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Résumé  

Dans les dernières décennies, les études des bilans d'énergie à la surface, de 
l’aménagement des bassins versants, des processus biophysiques et des catastrophes 
naturelles ont attiré l’intérêt des communautés scientifiques. Le succès de telles études exige 
une importante base de données sur l'état de surface de la terre, de l’océan, de l’atmosphère et 
même des activités humaines. La télédétection permet les observations à long terme et à faible 
coût et nous fournit un moyen prometteur pour obtenir ces données au niveau régional et 
global. Avec les données de télédétection provenant soit de plates-formes aéroportées soit de 
systèmes spatiaux, les scientifiques ont proposé une variété d’algorithmes pour obtenir 
différents types de paramètres de surface de la terre et de son atmosphère et ces paramètres 
ont été utilisés dans de nombreux domaines pertinents. 

La température de surface de la terre (LST) est l'un des paramètres les plus importants 
intervenant dans les bilans énergétiques et hydrologiques de l’échelle locale à l’échelle 
globale. La connaissance de la LST fournit des informations sur les variations temporelles et 
spatiales de l'état d'équilibre de la surface et est d'une importance fondamentale dans de 
nombreuses applications. Par conséquent, la LST est largement utilisée dans de nombreux 
domaines, y compris l'évapotranspiration, le changement climatique, le cycle hydrologique, la 
surveillance de la végétation, le climat urbain et les études environnementales, entre autres. 
Elle et a été reconnue comme l'un des paramètres prioritaires du programme International 
Geosphere and Biosphere Program (IGBP), l'un des plus importants du Earth System Data 
Records (ESDR) identifié par la NASA (http://lst.jpl.nasa.gov/background) et un des produits 
justificatifs pour les variables climatiques de l'ESA (http://tinyurl.com/globtemperature). 

La détermination de la LST par télédétection thermique infrarouge TIR a attiré beaucoup 
d'attention et son histoire remonte aux années 1970. Cependant, l'estimation directe de la LST 
n'est pas une tâche facile, et il faut tout d’abord déterminer l'émissivité et les effets 
atmosphériques, car les radiances mesurées par les radiomètres dépendent non seulement des 
paramètres de surface (température et émissivité) mais également de l’atmosphère. 
L'émissivité, définie comme le rapport entre le rayonnement émis par les cibles naturelles au 
rayonnement émis par un corps noir à la même température, varie selon les types de surface 
terrestre et structure, la longueur d'onde, la texture du sol, l'humidité et l’angle de vue. Le 
couplage de l'émissivité avec la LST fait que la détermination de la LST est 
mathématiquement insoluble: pour un capteur à N canaux infrarouges, on a N mesures pour N 
+ 1 inconnues (N émissivités canal et 1 température). Pour résoudre ce problème sous 
déterminé, une contrainte supplémentaire est par conséquent nécessaire. En outre, le 
rayonnement émis par la surface est tout d'abord contaminé par la radiance atmosphérique 
réfléchie et est ensuite atténué par l'atmosphère sur le trajet de la surface vers le satellite. La 
correction des effets atmosphériques nécessite une connaissance précise des profils verticaux 
de vapeur d'eau atmosphérique et de température qui sont très variables. 

Fondées sur la théorie du transfert radiatif dans le TIR, diverses méthodes ont été 
développées pour obtenir la LST à partir des données de télédétection avec un moyen 
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permettant de supprimer les effets de l'émissivité et de l’atmosphère. Par exemple peut être 
citée la méthode qui consiste à déterminer l’émissivité à partir d’une relation linéaire 
empirique avec des données du domaine visible/proche-infrarouge ou encore la méthode 
basée sur la classification. Les deux méthodes suivantes peuvent permettre d’obtenir la LST 
depuis l'espace: la première est l'algorithme de canal unique qui utilise un seul canal TIR, tel 
que celui du capteur Thematic Mapper du canal 6 (TM6); la deuxième méthode est 
l'algorithme de Split-Window qui supprime l'effet atmosphérique à l'aide de l'absorption 
atmosphérique différentielle dans deux canaux adjacents centrés à 11 et 12 µm et qui applique 
ensuite une combinaison linéaire (ou non) des températures de brillance des deux canaux 
adjacents. Car ils ne nécessitent pas d'informations précises sur les profils atmosphériques au 
moment de l'acquisition, de nombreux algorithmes de Split-Window ont été développés et 
modifiés pour extraire avec un certain succès les LST de plusieurs capteurs comme AVHRR, 
MODIS et SEVIRI. En revanche, pour le cas de l'émissivité, plusieurs méthodes ont été 
conçues pour obtenir à la fois les LST et émissivités à partir de données multi canaux et/ou 
multi temporelles. Par exemple citons la méthode des indices spectraux indépendants de la 
température (TISI) : une paire d’image de jour et de nuit dans les domaines thermiques MIR 
et TIR donne accès à l’émissivité dans ces deux canaux lesquelles permettent de calculer  la 
LST directement par inversion de la Loi de Planck ou l'algorithme de Split-Window 
mentionné ci-dessus. De même, la méthode deux températures (TTM) dissocie les deux 
paramètres d'après des observations de deux canaux TIR de jour et de nuit en supposant les 
émissivités invariantes au cours de ces deux observations. En outre, si le nombre de canaux 
MIR et de TIR est suffisant (au moins sept), l'algorithme physique de jour/nuit peut être 
combiné pour obtenir les LST et les émissivités ainsi que d'autres paramètres. De plus, la LST 
et les émissivités peuvent être également obtenues à partir des données TIR multi canaux 
corrigées de l'atmosphère en utilisant la relation entre les émissivités des différents canaux, 
telle que la méthode de séparation de température/émissivité (TES) principalement conçue 
pour les cinq canaux TIR de ASTER et récemment étendue aux trois canaux TIR de MODIS. 
Avec l'apparition des capteurs hyperspectraux TIR (IASI, par exemple), des milliers de 
canaux de bande passante étroite peuvent fournir suffisamment de résolution verticale pour 
permettre l'extraction d'information atmosphérique et peuvent également fournir des 
contraintes physiques supplémentaires pour séparer avec précision la LST de l'émissivité. 

Un ensemble d’hypothèses soustend ces algorithmes : la surface est considérée comme 
homogène et isotherme et la température de surface est indépendante du canal et de l’angle. 
Cette hypothèse est raisonnable, car elle permet de réduire le nombre d'inconnues. Cependant, 
en pratique, la LST varie avec l'angle zénithal (VZA). Cette variation angulaire pour surfaces 
tridimensionnelles résulte principalement de la variation angulaire de l'émissivité des pixels et 
du poids relatif des différents composants (par exemple, végétation et sol), qui ont des 
températures différentes dans un pixel non isotherme. En effet, la différence de la LST 
mesurée au nadir et hors-nadir peut être supérieure à 5 K pour les sols nus et même 10 K pour 
les zones urbaines. Pour la plupart des satellites sur orbite polaire (MODIS, AVHRR) qui 
analysent la terre dans le sens transversal à la trajectoire avec différents VZA variant de -65º à 
+65º, les variations angulaires de la LST sont inévitables, rendant les LST des différents 
pixels dans la même image incomparables et causant des résultats erronés dans leur utilisation. 
Cet effet angulaire se produit également avec les satellites géostationnaires comme SEVIRI 
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MSG et entre les LST obtenues avec différents capteurs ou à des moments différents. Il est 
donc crucial d'examiner cet effet sur la LST. 

Une méthode pour prendre en compte l'effet angulaire sur la LST consiste à simplement 
attribuer la variation angulaire de la température apparente mesurée au comportement 
directionnel de l'émissivité du pixel. Toutefois, comme il est difficile d'obtenir l'émissivité 
directionnelle des surfaces naturelles à l'échelle du pixel, cette technique s’avère toujours 
inutilisable. Une autre technique consiste à séparer les températures des composants ou leur 
rapport des données multi-angulaires TIR (ATSR et AATSR) et de calculer la température 
effective dans une direction spécifique (par exemple au nadir) en pondérant les températures 
des composants avec leurs fractions correspondantes. De cette façon, la fraction des différents 
composants observés sous un angle spécifique peut être calculée à l'aide du modèle de la 
fonction de distribution des réflectances bidirectionnelles (BRDF) mesurée dans le visible et 
le proche infrarouge. Cette méthode peut être une voie prometteuse, mais cependant 
l'exigence d'observation multi-angulaire ne peut pas être satisfaite pour la plupart des capteurs 
TIR et la précision est loin d'être satisfaisante. Il n'y a donc encore à l’heure actuelle aucun 
moyen pratique pour effectuer une normalisation angulaire des LST satellitaires en raison de 
la complexité de cette question. 

Basée sur l'état d'avancement de l'étude sur la détermination des LST et des émissivités, 
cette thèse est axée sur l'anisotropie du rayonnement thermique à l'aide de méthodes 
empiriques et physiques. Elle est divisée en sept chapitres. 

 

Dans le chapitre 1 nous avons donné en introduction la motivation de ce travail de thèse 
après une brève discussion sur l'état de l’art et la nécessité d'étudier l'anisotropie de l'émission 
thermique de surface. 

 

Le chapitre 2 présente les détails de l'état actuel sur la détermination des LST et des 
émissivités depuis l'espace. Ce chapitre débute par la description de la radiance mesurée par 
un capteur au sommet de l'atmosphère et des contributions de l'atmosphère en émission ainsi 
que le rayonnement solaire réfléchi sur la base de l'équation de transfert radiatif thermique. 
Ensuite, plusieurs définitions de l'émissivité pour des surfaces mixtes composées de plusieurs 
constituants sont données : r-émissivité, e-émissivité et émissivité apparente. Cependant, cette 
thèse utilisera exclusivement le concept de la r-émissivité car seul ce type d'émissivité est 
accessible à partir des données satellitaires et l'émissivité est considérée comme la 
caractéristique intrinsèque de la surface et ne varie pas avec la température de la surface 
comme c’est la cas pour le concept de l'émissivité apparente. De plus, plusieurs bases de 
données d’émissivité dont la bibliothèque spectrale ASTER et la bibliothèque de l'Université 
de Californie à Santa Barbara (UCSB) ont également été présentées dans ce chapitre ; la 
variation spectrale de la végétation et des échantillons de sol est abordée. 

Quant à l'effet atmosphérique sur le rayonnement thermique, nous donnons une brève 
description du modèle de transfert radiatif atmosphérique communément utilisé MODTRAN 
pour les capteurs de résolution modérée et le code de 4A/OP pour les capteurs hyper ou super 
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spectraux. Nous présentons diverses ressources de données atmosphériques (p. ex. base de 
données initiale thermodynamique (TIGR)), le sondeur vertical à bord (MODIS) ou les 
prévisions météorologiques, comme le National Center for Environmental Prediction (NCEP) 
et le European Center for Medium-Range Weather Forecasts (ECMWF). 

Les méthodes de détermination de la LST depuis l'espace sont examinées en fonction du 
statut de l'émissivité et des données atmosphériques. Avec une émissivité connue qui peut être 
calculée à partir soit de relations empiriques avec des données VNIR, soit de la méthode de la 
classification ou de la combinaison de jour et nuit d’observations dans les canaux de MIR et 
de TIR à l'aide de la méthode TISI, la méthode mono-canal et les algorithmes de 
Split-Window sont décrits ainsi que leurs avantages et leurs inconvénients et les conditions 
préalables à leurs applications.  

L'algorithme Split-Window a été discuté en fonction des angles, de la colonne de vapeur 
d'eau et des effets dus à l'émissivité. Si l’émissivité est inconnue mais les données 
atmosphériques définies, les méthodes qui permettent d’extraire la LST et l’émissivité 
simultanément sont décrites, y compris la méthode TES proposée pour ASTER, la méthode 
corps gris conçue pour plusieurs canaux TIR avec la même émissivité pour au moins deux des 
canaux, la méthode TTM développée pour les données TIR observées à deux moments 
différents et l’algorithme physique jour/nuit (D/N) utilisé pour les sept canaux MODIS dans 
le MIR et le TIR. La comparaison croisée entre les méthodes TTM et D/N est aussi présentée. 
Pour les cas d'émissivité et de données atmosphériques non connues, les méthodes qui 
donnent accès simultanément à la LST, l’émissivité et certains paramètres atmosphériques 
sont exposées également. Toutefois, peu de littérature existe à ce sujet et uniquement des 
rapports ont été étudiés. Ce chapitre présente également les algorithmes qui permettent 
d’extraire la LST (et l'émissivité) à partir de données TIR hyperspectrales et micro-ondes. 

Enfin, nous avons examiné les méthodes actuelles pour la modélisation et le paramétrage 
du rayonnement thermique directionnel et de l’émissivité pour les milieux homogènes et 
hétérogènes et pour le pixel satellitaire. Ces méthodes ont été divisées en quatre catégories : 
les modèles géométriques optiques (GO), les modèles de transfert radiatif (RT), les modèles 
hybrides (GORT) et les méthodes de simulation numérique. De plus, les moyens d’obtenir la 
température des composants provenant de données multi-angulaires ou de plusieurs données 
TIR sont présentés. Cette partie est importante pour la thèse car elle a fourni l'inspiration 
originale pour notre étude sur le rayonnement thermique et l'émissivité directionnelles en 
utilisant les modèles à noyaux BRDF et les méthodes de fréquence d’intervalle.  

 

Dans le chapitre 3, on extrait, pour la première fois, les émissivités directionnelles de 
plusieurs couvertures naturelles à l'échelle du pixel à partir des produits d'émissivité MODIS 
qui utilisent l'algorithme jour/nuit. D’après la littérature, de nombreuses études se sont 
attaquées à ce thème mais concernent essentiellement des mesures au sol ou des simulations 
mathématiques mais rarement des études au niveau du pixel par un manque de données. 
L'algorithme jour/nuit qui permet de séparer la température et l’émissivité ainsi que certains 
paramètres atmosphériques (colonne de vapeur d'eau, température de l'air) en utilisant un 
couple de données MODIS jour et nuit dans les canaux de MIR (CH20: 3,66 ~ 3,84 µm, 
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CH22 : 3,93 ~ 3,99 µm, CH23: 4,02 ~ 4,08 µm) et canaux TIR (CH29: 8,4 ~ 8,7 µm, CH31: 
10,78 ~ 11,28 µm, CH32: 11,77 ~ 12,27 µm, CH33: 13,19 ~ 14,49 µm) a généré des produits 
LST et d’émissivité globales à 5 ou 6 km sur plus de dix ans. Puisque l’angle zénithal de 
MODIS peut aller jusqu'à 65°, le produit émissivité nous a fourni l'occasion d'examiner les 
effets directionnels. En outre, MODIS fournis chaque année des produits de couverture de 
surface (collection 4) à 1 km et la classification de l'IGBP (total de 17 types de couvert) a été 
utilisée pour exploiter des informations de classification. Une méthode de diagnostic à 
huit-connectivité a été appliquée pour assurer la correspondance spatiale de l'émissivité et des 
produits de couverture de surface. 

Des résultats statistiques sur 5 années d'émissivité et de produits couverture de surface sur 
la majeure partie de l'Asie ont montré que l'émissivité de plusieurs couvertures naturelles 
(prairies, terres labourables, forêt d’arbres à feuilles caduques ou persistantes, forêt mixte, 
arbustes ouverts et zones arides) augmente dans les canaux MIR, mais diminue dans les 
canaux TIR avec l'augmentation de l'angle de zénithal et que l'émissivité directionnelle varie 
de l'ordre de 0,01 ~ 0,02 du nadir à 65°. Cependant, cette variation peut être ignorée pour les 
angles zénithaux inférieurs à 45°. Le comportement de l'émissivité directionnelle à l'échelle 
du pixel TIR est comparable à celui obtenu par des études antérieures à l'échelle de la canopée, 
mais cela est difficile à vérifier pour les canaux MIR car aucune littérature sur l’anisotropie de 
l’émissivité n’existe dans ce domaine de longueur d’onde. 

L'émissivité directionnelle obtenue a été appliquée à l'algorithme Split-Window pour 
extraire la LST à la résolution de 1 km des données MODIS. En comparant cette LST avec les 
produits MODIS LST originaux, il a été constaté que cette LST est généralement plus élevée 
que celle d'origine et que la différence varie entre -1 K à 3 K. Les grands angles de vue 
entrainent les différences les plus importantes. Enfin, dans ce chapitre nous avons également 
examiné les effets d'échelle spatiale entre la LST à 1 km et 5 km. Les résultats montrent que 
l’on peut ignorer ces effets dans notre étude probablement du fait qu'il n'y n'a presque aucun 
effet d'échelle inclus dans l'algorithme Split-Window. En outre, deux lookup tables 
d'émissivité directionnelle ont été créées pour une perspective à venir. 

 

Le chapitre 4 vise à la paramétrisation physique de l'émissivité directionnelle et du 
rayonnement thermique d’une canopée homogène. On utilise le modèle SAIL thermique 
(diffusion par feuilles arbitrairement inclinées; ci-après appelé TIR-SAIL) qui a été étendu du 
VNIR à l'infrarouge thermique pour simuler l'émissivité directionnelle de la canopée. Il a été 
utilisé avec deux grands types de méthodes pour effectuer le paramétrage de l'émissivité 
directionnelle avec des caractéristiques géométriques et de surface connues: tout d'abord, 
l'émissivité directionnelle est obtenue à partir du complémentaire à la réflectivité 
hémisphérique bidirectionnelle conformément à la Loi de Kirchhoff. La réflectivité 
hémisphérique directionnelle peut être intégrée à partir du modèle BRDF dans le demi 
hémisphère. Deux modèles BRDF ont été utilisés: le modèle BRDF à noyaux (ci-après appelé 
K-BRDF) et le modèle BRDF semi-empirique (ci-après appelé S-BRDF). Les réflectivités 
bidirectionnelle proviennent du modèle SAILH, découlant du modèle SAIL mais incorporant 
les effets de hotspot. Deuxièmement, l'émissivité directionnelle est estimée directement par 
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une pondération des émissivités des composants et des fractions, observées dans une direction 
d'observation particulière. Les fractions sont toujours estimées à partir de la théorie de 
fréquence d’intervalle et nous avons utilisé deux des méthodes de François et al, celles 
élaborées en 1997 et 2002, ci-après appelés FRA97 et FRA02 respectivement. 

Les résultats de la comparaison ont montré que les modèles K-BRDF et S-BRDF sont en 
très bon accord avec l'émissivité directionnelle du modèle SAIL-TIR pour les végétations 
éparses à moyennement dense mais cet accord se dégrade avec l’augmentation du LAI. Bien 
que les deux modèles aient une erreur relative plus élevée pour la canopée dense, cette erreur 
peut être ignorée, en particulier pour le modèle K-BRDF. En général, les deux modèles BRDF 
ont presque une différence minime pour l'émissivité directionnelle. Cependant, les résultats 
ont montré le paramètre k dans le S-BRDF qui devrait se situer entre 0 et 1 est supérieur à 1, 
ce qui réduit la signification physique du modèle S-BRDF. Par conséquent, le modèle 
S-BRDF n’est pas recommandé, au moins pour la réflectivité bidirectionnelle et l’émissivité 
directionnelle. De plus, dix échantillons de végétation et dix-sept échantillons de sol ont été 
choisis dans la bibliothèque des émissivités pour contrôler les relations entre les coefficients 
du modèle à trois noyaux K-BRDF, et il a été constaté que ces coefficients sont linéaires et 
reliés entre eux, surtout pour les LAI faibles. Ainsi si l'un des trois coefficients peut être 
obtenu, les deux autres seront par conséquent déterminés par des relations linéaires. 
Cependant, cette relation linéaire disparaît pour la canopée avec végétation dense (LAI = 4.0). 
Les plages de valeurs des coefficients ont aussi été obtenus et seront utilisés comme 
connaissance préalable dans le chapitre 5. Les résultats de la comparaison des FRA97 et des 
FRA02 avec le modèle de SAIL-TIR ont montré que l'émissivité directionnelle de FRA97 
était plus proche du modèle SAIL-TIR mais que l’effet de cavité tenant compte des diffusions 
multiples doit être mis à jour selon le modèle SAIL-TIR. 

Dans ce chapitre, la température de brillance directionnelle (DBT) a été modélisée en 
pondérant les composantes des températures (feuilles et sol ensoleillé et ombragé) et leurs 
fractions estimées en utilisant un modèle paramétré de SAIL-TIR. Le nouvel effet de cavité 
décrit plus haut a été utilisé pour simuler la contribution de diffusion multiple à la DBT. De 
plus, le modèle K-BRDF a été modifié en remplaçant la réflectivité bidirectionnelle par le 
DBT du modèle d'origine, lequel a été utilisé pour ajuster le DBT dans l'hémisphère supérieur. 
Les résultats ont montré que le modèle K-BRDF peut très bien représenter la DBT 
hémisphérique avec une erreur inférieure à 0,5 K. Toutefois, étant donné que la même cible 
ne peut être observée que dans un certain nombre de directions, il est nécessaire de trouver le 
groupe local et même global d’observations angulaires optimales qui permet au modèle 
K-BRDF d'avoir une erreur minimale. Deux méthodes différentes ont été appliquées : le 
modèle monopoint et le modèle rangée linéaire. Le modèle monopoint propose certains 
critères pour le candidat du groupe observation angulaire optimale et finit par trouver que le 
groupes (0°, 0°), (0°, 30°), (180°, 50°) est l’optimum local pour le modèle K-BRDF trois 
angles. Basé sur ce résultat, nous avons étendu le modèle à trois rangées linéaires (nadir, plan 
avant et plan arrière) et discuté de l'influence de l’angle zénithal sur le résultat du modèle 
K-BRDF. Les résultats ont montré que l’angle zénithal dans le groupe nadir ne doit pas 
dépasser 45° pour s’assurer d’une erreur inférieure à 1,0 K. 
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Le chapitre 5 est consacré à la normalisation angulaire de l'émissivité et de la température 
de surface de la Terre à partir d’images multi-angulaires MIR et TIR. Dans ce chapitre, on 
propose une méthode TISI diurne (ci-après appelée D-TISI) pour extraire l'émissivité 
directionnelle et la température effective en combinant le modèle K-BRDF et la méthode TISI. 
Dans la méthode D-TISI, la surface ést considérée comme non isothermique et les TISIE des 
canaux MIR et TIR sont supposés indépendants des angles. Par conséquent, l’extraction de 
l'émissivité et de la température conduit alors à quatre inconnues : les coefficients de trois 
noyaux et le TISIE. Si une cible est observée dans plus de quatre directions, ces inconnues 
peuvent être obtenues par les équations de transfert radiatif, et ensuite basée sur la Loi de 
Kirchhoff, l'émissivité MIR est calculée comme 1- réflectivité directionnelle hémisphérique 
qui a été estimée à partir de l'intégration du modèle K-BRDF sur l'hémisphère. Enfin 
l'émissivité TIR est par conséquent déduite de l'émissivité MIR et du TISIE. Deux groupes de 
canaux MIR et TIR du capteur MODIS avec des bandes spectrales étroites et le système 
WiDAS (Wide-angle infrared Dual-mode line/area Array Scanner) avec une bande large ont 
été utilisés pour étudier l'influence de la largeur de la bande sur l'exactitude de la restitution. 
Le système WiDAS a été l'un des principaux capteurs aéroportés lors de la campagne de 
terrain et a fourni sept observations angulaires avec des caméras MIR et de TIR. Quatre 
groupes de combinaisons angulaires ont servi à trouver les combinaisons optimales angulaires 
locales pour l’extraction de l'émissivité et de la température, et six cas de températures des 
composants ont été appliqués pour illustration. 

L’analyse de sensibilité du modèle montre que la nouvelle méthode permet d’obtenir une 
émissivité directionnelle et une température avec une erreur inférieure à 0,015 et 2,0 K 
respectivement si le bruit de la température mesurée et des données atmosphériques ne 
dépassent pas 1,0 K et 10 %, respectivement. On a également constaté que l'erreur sur la 
détermination de l'émissivité TIR diminue d'abord puis augmente avec les LAI croissants. Des 
grands intervalles d’angle parmi les observations angulaires et un plus grand VZA par rapport 
au nadir peuvent améliorer la précision de la restitution de l'émissivité et de la température, 
parce que ces conditions entrainent des variations significatives des composants des fractions 
et de la température directionnelle sous différentes directions d'observation, et des canaux 
étroits peuvent conduire à de meilleurs résultats que les larges. De plus, les résultats 
analytiques de six groupes de températures des composants ont montré qu'au même niveau de 
différence de température du composant, le cas avec une température de brillance relative plus 
faible peut conduire à un meilleur résultat pour l'émissivité dans le canal TIR ainsi que la 
réflectivité bidirectionnelle et l'émissivité dans le canal MIR. Cependant, cela dépend toujours 
des situations spécifiques, y compris des conditions atmosphériques et des structures de la 
canopée. 

La méthode proposée de D-TISI a été appliquée sur les images multi-angulaire acquises 
par le système de WiDAS dans la campagne de terrain du printemps à l'été 2008 sur le versant 
de la rivière de Heihe dans l'ouest de la Chine, pour extraire les TISIE, les émissivités 
directionnelles MIR et TIR ainsi que la température dans la zone d'étude. Les résultats ont 
montré que les TISIE sont distribués principalement dans la gamme de [0,95, 1,01] 
comparables à d’autres résultats antérieurs et sont généralement plus forts pour les pixels avec 
végétation que sur des sols nus et des bâtiments, car le composant de la végétation dans le 
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pixel augmente la valeur du TISIE. Les émissivités MIR et TIR se situent principalement dans 
les fenêtres [0,88, 0,94] et [0.96, 0,98], respectivement. La différence d'émissivité MIR entre 
des pixels avec et sans végétation est supérieure à celle dans le TIR. La température effective 
directionnelle a été calculée à partir de l'inversion de l'équation de transfert radiatif dans le 
canal TIR en utilisant l'émissivité directionnelle obtenue et les données atmosphériques 
connues. Elle a été normalisée à une température nadir en utilisant le modèle K-BRDF 
modifié. Il a été constaté que la température effective au nadir était généralement supérieure à 
celle dans les directions hors-nadir, et leurs différences pour les pixels sans végétation sont 
plus élevées que pour les pixels avec végétation. Il est donc nécessaire pour les pixels sans 
végétation d’effectuer cette normalisation angulaire. En outre, la comparaison des produits 
émissivité ASTER et l'émissivité TIR retrouvée illustre que cette dernière émissivité est 
supérieure aux produit ASTER avec un RMSE de 0,012. Ceci est probablement dû à la 
variation spatio-temporelle et spectrale de l'émissivité. 

 

Le chapitre 6 est axé la détermination des incertitudes dans la mesure terrain du TBD dans 
le cas des rangées de culture et analyse l'impact de l'empreinte du capteur. La modélisation 
DBT pour les rangées de culture a été plus difficile que pour la canopée homogène en raison 
de l'effet de rangée qui a causé la variation de la densité de volume du de feuillage (FAVD) et 
de la longueur optique d'un endroit à l'autre. Une hypothèse cruciale dans les modèles actuels 
est que la rangée a une extension infinie. Par conséquent, les modèles traitent les fractions des 
composants à l'aide d'une structure de ligne entière. Cette hypothèse est raisonnable, mais 
l'hypothèse que la direction d'observation est un faisceau parallèle est rarement conforme à la 
réalité car les différentes régions à l’intérieur de l'empreinte du champ de vue du capteur 
(FOV) qui a permis de recueillir des données de terrain DBT ont des azimuts et zéniths 
différents. Dans ce chapitre, on a mis au point un nouveau modèle de transfert radiatif 
(FovMod) pour simuler la DBT du feuillage en rang en tenant compte de l'empreinte du 
capteur dans les mesures au sol. Le FovMod tout d'abord divise l'empreinte circulaire ou 
elliptique du capteur en petites cellules et ensuite estime des fractions des composants (p. ex., 
feuilles baignées de soleil et le sol, sol ombragé) dans chaque cellule basée sur la théorie de 
probabilité d'écart. La DBT de la canopée est finalement obtenue en pondérant les 
températures de brillance des composants et de leurs fractions en utilisant la fonction de 
propagation gaussienne (PSF) de la réponse du capteur. 

Nous avons également évalué dans ce chapitre la sensibilité et la cohérence du nouveau 
modèle avec les principaux paramètres d'entrée : la largeur de la haie et l’environnement, la 
valeur du LAI, la position centrale du champ de vue du capteur, la position solaire et les 
températures de brillance des composants. Les principales constatations indiquent qu’une 
faible empreinte au sol conduit la distribution du DBT à être fortement dominée par la 
direction de la rangée et la température du composant mais est peu influencée par la position 
solaire. Au contraire, une grande empreinte lisse l'effet de rangée et conduit la DBT à être 
distribuée comme une canopée uniforme et continue. Les paramètres de LAI et la position 
centrale du champ de vue du capteur change le mode de répartition de la DBT, surtout quand 
la position centrale va du sol au haut de la haie. De plus, afin de répondre à la question "quelle 
est la taille optimale de l’empreinte pour acquérir des DBT représentatives pour valider un 
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modèle parallèle avec la moindre erreur, nous avons introduit un index, appelé le nombre de 
périodes (NP) indépendant des observations et de la hauteur de la canopée pour examiner 
l'empreinte optimale qui peut se traduire par la plus petite différence de DBT entre le FovMod 
et le modèle parallèle. Les résultats ont démontré que la différence DBT entre les deux 
modèles atteint toujours son minimum lorsque NP est de l'ordre de 1,5 ~2.0 ce qui a suggéré 
que si le diamètre de l'empreinte circulaire du capteur au nadir couvre 1,5 ~ 2,0 fois la largeur 
totale d’une rangée, l’effet d'empreinte serait essentiellement éliminé et la DBT mesurée peut 
théoriquement servir pour évaluer le modèle parallèle. 

Enfin, le modèle FovMod a été validé sur une canopée de maïs. Dans les mesures terrain, 
un système d'Observation Multi-Angle (MAOS) a été conçu pour acquérir automatiquement 
et rapidement les TBD de la canopée pour différents angles azimutal et zénithal. Une caméra 
thermique a été utilisée en parallèle avec le MAOS, et les températures de brillance des 
composants ont été extraites manuellement de l'image de la caméra acquise simultanément 
avec chaque mesure angulaire du MAOS. Les autres paramètres nécessaires au nouveau 
modèle, tels que le LAI, la largeur et la hauteur de la canopée ont également été mesurés. Les 
résultats ont montré que la majeure partie des DBT simulées par le FovMod se situent à ± 1 K 
de la mesure, avec un RMSE de 1,2 K, ce qui est inférieur de 0,5 K du modèle parallèle 
(RMSE = 1,7K). Les variations angulaires de la DBT dans quatre plans azimutaux (plan 
principal et perpendiculaire solaire et plan principal et perpendiculaire de la rangée) ont été 
également présentées pour démontrer la supériorité du modèle FovMod. Dans ce chapitre, 
nous avons également examiné l'extension du modèle de la gamme thermique FovMod à la 
gamme VNIR, l'inversion de la température des composants de ce modèle et la validation 
future sur des rangées de cultures d’un type différent. 

 

Le chapitre 7 présente et discute les principales conclusions de cette thèse ainsi que les 
perspectives et les limites rencontrées.  

Par exemple, concernant les limites, au chapitre 3, l'émissivité directionnelle à l'échelle du 
pixel à partir des produits MODIS pourrait être également causée ou influencée par une erreur 
résiduelle dans les données atmosphériques ou les variations temporelles et spatiales de 
l'émissivité elle-même. Le nouveau facteur d'effet de cavité décrit dans le chapitre 4 ne peut 
servir que pour les modèles SAIL et il peut entrainer des incertitudes à d'autres modèles de 
transfert radiatif. Le paramétrage du DBT pour la canopée résulte du calcul effectué avec des 
canaux VNIR, mais n’a pas pu être validé en raison du manque de données terrain. En outre, 
la méthode D-TISI dans le chapitre 5 a ignoré la variation temporelle de la température de 
surface et a considéré la variation de la température comme entièrement causée par les 
changements d'angles de vue, car il n’y a, à l’heure actuelle, aucune méthode opérationnelle 
qui permette la normalisation des DBT multi-angulaire mesurées.  

De manière générale, les travaux de cette thèse ont permis d’améliorer notre 
compréhension de l'anisotropie du rayonnement thermique de surface et de perfectionner la 
méthode de séparation de l'émissivité et de la température de surface à partir de données de 
télédétection et ce, surtout pour les surfaces hétérogènes et non isothermiques. Les travaux 
futurs sur cette question viseront à résoudre les problèmes, comme indiqués ci-dessus. 
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(1) La méthode de D-TISI proposée peut être appliquée aux données des satellites 
géostationnaires, qui mesurent au même endroit et à une fréquence élevée et il est facile 
d'obtenir des observations multi-angulaires sur la base des changements de positions solaires 
tant que la correction atmosphérique est opérationnelle.  

(2) La correction angulaire de la LST pourrait résulter de mesures de l'indice de végétation. 
Puisque la température directionnelle est considérablement influencée par la fraction de la 
végétation (FVC), il est possible d'établir une relation entre la température directionnelle et la 
FVC basée sur la méthode du triangle FVC-température à partir de la distribution spatiale des 
deux variables dans la zone d'étude et l’utilisation d’une relation pour normaliser la 
température directionnelle dans la direction nadir.  

(3) La correction angulaire de la LST peut être liée aux températures des composants qui 
peuvent être obtenus à partir de mesures multi-angulaires ou à canaux multiples ou des 
données hyperspectrales TIR. 

(4) La correction angulaire de la LST peut être effectuée en utilisant différents capteurs. 
La combinaison des satellites en orbites polaires et géostationnaires peut être une autre façon 
de corriger la LST s’ils observent le même endroit dans des directions différentes en même 
temps ou en quasi-simultanéité. 

 

Cette thèse a été réalisée dans le cadre d’une co-tutelle entre la Beijing Normal University, 
China, et l’Université de Strasbourg, France, et financée par le National Basic Research 
Program of China (973 Program), le National High-Tech Research and Development of China 
(863 Program), le Natural Science Foundation of China, la commission européenne (Call 
FP7-ENV-2007-1 Grant no. 212921) part du projet CEOP-AEGIS et le China Scholarship 
Council project.
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地表热辐射方向性建模与温度的角度纠正 

中文摘要 

 

近几十年来，国内外科学家对地表能量平衡、流域管理、地表生物物理变化过程和
各种自然灾害等开展了广泛研究。但是，传统的点测量方式受人力、物力和财力的限制
难以满足需求。遥感技术具有全天候、长时间序列和低成本等特点，在区域或全球尺度
获取地表、海洋、大气以及人类活动信息具有优势，可为相关领域研究提供有效数据。
迄今为止，已有成百上千的在轨传感器以不同的方式获取地表信息，所获取的各种地表、
大气相关参数被广泛应用于各个行业。 

地表温度(land surface temperature, LST)是地表能量平衡和温室效应的一个重要指
标，是区域与全球尺度地表物理过程的关键因子。它将地-气相互作用及其能量交换结
合了起来。任何绝对温度大于 0 K 的物体都要向外辐射能量，利用遥感探测器接收到的
热辐射信息来反演陆地表面温度是热红外遥感反演的主要目标。目前，地表温度产品被
广泛地应用于全球气候变化、区域蒸散发、土壤水分检测、作物估产、城市热岛、森林
火灾、地震预报与检测、地质勘查等各个研究领域。因此，地表温度数据被多个国际著
名组织和工程当作最重要的地表参数之一。例如，国际地圈生物圈计划(International 
Geo-sphere and Biosphere Program，IGBP)将地表温度视为高优先级地表参数，美国宇航
局(NASA)将其作为最重要的地球系统长期记录数据之一，以及欧空局(ESA)将地表温度
当作是气候变化研究中的支撑数据。 

从遥感观测的热红外数据中反演地表温度可以追溯到上世纪七十年代，并引起了科
学家的广泛关注。但是，由于从地表到达卫星传感器的辐射同时包含了地表和大气信息，
所以从热红外数据直接反演地表温度必须同时消除大气效应和地表本身的发射率效应，
而这并非易事。首先，地表发射率定义为自然地表的热辐射与同温同波长下黑体（对达
到其表面的辐射全部吸收）热辐射的比值，其随着地表类型和构成、土壤纹理和水分、
观测波长和观测角度等而发生变化。对于大部分自然地表来说，它们的热辐射往往小于
黑体热辐射，即发射率小于 1，地表温度和发射率的相互耦合使得地表温度的遥感反演
必须考虑发射率的影响，从而在数学上形成一个“欠定”问题：某一传感器提供 N 个通道
的观测数据值，却对应 N+1 个未知数（N 个通道的发射率和 1 个地表温度），未知数个
数总大于观测方程数。要求解这样的欠定问题，往往需要引入其它限制条件或者附加信
息来减少未知数的个数。与发射率效应相比，大气对地表热辐射的影响更为显著。大气
对地表热辐射的影响主要体现在：大气下行辐射和上行辐射对热辐射的贡献以及对地表
热辐射在从地面到卫星的传输过程中的削弱作用。与地表自身热辐射相比，大气效应可
以增加或减少到达传感器的总辐射，这主要取决于地表自身热辐射、发射率和大气热辐
射之间相对大小关系。要消除大气效应，精确的大气辐射传输方程式和大气参数廓线（气
温、水汽含量、气压等）必不可少，但这些参数却很难在大范围内获得，并且表现出明
显的时空差异。 

截至目前，基于热红外的辐射传输方程，人们发展了多种消除发射率与大气效应的
方法以从热红外遥感数据中反演出地表温度，其大致可以分为三类：（1）分步法，首
先从可见光-近红外数据（例如 NDVI 阈值法）或地表分类产品（Classification-based 
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method）中获得发射率，然后再将其运用于单通道算法或者劈窗算法中反演出地表温度。
（2）在已知大气条件的情况下，从多时相、多光谱数据中同时反演出地表温度与发射
率，例如在假设发射率短时间内不随时间变化的基础上而发展起来的双温度法
(Two-Temperature Method)和日夜算法(Day/night algorithm)，以及适合于 ASTER 传感器
的 TES 方法(Temperature and emissivity separation method)等；（3）基于一定的先验知识
和对未知数的简化，从多光谱或高光谱数据（例如 IASI）中同步反演地表温度、发射率
和大气参数信息。 

目前地表温度的反演算法常常假设地表是同温朗伯体，其温度不随传感器的观测通
道和观测角度而发生变化。对于浓密植被和水体来说，这样的假设是合理的，并且能够
有效的减少未知数的个数。但是，正如前人所发现的那样，对于那些三维结构明显（例
如稀疏植被、城市建筑）的非同温混合像元来说，其温度是随着通道与观测角度变化的，
那么以上假设将不再成立。在像元尺度上，由于其内部具有复杂的三维结构且存在不同
的组分，而不同组分具有不同的发射率和温度，且不同组分对像元热辐射贡献的有效权
重也随着太阳-地物-观测几何的变化而变化，因此像元的热辐射表现出明显的方向性。
以往的研究发现，不同的观测角度可以导致垂直方向上和倾斜方向上的裸土温差高达 5 
K，城市地表温差高达 10 K，而温度 1 K~3 K 的误差将在通量估算结果中引入高达
100W/m2 的误差。此外，对于若干具有大视场的传感器来说，以 MODIS 为例，其可以
在[-65º, 65º]的天顶角范围内观测地表，不同的像元对应不同的观测角度，温度的角度效
应降低了像元之间的温度可比性，以及降低了地表温度产品在各个领域的使用精度。因
此，在地表温度反演过程中考虑其角度效应对于提高反演精度是十分必要的。 

对于同温像元来说，地表温度的角度效应可以归结于像元的发射率随着角度的变
化。理论上，只要已知像元的方向性发射率，就可以通过反解辐射传输方程来消除地表
温度的角度效应。该方法简单，但是由于难以获得自然地物在像元尺度上的方向性发射
率，此种方法往往难以实际应用。若考虑非同温像元，可以首先通过多角度、多波段数
据来反演出组分温度或者温度比例，然后利用特定观测方向上各个组分的比例来加权获
取该方向上的等效温度。在假设地表未发生显著变化的情况下，各个组分比例可以通过
多次观测的数据利用 BRDF(Bi-directional Reflectance Distribution Function)模型拟合得
到。此类方法在理论上是有效的，但是至今仅有 ATSR 系列传感器拥有 2 个观测角度，
还无法真正满足全球温度产品的角度纠正需求。因此，迄今尚未形成一种有效、可运作
的地表温度的角度纠正方法。 

本文以热辐射的方向性为切入点，基于经验模型和物理模型，在冠层尺度和像元尺
度上讨论地物的发射率随着观测角度的变化情况，以及这种角度效应对地表温度的影
响；明确非同温像元方向性等效地表温度的定义，并在同时考虑方向性发射率与不同组
分温度的条件下，建立非同温均匀像元方向性热辐射估算模型，进而发展从多角度中红
外与热红外数据中同时反演方向性发射率与等效温度的新算法；针对温度地面验证时测
量数据的不确定性，发展新的辐射传输模型来探讨地面传感器视场大小对行播作物冠层
方向性热辐射（亮温）的影响，并针对模型的验证给出在实际测量中的最优视场。因此，
本文将从经验方法、物理建模、遥感反演和地面验证等几个方面来研究热辐射的方向性
和地表温度的角度纠正方法，研究成果希望能够为未来星载或机载多角度热红外传感器
的设计及地面测量提供参考。本文总共分为七章，各种的主要内容如下： 

第一章主要引出对方向性热辐射研究的必要性以及本文的切入点； 

第二章主要介绍目前地表温度和发射率的反演算法以及方向性热辐射建模思路。 
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首先，这一章将给出热红外传感器获取信息过程的辐射传输方程，以及讨论大气效
应和发射率效应对地表辐射信号的影响。为了明确像元尺度，特别是非同温像元尺度地
表温度和发射率的定义，还阐述了目前国际上使用的多种地表温度和发射率定义的异
同，并最后选择 r-emissivity 及其对应的等效温度来作为本文研究的基础。基于 ASTER
数据库和美国加州大学圣巴巴拉分校数据库(UCSB)的若干植被与土壤样本数据，讨论了
发射率随波长和地类的变化情况。以 MODTRAN 为例，讨论了大气辐射传输模型在热
红外数据的大气纠正和正向模拟中的运用，从而为后文的研究做铺垫。其次，该章重点
回顾了现有从热红外（和中红外）遥感数据中反演地表温度、发射率的各种方法。若按
使用的通道和角度进行方法分类，可分为单通道算法、多通道算法、多角度算法以及多
通道多角度算法。若按大气参数和发射率已知与否进行分类，则可分为分步法、地表温
度与发射率分离方法以及大气参数、地表温度与发射率一体化反演算法，本文按照第二
种分类方式简单地介绍了各种反演方法。最后，这一章节还回顾了目前在冠层尺度和像
元尺度进行方向性辐射建模和参数化的主要思路和方法。总的来说，目前的方法主要可
以分为四类：几何光学模型(GO)，辐射传输模型(RT)，混合模型(GORT)以及计算/数值
模拟模型。 

然而，目前算法却存在诸多不足之处。在热辐射方向性研究方面，这些不足将表现
在如下几个方面：（1）首先，缺乏真正的像元尺度的方向性发射率。尽管国内外学者
已经从地面观测和数学建模等方面对方向性发射率进行了若干研究，并得到了一些颇有
价值的结论。但是由于测量技术的限制，至今未有通过实测数据获得中等分辨率像元尺
度的方向性发射率，从而无法得知该尺度上发射率的角度变化规律；（2）没有充分利
用多角度观测数据信息。利用多角度数据是实现地表温度角度纠正的一个重要途径。然
而，由于技术的限制，现有的在轨传感器仅有 ATSR 系列能够提供 2 个角度的热红外数
据，有关机载多角度热红外数据的报道也鲜有所见，并且现有的多角度观测数据主要用
于反演地表温度或者组分温度。因此，至今尚未形成一套从多角度数据中同时获取地表
温度和发射率的有效方法，离地表温度的角度纠正还相差甚远；（3）缺少地表温度的
角度纠正的有效方法。尽管利用方向性发射率是消除同温像元地表温度角度效应的一种
有效方法，但是，正如前文所述，至今并没有有效的遥感像元尺度的方向性发射率。另
一种地表温度的角度纠正方法是建立地表温度与观测几何角度的转换关系。当这种转换
关系的系数从有限的观测数据获得，那么在理论上就可以获得任意观测角度下的地表温
度。BRDF 模型不失为其中的一种有效途径；（4）缺乏方向性热辐射地面测量数据的
精度评估方法。地面测量数据常作为“真值”来检验遥感反演的地表温度与方向性热辐射
模型精度。但是，地面测量数据本身也存在误差，其自身精度在很大程度上决定了检验
的结果。鉴于此，本文针对于以上问题的不足之处展开了相关研究。 

