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Les maté&iaux polycristallins sont constitué d'un grand nombre de monocristaux (appelés
grains). Chaque grain montre un comportement anisotrope fort. Les comportements
meeaniques macroscopiques des polycristaux dépendent fortement de la distribution des
orientations des cristaux et du comportement du monocristal. Si les grains ont une distribution
d'orientation alétoire alors les propriéé& meéaniques macroscopiques sont les ménes dans
toutes les directions et donc le maté&iau est isotrope. En revanche, si les grains sont de
préf&ence orienté& dans des directions cristallographiques données, le maté&iau est anisotrope.
La distribution d'orientation cristallographique d'un éhantillon polycristallin est définie

comme la texture cristallographique.

Le calcul de la réponse macroscopique des agrégats polycristallins &apartir des propri&és de
leurs constituants (grains monocristallins) est considé&é&comme l'un des principaux probléames
de mé&anique des maté&iaux. Lors de la déformation plastique, tous les grains de I'&hantillon
du maté&iau polycristallin sont réorienté&. Une texture cristallographique peut alors se
dérelopper. Cette derniée est responsable de l'anisotropie du maté&iau, voir Fig. R-1 qui
pré&ente le schéna de I'éolution de l'orientation des grains lors des essais de laminage. Par
cons&uent, la mod@&isation de I'é@olution de la texture dans les polycristaux est importante

afin de pré&voir les effets d'anisotropie présents dans de nombreux proc&lés industriels.
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Textured (anisotropic)

Random (isotropic)

Fig. R-1. Schéma de I'éolution de I'orientation des grains lors des essais de laminage

La formulation de la plasticitédes polycristaux méalliques a fait I'objet de nombreuses éudes
et différentes approches d’homogénéisation ont été proposées. Ces techniques
d'homogénésation vont des limites classiques (Taylor et Sachs) a des approches
auto-cohé&ente plus sophistiquées. L'insuffisance principale de la plupart des modées
existants de plasticité cristalline, c'est qu'ils sont incapables de prédlire les réultats d'une
interaction rigide aune interaction plus souple entre les grains. Cette insuffisance conduit &un
manque de capacitéde prévision des résultats a grande échelle. Par exemple, lors d’un essai
de laminage, les mé&aux CFC développent généalement 2 types de texture: cuivre et laiton.
Du point de vue de la simulation, les modées de type Sachs ne peuvent pas prédire la texture
de type cuivre. Les modées de Taylor-type et le modée visco-plastique auto-cohé&ent (VPSC)
ne peuvent pas prédire la texture de type laiton amoins que le méanisme de maclage soit pris

en compte. Toutefois, certains maté&iaux, ayant des microstructures speeifiques ou pour des



conditions particuliees de chargement, peuvent développer une texture de type cuivre méne
si le maclage n’ait pas été détecté. Ce manque de capacité¢ des modeles existants a capturer
correctement les transitions de texture pousse au développement de nouveaux modées de

plasticitécristalline.

Ahzi et M'Guil ont développéun nouveau modée viscoplastique. Ce modée- ¢ prend en
compte les effets d'interaction entre les grains sans utiliser le probléme de I'inclusion Eshelby.
Ce modée est formulé&par la minimisation d'une fonction spe&ifique combinant les champs de
déviations locaux (vitesse de déformation et de contrainte) aux champs macroscopiques. Cette
fonction dépend également d'un paramére de réglage, entre 0 et 1 qui permet ala force
interaction du grain de varier d'une interaction rigide (petites valeurs de ¢ ) aune interaction
plus souple (valeurs devés de ¢). La loi d'interaction proposé permet de couvrir les
résultats des modées de la borne sup&ieure ala borne infé&ieure en variant un seul parametre
de force d'interaction ¢, voir Fig. R-2. Ce modée fournit la nouveautésur la formulation et
montre une bonne performance sur la pré&liction des comportements de déormation plastique
et des éolutions des textures cristallographiques des méaux au cours des proc&lé de mise
en forme. Bien que I'avantage de ce modée par rapport aux modées existants soit significatif,
il peut encore &@re modifiéet complé&é Par cons&juent, l'objectif principal de ce travail est
d'améliorer, d'étendre et d’appliquer ce modeéle aux prévisions d'évolution de texture dans
diffé&ents mé&aux au cours de la déformation plastique. Un tel travail réond au besoin d'une
meilleure comprénension du comportement mé&anique lors de la mise en forme des méaux

par dé&ormation plastique ; ce qui permettra d'optimiser les procélé&s industriels.
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Fig. R-2. Courbes contrainte-déformation prélites pour diffé&entes valeurs de ¢ lors d’un

essai de traction dans les mé&aux CFC

Dans ce travail, le maclage meeanique, qui est I'un des meéeanismes fondamentaux de la
déformation plastique dans les matériaux polycrystallin, a été mis en ceuvre dans le modele.
L'effet couplédu maclage meéeanique et la force d'interaction entre les grains (contrdee par le
paramétre ¢ ) sur I'é&olution de la texture a é&é& é@udié pour les mé&aux CFC dans des
conditions de chargement diffé&ents. La possibilitéde la transition de texture de laminage du
type cuivre au type laiton a éédiscutée. Le maclage méanique permet €galement d'appliquer

le modée aux mé&aux HC. En outre, le modde a &é&é&endu aux méaux CC.

Le dé&ail de chaque chapitre est pré&sentécomme suit:

Chapitre |



Le chapitre | se compose d'une bibliographie sur la mod@isation de la plasticitécristalline.
Nous préentons briévement la modé@isation microscopique y compris le cadre constitutive
des lois d’écrouissage des modeles. Ensuite, le concept de la texture dans les polycristaux et

les principaux modées d'homogén@sation existants sont r&sumes.

