown by the following picture, this corresponds to the twist θ.

v

e∂1

e∂1

e∂2e∂2

e∂k−1 e∂k−1

e∂k

e∂k

p = θ.

Finally, Relation (4.3.3) can be checked by looking at the following picture.

µf (t) = = θ−1∂−1.p

t∂

t
∂
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The next lemma says that the marking µf is universal.

Lemma 4.3.7. Let (Γ, f) be an embedded fatgraph. For any (G, h)-marking m, there
is a unique morphism ρ : π̃1 → G sending θ to h such that the following diagram
commutes.

Γ

(π̃1, θ) (G, h)

µf

ρ

m

Proof. This amounts to say that π̃1 is presented by the generators µf (Γ) and the
edges and vertices relations (4.3.1) and (4.3.2). From Van Kampen theorem, π1 is
presented by the unframed µf (Γ) and the unframed relations (4.3.1) and (4.3.2). By
considering the central extension (4.2.1), we see that π̃1 is presented by the generators
µf (Γ)∪{θ} and the relations (4.3.1) and (4.3.2) together with the centrality relations
for θ. Now, the edge condition (4.3.1) says that θ is generated by µf (Γ), and implies
the centrality relations for θ (see Remark 4.3.3).

Let Γ be a fatgraph. We consider the category D(Γ) of beak diagrams labeled
with the edges of Γ. Any embedding f of Γ gives rise to a marking µf : Γ→ π̃1, and
thus induces a functor D(Γ) → D(π̃1). Forgetting the framing leads to a functor
D(Γ)→ D(π1). We de�ne the functors

ϕ̃f : D(Γ)→ T̃g and ϕf : D(Γ)→ Tg

by composing the above arrows with ϕπ̃1 : D(π̃1) → T̃g and ϕπ1 : D(π1) → Tg

respectively, where ϕπ̃1 and ϕπ1 are de�ned in Section 4.2.

4.4 RST Moves

Throughout this section, we �x a fatgraph Γ. We introduce a set of equivalence
moves on beak diagrams of D(Γ). These moves generate an equivalence relation
R̃ST (Γ). We then state the main result of this chapter (Theorem 4.4.3), which
asserts that ϕ̃f induces an isomorphism D(Γ)/R̃ST (Γ)→ T̃g.

4.4.1 The main theorem

In order to be able to carry out several cases in a single formula, we introduce the
following notation:

For x 6= y ∈ Γ, xy :=

{
+1 if x < y,
−1 if y < x.

We also set the following graphical convention, which will appear at the level of
crossings in beak diagrams:
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+1
�

:= ; −1
�

:= .

Note that the position of the diamond symbol matters. For ε = ±1, we have

ε

�
= −ε � .

We de�ne a family of moves called S-moves2 on the beak diagrams labeled with
Γ, as depicted in the Figures 4.5-4.7. (Here and in what follows, the orientation of
the strands of the diagrams is not mentioned: this means that the moves hold for
any arbitrary orientation.)

eee
�

S1(e)
e

Figure 4.5: The move S1(e) for any edge e.

xy

xy

xy

xy

x

y

�

�

�

�

S2(x,y)

x

y

Figure 4.6: The move S2(x,y) for any edges x,y such that the non-oriented edges
{x,x} and {y,y} are distinct.

S2(e, e) S′2(e, e)
ee ee

e

e

� �
ee ee

e

e

� �
e

e

S2(e, e) S′2(e, e)

ee

ee
e

e �

�

e

e

ee

ee
e

e �

�

Figure 4.7: The moves S2(e, e), S′2(e, e), S2(e, e) and S′2(e, e) for any edge e.

2S stands for "slide".
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Lemma 4.4.1. Using the notation M1 + . . . + Mk ⇒ N1, . . . , Nl to mean that the
moves N1, . . . , Nl can be written as a sequence of moves M1, . . . ,Mk, we have:

(i) R2 + S1(e)⇒ S1(e),

(ii) R2 + S2(x,y)⇒ S2(y,x),

(iii) R2 + S2(e, e)⇒ S′2(e, e),

(iv) R3 + S1(x) + S2(x,y)⇒ S2(x,y),

(v) R3 + S1(e) + S2(e, e)⇒ S′2(e, e), S2(e, e), S′2(e, e),

(vi) R3 + S1(e) + S′2(e, e)⇒ S2(e, e), S′2(e, e), S2(e, e).

Proof. (i) The move S1(e) can be obtained as a sequence of moves R2 and S1(e):

e
R2 S1(e)

ee
�

eee eee
� �

(ii) For {x,x} 6= {y,y}, the move S2(y,x) can be obtained as a sequence of moves
R2 and S2(x,y):

y

x

xy

xy

xy

xy yx

yx

yx

yx

�

�

�

� �

�

�

�

x

y

sequence

of R2's

S2(y,x)

S2(x,y)

yx

yx

yx

yx

�

�

�

�

y

x

(iii) is obtained similarly. (iv) The move S2(x,y) can be obtained from S2(x,y),
using R3 (here, the sequence of two moves R3 can be checked on a case by case
basis) and S1(x):
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S1(x) S2(x,y)

2 moves R3

S1(x)

S2(x,y)
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�

�

�
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Assertions (v) and (vi) work in the same way. The three resulting moves are respec-
tively obtained by performing S1(e) on one of the beaks, on the other, and �nally
on both of them.

We now de�ne three kind of moves called T-moves3 on the beak diagrams labeled
with Γ, as depicted in the Figures 4.8-4.10. These T-moves are nothing but the
diagrammatic versions of the three relations (4.3.1)-(4.3.3) of Lemma 4.3.6.

t
T1

Figure 4.8: The move T1. This move involves a whole horizontal slice of the diagram.
There is a nonnegative number of vertical strands running in this slice. On the right-
hand side, the solid line goes over all these strands, whereas the dashed line goes
under.

e

e T2(e)

Figure 4.9: The move T2(e) for any edge e.

3T stands for "topology".
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e1

e2

ek−1

ek

T3(v)

Figure 4.10: The move T3(v) for any vertex v = (e1, . . . , ek).

De�nition 4.4.2. Seeing D(Γ) as a set, let RST (Γ) (respectively R̃ST (Γ)) be the
equivalence relation on D(Γ) generated by the Reidemeister moves (R-moves), the
S-moves and the T-moves (respectively, by the modi�ed Reidemeister R̃-moves, the
S-moves and the T-moves).

Since the RST-moves are performed in local slices of the beak diagrams, the
composition in D(Γ) obviously induces a category structure on the quotient sets
D(Γ)/RST (Γ) and D(Γ)/R̃ST (Γ) .

Theorem 4.4.3. The functor ϕf : D(Γ)→ Tg factors through RST (Γ), and induces
an isomorphism of categories:

D(Γ)/RST (Γ)
'−→ Tg.

The functor ϕ̃f : D(Γ)→ T̃g factors through R̃ST (Γ), and induces an isomorphism
of categories:

D(Γ)/R̃ST (Γ)
'−→ T̃g.

Theorem 4.4.3 will be proved in Section 4.5.

Remark 4.4.4. As a diagrammatic analog of Remark 4.3.3, it follows from the move
T2 that curls commute with beaks:

T2(e) T2(e)

e e

e

e e

Therefore, the move T3(v) does not depend (up to R̃1 and T2) on the choice of e1 in
the cyclically ordered set v = (e1, . . . , ek).

Remark 4.4.5. The number of S-moves generating R̃ST (Γ) can be strongly reduced.
For example, it is su�cient to restrict ourselves to the S-moves of the form S1(e) for
e < e, S2(x,y) for (x < x, y < y, x < y), and S2(e, e) for e < e. Indeed, Lemma
4.4.1 says that together with the R-moves, this subset generates any S-move.
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4.4.2 A combed version of the S2-moves

Let FBg,n denote the group of framed braids of n strands on Sg. (By a framed braid
on Sg, we mean a framed tangle on Sg whose underlying unframed tangle is a braid.)
We de�ne the framed braids τi (for 1 ≤ i ≤ n− 1), θj (for 1 ≤ j ≤ n), and b(e) (for
any edge e) as the images under ϕ̃f of the following diagrams.

b(e) :=e

1 2 n

· · · .τi :=

1 i n

· · · · · · ; θj :=

1 j n

· · · · · · ;

Up to planar isotopy, a beak diagram representing a framed braid can always be
decomposed into a �nite number of elementary "slices" of the form τi, θj and b(e).
Therefore, all these elements form a set of generators for FBg,n. The T-moves can
be rewritten as "local" relations between these generators:

T1  b(t) = θ−1
1 τ−1

1 · · · τ−1
n−1τ

−1
n−1 · · · τ

−1
1

T2(e)  b(e)b(e) = θ1

T3(v) with v = (e1, . . . , ek)  b(ek) · · · b(e1) = θ1

Moreover, the S2-moves can also be "combed" as shown in Figure 4.11, that is,
rewritten as local framed braid relations. For any x,y with {x,x} 6= {y,y}, the
move S2(x,y) is equivalent to the move CS2(x,y) which locally gives

b(y)τyx1 b(x) = τyx1 b(x)τxy1 b(y)τyx1 . (4.4.1)

For any edge e, the move S2(e, e) can be combed in a similar fashion, and locally
gives

b(e)τee1 b(e) = τ−1
1 b(e)τee1 b(e)τ1. (4.4.2)

In particular, if we take Γ to be the "symplectic" fatgraph Γg depicted in Figure
4.12, we obtain, combining the three types of T-moves, the relation

[b(y1), b(x1)] · · · [b(yg), b(xg)] = θ2−2g
1 τ1 · · · τn−1τn−1 · · · τ1, (4.4.3)

where [x, y] := xyx−1y−1. Moreover, the combed CS2 moves give the relations:

b(xi)τ1b(xi) = τ−1
1 b(xi)τ1b(xi)τ1 for 1 ≤ i ≤ g (4.4.4)

b(yi)τ
−1
1 b(yi) = τ−1

1 b(yi)τ
−1
1 b(yi)τ1 for 1 ≤ i ≤ g (4.4.5)

b(yi)τ1b(xi) = τ1b(xi)τ
−1
1 b(yi)τ

−1
1 for 1 ≤ i ≤ g (4.4.6)

b(ui)τ1b(vj) = τ1b(vj)τ
−1
1 b(ui)τ1 for i < j, {u,v} ∈ {x,y}. (4.4.7)

The relations (4.4.3)-(4.4.7) are compatible with the presentation of the framed braid
group FBg,n given by Bellingeri and Gervais in [BG12, Theorem 13].