第三章以 MODIS 的发射率产品为基础提取了像元尺度的方向性发射率以及其对地
表温度的影响和空间尺度效应。 

基于日夜算法反演的 5 年 MODIS 发射率产品和地表分类产品研究了公里级像元尺
度上多种自然地物发射率(Grassland, Cropland, Evergreen Broadleaf Forest, Mixed Forest, 
Open Shrublands, and Barren or Sparsely Vegetated 等)在中红外通道（CH20: 3.66~3.84 µm, 
CH22: 3.93~3.99 µm, CH23: 4.02~4.08 µm）和热红外通道（CH29: 8.4~8.7 µm, CH31: 
10.78~11.28 µm, CH32: 11.77~12.27 µm）的角度变化。结果表明，在像元尺度上，地类
在中红外通道的发射率整体上随着观测天顶角的增大而增大，热红外通道的发射率随着
观测天顶角的增大而减小。中红外通道发射率的角度变化约高于热红外通道，两个通道
发射率在 0°~65°观测天顶角范围内的角度变化分别集中在 0.01~0.02 和 0.01 附近，但是
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当观测天顶角小于 45°，两个通道发射率的角度变化几乎可以忽略。基于提取的方向性
发射率，建立了发射率与观测天顶角的经验关系，并构建了两种不同结构的发射率查找
表。将方向性发射率用于 MODIS 的劈窗算法中反演了研究区不同时期的地表温度，并
与 MODIS 原有劈窗算法的地表温度产品进行了比较。比较结果说明，新反演的地表温
度整体上高于 MODIS 的地表温度产品，它们的差值主要集中在-1.0~3.0 K 之间，并且
差值的 RMSE 随着观测角度的增大而增大，说明在大角度观测时，利用方向性发射率对
地表温度进行一定程度的角度纠正是十分必需的。最后，还进一步讨论了方向性发射率
的空间尺度效应对劈窗算法反演地表温度的影响，结果表明不同尺度上温度的差异整体
上小于 0.5 K，尺度效应不明显。 

然而，尽管日夜算法动态反演两种大气参数（近地表大气温度和大气水汽）来调整
大气廓线初值，在理论上可以提高观测数据的大气纠正精度，但仍不排除大气残余信息
以及太阳辐射误差对发射率角度效应的影响。由于研究范围的限制，这一章节仅获得 6
种地物的方向性发射率，在一定程度上影响了其在更大范围内的使用。此外，由于缺乏
土壤水分数据，本文不得不忽略土壤水分对发射率的影响。因此，为了更精确地获取在
像元尺度上的更多地类的方向性发射率，从而为地表温度反演提供必要的先验知识，相
关工作还需要进一步研究。 

第四章主要介绍方向性发射率与热辐射的参数化以及 BRDF 模型在地表温度角度
纠正过程中的适用性分析与观测角度需求。 

基于热红外波段的 SAIL 模型(TIR-SAIL)的模拟结果，探讨了 4 种方向性发射率的
参数化方案，即核驱动BRDF模型、半经验BRDF模型以及间隙率模型 FRA97和 FRA02。
结果发现，核驱动 BRDF 模型能够较为精确地反映出冠层发射率随着角度的变化情况，
特别是在低植被冠层；考虑了植被与植被组分多次散射的参数化间隙率模型 FRA97 也
能较好地刻画发射率随角度的变化情况，但是需要更新模型中原有模型总表示多次散射
的参数“cavity”效应因子。基于更新的参数以及 SAILH 模型的“景合成”参数化模型，本
文提出了一种模拟非同温均匀冠层方向性亮温的新方法，其模拟结果很好地反映了方向
性亮温的半球空间分布和热点效应。 

为了验证核驱动 BRDF 模型在热红外领域的适用性，本文利用方向性亮温代替原核
驱动 BRDF 模型（简称 K-RBDF 模型）中的二向性反射率，并将其运用于拟合半球空间
的方向性亮温。结果表明新改成的 K-BRDF 模型可以很好地拟合出半球空间的方向性亮
温，其误差不超过 0.3 K。其意义在于，如果知道了 K-BRDF 模型的 3 个核系数，理论
上就可以拟合出任意方向上的亮温，从而为方向性亮温的角度归一化研究提供了一种有
效的途径。通过 2 种方式（即单点模式和线阵模式）来检验 K-BRDF 模型进行角度归一
化的可靠性以及对观测角度的需求。基于单点模式的分析结果，本文获得了 K-BRDF 模
型在拟合半球空间亮温和垂直方向亮温时的局部三角度最优组合[(0°, 0°), (0°, 30°), 
(180°, 50°) ]，并将此角度组合应用到三线阵模式。根据对太阳天顶角和太阳方位角以及
冠层 LAI 对模型拟合结果的分析，本文发现距离线阵中心位置越近，三线阵同一位置像
元列对应的观测角度差异越大，K-BRDF 模型拟合的亮温精度越高；相反地，距离线阵
边缘越近，像元列对应的观测角度差异越小，K-BRDF 模型拟合的亮温精度越低。总的
来说，要使 K-BRDF 模型在三线阵的多数像元列下的误差小于 1.0 K，像元在垂直线阵
上的观测天顶角应不超过 45°，并且中等太阳天顶角、中等植被或浓密植被可以提高
K-BRDF 模型拟合亮温的精度。这样的结果希望为未来多角度热红外传感器设计提供若
干参考。 
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但是，本文仅使用了包括 TIR-SAIL 模型和 SAILH 模型在内的 SAIL 系列模型来模
拟方向性发射率和亮温，所以更新的“cavity”效应因子并不一定适用其它辐射传输模型。
模型模拟得到的方向性发射率和方向性亮温由于缺少地表均匀冠层数据而未能进行地
面验证。此外，仅讨论 K-BRDF 最小的角度需求：3 个角度观测的情况，并强制它们的
方位角位于同一平面。对于解决“利用核驱动模型精确拟合方向性亮温到底需要多少个
角度的观测，需要哪些角度？”这一科学问题仍然需要进行更多更广泛的研究。但是本
文的相关结果可以为进一步研究提供参考。 

第五章发展了利用多角度数据反演方向性发射率与等效温度的新模型，并利用改进
的核驱动 BRDF 模型实现温度的角度纠正。 

针对于非同温像元，明确了方向性等效温度的定义。基于 BRDF 核驱动模型和 TISI
方法，提出了利用白天观测的中红外和热红外多角度数据反演方向性发射率和等效温度
的新方法，简称为 D-TISI 法。该方法通过多角度观测信息来消除原有 TISI 算法对白天
和夜晚双时相遥感数据的需求，将反演问题转化为对核驱动模型的三个核系数和 TISIE
的反演，从而降低了未知数的个数。基于结论第四种中所提出方法模拟的冠层方向性亮
温，对模型进行敏感性分析。结果表明，具有大角度倾斜观测、角度间隔明显的观测组
合能提高发射率和温度的反演精度。这是因为在这种角度组合条件下，不同方向上的组
分比例和方向性亮温均有显著差异；本文同时也讨论了中红外与热红外通道宽度、冠层
LAI、组分温度分布和 TISIE 等对反演精度的影响。总的来说，当观测的方向性亮温和
大气参数的噪声分别不超过 1.0K 和 10%时，新方法反演发射率和温度（等效温度）的
误差分别小于 0.015 和 1.5K。 

将 D-TISI 方法应用于机载白天时刻中红外、热红外通道的多角度观测数据上，反
演了方向性发射率和等效温度。与 ASTER 发射率产品的交叉比较发现，新方法反演的
垂直方向上的发射率大于 ASTER 发射率产品，它们的均方根误差约为 0.012。并利用核
驱动 BRDF 模型将实际观测的方向性等效温度归一化到垂直方向上。对绝大多数植被像
元，垂直方向上的等效温度和实际观测方向上的最小等效温度之间相差 0.5~2.0K，而对
于大多数的非植被像元，两者温度之间却可高达数 K。因此，为了提高精度，有必要对
地表温度进行角度归一化，特别是非植被像元。 

然而，在实际过程中，地表温度同时也受区域气象条件、太阳光照条件变化而引起
的时间变化。本文在利用机载数据进行反演时忽略了时间变化对温度的影响，而是将像
元温度的变化全部归咎于观测角度的变化。尽管使用的数据连续观测时间间隔短，但不
考虑温度的时间变化会降低反演的精度。大气纠正误差也将降低反演精度。此外，在探
测单元的瞬时视场角(IFOV, instantaneous field of view)保持不变的情况下，同一探测单
元在不同的角度观测时对应不同面积大小的地面像元，这可能导致不同角度的像元拥有
不同的组分，尤其是对于非均匀地表。因此，在未来多角度传感器发展中，需要根据观
测的角度大小来设计具有不同瞬时视场角的探测单元，使得在不同角度下观测到同样的
地面面积。 

第六章主要是在考虑了视场效应的基础上构建了模拟行播作物冠层方向性亮温的
新模型，并提出了地面验证过程中需要的最佳视场。 

在考虑地面测量传感器的视场大小的基础上，构建了模拟行播作物冠层的方向性亮
温新模型(FovMod)。FovMod 模型采用圆形（垂直观测）或椭圆形（倾斜观测）来刻画
传感器在冠层上的投影视场，并将该视场划分为多个小面元，分别计算各个面元内植被、
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光照土壤与阴影土壤的比例。然后，按照高斯分布的点扩散函数来计算每个面元对整个
视场辐射的权重，并加权得到整个视场内各个组分比例。最后，利用组分比例和组分亮
温的加权和来获得冠层的方向性亮温。研究结果表明，当传感器视场较小时，行播作物
冠层的方向性亮温分布主要取决于行播作物本身的行向方位角和单一组分温度，而几乎
与太阳的位置无关；而当传感器视场较大时，冠层的行结构却在很多程度上得以平滑，
使得方向性亮温的分布模式与均匀连续冠层相当，因此选择合适的传感器视场角对于获
取的行播作物冠层亮温的空间分布十分重要。 

针对平行光模型地面验证过程对传感器视场的需求，研究发现当传感器在垂直方向
上的视场覆盖 1.5~2.0 倍行结构周期宽度时，地面仪器测量到的方向性亮温可等效地当
作单一观测方向上的亮温，在理论上可以用来验证平行光模型，而无需考虑传感器的视
场效应。最后，利用玉米行播作物冠层的实测数据来验证了 FovMod，验证结果证明新
模型 FovMod 的模拟数值与实测值相当，二者的均方根误差为 1.2 K，优于平行光模型
的均方根误差 1.7 K。此外，由于 FovMod 同时考虑了观测几何、冠层结构和视场大小，
该模型还可以用来评价地面测量数据因观测角度控制误差、或者结构参数测量误差而导
致的亮温不确定性，从而为测量数据的评价提供依据。 

新模型的不足之处在于没有考虑行播作物冠层内组分之间的多次散射，并忽略了大
气下行辐射的影响，因此模型的模拟值理论上小于实际值。新模型需要的冠层结构和观
测几何参数比较繁多，在利用该模型发展组分温度反演算法时，需要对模型开展进一步
的参数化或简化过程。此外，新模型还需要针对处于不同生长期的更多行播作物冠层开
展地面验证工作。 

第七章主要总结本文的主要工作和成果，并且对未来的研究做出了相关展望。 

本文从理论上对地表热辐射的方向性进行了系统分析，有助于促进人们更好的了解
热辐射方向性以及提高现有遥感温度产品的精度，所得结论可为星载或机载多角度热红
外传感器的设计及地面测量提供参考。此外，还可以从几个方面来进一步深化本文的研
究工作： 

（1）理论上，本文提出的 D-TISI 方法使用的多角度数据不需要在同一时间段内观
测，因此适用于具有中红外与热红外波段的静止卫星。此类卫星可在短时间内对同一地
物以相同的观测方向进行连续观测，通过太阳位置的移动来获取同一地物的多角度观测
几何数据。只要能够实现各次观测时的大气纠正，D-TISI 方法就可以从这些数据中反演
出发射率和温度。鉴于这样的思路，在地表没有发生显著变化的前提下，MODIS 和
AVHRR 等传感器也可以通过多天对同一地物的多次观测来提供多角度数据； 

（2）本文所需要的方向性发射率或者多角度数据在目前并非多见，算法的应用受
到一定的限制，因此需要在未来研究中发展地表温度角度纠正的新方法。例如，利用植
被覆盖度与地表温度的空间信息，首先可基于二者特征空间来建立地表温度与植被覆盖
度的经验关系，然后再通过 BRDF 模型获得垂直方向上的植被覆盖度，并进一步获取垂
直方向上的地表温度；结合静止卫星和极轨卫星，利用它们同步或者准同步信息来发展
地表温度纠正算法； 

（3）从高光谱或超高谱传感器的成百上千的观测数据中提取像元的组分温度，然
后再利用植被指数或者覆盖度获得垂直方向上地表温度也可能是一种地表温度角度纠
正的有效方法； 
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（4）由于缺少地面实测数据，D-TISI 方法实际反演的发射率和温度没有进行地面
验证，需要在以后研究中更注重星-机-地同步配合实验。尽管针对玉米行播冠层验证了
新发展的行播作物冠层方向性亮温模型，但是在未来研究中，仍需要利用更多种类的行
播作物（例如小麦、玉米、果园等）冠层在不同生长期的方向性亮温数据来对新模型进
行验证。 

 

本文由北京师范大学(Beijing Normal University, China)和斯特拉斯堡大学(Université 
de Strasbourg, France)双方导师共同指导完成，并得到了中国国家重点基础研究发展计划
项目（973 计划）、国家高技术研究发展计划（863 计划）、国家自然科学基金、国家公
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Chapter 1 

Introduction  

 

In the recent decades, the studies of land surface energy balance, watershed management, 
biophysical process and disasters have attracted worldwide interests. The achievement of 
those subjects requires a huge database about the status of land surface, ocean, atmosphere 
and even the human activities. The advent of remote sensing technique, featured with rapid 
revisit, long-term observation and low cost, provides us a promising way to obtain those data 
at regional and global scales rather than the traditional point measurement. With the remotely 
sensed data from airborne and spaceborne platforms, scientists have proposed different 
algorithms to retrieve different types of parameters about the Earth’s surface and its 
atmosphere cycle, and these parameters have been used in many relevant fields. 

The land surface temperature (LST) is one of the most important parameters in the 
physical processes of surface energy and water balance at local through global scales. 
Knowledge of the LST provides information on the temporal and spatial variations of the 
surface equilibrium state and is of fundamental importance in many applications. As such, the 
LST is widely used in a variety of fields including evapotranspiration, climate change, 
hydrological cycle, vegetation monitoring, urban climate and environmental studies, among 
others (Mildrexler et al. 2011; Rodriguez-Galiano and Chica-Olmo 2012; Sims et al. 2008; 
Tang et al. 2010; Van Leeuwen et al. 2011), and has been recognized as one of the 
high-priority parameters of the International Geo-sphere and Biosphere Program (IGBP) 
(Townshend et al. 1994), as one of the most important Earth System Data Records (ESDR’s) 
identified by NASA (http://lst.jpl.nasa.gov/background), and as one of the supporting 
products for the ESA climate variables (http://tinyurl.com/globtemperature). 

   The retrieval of the LST from remotely sensed thermal infrared (TIR) data has attracted 
much attention, and its history dates back to the 1970s (McMillin 1975). However, the direct 
estimate of the LST is not an easy task and it has to deal with the emissivity and atmospheric 
effects, because the radiances measured by the radiometers onboard satellites depend not only 
on surface parameters (temperature and emissivity) but also on atmospheric effects (Li and 
Becker 1993; Ottlé and Stoll 1993; Prata et al. 1995). The emissivity, defined as the ratio of 
the radiance emitted by natural targets to the radiance emitted by a blackbody at the same 
temperature, varies with land surface types and structure, wavelength, soil texture and 
moisture and viewing angle (Becker 1987; François et al. 1997; Schmugge et al. 1998; 
Sobrino et al. 2008). The coupling of the non-unity emissivity for most natural surface with 
the LST causes the retrieval of the LST from space is mathematically underdetermined and 
unsolvable: for a sensor with N infrared channels, N measurements have N + 1 unknown (N 
channel emissivities and 1 temperature). To solve this underdetermined problem, some extra 
constraints are consequently needed. As for the atmospheric effect, the surface-emitted 
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radiance is firstly contaminated by the reflected atmospheric downward radiance, and then 
attenuated by atmosphere on the path from the surface to the sensor onboard satellite. 
Correcting for the atmospheric effect requires accurate knowledge of the vertical profiles of 
atmospheric water vapor and temperature both of which are highly variable (Perry and Moran 
1994).  

Based on the radiative transfer theory in the TIR, a variety of methods have been 
developed to retrieve LST from remotely sensed data with different way to remove the effect 
of emissivity and atmosphere. For example, with known emissivity from the linear empirical 
relationship with visible/near-infrared data or classification-based method (Snyder et al. 1998; 
Sobrino et al. 2008; Zhou et al. 2003), two popular methods can used to retrieve LST from 
space: one is the single-channel algorithm that was proposed to obtain LST with only one TIR 
channel, such as the Thematic Mapper channel 6 (TM6) onboard Landsat and HJ-1B (Duan et 
al. 2008; Jiménez-Muńoz and Sobrino 2003; Qin et al. 2001); the other is the split-window 
algorithm that removed the atmospheric effect using the differential atmospheric absorption in 
the two adjacent channels centered at 11 µm and 12 µm, and finally applied the linear or 
nonlinear combination of brightness temperatures of the TIR channels to get the LST. Because 
it does not require accurate information about the atmospheric profiles at the time of the 
acquisition, a variety of split-window algorithms have been developed and modified to 
successfully retrieve LST from several sensors, such as AVHRR, MODIS, and SEVIRI 
(Becker and Li 1995; Sobrino et al. 1993; Sun and Pinker 2007; Tang et al. 2008; Wan and 
Dozier 1996). On the other hand, with the cases of unknown emissivity, several methods were 
designed to retrieve both LST and emissivity from multiple-channel and/or multiple temporal 
observations. For example, the Temperature-Independent Spectral Indices (TISI) method 
firstly used a pair of day and night observations in middle and thermal infrared channels to 
retrieve emissivity in both channels, and then used the retrieved emissivity to calculate LST 
directly from the inversion of the Planck’s law or from the split-window algorithm 
aforementioned (Becker and Li 1990; Goïta and Royer 1997; Jiang et al. 2006; Nerry et al. 
1998). Similarly, Two-Temperature Method (TTM) decouples the two parameters from two 
TIR channel’s observations in day and night observations by assuming channel emissivities 
were invariant during the two observations (Peres and DaCamara 2004a; Watson 1992). 
Moreover, if the number of MIR and TIR channels is enough (no less than seven), the 
physical day/night algorithm can be unitized to retrieve LST and emissivity along with some 
other parameters from day and night observations (Wan and Li 1997). Besides, both LST and 
emissivity can be also retrieved from atmospherically corrected multiple-channel TIR data by 
using relationship between channel emissivities, such as the Temperature/emissivity 
separation method (TES) primarily designed for ASTER five TIR channels and then extended 
to MODIS three TIR channels (Gillespie et al. 1998; Gustafson et al. 2006; Hulley and Hook 
2011; Sabol et al. 2009). With the appearance of hyperspectral TIR sensors (e.g. Infrared 
Atmospheric Sounding Interferometer, IASI), the thousands of narrow bandwidth channels in 
TIR can supply enough vertical resolution to allow extraction of atmospheric information and 
can also provide more physical constraints to accurately separate the LST and emissivity 
(Wang 2011). 

An important assumption included in these current algorithms is that the surface is 
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considered as homogeneous and isothermal, and the surface temperature is 
channel-independent and angle-independent. This assumption is reasonable because it can 
reduce the number of unknowns and make the LST retrievable. However, in practice, as 
reported by some authors by (Chehbouni et al. 2001; Lagouarde and Irvine 2008; Lagouarde 
et al. 1995; Li et al. 2004a), the LST varies with viewing angle, and its angular variation for 
three-dimensional surfaces results primarily from the angular variation of the pixel emissivity 
and the relative weights of different components (e.g., vegetation and background soil) with 
different temperatures in a non-isothermal pixel. The difference in the LST measured in nadir 
and off-nadir observations can be as large as 5 K for bare soils and even 10 K for urban areas. 
For most polar-orbit satellites (e.g. MODIS, AVHRR) that scan the land surface in the 
cross-track direction with different viewing zenith angles (VZA) varying from -65º to +65º, 
angle-dependent variations in the retrieved LST are inevitable, making the LSTs of different 
pixels in the same orbit incomparable and causing erroneous results in application. This 
angular effect also occurs in the geostationary satellite such as Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) onboard MSG and among LSTs obtained from different sensors or 
at different times. Therefore, it is very crucial to consider this effect in the retrieved LST. 

One method of considering the angular effect on LSTs is to simply attribute the angular 
variation of the measured effective temperature derived from area-weighted emitted radiances 
to the directional behavior of the pixel emissivity, as proposed by (Li et al. 1999). However, 
the directional emissivity defined in this manner is usually not measurable from space and the 
assumption that there is no downward environmental thermal radiance may cause some 
unexpected errors in the normalized result (Li et al. 2012; Norman and Becker 1995). Another 
technique for this effect is to separate the components’ temperatures or their ratio from 
multi-angular TIR data (Jia et al. 2003; Li et al. 2001; Liu et al. 2012; Menenti et al. 2001; Shi 
2011; Zhan et al. 2011), and calculate the effective temperature in a specific direction (e.g., at 
nadir) by weighting the components’ temperatures with their corresponding fractions. The 
fractions of various components under a specific viewing angle can be calculated using the 
bi-directional reflectance distribution function (BRDF) model in the visible and near infrared 
spectral regions. This method might be a promising way, but the requirement of multi-angular 
observation cannot be satisfied for most TIR sensors, and its accuracy is still far from 
satisfactory. Therefore, there is still no any practical way to perform angular normalization of 
satellite-derived LSTs due to the complexity of this issue.  

 From this point of view, the study of this thesis focuses on the retrieval of directional 
emissivity from spaceborne and airborne data using empirical and physical methods, and its 
applications on the angular correction of the LST. It also aims at the simultaneously retrieve 
directional emissivity and temperature from multi-angular middle and thermal infrared data. 
Besides, for the field angular measurement of surface temperature, this thesis also develops a 
hybrid radiative transfer model to consider the sensor’s footprint effect on the measured 
directional brightness temperature. Therefore, this thesis is organized into seven chapters: 

   Chapter 2 describes the fundamental radiometric theory, and reviews the current status of 
retrieving LST and emissivity from remotely sensed data, and the issue of modeling of 
directional thermal radiation for homogeneous and heterogeneous surface. 
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   Chapter 3 aims at the extraction of directional emissivity based on MODIS standard 
emissivity product for several land cover types, and establishment of empirical expression of 
directional emissivity at pixel scale. The directional emissivity is finally applied to the 
split-window algorithm for retrieving LST with angular correction. 

   Chapter 4 presents the parameterizations of the directional emissivity and thermal 
radiance and discussion about the application of the kernel-driven BRDF model in the angular 
normalization of land surface temperature and its requirement of viewing angles. 

   Chapter 5 depicts the newly developed model for the retrieval of directional emissivity 
and effective temperature from daytime multi-angular MIR and TIR images. Analysis of 
model consistency to several key parameters is also presented. Finally, the new method is 
applied to an aircraft dataset collected by airborne system in the field campaign, and validated 
by using ASTER products. 

   Chapter 6 develops a new hybrid GORT model to simulate the directional brightness 
temperature for row-structured canopy by considering the footprint effect of the sensor in the 
ground measurement. Based on the new model named FovMod, this chapter provides the 
optimum footprint for the validation of the previous relevant models. 

   Chapter 7 concludes the work of this thesis and gives out some discussions about the 
future efforts on the topic of directional behavior of LST and emissivity.  
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Chapter 2 

Fundamental radiometric theory, and reviews of LST and 

emissivity retrieval methods and modeling of directional 

thermal radiation 

 

This chapter firstly presents the basic theory of radiative transfer model, along with 
defining the LST and emissivity for space pixel, and then reviews the current popular methods 
of retrieving land surface temperature and emissivity. Finally, it describes the methods for 
modeling of directional thermal radiation. Based on the analysis on of the drawbacks of the 
current work, it introduces briefly the main objectives of this thesis. 

 

2.1 Radiative transfer theory 

According to the Planck’s law, all targets with absolute temperature larger than 0 K emits 
radiance. The spectral radiance emitted from a blackbody is expressed as: 

]1)[exp(
)(

2
5

1

-
=

TC
C

TB
lll ,                           (2.1) 

where, Bλ(T) is the spectral radiance (W•m
-2

•µm-1
•sr-1) at temperature T (K) and wavelength λ 

(µm); C1 and C2 are physical constants (C1=1.191×108 W•µm4
•m

-2
•sr-1, C2=1.439 ×104 µm•K). 

Because most natural targets are non-black bodies, the emissivitye , which is defined as the 
ratio of the radiance of a target to that of a black body at the same temperature, must be taken 
into account. According to the definition of emissivity, only the blackbody has an emissivity 1, 
and the natural targets are usually non-unity, i.e. 0 < ελ < 1. The spectral radiance of a 
non-black body is given by the spectral emissivity multiplied by Planck’s law as shown in 
Eq.(2.1). 

The measured radiance by a sensor onboard the satellite or the aircraft is contributed by 
both surface and atmosphere. For a cloud-free sky, several different sources of the radiance at 
the Top Of Atmosphere (TOA) are presented in Fig.2-1 in details and the measured radiance 
in an infrared channel i is given by: 

  ++×= sliativvivvivvi RRRI ),(),(),( jqtjqjq .             (2.2) 

The first term of the right-hand side of Eq.(2.2) is the measured surface-leaving radiance 
after attenuation passing through the atmosphere (path ① in Fig.2-1), and the second and 



Chapter 2. Fundamental theory and reviews 

 6

third terms are the contribution of upward atmospheric emission Rati↑ and scattered solar 
radiance Rsli↑ (paths ② and ③). The surface-leaving radiance Ri(θv, φv) is written as: 
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where, θv and φv are the viewing zenith angle and azimuth angles, while θv and φv are solar 
zenith and azimuth angles. τi is the atmospheric transmittance. This first term of the 
right-hand side of Eq.(2.3) is the surface thermal radiation (path ④), while εi(θv, φv ) is the 
surface emissivity in the viewing direction, and B(Ts) is the surface emission calculated from 
the Planck’s law at the temperature Ts. The second and third terms are the downward 
atmospheric radiance and solar scattering radiance reflected by the surface at the viewing 
direction (paths  and ⑤ ⑥, respectively); the last part (path ⑦) of Eq.(2.3) presents the solar 
direct illumination reflected by the surface with the bi-directional reflectivity ρi(θs, φs, θv, φv). 
For the middle infrared channel (3~5µm) in nighttime and the thermal infrared channel 
(8~14µm), the reflected solar radiance (the third and fourth terms in Eq.(2.3)) are negligible. 

 

Fig.2-1. Illustration of radiative transfer equation in the infrared regions (Li et al. 2013a) 

It is worth noting that all variables/parameters in Eqs. (2.2) and (2.3), except for the 
angles (θs, φs, θv and φv), are channel-effective values. Most satellite sensors measure the 
outgoing radiation within a finite spectral bandwidth. The channel-effective quantity Xi of 
interest is therefore a weighted average from spectral quantities xλ and the channel’s filter 
function f(λ) in the range (λ1, λ2) , expressed as:  
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2.2 Definition of temperature and emissivity for land surface 

As noted in (Prata et al. 1995), the definition of the surface temperature may depend 
strongly on the type of application and the method of measurement. Because the surface 
temperature Ts in Eq.(2.3) is defined using the radiance emitted by a surface, this temperature 
is called the radiometric temperature (or the skin temperature) that corresponds to the 
radiation emitted from depths less than the penetration depth of a given wavelength (Becker 
and Li 1995; Norman and Becker 1995). The penetration depth is usually within a few 
millimeters in the TIR region (Wan 1999) . This radiometric temperature physically differs 
from other definition of temperatures, such as the thermodynamic temperature defined for a 
medium in thermal equilibrium and measured by a thermometer. For homogeneous and 
isothermal surfaces, the radiometric and thermodynamic temperatures are reported to be 
equivalent. As the thermodynamic temperature is actually hard to measure in reality, even for 
water bodies, the radiometric temperature is often the only practical measurement for the 
homogeneous and isothermal surface. However, most surfaces are not in equilibrium and for 
heterogeneous and non-isothermal surfaces, these two temperatures are different. Considering 
that the spatial resolution of the current onboard systems varies approximately from 10-2 to 10 
km2, there may be several surface types with different temperatures and emissivities within 
one pixel, which complicates the physical understanding of the LST values retrieved from 
space and the relation of the radiometric temperature at large scales to other temperatures 
used in different applications. In that case, because of the coupling of the temperature and 
emissivity, the definition of temperature depends on that of the emissivity.  

There are currently several definitions of the emissivity, such as the r-emissivity (Becker 
and Li 1995), the e-emissivity (Norman and Becker 1995) and the apparent emissivity (Li et al. 
1999).  

A. r-emissivity  

For a pixel made up of N homogeneous components with known emissivity in given 
spectral domain and viewing angles, the ensemble emissivity of a mixed pixel along the 
viewing direction (θv and φv) can be expressed as: 

å
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=
N

k
vvkkvvr a

1

),(),( jqejqe ,                      (2.5) 

where ak is the relative proportion of the kth components in the pixel, and the sum of all ak is 
unity. According to Eq.(2.5), Wan and Dozier (1996) further defined the band-average 
emissivity by adding the channel’s filter function to Eq.(2.5) and applied it to retrieve LST 
from MODIS TIR data. The r-emissivity is a characteristic of the surface, and independent on 
the components’ temperatures. Furthermore, for most of the common terrestrial surfaces, this 
emissivity is the complement to the hemispherical-directional reflectance ρ(θv, φv), following 
the Kirchhoff’s law, by ensemble in the same spectral domain and view direction: 
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In the above equation, the last part describes the integration of bi-directional reflectance in 
the upper hemisphere. One of the advantages of r-emissivity is its measurability from space 
and its scale invariability. However, this type of definition makes the definition of LST 
wavelength- and viewing-angle-dependent and also dependent on the distributions of surface 
temperature and emissivity within a pixel. 

B. e-emissivity  

The emissivity is defined as the ratio of the radiance of an ensemble of natural surface to 
the radiance of that ensemble with the same temperature distribution, and each component is 
assumed a blackbody in the same spectral domain and viewing angle: 
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where, B(Tk) is the radiance of kth component at its temperature Tk. From this definition, the 
e-emissivity depends on the temperature distribution of the ensemble components and on the 
characteristic of the components. Besides, Eq.(2.7) implies that the denominator is an 
equivalent black body at a temperature T. However, this temperature varies with channels 
because an equivalent black body at a given temperature, composed of black bodies at 
different temperatures, does not exist. 

C. Apparent emissivity 

In order to keep the Planck’s law and BRDF-derived emissivity unchanged in the 
heterogonous and non-isothermal pixels, Li et al.(1999) proposed the apparent emissivity, 
defined by adding an apparent emissivity increment caused by the temperature difference of 
non-isothermal surface into the r-emissivity to make the definition of LST independent of 
viewing angle and wavelength: 
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where, T0 is the reference temperature that is independent with the wavelength and viewing 
angle, and ΔTk  is the difference between this reference temperature and the kth component 
temperature. Kλ(T0) is a function of both wavelength and temperature, written as Kλ(T0) = 
B’(T0)/B(T0), in which B’(T0) is the first derivation of the Planck’s law at the reference 
temperature T0. Although the LST derived from the apparent emissivity is invariant with 
wavelength and viewing angle, the apparent emissivity itself varies with wavelength and 
temperatures (T0 and Tk). If the reference temperature T0 is inaccurately determined, the 
apparent emissivity may be consequently larger than unity. Besides, the reference and the 
components’ temperatures cannot be obtained in practice. 

These definitions are the same for homogeneous and isothermal surface, but because 
natural surfaces observed from space are usually heterogeneous, the assumptions of 
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homogeneity and thermal equilibrium are often violated in reality, especially in measurements 
with low spatial resolution. Therefore, the differences between these definitions are evident in 
many cases. Since the r-emissivity is invariant with the temperature and measurable from 
bi-directional thermal reflectance at space and ground levels, it provides an access to estimate 
the emissivity separately before LST retrieval by offline computer simulation or from 
vegetation index. Therefore, the r-emissivity is often recommended for LST retrieval from 
space and will be used in this thesis for illustration. However, one should note that the 
ensemble emissivity presented in Eq.(2.5) is a not completely accurate since it ignores the 
single and multiple scattering within a pixel, and the angular behavior of the emissivity 
mainly due to the angular variation of the relative fractions ak rather than to the component 
emissivity εk which is almost independent on the viewing angle for most natural targets. 

 

2.3 Atmospheric transmittance code and atmospheric data 

The most popular transmittance codes, such as the series of MODTRAN (Berk et al. 2003) 
and 4A/OP(Chaumat et al. 2009), have been widely used to perform atmospheric corrections 
and/or to simulate satellite TIR data. MODTRAN (MODerate spectral resolution atmospheric 
TRANsmittance and radiance code) was developed by Air Force Research Labs (AFRL) in 
collaboration with Spectral Sciences, Inc(SSI). MODTRAN calculates atmospheric 
transmittance and radiance for frequencies from 0 to 50,000 cm−1 at moderate spectral 
resolution, primarily 2 cm−1 (20 cm−1 in the UV). The original development of MODTRAN 
was driven by a need for higher spectral resolution and greater accuracy than that provided by 
the LOWTRAN series of band model algorithms. Except for its molecular band model 
parameterizations, MODTRAN adopts all the LOWTRAN 7 capabilities, including spherical 
refractive geometry, solar and lunar source functions, and scattering (Rayleigh, Mie, single 
and multiple), and default profiles (gases, aerosols, clouds, fogs, and rain) 
(http://imk-msa.fzk.de/Software/Modtran/MODTRAN.htm). 

The most recently released version of the code, MODTRAN 5, provides a spectral 
resolution of 0.2 cm-1 using its 0.1 cm-1 band model algorithm. However, this thesis did not 
have the access to get this latest version, and thus replaced it with MODTRAN 4, which 
implemented a correlated-k algorithm for accurate calculation of multiple scattering, added 
the azimuth dependent DISTORT option and upgraded the ground BRDF model and database. 
All of these refinements made the calculation of MODTRAN 4 more accuracy than the 
former versions. Therefore, it was widely used since its release in 2000 and modification in 
2003. 

4A/OP (Operational release for 4A radiative transfer model) is a fast and accurate 
line-by-line radiative transfer model particularly efficient in the infrared region of the 
spectrum. Compared with MODTRAN, 4A/OP uses a comprehensive database (GEISA) of 
monochromatic optical thicknesses for up to 43 atmospheric molecular species and to 
simulate transmittance and radiance at high spectral resolution (the nominal spectral 
resolution is 5×10-4 cm-1 but it can be changed by users) in the spectral range of 600 ~ 3000 
cm-1(about 3.3 µm ~16.6 µm). Therefore, 4A/OP is more suitable for the calculation of (super) 
hyperspectral TIR data, such as Infrared Atmospheric Sounding Interferometer (IASI) 
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onboard METOP. More detains are included in (Chaumat et al. 2009). 

The accuracy of the calculation of those codes depends on that of the code itself and input 
atmospheric data. As reported by (Wang et al. 1996), the agreement of MODTRAN is usually 
within a few percent root-mean-square error (RMSE) and seldom exceeds 5%. MODTRAN 
provides six standard atmospheric profiles: tropical, mid-latitude summer, mid-latitude winter, 
sub-arctic summer, sub-arctic winter and 1976 U.S standard. Each profile contains 36-layer 
atmospheric data: altitude, air pressure, air temperature, water vapor density, and layer 
concentration of ozone, carbon dioxide, carbon monoxide, methane, nitrous oxide, oxygen, 
nitric oxide, sulphur dioxide, nitrogen dioxide, and ammonia. In addition to the six standard 
atmospheres, MODTRAN also provides the New Model Atmosphere option to accept the 
atmosphere defined by user from radiosoundings data (e.g. Thermodynamic Initial Guess 
Retrieval (TIGR) database), onboard vertical sounder (e.g. MODIS) or meteorological 
forecasting models, such as the National Centers for Environmental Prediction (NCEP) and 
the European Centre for Medium-Range Weather Forecasts (ECMWF). Some other 
instrument, for example CE318 Sunphotometer, can also provide the column water vapor and 
near surface air temperature for the MODTRAN.  

Fig.2-2 presents the spectral atmospheric transmittance simulated by MODTRAN with 
1976 U.S. atmosphere, which indicates that sensors onboard the satellite for the retrieval of 
LST and emissivity must be built in the “atmosphere windows” of about 3 ~ 5 mm (middle 
infrared, MIR) and 8 ~ 14 mm (thermal infrared, TIR), where the atmosphere is mostly 
transparent for the surface radiance.  

 
Fig.2-2. Atmospheric transmittance in the range of 0 ~ 18 mm under 1976 U.S. standard atmosphere profile 

 

2.4 Emissivity spectra database 

Emissivity of natural surface at ground can be measured on basis of the direct inversion of 
spectral radiative transfer equation (i.e. Eq.(2.3)) or from the complementary to the 
hemispheric-directional reflectivity (Salisbury and D'Aria 1992). Two popular emissivity 
spectra databases that are currently used for the algorithm development are the ASTER 
spectral library (Baldridge et al. 2009) and the University of California Santa Barbara library 
(UCSB) (Snyder et al. 1998), respectively. The ASTER spectral library was released since 
2008 and contains about 1330 emissivity spectra in the range of 3 ~ 14 µm for natural and 
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man made materials, collected from three other spectral libraries: the Johns Hopkins 
University (JHU) Spectral Library the Jet Propulsion Laboratory (JPL) Spectral Library, and 
the United States Geological Survey (USGS - Reston) Spectral Library. The data in the UCSB 
spectral library was measured by the Institute for Computational Earth System Science at the 
University of California, Santa Barbara, which included 123 land surface emissivity spectra. 
The surfaces in those databases mainly include vegetation, rock, sand, water, snow/ice, and 
manmade materials. Fig.2-3 displays the spectral variation of several samples selected from 
the libraries. It indicates that the spectral emissivity of water and green grass is almost flat in 
the atmosphere windows 3 ~ 5 µm and 8~14 µm, while that of soils and dry grass varies 
significant and has a larger value range. Therefore, an accurate estimate of soil emissivity 
turns out to be more crucial than that of vegetation for accurately retrieving LST from 
remotely sensed data. Besides, the channel emissivity of a sensor can be calculated from the 
spectral value with the spectral response function using Eq.(2.4). 

 
Fig.2-3. Spectral emissivity of several samples including water, soil and leaf  

 

2.5 Estimate of LST and emissivity from space  

To date, many algorithms have been developed to retrieve LST from remotely sensed data 
with different way of removing emissivity and atmospheric effect. Apart from the atmospheric 
effect, the methods of retrieving LST and emissivities can be grouped to two categories: 
stepwise retrieval method and simultaneous retrieval of both variables.  

 

2.5.1 Stepwise retrieval method  

In this case, LST and emissivity are retrieved step by step: the emissivity is firstly 
determined, and then LST is retrieved with the determined emissivity as a prior. Two types of 
methods estimating land surface emissivity (LSE) are respectively the semi-empirical 
classification-based method and the empirical relationship between the normalized difference 
vegetation index (NDVI), derived from the VNIR data. The combination of day and night 
observations in MIR and TIR channels is also promising to obtain emissivity in advance. 

There are two common methods that retrieve LST with known emissivity, which are the 
single-channel method and the split-window method.  
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(1) Classification-based emissivity retrieval method (CBEM).  

This method generally uses the conventional land-cover classification information to 
determine the emissivity of the pixel. The key points of this method are the emissivity 
database and the land-cover products. For example, Snyder et al. (1998) developed an 
emissivity database in MODIS TIR channels by using three kernel-driven BRDF models 
based on the laboratory emissivity spectra and canopy structural parameters (Snyder and Wan 
1998), driven from approximate descriptions of the cover type. In the model, the emissivity 
was calculated from the hemispheric-directional reflectance based on the integration of BRDF 
over an angle range from 0° to 65°, and the Kirchhoff’s law. Finally, emissivities for 14 
distinct land covers in the IGBP (International Geosphere-Biosphere Programme) were 
obtained and saved in a Look-up table (LUT). With this emissivity LUT, the emissivities of 
MODIS 31 and 32 channels are determined directly from the IGBP classification product with 
consideration of seasonal and dynamic states, and consequently applied in the generalised 
split-window algorithm to retrieve LST. Similarly, the emissivity of a pixel mixed by several 
land covers can be estimated using a linear mixing equation as Eq.(2.5).  

Because of its operability, this method has already been applied to other satellite data, 
such as the AATSR on ENVISAT, the METEOSAT Second Generation-1 (MSG) data  (Peres 
and DaCamara 2005; Trigo et al. 2008) and Geostationary Operational Environmental 
Satellite (GOES) data (Sun and Pinker 2003). However, the accuracy of this method highly 
depends on the land cover. The seasonal variation of the vegetation cover and moisture will 
cause some uncertainty to the emissivity and then degrade the accuracy of the retrieved LST. 
Besides, since the emissivity is derived from LUT and land covers, a problem about the 
spatial discontinuity is consequently raised.  

(2) Empirical emissivity algorithm 

This method is based on some empirical relationship between the vegetation index derived 
from the VNIR data and the emissivity in the TIR channels. Griend and Owe (1993) first 
found a very high correlation between the emissivity in the TIR channels covering 8 ~ 14 µm 
and the logarithmic NDVI. Subsequently, Valor and Caselles (1996) applied this method to 
estimate the effective emissivity of a rough row-distributed system. Starting from the method 
proposed in (Valor and Caselles 1996), Sobrino and Raissouni (2000) reduced the complexity 
and formulated an operational NDVI threshold method to derive the emissivity from space, 
with three linear functions corresponding to conditions in which a pixel is composed of full 
vegetation, of full soil or of mixed soil/vegetation: 
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where, aλ and bλ are channel-dependent regression coefficients, ρred is the reflectance of the 
red channel, NDVIs and NDVIv are the NDVI corresponding to the bare soil and full 
vegetation, respectively. εv,λ and εg,λ are the vegetation and soil emissivities, respectively. Both 
of them can be measured in the field (Rubio et al. 1997; Rubio et al. 2003) or obtained from 
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the emissivity database (Baldridge et al. 2009). fv is the fraction of vegetation that can be 
derived either from the NDVI (Carlson and Ripley 1997; Valor and Caselles 1996) or from the 
variable atmospherically resistant index (VARIgreen) and spectral-mixture analysis (SMA) 
techniques (Sobrino et al. 2008), dελ means cavity effect of multiple scattering, and can take 
values of 0.02 and higher from numerical simulation (Valor and Caselles 1996). NDVIs and 
NDVIv can be estimated from the histogram for the entire scene (Dash et al. 2005; Sobrino et 
al. 2008). For its simplicity, this method can be applied to any sensor that has red and 
near-infrared channels to calculate NDVI, such as the AVHRR, MODIS, TM, SEVIRI, ATSR 
and CHRIS (Sobrino et al. 2004b; Sobrino et al. 2003). Similar to the CBEM, this method 
also causes spatially discontinuous emissivity values of regions transitioning from soil-type to 
vegetation-type, because the emissivities in those regions are calculated from different 
formulae, and its accuracy will be degraded by the errors included in the vegetation and soil 
emissivity, and the fraction of vegetation as well as the NDVI thresholds used to distinguish 
bare soil and full vegetation.  

  (3) Temperature-independent spectral indices (TISI) method. 

Based on two assumptions that the Planck’s law can be approximated using a power 
function for a MIR or TIR channel and the pixel emissivities have no significant change 
during daytime and nighttime observations, Becker and Li (1990a), and Li and Becker (1990) 
first proposed a TISI-based method to perform spectral analysis in the TIR region. 
Subsequently, assuming that the TISIij (i is the MIR channel and j is the TIR channel) in the 
daytime without the contribution of solar illumination is the same as the TISIij in the nighttime, 
Li and Becker (1993) and Li et al. (2000) further developed a day/night TISI-based method to 
first extract the bi-directional reflectivity in MIR channel i by eliminating the emitted 
radiance during the day in this channel by comparing the TISIij in the daytime and the 
nighttime. Once the bi-directional reflectivities in an MIR channel are retrieved, the 
directional emissivity in that MIR channel can be estimated as the complementary to the 
hemispheric-directional reflectivity following the Kirchhoff’s law. The 
hemispheric-directional reflectivity can be estimated from a bi-directional reflectivity data 
series using either an angular form factor (Li et al. 2000), a semi-empirical phenomenological 
model(Petitcolin et al. 2002a, b) or a kernel-driven bi-directional reflectivity model(Jacob et 
al. 2004; Jiang and Li 2008a). Finally, based on the concept of the TISI, the emissivities in the 
TIR channels can be obtained from the two-channel TISI (Jiang et al. 2006; Li et al. 2000). 
Once the emissivities are known, the LST can be retrieved using single-channel method or 
split-window method.  

The TISI-based method allows us to obtain emissivity without any prior information about 
the emissivity itself, as long as there is no occurrence of precipitation, snow or dew during the 
two observations, and the radiance is atmospherically corrected. However, since the 
TISI-based method needs the daytime and nighttime observation at the same target in a short 
time, its application cannot be achieved to those sensors that have no ability to fill this 
requirement. In order to deal with this problem, Goïta and Royer (1997) extended the original 
TISI method to make it available for the emissivity retrieval from two consecutive datasets 
acquired at the same daytime, by introducing more simplifications on the TISI and the 
characteristics of the bi-directional reflectivity. Besides, they also obtained the TISI using a 
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linear regression model from the ratio of the atmospherically corrected radiances of the MIR 
and TIR channels. However, their simplifications, especially the case of TISI = 1, will cause 
some unexpected error to the retrieved emissivity and then the LST. Besides, the mismatch in 
space and viewing angle between the two observations might reduce the retrieval accuracy of 
emissivity. 