Chapitre |1

Le nouveau modée viscoplastique ¢ est préentéen déail dans ce chapitre. Aprés la
pré&entation de la formulation de ce modée, nous avons résumeéles aspects numeiques de la
mod@isation. En plus, nous proposons une éude des déviations de contrainte et vitesse de
dé&ormation normalisées. A la fin de ce chapitre, I'é&olution du tenseur d'interaction est
étudiée. Nous avons prédit 1’évolution du tenseur d'interaction du modéele ¢ et compareces
résultats avec ceux issus du modée VPSC. Nous pouvons voir que les tenseurs d'interaction
entre les deux modées montrent diff@entes tendances d'&olution. Par ailleurs, nous avons
analysél'information contenue dans les tenseurs d'interaction de ces deux modées. Celui du
modele VPSC peut prendre en compte I'effet de la forme des grains via le tenseur d’Eshelby.
Toutefois, le tenseur d'interaction du modde ¢ contient les informations de I'orientation

cristallographique ce qui est absent dans le modéle VPSC

Chapitre 111

Dans le chapitre 111, la transition de la texture CFC de laminage du type-cuivre au type-laiton
a é@ééaudiee en utilisant le modde-¢. Les exemples de textures type-cuivre et type-laiton
sont pré&enté& dans la Fig. R-3. La prédliction de I'éolution de la texture de laminage des
méaux CFC est contrdée par les lois d'interaction, les méanismes de la déormation

plastique ainsi que de la définition de la rotation du réseau. L'effet coupléde ces trois facteurs



sur I'éolution de la texture de laminage est analysé Dans ce travail, deux déinitions de la
rotation du réseau, l'analyse mathématique (MA) et I'analyse en déormation plane (PSA),
sont prises en compte dans le modée. L'influence des définitions de MA et de PSA sur
I'éolution de la CFC texture de laminage est analysé en dé&ail en conjonction avec le
maclage et la force d'interaction entre les grains. Une texture typique de type-laiton a &é
prélite, ce qui est géné&alement observé dans les méaux avec une énergie de défaut

d'empilement (EDE) faible.

(111) QE

(o Max=6.4

Texture type-cuivre Texture type-laiton

Fig. R-3. Exemples de texture de type-cuivre et type-laiton sous forme de (111) pole figure.

Chapitre IV

Dans ce chapitre, nous montrons que le modée-¢ peut-&re utilisépour calculer simplement
la transition de texture cristallographique lors de I’essai de cisaillement des mé&aux CFC en
grandes déformations. Les réultats prélits sont comparé aux textures exp&imentales de
cisaillement pour les mé&aux avec EDE haute/moyenne (i.e. cuivre) et EDE faible (i.e. argent).
Nous montrons que le modée est capable de prédire une transition de texture claire ce qui

caract&ise une gamme de méaux CFC ayant une EDE &evé&/moyenne & faible. Le



meeanisme de maclage est pris en compte afin d'am@iorer les textures de cisaillement
pré&lites pour les mé&aux avec une EDE faible. L'effet du maclage sur les composantes idéles
de texture de cisaillement est repré&entéet est comparéavec les résultats exp&imentaux de la
litt&ature. Nous avons montréque le meéanisme de maclage joue un rde important dans la

pré&liction de la texture de cisaillement des mé&aux avec une EDE faible.

Chapitre V

Dans ce chapitre, les textures de laminage des mé&aux CC et les surfaces de charge
correspondantes sont simulées en utilisant le modée- ¢ . Nous comparons nos réultats aceux
prélits par le modde viscoplastique auto-cohé&ent (VPSC). Les résultats sont comparés en
termes d’activité de glissement, de I’évolution de la texture et de surface de charge. Nous
pré&entons €également une comparaison qualitative avec les textures expé&imentales de
laminage afroid issues de la litt&ature pour plusieurs mé&aux CC (voir Fig.R-4). Les liens
possibles entre le paramére de force d'interaction entre les grains et les caracté&istiques

microstructurales telles que la taille des grains sont briézement mentionnés.
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Fig. R-4. Textures pré&lites de laminage pour les mé&aux CC (fibre o) et comparaison avec

les résultats exp&imentaux (acier bas carbone et acier 1F-2)

Chapitre VI

Le modde ¢ a&édéendu aux mé&aux HC. Dans la premi&re partie de ce chapitre, le modéde-
¢ est utilisépour prélire I'éolution de la texture de laminage dans les mé&aux HC, voir
Fig.R-5. Les ré&ultats sont compareés avec le modée VPSC. L'effet du glissement pyramidal
sur la texture de laminage est &jalement &udié Nous avons montréqu'une forte activitéde

glissement pyramidal conduit aune séparation du pole basale vers la direction de laminage.
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Dans la deuxi@me partie, nous avons simuléle comportement mezanique du AZ31 qui est un
alliage de magné&ium. Nous avons considé&édiffé&entes forces d'interaction intergranulaire et
comparéles réultats prélits avec les ré&ultats exp&imentaux tirés de la litté&ature. Les tests
sont effectués pour le laminage (déormation en compression plane), ainsi que pour les tests
de traction et de compression sur des feuilles laminéss. Nous montrons que le modde-¢ avec

de grandes valeurs de ¢ prédit des résultats en bon accord avec les textures exp&imentales.

Mots-clé

Maté&iaux polycristallins, plasticité cristalline, texture cristallographique, visco-plasticité

modéle intermédiaire, maclage, interaction inter-granulaire, modée- ¢ .
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Abstract

The computation of the macroscopic response of polycrystalline aggregates from the
properties of their constituent single-crystal grains is considered as one of the main problems
in materials mechanics. During the mechanical deformation processing, all the grains in the
polycrystalline material sample are reoriented. A crystallographic texture may thus be
developed which is responsible for the material anisotropy. Therefore, the modeling of the
texture evolution in polycrystals is important to predict the anisotropy effects that are present

in many industrial processes.

The formulation of metallic polycrystals plasticity has been the subject of many studies and
different approaches have been proposed. These homogenization techniques span from the
classical bounds (Taylor and Sachs) to the more sophisticated self-consistent approaches. Ahzi
and M’Guil developed a novel viscoplastic ¢-model. This model takes into account the
grains interaction effects without involving the Eshelby inclusion problems. The proposed
interaction law allows spanning the results from the upper to the lower bound models by
varying a single interaction strength parameter ¢. This model provides the novelty on the
formulation and shows a good performance on the prediction of plastic deformation behavior

and texture evolution in metals during forming processes.

In this thesis, the ¢-model was applied to different crystallographic structures and under
different loading conditions. The mechanical twinning has been taken into account in the
model. The FCC rolling texture transition from copper-type to brass-type texture is studied. In
this part of the work, two definitions for the crystal lattice spin are considered: mathematical
analysis (MA) and plane strain analysis (PSA). The influence of these two definitions, MA
and PSA, on the rolling textures evolution in FCC metals is analyzed. In addition, the
influence of twinning and the interaction strength between the grains (controlled by the

parameter ) is also analyzed.

The shear tests in FCC metals are also studied. The predicted results are compared with
experimental shear textures for a range of metals having a high/medium stacking fault energy
(SFE) to low SFE. We have shown that the ¢ -model is able to predict a transition from shear
texture characterizing a range of FCC metals with high/medium SFE to low SFE. The
twinning mechanism is included in the ¢ -model to improve the shear texture predictions for
low SFE metals.