Remark 4.4.6. As for the S1-moves, it can be observed that there is no way to "comb"
them.
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CS2(x,y)

S2(x,y)
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Figure 4.11: The combed S2 move CS2(x,y) is obtained from S2(x,y), using R2

and planar isotopy ≈. Conversely, CS2(x,y) implies S2(x,y), so the two moves are
equivalent.

x∂1
y∂1

t∂

t
∂

y∂g
x∂g

Figure 4.12: The symplectic fatgraph Γg.
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4.4.3 Doubling a beak strand

We recall a standard cabling operation on framed tangles. Let k be a nonnegative
integer, γ be a framed tangle and α : M → Sg × I be a connected component of γ,
whose framing is denoted by α̃. The k-th cabling of γ along α is the tangle ∆k

α(γ)
obtained by replacing the component α with k parallel copies (α1, . . . , αk) in the
following way. Extend α : M → Sg × I to an embedding α̂ of the ribbon M × [0, 1]
such that

• α̂(., 0) = α,

• α̂(M × [0, 1]) does not intersect the other components of γ,

• α̂(∂M × [0, 1]) is on the x-axis of the disc D2,

• and
(
α̃(r), dds α̂(r, s)|s=0,

d
drα(r)

)
is positively oriented for any r ∈M .

Set αi(r) = α̂(r, ik ). The framing of α̃i is taken such that
(
α̃i(r),

d
ds α̂(r, s)|s= i

k
, ddrαi(r)

)
is positively oriented. Finally, rescale the endpoints of ∆k

α(γ) along the x-axis to get
a tangle in T̃g.

For k, l ≥ 0, and for any 1 ≤ i ≤ k, we have

∆l
αi∆

k
α(γ) = ∆k+l

α (γ).

Moreover, if α and β are two distinct components of γ,

∆l
β∆k

α(γ) = ∆k
α∆l

β(γ).

IfX = (ε1, . . . , εk) is a sequence of signs, we denote by ∆X
α (γ) the tangle obtained

from ∆k
α(γ) by reversing the orientation of the strands αi if εi = −1.

Lemma 4.4.7. At the level of beak diagrams, the 2-cabling of a strand containing a
beak behaves as follows.

e
∆2
α

α

ee
�

e

e

The proof of Lemma 4.4.7 is contained in Section 4.5.

4.5 Proof of Theorem 4.4.3

In this section, (Γ, f) is a �xed embedded fatgraph. The categories Tg, T̃g and D(Γ)
are seen as sets. Let us �rst prove the unframed case of Theorem 4.4.3. The framed
case will follow.

We identify the complement Sg \ int(S(Γ)) with the square R := [−1, 1]2 as de-
picted in Figure 4.13. This identi�cation sends the arc t− ⊂ ∂S(Γ) (recall De�nition
4.3.4) to the union of the three edges C ∪C ′ ∪C ′′ of ∂R. We set P := (−1, 1) ∈ ∂C.
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t∂

e∂

e∂

t
∂

D2 ∼=
t−

t∂

e∂

e∂

t
∂

C ′′

CP

C ′

D2
x

y

Figure 4.13: The square R on the right-hand side.

For a tangle γ ⊂ Sg × I, we consider the decomposition γ = A(γ) ∪B(γ) where
A(γ) := γ ∩ (R× I) and B(γ) = γ ∩ (S(Γ)× I). The tangle γ is said to be in generic
position if the following conditions are satis�ed.

1. A(γ) is in generic position with respect to the projection pr : R × I → C × I
parallel to the y axis (that is, the only singularities are transverse double
points),

2. B(γ) is made of a �nite number of arcs that we call the B-arcs of γ. Each
B-arc is contained in B{e,e} × I where B{e,e} is the band of S(Γ) associated
to a non-oriented edge {e, e}, and joins the two walls e∂ × I and e∂ × I by
crossing them transversally,

3. the endpoints of any B-arc are of distinct height, which allows us to distinguish
the top endpoint from the bottom endpoint of a B-arc.

4. the heights of the B-arcs are pairwise disjoint subsegments of I.

Let T gen
g denotes the set of tangles in generic position. As S(Γ) can be made

arbitrary thin up to isotopy, it is clear that any tangle can be put in generic position
up to small perturbation. Hence, we have a surjective map

T gen
g → Tg.

Let us de�ne a surjective map

π : T gen
g → D(Γ).

Take γ ∈ T gen
g . The projection pr(A(γ)) ⊂ C × I de�nes a usual tangle diagram

by distinguishing, at the level of crossings, the over strand (which is far from C × I,
that is, whose y coordinate is smaller) from the under strand. This diagram may
have endpoints on C × ∂I (corresponding to the "genuine" endpoints of γ) but also
on the edge P × I (corresponding to the endpoints of the B-arcs). From Conditions
3 and 4, these endpoints are pairwise distinct. Add to the diagram the subsegments
of P × I obtained by joining the bottom and top endpoints of the B-arcs. From
Condition 4, these segments are pairwise disjoint. Last, label each segment with e if
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and only if its top endpoint corresponds to a point of e∂ × I (see Figure 4.14). From
Condition 2, this is equivalent to saying that its bottom endpoint corresponds to a
point of e∂ × I. We thus obtain a beak diagram D. The map π : T gen

g → D(Γ) is
de�ned by π(γ) = D.

P × I

e

e∂ × I

e∂ × I

C × I

x
t
y

pr

Figure 4.14: The tangle A(γ) (in bold lines) near a B-arc. The two strands are
projected on the back side C × I. In this case, the beak has to be labeled with e.

The map π : T gen
g → D(Γ) is clearly surjective, and the following diagram

commutes:

T gen
g

TgD(Γ)

π

ϕf (4.5.1)

Since T gen
g → Tg is surjective, ϕf is also surjective.

The fact that ϕf factors through the Reidemeister moves is clear by construction.
Moreover, Lemma 4.3.6 asserts that ϕf factors through the T -moves.

Lemma 4.5.1. The map ϕf factors through the S-moves. More precisely, any S-
move can be seen as the image under π of a local isotopy between two tangles γ1 and
γ2 in generic position.

Proof. The move S1(e) corresponds to an isotopy in the neighborhood of a B-arc
whose associated beak is labeled with e. This isotopy switches the bottom and top
endpoints of the B-arc, as depicted below.
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e

e∂ × I

e∂ × I

 

e

e∂ × I

e∂ × I

This switch creates a crossing which depends on the position of the walls e∂ × I and
e∂ × I with respect to the "projection screen" C × I, that is, on the sign of ee, as
announced in Figure 4.5.

The move S2(x,y) (for {x,x} 6= {y,y}) corresponds to an isotopy in the neigh-
borhood of two B-arcs of consecutive heights, whose associated beaks are labeled
with x and y. The B-arc associated to the beak x slides up, and the other one slides
down, so that their heights switch. One can easily check that the projection of this
operation under π creates four crossings which behave as depicted in Figure 4.6.

The moves S2(e, e), S′2(e, e), S2(e, e) and S′2(e, e) correspond to isotopies of the
same kind, in the case {x,x} = {y,y} = {e, e}. In this case however, we have to
take care of the fact that the two sliding B-arcs should not intersect. Therefore, if
the height-increasing strand goes behind the height-decreasing strand near the wall
e∂ × I, the situation is necessarily the opposite near the wall e∂ × I. Observe that
Figure 4.7 depicts any possible situation.

The rest of the proof is as follows. We �rst show that two tangles of T gen
g are

isotopic if and only if they are related by a sequence of "cellular moves" (Lemma
4.5.3). Then, from the commutative diagram (4.5.1), two beak diagrams lead to the
same tangle under ϕf if and only if they are related by a sequence of projections of
cellular moves under π. We conclude by showing that such a projection can always
be decomposed into a sequence of RST -moves (Lemma 4.5.4).

De�nition 4.5.2. Two tangles γ1 and γ2 are related by a cellular move (d, α1, α2)
if d ⊂ Sg × I is an embedded bigon of edges α1, α2 such that α1 ⊂ γ1, α2 ⊂ γ2 and
γ2 = (γ1 \ α1) ∪ α2. See Figure 4.15. We write γ1 ∼ γ2 if and only if γ1 and γ2 are
related by a sequence of cellular moves.

The following fact is well known.

Lemma 4.5.3. Two tangles γ1 and γ2 are isotopic if and only if γ1 ∼ γ2.

In the case of links in R3, a self-contained proof can be found in [BZ85, Theorem
1.10] or [Kam02, Lemma 3.9]. Here, we adapt the main idea of these proofs to the
general case of tangles in Sg×I (we have not found any reference concerning tangles
in the literature). Certain additional technicalities occur; in particular, we are led to
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d

γ1

α1 d

γ1

α2

Figure 4.15: A cellular move

use the isotopy factorization [EK71, Corollary 1.3] that has already been mentioned
in the proof of Lemma 1.3.5.

Proof. If γ1 ∼ γ2, then γ1 and γ2 are isotopic. Let us prove the converse, and assume
that γ1 and γ2 are (ambient) isotopic. Since the strands of the tangles are vertical
near the endpoints, the ambient isotopy taking γ1 to γ2 can be assumed to �x a
neighborhood of Sg × ∂I. By isotopy factorization, it is thus su�cient to restrict
ourselves to the case where there is an isotopy (ft)t whose support is contained in a
3-ball B ⊂ int(Sg×I) such that f0 = id and f1(γ1) = γ2. For any r > 0, let Br ⊂ R3

denote the 3-ball of center 0 and radius r. There exist 0 < r1 < r2 < r3 < r4 < r5

and an embedding Br5 ↪→ int(Sg × I) such that Br2 ∩ γ1 = ∅ and B ⊂ Br3 . Up to
arbitrary small cellular moves of γ1, it can be assumed that γ1 is nowhere tangent
to the radii of Br5 . Let g : [0, r5]→ [0, r5] be a di�eomorphism satisfying:

• g(r) = r if r ≤ r1 or r ≥ r4,

• g(r) > r otherwise,

• and g(r2) = r3.

Let (gt)t be the radial isotopy of support Br5 de�ned by gt(r) = r + t(g(r) − r).
Since γ1 is nowhere tangent to the radii of Br5 , there exists an integer N such
that for any 0 ≤ k ≤ N − 1, the map (x, t) 7→ gt(x) de�nes an embedding ek of(
γ1 ∩ int(Br4)

)
× [ kN ,

k+1
N ]. A decomposition of the image of ek into bigons gives

rise to a sequence of cellular moves between g k
N

(γ1) and g k+1
N

(γ1). Therefore, γ1 =

g0(γ1) ∼ g1(γ1). The image under the di�eomorphism f1 of a sequence of cellular
moves between γ1 and g1(γ1) is a sequence of cellular moves between f1(γ1) = γ2

and f1(g1(γ1)). Notice that f1(g1(γ1)) = g1(γ1), since g1 takes γ1 outside of the
support B of f1. Therefore γ2 ∼ g1(γ1) ∼ γ1.

We conclude the proof of the unframed case of Theorem 4.4.3 with the following
lemma.

