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Summary

This work is concerned with the theoretical description of the Scanning Gate
Microscopy (SGM) in general and with solving particular models of the quan-
tum point contact (QPC) nanostructure, analytically and by numerical sim-
ulations.

Scanning Gate Microscopy is a local probe technique, which provides
much more detailed information on the electron motion inside a nanostruc-
ture than traditional transport measurements. The SGM experiments on
quantum point contacts and other structures reveal many interesting fea-
tures; the SGM signal close to the QPC forms wide lobes, narrow branches
away from it, and interference fringing patterns superimposed on both of
these. A generally applicable theory, allowing for unambiguous interpreta-
tion of the results, is still missing.

Working within the scattering approach of quantum conductance and the
Lippmann-Schwinger perturbation theory, we have developed a systematic
theory, describing the response from the SGM system with a non-invasive
probe (tip). The non-invasiveness is understood as posing a weak and lo-
calised obstacle for the moving electrons, as compared to their Fermi energy
and Fermi wavelength, respectively. Additional insight can be obtained by
simulating the SGM signal numerically, for which we use the Recursive Green
Function algorithm, and also by numerically evaluating the SGM images from
the analytical solutions obtained within specific models. The latter results
allow also going beyond the non-invasive regime.

From the formulae we present, it follows that the SGM signal images the
matrix elements of the probe’s potential taken with two counter-propagating
eigenstates of the transmission operator. It cannot be a freely chosen basis
of the eigenstates, however, but one complying with the requirements set by
entire scattering matrix. The SGM signal can be related with the densities
of current and of charge at the Fermi level only in some special, symmetric
cases. If the structure is time-reversal invariant (TRI) and has a quantised
conductance curve, then the SGM signal in the lowest conductance plateau
region can be related to the charge density at the Fermi energy. If it addi-
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tionally has a central (four-fold) spatial symmetry and the leads accessing it
are wide, then the signal away from the structure’s exit is also related with
the current density. Moreover, if the SGM probe is sufficiently local, then
the plateau-region SGM signal from any TRI system can be decomposed as
a product of the charge densities of the scattering states incoming from one
lead and the scattering states incoming from the opposite one, both taken at
the Fermi energy (one of these sets will be completely unoccupied).

The importance of the quantum point contact structure comes from its
conductance quantisation. Through the expressions we derived, we predict
that the SGM images obtained in the quantised conductance plateau region
will be of second order in the probe potential strength, and for a sufficiently
adiabatic structure will have no interference fringes, even with ideal coher-
ence. It can have, as we will see from the computer simulation results, a
chequerboard-like interference pattern close to the scatterer structure, when
the tip potential is strong enough or when the structure is non-adiabatic.
The non-adiabatic structures give irregular patterns, unless the system, apart
from the central scatterer-structure, has no lateral boundaries confining it.
It can be conjectured, that the same could apply in a branched signal, even
at the lack of the confining walls.

The SGM signal in the step region of the conductance, or for a non-
quantised conductance curve, will be of first order in the probe’s potential
and will have an interference fringing pattern, oscillating around zero.

Our theory is applicable to the Scanning Gate Microscopy of any coherent
structure, the magnetic field, finite temperature effects and the influence of
the disorder potential can be included in this theoretical framework, allowing
for analytical, or at least numeric solutions. Neither the theory, nor the
simulations, does not take into account the electron-electron interactions,
whose inclusion into any of them remains a challenge for the future.

This dissertation is organised as follows. After defining and briefly re-
viewing the field of our interest in Chapter 1, we introduce the scattering
theory of quantum conductance in Chapter 2. Special attention is paid to
the issues related to the S-matrix and the bases in which we later perform
our calculations and present the results.

In Chapter 3, we derive perturbative formulae for the conductance change,
of the first and the second order in the tip’s potential. This is followed by a
detailed discussion of the obtained expressions and their basic consequences.
The evaluation of certain integrals appearing during the derivation is ex-
plained in Appendix A, while certain simple manipulations for determining
the current density formulae are placed in Appendix B.

In Chapter 4, we review the most important models for analytically solv-
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ing the transport problem for the quantum point contacts. Based on the
solutions of two of them, with quite opposite properties – the ideally adi-
abatic saddle-point model and the highly non-adiabatic abrupt hard-wall
model of the QPC, we evaluate and compare the SGM response and the lo-
cal densities of current and Fermi-energy charge. Finally in Chapter 5 we
investigate a few hard-wall models of the QPC. We plot the resulting trans-
mission vs. energy curves and SGM maps and find a few typical patterns of
the SGM signal behaviour, together with the conditions in which they occur.

A concise statement of conclusions and perspectives is placed in the clos-
ing Chapter 6.

Related publications
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Chapter 1

Introduction

The second half of the twentieth century saw an enormous development in
technology and science, an important part of which was driven by the ev-
erlasting trend towards miniaturisation in electronics, optics and materials’
engineering and physics. As a fruit of this process came, starting in the 1980s,
the techniques of manipulating and structuring matter at a nanometre scale,
known under the name of Nanotechnology. Quantum effects can already
become significant at these sizes, such as quantum confinement, quantum
interference or single electron charging effects. The sub-field of Condensed
Matter Physics investigating these phenomena is called Mesoscopic Physics.

Whereas the domain of Nanotechnology is usually defined from the engi-
neering (fabrication) perspective, as embracing all artificial structures whose
extent in at least one spatial dimension ranges from hundreds of nanometres
down to the size of single atoms, the mesoscopic scale is determined with
regard to the relevant physics, to be:

– small enough to observe the quantum-mechanical effects, i.e. on the
order of electronic phase coherence length or smaller; and

– large enough for disregarding the details of the individual microscopic
building-blocks and describing their behaviour statistically – which
means that a sufficiently large number of atoms should be incorpo-
rated.

The progress in both these fields was tightly interwoven, with the scientific
research being crucial for further advancement of the technology, and the
technological side furnishing science with improved tools and even new, in-
teresting systems to investigate. Downscaling in commercial electronics has
already reached the nano-scale, but it cannot continue into the mesoscopic
regime without a serious reshaping of the technology. (Transverse trends
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2 CHAPTER 1. INTRODUCTION

have also started – most notably the wide use of the multi-core processors
since 2000s.) Naturally, this reshaping must be based on a thorough fun-
damental understanding of the mesoscopic systems operation. For this, as
well as for the design and characterisation of future devices, suitable imaging
techniques will be indispensable.

In this work, we study one of the most promising among such techniques,
the Scanning Gate Microscopy (SGM). Its particular advantages follow from
the fact that it brings the spatially-resolved information, yielded by the
Atomic Force Microscopy (AFM), into the domain of transport measure-
ments. Based on scattering approach to quantum conductance, we develop a
systematic theory describing the response from a non-invasive Scanning Gate
Microscope (SGM). Further, a special attention will be paid to one particular
nanostructure, the Quantum Point Contact (QPC). Patterned from a layer
of 2-Dimensional Electron Gas (2DEG), it is one of the simplest conceiv-
able structures and also the one to have been most extensively investigated
with the means of Scanning Gate Microscopy. Its conductance characteristics
and SGM maps reveal some very interesting phenomena, which we concisely
review further in this chapter. We begin by introducing the technique of
Scanning Gate Microscopy.

1.1 Scanning Gate Microscopy

Scanning Gate Microscopy is an experimental technique in which a charged
probe is held in some place above the investigated sample, while conductance
between source and drain (Ohmic contacts) is measured and recorded [1] –
see fig. 1.1 for schema. The values obtained with many different positions of
the probe are then gathered to create a spatial map of the conductance G(r0)
– with r0 being the probe position – or of the conductance change ∆G(r0),
if the value with no probe present is used for reference.

As the probe, Scanning Gate Microscopy uses a metallised AFM tip [2].
The tip couples capacitively to the mobile electrons of the investigated struc-
ture (the electrons are usually buried inside the structure), so its influence can
be modelled simply as a potential. Its role is to act as an additional, movable
gate, which, by perturbing the system locally, influences a global property,
the conductance. This influence can be described in terms of backscatter-
ing of the electron waves, which prevents a certain fraction of the electron
flux from making its way to the drain electrode, leading to a negative con-
ductance change. The reverse process is also possible, leading to a (weak)
positive change in conductance when the backscattered waves interfere to
cancel some other reflected electron wave – see below.
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Figure 1.1: Schematic depiction of an SGM setup for investigating a 2DEG-
structure containing a quantum point contact. Figure reproduced from [1].

Although we work solely with the linear-response conductance here, other
transport coefficients, like finite-bias conductance [1] or Hall resistance [3],
can be mapped in the same way. The measurements are performed at Helium
temperatures, so that the basic requirement of the coherence length exceeding
the sample size could be easily satisfied. Depending on the desired regime of
operation of the investigated structure, other characteristic lengths must be
also controlled, like the mean free path or Fermi energy. These are influenced
not only by the temperature, but also by the material properties and external
fields.

Since its introduction in the mid-1990s [4], Scanning Gate Microscopy has
been used to investigate many hallmark systems of the mesoscopic physics
(for a brief review please refer to [5]), such as:

– quantum point contacts defined in two-dimensional electron gases [1,
6–18];

– carbon nanotubes [19];

– quantum wires [20];

– quantum dots defined in various structures, like

- semiconductor 2DEGs [21,22],

- carbon nanotubes [23],

- semiconductor nanowires [24,25],

- graphene [16];
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(a) A schema of a QPC defined in the plane of
GaAs/AlGaAs junction by a split-gate which
controllably depletes the 2DEG underneath.
Source: [33].

(b) The conductance quantisation in a QPC.
The gate voltage parametrizes QPC’s width,
so the curve is equivalent to G(WQPC). Source:
[33].

Figure 1.2

– Aharonov-Bohm rings [26–28];

– Hall bars [3];

– quantum Hall effect edge states [29];

– quantum billiards [30];

– bilayer graphene [31].

Out of the many, we place a special focus on the quantum point contacts.

1.2 Quantum Point Contacts

A quantum point contact is a short and narrow passage, of width on the order
of the electron’s Fermi wavelength, joining two wide electrically conducting
regions [32].

It can be realised in various systems, among which by far the most im-
portant is the configuration in which the QPC is defined within the plane of
a semiconductor heterojunction containing two-dimensional electron gas, see
fig. 1.2(a) for a typical example. Owing to the low disorder rates, modulation-
doped GaAs/AlGaAs is the standard material of choice.1 A crucial property
of the quantum point contacts is their conductance quantisation, discovered

1Experiments on InGaAs/InAlAs QPCs were also conducted [11]. In addition, outside
the semiconductor realm, QPCs were obtained in metallic break-junctions [34].
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at the end of the 1980s [33, 35] – when the QPC is operated in the ballistic
transport regime, its linear-response conductance changes in a step-like way
when its width WQPC , or Fermi energy EF , is varied:

G = G0N(W,EF ) , N ∈ Z , G0 = const , (1.1)

giving rise to a series of plateaus and ramps in the G(WQPC) and G(EF )
curves, see fig. 1.2(b). Each rise of the conductance to a new plateau is
caused by populating a new transverse mode inside the QPC’s constriction,
which since then acts as a perfectly transmitting, independent transport
channel [36,37] (see Ch. 4).

For an excellent review of the pre-SGM quantum point contacts research,
see [38]. Now, we would like to recapitulate some of the findings from the
Scanning Gate Microscopy of QPC transport available in the literature.

1.3 Most important experimental findings

1.3.1 Lobes in the angular structure

The most basic feature of the SGM signal, found already in the early ex-
periments [1], is that it exits from the QPC in the form of wide, smoothly
opening lobes, whose angular shape resembles the shape expected from the
electronic wave functions protruding from a narrow constriction, see fig. 1.3,
upper panel.2 The images are taken with the system set to the first, second
and third plateau of the quantised conductance.

Since the N -th plateau contains contributions due to the N lowest con-
striction modes, it is a natural postulate to subtract the previous, (N−1)-th,
plateau’s signal, as to isolate the signal from the highest open mode [1]. The
single-mode SGM signal components obtained with this method are shown
in the lower panel of figure 1.3, supplemented with simulated shapes of the
corresponding mode wave functions in the middle-parts. There is a good
qualitative agreement between the two. The correctness of this approach is
also supported, with some minor restrictions, by the theory we introduce in
Chapter 3 (see Ch. 3, subsec. 3.4.6).

1.3.2 Branching

In the regions further away from the QPC, the SGM signal no longer shapes
as smooth lobes, but starts splitting into narrow branches instead [6] – see

2We do not provide the scale in fig. 1.3. The values of ∆g are all negative, with the
dark regions corresponding to zero signal.



6 CHAPTER 1. INTRODUCTION

Figure 1.3:
Upper panel: Measured SGM signal with the QPC set to the first (A),
second (B) and third (C) conductance plateau. The middle parts are not
accessible to the tip-scan in the split-gate quantum point contacts, and show
the shape of the spit-gate only. (Figures from [1].)
Lower panel: The first-mode (D), second-mode (E) and third-mode (F)
SGM signal, isolated from the plateau-signals by subtracting the lower-
plateau image from each one (except first). The middle parts show simulated
shape of the modulus-squared of the constriction wave functions. (Figures
from [39].)

figure 1.4. This effect is attributed to the disorder potential, or, more pre-
cisely, to its smooth component (due to the charged dopant atoms out of the
junction plane) which, by small-angle scattering, can either disperse or focus
the electron wave functions [6]. The focussing gives rise to the high-signal
segments between two neighbouring branching events, by analogy to optics
called caustics [13].

The typical length of such a segment shows a clear dependence on the
electronic mean free path lmfp, constituting, however, only a fraction of it [13]
(fig. 1.4). The branching pattern is also quite robust against laterally shifting
the QPC opening through asymmetric biasing of the two halves of the split-
gate – the intensity of branches is prone to change, but their location varies
very little [13]. The whole pattern, including the fringing (see below), is even
more resistant to: thermal cycling of the sample, change of the AFM tip,
and to change of the overall split-gate voltage, as long as the conductance
stays on the same plateau [18]. This shows the importance of the medium
through which the electrons travel for the shape of the SGM signal. When
the conductance passes to a higher plateau, on the other hand, then the
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Figure 1.4: Maps of the SGM signal in a wide region neighbouring a QPC,
taken with the system tuned to the first conductance plateau. The images
clearly show branching patterns. The (b) and (c) images were taken for sam-
ples with increased electron mobility, and are added in order to illustrate two
points: the dependence of the length of signal segments between neighbour-
ing branching events (red arrows point to examples of such) on the mean
free path, here denoted by l; and the disappearance of fringing pattern in
conductance-plateau signal, which takes place in high-mobility samples (see
below). (Image (a) is adapted from [6], images (b) and (c) – from [13].)

image develops new branches on top of the already existing ones [18].
Even when the branching is present, the average signal intensity scales

with distance from the QPC opening, r0 (we take the QPC opening as the ref-
erence position), as r−2

0 [7], which agrees well with the electron wave backscat-
tering explanation of the SGM response.

The evolution of the signal from the lobed pattern to the branched one
as the tip is moved away from the QPC shows the interplay of the influences
on the signal: of the QPC structure from which it is “ejected”, and of the
environment to which it is “injected”.

1.3.3 Fringes

A very important and surprisingly diverse attribute of the SGM signal is its
fringing pattern. Most SGM images, whether branched or lobed, are, like
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Figure 1.5: Example SGM maps with different types of fringing pattern:

(a) fringes due to backscattering from the tip and the QPC – fringes have
a regular circular shape (high-mobility sample at 0.35K temperature,
adapted from [14] and its EPAPS supplement);

(b) fringes due to backscattering from the tip once and twice – chequer-
board pattern visible, with lateral spacing denoted by w (high-mobility
sample at 0.35K temperature, adapted from [14] and its EPAPS sup-
plement);

(c) fringes due to backscattering from the tip and an impurity – fringes
have an irregular shape, cross each other, disappear and re-appear,
precursors of branching can be seen (low-mobility sample at 4.2K tem-
perature, adapted from [13]).

The insets illustrate the mentioned mechanisms of fringes formation.

the ones in the figs. 1.3 (A-C) and 1.4 (a), decorated with fringes, stretching
perpendicularly to the presumed direction of electron motion and spaced by
half of the local Fermi wavelength. Below, we review the experimentally
observed fringing types, listing them by mechanism of their creation. The
fringes always result from interference of the electron waves back-scattered
by the tip towards the source electrode with the waves scattered at least once
by some other object.
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Backscattering from the tip and QPC

In the ramp region of the quantised conductance, where one of the constric-
tion modes is only partially open, one interference path is provided by a wave
partially reflected by the QPC, while another one is formed by its transmit-
ted part, once it gets backscattered by the tip and re-transmitted by the
QPC, see fig.1.5 (a), inset.

A measured pattern, attributed to this kind of mechanism, is shown in
fig. 1.5 (a). The fringes created by such an interference have a circular shape.
Ideally, their amplitude falls with distance like the overall signal, as r−2

0 . The
pattern can be spoilt by the disorder potential, which can scatter the waves
– introducing many different interferences, or deflect them – distorting the
constant phase difference lines, and also by thermal dephasing. Hence, this
type of fringes is visible only in high-purity samples in very low temperatures,
and fades out within the thermal coherence length lth from the QPC opening.

This mechanism is capable of producing a positive conductance change,
by destructive interference between the two paths. The fact that it is not
seen in figure 1.5 (a) indicates that other processes must be present.

Backscattering from the tip once and twice; chequerboard pattern

Still, in most experiments to date, it is the plateau-signal which has been
probed.

In this case, there is no partial reflection at the QPC and first of the
previously described paths does not form. The role of the base interference
path is now overtaken by the second of these paths, i.e. source-QPC-tip-
QPC-source, while the higher-order ones are created by the waves making
at least one additional trip from the tip to the QPC-defining constriction
walls and back to the tip. The lowest of those dominates over the rest, since
each round trip of this kind diminishes the flux contained in the interfering
wave by r−1

0 at least, r−2
0 at most.3 There are, actually, two such paths,

since each QPC wall offers one. Both interfere, superimposing their constant
phase difference lines4 on the circular ones of the base path, thus creating a
chequerboard-like pattern in the SGM image. A relevant SGM map is shown
in fig. 1.5 (b), and the mechanism is depicted in the inset.

Like the previous one, this fringing is limited by the thermal length, but
due to the involvement of second-order paths, its decay is faster.

3Depending on the curvature of the constriction wall at the reflection point. Fitting of
the fringes visibility decay in [14] indicates a value of r−20 .

4A family of hyperbolas with foci in the reflection points (green dashed lines in the
fig. 1.5 (b), inset).



10 CHAPTER 1. INTRODUCTION

In principle, this pattern is present in the ramp-region signal as well, but
is very feeble as compared to the basic one (cf. weak angular structure in
fig. 1.5 (a)).

Backscattering from the tip and impurity

The third mechanism, see inset to fig. 1.5 (c), requires the presence of some
hard scattering centres, like lattice defects or ionized dopant atoms close to
the plane of the 2DEG. Each of such impurities introduces an interference
path of its own, source-QPC-impurity-QPC-source, with the phase accumu-
lation independent of the tip position. Their interference with the usual
source-QPC-tip-QPC-source path gives a fringing pattern whose shape, nor-
mally circular, is hugely distorted by the influence of disorder (this includes
the already discussed branching effect). Due to the measurement conditions,
it is this type of fringes which is seen in all the early experimental results
[1, 6–9], for example in fig. 1.4 (a). The mechanism itself has been studied
in detail by adding an artificial, mirror-like scatterer, to create a strong and
controllable interference path [10].

Because of the thermal dephasing, an impurity contributes to the in-
terference pattern only if its distance from the QPC opening rimp differs
from the tip-opening distance, r0, by no more than the thermal length:
r0 − lth < rimp < r0 + lth. Therefore, the fringes in SGM images persist
even at distances from the QPC beyond the thermal coherence length [6,40],
but disappear in high-purity samples (compare fig. 1.4 (a) vs. (b-c)) [13] un-
less the temperature is very low [14]. As the scanning tip is moved away from
the QPC, the set of “active” impurities changes, which can lead to variation
of phase and amplitude of the fringes. An example pattern can be found in
fig. 1.5 (c).

Like in the first of the fringing mechanisms above, this one is, at least in
principle, capable of producing positive SGM signal.

Fringes spacing, ring pattern

In each of these mechanisms, the fringes spacing should equal half of the
local Fermi wavelength, which reflects the simple fact that the phase-path is
twice the tip-QPC distance. It has been even proposed to use the spacing as
a measure of the local electron density [8].

However, recent experiments in high-purity samples have found an inter-
esting modulation of the fringes spacing as a function of the distance from
the QPC [18], which escapes the simple picture presented above.
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1.4 Interpretation of the SGM signal

1.4.1 Standard interpretation

As we mentioned before, the change of conductance, which constitutes the
SGM signal, is caused by scattering of the electrons from the source-drain flux
and turning them back towards the source. Based on the plausible argument
that the greater the original flux at r0, the greater this back-scattering should
be, it was proposed to interpret the SGM maps as images of electron flow [1].
This interpretation drew a great interest towards the SGM technique, since
accessing the electron flow experimentally would mean touching upon the
very fundamentals of quantum science, the relations between position and
momentum of microscopic particles (not to mention the immediate utility
for electronic devices).

A number of simulation results, both classical [41] and quantum [10, 12,
41–43], tend to support it – the conductance change and current density
maps they yielded resemble each other to a reasonable degree. Still, certain
experiments investigating small Aharonov-Bohm rings, combined with sim-
ulations, suggested a closer connection of SGM signal to the local density of
states (LDOS) [27,28]. A generally applicable theory allowing for unambigu-
ous interpretation of the SGM signal with arbitrary tip voltage strength is
still missing.

Two conceptual issues about this standard, electron-flow interpretation,
are worth mentioning. First, the above arguments are essentially semiclas-
sical. The ubiquitous fringing pattern, obviously not shared by the electron
current density, is explained within this picture by “dressing” of the ex-
pected electron paths with phase and considering their possible interferences
(see previous section). Second, it tacitly assumes that, before hitting the
tip, the electrons move in their usual fashion, as if the tip was not present.
This point of view is local, which is not necessarily compatible with a fully
quantum-mechanical picture, where the electron motion is described through
the wave function – a global field, after all. Whether the SGM signal is a
local or non-local quantity is one of the issues recently researched (see [44]).

1.4.2 The perturbative theory of SGM

As a first step towards the general theory fully describing the SGM response,
a perturbative approach has been proposed [44, 45], leading to a clear-cut
relationship between the infinitesimal conductance change due to a mild tip
potential and the original (unperturbed) scattering properties and wave func-
tions of the investigated system. Expressions up to second order in the tip
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potential have been given. Presenting and discussing this theory is the main
topic of this work.

A natural concern arises, whether the perturbative approach, operating
with the notion of weak, non-invasive probe, can be useful in the description
of the real-life experiments, where the tip’s potential is strong enough to
create the 2DEG depletion disc of a size larger than the Fermi wavelength.
We will address this question analytically and also by the means of numeric
simulations, which can reproduce the tip potential of arbitrary strength. It
seems that the experimentally used tips do not meet the perturbation-theory
criteria, making instead, due to their very large size, more of a classical
obstacle for the electrons. Moreover, it is not impossible to employ milder [31]
or spatially smaller tips [25] in the experimental measurements. Developing
a truly non-invasive probe would be important for the sake of observing a
completely quantum behaviour.

Naturally, the idealisations we use to set up our theoretical framework do
not restrict to the choice of perturbation approach. We would like to mention
the most crucial ones.

First of all, we work within the independent-particle approximation. Thus,
the very interesting questions of electron-electron interactions (see [15,46,47])
are not discussed in here. We expect, nevertheless, that our theoretical con-
siderations can lay a reliable basis for possible interacting models in the
future, or at least for identifying which features of the experimental results
could be traced back to the possible influence of electronic interactions.

Secondly, we work with no external fields. Our theory can be generalised
to cater for weak magnetic fields, if appropriate treatment of completeness
and orthonormality relations are established. The electric field (i.e. finite
bias) could be incorporated in a simplistic way – see Ch. 2, eq. 2.52 –
which would not make justice to all relevant processes, including the electron-
electron scattering.

All our results are for zero temperature. Finite temperature effects are
not targeted at with our theory, neither with the simulations, but are, in
principle, tractable – see e.g. eq. (2.55) of Ch. 2 – and give a wealth of inter-
esting phenomena. For a treatment of the thermal phenomena in a similar
physical context see [48, 49]. Because of their large experimental relevance,
we will occasionally comment on the influence of the finite temperature. Fi-
nally, the electronic disorder has been given very limited room throughout
this work, nevertheless we mention its influence, as it plays an important role
in the general context of interpreting the SGM images.



Chapter 2

Theory of quantum
conductance

In this chapter we introduce the scattering approach to quantum conduc-
tance and build up our theoretical paradigm. We do it step by step, as
shown schematically in figure 2.1(a-c): starting from the wave-mechanical
description of electron motion in a simple two-dimensional wire and succes-
sively adding the elements needed for describing the conductance through a
QPC, or any other coherent structure. We first introduce the electron states
suitable for the description in each of these situations: the wire states and
the scattering states (secs. 2.1-2.2). A particular attention will be paid to
their mutual relations, expressed in terms of the transmission and reflection
amplitudes which constitute the S-matrix (sec. 2.3), an entity of vivid impor-
tance throughout all of this work. Then we fill the states with non-interacting
electrons (sec. 2.4) and determine the conductance within what is known as
the Landauer approach (sec. 2.5). We will eventually work in the linear re-
sponse approximation, so in the end solely the states at the Fermi energy
will be of relevance. In the last section (2.6), we briefly discuss the way of
calculating the S-matrix. The final object of our interest, the signal from an
SGM system – fig. 2.1(d) – will be introduced only in the next chapter.

2.1 Electron states in a perfect wire

Let us consider the simplest conceivable 2D structure: an ideal wire – a piece
of disorder-free material stretching infinitely along the x-coordinate (‘longi-
tudinal direction’), bounded along the y-coordinate (‘transverse direction’)
and symmetric under translation in x. Such a wire will serve us as a model
for a lead joining the proper structure with a reservoir, but it could also be

13
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(a) (b) (c) (d)

Figure 2.1: The subsequent levels of description of the SGM system:
(a) lead modelled as a regular wire,
(b) a nanostructure accessed by two leads,
(c) a nanostructure connected by the leads with two reservoirs,
(d) a nanostructure with leads, reservoirs, and the SGM tip.

Symbols:
L – lead(s), S – scatterer, R – reservoirs, T – the tip.

used as a simplistic model for the narrow part of the QPC (Ch. 4).

2.1.1 Hamiltonian and eigenfunctions

The effective mass Hamiltonian for an electron in such a wire can be written
as

HW = − ~2

2Me

(∂2
x + ∂2

y) + U(y) (2.1)

with the potential energy U depending only on the transverse variable. Its
eigenfunctions read

ϕ(r) =
exp(iskx)√
2π~2k/Me

φ(y) , s ∈ {1,−1} . (2.2)

and the eigenenergies are denoted shortly by ε. The parameter k, that we
identify with the longitudinal wave number, is associated with free propa-
gation and therefore runs across a continuous set. Since the direction of
propagation is marked explicitly with s = ±, the wave number k has to
be positive.1 The φ(y) factor is the solution to the transverse part of the
time-independent Schrödinger equation:[

− ~2

2Me

∂2
y + U(y)

]
φ(y) =

[
ε− ~2k2

2Me

]
φ(y) . (2.3)

1In this context, we know that k is real, for the presence of an imaginary part of k
would yield a real exponential in the wave function which then would become unphysical,
growing indefinitely in one direction. We also exclude k = 0 states – they will no longer
be solutions when we add the central structure (sec. 2.2) and for the integrals that we
treat in here the apparent 1/

√
k singularity is always removable, hence the exclusion of

the k = 0 point is irrelevant.
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Due to the y-confinement, the energy spectrum of H
(⊥)
W ≡ − ~2

2Me
∂2
y + U(y)

is discrete and accordingly we label its eigenstates, called transverse modes,
and their energies, with a mode index a running through the positive integer
numbers (the order being defined by ascending transverse energies):

φa(y), ε(⊥)
a , a = 1, 2, . . . . (2.4)

It is clear from the above, that the stationary states in a wire have energies

ε = ε(⊥)
a +

~2k2

2Me

. (2.5)

Such states can in general be degenerate, their number being denoted by
N(ε), and to avoid the ambiguity we shall always write the longitudinal
wave number with the corresponding transverse mode index:

ε = ε(⊥)
a +

~2k2
a

2Me

. (2.6)

We see that we can label the wire eigenstates uniquely either by (ka, a, s) or
by (ε, a, s). Most times we will use the latter, and write: ϕεas(r).

The eq. (2.6) has been plotted (for multiple a) in the figure 2.2. It gives
the dispersion relation ε(ka, a) for the waves (2.2). A particle described by
such a wave function moves with the velocity

va =
1

~
∂ε

∂ka
=

~ka
Me

. (2.7)

In addition, the plot in 2.2 serves as a handy way of depicting on an ε-k
plane the presence of the electron states. It is easily read from the figure,
that the sum over all states can be expressed in equivalent forms as:

∑
s∈{1,−1}

∫ ∞
ε
(⊥)
1

dε

N(ε)∑
a=1

(
. . .
)

=
∑

s∈{1,−1}

∞∑
a=1

∫ ∞
ε
(⊥)
a

dε
(
. . .
)
. (2.8)

2.1.2 Orthogonality and normalization

The transverse solutions (2.4) describe bound states, so they can be normal-
ized in the usual particle-density sense. As eigenfunctions of a Hermitian
operator they are also orthogonal [50], so we can write:∫ ∞

−∞
dy φ∗a(y)φa′(y) = δaa′ , (2.9)
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Figure 2.2: Dispersion relation for the wire states (2.2).

with the Kronecker delta δaa′ . They can be chosen real, hence the complex
conjugate in (2.9) above could be dropped, as well as in (2.17) below.

Similarly, we can establish the orthonormality of the full wave functions,
but the normalization here is set by the flux and not by the particle density.
This is easily verified by the application of the current density operator (r̂
and p̂ are the position and momentum operators)

̂(r) =
e

2Me

[p̂ δ(r̂− r) + δ(r̂− r)p̂] , (2.10)

whose diagonal matrix elements 〈ϕεas | ̂(r)|ϕεas〉 yield the current densities
of the wire states. In position representation they read:

j {ϕεas; r} ≡ 〈ϕεas | ̂(r)|ϕεas〉 =

=
e~

2iMe

[ϕ∗εas(r)∇ϕεas(r)− ϕεas(r)∇ϕ∗εas(r)]

=
e~
Me

Im [ϕ∗εas(r)∇ϕεas(r)] . (2.11)

Only their x-components are of interest (φa carry no current anyway):

j(x) {ϕεas; r} =
e~
Me

Im

[
(exp(iskax))∗ iska exp(iskax)

2π~2ka/Me

φ∗a(y)φa(y)

]
= s

e

h
|φa(y)|2 . (2.12)

Once we integrate over y to get the total current along the wire, with (2.9),
we see that each (ε, a, s) state is normalized to carry the current

J (x) {ϕεas;x} ≡
∫

dy j(x) {ϕεas; r} = s
e

h
(2.13)
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(per unit energy – cf. next paragraph). Revoking the definition contained
in eq. (2.11), we can formally treat J (x) as an operator of the longitudinal
current, and the expression J (x) {.;x} as its diagonal matrix element in the
position-representation in a basis of our choice.

The normalization that we use gives the meaning to the wave functions
ϕεas(r) as the amplitudes of probability density not only in space, but also in
energy. In other words, the wave functions we work with already incorporate
the densities of states in energy.2 This is very convenient, as we work with
continua of states – each a-branch of (2.6) is such a continuum – and it allows
us to write sums over states in the energy domain in a simple form, without
referring to the density of states.

It also means that the wire states are orthogonal. The orthogonality is
demonstrated by taking the product of two arbitrary wave functions:∫

dr ϕ∗εas(r)ϕε′a′s′(r) =

=
Me

2π~2

∫∫
dxdy

1√
kak

′
a′

exp
[
−i(ska − s′k′a′)x

]
φ∗a(y)φa′(y)

=
Me

~2
√
kak

′
a′

δaa′δ(ska − s′k′a′)

=
Me

~2k′a
δaa′δss′δ(ka − k′a)

= δaa′δss′δ(ε− ε′) , (2.14)

where we have used the Fourier decomposition of the Dirac delta function

δ(k) =
1

2π

∫ ∞
−∞

dx exp(±ikx) (2.15)

and the simple result derived from the properties of the Dirac’s delta (gath-
ered for example in [51]):

δaa′δ(ε− ε′) = δaa′δ

(
ε(⊥)
a +

~2k2
a

2Me

− ε(⊥)
a − ~2k′2a

2Me

)
=

Me

~2k′a
δaa′
[
δ(ka − k′a) + δ(ka + k′a)

]
=

Me

~2k′a
δaa′δ(ka − k′a) , (2.16)

granted that ka, k
′
a > 0. The k′a is defined through the eq. (2.6) as k′a ≡ ka(ε

′).

2Equivalently, we could say that the density of these flux-normalized states in energy
is identically equal to one state per unit energy. In this case the units of the wave function
would have to be different, and the density of states Da(ε) = 1[J−1] would appear in the
current formulae just for the unit conversion.
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2.1.3 Completeness

Also from the Hermiticity of the H
(⊥)
W operator over the space of bound

functions, it follows that the transverse states constitute a complete set in
their appropriate subspace [52,53], which is often expressed by the means of
the closure relation

∞∑
a=1

φa(y)φ∗a(y
′) = δ(y − y′) . (2.17)

In order to show the closure for the full wave functions (2.2), we need to take
the sum of ϕ(r)ϕ∗(r′) over all the possible (ε, a, s) states (cf. (2.8)):∑

s∈{1,−1}

∞∑
a=1

∫ ∞
ε
(⊥)
a

dε ϕεas(r)ϕ∗εas(r
′) =

=
∑
s=±

∞∑
a=1

∫ ∞
ε
(⊥)
a

dε
exp

[
iska(x− x′)

]
2π~2ka/Me

φa(y)φ∗a(y
′)

=
1

2π

∑
s=±

∞∑
a=1

φa(y)φ∗a(y
′)

∫ ∞
0

~2ka
Me

dka
exp

[
iska(x− x′)

]
~2ka/Me

=
1

2π

∞∑
a=1

φa(y)φ∗a(y
′)

{∫ ∞
0

dka exp
[
ika(x− x′)

]
+

∫ ∞
0

dka exp
[
−ika(x− x′)

]}
=

1

2π

∞∑
a=1

φa(y)φ∗a(y
′)

∫ ∞
−∞

dka exp
[
ika(x− x′)

]
= δ(x− x′)δ(y − y′) . (2.18)

In the third line the variable of integration has been changed to ka according
to the dispersion relation (2.6), and in the second integral on the fourth line
we “flip” the integration variable, ie. change it to −ka and then rename this
one as ka in order to complete the first integral. The final passage is done
by first applying (2.15) and then (2.17).