12



Abstract

In the study of BCC metal, we compare our predicted results with those predicted by the
viscoplastic self-consistent (VPSC) model. We study the slip activities, texture evolutions and
the evolution of yield loci. We also present a comparison with experimental textures from
literatures for several BCC metals under cold rolling tests. Possible links between the

parameter ¢ and the microstructure characteristics such as grain size are briefly mentioned.

The model has also been extended to HCP metals. We predict the deformation behaviors of
the magnesium alloy (AZ31) for different interaction strengths. We also compare our
predicted results with experimental data from literatures. Tests are carried out in plane strain
compression, tensile and compression on the rolled AZ31 sheets. We show that the results
predicted by the ¢-model are in good agreement with the experimental ones.

Keywords:

Polycrystalline materials, crystal plasticity, texture evolution, visco-plasticity, intermediate

model, mechanical twinning, grain interaction strength, ¢ -model.
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Introduction

The polycrystalline materials consist of a large number of single crystals (called grains). Each
grain shows a strong anisotropic behavior. The macroscopic mechanical behaviors of the
polycrystals strongly depend on the distribution of the grain orientations and the single crystal
behavior of the polycrystalline material. If the grains have a random orientation distribution,
the macroscopic mechanical properties are the same in all directions and therefore the
material is isotropic. In contrast, if the grains are preferably oriented in some given
crystallographic directions, the material is therefore anisotropic. The distribution of
crystallographic orientations of a polycrystalline sample is defined as the crystallographic

texture.

For polycrystalline metals, the crystallographic texture is the main source of plastic anisotropy.
It strongly influences the mechanical properties of the metals such as formability, which is
important for the sheet metal forming in industrial applications. Therefore, the texture
evolution should be taken into account for the modeling of anisotropy effects in forming

processes.

The formulation of metallic polycrystals plasticity has been the subject of many studies and
different approaches have been proposed. These homogenization techniques span from the
classical bounds Taylor (i.e. Asaro and Needleman, 1985; Parks and Ahzi, 1990; Taylor, 1938)
and Sachs (i.e. Ahzi et al., 2002; Leffers and Ray, 2009; Sachs, 1928) models to the more
sophisticated self-consistent approaches (Abdul-Latif, 2004; Abdul-Latif and Radi, 2010;
Lebensohn and Tomé& 1993; Lebensohn et al., 2007; Mercier and Molinari, 2009; Molinari et
al., 1987). The main insufficiency of most existing crystal plasticity models is that they are
unable to predict the results from a stiff interaction to a more compliant interaction. This
insufficiency leads to a lacking ability of prediction of large scale results. For example, in
rolling tests, FCC metals usually develop 2 types of texture: copper- and brass-type (Leffers
and Ray, 2009). From the simulation point of view, the Sachs-type models cannot predict the

copper-type texture. The Taylor-type model and the well-known visco-plastic self-consistent
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(VPSC) model cannot predict the brass-type texture unless the twinning mechanism is
considered (Leffers and Ray, 2009; M’Guil et al., 2009, 2011). However, certain materials
with specific microstructures or under specific loading conditions can develop a brass-type
texture even if no twinning has been detected (Engler, 2000; Engler et al., 1994). This lacking

ability of correctly capturing texture transitions calls for new crystal plasticity models.

Ahzi and M’Guil (2008) developed a novel viscoplastic ¢-model which includes grain
interactions effects in a new and original way. The interaction law of the ¢ -model is
expressed similarly to the self-consistent one but the interaction tensor is independent of the
Eshelby tensor. This model is formulated by the minimization of a specific function
combining the local fields’ deviations (strain rate and stress) from the macroscopic ones. This
function depends also on a tuning parameter, ¢ between 0 and 1 which allows the grain
strength interaction to vary from a stiff interaction (small values of ¢) to a more compliant
interaction (high values of ¢ ). This model provides the novelty on the formulation and shows
a good performance on prediction of plastic deformation behavior and texture evolution in
metals during forming processes. Although the advantage of this model is significant, it can
still be modified and complemented. Therefore, the main objective of this work is to improve
and extend the ¢-model and to apply this model on the texture evolution predictions in
various metals during the plastic deformation. Such a work will fulfill the need for a better
understanding of plastic deformation behavior and forming of metals which allows optimizing

industrial processing.

In this work, the mechanical twinning, which is one of the basic plastic deformation
mechanisms in polycrystals materials, has been implemented into the ¢-model. The coupled
effect of mechanical twinning and the interaction strength (controlled by the ¢ parameter)
on the texture evolution has been studied in FCC metals under different loading conditions.
The possibility of the FCC rolling texture transition from copper- to brass-type textures has

been discussed. The consideration of mechanical twinning also allows applying the ¢ -model
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to HCP metals. In addition, the ¢ -model has been extended to BCC metals. The BCC rolling

textures are predicted and compared to experimental results.

The details of each chapter are presented as follow:

Chapter |

The chapter | consists of a literature survey on the crystal plasticity modeling. We briefly
present the microscopic modeling including the constitutive framework, hardening laws and
twinning models. Then, the concept of texture in polycrystals and the main existing

homogenization models are summarized.

Chapter 11

The new visco-plastic ¢ -model is introduced in detail in this chapter. After the presentation
of the ¢-model formulation, we shortly summarize the numerical aspects of the ¢ -model in
literatures (Ahzi and M’Guil, 2008; M’Guil et al., 2009, 2011). At the end of this chapter, we
propose a study of the ¢-model on the normalized stress and strain rate deviations and the

evolution of the interaction tensor.

Chapter 111

In the chapter 11, the FCC rolling texture transition from copper- to brass-type texture has
been studied using the visco-plastic ¢ -model. The prediction of the rolling texture evolution
in FCC metals is controlled by interaction laws, deformation mechanisms and definition of
the lattice spin. The coupled effect of these three factors on the FCC rolling texture evolution
is hereby analyzed. In this work, two definitions of the lattice spin, the mathematical analysis
(MA) and the plane-strain analysis (PSA), are considered in the ¢ -model. The influence of
the MA and PSA definitions on the FCC rolling texture evolution is deeply analyzed in
conjunction with twinning and grain interaction strength, from a stiff interaction to a more

compliant interaction. A typical brass-type texture has been achieved which is usually
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observed in metals with low Stacking Fault Energy (SFE).