Lemma 4.5.4. Let γ1 and γ2 be two isotopic tangles in T gen
g . Then the beak dia-

grams π(γ1) and π(γ2) can be related by a sequence of RST moves.

Proof. From Lemma 4.5.3, γ1 and γ2 are related by a sequence of cellular moves
along bigons. Let G(Γ) ⊂ S(Γ) be an embedded graph which forms the core of S(Γ).
Up to arbitrary small perturbations, the bigons can be assumed to be transverse to
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G(Γ)× I. Under this assumption, and by taking S(Γ) su�ciently thin, any bigon d
intersects S(Γ)× I "generically" as depicted in Figure 4.16.

α2

α1

t−

Figure 4.16: A generic intersection d ∩ (S(Γ)× I).

Then, observe that d can be decomposed into a �nite number of smaller bigons
whose intersection with S(Γ)× I are of types 0, 1, 2, 3 or 4. The types 1-4 cases are
depicted below, and the type 0 case is de�ned by d ∩ (S(Γ)× I) = ∅. (There is also
a type 2' case, similar to the type 2, but where α1 and α2 are switched. This case
can be skipped without loss of generality by symmetry of the situation.)

type 1

α2

α1

e∂ e∂

type 2

α2

α1

e∂

e∂

type 3

α1 v α2

type 4

α2

α1

t
∂

t−

t∂

The cellular move along d can thus be decomposed into a sequence of elementary
cellular moves along such kinds of bigons. Moreover, it can be assumed that these
moves relate tangles in generic position.

In the rest of the proof, we check that the projections of these elementary cellular
moves under π can be written as sequences of RST moves.

Type 0. In this case, d ⊂ (R × I). Then A(γ1) and A(γ2) are isotopic relative
to the boundary in R× I. From Reidemeister Theorem, π(γ1) and π(γ2) are related
by a sequence of R-moves.

67



Type 1. Up to cellular moves of type 0, d can be assumed to be arbitrary close
to S(Γ) × I. The cellular move along d amounts to sliding a strand near a B-arc.
As seen in the proof of Lemma 4.5.1, its projection under π can thus be written as
a sequence of S-moves.

Types 2 and 3. Up to cellular moves of types 0 and 1, we can assume that

• the heights of α1 and α2 are strictly increasing,

• d is small enough so that the projections pr(α1∩ (R× I)) and pr(α2∩ (R× I))
do not cross any other strand of the beak diagram.

The projection under π of the cellular move of type 2 then corresponds to the move
T2(e). The cellular move of type 3 projects to the move T3(v).

Type 4. Since t− is identi�ed with C ∪C ′∪C ′′ (see Figure 4.13), the projection
pr(d ∩ (R× I)) necessarily crosses the whole beak diagram from its left to its right-
hand side. Up to cellular moves of types 0 and 1, we can assume that

• the heights of α1 and α2 are strictly increasing,

• d is small enough so that in a whole horizontal slice of the beak diagram
containing pr(d ∩ (R × I)), all the other strands of the diagram are vertical
and do not intersect pr(α1 ∩ (R× I)).

The projection under π of the cellular move of type 2 then corresponds to the move
T1.

This concludes the proof of the unframed case of Theorem 4.4.3.

Proof of the framed case of Theorem 4.4.3. The fact that ϕ̃f factors through the T -
moves follows from Lemma 4.3.6. Recall that the S-moves can be realized, at the
level of tangles, by sliding a B-arc along the height coordinate t. By considering the
framed version of such a local isotopy, we see that ϕ̃f factors through the S-moves.
Hence ϕ̃f : D(Γ)/R̃ST (Γ)→ T̃g is well de�ned.

Since curls commute with beaks up to R̃ST (Remark 4.4.4), they can slide every-
where along the components of the beak diagrams. Thus, the operation "adding a
curl to a component of a beak diagram" is well-de�ned in D(Γ)/R̃ST (Γ). Under ϕ̃f ,
this operation becomes "adding a twist to the corresponding component of the tan-
gle". As is well-known, two framings of the same tangle are related by a unique signed
number of twists to add to each component. It follows that ϕ̃f : D(Γ)/R̃ST → T̃g

is bijective.

Before closing this chapter, let us �nally prove Lemma 4.4.7.

Proof of Lemma 4.4.7. Figure 4.17 depicts the 2-cabling of a framed strand parame-
trized by the framed path µf (e). Compare with Figure 4.4. The �rst crossing on the
bottom comes from the "half twist" (−p ←↩ p). Then, observe that the projection
on C × I has another crossing which depends on the sign of ee, and thus behaves as
depicted on the right-hand side of Lemma 4.4.7.
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Figure 4.17: Doubling the framed path µf (e).
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Chapter 5

A universal property for surface

tangles

Let us now turn to the categorical step of our study of tangles on Sg. In this chapter,
the notion of genus g structure on a ribbon category is introduced. This is the data
of a functor C → Cg, where C is ribbon, endowed with an additional structure which
is inspired by the beak diagrammatic description of the genus g tangles. The functor
T̃→ T̃g comes with a genus g structure, and the main result of the chapter is that
this is, in some sense, the universal one.

A genus g structure depends on the choice of a fatgraph. However, we show
that any fatgraph leads essentially to the "same" notion, by observing that one of
the de�ning axioms of a genus g structure can be reinterpreted as a compatibility
condition for these structures to evolve unambiguously under elementary moves of
fatgraphs.

5.1 Ribbon markings

In this section, C is a strict ribbon category, and Cg is a category (with no extra
structure) equipped with a functor

{·} : C → Cg.

De�nition 5.1.1. Let Γ be a fatgraph. A ribbon marking of Γ relative to (C → Cg)
is a map that associates to any edge e ∈ Γ a natural automorphism (e) of the functor

{· ⊗ ·} : C × C → Cg,

(in other words, this is the data of an isomorphism (e)U,V : {UV } → {UV } of Cg for
any edge e and any pair of objects U, V of C, satisfying {f⊗g}(e)U,V = (e)U ′,V ′{f⊗g}
for any pair of morphisms f : U → U ′ and g : V → V ′ of C), such that:

• (edge conditions) for any edge e,

(e)U,V (e)U,V = {θU ⊗ idV }, (5.1.1)

• (vertex conditions) for any vertex v = (e1, . . . , ek),

(ek)U,V · · · (e1)U,V = {θU ⊗ idV }, (5.1.2)
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• (tail condition)
(t)U,V = {c−1

V,Uc
−1
U,V (θ−1

U ⊗ idV )}, (5.1.3)

• (doubling) for any edge e such that e < e,

(e)UV,W = (e)U,V W {cV,U ⊗ idW }(e)V,UW {cU,V ⊗ idW }. (5.1.4)

We de�ne a graphical calculus for Cg by "transporting" the usual graphical cal-
culus for C via the functor {.}. In other words, if f : U → U ′ is a morphism of the
category C,

f

U

U ′

is now understood as the morphism {f} : {U} → {U ′} of Cg. The isomorphisms
(e)U,V : {UV } → {UV } are represented by

(e)U,V = e

U V

, (e)UV,W = e

U V W

, etc.

In this setting, the naturality of (e) can be depicted

e

U V

f g

U ′ V ′

=
e

f g

U

U ′

V

V ′

,

and the doubling relation (5.1.4) reads

e

WU V

=

U V

e

e

W

.

As in the previous chapter, we introduce a graphical convention to cope with crossing
indeterminacy: for ε = ±1, we set

cεU,V = ε

U V

.
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Proposition 5.1.2. Any embedding f of Γ de�nes a ribbon marking of Γ relative to
(T̃→ T̃g), denoted by (e) = 〈e〉f , with

〈e〉fU,V := ∆U
α∆V

β

(
ϕ̃f

( ))
,e

α β

where the right-hand side beak diagram is seen as a tangle through ϕ̃f : D(Γ)→ T̃g,
and where the symbol ∆ denotes the cabling operation de�ned in Section 4.4.3.

Proof. The naturality of 〈e〉f is clear: it is a well-known feature of the cabling
operation that tangles can slide along the parallel copies of strands. The edge,
vertex and tail conditions immediately follow from the T moves of beak diagrams
(compare these conditions to the relations of Lemma 4.3.6). The doubling condition
follows from Lemma 4.4.7.

We derive the following relations from the de�ning axioms of a ribbon marking.

Lemma 5.1.3. For any edge e, we have

U V

e

ee

e

W

= e

WU V

=

e

U V

ee

e

W

.

Proof. In the case e < e, the �rst equality is the doubling condition. We show the
second equality in the case e < e. On the one hand,

(e)UV,W (e)UV,W = = =
e

UV W

e

WUV
U V W

On the other hand, writing the inverse of the doubling condition for e and using the
edge condition leads to

(e)−1
UV,W = . ,Thus, (e)UV,W = =

e

U V

e

W e

U V

e

W

e

U V

e

W
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which is the second equality of the lemma in the case e < e. Now, the equality
between the right-hand and the left-hand terms (in the case e < e as well as e < e)
is obtained by naturality of (e):

=
e

U V W

e

U V W

We have thus shown the two equalities of the lemma in any case.

Lemma 5.1.4. For any edge e, we have (e)1,W = idW .

Proof. By writing the doubling condition in the case U = V = 1, we get (e)1,W =

((e)1,W )2.

Lemma 5.1.5. For any edge e, we have

V ∗ V

e

W

=

ee

V ∗ V

e

W (5.1.5)

Proof. By naturality of (e), and using Lemma 5.1.4, we have

=
e

V ∗ V W V ∗ V W

Using Lemma 5.1.3 and the edge condition, we thus have

= = = =

e

V ∗ V W

e

V ∗ V

e

W

e

V ∗ V

e

ee

e

W V ∗ V

ee

e

W

ee

V ∗ V

e

W
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Remark 5.1.6. In the particular case of tangles, the equality between the left and
right-hand sides of Lemma 5.1.3 corresponds to the combed move CS2(e, e) of Sec-
tion 4.4.2. The identity of Lemma 5.1.4 is obvious, and the relation (5.1.5) corre-
sponds to the move S1(e) (up to the Reidemeister move R2).

5.2 Genus g structure on a ribbon category

In the last section, we have de�ned the notion of ribbon marking, whose de�ning
axioms are algebraic formulations of the T -moves and the cabling of a beak. Lemmas
5.1.3 and 5.1.5, corresponding to some of the S-moves, have been obtained from these
axioms. But so far, we are not able to derive the move S2(x,y) for {x,x} 6= {y,y}
(in fact, this can be done in some cases, as shown in Section 5.3). This motivates
the following de�nition.

De�nition 5.2.1. A ribbon marking of Γ relative to (C → Cg) is called a genus
g structure on the strict ribbon category C if it satis�es the additional condition
cs2(x,y) depicted below

=

x

U V

yx

y

xy

W

yx

U V

y

xy

x

W (5.2.1)

for any edges x,y ∈ Γ such that {x,x} 6= {y,y}.