Completeness is a crucial property. The wire states we have introduced,
being complete and linearly independent, form a basis for the description of
the electron motion through a wire. Obviously, a travelling electron does
not have to be in one of them. But any complicated state in which it might
exist, can always be written as a linear combination of the basis states. Such a
linear combination includes the continuous case, where the linear coefficients
are given by an envelope function, ie. the creation of a wave packet. The
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exact shapes of the wave packets, however, will not be relevant in the scope
of this work.

2.1.4 Examples of transverse wave functions

Before closing this preliminary section, we would like to mention the form of
transverse wave functions for two simple cases of the potential U(y):

1) the hard-walled square well of width W ,

U(y) =


∞ , y ≥ W/2

0 , |y| < W/2

∞ , y ≤ −W/2
, (2.19)

with the solutions

φa(y) =

√
2

W
sin

[
πa

W

(
y +

W

2

)]
, (2.20)

and their associated energies,

ε(⊥)
a =

~2

2Me

π2a2

W 2
, (2.21)

2) the harmonic potential,

U(y) =
1

2
Meω

2
yy

2 , (2.22)

whose solutions are given by

φa(y) =
1√

2a−1(a− 1)!

(
Meωy
π~

)1/4

exp

(
−Meωy

2~
y2

)
Ha−1

(√
Meωy
~

y

)
(2.23)

with the Hermite polynomials Ha−1, and the energies

ε(⊥)
a = ~ωy

(
a− 1

2

)
. (2.24)

The above solutions will be useful when we apply our theoretical results of
chapter 3 to particular models of a quantum point contact in chapter 4.
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2.2 Electrons in the leads, scattering states

Let us investigate a system that consists of the structure of our interest, whose
Hamiltonian we denote by HS, accessed from the left and right by a pair of
leads, of which we assume that they are well approximated by the ideal wires
defined in the previous section, with Hamiltonian HW . (The structure-leads
coupling we include into HS.) At a reasonable distance from the structure
the electrons can still be well described by the wire states, in this context
also called lead states, or lead modes. But the presence of the structure at the
end of the wire imposes some additional boundary conditions, and it turns
out that another basis, constructed upon the states of the previous one, is
more convenient for the problem of electron motion.

2.2.1 Scattering states

As long as the structure in question is coherent, we are able to describe
a moving electron with one wave function stretching across the entire system.
If we inject from the left an electron in a wire-basis state, its wave function
will consist of:

– the incident wave (2.2) in the left lead, propagating to the right and
reaching the structure,

– some, possibly complicated, form inside the structure, and

– the reflected and transmitted wave parts in the left and right lead,
travelling away from the structure.

All are of the same energy, since we assume no inelastic processes. The trans-
mitted and reflected parts away from the central structure can be resolved
into linear combinations of the wire states. So the asymptotic form of such
a scattering state can be written as{

ϕεa+(r) +
∑N(ε)

b=1 rbaϕεb−(r), x→ −∞∑N(ε)
b=1 tbaϕεb+(r), x→ +∞

In principle, we should also have included the non-propagating modes (b >
N) for the basis expansion to be correct – the lead-wire ends at the structure,
so decaying exponentials for the longitudinal part of the wave function are
now in place. However, these terms fall very quickly with the distance from
the central structure and in the asymptotic form can be neglected. Generally
speaking, the N ’s can be different in different leads, but for simplicity we will
incorporate the assumption of identical leads.
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We would like to mark the items according to whether they propagate
towards or away from the central structure. For this purpose, we introduce a
superscript: (+) for the outgoing part of the wave and (−) for the incoming
part of the wave, and use them instead of the left-right motion label s=±.
Also, a lead label l is added: 1 for the left lead and 2 for the right lead. Thus,
we have the wave function

Ψ1εa(r) =

{
ϕ

(−)
1εa(r) +

∑N
b=1 rbaϕ

(+)
1εb (r), x � −L/2∑N

b=1 tbaϕ
(+)
2εb (r), x � L/2

(2.25a)

for a scattering state originating on the left, and

Ψ2εa(r) =

{ ∑N
b=1 t

′
baϕ

(+)
1εb (r), x � −L/2

ϕ
(−)
2εa(r) +

∑N
b=1 r

′
baϕ

(+)
2εb (r), x � L/2

(2.25b)

for the scattering state from the right. L is the longitudinal extension of the
structure. Each of these wave functions is labelled by the set of indices of
the lead mode which provides the incoming part for the scattering state. We
say that the scattering state Ψlεa is generated by the lead state ϕ

(−)
lεa .

2.2.2 Current of a scattering state

Once we calculate the longitudinal component j(x) {Ψlεa; r} of the current
density of a single scattering state,

j {Ψlεa; r} = 〈Ψlεa | ̂(r)|Ψlεa〉 (2.26)

– the explicit expression of which is given in Appendix B, eq. (3.17)3 – and
integrate it over dy to make use of the orthogonality of transverse modes
(2.9), we obtain the current of each scattering state on the left and on the
right in the simple forms:

J (x) {Ψ1εa;x} =
e

h

[
1−

(
r†r
)
aa

]
, x � −L/2 , (2.27a)

J (x) {Ψ1εa;x} =
e

h

(
t†t
)
aa
, x � L/2 , (2.27b)

J (x) {Ψ2εa;x} =
e

h

(
t′†t′
)
aa
, x � −L/2 , (2.27c)

J (x) {Ψ2εa;x} =
e

h

[
1−

(
r′†r′

)
aa

]
, x � L/2 . (2.27d)

3For one case only – in the region to the right of the scatterer, while electrons are
injected from the lead l = 1.
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It is important to remember that, due to our particular definition of the
electron states, these currents retain the character of densities when viewed
in the energy domain.

From the above considerations we see that out of each e
h

injected into
the left lead in the incident lead mode (ε, a), we get e

h
[t†t]aa on the right,

while e
h
[r†r]aa gets back to the left lead and diminishes the net (x-oriented)

current inside it. Similarly for the right-lead injection. The Hermitian ma-
trices t(′)†t(′) and r(′)†r(′) represent transmission and reflection operators, and
their diagonal elements T

(′)
a ≡ [t(′)†t(′)]aa, R

(′)
a ≡ [r(′)†r(′)]aa are transmission

and reflection probabilities for a single mode. These are essential in the cal-
culation of the structure’s conductance. However, we still do not know the
rate of injection of the electrons into our system, which will be considered in
sec. 2.4.

2.2.3 Scattering states as a basis

It can be easily seen, that it is possible to reverse the relations (2.25a-2.25b)

and obtain any of the wire-basis states ϕ
(±)
lεa in the appropriate asymptotic

region by taking a suitable linear combination of the scattering states Ψlεb:

– for the left lead, as x→ −∞,

ϕ
(−)
1εa(r) = Ψ1εa(r) +

∑
b

(−t′−1r)baΨ2εb(r) , (2.28a)

ϕ
(+)
1εa(r) =

∑
b

t′−1
ba Ψ2εb(r) , (2.28b)

– for the right lead, as x→ +∞,

ϕ
(−)
2εa(r) = Ψ2εa(r) +

∑
b

(−t−1r′)baΨ1εb(r) , (2.29a)

ϕ
(+)
2εa(r) =

∑
b

t−1
ba Ψ1εb(r) . (2.29b)

The required invertibility of the t and t′ matrices can be safely assumed,
since vanishing of its determinant, would mean that at least one mode of
the transmission eigenbasis gets fully stopped (see sec. 2.3.3), which is the
case for an impenetrable barrier only – in all other cases there is at least a
tunnelling transmission – and such a case is of no interest to us.

The above construction (2.28–2.29) shows that the set of the scattering
states is complete inside each individual lead. They are not complete, how-
ever, in the joint space of both leads. Such a space is a tensor product of the
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individual leads’ spaces, its dimension is therefore greater than the dimen-
sion of the set of scattering states. Nonetheless, what we need is the space
of the wave functions defined in both leads and complying with the fact that
the leads are connected by the scatterer. In that space, the scattering states’
completeness holds, as long as they are consistent with the “connecting”
Hamiltonian, HS.4 It is in this sense, that we treat the presence of the scat-
terer as a boundary condition, disregarding, for now, what exactly happens
inside it.

There is yet another boundary condition that we have to mention, implicit
in our construction of the scattering states. It is the (asymptotic) time
evolution of a particle described by them. A wave packet built up from these
states: ∫

dε
∑
a

Cεa exp(−iεt/~)Ψlεa(r)

will follow the evolution expected from a “projectile” – in the distant past it
describes a particle moving freely inside a wire towards the central structure
and the waveform then contains no information of the structure, later it gets
scattered and heads away in a complicated state determined by the influence
of the scatterer. Such scattering states are referred to as the outgoing scat-
tering states [54, 55], and are usually written with a (+) superscript which
we omit for conciseness.

The relation between the scattering states and the lead states can also be
described by means of the Lippmann-Schwinger equation with the retarded
Green function of the clean wire, the choice of the retarded function being
dictated by the just-described boundary condition in time [56].5 Here, the
Hamiltonian HS of the central structure is treated as a perturbation (not
necessarily weak) on the Hamiltonian HW of the clean wire, and the scat-
tering states are the solutions to the full Hamiltonian HW + HS. We shall
occupy ourselves with this formalism when we add to our system yet another
ingredient – the SGM tip. At this moment, we invoke only one of its results,
whose proof can be found in [56] (sec. 4-2b, p. 298): the scattering states sat-
isfy the same orthonormality relations as the unperturbed states they were
made of,

〈Ψlεa|Ψl′ε′a′〉 =
〈
ϕ

(−)
lεa |ϕ

(−)
l′ε′a′

〉
. (2.30)

This, together with the completeness, grants that the set of all the scat-
tering states is an orthogonal basis. At a given energy, we can decompose

4This is ensured by the Fisher-Lee relations, sec. 2.6.
5Note that in [56] the terminology is the reverse of what we use – the states of our

interest are called incoming scattering states.
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an arbitrary wave allowed by our system not only into the lead states in the
asymptotic regions:

Ψε =
∑
la

C
(−)
la ϕ

(−)
lεa +

∑
la

C
(+)
la ϕ

(+)
lεa , (2.31)

but also into the scattering states in the entire conducting system:

Ψε =
∑
la

C
(−)
la Ψlεa . (2.32)

We stress that the coefficients C
(+)
la are not independent. In order to comply

with the form of the scattering states (2.25a–2.25b), they have to be given
by a matrix equation(

C
(+)
1 �

C
(+)
2 �

)
=

(
r t′

t r′

)(
C

(−)
1 �

C
(−)
2 �

)
, (2.33)

where the reflection and transmission amplitudes of (2.25a) have been ar-

ranged as matrices r(′), t(′), whereas C
(−)
l � and C

(+)
l � should be understood as

column vectors of the expansion coefficients of, respectively, the incoming
and outgoing parts of the wave Ψε.

The orthogonality of the basis formed from scattering states will also
allow us for a very convenient eigendecomposition of the Green function in
sec. 3.1, chapter 3.

2.3 Scattering matrix

The transformation matrix of (2.33),(
r t′

t r′

)
≡ S , (2.34)

is of great importance to our formalism, because it encapsulates all the rel-
evant information about the scatterer. It is called the scattering matrix,
or shortly S-matrix, and relates the amplitudes of the incoming and outgo-
ing lead states. In general, the S-matrix depends on energy, but we do not
display it in our notation.
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2.3.1 Unitarity

Application of the current density operator to a wave incoming from the left,
ie. Ψ

(in)
1ε =

∑
aC

(−)
1a ϕ

(−)
1εa , followed by dy integration and the use of orthonor-

mality (2.9), yields a total longitudinal current of

J (x)
{

Ψ
(in)
1ε ;x

}
=
e

h

∑
a

|C(−)
1a |2 . (2.35)

By adding to the above an analogous result for the wave coming from the
right, we get the entire current towards the structure, in the units of e/h:

1

e/h
J (x,in) =

∑
la

∣∣∣C(−)
la

∣∣∣2 =

(
C

(−)
1 �

C
(−)
2 �

)†(
C

(−)
1 �

C
(−)
2 �

)
and similarly for the current flowing outwards:

1

e/h
J (x,out) =

∑∣∣∣C(+)
la

∣∣∣2 =

(
C

(−)
1 �

C
(−)
2 �

)†
S†S

(
C

(−)
1 �

C
(−)
2 �

)
.

Hence, for the sake of current conservation we demand that the scattering
matrix be unitary:

S†S = SS† = 1 . (2.36)

This implies, in particular, that

r†r + t†t = 1 (2.37a)

and
r†t′ + t†r′ = 0 (2.37b)

in the appropriate subspaces.

2.3.2 Symmetry

Let us write in the lead-state basis a complex conjugate of some wave function
allowed by our system:

Ψ∗ε =
∑
la

C
(−)∗
la ϕ

(−)∗
lεa +

∑
la

C
(+)∗
la ϕ

(+)∗
lεa

=
∑
la

C
(−)∗
la ϕ

(+)
lεa +

∑
la

C
(+)∗
la ϕ

(−)
lεa .

It is a spatial part of a time-dependent wave function with the reversed time.
As we assume zero magnetic field, the system is time-reversal invariant, so its
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time-dependent Schrödinger equation is satisfied by this state even with the
non-reversed-time temporal part. Hence, the incoming and outgoing parts
of the wave Ψ∗ε have to obey the transformation (2.33), that is:(

C
(−)
1 �

C
(−)
2 �

)
= S

(
C

(+)
1 �

C
(+)
2 �

)
. (2.38)

Substituting to the above the relation (2.33) for the original state Ψε, we
obtain

S∗S = SS∗ = 1 (2.39)

which, combined with the unitarity (2.36), tells us that the S-matrix must
be symmetric, S = ST.

2.3.3 Polar representation of the S-matrix

By performing singular value decompositions of the transmission and reflec-
tion amplitude matrices , t(′) and r(′), and using the above condition that S
be unitarity, we can obtain a particularly convenient form of the scattering
matrix [57–59]:

S =

(
u3 0
0 u4

)(
−R T
T R

)(
u1 0
0 u2

)
. (2.40)

The auxiliary matrices u1, u2, u3, u4 are all unitary. In the time-reversal
invariant case, we can further simplify them by applying the S-matrix sym-
metry requirement, getting

u3 = uT
1 , u4 = uT

2 . (2.41)

The remaining T andRmatrices are diagonal and contain the singular values
of the t(′) and r(′) matrices, i.e. the square roots of the eigenvalues of the
transmission and reflection operators T (′) and R(′). They can be parametrized
in the following way:

Rm ≡ Rmm =

(
λm

1 + λm

)1/2

, (2.42a)

Tm ≡ Tmm =

(
1

1 + λm

)1/2

, (2.42b)

with real positive λm, m = 1, 2, . . . , N .
More directly, we could write (2.40-2.41) as

t = uT
2 T u1 = t′T , r = −uT

1Ru1 , r′ = uT
2Ru2 . (2.43)
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It follows immediately, that the matrices u1 and u2 diagonalize the transmis-
sion operators t(′)†t(′):

t†t = u−1
1 T 2u1 , (2.44a)

t′†t′ = u−1
2 T 2u2 , (2.44b)

and, consequently, that the wave functions

≈
ϕ

(−)

lεm(r) =
∑
a

[ul]
†
am ϕ

(−)
lεa (r) (2.45)

are transmission eigenmodes with the corresponding eigenvalues T 2
m , for both

values of l. It is worthwhile to remark here, that by a transmission eigenmode
we understand an eigenstate of the transmission operator acting over the
space of the modes of the appropriate lead, t†t for l = 1 and t′†t′ for l = 2.
An eigenmode therefore exists in one lead only (x < −L/2 or x > L/2).

What we will also need are the scattering eigenstates, i.e. the scattering
states generated by the transmission eigenmodes:

≈
Ψlεm(r) =

∑
a

[ul]
†
am Ψlεa(r) . (2.46)

They, too, are eigenstates of the transmission operators t(′)†t(′), but in a differ-
ent space (the space of functions over the entire position-space, cf. sec. 2.2.3).
Their explicit asymptotic form in the basis of the transmission eigenmodes
is

≈
Ψ1εm(r) =


≈
ϕ

(−)

1εm(r)−Rm

≈
ϕ

(+)

1εm(r), x � −L/2
Tm
≈
ϕ

(+)

2εm(r), x � L/2
, (2.47a)

≈
Ψ2εm(r) =

 Tm
≈
ϕ

(+)

1εm(r), x � −L/2
≈
ϕ

(−)

2εm(r) +Rm

≈
ϕ

(+)

2εm(r), x � L/2
, (2.47b)

where the outgoing, (+)-superscripted, eigenmodes are defined simply as the

eigenmodes with the reversed direction of propagation:
≈
ϕ

(+)

lεm(r) ≡
[
≈
ϕ

(−)

lεm(r)

]∗
.

Despite the fact that an overall phase factor could be freely introduced
to either of the ul matrices in (2.44), we see from the relations (2.43) that
compatibility with the t(′) and r(′) matrices, whose phases are fixed by the
definition of the scattering states (2.25) and of the lead modes (sec. 2.1),
does not allow for such a choice to be made when writing the S-matrix in
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the polar form (2.40). It is therefore important to note that we work with
one particular set of eigenmodes and with one particular set of the scattering
eigenstates, both uniquely determined by the mentioned definitions of the
scattering states and the lead modes. Each time we speak of the transmis-
sion eigenmodes basis or of the scattering eigenstates basis, we do not mean
arbitrary bases, but precisely these sets.

Owing to the Hermiticity of t(′)†t(′), the transmission eigenmodes form
orthogonal bases in their spaces, and so do the scattering eigenstates in their
space. The currents of the eigenmodes can be evaluated from eq. (2.35).
Unitarity of the ul-matrices ensures that the normalization of the eigenmodes
(also of the outgoing ones) is the same as of the ordinary lead states.

If we use (2.35) on the outgoing transmitted parts of the scattering eigen-
states, we get

J (x)

{
Tm
≈
ϕ

(+)

lεm;x

}
=
e

h
T 2
m , (2.48)

for both l, which explicitly shows that the transmission eigenvalues T 2
m give

the transmission probability for each eigenmode, as expected. And since the
determinant of the transmission matrix, det(t†t) = det(t)∗ det(t), is at the
same time equal to the product of its eigenvalues, we see that indeed the
vanishing of the determinant of the transmission amplitude matrix t, would
eventually imply exactly zero transmission of at least one of such modes.
Naturally, the same is true for t′.

The scattering states make the transport channels of our system. For
the purposes of further chapters, we would like to classify the scattering
eigenstates according to whether they are open or closed. We denote the set
of all the eigenstates (or, equivalently, all the indices thereof) which are:

– completely open, Tm ≈ 1 – by M,

– completely closed, Tm ≈ 0 (this is limited by tunnelling) – by M,

– partially open – by M,

while the space of all the active channels will be denoted by M. Their
respective numbers will simply be NM, NM, NM and NM.

2.4 The reservoirs

In order to determine the current and the conductance through a nanostruc-
ture within the scattering formalism, it is necessary to supplement the system
we have described so far with one important element – the reservoirs. [60] We
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imagine that at the “loose” end of each lead there is a macroscopic reservoir
(fig. 2.1(c)), held in thermal equilibrium at all times. These entities model
the influence of all the rest of the macroscopic circuit that is normally present
when measurements are made.

The reservoirs are characterized by two parameters each: the temperature
ϑl and the chemical potential µl, where l = 1 for the left reservoir, l = 2 for
the right one. The thermal equilibrium requires that the distribution of their
electrons in energy is given by the Fermi-Dirac function

f(E) =

(
1 + exp

E − µl
kBϑl

)−1

. (2.49)

Since we do not investigate thermoelectric effects, we set both reservoirs to
the same temperature: ϑ1 = ϑ2 = ϑ. The applied bias voltage, measured
in the reservoirs, is expressed in terms of the chemical potentials as Vb =
(µ1 − µ2)/e.

We assume the electrons should be able to exit from the lead into the
corresponding reservoir without suffering reflection [37]. We need this as-
sumption in order to establish the distribution of the electrons in the leads –
it grants us that any electron inside the lead travelling towards the scatterer
has its origin in the reservoir attached to that lead.

We state that a reservoir injects into its corresponding lead as many
carriers as the lead can cater for, the only two constraints being that:

– the electrons entering the lead from the reservoir retain the energy
distribution they had in the reservoir (2.49),

– for the left lead, only the electrons with positive k can enter the lead
from the reservoir (negative k for the right lead), so we are left with
just a half of the Fermi-Dirac ensemble therein6.

We remark, that the first point is an assumption, and its justification is not
completely obvious. After all, there is a potential drop when passing from
the reservoir to the lead (see [60] and references therein) and it is not a pri-
ori known whether the probability of passing depends on the energy or not.
To support this assumption we would like to invoke a work by Yosefin and
Kaveh [61], where an explicit treatment was presented for the leads that
broaden as the distance from the scatterer grows. In that case, there is
a smooth crossover between the leads and the reservoirs, and the local en-
semble of the electrons in the vicinity of the quantum point contact complies
with the statement we made.

6If account is made for the left-travelling electrons: the reflected ones (Ra) and the ones
transmitted from the other side (T ′a), then the ensemble is something yet more complicated
– see e.g. [37].
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2.5 Conductance

Once we know both, the population of the incoming states and the current
due to each of them, we can easily evaluate the overall current and conduc-
tance.

2.5.1 Current calculation

It follows from the discussion in the previous section, that the average oc-
cupancy of the scattering states coming from the left (2.25a) is given by the
Fermi-Dirac function f1 of the eq. (2.49). It has also been asserted before
(subsec. 2.2.2), that each of those states carries e/h (t†t)aa into the right lead,
and all of this reaches the right reservoir. The overall current from the left
to the right is then given by the sum of all (1εa)-state currents multiplied by
the occupation probabilities,7

I1→2 =
∑
{(1εa)}

f1(ε) J (x) {Ψ1εa;x} = 2

∫ ∞
ε
(⊥)
1

dε

N(ε)∑
a=1

f1(ε)
e

h

[
t†(ε) t(ε)

]
aa

=
2e

h

∫ ∞
ε
(⊥)
1

dε f1 tr
(
t†t
)
, (2.50)

where the energy of the first transverse mode in the left lead ε
(⊥)
1 has been

used as the “band bottom” and the energy arguments on the second line are
understood (we will omit them whenever it does not cause ambiguity). The
additional factor of 2 in the expansion of the sum takes into account the spin
degeneracy at zero magnetic field.

The sum is taken incoherently, since the electrons come from a thermal
source, and – although travelling coherently through the leads and scatterer
– they are not coherent with each other. Naturally, the electrons might
not arrive exactly in Ψ1εa states, but in some linear combinations thereof,
Ψ′1εa =

∑
a′ caa′Ψ1εa′ . But this set of states has to form a basis as well. And

since the trace of an operator is basis-invariant, the sum of currents over the
states of this general set is exactly the same as 2.50.

The same calculation applies to the current from the right to the left,
yielding

I2→1 =
2e

h

∫ ∞
ε
(⊥)
1

dε f2 tr
(
t†t
)

(2.51)

7As we have discussed before (sec. 2.1), the number of electrons within each dεa is
already accounted for by the normalization of the wave functions, so the density of states
does not enter the integral.
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From the form (2.44) we see that the transmission probability does not de-
pend on the side from which the electrons are originating, as tr(t′†t′) =
tr(T 2) = tr(t†t). The total current through the structure is therefore given
by

I = I1→2 − I2→1 =
2e

h

∫ ∞
ε
(⊥)
1

dε (f1 − f2) tr
(
t†t
)
. (2.52)

2.5.2 Linear response

If so it happens that tr(t†t) is constant across the energy interval (µ2, µ1) and
within a few kBϑ around it, then we can place this term outside the integral.
We will also assume that µ1 and µ2 are both securely greater than ε

(⊥)
1 . Then

we have

I ≈ 2e

h
tr(t†t)

∫ ∞
ε
(⊥)
1

dε (f1 − f2) ≈ 2e

h
tr(t†t)

∫ ∞
−∞

dε (f1 − f2)

=
2e

h
tr(t†t) (µ1 − µ2) =

2e2

h
tr(t†t)Vb , (2.53)

and the response to the applied voltage is linear.
If, on the other hand, tr(t†t) varies sharply, but the bias is much smaller

then the thermal energy, µ1 − µ2 � kBϑ, we can employ the differential
approximation

f1 − f2 ≈ (µ1 − µ2)
∂f1

∂µ1

∣∣∣∣
µ1=µ2

, (2.54)

and still get the linear response:

I ∼=
2e2

h
Vb

∫ ∞
−∞

dε Fthtr(t
†t) , (2.55)

Here, Fth is the thermal broadening function (for small bias µ1 ≈ µ2 ≈ EF ):

Fth(ε) = −∂fl
∂ε

=
∂fl
∂µl

=
1/kBϑ[

exp ε−EF

2kBϑ
+ exp

(
− ε−EF

2kBϑ

)]2 . (2.56)

In the limit of zero temperature Fth becomes the Dirac delta δ(ε− EF ) and
(2.53) is retrieved. In conclusion, the conditions where

eVb � kBϑ+ ∆εc (2.57)

with ∆εc being the scale of variation (ie. the correlation energy) of the trans-
mission, we will refer to as the linear response regime.
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Landauer-Büttiker conductance formula

The linear response conductance obtained in this way is

G(0) =
∂I

∂Vb
=

2e2

h
tr(t†t) . (2.58)

This is the (two-terminal) Landauer-Büttiker formula. The transmission
amplitudes should be evaluated at the Fermi energy.

The dimensionless quantity T ≡ tr(t†t) is the total transmission of the
structure and is of central importance in the method we have developed in
here. It is the sum of the transmission probabilities over the lead modes,
but any other normalized basis states are in place here, in particular T =∑N

m=1 T 2
m (cf. (2.44)). Each electron state active at the Fermi energy, of

whichever prescribed basis, constitutes an independent transport channel. A
maximum conductance of such a channel is given by the constant prefactor
2e2/h. It is a ubiquitous and conceptually very important quantity, called
the conductance quantum.

Using the total transmission T and the dimensionless conductance ex-
pressed in the units of the conductance quantum, g(0) ≡ G(0)/2e2

h
, we can

write the Landauer-Büttiker formula in the laconic form:

g(0) = T . (2.59)

The point of view we have just described differs significantly from the
classical one, because instead of the presence of the external electric field in
the entire structure, giving a certain drift velocity to all of the free carriers, we
only have to consider the effect the field has on the populations of travelling
states on both sides of the scatterer, producing a net current carried only by
the electrons at the Fermi energy.

2.6 Calculating the S-matrix, Fisher-Lee re-

lation

How do we evaluate the transmission and reflection amplitudes t
(′)
ba , r

(′)
ba?

An explicit way to do it would be by solving the Schrödinger equation for
the allowed scattering states, and decomposing them inside each asymptotic
region in the basis of the outgoing lead states, as is done for example in [62].

A more convenient approach, which we will employ, uses the retarded
Green function:

G(0)(r, r′, E) =
〈
r
∣∣(E+ −H0)−1

∣∣ r′〉 , (2.60)
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where H0 is the Hamiltonian of the entire system, acting in the space over r,
and E is the energy variable; the plus superscript indicates that an infinites-
imal positive imaginary part has been added: E+ = E + iη, η → 0+. In our
case H0 = HS +HW .

The transmission and reflection amplitudes are related to the Green func-
tion by what is known as the Fisher-Lee formulae [63]:

tba = i~(vavb)
1/2 exp [−i(kbx− kax′)]

∫
Sx

dy

∫
Sx′

dy′ φ∗b(y) G(0)(r, r′, ε) φa(y
′) ,

(2.61a)

rba = −δab exp [i(kbx+ kax
′)] exp [ikb|x− x′|]

+i~(vavb)
1/2 exp [−i(kbx+ kax

′)]

∫
Sx

dy

∫
Sx′

dy′ φ∗b(y) G(0)(r, r′, ε) φa(y
′) .

(2.61b)

Sx′ , Sx denote the cross sections for integrations. Their longitudinal position
is chosen:

– always in the left lead for x′,

– for x, inside the right lead in the transmission amplitude expression,
and inside the left lead for the reflection amplitude expression.
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Chapter 3

Theory of Scanning Gate
Microscopy, Perturbative
Approach

In this chapter we develop the theoretical description of Scanning Gate Mi-
croscopy. We take the system described so far, consisting of a coherent
nanostructure connected to the reservoirs with perfect leads, and add the
last missing element – the SGM tip (fig.2.1(d) on page 14). We include it in
our description by the means of perturbation theory, where the influence of
the tip is treated as a weak potential perturbing the rest of the system.

The basic question we would like to answer is how such an additional
potential changes the linear-response conductance of the structure. In order
to do it, we will first consider the form of the wave functions of the perturbed
scattering states, then their current densities and currents, and finally the
conductance, constructed from the perturbed current expressions in the same
way as we constructed the conductance g(0) from the currents of the non-
perturbed system in the previous chapter.

All the quantities appearing in the calculation will be expressed in terms
of the unperturbed wave functions and system properties. In particular, the
transmission-reflection amplitudes and the Green functions will pertain to
the unperturbed system, and we will not mark it with any special, additional
notation.

A similar task has been tackled in a one-dimensional case by Gasparian
et al. [64]. The approach there took a slightly different path of arriving at
the conductance change, namely by calculating the perturbed Green function
by the means of the Dyson equation, then applying the Fisher-Lee relations
to get the perturbed transmission and reflection amplitudes, and finally ob-
taining the conductance from them through the Landauer-Büttiker equation.

35
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The one-dimensional case is considerably simpler as compared to the one we
treat in here, since in 1D the scattering states always coincide with the scat-
tering eigenstates of transmission, whereas in 2D such a coincidence is true
only in special cases (cf. notion of adiabaticity in Ch. 4).

The basic form of the main results, ie. first and second order conductance
change in an SGM system, have already been published in [45].1 Here, we
will explain the underlying calculations and discuss the results, with their
origins, form, and consequences.

3.1 SGM tip influence on the wave functions

The Hamiltonian of the complete system can be written as a sum

H = H0 + VT (3.1)

where H0 = HW + HS, called the unperturbed Hamiltonian, describes the
previously treated leads-plus-scatterer system, and VT is the electrostatic
potential of the tip.

The eigenfunctions of the total Hamiltonian H, denoted by χlεa(r), obey
the Lippmann-Schwinger equation

χlεa(r) = Ψlεa(r) +

∫
dr′ G(0)(r, r′, ε)VT(r′)χlεa(r

′) , (3.2)

dr′ being the volume element. Here, we use the retarded Green function G(0)

and the outgoing scattering states Ψlεa, both of the unperturbed Hamiltonian
H0. The χlεa therefore represent the outgoing perturbed scattering states.
Like before, the usual plus superscript is omitted.

As can be verified by direct substitution to the defining equation (2.60),
the Green function decomposes in the basis of the scattering states Ψlεa in
the following way:

G(0)(r, r′, E) =
2∑
l=1

∫ ∞
ε
(⊥)
1

dε

E+ − ε

N(ε)∑
a=1

Ψlεa(r)Ψ∗lεa(r
′) . (3.3)

The equation (3.2) gives χlεa(r) in an open form. Substituting it recur-
sively into the integral on the right-hand side gives the Born series:

χlεa(r) = χ
(0)
lεa(r) + χ

(1)
lεa(r) + χ

(2)
lεa(r) + . . . (3.4)

1The second-order expression in [45] contained a mistake, cf. (3.42).
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with the subsequent terms given by:

χ
(0)
lεa(r) = Ψlεa(r) ,

χ
(1)
lεa(r) =

∫
dr′ G(0)(r, r′, ε)VT(r′)Ψlεa(r

′) , (3.5)

χ
(2)
lεa(r) =

∫
dr′dr′′ G(0)(r, r′, ε)VT(r′)G(0)(r′, r′′, ε)VT(r′′)Ψlεa(r

′′) ,

etc.

or, in a general, recursive form:

χ
(n+1)
lεa (r) =

∫
dr′ G(0)(r, r′, ε)VT(r′)χ

(n)
lεa(r′) , n = 0, 1, . . . . (3.6)

The convergence of this series is generally not easy to establish. We will
comment it in somewhat more detail in subsection 3.4.3. For the moment,
we will restrict ourselves to the simple statement that for modest tip po-
tentials VT the series should converge. Truncating it at the n-th term gives
approximate expressions for the wave functions χlεa(r) of the corresponding

order in the tip potential. Each χ
(n)
lεa(r) is then the n-th order perturbation

correction to the scattering state wave function.
Using the eigenfunction decomposition (3.3) of the Green function, we

bring the first order correction to the wave function to a form

χ
(1)
lεa(r) =

∫
dr′

2∑
l′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

N(ε′)∑
a′=1

Ψl′ε′a′(r) Ψ∗l′ε′a′(r
′)VT(r′)Ψlεa(r

′)

=
2∑

l′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

N(ε′)∑
a′=1

Ψl′ε′a′(r) [VT]l
′l
a′a (ε′, ε) , (3.7)

where

[VT]l
′l
a′a (ε′, ε) =

∫
dr′ Ψ∗l′ε′a′(r

′)VT(r′) Ψlεa(r
′) (3.8)

is the matrix element of the tip potential in the scattering wave function
basis. Analogically, for the second order we obtain

χ
(2)
lεa(r) =

2∑
l′=1

2∑
l′′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

∫ ∞
ε
(⊥)
1

dε′′

ε+ − ε′′
(3.9)

N(ε′)∑
a′=1

N(ε′′)∑
a′′=1

Ψl′ε′a′(r) [VT]l
′l′′

a′a′′ (ε
′, ε′′) [VT]l

′′l
a′′a (ε′′, ε) ,

and the higher order terms will follow this pattern, each next one getting one
more matrix element and one more summation over states (see 3.50 below).
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3.2 First order conductance correction

In order to calculate the conductance of the full SGM system, we have to
repeat the reasoning described in the previous chapter, only with the new,
perturbed, scattering states. Within the linear response approach, the con-
ductance is constructed in a simple way from the currents carried by the
states at the Fermi level (see sec. 2.5, Ch. 2). The linearity of this operation
grants us that the perturbation correction to the conductance is made up
from the state current corrections in the very same way.