Chapter IV

In this chapter, we show that the polycrystalline ¢-model can be used to compute simple
shear crystallographic texture transition for FCC at large strains. Predicted results are
compared to experimental shear textures for high/medium SFE metals (i.e. copper) and low
SFE metals (i.e. silver). We show that the ¢-model is able to predict a clear shear texture
transition characterizing a range of FCC metals having high/medium to low SFE. The
twinning mechanism is included to improve the predicted shear textures for low SFE metals.
The effect of twinning on the ideal shear texture components is shown and is consistent with

experimental results from literature.

Chapter V

The BCC rolling textures and the corresponding yield surfaces are simulated using the ¢
-model in this chapter. We compare our results to those predicted by the visco-plastic
self-consistent (VPSC) model. The results are compared in terms of predicted slip activity,
texture evolution and yield loci. We also present a qualitative comparison with experimental

cold rolling textures taken from the literature for several BCC metals.

Chapter VI

The ¢-model has been extended to HCP metals. We simulated the deformation behavior of
AZ31 magnesium alloy with different intergranular interaction strengths and compared the
predicted results with experimental ones taken from the literatures. Tests are performed for
rolling (plane strain compression) as well as for tensile and compressive tests on rolled sheets.

We show that the ¢ -model predicts results in good agreement with the experimental ones.
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Chapter I. Background: crystal plasticity modeling

1.1 Introduction of polycrystals

Metallic materials belong to the group of polycrystals, and it is one of the most
common used materials in industrial application. This kind of material can usually be
largely deformed during forming process due to its relative high ductility. The works
of this thesis mainly focus on the micro-macro mechanic modeling of metallic
materials under large plastic deformation. It is therefore important to understand the
microstructure of polycrystals as well as their micro mechanisms of plastic

deformation.

1.1.1  Microstructure in single crystal

The single crystal (called grain) is the basic unit in polycrystalline materials such as
metals. Within each single crystal, the metal atoms are linked with metallic bonds and
regularly arranged and distributed in space. The polycrystal structure and pattern of

the crystal lattice space are presented in Fig. 1-1.

4"""‘ 1 ; '
1{43;!.'? / A , ¢

“\ AW

i

e
=

b
o

¥

Fig. 1-1. Representation of space lattice and unit cell in grains
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The atoms in single crystals may be arranged in different ways which can influence
the mechanical properties of the metals. The atom arrangement can be represented by
the form of the unit cell. The common crystal systems in metallic materials are: Face
Centered Cubic (FCC, an extra atom on each side of the cubic unit cell), e.g. Ag, Cu,
brass; Body Centered Cubic (BCC, an extra atom in the center of the cubic unit cell),

e.g. Fe, Li, Mo; and Hexagonal Closed Packed (HCP), e.g. Mg, Ti.

1.1.2  Plastic deformation mechanisms in polycrystals

Usually, if an elastic deformation occurs in a material, its microstructure will not
show permanent changes. The material will return to its original shape and dimension
when the stress is removed. The plastic deformation usually involves the
microstructure changes. In the forming process of metals, large strain is usually
required. In this case, the plastic deformation is important whereas the elastic
deformation can be neglected. In single crystals, the plastic deformation can be
activated by several mechanisms. Two basic plastic deformation mechanisms:

crystallographic slip and twinning, will be introduced in the next section.

1.1.2.1  Deformation by slip

The crystallographic slip is produced by the dislocation motion of the atoms in the
single crystals. As shown in Fig. 1-2, if the shear stress suffered by a single crystal
exceeds a threshold value, some parts of the crystal lattice will glide along each other.
The atoms dislocate a whole space between atoms. The slip occurs only on certain
planes and directions which depend on the crystal systems. Usually, the slips occur on
the plans and directions in which the atoms are most closely packed due to energy

reasons.
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slip Plane

(undeformed) (Slip)

Fig. 1-2. Schematic representation of crystallographic slip.

1.1.2.2  Deformation by twinning

Mechanical twinning can be found in metals with certain properties or under certain
loading conditions. The twinning mechanism is proved to be influenced by Stacking
Fault Energy (SFE), temperature, strain rate etc. (Christian and Mahajan, 1995). The
mechanical twinning is activated by a strong shear stress. If the twinning is activated,
part of the lattice structure will be rearranged and the twinned region (child region)
will become mirrored to the original region (parent region). The schematic description

of twinning is presented in Fig. 1-3.

We note that the mechanical twinning can be activated only on one direction whereas
the slip can be activated on both positive and negative directions. The volume fraction
of the twinned region has been reported by some experimental investigations (e.g.
Leffers and Ray, 2009). For example, under rolling tests, the experimental volume
fraction of deformation twins is less than 25% for brass with 30% zinc content at high

reduction.
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Fig. 1-3. Schematic representation of crystallographic twinning.

1.2 Description of crystallographic planes and

directions

The structure of lattice and unit cell usually leads to strong anisotropic behavior
because the plastic deformation mechanisms such as slip and twinning (see section
1.1.2) can only occur on certain planes and directions. Therefore, in the modeling, the
crystallographic planes and directions need to be specified. Three integers Miller

Indices are usually used to describe the crystallographic directions and planes.

The crystallographic direction can be denoted by three normalized integer [u v w]. In
cubic lattice structure, u, v, and w represent the normalized length of the projection of
this vector on the three axis OX, OY, OZ. The Fig. 1-4a presents some
crystallographic directions. We note that all the parallel directions are represented by

the same indices.
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Fig. 1-4. Example of several crystallographic directions (a) and planes (b) in cubic

lattice structure.

The Miller indices representing the orientation of a plane in a cubic lattice are defined
as follows: We measure the intercept of the plane with the axes along the three axis.
These intercepts X, y, and z are defined as fractional multiple of the length a, b and ¢
along the three axis, respectively. The obtained integers (X y z) should be then
inverted as (1/x 1/y 1/z) and reduce this set to a similar one having the smallest
integers by multiplying by a common factor. This set is called Miller indices of the

plane (h k I). Some crystallographic planes are shown in Fig. 1-4b as example.

In HCP lattice structure, the crystallographic directions and plans are identified using
a reference frame with four coordinate axes instead of three. As shown in Fig. 1-5,
OA,, OAZ, OAS and OC are the four coordinate axis. Thus, the planes and
direction in HCP structures should be identified by four integers: [u" v m" w"] for
directions and (h" k" n" I") for planes. Those integers can be obtained in the same way

as in cubic systems.
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a4y

Fig. 1-5. Coordinate system to identify the crystallographic planes and directions in

HCP structures.