Remark 5.2.2. As in the context of beak diagrams (Remark 4.4.5), it can be easily
checked that the condition cs2(x,y) implies cs2(y,x), and, using the edge condition,
that cs2(x,y) also implies cs2(x,y). The number of conditions cs2 needed to de�ne
a genus g structure can thus be divided by eight.

Since the conditions cs2 are satis�ed in the case of tangles (they correspond to
the combed version of the move S2(x,y)), the ribbon marking 〈e〉f of Γ associated
to any embedding f of Γ is a genus g structure. We can now state the main result
of this chapter.

Theorem 5.2.3. Let V be an object of C and F : (T̃, (+)) → (C, V ) be the functor
of Theorem 3.2.2. Assume that C → Cg is endowed with a genus g structure for a
fatgraph Γ. We have seen that an embedding f of Γ endows T̃→ T̃g with a genus g
structure. In this context, there exists a unique functor Ff : T̃g → Cg such that the
following diagram commutes and (F, Ff ) preserves the genus g structure.

T̃ C

T̃g Cg

F

Ff
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In other words, any genus g structure for Γ gives rise to a functorial invariant of
framed tangles on Sg (depending on the choice of an embedding of Γ).

Theorem 5.2.3 is obtained as a corollary of the following lemma.

Lemma 5.2.4. The category T̃g is presented by the generators {γ} (for any γ ∈ T̃),
(e)ε,X (for any edge e ∈ Γ, ε = ±1, and any sequence of signs X) and the relations

1. for any composable pair (γ1, γ2) in T̃, {γ2}{γ1} = {γ2γ1},

2. for any sequence of signs X, {idX} = idX ,

3. for any edge e, ε = ± and any tangle γ : X → Y in T̃,

{id(ε) ⊗ γ}(e)ε,X = (e)ε,Y {id(ε) ⊗ γ},

4. the relations (5.1.1)-(5.1.3) for U = ± and any sequence of signs V ,

5. the relation between the left and the right-hand sides of Lemma 5.1.3 for U = ±,
V = ±, and any sequence of signs W ,

6. the relation (5.1.5) for V = ± and any sequence of signs W ,

7. the relation (5.2.1) for U = ±, V = ±, and any sequence of signs W .

Proof. Let us de�ne a sliced beak diagram to be a beak diagram which can be sliced
by horizontal lines such that each domain between consecutive horizontal lines has
either no beak or is the disjoint union of a single beak with vertical segments (see
the left-hand side of Figure 5.1). The set of sliced beak diagrams considered up
to vertical rescaling form a well-de�ned category (with same objects as D(Γ) and
the usual composition), which is denoted by sD(Γ). There is a forgetful functor
sD(Γ)→ D(Γ) which considers the sliced beak diagrams up to planar isotopy.

Let F be the category generated by the morphisms {γ} and (e)ε,X up to the
relations 1 and 2 of the Lemma. There is a functor ς : sD(Γ) → F which sends
each slice Di with no beak to the corresponding tangle {ϕ̃(Di)}, and each slice Bj
consisting of a beak labeled with e (of source and target (ε)⊗X) to (e)ε,X . Moreover,
for any embedding f of Γ, the following diagram commutes, where ρf is de�ned by

ρf ({γ}) = γ and ρf ((e)ε,X) = 〈e〉f(ε),X .

sD(Γ) F

D(Γ) T̃g

ς

ϕ̃f

ρf

Let us denote by ∼ the equivalence relation on F generated by the relations 3-
7. To prove the lemma, it is su�cient to check that if A and B are two sliced
diagrams whose underlying beak diagrams in D(Γ) are equivalent up to R̃ST (Γ),
then ς(A) ∼ ς(B).

First, assume that A and B are the same in D(Γ). That is, A and B are planar
isotopic. We construct from A and B new sliced diagrams A′ and B′ by "lifting
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. . .

D1

D2

D3

e1

e2

. . .

. . .

. . .

. . .

D1

D2

D3

D′1

D′2

D′3

e1

e2

Figure 5.1: On the left: an example of sliced beak diagram A, where D1, D2 and D3

are three diagrams with no beaks, and e1, e2 ∈ Γ. On the right: the corresponding
sliced beak diagram A′ obtained by lifting the beaks.

the beaks" as depicted in Figure 5.1. The relation 3 implies ς(A) ∼ ς(A′) and
ς(B) ∼ ς(B′). Moreover, since A and B are planar isotopic, the "bottom slices"
(corresponding to D′1 in Figure 5.1) of A′ and B′ are planar isotopic, and all the
other slices coincide. We have thus ς(A′) ∼ ς(B′), hence ς(A) ∼ ς(B).

Now, assume that A and B are related by an R̃-move in D(Γ). Up to a planar
isotopy, we can assume that this move is performed in a single slice Di with no beak,
outside of which all the other slices remain identical. Since ς(Di) does not change
under the R̃-move, we have ς(A) = ς(B).

If A and B are related by a move S1(e), we can assume (up to planar isotopy and
an R2-move) that A and B are identical except in a sequence of consecutive slices
where they di�er by the relation 6. Hence ς(A) ∼ ς(B).

The rest of the proof is straightforward, using similar arguments. Recall that
the S2-moves are equivalent (up to R2) to their combed versions CS2, which can be
obtained from the relations 5 and 7. The T -moves are obtained from the relation
4.

Proof of Theorem 5.2.3. The functor Ff is fully determined by the conditions

Ff (γ) = {F (γ)}

for any γ ∈ T̃ (commutativity of the square of the theorem) and

Ff (〈e〉f ε,X) = (e)Ff ((ε)),Ff (X) = (e){F ((ε))},{F (X)}

(Fg preserves the genus g structure). Moreover, we have seen that all the relations
of Lemma 5.2.4 are satis�ed in the general context of a ribbon structure relative to
(C → Cg). Hence the existence and the uniqueness of Ff .
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5.3 Genus g structures as compatible families of ribbon

markings

Throughout this section, we assume that the objects of C are identi�ed with se-
quences of signs (the object V of Theorem 5.2.3 is now (+)).

By de�nition, a genus g structure on a strict ribbon category C depends on the
choice of a fatgraph. In this section, we show that the genus g structures relative to
two distinct fatgraphs Γ and Γ′ are in one-to-one correspondence.

De�nition 5.3.1. A fatgraph Γ′ is obtained from Γ by an edge collapse (we write
Γ Γ′) if there is an edge a of Γ distinct from t and t, such that a and a belong to
distinct vertices of Γ, and such that Γ′ is identi�ed with the set Γ \ {a,a} endowed
with the restriction of the linear order ≤ and the involution e 7→ e of Γ.

If the thickened graph S(Γ) is embedded in Sg,1, and if Γ Γ′, then S(Γ′) comes
with a well-de�ned embedding by "collapsing" the band of S(Γ) corresponding to
the non-oriented edge {a,a}, as depicted below:

d

a

c

e

a

b

d

e

c

b

edge

collapse

d c

e b

d

e

c

b

vertex

split

d c
c

f

b

d

f

e
e b

Thus, the edge collapse operation is also de�ned for embedded fatgraphs (Γ, f) 
(Γ′, f ′). The inverse of an edge collapse is a vertex split, which can be de�ned for
embedded fatgraphs as well.

In Section 4.3, we have de�ned a marking µf : Γ→ π̃1 for any embedded fatgraph
(Γ, f). Observe that by construction, the family of markings (f 7→ µf ) is compatible
with edge collapse in the sense that if (Γ, f) (Γ′, f ′), then µf ′(e) = µf (e) for any
edge e of Γ′.

In Section 5.1, we have de�ned a ribbon marking (e 7→ 〈e〉f ) relative to (T̃→ T̃g)

for any embedded fatgraph (Γ, f). (For short, we simply write 〈e〉f to refer to this
ribbon marking.) Since (f 7→ µf ) is compatible with edge collapse, (f 7→ 〈e〉f ) is

also compatible. More precisely: if (Γ, f) (Γ′, f ′), then 〈e〉f
′

U,V = 〈e〉fU,V for any
edge e of Γ′ and any sequences of signs U, V .

This motivates the following de�nition.

De�nition 5.3.2. A compatible family of ribbon markings relative to (C → Cg) is
the assignment1 of a ribbon marking (e)f of Γ to each embedded fatgraph (Γ, f),

1"Fatgraphs", "embedded fatgraphs" and "ribbon marked fatgraphs" are endowed with category
structures whose morphisms are generated by edge collapse. In this setting, a compatible family of
ribbon markings can alternatively be de�ned as a functor from "embedded fatgraphs" to "ribbon
marked fatgraphs" whose projection on "fatgraphs" is the identity.
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such that if (Γ, f)  (Γ′, f ′), then (e)f
′

U,V = (e)fU,V for any edge e of Γ′ and any
objects U, V .

The above remark can be reformulated as follows.

Lemma 5.3.3. The assignment (Γ, f) 7→ 〈e〉f de�nes a compatible family of ribbon
markings relative to (T̃→ T̃g).

We are now able to state the main result of this section.

Theorem 5.3.4. If Γ is a fatgraph, any embedding f of Γ gives rise to a one-to-
one correspondence between the genus g structures relative to Γ and the compatible
families of ribbon markings. In particular, the genus g structures relative to Γ are in
one-to-one correspondence with the genus g structures relative to any other fatgraph
Γ′.

The rest of this section is devoted to proving Theorem 5.3.4.

Lemma 5.3.5. Let Γ0 be a fatgraph, and (e)0 be a genus g structure for Γ0. Then
for any embedding f0 of Γ0, there is a unique compatible family of ribbon markings
(f 7→ (e)f ) such that (e)f0 coincides with (e)0.

Proof. From Theorem 5.2.3, the genus g structure (e)0 together with the embedding
f0 of Γ0 gives rise to a functor Ff0 : T̃g → Cg. We consider the family of ribbon
markings (f 7→ (e)f ) de�ned by

(e)fU,V := Ff0

(
〈e〉fU,V

)
for any sequence of signs U, V (recall that in this section, the objects of C are iden-
ti�ed with sequences of signs). Since (f 7→ 〈e〉f ) is a compatible family (Lemma
5.3.3), (f 7→ (e)f ) is also compatible. Moreover, by de�nition of Ff0 we have
(e)f0 = Ff0

(
〈e〉f0

)
= (e)0.

It is known [Har86, Pen87] that two embedded fatgraphs are always related by
a sequence of edge collapse and vertex split. Moreover, the vertex condition implies
that ribbon markings of a compatible family evolve unambiguously under vertex
split. It follows that a compatible family of ribbon markings (f 7→ (e)f ) satisfying
(e)f0 = (e)0 is unique.

The following fact will be useful to prove the next lemma.