(4) Single-channel LST retrieval method  

With the emissivity calculated in advance, the single-channel method uses the radiance 
measured by the satellite sensor in a single channel, chosen within an atmospheric window, to 
retrieve LST from the inversion of the radiative transfer model given in Eqs. (2.2) and (2.3) 
by correcting the radiance for residual atmospheric attenuation and emission using 
atmospheric transmittance/radiance code that requires input data on the atmospheric profiles. 
The atmospheric profiles can be generally obtained either from ground-based atmospheric 
radiosoundings, from satellite vertical sounders (e.g. MODIS, TOMS) or from meteorological 
forecasting models (e.g. NCEP and ECMWF). In order to reduce the dependence on 
atmospheric profiles, several single-channel algorithms have been proposed to estimate the 
LST from satellite data by parameterizing the atmospheric data. Qin et al. (2001) proposed a 
method to estimate the LST specifically from Landsat-5 TM data using only the near-surface 
air temperature and water vapor content instead of atmospheric profiles using empirical linear 
relationships between the atmospheric transmittance and the water vapor content and between 
the mean atmospheric temperature and the near-surface air temperature. Jiménez-Muñoz and 
Sobrino (2003) and Jiménez-Muñoz and Cristóbal (2009) developed a generalized 
single-channel algorithm for retrieving the LST from any TIR channel with a FWHM (full 
width at half maximum) of about 1 µm, provided that the emissivity and the total atmospheric 
water vapor content are known. This generalized single-channel algorithm requires the 
minimum input data and can be applied to different thermal sensors using the same equation 
and coefficient.  

(5) Split-window LST retrieval method  

The basis of this method is that the atmospheric attenuation suffered by the surface 
emitted radiance is proportional to the difference between the at-sensor radiances measured 
simultaneously in two adjacent thermal infrared channels. This method was firstly proposed 
by McMillin (1975) to estimate Sea Surface Temperature (SST) from satellite measurements, 
and then was extended to retrieve LST from space. On the basis of the first Taylor series of 
the radiative transfer equation, the LST is linearly related to the brightness temperatures of 
two adjacent TIR channels in the 10 ~ 12.5 µm regions, and a typical linear split-window 
algorithm can be written as Eq.(2.10) with the emissivities of these two channels are known 
(Atitar and Sobrino 2009; Becker and Li 1995; Becker and Li 1990b; Prata 1993; Sobrino et 
al. 1994; Tang et al. 2008; Wan and Dozier 1996). 

)(210 jiis TTaTaaT -++= ,                      (2.10) 

where, Ti and Tj are the brightness temperatures of the two adjacent TIR channels, and ai (i=0, 
1, and 2) are coefficients that depend primarily on the spectral response function of the two 
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channels fi(λ) and fj(λ), the two channel emissivities ei and ej, the column water vapor (WV) in 
the atmosphere, and the viewing zenith angle. They are generally pre-determined either by 
fitting the simulated data with a set of atmospheres and surface parameters or empirically by 
comparing the satellite data against in situ LST measurements. In the past decades, many 
split-window algorithms, with linear or non-linear relationship with the brightness 
temperatures of two or three TIR channels, have been developed to retrieve LST from 
different sensors by additionally parameterizing the coefficients ai according to various 
combinations of the emissivity, WV, and the VZA (Becker and Li 1995; Coll and Caselles 
1997; François et al. 1997; Minnis and Khaiyer 2000; Pinheiro et al. 2004; Sobrino et al. 
2004a; Sobrino and Romaguera 2004; Sun and Pinker 2003; Sun and Pinker 2007; Wan and 
Dozier 1996). Because of its little requirement of atmospheric data, which is not accessible 
for most sensors, and also because of its easy operation, the split-window algorithm has been 
successfully applied to many sensors with two TIR channel, such as AVHRR, MODIS, 
SEVIRI, FY-3(Hulley et al. 2011; Jiang and Li 2008b; Kerr et al. 1992; Sun and Pinker 2003; 
Tang et al. 2008; Wan and Dozier 1996). Because the land surface shows more heterogonous 
than the sea surface, the LST cannot be retrieved with accuracy as high as that of the SST. 
However, validation results indicated that, with such an approach and considering our 
knowledge of surface emissivity, accuracies of 1 to 2 K are generally attainable over land 
surface (Wan 2008; Wan et al. 2002; Yu et al. 2008). 

 

2.5.2 Methods of simultaneous retrievals of LST and emissivity 

In the above stepwise retrieval method, if errors included in the emissivity is significant, 
the consequently retrieved LST will be far away from the truth. Therefore, it is often needed 
to retrieve both LST and emissivity simultaneously. This goal has been achieved from 
multiple-channel (e.g. TES method and gray body method), and multiple-time TIR data (e.g. 
Two-Temperature Method and physical day/night method).  

(1) Temperature and Emissivity Separation method (TES)  

The TES method was first developed by Gillespie et al. (1998) to decouple LST and 
emissivity from five atmospherically corrected TIR channels’ radiance of the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER). It consists of three 
mature modules: the normalization emissivity method (NEM) (Gillespie 1995), the spectral 
ratio (SR), and the maximum–minimum apparent emissivity difference method (MMD) 
(Matsunaga 1994). This method utilizes a relationship between the minimum emissivity εmin 
and the spectral contrast (MMD) to increase the number of equation and make the ill-posed 
problem become solvable, as: 

737.0
min 687.0994.0 MMD-=e .                   (2.11) 

Since the TES method used the spectral variation of emissivity to separate the LST and 
emissivity, it can perform better for those natural surfaces with high spectral contrast 
emissivities such as rocks and soils. Numerical simulation and some field validations have 
demonstrated that the TES can recover LST and LSE consistently within ± 1.5 K and ± 0.015 



Chapter 2. Fundamental theory and reviews 

 16

when the atmospheric effects are accurately corrected (Gustafson et al. 2006; Sobrino et al. 
2007; Yoriko et al. 2003). However, some reports have indicated that the TES method 
exhibited significant errors in the LST and emissivity of surfaces with low spectral contrast 
emissivity (e.g., water, snow, vegetation) and under hot and wet atmospheric conditions (Coll 
et al. 2007; Gillespie et al. 2011; Gustafson et al. 2006; Jimenez-Munoz and Sobrino 2007; 
Payan and Royer 2004). To deal with those problems, TES has been modified several times 
(see Table 1 in (Sabol et al. 2009)) to accommodate low emissivity contrasts and errors in 
measured data. For example, Sabol et al. (2009) replaced the power relationship of εmin and 
MMD in the original TES method with a linear expression, and applied the new relationship 
available for all materials to alleviate low contrasts problem, and Gillespie et al. (2011) used a 
water vapour scaling (WVS) approach proposed in (Tonooka 2001, 2005) to improve the 
accuracy of this method by minimizing atmospheric correction errors. Besides, Hulley and 
Hook (2011) recently refined the relationship between the minimum emissivity and spectral 
contrast to make TES algorithm available for MODIS’s three TIR channels (29, 31 and 32). 
However, because of its requirement of at least three TIR channels in the atmospheric window, 
the TES method is not applicable for those sensors with only one or two channels.  

(2) Gray Body Method 

This method assumes the spectral emissivity for wavelengths larger than 10 µm is 
relatively flat and the emissivity is almost wavelength-independent. If emissivities for two or 
more channels can be considered to be the same, the number of the unknowns will be equal to 
or less than that of the radiative transfer equations, and consequently, the LST and emissivity 
will be determined from multiple-channel TIR data (Barducci and Pippi 1996). The advantage 
of this method is that it does not require the detail information about the emissivity spectra 
and only assumes that at least two channels have the same emissivity (no need to be the gray 
body) in the wavelength interval of interest. This assumption is reasonable for dense 
vegetation and water, but is difficult to be satisfied for those surface with high emissivity 
spectral contrast in multiple channels, such as bare soil, sand and sparse vegetation. Besides, 
since atmospheric correction on the radiance is needed, the accuracy of this method can be 
degraded by the error in the input atmospheric data. However, this method shows more 
promising for hyperspectral TIR data because two or more channels with the same emissivity 
out of its hundreds of channels can be expected. 

(3) Two-Temperature Method (TTM) 

The TTM reduced the number of unknowns by assuming the emissivity is unchanged 
during two observations. In this case, N TIR channel in two observations correspond to 2N 
equations and N+2 unknowns (N channels’ emissivity and 2 temperatures). As a result, if a 
sensor has N≥2 TIR channels, both LST and emissivity can be retrieved from two 
observations (Peres and DaCamara 2004a, b, 2006; Watson 1992). The main advantage of the 
TTM is that there is no assumption about the shape of the spectral emissivity, except that the 
spectral is time-invariant. However, the high correlation of the radiative transfer equation 
between adjacent TIR channels always causes the retrieval accuracy highly sensitive to the 
error in atmospheric correction and the measured data, and also its accuracy can be degraded 
by the mismatch of geometrical registration and pixel sizes in the different observation. As 



Chapter 2. Fundamental theory and reviews 

 17

report by (Peres and DaCamara 2004b, 2006), the increase of the number of observations and 
temperature difference among those observations, as well as a non-linear optimization 
algorithm, can improve the retrieval accuracy of the TTM, but the improvement was still 
limited by the constraint of the method itself. 

(4) Physical Day/night method (D/N) 

Inspired by the day/night TISI-based method and TTM method, Wan and Li (1997) further 
developed a physics-based D/N method to simultaneously retrieve LST and emissivity from a 
combined use of the day/night pairs of MIR and TIR data. This method assumes that the 
emissivities do not significantly change from day to night and that the angular form factor has 
very small variations (<2%) in the MIR wavelength of interest to reduce the number of 
unknowns and make the retrieval more stable. To reduce the effect of the residual error of 
atmospheric corrections on the retrieval, two variables, the air temperature at the surface level 
(Ta) and the column water vapor (WV), are introduced to modify the initial atmospheric 
profiles in the retrieval. With two measurements (day and night) in N channels, the numbers 
of unknowns are N+7 (N channel emissivity, 2 LSTs, 2 Ta, 2 WV, and 1 angular form factor 
for the MIR channels). Thus, to make the equations deterministic, N must be equal to or 
greater than seven. The D/N method was successfully applied on the MODIS MIR channels 
(CH20:3.66~3.84 µm, CH22: 3.93~3.99 µm, CH23: 4.02~4.08 µm) and TIR channels (CH29: 
8.4~8.7 µm, CH31: 10.78~11.28 µm, CH32: 11.77~12.27 µm, CH33: 13.19~13.49µm), to 
generate global daily LST and emissivity products. 

Compared with the TTM, the D/N improved the accuracy of LST and emissivity by using 
the data in MIR channel to reduce the high correlations of the radiative transfer equations 
among the TIR channels, and by refining the atmospheric data with the near-surface air 
temperature Ta and the column water vapor WV. Besides, considering the angular variation in 
emissivity, the whole range of MODIS viewing zenith angles (55° was designed, but the 
actual value is 65° due to the Earth’s curvature) was separated into subranges and selection is 
done of a pair of clear-sky daytime and nighttime MODIS observations at viewing angles in 
the same subranges whenever it is possible (Wan and Li 1997; Wan et al. 2004). Therefore, as 
long as the surface emissivity does not change significantly, daytime and nighttime data 
collected over several days rather than 12 hours are still appropriate. Moreover, in order to 
improve the retrieval accuracy, the algorithm aggregated MODIS MIR and TIR channel data 
from 1 km to 5 km or 6 km to reduce the drawback of mis-registration of day and night 
observations, and combined the use of the two MODIS sensors onboard TERRA and AQUA 
satellites. Note that because of the requirement of at least seven channels in MIR and TIR 
wavelength, the D/N method have not been used by other sensor expect the MODIS until 
now. 

 

2.5.3 Methods of simultaneous retrievals of LST, emissivity and atmospheric data 

Atmospheric correction is required for the above algorithm, but the atmospheric data are 
usually unavailable synchronously with the TIR observation and errors in the atmospheric 
data always influence the retrieval result significantly. Therefore, an ideal way is to 
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simultaneously derive LST, emissivity and atmospheric data from space. Ma et al. made an 
initial attempt by assuming that the emissivity is invariant within the MODIS MIR channels 
and also invariant within the TIR channels (Ma et al. 2002; Ma et al. 2000), and Wang (2011) 
further combined the use of principle component analysis and artificial neural technique to 
obtained LST, emissivity and atmospheric profile from IASI hyperspectral TIR data. Their 
result showed RMSEs of LST and temperature profiles in troposphere were about 1.6 K and 
2.0 K, respectively; RMSE of WV was around 0.3 g/cm2. RMSE of emissivity was less than 
0.01 in the spectral interval from 10 µm to14 µm. 

 

2.5.4 Methods for hyperspectral TIR data and microwave data 

The above is a brief description of the main approaches to derive LST and emissivity from 
several MIR and/or TIR channels. Compared with the multiple channels data, the 
hyperspectral TIR data, with hundreds of channels, provide much more detailed spectral 
information about the atmosphere and land surface. Therefore, it is promising to use the 
spectral shape of the emissivity to separate LST and emissivity. For example, the iterative 
spectrally smooth temperature emissivity separation method (ISSTES) achieves the retrieval 
by minimizing the spectral smoothness iteratively in a range of temperature based on an 
assumption that a typical emissivity spectrum is rather smooth compared with the spectral 
features introduced by the atmosphere(Borel 1998; Ingram and Muse 2001). And, Wang et al. 
(2011) assume that the emissivity spectrum can be divided into M segments and that the 
emissivity in each segment varies linearly with the wavelength. As a result, the retrieval of 
spectral emissivity and LST becomes the retrieval of the coefficients of each line. Besides, 
some other algorithms, such as stepwise refining algorithm, correlation-based separation and 
alpha-derived emissivity method, were also proposed to decouple LST and emissivity from 
hyperspectral TIR data. Details can be found in the literatures (Cheng et al. 2010; Cheng et al. 
2008; Kealy and Hook 1993). 

Except for MIR and TIR data, the LST can be also retrieved from microwave data for all 
weather conditions (Chen et al. 2011; Mao et al. 2007) because it can penetrate the cloud, in 
which status the MIR and TIR data from the land surface was totally obscured. The 
combination of the MIR and TIR data with the microwave data is often considered as a 
promising way to generate long-term LST product. However, it is hampered by at least two 
factor: firstly, the retrieved temperature from microwave data is different from that of the MIR 
and TIR data because it actually corresponds to the emitted radiance of the profile from land 
surface to the depth that the microwave penetrates into the soil and depends on the 
wavelength, while the retrieved temperature from the MIR and TIR data result from the 
surface radiance in a several microns depth. Secondly, the spatial resolution of microwave 
data (tens of kilometers) is usually much coarser than that of the infrared data. Therefore, 
there is no publication about the fusion of the two kinds of temperature data and this topic is 
still under investigation.  
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2.6 Modeling of directional radiance and emissivity 

The anisotropy of the surface has been observed by many researchers either at top of 
canopy or at TOA This anisotropy, mainly due to the 3D structure of the surface and 
non-isothermal conditions existing between different components, will bring large error to the 
computation of long-wave outgoing radiation if not being accounted for (Otterman et al. 1999; 
Otterman et al. 1997). Commonly, the land surface is a mixture of two elements, namely, the 
soil and the vegetation, which have completely different physical properties controlling their 
energy balances. Modeling the directional brightness temperature (DBT) or radiance of 
homogenous or heterogeneous canopies is a promising approach to enhance our 
understanding of the angular feature, and this issue has prompted numerous thermal radiative 
models that can generally be divided into four categories: geometrical optical (GO) models, 
radiative transfer (RT) models, hybrid models (GORT), and computer/numerical simulation 
methods. The GO models estimate the thermal radiance by combining the weights of thermal 
radiance of several components, with their corresponding proportions projected in the viewing 
direction. Because the vegetation is considered as an opaque medium, the GO model do not 
simulate radiative transfer between different components. In contrast, the RT models simulate 
directional radiance as a function of viewing direction, temperature distribution, and leaf 
angle distribution within the canopy as well as the atmosphere. The canopy is always 
statistically distributed into homogeneous horizontal layers, and the directional radiance is 
calculated by summing the radiative contributions of all layers. In RT models, iterations are 
occasionally performed to account for multiple scattering within the canopy. The hybrid 
models are a combination of GO and RT models that simulate the DBT over complicated 
heterogeneous land surfaces.  

 

2.6.1 Modeling for homogeneous canopy at ground 

A homogeneous canopy can be easily divided into several layers and its gap frequency is 
related to the leaf area index, leaf angle distribution and viewing direction. Several RT models 
and their parameterizations can be proposed to simulate the directional radiance and 
emissivity of the homogeneous canopy. For example, Prévot (1985) addressed a 
probability-based model (turbid-medium model) calculating canopy radiances as resulting 
from radiative interactions between the soil and the surrounding vegetation, and interactions 
between the leaves within the vegetation using the directional gap frequency concept. Based 
on the way of estimating the upward and downward flux for each layers in the VNIR spectral 
range, the scattering by arbitrarily inclined leaves (SAIL) model added an additional radiative 
resource to the original model to extend its applications to simulate the directional thermal 
radiance (François 2002; Liu et al. 2003; Verhoef et al. 2007). In those modes, the directional 
emissivity is calculated as the ratio of the simulated directional radiance to the radiance of a 
black body with the assumption that all components have the same temperature. 

Although the RT models can estimate the directional thermal radiance and emissivity 
close to the reality for most cases, the use of iterative calculation usually make it 
time-consuming. Since the contribution of the different components are involved in this 
iteration calculation, there is no clear expression in mathematic about their radiances, so it is 
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difficult to separate the components’ temperatures, which are assumed to bear more physical 
meaning than the average temperature of the scene. As a result, the parameterization of those 
RT models is thus needed. A general expression of the directional radiance of the canopy 
mainly consisting of soil and vegetation is written as: 

¯-+++= atvcmultivvvoggvov RRTBwTBR )](1[)()()()()( qeeqeqtq ,          (2.12) 

where, τo(θv) is interpreted as the upward directional canopy transmittance for the soil 
emission, and wo(θv) is the fraction of the upward emission of the vegetation in the viewing 
direction θv; εg and εv are the emissivity of soil and component, while εc is the canopy’s 
directional emissivity; B(Tg) and B(Tv) are respectively the black body radiances of the soil 
and leaves at the temperature Tg and Tv. The term Rmulti represents the multiple scattering 
radiations among leaves, and between soil and leaves, and the last term is the reflected 
atmospheric downward radiance Rat↓ by the canopy. As a result, the parameterization of the 
RT models is to find approximate expressions for the terms τo(θv), wo(θv), Rmulti and εc , which 
can be calculated easily, and causes no significant error to the final radiance. To date, several 
methods have been designed with different considerations on the single or multiple scattering, 
hotspot effect within the canopy (Chehbouni et al. 2001; François 2002; François et al. 1997; 
Otterman et al. 1992; Otterman et al. 1997; Otterman et al. 1995; Shi 2011; Sobrino et al. 
2005; Wang 2009).  

The main idea of those parameterizations is to calculate τo(θv), wo(θv) and εc(θv) directly 
from gap frequency. For example, François et al. (1997) proposed an analytical way by using 
the directional gap frequency and hemispheric-gap frequency related to LAI and viewing 
angle, and introducing a parameter, named cavity effect factor, to address the multiple 
scattering radiance caused by leaves, and the term Rmulti in Eq.(2.12) was consequently 
included in the wo(θv). As a result, only the first, second and last terms of Eq.(2.12) left. If εg, 
εv and Rat↓ are known as a prior, Tg and Tv are thus retrievable from observations in at least 
two directions. For a mixed pixel from space, Shi (2011) added a vegetation area ratio to this 
model to retrieve components’ temperatures from AATSR. Another way of the 
parameterization started with the εc, which was firstly estimated as the complementary to the 
hemispheric directional reflectance of the canopy according the Kirchhoff’s law, and then 
τo(θv) and wo(θv) were calculated based on the gap frequency in viewing direction and the 
formula εc(θv)= τo(θv)+wo(θv) (François 2002). The current results indicated that the emissivity 
of bare soil, sand, clay, and water decreased with increasing viewing angle, but for dense 
vegetated canopies the angular dependence is minimal. 

Furthermore, if more components such as sunlit soil and shaded soil, sunlit leaves and 
shaded leaves rather than only soil and leaves are considered in the canopy, the hotspot effect 
occurring in the solar direction is another consideration in the parameterization. However, 
because of its complexity, rare publications exist about this issue except in the work of (Wang 
2009) who used an the clumping effect proposed in (Roujean 2000) to separate the fractions 
of sunlit soil and shaded soil, and the work of (Smith and Ballard 2001) who performed 
theoretical calculations of TIR hotspot over a homogeneous canopy using a 3D vegetation 
model. 
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Additionally, Guillevic et al. (2003) proposed a three-dimensional radiative transfer model 
that was based on the Discrete Anisotropic Radiative Transfer (DART) model 
(Gastellu-Etchegorry et al. 1996) to investigate the angular thermal radiance of a vegetated 
canopy. Furthermore, Peng et al. (2011) used the kernel-driven BRDF model to fit the 
atmospherically corrected directional surface-leaving brightness temperature, and their result 
showed that the accuracy of fitted directional brightness temperatures was around 1 K and 
that the coefficients were further a good indicator for monitoring soil moisture. However, as 
their TIR data still contained the reflected downward atmospheric radiance, the angular effect 
of the brightness temperature might be smoothed to some extent.  

 

2.6.2 Modeling for heterogeneous canopy at ground 

Compared with the homogenous canopy, the space between vegetation in incomplete 
canopy is no longer distributed in a uniform way, which caused the optical length passing 
through the vegetation layer at the same azimuth angle with different zenith angle or in the 
same zenith angle with different azimuth angle is not equal. Therefore, the modeling of 
directional radiance and emissivity for heterogeneous canopy is quite different from that for 
homogenous one. Many authors devoted to the studies of this issue, especially for the 
row-structured canopy because it is widely distributed and useful for estimating crop 
productivity. Commonly, the main idea of this modeling was generally reported as: 
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where, BTi and fi are the components’ brightness temperature and directional fractions, 
respectively. N is the number of the involved components, always less than four types: sunlit 
soil and shaded soil, sunlit leaves and shaded leaves. Jackson et al. (1979) firstly developed a 
GO model for partially covered row crop canopies to separate components’ fractions from 
viewing angle, plant height/width ratio, row spacing, row orientation, and Kimes et al. 
validated and applied this model in the simulation of cotton DBT (Kimes 1981; Kimes et al. 
1980). However, although Sobrino and Caselles (1990) accounted for the radiation of plant 
wall, and Caselles and Sobrino (1992) considered the multiple scattering between plant rows, 
the effect of gaps within the plant rows were ignored because the plant rows in their model 
were assumed opaque. In order to solve this problem, Chen et al (2002) used the directional 
gap frequency to refine the original model and introduced the Kuusk hotspot effect (Kuusk 
1985) to account for it in the direction where viewing and solar beams are nearly overlapping. 
Moreover, the model of Chen et al. (2002) was further modified by Yan et al. (2003) by using 
the bi-directional gap frequency. Validation on wheat canopy indicated that their results were 
closer to the field measurement. By additionally considering the stem and small leaves 
between the soil plane and vegetation, Yu et al. (2004) considered that the vegetation parts 
were exactly placed over the soil plane with a limit distance rather than directly on the soil 
surface and then recalculated the components’ fractions and consequently the final DBT. 
Based on the model of Yu et al. (2004), Du et al. (2007) took more into account the status of 
the crop, and divided the wheat canopy in ear stage into three layers (ear, leaves, and soil) 
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with five components (sunlit and shaded ear, sunlit and shaded soil, and leaves), whose 
fractions were calculated by assuming the upper ear part of the wheat was like a cylinder. 
Apart from the use of the gap frequency theory, Huang et al. (2010) also extended the RGM 
model in VNIR to TIR range to simulate the hotspot of the row crop.  

A common assumption in the above models is that the row canopy has an infinite 
extension and the viewing beam is parallel everywhere. Therefore, the models can treat the 
components’ fractions in only a whole row structure. However, in filed measurements, the 
sensor’s footprint is limited to several or tens of degrees, and different regions within the 
footprint data have different azimuth and zenith viewing angles rather than one unique angle. 
As a result, the assumption that the viewing direction is a parallel beam is rarely consistent 
with reality. Up to now, except for Colaizz et al. (2010), who modeled the footprint as 
continuous ellipses on the row canopy and estimated the sunlit and shaded components within 
the circular or elliptical footprint, and Chen et al. (2009), there have been no other studies that 
have considered the footprint effect (i.e., the FOV effect) on a row canopy’s DBT, let alone 
any discussion of the difference in DBT between a parallel-beam model and a FOV model 
that accounts for variations in the viewing angle within the footprint. Therefore, a model that 
considers the sensor’s footprint effect in the measurement of DBT on row crop canopies is 
strongly needed. 

For the incomplete vegetation with an irregular distribution, the case becomes more 
complex and therefore there is a little publication about this issue. However, the Monte Carlo 
technique used by Chen et al.(2004) and the above method DART model and BRDF model 
might can be used to study the angular characteristics of radiance for those canopies. 

 

2.6.3 Modeling for satellite pixel 

Modeling the directional radiance at pixel scale is helpful to check the sensitivity of the 
algorithm of retrieving components’ temperatures. In order to make the number of the 
observations larger than that of the unknowns, the pixel is usually assumed to be composed 
only with soil and vegetation, and the directional radiance after atmospheric correction is 
consequently related to the components’ fractions and temperatures in a linear equation as 
follows: 

)()](1[)()()( ggvvvv TBfTBfTB eqeq -+= ,             (2.14) 

where, f(θv) is the fraction of vegetation cover of the pixel, calculated from NDVI or from a 
linear equation of surface reflectances. The rest terms in Eq.(2.14) are defined above. Based 
on Eq.(2.14), Jia et al. (2003) obtained components’ temperatures from ATSR’s nadir and 
off-nadir observation, and Song and Zhao (2007) achieved this goal from MODIS 
multiple-channel TIR data observed at one time and single angle by using the genetic 
algorithm. Both methods required the components’ emissivities known in advance.  

In order to investigate the anisotropy of the brightness temperature at a scale of several 
kilometers, Pinheiro et al. (2004) reported a modified geometric projection (MGP) model, a 
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highly parameterized model of scene TIR radiance applicable to both homogeneous and 
discontinuous canopies. Based on geometric optics modeling, MGP assumes that the 
directional TIR radiance over discontinuous canopies is due strictly to the different 
proportions of scene endmembers (e.g., sunlit tree crowns, background shadows) visible to a 
sensor at different sun-view geometries. The MGP model requires inputs on tree cover density 
and detailed information about the tree vegetation such as average crown height and crown 
width, as well as LAI to estimate the components’ fractions. The tree cover density at the 
pixel scale was obtained from the MODIS Vegetation Continuous Fields product (Hansen et al. 
2003) or from field measurement. The MGP model was used to simulate the DBT of AVHRR 
and SEVIRI in the place of Africa (Pinheiro et al. 2004; Rasmussen et al. 2011; Rasmussen et 
al. 2010), and result shows that the sun–target-sensor geometry plays a significant role in the 
estimated DBT, with variations more than ±3.0 K in some cases.  

For the directional emissivity at pixel scale, Prata (1993) proposed a simple way to obtain 
the directional emissivity as ε(θv) = ε(0) cos(θv/2), where θv is the viewing angle and ε(0) is 
the nadir emissivity. Such an equation is simple but is not applicable for all land cover types 
due to heterogeneity. Similar with the NDVI-based method stated above, the common 
calculation of the directional emissivity is written as: 
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where, f(θ) is the fraction of vegetation cover in the direction θ, which can be obtained from 
NDVI. εi,v and εi,g are the vegetation and ground emissivity, respectively. At the pixel scale, εi,v 
and εi,g are usually channel-dependent, estimated from the land cover type and off-line 
emissivity database. <dεi> is the maximum cavity term, accounting for the effect of radiance 
internal scattering between the different components of a structured and rough surface.  
<dεi> can be set as a constant (e.g. 0.015) or parameterized using other model, such as the 
model proposed by Sobrino and Caselles (1990). More details about the application can be 
found in the literatures (Caselles et al. 2012; Phinheiro et al. 2006).  

2.7 Drawbacks of current methods and possible solutions 

   From the above discussions, we know that much grate progress has been made in the 
retrieval of LST and emissivity from remotely sensed data, and in the modeling directional 
thermal radiation. However, there are still some drawbacks that need to be refined in the 
future. As for the issue on the modeling of directional thermal radiation and angular 
corrections on the land surface temperature, the drawbacks and their possible solutions in this 
thesis can be stated as follows: 

(1) Lack of directional emissivity at pixel scales.  

Many studies have investigated the directional emissivity from ground measurement or 
mathematical modeling, and consequently obtained some valuable results. However, there is 
still no publication about directional emissivity that was retrieved from satellite observations 
at pixel scale with a moderate spatial resolution. As a result, no one knows the exact shape of 
the angular anisotropy of the pixel emissivity. Fortunately, since those methods, such as 
TISI-based method, physical D/N method and TTM aforementioned, can retrieve directional 
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emissivity directly from space data with little assumption on the shape of the directional 
emissivity, their retrieved directional emissivity products may provide us an opportunity to 
investigate the angular feature of the pixel emissivity if the same target or land cover type are 
observed under different directions in a short time and their corresponding directional 
emissivities are recovered accurately. The idea motivates our studies on the angular effect 
from the MODIS emissivity products, because MODIS sensor observes the land surface at 
viewing zenith angle ranging from 0° to 65°, and its emissivity products contain angular 
information of the natural surface’s thermal emission. The details about this issue will be 
addressed in Chapter 3.  

(2) Lack of multi-angular observations and the corresponding algorithms to make angular 
normalization of the LST 

The use of the multi-angular dataset is considered as the most promising way to achieve 
the angular correction on temperature. However, due to the technical limitations, except ATSR 
sensors that can provide dual-angular observations in the TIR range, there is rare report about 
the multi-angular observations at spaceborne or airborne platform. As for the dual-angular 
observations by ATSR sensors, they were mainly used to directly retrieve LST or separate 
components’ temperatures given pixel’s emissivity or components’ emissivities. As a result, 
no operational way exists for the angular normalization of LST from multi-angular 
observations due to the complexity of this issue. From this point of view, this thesis will aim 
at the case of non-isothermal pixels, and firstly propose a new model to simulate the thermal 
radiations for such pixels, and then attempt to investigate a new algorithm by combining the 
kernel-driven BRDF model and TISI method to retrieve temperature and emissivity 
simultaneously based on the multi-angular dataset in MIR and TIR channels obtained by an 
airborne system. In order to make the temperature with more physical meanings, this thesis 
will also clarify the definition of the directional effective temperature for the non-isothermal 
pixel. Finally, the directional effective temperature will be normalized from off-nadir to nadir 
with modified BRDF model. This issue is one the most important parts of this thesis and will 
be presented in Chapter 4 and 5. 

(3) Lack of accessible way to evaluate the ground-measured temperature 

The ground-measured temperature is considered as the true value to validate the retrieved 
LST products from remotely sensed data or simulated thermal radiation from models. 
However, the ground-measured data itself also includes error resulting from sensor’s radiative 
calibration error, ambient radiation interruption, inaccurate angle controlling and so on. In 
order to remove or reduce this error, the ground-measured data are often averaged in time and 
space, or smoothen by using some filter functions. Such processing is reasonable for 
homogenous surface, such as dense vegetation and water, but it may cause much uncertainty 
for the heterogeneous surface or incomplete canopies, such as the row-structured canopy. 
Therefore, a new way is required to evaluate the accuracy of the ground-measured 
temperature. Based on the potential error in the directional brightness temperature caused by 
the uncertainty of sensor’s footprint, this thesis will propose a new model to simulate the 
directional thermal radiation for row canopies by additionally considering sensor’s footprint 
impact. Since the new model concerns on the footprint size and the variation of viewing 
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directions in the footprint, it can be used to access the uncertainty involved in the measured 
data in theory and its results will show much closer to the reality than the current similar 
models. Furthermore, the new model will also provide the optimum footprint for the ground 
measurement of the validation of other similar models and the LST products from remotely 
sensed data. This part of work will be addressed in Chapter 6. 
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Chapter 3 

Directional emissivity in MODIS products and its 

application to split-window algorithm 

 

Angular effect of emissivity is considered one of the two reasons that cause the angular 
variation of the LST. However, the current land surface temperature (LST) products always 
ignore this effect of emissivity due to the lack of directional emissivity knowledge at pixel 
scale. Up to now, MODIS has observed the global surface for more than ten years, and its 
emissivity product retrieved from physical day/night algorithm provides us an opportunity to 
investigate the angular features of the natural surface’s emissivity at pixel scale. From this 
point of view, this chapter emphasized on the statistical studies of 5-year MODIS emissivity 
products over most part of East Asia to obtain empirical relationships among the directional 
emissivity, land cover, and the seasonal variation. Consequently, two look-up tables (LUT) of 
directional emissivity were created for typical land cover types and then applied to the 
generalized split-window algorithm to modify MODIS LST. Results showed that the angular 
effect of emissivity could introduce a significant bias of -1.0 K~3.0 K to 1km-resolution LST. 
Finally, the spatial scale effects of emissivity were checked, and it was found that the 
temperature differences caused by scale effects fell within +/-0.5 K for most pixels if 5-km 
emissivity was used in 1km LST retrieval. Therefore, it is expected that widely use of the 
LUTs will lead to improvement for LST retrieval. 

 

3.1 Background  

Land Surface Temperature (LST) is one of the key parameters in land surface processes, 
and has been widely used in regional energy budget, climatic changes, and watershed 
management and crop assessments (Mannstein. 1987; Su 2002). The development of satellite 
and sensor technology in the recent decades has provided us an opportunity to retrieve LST 
from remotely sensed data at regional and global scales. Numerous algorithms have be 
reported to retrieve LST from space, such as the single-channel method (Jiménez-Muńoz and 
Cristóbal 2009; Qin et al. 2001), the split-window algorithm (Becker and Li 1995; Sobrino et 
al. 1994; Wan and Dozier 1996), the two-temperature method(Peres and DaCamara 2004a; 
Watson 1992), the temperature and emissivity separation method (Gillespie et al. 1998), the 
physical day/night algorithm (Wan and Li 1997) among others. Split-widow algorithm is the 
most popular one and has been used for different sensors, such as AVHRR, MODIS, ATSR, 
SEVIRI and FY-3(Coll and Caselles 1997; Sun and Pinker 2003; Sun and Pinker 2007; Tang 
et al. 2008; Wan and Dozier 1996), because it removes the atmospheric effect from the 
absorption difference between two adjacent TIR channels in the 10~12.5 µm regions, and 
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relates the LST directly to linear or non-linear expression of the two channels’ brightness 
temperatures. However, most of split-window algorithms require the land surface emissivity 
(LSE) of land surface known in advance, and thus the LSE plays a crucial role in the 
inversion of LST and its error affects the accuracy of LST. An uncertainty on the emissivity of 
0.01 can lead to an error on the LST of around 0.5 K (Sobrino et al. 2005). 

As reported by some authors (Chehbouni et al. 2001; Lagouarde et al. 2010; Lagouarde et 
al. 1995; Otterman et al. 1997), the LST varies with VZA, and some of them assumed this 
angular variation of the LST for isothermal pixel was mainly caused by the angular effect of 
LSE. Many authors made efforts to studying the angular effect of emissivity by using field 
and laboratory measurements, and some of them even modeled the angular LSE on the 
concept of radiative transfer model and/or geometrical-optic model(Chehbouni et al. 2001; 
Chen et al. 2004; François 2002; François et al. 1997; Otterman et al. 1992; Petitcolin et al. 
2002b). Their results indicated that LSEs of bare soil, sand, clay and water decreased with 
increasing viewing angle, but for dense vegetated canopies the angular dependence is minimal 
(Sobrino et al. 2005). However, there is still rare investigation on the angular effect of the 
pixel emissivity at pixel scale because of the complexity of the natural surface itself and the 
difficulty in the measurement of the pixel’s directional emissivity. Although Prata (1993) 
proposed a simple way to obtain the directional emissivity as ε(θv) = ε(0) cos(θv/2), where θv 
is the viewing angle and ε(0) is the nadir emissivity. Such an equation highly depends on the 
land cover and cannot be applicable for all land cover types due to heterogeneity. As a result, 
the LSEs used in the split-window algorithms were almost out of the consideration of the 
angular effect, let alone the angular correction on the LST. The directional emissivity product 
retrieved by the day/night algorithm (Wan and Li 1997) from the combination of daytime and 
nighttime MODIS MIR and TIR observations is considered as a unique data source to study 
the angular effect of the pixel emissivity because this product has a large range of viewing 
zenith angle (0°~65°), a global coverage and a long duration of more than ten years. 

 

3.2 Method of extracting directional emissivity 

3.2.1 Physical Day/Night algorithm 

Similar to Eq.(2.2), the channel radiance measured by a sensor at the TOA can be 
approximated as (Wan and Li 1997):  

)]()()()()()([
)(-1

          

)()()()()()(

4302

1

iRitiEitiEit
i

iRiRTBiitiR

atd

slatsi

¯



++××+

++=

b
p
e
e

,        (3.1) 

where, ε(i) is the channel directional emissivity, and β is the anisotropic factor for middle 
infrared channel, which is used to convert the bi-directional reflectivity ρi(θs, φs, θv, φv) to the 
hemispheric-directional reflectivity and then linked to the directional emissivity on basis of 
Kirchhoff’s law, as r = 1- ε(i) = πρi(θs, φs, θv, φv)/β. Bi(Ts) is the channel radiance calculated 
from the Planck’s law at temperature Ts. R

↑
at (i) and R↓

at (i) are the upward and downward 
atmospheric thermal radiation, respectively; E0(i), Ed(i) and R↑

sl(i) are the direct and diffuse 
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downward and upward solar radiation. t1, t3 and t4 are the atmospheric effective transmittance 
for the scattering radiations from land surface to the TOA, while t2 is the transmittance for the 
reflected direct solar radiation. The above atmospheric parameters and solar beam can be 
calculated from MODTRAN given atmospheric data.  

In order to retrieve the unknowns (ε(i), Ts and β) in Eq.(3.1), Wan and Li (1997) used a 
pair of daytime and nighttime MODIS data in MIR channels (CH20: 3.66~3.84 µm, CH22: 
3.93~3.99 µm, CH23: 4.02~4.08 µm) and TIR channels (CH29: 8.4~8.7 µm, CH31: 
10.78~11.28 µm, CH32: 11.77~12.27 µm, CH33: 13.19~13.49µm) by assuming that the 
channel emissivities have no significant variation during the two observations and three MIR 
channels have the same anisotropic factor β due to its small spectral variation (<2%). Besides, 
another two atmospheric variables, near-surface air temperature Ta and column water vapor 
WV were added into the solution in order to increase the accuracy of the atmospheric 
correction. Finally, 14 radiative transfer equations of Eq.(3.1) from day and night observation 
in MODIS seven channels corresponds to total 14 unknowns, including 2 Ts, 2 Ta , 2 WV, 1 β 
and 7 ε. Considering the angular variation in emissivity, this algorithm separated the whole 
range of MODIS viewing zenith angles into several sub-ranges and tried to select a pair of 
clear-sky daytime and nighttime MODIS observations at viewing angles in the same 
sub-range whenever it is possible (Wan and Li 1997; Wan et al. 2004).  

The atmospheric data was obtained from MODIS vertical sounders and a lookup-table 
off-line created by MODTRAN simulation. The initial values of the unknown were given 
separately by empirical linear relationships with 14 brightness temperatures as: 
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where, xi is the vector of 14 unknowns, and yj is the brightness temperatures, and wi,j is the 
coefficients of yj for the xi. ci is the coefficients for the offset term. Both wi,j and ci were 
regressed from a huge dataset of land surface and atmosphere case. With the given initial 
values, the final solution was obtained from χ2 optimization algorithm by minimizing an 
objective function like Eq.(3.3), where Ri is channel radiance observation value and R(i) is the 
calculated channel radiance from Eq.(3.1) using the retrieved variables, and σi is the 
uncertainty in the observed radiance, related to the channels’ noise equivalent differential 
temperature (NEΔT). 
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3.2.2 MODIS LST&LSE products and land cover products  

Two types of global MODIS LST&LSE products are released since 2000. One is 
calculated from split-window algorithm (Wan and Dozier 1996) using MODIS 31 and 32 
channels’ data, whose emissivities are estimated from emissivity look-up table and land cover 
products; the other one is driven from the day/night algorithm aforementioned (Wan and Li 
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1997), which is used in this thesis.  

The current version of the LST product is collection 5, updated from the collection 4 by 
dealing with several drawbacks (Wan 2008; Wang et al. 2007), such as pixels with 
cloud-contaminated LST values and those with missing valid LST values in areas under 
apparently clear-sky conditions. Three refinements of the total eight are interesting for us: 1) 
the way of detecting clear-sky conditions by varying confidence of clear-sky can increase the 
number of clear-sky pixels; 2) the number of sub-ranges of viewing angles in day/night 
algorithm is incremented from 5 to 16; and 3) the grid size of retrieved LST&LSE is changed 
to 6 km×6 km instead of 5 km×5 km. However, the results in this thesis were obtained using 
the channel emissivity (channel 20-23, 29, 31, 32) of MODIS collection 4 LST&LSE 
products (MOD11B1) from the day/night algorithm, covering most part of East Asia (Fig.3-1) 
from the years 2000 to 2004. Although the first refinement has increased the number of valid 
LST&LSE in our study region, the huge number of valid values of 5-years collection 4 
products in our study region is enough to make our result representative of this region. In 
terms of the second refinement, the accuracy of retrieved emissivity in collection 5 was 
enhanced, but emissivity in collection 4 was also proved to be acceptable by validating LST 
in clear-sky (Wan et al. 2004; Wan et al. 2002). Therefore, the application of collection 4 
LST&LSE product is also reliable. Table 3-1 shows the specification of the MODIS 
LST&LSE product.  

 

Fig.3-1. Study region locates in East Asia from 19o59' N to 49o59' N of latitude and from 69o17'E to 

155o59'E of longitude, including most part of China, Mongolia and Russia 

 

Table 3-1. Some specification of MODIS LST&LSE and land cover products in V004 

Variables  LST/LSE product  Land Cover Product 

Product ID  MOD11B1 MOD12Q1 

Temporal Coverage V004 Mar. 5, 2000 – the present Jan. 1,2000 – Jan. 1, 2004 

Product Frequency Daily  Yearly 

Image Dimensions 240 rows × 240 columns 1200 rows × 1200 columns 

Spatial Resolution ~5 km ~1.0 km 

Dataset Layers 17 16 

Projection Sinusoidal Sinusoidal 

File Format HDF-EOS HDF-EOS 



Chapter 3. Directional emissivity at pixel scale and its application 

 31

Another MODIS land product used in this thesis is the yearly land-cover products 
MOD12Q1 with a spatial resolution of 1 km. There are five groups of land covers included in 
this product, and the IGBP (International Geosphere-Biosphere Programme) scheme (Friedl et 
al. 2002), which divides global surface to total 17 land covers as shown in Table 3-2, was 
used in this thesis. Both products (MOD11B1 and MOD12Q1) distributed in 9 tiles covering 
most of East Asia (Fig.3-1) from the years 2000 to 2004. This region covers various 
landscapes including plateau, forest, irrigated crop, glacier, bare, desert and so on, and most 
fraction of the study region was observed in large viewing angles, thus angular correction of 
LST is strongly required. 

 

Table 3-2. Land covers in the IGBP classification scheme 

Class Land Cover  Class Land Cover 

0 Water 9 Savannas 

1 Evergreen Needleleaf Forest 10 Grassland 

2 Evergreen Broadleaf Forest 11 Permanent wetlands 

3 Deciduous Needleleaf Forest 12 Cropland 

4 Deciduous Broadleaf Forest 13 Urban and Built-up 

5 Mixed Forests 14 Cropland/Natural vegetation mosaic 

6 Closed Shrublands 15 Permanent Snow and Ice 

7 Open Shrublands 
16 Barren or Sparsely Vegetated) 

8 Woody Savannas 

 

3.2.3 Analysis methods 

Fig.3-2 represents the flowchart of retrieval of MODIS directional emissivity in this thesis. 
The method started with the spatial aggregation of land cover products from 1 km to 5 km. 
Since both products have the same geographical system and projection, the spatial 
aggregation was easily performed. The new 5-km grid was considered as “pure pixel or 
quasi-pure pixel” if more than 23 1-km pixels among total 5×5 1-km pixels hold the same 
cover type. Additionally, cluster analysis was performed with eight-connectivity diagnosis 
method to remove isolated pixels, which requires that all surrounding pixels have the same 
cover type with the central pixel. Fig.3-3 shows an example of cluster analysis on MODIS tile 
H26V04 located on northeast corner of our study region (Fig.3-1). This shows that the 5×5 
1-km pixels image is smoothed, and that only the pixels distributed over large areas remain. 
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Fig.3-2. Flowchart to retrieve directional emissivity of MODIS product 

 

In addition to the Quality Control flags included in the products, more constraints were 
used on the MODIS daily LST&LSE products to select the valid pixels. First, the difference 
of viewing angles for a pixel between daytime and night time should be smaller than 4°, and 
their average value was considered as the viewing angle of the pixel; second, the number of 
valid viewing angles for a specific cover type should be larger than 100 on daily tiles. The 
selected pixels from the MODIS LST&LSE products are then used to study the angular 
effects of emissivity. 