We first investigate the perturbative corrections of the first order, so we
will use as the scattering states

χlεa(r) ≈ χ
(0)
lεa(r) + χ

(1)
lεa(r) . (3.10)

3.2.1 Current density of a scattering state

The object of our interest in this subsection will be the first order correction
to the current density of a single scattering state (lεa), denoted by δ(1)jlεa(r).
The current density of the perturbed states (3.10) reads:

j
{
χ

(0)
lεa + χ

(1)
lεa

}
= (3.11)

=
e~
Me

Im
(
χ

(0)∗
lεa ∇χ

(0)
lεa + χ

(1)∗
lεa ∇χ

(0)
lεa + χ

(0)∗
lεa ∇χ

(1)
lεa + χ

(1)∗
lεa ∇χ

(1)
lεa

)
,

(the argument r is understood). After removing the first addend on the

right-hand side, which is just the unperturbed current density j
{
χ

(0)
lεa

}
, and

the last addend, which is of second order and will enter the equations of
sec. 3.3.1, we complex-conjugate the χ

(1)∗
lεa ∇χ

(0)
lεa term and substitute the form

(3.7) for the wave function correction, to obtain

δ(1)jlεa = (3.12)

=
e~
Me

Im

 2∑
l′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

N(ε′)∑
a′=1

(
Ψ∗lεa∇Ψl′ε′a′ −Ψl′ε′a′∇Ψ∗lεa

)
[VT]l

′l
a′a (ε′, ε)

 ,
where we recognise the matrix elements of the current density operator in the
unperturbed scattering state basis 〈Ψlεa | ̂(r)|Ψl′ε′a′〉 – arranging the indices
according to the convention we used for the potential matrix elements (3.8),
we will write them as [j(r)]l l

′

aa′ (ε, ε
′). We therefore have:

δ(1)jlεa = 2 Re

 2∑
l′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

N(ε′)∑
a′=1

[j(r)]l l
′

aa′ (ε, ε
′) [VT]l

′l
a′a (ε′, ε)

 , (3.13)
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with

[j(r)]l l
′

aa′ (ε, ε
′) =

e~
2iMe

[
Ψ∗lεa(r)∇Ψl′ε′a′(r)−Ψl′ε′a′(r)∇Ψ∗lεa(r)

]
. (3.14)

The current density matrix elements (3.14) contain all the spatial dependence
of the δ(1)jlεa expression.2 Its elements diagonal in all indices (lεa = l′ε′a′)
give the currents of each individual unperturbed scattering state.

Within the Landauer approach, we need the current injected from one
side only, so we set the lead of origin as the left one, l = 1. Moreover, due to
the current conservation, the current does not depend on which intersecting
surface S we choose for the current density integration. We choose it in the
right lead for definiteness, and we choose it to be a planar section Sx per-
pendicular to the lead’s axis, so that we need not bother with the transverse
current density components. Later we will also specify its position x to go
to infinity.

By substituting the explicit form of the unperturbed scattering state wave
functions – the eqs. (2.25a) and (2.2) – into the above, we obtain the current
density matrix elements in terms of the basic properties of the scatterer
(transmission and reflection amplitudes) and of the wire-lead (transverse
wave functions, dispersion relations). Their longitudinal components are:

[
j(x)(r)

]1 1

aa′
(ε, ε′) = (3.15a)

=
e

2h

N(ε)∑
b=1

N(ε′)∑
b′=1

(√
k′b′

kb
+

√
kb
k′b′

)
t†ab(ε)tb′a′(ε

′)φb(y)φb′(y) exp [i(k′b′ − kb)x] ,

[
j(x)(r)

]1 2

aa′
(ε, ε′) = (3.15b)

=
e

2h

{
N(ε)∑
b=1

(√
kb
k′a′
−

√
k′a′

kb

)
t†ab(ε)φb(y)φa′(y) exp [−i(k′a′ + kb)x]

+

N(ε)∑
b=1

N(ε′)∑
b′=1

(√
k′b′

kb
+

√
kb
k′b′

)
t†ab(ε)r

′
b′a′(ε

′)φb(y)φb′(y) exp [i(k′b′ − kb)x]

}
.

As usual, the primed wave numbers are defined through the dispersion rela-
tion (2.6): k′� ≡ k�(ε

′).

2Not to be confused with the dependence on the SGM tip’s position, which is contained
solely in the tip potential matrix elements (3.8).
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3.2.2 Current of a scattering state

For the longitudinal current correction we need to integrate its density (3.13)
over the cross section, getting an analogous expression:

δ
(1)
J

(x)
1εa =

∫
Sx

dy δ(1)j1εa = (3.16)

= 2Re

 2∑
l′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

N(ε′)∑
a′=1

[
J (x)

]1 l′
aa′

(ε, ε′) [VT]l
′1
a′a (ε′, ε)


with the y-integrated current density matrix elements

[
J (x)

]1 1

aa′
(ε, ε′) =

e

2h

N̄∑
b=1

(√
k′b
kb

+

√
kb
k′b

)
t†ab(ε)tba′(ε

′) exp [i(k′b − kb)x] ,

[
J (x)

]1 2

aa′
(ε, ε′) =

e

2h

{(√
ka′

k′a′
−

√
k′a′

ka′

)
t†aa′(ε) exp [−i(k′a′ + ka′)x] (3.17)

+
N̄∑
b=1

(√
k′b
kb

+

√
kb
k′b

)
t†ab(ε)r

′
ba′(ε

′) exp [i(k′b − kb)x]

}
,

where the orthonormality of the transverse modes (eq. (2.9)) has been used,
and N̄ ≡ min{N(ε), N(ε′)}.

Next, we take the limit x→∞ and use the oscillating exp(ikx) terms of
the [J (x)]-elements together with 1/(ε+− ε′) factors in order to facilitate the
dε′ integration. We also assume that the variation of the elements of [VT]
and the transmission and reflection matrices is smooth with respect to the
appropriate wave numbers. The details of this calculation are explained in
the Appendix A. Denoting those submatrices of the entire [VT]-matrix, which
are diagonal in energy, by V :

V ll′�� ≡ [VT]ll
′

�� (ε, ε) , (3.18)

we write the resulting first order correction to the current of a single mode
as

δ
(1)
J

(x)
1εa = 4π

e

h

N(ε)∑
a′=1

Im
[
(t†t)aa′ V1 1

a′a + (t†r′)aa′ V2 1
a′a

]
= 4π

e

h
Im
[ (
t†t V 1 1 + t†r′ V 2 1

)
aa

]
. (3.19)
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3.2.3 Total current

Just like we did in the section 2.5, we calculate the first order correction to the
total current, δ(1)I, by summing over all the states (including the degenerate
spin-up and spin-down states). We disregard the thermal broadening for
simplicity. The only relevant states are the left-originating scattering states
within the “Fermi window”, i.e. between µ1 and µ2 in energy:

δ(1)I = 2

∫ µ1

µ2

dε
∑
a

δ
(1)
J

(x)
1εa . (3.20)

The intermediate sum, δ
(1)
J

(x)
1ε ≡

∑
a δ

(1)
J

(x)
1εa, is the first order total current

correction per unit energy and per spin. It reads

δ
(1)
J

(x)
1ε = 4π

e

h
Im
[
tr
(
t†t V 1 1 + t†r′ V 2 1

) ]
. (3.21)

Recalling the definition of the matrices V ll′, eqs. (3.9) and (3.18), we note
that for l = l′ they are hermitian. Using this, together with the invariance of
trace operation under cyclic permutation of factors and under transposition,
we easily prove that the first addend in the above is purely real:

tr
(
t†t V 1 1

)
= tr

(
V 1 1 t†t

)
= tr

(
V 1 1 t†t

)T
= tr

[
(t†t)∗ V1 1∗] = tr

(
t†t V 1 1

)∗
,

and consequently disappears from the expression, leaving

δ
(1)
J

(x)
1ε = 4π

e

h
Im
[
tr
(
t†r′ V 2 1

) ]
. (3.22)

3.2.4 Conductance

The above calculated current change gives rise to the first order correction
to the linear response conductance (cf. (2.58))

G(1) =
2e2

h
g(1) =

∂

∂Vb

(
δ(1)I

)
= 2e

∂

∂(µ1 − µ2)

∫ µ1

µ2

dε δ(1)J
(x)
1ε

= 4π
2e2

h
tr
[
Im
(
t†r′ V 2 1

) ]
ε=EF

. (3.23)

By (2.37b), an equivalent form is:

g(1) = −4πtr
[
Im
(
r†t′ V 2 1

) ]
ε=EF

. (3.24)

This expression approximates the SGM signal for small tip potential values
– up to the first order in the tip potential strength. It consists of the t†r′ (or
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r†t′) factors, depending solely on the unperturbed structure, and the matrix
elements V which describe the tip’s influence. The latter also depend on the
structure through the scattering states Ψlεa which they contain. All the terms
are evaluated at the Fermi energy, which we will tacitly assume throughout
the rest of this work.

Scattering eigenstates basis

It turns out, that we can express this result in a way which provides for a
more immediate and simple interpretation. With the aid of the S-matrix
polar decomposition (sec. 2.3.3), we can render the conductance correction

into the transmission eigenstates basis
{≈

Ψlεm

}
of eq. (B.12):

g(1) = 4π
N∑
m=1

RmTm Im
{
U 2 1
mm

}
. (3.25)

Here, U are the tip potential matrix elements in the new basis:

U ll′ =

∫
dr

≈
Ψ
∗

lε. VT

≈
Ψl′ε. = ul V ll

′
u†l′ . (3.26)

Transmission eigenmodes basis

If we choose the tip potential to be localized entirely outside the scatterer
region (i.e. entirely inside one of the leads), we can go one step further and use
the basis of the transmission eigenmodes (B.11). According to (2.47a–2.47b),
we have for the tip placed to the right of the scatterer:

U2 1
mm′ = Tm

〈
≈
ϕ

(+)

1εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (−)

1εm′

〉
−Rm′Tm

〈
≈
ϕ

(+)

1εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (+)

1εm′

〉
, (3.27a)

and for the tip placed to the left of it:

U2 1
mm′ = Tm′

〈
≈
ϕ

(−)

2εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (+)

2εm′

〉
+RmTm′

〈
≈
ϕ

(+)

2εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (+)

2εm′

〉
, (3.27b)

For m = m′, it is easy to see that the rightmost terms in both of the above
lines have no imaginary part. The conductance correction g(1) then assumes
the form

g(1) = 4π
N∑
m=1

RmT 2
m Im

{〈
≈
ϕ

(+)

1εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (−)

1εm

〉}
(3.28a)

= 4π
N∑
m=1

RmT 2
m Im

{∫
drVT(r)

≈
ϕ

(−) 2

1εm (r)

}
,
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with the tip inside the left lead, and

g(1) = 4π
N∑
m=1

RmT 2
m Im

{〈
≈
ϕ

(+)

1εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (−)

1εm

〉}
(3.28b)

= 4π
N∑
m=1

RmT 2
m Im

{∫
drVT(r)

≈
ϕ

(+) 2

2εm (r)

}
,

with the tip inside the right one. This form of the conductance correction
result will be useful at the time of drawing conclusions about the shape of
the SGM signal in the leads region, or the broad regions which the leads
could model.

The previous form (3.25), on the other hand, is very important in the
general context, because it addresses directly the transmission process, with
its amplitudes and eigenstates. Each term of the sum expresses the contribu-
tion from one individual transmission eigenstate. We can see, that whenever
an eigenmode from one lead is:

– fully transferred by the structure, Tm ∼= 1 , Rm =
√

1− T 2
m
∼= 0 ,

– or fully stopped by it, Tm ∼= 0 , Rm
∼= 1 ,

its contribution to g(1) vanishes, regardless of the tip position. It can, there-
fore, occur that none of the channels contributes,

RT = 0 , (3.29)

in which case the first order formula is not enough for the correct perturbative
description of the SGM signal. Thus, before discussing the results (3.23-3.28)
in more detail, we turn to the derivation of the second order correction to
the conductance.

3.3 Second order current correction

3.3.1 Current density and Current – single mode

The calculation of the current density correction of the second order, δ(2)jlεa,
follows the same path as of the first order one. We write the current density
of the approximate state χ

(0)
lεa +χ

(1)
lεa +χ

(2)
lεa and dispose of all the terms whose

order is different than two (i.e. zeroth, first, third and fourth):

δ
(2)

j1εa =
e~
Me

Im
(
χ

(0)∗
1εa∇χ

(2)
1εa + χ

(1)∗
1εa∇χ

(1)
1εa + χ

(2)∗
1εa∇χ

(0)
1εa

)
(3.30)
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Like before, all are functions of r. This expression is then subdivided into
two types of terms,

δ(2)j1εa = δ(2)jα1εa + δ(2)jβ1εa , (3.31)

in the following way:

δ
(2)

jα1εa =
e~
Me

Im
(
χ

(0)∗
1εa∇χ

(2)
1εa − χ

(2)
1εa∇χ

(0)∗
1εa

)
, (3.32a)

δ(2)jβ1εa =
e~
Me

Im
(
χ

(1)∗
1εa∇χ

(1)
1εa

)
. (3.32b)

The form of the perturbed states is now taken from both, eq. (3.7) and
eq. (3.9); the integration of the above expressions over a cross section Sx to
the right of the scatterer yields the current correction with

δ
(2)
J

(x)α
1εa = 2Re

 2∑
l′,l′′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

∫ ∞
ε
(⊥)
1

dε′′

ε+ − ε′′
(3.33a)

N(ε′)∑
a′=1

N(ε′′)∑
a′′=1

[
J (x)

]1 l′
aa′

(ε, ε′) [VT]l
′l′′

a′a′′ (ε
′, ε′′) [VT]l

′′1
a′′a (ε′′, ε)


and

δ
(2)
J

(x)β
1εa = 2Re

 2∑
l′,l′′=1

∫ ∞
ε
(⊥)
1

dε′

ε− − ε′

∫ ∞
ε
(⊥)
1

dε′′

ε+ − ε′′
(3.33b)

N(ε′)∑
a′=1

N(ε′′)∑
a′′=1

[VT]1l
′

aa′ (ε, ε
′) [X]l

′ l′′

a′a′′ (ε
′, ε′′) [VT]l

′′1
a′′a (ε′′, ε)

 .

The
[
J (x)

]
-factors have been given in (3.17) above; and the [X]-factors are

the y-integrated longitudinal components of the matrix elements〈
Ψlεa

∣∣ ̂1/2(r)
∣∣Ψl′ε′a′

〉
(3.34)

of the operator

̂1/2(r) =
e

2Me

δ(r̂− r)p̂ , (3.35)

which could be described as a “half” of the current density operator. Their
specific form is

[X]1 1
a′a′′ (ε

′, ε′′) =
e

2h

N̄∑
b=1

√
k′′b
k′b

t†a′b(ε
′)tba′′(ε

′′) exp [i(k′′b − k′b)x] , (3.36a)
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[X]1 2
a′a′′ (ε

′, ε′′) =
e

2h

{
−

√
k′′a′′

k′a′′
t†a′a′′(ε

′) exp [−i(k′′a′′ + k′a′′)x] (3.36b)

+
N̄∑
b=1

√
k′′b
k′b

t†a′b(ε
′)r′ba′′(ε

′′) exp [i(k′′b − k′b)x]

}
,

[X]2 1
a′a′′ (ε

′, ε′′) =
e

2h

{√
k′′a′

k′a′
ta′a′′(ε

′′) exp [i(k′′a′ + k′a′)x] (3.36c)

+
N̄∑
b=1

√
k′′b
k′b

r′†a′b(ε
′)tba′′(ε

′′) exp [i(k′′b − k′b)x]

}
,

[X]2 2
a′a′′ (ε

′, ε′′) =
e

2h

{
−δa′a′′

√
k′′a′

k′a′
exp [−i(k′′a′′ − k′a′)x] (3.36d)

+

√
k′′a′

k′a′
r′a′a′′(ε

′′) exp [i(k′′a′ + k′a′)x]

−

√
k′′a′′

k′a′′
r′†a′a′′(ε

′) exp [−i(k′′a′′ + k′a′′)x]

+
N̄∑
b=1

√
k′′b
k′b

r′†a′b(ε
′)r′ba′′(ε

′′) exp [i(k′′b − k′b)x]

}
.

After the energy integrations in (3.33a) and (3.33b), conducted as de-
scribed in the Appendix A, point 3 and point 2, we obtain for the α-terms:

δ
(2)
J

(x)α
1εa = − 4π2 e

h
Re

{[
t†t
(
V 1 1V 1 1 + V 1 2V 2 1

)
(3.37)

+ t†r′
(
V 2 1V 1 1 + V 2 2V 2 1

)]
aa

}
+ 4π

e

h

2∑
l′′=1

Im

{
P
∫ ∞
ε
(⊥)
1

dε′′

ε− ε′′
[
t†(ε)t(ε) [VT]1l

′′
(ε, ε′′) [VT]l

′′1(ε′′, ε)

+ t†(ε)r′(ε) [VT]2l
′′
(ε, ε′′) [VT]l

′′1(ε′′, ε)
]
aa

}
,



46 CHAPTER 3. THEORY OF SGM, PERTURBATIVE APPROACH

where P denotes the Cauchy principal value, and the energy arguments have
been given explicitly in the second part to distinguish the integration variable
from the fixed one.

Likewise, integration of the β-terms yields:

δ
(2)
J

(x)β
1εa = 4π2 e

h
Re
[(
V1 1 t†tV1 1 + V1 1 t†r′ V2 1 (3.38)

+V1 2 r′†tV1 1 + V1 2 r′†r′ V2 1
)
aa

]
.

With the invariance of the form Re(. . .)aa under hermitian conjugation, the
third addend turns out to be equal to the second one and the formula takes
the form

δ
(2)
J

(x)β
1εa = 4π2 e

h
Re
[(
V1 1t†tV1 1 + 2V1 1t†r′ V2 1 + V1 2r′†r′ V2 1

)
aa

]
.

(3.39)

3.3.2 Total Current

To obtain the second order current correction, we add up the α- and β-terms,
and sum over the scattering states. Using cyclic rearrangements of terms,
transposition and complex conjugation, we verify that:

– the first terms of the α- and β-parts cancel each other,

– the third term of the α-part cancels with the factor of two from the
middle term of the β-part,

– the second term of the α- and the last term of the β-part are purely
real, so the Re(. . .) symbol can be dropped,

– the first term (both l′′-addends) of the principal value in (3.37) is real
and therefore vanishes when the imaginary part is taken.

Thus, we arrive at the current correction per unit energy:

δ
(2)
J

(x)
1ε = 4π2 e

h
tr
{
r′†r′ V2 1V1 2 − t†tV1 2V2 1 (3.40)

+Re
[
t†r′
(
V2 1V1 1 − V2 2V2 1

)]}
+4π

e

h
tr

{
P
∫ ∞
ε
(⊥)
1

dε′′

ε− ε′′
2∑

l′′=1

Im
[
t†r′ [VT]2 l

′′
(ε, ε′′) [VT]l

′′ 1(ε′′, ε)
]}

to which the second order correction to the total current is connected by the
usual relation:

δ(2)I =

∫ µ1

µ2

dε δ
(2)
J

(x)
1ε . (3.41)
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3.3.3 Conductance

Differentiating the above with respect to the bias voltage according to the
usual linear response procedure, we get the second order conductance cor-
rection in its full form:

1

2e2/h
G(2) = g(2) = (3.42)

= 4π2 tr
{
r′†r′ V2 1V1 2 − t†tV1 2V2 1 + Re

[
t†r′
(
V2 1V1 1 − V2 2V2 1

)]}
ε=EF

+ 4π tr

{
P
∫ ∞
ε
(⊥)
1

dε′′

EF − ε′′
2∑

l′′=1

Im
[
t†r′ [VT]2 l

′′
(EF , ε

′′) [VT]l
′′ 1(ε′′, EF )

]}
.

If we take into account that the second order correction could dominate the
first order one only when the multiplier t†r′ = u†1RT u2 vanishes (see (3.29)),
we can immediately simplify this expression to

g(2) = 4π2 tr
{
r′†r′ V2 1V1 2 − t†tV1 2V2 1

}
. (3.43)

Scattering eigenstates basis

After transforming the previous equation into the scattering eigenstates basis
(B.12), we have:

g(2) = 4π2
∑
m

[
R2
m

(
U2 1U1 2

)
mm
− T 2

m

(
U1 2U2 1

)
mm

]
. (3.44)

Once again, we are going to use the fact that this formula is relevant when
the condition (3.29) is met.

We now substitute the approximate one-or-zero values for Rm and Tm,
and write the matrix multiplications explicitly. Then, we swap the index
names within the second term (m↔ m′), and carry out the subtraction:

g(2) = 4π2
∑
m∈M

m′∈M∪M

U2 1
mm′ U1 2

m′m − 4π2
∑
m∈M

m′∈M∪M

U1 2
mm′ U2 1

m′m (3.45)

= 4π2
∑
m∈M

m′∈M∪M

U2 1
mm′ U1 2

m′m − 4π2
∑

m∈M∪M
m′∈M

U2 1
mm′ U1 2

m′m

= 4π2
∑
m∈M
m′∈M

U2 1
mm′ U1 2

m′m − 4π2
∑
m∈M
m′∈M

U2 1
mm′ U1 2

m′m .



48 CHAPTER 3. THEORY OF SGM, PERTURBATIVE APPROACH

This expression is valid for all tip positions, but once we decide to place the
tip inside a lead, the first term will be suppressed: by the presence of the
≈
Ψ2εm factors when the tip is in the left lead, and by the presence of the

≈
Ψ1εm′

factors when the tip is in the right one. The second order correction is then
written as

g(2) = −4π2
∑

m,m′∈M

∣∣U2 1
mm′

∣∣2 (3.46)

= −4π2
∑

m,m′∈M

∣∣∣∣∫ dr
≈
Ψ2εmVT

≈
Ψ1εm′

∣∣∣∣2 ,

where we have used U ll′† = U l′l, following from the definition (B.20).

Transmission eigenmodes basis

In order to pass to the eigenmode basis, we need to recall the form of U2 1
mm′

given in the eqs. (3.27). Once again the rightmost terms will be cancelled,
this time through the R-multipliers, which for m,m′ ∈ M are zero. We
therefore have the matrix elements relevant for the second order correction:

U2 1
mm′ =



〈
≈
ϕ

(+)

1εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (−)

1εm′

〉
〈
≈
ϕ

(−)

2εm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (+)

2εm′

〉 , (3.47)

with the tip held inside the left and the right lead, respectively. We substi-
tute them into (3.46) and in the right-lead form of the matrix element we
apply complex-conjugation and change of the summation indices m ↔ m′.
Altogether, this brings us to

g(2) = −4π2
∑
m∈M
m′∈M

∣∣∣∣〈≈ϕ (−)

lεm

∣∣∣∣VT

∣∣∣∣ ≈ϕ (+)

lεm′

〉∣∣∣∣2 (3.48)

= −4π2
∑
m∈M
m′∈M

∣∣∣∣∫ dr VT(r)
≈
ϕ

(+)

lεm(r)
≈
ϕ

(+)

lεm′(r)

∣∣∣∣2 .

Here, the lead index l should agree with the lead in which the tip is placed.
As we can see, the ideal second order correction is always negative, except

inside the structure, and involves only the open modes. Deviations of the
second order response with respect to (3.48) can arise due to non-perfect
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closing of the closed modes (Tm 6= 0) and non-perfect transmission in the
open modes (Rm 6= 0). Although they are, to some degree, inevitable, there
is no use investigating their effect on the results – the corrections due to such
imperfections will be of greater order in their causing factors, Tm or Rm, then
the first-order conductance correction (3.25) itself.

3.4 SGM signal – discussion

The theoretical approach presented in this chapter brought us to the two
conductance correction expressions, (3.24) and (3.42), which describe the
signal from a Scanning Gate Microscope for weak, non-invasive probes. Both
of these formulae are given in terms of trace operations over the space of
the lead modes, which ensures the basis invariance. Moreover, it can be
verified that if the nanostructure probed by the SGM has a left-right or up-
down symmetry, the SGM map as described by our formulae will have the
respective symmetry as well [44,45].

A particularly convenient version of these expressions is given in the scat-
tering eigenstates basis – eqs. (3.25) and (3.44), and in the transmission
eigenmodes basis, for the regions inside the leads – eqs. (3.28) and (3.48).
These simple forms pertain to one eigenstates’ basis only and to one eigen-
modes’ basis only – see subsec. 3.4.9 of Ch. 2 – but, as we see directly from
the expressions, the results for g(1) and g(2) would not change if an overall
m-dependent (but l-independent) phase factor were added, it is therefore

enough to evaluate the
≈
Ψlεm-functions only up to such a phase. Another

important form, for a perfectly local tip potential, will be given below, in
subsec. 3.4.9.

3.4.1 Overview

The conductance corrections incorporate two kinds of items:

– structure-dependent – transmission and reflection amplitudes, expressed
in terms of the products like r†t′, t†t, RT ; they depend on the investi-
gated nanostructure only, and can be further subdivided into magnitude-
controlling quantities Rm, Tm, and the matrices [ul]ma which control
the mode-composition and phases acquired on passing through the scat-
terer;

– tip-dependent – the matrix elements of the tip potential, in the appro-
priate bases; these describe the tip-scattering of the electron waves and,
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as such, they hold all the corrections’ dependence on the tip potential,
its shape, strength, and, most importantly, the position where it is ap-
plied; they also depend on the structure through the wave functions of
the corresponding basis.

Passing between the different bases that we have featured amounts to shifting
some of the structure-dependent terms from one of the groups to the other.
By the choice of a suitable basis we can emphasise either the relation of
the SGM signal with the leads, i.e. the environment in which the electron
waves move, or with the scatterer, which in this context could be called the
“emitter” or “injector”, cf. Ch. 1.

3.4.2 Comments on the derivation; role of the leads

We would like to remark that, despite the use of the lead-specific form of the
scattering state wave functions in the matrix elements of the current density
(3.14), and of the “half” current density (3.34), the derivation did not require
placing the tip inside the lead. It is valid for any tip position, including the
interior of the scatterer structure. What it requires, is that the cross section
Sx for the current integration in (3.16), be inside the (right) lead, and since
its longitudinal coordinate is specified as the infinity (Sx : x → ∞) this
requirement only amounts to stating that the leads must exist somewhere,
while we are left with quite much freedom in the choice of their position and
width.

This means that, although our system cannot be infinite in both dimen-
sions, we can approximate such a situation by taking the leads to be very
broad. Taking the infinity limit of the leads width takes us to a “fully”
two-dimensional space. In particular, we never have a two-dimensional trav-
elling wave in our (“finite”) system, but in the limit passage an appropriate
linear combination of many quasi-one-dimensional terms (each consisting of
a 1D travelling wave in longitudinal direction and the stationary transverse
mode) will compose such a wave. Before taking the limit, the correctness of
this quasi-1D approximation of a 2D-wave holds only up to a place where a
substantial part of the signal hits the lead border.

If, for a correctness check, we decide to situate the integration cross sec-
tion in the other lead (Sx : x → −∞), we get results equivalent to those
obtained above; their equality is guaranteed by the S-matrix properties de-
scribed in sec. 2.3. Also reversing the current direction, which amounts to
putting l = 2 as the lead of origin in subsecs. 3.2.1 and 3.3.1, yields the same
results.
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3.4.3 Applicability of the perturbation theory

Certainly, the condition∣∣χ(n+1)
lεa

∣∣� ∣∣χ(n)
lεa

∣∣, n = 0, 1, 2, ... , (3.49)

if met, would guarantee the convergence. Furthermore, from the Lippmann-
Schwinger equation it follows that

χ
(n+1)
lεa =

2∑
l′=1

∫ ∞
ε
(⊥)
1

dε′

ε+ − ε′

N(ε′)∑
a′=1

χ
(n)
l′ε′a′ [VT]l

′l
a′a (ε′, ε) , (3.50)

which can be read off from the equations (3.7–3.9). From this expression, we
see that it is the matrix elements [VT], especially the ones diagonal in energy,
V , which should be small for the Born series to converge.

This can be achieved by keeping the tip potential low in strength and
in extent. If we denote by ∆r0 the linear size of the region in which the
tip potential is significant, and by V0 the tip potential’s maximum value,
then the condition for the applicability of the Born approximation in a one-
dimensional space can be expressed as (after [65], §45, p. 161):

V0∆r0 � ~v(1D)
F , (3.51a)

where v
(1D)
F ≡ ~k(1D)

F /Me is the free Fermi velocity. The condition can be
rewritten in a more pictorial form as

V0∆r0 � E
(1D)
F λ

(1D)
F . (3.51b)

An estimate for a fully 2-dimensional case is not available (because of a
logarithmic divergence – see [65], §45, p. 161, first footnote), but the 1D-
condition is reasonable for our situation, because the form of our formulae,
such as (3.50), is essentially quasi-one-dimensional.3 They contain many one-
dimensional terms weighted by the transverse modes and added together –
and this can only favour the convergence. When the tip is placed in the
broad region away from the Quantum Point Contact, the unperturbed wave
functions from the [VT] matrix elements, being normalised with respect to
the extent of the transverse cross-section, have relatively small amplitudes.
The addition of the many terms in (3.50) cannot restore the value of the sum
to the magnitude it would have if just one mode existed, since every term
that is added has a different phase factor coming from the longitudinal part

3We just need to bear in mind that the (1D)-superscripted quantities of these expres-
sions will be the propagation (longitudinal) quantities in our quasi-1D system.
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of the wave function. The quantitative assessment of this effect, however,
might not be straightforward and is beyond the scope of this work. At the
same time we would like to remark, that this effect might loose some of its
importance when the disorder causes the coherent branching of the SGM
signal, since this inevitably requires some kind of greater localisation in the
transverse direction of the wave functions of the travelling electrons.

We see from the condition (3.51a) that our theory gives good description
for weak or very tightly localized tip potentials. This is how we understand
the non-invasiveness of the SGM probe.

The question of how relevant the perturbation theory results are for the
SGM signal with finite tip strengths, will also be addressed, along with other
tasks, through the means of numerical simulations in Chapter 5.

3.4.4 Utility of different bases

The standard basis, in which we derived our results, uses the advantage of
being closely related to the states of the lead, whose form is usually known
and simple (cf. the examples in sec. 2.1.4). This allows, for example, for an
easy numeric implementation in a tight-binding scheme and easy interpreta-
tion of its outcomes. However, it forces us to consider all the modes existing
in the leads, even though only few eigenstates might actually be transmitted.
Besides, this basis makes it somewhat difficult to draw general conclusions
from the formulae (3.23) and (3.42-3.43).

This is largely remedied by the conversion to the scattering eigenstates
basis. Here, we do not have to work with more states than necessary: the
terms participating in the transmission are readily extracted, and the imag-
inary/real or positive/negative parts are easy to obtain. The basis of the
scattering eigenstates gives us better means of interpreting the results for
g(1) and g(2) and of exploring the conditions in which each of them is relevant
(eq. (3.29)). Due to the emphasis on the structure and not the leads, it is
especially advantageous for setups where the leads are very broad or away
from the interesting regions. The cost of these simplifications is the fact that
we no longer have an easy way for determining the form of the basis wave
functions, as evaluation of the ul matrices might be a demanding task.

In both of the bases described above, the wave functions, and hence
also the matrix elements of the tip potential, contain the transmission and
reflection amplitudes. By passing to the transmission eigenmodes basis, we
push theR and T magnitudes completely out of matrix elements, which then
gain a simpler relation to the lead modes. They still retain the information
on the transmission process, expressed through the ul matrix coefficients,
responsible for the shape of the eigenmodes, but not for their magnitude on
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either side of the structure. In other words, this basis achieves the separation
between the magnitude-controlling factors and the shape of the transmitted
wave functions. Naturally, the transmission eigenmodes basis is useful only
when the region of our interest is inside the leads, even if they are very wide.

3.4.5 Relevance of the 2nd order correction

The first order conductance correction will be sufficient for the perturbative
approximation of the SGM signal, provided it is not equal to zero.4 Therefore,
once the tip potential matrix elements are small enough for the perturbation
theory to be valid, the condition of relevance for the second order correction
g(2) is set by the vanishing of g(1).

Out of the two categories of terms specified in 3.4.1, only the structure-
dependent ones will realise this (see below). The condition for nullifying g(1)

through the transmission and reflection factors has been concisely expressed
in the equation (3.29):

RT = 0 .

Since the Rm and Tm values complement each other (cf. (2.42)), this require-
ment means that all active modes have to be fully closed or fully open, which
is reflected in the form of the eq. (3.45). Also the form (3.25) of the first
order correction could have been restricted, by stating that m ∈M, so as to
express the fact that only the partially open modes contribute to g(1).

From the above, it follows that the applicability of g(2) necessarily implies
the quantisation of the unperturbed structure’s conductance, because

g(0) =
∑
m∈M

T 2
m = NM (3.52)

(eq. (2.59)). If we know that the eigenstates open one by one, like it is in
the case of well-chosen QPCs (see Ch. 4), and possibly close one by one,
we can state that the reverse implication is also true. Then, the condition
of applicability of the second order correction is identical to the conductance
quantisation (3.52). Each time we need to be specific, we will call such
conductance quantisation a regular one. In general, however, it is possible
to imagine a situation, where two partially open modes add up to unity,
giving rise to conductance quantisation and not suppressing g(1) anyway. A
somewhat exaggerated example is shown in fig. 3.1. We will not consider
such cases in here, viewing them as incidental. More realistic are instances
of such “false” quantisation which happen in a point-like way, but these ones
– as we discuss below – bear no practical significance.