The families of a crystallographic directions (or planes) are defined as a set of
directions (or planes) which are equivalent due to symmetry operations. For example,
the family of direction (110) includes the following directions: [110], [01], [011],
[110], [101] and [011], the family of plane {110} includes the plans: (110), (101),
(011), (110), (To1), (0T1). It is good to keep in mind that the mechanisms

occurred on directions and planes from the same families are normally equivalent.

1.3 Constitutive framework for single crystal

In order to describe the deformation behavior of single crystal, both elastic and
inelastic parts of deformation need to be considered. The inelastic deformation of
single crystal is mainly accommodated by the plastic deformation mechanisms such
as slip and twinning. The elastic part should include the elastic deformation and the

lattice spin. Thus, it makes sense to make a polar decomposition of deformation
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gradient, Asaro and Needleman (1985) proposes the decomposition of the

deformation gradient as follows:

F=FF° (1-1)

Where FP is the plastic deformation gradient and F~ represents the rotation of the

crystal lattice in which the elastic deformation is included, see Fig. 1-6.

Current, loaded
configuration

¥
f
FP 7
L ri
£
L
Initial, stress-free Intermediate, relaxed
configuration configuration

Fig. 1-6. Decomposition of deformation gradient, kinematic scheme proposed by

Asaro and Needleman (1985), presented by Kalidindi (1998)

The Eq. 1-2 shows the expression of the microscopic velocity gradient L which can

be divided into the elastic part and a plastic part:

L=FF'=L"+L"

(1-2)
L" and L can also be divided as:
L® =FPF" " =D+ Q° =1(|_P + LPT)+1(|_P —LPT) (1-3)
2 2
L' =F°F =D +Q" (1-4)
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Here, D" and D° are the plastic and elastic strain rate tensors, respectively. Q° is

the plastic spin, and Qis the lattice spin.

We use the s* and n* vectors to represent respectively the slip direction and slip
plane normal of the slip system o before deformation. These two vectors can be

transformed by the rotation which is expressed as follows:
s =F".s* (1-5)
n*=n*F" (1-6)

We denote that s* and n® vectors remain perpendicular after the deformation.

The Schmid tensor in slip system o is defined as:

m“=s -n (1-7)

m® can be decomposed into the symmetric part P*and the anti-symmetric part

A*:

m® =P* + A® (1-8)
P* and A* are defined by the following relation:

P* =1/2(s* ®n* +n* ®s*) (1-9)

A :J/Z(s"‘@n“—n“ ®s°‘) (1-10)

Thus, the plastic velocity gradient L can be expressed as function of the shear rate

el

A

L =3P +A%)= Y74 (s* ®n*)=D" + @7 (1-11)
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with

D =) y°P* and Q" =) y*A° (1-12)
The plastic deformation in single crystals is considered to be occurred by
crystallographic slip and the mechanical twinning associated with slip. The slip

mechanisms can be described by the visco-plastic power law which is proposed by

Hutchinson (1976):

with t*=P*-S (1-13)

Here, 7 represents the shear rate of a given slip or twinning system o and t“ is
the corresponding resolved shear stress. 7, is the reference shear rate. n represents
the inverse rate sensitivity coefficient. S represents the deviatoric Cauchy stress tensor.
g“ is the critical resolved shear stress (CRSS). The CRSS controls the activities of
the slip and twinning systems and can be updated by the hardening laws during the
calculation processes (see section 1.5). We note that the t“ value must remain
positive for twinning systems as the twinning systems can be activated only on one

o

direction. Therefore, if the calculated value of t~ in a twinning system is negative, it

will be set as 0.

1.4 Rigid visco-plastic formulation

A rate-sensitive constitutive law can be used to describe the rigid visco-plastic single
crystal behavior by relating the plastic strain rate tensor DP (elasticity is neglected)

and the deviatoric Cauchy stress tensor S of the single crystal:

D=D" :Z[Y—OJ(EJH(P“ ®P*)-S=M(S)-S (1-14)

= \g% L g°
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Here, M is the microscopic fourth order visco-plastic compliance tensor.
v Polycrystal constitutive law

In order to numerically describe the macroscopic behavior of polycrystals, we need to
firstly find the relation between the macroscopic strain and stress. This relation can be
described by a macroscopic constitutive law which is proposed in a similar way of the

microscopic one (Eq. 1-14):

D=M-S or S=L-D (1-15)
Where L=M™. D, S and M represent the macroscopic plastic strain rate, the
macroscopic deviatoric Cauchy stress and the macroscopic fourth order visco-plastic
compliance tensor, respectively. The consistency conditions need to be fulfilled which

are given by the averaging conditions:

D=(D) and S=(S). (1-16)

Here, (-) denotes the volume average over the polycrystals.

1.5 Hardening laws

In polycrystals, hardening corresponds to the phenomena that, during the plastic
deformation, the plastic mechanisms become harder to be activated due to the
modification of microstructure. As results, the strength characteristics (hardness, yield

strength, etc.) of materials are increased whereas the ductility is decreased.

For the modeling point of view, the hardening is usually described by the
modification of the critical resolved shear stress g* in the nonlinear constitutive law
(Eq. 1-14). This parameter is the reference value of shear stress which describes the

resistance of the activation of plastic mechanisms such as slip and twinning. The

33



Chapter I. Background: crystal plasticity modeling

hardening laws of Latent and Voce are commonly used to describe the microscopic

strain hardening in polycrystals.

1.5.1  Latent hardening law

In the latent hardening law, the increment of CRSS in system ¢ can be calculated as

follow:

g(x :ZHOLB
p

7’| (1-17)

Here, the H*® represents the nxn hardening matrix. Kalidindi et al. (1992)

proposed the expression of H*® as follow:

He? :q“ﬁh{l— 9" } (1-18)
sat
Here, h, represents the initial hardening slope. g, is the stress level for the
hardening saturation. The matrix q** described the Latent hardening behavior of the
single crystal (Franciosi et al., 1980; Kocks, 1970; Tomé&et al., 1984). This nxn
matrix (n = the total number of considered slip and twinning systems) is populated by
1 (for coplanar systems) and g (for non-coplanar systems). The q is the latent
hardening ratio usually taken between 1 and 1.4 (Franciosi et al., 1980; Kocks, 1970;

Toméet al., 1984).

The Eq. 1-19 shows the form of matrix q*® when the 12 FCC slip systems are

considered.