 

 
Fig.3-3. Comparison between the images before and after cluster analysis on MODIS land cover product in 

Tile H26V04 of 2001 
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3.3 Characteristics of MODIS emissivity  

3.3.1 Angular variation of emissivity 

With the selected valid samples from the above flowchart, the directional emissivities for 
six cover types were obtained in our study region. They are Grassland, Cropland, Evergreen 
Broadleaf Forest, Mixed Forest, Open Shrublands and Barren or Sparsely Vegetated 
(hereinafter abbreviated as Barren). Because of space limitation, we only took Grassland, 
Cropland and Barren as example to illustrate the angular effects of emissivity at 5km-scaled 
grid in MODIS 6 channels. Fig.3-4(a), (c) and (e) show directional emissivities in MIR 
channels, and (b), (d) and (f) present those in TIR channels. It can be found that: 1) 
emissivities increased with viewing zenith angles in MIR channels but decreased in TIR 
channels; 2) they varied slightly from 0° to 45° but significantly in the range larger than 45°; 
3) the curves of directional emissivities in MIR and TIR channels (except channel 29 for 
Barren) showed similar shapes. Table 3-3 gives some statistical information about directional 
emissivities of channel 23 and 32 for the three cover types. It can be found that the maximum 
differences in emissivities under all angles were about 0.01~0.02 in channel 23 (that means an 
equivalent ΔT from 0.8K to 1.5 K at T = 300 K), and about 0.006 in channel 32 (that means 
an equivalent ΔT about 0.5 K at T = 300 K). For other three cover types (Evergreen Broadleaf 
Forest, Mixed Forest, and Open Shrublands), their directional emissivities presented similar 
tendencies in MIR and TIR channels as Grassland and Cropland did.  

  
 (a)                                    (b) 

   
      (c)                                     (d) 
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                      (e)                                      (f) 

Fig.3-4. Directional emissivities in MODIS MIR and TIR channels. (a) (b), for Grassland in MIR and TIR 

channels, (c) (d) for Cropland;(e)(f) for Barren. However, channel 29 emissivity for Barren varied 

similarly with those in MIR channel shown in (e). 

 

 

Table 3-3. Analysis of emissivities under different sub-ranges of viewing angles in channels 23 and 32 

 
Channel No. Channel 23 Channel 32 

Viewing angles ±(0°~45°) ±(45° ~65°) ±(0°~45°) ±(45° ~65°) 

Grassland 

Mean 0.917 0.922 0.967 0.964 

STDEV 0.002 0.003 0.001 0.001 

Max 0.921 0.927 0.969 0.968 

Min 0.915 0.918 0.966 0.962 
D (131)* 0.012 0.007 

Cropland 

Mean 0.953 0.957 0.972 0.970 

STDEV 0.001 0.002 0.001 0.001 

Max 0.955 0.960 0.973 0.972 

Min 0.952 0.954 0.971 0.967 
D (131) 0.008 0.006 

Barren 

Mean 0.883 0.889 0.969 0.967 

STDEV 0.002 0.007 0.0004 0.001 

Max 0.888 0.901 0.970 0.960 

Min 0.879 0.880 0.968 0.965 
D (131) 0.022 0.010 

  * D  (131) is the maximum difference in emissivities at all of the whole 131 viewing angles 

 

Based on the above directional emissivities, we present the relationship between 
emissivities and cosine values of viewing angles in channels 23 and 32 for Grassland and 
Cropland in Fig.3-5(a) and (b). The curve of channel 23 in Fig.3-5(a) denotes a logarithmic 
relationship while Fig.3-5(b) shows an exponential relationship. These relationships are 
simple and easy in use. Eq.(3.4) expresses the regressed results of Cropland’s emissivity 
versus cosine view angle. Relationships for other cover types can be obtained similarly. 
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   91.0,917.0)]ln[cos(01.0)( 2 =+-= Rqqe , for channel 23,                  

      86.0,968.0)]cos(62.0exp[0015.0)( 2 =+--= Rqqe , for channel 32.         (3.4) 

   

(a) Channel 23                               (b) Channel 32 

Fig.3-5. Directional emissivity versus the cosine of viewing angles for Cropland and Grassland in channels 

23(a) and 32(b) of MODIS. The right y-axis is corresponding to the emissivity for Grassland.  

 

3.3.2 Angular variation of emissivity in different seasons 

As known, emissivity is also influenced by vegetation fraction. Vegetation fraction 
changes cannot be ignored during the year. Seasonal averaged directional emissivities were 
also got in this thesis. Fig.3-6 presents seasonal directional emissivities for Grassland, 
Cropland and Barren in channel 23 and 32. In general, angular variations are similar for the 
four seasons. For channel 23, emissivities in summer and autumn were smaller than those in 
other two seasons. The minimum emissivity value was found in summer, and the emissivity in 
summer was more sensitive to the change of viewing angle than that in other seasons. After 
changing the number of daily valid angles from 100 to 85 for each land cover, we got the 
seasonal averaged directional emissivities of the other four cover types (Water, Woody 
Savannas, Urban and Built-up, Permanent Snow and Ice), and found the similar phenomena. 
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(a)                                 (b) 

   
                         (c)                                     (d) 

  
(e)                                     (f) 

Fig.3-6. Angular effects of emissivity in channels 23 and 32 in different seasons. (a), (c) and (e) are 

emissivities in channel 23 for Grassland, Cropland and Barren, respectively; (b), (d) and (f) are in channel 

32, respectively. 

  

3.3.3 Lookup-table for directional emissivity 

Based on the directional emissivity, two look-up tables (LUTs) were created. Both LUTs 
depended upon cover type and viewing angle but with a slight difference that one of them 
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relied on seasons (seasonal-dependent LUT). Their structures are described in Fig.3-7. It 
should be noted that emissivities in both LUTs were not calculated using Eq.(3.4) but were 
obtained directly from MODIS products at 5km-scale using the flowchart of Fig.3-2. Both 
LUTs include directional emissivities of Grassland, Cropland, Evergreen Broadleaf Forest, 
Mixed Forest, Open Shrublands and Barren or Sparsely Vegetated. The seasonal-dependent 
LUT also includes directional emissivities of other four cover types: Water, Woody Savannas, 
Urban and Built-up, Permanent Snow and Ice. Emissivities of the rest 7 cover types in the 
IGBP scheme were also included in the seasonal-dependent LUT but set to constant values 
according to Wan’s paper (Wan 2008).   

Spring

IGBP Cover 
Types

Winter

Autumn

Summer 131 Directional 
Emissivities

Optional

MODIS MIR and 
TIR bands

 

Fig.3-7. Structure of look-up tables for directional emissivity. 

 

3.4 Applications to the split-window algorithm 

3.4.1 Theory of the generated split-window algorithm 

The generated split-window algorithm (Wan and Dozier 1996; Wan et al. 2004) used a 
linear combination of two apparent temperatures and their corresponding channel-averaged 
emissivities to estimate LST as follows: 
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where, Ai, Bi (i=1, 2, 3) and C are coefficients regressed from numerical simulations with the 
MODTRAN code; T31 and T32 are apparent brightness temperatures of channel 31 and 32 of 
MODIS, respectively; ε=0.5(ε31+ε32) and Δε=ε31 - ε32, where ε31 and ε32 are the 
classification-based emissivity, estimated from land cover types in each MODIS pixel through 
a LUT based on TIR BRDF and emissivity modeling (Snyder and Wan 1998; Snyder et al. 
1998). Although a simple linear correction is made to the channel emissivities to account for 
the angular effect in the emissivities when the viewing zenith angle is larger than 45° for 
some land cover types, the refinement of directional emissivity was limited (~0.003) and their 
emissivity accuracy may be degraded by the spatial scale effect from simulated data to pixel 
scale and also by the error of identified land cover. Compared with the emissivity used in the 
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current split-window algorithm shown in Table 3-3, the emissivity retrieved from the 
day/night algorithm turn out to be a little smaller for some vegetated covers (see Fig.3-6), 
perhaps because the mixed effect of the vegetated part and soil part in the real pixel reduce the 
pixel value of directional emissivity.  

 

Table 3-4. Channel emissivity used in MODIS split-window algorithm (Wan 2008) 

Cover types ε31 ε32 

Water 0.992 0.988 

Evergreen needleleaf forest 0.987 0.989 

Evergreen broadleaf forest 0.981 0.984 

Deciduous needleleaf forest 0.987 0.989 

Deciduous broadleaf forest 0.981 0.984 

Mixed forest 0.981 0.984 

Closed shrublands 0.983 0.987 

Open shrublands 0.972 0.976 

Woody savannas 0.982 0.985 

Savannas 0.983 0.987 

Grasslands 0.983 0.987 

Permanent wetlands 0.992 0.988 

Croplands 0.983 0.987 

Urban and built-up 0.970 0.976 

Cropland and mosaics 0.983 0.987 

Snow and ice 0.993 0.990 

Bare soil and rocks 0.965 0.972 

 

For the isothermal pixel, the angular variation of their emissivity is assumed to fully result 
in the angular behavior of its temperature. In order to illustrate the angular effect of emissivity 
on the retrieved LST, the directional emissivities of MODIS channel 31 and 32 included in the 
new LUT was used in the split-window algorithm to get angular-independent LST, and 
comparison was further made between the new LSTs with the LSTs using the original LUT 
(Table 3-4). 

 

3.4.2 Application and comparison  

A total of twelve MODIS scenes (one per month in 2008) were chosen to calculate the 
LST, most of them located in the middle and northwest part of China. The percentage 
histograms of temperature differences between the modified LST with the new LUT and 
MODIS 1km LST products (MOD11_L2, collection 4) are shown in Fig.3-8. They indicate 
that the temperature differences ΔTs for most pixels fell in the range of -1.0 K to 3.0 K; the 
modified LSTs are generally larger than the MODIS LST products in most of cases. The 
peaks ΔTs of the histograms varied from 1.02 K to 2.26 K, and nine of the twelve scenes show 
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that the temperature differences are larger than 1.5 K. Table 3-4 gives more information: 
about 45% to 55% pixels had the temperature differences within peak ΔT ± 1.0 K, and 53% to 
64% pixels had the temperature differences within peak ΔT ± 1.5 K. 

Table 3-5. Temperature differences in 12 scenes 

Julian Day of 2008 Peak ΔT (K) 

Percentages of pixels within the defined 

temperature differences (%) 

Peak ΔT±1.0 K Peak ΔT±1.5 K 

001 1.02 46.4 57.9 

050 1.04 50.9 62.5 

068 1.33 53.8 63.7 

104 1.93 54.6 64.3 

126 1.90 50.7 60.5 

167 2.26 45.4 55.7 

199 1.57 45.0 56.2 

229 1.86 45.6 56.8 

259 1.75 41.5 53.2 

286 1.69 49.1 59.3 

312 1.59 51.7 62.7 

334 1.20 50.8 62.3 

 

 

 
2008001                   2008050                    2008068 

   
2008104                    2008126                   2008167 

Fig.3-8. Percentage histograms of temperature difference ΔT between newly retrieved LST and MODIS 

LST products of 12 scenes data in 2008, locating in the middle part of China. (to be continue) 
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   2008286                   2008312                   2008334 

Fig. 3-8. (continue) 

 

Furthermore, we divided the viewing zenith angles into seven sub-ranges with an interval 
of 10° and presented the temperature RMSEs of the twelve scenes in Fig.3-9. This figure 
shows that RMSEs in all viewing zenith angle sub-ranges are within 1.4~2.5 K and the 
discrepancy between the maximum and minimum RMSE is about 0.6 K. However, RMSE 
increases with the increase of viewing zenith angle. This is reasonable because the modified 
LSTs tend to be larger at large viewing angles due to the lower emissivity values. From the 
above results, a conclusion can be drawn that the inversion of LST with a high accuracy needs 
to consider the angular effects of emissivity, especially for large viewing angles.  



Chapter 3. Directional emissivity at pixel scale and its application 

 41

 
Fig.3-9. RMSEs in seven viewing zenith angle subranges 

3.4.3 Spatial scale effects of emissivity 

It is worth notice that emissivities in LUTs were retrieved directly from 5 km grid which 
was assumed to be homogeneous. However, above subsections retrieved LST at 1 km 
resolution. Therefore, the spatial scale effects of emissivity that may influence the accuracy of 
LST should be considered. In order to check the scale effects, we retrieved LST again at 5 km 
resolution with the same method and data applied in previous subsection. The 5 km brightness 
temperatures T31 and T32 in Eq.(3.5) were averaged from 5×5 1-km pixels in MODIS L1B 
products, and pure or quasi-pure pixels and mixed pixels were distinguished using the same 
constraint shown in Fig.3-2. Then the 5-km LST was retrieved (denoted as LST_5km) and 
compared with the 5-km LST (LST’_5km) directly averaged from 1-km modified LST 
mentioned before. The temperature difference caused by the scale effects is expressed as 
ΔT_5km =LST_5km - LST’_5km. The percentage histograms of ΔT_5km for pure and mixed 
pixels are presented in Fig.3-10. Result shows that the percentage peaks of the temperature 
differences is very close to 0.0 K, and the differences fall within +/-0.5K for most pixels. 
Therefore, the spatial effect of 5-km directional emissivity applied on the split-window 
algorithm at 1-km scale is very small and can be ignored, at least for the linear split-window 
algorithm.  

 

3.5 Conclusions and discussions  

With statistical analysis of MODIS land cover products and LST&LSE products from the 
physical day/night algorithm, angular effects of emissivity for several land covers were 
presented in East Asia. The result shows that emissivity increases in MODIS MIR channels 
but decreases in TIR channels with the increase of viewing angle. The angular effects makes 
emissivity varies in a range of 0.01~0.02 in MIR channels and about 0.01 in TIR channels. 
Based on directional emissivities, two LUTs at 5km were created. Both LUTs depended upon 
cover type and viewing zenith angle but one of them additionally relied on seasons.  
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Fig.3-10. Percentage histograms of ΔT_5km of 12 scenes data for pure and mixed pixels at 5 km 
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The seasonal LUT was applied on the split-window algorithm to retrieve LST at 1km 
resolution. By comparing the retrieved LST with MODIS LST products, we found that the 
new LSTs were generally larger than the MODIS LST products and the discrepancy ranged 
from -1.0 K to +3.0 K. Large viewing angles will cause larger temperature differences than 
smaller ones. Finally, we discussed the spatial scale effects between the LST retrieval results 
at 1 km and 5 km, the corresponding result denoted that the spatial scale effects of emissivity 
could be ignored from 1 km to 5 km in our study region. 

The relationship between the vegetation fraction and the emissivity had been discussed in 
details (Momeni and Saradjian 2007; Sobrino et al. 2001). However, the angular effect of 
emissivity itself was seldom cared in the past. Seasonal directional emissivities were also 
investigated in this study. After this framework, further researches may be done by 
considering the fractional vegetation cover and angular effects together in the modeling of 
emissivity. Besides, although the Day/Night algorithm applied near-surface air temperature 
and column water vapor to refine the input atmospheric data and improved the accuracy of 
atmospheric correction in theory, the directional emissivity obtained in this thesis may still be 
impacted by the residual error of atmospheric radiation. Furthermore, the soil moisture 
influences the emissivity, but we ignored this effect because we had no soil moisture data at 
5km scale. 

In addition, our study on emissivity only performed over most part of East Asia, and did 
not obtain directional emissivity over all land cover types described in the IGBP scheme. 
However, our work can be extended easily on more regions and land cover types. Currently, 
the modified LST after correcting the angular dependence was only compared with the 
original MODIS LST products. If ground-based reliable measurements over enough large 
areas are available in the future, the temperature validation work will be expected. By our 
field experiences, new data collection methods and effective equipment are needed to get 
more reliable in-situ LSTs. 
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Chapter 4 

Parameterization of directional emissivity and brightness 

temperature, and the angular normalization of temperature 

using kernel-driven BRDF model 

 

This chapter firstly compares four parameterization models of the directional emissivity 
based on the thermal radiative transfer model (TIR-SAIL model). Results show that the 
kernel-driven BRDF (K-BRDF) model accurately represents the angular variation of the 
canopy directional emissivity and that it has to refine the cavity effect factor related to the 
multiple scattering in the canopy. Then, based on the new cavity effect factor and the 
parameterization method of the SAILH model, we develop a new way to simulate the 
directional brightness temperature (DBT) of the canopy assumed to consist of leaves, sunlit 
and shaded soils. Finally, the availability of the K-BRDF model in the angular normalization 
of the DBT is investigated in two different ways: the single-point pattern and the linear-array 
pattern. The result of two patterns’ analyses respectively finds out the local optimum 
three-angle combination of the K-BRDF model, and releases the requirement of the viewing 
zenith angle (VZA) in the designed three arrays (nadir, forward and backward) detector 
system. The findings of this chapter will be used in the next chapter. 

 

4.1 Background 

As stated in the previous chapter, the emissivity varied with viewing zenith angle (VZA) 
at pixel scale, and the angular dependence was generally significant when the VZA exceeded 
45°. Such angular dependence for three-dimensional surfaces mainly results primarily from 
the angular variation of the relative weights of different components (e.g., vegetation and 
background soil) with different emissivities in the pixel. The angular dependence has been 
studied from field and laboratory measurements. Their results show that for bare soil surfaces 
emissivity values decreased with increasing viewing angle, whereas the angular dependence 
of dense vegetated canopies was minimal, in agreement with the usual assumption of 
Lambertian behavior for vegetation. However angular characteristic of sparse and middle 
dense vegetated canopies depends on the structure of the canopies themselves.  

Up to now, different models have been developed to analyze the angular variation of 
directional emissivity and radiance over vegetation canopies, using the soil and vegetation 
emissivities as input data and based on the assumption of Lambertian behavior for these 
components. In those models, three ways are often used to obtain the directional emissivity: 
first, directional emissivity can be estimated as the weight of different components’ emissivity, 
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whose fractions were calculated from the canopy structures and the viewing geometry using 
the gap probability. For example, François (2002) addressed five of such models for the 
parameterization on the model of Prévot (1985). Second, the directional emissivity is 
calculated to be complementary to the hemispheric-directional reflectivity according to the 
Kirchhoff’s law. The hemispheric-directional reflectivity can be estimated from a 
bi-directional reflectivity dataset by using an angular form factor (Li et al., 2000), a 
semi-empirical phenomenological model (Petitcolin et al., 2002a) or a kernel-driven BRDF 
model (Jiang and Li 2008a). Third, the directional emissivity is directly estimated as the ratio 
of directional thermal radiance to the blackbody radiance calculated with the Planck’s law, 
with the assumption that all components in the scene have the same physical temperature (Liu 
et al., 2003). Although François (2002) and Sobrino et al. (2005) have respectively compared 
five parameterization models including radiative transfer (RT) and geometrical-optical (GO) 
models, their parameterized model was only based on the result of the model Prévot (1985), 
which was a probability-based model (turbid-medium model) computing the solution of the 
radiative transfer by summing the relative contributions of a large number of vegetation layers 
using the directional gap frequency concept. However, the model proposed by Prévot (1985) 
has not been widely validated and does not contain consideration of hotspot effect. Moreover, 
the coefficients from their parameterizations might not be consistent with other similar 
models (such as the SAIL (Scattering by Arbitrarily Inclined Leaves) model) and should be 
updated. The series of SAIL models have been used in this chapter because this model can 
deal with a much wider spectral range than the model of Prévot (1985), working in the 
visible/near-infrared to thermal infrared domains, and also because they have been widely 
used and validated. Therefore, the SAIL models can obtain the canopy’s reflection and 
emission information together, which is helpful for the retrieval of surface parameters from 
both middle and thermal infrared channels. From this point of view, the objective of this 
chapter is to parameterize the directional emissivity based on the simulation result of SAIL 
model by using BRDF model and gap-frequency-based model, and refine their coefficients. 
Furthermore, based on the parameterization and new coefficients, we present the directional 
brightness temperature as the weights of three kinds of components and their multiple 
scattering contributions, and then validate the performance of the BRDF model in the DBT. 
Finally, we analyze the BRDF model in the angular normalization and discuss the angle 
requirement of this model.  

 

4.2 Models of directional emissivity 

4.2.1 Thermal SAIL model 

The SAIL model was first proposed by (Verhoef 1984) to simulate the radiation flux 
interactions and bi-directional reflectivity of the canopy in the visible/near infrared (VNIR) 
range, and then extended to the SAILH model by modifying the single scattering contribution 
in the bi-directional reflectivity for the hotspot effect according to the theory of (Kussk 1985). 
In order to apply this model in the thermal infrared domain, Liu et al.(2003) and Verhoef et al. 
(2007) respectively provided additional facilities to support the calculation of internal thermal 
radiation. Since Verhoef et al. (2007) classified the components to sunlit and shaded leaves, 
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and sunlit and shaded soils and Liu et al. (2003) only related to leaves and soils, the result of 
the former should be closer to the reality, especially for the representation of the hotspot. 
However, there should be no difference between the two models if the temperatures of all 
components are the same. In this way, the directional emissivity can be obtained as the ratio 
of directional radiance to the blackbody radiance from the given emissivities of leaves and 
soil background as well as the canopy structure. Because the model of (Verhoef et al. 2007) is 
not free of access, the model of Liu et al. (2003) was used for illustrations and named the 
TIR-SAIL model. 

Similar with the primary version of SAIL, the TIR-SAIL is still based on analytical 
solution of four linear equations: 

ooos
o

s

s

ss
s

rEkEEE
dz

dE

rEsEE
dz

dE

rsEEE
dz

dE

Ek
dz

dE

+-++=

+++-=

--+-=

=

+-

-+
+

-+
-

muw

sa

as

'
,                    (4.1) 

where, Es, E-, E+ and Eo are respectively the direct solar irradiance on a horizontal plane, the 
diffuse downward irradiance, the diffuse upward irradiance and the irradiance in the direction 
of observation. z is the height counting from the top of the canopy. α is the attenuation 
coefficients for the upward and downward diffuse flux, and σ is the fraction of reflected 
upward (or downward) diffuse radiation that is scattering downward (or upward). s and s’ are 
respectively the fraction of the upward and downward scattering from the solar irradiance, 
while ks and ko are respectively the attenuation coefficients in the solar and observation 
direction. Actually, there is no solar irradiance Es in the TIR domain and only a small value in 
the MIR domain. r represents the upward or downward thermal radiation of the canopy itself, 
and ro is the thermal radiation in the observation direction. The two parameters can be 
estimated as Eq.(4.2): 

)(),( vvoovv TBFFAVDrTBFAVDr ×××=××= ee .              (4.2) 

In Eq.(4.2), εv and Tv  are the leaves’ emissivity and the physical temperature and B(T) is 
the blackbody radiance. FAVD is the foliage area volumetric density and Fo is the ratio of the 
projected leaves’ area to the total leaves’ area in the observation direction. The term FAVD• Fo 

equals to the term ko that is used in the primary SAIL model. The bottom layer of the canopy 
is the soil emission and the reflected downward thermal radiance by the soil, written as: 

)()]()([)( gggs TBhEhEhE ×+×+= -+ er ,                 (4.3) 

where, Tg is the soil temperature, and εg and ρg are the emissivity and reflectivity of the soil 
(generally ρg = 1- εg for the opaque soil). More details about the TIR-SAIL can be found in 
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(Liu et al. 2003).  

Fig.4-1(a) shows the directional emissivity at different viewing zenith angles (VZA) with 
vegetation and soil emissivity of 0.98 and 0.94 in the thermal wavelength, respectively. The 
spherical LAD (leaf angle distribution) was assumed for the canopy. The results obtained 
show a low angular variation for high vegetation cover canopy, which means almost a 
Lambertian surface. However, for low vegetation cover canopy, emissivity increases with 
increasing VZA due to the larger vegetation cover observed. The angular variation of 
emissivity is within 0.01 between nadir and 70°, but as large as 0.02 between nadir and 
horizontal observation. Note that for LAI < 1.5, the emissivity decreases at large angles (> 80°) 
because the multiple scattering contribution of the canopy has been reduced in such large 
angles. Fig.4-1(b) shows the result with vegetation and soil emissivity of 0.98 and 0.96. 
Comparison of the two figures illustrates that a smaller difference of soil and vegetation 
emissivity can reduce the angular variation of the canopy. However, such variation still exists 
even if soil and vegetation have the same emissivity, because in this case, the scattering 
contribution varies with viewing angles. Furthermore, the emissivity of all cases converged to 
the point about 0.99 in the horizontal direction, in which only vegetation component is 
observed. This point is called limit emissivity that will be addressed in the following part. 

 

   

Fig.4-1. Angular variation of canopy emissivity at different LAI cases, with soil and vegetation emissivity 

of (a) 0.94 and 0.98, and (b) 0.96 and 0.98, respectively.  

 

4.2.2 Parameterization models 

As reported by some previous studies, the SAIL series model generally provides 
acceptable simulation results and therefore is used in many relevant fields (Jacquemoud et al. 
2009). However, this model is time-consuming because it has to interactively calculate the 
upward and downward flux by dividing the canopy into several layers. Therefore, there is no 
exact mathematical expression for the directional emissivity or temperature, which makes it 
difficult to be used directly in the retrieval of some parameters from remote sensed data such 
as the component temperatures. As a result, it is needed to approximate the SAIL model using 
some variables that are easily obtainable from space.  
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To date, two major types of methods have been developed for the parameterization of the 
directional emissivity with known viewing geometrical and surface characteristics: First, the 
directional emissivity is estimated directly as a weight of components emissivity and their 
fractions in a particular viewing direction, and the additional term of multiple scattering. For 
example, Sobrino and Caselles (1990) estimated the directional emissivity for row crops by 
weighting the proportions of the hedgerow top, wall and soil and the corresponding scattering 
of those components. On basis of their method, the NDVI threshold method was subsequently 
proposed to retrieval emissivity from remote sensed data. The vegetation-cover method (Valor 
and Caselles 1996) used the fraction of vegetation cover to average the soil and vegetation 
emissivity, and introduced a term dε to consider the multiple scattering at pixel scale. Second, 
the directional emissivity is obtained from the complementary to the hemispheric-directional 
reflectivity according to the Kirchhoff’s law. For example, based on the geometrical model of 
(Li and Strahler 1992) for a sparse canopy composed by soil and vegetation, Snyder and Wan 
(1998) integrated the BRDF model over the hemisphere to obtain hemispheric-directional 
reflectivity, and then generated emissivities for IGBP-scheme land cover classes. Li et al. 
(2000) and Petitcolin et al. (2002a) respectively used an angular form factor and a 
semi-empirical phenomenological model to obtain such emissivity from bi-directional 
reflectivity. François et al. (1997) firstly developed an analytical parameterization using the 
gap frequency function and cavity effect factor, and François (2002) calculated the 
hemispheric-directional reflectivity from gap frequency theory by accounting for the 
scattering between soil and vegetation interface. This thesis will check the performance of 
four models: the kernel-driven BRDF model (Jiang and Li 2008a), semi-empirical BRDF 
model (Li et al. 2000), the analytical model (François et al. 1997) and the multiple-scattering 
model (François 2002). The kernel-driven BRDF model will be used in next chapter to 
retrieve directional emissivity from multi-angular observation data, and the updated cavity 
effect factor in (François et al. 1997) on basis of the TIR-SAIL model, will be applied in 
simulation of directional thermal radiance. The other two models are used for comparisons 
among those models. 

A. The kernel-driven BRDF model: K-BRDF 

The kernel-driven BRDF model (hereafter called as K-BRDF) was firstly proposed to fit 
bi-directional reflectivity from several different viewing directions. This model usually 
consists of three parts: the isotropic scattering, the volumetric scattering and the 
geometric-optical scattering, written as:  

),,(),,(),,( jqqjqqjqqr svgeogeosvvolvolisosv kfkfk ×+×+= ,       (4.4) 

where, fiso is the isotropic scattering term, fvol is the coefficient of the volumetric kernel kvol, 
and fgeo is the coefficient of the geometric kernel kgeo. Such model is promising for the 
directional correction of the reflectance in the visible spectral range because it links to the 
viewing geometry of the solar-target-sensor using the kernels and relates to the components’ 
characteristics through the observed reflectances. This model may also provide us an 
opportunity to achieve the angular normalization of temperature if the target’s temperatures or 
brightness temperatures at least in three viewing directions are known.  
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A suitable expression of kvol was derived by Roujean et al. (1992), which was called the 
Ross-Thick kernel for its assumption of a dense leaf canopy. It is a single-scattering solution 
of the radiative transfer equation by (Ross 1981) for plane-parallel dense vegetation canopy 
with uniform leaf angle distribution, a Lambertian background and equal leaf transmittance 
and reflectance. It does not account for the hotspot effect. 
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where, ξ is the phase angle, related to the sun-target-observer position as: 
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The Li-Sparse kernel derived by (Wanner et al. 1995) was reported to work well with the 
observed data. This kernel is derived from the geometric-optical mutual shadowing BRDF 
model (Li and Strahler 1992). The original form of this kernel is not reciprocal in the viewing 
and solar directions, a property that is expected from homogeneous natural surface viewed at 
coarser spatial resolution, but then was refined to be reciprocal by assuming the sunlit 
component in the viewed scene simply varies as 1/cosθs. As a result, the reciprocal model was 
Li-SparseR kernel: 
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where, O is the overlap area between the view and solar shadows. The term cost should be 
constrained to the range [-1, 1], as values outsides of this range imply no overlap and should 
be disregarded. The ratio h/b and b/r are the dimensionless crown relative height and shape 
parameters, respectively, and should be preselected. In this thesis, h/b = 2 and b/r = 1, i.e. the 
spherical crowns are separated from ground by half their diameter. 

The integration of the BRDF model will generate the hemispheric-directional reflectivity 
and the directional emissivity is calculated with the Kirchhoff’s law: 
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According to Eq.(4.4), the integration of the bi-directional reflectivity in the upward 
hemisphere equals to the result of integrating the three kernels (kvol, kgeo, and 1) in the same 
angle range because the values of the kernels’ coefficients are fixed for all angles. Jiang and 
Li (2008a) calculated the integration of the Ross-Thick volumetric kernel (Ikvol) and 
Li-SparseR (Ikgeo) with solar zenith angle varying from 0° to 80° and azimuth angle from 0° 
to 360° in a step 0.05°, and then related Ikvol and Ikgeo to the viewing zenith angle (θv) using an 
exponent growth function and Gaussian function, respectively. 
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where, A0 (= -0.0299), A1 (= 0.01278), t1 (= 21.43823), B0 (= -2.01124), B1 (= -29.40855), ω 
(= 68.88171) and θc (= 90.95449) are the regressed coefficients. The unit of t1 and θc is 
degree and the other terms are unitless.  

B. The semi-empirical BRDF model: S-BRDF 

The semi-empirical BRDF model (hereafter called as S-BRDF) was first proposed by 
( Minnaert 1941) and then modified by (Li et al. 2000) by adding the terms of the azimuth 
angle to describe the bi-directional characteristics of the surface as: 
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where, ρ0 is the reflectivity with viewing and incident zenith angle at nadir observation. k is a 
parameter between 0 and 1. For a Lambertian surface, k equals to 1. The term b(1-k2) term is 
called anisotropy factor. This anisotropy factor is positive if backscattering is significant and 
negative when forward-scattering is dominant. The integration of Eq.(4.10) like Eq.(4.8) 
will conduct the directional emissivity from hemispheric directional reflectivity as: 
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Although the directional emissivity in Eq.(4.11) is not related to the term b in Eq.(4.10), it 
still needs at least three bi-directional reflectivity to solve the coefficients ρ0, k and b. 

C. The analytical parameterization model: FRA97 

Based on the radiative transfer model of (Prévot 1985), François et al.(1997) developed 
the following analytical parameterization model (hereafter called as FRA97) using the gap 
frequency theory: 

)1]()(1[)1()(11)( vvgvv MbMb eqaeqrqe -----=-= ,      (4.12) 

where, εg and εv are the emissivity of soil and vegetation, respectively. b(θ) is the directional 
gap frequency and M is the hemispheric gap frequency of the canopy. For a canopy with 
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spherical leaf angle distribution and random dispersion, they can be expressed as: 
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The second term of the right side of Eq.(4.12) is the hemispheric-directional reflectivity of 
the soil in the viewing direction, and the third term is the hemispheric-directional reflectivity 
of the vegetation. α is cavity effect factor that expresses the part of the incident beam which is 
reflected by the leaves is absorbed by the canopy. Therefore, α is used for the multiple 
scattering inside the canopy and its values in different viewing zenith angles were provided in 
(François 2002).  

D. The multiple-scattering model in (François 2002): FRA02 

Similar with FRA97, the model proposed by (François 2002) (hereafter called as FRA02) 
estimated the directional emissivity based on hemispheric-directional reflectivity but paid 
more attentions to the multiple scattering in the interface of soil and vegetation layers, written 
as: 

)]1()1(1/[)1)(()1)]((1[11)( vfggvvvv bMb eseeqeqrqe ----×----=-= .       (4.14) 

The term σf is the hemispherical shielding factor, linked to the hemispherical gap 
frequency M in Eq.(4.13) as σf = 1-M. the other terms have been defined above. The second 
term of the right-hand side is the reflectivity of vegetation in the viewing direction, and the 
third term is the sum of the soil single-scattering reflectivity and the multiple-scattering 
reflectivity in the interface of soil and vegetation layers. The term σf (1-εv) stands for the 
downward hemispheric albedo of the vegetation layer, and the denominator in Eq.(4.14) was 
approximated from the infinite series: 1+(1-εv)σf (1-εv)+[(1-εv)σf (1-εv)]+[(1-εv)σf (1-εv)]

3… for 
the multiple scattering. Compared with the FRA97, FRA02 takes more cares in multiple 
scattering behaviors occurring in the interface of the soil and vegetation layers, while FRA97 
pays more attention to the inside vegetation-to-vegetation multiple scattering. 

 

4.3 Parameterization result of directional emissivity 

4.3.1 Comparison of the TIR-SAIL and BRDF models 

The bi-directional reflectivity used in the K-BRDF and S-BRDF models to obtain their 
respective coefficients is simulated by the SAILH model developed by (Verhoef 1989), which 
is reported to simulate canopy’s bi-directional reflectivity of the canopy more accurately than 
other series of this model because it adds the hotspot effect in the solar direction. With a fixed 
viewing beam, the integration of the bi-directional reflectivity in the upper hemisphere 
generates the directional-hemispheric reflectivity. Since the directional-hemispheric 
reflectivity equals to the hemispheric-directional reflectivity on the basis of the reciprocity 
theory in the BRDF field, the directional emissivity is finally calculated as one minus the 
hemispheric-directional reflectivity according to the Kirchhoff’s law. However, we find out 
that the directional emissivity (εi) from the above integration differs from simulated result 
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direct from the above TIR-SAIL model (εt), and that it is needed to correct the integrated 
emissivity using a linear function for most cases (i.e, εt = a·εi + b, a and b are coefficients, and 
depend on LAI). This correction leads an error less than 0.002 to the integrated emissivity. 

Based on the bi-directional reflectivity simulated by the SAILH model with soil and 
vegetation emissivity of 0.94 and 0.98, the coefficients in the K-BRDF and S-BRDF models 
are first analytical regressed, and then are used to calculate the directional emissivity 
respectively using Eqs. (4-8) and (4-11). As reported in the literatures (Snyder and Wan 1998; 
Sobrino et al. 2005), the K-BRDF model presents much uncertainty for the large viewing 
zenith angle. Therefore, only the bi-directional reflectivity with viewing zenith angle no larger 
than 65° is used, but we illustrate the directional emissivity value up to 80° in Fig.4-2, which 
displays the comparison of the directional emissivity from the TIR-SAIL model, the K-BRDF 
and S-BRDF models with (a) LAI = 0.5, (b) LAI = 1.0, (c) LAI = 2.0 and (d) LAI = 4.0, 
respectively. It shows that the three models have the similar tendency for LAI =0.5 and LAI 
=1.0, and the difference of their directional emissivity is very small, even at the large viewing 
zenith angle (i.e., beyond 65°). However, for LAI = 2.0 and 4.0, significant difference of their 
directional emissivity occurred, especially at larger angles. For example, in Fig.4-2(c), the 
emissivity increases with the VZA all the time in the two BRDF models but it decreases with 
VZA in the TIR-SAIL model after 65°.  

   

    

Fig.4-2. Comparison of directional emissivity respectively from TIR-SAIL model, K-BRDF model and 

S-BRDF model at (a) LAI = 0.5, (b) LAI = 1.0, (c) LAI = 2.0 and (d) LAI = 4.0. 
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In Fig.4-2(d), the S-BRDF model almost has the different tendency with the TIR-SAIL 
model, and their values differ from each other. On the contrary, the emissivity of the K-BRDF 
model is close to that of the TIR-SAIL model, especially under small VZAs, but its angular 
variation is much less than the TIR-SAIL model. Although the emissivity curve of the 
K-BRDF model seems to be similar with that of the TIR-SAIL model, the curve actually first 
increases with the VZA and decreases after 65°. Comparison of the coefficients of the 
K-BRDF model among those different LAIs illustrates that the volumetric scattering 
coefficient fvol for Fig.4-2(d) is negative and the others are all positive, which therefore makes 
the emissivity of this model decreases in large VZAs. 

From the above discussion and the result of Fig.4-2, we find out that both the K-BRDF 
and S-BRDF model generally perform well in the presentation of the directional emissivity, 
especially for sparse and middle dense vegetation canopy. Although they have a relative 
higher error in the dense canopy, this error (less than 0.002) can be ignored, especially for the 
K-BRDF model. Besides, the two BRDF models almost have small difference in the 
directional emissivity except for the case of Fig.4-2(d). However, one should note that the 
parameter k in the S-BRDF was required between 0 and 1, which will result in a series of 
directional emissivity decreasing rather than increasing with the VZA in theory. On the 
contrary, the result of Fig.4-2 is actually obtained with k larger than 1. Although the S-BRDF 
model performs well in fitting mathematically the bi-directional reflectivity, the parameter k 
larger than 1 reduces its physical meaning. Therefore, the S-BRDF model is not 
recommended, at least for the bi-directional reflectivity and directional emissivity from the 
SAIL series models.  

Furthermore, we chose ten vegetation samples and seventeen soil samples from UCSB 
Emissivity Library (Snyder and Wan 1998; Snyder et al. 1998), and calculated their channel 
emissivity with the MIR spectral response function that will be stated in the next chapter. The 
bi-directional reflectivity for each combination (total 170) of soil and vegetation was 
simulated using the SAILH model and then was used to fit the three kernel coefficients of the 
K-BRDF model. Fig.4-3 shows the relationship among those three coefficients for different 
LAIs, which indicates that there is a linear relationship between those kernel coefficients, 
especially for small LAIs. If any one of the three coefficients can be obtained, the other two 
will be consequently determined from this linear relationship. As a result, the number of 
unknowns is reduced. However, this linear relationship almost disappears or is eliminated for 
the dense vegetated canopy, such as the case LAI = 4.0 (see Fig.4-3(d)). The application of 
such linear relationship might cause much uncertainty to the result in this case.  

Besides, as seen from Fig.4-3, it is found that the value ranges of the coefficients fgeo, fvol 
and fiso mainly distributed within [0.0, 0.9], [-0.3, 0] and [0, 0.3], respectively, and become 
narrower with the increasing LAIs. This information is generally useful in the retrieval of 
those coefficients from remotely sensed data and will be used as a prior knowledge in the 
process of recovering emissivity from multi-angular data that will be presented in the next 
chapter. 
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Fig.4-3. Relationship between the three coefficients of the K-BRDF model at (a) LAI =0.5, (b) LAI =1.0, 

(c) LAI =2.0, and (d) LAI = 4.0, respectively.  

 

4.3.2 Comparison of the TIR-SAIL and gap-frequency-based models 

Fig.4-4 displays the directional emissivity respectively from the TIR-SAIL model (black 
square), FRA97 (red circles) and FRA02 (blue downward-pointing triangles) at different LAIs. 
It shows that the emissivity of both FRA97 and FRA02 parameterization models is totally 
smaller than that of the TIR-SAIL model. The reason for the difference between the 
TIR-SAIL and FRA02 model might be explained as that the FRA02 parameterization model 
only deals with the multiple scattering in the interface of soil and vegetation layers and 
ignores the multiple scattering inside the vegetated layers. The TIR-SAIL model iteratively 
calculates the upward and downward flux between two adjacent vegetated layers and only 
accounts for single scattering between soil and the upper vegetation layers. On the other hand, 
because the FRA97 model handles the contributions from the two scattering paths in the 
TIR-SAIL model, its results are closer to the TIR-SAIL model than the FRA02 model, and 
has a similar tendency with the TIR-SAIL model as shown in Fig.4-4. 
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Fig.4-4. Comparison of directional emissivity respectively from the TIR-SAIL model, FRA97 model with 

previous and new cavity effect factors, and FRA02 models at (a) LAI = 0.5, (b) LAI = 1.0, (c) LAI = 2.0 

and (d) LAI = 4.0. 

However, the emissivity difference between the FRA97 and the TIR-SAIL model also 
cannot be ignored, especially for some large VZAs. It needs to update the cavity effect factor 
α, which is an indicator of the multiple scattering in the canopy and generally represents the 
proportion of the radiation that penetrates into the canopy and is reflected out of the canopy. 
Based on the radiative transfer model of (Prévot 1985), François et al. (1997) found that the 
canopy directional emissivity at a specified VZA always reached a limit emissivity εlim which 
only depended on the vegetation emissivity and VZA rather than on the background soil 
emissivity. Fig.4-5(a) and (b) present the directional emissivity at VZA = 0° and 55° at 
different LAIs simulated from the TIR-SAIL model. The vegetation emissivity is 0.98 and the 
soil emissivity is 0.90, 0.92, 0.94 and 0.96, respectively. It releases that the canopy emissivity 
for all soil cases reaches the same point, i.e., the limit emissivity εlim, which is about 0.9944 
and 0.9935 respectively for VZA = 0° and 55°, larger than the vegetation emissivity 0.98 due 
to the multiple scattering. Furthermore, Fig.4-5(c) shows that the limit emissivity εlim 
increases with the vegetation emissivity. François et al. (1997) developed a method to 
calculate the cavity effect factor α as (εv is the vegetation emissivity): 

)1()1( lim veea --= .                       (4.15) 
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Fig.4-5. Limit emissivity at different conditions. (a) and (b): the limit emissivity of the canopy at VZA = 

0° and 55° with vegetation emissivity 0.98 but different soil emissivity, respectively. (c): the limit 

emissivity at VZA = 0° with soil emissivity 0.94 but different vegetation emissivity. (d): the primary and 

new cavity effect factors at different viewing zenith angles.  

 

Based on the directional emissivity from the TIR-SAIL model and the FRA97 
parameterization model, new cavity effect factor α for the TIR-SAIL model was calculated 
and presented in Fig.4-5(d) along with those reported in (François et al. 1997). The cavity 
effect factor actually slightly varies with vegetation emissivity but the variation is very small 
and can be ignored. As seen from Fig.4-5(d), the new α is totally smaller than those of 
(François et al. 1997), especially for the large VZAs, which indicates that multiple scattering 
still contributes to the directional emissivity at VZA = 90° in the TIR-SAIL model, while this 
scattering disappears in the model of (Prévot 1985). We use the new factor in Eq.(4.12) to 
recalculate the directional emissivity and present the result in Fig.4-4 (green triangles, 
denoted as FRA97 New). Compared with the result of the FRA97 model using previous 
version of the factor, the directional emissivity of the FRA97 New is closer to the TIR-SAIL 
model, especially for the large VZAs, because the difference of the new and previous α is 
more significant in large VZAs than the smaller one, as shown in Fig.4-5(d). 
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4.4 Parameterization of directional brightness temperature 

Up to now, modeling the directional brightness temperature (DBT) of homogenous or 
heterogeneous canopies has attracted many attentions. For example, except for the 
aforementioned TIR-SAIL models, Kimes (1983) simulated the DBT of the row canopy by 
treating the row structure as a rectangular cross section for the first time and calculated the 
fractions of different components from the row structure. Inspired by this concept, several 
similar models have been developed by considering the bi-directional gap, hotspot effect or 
crop growth stages (Chen et al. 2002; Du et al. 2007; Huang et al. 2010; Yan et al. 2003; Yu et 
al. 2004). Pinheiro et al. (2006) developed a Modified Geometric Projection (MGP) model by 
highly parameterizing the geometric-optics (GO) model to first separate the components’ 
fractions with given canopy structure and observation variables and then weighted those 
fractions with components’ brightness temperatures to generate the DBT for homogeneous or 
discontinues canopies. The MGP was further used to investigate the angular variation of 
surface temperature for the sensors AVHRR and SEVIRI (Phinheiro et al. 2006; Rasmussen et 
al. 2011; Rasmussen et al. 2010). The MGP can present the hotspot of the LST at pixel scale, 
but it ignores the contribution of multiple scattering in the canopy, which reduces the DBT in 
theory. Besides, it is difficult to provide the input data about the tree density and width and 
height, which hampers its wide application.  