4What we mean by this in the present context, is the presence of factors other than
V0, tending to zero faster than V0.
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Figure 3.1: An example of quantized transmission which does not cause
vanishing of the first order conductance correction when T = 1. This is due
to overlapping of the regions where the two modes are only partially open.

In order to see a quantized conductance curve when a measurement is
taken, the above mentioned requirement (3.29) has to be met for certain
ranges, or intervals, of the unperturbed system parameters varied in the
measurement, and not just for isolated points. Each such a range will referred
to as a conductance plateau region. Complementarily, the intervals when
at least one mode is partially open, we will call conductance step or ramp
region. The single-point-only compliance also would alter the SGM signal,
but has no practical importance, as it would demand very precise tuning of
the system parameters. Moreover, a conductance curve could be quantised
with its plateaus at non-integer multiples of the conductance quantum. Quite
obviously, on such plateaus we will not find the second order expression
useful, and therefore we are not going to treat them on the same footing as
the regular plateaus of the previous paragraph.

As to the tip-dependent part, the matrix elements appearing in (3.28) do
get suppressed, become purely real, or, with a particular set of RmT 2

m coef-
ficients, cancel each other. But these can happen only for certain positions
of the tip and cannot be sustained in entire regions (granted that the tip
potential is sufficiently local5), therefore cannot lead to significant changes
in the SGM signal.

Finishing this subsection, we would like to point out that the first and
second order expressions suffice for the perturbative description of the SGM.

5In contrast, when the basis wave functions oscillate very quickly on the scale of vari-
ation of the tip potential, it might occur that the matrix elements vanish for any tip
position. This pertains to highly energetic electrons and spatially extended tip potentials,
in which case a completely classical theory should apply, see 3.4.8.
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The only situation where both, g(1) and g(2), vanish simultaneously (not
counting the interior of the scatterer region) is when all modes are fully
closed.

3.4.6 Basic interpretation

Based on our first and second order conductance correction expressions, we
would like to interpret the SGM signal in the context of two kinds of mea-
surements that can be made:

– SGM-mapping of the structure with all the non tip-related parameters
held constant, and

– taking the conductance curve with respect to some of the system pa-
rameters, with or without perturbing the system with the tip.

As follows from the previous section, the SGM maps obtained with the
non-invasive tip will differ substantially when taken on the conductance
plateau, from the ones taken in the conductance step region or for a structure
revealing no quantisation at all.

Maps – step region

First, we would like to look at the conductance step region. Here, the SGM
signal is of the first order in the tip potential. According to (3.25), what
we probe when we move the tip over the system, is the spatial structure
of the imaginary part of the tip potential matrix elements U2 1

mm, taken be-
tween scattering eigenstates originating on the right and the corresponding,
i.e. same-index, eigenstates originating on the left. The map is a superposi-
tion of such signals coming from all the states which under the measurement
conditions remain partially open. The set of real positive coefficients, RmTm,
by which the individual signals are weighted, is constant for each map, and
can be understood as measuring how far the channels are from being fully
open or fully closed.

In general, the presence of many intertwined matrix elements can make
the map complicated and difficult to interpret. This need not be the case,
if there are eigenstates which open within a well-defined region in the en-
ergy domain, not intersecting with the opening regions of other channels.
Throughout the entire step region corresponding to such an opening, the
SGM technique maps one channel only. With the regular conductance quan-
tisation, all the conductance steps have this plausible feature.
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Maps – plateau region

The second situation we will feature is the plateau region of a quantised
conductance, where the SGM response to a non-invasive probe is dominated
by the second order conductance correction. Here, the SGM scan maps the
spatial variation of the squared modulus of the tip potential matrix elements
U2 1
mm′ . The map is created by adding signals from all the pairs of open states

and all the pairs of closed states; first state of the pair has to originate on
the right, second one – on the left. As we have pointed out in the derivation,
sec. 3.3.3, and discuss in the next section, the closed modes can be neglected
for most purposes, since their influence is significant only inside the scatter
region, and only for certain types of scatterers.

Now, even if the conductance is regularly quantised, we have no general
way of isolating these individual components. The only simple map is the
one obtained at the lowest conductance plateau (with g(0) = 1, or, in terms
of the total transmission, T = 1), with only one channel open. The higher
the plateau, the more complicated the SGM image will get. An attempt
at separating the partial signals might be realised by subtracting a lower
plateau’s map from the given, n-th one, and considering g(2)

∣∣
T=n
−g(2)

∣∣
T=n−1

(see Ch. 1, sec. 1.3). This brings in two sorts of issues. Firstly, by doing so,
we do not dispose of the cross-terms between the highest open state (m = n)
and all the other open states (m′ ∈ M − {n}). This problem disappears
when the transmission is quasi-adiabatic, which we introduce and discuss in
subsec. 3.4.10. Secondly, as the conductance plateaus do not overlap, the
subtracted (n− 1)-st map must have been taken at a different Fermi energy
than the n-th one. This is alleviated by the fact that the transverse parts
of the lead modes, upon which the scattering eigenstates are constructed,
depend solely on the mode index. Thus, we can probe the transverse shape of
the matrix elements, provided that we obtain information on the longitudinal
parts, i.e. on the propagation wave numbers and the ul matrices,6 from some
other sources. And here, the just mentioned quasi-adiabatic approximation
will also offer us some help.

Conductance curves

Conductance curves of the unperturbed system serve the purposes of de-
termining whether the conductance quantisation takes place and telling the
values of the parameters, for which the conductance plateaus and steps oc-
cur. Thus, they inform us about the conditions at which the SGM map is
or should be taken. In the case of the regular quantisation, the information

6Or, if we average it out like in [1].
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from the conductance curve translates immediately into the knowledge of Tm
(and hence Rm too).

The varied parameter is often chosen in such a way that its variation
is, at least theoretically, equivalent to varying the Fermi energy. For the
sake of simplicity, we will talk here about the conductance dependence on
the Fermi energy or the Fermi wave number, and not on other parameters,
like constriction width, shape or the potential inside it. In addition, we will
interchangeably treat the conductance and the total transmission, which,
in the view of the Landauer-Büttiker relation introduced in Ch. 2, is fully
justified.

The idea of the conductance curve can be stretched onto a measurement
at the presence of the SGM probe. Thus, the arising conductance correction,
i.e. the difference between the perturbed and unperturbed curves ∆g(EF ) =
g(EF ) − g(0)(EF ), can give a “spectroscopic” information about the matrix
elements U2 1 for one position of the tip.

In the step regions, the signal would be modulated by theRm(EF )Tm(EF )
function, whose values are known also from the reference curve. Naturally,
it will provide us with the information on the imaginary part of the matrix
elements. A full information should be available after use of the Kramers-
Kronig relations, but we do not follow this thread in this work.

On the plateaus, on the other hand, even if we have the means to ex-
tract the much smaller second order signal, the conductance correction curves
might be not easy to interpret, except for the lowest plateau, due to impos-
sibility of deconvoluting the individual |U2 1

mm′ | signals.

3.4.7 Remarks on the form of the expressions

The fact that all the conductance correction formulae are based on the U2 1

matrix elements is a consequence of the scattering states’ basis that we used
all the way through the derivation. With the current impinging from the left,
like we assumed it, only a scattering of electrons from the left-originating
scattering state to the right-originating one can describe a change in conduc-
tance, since only that one carries a net current back towards the left.

Taking for the first order correction only the diagonal elements of U2 1
..

is reminiscent of the trace operation. The double sum in the second order
expressions introduces the mixed (mm′) terms, but does not mix between
closed and open states. This is understandable, because:

a) there is always one lead, in which the closed state has zero wave function
and hence cannot participate in scattering;

b) in the other lead:
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Figure 3.2: A schematic depiction of the difference between the “trapping”
(a)) and “repulsive” (b)) scatterer. a) When the effective potential is smaller
then the background potential in the leads, the scattering state has a sizeable
part inside the structure, which is attributed to neither the transmitted, nor
the reflected part. b) The reverse situation happens when the structure
creates a convex potential landscape – the scattering state’s amplitude is
small here.

– the electron scattered into the closed state has no chance to get
back towards the left (this applies when the tip is in the right
lead), or

– the electron which scatters from the closed state to an open one,
would have gotten back even without the scattering event (this
applies in the left lead).

We also see (point a)), that the closed-closed scattering can be important only
when the tip is inside the scatterer region. Furthermore, its influence will be
more pronounced for the structures which tend to “trap” the wave function
inside them, and less pronounced for the structures which push the wave
functions out, like in the case of the QPC. The difference is schematically
explained in the fig. 3.2.

3.4.8 Role of the tip potential

The presented formulae apply to the SGM probes of arbitrary potential
shape, as long as they meet the conditions described in sec. 3.4.3. It is,
however, desirable to limit our considerations to localized tip potentials, as



3.4. SGM SIGNAL – DISCUSSION 59

this is always the case in the SGM technique. In fact, we will restrict our-
selves even further, to the idealised case of the point-like tip.

We observe that the matrix elements of any given potential VT(r) can be
expressed in terms of the delta-potential matrix elements:

U ll′mm′ =

∫
dr

≈
Ψ
∗

lεm(r)VT(r)
≈
Ψl′εm′(r) (3.53)

=

∫
dr

≈
Ψ
∗

lεm(r)

[∫
dr′ VT(r′)δ(r− r′)

]
≈
Ψl′εm′(r)

=
1

U0

∫
dr′ VT(r′)

[∫
dr

≈
Ψ
∗

lεm(r)U0δ(r− r′)
≈
Ψl′εm′(r)

]
.

Here, U0 is an arbitrary constant, but, in order to keep the correct units for
the matrix elements, its dimension should be energy times length squared.
In the context of the ideal point-like tip potential

V
(δ)

T (r) = U0 δ(r− r0) , (3.54)

(with r0 denoting the tip position), the constant U0 has a clear significance as
the space-integrated value of the potential; we shall call it the tip strength and
occasionally use it interchangeably with the tip voltage. With appropriately
defined linear extent of the tip potential, ∆r0, we can write U0 = V0∆r2

0.
Thanks to its linearity, the first order correction g(1) shares the delta-

decomposition property (3.53). If we denote by g(1,δ)(r0) the first order signal

due to the delta tip potential V
(δ)

T with the tip held at r0, then the response
to the general potential is

g(1)(r0) =
1

U0

∫
dr′0 VT(r′0) g(1,δ)(r′0) . (3.55)

This tells us not only that knowing the delta-tip signal we can reconstruct
the signal of any other tip, but also, more importantly, that the only effect
the size of a non-invasive tip has on the signal is to blur it, by taking the
values of the idealized signal from the points around r0 and adding them,
with a certain weight, to the signal at r0. We can, therefore, say that the
maximum information that could be obtained from a first order SGM map
is contained in the delta-tip signal. This is why throughout the rest of this
work we will focus on this shape of tip potential. In the rest of the formulae,
we will abandon the (δ)-superscript.

It follows from the above, in particular, that a non-invasive finite-size
tip potential should blur out the fringes in the signal completely, when its
effective radius becomes larger than their spacing. We know that this does
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not hold in the case of the standard, invasive-tip experiments, like [1, 6],
because the observed fringes constitute a variation of signal on a scale smaller
than the size of the 2DEG-depletion disc under the tip. It is an additional
confirmation that the depletion disc under the invasive tip acts essentially like
a classical object. And the classical explanation for the unexpectedly high
resolution is that the fraction of the tip-backscattered flux which ultimately
returns to the QPC and gets transmitted through it, must have been reflected
from a small and relatively well-defined region (circular segment) on the disc’s
circumference (the so-called “glint effect” [39]).

We cannot write an analogue of eq. (3.55) for the second order correction,
as this one is not linear. Since the matrix elements get smoothed out when
the tip potential has finite size, we can surely say that the g(2)-signal will
also get smoothed, but additional effects occur as well – most importantly
the impossibility of separating the summations as we do it in (3.57) below,
which is important for the interpretation, see subsec. 3.4.12.

3.4.9 Conductance correction for the delta-tip poten-
tial

First order With the delta tip potential, the first order conductance cor-
rection (3.25) can be rewritten as

g(1) = 4πU0

N∑
m=1

RmTm Im

{
≈
Ψ
∗

2εm(r0)
≈
Ψ1εm(r0)

}
, (3.56a)

and the lead-specific version (3.28) as

g(1) = 4π U0

∑
m∈M

RmT 2
m Im

{
≈
ϕ

(±) 2

lεm (r0)

}
, (3.56b)

with l indexing the lead in which we place the tip, while the (+) superscript
should be chosen if l = 2, and the (−) superscript – if l = 1.

Second order Similarly, the second order correction (3.46) reads:

g(2) = −4π2U2
0

∑
m,m′∈M

∣∣∣∣≈Ψ∗2εm(r0)
≈
Ψ1εm′(r0)

∣∣∣∣2 (3.57)

= −4π2U2
0

∑
m∈M

∣∣∣∣≈Ψ2εm(r0)

∣∣∣∣2
∑

m∈M

∣∣∣∣≈Ψ1εm(r0)

∣∣∣∣2
 .
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This is nothing else but a product of two partial local densities of states,
one for the open states incoming from the left, and one for the open states
incoming from the right. Such form points out to the physical origin of the
correction, which is the scattering of the electrons by the tip potential from
any of the open (1εm)-states to any of the back-propagating open states. It
does not include the occupation factors, but the states are fully occupied and
fully empty anyway.

The first plateau case If we apply the above formula in a time-reversal
invariant system tuned to the first plateau of the quantised conductance, an
even simpler interpretation can be obtained.

For a fully open channel, allowing no reflected wave components, the
time-reversal invariance (see subsec.2.3.2, Ch. 2) guarantees that the complex
conjugate of a right-originating eigenstate can be decomposed in the following

way:
≈
Ψ
∗

2εm(r) =
∑

m′∈M c
(m)
m′

≈
Ψ1εm(r). The sum contains fully open left-

originating states only. On the first conductance plateau the sum can run
over one index only, M = {1}, and the constant multiplier is a pure phase.
The second order conductance correction then takes the form

g(2) = −4π2U2
0

∣∣∣∣≈Ψ1ε1(r0)

∣∣∣∣4 . (3.58a)

Likewise, the eigenmode-basis form (eq. (3.48)) is

g(2) = −4π2 U2
0

∣∣∣∣≈ϕ (±)

lε1 (r0)

∣∣∣∣4 (3.58b)

inside the l-th lead. The choice between the (±) superscripts is arbitrary.
We see that there is a direct and very simple relation between the g(2)

correction and the local density of the only occupied open state, which, in
turn, is related to the charge density at the Fermi energy. We will discuss
this briefly in subsec. 3.4.12 below.

3.4.10 General features of the signal inside the leads

Even in the simplest situations, with only one partially open channel when
the step-signal is considered, or only one fully open channel for the plateau-
signal, we are faced with a superposition of many oscillations, since the basic
constituents of the g(1) and g(2) expressions are not simple oscillations, but

linear combinations thereof, namely
≈
ϕ

(+)

lεm(r) =
∑

a [ul]ma ϕ
(+)
lεa (r).
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In order to see how the signal decomposes to those simple parts, we take
the lead-specific formulae (3.56) and (3.57) back to the basis of lead modes
(keeping the m(′)-sums):

g(1) = 4π U0

∑
m∈M

RmT 2
m Im

{∑
aa′

[ul]ma [ul]ma′ ϕ
(+)
lεa (r0)ϕ

(+)
lεa′ (r0)

}
, (3.59a)

g(2) = −4π2 U2
0

∑
m,m′∈M

∣∣∣∣∣∑
aa′

[ul]ma [ul]m′a′ ϕ
(+)
lεa (r0)ϕ

(+)
lεa′ (r0)

∣∣∣∣∣
2

. (3.59b)

First order

The fact that the eigenmodes get squared in the first order formula (3.56)
gives rise to the oscillating terms with increased longitudinal wave numbers,

kaa′ = ka + ka′ , (3.60)

which lie between 2kN and 2k1, and to a mix of increased and decreased
transverse wave numbers – for the simple hard-walled leads (ex. 1, sec. 2.1.4)
each transverse mode splits into two harmonics, with7

k
(⊥)
aa′ =

∣∣k(⊥)
a ± k(⊥)

a′

∣∣ . (3.61)

This produces a myriad of oscillating terms with the effective (total) wave

numbers
∥∥∥(k(⊥)

aa′ ; kaa′
)∥∥∥ =

(
k

(⊥) 2
aa′ +k

2
aa′

)1/2
, ranging from 2kN for a = a′ = N ,

which can be nearly zero, to maximally 2kF .

Second order

At the same time, in the second order formula (3.57) we have a similar mix of
simple oscillations in the expression under the modulus sign, only differing by
that the off-diagonal mm′-pairs are also allowed, which affects the amplitudes
ul but not the form of individual oscillating terms. After factoring out of the
sum the term associated with the middle wave number, exp[i(k1 + kN)x],
and cancelling it at the modulus, we are left with the set of terms whose
propagation wave numbers are differences of the original ones,

kaa′ = ka − ka′ , (3.62)

7As

φaφa′ = (2/W ) sin(k(⊥)a y) sin(k
(⊥)
a′ y) = (1/W )

{
cos[(k(⊥)a − k(⊥)a′ )y]− cos[(k(⊥)a + k

(⊥)
a′ )y]

}
.
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spanning a symmetric set between −(k1 − kN) and k1 − kN (< kF ) which
includes zero wave numbers, i.e. constant terms, absent in the first-order
case. Squaring the modulus-expression expands this set to reach twice larger
bounds, while the overall set of longitudinal periodicities stretches from 0 to
2(k1 − kN), since each negative wave number has its positive counterpart.
This set would coincide with what we had for the first order signal, if we
shifted it by 2kN towards the lower wave numbers.

The transverse wave numbers, on the other hand, are given by (3.61)
before the modulus and the square are taken. After this is done,8 the effective
magnitudes of wave numbers of the oscillations found in the second order

signal will lie between 0 and 2
√(

k1 − kN
)2

+
(
k

(⊥)
1 + k

(⊥)
N

)2
. (We stress that

the oscillations are not circular waves, so the periodicities implied by these
wave numbers can be found only in certain directions.)

We see that the second order case can produce an equally complicated
structure as the first order, with slightly slower oscillations, but richer struc-
ture in the transverse direction (compare footnote 8 with footnote 7).

The experimentally observed fringes of regular periodicity, half the local
Fermi wavelength, can be explained through our formulae only if there are
some regularities encoded in the ul matrices, other than just unitarity. Now,
we would like to discuss the simplest possible of such regularities, namely
when only one of the terms on each column is appreciably different from
zero.

3.4.11 Quasi-adiabatic case

The special case we would like to highlight here, amounts to assuming that,
for at least one lead l, the column vector of coefficients [ul]m. has only one
non-zero element, that is

[ul]ma = δãa exp(iα(l)
m ) (3.63)

for some index ã depending on m. The quantity α
(l)
m represents (part of) the

phase acquired on getting transmitted.

8Here, we use

sin2(k(⊥)a y) sin2(k
(⊥)
a′ y) =

1

4

{
1− cos

(
2k(⊥)a y

)
− cos

(
2k

(⊥)
a′ y

)
+

1

2
cos
[
2
(
k(⊥)a − k(⊥)a′

)
y
]

+
1

2
cos
[
2
(
k(⊥)a + k

(⊥)
a′

)
y
]}

.
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The above equality basically means that the m-th scattering eigenmode
coincides within the lead l with one of the lead modes, up to a phase,9 which
is very similar to requiring a (globally) adiabatic transmission of the lead
mode, i.e. such where that mode would be transmitted into exactly one,
corresponding, lead mode on the other side. For this reason, we shall call
eq. (3.63) the quasi-adiabatic condition. The adiabatic transmission of a
lead mode implies such identification not only between the given lead mode
and some incoming transmission eigenmode in one lead, but also between its
other-side correspondent and some outgoing eigenmode in the other lead, so
we could say that the adiabaticity is nothing else but a double-sided quasi-
adiabaticity. As we shall discuss in Ch. 4, in the QPCs the quasi-adiabaticity
is not as unusual as it might seem.

Thanks to the quasi-adiabatic assumption, we can easily evaluate the con-
ductance correction expressions (3.56) and (3.57) in the scattering eigenstate
and lead eigenmode bases.

First order

The first order signal from a single partially open state is then

g(1) = 4π U0

∑
m∈M

RmT 2
m Im

{
ϕ

(±) 2
lεã (r0) exp(2iα(l)

m )
}

(3.64)

= 4πU0RmT 2
m

φ2
ã(m) (y0)

hvã
sin
(

2kã(m)x0 + 2α(l)
m

)
.

This is a regular, x-y separable wave. It reproduces the experimentally re-
ported fringes of the positive- and negative-correction stripes alternating in
the direction of propagation with the periodicity of half the local Fermi wave-
length.10 Based on this and the analysis from the previous subsection, we
can conclude that the regular fringing pattern, containing one periodicity
only, as reported in the many experiments is the signature of not only the
coherence, which is a necessary condition, but also of a certain degree of
(quasi-) adiabaticity – meaning that the vector [ul]m., even if not delta-like
as in (3.63), is at least peaked around one of its indices ã.

What it cannot reproduce, is the decay of the fringes with the distance
from the structure. This is due to the straight, non-widening leads, and only

9This is true for both, the incoming and the outgoing m-th eigenmode, but only in one
lead.

10In this context, the local Fermi wavelength should be understood as the propagation
wavelength at Fermi energy, i.e. the spatial periodicity based only on the kinetic part of
the electron’s energy.
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passing to the infinite leads width, which we do not perform in here, would
tell us something about how an ideal quasi-adiabatic signal should decay in a
fully two-dimensional QPC-containing system. It is very interesting to note,
however, that the results do not depend on whether the “ray” of signal is
kept together by the hard walls or by the prior focussing. This suggests,
that in a branched pattern of SGM signal, a single branch could perhaps
behave like a separate lead. (The fact that each aa′-term in (3.59a) has a
periodicity-direction of its own, means actually that this should work also for
the non-quasi-adiabatic case, because all the parts of signal with the “wrong”
periodicity would simply leave such an imaginary lead through its “walls” by
moving in a different direction, and only one wavelength would remain in
the branch. Still, such a scenario would imply the existence of branches with
different periodicities, which is contrary to the experimental findings.)

Another price we pay for the simplicity of this solution, is the inability to
satisfy a natural requirement on the signal in a usual (abrupt) QPC system,
namely the requirement that the signal is concentrated near the exit from
the narrow constriction and spreads wider as the tip is moved further from
the exit. This can be reproduced only by adding many terms with different
periodicities, like we had in the previous subsection. This is another way
of justifying the well-known fact that the abrupt structures are necessarily
non-adiabatic, complementary to the one we will present in Ch. 4. And
conversely – we see that the quasi-adiabatic model can serve as a reasonable
approximation for the QPCs which open gradually and smoothly, so that
the wave functions inside them manage to “straighten” before they enter the
lead.

Second order

The quasi-adiabatic expression for the second order reads

g(2) = −4π2 U2
0

∑
m,m′∈M

∣∣∣ϕ (+)
lεã(m)(r0)ϕ

(+)
lεã(m′)(r0)

∣∣∣2 (3.65)

= −4π2U2
0

∑
m,m′∈M

φ2
ã(m) (y0) φ2

ã(m′) (y0)

h2 vã(m)vã(m′)

= −4π2U2
0

∣∣∣∣∣∣
∑
m∈M

φ2
ã(m) (y0)

h vã(m)

∣∣∣∣∣∣
2

,

which does not vary in the longitudinal dimension at all – in particular, it
shows no fringes. On the other hand, for plateaus beyond the first one,
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the transverse structure of the signal is considerably richer here than in the
first order case, due to the presence of the mixed terms ã(m)ã(m′). (The
non-diagonal mixed terms, m 6= m′, for the low plateaus, like second and
third, will have relatively small overlaps, which might be at the origin of the
qualitative success of the mode subtracting in [1].)

The lack of fringes in the plateau signal is quite remarkable, because it
does not follow from the absence of QPC-backscattering (Tm can be lower
than one), but from the quasi-adiabaticity of it. As we can see from (3.59b),
any departure from the quasi-adiabatic model will lead to a revival of the
fringes. Also, owing to the effectively higher powers of transverse modes
in that expression, the transverse structure of this “imperfect” (non-quasi-
adiabatic) second order signal will be richer than of the one of its first order
analogue. In conjunction with the possible small fringing, this could give a
weak chequerboard pattern (cf. simulation results in Ch. 5). We remind that
these conclusions hold inside the leads. As we will see in Ch. 4, outside leads
even a fully adiabatic structure can have a fringed SGM signal.

3.4.12 Comparison with local densities

Closing this chapter, we would like to compare the obtained SGM conduc-
tance corrections to the unperturbed local densities: density of current and
density of charge.

Current density

As we discussed in Ch. 2, the net current across the investigated system is
carried only by the states in the “Fermi window” of energies, that is, between
the chemical potentials µ1, µ2 of the two reservoirs, as all currents below µ2

(< µ1) cancel. All of those originate in the left lead (reservoir), and in
Appendix B, we show that this is also the case for current densities. Thus,
we only need to consider here j1ε, the current density due to the ensemble
of left-originating scattering states, at the Fermi energy (i.e. between µ1 and
µ2 = µ1 − dEF ).

The lack of dependence on the right-originating states might be seen as
an opportunity to rule out immediately the possible relation between the
current density and the SGM conductance corrections, which contain wave
functions of both, left- and right-originating states. We see, however, by the
virtue of the same reasoning, that there is a relation between left-originating
current and the right-originating states (j1ε = −j2ε). We will therefore seek
comparison between the current density and the SGM response by writing
both quantities explicitly.
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The current density components, longitudinal j
(x)
1ε and transverse j

(y)
1ε , are

given in eqs. (B.2a-B.2b) of the appendix. We rewrite them as:

j
(x)
1ε =

e~
Me

∑
m∈M

T 2
m Im

{∑
aa′

[u∗2]ma [u2]ma′ ϕ
(−)
2εa (r)ϕ

(+)
2εa′(r) ika′

}
,

j
(y)
1ε =

e~
Me

∑
m∈M

T 2
m Im

{∑
aa′

[u∗2]ma [u2]ma′ ϕ
(−)
2εa (r)ϕ

(+)
2εa′(r)

1

φa′

∂φa′

∂y

}
.

This form is convenient for confronting it with the delta-tip conductance
corrections expressed in eqs. (3.59a-3.59b) of subsec. 3.4.10. We need to bare
in mind that what should be relevant about the conductance correction is its
magnitude

‖j1ε‖ =

√
j

(x)
1ε

2
+ j

(y)
1ε

2
, (3.66)

which complicates tremendously the analysis. Hence, we will compare only
the most general features of the expressions.

Eigenmode-composition The first discrepancy we notice, is the differ-
ence of the eigenmode summation range. The current density expression
includes contributions from all the channels, except the fully closed ones –
due to the T 2

m-factor. We can make the eigenmode-composition match that
of the conductance corrections by a suitable choice of the Fermi energy:

– in the first step region of the quantised conductance – the range matches
with that of g(1),

– in any of the plateau regions – the range of g(2) is matched.

With a non-quantised conductance curve, where only g(1) is relevant, the
ranges will only agree if none of the channels if perfectly open. In all other
cases there is no way to represent all the contributions to the current density
through the SGM signal.

In addition, the current density’s single sum over eigenmodes can be
turned into a double sum, similar to the one in second order conductance
correction, when the squares of the j

(x)
1ε and j

(y)
1ε components are taken. The

expressions become complicated after squaring and we will not trace them ex-
actly, contenting ourselves with considering only the simplest, quasi-adiabatic
case – see below.
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Lead-mode-composition The most important point, however, is the ab-
sence of any factors in the SGM conductance corrections, that could give
them the dependence on the wave vector, and hence on the velocity, of elec-
trons, which are present in the expressions for j1ε.

The wave-vector-related factors in the current density, ka′ and 1
φa′

∂φa′
∂y

,

distort the relative magnitudes of terms in the sum over the lead modes
(a, a′), with respect to what there is in the g-corrections. The second one of
them also distorts the spatial variation. However, in the limit of infinitely
wide leads (W →∞), this effect of distorting the lead-mode composition can
get cancelled by adding the two squared components in (3.66). The electron
waves sufficiently far from the scatterer nanostructure become separable in
polar coordinates, so the current density and charge density are proportional,
the proportionality coefficient containing the Fermi wave vector kF . Then,
relating the current density and the SGM response is still possible.

Phase-composition Owing to the complex conjugation of the u2 matrix
and the presence of one incoming and one outgoing lead mode, the relative
phases of the terms in the aa′-sum are also distorted, but only with respect
to what we find in g(1)-correction, while they can be made to agree with the
diagonal, m = m′, elements of the second order correction.11 In particular,
on the first plateau – with only one possible choice for m and m′ – the
phase-compositions of g(2) and j1ε agree.

Quasi-adiabatic case Using the quasi-adiabatic approximation, (3.63),
we can retrieve the simple expressions for the current density,

j
(x)
1ε =

e~
Me

∑
m∈M

T 2
m kã

∣∣∣ϕ (±)
2εã(m)(r)

∣∣∣2 =
e

h

∑
m∈M

T 2
m φ2

ã(m)(y)

and

j
(y)
1ε = 0 .

(cf. (2.12) and (2.52)), which show explicitly the scaling by mode wave num-
bers (see above), with the lack of it in the quasi-adiabatic SGM signal (3.64)
and (3.65). Apart from this, the first order correction also differs from the
current density by the fringes-generating factor sin (2kãx0).

11Thanks to the complex modulus sign, the second order correction can be re-written
as

g(2) = −4π2 U2
0

∑
m,m′∈M

∣∣∣∣∣∑
aa′

[u∗l ]ma [ul]m′a′ ϕ
(−)
lεa (r0)ϕ

(+)
lεa′ (r0)

∣∣∣∣∣
2

(3.67)
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Charge density

While it cannot be directly linked to the unperturbed current flux,12 the non-
invasive SGM response in some cases finds a clear relation to the structure’s
charge density at the Fermi level.

The total density of charge at the Fermi energy, or in the “Fermi window”,
in the region to the right of the QPC is given by

%ε = e
∑
m∈M

∣∣∣∣≈Ψ1εm(r0)

∣∣∣∣2 = e
∑
m∈M

T 2
m

∣∣∣∣≈ϕ (±)

2εm(r)

∣∣∣∣2 . (3.68)

(ε = EF ) and is the same, up to a constant, as the local density of the open
left-incoming states at EF . It includes the left-incoming states only, since
the right-incoming ones, both open and closed, remain empty.

Considering the result (B.23), we see that the second order correction in
the first plateau region of the quantised conductance is proportional to the
square of the Fermi-energy charge density.

Apart from the time-reversal invariance, two things are crucial for this
simple relation. The first one is the locality of the tip potential. We remind
that the splitting of summations in (3.57) would not have been possible for
tip potentials other then the assumed delta-potential. This could be a serious
restriction from the practical point of view, since the tip potential width is
comparable to the tip’s radius of curvature and cannot be controlled by other
factors. The finite width will introduce not only blurring of the SGM signal,
like in the linear case (g(1)) shown explicitly in subsec. 3.4.8, but also an

additional variation caused by the different evolution of the phase in
≈
Ψ1εm

and
≈
Ψ2εm as we move to a neighbouring point of space.

The second essential requirement is the good quality of the conductance
plateau. Any departures from Tm = 1 for the open channel and from Tm = 0
for the closed ones will change the character of g(2) by introducing the r′t-
related terms (see (3.42), subsec. 3.3.3) and diminish its importance in favour
of g(1). We will revisit the matter of the imperfect plateau conductance in
the context of numerically simulated maps in Ch. 5.

We cannot establish analogous relations the plateaus higher than the first
one, unless the investigated system has additional symmetries. It has been
shown in [44] that if it has a central (four-fold) symmetry, then the SGM
response on all plateaus is proportional to both, the square of the current
density and the square of the Fermi-energy density of the mobile charge.
This relation holds only at sufficient distances away from the QPC opening

12Except in the wide-lead limit – see below.
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(or from the exit of another small structure), kF r0 � 1, and only in the limit
of infinitely wide leads.

The first order correction g(1) does not share the same direct relation to
the charge density as g(2). One situation, where it bears some resemblance
to the charge or current density, is when we consider a quasi-adiabatically
transmitting structure and look at the signal inside the (finite-width) leads,
far enough from the structure. There, the oscillation given by (3.64) should
have an amplitude which is related to the charge density. This situation,
however, seems to have a limited practical importance.



Chapter 4

Application to Quantum Point
Contacts

We would now like to apply the theory developed so far to the case of the
quantum point contacts, whose most prominent feature is the conductance
quantization. As we discussed in the previous chapter, focussing on this
simple case allows for some serious simplifications to be made in the SGM
conductance corrections formulae.

In order to obtain the SGM maps according to our formulae from the
Chapter 3, a specific model for the QPC geometry has to be chosen. In the
first part of the present chapter, we review the most important models de-
scribing the QPC conduction. Some of them are particularly suitable for the
numerical simulations – and these will be the subject of our investigations in
Ch. 5, while some other ones, owing to the analytical solutions they provide,
can be used directly within our theory – this is the subject of the second part
of this brief chapter.

A special attention will be paid to the notion of adiabaticity, since, as we
have seen in Ch. 3, it can play an important role in explaining the simple
shape of the SGM signal observed in the experiments.

4.1 Conductance quantization in the QPC

4.1.1 Wire model

A quick-and-simple way to understand the quantization of conductance in
steps of the height 2e2/h, occurring in Quantum Point Contacts in the ballis-
tic regime of transport, is supplied by the Landauer-Büttiker formula, applied
to the simplest conceivable case – with no scatterer at all, as in the fig. 4.1.

71
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Figure 4.1: The simplest approximation for
a QPC: the perfect thin and long wire (rep-
resented here by L1, S and L2 all together)
joined in a reflectionless way with the reser-
voirs (R1 and R2).

Figure 4.2: QPC as a part of the scatterer-
leads-reservoirs system.

The lead, an ideal wire perfectly coupled to the reservoirs, does not disturb
the passing electrons in any way, so tab = δab. The only restriction on the
transmission is that at a given Fermi energy EF the lead of the effective
width W supports only a limited number of the transverse modes, N(EF ),
which enters the formula as the dimension of the matrix t.