A gA gA JA

111
o |0 AOAGA i Al 11 (1-19)
gA gA A (A 111

gA gA gA A
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1.5.2  Voce hardening law

In this thesis, we use the voce hardening law (Voce, 1948) to describe the hardening
effect in polycrystals. In this hardening law, the evolution of the CRSS of slip or

twinning system o for a single crystal is calculated as follows:

-0

0 D (1-20)

T

9*(0)=1, + (1, + 911“)[1— exp(—l“

In Eqg. 1-20, I' is the shear rate accumulated in this grain. The parameters t,,t,, 0,
and 0, can be determined from the experimental strain-stress curves. The
parameters t, and 6, describe the initial flow and the initial rate of hardening in
the grain, respectively. The parameters 6, , 1, describe the asymptotic
characteristics of strain hardening. The condition 6,>6,, 1, >0 corresponds to an
increase in yield stress and a decrease in the hardening rate to a linear saturation. The
linear hardening is the limiting case of this law where the four hardening parameters

aresettobe t,=1,7, >0, 6,=1 and 0, =1.

A ‘self” and ‘latent’ hardening coupling parameter h®" is introduced to describe the

barrier effect between the activated slip or twinning modes (Toméet al., 1984):

Ag® = O('jiz hf Ay (1-21)
I B

We denote that h*® isa nxn matrix where n is the total number of activated slip or
twinning systems. The component of h*" should be set as 1 if the o and B
systems belong to the same slip or twinning mode. We denote that the voce hardening
law can be used for both crystallographic slip systems and the slip systems associated

with mechanical twinning.
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1.6 Modeling of mechanical twinning

The mechanical twinning may affect the plastic deformation in two ways: via the
orientations of twinning and via the slip associated with the formation of twinning.
Several models have been proposed to describe the effect of twinning on the plastic
deformation. In this section, we propose an introduction of the Van Houtte model
(Van Houtte, 1978), the Anand-Kalidindi model (Kalidindi, 1998; Staroselsky and
Anand, 1998) and the Predominant Twin Reorientation (PTR) scheme (Toméet al.,

1991). The PTR scheme is the one used in this thesis.

1.6.1  Van Houtte twinning model

In the model of Van Houtte, each grain is divided into several sub-grains. The
sub-grains have the same orientation and are calculated independently. During the
simulation, those grains are randomly picked with a fixed probability at each
deformation step and the picked grains are orientated along a given twinning system.
We note that the probability should be set the same as the twinning volume fraction in

this step.

The Van Houtte model can successfully describe the effect of twinning in the
simulations (Van Houtte, 1978). However, this model can only rotate the grains along
the given twinning system which may not be the most active twinning system (Tomé
et al., 1991). This disadvantage may reduce the accuracy of simulations. This model
may also largely increase the required computational time because large numbers of
sub-grains are needed to ensure the accuracy of the twinning volume fraction (Tomé

etal., 1991).
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1.6.2  Anand-Kalidindi twinning model

The Anand-Kalidindi twinning model (Kalidindi, 1998; Staroselsky and Anand, 1998)
proposes another way to describe the twinning orientation. In this model, the
deformation gradient is decomposed in the same way as Asaro and Needleman (1985),
see section 1.3. However, the deformed matrix is divided into twined region and
untwined region (see Fig. 1-7). Therefore, the mechanical response needs to be

expressed by the combination of those regions.

Current, loaded
configuration

i
FP /
i
L F
L
initial, stress-free Intermediate, relaxed
configuration configuration

Fig. 1-7. Decomposition of deformation gradient, kinematic scheme proposed by

Kalidindi (1998) and Staroselsky and Anand (1998)

Based on this idea, Kalidindi (1998) and Staroselsky and Anand (1998) split the

Schmid tensor m* of the slip or twinning system m*® into three parts: m¢ for

s-untw

the slip systems in the untwined region; my for the twinning systems in the

tw-untw

untwined region; m¢. for the slip systems in the twined region. Thus, the plastic

s-tw

velocity gradient L° in Eq. 1-11 can be extended considering the twinning volume
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fraction in the matrix:

Ns—t Ntw

Ns .
L =f3 7y me, + Q=) 7 me o, + D F ™ my, (1-22)

Here, f is the twinning volume fraction. Ns-t, Ns and Ntw represent the number of slip
systems in twined region, number of slip systems in untwined region, and number of
twinning systems in untwined region, respectively. f“ is the twinning volume
fraction accumulated by twinning system o . y"™ refers to the shear strain of
twinning systems which is suggest to be constant (Kalidindi, 1998, 2001). In the last
term, f%y™ represents the equivalent shear rate in twinning system o. We note that

in this model, twinning is not associated with slip.

The deviatoric Cauchy stress tensor can also be divided into untwined part S“"*
and the twined part S™ . We note that, when we calculated t* (see Eq. 1-15) for a
slip (or twinning) system in twined (or untwined) region, the corresponding Cauchy
stress tensor and Schmid tensor should be used. The Cauchy stress tensor in the single

crystal can be calculated by a linear combination of the twined and untwined parts:
S=@-f)-S“"™4f.S™ (1-23)

At each deformation step, certain amount of volume fraction may be transferred from
the untwined region to the twined regions. We should notice that each twinning
system may create a twined region. For a twinning system o, the transferred volume
fraction can be calculated as:

. o \"
Af¢ :}TTSV(;TJ At (1-24)
We note that the Af® should be set to O if the calculated 1 is negative as the

twinning can be only activated on the positive direction. The orientation of the twined
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region is obtained according to the direction of corresponding twinning system.

1.6.3  The Predominant Twin Reorientation (PTR) scheme

In the single crystal plasticity framework for single crystals (see section 1.3), the
twinning is associated with slip and should be calculated as normal slip but only
activated on the positive direction. Meanwhile, the twinning orientation (twinning

volume fraction, direction of orientation, etc.) needs to be described.

In this thesis, we used the Predominant Twin Reorientation (PTR) scheme proposed
by Toméet al. (1991) which was used by several authors (Abdolvand and Daymond
2012; Beyerlein et al. 2011; Prakash et al., 2008, Schmid et al., 2007). In this model,
the associated volume fraction is defined in each twinning system of one grain, as:
V'O =9 /St Here, y"9 represents the shear strain contributed by the twin systems
and S' is the characteristic twin shear. The twinning system in this grain with the
highest associated volume fraction is identified as the predominant twin system (PTS).
The sum of the associated volume fraction over all twinning systems in a given
twinning mode is defined as the accumulated twin fraction: V¢ =Zyt’g/8t. At
each deformation incremental step, a grain is picked randomly, and the ;]rain will be
fully reoriented if the accumulated twin fraction exceeds a threshold value which is

defined as:

Vth :Athl +Ath2 v (1_25)

In Eq. 1-25, V" called the effective twinned fraction, represents the volume
fraction of the grains that are already reoriented, and the values of A™ and A™
can be determined by either single-crystal experiments or fitting to a known

polycrystals response. The V* is the sum of the associated volume fraction over all
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twinning systems and over all grains: Va°°=ZZV"9. Once the condition is
fulfilled, the grain will be completely reoriented angd otnly the PTS is considered in the
reorientation. Then, both V" and V*° will be updated. This process will be
repeated until either all grains are randomly picked or the V" exceeds the

accumulated twin volume.