As stated above, this thesis used the TIR-SAIL to simulate the directional emissivity. To 
unify the directional emissivity, the way of simulating DBT should also come from the SAIL 
series model. However, since the TIR-SAIL model developed by (Liu et al. 2003) only 
concerns on two components (soil and vegetation), its DBT was only dependent on the VZA 
but independent on viewing azimuth angle (VAA). Therefore, the TIR-SAIL model of (Liu et 
al. 2003) was unable to character the hotspot. Although the 4-component SAIL model 
proposed by (Verhoef et al. 2007) separated the components to four parts: sunlit and shaded 
leaves, and sunlit and shaded soil, we have no access to get the code of this model. To the end, 
the parameterization model of the SAILH model by (Li et al. 2010), who presented the 
primary SAILH model by weighting four components’ (sunlit and shaded leaves, and sunlit 
and shaded soil) reflectivity and their fractions estimated from given canopy structures, was 
employed to parameterize the DBT for the homogenous canopy, written as: 

multi

N

iiii LTBfL
i

+××= å
=1

)(e ,                            (4.16) 
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where, L is the directional thermal radiance (the inversion of L according to the Planck’s law 
will produce the DBT). fi is the fractions of different components and can be estimated from 
the parameterization model of (Li et al. 2010), provided the solar and viewing directions, 
canopy structure and model parameters. Ti and εi are the temperature and emissivity of the 
components. Only three components (leaves and sunlit and shaded soils) are concerned in this 
thesis, because the temperature difference between sunlit and shaded leaves is very small 
compared to the temperature difference between the sunlit and shaded soils. Lmulti is the 
multi-scattering between soil and leaves, and between leaves inside the canopy. The first part 
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of the right-hand side of Eq.(4.17) is the reflected leaves’ radiation by the soil, and the second 
part is the multi-scattering inner the canopy. The terms in this equation have been defined 
above. The cavity effect factor used the updated one based on the TIR-SAIL model. Table 4-1 
lists the main input variables of the simulation DBT including the solar zenith and azimuth 
angles, LAI of the canopy, the temperature of leaf (Tleaf), sunlit soil (Tsun_soil) and shaded soil 
(Tshd_soil), and the emissivity of vegetation (εv) and soil (εg). Note that the simulated DBT is 
assumed to be atmospherically corrected.  
 

Table 4-1. The main input parameters for the DBT simulation 

SAA SZA LAI Tleaf Tsun_soil Tshd_soil εv εg 

120° 30° 0.5:0.5:5.0 305 K 320 K 315 K 0.985 0.95 

 

Besides, we also used the kernel-driven BRDF model to fit the hemispheric DBT by 
replacing the bi-directional reflectivity in the left-hand side of Eq.(4.4) with the DBT, as 
reported by (Peng et al. 2011). Since we aim at the non-isothermal pixel and the components’ 
fractions vary with solar and viewing azimuth angles, the DBT is consequently depends on 
the azimuth angles.  

),,('),,(''),,( jqqjqqjqq svgeogeosvvolvolisosv kfkfkDBT ×+×+= .       (4.18) 

The Ross-Thick and Li-SparseR kernels are used as the volumetric and geometrical 
scattering kernels in Eq.(4.18). Based on the input variables shown in Table 4-1 for the DBT 
simulation using Eq.(4.16) and the SAILH parameterization model (Li et al. 2010), Fig.4-6 
displays the simulated DBT distribution (the first column) and the fitted DBT from the 
K-BRDF model (the second column) and their temperature difference (the third column) at (a) 
LAI = 0.5, (b) LAI = 1.0 and (c) LAI = 2.0. The maximum zenith angle is constrained to 60° 
because the K-BRDF model was reported to obtain unacceptable result for larger zenith angle 
(Snyder and Wan 1998; Sobrino et al. 2005).  

As seen from Fig.4-6, the angular variation of the DBT is up to about 3.0 K for the 
simulation conditions (Table 4-1). However, this angular variation relies on the components’ 
temperature difference and canopy structure: larger temperature difference generally leads to 
larger angular variation. The K-BRDF model fits well the distribution of DBT, only leading to 
error lower than 0.3 K. The hotspot effect in the solar direction is significant and but it is also 
found that the maximum temperature difference occurs around this direction and the DBT 
from the K-BRDF model is generally larger than that from the simulation result in the 
directions around the solar beam. The increase of LAI totally decreases the DBT because the 
fraction of leaves increases and the leaves’ temperature is lower than that of soils. 
Furthermore, the LAI also influences the temperature difference caused by regression process 
of the K-BRDF model. Fig.4-7 shows the RMSE (root-mean-square-error) and the maximum 
temperature difference with LAIs. It indicates that the RMSE is smaller than 0.1 K and the 
maximum temperature is smaller than 0.3 K, and both of them reach their global maximum at 
about LAI = 2.  
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(a) LAI = 0.5 

      
(b) LAI = 1.0 

      
(c) LAI = 2.0 

Fig.4-6. The hemispheric distribution of the simulated DBT from Eq.(4.16) (the first column), the fitted 

DBT from kernel-driven model (the second column) and their temperature difference (the third column) at 

(a)LAI =0.5, (b) LAI =1.0 and (c) LAI = 2.0, respectively. 

 

 
Fig.4-7. The influence of LAI on the error of the kernel-driven BRDF model 
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Furthermore, we also checked the K-BRDF model in different solar positions, 
components’ temperatures and emissivities, and canopy structures, and the results further 
confirmed the availability of the K-BRDF model in the presentation of the DBT distribution. 
Therefore, according to the above discussions and results, a conclusion can be drawn that 
Eq.(4.16) can represent the hemispheric distribution of the DBT very well and the K-BRDF 
model can fit the DBT distribution robustly, without leading significant error if no noise is 
included in the data. Note that, because the components’ emissivity is considered as 
angle-independent and consequently the DBT of bare surface is isotropic, we only discuss at 
the level of canopy rather than the case of bare surface. 

The above result is obtained by using the K-BRDF model for all viewing zenith and 
azimuth angles. However, it is almost impossible to observe the same target under so many 
directions in reality. On the contrary, only several angular observations are usually conducted. 
Consequently, a problem is raised: how many observations and under what viewing angles are 
needed for the K-BRDF model to fit the DBT accurately? In order to find out the optimum 
observation groups, this thesis used two different ways in the following discussions: 
single-point pattern and linear-array pattern. 

 

4.4.1 Single-point pattern for the optimum angular combination 

According to Eq.(4.18), at least three angular observations are needed to complete the 
K-BRDF model. More observations can make the fitted coefficients more reliable in theory 
but the error in those observations could cause more uncertainty to the fitted result. Therefore, 
we start with only three viewing angles. The objective of this work is to find out the local 
optimum viewing angle combination that can cause the smallest error from the K-BRDF 
model, and also to provide some suggestion for the future development of the multi-angle 
airborne or space-borne TIR sensors. Therefore, for the achievable purpose in the mechanical 
design of the sensors, we herein assume that all observations are made with the azimuths in 
the same plane, i.e. their azimuths equal to φ or φ + π.  

Taking φ = 0 for example, the three observations’ zenith angles vary in the azimuth plane 
(0~π), at a step of 10° with the maximum 60° in the zenith direction. Observations are 
forbidden to have the same value of zenith and azimuth angles. As a result, there are 126 
groups of the three angles. To find out the optimum group, we use firstly Eq.(4.16) to simulate 
the hemispheric DBT under different cases of solar positions (SAA from 0° to 330° with a 
step 30°, SZA=10°, 30° and 50°), LAIs (0.5~5.5 with a step 0.5) and the components’ 
temperatures and emissivities in Table 4-1, resulting in a total of 396 cases. Consequently, the 
three coefficients of Eq.(4.18) are obtained from the DBT of three angles, and this process is 
controlled additionally by an optimization algorithm. Table 4-2 shows the frequency of the 
RMSE in [0.0, 0.5] K, [0.5, 1.0] K and the number of the occurrences of the maximum and 
minimum RMSEs, respectively. The cases without nadir viewing direction is not displayed 
here because they do not have better results and also because of the limited space. 

Some criteria are proposed to filter out the final optimum angle combinations:  

(1) Most of the RMSE of the K-BRDF model should fall in the range of 0.0~0.5 K; 
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(2) The maximum difference seldom occurs in the angle combinations; 
(3) Most of the minimum difference should be obtained in the combinations; 
(4) Observation in very large zenith angle is not recommended, and the interval of the 

adjacent zenith angles should be as large as possible.  

According to the above four criteria and the results shown in Table 4-2, it is found that 
large viewing zenith angles could make the fitted error smaller, and several angle 
combinations can be considered as the candidate for the optimum groups: ① [(0°, 0°)，(0°, 
30°)，(180°, 50°)]; ② [(0°, 0°)，(0°, 40°)，(180°, 50°)] and ③ [(0°, 0°)，(0°, 40°)，(180°, 
60°)]. Although the combination [(0°, 0°)，(0°, 50°)，(180°, 60°)] has the maximum 
occurrences for the minimum error, the occurrences (five times) in the maximum error and 
large viewing zenith angles make this group unavailable.  

Among the three candidates, group ③ cannot be recommended because of its large 
viewing zenith angle in the direction (180°, 60°), whose pixel sizes is as large as four times of 
the pixel size at nadir observation if the sensor’s IFOV(instantaneous field of view) keeps the 
same in every direction. Compared with group ①, group ② works slightly better. However, 
the final decision cannot be made without any sensitivity analysis to the errors involved in 
observed data. 
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Table 4-2. The frequency of the root-mean-square error (RMSE) in different three angle combinations 

1st 

VAA 

1st 

VZA 

2nd 

VAA 

2nd 

VZA 

3rd 

VAA 

3rd 

VZA 

RMSE 

[0.0~0.5]K 

RMSE 

[0.5~1.0]K 
Max* Min# 

0 0 0 10 180 10 195 44 122 0 

0 0 0 10 180 20 241 43 49 1 

0 0 0 10 180 30 299 40 16 2 

0 0 0 10 180 40 316 33 15 0 

0 0 0 10 180 50 337 7 1 12 

0 0 0 10 180 60 323 4 5 11 

0 0 0 20 180 10 243 42 45 1 

0 0 0 20 180 20 295 18 11 0 

0 0 0 20 180 30 315 34 14 4 

0 0 0 20 180 40 337 20 2 3 

0 0 0 20 180 50 359 3 1 15 

0 0 0 20 180 60 354 7 19 11 

0 0 0 30 180 10 299 39 17 2 

0 0 0 30 180 20 316 34 14 4 

0 0 0 30 180 30 351 16 0 7 

0 0 0 30 180 40 361 3 0 6 

0 0 0 30 180 50 360 0 0 14 

0 0 0 30 180 60 373 0 2 9 

0 0 0 40 180 10 316 35 16 0 

0 0 0 40 180 20 337 20 2 3 

0 0 0 40 180 30 361 2 0 6 

0 0 0 40 180 40 364 1 0 3 

0 0 0 40 180 50 373 0 0 26 

0 0 0 40 180 60 373 0 1 47 

0 0 0 50 180 10 336 8 1 14 

0 0 0 50 180 20 359 4 1 16 

0 0 0 50 180 30 360 0 0 14 

0 0 0 50 180 40 373 0 0 26 

0 0 0 50 180 50 353 2 2 14 

0 0 0 50 180 60 365 8 5 69 

0 0 0 60 180 10 322 5 4 10 

0 0 0 60 180 20 354 8 22 12 

0 0 0 60 180 30 373 0 1 10 

0 0 0 60 180 40 373 0 1 47 

0 0 0 60 180 50 365 8 3 69 

0 0 0 60 180 60 349 0 21 0 

*Max stands for the frequency of maximum temperature difference, while #Min stands for the 

frequency of minimum temperature difference. 

In order to investigate the sensitivity of the different angle groups to the DBT errors, some 
artificial noises within [-0.5, 0.5] K and [-1.0, 1.0] K in a uniform distribution were 
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respectively added to the simulated DBT of Eq.(4.16). The three coefficients of the K-BRDF 
model were recalculated and then used to obtain the hemispheric DBT. The output of the 
K-BRDF model was constrained by the optimization algorithm as that the DBT must reach 
the maximum value in the solar direction. 

Fig.4-8 shows the RMSE histograms of the temperature difference caused by the 
three-angle K-BRDF model using the angles groups ①~③ by responding to the DBT noise 
of [-0.5, 0.5] K and [-1.0, 1.0] K, respectively. It illustrated that group ③ obtained the 
smallest errors for two noise conditions, followed by group ②  and ① . The RMSE 
percentages of the three angle groups ①~③ in the range of 0.0~1.0 K are about 92.4%, 
96.6% and 96.3% for the noise condition [-0.5, 0.5] K, 80.1%, 88.5% and 91.1% for the noise 
condition [-1.0, 1.0] K. Those results indicates that the three groups have the ability to obtain 
an error of temperature better than 1.0 K for most cases if the noise involved in the observed 
DBT data is no more than 1.0K. However, it is obvious that group ② and ③ are less 
sensitive to the noise in the observed data. As stated above, group ③ cannot be used as the 
optimum viewing angle combination because of the large viewing zenith angle and the 
occurrence of maximum errors. As a result, group ② should be the optimum one in theory. 
However, as the pixel size increases with the increasing VZA, the ratios of pixel area at VZA 
= 30°, 40° and 50° to that of nadir are 1.32, 1.70 and 2.40, respectively. It’s necessary to need 
a pixel with a middle area to connect the observations from nadir to large VZAs, especially 
for heterogeneous surfaces. In this case, the zenith angle in group ① leads a more continues 
series of pixel sizes (1, 1.3 and 2.4 times of nadir pixel size). Besides, the angle intervals in 
the slant direction of group ① (i.e., 20°) is larger than that of group ② (i.e., 10°), which 
makes group ① less sensitive to the error included in the observation angle itself in theory. 
Therefore, we prefer to the angle combination of group ①, and take this group as the local 
optimum angle combination for the DBT regression using three-angle K-BRDF model. 

    
Fig.4-8. RMSE histogram of the three-angle kernel-driven model for DBT noise within (a) [-0.5, 0.5] K 

and (b) [-1.0, 1.0] K. 

 

4.4.2 Linear-array pattern 

For most sensors onboard the polar-orbit satellite, it scans the surface in the crossing-track 
direction by rotating the mirror toward the target or using the array detectors to monitor the 
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earth under different relative zenith angles to the nadir direction or by taking photos under 
central projection manner. In this study, we take the way of the array detectors for example 
and suppose that a sensor is equipped with three arrays of detectors to observe the earth at 
nadir, forward and backward directions and that all detectors have the same spectral and 
radiative characteristics. Based on the result from the above section 4.4.1, we use the 
combination of group ① [(0°, 0°)，(0°, 30°)，(180°, 50°)] as the optimum one to investigate 
the case of the array observations. Fig.4-9 shows the array detectors (or pixels) for the nadir, 
forward and backward directions. Each array has 27 pixels from left to right with an interval 
of 5° in the range of ±65° at the Nadir array. If assume the satellite flies in the north-south 
direction and ignore the influence of the rotation of the earth itself, the azimuth angle of the 
left part of the Nadir array is 90° and that of the right part is 270°. The viewing zenith and 
azimuth angles (VZA and VAA) in the backward and forward arrays can be calculated as: 

)tantanarctan( 0,, ikki qqq = , ( )0,
22

, tantanarctan ikki qqj += ,           (4.19) 

where, θi,k is the viewing zenith angle of the ith pixel in the backward or forward arrays. θi,0 
is the viewing zenith angle of the ith pixel in the Nadir array. θk is the zenith angle of the 
backward or forward arrays relative to the nadir, i.e. θk = 30° or 50°. φi,k is the relative angle 
between the azimuths of the ith pixel in the nadir and off-nadir directions. The absolute 
azimuth angle will be finally determined by φi,k and the position of the ith pixel in the Nadir 
array.  

 

Fig.4-9. The illustration of three linear-arrays. The “pixel series number” was the number of each pixel 

corresponding with Fig.4-10; the pixels marked with “PA”, “PB” and “PC” were used for analysis.  

 

Based on Eq.(4.19), the azimuth and zenith angles for each pixel in the three linear-arrays 
of Fig.4-9 are consequently calculated and displayed in Fig.4-10. As seen from Fig.4-10, the 
differences of VZA and VAA of the same pixels in the three arrays are significant in the 
middle part of those arrays, but decrease with the pixels getting close to the edges of the 
arrays. Since the angle difference will influence the temperature difference between different 
viewing directions, a small difference in viewing angles might cause large errors into the 
K-BRDF model, which will be illustrated in following discussion. 
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Fig.4-10. (a) Viewing zenith angles (VZA) and (b) azimuth angles (VAA) of the three arrays. The pixel 

series number can be found in Fig.4-9. 

 

In order to check the availability of the K-BRDF model on the array observation pattern 
and analyze the influence of the three angles in different places of the arrays, we firstly 
simulated some hemispheric DBT with varying LAIs and solar positions, and then added 
some uniform-distributed noise in [-0.5, 0.5] K to the simulated data and finally compared the 
fitted DBT from the K-BRDF model with the truth DBT from the simulations. The following 
parts will discuss the influence of SZA, SAA and LAI on the DBT residual caused by the 
K-BRDF model in the total hemisphere and on the DBT difference at nadir observation that is 
usually considered as the reference direction for the angular correction of temperature. 

 

4.4.2.1 The influence of solar position  

Since the VZA and VAA of each pixel in the arrays are fixed, the solar position impacts 
the fractions of sunlit soil, shadow soil and leaves as well as the components’ temperatures in 
each pixel. To analyze the sensitivity of the K-BRDF model to the solar position, we simulate 
the hemispheric DBT by changing SAA from 0° to 330° with a step of 30°, with SZA equal 
10°, 30° and 50° for each SAA. A total of 5 LAIs (0.5, 1.0, 2.0, 3.0 and 4.0) are used for each 
solar position. Artificial noise is added to the simulated DBT. All pixels in Nadir, backward or 
forward array include the same noise, respectively, but different arrays have different noises. 

A. The influence of SZA on the K-BRDF model 

Fig.4-11 shows the RMSE histograms for the temperature difference resulted from the 
K-BRDF model at different SZAs. Fig.4-11(a) shows the RMSE for all pixels, which 
indicated that the percentage of RMSE within [0,1.0] K for SZA=10° is larger than the other 
two SZAs. A small SZA can lead to a low uncertainty for the estimated DBT and presents less 
sensitivity to the noise. Fig.4-11(b), (c) and (d) show RMSE histograms of three pixels 
marked with PC, PB and PA in Fig.4-9, which corresponds to VZA = 0°, 45° and 60° in the 
Nadir array, respectively. It is found that the case of the pixel PC has the most robust ability to 
deal with the noise (Fig.4-11(b)). The pixels (e.g. PA) closed to the edge of the array have 
more errors in the estimated DBT because as shown in Fig.4-10, the difference of their VZA 
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and VAA in the three arrays are very small, which causes a small variation of the components’ 
fractions between three viewing angles, and consequently leads to a small temperature 
difference in the observed DBT data. To the end, the K-BRDF model turned out to be highly 
sensitive to the noise included in the DBT. Therefore, a better result from the K-BRDF model 
requires a significant difference between the viewing angles. 

   

     
Fig.4-11. RMSE histograms of DBT difference for different pixels and SZAs 

 

Based on the results of Fig.4-11, the cumulative percentage of RMSE ranging in [0.0, 1.0] 
K has been calculated for each pixel and SZA, and shown in Fig.4-12. The VZA of the X-axis 
is the zenith angle of the pixel in the Nadir array. Fig.4-12 indicates that such cumulative 
percentage generally decreases with the increase of VZA, especially in the range of VZA 
larger than 45°. For SZA = 10° and 30°, their cumulative percentages are about 95% at VZA 
smaller than 45°, and even near 100% at nadir direction. On the contrary, such percentage for 
SZA = 50° is about 85%, much lower than the other two SZAs. Therefore, as seen from the 
Fig.4-12, an angular observation with the maximum VZA less than 45° at Nadir array and a 
relative small SZA is necessary to make sure that the cumulative percentage of the 
temperature error in the range of 0.0~1.0 K caused by the K-BRDF model is no less than 
85%. 
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Fig.4-12. The cumulative percentages of RMSE in [0.0, 1.0] K for different pixels in Nadir array and SZA. 

 

B. The influence of SZA on DBT difference at nadir observation 

Once the three kernel coefficients of the K-BRDF model are determined, the DBT in any 
other direction can be estimated in theory. Nadir direction is taken as the reference direction 
in this thesis, and the DBT is normalized from other direction to the nadir observation. 
Fig.4-13(a) displays the histograms of the temperature difference between the normalized 
DBT at nadir from the K-BRDF model and the truth nadir value in the simulation. It releases 
that most of the difference ranges in [-1.0, 1.0] K with a bias about 0.2 K. Similar results are 
obtained for the three SZAs although the case of SZA = 30° performed a little better than the 
other two SZAs. The occurrence of the sawtooth in the curves of the graphs in Fig.4-13(a) 
might be caused by a lack of enough simulations. Fig.4-13(b) shows the cumulative 
percentage of DBT difference in [-1.0, 1.0] K for different pixels and SZAs. Similar to the 
Fig.4-12, the percentages decrease with the increasing of VZA and almost are distributed in 
symmetry with respect to the central pixel. For those pixels with small VZAs, the K-BRDF 
model works well at all of the three SZAs, but its accuracy is degraded for the pixels near the 
edges of linear arrays. These results are similar to those of the previous section, which further 
indicate that the requirement of an angular observation with middle SZA, and VZA at Nadir 
array less than 45° is necessary for an acceptable result. 

   
Fig.4-13. (a) The histograms of DBT difference at nadir, and (b) the cumulative percentages of DBT 

difference in [-1.0, 1.0] K for different viewing angles and SZAs 
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C. The influence of SAA on the K-BRDF model 

Similar to Fig.4-11, Fig.4-14 shows the RMSE histograms for the temperature difference 
resulted from the K-BRDF model at different SAAs. It is also found the result of the pixel (e.g. 
Fig.4-14(d)) near the edges of the array showing more uncertainty than the other pixels. It is 
difficult to decide which SAA is the best for all pixels but as seen from Fig.4-14(a), the error 
of the K-BRDF model is generally smaller at the solar position closer to the viewing azimuth 
(0°~180°). The case of SAA = 90° generally provides the worst result perhaps because this 
solar position results in the smallest variation in components’ fractions and temperatures. 

 

  
Fig.4-14. RMSE histograms of DBT difference for different pixels and SAAs 

 

Fig.4-15 displays the angular variation of the cumulative percentages of temperature 
RMSE within [0.0, 1.0] K. The percentages are not symmetric with respect to the central pixel 
for SAA = 30°, 60° and 90° as those in Fig.4-12. For example, the percentages in the 
right-hand side of SAA = 30° is larger than those in the left-hand side, while the right-hand 
side of SAA = 60° is generally smaller than those in the left-hand side. The curve of SAA = 
90° varies significantly with the VZA. However, the cases of SAA = 0°, 120°, 150° and 180° 
are almost symmetric with the central pixel’s location. These different patterns for different 
SAAs are caused by the difference of the viewing angles in the backward and forward arrays. 
According to the VAAs for each pixels of the three arrays shown in Fig.4-10(b) and the results 
of Fig.4-14, a cautious conclusion can be drawn that the larger the difference between the 
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solar azimuth and the azimuth angles of array Forward50° is, the better the result of the 
K-BRDF model will be. 

 
Fig.4-15. The cumulative percentages of RMSE in [0.0, 1.0] K for different pixels in Nadir array and SAA. 

 

D. The influence of SAA on DBT difference at nadir observation 

Fig.4-16(a) shows the histograms of the temperature difference between the normalized 
DBT at nadir from the K-BRDF model and the truth nadir value in the simulation. It 
illustrates that there is almost no difference among those SAA. Fig.4-16(b) is the 
corresponding cumulative percentages with DBT difference in [-1.0, 1.0] K. The results of the 
SAA = 30°, 60°, 90° and 120° turned out to be better in one side than the other, perhaps 
because of the different viewing zenith angles in the backward and forward arrays. As seen 
from both Fig.4-15 and Fig.4-16, the requirement on the error of no less than 85% pixels falls 
in the error range [0.0, 1.0] K, needs the maximum VZA in Nadir array smaller than 45° for 
most SAAs but still depends on the SAA. 

   
Fig.4-16. (a) The histograms of DBT difference at nadir for different SAAs, and (b) the cumulative 

percentages of nadir DBT difference in [-1.0, 1.0] K for different viewing angles and SAAs. 

 

4.4.2.2 The influence of LAI 

LAI impacts the gap frequency of the canopy and consequently influences the fractions of 
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leaves and soils. As the leaves usually has a lower temperature than the soil, large LAIs lead 
to smaller temperature for the canopy. Using the same methods than above, we have checked 
the influence of the LAI on the result of the K-BRDF model with LAI equal 0.5, 1.0, 2.0, 3.0 
and 4.0. The other simulation conditions keep the same with the above discussion. 

A. The influence of LAI on the K-BRDF model 

Fig.4-17 shows the RMSE histograms for different LAIs when there are noises of [-0.5, 
0.5] K included in the DBT data, which indicates that the K-BRDF model is not very sensitive 
to the noise for the case of larger LAIs, especially with LAI larger than 2.0. However, the 
K-BRDF model causes a relative larger error to LAI = 1.0 than to LAI =0.5, possibly because 
the changes from soil-dominated canopy (small LAI) to vegetation-dominated canopy (large 
LAI) degrade the accuracy of the regression process in the K-BRDF model.  

  

  
Fig.4-17. RMSE histograms of DBT difference for different pixels and LAIs 

 

Fig.4-18 is the variation of cumulative percentages of the temperature RMSE within [0.0, 
1.0] K for the VZAs in the Nadir array and different LAIs. Similar to the influence of the solar 
position, the pixels closer to the edges of the arrays has smaller cumulative percentages and 
larger uncertainties, while the pixels in the range of [-45°, 45°] obtain more reliable results 
from the K-BRDF model. As stated previously, the VZAs smaller than 45° are required to 
obtain reliable fitted DBT from the K-BRDF model. 
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Fig.4-18. The cumulative percentages of RMSE in [0.0, 1.0] K for different pixels in Nadir array and LAIs. 

 

B. The influence of LAI on DBT difference at nadir observation 

Fig.4-19(a) shows the histograms of the temperature difference between normalized DBTs 
at nadir from the K-BRDF model and the truth nadir value in the simulation at different SAAs. 
It illustrates, except for the case of LAI = 4 which obviously presents largest percentage in the 
[-1.0, 1.0] K, that no significant difference between the histogram of the other LAIs can be 
observed. Fig.4-19(b) is the variation of cumulative percentages of the nadir DBT difference 
in [-1.0, 1.0] K with the viewing angles in the Nadir array and different LAIs. This figure 
shows that there are no difference in the cumulative percentage for all LAIs in the range of 
small VZAs (i.e. -20° ~20°), but larger LAIs can generally generate higher percentages in 
large viewing zenith angles. Therefore, the K-BRDF model is more reliable for dense 
vegetated canopy than for relative sparse canopy. The case of LAI =1.0 has the smallest 
percentages perhaps because of the mixed effect described above. Similarly, an acceptable 
cumulative percentages (>85%) for all LAIs requires the viewing zenith angle to be less than 
45°. 

  

Fig.4-19. (a) The histograms of DBT difference at nadir for different LAIs, and (b) the cumulative 

percentages of DBT difference in [-1.0, 1.0] K for different viewing angles and LAIs. 

From the above discussion about the three linear-array pattern, we find that the VZA in 
Nadir array has to be smaller than 45° in order to enable most of the temperature error from 
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the K-BRDF model no more than 1.0 K, and that the middle SZA and partly and dense 
vegetated surface can improve the accuracy of the model. 

 

4.5 Conclusions and discussions  

This chapter firstly compares four parameterization models for the directional emissivity 
of canopy based on the result of the TIR-SAIL model developed by (Liu et al. 2003). The four 
models are respectively the kernel-driven BRDF model (K-BRDF) with Ross-Thick 
volumetric kernel and Li-SparseR geometric-optic kernel, the semi-empirical BRDF model 
S-BRDF (Li et al. 2000), the analytical parameterization model FRA97 (François et al. 1997) 
and the multiple scattering model FRA02 (François 2002). Results show that both K-BRDF 
and S-BRDF model can accurately represent the angular variation of the canopy directional 
emissivity for low and middle LAIs. However, for dense vegetated canopy, such as LAI = 4.0, 
the S-BRDF model almost has an opposite tendency pattern for the directional emissivity to 
the result of the TIR-SAIL model, and the emissivity difference between the two model is as 
large as 0.007 for larger VZAs. On the contrary, the K-BRDF model presents a relative higher 
accuracy because it holds a similar angular pattern of the directional emissivity to the 
TIR-SAIL model with emissivity difference less than 0.002. Besides, we find out that the 
factor k of the S-BRDF is always larger than 1.0, an outlier of its physical value between 0 
and 1.0. As a result, comparison between the K-BRDF model and the S-BRDF model 
indicates that the former performs a litter better than the latter in the parameterization of the 
directional emissivity. Therefore, the K-BRDF model will be used in the further analysis of 
the angular normalization of the land surface temperature. Besides, linear relationships 
between the three kernel coefficients of K-BRDF model are found from the simulation data 
composed with ten vegetation and seventeen soil samples chosen from emissivity database. 
Moreover, results also show that the FRA02 model has large error in the parameterization of 
directional emissivity simulated from the TIR-SAIL model perhaps because the FRA02 
ignores the multiple scattering between the vegetation layers inside the canopy. Besides, the 
cavity effect factor developed by (François et al. 1997) based on the (Prévot 1985) in the 
FRA97 model is found to be no longer suitable for the TIR-SAIL model, so it has been 
refined according to the TIR-SAIL model, and the new value consequently increases the 
accuracy of the FRA97 model, especially at large VZAs.  

Using the refined cavity effect factor and the parameterization method of the SAILH 
model (Li et al. 2010), we have developed a new way to simulate the directional brightness 
temperature (DBT) of the canopy which is assumed to be composed with leaves, sunlit and 
shaded soils. The hemispheric DBT simulated from the new method can obviously present the 
hotspot effect of the DBT. Based on the simulated DBT, analysis results show that the 
K-BRDF model, refined by replacing the bi-directional reflectivity in the primary model with 
the DBT, performs well in the regression of the hemispheric DBT, leading to an error lower 
than 0.3 K. If the three kernel coefficients of the K-BRDF model are known, the DBT in any 
other direction is obtainable in theory. Therefore, the K-BRDF model gives us an opportunity 
to make angular normalization of the DBT. To check the availability of this model in the 
angular normalization and find out the optimum angle combination for this model, two 
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different ways are used for investigation: single-point pattern and linear-array pattern. The 
single-point pattern finally selects the angle combination [(0°, 0°), (0°, 30°), (180°, 50°)] from 
many three-angle groups as the optimum angle combination because the K-BRDF model 
using the DBT under this angle combination give out a robust result and because the pixel 
resolution of this angle combination keeps a finer continuity from fine to coarse scales. 
Furthermore, we extend this optimum angle combination to the three linear-array pattern 
(Nadir, Forward 50° and backward 30°, respectively), which are assumed to be onboard of 
polar-orbit satellite and use to observe the earth’s surface in multiple angles as the satellite 
moves forward. Investigations of the consistency of the K-BRDF model to the solar position 
and LAIs show that a middle SZA, and a SAA along satellite track direction, and a relative 
higher LAI is more appropriate to enable a reliable fitted DBT from the K-BRDF model. 
However, the results depend on the pixel location in the arrays as the closer to the edges of the 
arrays, the worse the result will be. Because the VZA and VAA differences of the pixels in the 
position of different arrays gradually become smaller as the pixel moves from the centre 
position to the edge of arrays. As a result, it reduces the angular variation of the DBT 
observed by the edge pixels in different arrays and consequently caused the K-BRDF model 
more sensitive to the noise in the observed DBT data. Finally, based on the analysis of the 
temperature RMSE and the temperature difference of the nadir DBT, we find out that the VZA 
in the Nadir array cannot be larger than 45° to enable the temperature RMSE within [0.0, 1.0] 
K and the temperature difference of the nadir DBT within [-1.0, 1.0] K for most cases (85%). 
These results may provide some suggestion to design the multi-angular observation system 
onboard the satellite. 

However, in this thesis we only use the SAIL series models including TIR-SAIL and 
SAILH models to simulate the directional emissivity and brightness temperature, so the new 
cavity effect factor may not be suitable to other radiative transfer models. The DBT simulated 
from the proposed new method is not yet validated with field data because of a lack of field 
data on homogenous canopy. Furthermore it is only used to provide the DBT data resource for 
the illustration of the K-BRDF model in the angular correction of the land surface temperature 
and for the algorithm development of the retrieval of directional emissivity and DBT from the 
multi-angular observations in Chapter 5. Future work should concern on field validation. 
Besides, in this thesis, we only discuss the case of three angular observations and force their 
azimuths to be in the same plane. Therefore, the angle combination [(0°, 0°), (0°, 30°), (180°, 
50°)] is only a local optimum for the development of three linear-array detector system. To 
answer the question “how many observations under what viewing angles are needed for the 
kernel-driven BRDF model to fit the DBT accurately?” still requires more work. 
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Chapter 5 

Angular normalization of land surface temperature and 

emissivity from multi-angular middle and thermal infrared 

images 

 

Based on the result of previous chapter, this chapter proposes a daytime TISI 
(temperature-independent spectral indices) method to retrieve directional emissivity and 
effective temperature from daytime multi-angular observed images in both middle and 
thermal infrared (MIR and TIR) channels by combining the kernel-driven BRDF 
(bi-directional reflectance distribution function) model and the TISI method. Four groups of 
angular combinations and two groups of MIR and TIR channels with narrow and broad 
bandwidth were used to investigate the influence of the angular observations and the 
bandwidth on the retrieval accuracy. Model sensitivity analysis indicated that the new method 
can obtain directional emissivity and temperature with an error less than 0.015 and 1.5 K if 
the noise included in the measured directional brightness temperature and atmospheric data 
was no more than 1.0 K and 10%, respectively. The analysis also indicated that (1) large-angle 
intervals among the angular observations and a larger viewing zenith angle (VZA) with 
respect to nadir direction can improve the retrieval accuracy of emissivity and temperature 
because those angle conditions can result in significant difference for component fractions 
and directional brightness temperatures under different viewing directions, and (2) narrow 
channels can produce better results than broad channels. The new method was finally applied 
to a multi-angular MIR and TIR dataset acquired by an airborne system, and a modified 
kernel-driven BRDF model was used for angular normalization to the surface temperature for 
the first time. The difference of the retrieved emissivity and ASTER emissivity was found to 
be approximately 0.012 in the study area. 

 

5.1 Background 

Land surface temperature (LST) is strongly required for many applications, including 
agrometeorology, climate and environmental studies. Thermal infrared images from aircraft 
and spaceborne satellites provide a unique opportunity to map this parameter at regional and 
even global scales. However, the determination of LST from remotely sensed data needs to 
solve two types of problems. The first is atmospheric correction, which aims to remove the 
contribution of atmospheric emission and scattering to the target radiation in the path from the 
surface to the sensor. The other involves accounting for the emissivity effect on the LST to 
allow the retrieval of LST from the radiance measured at the surface. Many methods have 
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been proposed to retrieve LST from remotely sensed data depending on different 
specifications of thermal infrared sensors and the atmospheric and emissivity data situations, 
reviews of those methods can be found in Chapter 2. For operational purposes, those methods 
often take the observed pixel as a homogeneous and isothermal target, and this assumption is 
reasonable for pure or quasi-pure pixels, such as bare soil, sand, snow and dense vegetated 
surface. However, for mixed pixels including two or more components at different 
temperatures and emissivities, the pixel temperature actually presents spectral and angular 
variations. As a result, the above assumption will be incorrect, and at least, the retrieved LST 
only presents the effective temperature at its corresponding viewing direction and cannot be 
directly taken as the temperature at nadir or under other directions in theory.  

The angular behavior of LST has been investigated in many previous studies (Chehbouni 
et al. 2001; Coret et al. 2004; Lagouarde et al. 2004; Lagouarde et al. 1995; Li et al. 2004b; 
Minnis and Khaiyer 2000; Rasmussen et al. 2011), and this angular variation results primarily 
from the angular variation of the pixel emissivity for three-dimensional surfaces and the 
relative weights of more than one component (e.g., vegetation and background soil) with 
different temperatures included in the scene. Some ground measurements have indicated that 
the LST difference at nadir and off-nadir observations can be as large as 5 K for bare soils and 
even 10 K for urban areas. For satellite images, the pixels also face a similar situation because 
the pixels in the same image are usually observed with significantly different viewing angles. 
For example, Moderate Resolution Imaging Spectroradiometer (MODIS) scans the land 
surface in the cross-track direction with viewing zenith angle (VZA) varying from -65º to 
+65º, and thus, angle-dependent variations in the retrieved LST are inevitable, which make 
the LSTs of different pixels in the same image incomparable and eventually lead to large 
errors. Similar cases can be observed in other satellite sensors, such as Advanced Very High 
Resolution Radiometer (AVHRR), Spinning Enhanced Visible and InfraRed Imager (SEVIRI), 
and so on. Therefore, it is crucial to make angular corrections to the LST.  

Until recently, there have been two types of methods for solving this angular LST problem. 
One method focused on the modeling of directional emissivity, and the other method is aimed 
at the retrieval of pixel components’ temperatures. The former simply attributes the angular 
variation of the measured effective temperature to the directional behavior of the pixel 
emissivity. If the directional emissivity at the viewing direction is known, LST can be 
retrieved by taking the inverse of the radiative transfer model, and the result is consequently 
assumed to be angle independent. However, because this method ignores the angular variation 
caused by the component temperatures, and it is always difficult to determine the directional 
emissivity at the pixel scale, the results of this method are far from satisfactory. In contrast, 
the retrieval of component temperatures is more promising for achieving LST angular 
correction because once the components’ temperatures are obtained from multi-angle 
observations (Jia et al. 2003; Li et al. 2001; Menenti et al. 2001), vegetation indices (Liu et al. 
2012) or spatial patterns (Zhan et al. 2011), the thermal radiance at any direction can be 
theoretically calculated by weighting the component temperatures with their corresponding 
fractions. However, this method always requires the component emissivities and their 
fractions to be known in advance, but those parameters are seldom easily obtained in practice. 
As a result, there has been no practical way until now to perform LST angular correction due 
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to the complexity of this issue.  

Multi-angular observation on the same targets is considered the most promising way to 
solve this problem. However, there are still rare reports about LST angular correction or 
simultaneous retrieval of directional emissivity and temperature from multi-angular TIR 
images because no more than two angular observations were designed for satellite sensors 
(e.g., the ATSR/AATSR, Advanced Along Track Scanning Radiometer), and the number of 
the observation was less than that of the unknowns. On the other hand, more angular 
observations can be obtained easier from airborne sensors than from spaceborne sensors, such 
as the WiDAS system (Liu et al. 2012) in the WATER campaign (Li et al. 2009). From the 
view of this point, the objective of this chapter is to develop a new method for simultaneously 
retrieving directional emissivity and temperature from the multi-angular observation of 
middle and thermal infrared (MIR and TIR) data using the TISI method and the kernel-driven 
BRDF model, and to achieve angular correction on the temperature using modified BRDF 
model. It is organized as follows: Section 5.2 will present some basic theory on retrieval of 
emissivity and temperature data from multi-angular observations in both MIR and TIR 
channels; Section 5.3 will discuss the model sensitivity analysis with respect to some input 
parameters and errors; Section 5.4 will be devoted to the application of the new method to an 
aircraft dataset consisting of MIR and TIR images at several viewing angles, which were 
obtained in the WATER campaign (Li et al. 2009), and the cross validation of the results; and 
finally, some discussion and conclusions will be presented in the last section of this chapter. 

 

5.2 Algorithm for retrieving angular temperature and emissivity 

5.2.1 Radiative transfer equation 

For a cloud-free sky, the radiance measured by an infrared channel onboard a satellite or 
an aircraft can be approximated as Eq.(5.1) (Li et al. 2013a).  

  ++×= slavsvsvs RRRI ),,(),,(),,( jqqtjqqjqq .             (5.1) 

The first term of the right-hand side of Eq.(5.1) is the measured surface-leaving radiance 
after attenuation passing through the atmosphere, and the second and third terms are the 
contribution of upward atmospheric emission Ra↑ and scattered solar radiance Rsl↑, 
respectively. The surface-leaving radiance R(θs, θv, φ) is written as the following: 
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where, θv and θs are the viewing zenith angle (VZA) and solar zenith angle (SZA), whereas φv 

is the relative azimuth angle between the viewing azimuth angle φv (VAA) and solar zenith 
angles φs (SAA). τ is the atmospheric transmittance. This first term of the right-hand side of 
Eq.(5.2) is the surface thermal radiation, whereas ε(θv, φv) is the surface emissivity in the 
viewing direction. Because the emissivity is assumed to be VAA-independent in this thesis as 
reported by (Chehbouni et al. 2001; François 2002; François et al. 1997), the term ε(θv, φv ) 
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will be replaced with ε(θv) in the following discussion. B[T(θs, θv, φ)] is the surface thermal 
emission calculated using the Planck’s law at the effective temperature T(θs, θv, φ), which will 
be defined from directional emissivity in the next section and varies with the viewing 
geometry for the non-isothermal pixel rather than an angle-independent value as indicated in 
some previous studies. The second term is the downward atmospheric radiance Ra↓ and solar 
scattering radiance Rsl↓, reflected by the surface at the viewing direction. The last part of 
Eq.(5.2) presents the solar direct illumination reflected by the surface with the bi-directional 
reflectivity ρ(θs, θv, φ). For the middle infrared channel at nighttime and the thermal infrared 
channel, no reflected solar radiance (Rsl↓ and Esun in Eq.(5.2)) contributes to the 
surface-leaving radiance. Note that, Eqs. (5.1) and (5.2) are similar to Eqs. (2.2) and (2.3), 
respectively. However, the variables included in Eqs. (5.1) and (5.2) are related to the viewing 
and solar azimuth angles because the two equations concern on the non-isothermal pixel, 
while Eqs. (2.2) and (2.3) conduct the isothermal pixel. 

 

5.2.2 Daytime TISI method  

The TISI method was initially developed to separate temperature and emissivity from 
daytime and nighttime MIR and TIR images, and the method has been successfully applied to 
retrieve bi-directional reflectivity in the MIR channel and emissivity from the AVHRR, 
MODIS and SEVIRI onboard MSG (Dash et al. 2005; Goïta and Royer 1997; Jiang et al. 
2006; Li et al. 2013b; Li et al. 2000; Nerry et al. 1998; Petitcolin et al. 2002a; Petitcolin and 
Vermote 2002). According to the TISI method, the Planck’s law can be approximated using a 
power function for the MIR or TIR channel: 

nTmL ××= e ,                               (5.3) 

where, the coefficients m and n are channel-dependent. Furthermore, the surface-leaving 
radiance can be consequently expressed as R = ε•m•T

n
•C, with C accounting for the reflected 

downward atmospheric radiations. A two-channel emissivity ratio, TISIEij, between one MIR 
channel (denoted as i) without solar illumination and one TIR channel (denoted as j) was 
defined by (Li and Becker 1993; Li et al. 2000) to improve the retrieval of emissivity and 
consequently LST as follows: 
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Introducing Eq.(5.4) into Eq.(5.2) obtains the expression to calculate the bi-directional 
reflectivity as follows: 
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The final solution of Eq.(5.5) requires the value of TISIEij, which is assumed to be the 
same at daytime and nighttime if there is no occurrence of rain, snow or dew, and the 
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nighttime TISIEij can calculated directly using Eq.(5.4) from the nighttime observations in 
both the MIR and TIR channels. However, because the TISI method requires daytime and 
nighttime observation of the same target in a short time frame, its application cannot be 
achieved for the sensors that only provide daytime observations. To solve this problem, Goïta 
and Royer (1997) extended the original TISI method to retrieve emissivity from two 
consecutive datasets acquired at the same time during daytime by simplifying the TISIE and 
the characteristics of the bi-directional reflectivity. However, their simplifications, especially 
the case of TISIE = 1, will introduce some unexpected error into the retrieved emissivity and, 
consequently, the LST.  