The Landauer conductance (2.58) is then:

g(0) = N(EF ) . (4.1)

This produces a perfect step-like structure for g when we vary the Fermi
energy. The subsequent steps rise at the thresholds given by the transverse
eigenenergies ε

(⊥)
a of (2.4), Ch. 2, so a variation of the wire’s effective width

produces the same effect. From the example (2.19-2.21) we gave in sec. 2.1,
a simple geometric corollary can be drawn for the hard-walled structure: a
new constriction mode is opened when the quantity 2W/λF trespasses an
integer number, ie. when an additional half of Fermi wavelength fits inside
the constriction.

Each of the conductance steps is associated with a single open mode.
Furthermore, there are no inter-mode processes, so the modes behave like
independent quasi-one-dimensional channels, each of them with a constant
background potential ε

(⊥)
a and its own conductance G0 = 2e2/h. The physical

origins of the fact that, despite the lack of scattering, a mode does not
conduct more than this, are the following:

– a single mode can host no more than a certain number (certain density)
of electrons1 at a time, and any excessive electrons fed by the reservoir

1Or, more correctly, a certain total probability of finding an electron – as we do not
work with many-electron states.
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would not enter – a phenomenon known as the contact resistance [37,
66],

– all the electrons in a given mode move with a fixed velocity, va.

The cancellation of the mode’s velocity and the electron density in the current
calculation, leading to the equal conductance for all modes, is an important
conclusion from the Landauer theory.

Because of our assumption about the perfect channel filling and voiding
at the reservoirs (sec. 2.4 of Ch. 2), this simple model of the QPC neglects
a priori any kind of reflection of the modes that can exist inside it. On the
other hand, the assumption about long leads (secs. 2.1-2.2) prevents it from
including the tunnelling transmission of those modes which cannot. Thus,
we do not know anything about the accuracy of the quantization that can be
achieved in a real structure. It is interesting to note, that the experimental
discovery of the 2e2/h steps in the conductance curve came unexpectedly,
even though the Landauer formalism was already known at that time. The
reason was the lack of estimates of the steps’ quality and a common belief that
it was unlikely to have the quality good enough for the steps to be observed
[67]. In addition, a natural question arises whether this kind of description
could be valid for a very short constriction, when transverse states in the
narrowest part might be not well defined [68].

4.1.2 Separable potential

Having said this, we would like to get back to modelling the QPC as the
central structure accessed by two leads, as in fig. 4.2.

The QPC itself can be described by the potential U(x, y) that the split-
gate exerts inside the simple wire. We have to consider a slightly more general
Hamiltonian as compared to the one of Chapter 2 (eq. (2.1)),

HQPC = − ~2

2Me

(∂2
x + ∂2

y) + U(x, y) , (4.2)

but we assume U(x, y) remains separable and binding in the y-dimension.
So, the description in terms of the transverse modes and transverse energies
is still valid, only with the allowance for the x-coordinate appearing as a
parameter:

φa(y;x), ε(⊥)
a (x), a = 1, 2, . . . . (4.3)

We can decompose the wave function of an electron propagating through
the constriction using the completeness of the transverse modes; at any x we
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have

ϕ(r) =
∞∑
a=1

ξa(x)φa(y;x) , (4.4)

which, for mathematical correctness, should include all the modes: the open
ones, the ones which get closed inside the narrow region only and the ones
which are evanescent even inside the leads. The last category can be neglected
due to the long-leads assumption. Under such a decomposition, the time-
independent Schrödinger equation has [2, 69]:

– the transverse part[
− ~2

2Me

∂2
y + U(x, y)

]
φa(y;x) = ε(⊥)

a (x)φa(y;x) , (4.5)

– and the longitudinal part

∞∑
a=1

{
− ~2

2Me

ξ′′a(x)φa(y;x) +
[
ε(⊥)
a (x)− ε

]
ξa(x)φa(y;x)

}
=
∞∑
a=1

[
− ~2

Me

ξ′a(x) ∂xφa(y;x)− ~2

2Me

ξa(x) ∂2
xφa(y;x)

]
(4.6)

(where prime denotes the ordinary derivation).

Projecting the latter on some arbitrary transverse mode we get a more
tractable form:[

− ~2

2Me

∂2
x + ε(⊥)

a (x)− ε
]
ξa(x) =

∞∑
b=1

Aabξb(x) , (4.7)

where the transverse energies ε
(⊥)
a play the role of an effective potential, and

the operator

Aab = − ~2

Me

〈φa |∂x|φb〉 ∂x −
~2

2Me

〈
φa
∣∣∂2
x

∣∣φb〉 (4.8)

couples different modes. (The bra-ket multiplication is understood to take
place in the y-space only.)

In the approach described above, the travelling electrons can be viewed
as passing through a series of potential wells. The potential U(x, y) carves
out a certain region accessible for the electrons at a given Fermi energy,
thus defining the lateral constriction: soft-walled (SW) – in the ordinary
case, and hard-walled (HW) – if the transverse potential wells are closed by
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infinite values of the potential. Both these cases are well described by the
above analysis. The latter type of constrictions involves imposing appropriate
additional boundary conditions, but this makes it particularly suitable for
computer treatment. It is the hard-walled model that we will use for our
simulations in Chapter 5.

4.1.3 Adiabatic approximation

The form of the operator A, with the first and second derivative of the
transverse mode wave functions along the longitudinal direction, suggests
how the set of equations (4.7) could be simplified [2, 69].

The transverse modes, at each x, are fully determined by the transverse
potential in the equations (4.5), and when the QPC potential varies slowly
and smoothly with x as compared to its corresponding changes in y, so will
do the transverse wave functions φa(y;x). For such potentials, the right-hand
side terms of (4.7) are small and we could neglect them, hence decoupling
the equations. The electron’s evolution when passing through the structure
is then globally adiabatic – it stays all the time in the same transverse state.2

Globally adiabatic hard-wall model

The globally adiabatic approximation was applied by Glazman et al. [68],
to the hard-walled structures with zero potential at the bottom, like in the
example (2.19) of the sec. 2.1. The constriction is then fully described by its
width as a function of the longitudinal position, W (x). A formula to describe
the transmission was given, which includes the previously neglected effects,
partial reflection in the open channels and the tunnelling in the closed ones,

Ta =
1

1 + exp

[
− 2π√

WQPCW
′′
QPC

(kFWQPC − πa)

] . (4.9)

Here WQPC is the constriction width in its narrowest point, and by W ′′
QPC we

mean second derivative taken in that point. For the validity of the adiabatic
approximation in this system, the boundary’s radius of curvature should ex-
ceed the Fermi wavelength: W

′′−1
QPC � λF . The formula (4.9) naturally sets

the quantity 2π
√
WQPC/ W ′′

QPC in the role of a measure of the conductance

steps’ quality, called the adiabatic parameter. An important conclusion is
that the ideally adiabatic transmission depends only on the constriction prop-
erties in its narrowest point.

2More precisely: the electron stays in the mode corresponding to the one it started in.
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Non-perfect adiabaticity, local adiabaticity

Analysis of the adiabaticity conditions and implications [70, 71] shows that
even a small, but finite, boundary curvature builds up its effect as the elec-
trons propagate through the constriction, leading necessarily to breaking the
adiabaticity at a certain distance xad ∼ W

′′−1
QPC away from the centre of the

QPC. The adiabaticity is therefore kept only locally, while globally we can
only speak of greater or smaller degree of adiabaticity.

Beyond that distance, an electron propagation state previously described
by the single transverse mode (of the central part of the constriction) starts
incorporating other transverse modes, which manifests through non-zero off-
diagonal, i.e. mode-mixing, terms in the transmission amplitude matrix in
the lead-mode basis. In the basis of scattering eigenstates, on the other hand,
there is by definition no mode-mixing, and the non-adiabaticity is described
through the non-diagonal elements of the auxiliary matrix ul in the consid-
ered lead.3 The scattering eigenstates, at least the propagating ones, can
still be chosen to contain single transverse modes in constriction’s central
part. This shows that there is a direct correspondence between constric-
tion (central region) states and the transmission eigenstates of the entire
system. (This correspondence has been confirmed also in the abrupt hard-
wall model of the QPC [44], which lacks the adiabaticity completely.) From
this perspective, the non-adiabaticity can be understood as a mismatch, or
an incompatibility, between the injector-determined electron motion and the
environment-determined one.

The effect of small departures from adiabaticity on the structure’s con-
ductance was studied by Yacoby and Imry in [69]. They introduced a method
for iterative solution of the eq. (4.7), by which they demonstrated that the
inter-mode reflection and transmission terms have the same character as the
diagonal reflection terms, i.e. exponentially falling with the growth of the
constriction smoothness parameter. Furthermore, they showed that for the
adiabatic shape of the conductance curve it is sufficient, if the constriction
opens smoothly in a short region close to the narrowest point, regardless of
what happens further. Thus the local adiabaticity can successfully replace
the global one.

As we have seen in Ch. 3, adiabaticity also has an important influence
on the shape of the SGM signal, but not on its interpretation. It seems
that the SGM-mapping gives us better means of discerning the effects of
the adiabaticity or its lack than simply the conductance curves. We will
qualitatively consider these effects in the simulated images in Ch. 5.

3More precisely – through having more then one non-zero element in a column, i.e. not
satisfying (3.63).
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Non-adiabaticity, abrupt hard-walled structures

The opposite case, with rectangular constriction borders, was investigated
by Szafer and Stone [72]. This type of geometry is expected to be highly
mode-mixing. Their results show that a good quantization is still attainable.
The shape of transmission curve is no longer of exponential character, as in
(4.9), but is much sharper than it would follow from solving a 1D rectangular-
potential problem. An additional mechanism to spoil the plateaus was re-
ported. The electron waves reflected at the entrance and at the exit of the
constriction can now interfere with each other, giving Fabry-Perot-type res-
onant structures in the conductance curves. This effect requires, apart from
substantial reflection at the exit, an appreciable phase difference between
those two, so it will be visible for elongated structures (see Ch. 5). Its exper-
imental relevance was discussed in somewhat more detail in [73]. Later, this
kind of feature in the conductance plateaus was experimentally observed by
van Wees et al. [74].

In shorter structures, on the other hand, the previously mentioned below-
barrier tunnelling is large, which also deteriorates the accuracy of quantiza-
tion.

4.1.4 Büttiker saddle-point model

Since the electrostatically defined constriction must have a smooth potential
everywhere, it is of interest to see what happens in a soft-walled structure
created by a potential with no sharp edges nor instantaneous rises. The
key insights can be extracted from the double-harmonic model of the QPC
introduced by Büttiker [36].

Here, the QPC potential is expanded in a Taylor series up to the second
order around its saddle point:

U(x, y) ∼= VQPC −
1

2
Meω

2
xx

2 +
1

2
Meω

2
yy

2 . (4.10)

The coefficients ωx(y) are the curvatures of the QPC potential, and hence
they fully describe the constriction’s geometry in this model.

The transverse wave functions, as evaluated from (4.5), are the 1D har-
monic oscillator solutions, given by the expression (2.23) of the sec. 2.1.
They are independent of x, and completely determined by the mode index
a and the scale parameter

√
Meωy/~. The effective energies ε

(⊥)
a are then

(cf. (2.3-2.4) and (2.24)):

ε(⊥)
a (x) = VQPC −

1

2
Meω

2
xx

2 + ~ωy
(
a− 1

2

)
. (4.11)
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The coupling terms Aab vanish and the longitudinal Schrödinger equation
can be written in terms of the dimensionless energy and position

Ea = 2
ε− VQPC − ~ωy

(
a− 1

2

)
~ωx

X =

√
Meωx
~

x (4.12)

as (
∂2
X + Ea +X2

)
ξ(X) = 0 . (4.13)

This is a form of Weber’s differential equation [75]. The associated trans-
mission problem was studied by Connor [76] and in the context of two-
dimensional electron motion by Fertig and Helperin [62]. They gave the
wave functions satisfying (4.13) in terms of the confluent hypergeometric
functions (see 4.2.2) and also the semiclassical solutions valid for large |X|.
From these, the reflection and transmission amplitudes are deduced:

tab = exp (−iαa)
1√

1 + exp (−πEa)
δab , (4.14a)

rab = −i exp (−iαa)
exp (−πEa/2)√
1 + exp (−πEa)

δab , (4.14b)

where the phase factor αa is a function of energy:

αa = α(Ea) =
1

2
Ea + arg Γ

(
1 + iEa

2

)
− 1

2
Ea ln

1

2
|Ea|

and has been deduced from the semiclassical connection formulae [76].
The transmission calculated from (4.14) has the familiar exponential

(Fermi-Dirac) shape with a small modification with respect to (4.9), as the
energy is used instead of the wave number:

Ta = (t†t)aa =
1

1 + exp(−πEa)
. (4.15a)

The role of adiabatic parameter is now played by 2π/~ωx, but once we con-
sider the energy spacing between the steps’ rising points, ~ωy, we see that
the good quantization condition is actually ωy � ωx. Complementary to the
above, the total reflection probability for a single mode reads

Ra = (r†r)aa =
exp(−πEa)

1 + exp(−πEa)
. (4.15b)

When it comes to calculating the conductance, these expressions have to be
evaluated at the Fermi energy and summed up over all the modes, which gives
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Figure 4.3: The conductance through
a QPC modelled by the saddle-point
potential, as a function of a dimension-
less energy variable. The individual-
mode transmission curves Taa, which
add up to create it, are also shown.
(Figure reproduced from [36].)

the rounded step-like structure in the plot of the conductance as a function of
the Fermi energy – see fig. 4.3 – or as a function of the constriction parameters
ωx(y).

The Büttiker model can match a real potential only in the region close
to the saddle-point. It therefore replaces the global problem of the electron’s
passage through the structure, by the local scattering problem. The valid-
ity of this approach follows from the above-mentioned fact that the most
important contribution to the transmission in a smoothly varying system,
i.e. locally adiabatic, comes exactly from that small central region. Accuracy
is the greatest when the electron energies are close to the saddle point energy
VQPC, so that the region they pass through is indeed close to the saddle point.

An important advantage of this model is that it provides, as sort of a
by-product, the exact wave functions of the system [62]. We will use them
in the next section to plot the expected SGM signal, first- and second-order,
as well as the appropriate local densities.

4.2 SGM signal

Once we choose the model of the QPC and specify the constriction geometry
within that model, we can solve it to obtain the quantities necessary for the
evaluation of the SGM signal: the transmission and reflection amplitudes,
and the scattering state wave functions, from which we build up the tip-
potential matrix elements V2 1 or U2 1, as well as the local densities % and j
to compare with.
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4.2.1 Wire

The case of the clean wire (sec. 4.1.1), even though quite trivial, can serve
as a useful reference point when we compare signals of different structures.

The scattering states here are just the wire states (sec. 2.1), based on
which we easily evaluate the SGM conductance corrections:

g(1) = 0 , g(2) = −4π2 U2
0

[
N∑
a=1

∣∣ϕ (+)
εa (r0)

∣∣2]2

(4.16)

and the relevant local densities:

% = e
N∑
a=1

∣∣ϕ (+)
εa (r)

∣∣2 , j =
e~
Me

N∑
a=1

ka
∣∣ϕ (+)

εa (r)
∣∣2 x̂

(the lead index l, meaningless in this case, has been omitted). The vanishing
of g(1) is determined by the zero-width character of the step regions – see
sec. 5.2.1, Ch. 5.

4.2.2 Büttiker model

The saddle-point model of the QPC is very convenient, as it provides ana-
lytical expressions for all the quantities required to create the perturbative
SGM maps according to the formulae of Chapter 3.

Basic ingredients

Owing to the adiabaticity, the scattering states generated by the transverse
modes a are identical to the transmission eigenstates m. Hence, from (4.15)
the transmission and reflection singular values can be readily established:

Tm =
1√

1 + exp(−πEm)
, Rm =

exp (−πEm/2)√
1 + exp(−πEm)

, (4.17)

and the scattering eigenstates are described by the wave functions:

≈
Ψlεm(r) = ξm(x)φm(y) . (4.18)

As we mentioned, the transverse functions φm are the harmonic oscillator
solutions (2.23), while the longitudinal parts ξm are given by the solutions to
the Weber equation (4.13), called the parabolic cylindrical functions. They



4.2. SGM SIGNAL 81

can be written in terms of the confluent hypergeometric functions F (.|.|.) as
[62]

ξm(x) = A exp
(
−iX2/2

)
F

(
1 + iEm

4

∣∣∣∣ 1

2

∣∣∣∣ iX2

)
(4.19)

+BX exp
(
−iX2/2

)
F

(
3 + iEm

4

∣∣∣∣ 3

2

∣∣∣∣ iX2

)
,

with two arbitrary constants A,B ∈ C. This form has to be supplemented
by the appropriate boundary conditions on ξm, so that we could have the
incoming-wave component only on the left, if the scattering state’s lead of
origin is specified as the left one, l = 1, or the incoming-wave component
only on the right, if l = 2.

In order to determine the values of A and B complying with these condi-
tions, the asymptotic expansion of the function F (.|.|.) is used. An explicit
form of (4.19) at large values of the position argument, X → ±∞, is [62]

ξm(x) = A (F1 + F∗1 ) +B (F3 + F∗3 ) , (4.20)

with the short-hand notation

F1 =
Γ
(

1
2

)
Γ
(

1+iEm
4

) exp

(
−iπ1− iEm

8

)
|X|−( 1−iEm

2 ) exp
(
iX2/2

)
,

F3 =
Γ
(

3
2

)
Γ
(

3+iEm
4

) exp

(
−iπ3− iEm

8

)
|X|−( 3−iEm

2 )X exp
(
iX2/2

)
.

It is easy to see, that the functions F1 and F3 represent the outgoing-wave
components, whereas their complex conjugates – the incoming-wave ones.

Hence, the scattering eigenstates originating in the left lead,
≈
Ψ1εm(r), can be

described with the constants

A(l=1) =
Γ
(

1−iEm
4

)
Γ
(

1
2

) exp
(
−iπ

8

)
, B(l=1) = −

Γ
(

3−iEm
4

)
Γ
(

3
2

) exp

(
−i3π

8

)
,

and the ones originating in the right lead,
≈
Ψ2εm(r), with

A(l=2) =
Γ
(

1−iEm
4

)
Γ
(

1
2

) exp

(
i
3π

8

)
, B(l=2) =

Γ
(

3−iEm
4

)
Γ
(

3
2

) exp
(
i
π

8

)
.

A phase factor can be added to the above coefficients, but it has to be
common to all four of them, because the scattering eigenstates basis is formed
by all the scattering eigenstates, including both values of l, and we work with
a fixed basis – see the remarks in 2.3.3, Ch. 2.
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In order to fit within our theoretical framework, the eigenstate wave func-
tions we use for the calculations will be normalised to e

h
T 2
m total flux.45

In addition, an asymptotic form equivalent to (4.20) can be obtained
through a semiclassical analysis of the wave functions [76]. The advantage of
this approach is that it provides an easier relation to the physics. It has been
used in [45] to construct an analytical expression for the V2 1 matrix element
and thus determine the shape of the SGM signal in the regions away from
the QPC.6

We would like to use the above wave functions to evaluate and plot the lo-
cal densities and the SGM conductance corrections. Before we do it, however,
it is important to know the ranges of step (ramp) and plateau regions.

Step and plateau regions

The step region is defined by the rising of the prefactor RmTm significantly
above zero. Naturally, the step and plateau regions can be discriminated
by simply looking at the conductance curve. Due to the quick variation of
the function RmTm = Tm

√
(1− T 2

m), when the state transmission falls below
one, this could be misleading, and evaluation of the prefactor each time gives
a better measure. Within the saddle-point model, it reads

RmTm =
1

exp(πEm/2) + exp(−πEm/2)
=

1

2
sech

(
πEm

2

)
, (4.22)

and we plot in the figure 4.4 an example of its variation as a function of
energy, for a few lowest m-indices. The peaks around Em = 0 mark the step

regions. The peaks’ width is ~ωx ln(2+
√

3)
π/2

(full width at half-maximum) and
they are spaced by ~ωy. The regions in between, with zero RmTm, are the
plateaus.

In the case of poor conductance quantisation, the peaks will overlap and
the tunnelling transmission “tails” from higher m-indices will enter the lower
ones’ plateaus. Then, despite the total transmission values close to an integer,
the SGM signal will not have a pure plateau-character. We will investigate
the effect of this spurious process on the SGM maps in some more detail in
the next chapter.

4Otherwise we would have to add to the calculations the density of particle-normalised
states.

5We will present our results in arbitrary units, so the normalisation is important only
for correctly determining the relative weights of the different modes’ signals.

6In [45], however, the off-diagonal matrix elements have been (erroneously) neglected.
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Figure 4.4: The RmTm-prefactor as a function of energy, showing the extent
of the step/plateau regions. The constriction parameters are ωy/ωx = 2 and
VQPC = 0.

Calculation of the conductance corrections and local densities

A short MATLAB code has been set up to evaluate the wave functions ac-
cording to what we have described in this section and calculate from them
the quantities of our interest:

– first and second order conductance corrections – according to (3.25)
and (3.44),

– the charge density at the Fermi energy – (3.68),

– the current density – (2.26).

The values of the longitudinal wave functions ξm are obtained by directly
summing the confluent hypergeometric series [52] for moderate ranges of
the dimensionless position (an external procedure is used for this, [77]). In
the regions far from the structure’s centre, where the numerical summation
becomes troublesome, the asymptotic form (4.20) could be used.

As we discussed in Ch. 3, the legitimate use of the SGM correction formu-
lae requires having straight, non-broadening leads attached to our structure
(even soft-walled). This is not the case in the saddle-point model, but – since
the contribution to the scattering process is negligible away from the centre
of the structure – we can assume that the wave functions will not change sig-
nificantly in the region of our interest, when we attach very broad leads with
an appropriate parabolic potential far away from the centre. The formulae
(3.28) and (3.48) are, naturally, of no use in this situation.
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Figure 4.5: Plot of the transmission
and theRmTm-prefactor as functions
of energy, for the lowest step and
plateau. Example step and plateau
points, for which the maps of the fol-
lowing figure were taken, are marked
with dashed horizontal lines.

Maps of the conductance corrections and local densities

In fig. 4.6 on page 85 we have plotted the local densities and the SGM signals
due to the lowest state, m = 1, for two example energy-space points: the
left-hand panel images pertain to the Fermi energy value chosen in the first
step (ramp) region, while the right-hand panel ones have their Fermi energy
in the first plateau region. Both these points are marked in the transmis-
sion vs. energy curve, shown in fig. 4.5 together with the RmTm function.
The saddle-point potential parameters are chosen such that ωy/ωx = 2 and
VQPC = 0. In the maps, two white contour lines have been added to mark
the boundaries of the classically forbidden regions. The first row of images
shows the charge density at the Fermi energy %EF

, equivalent to the local
density of the left-originating states, the second row shows the structure’s
current density, and the third one – the SGM response. For the step-region
energy, only the first order SGM correction is displayed, since the second-
order one is irrelevant here. In the plateau region, conversely, the second
order conductance correction is depicted, because the linear one vanishes.

The analytical character of the solutions gives us a possibility of isolat-
ing the signals of individual m-states, which we use for a more convenient
presentation of the results. In particular, we have pushed the first plateau-
region energy well into the second eigenstate’s step region (cf. fig. 4.5 with
fig. 4.7 below) – as to diminish Rm and thus obtain a good representation
of the plateau-signal by g(2) – without including the m = 2 (or any higher)
eigenstate contribution, as this would obscure our images. We did the same
for the second plateau point, where the third eigenstate has been omitted.

In the step region, the Fermi-energy charge density is asymmetric due
to the electron wave reflection at the QPC potential. This feature works
to spoil the relation between the charge density and the SGM corrections,
which was established under the assumption of equality of %EF

and its right-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Saddle-point model of the QPC, first step and first plateau re-
gions. Plots of local densities:

(a), (b) – charge density at the Fermi energy,
(c), (d) – current density,

and of the SGM signal, given by the:
(e) – first order conductance correction,
(f) – second order conductance correction.

Left panel maps (a,c,e) are taken in the step region, at E = 0.9, and the
right panel ones (b,d,f) are taken in the plateau region, at E = 3.3 – see also
fig. 4.5. All values are given in arbitrary units, scaled for better visibility.
The white lines show boundaries of the classically forbidden region.
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Figure 4.7: Plot of the transmission
and theRmTm-prefactor as functions
of energy. for the two lowest steps
and plateaus. Example step and
plateau points, for which the maps of
the following figure were taken, are
marked with dashed horizontal lines.

originating counterpart (sec. 3.4.9). Apart from this, the fringing patterns
in both these signals have the same spatial periodicity, but the SGM signal
oscillates around zero, with positive and negative crests – hence it has twice
more fringes. Also, the oscillating patterns are shifted in phase: the maxima
of the charge density fall in the places where the SGM signal has its nodes.
The spatial period decreases as we move away from the centre, because the
QPC potential falls, leaving more and more energy for the propagation.

In the plateau region, on the other hand, with the reflection coefficient
very small, the asymmetry is no longer visible and both signals, the SGM
correction and the charge density, can indeed be related. The signal does not
oscillate, which is in agreement with our predictions about the SGM maps
in the adiabatic case. It does not, however, allow relating it to the current
density.

The current density, plotted in parts (c) and (d) of the fig. 4.6 has the
shape of a straight ray, non-broadening and not fading, which follows from
the bounded, and hence real, character of the transverse wave functions.
Together with the fading charge density, this means that the electrons move
faster as they are further from the centre. As we mentioned in subsec. 3.4.12,
the lack of scaling with the electron velocity is another important difference
between the non-invasive SGM signal and the current density.

Analogous images, but for the second step- and second plateau-region
points, have been plotted in fig. 4.8 on p. 87. The relevant total transmission
curve, the RmTm-function and the chosen energy-points have been shown in
fig. 4.7. All the quantities are now created by the contributions from two
states, m = 1 and m = 2, with the notable exception for the SGM correction
in the step region (part (e)). This one is not affected by the m = 1-state
and therefore has a nodal line along the axis of the QPC. From the SGM
correction in the plateau region (p. (f)) and the Fermi-energy charge density
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Saddle-point model of the QPC, second step and second plateau
regions. Plots of local densities:

(a), (b) – charge density at the Fermi energy,
(c), (d) – current density,

and of the SGM signal, given by the:
(e) – first order conductance correction,
(f) – second order conductance correction.

Left panel maps (a,c,e) are taken in the step region, at E = 2.9, and the
right panel ones (b,d,f) are taken in the plateau region, at E = 4.5 – see also
fig. 4.7. Boundaries of classically forbidden region are marked with white
lines.



88 CHAPTER 4. APPLICATION TO QUANTUM POINT CONTACTS

Figure 4.9: Plot of the total
transmission and individual re-
flections from the two lowest
eigenstates as functions of the
Fermi wave number, given in
the units of W−1

QPC. The let-
ters A-D mark the example en-
ergy points for which the maps
of two following figures were
taken.

in both, step and plateau (parts (a-b)), we see that the second eigenstate’s
contribution dominates – this is caused by the wave function normalisation
factors 1/

√
km, which are much greater for the states just having been open

than for all the states lying below. The plateau-region current density, which
has this factor removed by the velocity-multiplication, shows a significant
value on the longitudinal axis (p. (d)). In the step region, on the other
hand, the m = 2-state contributes very little to the current, because of the
relatively small value of T 2

m (∼0.12).

4.2.3 Abrupt QPC model

Not only the saddle-point model can offer us analytical solutions. We would
like to mention very briefly an analytical model for the opposite type of
structures – abrupt and hard-walled, which are highly mode-mixing.

The already-mentioned work by Szafer and Stone [72] introduced the so-
called Mean Field Approximation, thanks to which the transmission prob-
lem in such a structure can be solved analytically. It does not, however,
provide the access to the scattering state wave functions. Based on a simi-
lar approach, the wave functions have been obtained in [44] through a less
restrictive approximation, the Smooth Field Approximation (SFA). Both ap-
proximations require the leads to be much wider than the constricted region
(W/WQPC →∞).

An important point which SFA shows, is that even in this non-adiabatic
geometry a direct one-to-one correspondence between the constriction modes
and the transmission eigenstates is kept (see eq. (52) in [44]).
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(a) (b)

(c) (d)

Figure 4.10: Abrupt QPC, SFA-model. First conductance step and plateau regions. Images of the:
(a) – squared amplitude of the first eigenstate wave function in the step region (energy point A of the fig. 4.9),
(b) – charge density at the Fermi energy in the plateau region (energy point B of the fig. 4.9),
(c) – SGM signal in the step region (point A), represented by the first-order conductance correction,
(d) – SGM signal in the plateau region (point B), represented by the second-order conductance correction.

All maps are scaled by the tip distance from the QPC exit to compensate the decay of the signal. Adapted from [44].
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At large enough distances from the QPC opening, such that

kF r0 � 1 , (4.23)

the obtained scattering eigenstate wave functions can be separated in polar
coordinates into the radial parts (incoming and outgoing), whose variation

is given by the ordinary circular waves
1√
kF r0

exp(±ikF r0), and the angular

part. The latter is peaked at those polar angles θ(m), for which the transverse
wave number in the wide region matches the transverse wave number of the
constriction mode: |kF sin θ(m)| ≈ k

(⊥)
m .

In figures 4.10-4.11, we display the calculated [44, 78] maps of the left-
incoming m = 1 and m = 2 eigenstates’ charge densities, i.e. the squared
amplitude of their wave functions, and the maps of the SGM signal, repre-
sented by the first or second order corrections. The transverse and longitudi-
nal position axes are scaled with respect to the QPC opening width, WQPC.
The maps are multiplied by the distance between the tip and the QPC open-
ing, r0, for better visibility of the signal. The general features of the signal,
including the non-fringed character of the plateau-type correction, are very
similar to the adiabatic signal features. The main difference is that now
the signal spreads angularly, which was not the case in the ideally adiabatic
model.

The great regularity of the SGM for this abrupt constriction case is owed
to the infinite leads’ width limit – which essentially means the lack of lateral
boundaries – and it will not be shared by the simulated maps of Ch. 5.

Another important conclusion from the SFA-model is that the non-invasive
SGM signal is proportional to the current density of the unperturbed struc-
ture [44] – and at the same time to the Fermi-energy charge density – if the
system is tuned to the conductance plateau and only for structures with a
strict four-fold spatial symmetry. Naturally, the constriction shape of this
model always has this symmetry, but the addition of a disorder potential
will break it, and hence also the relation between the signal and the current
density. Also, a structure with laterally constricted wide region will not allow
for such proportionality.
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(a) (b)

(c) (d)

Figure 4.11: Abrupt QPC, SFA-model. Second conductance step and plateau regions. Images of the:
(a) – partial charge density, due to m = 2 eigenstate, at the Fermi energy, step region (point C of the fig. 4.9),
(b) – partial charge density, due to m = 2 eigenstate, at the Fermi energy, plateau region (point D of the fig. 4.9),
(c) – SGM signal in the step region (point C), represented by the first-order conductance correction,
(d) – SGM signal in the plateau region (point D), represented by the second-order conductance correction.

All maps are scaled by the tip distance from the QPC exit to compensate the decay of the signal. Adapted from [44].
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Chapter 5

Simulation of SGM
experiments in QPCs

In this chapter, we present and discuss the results of numerical simulations
of the SGM signal. The simulations give us the direct access to the details of
the signal in the concrete systems, whereas our theory only sets the frames
for it. They can also serve as an additional test, confirming the predictions of
the theory (as in [45]), and as a way to go beyond it by including arbitrarily
strong tip potentials.

We consider not only the SGM maps, but also the simulated conductance
curves. Apart from informing about the step and plateau region ranges,
they also tell us about the achieved quality of the conductance quantisation
– both these things are crucial to the nature and to the interpretation of the
non-invasive SGM signal. As a natural generalisation of such a study, we
will also plot the conductance curves taken in the presence of the SGM tip,
which, compared to the original ones, provide a simple method for investi-
gating the tip influence on the structure, before the SGM maps are taken.
Certain insight can be extracted by analysing such curves in terms of the
possible electron interference paths, like it is often done in the case of exper-
imentally obtained SGM maps (see Ch. 1), but the scope of this approach is
limited. As we have mentioned in Ch. 3, the conductance correction curves
are complementary to the maps, in the sense that they provide information
on energetic and spatial variation of the tip potential matrix elements U2 1

introduced in Ch. 3.

Finally, we will present the simulated SGM maps pertaining to both, small
and large tip strengths. The character of step- and plateau-regime signals
will be discussed, as well as additional factors which influence the shape of
the SGM images. In this context, a special attention will be paid to the
adiabaticity of the considered geometries, and to the processes of tunnelling

93
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and Fabry-Perot resonances.

5.1 The method

In order to simulate the Scanning Gate Microscopy signal, we have to calcu-
late the conductance through our lead-structure-lead system (fig. 2, Ch. 2.1)
for two cases: with and without the probe, and subtract them. The method
should allow for variation of the energy of the travelling electrons and the tip
position, so that we could produce the transmission curves and SGM maps
for Fermi energies of our choice.

5.1.1 Calculation scheme

Conductance from Green function

As we described it in Ch. 2, the conductance is equivalent to the total trans-
mission, which can be evaluated by taking an incoherent sum of the squares
of the transmission amplitudes, eq. (2.58). The amplitudes are, in turn, ob-
tained from the retarded Green function linking one side of the structure,
i.e. one lead-structure interface, with the other one. This is done using the
Fisher-Lee relation, eq. (2.61a). Finally, to calculate the Green function, we
need to invert the wave operator of the Schrödinger equation of our system,
E+ −H0.

Discretisation

For the computer solution of this task, we employ a tight-binding (T-B)
model where the structure (see e.g. fig. 4.2, Ch 4) is represented by a set of
points on a finite rectangular M -by-L lattice. The lattice spacing, denoted by
aTB, becomes now the natural unit of length, and the position is expressed
by a pair of integers (i, j), the first one being the row index (i.e. the y-
coordinate) and the second one being the column index (x). The natural
unit of energy is set by the hopping term of the tight-binding Hamiltonian
tTB = ~2/(2Mea

2
TB). The system of units generated by these two is called the

Anderson units; we will use it across this chapter without further mentioning.