Lemma 5.3.6. Let Γ be a fatgraph and x and y be two edges such that y < x and
(y < e < x)⇒ (e 6= y,x). Then, there exists a sequence of edge collapses and vertex
splits which takes Γ to a new fatgraph Γ′ such that

• the relative ordering of the edges x,x,y,y is the same in Γ′ as in Γ,

• Γ′ has a vertex v = (x,y, z).

Proof. Up to a sequence of vertex splits, we can assume that any vertex of Γ is
trivalent. Note that any edge e 6= t, t of a trivalent graph can be collapsed (since e
and e belong to disinct vertices). The result of an edge collapse on e followed by the
opposite vertex split is known as a Whitehead move on e.
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e1

e2

a

e1

b

y

a

e2

b

Whitehead

move

y e2

e2

c

b

y

c

a

a b

In the trivalent graph Γ, there is a sequence of consecutive edges y < e1 < · · · <
em < x such that ei 6= y,x for any 1 ≤ i ≤ m. We call these edges the intermediate
edges. Let us show that a Whitehead move on e1 followed by a Whitehead move on e2

always decreases the number of intermediate edges by one or more (this is su�cient
to prove the lemma since such moves do not change the relative order of the edges
x,x,y,y). We �rst consider the Whitehead move on e1. We say that the situation
is good relative to e1 if the Whitehead move decreases the number of intermediate
edges. Since y is not intermediate, c cannot be intermediate. Therefore, we observe
that the situation is good relative to e1 unless c is intermediate and e1 is not. In this
situation, the number of intermediate edges remains the same after performing the
Whitehead move on e1. But in the next step, the situation becomes good relative
to e2 since the fact that c is intermediate implies that e2 is intermediate.

Here, we have not taken care of the fact that some of the edges of the above
picture may coincide. In such a case, it can be easily checked that a = e2 or y = b.
If a = e2, then x = e1 or e2, and the lemma follows. If y = b, then c cannot be
intermediate, and the situation is good relative to e1. The Lemma is now proven in
any case.

Lemma 5.3.7. A ribbon marking taken from a compatible family is a genus g struc-
ture. In other words, if (f 7→ (e)f ) is a compatible family of ribbon markings, and if
(Γ0, f0) is an embedded fatgraph, then (e)f0 satis�es the conditions cs2.

Proof. Let x,y ∈ Γ0 be two edges such that y < x and (y < e < x) ⇒ (e 6= y,x).
From Lemma 5.3.6, there exists a �nite sequence of edge collapses and vertex splits
taking (Γ0, f0) to an embedded fatgraph (Γ1, f1) having a vertex v = (x,y, z). The
following graphical calculus is understood with respect to the ribbon marking (e)f1 .
Using the vertex and edge condition, we have

= .
x

UV W

y
z

UV W

Thus, from Lemma 5.1.3, and then using the vertex condition again:
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= = ,

U V

x

xx

x

y

yy

W

y

U V

z

zz

z

W

U V

x

y

zz

x

y

W

which can be simpli�ed

= .

x

U V

y

yy

W

xx

U V

y

zz

x

W

Since y < x are consecutive in Γ1, we have

xx = yx, 1 = yx, and yy = xy.

Moreover, since z < y and x < z are consecutive in Γ1, we have

zz = xy.

The last identity thus coincides with the relation cs2(x,y) for the ribbon marking
(e)f1 . By compatibility of the family of ribbon markings, and since the relative
ordering of the edges x,x,y,y is the same in Γ′ as in Γ, we obtain the relation
cs2(x,y) for the ribbon marking (e)f0 .

In the beginning of the proof, we have assumed that y < x. Note that the
relation cs2(x,y) can be deduced for any pair of edges x,y (see Remark 5.2.2).

Theorem 5.3.4 is an immediate consequence of Lemmas 5.3.5 and 5.3.7.

5.4 The non-strict case

We generalize Theorem 5.2.3 to the case where the ribbon category C is equipped with
an associativity constraint a which is not necessarily trivial. Let Cg be a category
equipped with a functor {.} : C → Cg, and let Γ be a fatgraph. The notion of ribbon
marking of Γ relative to (C → Cg) is adapted from De�nition 5.1.1 in the obvious
way. The doubling condition (5.1.4) becomes, for any edge e such that e < e,

(e)UV,W = (e)′U,V,W {cV,U ⊗ idW }(e)′V,U,W {cU,V ⊗ idW },

where (e)′U,V,W := a−1
U,V,W (e)U,V WaU,V,W .
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A genus g structure on C is a ribbon marking of Γ that satis�es the additional
condition: for any edges x,y,

{cxyV,U ⊗ idW }(y)′V,U,W {c
yx
U,V ⊗ idW }(x)′U,V,W

= (x)′U,V,W {c
xy
V,U ⊗ idW }(y)′V,U,W {c

yx
U,V ⊗ idW }.

As one would expect, the categories of quasi (framed) tangles on Sg, denoted by
qTg and qT̃g, are de�ned in the same way as qT and qT̃ (De�nition 3.3.1) by

replacing T with Tg and T̃ with T̃g respectively. Again, the inclusion of the disc D2

in the surface Sg gives rise to a functor qT̃ → qT̃g. An embedding f of Γ endows

qT̃ → qT̃g with a genus g structure denoted by 〈e〉f , which is de�ned as in the

strict case except that for any parenthesized words U and V , the tangle 〈e〉fU,V has
a parenthesized source and target U ⊗ V .

In this setting, Theorem 5.2.3 becomes:

Theorem 5.4.1. Let V be an object of C and qF : (qT̃, (+))→ (C, V ) be the functor
of Theorem 3.3.2. Assume that C → Cg is endowed with a genus g structure for a
fatgraph Γ. Then, there exists a unique functor qFf : qT̃g → Cg such that the
following diagram commutes and (qF, qFf ) preserves the genus g structure.

qT̃ C

qT̃g Cg

qF

qFf

In other words, any genus g structure for Γ gives rise to a functorial invariant of
parenthesized framed tangles on Sg (depending on the choice of an embedding of Γ).

Proof. Since any tangle in qT̃g can be written as a composition of tangles in qT̃ and

of tangles of the form 〈e〉fU,V for some parenthesized words U and V , the uniqueness
of qFf follows from its existence.

Let us construct the functor qFf explicitly from Theorem 5.2.3. We come back to
the notations of the proof of Theorem 3.3.2 and consider the equivalence of categories
η : Cstr → C. Observe that the composition Cstr → C → Cg is endowed with a genus
g structure with

(e)S,T := {aη(S)η(T )→η(ST )}(e)η(S),η(T ){aη(ST )→η(S)η(T )}.

From Theorem 5.2.3, there is a pair of functors (F, Ff ) : (T̃, T̃g) → (Cstr, Cg) such
that the following diagram commutes:

qT̃

qT̃g

T̃

T̃g

Cstr C

Cg

F η

Ff
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The composition

qT̃g T̃g Cg
Ff

is denoted by pFf : qT̃g → Cg.
For a quasi-tangle γ : X → Y , we set

qFf (γ) = {aη(F (Y ))→qF (Y )}pF (γ){aqF (X)→η(F (X))},

where W is obtained from W by forgetting the parentheses. qFf is a functor and
satis�es the conditions of the theorem.

5.5 The elliptic case

We give here a particular version of the notion of genus one structure, which will be
used in the next chapter to de�ne the combinatorial elliptic invariant. We keep the
notations of Section 5.4.

De�nition 5.5.1. An elliptic structure relative to (C → C1) is a pair (X,Y ) of
natural automorphisms of the functor {· ⊗ ·} : C × C → C1 satisfying the following
identities for any objects U, V,W of C (where for Z := X or Z := Y , we set Z ′U,V,W :=
a−1
U,V,WZU,V WaU,V,W ).

XUV,W = X ′U,V,W {cV,U ⊗ idW }X ′V,U,W {cU,V ⊗ idW }, (5.5.1)

YUV,W = Y ′U,V,W {c−1
V,U ⊗ idW }Y ′V,U,W {c−1

U,V ⊗ idW }, (5.5.2)

YU,VXU,V Y
−1
U,VX

−1
U,V = {cV,UcU,V }, (5.5.3)

Y ′U,V,W {cV,U ⊗ idW }X ′V,U,W {cU,V ⊗ idW } = {cV,U ⊗ idW }X ′V,U,W {c−1
U,V ⊗ idW }Y ′U,V,W .

(5.5.4)

Lemma 5.5.2. Elliptic and genus 1 structures are equivalent notions. A correspon-
dence is given, for the genus 1 fatgraph Γ1 = {t < y < x < y < x < t}, by
XU,V = (x)U,V and YU,V = (y)U,V {θ

−1
U ⊗ idV }.

The fatgraph Γ1 is the symplectic fatgraph Γg of Figure 4.12 in the case g = 1.

Proof. Let us �rst show that Relations (5.5.1)-(5.5.4) follow from the de�nition of
a genus 1 structure for Γ1 with XU,V = (x)U,V and YU,V = (y)U,V {θ

−1
U ⊗ idV }. We

do not give the detail of the computations, which can be immediately checked by
graphical calculus. The (only) vertex condition for Γ1 is

(y)U,V (x)U,V (y)U,V (x)U,V (t)U,V = {θU ⊗ idV }.

Using the tail condition,

(y)U,V (x)U,V (y)U,V (x)U,V = {cV,UcU,V (θU ⊗ idV )2}.

Using the edge conditions for x and y, we obtain Relation (5.5.3). Relation (5.5.1)
is the doubling condition for x. Relation (5.5.2) follows from Lemma 5.1.3 (in the
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case e = y) together with the fact that θUV = cV,UcU,V (θU ⊗ θV ). Finally, Relation
(5.5.4) follows from the relation cs2(x,y).

Conversely, the isomorphisms (e)U,V can be expressed from X and Y for any
edge e of Γ1, and it is straightforward to check that all the de�ning axioms of a
genus 1 structure for Γ1 can be recovered from Relations (5.5.1)-(5.5.4).
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Chapter 6

The combinatorial invariants Ze(τ ).

In this chapter, we de�ne the notion of in�nitesimal elliptic structure. The category
of elliptic Jacobi diagrams A1 is endowed with such a structure. Moreover, the
notion of elliptic associator introduced in [Enr] allows us to construct an elliptic
structure from an in�nitesimal one. As a consequence of Theorem 5.4.1, any elliptic
associator e produces a combinatorial invariant Ze of framed parenthesized elliptic
tangles.

The parallel transport of a reduced version of the KZB equation gives rise to an
elliptic associator e(τ) for any elliptic parameter τ . In the last section, we study the
dependence of the invariant Ze(τ) in this parameter.

6.1 In�nitesimal elliptic structures and formal integra-

tion

Let G be a category and S be an in�nitesimal G-category as de�ned in Section 3.4. We
consider a graded linear G-category S1 equipped with a linear functor {.} : S → S1

which is the identity on objects and which multiplies the degree by two.