Inspired by the results of (Jiang and Li 2008a), a new daytime TISI method is proposed 
that uses the TISI method and the kernel-driven BRDF model to simultaneously retrieve 
emissivity and temperature from a sufficient number of angular observations. First, the 
bi-directional reflectivity in the MIR channel can be expressed as Eq.(5.6) on the basis of the 
kernel-driven BRDF model: 

),,(),,(),,( jqqjqqjqqr vsgeogeovsvolvolisovsi kfkff ×+×+= ,       (5.6) 

where, fiso is the isotropic scattering term, fvol is the coefficient of the volumetric kernel kvol, 
and fgeo is the coefficient of the geometric kernel kgeo. The Ross-Thick volumetric kernel and 
the Li-SparseR geometric kernel are used in this thesis (Jiang and Li 2008a). If the 
bi-directional reflectivity ρ is known for at least three viewing directions, the three kernel 
coefficients (fiso, fvol and fgeo) can be regressed using the least squares method. In contrast, if 
the three kernel coefficients are known in advance, the bi-directional reflectivity ρ in arbitrary 
direction can be estimated from Eq.(5.6). Therefore, the retrieval of ρ will be equivalent to the 
retrieval of those kernel coefficients. Moreover, combining Eqs. (5.4) and (5.6) into to Eq.(5.2) 
will produce a new formula:  

sungeogeovolvolisoijijvs
n
jijvsi EkfkffCMRTISIER ij ××+×++×××= )(),,(),,( jqqjqq .  (5.7) 

In Eq.(5.7), the terms Ri and Rj are the measured radiance in the MIR and TIR channels, 
respectively; the solar illumination Esun can be estimated from atmospheric data (Nerry et al. 
1998); Mij and nij are channel-dependent and can be fitted using laboratory-simulated data; the 
index Cij is complicated because it relies on both surface and atmospheric conditions and can 
be approximated as Cij = [1 – Rai↓/Bi(Tmax)] / [1 – Rai↓/Ri] (Jiang et al. 2006), with Tmax is the 
maximum the brightness temperature in the TIR channel under different viewing angles. The 
rest of the terms of Eq.(5.7) are the unknown variables, including the three coefficients of the 
BRDF model and the TISIE. Although the emissivities of both MIR and TIR channels (i.e., εi 
and εj) vary with the viewing angle, the angular variation of TISIE is not significant and is 
less than 0.01 for most cases. Therefore, it is reasonable to use only one average TISIE in 
Eq.(5.7) to reduce the number of unknowns. As a result, there are only four unknowns that 
remain (TISIE, fiso, fvol and fgeo) in Eq.(5.7). If the same target is observed at more than four 
directions, those unknown X can be retrieved from the linear equation group such as Y = AX, 
where A is the coefficient matrix composed by the terms in Eq.(5.7) and Y denotes Ri.  
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Once the three coefficients of the BRDF model are obtained, the directional emissivity in 
the MIR channel can be estimated as one minus the hemisphere-directional emissivity on the 
basis of Kirchhoff’s law (Jiang and Li 2008a; Lucht and Roujean 2000; Roujean et al. 1992; 
Wanner et al. 1995). 
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According to Eq.(5.6), the integration of the reflectivity in the upward hemisphere is equal 
to the result of integrating the three kernels (kvol, kgeo, and 1) in the same angle range because 
the values of the kernel coefficients are fixed for all angles. Jiang and Li (2008a) calculated 
the integration of the Ross-Thick volumetric kernel (Ikvol) and Li-SparseR geometric kernel 
(Ikgeo) with SZA varying from 0° to 80° and SAA varying from 0° to 360° with a step 0.05° 
and then related Ikvol and Ikgeo to the VZA (θv) using an exponent growth function and a 
Gaussian function, respectively. Finally, based on the concept of the two-channel TISIE 
defined in Eq.(5.4), the emissivity in the TIR channels can be obtained from the TISIE and the 
emissivity in the MIR channel (Jiang et al. 2006; Li et al. 2000). 
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The advantage of the above daytime TISI method (hereafter called the D-TISI method) is 
that it eliminates the requirement of daytime and nighttime measurements in the original TISI 
method by using at least four angular daytime observations in both MIR and TIR channels, 
and it requires only one atmospheric correction for all angular observations rather than two 
times, respectively, for the daytime and nighttime observations. However, because the 
temperature difference between those angular observations is not as large as that of the 
daytime and nighttime observations, the relatively high correlations in the radiative transfer 
equations like Eq.(5.7) may make the model sensitive to data error. Therefore, an optimization 
algorithm is needed to avoid outliers. 

It is worth noting that all variables/parameters in the above equations, except for the 
angles, are channel-effective values. The channel-effective quantities of interest are calculated 
as a weighted value from monochromatic values using the spectral response function f(λ): (Li 
et al. 2013a): 
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where, λ1 and λ2 are the lower and upper response wavelength of the ith channel, respectively, 
and X stands for B(T), R, L, Ra↓, Ra↑, Rsl↑, ε, τ, or ρ. Eqs. (5.1) and (5.2) are actually 
approximations of the theoretical radiative transfer equation in which monochromatic 
quantities are replaced with channel-effective values, and those approximations are only 
reliable for a narrow channel. 
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5.3 Model analysis 

5.3.1 Channel specifications 

We were concerned with the MIR and TIR channels from two sensors: the airborne 
WiDAS (Wide-angle infrared Dual-mode line/area Array Scanner) system (Fang et al. 2009; 
Liu et al. 2012) used in the WATER field campaign (Li et al. 2009), and the MODIS  
channels 20 and 31. The MIR and TIR images of WiDAS will be used in the next section for 
the validation of the D-TISI method. However, as shown in Fig.5-1, the bandwidths of the 
WiDAS’s two channels are up to 4 µm and 11 µm, respectively, which are rare in current 
airborne or spaceborne sensors and will reduce the accuracy of the approximations of the 
radiative transfer function from the monochromatic value to the channel-effective value as 
stated in Eq.(5.8), in addition to degrading the accuracy of the approximation of the exponent 
expression of the channel radiance using Eq.(5.3). In contrast, the bandwidths of the 
MODIS’s MIR and TIR channels are relatively narrower, and such narrow bandwidths are 
usually observed for several sensors. Therefore, although this thesis will not use the MODIS 
data to validate the D-TISI method due to the lack of the multi-angular observation images, 
the following analysis will discuss the retrieved result from the MODIS’s two channels in 
detail rather than the WiDAS, to make the findings of this thesis more representative and 
reliable. We also provide the general results for the WiDAS system.  

 

 
Fig.5-1. Spectral response functions of the MIR and TIR channels for the WiDAS system and the MODIS 

sensor, respectively.  

 

Table 5-1 shows the coefficients m and n in Eq.(5.3) for the channels of MODIS and 
WiDAS. Two temperature ranges, 270 K to 300 K and 300 K to 330 K, were used for the 
power approximation with a higher accuracy. The m and n can be determined with the 
measured TIR brightness temperature.  
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Table 5-1. Parameters m, n, and error (rms and max) for the MIR and TIR channels of MODIS and WiDAS 

Sensor& 

Channel 

270 K ~ 300 K  300K ~ 340 K 

Ln(m) n ΔL 

(rms) 

ΔL 

(max) 

 Ln(m) n ΔL 

(rms) 

ΔL 

(max) 

MODIS 
MIR -76.68 13.32 0.002 0.006  -68.43 11.87 0.009 0.032 

TIR -24.18 4.64 0.014 0.036  -21.46 4.16 0.029 0.078 

WiDAS 
MIR -60.57 10.67 0.003 0.011  -54.74 9.65 0.014 0.047 
TIR -26.01 4.95 0.012 0.032  -23.49 4.51 0.027 0.073 

 

5.3.2 Simulation conditions 

Many surface and atmospheric conditions have to be designed to simulate the 
bi-directional reflectivity in the MIR, directional emissivity and measured radiance of the 
MIR and TIR channels. Because the D-TISI method addresses the atmospherically corrected 
radiance, only the surface-leaving radiance is used. We considered the middle-latitude 
summer atmospheric models included in the MODTRAN 4.0 radiative transfer code. The 
rural aerosol model was assumed with a visibility of 10, 15, 20, 25, 30, 40 and 50 km, and the 
column water vapor was set with 0.25 WVmax, 0.5 WVmax and 0.75 WVmax, where WVmax is the 
maximum water content in the atmospheric model. 

The SAILH model (Verhoef 1989) was used to simulate the bi-directional reflectivity in 
the MIR channel and the directional emissivities in both the MIR and TIR channels. The 
SAILH model was inherited from the SAIL (scattering by arbitrarily inclined leaves) model 
(Verhoef 1984), which incorporated the foliage hotspot effect according to the theory of 
Kuusk (1985), and the results of the SAILH model should be closer to reality than the original 
model. The input variables of the SAILH model include the canopy parameters (e.g., leaf area 
index, hotspot factor) and component properties (e.g., reflectivity and transmittance). The 
SAILH model outputs the bi-directional reflectivity at any designed viewing geometry. 
Furthermore, the hemisphere-directional reflectivity of the canopy is integrated from the 
bi-directional reflectivity in the hemisphere, and the directional emissivity is estimated as the 
complement of the hemisphere-directional reflectivity based on Kirchhoff’s law. Although 
this thesis concerns non-isothermal surfaces, the emissivity is assumed to be independent of 
the temperature distribution of the surface (Li et al. 1999). As a result, Kirchhoff’s law is still 
suitable at least for the above calculation of the directional emissivity over the non-isothermal 
surface. Note that, in the Chapter 4, we simulated the directional emissivity from the 
TIR-SAIL model (Liu et al. 2003) or from the complement of hemispheric-directional 
reflectivity integrated from the SAILH model, and found that a slight difference existed 
between the two ways. Details can be found in section 4.3.1. Since we parameterized the 
directional emissivity simulated from the TIR-SAIL model, for context coherence reasons, 
this chapter should use the TIR-SAIL model to simulate directional emissivity of the canopy. 
However, in order to uniform the bi-directional reflectivity and directional emissivity in MIR 
channel as well as in TIR channel, and also to remove the error in the simulated dataset for the 
model analysis, we only used the SAILH model in this chapter.  
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Table 5-2. The channel emissivity for the MODIS and WiDAS system, chosen from UCSB emissivity 

database 

MODIS 

MIR 

MODIS 

TIR 

WiDAS 

MIR 

WiDAS 

TIR 
Sample Name 

Vegetation Samples 

0.9566 0.9626 0.9572 0.9572 Leaf of Maple  

0.9384 0.9535 0.9096 0.9664 Dry Grass (Averaged over 9 Sets) 

0.9392 0.9540 0.9103 0.9669 Dry Grass3 (Averaged over 9 Sets) 

0.9691 0.9601 0.9677 0.9617 Fresh leaf of Eucalyptus tree 

0.9724 0.9714 0.9714 0.9742 Laurel leaf 

0.9586 0.9563 0.9577 0.9525 Leaf Magnolia 

0.9642 0.9617 0.9638 0.9621 Leaf of Evergreen Pear 

0.9856 0.9908 0.9860 0.9914 Leaf of Green Spruce from Canada 

0.9841 0.9807 0.9844 0.9809 Leaf of Pine(New) 

0.9781 0.9792 0.9786 0.9787 Leaf of Pine(Old) 

Soil Samples 

0.9248 0.9681 0.9369 0.9618 Salty Soil (Averaged over 19 Sets) 

0.8392 0.9581 0.9242 0.9012 Sand Sample 2 from Orchard 

0.8467 0.9719 0.8694 0.9571 No.88p2535S from Nebraska Soil Lab 

0.6816 0.9590 0.7503 0.9531 No.88p3715S from Nebraska Soil Lab 

0.8252 0.9789 0.8597 0.9656 No.88p4643S from Nebraska Soil Lab 

0.6066 0.9477 0.6869 0.9380 No.90p3101S from Nebraska Soil Lab 

0.6918 0.9712 0.7519 0.9532 No.90P4172S from Nebraska Soil Lab 

0.7793 0.9746 0.8347 0.9586 No.90P4255S from Nebraska Soil Lab 

0.8501 0.9760 0.8885 0.9656 Soil Sample 1 from Concord, MA 

0.7858 0.9828 0.8408 0.9535 Soil Sample 10 from Oklahoma 

0.7842 0.9767 0.8431 0.9497 Soil Sample 13 from Oklahoma 

0.8712 0.9744 0.8938 0.9631 Soil Sample 3 from Concord, MA 

0.8493 0.9673 0.9077 0.9568 Soil Sample 4 from Death Valley, CA 

0.8548 0.9758 0.9047 0.9512 Soil Sample 5 from Oklahoma 

0.8346 0.9679 0.8700 0.9438 Soil Sample 7 - Hard Pan 

0.7569 0.9661 0.8602 0.9301 Soil Sample 7 from Death Valley, CA 

0.8418 0.9725 0.8905 0.9449 Soil Sample 9 - Hard Pan, Ground 

 

We chose 10 vegetation and 17 soil samples from the UCSB spectral emissivity databases 
and obtained their channel emissivity for the MIR and TIR channels using Eq.(5.10), which 
resulted in a total of 170 combinations of vegetation and soil samples. Table 5-2 shows the 
channel emissivity of the MODIS and WiDAS. Because the wavelength range (3~14 µm) of 
the sample emissivities did not cover all the response wavelengths of the WiDAS’s two 
channels, the spectral emissivity out of the 3~14 µm was not used in the integration procedure 
from monochromatic emissivity to the channel emissivity. Note that sample emissivities were 
assumed to be angle-independent. Furthermore, those samples’ reflectivity input to the SAILH 
model was calculated as the complement of the channel emissivity listed in Table 5-2, and the 
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transmittance of the samples equaled zero. A spherical canopy was assumed in the SAILH 
model, and the LAI varied from 0.5 to 5 with a step of 0.5. 

As shown in Fig.5-2, the simulated TISIE in the MODIS channels mainly distributes in 
the range [0.95, 1.1], whereas some TISIE values are smaller than 0.9 because of the low 
emissivity of some soil samples in the MIR channel and the small LAIs. According to the 
results obtained by Jiang et al. (2006), the pixel TISIE were mostly larger than 0.96 for 
several different combinations of the MIR and TIR channels. Therefore, we only consider the 
case of TISIE larger than 0.92, which covers approximately 92% of the total samples.  

 
Fig.5-2. Histogram of TISIE in the MODIS simulated dataset 

 

The non-isothermal canopy was assumed to consist of three components: leaves, sunlit 
soil and shaded soils. Six groups of those three component temperatures were used, as shown 
in Table 5-3. T-groups 1 and 2 represent low component temperatures with small and large 
differences, respectively. T-groups 3 and 4 represent middle temperatures with small and large 
differences, respectively. Finally, T-groups 5 and 6 represent high temperatures, and their 
temperature differences are generally larger than the other groups because this case may occur 
in sparse canopies and/or in summer. 

 

Table 5-3. Different groups of components’ temperatures used for simulations 

T-group No. Tleaf (K) Tsun_soil (K) Tshd_soil (K) 

1 270 280 273 

2 270 285 275 

3 290 300 293 

4 290 305 295 

5 310 325 315 

6 310 330 320 
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5.3.3 Canopy directional radiance and directional effective temperature  

Based on the simulation conditions as stated above, the bi-directional reflectivity and 
emissivity were simulated with the SAILH model, and the downward atmospheric radiance 
and solar radiance in Eq.(5.2) were determined from MODTRAN 4.0. The canopy directional 
effective radiance in Eq.(5.2) (i.e., Le(θs, θv, φ)= ε(θv) B[T(θs, θv, φ)]) was further simulated as 
follows: 
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The first term of Eq.(5.11) is the weighted radiance by the component fraction fk, 
calculated from a parameterization model of the SAILH model by (Li et al., 2011) at the 
viewing geometry (θs, θv, φ) and the component emitted radiance Lk calculated from the 
emissivity (see Table 5-1) and temperature (see Table 5-2) using Planck’s law. The second 
term of Eq.(5.11) is the radiance scattering between the leaves and soil (first part of the 
right-hand side of Eq.(5.12)) and between leaves (second part of the right-hand side of 
Eq.(5.12)) in the canopy. b(θ) is the directional gap of the canopy, and σf is the hemispheric 
leave fraction, both of them can be determined by using canopy LAI and viewing angles. α 
denotes the cavity effect accounting for the multiple scattering inside the canopy. More details 
about the calculation of b(θ), σf and α can be found in Chapter 4. On the basis of the Le(θs, θv, 
φ) simulated from Eq.(5.11), we defined the directional brightness temperature (DBT) and the 
directional effective temperature (Te) for the non-isothermal canopy as Eq.(5.13). B[]-1 is the 
inversion of Planck’s law. Note that the consideration of the non-isothermal canopy causes Te 
to vary with channels, which does not satisfy the requirement of the D-TISI method that the 
temperature must be the same in the MIR and TIR channels. To satisfy the requirement, the Te 
of the MIR channel was forced to equal that of the TIR channel in our simulated dataset. 
However, the DBTs were channel-dependent.  
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5.3.4 Multi-angular combinations  

As stated above, at least four angular observations are required to solve the four 
unknowns. A previous study indicated that a large difference among VZAs can reduce the 
correlations between radiative transfer equations and can obtain more accurate results in the 
retrieval of emissivity and temperature (François et al. 1997). To illustrate the influence of the 
different angular observations on the retrieval accuracy, we used four groups of angular 
observations (Table 5-4): (1) five angles: nadir, forward and backward 10° and 30°; (2) five 
angles: nadir, forward and backward 30° and 50°; (3) five angles: nadir, forward and 
backward 20° and 40°; and (4) seven angles: nadir, forward and backward 10°, 20° and 40°, 
respectively. The forth group is the designed angular combination of the WiDAS system. In 
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addition, we assumed that the backward direction has an azimuth angle 180°, and the forward 
direction has an azimuth angle 0°.  

 

Table 5-4. Different angle combinations 

Case No. Angle combination (VAA, VZA) description 

1 
(0°, 0°); (0°, 10°), (0°, 30°) and (180°, 

10°) , (180°, 30°) 

five angles: nadir, forward and 

backward 10° and 30° 

2 
(0°, 0°); (0°, 30°), (0°, 50°) and (180°, 30°), 

(180°, 50°) 

five angles: nadir, forward and 

backward 30° and 50° 

3 
(0°, 0°); (0°, 20°), (0°, 40°) and (180°, 20°), 

(180°, 40°) 

five angles: nadir, forward and 

backward 20° and 40° 

4 
(0°, 0°); (0°, 10°), (0°, 20°), (0°, 40°); and 

(180°, 0°), (180°, 20°), (180°, 40°) 

seven angles: nadir, forward and 

backward 10°, 20° and 40° 

 

5.3.5 Initial values of the four unknowns 

The initial value of the TISIE can be obtained using a similar relationship between the 
TISIE and the ratio of the MIR and TIR surface-leaving radiance, as proposed by (Goïta and 
Royer 1997). With the known atmospheric downward radiance from atmospheric data, we 
first used εj = 0.98 (j denotes the TIR channel) to retrieve the Te in the TIR channel and 
applied Te in the radiative transfer equation (i.e., Eq.(5.2)) to calculate the bi-directional 
reflectivity with an approximation ρ(θs, θv, φ) = 1 - ε(θv), and then we estimated the three 
coefficients (fiso, fvol and fgeo) from the BRDF model shown in Eq.(5.6). These initial values 
were consequently input into an optimization algorithm to obtain the final solution of the four 
unknowns. 

 

5.3.6 Model analysis 

Because the observed data always included some noise from the instrument noise, 
atmospheric correction and angle-controlling error, the retrieval accuracy may be 
consequently degraded. To evaluate the model’s consistency with the LAI, angular 
combination, as well as temperature and TISIE themselves, some artificial noise was 
introduced into those data. The noise included in the atmospheric data ranged from [-10%, 
10%] of the data itself, and the noise introduced in the DBT of the MIR and TIR channels was 
within [-0.5, 0.5] K and ± [0.5, 1.0] K. The two types of DBT noise were used to investigate 
the reliability of the above four angular combinations. All noise was provided with a uniform 
distribution. Note that the results shown from Fig.5-3 to Fig.5-7 came from the MIR and TIR 
channels of the MODIS sensor, whereas the results of Fig.5-8 are for the WiDAS system. 

A. Influence of LAI 

The root-mean-square error (RMSE) of the retrieved TIR emissivity is displayed in 
Fig.5-3 for the equivalent temperature noise within [-0.5, 0.5] K, included in simulated DBT, 
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and in Fig.5-4 for the noise within ± [0.5, 1.0] K. As observed in the two figures, the RMSE 
initially decreases and then increases with the increasing LAIs. As for the sparse (e.g., LAI = 
0.5) or dense (e.g., LAI > 4) vegetated surfaces, their angular variations of the component 
fractions and DBT were not remarkable, and consequently, the solution of Eq.(5-7) was 
sensitive to the noise included in the MIR and TIR brightness temperatures and atmospheric 
data. In contrast, for the partly vegetated surface (e.g., LAI =1.5, 2.0), the variation of the 
component fractions and DBT caused by the different viewing angle becomes relatively more 
significant, whereas the retrieval process is less influenced by the noise in the input data. 

  

  
Fig.5-3. RMSE of TIR emissivity at different angular observations and LAIs, with DBT noise of the MIR 

and TIR channels within [-0.5, 0.5] K included in the DBT of both MIR and TIR channels. 

 

B. Influence of angular combinations 

As stated above, four groups of angular observations were used to determine the “best” 
combination for the retrieval of the bi-directional reflectance and emissivity. The retrieval 
RMSE for most cases in Fig.5-3 is smaller than 0.01, and all of them are less than 0.015, 
whereas for most cases in Fig.5-4, the RMSEs are less than 0.015. A greater noise included in 
the DBT produced larger error in the retrieved emissivity. A comparison between the results 
from different cases of the angular combinations indicates that case (2) performs better than 
the others, especially for the DBT noise within [-0.5, 0.5] K, most likely because case (2) had 
the largest off-nadir observation (i.e., VZA = 50° ) and the largest angle interval (i.e., ΔVZA = 
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30° or 20°) (see Table 5-4), which corresponded to the largest difference in the component 
fractions and DBT between the different viewing angles and consequently reduced the 
correlation of the radiative transfer equations, resulting in more reliable retrieval result. On 
the other hand, the smallest off-nadir observation (i.e., VZA = 50°) and angle interval (i.e., 
ΔVZA = 10° or 20°) in case (1) enhanced the correlations of their radiative transfer equations, 
leading to the lowest retrieval accuracy. Comparing the results of case (3) and (4), case (3) 
performed slightly better than case (4), especially for T-groups 1 and 2. This better 
performance might be because although case (4) has more angular observations (seven) than 
case (3), the correlations of the radiative transfer equations were increased by the smaller 
angle interval in case (4), and the error included in the additional angular observation can also 
degrade the retrieval accuracy. Therefore, more observations will not always obtain more 
accurate results unless the angle interval is large enough. 

 

 
Fig.5-4. Similar to Fig.5-3, but with DBT noise within ± [0.5, 1.0] K. 

 

From the above discussion and the results shown in Fig.5-3 and Fig.5-4, we determined 
that case (2) is the best angular combination among the four examined angle cases, and these 
results are similar to a previous study (François et al. 1997). However, these results do not 
mean that case (2) involves the best angular combinations for the retrieval, as it is actually 
difficult to determine the best combination from numerous combinations with different 
viewing angles in the upper hemisphere. Although a large viewing angle can improve the 
retrieval accuracy, it is not recommended to use a viewing angle larger than 55° because the 
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pixel size of such viewing angle is approximately 4 times the size of the nadir observation, 
and the different pixels size may result in the presentation of different components and/or 
their temperatures, especially for heterogeneous surfaces. 

C. Influence of components’ temperatures 

The correlation between the radiative transfer equations of different viewing angles is 
related to the temperature discrepancy of the components in the scene. Large temperature 
discrepancies can reduce this correlation, whereas small temperature discrepancies can lead to 
a higher correlation. As shown in Table 5-3, T-groups 1 and 2 had a similar level of different 
component temperatures, but the temperature discrepancy for T-group 2 was larger than 
T-group 1. Therefore, as the correlation of the angular observation is less significant in 
T-group 2, the retrieval error of T-group 2 is smaller than T-group 1, as shown in Fig.5-3 and 
Fig.5-4. A similar case was found for T-groups 3 and 4 and 5 and 6. However, this difference 
of the retrieval errors between T-groups 1 and 2, 3 and 4, and 5 and 6 was so limited that it 
almost disappeared in some results, as observed in Fig.5-3, perhaps because the relatively 
smaller temperature difference in T-groups 1, 3 and 5 is large enough to reduce the influence 
of the temperature difference and also because of the influence of noise included in the 
measured data. 

Fig.5-4 also shows that the retrieval errors of T-groups 1 and 2 were almost smaller than 
those of the other T-groups with higher DBT, especially for the angle cases (2) and (3). These 
results indicate that the increase of DBT could not enable a better retrieval result because at 
the same level of the component temperatures’ difference, the increase of component 
temperatures inversely reduced the angular variation of the DBT between the angular 
observations. Fig.5-5 presents the histograms of the difference ΔT’ = ΔT1-ΔTx of temperature 
discrepancies between the nadir and off-nadir 50° observations, where ΔT1=Tnadir - T50° in 
T-group 1 and ΔTx =Tnadir - T50° (x = 3 and 5) in T-groups 3 and 5. It was observed that the 
temperature discrepancy between the nadir and off-nadir 50° in T-group 1 was larger than that 
of T-groups 3 and 5, especially for the MIR channel. As for the T-group 1 and 3 (see filled 
squares in Fig.5-5(a) and (b)), the temperature discrepancy ΔT1 was notably larger than ΔT3 
for both the MIR and TIR channels, and all of the ΔT’ values in the TIR channel ranged from 
0.0 K to 0.2 K, whereas most of the ΔT’ values in the MIR channel were more than 1.0 K. 
Consequently, this variation in the temperature discrepancy of nadir and off-nadir directions, 
from a lower temperature to a higher temperature but with similar difference of component 
temperatures, caused a corresponding higher correlation in radiative transfer equations and 
finally led the retrieval process from T-group 3 to be more sensitive to the noise than that 
from T-group 1. As for T-groups 1 and 5 (see unfilled squares in Fig.5-5(a) and (b)), the ΔT’ 
between ΔT1 and ΔT5 of the MIR channel was notable and generally larger than the ΔT’ 
between ΔT1 and ΔT3. However, as seen from Fig.5-5(b), most of the ΔT1 were smaller than 
ΔT5, which means that the temperature discrepancy between the nadir and off-nadir 50° was 
enlarged in the TIR channel from T-group 1 to T-group 5. As a result, this variation might 
cause T-group 5 to obtain a more accurate result than T-group 3 in theory. However, because 
temperature discrepancies in the MIR channel were remarkably reduced, the retrieval 
accuracies from T-group 5 were generally lower than that from T-group 1, and even lower 
than that from T-group 3 in some cases. Similar reasons can be used to explain the variation 
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between T-groups 2 and 4. T-group 6 had a better result because it had a larger component 
temperature discrepancy than the other groups. From the above discussions, a cautious 
conclusion can be drawn that at the same level of component temperature differences, the case 
with a relatively lower brightness temperature will lead to better results for the retrieval 
emissivity in the TIR channel, as well as for the bi-directional reflectivity and emissivity in 
the MIR channel. However, the results still depend on the specific situation, including the 
atmospheric conditions and canopy structures. 

  

Fig.5-5. Histograms for the difference of the temperature discrepancy between nadir and off-nadir 50°. 

 

D. Influence of TISIE 

Fig.5-6 presents the RMSE for the retrieved TIR emissivity, which varies with the TISIE 
for two noise conditions. Only angle case (2) was used for illustration. These data show that 
the RMSEs for TISIE within [0.92, 1.06] were smaller than 0.015, which is the accuracy 
required for some sensors (Gillespie et al. 1998). According to the histogram in Fig.5-2, this 
part of the TISIE covers approximately 91% of all samples and approximately 98% of the 
samples with a TISIE larger than 0.92. Moreover, this range of TISIE also covers the values 
of most natural surfaces as reported by (Jiang et al. 2006) on satellite data. However, for those 
larger TISIEs (i.e., > 1.05) resulting from dense vegetated surfaces or sparse surfaces whose 
MIR emissivity is relatively larger and TIR emissivity is relatively smaller, the retrieval 
accuracy might be degraded by the small angular variation of the component fractions and 
DBT as described above.  
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Fig.5-6. Influence of TISIE on the retrieval accuracy by using angle case (2) 

 

Fig.5-7(a) displays the histograms of the residual error for the retrieved bi-directional 
reflectivity in the MIR channel and emissivity in the TIR channel with DBT noise within [-1.0, 
1.0] K. These results show that the bias of reflectivity was close to 0 but that of the TIR 
emissivity was larger than 0 and nearly 0.004, which indicates that the retrieved TIR 
emissivity was generally larger than the true value and that the accuracy of the retrieved 
reflectivity was higher than that of the TIR emissivity. This result is reasonable because, from 
Eq.(5.7) and the kernel-driven BRDF model in Eq.(5.6), the accuracy of the bi-directional 
reflectivity is only influenced by the three coefficients driven from Eq.(5.7), whereas that of 
the TIR emissivity is not only dependent on the three coefficients and TISIE but also relies on 
the parameter Cij described in Eq.(5.4). The error in the estimated Cij can degrade the 
accuracy of the TISIE solution, and the errors in TISIE and the MIR emissivity calculated 
from the BRDF model using the retrieved three coefficients can be further enlarged by the 
exponent conversion of Eq.(5.9). 

Fig.5-7(b) and (c) are the histograms of the residual error for the directional effective 
temperature (Te) (see Eq.(5.13)) calculated from the inversion of the radiative transfer 
equation using the retrieved TIR emissivity with true DBT and downward atmospheric 
radiance, and with noised DBT and downward atmospheric radiance, respectively. Therefore, 
Fig.5-7(b) can be considered as the temperature residual error only caused by the error of the 
TIR emissivity, whereas Fig.5-7(c) can be considered as the residual error caused by the error 
of the TIR emissivity as well as the noise included in the DBT itself and the atmospheric 
radiance. As observed in Fig.5-7(b), the temperature residual error mainly (96%) fell into a 
range of [-1.0, 1.0] K, and the maximum percentage of the histogram was close to 0. To 
investigate the results of Fig.5-7(c), Fig.5-7(d) presents the theoretical temperature error 
caused by emissivity error (±0.02 at true ε = 0.98) under different temperatures and downward 
atmospheric radiances and indicates that the temperature error increased with temperature 
itself but decreased with the downward atmospheric radiance. It is possible for an emissivity 
error of 0.02 to lead to a temperature error within [-1.0, 1.0] K, especially for low 
temperatures and/or large downward atmospheric radiance. Therefore, the results shown in 
Fig.5-5(b) are reasonable. Compared with Fig.5-7(b), the actual range of the temperature 
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residual error in Fig.5-7(c) was relatively larger, and the residual error within [-0.8, 0.5] K is 
at a similar percent because of the influence of the noise included in the DBT and the 
atmospheric radiance. However, Fig.5-7 still demonstrates that the bi-directional reflectivity 
and emissivity can be retrieved within an error lower than 0.015, and the DBT can be 
obtained with an error within 1.5 K for most cases from multi-angular observations using the 
angle combination of case (2). 

 

   

Fig.5-7. (a) The histograms of the retrieval error for the bi-directional reflectivity in MIR channel and 

emissivity in TIR channel at DBT noise within [-1.0, 1.0] K; (b) Histogram of the residual error of 

directional effective temperature (Te) calculated from the retrieved TIR emissivity, and the directional 

radiance and atmospheric data without noise; (c) Histogram of the residual error of Te calculated from the 

retrieved TIR emissivity, and the directional radiance and atmospheric data with noise. (d) The theoretical 

temperature error caused by emissivity error (±0.02 at true ε = 0.98) under different temperatures and 

downward atmospheric radiances (unit: W/m2/sr/µm). 

 

The above model analysis concerned on the MIR and TIR channels of the MODIS sensor 
because this sensor has narrower bandwidth than the WiDAS system and is more 
representative of most current sensors. However, it is necessary to illustrate the result for the 
WiDAS system because its MIR and TIR data will be used to validate the D-TISI method. 
Fig.5-8(a) displays the variation of the RMSE of the TIR emissivity, retrieved from the DBT 
at noise within [-1.0, 1.0] K and downward atmospheric radiance at noise within [-10%, 10%], 
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with the canopy LAIs and component temperature combinations. The angle case (4) was used 
because this angle case was designed for the WiDAS system. Compared with Fig.5-3(d) and 
Fig.5-4(d), the RMSE for the WiDAS system is similar to that of the MODIS, except for the 
RMSE (up to 0.035) in the lower LAIs of T-group 1 and T-group 2.  

  

       
Fig.5-8. (a) RMSE of TIR emissivity at different LAIs and components’ temperatures for the WiDAS 

system. (b) Histograms of the retrieval error for bi-directional reflectivity in MIR channel and emissivity in 

TIR channel of the WiDAS system. (c) Histogram of the residual error of directional effective temperature 

(Te) calculated from the retrieved TIR emissivity, and the directional radiance and atmospheric data without 

noise; (d) Histogram of the residual error of Te calculated from the retrieved TIR emissivity, and the 

directional radiance and atmospheric data with noise. Angle case (4) was used for illustration. 

 

Fig.5-8(b) is the corresponding histogram of the residual error of the MIR bi-directional 
reflectivity and TIR emissivity for the WiDAS system, which indicates that their residual 
error was distributed widely from -0.06 to 0.06 and that there was a bias of approximately 
-0.004 and 0.004 for the reflectivity and emissivity, respectively. A comparison between 
Fig.5-7(a) and Fig.5-8(b) highlights that the retrieval accuracy of the WiDAS system was 
generally lower than that of the MODIS, most likely due to its broader bandwidths in both the 
MIR and TIR channels. According to the simulated DBT of the MODIS and WiDAS system 
using Eqs. (5.11) and (5.12), we observed that the broader bandwidth degraded the retrieved 
accuracy of the reflectivity and emissivity in two different ways: one, because some response 
wavelengths of the MIR channel were out of the atmospheric-window of 3 to 5 µm as shown 
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in Fig.5-1, the transmittance of the solar irradiance from space to the surface was reduced and 
consequently decreased the solar contribution in the MIR channel. As a result, the correlation 
of the radiative transfer equations between the MIR and TIR channels of the WiDAS system 
was higher than that of the MODIS at the same atmospheric conditions. Two, the angular 
variation of the DBT in both the MIR and TIR channels of the WiDAS system was weakened, 
which caused the retrieved result to be more sensitive to the noise included in the used DBT 
data. However, as seen from Fig.5-8(b), approximately 80% and 88% of the residual error was 
respectively within [-0.015, 0.015] and [-0.02, 0.02], which indicates that most of the 
retrieved error of the MIR reflectivity and TIR emissivity for the WiDAS system was smaller 
than 0.02 in theory. Fig.5-8(c) and (d) show the histograms of the residual error for the 
directional effective temperature (Te) calculated from the inversion of the radiative transfer 
equation using the retrieved TIR emissivity with true DBT and downward atmospheric 
radiance, and with noised DBT and downward atmospheric radiance, respectively. The results 
were very similar to the results observed with MODIS, as shown in Fig.5-7(b) and (c). 

 

5.4 Applications to airborne images 

An airborne multi-angular images dataset was acquired by the WiDAS system, which was 
one of the major airborne sensors used in the WATER synthetic field campaign conducted in 
the spring to summer of 2008 on the Heihe River watershed in west China (Li et al. 2009). 
The WiDAS system acquired images using four CCD cameras in visible/near-infrared (VNIR) 
channels and two thermal cameras in the MIR and TIR channels (Fang et al. 2009; Liu et al. 
2012). Table 5-5 lists the specification of those cameras. The VNIR image will be used for 
results analysis. 

 

Table 5-5. Specification of the WiDAS system 

 CCD camera MIR camera TIR camera 

Spectral band 550nm, 650nm,700nm and 

750nm(with band width 40nm) 

Mainly 3~5 µm Mainly 8~12 µm 

Pixels 1392 ×1040 320×240 

Total view angle 60° 80° 

IFOV 0.8 µrad 4.24 µrad 

Nadir resolution 1.2 m @ 1.5 km 7.9 m @ 1.5 km 

View zenith Five angels between forward 

30° and backward 30° 

Seven angles between forward 40° and 

backward 40° 

 

5.4.1 Acquirement of multi-angular images 

The WiDAS system was designed to observe the surface in the MIR and TIR channels at a 
total of seven zenith angles: nadir, backward and forward 10°, 20° and 40°(see angle case (4) 
in Table 5-4).The cameras of the WiDAS system acquired the surface sequential images with 
a high frequency during the flight (Liu et al. 2012), and the overlap between two sequential 
images was more than 80% for the VNIR channels and more than 85% in the MIR and TIR 
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channels, which meant that the same ground point can be almost simultaneously observed in 
several sequential images. After geometric corrections, a multi-angular dataset was obtained 
from the collections of the same ground point in the sequential WiDAS images.  

However, because the time interval between two sequential images was very short (<4 s), 
the variations of VZA and even VAA were consequently very small, causing the two 
sequential observations to contain no more angular information about the surface than only 
one observation did, and the error in the additional observations might influence the final 
solution of the retrieval. Therefore, we should only use those observations whose VZAs were 
equal or close to the designed angles. However, because the multi-angular images were 
obtained from sequential observations at the manner of the central projection, which reduced 
the angular differences between sequential observations for those pixels far from the central 
line in the cross-track direction, only the pixels on the central line of the camera along the 
flight track can be observed with the designed angles. Moreover, for the edge pixels in the 
cross-track direction, their VZAs were almost the same in all sequential images, and only 
their VAAs changed. To improve the accuracy of the emissivity and temperature retrieval 
from those pixels, we had to select a group of angular observations with the maximum VZA 
or VAA difference from the sequential images with a constraint that the VZA interval between 
any two angular observations with a similar VAA or the VAA interval between any two 
observations with a similar VZA must be beyond a threshold value, such as 6° for VZA and 
15° for VAA. Therefore, the emissivity and temperature for different pixels were actually 
retrieved with different combinations of VAA and VZA, rather than the designed combination. 

 

5.4.2 Calibration and atmospheric correction 

The recorded temperatures of the MIR and TIR channels were calibrated to blackbody 
brightness temperatures using a polynomial approximation as expressed in Eq.(5.14): 

2
210 obsobs TBTBBBBT ×+×+= ,                      (5.14) 

where, B0, B1 and B2 are coefficients, regressed from their measurement on a blackbody 
(Series No. Mikron 340) in the temperature range from 273.16 K to 358.16 K with an interval 
of 5 K. The value of those coefficients is shown in Table 5-6 (Fang et al. 2009). 

 

Table 5-6. The coefficients from observed temperature of the MIR and TIR channels to blackbody 

brightness temperature 

 B0 B1 B2 

MIR 2.87597×10-2 -0.58336 0.00202 

TIR 86.19557 0.62729 2.54228×10-4 

 

Radiosounding data were also collected simultaneously to remove atmospheric effects for 
the VINR images and to simulate the upward and downward atmospheric radiance and solar 
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radiation for both MIR and TIR channels. After atmospheric correction, only surface-leaving 
radiances (i.e., Ri in Eq.(5.2)) were included in the MIR and TIR data. 

 

5.4.3 Directional emissivity and effective temperature 

5.4.3.1 Multi-angular image dataset 

The WiDAS image used in this thesis was located in the ZY-YK-HZZ flight zone, which 
is a typical oasis agricultural area. The main land covers included maize, wheat and vegetable. 
The WiDAS system acquired data over this area on June 1st, June 29th, and July 7th, 2008. 
Only the data from July 7th, 2008, were applied because of its clear sky and high quality. 
Fig.5-9 displays several sequential images of the DBT in the TIR channel and the 
corresponding VNIR false color image for this area, and those images were acquired at 
approximately UTC 3:58 (Beijing Time: 11:58, duration < 30 s) on July 7th, 2008. The solar 
zenith and azimuth angles at that time were approximately 125.7° and 24.4°, respectively. 
Because the aircraft flew from north-east to south-west at a height of approximately 1.5 km 
above the surface, the spatial resolutions of the MIR/TIR and the VNIR images were 
approximately 7.9 m and 1.25 m, respectively. The red pixels of the VNIR image represented 
the vegetated pixels, and the rest were the non-vegetated pixels, such as bare soil, buildings 
and man-made road. Four sites composed of 4×4 pixels were chosen for further analysis, and 
their detailed information can be found in Table 5-7. 

 

Table 5-7. The specification of four sites, and their retrieved BRDF coefficients and TISIE 

No. Land cover Lon/Lat fgeo fvol fiso TISIE 

Site A Maize 100.411E, 38.857N 0.075 -0.041 0.137 0.978 

Site B Orchard 100.402E, 38.844N 0.052 -0.036 0.134 0.971 

Site C Wheat 100.398E, 38.859N 0.057 -0.038 0.135 0.974 

Site D bare soil 100.398E, 38.847N 0.054 0.027 0.150 0.961 

 

From the TIR images in Fig.5-9, the difference of pixels’ DBTs was up to 46 K. Fig.5-10 
(filled circles) shows the DBT after atmospheric correction for four sites shown in the VNIR 
image of Fig.5-8. The changes of VZA (and/or VAA) lead to a temperature variation of 
approximately 1.0 K, 3.1 K, 2.7 K and 4.4 K for Site A, Site B, Site C, and Site D, 
respectively. Although the DBT difference of Site A was much smaller than that of other sites, 
these angular temperature differences were still used for separating emissivity and 
temperature. Furthermore, the data presented in Fig.5-10 also indicated that the higher DBTs 
were observed at smaller VZAs, whereas the lower DBTs were obtained at larger VZAs 
because, for the vegetated canopy, the fractions of soil with higher temperature was generally 
larger in small VZAs than those in large VZAs. In addition, as reported by some previous 
studies (Li et al. 2013b; Sobrino and Cuenca 1999), the bare soil emissivity decreased with 
the increasing VZA, which most likely caused the soil’s brightness temperature to decrease 
with the increasing VZA. However, one should note that because all sites except for Site D 
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were not located near the central line of the flight track, their minimum VZA was not equal to 
0° as shown in Fig.5-10. 

   

(a) Backward 40°           (b) Backward 20°            (c) Backward 10° 

   

(d) Nadir                  (e) Forward 10°            (f) Forward 20° 

           

(g) Forward 40°                  (h) CCD image 

Fig.5-9. Multi-angular TIR images and VNIR image over study area 
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Fig.5-10. The angular variation of the measured directional brightness temperature (DBT, filled circles) 

after atmospheric correction and the effective temperature (Te, unfilled circles) defined in Eq.(5.12) for four 

sites. The positive and negative VZAs correspond to nearly opposite VAAs.  

 

5.4.3.2. Retrieval of emissivity and temperature  

Fig.5-11 presents the retrieved TISIE and nadir emissivity of the MIR and TIR channels 
and their histograms. Compared with the area shown in Fig.5-9, the area of Fig.5-11 is smaller 
because some of the pixels that could not meet the requirement of the angle interval between 
different VZA and VAA, especially for those pixels near the edge in the cross-track direction, 
were removed during the retrieval process. As observed in Fig.5-11(a), the TISIE mainly 
distributed in the range of [0.95, 1.01], similar to the results of (Jiang et al. 2006). According 
to the VNIR image in Fig.5-9, the TISIE values of vegetated pixels were generally higher than 
those of bare soil and buildings because the vegetation component in the pixel increased the 
TISIE values (Li and Becker 1990).  
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(a) TISIE and its histogram 

     

(b) MIR emissivity and its histogram 

     
(c) TIR Emissivity and its histogram  

Fig.5-11. Retrieved TISIE and nadir emissivities of the MIR and TIR channels 

 

Similar to the TISIE, both the MIR and TIR emissivities of vegetated pixels were higher 
than those of non-vegetated pixels, as shown in Fig.5-11(b) and (c). However, the emissivity 
of the MIR channel was generally lower than that of the TIR channel, especially for the 
non-vegetated pixels, and the MIR emissivity difference between the vegetated and 
non-vegetated pixels was larger than that of the TIR emissivity. These results might be due to 
the fact that most soils and man-made materials present a strong spectral emissivity variation 
in the range of 3 to 6 µm, and the minimum emissivity in this spectral range can be as low as 
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0.7. Meanwhile, the emissivity of most vegetation in this spectral range was almost flat. In 
contrast, the spectral emissivity for most land covers is almost flat in the TIR range (e.g., 8 to 
14 µm), and their values are usually larger than 0.95. The histogram of Fig.5-11(b) reveals 
that the retrieved MIR emissivity mainly ranged from 0.88 to 0.94. Compared with the 
findings of Chapter 3, where the angular emissivities for several types of land covers from 
MODIS emissivity products were obtained, this emissivity range had the same levels for grass 
and barren land and only slightly smaller (approximately 0.005) than the latter for cropland. 
The TIR emissivity shown in the histogram of Fig.5-11(c) is mainly distributed in the range of 
[0.96, 0.98], which is narrower than the range of the MIR emissivity due to two factors: first, 
as stated above, both soil and vegetation emissivities in the TIR range were very high, and 
their differences in such ranges were smaller than that in the MIR range; second, Eq.(5.9) 
might reduce the range of the TIR emissivity, especially for those pixels with a TISIE larger 
than 1.0.  

The angular variations of the TIR emissivity for the above four sites are presented in 
Fig.5-12. The solid lines are the emissivity of VZAs within [0°, 90°] that was estimated using 
the retrieved three coefficients of the BRDF model and TISIE, whereas the squares are the 
emissivity for those VZAs under which the sites were observed. These results indicate that the 
directional emissivity for the three vegetated samples increased with VZA, and the emissivity 
difference between nadir and horizontal (i.e., VZA = 90°) observations was approximately 
0.008 in theory. However, this difference turned out to be as small as 0.004 between nadir and 
VZA = 60° and can almost be ignored for the VZAs varying from nadir to VZA = 40°. The 
angular variation of the emissivity of bare soil (Site D) was quite different from that of those 
vegetated samples. First, the emissivity increased with the increasing VZA and then decreased 
at the larger VZAs. Comparisons of the three BRDF coefficients in Table 5-7 indicate that the 
positive coefficient fvol produced a different angular pattern for soil emissivity. If the barren 
pixels were assumed to be isotropic, there would be no difference among the emissivity and 
brightness temperatures observed at different VZAs, and the BRDF coefficients fgeo and fvol 
should be zero. However, because the DBT of Site D varied significantly with the viewing 
angle (see Fig.5-10(d)), perhaps due to the roughness and the multiple shadowing effect of 
itself, the D-TISI method proposed in this thesis finally produced an optimal solution for the 
three BRDF coefficients and TISIE, which had the minimum residual error of the radiative 
transfer equation, without considering the types of land cover. Generally, the angular variation 
of the barren soil can be ignored because the emissivity difference was as small as 0.002. One 
should note that not all vegetated pixels have the similar angular patterns as shown in 
Fig.5-12(a)~(c), and not all non-vegetated pixels have similar angular pattern as Fig.5-12(d).  