Due to its discreteness, the T-B scheme is less accurate for faster spatial
variations, and not capable at all of reproducing oscillations of wavenumber
greater than π, where the T-B band starts closing (the entire band range is
from 0 to 2π). As a rule of thumb, we shall try not to exceed k = 0.5, for
which the relative error in energy estimation is about 2%.
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For a correct description of the transmission process, the T-B Hamilto-
nian has to take into account the boundary conditions, set by the hard-wall
closing of the structure in the transverse direction and by the perfectly open
interfaces with the leads in the longitudinal direction. The latter introduce
complex self-energy terms to the Hamiltonian. (As a by-product of this,
we can now neglect the infinitesimal imaginary part in the wave operator
E+ −H0.)

RGF algorithm

Instead of inverting the entire wave operator E − H0 at once, we use a
considerably faster method, the Recursive Green Function (RGF) algorithm
[72,79]. Here, the structure is subdivided into a collection of L vertical stripes
(i.e. stretching in the transverse direction), and each of the stripes, considered
as decoupled from all the rest, has its individual green function calculated
by inverting its own wave operator. Then, the Green function across the
structure is built up, step by step, by attaching subsequent individual stripes’
Green functions to the leftmost one. Likewise, the analytically known Green
function of the lead is attached to the first stripe’s one in the beginning,
and to the entire structure’s function in the end. This ensures the open
lead-structure interface.

The computational complexity of this procedure scales like M3L for a
single transmission calculation. An important advantage of this algorithm is
its numerical stability. It does not provide, however, the access to the local
densities, which we had in the previous chapter.

5.1.2 Implementation

An existing FORTRAN program, performing the computation described
above, has been adopted and developed, so that in addition to the trans-
mission curves T (kF ) it could also produce the SGM maps ∆T (r0). The
output data and plotting are handled using MATLAB computation environ-
ment. The parameters determining the system state while performing the
calculation are: lattice size, constriction shape, lattice potential, tip poten-
tial and (unused) magnetic field. The particle energy EF is treated as a
dependent variable linked to the independent one – the wavenumber – by
the discrete dispersion relation.

Since, for a full SGM scan, the tip will be placed on all the lattice sites
(or a fraction, if the scanning range is restricted), the overall complexity will
be M4L2.
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5.1.3 Parameter space and preliminary choices

QPC geometry

The procedure described above can be performed with an arbitrary potential
on the discretisation lattice. For simplicity, however, we will model our
quantum point contact with a zero-potential hard-wall model, where the
constriction is implemented by narrowing of the lateral boundaries. (The
results do not differ much with respect to the ones obtained with the QPC
defined by a potential.) We chose three specific geometries, denoted concisely
as HC, MC and SC, and defined in the following way:

– HC geometry – based on the shape of level lines of a saddle-point
potential, the boundaries are hyperbolas y(x), parametrised by xsc and
ysc:

± y =
√
y2
sc + (x/xsc)2 + 1 ; (5.1)

we will describe the HC constriction by giving its minimum width

WQPC = 2(ysc + 1) , (5.2)

and its characteristic length, defined as the position at which the hy-
perbola’s asymptote meets the lateral lattice edge,

ηQPC = (M + 1)xsc ; (5.3)

– MC geometry – whose boundaries are given by exponential curves:

± y = ysc exp
[
(x/xsc)

2]+ 1 ; (5.4)

with the width
WQPC = 2(ysc + 1) , (5.5)

and the characteristic length

ηQPC = xsc ; (5.6)

– SC geometry – with the abrupt, rectangular boundaries:

± y = ysc + 1 , for |x| ≤ xsc ; (5.7)

the constriction width is

WQPC = 2(ysc + 1) , (5.8)

while its length is given by

ηQPC = 2xsc + 1 . (5.9)

The lateral position will usually be shifted so that the all the points inside
the constriction can be described with positive indices. We plot an example
of each of these geometries in the fig. 5.1.
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(a) SC geometry (b) MC geometry (c) HC geometry

Figure 5.1: Example constrictions of the three QPC geometries considered
in this chapter.

Tip potential

Also the tip effect is introduced into our calculation by adding its potential
VT(r) on the appropriate lattice site or sites. Here, we have the choice over
the tip’s integrated strength U0, shape 1

U0
VT(r − r0), and, naturally, on the

range of the tip scan.

Shape Following the conclusions of sec. 3.4.8, Ch. 3, we will use only one
tip potential shape, the discrete delta function, which puts its energy V0

on one lattice point only. The spatial extent of the tip is then just one
lattice spacing, ∆r0 = 1, which means that VT and the integrated strength
U0 = V0 ∆r2

0 can be used interchangeably.

Strength From the point of view of interpreting the signal, it will be im-
portant to distinguish between the weak, non-invasive tip potentials, and the
strong ones. We will therefore perform our simulations in two different tip
strength modes.

Certain way of laying a border in between the two regimes is through the
eq. (3.51) of subsec. 3.4.3. As we will see, the propagation wavelength as
inferred from the fringes of the signal does not exceed a few tens of lattice
spacings, suggesting the condition V0 � 10−2. This estimate, however, is not
completely satisfactory, since, among the many wide-region modes, the one
which just has been opened will be very slow, setting a much more restrictive
requirement (but pertaining to only a small contribution towards the entire
process).

In the numerical simulations we will rather attempt at achieving the non-
invasiveness by simply taking the tip strength as low as possible, while still
keeping away from the numerical noise level. Thus, we will consider the
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infinitesimal differences of the transmission and represent them by numerical
derivatives with respect to the tip strength, evaluated at V0 = 0, with a
possibly small value of the potential step ε (see next subsection). The linear
and quadratic regions in the transmission vs. tip strength curves are where
the non-invasiveness is certainly achieved.1

5.1.4 Differential signal

The first and second order differential signal from the SGM are calculated
by taking the right-side three-point numerical derivatives:

∂T

∂V0

∣∣∣∣
V0=0+

∼=
−T (2ε) + 4T (ε)− 3T (0)

2ε
, (5.10a)

∂2T

∂V 2
0

∣∣∣∣
V0=0+

∼=
T (2ε)− 2T (ε) + T (0)

ε2
. (5.10b)

The accuracy of this calculation is of the order O(ε2) in the case of the first
derivative, and O(ε) in the case of the second one. We will usually set the
infinitesimal element of the tip potential to ε = 10−5.

In order to relate these signals to the theoretical results of Ch. 3, we use
the fact that

g(1)

U0

=
∂g

∂U0

=
1

∆r2
0

∂g

∂V0

,
g(2)

U2
0

=
1

2

∂2g

∂U2
0

=
1

2∆r4
0

∂2g

∂V 2
0

, (5.11)

and we write the delta-tip expressions (3.56a) and (3.57), in the form

∂T

∂V0

= 4π
N∑
m=1

RmTm Im

{
≈
Ψ
∗

2εm(r0)
≈
Ψ1εm(r0)

}
, (5.12a)

∂2T

∂V 2
0

= −8π2
∑
m∈M
m′∈M

∣∣∣∣≈Ψ∗2εm(r0)
≈
Ψ1εm′(r0)

∣∣∣∣2 . (5.12b)

where the product
≈
Ψ
∗

2εm(r0)
≈
Ψ1εm′(r0) is nothing else but a normalised and

local version of the matrix element U 2 1
mm′ . If we were to consider the tips

of finite spatial extent, the integral would have to be retrieved, but also the
factors ∆r2

0 and ∆r4
0 would have to be added in the right-hand side of the

first and second of these equations.

1Because if the finite difference is well described by the (n-th) differential, then no
higher terms (> n) give a significant contribution.
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Our theory of Ch. 3 operates in the regime of local and weak tip potentials.
Comparing the non-invasive differential signal with the difference signal in
the strong-tip regime can provide a way of assessing the relevance of our
theory in a wider context.

5.2 Transmission curves

The curves of the transmission as a function of energy calculated with various
methods, including the RGF, were already published some time ago [72,73].
However, we shall pay some time to investigating them, since they are an
indispensable basis for what we do in the following sections. As we saw in
Chapter 4, different the behaviours of the SGM signal in the plateau and step
regions follow from the vanishing of the RmTm factors in the perturbative
expressions. So, any deviations from the integer transmission values on the
plateaus will mix the two behaviours. Though it is only for small tip voltages
that this discrimination follows from our theory, we will see later that the
results with a finite tip potential reveal a similar behaviour.

5.2.1 Wire

First, we consider results for the oversimplified case: the ideal wire, described
previously in sec. 4.1. They serve us as a simple check on the correctness
of our programs and as a reference for the QPC transmission curves which
will appear further. The total transmission T as a function of the Fermi
wavenumber kF is shown in the fig. 5.2. The curves are for three different
widths of the wire: W = 4, 14, 34. (These correspond to M = 3, 13, 33 lattice
sites in the transverse direction.) The wavenumber covers the entire band
range, kF ∈ (0, 2π).

We see that the perfect steps, (ch. 4), are reproduced. The leads’ width is
set to the same value as the one of the wire’s, so we do not get any features
in the curve: the plateaus are exactly flat (up to the penultimate digit of
the machine-represented number) and the steps rise over a single k-point
interval, so we can securely say that there is no ramp region at all. The steps
rise exactly at the positions k

(⊥)
a = πa/W , in accord with the eq. (2.21) and

the preliminary discussion of sec. 4.1.

5.2.2 Quantum point contacts

We now pass to quantum point contacts. We would like to discuss the shape
of their transmission curves, how they deviate from the perfectly quantised
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Figure 5.2: The T (kF ) curves for the ideal wire structure for three different
widths. Perfectly quantised steps and band closing are seen.

shape we had in the case of the wire, and the factors that influence the quality
of its plateaus and steps.

The discretisation board contains M = 133 (i.e. W = 200) lattice sites
in transverse dimension and L = 199 in the longitudinal one, except when
the HC-constriction length ηQPC surpasses 199, in which case we take L =
ηQPC + 3.

SC constriction

Transmission curves of an SC Quantum Point Contact are plotted in the
fig. 5.3(a) and in the fig. 5.3(b). As expected, the position of the steps is
controlled by the constriction width, the step thresholds are at around

k(⊥)
m =

πm

WQPC

. (5.13)

These positions are marked for the first step of each curve by the dotted lines
of the corresponding colour (fig. 5.3(a)). Still, these positions do not mark
the middle of each step region and the transmission there does not assume
the value of T = 0.5 as might be expected from the adiabatic model, eq. (4.9).
Instead, we have more tunnelling in the wider structures, which pushes the
transmission curve towards the left with respect to the threshold, and more
reflection in the narrower structures, causing the curve to move towards the
right. In the case of longer structures, fig. 5.3(b) the dotted threshold lines

have been omitted, but the threshold positions k
(⊥)
m are always at the very

beginning of the ramp regions, with low T values. The tunnelling now is
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(a) (b)

Figure 5.3: Total transmission through an SC-QPC as a function of the
Fermi wavelength for various constriction widths, WQPC, and lengths, LQPC.
(a) The short (small aspect ratio) QPCs show rounded steps because of the
tunnelling through the closed channels. (b) The elongated QPCs show sharp
steps, but with a Fabry-Perot-type resonant structure.

negligible, but the ramp’s steepness is spoilt by another mechanism, the
Fabry-Perot (F-P) resonances. We will now discuss these two, for it is their
interplay that decides about the quality of the conductance quantisation.

The essential difference between the figures 5.3(a) and 5.3(b) is the length
of the structures they feature. It is, however, not the absolute length that
makes this classification, but the aspect ratio LQPC/WQPC.

Fabry-Perot resonances As mentioned in [72,73], the entrance-exit inter-
ference resonances in m-th eigenstate transmission start appearing whenever
the phase change on passing twice the length of the constriction can reach
at least π; for the plateau associated with the m-th constriction state this is

2km LQPC ≥ π . (5.14)

Following from the resonant interference condition on the base path (2kmLQPC =
πn , n ∈ N), the resonant features appear at the positions

k
(FP)
F =

√(πm
W

)2

+
(πn

2L

)2

, (5.15)

in k-space, giving peaks when n is even and valleys when n is odd. The
above equation is satisfied only approximately, nevertheless it gives a useful



102 CHAPTER 5. SIMULATION OF SGM EXPERIMENTS IN QPCS

estimate. Since km is the longitudinal wavelength inside the constriction,
km = (k2

F − k
(⊥)2
m )1/2, the condition (5.14) boils down to:

LQPC

WQPC

≥ 1√
2m+ 1

. (5.16)

The resonances are of Fabry-Perot type and their number on the plateau
grows with growing aspect ratio. All their maxima reach the plateau level
exactly. In addition, their minima for varied constriction lengths lie on a sin-
gle curve2, as long as the width is kept constant. This means that if we could
strip off the transmission curves from the F-P effect, the long structures’
transmission would not depend on the length. As we move on the plateau
in the positive kF direction, the resonances fade and become broader, but
when we consider the transmission as a function of km, which is not shown
in the figures, then the period is approximately constant and close to the
theoretical value ∆km = π/LQPC.

Tunnelling On the other hand, when the aspect ratio is smaller than the
value from the criterion (5.16), the tunnelling through the first evanescent
constriction mode becomes important [72], as it depends on

exp[−(ε
(⊥)
m+1 − EF )1/2LQPC]

and spoils the plateau quality by giving it a visible slope. Both of these
effects can be seen from the fig. 5.3.

Quality of the plateaus Curves for different structure dimensions but
a fixed aspect ratio, such as the ones displayed in fig. 5.4(a), match each
other quite well, when scaled in terms of the variable kFWQPC − πm. This
additionally confirms that it is indeed the aspect ratio that parametrizes
the plateaus’ quality. We can see the crossover from the short-QPC to the
long-QPC behaviour in the fig. 5.4(b), where the SC transmission curves
for single constriction width (WQPC = 12) but multiple lengths are plotted.
The criterion (5.16) is approximately satisfied, though the F-P features just
having entered the plateau from the right are poorly visible.

Clearly, seeking a good quantisation of conductance requires trading-off
between the rounded shape of the transmission curve due to the tunnelling
and the Fabry-Perot resonant structure in it. The latter poses only a small
problem for the computer simulation of the SGM signal maps, since we are
able to fine-tune the transmission to an F-P peak and make theRmTm vanish.

2This curve is well fitted by an exponential of the type 1− exp(−Akm +B).
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(a) Total transmission through an SC-QPC as
a function of the Fermi wavelength for a fixed
aspect ratio AR = 5.

(b) Total transmission through an SC-QPC
as a function of the Fermi wavelength for
WQPC = 12 and various constriction lengths.
The reference lines (black) are the transmis-
sion curves for an ideal wire of the same width.
The curves are offset for better visibility and
the axes annotation applies to the last one
(LQPC = 82).

Figure 5.4

In experiment, however, the finite temperature averaging will smooth out the
peaks, rounding off the sharp step shape and the F-P peak shape, as well as
pulling the transmission values below the plateau. Furthermore, the difficulty
in precise estimation of the series resistance that needs to be subtracted when
measuring the one of QPC’s and the presence of other irregularities, such as
residual disorder to which the samples are very sensitive at low temperatures,
can make the fine tuning troublesome (see e.g. [80,81]).

MC and HC geometries

In the case of MC and HC quantum point contacts, where we have no clear-
cut constriction length, we use the characteristic length ηQPC instead (see
subsec. 5.1.3). In the figure 5.5 we present the transmission curves for MC
structures, short (a) and elongated (b). With a smooth boundary the posi-
tion where reflections occur is now blurred, which gives rise to smoothing of
possible Fabry-Perot resonances. At larger aspect ratios we still observe the
resonant structure in the plateaus, but the trade-off we just mentioned in
the previous paragraph becomes easier when we deal with MC QPCs. This
can be seen explicitly from the fig. 5.6(a), where the MC-curve has not only
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(a) (b)

Figure 5.5: Total transmission through an MC-QPC as a function of the
Fermi wavelength for various constriction widths, WQPC, and lengths, ηQPC.
(a) The short QPCs. (b) The elongated QPCs – we can see the beatings of
the Fabry-Perot resonances.

better quality of quantisation on the plateau, but also takes smaller extent
along the k-axis to rise at the step. For large aspect ratios, in 5.5(b), we
see additional irregularities, which are due to the non-abrupt character of
the constriction opening – the wave parts reflected at different longitudinal
positions interfere with each other, giving rise to the beating-like patterns in
the curves.

The transmission curves for the HC constrictions can follow the step
shape for corresponding3 MC curves quite closely, which was not the case
with SC geometry. The conductance quantisation accuracy on the plateau
is slightly better in the MC case – see fig. 5.6(b). We therefore conclude
that attempts at making the structure very smooth by tapering do not yield
better quantisation, and that it is indeed the local adiabaticity that counts,
as long as the the transmission curve shape is concerned. The MC geometry
also has an added advantage from the technical point of view, because it does
not require as large structure lengths as the HC one.

3This correspondence is, in general, not easy to establish. Because of the resonances,
the plateau quality is not a good measure. We tried to match the curves according to
their slope in the middle of their steps (the ramp regions). An estimate might be obtained
from the adiabatic parameter of Glazman’s formula (see below), but we do not use it as
an a priori measure for the equivalence.
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(a) (b)

Figure 5.6: A comparison of the total transmission vs. Fermi wavelength
curves between: (a) SC- and MC-QPCs; (b) MC- and HC-QPCs. The insets
compare schematically the geometries of the constrictions. The dashed lines
show the step positions for an ideal wire of the same width.

Adiabaticity Having the knowledge of the structure’s shape we can eval-
uate the adiabatic parameter of the Glazman formula (subsec. 4.1.3) and
compare the RGF-computed transmission curves against the globally adia-
batic model. The agreement is good for the structures, which are not too
short, both HC and MC. An example with the HC structure, first conduc-
tance step, is given in the fig. 5.7 (a-c). When we shorten the structures,
making them more abrupt, the agreement between the analytic curves and
the ones calculated for the same constriction diminishes. On the other hand,
with the SC structure, where the adiabatic parameter cannot be assessed,
and which is highly non-adiabatic, it is possible to imitate the adiabatic
transmission curve quite well by just choosing a suitable structure length,
see fig. 5.7 (d).

It is also worth noting, that even when the agreement is quite good, the
globally adiabatic model systematically underestimates the ramps’ steepness.
At first sight this seems counter-intuitive, because we expected the adiabatic
transmission to yield the best quality conductance quantisation. It seems
that the influence of the mode mixing not only does not spoil the quality,
but can even slightly enhance it. This happens because in the step region
the off-diagonal r and t terms follow a similar variation as the diagonal ones,
cf. [69].
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Figure 5.7: Total transmission vs. Fermi wavelength T (kF ) compared with
the adiabatic model prediction Tadiab.(kF ) (black reference curves) for a HC
structure: (a) short: WQPC = 12, ηQPC = 60; (b) intermediate: WQPC = 12,
ηQPC = 120; (c) elongated: WQPC = 12, ηQPC = 400; and for: (d) a short SC
structure, WQPC = 12, LQPC = 5, with the adiabatic reference curve taken
from (a). The upper insets show the difference T (kF ) − Tadiab.(kF ). The

dashed lines show the constriction mode threshold k
(⊥)
m , m = 1.

We therefore see that, although there is some relation between the shape
of conductance curves and adiabaticity, we cannot use the curves to assess
the degree of the adiabaticity of a structure.

5.3 Influence of the SGM tip

We introduce now the charged tip to our system, hence obtaining a complete
SGM setup. Before simulating the SGM signal maps, it is of a natural interest
to see how the tip’s presence affects the transmission curves that we just
discussed. We will plot the transmission curves T (kF ) for a few different tip
potential values and placements, and the difference curves ∆T (kF ), resulting
from subtracting T (kF ) and a reference curve obtained without the tip (Vt =
0). This is nothing else than the SGM response in the wavenumber domain.

We begin by describing the simple model of the SGM process based on
considering interference paths covered by the back-scattered electrons and
the patterns they give rise to. This kind of analysis has been used to explain
many features found in the experimental SGM results – see Ch. 1. It will
prove useful in this section, where we investigate the tip influence in the
energy space. On the other hand, it is of little help when the SGM maps in
space are considered.
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The interference paths model

The essential approximation here is that the electron waves move along well-
defined paths, on which they keep the wavenumber kF (instead of obeying
the stationary transverse modes – i.e. negligence of the quasi-1D character of
the system). A few most important examples of the paths have been shown
in the fig. 5.8. Each path is described by:

– its amplitude, which depends on its length lpath, order, tip-backscattering
amplitude and the probability of getting re-transmitted by the QPC,
and

– its phase accumulation, given by kF lpath and the tip scattering phase
shift,

and gives rise to a family of constant phase lines. The interference features,
like fringing or chequerboard pattern, will lie on the crossings of these lines,
for which the phase difference meets the usual interference condition. They
will be weighted by the respective amplitudes.

This can produce a very complicated pattern, with a multitude of fea-
tures packed closely in the area of a simulated SGM map. Furthermore,
the features created by different pairs of paths will overlap, often concealing
each other, so the observed simple patterns of the simulated images might
be extremely difficult to explain correctly by finding the appropriate inter-
ference paths. We note that the truly two-dimensional systems are much less
affected by this issue, since their lack of lateral boundaries seriously limits
the number of the possible interference paths.

The analysis is made somewhat easier and more robust by passing to
the k-space, where interference features due to the paths of different lengths
get decoupled, even if they lie in the same position in the real space. The
difference in lengths for a pair of interfering paths can be estimated from
the position of the k-space peaks thanks to the reciprocity relation k(peak) =
2π/∆lpath.

Tip scattering amplitudes

The tip scattering amplitudes and phase shifts are determined by the tip
potential value V0 and spatial extent ∆r0, already set as 1, (due to the
local character, the exact shape of the tip potential should not be of great
importance), scaled against the electron local kinetic energy and wavelength.

For a mode that has just been opened and has a very low kinetic energy,
the scattering amplitude will be large, hence the SGM correction will be the
greatest close to the new mode opening. Once the Fermi wavenumber kF
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Figure 5.8: A few possi-
ble electron interference paths
for:

(a) long MC structure;
(b) short SC structure.

The featured paths are of
zero order (thick black), first
order (thin black, magenta)
and second order (red+black,
cyan+black, green+black) in
the tip potential.

grows, raising also the km value, the influence of the tip will diminish. It
is best visible in the case of an ideal wire, but works quite generally – see
below.

In a constricted geometry, different propagating states will have different
phase shifts, which can give additional distortions to the interference patterns
predicted by the simple path-model described above.

5.3.1 Wire

As a preliminary insight we present the results for the simple wire. Because
of the perfect quantisation of transmission in this case, we can view these
results as an idealisation of the plateau behaviour, stripped off from the
influence of tunnelling and F-P resonances.

Fig. 5.9 shows the transmission curves T (kF ) for various tip voltages.
The upper fields of the figure show the difference signal ∆T (kF ). The dis-
cretisation board is the usual size, M = 133 by L = 199 points so the
(i0, j0) = (67, 132) tip position means that it is placed just on the longitudi-
nal axis of the wire. The column index is of no relevance here, because of the
translational symmetry of this structure4. The transversally centred position
makes the tip couple well to the odd modes, lowering the odd plateaus trans-
mission, while exerting no effect on the even ones. The influence is slightly
smaller for each subsequent odd mode (i.e. decays more quickly). The situ-
ation is different when the tip is placed aside, at (i0, j0) = (87, 132). There,
the second plateau is also affected, but the effect on the third one is small.

Considering the k-dependence of the transmission, we see that the mode
just being opened, with its longitudinal wavenumber close to zero, is com-

4Only the numerical noise will depend on it.
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Figure 5.9: The transmission correction ∆T (upper fields) and the transmis-
sion T (lower fields) through an ideal wire as a function of the Fermi wave-
length kF , for a few different values of the SGM tip potential Vt = 0, 1, 4, 10.
The red dotted lines show the channel thresholds k

(⊥)
a , a = 1, 2, 3. Two tip

positions are featured:
(a) tip placed in the wire’s axis, at the lattice site (67,132).
(b) tip placed off the axis, at the lattice site (87,132).

pletely stopped (∆T = −1) by the tip’s presence – regardless of the tip poten-
tial. Then, along the plateaus the transmission curve exhibits monotonous
growth, i.e. the tip’s influence regularly falls as the wavenumber increases,
just like we argued above. No interference peaks or dips are seen.

The dependence of the curves on the tip potential suggests that the SGM
response saturates with growing VT. Putting a very large potential value at
the lattice site occupied by the tip is effectively equivalent to excluding this
site from the lattice, so the saturation must indeed take place. The curves
of the transmission as a function of the tip voltage for two different k-points
plotted in fig. 5.10 show that the saturation takes place at rather large tip
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Figure 5.10: Total transmission
through an ideal wire as a function
of the tip potential Vt, at k = 0.03,
for two different tip placements:
symmetric, (i0, j0) = (67, 132); and
non-symmetric, (i0, j0) = (87, 132).

potential values and we will not use such in our SGM scans. (A few control-
scans have been run with VT = 1000 on the QPC-containing structures and
they did not show any essential differences with respect to the ones performed
with the standard tip strength, VT = 10.)

The saturation tip-strength values will certainly be smaller if we place the
tip in the narrow channel of a QPC, but should be of comparable magnitude
when we place it in the wide region outside the channel, as it is done in the
SGM experiments.

5.3.2 QPCs, tip inside the constriction

We might expect a similar influence on the transmission curves, when we
have a QPC structure with a rectangular (i.e. SC) constriction with the tip
placed inside the narrow channel.

In the fig. 5.11 we plot the transmission curves and the transmission
correction curves for such a case. The featured structure is a short SC
Quantum Point Contact (WQPC = 12, LQPC = 30). The influence of the
below-threshold tunnelling leads to a non-vanishing signal in the step region.
The signal grows in magnitude to create a negative peak in ∆T around the
beginning of the plateau, while on the plateau it behaves in a similar way as
we saw for the wire. The plateau position for the modes affected by the tip’s
presence is shifted towards greater wavenumbers, since larger electron ener-
gies are needed to break though the constriction with an additional obstacle.
It should be mentioned, that the results for higher wavenumbers (kF & 0.5)
are burdened with uncertainty due to the computational model.

The situation becomes slightly more complex when we put the tip inside
the constricted region of a long structure, as we have it in the fig. 5.12. The
below-threshold signal is once again suppressed, like it was in the wire case,
but the Fabry-Perot structure on the plateau introduces oscillatory features
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Figure 5.11: The transmission correction ∆T (upper fields) and the transmis-
sion T (lower fields) through a short SC-QPC as a function of the Fermi wave-
length kF , for a few different values of the SGM tip potential Vt = 0, 1, 4, 10.
The red dotted lines show the channel thresholds k

(⊥)
a , a = 1, 2, 3. Two tip

positions are featured:
(a) tip placed symmetrically in the middle of the channel, (i0, j0) = (67, 100).
(b) tip placed non-symmetrically, (i0, j0) = (70, 100).

to the difference curves. These are only partially due to shifting the T (kF )
signal to the right. The resonating cavity is now split in half by the tip
(part (a) of the figure), so the spacing of the F-P resonances in terms of ka
gets doubled, and this additional oscillation is seen in the difference curve
(upper part). In part (b) the tip is placed in about five sixths of the channel
length, which brings in two additional oscillation patterns, with the periods
in ka-space equal to 6

5
∆ka and 6∆ka. The second pattern has its first peak

far to the right and is therefore barely visible. The oscillations do not bring
the transmission above the plateau level and the “envelope” variation is still
similar to the idealised case of the wire.
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Figure 5.12: The transmission correction ∆T (upper fields) and the transmis-
sion T (lower fields) through a long SC-QPC as a function of the Fermi wave-
length kF , for a few different values of the SGM tip potential Vt = 0, 1, 4, 10.
The red dotted lines show the channel thresholds k

(⊥)
a , a = 1, 2. Two tip

positions are featured:
(a) tip placed symmetrically in the middle of the channel, (i0, j0) = (67, 100).
(b) tip placed symmetrically, (i0, j0) = (67, 110).

5.3.3 QPCs, tip in the wide region

Now we proceed to placing the tip in the wide region, like it is done in the
experiments. The k-space structure is much richer now, because many inter-
ference paths for the electron waves can be created when the tip-reflection is
involved.

HC geometry

We first present data for a long structure of the HC geometry. The differ-
ence curves ∆T (kF ) are shown in fig. 5.13, with the constriction width and
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Figure 5.13: The correction ∆T to the total transmission through a long HC-
QPC as a function of the Fermi wavelength kF , for a few different values of
the SGM tip potential Vt = 1, 4, 10. The lower plots show the transmission
curves with no tip, for reference. Red dotted lines show the theoretical
channel thresholds k

(⊥)
a , a = 1, 2, 3. Two tip positions are featured:

(a) tip placed symmetrically – (i0, j0) = (67, 210).
(b) tip placed non-symmetrically – (i0, j0) = (87, 210).

The inset in the upper plot shows the ∆T peaks with a stretched kF -scale –
we see that the peaks slightly change their positions when Vt changes. The
inset in the lower plot contains a part of the T (kF ) curves (not displayed
in the lower pictures themselves) and is intended to give an overview of the
scale of the tip influence.

length parameters of WQPC = 12 and ηQPC = 120. The lower plots give the
transmission curves, T (kF ), for easier orientation.

The average magnitude of the ∆T signal follows a similar variation to
what we saw earlier, with the tip placed inside the short constriction (cf. fig. 5.11
of the previous section). Naturally, now the scale of the correction is rela-
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tively much smaller – see the inset in the lower field of the figure 5.13. On
top of this envelope-variation, we have now the oscillatory pattern. This
testifies that an important contribution to the SGM signal is made by the
interferences between the electron waves travelling along different paths.

The period is not constant over the kF -space, but the oscillation is other-
wise regular, which shows that the interference paths different than the base
and QPC-tip-QPC are either of small importance or of very similar effective
lengths as the latter one.

It is only in the step region that the tip-induced oscillation can enhance
the transmission to values above the reference, i.e. produce resonant tun-
nelling. On the plateau, as long as the tunnelling from the higher modes
can be neglected, the tip correction does not bring the transmission above
the plateau value, and consequently stays negative. Here, with the QPC
reflection close to zero, the former base path disappears, and the oscillation
decays with growing wavenumber.

The peaks of ∆T (kF ) change their position towards larger wavenumbers
when the tip potential value is increased. The shift is very small and generally
grows with growing kF . At the origin of this lies the phase shift acquired
by the electron wave when scattered off the tip, which generally should be
small, but will scale with the tip strength and the propagation wavenumber.
For example, the s-wave phase shift in a non-constricted geometry is δ0 =
kF∆r0

[
tanh(

√
V0)/V0 − 1

]
, (for a uniform disc-like scatterer, after [65], §132,

Problem 2).

MC and SC geometries, multiple interference paths

The transmission correction curves become slightly more complex when we
deal with MC and SC geometries. Example curves for those are plotted in
fig. 5.14. The higher order interference paths will now introduce additional
oscillation patterns.

In the MC structure, the strongest of such contributions will be given
by the path drawn in red in the fig. 5.8 (a) above. Its effective length is
comparable to the one of QPC-tip-QPC itinerary, but smaller. This results
in amplitude-modulating of the basic oscillation of ∆T , seen in the (a)-part
of the figure 5.14.

A different effect can be extracted from part (b) of the fig. 5.14. Here,
narrow and sharp dips cut into the ∆T (kF ) curve’s structure with a shorter
repeat period than the periods of its other features. The narrow shape of
these (anti-)resonances suggests a long path for the electron waves and indeed
the period indicates about 60- to 70-sites’ distance from an obstacle. This
must engage a reflection from the lateral boundary of the discretisation grid.
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Figure 5.14: The correction ∆T to the total transmission as a function of
the Fermi wavelength kF for a few different values of the SGM tip potential
Vt = 1, 4, 10. The lower plots show the transmission curves with no tip, for
reference. Dotted red lines show the theoretical channel thresholds k

(⊥)
a , a =

1, 2, 3. Two structures are featured:
(a) long MC structure with tip placed symmetrically, (i0, j0) = (67, 180).
(b) short SC structure with tip placed symmetrically, (i0, j0) = (67, 132).

Two manifestations of additional interference paths are seen: modulation in
(a), sharp dips in (b).

In fact, such boundary-related resonances appear in all structures (except
the HC, in which case we just do not place the tip in regions allowing the
lattice boundary reflections to take place), but seeing them often requires
enlarging the scale.
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Figure 5.15: Second order differential signal in a wire.
Left panel: transverse variation of ∂2T/∂V 2

0 for a few example k-points,
(a) in the first plateau region, k = 0.03 (red) and k = 0.04 (magenta),
(c) in the second plateau region, k = 0.05 (red) and k = 0.06 (magenta).

Right panel: k-space variation of ∂2T/∂V 2
0 two example tip positions,

(b) tip placed at (i0, j0) = (67, 132),
(d) tip placed at (i0, j0) = (67, 132).

5.4 Wire signal as a basic check

The RGF-simulated differential signal in the wire strictly obeys the variation
predicted for this simple geometry by our formulae ((4.16), Ch. 4), written
in Anderson units as:

∂T/∂V0 = 0 , ∂2T/∂V 2
0 = −2

 N∑
a=1

sin2
(
k

(⊥)
a y

)
ka(M + 1)

2

(5.17)

The magnitude and the variation agree in both, the position space and the
k-space. Example simulated curves are plotted in fig. 5.15.

This is an additional confirmation that the analytically obtained formulae
and the computation performed by the computer indeed pertain to exactly
the same quantities.
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(a) (b)

Figure 5.16: The transverse variation of the full tip strength SGM signal
∆T and the differential signal ∂2T/∂V 2

0 in a straight wire, for a few different
k-points. All curves are normalised to unit height. The curves are pairwise
offset to compare the corresponding ones:

(a) ∂2T/∂V 2
0 (magenta) with ∆T (cyan) at k = 0.03, and

∂2T/∂V 2
0 (red) with ∆T (blue) at k = 0.04;

(b) ∂2T/∂V 2
0 (magenta) with ∆T (cyan) at k = 0.05, and

∂2T/∂V 2
0 (red) with ∆T (blue) at k = 0.06.