De�nition 6.1.1. An in�nitesimal elliptic structure relative to (S → S1) is the data
of two natural families of endomorphisms xU,V : U⊗V → U⊗V and yU,V : U⊗V →
U ⊗ V such that for any triple of objects U, V,W , xU,V and yU,V are of degree one
in S1(idUV ) and the following relations are satis�ed (for z := x or z := y).

zUV,W = zU,V W + {σV,U ⊗ idW }zV,UW {σU,V ⊗ idW }, (6.1.1)

zU,V W {σV,U ⊗ idW }zV,UW {σU,V ⊗ idW }
= {σV,U ⊗ idW }zV,UW {σU,V ⊗ idW }zU,V W , (6.1.2)

xU,V W {σV,U ⊗ idW }yV,UW {σU,V ⊗ idW }
− {σV,U ⊗ idW }yV,UW {σU,V ⊗ idW }xU,V W = {tU,V ⊗ idW }, (6.1.3)

xU,V yU,V − yU,V xU,V = −{tU,V }. (6.1.4)
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Recall that there is a graded linear functorA→ A1 which consists in seeing a Ja-
cobi diagram as an elliptic Jacobi diagram with no external vertex (while multiplying
the degree by two).

Lemma 6.1.2. The functor A→ A1 is endowed with an elliptic structure with

U V

· · · · · ·xxU,V = and

U V

· · · · · ·
yyU,V =

where (x, y) is the symplectic basis of H1.

Proof. Note that the coproduct and antipode operations de�ned on standard Jacobi
diagrams in Section 1.4 are compatible with the additional relations STU-like and
I1 on elliptic Jacobi diagrams, and are thus well de�ned for morphisms of A1. It is
thus enough to check that the above de�ned assignments xU,V and yU,V satisfy the
conditions (6.1.1)-(6.1.4) in the case where U = V = W = (+), as the general case
can be deduced by applying the appropriate coproducts and antipodes.

Condition (6.1.1) is satis�ed by de�nition of the box notation (here for z := x):

x = x + x
.

Conditions (6.1.2) and (6.1.3) correspond to the STU-like relation:

x

x
=

x

x

,

y

x
−

x

y

=

.

Finally, Condition (6.1.4) follows from

y

x
−

x

y
= − ,

the latter relation being obtained as in the proof of Lemma 2.4.8.

In the following, we may omit to mention the symmetry morphisms (writing
xV,UW instead of {σV,U⊗idW }xV,UW {σU,V ⊗idW }) if it is clear from the context that
we are considering a morphism UVW → UVW ) as they can be put in automatically.
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Instead of proving an elliptic analogue of Theorem 3.4.4, we state here a weaker
version that is immediate and su�cient for our purpose.

Let S → S1 be an in�nitesimal elliptic structure. We consider a tensor product
of objects V = V1 · · ·Vn. The composition of the category S1 endows the vector
space S1(idV ) with a structure of a graded algebra.

Lemma 6.1.3. There is a unique graded algebra morphism Ψ : Ut1,n → S1(idV )
such that (for z := x or z := y),

Ψ(zi) = zVi,V1···Vi−1Vi+1···Vn .

Moreover, we have

Ψ(tij) = {tVi,Vj ⊗ idV1···Vi−1Vi+1···Vj−1Vj+1···Vn}.

Proof. From De�nition 2.1.1, Ut1,n is presented by the generators xi, yi (for 1 ≤ i ≤
n), tij = tji (for 1 ≤ i 6= j ≤ n) and the following relations (for any distinct i, j, k)

[xi, xj ] = [yi, yj ] = 0, (6.1.5)

[xi, yj ] = tij , (6.1.6)

[xi, tjk] = [yi, tjk] = 0, (6.1.7)

[xi, yi] = −
∑
l 6=i

til. (6.1.8)

The fact that Ψ preserves the relations (6.1.5), (6.1.6) and (6.1.8) follows from the
conditions (6.1.2), (6.1.3) and (6.1.4) respectively. Ψ preserves the relation (6.1.7)
by naturality of zVi,V1···Vi−1Vi+1···Vn (z := x or z := y).

We give an elliptic analogue of Theorem 3.5.2, providing some su�cient con-
ditions to produce an elliptic structure on a ribbon category from an in�nitesimal
one.

Theorem 6.1.4. Let S → S1 be an in�nitesimal elliptic structure, and Ŝ be the rib-
bon category obtained as in Theorem 3.5.2 from a Drinfeld associator Φ. Let X(A,B)
and Y (A,B) ∈ exp(f(A,B)) be two formal series in non-commuting variables A,B
satisfying (

Y (x1, y1), X(x1, y1)
)

= exp(t12) (6.1.9)

in exp(̂t1,2), where (a, b) := aba−1b−1 denotes the commutator, and

X(x1 + x2, y1 + y2) = Φ(t12, t23)−1X(x1, y1)Φ(t12, t23) exp(t12/2)

Φ(t12, t13)−1X(x2, y2)Φ(t12, t13) exp(t12/2), (6.1.10)

Y (x1 + x2, y1 + y2) = Φ(t12, t23)−1Y (x1, y1)Φ(t12, t23) exp(−t12/2)

Φ(t12, t13)−1Y (x2, y2)Φ(t12, t13) exp(−t12/2), (6.1.11)
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Φ(t12, t23)−1Y (x1, y1)Φ(t12, t23) exp(t12/2)

Φ(t12, t13)−1X(x2, y2)Φ(t12, t13) exp(t12/2)

= exp(t12/2)Φ(t12, t13)−1X(x2, y2)Φ(t12, t13)

exp(−t12/2)Φ(t12, t23)−1Y (x1, y1)Φ(t12, t23) (6.1.12)

in exp(̂t1,3). Then the assignment

XU,V := X(xU,V , yU,V ) and YU,V := Y (xU,V , yU,V )

de�nes an elliptic structure Ŝ → Ŝ1.

Proof. This assertion can easily be checked by comparing the relations (6.1.9)-
(6.1.12) with the conditions (5.5.1)-(5.5.4). Let us show for instance that the assign-
ment XU,V := X(xU,V , yU,V ) satis�es the condition (5.5.1). The others conditions
are obtained by similar arguments. Using 6.1.1, we have

XUV,W = X(xUV,W , yUV,W )

= X(xU,V W + xV,UW , yU,V W + yV,UW ).

Therefore, it follows from (6.1.10) and Lemma 6.1.3 (in the case n = 3) that

XUV,W = {Φ(tU,V ⊗ idW , idU ⊗ tV,W )−1}X(xU,V W , yU,V W )

{Φ(tU,V ⊗ idW , idU ⊗ tV,W )(σV,U exp(tV,U/2)⊗ idW )Φ(tV,U ⊗ idW , idV ⊗ tU,W )−1}
X(xV,UW , yV,UW ){Φ(tV,U ⊗ idW , idV ⊗ tU,W )(σU,V exp(tU,V /2)⊗ idW )}. (6.1.13)

Since the associativity constraint and the braiding of Ŝ are

cX,Y = σX,Y exp(tX,Y /2) and aX,Y,Z = Φ(tX,Y ⊗ idZ , idX ⊗ tY,Z),

we see that (6.1.13) corresponds to the condition (5.5.1)

XUV,W = X ′U,V,W {cV,U ⊗ idW }X ′V,U,W {cU,V ⊗ idW }.

In the two next sections, we recall the results of [CEE10, Enr] which provide two
di�erent kinds of solution for the equations (6.1.9)-(6.1.12).

6.2 The elliptic associators e(Φ) = (XΦ, YΦ)

In the completed free Lie algebra f̂(A,B) generated by the variables A and B, we
set

Ã :=
adB

eadB − 1
(A) = A− 1

2
[B,A] +

1

12
[B, [B,A]] + . . . ,

and T := [B,A].

De�nition 6.2.1. To any Drinfeld associator Φ(A,B) ∈ exp(̂f(A,B)), we associate
the pair e(Φ) = (XΦ, YΦ) with XΦ, YΦ ∈ exp(̂f(A,B)) de�ned by:

XΦ(A,B) = Φ(Ã, T ) exp(Ã)Φ(Ã, T )−1 (6.2.1)

YΦ(A,B) = exp(T/2)Φ(−Ã− T, T ) exp(B)Φ(Ã, T )−1 (6.2.2)
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Theorem 6.2.2. [CEE10, Enr] The above de�ned XΦ(A,B) and YΦ(A,B) satisfy
the relations (6.1.9)-(6.1.12).

Remark 6.2.3. It follows from the proof of [Enr, Proposition 3.8] (see also [CEE10,
Proposition 5.3]) thatXΦ(A,B) and YΦ(A,B) satisfy (6.1.9) in exp(̂̄t1,2) and (6.1.10)-

(6.1.12) in exp(̂̄t1,3), where t̄1,n is the quotient of t1,n by the vector space generated
by the central elements

∑n
i=1 vi for any v ∈ H1. Let us check that these rela-

tions still hold in exp(̂t1,2) and exp(̂t1,3). There is a unique Lie algebra morphism
f : t1,n → H1

∼= C2 (where H1 is seen as a commutative Lie algebra) with f(vi) = 0
if i < n and f(vn) = v for any v ∈ H1. Together with the projection π : t1,n → t̄1,n,

it gives rise to an isomorphism π ⊕ f : t1,n
'→ t̄1,n ⊕ C2. Since the image under f of

the logarithms of the relations (6.1.9)-(6.1.12) in t̂1,2 and t̂1,3 is 0, they are satis�ed
in exp(̂t1,2) and exp(̂t1,3).

From Theorem 6.2.2 and Theorem 6.1.4, the pair e(Φ) = (XΦ, YΦ) produces
an elliptic structure Â → Â1 from the in�nitesimal elliptic structure A → A1.
Using Lemma 5.5.2 and Theorem 5.4.1, this gives rise to a functorial invariant of
parenthesized framed tangles in genus one Ze(Φ) : qT̃1 → Â1, such that the following
diagram commutes:

qT̃ Â

qT̃1 Â1

ZΦ

Ze(Φ)

As in the usual case, Ze(Φ) induces an invariant of unframed tangles Ze(Φ) :

qT1 → Â1/FI.