Using the directional emissivity shown in Fig.5-12 and the DBT shown in Fig.5-10 (see 
filled circles), the directional effective temperatures (Te) defined by Eq.(5.13) were 
consequently determined by removing the downward atmospheric radiance from the 
surface-leaving thermal radiance (see Eq.(5.2), where Rsl↓ and Esun equal 0 for the TIR 
channel), and presented in Fig.5-10 (see unfilled circles). Te was generally larger than DBT 
after removing the reflected downward atmospheric radiance and non-unity effect of the 
emissivity mainly because the blackbody emission of the surface was larger than that of the 
atmospheric profile. The average differences between Te and DBT were approximately 1.1 K, 
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1.6 K, 1.2 K, and 1.8 K for the four sites, respectively, and Site D (bare soil) had the 
maximum temperature difference because it had the smallest emissivity, which caused the 
largest value of the reflected downward atmospheric radiance. 

  

  
Fig.5-12. Directional TIR emissivities for several cover types. The solid line presents the emissivity in all 

VZAs calculated from Eq.(5.9) using the retrieved BRDF coefficients and TISIE, while the squares are the 

emissivity for those VZAs under which the sites were observed. 

 

5.4.3.3. Angular normalization of temperature 

As shown in Fig.5-10, the surface directional effective temperature (Te) varied with the 
VZAs and even with the VAAs because the viewing geometry of sun-target-sensor determined 
the fractions of different components with different temperatures in the pixel. As a result, this 
angular effect made the temperature of different pixels in the same image incomparable 
because they were observed at different directions, which can produce erroneous results. 
Therefore, it was very crucial to normalize the retrieved effective temperature at various 
VZAs to a reference VZA (e.g., at nadir). 

Unfortunately, no existing study on the angular normalization of temperature has been 
previously reported. According to the findings in the literature (Peng et al. 2011), we modified 
the kernel-driven BRDF model addressed in Eq.(5.6) by replacing the bi-directional 
reflectivity with the directional effective temperature Te as follows: 
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),,('),,(''),,( jqqjqqjqq vsgeogeovsvolvolisovse kfkffT ×+×+= .    (5.15) 

The terms in Eq.(5.15) have similar meanings to the discussions in previous sections. To 
fit the three coefficients f ’iso, f ’vol and f ’geo, at least three Te values are required. As stated 
previously, four or more angular observations are needed to solve the four unknowns included 
in Eq.(5.7), and the retrieval process finally generates a Te for each direction, whose number 
is equal to that of the observations and larger than three. Therefore, the three coefficients in 
Eq.(5.15) can be fitted in theory as long as the four unknowns in Eq.(5.7) are mathematically 
solvable. From this point of view, we first used the retrieved directional emissivity in the TIR 
channel to calculate Te of different directions and then fit the three coefficients f ’iso, f ’vol and 
f ’geo and finally extracted the nadir Te-nadir from Eq.(5.15). Fig.5-13(a) shows the Te-nadir of 
the study area.   

             

(a) Te-nadir                            (b) RMSE of BRDF model 

       
             (c) Temperature difference              (d) histogram of temperature difference 

 

Fig.5-13. (a) the nadir effective temperature from BRDF model (Te-nadir); (b) the RMSE of the BRDF 

model for the directional effective temperature; (c) the difference between the nadir effective temperature 

and the minimum effective temperature of observations. The color scalar was restricted to 6 K and those 

pixels with a larger value were forced to 6 K for illustration; (d) the histogram of (c). 

 

In addition, to investigate the performance of the BRDF model, the temperature RMSE of 
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this model was also obtained using Eq.(5.16) and displayed in Fig.5-13(b): 
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where, N is the number of angular observations on the same target, and Te(k) is the kth 
directional effective temperature retrieved from the kth observation (see Eq.(5.13)), whereas 
Te(k)’ is the fitted kth directional effective temperature from the BRDF model (see Eq.(5.15)). 

As seen from Fig.5-13(b), it is determined that the BRDF model produces an error smaller 
than 1.0 K for most pixels, especially the vegetated pixels. In contrast, this model produced 
significant error (even larger than 3 K) for some non-vegetated pixels, especially for those 
non-vegetated pixels near the edge of the image, perhaps because the angle intervals of 
different observations over those pixels were relatively smaller than the others, which caused 
the BRDF model to be more sensitive to the error included in the input Te and viewing angles. 
However, the BRDF model performed generally well for most pixels in the angular 
normalization of their directional effective temperature.  

Fig.5-13(c) presents the temperature difference between the nadir effective temperature 
Te-nadir and the minimum value of the effective temperature under different viewing 
directions, and Fig.5-13(d) is the corresponding histogram of Fig.5-13(c) at a step of 0.2 K. 
To make the data in Fig.5-13(c) more distinguishable, the color scalar of the figure was 
restricted to 6 K, and those pixels with a larger value were forced to 6 K for illustration 
purposes. Both Fig.5-13(c) and (d) indicate that Te-nadir was larger than the minimum 
temperatures for most pixels (approximately 98%), and their differences mainly fell into the 
range of [0.0, 5.0] K. Because the temperature difference for most vegetated pixels was in the 
range of [0.5, 2.0] K, the angular normalization of temperature appeared unnecessary for 
those pixels if the accuracy of the retrieved temperature is not required to be better than that 
range. The temperature difference of the non-vegetated pixels was generally larger than that 
of the vegetated pixels and even exceeded 6.0 K for some cases. Although the BRDF model 
might cause remarkable temperature error for the non-vegetated pixels as stated above, the 
results for some pixels (e.g., the barren pixels near Site D in Fig.5-9, with which the BRDF 
model displayed high accuracy, still illustrated that its angular normalization was strongly 
required for their temperatures because the temperature difference of those pixels was up to 
several Kelvin and far from the maximum tolerance of the temperature retrieval accuracy. 

 

5.4.3.4. Cross comparison with ASTER emissivity  

Unfortunately, there was no ground-measured emissivity and temperature data available 
for the validation of the above results. Cross-comparison with satellite data (such as ASTER) 
was consequently conducted. ASTER generates surface emissivity products in five TIR 
channels that are retrieved using the TES algorithm (Gillespie et al. 1998). Because of its 
relatively finer resolution (approximately 90 m), the ASTER emissivity data provide us an 
opportunity to make cross-comparisons with the WiDAS TIR emissivity data. To remove the 
influence of the spectral differences between the ASTER and WiDAS TIR channels, we 
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established an empirical relationship for the emissivities of the five ASTER channels with that 
of the WiDAS channels using the method described in (Ogawa and Schmugge 2004), which 
can be expressed as the following: 

54321 060.0628.0193.0010.0129.0 eeeeee ×+×+×+×-×= ,      (5.17) 

where, εk (k = 1, 2…5) is the kth channel’s ASTER emissivity. The ASTER sensor observed 
the study area on June 29, 2008. However, there were only 65 clear-sky pixels that had valid 
emissivity due to the occurrence of clouds. Fig.5-14 (a) shows the comparison of the average 
WiDAS TIR emissivity aggregated from 7.9 m to 90 m and the calculated ASTER emissivity 
e  from Eq.(5.17). The comparison indicates that the WiDAS emissivity was, in total, higher 
than the transferred ASTER emissivitye , with an RMSE of approximately 0.012. In addition, 
the WiDAS emissivity and that of ASTER channel 5 (10.8 to 11.8 µm) were relatively closer 
to each other, as shown in Fig.5-14(b), but still with an RMSE of approximately 0.007. The 
difference between the ASTER and WiDAS emissivities might be caused by the intrinsic 
difference of their algorithms, the temporal variation of the emissivity itself from June 29 to 
July 7, 2008, as well as the spatial scale effect of the two products. However, as reported by 
some previous studies, the TES algorithm suffers from spectral emissivity contrast with dense 
vegetation surfaces (Yoriko et al. 2003) and consequently introduces more uncertainty into the 
retrieved emissivity of those surfaces. According to the results of (Wang and Liang 2009), 
who found that the ASTER emissivity was 0.01 to 0.02 smaller than the MODIS emissivity 
retrieved using the day/night algorithm (Wan and Li 1997), and the results reported in 
Fig.5-14(a), the WiDAS TIR emissivity might be closer to the MODIS emissivity. However, it 
is almost impossible to perform cross-comparison with the MODIS data because of the 
coarser resolution (approximately 6 km in Collection 5).  

 

Fig.5-14. Comparison with ASTER emissivity. (a) Transferred ASTER emissivity from Eq.(5.17); (b) the 

emissivity of ASTER channel 5. 

 

5.5 Conclusions and discussions 

This chapter proposed a daytime TISI method (D-TISI) to retrieve directional emissivity 
and effective temperature from daytime multi-angular observed images in both MIR and TIR 
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channels by combining the kernel-driven BRDF model and the TISI method. In contrast to 
most previous studies, the non-isothermal surface/canopy was a concern. For model analysis, 
the canopy’s bi-directional reflectivity and emissivity in the MIR and TIR channels were 
simulated using the SAILH model, and the canopy’s directional brightness temperature and 
radiance were simulated as the weight average of component temperatures and their fractions 
calculated from a parameterization of the SAILH model by (Li et al. 2010). Two groups of 
MIR and TIR channels were used for illustration, and they were respectively from the MODIS 
that had narrow bandwidths, which are more representative of current most sensors, and the 
airborne WiDAS system that, in contrast, had much boarder bandwidths and whose data were 
used for validating the D-TISI method. Four groups of angular combinations were designed to 
investigate the influence of the angular observations on the retrieval accuracy. Generally, large 
angle intervals among the angular observations and a larger VZA with respect to nadir 
direction can improve the retrieval accuracy of emissivity and temperature because those 
angle conditions result in significant variation of component fractions and the DBT under 
different viewing direction. The influences of canopy LAI, component temperatures and 
TISIE on the retrieval accuracy were also discussed. The results generally indicated that for 
DBT noise within [-1.0, 1.0] K and atmospheric data noise within [-10%, 10%], the D-TISI 
method can obtain emissivity and temperature with an accuracy within 0.015 and 1.5 K for 
the MODIS channels and within 0.02 and 1.5 K for the WiDAS channels, respectively.  

We applied the D-TISI method to retrieve directional emissivity and effective temperature 
from the multi-angular MIR and TIR images acquired by the airborne WiDAS system at the 
Heihe River watershed. The results indicated that the vegetated pixels had larger TISIE values 
and emissivity than the non-vegetated pixels. The retrieved angular variation of the directional 
emissivity for the vegetated sites from nadir to the horizontal direction was approximately 
0.01, larger than that of the bare soil site. Comparison with the ASTER emissivity product at 
the study area showed that the difference of the retrieved nadir emissivity and the ASTER 
emissivity was approximately 0.012. Furthermore, we used the kernel-driven BRDF model by 
replacing the bi-directional reflectivity in the original model with the retrieved directional 
effective temperature (Te) to normalize Te from the off-nadir direction to the nadir. The results 
indicate that the temperature difference between the normalized nadir effective temperature 
(Te-nadir) and the minimum Te of the observing directions was 0.5~2.0 K for most vegetated 
pixels and always several Kelvin for most non-vegetated pixels. Therefore, it is necessary to 
perform angular normalization on land surface temperature measurements for higher accuracy. 
However, the retrieved nadir and off-nadir effective temperatures were not validated in this 
thesis due to the lack of field data.  

Note that the land surface temperature also displays temporal variation, except for angular 
variation, due to the fluctuations of the local meteorological and solar conditions, and this 
temporal variation is sometimes more significant than the angular variation. However, this 
thesis ignored this temporal variation and considered the temperature variation fully caused 
by the changes of viewing angles because, up to now, there has been no operational method 
developed to allow time normalization of measured DBT data from multi-angular 
observations and also because the time interval between the two sequential images examined 
in this thesis was very short (< 4 s). However, we should keep in mind that the lack of 
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consideration of the temporal variation must have degraded the retrieval accuracy. In addition, 
different VZAs corresponded to ground pixels with different areas, which might cause the 
pixels observed on the same place to include different components, especially for the 
heterogeneous surfaces. This problem, along with the mis-registration between different 
images, might have led to more uncertainty in the retrieval results. Moreover, although we 
discussed the influence of the angular combination on the retrieval accuracy only from 4 
groups of angles (see Table 5-4) and chose angle case (2) as the local optimum combination 
among those groups, the conclusions based on those angle cases are limited and additional 
investigation is required in the future to determine the global optimum combination in the 
upper hemisphere.  

In addition, the results of the model analysis in Section 5.3.6 were only suitable for the 
pixels in the central line of the images along the flight track because the angular combination 
for those pixels far from this central line in the central projection image or linear-array 
detecting system was actually different from the designed angular combination and their angle 
intervals were consequently significantly reduced. As a result, the retrieval accuracy gradually 
decreased, in theory, for the pixels moving from the central line to the edge. A sensor with the 
conical scanning method, such as the AMSR-E (Advanced Microwave Scanning Radiometer 
for EOS, http://aqua.nasa.gov/about/instrument_amsr.php), is expected in the future to ensure 
that all pixels have the same angular combinations. 
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Chapter 6 

Impact of sensor footprint on the measurement of the 

directional brightness temperature of the row crop 

canopies  

 

This chapter focuses on the modeling of directional brightness temperature for row 
canopy by considering the ground-based sensor’s footprint. A sensor’s footprint determines 
the target that is observed by the sensor, and influences the angular features of the target’s 
directional brightness temperature (DBT) at the field site. This thesis describes a new 
radiative transfer model (FovMod) to simulate the DBT of the row crop canopy by 
considering the sensor’s footprint in the ground measurements. The FovMod firstly divides 
the sensor’s circular or elliptical footprint into a few small cells, and then estimates the 
components’ fractions (e.g., leaves, sunlit soil and shaded soil) in each cell based on the gap 
probability theory. The canopy’s DBT is finally obtained by weighting the components’ 
brightness temperatures and their fractions using a Gaussian point spreading function (PSF) of 
the sensor’s response. Simulation results indicate that a small footprint causes the distribution 
of the DBT to be strongly dominated by the row direction and a single component’s 
temperature but little influenced by the solar position. On the contrary, a large footprint 
smoothes the row-space effect and causes the DBT to distribute as a uniform, continuous 
canopy. Comparison with a previous parallel model shows that if the diameter of the sensor’s 
circular footprint extends to 1.5~2.0 times as large as the total width of the row crop canopy, 
the footprint effect is minimized, and the ground measured DBT can, theoretically, be used to 
evaluate the parallel model with negligible error. Finally, validations with a maize canopy 
demonstrated that the new model performed more accurately than the parallel model to 
simulate the DBT. Moreover, the FovMod also provides an opportunity to assess the 
measurement uncertainty caused by some unexpected changes in the sensor’s footprint. 

 

6.1 Background 

The angular variation in the LST has been measured at ground and satellite levels and has 
attracted much attention in recent decades (Kimes and Kirchener 1983; Lagouarde et al. 2004; 
Otterman et al. 1995; Sobrino and Caselles 1990). Previous studies indicate that the angular 
variation in LST depends strongly on the distribution of the components’ temperatures and 
emissivities, the geometric structure of the target surface, and the geometry of the locations of 
the sun, target, and sensor(Jackson et al. 1979; Kimes et al. 1980; Otterman et al. 1999). To 
investigate the angular effect of LST and to extend the benefits of remotely sensed data in the 
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calculation of LST, many algorithms have been proposed to make angular corrections to LST 
or to extract the components’ temperatures from multi-angular or multi-channel remotely 
sensed data (François et al. 1997; Kimes 1983; Li et al. 2001; Liu et al. 2012; Menenti et al. 
2001; Otterman et al. 1992; Prata 1993; Song and Zhao 2007; Xu et al. 2001; Zhan et al. 
2011). 

Modeling the directional brightness temperature (DBT) of homogenous or heterogeneous 
canopies is a promising approach to enhance our understanding of the angular feature, and 
this issue has prompted numerous thermal radiative models that can generally be divided into 
four categories: geometrical optical (GO) models, radiative transfer (RT) models, hybrid 
models (GORT), and computer/numerical simulation methods. A GO model estimates the 
thermal radiance by combining the weights of the proportions and thermal radiance from 
several components. Several studies (Kimes 1983; Kimes and Kirchener 1983; Kimes et al. 
1981) have geometrically calculated the optical path length of radiation passing through row 
crops by treating the row structure as a rectangular cross section for the first time and using 
the gap probability to calculate the components’ fractions from those optical lengths. Inspired 
by this concept, several similar models have been developed by considering the bi-directional 
gap, hotspot effect or crop growth stages (Chen et al. 2002; Du et al. 2007; Huang et al. 2010; 
Yan et al. 2001; Yan et al. 2003; Yu et al. 2004). In addition to these three types of models, 
Guillevic et al.(2003) proposed a three-dimensional radiative transfer model that was based 
on the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al. 
1996) to investigate the angular thermal radiance of a vegetated canopy, and Chen et al. (2004) 
used a Monte Carlo technique to study the angular characteristics of emitted radiance from 
heterogeneous and nonisothermal surfaces. 

DBT modeling of the row canopy, which mainly means the row crop canopy (such as 
maize and wheat) in this thesis, is generally more difficult than that of the homogeneous 
canopy because of the row-space effect which causes the varying foliage area volume density 
(FAVD) and optical length from place to place. A crucial assumption in the current models is 
that the row canopy has an infinite extension; therefore, the models treat the components’ 
fractions using a whole row structure. This assumption is reasonable, but the assumption that 
the viewing direction is a parallel beam is rarely consistent with reality because different 
regions within the footprint of the sensor’s FOV (field of view) that is used to collect field 
DBT data have different azimuth and zenith viewing angles rather than one unique angle. 
Except for Colaizz et al. (2010), who modeled row structure as continuous ellipses and 
estimated the sunlit and shaded components within the circular or elliptical footprint, there 
have been no other studies that have considered the footprint effect (i.e., the FOV effect) on a 
row canopy’s DBT until now, let alone any discussion of the DBT difference between a 
parallel-beam model and a FOV model that accounts for variations in the viewing angle 
within the footprint. Consequently, the question is raised: how large the sensor’s footprint 
should be in order to collect representative DBTs from a row canopy during the field 
validation of a parallel model with the lowest error? Thus, the objective of this thesis is to 
develop a new GORT hybrid model that accounts for a sensor’s footprint effect in the DBT of 
a row canopy and to identify the threshold footprint under which the footprint effect can be 
ignored and the field measured DBT data can be used to evaluate a parallel model without 
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causing significant error. The modeling results from this chapter are also expected to provide 
an operational method for assessing the uncertainty in field measurements that is caused by 
variations of the sensor’s footprint.  

 

6.2 Modeling directional brightness temperature  

Most DBT models focus on the anisotropy of thermal radiance and are dependent on the 
components’ temperatures and fractions within the footprint. The footprint of a row canopy 
generally consists of four types of components: sunlit soil and shaded soil, sunlit leaves and 
shaded leaves. Because stems occupy a small percentage of the footprint, this component can 
be ignored without causing significant differences. Several authors have reported that the 
temperature difference between sunlit and shaded leaves is very small compared to the 
temperature difference between the sunlit and shaded soils (Rasmussen et al. 2011; Yu et al. 
2004); the leaves are often assumed to have a unique temperature in the canopy.  

The canopy’s DBT is often measured by rotating a goniometer around the target of interest 
in the upper hemisphere. As illustrated in Fig.6-1 (a), the footprint observed by a sensor with 
a FOV (θf ) onboard the goniometer is a circle or an ellipse on the top and bottom of the 
canopy (TOC and BOC). The points A and A', and B and B' are the left and right intersections 
of the FOV with the BOC and TOC, respectively; C and C' are the centers of the ellipse on the 
BOC and TOC; and D and D' are the intersections of the central line of the sensor’s FOV with 
the BOC and TOC. In the nadir direction, C and D (or C' and D') are the same locations. If we 
assume that the width of the vegetated hedgerow and soil (wc and ws), canopy height (h), and 
the current observation height (H) in the viewing direction θv are measurable and known as a 
prior, the semi-major axes of the ellipses on the BOC and TOC can be calculated using 
Eq.(6.1): 

)]5.0tan()5.0[tan(5.0 fvfvB Ha qqqq --+×= ,                       

)]5.0tan()5.0[tan()(5.0 fvfvT hHa qqqq --+×-= .               (6.1) 

Similarly, the corresponding semi-minor axes on the BOC and TOC are described by 
Eq.(6.2): 

)5.0tan())5.0tan(( 22
fBfvB HaHb qqq ×++-×= ,                

)5.0tan()(])5.0tan()[( 22
fTfvT hHahHb qqq ×-++-×-= .      (6.2) 

Furthermore, the lengths of C'O' and D'O' are calculated, respectively, with Eq.(6.3): 

TfvOC ahHl -+×-= )5.0tan()('' qq  and )tan()('' vOD hHl q×-= .             (6.3) 

However, because of the canopy’s three dimensional structure as shown in Fig.6-1, the 
surface of the target can be regarded as being located on the TOC or BOC. If the surface of 
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the target is on the TOC, the length of SD' is fixed, and the point D' is unchanged on the TOC, 
but the point D changes with both the viewing zenith angle (VZA) and the viewing azimuth 
angle (VAA). However, if the surface of the target is on the BOC, the length of SD is fixed, 
and the location of point D is unchanged on the BOC, but point D' on the TOC varies with the 
viewing angles. For clarity, this thesis only uses the former case for illustrations. Another key 
parameter is the central position xc, which is defined as the distance from the edge of a 
hedgerow to the central point of the sensor’s FOV (i.e., the foot point of the FOV’s center) on 
the TOC when the goniometer observes at the nadir, as shown in Fig.6-1(b). This parameter is 
used to determine whether a point of the footprint is above the vegetated hedgerow or above 
the soil, which will be discussed in the next section. xc is positive when this point is above the 
hedgerow; otherwise, xc is negative when this point is above the soil. Because the angular 
observations are made around the sensor’s central point on the TOC, the xc is always the 
same. 

  

Fig.6-1. (a): the geometry of the sensor and the row canopy. wc and ws are the width of the hedgerow and 

the background soil; h is the height of the canopy. The current observation height H is equal to the length of 

SO. TOC and BOC relate to the top and the bottom of canopy. θf  is the sensor’s FOV angle, and θv  is the 

viewing zenith angle of the goniometer while θs is the solar zenith angle. C' and C are the center of the 

ellipse footprint on the TOC and BOC, respectively; D' and D are the central positions of the sensor’s 

footprint on the TOC and BOC, respectively. 

(b): the definition of the relatively central position xc of the sensor’s footprint at nadir observation. 

 

The parallel model often obtains the components’ fractions in a row structure by using the 
geometry of the sun, target, and sensor as well as gap probability theory, with known optical 
lengths through the canopy in both the solar and viewing directions. This approach is possible 
because it treats the VZA and VAA as unique values everywhere. However, in reality, the 
FOV of a sensor during ground measurements causes different locations within the footprint 
to have different VZAs and VAAs. As a result, the method for calculating the components’ 
fractions in the parallel model should be no longer theoretically effective, and a new model is 
therefore needed to account for the footprint effect on the row canopy. Inspired by the 
structure of the DART model (Gastellu-Etchegorry et al. 1996; Guillevic et al. 2003), we 
followed five steps to develop our new model: 

STEP 1: Similar to previous studies (Kimes et al. 1981; Yan et al. 2003; Yu et al. 2004), 
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the row canopy is assumed to be rectangular. The elliptical footprint on the TOC (see 
Fig.6-1(a)) is first divided into several small cells with an area of ΔST (see Fig.6-2), and the 
location of the ith cell (xi, yi) in the X-Y coordinate system, which is created by the major and 
minor axes of the ellipse, is then calculated. Using this location, the actual VZA and VAA (θvi 
and φvi ) of the cell is obtained from the geometry that links the current cell to the sensor 
(point S) and its footprint on the TOC (point O'): 

])(arctan[ hHdivi -=q  and )arctan( ivvi k-=jj ,                  (6.4) 

where, di is the distance from the ith cell to the point O'; φv is the azimuth viewing angle of 
the goniometer, which is equal to the angle of the vector O'A' going from the north in a 
clockwise direction; ki is the slope of the line from the point O' to the center of the ith cell. If 
the slope ki does not exist, φvi is equal to φv ± 90°. Because the area of each cell is small 
enough, it is reasonable to use only one value for the VZA and VAA for the entire cell. 

 

 

Fig.6-2. Segmentation of sensor’s footprint. Four cases resulting from the combination of the path lengths 

in the viewing and directions ( lv and ls ). (a) lv = 0 and ls = 0: only sunlit soil; (b) lv = 0 and ls > 0: sunlit soil 

and shaded soils; (c) lv > 0 and ls = 0: the leaves and the sunlit soil; (d) lv > 0 and ls > 0: leaves, sunlit and 

shaded soils.  

 

STEP 2: With known VZA and VAA (θvi and φvi) of the ith cell ΔST, the corresponding 
cell ΔSB on the BOC can be determined by projecting ΔST in the viewing direction. Once the 
location of ΔSB is determined, its corresponding cell ΔS'T on the TOC in the solar direction is 
then defined using the same method that is used in the direction from ΔST to ΔSB. Because the 
viewing beams of ΔST come from a point (i.e., the sensor), the area of ΔSB is somewhat larger 
than that of ΔST, equal to ΔS'T. In this case, the path lengths through the vegetated hedgerow 
of both the viewing and solar beams (lv and ls) are expressed by Eq.(6.5): 

llnlx D+×= 1  and )](int[ 21 llln += q ,                       (6.5) 
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where, lθ = h/cos(θ) is the total slant length from the TOC to the BOC when the zenith angle is 
θ (i.e., θ =θvi for the viewing beam and θ =θs for the solar beam); l1 and l2 are the slant lengths 
when the viewing or solar beam passes through a whole hedgerow and soil row, respectively, 
and are defined by Eq.(6.6): 

)sin(/|)sin(|/1 qjD= cwl  and )sin(/|)sin(|/2 qjD= swl .               (6.6) 

The first step of the formulas in Eq.(6.6) is to convert the widths of the hedgerow and soil 
to the projected widths in the direction of VAA or SAA, and the second step is to calculate the 
slant length. The azimuth difference Δφ is calculated as Δφ = φ - φr, where φr is the row 
azimuth angle and φ represents the viewing azimuth φvi of the ith cell or the solar azimuth φs. 
However, if φ is equal to φr , l1 and l2 are infinite. In this case, Eqs. (6.5) and (6.6) are not used, 
and lx is equal to lθ if the cell ΔST (or ΔS'T ) is directly above the surface of the hedgerow (e.g., 
the point B' in Fig.6-1), or equal to zero if ΔST (ΔS'T) is directly above the background soil 
(e.g., the points A', C' and D' in Fig.6-1). In addition, the term Δl in Eq.(6.5) represents the 
remainder of the length lθ after several crossings of (l1 + l2). However, Δl is not always equal 
to the result lθ – n·(l1 + l2) because this result may still contain the slant length above the soil. 

A general way to calculate the position (xri) of the ith cell ΔST relative to the vegetated 
hedgerow (i.e., above the hedgerow or the soil) is provided in Eq.(6.7): 

)( scriri wwjdx +×-= , ])(int[ scri wwdj += , and ciriri xdd +D×= )sin(0 j ,        (6.7) 

where, dri0 is the distance from the ith cell to the sensor’s central point on the TOC (i.e., Point 
D' in Fig.6-1(a)), the product of dri0 and sin(Δφi) projects this distance in the crossing row 
direction, and Δφi is the relative azimuth angle between the row direction and the line from 
the cell to Point D'. The other terms were previously defined.  

STEP 3: The combination of lv and ls results in four cases, as illustrated in Fig.6-2(a)-(d): 

Case (a): lv = 0 and ls = 0. In Case (a), the sunlit soil is viewed directly by the sensor. 
Neither the solar beam nor the viewing beam is obscured by the canopy. However, if the 
viewing zenith angle or solar zenith angle (θvi or θs) is large enough, the soil will be obscured 
by the canopy, and this case will decline or disappear. 

Case (b): lv = 0 and ls > 0. Case (b) illustrates the condition where the solar beam is partly 
obscured by the canopy but the viewing beam continues freely. In this case, two components 
may be observed: sunlit soil and shaded soil. The fraction of sunlit soil is equal to the gap 
probability of the canopy in the solar direction Ps, and the fraction of shaded soil is then equal 
to 1 – Ps. 

Case (c): lv > 0 and ls = 0. In Case (c), the sunlit soil can be viewed through the canopy, 
and two components are observed: the leaves and the sunlit soil. The fraction of sunlit soil is 
equal to the gap probability of the canopy in the viewing direction Pv, and the fraction of the 
leaves is then equal to 1 – Pv. 

Case (d): lv > 0 and ls > 0. The canopy obscures both the solar and viewing beams. All 
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three components are included in this case: leaves, sunlit and shaded soils. The fraction of the 
leaves is equal to 1– Pv, the fraction of sunlit soil can be estimated from the bi-directional gap 
probability as PsPvHt (Yu et al. 2004), and the fraction of shaded soil is, finally, Pv(1–PsPvHt). 
Ht is the corresponding bi-directional function. 

The directional gap probability throughout the canopy layer depends on the canopy 
structure, the leaf area index (LAI), the leaf angle distribution (LAD) and the viewing angle. 
It can be expressed as Eq.(6.8) for a homogeneous canopy (Myneni et al. 1989; Nilson 1971): 

]
cos

)(
)(exp[)( LAI

G
P ×-=

q
qqlq ,                          (6.8) 

where, the ratio G(θ)/cosθ represents the directional extinction coefficient for a canopy with a 
random leaf dispersion, and G(θ) is the fraction of leaves projected in the direction θ. λ(θ) is 
the directional leaf dispersion parameter, which equals 1 if the leaves are randomly distributed 
but is less than 1 for clumped canopies (Chehbouni et al. 2001; Nouvellon et al. 2000). For a 
discontinuous canopy, the gap probability can be expanded from Eq.(6.8) as a function of the 
path length (Li and Strahler 1988): 

])(exp[)( FAVDlP e ××-= qtq ,                          (6.9) 

where, le is the effective path length that passes through the canopy, while the length passing 
through the adjacent space among rows is ignored. FAVD is the foliage area volume density in 
a unit of m-1, and τ(θ) =λ(θ)·G(θ) is defined as the attenuation coefficient. According to 
Eq.(6.9), the gap probability in the viewing and solar directions for the four cases (a – d) can 
be expressed by Eq.(6.10): 

]exp[ FAVDlP vv ××-= t  and ]exp[ FAVDlP ss ××-= t .            (6.10) 

To calculate the fractions of sunlit and shaded soil in case (d), the bi-directional gap 
probabilities in the solar and viewing directions are considered. An exponential model for 
homogeneous canopies, developed by Kuusk (1985), can be applied to estimate the fraction of 
sunlit soil P (Du et al. 2007; Yu et al. 2004): 
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In Eq.(6.11), Ht is the bi-directional function, and m = 1/s, where s is the characteristic 
linear dimension of the foliage. As stated above, lv and ls are the path lengths through the 
canopy in the viewing and solar directions, respectively. lsv is the path length difference 
between the solar and viewing beams and is defined by Eq.(6.12): 

xcos2|| 22
svvsvssv lllllll -+=-=

rr
,                      (6.12) 

where, ξ is the scattering angle, which can be calculated from the zenith and azimuth angles 
of the solar and viewing directions of the ith cell: 
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)cos(sinsincoscoscos svivisvis jjqqqqx -+= .               (6.13) 

The rest of the terms in Eqs. (6.12) and (6.13) have the same meanings as those used in 
previous equations. 

STEP 4: Using equations from Eq.(6.10) to Eq.(6.13), the components’ fractions for each 
cell can be derived. However, the average fractions for the entire footprint of the ellipse are 
not the mathematical average of those fractions for all of the cells because of the Point 
Spreading Function (PSF) effect of the sensor’s response to input energy. This effect can be 
simply understood as the contribution of each cell to the total energy is different, and the 
closer the cell is to the center of the sensor’s FOV, the greater its weight will be. Because it is 
difficult to measure the sensor’s PSF, we used a two-dimensional Gaussian function to 
determine the relative weight of the ith cell (Huang et al. 2002): 
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where, (xi, yi) is the location of the ith cell within the footprint on the TOC, while (x0, y0) is the 
location of the central point of the sensor’s FOV on the TOC, i.e., point D' in Fig.6-1. The 
term σ is the standard deviation of x and y, and is assumed to be the same for both x and y. As 
a result, the components’ fractions for the whole FOV are weighted according to Eq.(6.15): 
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where, Fx represents the fractions of leaves (Fleaf), sunlit soil (Fsun_soil) and shaded soil (Fshd_soil) 
within the footprint; fx(i) is the component fraction of the ith cell; and N is the number of cells 
in the footprint. Because the area of each cell is the same, Eq.(6.15) is not sensitive to the 
term ΔST. 

STEP 5: Finally, the directional brightness temperature (DBT) from the footprint of the 
sensor’s FOV is related to the components’ fractions and corresponding temperatures by the 
following linear expression (Du et al. 2007; Yu et al. 2004): 
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where, L(DBT) is the thermal radiance from Planck’s law, and the inversion of Planck’s law to 
the term L(DBT) in Eq.(6.16) will return the DBT. BTleaf, BTsun_soil and BTshd_soil are the 
brightness temperatures of the leaves, sunlit soil and shaded soil, respectively, which are 
defined by the inversion of Planck’s law, L-1[εxL(Tx)], where Tx and εx are a single 
component’s temperature and emissivity, respectively; Rmulti is the single and multiple 
scattering radiance within the canopy and between the soil and leaves (François et al. 1997; 
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Verhoef et al. 2007). For the row canopy, the term is complex because of the discontinuous 
structure. Because the reflectivity of leaves and soil in the thermal spectral range is very low, 
excluding this scattering will not cause significant error in the DBT. The last term is the 
reflected atmospheric downward radiance; Ra↓ is the atmospheric downward radiance and εc is 
the canopy directional emissivity. Because atmospheric radiance is related to atmospheric 
emission, there is much uncertainty in the DBT. Therefore, this study does not consider the 
reflected atmospheric radiance in the following discussion and only considers the angular 
variation of DBT, which is mainly dependent on the components’ fractions and brightness 
temperatures.  

 

6.3 Model analysis 

As indicated above, the new model treats the sensor’s footprint on the TOC as a circle at 
the nadir or as an ellipse in the slant direction and then divides the footprint into several 
smaller cells and calculates the actual VZA, VAA, and path lengths for each cell in both the 
viewing and solar directions. Based on these parameters, the fractions of leaves, sunlit soil 
and shaded soil are obtained from gap probability theory. The total energy in the footprint is 
calculated as the sum of the radiation from all of the cells, which is weighted by a 
Gaussian-distributing PSF. Therefore, the input parameters for the new model include three 
categories: 

(1) Canopy structure parameters: the width of the hedgerow (wc) and soil (ws); the height of 
the canopy (h); LAI or FAVD; the dimension of the foliage elements (s = 0.2 m, as 
reported in (Yu et al. 2004)); and the row direction (φr). 

(2) Observational geometric parameters: the solar zenith and azimuth angles (θs and φs); the 
zenith and azimuth angles of the goniometer (θv and φv); the observation height H0 from 
the sensor to the ground at the nadir, and the slant observation height H = H0cos(θv); the 
angle of the sensor’s FOV (θf); and the central point (xc) of the sensor’s FOV on the 
TOC. 

(3) Brightness temperatures of leaves, sunlit soil and shaded soil: BTleaf, BTsun_soil and 
BTshd_soil . 

Table 6-1 lists the general input parameters that are used for the model analysis. The row 
direction is assumed to be south/north, φr = 0. Three FOV angles are considered to investigate 
the effect of the FOV on the DBT of the row canopy: small (6°), medium (16°) and large 
(28°).  

 

Table 6-1. The input parameters used for model analysis 

θs 

(°) 

φs 

(°) 

FOV 

(°) 

wc 

(m) 

ws 

(m) 

h 

(m) 

H0 

(m) 

φr 

(°) 

xc 

(m) 
LAI 

BTleaf 

(K) 

BTsun_soil 

(K) 

BTshd_soil 

(K) 

30 270 6,16,28 0.3 0.3 0.3 3.0 0 0.15 1.0 305 320 315 
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6.3.1 Components’ fractions and angular variation in DBT  

Fig.6-3 depicts the fractional distribution of several variables: (a) leaves, (b) sunlit soil, (c) 
shaded soil and (d) DBT for three FOV angles: 6° (FOV6) in column 1, 16° (FOV16) in 
column 2, and 28° (FOV28) in column 3. Column 4 lists the angular variations in those 
fractions and the DBT in the solar principle plane (SPP). The SAA and SZA are 270° and 30°, 
respectively, which indicate that the solar beam is perpendicular to the row direction. For 
simplicity, the VZA is assumed to be negative in the solar backscattering direction. As a result, 
the SPP in Fig.6-3 runs from west to east, ranging from VZA = -60° to VZA = 60° by a step of 
10°.  

The distribution of the leaves fraction (Fleaf) is presented in Fig.6-3(a), which illustrates 
that different distributional patterns are caused by these FOVs. Fig.6-3(a-4) indicates that Fleaf 
reaches its local maximum at the nadir in the case of FOV6, decreases until about VZA = 45°, 
and finally increases with increasing VZA. However, the fractions of both FOV16 and 
FOV28 always increase with increasing VZA. Although the footprint for large VZAs is larger 
than that for small VZAs, the path length lv of the viewing beam for large VZAs of the SPP 
may be reduced for two reasons in the case of FOV6. First, the row-space effect does not 
account for the path length through the space of two the adjacent vegetated hedgerow. The 
footprint of FOV6 encompasses a small area of the TOC at the nadir observation, but the 
majority the footprint intersects the leaves, and the path length lv from the TOC to the BOC 
generally passes through the hedgerow, infrequently intersecting the adjacent soil space due to 
the small VZAs of all cells. Since the major axis (approximately 0.28 m at the nadir) of the 
elliptical footprint of FOV6 is less than the total width (wc + ws) of one whole period of the 
row canopy, the probability that the footprint includes predominantly vegetation with minimal 
background or predominantly background with minimal vegetation, actually increases. 
Therefore, the leaves fraction Fleaf decreases while the soil fraction increases with VZAs 
varying from the nadir to the slant direction. Similar results can be also found in Fig.6-3(b-1) 
that illustrates the fractional distribution of sunlit soil for FOV6. However, this row-space 
effect diminishes or disappears when the VZA exceeds the row threshold angle (e.g., 45°, 
arctan (h/ws)), as indicated in Fig.6-3(a-4). A longer path length is then consistent with large 
VZAs. The second reason is the previously mentioned PSF effect, in which the cells around 
the FOV’s central point contribute more to the observed DBT than the other cells. As a result, 
the observed DBT is largely dependent on those cells near the center of the FOV, and their 
path lengths further rely upon their locations within the hedgerow. From Fig.6-3(a-4), it is 
apparent that FOV16 and FOV28 have very similar angular variations of Fleaf in the SPP. 
However, comparison between Fig.6-3(a-2) and (a-3) reveals that the directional Fleaf of 
FOV16 and FOV28 are still different, especially in the profile of the row direction. In addition, 
Fig.6-3 (a-3) also shows that the Fleaf of FOV28 is almost independently on the azimuth, and 
its isolines resemble a series of concentric circles. This result indicates that the FOV28 is 
large enough to smooth the row-space effect of the row canopy because its footprint contains 
approximately one to three periods of the row structures. This smoothing causes the final 
directional components’ fractions (Fig.6-3(b-3) and (c-3)) and the final DBT (see Fig.6-3(d-3)) 
to distribute as a uniform, continuous canopy. Moreover, because the new model does not 
separate the sunlit and shaded leaves, the distribution of Fleaf is independent on the solar 



Chapter 6. Impact of sensor footprint on directional brightness temperature 

 117

position, and only determined by the canopy and viewing geometric parameters. As a result, 
there is no a local maximum Fleaf in the hotspot where the solar and viewing beams are in the 
same direction. 

  
(a) Leaf fractions (Left to right: FOV=6°, 16°, 28° and SPP profile) 

  
(b) Sunlit soil fractions (Left to right: FOV=6°, 16°, 28° and SPP profile) 

  
(c) Shaded soil fractions (Left to right: FOV=6°, 16°, 28° and SPP profile) 

  
(d) DBT (Left to right: FOV=6°, 16°, 28° and SPP profile) 

Fig.6-3. Fraction distribution of several variables: (a) leaves, (b) sunlit soil, (c) shaded soil and (d) DBT for 

difference FOV angles: 6° in column 1, 16° in column 2, and 28° in column 3. Column 4 shows the angular 

variations of those fractions and DBT in the principle plane. (SAA = 270°, SZA = 30°, row direction = 0°)   

 

Fig.6-3(b) displays the fractional distribution of the sunlit soil (Fsun_soil) for the three FOVs 
and their comparison in the SPP. The hotspot is obvious for FOV16 and FOV28, while two 
such spots exist in the FOV6, falling on the forward and backward scattering sides of the SPP. 
As depicted in Fig.6-3(b-1), the row-space effect is significant in the case of FOV6, especially 
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in the VZA range from 20° to 50° in the SPP. Meanwhile, the angular variations of the Fsun_soil 
for cases FOV16 and FOV28 in the SPP are quite similar, with a difference less than 0.03. 
However, the Fsun_soil of the two cases has an obvious discrepancy in the row direction, and 
this difference has a maximum value 0.1 at VZA = 60°. However, since FOV28 smoothes the 
row-space effect, the result of FOV16 may be much closer to reality than FOV28. As for the 
distribution of the shaded soil (Fshd_soil) presented in Fig.6-3(c), there is a “cold spot” in the 
solar direction for FOV16 and FOV28, corresponding to the hotspot of the Fsun_soil. Compared 
to the Fsun_soil, the Fshd_soil patterns of FOV16 and FOV28 are more similar, even in the row 
direction. As expected, the Fshd_soil of FOV6 is still different from the other two cases. 

Fig.6-3(d) represents the DBT distribution for the three FOVs, which were calculated 
from the components’ fractions and their brightness temperatures at BTleaf  = 305 K, BTsun_soil 
= 320 K and BTshd_soil = 315 K (see Table 6-2). Because the Fleaf is beyond the control of the 
solar position and its distribution is almost symmetric along the row direction, the angular 
behaviors of DBT are predominantly determined by the distribution of sunlit soil that has the 
largest brightness temperature. Consequently, similar to the distribution of the Fsun_soil, two 
hotspots appear in the forward and backward SPP of the DBT distribution of FOV6, while 
only one such hotspot falls within the solar beam direction for FOV16 and FOV28. However, 
from Fig.6-3(d-4), it is apparent that the DBT of VZA = -10° is larger than that of VZA = -30°, 
perhaps because the leaf temperature is lower than that of shaded soil, and the increased 
temperature due to the increase of the leaves and sunlit soil fractions is smaller than the 
decreased temperature due to the decrease of the shaded soil fraction when VZA changes 
from -10° to -30°. The same reasons can be used to explain the DBT’s fluctuation in the range 
of VZAs from the nadir to forward 20°. 

Table 6-2 lists some comparison of the components’ fractions and the DBT among the 
three FOVs. It indicates that the results of FOV16 and FOV28 are generally similar, but 
different from those of FOV6: the root mean square errors (RMSE) of the leaves, sunlit and 
shaded soils fractions between FOV6 and the other two FOVs are respectively 0.13, 0.14 and 
0.06, which causes their temperature difference up to 1.9 K, and even results in an larger 
difference at the nadir observation (e.g., approximately 2.5 K). Furthermore, the nadir DBT of 
FOV6 is lower than that of both FOV16 and FOV28 because the footprint of FOV6 mainly 
contains the leaf component at the nadir, while the soil covers a relatively larger percent in the 
footprint of the two other FOVs.  

 

Table 6-2. Difference of components’ fractions and DBT caused by different FOVs 

Cases 
RMSE  DBT difference (K) 

Fleaf Fsun_soil Fshd_soil DBT (K)  @Hotspot @Nadir 

FOV6 - FOV16 0.13 0.14 0.06 1.9  -1.1 -2.5 

FOV6 - FOV28 0.13 0.14 0.06 1.9  -1.0 -2.6 

FOV16 - FOV28 0.02 0.02 0.01 0.3   0.1 -0.2 
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From the discussion above, we learn that different sensors’ FOVs can result in 
significantly different patterns in the directional distribution of the component fractions and 
DBT. A small FOV, such as FOV6, whose footprint is less than one period of the row canopy, 
can cause DBT to be predominantly contributed by one component and row direction, while a 
large FOV, such as FOV28, whose footprint is more than two periods of the row canopy, can 
smooth the row-space effect and cause the DBT’s angular variation of the row canopy to 
perform as a uniform, continuous canopy. Therefore, a question is raised: what FOV (or 
footprint) can be used to obtain a representative DBT for the row canopy? To answer this 
question, the next sections will analyze the model’s sensitivity to some key parameters and 
compare the new model with the parallel model developed by Yu et al.(2004). 

 

6.3.2 Model sensitivity to key parameters 

This section will evaluate the new model’s sensitivity and consistency with several key 
input parameters: the widths of the hedgerow and the background, LAI, the central location of 
the sensor’s FOV, the solar position and the components’ brightness temperatures.  