Numerical noise

The vanishing of the first order derivative can also serve as a method of
assessing the levels of the numerical noise in the simulations, which, thus
estimated, does not rise above the level of 10−8 − 10−9 amplitude and 10−9

root-mean-square variance. With ε = 10−5, this means that the noise level
in the finite difference signal T |V0=ε − T |V0=0 is certainly below 10−13, and
in the second order signal does not exceed 10−3, which gives us at least one
order of magnitude buffer in all the images that we present further.

The noise estimated from subtracting symmetric signals (not shown) is
even slightly smaller.

Comparison with the finite difference signal

The variation of the full tip strength SGM response in a wire differs slightly
from the differential response. Its features are generally sharper, so resolving
it – or, better, its square root – in the basis of the squared transverse wave
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functions would require adding some small contribution from the higher order
terms. We plot the finite signal and the differential signal, normalised to unit
height, in fig. 5.16.

5.5 SGM maps

We will now present the simulated maps of the first and second order differ-
ential signal in the SGM setup and compare them against the finite-difference
signal ∆T obtained with the tip strength value V0 = 10.

Checks performed on the T (V0)-curves (not shown) confirm that with the
potential step ε that we chose, the linear- and quadratic-differential regions
of operation are indeed achieved. Also the potential value chosen for the
finite difference signal is, as we estimate with the help of eq. (3.51), Ch.3,
sufficient to probe the system in the invasive way.

Since the simulated maps have the expected symmetries, we plot only
their halves.

5.5.1 Step-region and plateau-region signals

For an orderly presentation and systematic discussion of the results, we begin
with the simplest case among the ones that we have investigated. In figure
5.17 we present the maps of the differential SGM signals for a moderately
elongated (WQPC = 12, ηQPC = 40) structure of the MC type. The maps
were taken with the Fermi wavenumber in the step region (kF = 0.2668) and
in the plateau region (kF = 0.2881) of the quantised transmission.

Differential signal

The elongated MC geometry optimises quite well the trade-off between the
spurious effect of the tunnelling and the excess of the Fabry-Perot oscillation
in the transmission curve, which is essential for having a well-pronounced
difference between the step and the plateau signal. We immediately see this
difference when we compare part (a) and part (b) of the figure, both showing
the first order differential map. On passing from step – (a), to the plateau –
(b), the signal keeps roughly the same shape, but diminishes substantially in
magnitude – here, by three orders, but with fine tuning of the k-space position
to the F-P peak, it can be brought down to the level of numerical noise. This
confirms the formerly envisaged need for the second order correction, which
we plot in part (c). (The second-order step-region signal is not featured, as,
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Figure 5.17: Spatial maps of the first- and second-order derivative of the
total transmission with respect to the tip strength, ∂T/∂V0 and ∂2T/∂2V0,
representing 1st- and 2nd-order components of the non-invasive tip SGM
signal:

(a) 1st-order signal in the transmission step region,
(b) 1st-order signal in the transmission plateau region,
(c) 2nd-order signal in the transmission plateau region.

The featured structure is a moderately long MC-structure, with WQPC = 12
and ηQPC = 40. Part (d) contains the corresponding transmission curve
T (kF ), with vertical lines marking the k-space points for which the step
(green, kF = 0.2668) and plateau (red, kF = 0.2881) maps have been taken.
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(a) The longitudinal profiles along the struc-
ture’s axis (y0 = W/2) of the first-order
SGM signal (∂T/∂V0) in the transmission
step region and the first- and second-order
(∂2T/∂V 2

0 ) signals in the transmission plateau
region. All are normalized to have a minimum
value of −1.

(b) The transverse profiles of the second-order
signal (∂2T/∂V 2

0 ) on the transmission plateau
(kF = 0.2881), taken at a few different longitu-
dinal positions – the last one is already outside
the constricted region, where the broadening
(and decaying, cf. (a)) tendency continues.

Figure 5.18

with non-vanishing first order correction, it contributes only negligibly to the
mild-tip SGM signal.)

Also the shapes of the signals fit into our general predictions from Ch. 3.
The first order signal oscillates around zero, and we see that it is dominated
by one simple oscillation, whose periodicity matches, up to the resolution
restrictions,5 the half of the local Fermi wavelength. In addition, the signal
contains relatively little angular structure. In each of the figures we can see
a regular “cone” of signal, which spreads as we move away from the QPC,
until it hits the lateral borders. Both these facts are consequences of the
relatively high adiabaticity of the long MC-constriction.

If we consider the map’s profile along the longitudinal axis of the system,
plotted in fig. 5.18(a) (green and blue curves), we find that the decay of the
oscillation, being at the same time the decay of the signal itself, is between
x−1

0 and x−2
0 .

The second order transmission correction has a completely different char-
acter. It is always negative and reveals no oscillation (it can oscillate only
inside the constriction – which is caused by the formation of Fabry-Perot

5In the broad region the resolution makes it impossible to tell, from the longitudinal
periodicity, which of the lowest modes (a = 1, 2, 3) is dominating, but it can be determined
from the signal’s transverse variation.
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modes). In particular, its transverse variation, see fig. 5.18(b), is well de-
scribed by the fourth power of the function φ1(y) (the fitting is not displayed
in the figure), but with an effective width Weff, considerably smaller than
the lead’s width W . This feature agrees with eq. (3.65) of Ch. 3, – and,
since we are at the first conductance plateau, with one eigenmode open, the
presence of only one transverse mode in the signal additionally confirms the
adiabaticity of the transmission.

The agreement with the idealised eq. (3.65) is only partial, for the signal
does not reach a state in which it would be given by an x-y separable function.
Instead, it falls towards zero as x0 is increased, while its effective width grows,
causing transverse spreading of the signal. The decay of the second order
signal is much faster than of the first order one cf. (5.18(b)). The spreading,
on the other hand, progresses more slowly than in the first order case, which
we can see from the fig. 5.17 (Part (b) vs. Part (c)).

Full tip-strength signal

In fig. 5.19, we have plotted the finite transmission correction ∆T (r0) =
T |V0 − T |0, obtained with the tip potential value V0 = 10, taken as standard
for all the maps presented below.

The finite signal has the same character as the corresponding first (for the
step k-points) and second order derivatives (for the plateau), plotted above,
but has more sharp features. This is a general tendency, which we will see in
all the finite tip-strength images featured below. In particular, it has more
transverse variation. Its plateau-region form also acquires some irregular
longitudinal variation, but it does not have the character of the first-order
signal fringes, so we cannot say that the finite tip-strength influence is to mix
the plateau and step signals.

Increasing the tip potential value (to V0 = 1000, not shown) does not
introduce any new features to the SGM maps, only enhances slightly the
ones already existent in the V0 = 10 signal.

5.5.2 Non-perfect plateau-region signals

Now, we would like to pay attention to how the differential signals get mod-
ified, when the system is non-perfectly tuned on the transmission plateau.

Two factors that we will take into account are:

– Fabry-Perot resonant structure, and

– tunnelling.
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Figure 5.19: Spatial maps of the change of the total transmission ∆T which
represents the invasive-tip SGM signal. The images were taken in:

(a) the step region, with kF = 0.2668,
(b) the plateau region, with kF = 0.2881,

and at the tip strength V0 = 10. The featured structure, like before, is a
moderately long MC-structure (WQPC = 12, ηQPC = 40).

Fabry-Perot oscillation, long structures

The first of such situations takes place when the Fermi wavenumber belongs
to the plateau region, but the transmission is lowered by the Fabry-Perot
oscillation. The plateau-results in the previous subsection were taken with
the system tuned close to the F-P peak, which guaranteed that Tm ≈ 1.

Now, as we tune the Fermi wavenumber off the F-P peak towards the F-P
valley, the overall magnitude of the first-order correction grows quite quickly,
as we can see from fig. 5.20(a) showing the longitudinal profiles of the first
order signal for a few k-points lying very close to the peak. The sign flip be-
tween first two curves is caused by the fact that the kF = 0.2881 value, chosen
as representative for the plateau, is slightly lower than the exact the F-P peak
wavenumber – once the maximum is trespassed, g(1) goes through zero and
changes the sign. The growth of the signal’s magnitude outside the con-
stricted region should scale like the prefactor F (kF ) ≡ T 2

m(kF )
√

1− T 2
m(kF )

of eq. (3.56), Ch. 3. (It is not possible to verify this growth based on our
simulated data, for the signal’s magnitude at a given tip position depends

on the oscillatory factors
≈
ϕ

(±) 2

lεm of eq. (3.56) too.) Apart from this, the sig-
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(a) The longitudinal profiles along the struc-
ture’s axis (y0 = W/2) of the first-order dif-
ferential SGM signal for a few k-points close
to the Fabry-Perot peak, including the previ-
ously introduced kF = 0.2881 representing the
Fabry-Perot peak maximum, in the transmis-
sion plateau region.

(b) The longitudinal profiles along the struc-
ture’s axis (y0 = W/2) of the second-order dif-
ferential SGM signal in the plateau region – at
the Fabry-Perot peak (kF = 0.2881) and two
other k-points in the vicinity (see Part (d) of
fig. 5.17(b)).

Figure 5.20

nal keeps its shape, only changing slightly the fringes spacing due to the kF
change.

The second order, on the other hand, gradually looses its importance and
develops certain traits of what is typical for the first order – despite staying
mostly negative, it acquires a mild fringing pattern, which can at times bring
it above zero. We can see it changing in figure 5.20(b), where the longitudinal
profiles have been plotted for the F-P peak point (kF = 0.2881) along with
two other points in the vicinity, and also in fig. 5.21(a) which presents an
example map of such a non-perfect second-order differential signal. The
fringing pattern is caused by the t†r′-related terms in eq. (3.42), Ch. 3,6,
which in this situation are no longer zero. With the F (kF ) function growing
very quickly around its zero value, the departure from the ideal second-order
shape already occurs as close to the F-P maximum as at kF = 0.2900.

The fringes have the same periodicity and decay as the ones from the first
order signal, but are shifted in phase by approximately π. This is important,
because it lets us distinguish the signature of the first-order and the second-
order patterns in the SGM signal for finite tip strengths. A comparison of
the figures 5.21(a) and 5.21(b) shows clearly that the small fringes emerging

6 The r′†r′-related terms will grow much more slowly, so they should not play role in
here.
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Figure 5.21: Maps of the:
(a) second-order differential SGM signal,
(b) finite tip strength SGM signal,

with the Fermi wavenumber tuned to kF = 0.2900, which lies in the plateau
region, slightly off the Fabry-Perot peak. The colour-axis is common for
both images. The maps (a) and (b) have roughly the same character, but
the fringes in (b) are shifted in phase with respect to (a) by approximately
π, which is caused by the influence of the first-order differential signal.

in the finite-tip signal agree in phase with the first-order differential signal’s
fringing, and not the second-order one. This is not surprising, as the second-
order fringes depend on the same factor F as the first-order signal, which is
more important at the small tip strengths. And, indeed, no k-points have
been found in which the finite-tip image would have clearly visible second-
order type fringes.

In addition, we observe that the full-tip signal on the plateau, even in
this situation, does not exceed zero. This is a natural consequence of the
simple fact that the transmission of the first eigenmode is already very close
to unity and cannot be risen more, while the second mode is not yet open
and its tunnelling part is negligible.

Two important conclusions follow. Firstly, the longitudinal oscillation in
the ordinary SGM signal in a structure of this geometry can only be caused
by the first-order conductance correction. That is, the one typical for the
step region. Secondly, because of the Fabry-Perot oscillations, throughout
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a considerable part of the plateau the SGM signal will have a non-perfect
character, mixed between the step-signal and the plateau-signal. Of course,
its effect will be most visible in the beginning of the plateau, where the F-P
oscillation has a large amplitude and varies sharply, and less important in
plateau’s end. Moreover, if the finite temperature effects are present, it might
turn out that the ideal plateau signal cannot be observed at all – this will
happen when the thermal energy kBθ is comparable to the F-P peak width
in energy.

The situation is even more complicated on the higher plateaus, since for
having a perfect plateau level, we need all the open modes to be either on
their F-P peak, or far enough in k-space from their thresholds, so that the
F-P oscillation has already died out (see subsec. 5.5.3)

Tunnelling, short structures

A natural question arises, whether one could avoid this imperfection by mak-
ing the structure short and hence killing the Fabry-Perot oscillatory structure
in the transmission curve. The price we have to pay for this is the entering, by
tunnelling, of the higher QPC-eigenmode’s signal into the given eigenmode’s
plateau region. In this situation, we expect a superposition of the previously
described m = 1-related plateau signal, either perfect or non-perfect, and
the signal arising from the tunnelling eigenmode, m = 2.

The m = 1-sate will keep loosing its spurious first-order component as kF
increases, while the latter gains in magnitude and can become significant in
the right part of the plateau region. In the short structures, this complemen-
tarity prevents the SGM signal from achieving the idealised plateau-form –
there is no intermediate region in which both contributions would be small
at the same time. To see it directly, we plot the first order differential sig-
nal in the k-space domain for the short MC structure in fig. 5.22(a), for
two different tip positions. The two curves have no common zeros, which
means that it is not possible to have a k-point for which the first order signal
would vanish in all space. We can contrast it with analogous curves for the
previously featured elongated MC structure, plotted in the adjacent figure,
5.22(b). There, the common zeros appear in the positions of the Fabry-Perot
peaks, which we saw in the fig. 5.17 (d) on p. 119.

The SGM images of the short MC quantum point contact (not plotted),
throughout most of the plateau region, have a shape very similar to the shape
of the elongated structures of the fig. 5.21. The only difference is that their
angular structure is slightly richer, due to a lower adiabaticity of the short
geometry.
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(a)

(b)

Figure 5.22: First order differential SGM correction ∂T/∂V0 as a function of
the Fermi wave number kF for:

(a) the short MC structure, WQPC = 12, ηQPC = 12,
(b) the moderately long MC structure, WQPC = 12, ηQPC = 40,

each of them for two different tip positions – green curves for (i0, j0) =
(67, 180) and black curves for (i0, j0) = (87, 180). The two dotted red lines
mark the first and second constriction mode thresholds.

The tunnelling signal According to the g(1) and g(2) formulae (eqs. (3.23)
and (3.42), Ch. 3), the tunnelling-related contribution to the SGM response
is just a weak step-region signal, of the second constriction mode. However,
due to the small propagation wave number and to the evanescent character
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Figure 5.23: Maps of the:
(a) first-order differential SGM signal,
(b) second-order differential SGM signal,
(c) finite tip strength SGM signal,

with the Fermi wavenumber chosen at kF = 0.15, below the first mode’s
threshold.

of the wave functions throughout a considerable part of the central region,
it is worth comparing it to the ordinary step-region signal. We have no way
of isolating it from the first plateau’s signal, but we will extract the basic
features from the images obtained below the first ramp, where the total signal
is scarce and the first mode’s tunnelling contribution is its only constituent.
These are plotted in fig. 5.23.

Inside the constriction, the signal creates a non-oscillating “blob”, Out-
side, it resumes the fringing, but the images show a more polygonal shape of
the fringes pattern, which is directly related to the fact that structure’s adia-
baticity has a meaning only when compared to the propagation wavelength,
so for the slowly propagating electron waves any structure is less adiabatic.7

5.5.3 Beyond the first plateau

In figure 5.24, we present the SGM response for the second step region. First
order differential signal and full tip strength difference signal are plotted in
parts (a) and (b), respectively. The general character of the maps does not
depart from what we have described so far. The only difference is that now

7 Another way of looking at this, is that the lower the number of active transverse
modes, the more difficult it is to combine them into a smoothly rounded shape.
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(a) (b)

Figure 5.24: Maps of the:
(a) first-order differential SGM signal,
(b) finite tip strength SGM signal,

with the Fermi wavenumber tuned to the second step region, kF = 0.531785.

the second constriction mode decides of the images’ angular variation, giving
two wide lobes. The zero value along the axis testifies that there are indeed
no contributions from the fully open first mode.

The situation becomes slightly more complex in the plateau region, where
both constriction modes m = 1, 2 are important. Each of them, indepen-
dently, can be burdened with the plateau-spoiling factors and it is impossible
to tell from the total transmission curves which of the modes’ contributions
are nearing Tm = 1 at the given k-point. In addition, even in the case of the
Fabry-Perot structure, which for some geometries is more or less predictable
– see the eq. (5.15) in subsec. 5.2.2, it is highly unlikely to have the second
mode’s F-P peak occurring at the same place as an F-P peak of the first
mode’s contribution.

As we move along the plateau, the signal will always have a non-perfect,
mixed character, and will alternate between two shapes:

– when the m = 2-mode has a peak, the step-type component will have
the m = 1 mode’s shape, with one lobe – which is shown in the left
panel of fig. 5.25,



5.5. SGM MAPS 129

Figure 5.25: Maps of the finite tip strength (upper row of figures), first order
differential (middle row) and second order differential (lower row) SGM signal
on the second plateau of the quantised conductance. The left column maps
are for kF = 0.4177, where the signal imperfectness is caused by m = 1-mode
influence. The right column maps are for kF = 0.44, where the imperfectness
due to m = 2-mode influence prevails.
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– when the m = 1-mode has a peak, the step-type (fringed) component
of signal will have the shape typical for the m = 2-mode, i.e. with two
lobes – shown in the right panel of fig. 5.25.

In the intermediate regions, where both of the step-type signals are present,
the m = 2 one will prevail, because it is weighted by a largerRmT 2

m-prefactor.
Also the normalisation factors in the wave functions will work to marginalise
the influence of the lower mode. Therefore, the signal featured in the right
panel of the figure will be more common. Differences in fringes spacing
between these two will also occur, but only inside the constricted region.

5.5.4 Other geometries, non-adiabaticity

We have seen in sec. 5.2 that the lack of adiabaticity does not have to affect
the transmission curves, if it follows only from the shape of the constriction
and not from its length. This fits well into the theoretical results of [36, 69].
On the other hand, in subsec. 3.4.11 of Ch. 3 we found that in the structures
constricted by the straight lateral borders – which we simulate here – the
fact of having regular oscillations in the SGM signal can be explained only
by the adiabaticity of the structure.

In order to see what influence the degree of adiabaticity can have on the
SGM maps, we will plot the simulated SGM images for the two remaining
geometries, HC and SC. Their adiabaticity is determined primarily by the
curvature in the narrowest region and by their length, see Ch. 4. We therefore
assess that the HC geometry has a considerably high level of adiabaticity, but
somewhat lower than the MC geometry considered so far. The SC structure,
on the other hand, is abrupt and thus has to be highly mode-mixing (see
4.1.3,Ch. 4 or the discussion in 3.4.11,Ch. 3).

The HC- and SC-geometry results are shown in fig. 5.26 for the step
signal and fig. 5.27 for the plateau signal. As to investigate the clean step-
and plateau-behaviours, we chose moderately elongated structures and, when
on a plateau, tune the wave number closely to the unit-transmission points.

The most basic observation is that the mode-mixing SC geometry has
much more transverse structure than the HC and MC ones. It quickly ac-
tivates the higher order lead-modes and at a distance of a few Fermi wave
lengths can already loose the memory of its original shape at the exit from
the QPC. The mode-mixing introduces also a well visible chequerboard pat-
tern and a mild fringing into the plateau-signal (fig.5.27 (a)), which for the
other geometries remains plain. The chequerboard pattern in the adiabatic
structures can be obtained by using an invasive, finite-potential probe.

The finite tip strength in the SC structure does not bring in new sharp
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(a) (b)

(c) (d)

Figure 5.26: Maps of the first order differential SGM signal (a,b) and finite tip
strength SGM signal (c,d) on the conductance step, for: (a,c) SC structure
with WQPC = 12, LQPC = 32, at kF = 0.263; (b,d) HC structure with
WQPC = 12, ηQPC = 120, at kF = 0.271.
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(a) (b)

(c) (d)

Figure 5.27: Maps of the second order differential SGM signal (a,b) and
finite tip strength SGM signal (c,d) on the conductance plateau, for: (a,c)
SC structure with WQPC = 12, LQPC = 32, at kF = 0.3773723; (b,d) HC
structure with WQPC = 12, ηQPC = 120, at kF = 0.276363859.
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features, but only increases the intensity of the ones already present. On the
other hand, the finite tip strength applied to the adiabatic structures, as we
see in figs. 5.27 and 5.26 and also have seen in the fig. 5.19, works as though
it was diminishing the adiabaticity. This is related to the fact that both
these things tend to activate more lead modes and should manifest itself in
the composition of the ul-matrices of (2.40). This correspondence of finite
tip-strength and non-adiabaticity suggests, perhaps counter-intuitively, that
the non-invasive SGM signal should be easier to obtain in the non-adiabatic
structures (in other words, they are more robust against the invasive action
of the tip).

Furthermore, these results point out that beyond certain distances, there
would be no fringing at all in the signal exiting from the non-adiabatic con-
strictions. The situation can, however, be very different if the lateral borders
are not present. Then, the environment into which the electron waves are
injected from the QPC (i.e. the free space) does not exert any influence upon
them, so they can retain the shape determined at their exit from the opening.
There, the information about the adiabaticity of the QPC constriction might
be contained in the angular structure of the fringed signal.

In Ch. 1, we have cited some of the most important experimental SGM-
results. The wide-lobed structure with the number of lobes corresponding to
the constriction mode index is reproduced by our maps. We predict, however,
that there could be points at the plateau, for which the lower number of the
angular lobes are seen. This is probably limited by the temperature effects,
which would mix such signals, relatively weak in amplitude, with the ones
with the usual structure.

The fringes can be created by mechanisms of different type. The fringes
we have in the simulated figures would not be able persist beyond the thermal
length, like, for example, the ones in fig. 1.4 (a), as we do not include any
disorder. On the other hand, their vanishing in cleaner samples does not
follow from having a perfect plateau-signal, because lowering the temperature
retrieves the fringes in both, step and plateau regions. The step-image fringes
of fig. 1.5 (a) can be thought of as corresponding to the same situation as
the simulated map in fig. 5.19, which, in turn, does not differ significantly
from the non-invasive signal. Apart from fringing, all three contain a similar
mild angular variation. The plateau map, fig. 1.5 (b), has the non-perfect
plateau character, because it mixes the chequerboard pattern, occurring in
the finite tip-strength plateau signal, and the fringing from the step-signal –
and therefore should be compared with fig. 5.21 (b).

The effect of the finite temperature on the fringes will generally lead
to blurring them, but, as pointed out by Abbout et al.[49], below certain
temperature, the thermal averaging will cause mixing into the non-fringed
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(or weakly fringed) plateau-signal, the fringed signal from the step – thus
enhancing its fringes instead of suppressing them. The Fabry-Perot valleys,
will give the same effect of fringes enhancement of fringes for the well-tuned
plateau k-points, only of smaller extent.

We cannot try to reproduce the branching, because of the lack of disorder
in our simulations.



Chapter 6

Closing remarks

6.1 Overview

In this work, we have presented the theory of non-invasive Scanning Gate
Microscopy, its application for investigating the transport in quantum point
contacts and numerical simulations of this process.

Working within the Landauer approach to the quantum transport, we em-
ployed the perturbation theory to describe the influence of the SGM probe
on the conductance, thus obtaining differential conductance corrections, ex-
pressed in terms of the unperturbed system properties. A detailed derivation
has been included. We have given estimates of the applicability of the per-
turbative formulae, providing in this way a definition of the non-invasive
measurement. We addressed the question of the interpretation of the SGM
signal, with particular attention to the conditions at which it can be related
to the current density or the local density of states.

In Chapter 4, we have briefly reviewed the most important models of the
quantum point contact transport and applied our conductance correction
formulae to obtain SGM signal maps, as well as the images of current and
charge density, within two of these models, essentially different from each
other.

Another class of models has been chosen for the computer simulations of
Chapter 5, performed with the use of Recursive Green Function algorithm.
The character of ideal non-invasive SGM signal is shown and discussed, along
with the mechanisms and conditions which contribute to impairing it. It is
also compared against the signal obtained with invasive, strong tip potential.

Our theoretical results neglect the electron-electron interactions and ex-
ternal fields, and so do the numeric models. The effects of temperature and
disorder, on the other hand, have not been treated in our calculations, but

135
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can be included as a straightforward generalisation of our theory.

6.2 Conclusions

The central results of our theory are the formulae for the perturbation cor-
rections:

– of the first order in the tip potential, g(1) – relevant for the description
in the quantised conductance step region, or when the conductance
curve is not quantised,

– of the second order in the tip potential, g(2) – relevant in the conduc-
tance plateau region.

They give the meaning to the SGM measurement as probing the tip potential

matrix elements

〈
≈
Ψ2ε.

∣∣∣∣VT

∣∣∣∣ ≈Ψ1ε.

〉
, and through them the scattering eigen-

state wave functions. The first order correction has the interesting feature
of isolating the influence of a single pair of counter-propagating transmission
eigenstates which are just being opened, while the second order corrections
mixes the influence from all the open channels.

The fact of having the eigenstates incoming from the opposite leads pre-
vents general simple interpretations. Only under special conditions can the
non-invasive SGM response be related to the investigated system’s current
density or to the density of the mobile charge (ie. the local density of the
open states) at the Fermi-energy.

When the delta function is taken as the tip potential, the g(2)-formula can
be factored to give a product of the Fermi-energy local densities of states,
one for the left-incoming states, which are fully occupied, and the other one
for the right-incoming states, which are empty.

If the system is time-reversal invariant and is tuned to the first plateau
of the quantised conductance, then the SGM signal maps the square of the
Fermi-energy charge density of the conducting state. If, on top of the time-
reversal symmetry, a four-fold spatial symmetry is added and the leads can be
taken as infinitely wide, then the SGM signal on any plateau can be related to
the square of the Fermi-energy charge density and also to the current density,
as these two are now proportional. Straying from the perfect plateau value
will impair this plausible relations, and, as we have seen in the Chapters 4
and 5, even within the idealised models this is difficult to avoid. Presence of
finite temperature and disorder potential will make it even harder.
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In the general case, the non-invasive Scanning Gate Microscopy does not
image the current density. Although it has certain common features, its de-
pendence on the individual mode propagation velocities is different, which
gives it different relative weights of the eigenstates contributions. The an-
alytical expressions and the simulation results show that the SGM signal
resembles the local density of states to a greater extent. In the special,
symmetric, case mentioned above, the current density and SGM signal are
related, but only outside the QPC or any other laterally constricted struc-
ture. Since, the simulated strong-tip SGM signal differs from the simulated
non-invasive results by features of relatively small importance, we believe
that also the invasive SGM technique does not image the current density,
unless the tip is large enough to be treated as a purely classical object.

Non-invasiveness

In the discussion of the results in Ch. 3, we have defined the non-invasiveness
by requiring that the tip potential is weak and/or tightly localised, V0∆r0 �
E

(1D)
F λ

(1D)
F – which is a sufficient criterion.

It was satisfied in all the simulation results which we presented. On
the other hand, in most of the experimental work on quantum point contacts
published so far, this requirement is not met. As reported in these works, the
large voltages on the tip created a divot of depletion in the free electron gas
under the tip, whose size is comparable to the diameter (radius of curvature)
of the tip ending [82] and definitely larger than the Fermi wavelength (other-
wise, e.g., the so-called “glint effect” [39] would not be possible). Therefore,
these experiments will probably be better described by some semiclassical
approach [83] or even, perhaps, a completely classical one (see [6, 41]).

Nevertheless, it is not impossible to employ milder or smaller SGM probes,
like it has been done in [22, 31] or in [27, 28] – where the dependence of the
SGM signal on the probe voltage was tracked down to very small voltages.
In fact, the latter two works also found a close relation between the SGM
response and the local density of states. In addition, experiments on quan-
tum dots were reported [25], in which the tip potential is enough localised
as to only “dent” the wave functions inside the investigated system. For
such probes, our theory should be appropriate. Moreover, in the quest for
genuinely quantum behaviour, developing non-invasive probe techniques is
certainly desired.
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Shape and features of the SGM images

In Chapter 5, we have identified the typical shapes of the SGM maps in the
step and plateau regions.

The basic property of the step-region signal is the regular fringing, with
some more transverse variation if the strong tip is used instead of the non-
invasive one. The non-invasive SGM signal in plateau-region has a smooth
decay, with no oscillation and no fine features in the transverse direction. At
the same time the ideal strong-tip SGM plateau-signal has a chequerboard
pattern, but not the fringes. In each case, a non-perfect tuning of the system
onto the plateau will mix each of these behaviours with the corresponding
step-like behaviour.

The exact tuning of the system for ideal plateau-region character of the
signal is not possible for the short structures, where the constriction mode
through which the transmission takes place does not manage to open fully
before the onset of the next mode. It is also difficult for the structures which
are too elongated and therefore have very thin Fabry-Perot resonances. Small
but finite temperature will tend to spoil the plateau-signal quality by first
enhancing the fringing pattern, and only when it gets larger by blurring it.

We have compared the step-region signal and imperfect plateau-region
signal from the invasive SGM simulation with the experimental results from
[14] (see fig. 1.5, Ch. 1), obtained for a clean structure at low temperature,
finding that the general character – the fringes and the chequerboard pattern
– agrees very well.

Adiabaticity and mode-mixing

We have envisaged in Ch. 3 and confirmed in Ch. 5 that the non-invasive
signal we simulate can have the simple form – with exactly one fringing
pattern for the first order signal and no fringes for the second order – solely
in adiabatic structures. In the non-adiabatic structures, many oscillations
are superposed, hence the first order signal looses the regular fringing in
favour of the sharper dot-like features already at a few wave lengths from
the constriction exit. Even the non-invasive SGM signal ideally tuned to a
plateau has at least a chequerboard pattern.

This kind of signal, of course, does not resemble the experimental images
from fig. 1.5, Ch. 1. This fact can be viewed as a confirmation of the adi-
abatic character of the electrostatically defined experimental constrictions,
but can also be viewed as an artefact of the boundary influence, which in
non-adiabatic structures is higher than in the other ones. In that case, still, a
conclusion can be drawn that the non-adiabatic structures direct much of the
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signal towards the walls, while the adiabatic ones focus it to a larger degree
along the axis, or the axes for higher constriction modes. The focussing is
certainly not an artefact of the hard-wall-leaded structure, which we saw in
Ch. 4 in the results from the ideally adiabatic saddle-point model, where the
structure is soft-walled and constantly widening – see fig. 4.6.

Thus, the simulated non-invasive SGM maps allow for assessing the level
of adiabaticity of a structure without problem. Could the experimental im-
ages serve the same purpose? The lead-mode composition in the quasi-one-
dimensional geometry is controlled by the ul matrices of eq. (2.40), Ch. 2.
When passing to the limit of infinitely wide leads, the ul’s become functions
controlling the angular shape of the signal. We expect that this function
should contain the information about how the electron waves got injected
into the 2D free space, and thus also about the injecting structure.

6.3 Perspectives

The non-invasive SGM theory can serve as a framework for investigating
some interesting issues which have not yet been answered.

The above-described question about the structure’s adiabaticity and the
focussing of signal is one of such. The problem of the angular profile of the
signal has been solved in [44] for one geometry, the abrupt (rectangular)
QPC, and assuming small, point-like exit from the constriction. Naturally,
the answer to the focussing problem would require a generic solution, capable
of determining the angular spreading of the SGM signal for at least some
classes of constriction shapes. A controlled injection of the electrons into the
wide regions of the 2DEG might be of use for experimental setups and for
potential future nanodevices.

Another topic which we did not discuss in the present work is the disor-
der. The structure’s disorder, as we mentioned in Ch. 1, is very important
from the experimental point of view, as it is virtually impossible to eliminate
it the real structures. It is also a very interesting topic for the theoretical
research. It is widely agreed that the branching behaviour of the SGM signal
is caused by the smooth component of the structure’s disorder potential. Is
it possible to obtain a similar effect with an abrupt potential, of shorter cor-
relation length? What are the relations between the correlation length of the
disorder and the correlation length of the signal? Can we relate the average
characteristics of the branching pattern to the correlation and strength of
the potential? Those questions are most easily answered by running the nu-
merical simulations. This requires, however, investigating structures larger
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than the ones presented in this work.1 It would also be interesting to see the
deviations of the SGM signal, both, invasive and non-invasive, from a cal-
culated local density of states or even the density of current. (A dedicated
program could be written for that.)

Our perturbative formulae can describe the conductance corrections in a
disordered system, but the disorder potential enters the corrections through
both, the eigenfunctions (or ul matrices if choose the lead-state basis) and the
transmission and reflection amplitudes. It might turn out that the alterna-
tive formulation is more suitable for this purpose, in which the “perturbed”
quantities are not the the wave functions, but the transmission and reflection
amplitudes (see introduction to Ch. 3), to which the random matrix theory
could be applied.

There are two important research subjects which our theory cannot treat,
but perhaps can be used for developing an approach which would tackle them
– the electron-electron interactions and the non-linear (finite bias) transport.
Both are closely related, as the correct description of the latter cannot omit
including the earlier. The SGM of quantum point contacts is considered a
potentially very useful technique in looking for the electronic interactions.
Even in the early experiments, attempts have been made to asses how the
electrons dephase as they travel. These methods have later been refined, but
the issues related to the electronic interactions and correlations remain the
field of active research. It has been suggested that the interaction effects can
reveal in the finite bias SGM measurements inside the the constriction [15],
or close to it [46]. In this context, the theoretical and simulation methods we
have developed might play two kinds of roles: first, compared against possible
future experiments with non-invasive probes, they can help to identify which
measured features are not explicable within non-interacting models, thus
pointing to the electronic interactions as their potential origin; second, they
can eventually be used within one of the theoretical schemes of including the
electron-electron correlations and lay a basis for an interacting-electron SGM
theory.

1Preliminary tests have shown that branching cannot be reproduced by quantum cal-
culations at these sizes.



Appendix A

The evaluation of the energy
integrals

In this appendix, we explain the way of calculating the energy integrals
appearing in the formulae for δ

(1)
J

(x)
1εa and δ

(2)
J

(x)
1εa, that is, in the equations

(3.16) and (3.33a-3.33b) of chapter 3. We recollect them here for the ease of
access:
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J
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1εa = 2Re
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 , (A.1)
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1εa + δ
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J
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1εa , (A.2)

with
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∫ ∞
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and

[
J (x)

]1 1
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√
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√
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+

√
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.