The PTR scheme can well define the direction of the twinning as only the PTS is
considered in the twinning reorientation. The main disadvantage of this model is the
reorientation of the entire grain. In polycrystals, only a part of the grain should be
reoriented due to the twinning. Therefore, the PTR scheme could overestimate the
twinning volume fraction (Beyerlein et al. 2011; Prakash et al., 2008, Schmid et al.,

2007).

1.7 Crystallographic texture and its evolution

The crystallographic texture is an important source of anisotropy in polycrystals. The
macroscopic mechanical behavior cannot be well predicted if the texture is not taken
into account. In each single crystal, the mechanisms of the plastic deformation usually
occur on certain planes and directions. Therefore, its mechanical properties are
strongly influenced by the orientation of the grain and therefore anisotropic.
Furthermore, the microscopic anisotropy can influence the macroscopic behavior of
the polycrystals. If the grains have a random orientation distribution, the macroscopic
mechanical properties are the same in all directions and therefore isotropic. In contrast,
if the grains are preferably oriented in some given crystallographic directions, the

material is therefore anisotropic.

The crystallographic texture is defined as the distribution of crystallographic

orientations of a polycrystalline sample. The textures are considered as the main
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source of the anisotropy in the polycrystals. In modeling of polycrystals, the evolution
of the texture needs to be followed in the entire forming process as the grains eager to
rotate to some favored orientations during the plastic deformation. These rotations
depend on the mode of deformation imposed on the material and the activated
mechanisms in each grain. The crystallographic texture can be predicted by the
models applied on polycrystals such as Taylor-type models, Sachs-type models,

self-consistent models (see section 1.8).

1.7.1  Euler angles

The three Euler angles, ¢,, ® and ¢,, are usually used to identify the grain
orientations (Bunge definition). The Euler angles describe the transition from the
reference frame of sample (XYZ) into the crystallographic reference frame of each
individual grain (xyz) of the polycrystals. To find the orientation g, as shown in Fig.

1-8, the system xyz needs to be rotated by ¢, about Z axis, then rotated by @

about x axis, finally rotated by ¢, about z axis.

Fig. 1-8. Representation of the three Euler angles

1.7.2 Update of grain orientations

During the simulations, the 3 Euler angles representing the grain orientation are

transformed into an orientation matrix a:
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cose, sineg, 0|1 O 0 cosp, sing, O
a=|-sinp, cose, 0|0 cos¢ sing|-|—sing, cosep, O (1-26)
0 0 1{]10 -sing coso 0 0 1

COS @, COS®, —Sin @, Sin @, C0S$  Sin @, COSP, +COS, SiN @, COSP  Sin @, Sin ¢
a=|-Ccosq,sin @, —sin g, cOS®, COSO —sin @, Sin @, +CoOS@, COSP, COS$  Cos, sin ¢ | (1-27)
sin o, sin ¢ —C0S @, Sin ¢ CoS ¢

The lattice spin Q" is used to update the grain orientation at each calculation step. In

the calculation, we should firstly obtain the rotation angle o from the Q" (Lee et

al., 2002):
w? =1 f with Q=QAt (1-28)

The incremental rotation matrix A™ s defined to calculate the update of the

orientation matrix a. The expression of A™ is presented as follows:

Lsino g (1—C(zsoc)_f22 (1-29)
(04 o

AI’Ot — I

Then, the grain orientation can be updated as follows:

Aun = A™ &y (1-30)

The matrix a of each grain should be calculated in each incremental steps. After the
simulation, in order to output the final texture, the a matrix of each grain needs to be
transformed back to the three Euler angles. To make the results more visual, the
output textures are represented in three different ways: the pole figures, inverse pole
figures and the orientation distribution function. The methods to translate the three

Euler angles into those visual figures are introduced in the Appendix.
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1.8 Main existing models for polycrystalline

plasticity
1.8.1  Taylor-type model

The Taylor model (or called the upper bound approximation) is proposed in 1938
(Taylor, 1938). This model is based on the assumption of uniform strain, which means
that each grain undergoes the same plastic deformation as the macroscopic. This
model is usually formulated by the condition that the velocity gradient at the local

level is equal to the macroscopic one:

L=L (1-31)

Based on the idea of Taylor (1938), several extensions have been proposed. Lin (Lin,
1957) assumes that the elasticity is isotropic and has proposed an interaction law to
solve the distribution between the elastic and plastic deformation which are not
imposed. Asaro and Needleman (1985) have extend the Taylor theory into

elasto-viscoplastic based on the assumption of uniform deformation gradient: F=F.

We should note that the global condition (see section I-4, Eqg. 1-16) should also be
fulfilled in Taylor-type model. Since the Taylor model is based on the iso-strain
assumption, the average strain condition (Incompressibility condition) is
automatically fulfilled. The macroscopic stress can be calculated from the average

stress condition (equilibrium condition).

1.8.2  Sachs-type model

The Sachs model is proposed in 1928 (Sachs, 1928). This model is established by

assuming that the stress tensor in each grain is proportional to the macroscopic one.
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This assumption results in a proportional relationship between the local and global

stress:

6=A0

g (1-32)

In the above equation, A, depends on the orientation of the grain. The static model
(or called lower bound approximation) is a limited case of Sachs model and is based
on the assumption of the uniform stress, that is to say that the stress in each grain is

equal to the macroscopic stress:
G=0 (1-33)

We should keep in mind that, in the visco-plastic cases, the strain and stress are
usually represented by plastic strain rate tensor D and deviatoric Cauchy stress
tensor S. Therefore, the Taylor model (upper bound approximation) should be
expressed by the uniform plastic strain rate (D = D), whereas the Static model (lower
bound approximation) should be expressed by the uniform deviatoric Cauchy stress

(S=3).

Since the Static model is based on the iso-stress assumption, the equilibrium condition
(see Eg. 1-16) will be achieved automatically. The macroscopic strain can be

calculated from the Incompressibility condition.