A. Effect of the ratio of the hedgerow width to the background soil width r. The 
hedgerow width determines the gap distributions within the canopy. For a narrow hedgerow, 
gaps are largely concentrated along the hedgerows; otherwise, gaps may be generally within 
the hedgerows for a wide hedgerow. We fix the total width of a whole row period (i.e., wc+ws 

= 0.6 m) and evaluate the influence of the ratio r = wc /(wc+ws) on the DBT. Different rs 
correspond to crop’s different growth stages, and r = 1.0 means that the row canopy is fully 
vegetated and becomes a uniform, continuous canopy. In order to investigate the influence of 
r on DBT, we changes r from 0.1 to 1.0 at a step of 0.1 and keep the other input parameters 
the same as those in Table 6-1. Fig.6-4(a), (b) and (c) display the directional distribution of 
DBT at r = 0.2 and r = 0.8 for the three FOVs, as well as the DBT variation in SPP and the 
cross principal plane (CPP). As shown in those figures, the DBTs for the case of r = 0.2 are 
significantly higher than those of r = 0.8 because a small r indicates that more soil is 
contained in the footprint. As seen from the DBT profiles in column 3 of Fig.6-4, the range of 
the DBT for the case r = 0.8 in both SPP and CPP is larger than that of r = 0.2, which shows 
that the fractional variations in soil have a greater influence on the DBT of a dense canopy 
than that of a sparse canopy. In addition, the distribution of DBTs generally depends on the 
FOV at a small r (e.g., 0.2) but gradually exceeds the control of the FOV with increasing r, 
especially when r remains high. For the FOV6, an increasing r diminishes the hotspot in the 
forward direction of the SPP and only retains the normal hotspot in the solar direction. For the 
FOV16, a hot stripe appears in the row direction at r = 0.2 but gradually changes to a pattern 
similar to the FOV28. For the FOV28, although some slight changes can be found in the SPP, 
the distribution pattern of the DBT is nearly unchanged because of its huge footprint. 
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(a) FOV6, Left: r =0.2, Mid: r = 0.8, Right: SPP and CPP profiles 

 
(b) FOV16, Left: r =0.2, Mid: r = 0.8, Right: SPP and CPP profiles 

 
(c) FOV28, Left: r =0.2, Mid: r = 0.8, Right: SPP and CPP profiles 

Fig.6-4. Directional distribution of DBT for FOV6, FOV16 and FOV28 at r (=wc/(wc+ws)) = 0.2 (column 1) 

and 0.8 (column 2), and their corresponding angular variation of DBT (column 3) in solar principle plane 

(SPP) and cross-principle plane (CPP). 

 

Fig.6-5 presents the comparison of the components’ fractions and the DBT from different 
FOVs by taking the values of FOV28 at each r as the reference. It indicates that the 
differences of the components’ fractions (leaves and sunlit soil) and DBT between FOV16 
and FOV28 are generally less than 0.03 and 0.3 K, respectively, while the difference between 
FOV6 and FOV28 is significant: the RMSE of the components’ fractions first increases 
rapidly, then reaches its maximum (0.13 for leaves and 0.14 for sunlit soil) near r = 0.4 and 
decreases to less than 0.03. Similarly, the DBT RMSE reaches its maximum (approximately 2 
K) around r = 0.4, and most of r results in a RMSE larger than 1 K. In theory, the distribution 
of the DBT should be independent on FOV for a fully vegetated footprint (e.g., r =1.0), but 
there are still some DBT discrepancies between FOVs, as shown in Fig.6-5. This result might 
be caused by the non-linear PSF of the different FOVs. If PSF is assumed to be 1 for each cell, 
their difference will be removed. Based on these results, we know that the DBT of a narrow- 
hedgerow canopy (a small r) depends on the FOV and has one or two small hotspot peaks for 
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different FOVs, while the DBT of a broad-hedgerow canopy (a large r) becomes independent 
on the FOV and has a sharper hotspot compared to a proper ratio r. A similar result was also 
described by (Yu et al. 2004). 

 

 
Fig.6-5. RMSE for the difference of components’ fractions (a) and DBT (b) between FOV6, FOV16 and 

FOV28 with r varying from 0.1 to 1.0. 

 

B. Effect of LAI. As reported in other papers (Chehbouni et al. 2001; Du et al. 2007; Yu et 
al. 2004), LAI is the key parameter that influences the gap probability in the canopy. Fig.6-6 
displays the directional distribution of the DBT for the three FOVs with LAI = 0.5 and 5.0, 
corresponding to sparse and dense leaves in the hedgerow. The other input parameters are the 
same as those listed in Table 6-1. It shows that a lower LAI results in an obvious hotspot and 
hot region around the solar direction. The DBT in this region is similar to the soils’ 
temperatures (BTsun_soil = 320 K and BTshd_soil = 315 K) because it is mainly determined by the 
soil components. However, in the case of a larger LAI, the dense hedgerow is almost opaque 
and consequently decreases the gap probability of sunlit soil. This condition causes the 
hotspot to nearly disappear in FOV16 and FOV28, and their hot regions are finally distributed 
in the row direction rather than the solar direction, but closer to the side of the solar position. 
Nevertheless, a different result is obtained for FOV6 that the increase of LAI in the hedgerow 
sharpens the hot stripe in the solar direction but reduces the hot stripe in forward directions, as 
shown in Fig.6-6(a-1). On the contrary, a cold stripe rather than the hot stripe appears in the 
row direction for LAI =5.0 (see Fig.6-6(a-2)) because the small footprint of FOV6 is mainly 
covered by leaves, causing the DBT to be determined by the leaves’ brightness temperature. 
Therefore, for a smaller LAI, the DBT is largely dependent on the soil components and has 
minimal variation over large viewing zeniths, especially for large FOVs. On the other hand, a 
larger LAI can cause the DBT to be dominated by the hedgerow structure and leaves’ 
brightness temperatures, and result in a lower average DBT, a small hotspot and a hot stripe in 
the row direction. 
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(a) FOV6 

  

(b) FOV16 

 
(c) FOV28 

Fig.6-6. Influence of LAI on the DBT distribution for FOV6 (a), FOV16 (b) and FOV28 (c). Left column: 

LAI =0.5; Right column: LAI = 5.0. 

 

C. Effect of the central position of the sensor’s footprint xc. The xc that is defined in 
Fig.6-1(b) plays a key role in the DBT distribution because it is used to determine each cell’s 
relative position above the hedgerow or the soil within the sensor’s footprint, as described by 
Eq.(6.7). We illustrate the influence of xc by varying its value from -ws (i.e., -0.3 m) to wc (0.3 
m) with an interval of 0.03 m. The other parameters remain unchanged from Table 6-1. 
Generally, if xc is closer to the center position above the soil (the hedgerow) the DBT will be 
higher (lower). Fig.6-7 displays the DBT distribution at xc = -0.15 m, meaning that xc is in the 
middle part above the soil, and xc = 0.0 m, meaning that xc is on the common boundary 
between the hedgerow and the soil rows. Only FOV6 and FOV16 are presented in Fig.6-7 
because the DBT for FOV28 rarely varies with the xc positions. The RMSE of FOV28 DBT 
difference caused by different values of xc is less than 0.2 K, and the corresponding maximum 
difference is less than 0.8 K. Compared to the DBT in Fig.6-3(d), whose xc is 0.15 m, the 
FOV16 has a small variation in DBT (< 0.4 K) caused by the variation of xc moving from the 
hedgerow to the soil but it is found that this variation of xc changes the DBT distribution from 
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a VAA-dependent pattern to an almost VAA-independent pattern. However, as for FOV6, the 
DBT distribution changes significantly, as expected. The variation of xc from the hedgerow to 
the soil causes the two hotspots in Fig.6-3(d-1) to get closer to each other, and finally 
produces a hot region along the row direction, as shown in Fig.6-7(a-1) at xc = -0.15 m. In this 
case, the component observed in the directions around the nadir is predominantly covered by 
the soil due to the small footprint of FOV6, and the DBT is, therefore, dominated by soil.  

   
(a) FOV6 

 
(b) FOV16 

Fig.6-7. Influence of the central position xc on the DBT distribution. (a) FOV6; (b) FOV16. Column 1 is 

the case of xc = -0.15 m (above the middle of soil) and column 2 is the case of xc= 0.0 m (above the 

common boundary of hedgerow and soil). Column 3 is the comparison between DBT at xc = 0.15 m and 

those of other xc, with LAI varying from 1.0 to 5.0. 

 

Fig.6-7 also highlights the DBT difference between xc = 0.15 m and other xc varying from 
-0.3 to 0.3, with LAI varying from 1.0 to 5.0. Results indicate that FOV6 has a higher RMSE 
than FOV16 due to the limitation of its footprint, and the DBT difference is generally 
significant when xc falls above the soil and reached the local maximum at xc = -0.15. Besides, 
the DBT difference is also influenced by the LAI and increases with the increasing LAI, 
especially for the cases xc < 0. Although a larger LAI is related to a larger leaves fraction 
within the footprint and consequently reduces the DBT, the DBT difference is actually 
enlarged with the increasing LAI, because the decreased DBT caused by increasing the LAI is 
larger than the decreased DBT caused by the variation of xc with respect to the case of xc = 
0.15 m (i.e., the reference case, in the middle range above the hedgerow). Fortunately, the 
influence of LAI on the DBT difference nearly disappears when LAI exceeds 4 for a dense 
canopy. Therefore, the xc has a little influence on the DBT with a large FOV, but affects the 
DBT distribution with a small FOV. Since the shift of xc can change the pattern of the DBT 
distribution for the small FOV, an accurate input of this parameter is highly required for 
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accurately simulating the DBT. 

   
(a) FOV6 

    
(b) FOV16 

Fig.6-8. Influence of solar position (marked with a star) on the DBT for (a) FOV6 and (b) FOV16. Left to 

right presents the solar position at 120°/10° (SAA/SZA), 120°/30°, 120°/45° and 120°/60°, respectively. 

 

D. Effect of solar position. The solar position (SZA and SAA) determines the fractions of 
sunlit and shaded soils and the components’ brightness temperatures. However, it has no 
effect on the leaves fraction because the leaves are not separated into sunlit and shaded 
components, and their fractions are only dominated by the canopy parameters and the viewing 
direction. Fig.6-8 displays the influence of the solar position on the DBT by changing the 
SAA and SZA from Table 6-1 to 120°/10° (SAA/SZA), 120°/30°, 120°/45° and 120°/60°, 
respectively. It shows that the increase of the SZA in the same azimuth plane reduces the 
value of the DBT because the longer path length through the leaves in the solar direction 
results in a larger shaded soil fraction. The position of the hotspot for FOV16 is almost 
consistent with the solar position (marked with a star) at both SZA = 10° and 30°, but the hot 
stripe became wider, and the hot peak is consequently reduced. However, the hotspot becomes 
far from the solar position at both SZA = 45° and 60°, and their hot stripes distribute around 
the nadir direction, perhaps because all solar beam is obscured by the leaves (i.e., ls > 0 for 
each cell in Fig.6-2) at a SZA equal or beyond the threshold angle (=arctan (h/ws), i.e., 45°) of 
the row canopy, and the soil fractions with higher brightness temperature in the solar direction 
are consequently reduced and even less than those in the directions around the nadir. FOV28 
has a pattern similar to that of FOV16 and is not presented here. On the contrary, both 
Fig.6-8(a) and Fig.6-3(d-1) indicate that the solar position does not change the position of the 
two hot stripes and has little impact on the DBT of FOV6. The DBT difference between the 
four simulations of FOV6 in Fig.6-8(a) has a RMSE of less than 0.3 K and a maximum of 
approximately 1.1 K. In fact, the DBT distribution of such a small FOV is largely determined 
by the row structure because its footprint is too small to collect representative DBT data. 
Similar results are obtained even if the solar beam follows along the row direction. 
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E. Effect of components’ brightness temperatures. If all of the components have a unique 
brightness temperature, the DBT will be independent of the geometry of the sun, target, and 
sensor. However, this condition seldom occurs in sunny days. Because the DBT is a weighted 
average of its components’ fractions and brightness temperatures, and those fractions are 
calculated from the canopy and viewing geometrical parameters, the components’ 
temperatures predominantly determine the value of the DBT, with little impact on the pattern 
of the DBT distribution. Taking Fig.6-3(d-4) for example, the hot peak is not sharp enough in 
FOV28, and the DBT in the hotspot is a little lower than that of the other VZAs in the SPP, 
such as VZA = -10° and -20°. The leaf temperature is lower than the shaded soil, and the 
increased temperature due to the increase in the leaves and sunlit soil fractions is smaller than 
the decreased temperature due to the decrease in the shaded soil fraction when VZA changes 
from -10° to -30°. If we reduce the brightness temperature of the shaded soil in Table 6-1 to 
310 K, the hotspot in Fig.6-3(d-3) will be sharper and, consequently, the DBT of VZA = -10° 
and -20° in the SPP will be lower than that of the hotspot. 

 

6.3.3 Comparison with the parallel model 

Because a parallel model always assumes that the row canopy is large enough and 
distributed in period, it is therefore reasonable to model the directional components’ fractions 
and DBT within only one row period. However, as indicated above, the FOV influences the 
DBT distribution in the row canopy; a small FOV (e.g., 6°) of the sensor causes the DBT 
distribution to be dominated by the row direction and infrequently by the solar position, while 
a large FOV (e.g., 28°) smoothes the row-space effect and causes the DBT to distribute as a 
uniform, continuous canopy. As a result, the field validation of the parallel models becomes 
puzzling: which FOV should be used for the DBT measurement in the row canopy? Although 
many field studies have been conducted for validation (Chen et al. 2002; Menenti et al. 2001; 
Yu et al. 2004), there has been no discussion about their validity until now. Thus, the next 
section is devoted to identifying a proper FOV (or footprint) for the validation of the parallel 
model through a comparison with our new model (hereafter called FovMod). 

We simulate the components’ fractions and DBT using the model proposed by Yu et al. 
(2004) (hereafter called YuMod), with the same canopy parameters (i.e., H=0.3, L = 0.6, a= 
0.3 in YuMod) as those in Table 6-1 but without the height of the hedgerow’s bottom edge 
(i.e., h = 0 in YuMod), and using the FovMod at different FOVs, LAIs and other input 
parameters from Table 6-1. Fig.6-9 displays the comparison of the two models. The RMSEs 
of the DBT difference at different FOVs and LAIs (see Fig.6-9(a)) indicate that the RMSEs 
first decrease rapidly, and reach their local minimums at approximately FOV = 18°, and 
finally, increase slowly with increasing FOV. The DBT difference between the two models is 
slightly sensitive to the LAI value, and the influence of the LAI also depends on the FOV; the 
RMSE increases with increasing LAI at a FOV smaller than 18° but decreases slowly with 
increasing LAI at a FOV larger than 18°. A larger LAI generally reduces both models’ DBT, 
but the YuMod’s DBT is reduced more than that of the FovMod when FOV is small because 
the FovMod’s footprint includes fewer fractions of leaves in many cases. Fig.6-9(b) displays 
the variations in the maximum absolute DBT difference. The curves in this figure have similar 
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patterns to those in Fig.6-9(a), and the minimum difference is less than 1 K at FOV = 18°. 

 

 
Fig.6-9. Comparison between the FovMod and YuMod. (a) and (b) are respectively DBT RMSE and 

maximum difference between the FovMod and the YuMod for different FOVs. The top of the horizontal 

axis is the number of period (NP) corresponding with the FOVs. 

 

As seen in Fig.6-9, the FOV effect reaches its minimum at FOV = 18°, and the simulated 
DBT of the two models is closest in this case. However, this result does not imply that an 
FOV = 18° is the optimum FOV for all cases because this optimum FOV further depends on 
many other parameters: the width of the hedgerow and the soil, the height of the canopy, LAI, 
the observation height, etc. The simulation results suggest that the optimum FOV is almost 
independent of the solar position, so we ignore the influence of the solar position. To identify 
a quasi-universal optimum FOV that can reduce or eliminate the FOV effect for most cases, 
we introduce an index called the number of period (NP), which is defined as the ratio of the 
footprint’s diameter dn at the nadir observation to the total width of one row period of the 
canopy: 

)( scn wwdNP += , with )5.0tan()(2 0 fn hHd q××-= .        (6.17) 

All of the terms in Eq.(6.17) are defined in Fig.6-1. The top horizontal axis in Fig.6-9 
describes the NP that corresponds to the FOV displayed on the bottom axis. The optimum NP 
(ONP) is, theoretically, equal to the NP that results in the minimum DBT difference between 
YuMod and FovMod. Once the ONP is discovered, the corresponding sensor’s FOV (θf) and 
footprint can be computed from the inversion of Eq.(6.17), using a known H0 and h from a 
field study.  

Simulations are made by varying NP, r (defined in Section 6.3.2), the height-width ratio 
rhw (=h / (wc+ws)), and LAI, as listed in Table 6-3. The other input data are the same as those 
in Table 6-1. Fig.6-10 displays the variations between the two models’ DBT differences using 
a series of combined NP and r, where rhw equals 0.25, 0.50 and 0.75. LAI is 2.0 in all of these 
figures. As indicated by this figure, a larger rhw can result in a bigger DBT RMSE when r is 
small (such as 0.1), but this effect gradually disappears with increasing r. Although the RMSE 
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is influenced by different r and rhw, it nearly reaches the local minimum (< 0.3 K) when NP 
ranges from 1.5 to 2.0 and has a larger DBT difference outside of this range, especially when 
NP is less than 1.5. By examining the influence of different LAIs, we found that the NP was 
also in the range of 1.5 ~ 2.0 when their DBT difference reached its local minimum. Therefore, 
the ONP should be within this range. Considering the slight variation of the ONP due to the 
influence of different r, rhw and even LAI values, we recommend taking the middle value of 
this range as the ONP. This value is 1.8, which suggests that if the nadir footprint of the sensor 
covers 1.8 times the width of one whole row structure, the DBT collected by a ground sensor 
on a row canopy can be regarded as the brightness temperature observed in a unique view 
direction. In this case, the FOV effect is essentially removed, and the measured DBT from the 
field study can be used to validate a parallel model with the smallest error. However, we do 
not recommend using a sensor whose footprint covers significantly more area than 1.8 times 
the row width because a larger FOV will cause the DBT distribution to resemble a uniform, 
continuous canopy, as discussed above. 

 

Table 6-3. Simulation conditions for model comparison 

Variables Description Values 

NP number of period 1.0 ~ 2.0 with a step 0.1 

r 
ratio of the hedgerow width to the 

row width, wc /(wc+ws) 

0.1 ~ 1.0 with a step 0.1 

rhw height-width-ratio, h /(wc+ws) 0.25, 0.5, 0.75, 1.0 

LAI leaf area index 0.5, 1.0 ~ 5.0 with a step 1.0 

 

 

 
Fig.6-10. Combined influence on DBT difference between the two models from different NP (the number 

of period) and r with rhw equal (a) 0.25, (b) 0.5 and (c) 0.75, respectively. rhw = h/(wc + ws). 

 

Note that the ONP that is recommended above was determined from only one group of 
components’ brightness temperatures that are listed in Table 6-1. In fact, the DBT difference 
between the two models displayed in Fig.6-9 will vary with the components’ brightness 
temperatures. However, because the DBT difference is caused by the different components’ 
fractions in the two models, the variations of the components’ brightness temperatures can 
only change the value of the DBT difference but will seldom influence the value of NP that 
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has the local minimum difference. Therefore, the ONP of 1.8, described above, is theoretically 
still available for other combinations of components’ brightness temperatures. 

 

6.4 Validation  

A field study was conducted on a row structured maize canopy on June 22, 2012 at 
Wu-xingcun (100°24’ E, 38°48’ N), ZhangYe City in Gansu province, China. A Multi-Angle 
Observation System (MAOS) was designed to automatically collect the DBT of the canopy at 
different azimuth and zenith angles (Yan et al. 2012), shown in Fig.6-11. The MAOS was 
driven by a two-dimensional automatic goniometer to take more than 13 zenith measurements 
in approximately six minutes at arbitrary azimuth planes, with an angle accuracy of better 
than 2°. One infrared thermometer (CS-LT series, manufactured by Optris Inc, Germany, with 
a spectral range of 8~14 µm, a temperature resolution of 0.1 K, and a FOV = 28°) was used to 
collect DBT on four important azimuth planes: the solar principal plane (SPP), the cross 
principal plane (CPP), the row azimuth plane (RAP), and the cross-row azimuth plane (CAP). 
Zenith measurements were made every 10° from -60° to 60°, and additional measurements 
were prescribed in the direction of the hotspot. The solar position was dynamically calculated 
from the local time and geographic data. Because the MAOS was supported by a tripod and 
the height of the tripod was adjustable rather than fixed, the tripod was set to have the same 
height with the maize canopy’s average height in order to make the sensor’s central point stay 
on the TOC all the time. 

 

   

Fig.6-11. MAOS in operation for a field campaign (left) and its controlling system (right) 

 

A thermal camera was used at a similar place near the MAOS, and the components’ 
brightness temperatures can be manually extracted from the camera image, which was 
simultaneously collected with each angular measurement of the MAOS. This camera had a 
FOV of 24°×18°, corresponding to an image of 320 ×240 pixels and a temperature resolution 
of 0.08 K at 300 K. Both the thermometers and the camera were calibrated using a BODACH 
BOD series blackbody after the field measurements. The canopy and observation parameters 
were measured and the row direction was approximately 90°. Table 6-4 lists several input 
parameters for the model simulations, and. According to Eq.(6.17), the NP at the nadir of this 
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observation was about 1.3. 

 

Table 6-4. Some input parameters of model simulations for the maize canopy 

FOV 
(°) 

wc 

(m) 
ws 

(m) 
h 

(m) 
H0 
(m) 

φr 

(°) 
xc 

(m) 
LAI 

28 0.6 0.3 0.87 2.2 90 -0.15 3.35 
 

Because of the storage limitation of the thermal camera and the cloud effect, only six 
cloud-free azimuth planes’ DBT were successfully collected simultaneously with the thermal 
images on that day: 2 in SPP, 2 in CPP, 1 in RAP and 1 in CAP. Fig.6-12 (a) shows the DBT 
distribution, which was interpolated from the four-plane measurements from 12:07 to 12:24 
when the average SAA and SZA were equal to 128.8° and 22.0°, respectively. The solar 
position was marked by a star. Unfortunately, the expected hotspot was not observed, but a 
hot stripe did appear in the CAP. This result may be caused by the high temporal variation in 
the components’ brightness temperatures due to the solar illumination and local 
meteorological conditions. In this case, a time normalization should be applied to the DBT 
dataset using the four nadir measurements of each plane, as reported by Du et al. (Du et al. 
2007). However, we did not apply such correction because of the strong fluctuation in the 
measured nadir DBT, which first decreased and then increased along the sequence of these 
planes, and also because the components’ temperatures were extracted from simultaneous 
thermal images for each DBT.  

Fig.6-12(b) and (c) are the simulated DBT distributions from FovMod and YuMod, 
respectively. They illustrate that the FovMod’s DBT distribution pattern was closer to the 
measurements than the YuMod, especially in the CAP. The details of their differences in those 
azimuth planes will be described in Fig.6-13. Fig.6-12(d) displays the scatter of the measured 
DBT against the DBT simulated by the two models. It suggests that most of the FovMod’s 
DBTs fell within ±1.0 K of the measurement, with a RMSE 1.2 K, which was 0.5 K lower 
than the YuMod (RMSE = 1.7K).  

Fig.6-13 compares the measured and simulated DBT from the FovMod and YuMod in 
four planes, corresponding to Fig.6-12(a). The simulated DBT from both models in the SPP 
(128.8°/308.8°) and CPP (38.8°/218.8°) were very close to each other, as shown in Fig.6-13(a) 
and (b), and had angular variations that were similar to the measurement. For VZA < 0 in the 
SPP, the FovMod’s DBTs fit the measurements with higher accuracy than the YuMod as the 
FovMod’s results had a similar curve as the real data, especially for the VZAs from the nadir 
to the solar direction, while the YuMod resulted in a much smoother pattern. The measured 
DBTs in the middle VZAs (20°~50°) of the CPP were generally larger than the simulated 
values, but a relatively small DBT difference was still obtained by the FovMod. 
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Fig.6-12. DBT distribution (a) from field measurement, (b) from FovMod simulation and (c) from YuMod 

simulation. The row direction was about 90° and the solar position was marked with a star. (d) Scattering of 

the measured DBT against the DBT simulated by FovMod and YuMod, respectively. 

 

In the RAP (90°/270°) and CAP (0°/180°), the FovMod was generally superior to the 
YuMod. First, the DBT RMSEs in the FovMod were approximately 1.2 K and 1.4 K for the 
two planes, which was much lower than those of the YuMod (2.0 K for RAP and 2.1 K for 
CAP). Second, the angular variation in the FovMod was substantially similar in shape to the 
measurements, while the shape of the YuMod’s angular variation was significantly different, 
especially in the curve of the CAP (Fig.6-13(d)). Fig.6-13(c) also indicates that the YuMod 
had a lower DBT than both the FovMod and the measured values because the central point of 
the thermometer’s footprint fell above the background soil (xc = -0.15 m in Table 6-4) and, 
consequently, the soil fraction in the footprint increased, resulting in relatively larger DBTs. 
However, since the YuMod simulated DBT from a whole period with regardless of the 
sensor’s position, the components’ fractions were generally dominated by the canopy structure 
itself and the viewing angle. Furthermore, as illustrated in Fig.6-13(d), the YuMod’s DBTs in 
the CAP were generally larger than those of FovMod and the measurements. After examining 
the components’ fractions respectively from FovMod and YuMod, we found that the RMSE of 
their leaves fraction difference ranged up to 0.14, and a larger VZA caused a larger difference. 
Besides, we noted that the measured DBTs had a “strange” change in the larger VZA of each 
plane (i.e., VZA = -60° in the SPP, 60° in the CPP and RAP, and 40° in the CAP), perhaps 
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because the canopy did not extend infinitely, and bare soil outside of the field site covered a 
section of the footprint. 

 

 

 
Fig.6-13. Comparison of the simulated DBT and measurement. (a) solar principle plane (SPP); (b) cross 

solar principle plane (CPP); (c) row azimuth plane (RAP); (d) cross-row azimuth plane (CAP). (Solar 

position: SAA = 128.8°, SZA = 22.0°) 

 

The above comparison demonstrates that if the DBTs measured by the current 
thermometer are used to validate the YuMod, a reliable result cannot be obtained, especially in 
the RAP and CAP. On the other hand, the footprint effect of the thermometer for the row 
canopy was significant in our validation; the FovMod can simulate the DBT closer to reality 
than the YuMod for the row maize canopy because the FovMod concerns on the footprint of 
the thermometer and its central position. However, the DBT difference between the measured 
data and the FovMod should not be ignored. For example, the DBT in the SPP reached the 
local maximum at VZA = 0° of the measurements but at VZA = 10° for the FovMod. Similar 
cases occurred in the CPP. These differences might come from the error that was included in 
the input parameters of the FovMod, the components’ temperatures from the thermal image as 
well as the calibration accuracy of the thermometer and the thermal camera. 
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6.5 Discussions  

6.5.1 Model application and future studies  

Field measurements always suffer from the unexpected changes in the footprint and, 
consequently, produce some strange results, but there is no practical way to eliminate them. 
Because the FovMod focuses on the footprint effect of the ground sensor and the calculation 
of the DBT is close to reality, it therefore provides an opportunity to evaluate the uncertainty 
of the field measurements of the row canopy. Additionally, this model can be extended to the 
visible and near infrared (VNIR) ranges by replacing the components’ temperatures with the 
components’ reflectance, but additional work is needed to investigate the transmittance and 
multiple scattering effects in the canopy because these two issues are larger in the VNIR than 
in the TIR.  

The inversion of the components’ temperatures (e.g., leaves, sunlit soil and shaded soil) is 
possible using the new model if the canopy and observation parameters are known as a prior 
to calculate the component fractions in at least three viewing directions. However, because 
some of the parameters that are needed in the current model can be only obtained at ground 
level, such as xc, the inversion is currently available only for ground measurements. Future 
work can focus on the parameterization or simplification of the model to extend its 
applications. 

 

6.5.2 Field validation in the future  

This thesis validated the developed model on a maize canopy for the first time. Although 
the FovMod performed better than another parallel model, the footprint effect was actually 
reduced largely by the nearly dense canopy because the LAI was up to 3.35 at the time of the 
observations. In addition, the dataset for the validation was not huge enough for several 
reasons (i.e., the device’s storage limitation and cloudy sky). Therefore, additional validations 
must be made in the future on different crop canopies, such as maize and wheat. An ideal 
dataset should be composed of different canopy structures, observation geometries, footprints 
and components’ temperatures. A time-series measurement of the row canopy under different 
growth stages is promising and is planned as part of our future validation work.  

 

6.6 Conclusions 

This chapter proposes a new model (FovMod) to describe the directional brightness 
temperature (DBT) for a row canopy (mainly for the row crop canopy) by considering the 
footprint effect of the sensor’s FOV at ground measurement. The new FovMod divides the 
sensor’s footprint into numerous small cells, calculates the components’ fractions (e.g., leaves, 
sunlit soil and shaded soil) in each cell using the theory of gap probability, and then averages 
those fractions with a Gaussian PSF for the sensor’s response. The canopy’s DBT is finally 
obtained from the components’ fractions and their corresponding brightness temperatures. We 
evaluate the FovMod’s sensitivity and consistency with several key input parameters: the 
widths of the hedgerow and the background, LAI, the central position of the sensor’s footprint, 
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the solar position and components’ brightness temperatures. Simulation results indicate that a 
small footprint of the sensor causes the DBT fraction to be dominated by the row direction 
and a single component’s temperature but seldom by the solar position, while a large footprint 
smoothes the row-space effect, causing the DBT to be distributed as a uniform, continuous 
canopy. Taking the parallel model developed by Yu et al.(Yu et al. 2004) for example, we 
introduce an index, called the number of period (NP) that is independent of the observations 
and canopy height to investigate the optimum footprint that can result in the smallest DBT 
difference between the FovMod and the parallel model. The results demonstrate that the DBT 
difference between the two models always reaches its minimum when NP is in the range of 
[1.5, 2.0], which suggests that if the diameter of a sensor’s circular footprint at the nadir 
covers 1.5~2.0 times the total width of a row canopy, the sensor’s footprint effect will be 
essentially eliminated, and the sensor measured DBT can theoretically be used to evaluate the 
parallel model. Finally, a validation was performed using a maize canopy, with the observing 
NP equal to approximately 1.3. Simultaneously measured DBTs indicated that the FovMod 
performed better than the YuMod. Therefore, we recommend the FovMod to simulate the 
DBT of a row canopy when the NP falls outside of the range of 1.5~2.0. 



Chapter 6. Impact of sensor footprint on directional brightness temperature 

 134

 

 

 



Chapter 7. Summary and prospective 

 135

Chapter 7 

Summary and prospective 

 

The main work of this thesis includes: (1) finding the directional emissivity of natural 
surface at pixel scales and presenting the angular effect of the emissivity on land surface 
temperature (LST); (2) parameterizing the directional emissivity using the BRDF models and 
gap-frequency-based models, and validating the kernel-driven BRDF (K-BRDF) model in the 
angular normalization of surface temperature and investigating its requirement of the viewing 
angles; (3) retrieving directional emissivity and effective temperature for non-isothermal 
surface from daytime multi-angular middle and thermal infrared (MIR and TIR) data, and 
performing normalization on effective temperature from off-nadir to nadir; (4) investigating 
the footprint effect in the measurement of directional brightness temperature for the row 
canopy and providing the optimum footprint for the ground measurement and a new method 
to access the uncertainty in the field data. These contributions will enhance our understanding 
of the anisotropy of the surface thermal radiation and improve the accuracy of separating 
emissivity and temperature from remotely sensed data for land surface, especially for the 
heterogeneous surface. However, some problems are still required more work in the future. 

 

7.1 The major finding and discussions 

7.1.1 Angular effect of emissivity at pixel scale and its impact on LST 

Directional emissivity for several natural land covers were extracted at pixel scale from 
MODIS emissivity products, driven from the day/night algorithm, and MODIS land cover 
products. Result showed that emissivity increased in MIR channels but decreased in TIR 
channels with the increase of viewing angle, and the angular variation was in a range of 
0.01~0.02 in MIR channels and about 0.01 in TIR channels, but this variation can be almost 
ignored at viewing zenith angle (VZA) smaller than 45°. The directional emissivity was 
applied to the split-window algorithm to retrieve LST at 1km resolution from MODIS two 
adjacent TIR channels’ brightness temperatures. By comparing the retrieved LST with the 
original MODIS LST products, it was found that the new LSTs were generally larger than the 
original one and their temperature discrepancy ranged from -1.0 to +3.0 K. Large viewing 
angles caused bigger temperature differences than smaller ones. Finally, this thesis also 
discussed the spatial scale effects between the retrieved LST at 1 km and 5 km, and its results 
denoted that the spatial scale effects of emissivity could be ignored from 5 km to 1 km in our 
study region probably because there was no scale effect included in the linear split-window 
algorithm. Besides, two look-up tables of the directional emissivity were created for further 
use in the future and other colleagues. 

However, one should note that the directional emissivity at pixel scale from space might 
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be partly caused or influenced by other two factors except for the viewing angle: one was 
residual error of the atmospheric correction although the day/night algorithm adjusted the 
column water vapor and near-surface air temperature; the other was the temporal and spatial 
variation of the emissivity itself because the directional emissivities of land covers were 
obtained from the statistical results of five years MODIS products in a large study area (most 
part of China, Mongolia and Russia). Besides, the result of the directional emissivity had to 
ignore the influence of soil moisture because we did not have such data at 5 km scale. 

 

7.1.2 Parameterization of the directional emissivity and brightness temperature 

Based on the directional emissivity simulated from the thermal SAIL model (TIR-SAIL) 
and the bi-directional reflectivity simulated from the SAILH model, we compared four 
parameterization models (2 BRDF models and 2 gap-frequency-based models) in the 
parameterization of the directional emissivity. Results showed that the kernel-driven BRDF 
(K-BRDF) model accurately presented the angular variation of the canopy directional 
emissivity, and it had to refine the cavity effect factor, which related to the multiple scattering 
of the canopy, in the analytical model proposed by (François et al, 1997). On basis of the new 
cavity effect factor and the parameterization way of the SAILH model that can estimate the 
components’ fractions in viewing direction (Li et al, 2010), a new method was proposed to 
simulate the directional brightness temperature (DBT) of the canopy as the weight of several 
components’ fractions (leaves, sunlit and shaded soils) and their temperatures as well as the 
multiple scattering contribution among those components. Furthermore, this thesis also 
investigated the application of the K-BRDF model in the angular normalization of the DBT. 
Results presented the local optimum three-angle combination of the K-BRDF model, and 
released the requirement of the VZA in the designed three arrays (nadir, forward and 
backward) detector system. Those findings perhaps provided some suggestions for the future 
design of the multi-angular thermal infrared sensor.  

However, the new cavity effect factor in this thesis only be used for the SAIL series 
models and it may causes uncertainty if this factor is used for other radiative transfer models. 
The new method of simulating the DBT for the canopy was inherited from the calculation 
manners in the VNIR channels, but it was not validated due to the lack of the field data. 
Besides, since this thesis only discussed the case of three angular observation and found out 
the local optimum one for the K-BRDF model in the angular normalization of the temperature, 
more work was still needed to solve the question “what is the global angular combinations for 
the kernel-driven BRDF model to fit the DBT accurately?”. Besides, those findings mainly 
concerns on the case of homogeneous canopy, so it may be not suitable for the barren or 
heterogeneous surface. 

 

7.1.3 Angular moralization of emissivity and temperature using multi-angular images 

In order to use the TISI (temperature-independent spectral indices) method with only 
daytime observed data, we combined the K-BRDF model and the TISI method to retrieve 
directional emissivity and effective temperature for non-isothermal surface from daytime 
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multi-angular observed images in both middle and thermal infrared (MIR and TIR) channels. 
In the new daytime TISI method (called D-TISI), it has to retrieve only four unknowns: three 
kernel coefficients for the BRDF model, and TISIE. The MIR emissivity was obtained as the 
complementary to the hemispheric-directional reflectivity integrated from the BRDF model 
with the three kernel coefficients, and the TIR emissivity was further calculated from the MIR 
emissivity and TISIE. Finally, the directional effective temperature was recovered from the 
inversion of the radiative transfer equation in the TIR channels. Model analysis on the 
influence of the angular observations and the bandwidth on the retrieval accuracy showed that 
(1) large angle intervals among the angular observations and a larger viewing zenith angle 
(VZA) with respect to nadir direction can improve the retrieval accuracy of emissivity and 
temperature, and (2) narrow channels lead to a better result than the broad ones. Generally, the 
D-TISI method can obtain emissivity and temperature with an error less than 0.015 and 1.5 K 
if the noise included in the measured directional brightness temperature and atmospheric data 
was no more than 1.0 K and 10%, respectively. At last, the new method was applied to a 
multi-angular MIR and TIR dataset acquired by an airborne system, and a modified 
kernel-driven BRDF model was used to make angular normalization on the surface 
temperature for the first time. Results showed that it was necessary to make angular 
normalization on surface temperature for a higher accuracy.  

However, we did not validate the retrieved nadir and off-nadir effective temperatures due 
to the lack of field data, and also ignored the temporal variation of surface temperature and 
considered the temperature variation fully caused by the changes of viewing angles because 
up to now there has no operational method that can be used to make time normalization of the 
measured DBT data from multi-angular observation. As for the multi-angular observations, 
pixels under different VZA had different areas, which might cause the pixels observed over 
the same place in different directions included different components, especially for the 
heterogeneous surface. This problem, along with the mis-registration between different 
images, might lead more uncertainty to the retrieval result. Furthermore, although this thesis 
discussed the influence of the angular combination on the retrieval accuracy from 4 groups 
angles (see Table 5-4), and recommended the optimum combination among those groups, our 
conclusion was very limited and more investigation is expected in the future to find the global 
optimum combination in the upper hemisphere. 

 

7.1.4 Impact of sensor footprint in the measurement of the DBT for the row canopy at 
ground 

A sensor’s footprint determines the target that is observed by the sensor and influences the 
angular features of the target’s DBT at the field site. Accuracy measurement of surface’s DBT 
at field campaign and its reasonable quality assessment is crucial for the validation of the 
model and the result retrieved from space. From this point of view, this thesis proposed a new 
model (FovMod) to describe the angular DBT for a row canopy by considering the footprint 
effect of the sensor’s FOV at ground measurement. The FovMod firstly divided the sensor’s 
circular or elliptical footprint into a few small cells, and then estimated the components’ 
fractions (e.g., leaves, sunlit soil and shaded soil) in each cell based on the gap probability 
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theory. The canopy’s DBT was finally obtained by weighting the components’ brightness 
temperatures and their fractions using a Gaussian point spreading function (PSF) of the 
sensor’s response. Simulation results indicated that a small footprint caused the distribution of 
the DBT to be strongly dominated by the row direction and a single component’s temperature 
but little influenced by the solar position. On the contrary, a large footprint smoothed the 
row-space effect and caused the DBT to distribute as a uniform, continuous canopy. 
Comparison with a previous parallel model showed that if the diameter of the sensor’s 
circular footprint extended to 1.5~2.0 times as large as the total width of the row canopy, the 
footprint effect was minimized, and the ground measured DBT can, theoretically, be used to 
evaluate the parallel model with negligible error. Finally, validations with a maize canopy 
demonstrated that the new model performed more accurately than the parallel model to 
simulate the DBT. 

Actually, the FovMod provides an opportunity to assess the uncertainty in field 
measurements that is caused by unexpected changes in the sensor’s footprint. However, 
because some of the parameters needed in this model can be only obtained at ground level, 
the inversion of the components’ temperatures is currently available only for ground 
measurements. Therefore, the parameterization or simplification of the model is expected in 
the future in order to extend its applications. Besides, because the FovMod ignores the single 
and multiple scattering in the canopy, its expansion to VNIR channels needs more 
investigation because the single and multiple scattering contributions in these channels are 
much stronger than in the TIR channel. Moreover, more validations over different types of the 
row canopy were required to check the performance of the FovMod. 

 

7.2 Prospective 

The proposed D-TISI method can be also applied to the geostationary satellite data, which 
measures the same place at a high time frequency and it is easy to obtain multi-angular 
observations on the basis of the changes of solar positions as long as the atmospheric 
correction is operational. Additionally, it is also available for the polar-orbiting satellite sensor, 
such as MODIS and AVHRR, if the sensor can observe the same pixel in a short period and 
the emissivity of the pixel is assumed to keep unchanged. Besides, the result from the D-TISI 
method should be validated using field data or using the products from other sensors. 

This thesis achieved this angular correction in two ways: using directional emissivity in 
the split-window algorithm and using the modified kernel-driven BRDF model in the 
multi-angular MIR and TIR data. However, the two methods are unavailable for the sensor 
that has neither directional emissivity nor enough multi-angular observations. Consequently, 
new ways are therefore still needed. Since directional effective temperature is significantly 
influenced by the fraction of the vegetation (FVC), it is possible to establish a relationship 
between the directional temperature and FVC based on the temperature-FVC triangle space 
method from the spatial distribution of the two variables in the study area, and use the 
relationship to normalize the directional temperature to that of the nadir direction. For the 
case that only one channel (e.g. TIR) is observed at different viewing angles, the temperature 
at nadir can be analytically related to those of the viewing angles based on the measured data 
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or simulation data from thermal radiative transfer model. Besides, the combination of the 
polar-orbiting and geostationary satellites may be another way for angular correction on LST 
if they observe the same place at different directions simultaneously or quasi-simultaneously, 
but more attentions must be paid on the geo-registration and crossing radiative calibration 
between the two kinds of sensors. Besides, hyperspectral TIR data may be helpful in the 
angular correction to the LST because its hundreds of narrow channels’ data hold much more 
information about the land surface than the multi-channel data.  

In addition, more validation of the FovMod on different canopies, such as maize and 
wheat, should be conducted in the future. An ideal dataset can be composed of different 
canopy structures, observation geometries, footprints and components’ temperatures. A 
time-series measurement of the row canopy under different growth stages is promising and is 
planned as part of our future validation work. Moreover, the comparison with other models 
may improve the accuracy of the FovMod. 
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Appendix: Acronyms  

4A/OP Operational release for 4A radiative transfer model 

AATSR  Advanced Along Track Scanning Radiometer 

AMSR-E  Advanced Microwave Scanning Radiometer for EOS 

ASTER Advanced Spaceborne Thermal Emission and Reflection 
Radiometer 

AVHRR Advanced Very High Resolution Radiometer 

BOC Bottom Of Canopy 

BRDF Bi-directional Reflectance Distribution Function 

CAP Cross-row Azimuth Plane 

CBEM Classification-Based Emissivity Retrieval Method  

CPP Cross solar Principal Plane 

D/N Day/Night algorithm 

DART Discrete Anisotropic Radiative Transfer model 

DBT Directional Brightness Temperature 

D-TISI Daytime TISI method 

ECMWF European Centre for Medium-Range Weather Forecasts 

ESDR Earth System Data Records 

FAVD Foliage Area Volumetric Density 

FOV Field Of View 

FWHM Full Width at Half Maximum 

FY FengYun sensor 

GO Geometrical Optical model 

GOES Geostationary Operational Environmental Satellite 

HDF Hierarchical Data Format 

IASI Infrared Atmospheric Sounding Interferometer 

IGBP International Geo-sphere and Biosphere Program 

ISSTES Iterative Spectrally Smooth Temperature Emissivity 
Separation Method 

K-BRDF Kernel-driven BRDF model 

LAD Leaf Angle Distribution 

LAI Leaf Area Index 

LSE Land Surface Emissivity 

LST Land Surface Temperature 

LUT Look-Up table 
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MAOS a Multi-Angle Observation System 

MIR Middle Infrared 

MODIS Moderate Resolution Imaging Spectroradiometer 

MODTRAN MODerate spectral resolution atmospheric TRANsmittance 
and radiance code 

MGP Modified Geometric Projection model 

MSG Meteosat Second Generation 

NASA National Aeronautics and Space Administration 

NCEP National Centers for Environmental Prediction  

NDVI Normalized Difference Vegetation Index 

NP Number of the Period of the row canopy 

PSF Point Spreading Function 

RAP Row Azimuth Plane 

RMSE Root Mean Square Error 

RT Radiative Transfer model 

SAA Solar Azimuth Angle 

SAIL Scattering by Arbitrarily Inclined Leaves 

SEVIRI Spinning Enhanced Visible and InfraRed Imager 

SPP Solar Principal Plane 

SST Sea Surface Temperature  

SZA Solar Zenith Angle 

TES Temperature and Emissivity Separation 

TIGR Thermodynamic Initial Guess Retrieval 

TIR Thermal Infrared 

TIR-SAIL Thermal SAIL model 

TISI Temperature-Independent Spectral Indices 

TM Thematic Mapper 

TOA Top of Atmosphere 

TOC Top Of Canopy 

TTM Two-Temperature Method 

UCSB University of California Santa Barbara library 

VAA Viewing Azimuth Angle 

VNIR Visible/Near infrared 

VZA Viewing Zenith Angle 

WATER Watershed Allied Telemetry Experimental Research campaign 

WiDAS Wide-angle infrared Dual-mode line/area Array Scanner 

WV Water Vapor 
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