For our purpose, we will need the following equalities ([56], sec. 4-2b,
p. 292):

lim
x→−∞

lim
η→0+

exp(ikx)

k − iη
= 0 , (A.6a)

lim
x→+∞

lim
η→0+

exp(ikx)

k − iη
= 2πiδ(k) , (A.6b)

lim
x→−∞

lim
η→0+

exp(ikx)

k + iη
= −2πiδ(k) , (A.6c)

lim
x→+∞

lim
η→0+

exp(ikx)

k + iη
= 0 , (A.6d)

which should be understood in the distribution sense, ie. can be meaningful
only when multiplied onto1 some smooth function of k.

Below, we list six distinct types of terms, that appear in (A.1) and (A.2)
once the [J (x)]- and [X]-expressions are substituted, and outline the way of
evaluating the energy integrals inside them, in the limit of x → ∞. For the
variable changes, we use the dispersion relation ε(kn, n), eq. (2.6):

ε =
~2

2Me

k2
n + ε⊥n .

The expressions that we replace by the dots inside the integrands – containing
square roots of longitudinal wave numbers kn, matrix elements of the tip
potential [VT], and the ingredients of the S-matrix – vary smoothly with
kn along its positive real axis. We assume that, with appropriate choice of
branch-cut lines, they have analytic continuations at least in the interior of
the first quadrant of the complex plane. These properties can be readily
verified in the particular situations we consider in Ch. 4. In the case when
one wave number is treated as a function of another wave number, care has
to be taken about the ranges and mode indices, so that the function

km(kn) =
√
k2
n + κ̄2

nm

1We mean the scalar multiplication in an appropriate function space.



144 APPENDIX A. EVALUATION OF ENERGY INTEGRALS

with

κ̄nm =

√
2Me

~2

(
ε

(⊥)
n − ε(⊥)

m

)
remains analytic.

At the very end, in point 3, we treat the δ
(2)
J

(x)α
1εa terms of the eq. (A.3a)

((3.33a), subsec. 3.3.1).

1. The single integrals of eq. (A.1) ((3.16) of sec. 3.2.1)

Here N̄ ≡ min{N(ε), N(ε′)}.
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where the upper variant of the expression in braces corresponds to the l′ = 1
addend of the equation (A.1), and the lower one, to the l′ = 2 addend of the
same equation; continuing:
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after a variable change ε′ 7→ k′b and bearing in mind that the same mapping
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1.2 Sigma minus terms

These come from the l′ = 2 addend of the eq. (A.1):
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as follows from (A.6a) when −x→ −∞. The limit is not endangered by the
exp (−2ika′x) factor, since the independent variable ka′ in the integration
acts merely as a parameter.

2. The double integrals of (A.3a) and (A.3b)

Here N̄ ≡ min{N(ε′), N(ε′′)}.

2.1 delta plus terms



146 APPENDIX A. EVALUATION OF ENERGY INTEGRALS

∫ ∞
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The upper restriction on the b-sum in the penultimate line is dictated by the
fact that for b > N(ε) the points k′′b = k′b = kb sifted by the delta functions
are no longer inside the integration scope.
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after the use of (A.6c) and (A.6a).
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This case is exactly analogous to the previous one – the integral vanishes,
only the use is made of (A.6d) and (A.6b) instead, and the leading sum is
over a′.
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3. The α-terms

The equation (A.3a) for the α-terms of the second order current correction
can be rearranged in the following way:
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]1 1

aa′
(ε, ε′) [W ]1 1

a′a (ε′, ε) +
[
J (x)

]1 2

aa′
(ε, ε′) [W ]2 1

a′a (ε′, ε)

]}
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with

[W ]1 1
a′a (ε′, ε) =

∫ ∞
ε
(⊥)
1

dε′′

ε+ − ε′′

N(ε′′)∑
a′′=1

[
[VT]1 1

a′a′′ (ε
′, ε′′) [VT]1 1

a′′a (ε′′, ε) (A.16a)

+ [VT]1 2
a′a′′ (ε

′, ε′′) [VT]2 1
a′′a (ε′′, ε)

]

[W ]2 1
a′a (ε′, ε) =

∫ ∞
ε
(⊥)
1

dε′′

ε+ − ε′′

N(ε′′)∑
a′′=1

[
[VT]2 1

a′a′′ (ε
′, ε′′) [VT]1 1

a′′a (ε′′, ε) (A.16b)

+ [VT]2 2
a′a′′ (ε

′, ε′′) [VT]2 1
a′′a (ε′′, ε)

]
The expression (A.15) is a direct analogue of (A.1), so we can apply the
methods for single integrals, described in point 1. These bring us to

δ
(2)
J

(x)α
1εa = 4π

e

h
Im
[(
t†tW1 1 + t†r′W2 1

)
aa

]
, (A.17)

with the notation
W ll′

�� ≡ [W ]ll
′

�� (ε, ε) . (A.18)

By Sochocki-Weierstrass theorem ([84], sec. 5.7), we can further write:

W1 1
a′a = −iπ

(
V1 1 V1 1 + V1 2 V2 1

)
a′a

(A.19a)

+ P
∫ ∞
ε
(⊥)
1

dε′′

ε− ε′′

N(ε′′)∑
a′′=1

{
[VT]1 1

a′a′′ (ε, ε
′′) [VT]1 1

a′′a (ε′′, ε)

+ [VT]1 2
a′a′′ (ε, ε

′′) [VT]2 1
a′′a (ε′′, ε)

}
,

W2 1
a′a = −iπ

(
V2 1 V1 1 + V2 2 V2 1

)
a′a

(A.19b)

+ P
∫ ∞
ε
(⊥)
1

dε′′

ε− ε′′

N(ε′′)∑
a′′=1

{
[VT]2 1

a′a′′ (ε, ε
′′) [VT]1 1

a′′a (ε′′, ε)

+ [VT]2 2
a′a′′ (ε, ε

′′) [VT]2 1
a′′a (ε′′, ε)

}
.
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Appendix B

Current density

Current density

For definiteness, we will consider the region to the right of the scatterer
structure.

The longitudinal and transverse components of the current density j {Ψlεa; r}
– see eq. (2.26), subsec. 2.2.2 of Ch. 2 – due to a single left-originating scat-
tering state (1εa) are:

j(x) {Ψ1εa; r} =
e~
Me

∑
b,b′∈M

Im
(
ikb′ tb′at

†
ab ϕ

(−)
2εb (r)ϕ

(+)
2εb′(r)

)
, (B.1a)

j(y) {Ψ1εa; r} =
e~
Me

∑
b,b′∈M

Im

(
1

φb′

∂φb′

∂y
tb′at

†
ab ϕ

(−)
2εb (r)ϕ

(+)
2εb′(r)

)
. (B.1b)

The total x- and y-current densities at a given energy are obtained by taking
an incoherent sum over all the states at that energy. We take only the states
coming from the left lead, getting:

j
(x)
1ε (r) =

∑
a

j(x) {Ψ1εa; r} (B.2a)

=
e~
Me

Im

{∑
b′b

ikb′
(
tt†
)
b′b

ϕ
(−)
2εb (r)ϕ

(+)
2εb′(r)

}
,

and

j
(y)
1ε (r) =

∑
a

j(y) {Ψ1εa; r} (B.2b)

=
e~
Me

Im
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1

φb′

∂φb′

∂y

(
tt†
)
b′b

ϕ
(−)
2ε. (r)ϕ

(+)
2ε. (r)

}
.
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These two components make up the vector field of current density

j1ε = x̂ j
(x)
1ε + ŷ j

(y)
1ε . (B.3)

With the aid of the S-matrix unitarity and symmetry properties (see
subsecs. 2.3.1–2.3.2, Ch. 2), we can retrieve exactly the same expressions,
but with the opposite signs, for the total current density of the scattering
states originating in the right lead, j2ε(r):

j1ε(r) = −j2ε(r) . (B.4)

While in Ch. 2 we have shown that the left- and right-originating currents
cancel each other at the energies below the right lead’s chemical potential, µ2,
here we see that not only the currents, but also their spatial (and energetic)
distributions cancel each other exactly, everywhere in space and for all the
energies below µ2.1 Therefore, the current density j(r) in our system is made
up solely by the left-originating states – the ones which remain occupied in
the “Fermi window” of energies between the leads’ chemical potentials µ2

and µ1 = µ2 + dEF :
j(r) = j1EF

(r) . (B.5)

It is, still, not completely unrelated to the right-originating states, even
though they stay empty and do not participate in creating it. The relation
is given simply by the eq. (B.4).

1We remark that no spatial symmetry of the structure is required; satisfying the time-
reversal invariance (TRI) and total flux conservation is sufficient. On the other hand, this
reasoning is spoilt when magnetic field is present, as this breaks the TRI. Then, circulating
currents appear, altering the current density, but not the total current.
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Résumé de la thèse (in French)

Introduction

La recherche présentée dans cette thèse appartient aux domaines de la nano-
technologie et de la physique mésoscopique. La nanotechnologie concerne la
manipulation de la matière à l’échelle allant de simples atomes jusqu’à des
centaines de nanomètres dans au moins une dimension, tandis que la phy-
sique mésoscopique analyse les systèmes qui sont suffisamment petits pour
produire des effets quantiques, mais assez grand pour ne pas avoir a considérer
la structure microscopique.

L’objet de ce travail est la microscopie à grille locale (Scanning Gate Mi-
croscopy, SGM) et le transport électronique à travers le points quantiques
(quantum point contacts, QPCs), étudié par cette technique. Dans une me-
sure SGM, la conductance à travers l’échantillon étudié est mesurée et en-
registrée, tandis qu’une pointe de microscope à force atomique chargée est
placée au-dessus de la structure, et produit un couplage capacitif [1]. Voir la
figure B.1(a) pour le schéma. Le rôle de la pointe est de disperser les électrons
de retour vers leur électrode d’origine et donc de changer la conductance. Les
valeurs obtenues avec de nombreuses positions différentes de la pointe sont
réunis pour créer une carte spatiale de la conductance G(r0) - avec r0 la
position de pointe - ou du changement de conductance ∆G(r0), si la va-
leur sans pointe actuelle est utilisée à titre de référence. Afin de maintenir la
cohérence électronique, les mesures sont prises à basse température. D’autres
paramètres, tels que le désordre de la nanostructure et la longueur d’onde de
Fermi électronique sont également importants.

La technique SGM a été utilisé pour étudier divers systèmes mésoscopiques
(nanotubes de carbone, points quantiques, anneaux de Aharonov-Bohm, bars
de Hall, etc.). Parmi ceux-ci nous porterons une attention particulière aux
contact quantiques définis dans un gaz d’électrons bidimensionnel de semi-
conducteur (two-dimensional electron gas, 2DEG). Un QPC est un pas-
sage étroit entre deux régions électriquement conductrices larges. La ca-
ractéristique la plus marquante de ces structures est la quantification de
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(a) Représentation schématique du dispo-
sitif. Figure reproduite de [1].

(b) La quantification de la conductance
dans un QPC. La tension de grille pa-
ramétrise la largeur WQPC de QPC, de sorte
que la courbe est équivalente à G(WQPC).
Source : [33].

Figure B.1

la conductance, voir fig. B.1(b).
Les expériences SGM sur QPC révèlent de nombreuses caractéristiques

intéressantes. A proximité de l’ouverture du QPC, le signal SGM forme de
larges lobes lisses, dont le nombre correspond au nombre du plateau sur
lequel la mesure est effectuée – voir fig. B.2 (a-b), tout en s’éloignant de
l’ouverture while away from the opening, il se forme des branches étroites
– fig. B.2 (c). Les images présentent des franges d’interférence, espacées de
la moitié de la longueur d’onde de Fermi et d’étirement perpendiculaire-
ment aux branches ou lobes. L’origine des franges est l’interférence des ondes
électroniques rétrodiffusés par la pointe, puis retransmises par le QPC vers
la source, avec les ondes :

- réfléchie par la QPC – voir fig. B.3 (a),

- diffusée par la pointe deux fois – voir fig. B.3 (b),

- diffusée par une impureté – voir fig. B.3 (c).

Les franges crées par le dernier de ces mécanismes peuvent atteindre au-
delà de la longueur thermique loin du QPC, mais disparaissent dans les
échantillons à haute mobilité, tandis que les premier et second mécanismes
donnent des franges visibles uniquement dans des échantillons de grande pu-
reté à de basses températures. Le second mécanisme donne également un
motif de damier dans les images.
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Figure B.2 – Images SGM proches de la QPC (a,b) et à des distances plus
grandes de celle-ci (c). Les images (a,c) ont été prises sur le premier plateau
de conductance. L’image (b) a été effectué sur le deuxième plateau, et le
premier signal de commande soustrait de celle-ci. Les régions intérieures de
(a) et (b), inaccessibles à la pointe de balayage, contiennent le carré absolu du
premier (a) et seconde (b) fonctions d’onde du mode de constriction simulé.
(De [39] et [6].)
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Figure B.3 – Cartes SGM avec différents types de motif de franges. Les encarts montrent le mécanisme de création
de franges. (Adapté de [14] et [13]).

Figure B.4 – Les ingrédients d’un système SGM :
S – diffuseur ; L1, L2 – fils ; R1, R2 – réservoirs ; T – la pointe.
(La pointe peut être placé à l’intérieur du diffuseur aussi.)
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Puisque le changement de conductance est proportionnel au flux inci-
dent la pointe de SGM, il a été proposé que la carte SGM est une image du
flux d’électrons dans la structure [1]. Cette interprétation a été corroborée
par un certain nombre de simulations [10, 12, 41–43]. D’autre part, certaines
expériences sur de petits anneaux Aharonov-Bohm, également combinés avec
des simulations, suggèrent un lien plus étroit du signal SGM à la densité
d’états locale. Aucune théorie généralement applicable en donnant une in-
terprétation univoque est disponible à ce jour. Dans une première étape vers
une telle théorie, nous avons proposé une approche perturbative [44,45], pour
fournir une interprétation des mesures de SGM non invasives, soit réalisée
avec des potentiels de pointe faibles, en fonction des amplitudes de diffusion
et des fonctions d’onde du système sans la pointe. Les expressions du premier
et du second ordre dans le potentiel de la pointe ont été donnés. La condition
de non-invasivité n’est très probablement pas atteinte dans les expériences
SGM sur QPC publiés à ce jour, mais il n’est pas impossible d’employer des
potentiels de pointe plus faibles [31], ou des pointes à l’extension spatiale
réduite [25] dans les montages expérimentaux, et de développer une sonde
véritablement non-invasive serait certainement désirable.

Le cadre théorique

Notre description théorique est basée sur le modèle de la masse effective et
de particules indépendantes. Nous n’incluons pas les effets de température
finie et le champ magnétique, mais une généralisation de ces cas est possible.
Dans notre description, le système étudié est conceptuellement divisé en la
nanostructure de notre intérêt, dénommé le diffuseur, idéales fils filiformes,
les réservoirs et la pointe – voir fig. B.4.

Les fils sont confinés dans la direction transversale y, semi-infinie dans
la direction longitudinale x et invariant à la translation le long de x. Les
confinement selon y donne naissance à un ensemble de modes transversaux
discrets avec des fonctions d’onde réelles φa(y) et énergies ε

(⊥)
a . Un électron à

l’intérieur du fil gauche (étiqueté l = 1), qui propage en direction du diffuseur
(−) ou s’éloignant de celle-ci (+), à l’énergie ε et en état transversal a, peut
être décrite par la fonction d’onde stationnaire (mode de fil)

ϕ
(±)
1εa(r) =

exp(∓ikax)√
2π~2ka/Me

φa(y) , (B.6)

où r ≡ (x, y), avec le nombre d’onde longitudinal ka > 0 satisfaisant

ε = ε(⊥)
a +

~2k2
a

2Me

, (B.7)
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avec Me la masse effective d’électron. Le nombre des modes propageant au-
torisées par le dessus est désigné par N(ε). A l’intérieur du fil droit (l =
2), les signes ∓ dans l’exponentielle devraient être inversées. Les modes
électroniques dans les fils portent le courant de e

h
par unité d’énergie chaque.

Tant que le diffuseur est une structure cohérente, un électron voyageant à
travers notre système, sans pointe présente, peut être décrit avec une fonction
d’onde qui s’étend à travers l’ensemble du système. Une base commode pour
cette description est fournie par les états de diffusion sortants Ψ1εa, dont la
forme asymptotique est donnée par

Ψ1εa(r) =

{
ϕ

(−)
1εa(r) +

∑N
b=1 rbaϕ

(+)
1εb (r) , x � −L/2∑N

b=1 tbaϕ
(+)
2εb (r) , x � L/2

(B.8a)

pour l’électron provenant du réservoir gauche dans l’état (εa), et

Ψ2εa(r) =

{ ∑N(ε)
b=1 t′baϕ

(+)
1εb (r) , x � −L/2

ϕ
(−)
2εa(r) +

∑N(ε)
b=1 r′baϕ

(+)
2εb (r) , x � L/2

(B.8b)

pour un électron originaire du réservoir droit dans l’état (εa). Ici, L est
l’étendue longitudinale du diffuseur et r(′), t(′) sont les matrices d’amplitudes
de réflection et de transmission au travers du diffuseur. Ensemble, ils forment
la matrice de diffusion (S-matrice)

S =

(
r t′

t r′

)
. (B.9)

La matrice S est unitaire et, dans les systèmes invariants par renversement du
temps (TRI), symétrique. Elle peut être décomposée dans la représentation
polaire

S =

(
uT

1 0
0 uT

2

)(
−R T
T R

)(
u1 0
0 u2

)
, (B.10)

(cas TRI), où ul sont unitaires, tandis que R = diag(Rm) et T = diag(Tm)
contient les valeurs singulières de la matrice r(′) et t(′), respectivement. Nous
allons utiliser les modes propres de transmission, entrants et sortants,

≈
ϕ

(−)

lεm(r) =
∑
a

[ul]
†
am ϕ

(−)
lεa (r) ,

≈
ϕ

(+)

lεm(r) =

[
≈
ϕ

(+)

lεm(r)

]∗
, (B.11)

et les états de diffusion propres (entrant seulement),

≈
Ψlεm(r) =

∑
a

[ul]
†
am Ψlεa(r) , (B.12)
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qui sont les vecteurs propres de la matrice de transmission t(′)†t(′).
Compte tenu des courants d’états de diffusion, nous pouvons voir que,

sur chaque e/h porté par un mode électronique de fil ou un mode propre
de transmission, on obtient, respectivement, e

h

[
t(′)†t(′)

]
aa

ou e
h
T 2
m, transmise

vers le côté opposé du diffuseur. Tenant compte de la distribution énergétique
des électrons provenant des réservoirs, nous pouvons écrire le courant total
à travers la structure

I =
2e

h

∫ ∞
ε
(⊥)
1

dε (f1 − f2) tr
(
t†t
)
, (B.13)

où fl est la fonction de distribution de Fermi-Dirac dans le réservoir l. La
conductance en réponse linéaire dans la forme sans dimension (soit dans les
unités de 2e2/h) est alors

g(0) = tr(t†t) , (B.14)

où les amplitudes de transmission doivent être évaluées à l’énergie de Fermi.
Ce résultat, connu sous le nom de la formule de Landauer-Büttiker (à deux
canaux), nous permet d’identifier la transmission totale et la conductance
dans le régime de la réponse linéaire. Les amplitudes de transmission et de
réflexion peuvent être évaluées grâce à la relation de Fisher-Lee [63] avec la
fonction de Green retardée G0 correspondant au hamiltonien du système sans
la pointe, H0.

Théorie des perturbations de SGM

L’hamiltonien du système de SGM complet (fig. B.4) est une somme d’ha-
miltonien H0 et potentiel de la pointe VT, que nous allons traiter comme une
petite perturbation. Les états de diffusion sortants du système complet χlεa
sont donnés sous une forme ouverte par l’équation de Lippmann-Schwinger

χlεa(r) = Ψlεa(r) +

∫
dr′ G(0)(r, r′, ε)VT(r′)χlεa(r

′) , (B.15)

dont l’application récursive conduit à la série de Born :

χlεa(r) =
∞∑
n=0

χ
(n)
lεa(r) , (B.16)

où χ
(n)
lεa(r) est la correction de l’état de diffusion à l’ordre n dans le potentiel

de la pointe VT. En utilisant de la décomposition en fonctions propres de la
fonction de Green G0, on peut écrire chacune de ces corrections en termes des
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états de diffusion non-perturbés Ψlεa et des éléments de matrice du potentiel
de la pointe [VT]l

′l
a′a (ε′, ε).

De même, les densités de courant résultant en raison de chaque somme
partielle de série (B.16) peuvent être liées aux éléments de matrice [VT]l

′l
a′a (ε′, ε)

et les éléments de matrice de l’opérateur de densité de courant [j(r)]l l
′

aa′ (ε, ε
′).

Les différences de densité de courant par rapport à la densité de courant
non-perturbée sont ensuite calculées. Intégrées sur la section transversale du
fil et sommées sur toutes les modes disponibles à l’énergie de Fermi (et sur
les deux états de spin possibles), elles donnent la correction au courant total
et donc également la correction de la conductance, de l’ordre approprié dans
le potentiel de la pointe, g(n). Des expressions jusqu’au deuxième ordre ont
été obtenues.

Avec des potentiels de pointe suffisamment faibles (voir ci-dessous), la
correction du premier ordre va dominer dans les régions où la conductance
présente une marche, ou dans le cas où elle n’est pas du tout quantifié. Cette
correction est donnée par l’expression

g(1) = −4π tr
[
Im
(
r†t′ V 2 1

) ]
, (B.17)

avec la notation abrégée V ll′�� ≡ [VT]ll
′

�� (ε, ε). Toutes les quantités sur le côté
droit sont évalués à l’énergie de Fermi. Dans les régions des plateaux de
la conductance quantifié, d’autre part, les termes r†t′ provoquent la correc-
tion g(1) à disparâıtre, donc la description perturbative complète nécessite la
deuxième correction de l’ordre. Sa forme pertinente pour la région du plateau
est

g(2) = 4π2 tr
{
r′†r′ V2 1V1 2 − t†tV1 2V2 1

}
. (B.18)

Ces deux formules peuvent être encore écrites dans la base des états de dif-
fusion propres comme

g(1) = 4π
∑
m∈M

RmTm Im
{
U 2 1
mm

}
, (B.19a)

g(2) = −4π2
∑

m,m′∈M

∣∣U2 1
mm′

∣∣2 , (B.19b)

avec

U ll′ =

∫
dr

≈
Ψ
∗

lε.(r)VT(r)
≈
Ψl′ε.(r) = ul V ll

′
u†l′ (B.20)

étant les éléments de matrice du potentiel de pointe dans la nouvelle base,
etM,M désignent les ensembles d’indices de modes partiellement ouvertes
et complètement ouvertes, respectivement. Si la courbe de conductance est
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quantifiée, comme c’est le cas dans les contacts quantiques, M ne contient
qu’un seul indice. Les expressions dans la base des modes propres de trans-
mission sont également utiles, mais ne sont pertinents que dans les fils.

Une condition suffisante pour l’application des formules perturbatives est
donnée par [65]

V0∆r0 � E
(1D)
F λ

(1D)
F , (B.21)

où V0 est la valeur maximale du potentiel de pointe et ∆r0 est son diamètre
effectif. Les quantités sur le côté droit, il faut comprendre comme l’énergie de
propagation et la longueur d’onde de propagation dans un mode transversal
donné. L’équation ci-dessus définit pour nous la définition du régime de non-
invasivité.

Les expressions (B.19) montrent que la technique SGM dans le régime
non-invasive sonde les éléments de matrice du potentiel de pointe entre les
états de diffusion propres se propageant en sens inverse. Le signal sur le
plateau contient la contribution de toutes les paires d’états propres ouverts,
tandis que à la marche, le signal ne contient que la contribution des états
venant de s’ouvrir.

Le maximum d’informations sur la structure des états de diffusion propres
est contenue dans le signal SGM avec le potentiel de pointe parfaitement
localisé

VT(r) = U0 δ(r− r0) , (B.22)

où r0 est la position de la pointe. Le seul effet, que l’extension spatiale finie
de la pointe a, est de bruiller le signal. Dans le cas de la localisation ideale,
la réponse de SGM sur le premier plateau dans un système invariant par
renversement du temps peut être écrite comme

g(2) = −4π2U2
0

∑
m∈M

∣∣∣∣≈Ψlεm(r0)

∣∣∣∣2
2

, (B.23)

où le fil d’origine, l, est arbitraire. Cela signifie que les images SGM sur
le premier plateau sont proportionnels au carré de la densité des particules
à l’énergie de Fermi découlant des états ouverts seulement, ou de manière
équivalente – de la densité du charge électrique dans une fenêtre entre deux
potentiels chimiques des réservoirs opposés. Dans les systèmes réels, cette
dépendance est modifiée par la localité non parfaite du potentiel de pointe et
par la transmission non parfaite sur le plateau, c’est-à-dire Tm < 1. De plus,
si le système possède aussi une symétrie spatiale centrale et est accèdé par
les contacts trés larges, son signal SGM en dehors de la nanostructure est
proportionnel au même temps au carré de la densité de courant, sur chaque
plateau, pas seulemnt le premier.
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Le signal à l’intérieur des fils contient plusieurs oscillations, à moins que
le diffuseur soit adiabatique. Dans ce cas, le signal du premier ordre (à la
marche) contient une seule oscillation et le signal du deuxième ordre (sur le
plateau) n’a pas du tout des oscillations. Les informations sur le degré de
l’adiabaticité sont codées dans les matrices ul, qui contrôlent la composition
de l’état de diffusion propre en modes de fil.

L’application aux QPC

Plusieurs modèles de transport dans les QPC sont déjà disponibles dans
la littérature et peuvent être adaptés pour être utilisés dans le cadre de
notre théorie. Les modèles peuvent être classés en fonction du potentiel qu’ils
utilisent pour décrire la constriction de QPC, qui peut être aux parois dures
ou aux parois souples, et peuvent avoir différentes formes menant à différents
niveaux de l’adiabaticité.

Le modèle point-selle de Büttiker, parfaitement adiabatique, donne la
courbe de transmission composée des marches de forme des fonctions de
distribution Fermi-Dirac, chaque marche correspondant à l’ouverture d’un
mode électronique nouveau dans la constriction. Les états propres de trans-
mission sont des fonctions x-y-séparables proposées par les produits des fonc-
tions propres de l’oscillateur harmonique selon la direction transversale et les
fonctions paraboliques de cylindre (fonctions de Weber) selon la direction
longitudinale. Des conditions aux limites et les formules de connexion semi-
classique permettent de déterminer les états propres originaires du fil gauche
ou du fil droit. L’application de la formule (B.19) donne du signal SGM
pour la conductance des points plateau-région étape et de la conductance,
présentés dans la figure B.5.

Le modèle de QPC abrupt est non adiabatique. Il suppose que la constric-
tion a les parois dures d’une forme rectangulaire. Le calcul des états propres
de diffusion de ce modèle est rendu possible par l’introduction d’une nouvelle
approximation, l’approximation du champ lisse (Smooth Field Approxima-
tion, SFA) [44]. Les cartes de SGM non invasives, évalués selon les hypothèses
de fils larges et la distance entre l’ouverture de QPC et la pointe, r0, dépassant
au moins quelques longueurs d’onde de Fermi, sont affichés dans la figure B.6.
Sous les mêmes hypothèses, on peut montrer que le signal de SGM sur le pla-
teau, dans la QPC rectangulaire avec aucun désordre, peut être lié au carré
de la densité de courant.
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(a) (b)

(c) (d)

Figure B.5 – Corrections de conductance représentant le signal de SGM non-invasive :
(a) – point-selle QPC, première zone de l’étape de la conductance, (b) – point-selle QPC, première région du

plateau de conductance, (c) – point-selle QPC, première zone de l’étape de la conductance, (d) – point-selle QPC,
première région du plateau de conductance.
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(a) (b)

(c) (d)

Figure B.6 – Corrections de conductance représentant le signal de SGM non-invasive :
(a) – QPC abrupt, première région d’étape de conductance (adapté de [44]), (b) – QPC abrupt, première région

du plateau de conductance ([44]), (c) – QPC abrupt, deuxième région d’étape de conductance ([44]), (d) – QPC
abrupt, deuxième région du plateau de conductance ([44]).
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Simulations de SGM en QPC

Enfin, nous avons étudié quelques structures à parois dures de diverses adia-
baticités par des simulations numériques. L’algorithme récursif de la fonction
de Green sur un réseau serré de liaison a été utilisé pour évaluer la transmis-
sion avec et sans pointe.

Nous avons obtenu les courbes de transmission et de la correction SGM
a la transmission, en fonction de l’énergie de Fermi, et les cartes spatiales
SGM. La correction de conductance non invasive est représenté par les dérivés
numériques de la transmission par rapport à la tension de pointe. Le signal
d’intensité extrémité finie, d’autre part, représente la réponse SGM au-delà
du régime perturbatif.

Nous avons constaté que l’effet de la pointe est le plus grand dans la
région de marche de la conductance quantifiée et diminue comme le nombre
d’onde de Fermi est augmenté le long du plateau. Les caractéristiques les
plus importantes des cartes de SGM obtenus sont que le signal différentiel de
premier ordre a un motif de franges régulier et s’annule lorsque le système
est réglé sur le plateau de conductance, tandis que le signal différentiel de
deuxième ordre n’oscille pas et est purement négatif – voir la figure B.7
(a-b). Deux effets diminuent la qualité de quantification de la conductance :
l’effet tunnel et les vallées de résonance de Fabry-Perot. Le signal SGM sur le
plateau non parfait possède un caractère mélangé, entre les signaux typiques
du plateau et de la marche. Le désordre et la température finie diminuent
aussi la qualité des plateaux de quantification. Si leur influence est modérée,
ils peuvent améliorer le visibilité des franges.

Le principal effet de la force de la pointe fini (c’est-à-dire du régime invasif
de SGM) est l’augmentation de la variation transversale du signal SGM –
voir fig. B.7 (c-d). En particulier, il introduit le motif en damier au signal
sur le plateau qui, dans le cas non-invasive, ne l’a pas. L’influence de la
force de la pointe fini est beaucoup plus visible dans le signal de structures
non-adiabatiques.

La non-adiabaticité manifeste très faiblement dans les courbes de trans-
mission, mais a une influence significative sur les images SGM. Elle augmente
leurs traits transversales d’une manière très similaire à celle de l’effet de la
force de la pointe finie. Cela diminue la régularité des franges, et même peut,
a quelques distances de l’ouverture de QPC, détruire le motif des franges.
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(a) (b)

(c) (d)

Figure B.7 – Les cartes SGM simulées :
(a) non-invasive, région d’étape de transmission ;
(b) non-invasive, région du plateau de transmission ;
(c) le potentiel de la pointe fini, région de l’étape de transmission ;
(d) le potentiel de la pointe fini, région du plateau de transmission.
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Conclusions

Nous avons présenté une théorie de la microscopie à grille locale (SGM),
applicable dans le régime non-invasive. Les corrections de conductance de
première et de deuxième ordre dans le potentiel de pointe ont été données,
pertinentes aux régions de la marche et du plateau de la conductance quan-
tifié, respectivement. Le signal SGM ne peut pas être généralement lié aux
quantités locales, comme la densité de courant ou la densité de charge. Une
telle relation ne peut être trouvée que dans certaines situations idéalisées.
Avec la qualité de plateau idéal et le potentiel de pointe parfaitement lo-
calisé, le signal sur les plateaux est lié à la densité de charge des états de
diffusion ouverts à l’énergie de Fermi.

Nous avons obtenu et étudié les cartes spatiales, analytiques et numériques,
du signal SGM dans les QPC. Dans les QPC avec les fils de connexion de
largeur infinie, le signal sur les plateaux peut être lié à la densité de courant,
et, au même temps, à la densité de charge. Nous avons trouvé les franges
et motifs de damier. Les franges apparaissent dans le signal a la marche de
conductance et aussi sur les plateaux, si ces-ci présentent une transmission
non parfaite (Tm < 1). Le motif de damier apparâıt dans le signal sur les pla-
teaux obtenu avec une pointe de tension finie. Nous avons également étudié
les effets parasites introduites par l’effet tunnel et ;es résonances de Fabry-
Pérot, et par le manque d’adiabaticité. Nous avons constaté que le manque
d’adiabaticité est capable de détruire le motif de franges dans des structures
ou des régions délimitées latéralement, aux distances de quelques longueurs
d’onde de propagation de l’ouverture de QPC.

Notre théorie peut servir comme un bon cadre pour étudier les phénomènes
induites par le désordre de nanostructure et induites par la forme de constric-
tion. Aussi, elle peut servir comme un bon point de départ pour étudier le
transport non-linéaire et les effets des interactions entre électrons.
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a se bien positionner sur le plateau de conductance. 

Mots-clés : physique mésoscopique, gaz bidimensionnel d'électrons, théorie du transport, 
conductance, microscopie à grille locale, contacts quantiques, théorie des 
perturbations, simulations numériques 

 

Résumé en anglais 
This work is concerned with the theoretical description of the Scanning Gate Microscopy (SGM) in 
general and with solving particular models of the quantum point contact (QPC) nanostructure, 
analytically and numerically. SGM is an experimental technique, which measures the conductance of 
a nanostructure, while a charged AFM tip is scanned above its surface. It gives many interesting 
results, such as lobed and branched images, interference fringes and a chequerboard pattern. 
A generally applicable theory, allowing for unambiguous interpretation of the results, is still missing. 
Using the Lippman-Schwinger scattering theory, we have developed a perturbative description of 
non-invasive SGM signal. First and second order expressions are given, pertaining to the ramp- and 
plateau-regions of the conductance curve. The maps of time-reversal invariant (TRI) systems, tuned 
to the lowest conductance plateau, are related to the Fermi-energy charge density. In a TRI system 
with a four-fold spatial symmetry and very wide leads, the map is also related to the current density, 
on any plateau. We present and discuss the maps calculated for two analytically solvable models of 
the QPC and maps obtained numerically, with Recursive Green Function method, pointing to the 
experimental features they reproduce and to the fundamental difficulties in obtaining good plateau-
tuning which they reveal. 

Keywords: mesoscopic physics, two-dimensional electron gas, transport theory, conductance, 
scanning gate microscopy, quantum point contacts, perturbation theory, numerical 
simulations 
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