6.3 The elliptic associators e(τ) = (Xτ , Yτ)

We now turn to the elliptic analogue of Section 3.6, following [Enr, Section 5].
In t̄1,2, we denote x := x1, y := y1, and t = −[x, y]/2πi = t12/2πi. Note that t̄1,2

is freely generated by x, y.
Let us consider the function

κ(z) := x+

(
Ψ0(z)− 1

z

)
t+

∞∑
k=1

Ψk(z)(adx)k(t),

where the Ψk are the functions (depending on an elliptic parameter τ) de�ned in
Section 2.2. The following "reduced" KZB equation is derived from the connection
Ωτ de�ned in Chapter 2 (for n = 2, z1 = z and z2 = 0):

dF

dz
=

(
t

z
+ κ(z)

)
F (6.3.1)

Lemma 6.3.1. There exists a unique solution F0(z) of Equation (6.3.1) in exp(̂̄t1,2),
analytic in the domain B = {a+ bτ , 0 < a < 1, 0 < b < 1} and with the asymptotic
behavior F0(z) ∼ zt as z → 0, which means that F0(z) = f(z)zt for some function f
with f(0) = 1.
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Proof. By inserting the expression F0(z) = f(z)zt into (6.3.1), we get

f ′(z)zt + f(z)
t

z
zt =

(
t

z
+ κ(z)

)
f(z)zt.

Hence f(z) satis�es the di�erential equation

f ′(z)− 1

z
[t, f(z)] = κ(z)f(z).

Let us write in power series f(z) = 1 +
∑∞

k=1 fkz
k and κ(z) =

∑∞
k=0 κkz

k with
coe�cients fk, κk ∈ Ût̄1,2. We then obtain the following recurrence relation for the
coe�cient of zk−1

(k − adt)fk =

k−1∑
l=0

κk−1−lfl.

The operator k − adt is invertible:

(k − adt)−1 =
1

k

∞∑
s=0

(
adt

k

)s
.

(The above sum is well-de�ned since adt increases the grading.) Hence f(z) is
uniquely determined by

fk = (k − adt)−1

(
k−1∑
l=0

κk−1−lfl

)
.

Let F0(z) be the solution of (6.3.1) introduced in Lemma 6.3.1. From the equiv-
ariance of the KZB equation, z 7→ F0(z+1) and z 7→ exF0(z+τ) are also solutions of
(6.3.1) and hence are related to F0(z) by multiplication by a constant on the right.

De�nition 6.3.2. We set

Xτ := F0(z)−1F0(z + 1) and Yτ := F0(z)−1exF0(z + τ).

Lemma 6.3.3. Let Fε(z) be the solution of (6.3.1) such that Fε(ε) = 1. Then

Xτ = lim
ε→0

ε−tFε(ε+ 1)εt,

and
Yτ = lim

ε→0
ε−texFε(ε+ τ)εt.

Proof. Since F0(z + 1) and Fε(z + 1) are both solutions of (6.3.1), they are related
by a constant on the right:

Fε(z + 1) = F0(z + 1)F0(ε)−1

= F0(z)XτF0(ε)−1

Taking z = ε, we get
Xτ = F0(ε)−1Fε(ε+ 1)F0(ε).

Taking the limit ε → 0 and using the fact that F0(ε) ∼ εt, we obtain the �rst
equality. The second one is obtained similarly.
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Theorem 6.3.4. The pair e(τ) := (Xτ , Yτ ) satis�es the relations (6.1.9)-(6.1.12) if
Φ is the KZ associator ΦKZ and via the identi�cation exp(̂̄t1,2) ∼= exp(̂f(A,B)) given
by x 7→ A and y 7→ B.

Theorem 6.3.4 follows from [Enr, Proposition 5.1] and from the same argument
as in Remark 6.2.3.

As in the previous section, the map τ 7→ e(τ) thus gives rise to a family (indexed
by the upper-half plane τ ∈ H) of functorial invariants Ze(τ) : qT̃1 → Â1, such that
the following diagram commutes:

qT̃ Â

qT̃1 Â1

ZKZ

Ze(τ)

Again, Ze(τ) induces an invariant of unframed tangles Ze(τ) : qT1 → Â1/FI.

6.4 The variation of Ze(τ) with respect to the elliptic pa-

rameter τ

We �rst recall from [Enr] the construction of a Lie algebra 〈sl2, (δ2k)〉 of derivations of
t̄1,2 which controls the variation of e(τ) with respect to the parameter τ (Proposition
6.4.1). We then show (Proposition 6.4.5) that the positive degree derivations of
〈sl2, (δ2k)〉 can be implemented as inner derivations of A1(2). Finally, we derive
from this result Theorem 6.4.8 relating Ze(τ) to Ze(τ0) for any τ and τ0 ∈ H.

6.4.1 The variation of e(τ)

As previously, we set x := x1, y := y1 and t = −[x, y] = t12 in t̄1,2. Recall that t̄1,2
is freely generated by x, y. It is thus N2-graded with deg(x) = (1, 0) and deg(y) =
(0, 1). Let Der∗(̄t1,2) denote the Lie algebra of derivations δ of t̄1,2 such that δ(t) =
0. The Lie algebra Der∗(̄t1,2) is Z2-graded, where Der∗(̄t1,2)[p, q] consists of the
derivations that increase the degree by (p, q) ∈ Z2.

The action of the Lie algebra sl2 on the degree one part of t̄1,2 (the two-dimensional
vector space spanned by x, y) given by e+(x) = 0, e+(y) = x, e−(x) = y and
e−(y) = 0, where

e+ :=

(
0 1
0 0

)
and e− :=

(
0 0
1 0

)
,

extends uniquely to an action on t̄1,2 by derivations:

sl2 → Der∗(̄t1,2).

For any k ≥ 0, we de�ne δ2k ∈ Der∗(̄t1,2) by

δ2k(x) =
1

2

∑
p+q=2k+1

(−1)q[(ady)p(x), (ady)q(x)] and δ2k(y) = −(ady)2k+2(x).
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We have deg(δ2k) = (1, 2k + 1). Let 〈sl2, (δ2k)〉 ⊂ Der∗(̄t1,2) denote the graded Lie
subalgebra generated by sl2 and the δ2k's. Then 〈sl2, (δ2k)〉 = sl2 n 〈sl2, (δ2k)〉+,
where 〈sl2, (δ2k)〉+ is the positive degree part of 〈sl2, (δ2k)〉.

Proposition 6.4.1. [Enr] We have

2πi
∂

∂τ
Xτ =

e+ +
∑
k≥0

(2k + 1)G2k+2(τ)δ2k

Xτ ,

2πi
∂

∂τ
Yτ =

e+ +
∑
k≥0

(2k + 1)G2k+2(τ)δ2k

Yτ ,

where G2k+2(τ) denotes the Eisenstein series of weight 2k + 2 de�ned for k ≥ 1 by

G2k+2(τ) :=
∑
p∈Λ′τ

1

p2k+2
,

with Λ′τ := (Z + Zτ) \ {(0, 0)}. For k = 0, the above series does not converge
absolutely. We set

G2(τ) :=
π2

3
+

∑
m∈Z\{0}

(∑
n∈Z

1

(n+mτ)2

)
.

We consider the morphism t̄1,2 → A1(2) sending x, y and t to the diagrams x, y
and t where

x := ,x y := ,y and t := .

6.4.2 An action of sl2 by derivations of A1(2)

For a symplectic Jacobi diagram D, we denote by Vx(D) the set of external vertices
of D that are labeled with x. If v is an external vertex of D, let D(v 7→x) be the
diagram obtained from D by replacing the label of v with x. We introduce the same
notations for the label y. Let us de�ne

ẽ+(D) :=
∑

v∈Vy(D)

D(v 7→x) and ẽ−(D) :=
∑

v∈Vx(D)

D(v 7→y).

In particular, if D has no y-vertex (respectively, no x-vertex), then ẽ+(D) = 0
(respectively, ẽ−(D) = 0).

Lemma 6.4.2. (i) The maps ẽ+ and ẽ− de�ne derivations of A1(2).

(ii) We have a Lie algebra morphism sl2 → Der(A1(2)) given by e± 7→ ẽ±.

(iii) The actions of sl2 on t̄1,2 and A1(2) are compatible:

92



t̄1,2 A1(2)

t̄1,2 A1(2)

e± ẽ±

Proof. (i) We �rst check that the maps ẽ± de�ned from the above formula of ẽ±(D)
on the vector space spanned by symplectic Jacobi diagrams factor through the STU-
like and the relation I1, which are the only de�ning relations of A1 that involve
external vertices. We just give one example for the STU-like relation, all the other
cases being obtained as easily.

y

x

< −D
x

y
< −D D = 0

ẽ+

y

x

< +ẽ+(D)
x

x

< −D
x

y

< −ẽ+(D)
x

x

< −D ẽ+(D) = 0

It is immediate that the induced maps A1(2)→ A1(2) are derivations.
(ii) Let us set [ẽ+, ẽ−] = h̃. We show that [h̃, ẽ+] = 2ẽ+ and [h̃, ẽ−] = −2ẽ−.

We denote by swit(D) the sum of all the diagrams obtained by switching two x and
y vertices. In particular if D has no x-vertices or no y-vertices, then swit(D) = 0.
Observe that

ẽ+(ẽ−(D)) = swit(D) + |Vx(D)| ·D,

where |Vx(D)| is the number of x-vertices of D. Similarly,

ẽ−(ẽ+(D)) = swit(D) + |Vy(D)| ·D.

Hence,

h̃(D) = (|Vx(D)| − |Vy(D)|) ·D.

We thus have

[h̃, ẽ+](D) = h̃(ẽ+(D))− ẽ+(h̃(D))

= (|Vx(ẽ+(D))| − |Vy(ẽ+(D))|) · ẽ+(D)− (|Vx(D)| − |Vy(D)|) · ẽ+(D)

= 2ẽ+(D),

since |Vx(ẽ+(D))| = |Vx(D)| + 1 and |Vy(ẽ+(D))| = |Vy(D)| − 1. The relation
[h̃, ẽ−](D) = −2ẽ−(D) is obtained similarly.

Assertion (iii) is immediate.
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6.4.3 Implementation of the derivations δ2k in A1(2)

We adopt the following graphical convention for any k ≥ 0.

ky :=
y

y
...(k times)

Remark 6.4.3. (i) By k applications of the STU relation, we have

ky(ad(y))k(t) =

(ii) It follows from k applications of the AS relation that

k

y
= ky(−1)k

De�nition 6.4.4. For k ≥ 0, we de�ne C2k ∈ A1(1) by

2kyC2k := 1
2

Note that C0 corresponds to the half of the Casimir element C+. Moreover,

2ky∆C2k = 1
2

From Remark 6.4.3, we have

∆C2k =↑ ⊗C2k + C2k⊗ ↑ +(ad(y))2k(t), (6.4.1)

where ↑ ⊗C2k and C2k⊗ ↑ are understood as the result of setting a vertical arrow ↑
and the representative of C2k depicted in De�nition 6.4.4 side by side (we have not
de�ned any tensor product on A1).

Proposition 6.4.5. The derivations δ2k can be implemented as inner derivations of
A1(2) by the elements ∆C2k. That is, we have the following commutative square:

t̄1,2 A1(2)

t̄1,2 A1(2)

δ2k ad(∆C2k)
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Before proving this proposition, we �rst state a preliminary lemma.

Lemma 6.4.6. For any p, q ≥ 0, we have the relation

qy

py

−
qy

py
= −

py

qy

+
py

qy

Proof. First observe that

py

y

=
py

y

(6.4.2)

since by the IHX relation, the left and right-hand sides of (6.4.2) can be written in
the form

py
y +

py
y and py

y
+

py
y

respectively, and since these two expressions coincide by the STU-like relation. Now
the relation of Lemma 6.4.6 that we would like to prove can be rewritten, using IHX,
as

qy

py

−
qy

py
?
= −

py

qy

+
py

qy

The �rst and last terms of this equation coincide (by p applications of relation
(6.4.2)), and the two remaining terms coincide as well (by q iterations of (6.4.2)).
The Lemma is thus proven.

Proof of Proposition 6.4.5. It is su�cient to show that

[∆C2k, x] =
1

2

∑
p+q=2k+1

(−1)q[(ad(y))p(x), (ad(y))q(x)] (6.4.3)
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and
[∆C2k, y] = −(ad(y))2k+2(x). (6.4.4)

Equation (6.4.3) can be rewritten

[∆C2k, x] =
∑

p+q=2k+1

(−1)q(ad(y))p(x)(ad(y))q(x). (6.4.5)

Let us �rst show (6.4.4). We have [↑ ⊗C2k, y] = 0 since by the STU-like relation

y

2ky
=

y

2ky

We have also [C2k⊗ ↑, y] = 0 since

y

2ky
=

y
2ky

+ y
2ky

y

2ky
= +

y

2ky
=

y

2ky

From (6.4.1) we have thus

[∆C2k, y] = [(ad(y))2k(t), y] = [(ad(y))2k+1(x), y] = −(ad(y))2k+2(x),

which proves (6.4.4). Let us now show (6.4.5). For convenience we adopt the follow-
ing summation convention: a diagram with the variables p′ and q′ shall be understood
as the sum of the diagrams for p′ ≥ 0, q′ ≥ 0 and p′ + q′ = 2k − 1. We compute
[↑ ⊗C2k, x]. By 2k applications of the STU-like and AS relations, we have

x

2ky
−

x

2ky
=

p′y

q′y

(6.4.6)

We now compute [C2k⊗ ↑, x]. By sliding the x-leg downwards, we have:

x

2ky
=

x

2ky +
p′y

q′y
y

x

(6.4.7)
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By STU-like, the �rst term of the right-hand side of (6.4.7) is

x

2ky
=

x

2ky
+

p′y

q′y

By the closure relation, the second term of the right-hand side of (6.4.7) is

p′y

q′y

ω

= − p′y

q′y

+
p′y

q′y

Putting the last three equalities together and using Lemma 6.4.6 leads to

x

2ky
−

x

2ky
= −

p′y

q′y

(6.4.8)

From (6.4.6) and (6.4.8), we then have

2[↑ ⊗C2k + C2k⊗ ↑, x] =
p′y

q′y
−

p′y

q′y

By the STU relation, this equals

p′y

q′y

−

p′y

q′y

−

p′y

q′y

+

p′y

q′y

Note that the second and fourth terms of the above sum vanish: by exchanging p′

and q′, we see that they are opposite. It follows from Remark 6.4.3, (ii) that the �rst
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and third terms are identical, since p′+ q′ = 2k− 1 implies that one of the variables
p′, q′ is even and the other is odd. Therefore, we have

[↑ ⊗C2k + C2k⊗ ↑, x] =
∑

p′+q′=2k−1

(−1)p
′
(ad(y))p

′
(t)(ad(y))q

′
(t).

Hence,

[∆C2k, x] = [(ad(y))2k(t), x] +
∑

p′+q′=2k−1

(−1)p
′
(ad(y))p

′
(t)(ad(y))q

′
(t)

= [(ad(y))2k+1(x), x] +
∑

p′+q′=2k−1

(−1)p
′
(ad(y))p

′+1(x)(ad(y))q
′+1(x)

=
∑

p+q=2k+1

(−1)q(ad(y))p(x)(ad(y))q(x),

which proves (6.4.5).

6.4.4 The Lie algebra sl2 n L

Let L be the free Lie algebra generated by δp,q for p ≥ 0, q ≥ 0 and p+ q even. L is
graded by deg(δp,q) = (p+ 1, q + 1). The Lie algebra sl2 acts by derivation on L by

e+δp,q = (p+ 1) · δp+1,q−1 and e−δp,q = (q + 1) · δp−1,q+1,

where δp,q := 0 if p ≤ −1 or q ≤ −1. We denote by sl2 n L the resulting semi-direct
product (the Lie bracket of sl2 n L being de�ned, for e, e′ ∈ sl2 and δ, δ′ ∈ L, by
[e+ δ, e′ + δ′] := [e, e′] + [δ, δ′] + eδ′ − e′δ).

Let us de�ne a Lie algebra morphism

ν : L̂→ A1(1)

by ν(δp,q) = Cp,q, where Cp,q is the sum of all Jacobi diagrams obtained from Cp+q
by replacing p y-labels with x-labels (in particular, C0,2k = C2k).

Lemma 6.4.7. The Lie algebra sl2nL acts by derivations on A1(2). More precisely,
we have a Lie algebra morphism sl2 n L→ Der(A1(2)) with e± 7→ ẽ± and δ ∈ L 7→
ad(∆ν(δ)).

Proof. It su�ces to prove that [ẽ+, ad(∆Cp,q)] = (p + 1) · ad(∆Cp+1,q−1) and that
[ẽ−, ad(∆Cp,q)] = (q+ 1) · ad(∆Cp−1,q+1). We show the �rst identity, the second one
being obtained in a similar way. Since [ẽ+, ad(Cp,q)] = ad(ẽ+(∆Cp,q)), we have left
to check ẽ+(∆Cp,q) = (p+ 1) ·∆Cp+1,q−1, which easily follows from the de�nition of
Cp,q and ẽ+.

6.4.5 Variation of Ze(τ) with respect to τ

In this subsection, we �x τ0 ∈ H.
Since L is generated as a Lie algebra by the (2k+ 1)-dimensional sl2-submodules

generated by δ0,2k, L is a sum of �nite dimensional sl2-modules. The action of the
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Lie algebra sl2 on L can thus be integrated to an action of the group SL2(C), and
we can form the semi-direct product

G := SL2(C) n exp(L̂).

G acts on A1(2) by, for any

(
a b
c d

)
exp(δ) ∈ G and any diagram D ∈ A1(2),(

a b
c d

)
exp(δ) ? D =

(
exp(∆ν(δ))D exp(−∆ν(δ))

)
(x 7→ax+cy)
(y 7→bx+dy)

,

where D(x 7→ax+cy)
(y 7→bx+dy)

denotes the diagram obtained from D by replacing simultaneously

all the labels x of D with ax+ cy and all the labels y with bx+ dy.
Let F (τ) ∈ G be the solution of

2πi
∂

∂τ
F (τ) =

e+ +
∑
k≥0

(2k + 1)G2k+2(τ)δ0,2k

F (τ), F (τ0) = 1.

We have F (τ) = exp
(
(τ − τ0)e+

)
exp

(
f(τ)

)
, with f(τ) ∈ L̂. We set Cτ :=

ν
(
f(τ)

)
∈ A1(1).

Theorem 6.4.8. For any tangle γ of source S and target T , we have

Ze(τ)(γ) =
(
exp(∆TCτ )Ze(τ0)(γ) exp(−∆SCτ )

)
(y 7→y+(τ−τ0)x)

.

In the particular case where γ is a link, S and T are empty and we have the
following corollary.

Corollary 6.4.9. If γ is a link, then Ze(τ)(γ) =
(
Ze(τ0)(γ)

)
(y 7→y+(τ−τ0)x)

.

Proof. The right-hand term of the equality is functorial with respect to γ. Therefore,
we are reduced to proving the equality in the case where γ has no beak and in the
case where γ = XU,V or γ = YU,V .

If γ has no beak, then Ze(τ)(γ) = Ze(τ0)(γ) = ZKZ(γ). Since ZKZ(γ) has no
external vertices, we have ZKZ(γ) = exp(∆TC)ZKZ(γ) exp(−∆SC) for any C ∈
A1(1) from Lemma 1.4.4, and the theorem is proved in this case.

If γ = X+,+, then Ze(τ)(γ) = Xτ , where Xτ is the image of the elliptic associator

Xτ under exp(̂̄t1,2)→ A1(2).
From Proposition 6.4.1, Proposition 6.4.5 and Lemma 6.4.2, we have

2πi
∂

∂τ
Xτ =

ẽ+ +
∑
k≥0

(2k + 1)G2k+2(τ)ad(∆C2k)

Xτ

=

e+ +
∑
k≥0

(2k + 1)G2k+2(τ)δ0,2k

 · Xτ ,
where in the second line, sl2 nL acts on A1(2) as stated in Lemma 6.4.7. Therefore,

Xτ = F (τ) ? Xτ0 = (exp(∆Cτ )Xτ0 exp(−∆Cτ ))(y 7→y+(τ−τ0)x).

By applying the appropriate coproducts and antipodes, the latter equality immedi-
ately generalizes to the theorem in the case γ = XU,V for any objects U, V . The case
γ = YU,V is obtained similarly.
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Philippe HUMBERT

Intégrale de Kontsevich elliptique 
et enchevêtrements en genre 

supérieur

Résumé

Dans cette thèse, on définit un invariant fonctoriel d'enchevêtrements dans le tore épaissi qui
généralise l'intégrale de Kontsevich. Cet invariant est tout d'abord construit analytiquement à partir
d'une version universelle de la connexion de Knizhnik-Zamolodchikov-Bernard elliptique. On donne
ensuite une version combinatoire de sa construction, basée sur la notion d' « associateur elliptique »
introduite par Enriquez. L'outil principal de cette dernière construction est un théorème qui
caractérise la catégorie des enchevêtrements en genre quelconque par une propriété universelle
exprimée dans le langage des catégories tensorielles.

Mots clefs : Topologie quantique, Catégories monoidales tressées, Enchevêtrements sur les
surfaces, Connection KZB elliptique.

Résumé en anglais

We construct a functorial invariant of tangles embedded in the thickened torus. This invariant
generalizes the Kontsevich integral, and can be analytically derivated from a universal version of
the elliptic Knizhnik-Zamolodchikov-Bernard equation. The main part of the thesis is devoted to the
combinatorial version of its construction, using the notion of « elliptic associator » introduced by
Enriquez. A key ingredient is a universal property satisfied by the category of framed tangles in the
torus. This universal property is established in the language of monoidal categories, and extends
Reshetikhin-Turaev-Shum's coherence theorem to the case of framed tangles in any closed genus
g surface.

Keywords : Quantum topology, Braided monoidal categories, Surface tangles, Elliptic KZB
connection.