1.8.3 Relaxed-constraints model

The classical Taylor model is too strict and shows a limit in the texture predictions
especially when the grain is largely flatted. Thus, Honeff and Mecking (1981) have
proposed a relaxed-constraints model. In this model, the local strain is equal to the
global one as the Taylor theory and the shear deformations of relaxation are added
into local strain. For the rolling cases, the relaxed-constraints models include the lath
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model (with one shear deformation of relaxation along rolling direction) and the
pancake model (with two shear deformations of relaxation along rolling and
transverse directions). Van Houtte et al. (2005) have summarized those models by

proposing a general expression of relaxation velocity gradient:

R
Lrlx — Z Kr . :Ix (1_34)
r=1
In Eq. 1-34, R is total number of relaxation modes and K' denotes the velocity
gradient of each mode. ™ is a reference value. The L™ is a part of the local

velocity gradient, therefore, the local strain rate, which is the asymmetric part of local

velocity gradient (see Eqg. 1-11 and Eq. 1-12), can be expressed as:
n R

DP :Zyapa +ZBr’Y:IX (1-35)
o r=1

Here, B' refers to the asymmetric part of K'. The Eq. 1-35 can be used to calculate

7 via a linear programming (Van Houtte, 1988; Van Houltte et al., 2005).

For each grain, the shear rates of slip systems can be determined by the minimization

of the plastic work (Van Houtte et al., 2005) which is expressed as:
P=Ylo

In Eq. 1-36, the first term is the Taylor deformation energy (Taylor, 1938). <!

rix

,'YO,

)+ D Tt i (1-36)

represents the friction coefficient.

1.8.4  Multigrain model

The multigrain models refer to the models taking into account the local interaction

between neighboring grains (Van Houtte, 2005). The Lamel model (Kanjarla et al.,
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2010; Lee et al., 2002; Van Houtte et al., 2002, 2005, 2006) is a simplified multigrain
model which is designed for the rolling tests. This model divides the material into a
large amount of clusters. Each cluster contains two grains and the interface between
those two grains remains parallel to the rolling plane during the deformation. The
velocity gradient of each cluster is equal to the macroscopic one as the Taylor theory,
whereas the relaxation shear deformation is allowed on the interface between the two
grains. The relaxation, in this model, is calculated as the relaxed-constraints model
(section 1.8.3), but with the K" of a grain is opposite to the one of its neighboring
grain. The sum of plastic work of the two grains should be used in the minimization

process to calculate the slip shear rates.

Lee et al., (2002) have proposed a generalized Lamel model which also considers two
grains in each cluster. This model is formulated in a similar way than the Lamel
model but the bicrystal interfaces are not necessarily parallel to certain plane during
the deformation. The directions of the interfaces are taken into account in the
formulation. Lee et al., (2002) used the Taylor model (the strain rate of each cluster is
equal to the corresponding macroscopic ones) and Static model (the deviatoric stress
of each cluster is equal to the macroscopic one) to calculate the local fields of the
clusters. The strain rate, spin and the deviatoric stress of each grain can be calculated
from the local fields of the clusters considering the interface continuous condition and
the global equilibrium and compatibility condition (volume average of the local fields

are equal to the corresponding macroscopic ones)

The grain interaction (GIA) model (Crumbach et al., 2001, 2006; Engler et al., 2005;
Leffers and Ray, 2009; Van Houtte et al., 2005) is also a multigrain model but with
eight grains in one cluster. The grain boundaries and the interface between the cluster

and the matrix are assumed to be orthogonal arranged. The energies of dislocations on
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these grain boundaries and the cluster interfaces are represented by the energies of

geometrically necessary dislocations (GND) which is shown as follows:

_ GND sz
=p —2

po (1-37)

Here, 0 is one of the GNDs. p®° is the density of GNDs which depends on the
shear strain, GND directions and the grain size. b is the Burgers vector of the GNDs.
G is the shear modulus. Therefore, the total plastic work of the cluster can be

presented as:

YY)

nor o

,'YCL

J+ 3P (1-38)

Here, nor represents all the eight grains in this cluster. Then, by the minimization of
P’ the relaxation deformation and the shear rate of each grain can be determined

(Crumbach et al., 2006).

1.8.5  Self-consistent modeling

The self-consistent theory plays an important role in the micro-macro mechanical
modeling. This type of model is widely used to predict the mechanical properties for
heterogeneous materials, particularly polycrystals (e.g. Abdul-Latif, 2004;
Abdul-Latif and Radi, 2010; Berveiller and Zaoui, 1979; Hill, 1965; Kr&ner, 1961,
Mercier et al., 2005; Mercier and Molinari, 2009; Molinari et al., 1987). Unlike the
classic Taylor-type and Sachs-type models, the self-consistent models can take into
account the grain shape via the Eshelby theory (1957) and then describe the
interaction between the grains and the polycrystals. In the self-consistent theory
applied in polycrystals, each grain or grain group are treated as an inhomogeneous
inclusion embedded in the “homogencous effective medium” (HEM) which has the

average properties of the aggregate. The macroscopic response of the polycrystals
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results from the contribution of each grain. An interaction law should be proposed for
each self-consistent model in order to solve the problem of interaction between a

grain and the aggregate.

A solution of the inclusion problem is proposed by Eshelby (1957). For the case that
the elasticity is isotropic and homogeneous, the relation between the total deformation

¢’ and the plastic deformation €” of an ellipsoidal inclusion is expressed as:

g = SijkISEI (1-39)

]

Here, S is the Eshelby tensor which depends on the grain shape and the elastic
properties of the matrix. For the spherical inclusions, the expression of the Eshelby

tensor is shown as follow:

5v-1 4 -5y
ikl = msijgkl +m(sikakl +6il5jk) (1-40)

Then, for the case that &} =0, the relation in Eq. 1-40 becomes:

4 -5y
1-v

el =Pe? with B:% (1-42)

In Eq. 1-41, v denotes the Poisson ratio. The internal stress of the inclusion can be

obtained as:

e v e
Gij = —2},{8”— - (Ejgi]ﬁijj (1-42)

Here, p represents the elastic shear modulus. &j is the elastic deformation and can

be calculated as:
e =¢; —g; = (B—1)ef (1-43)
Therefore, we can have:
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o =201~ B (1-44)
1.85.1 Krd&ner model

Over the past several decades, the modeling studies based on the self-consistent
theory is an active field of research. Krcner (1961) proposed an elasto-plasitc
self-consistent approach for the polycrystals under small deformation. The inclusions

are assumed spherical. The interaction law of Kr&ner model is expressed as:

6—-G6= 2“(1— B)(Ep - Sp) (1-45)
2 4_5\/ - - - - P —P
Here, B= =1 as spherical inclusions are assumed to be spherical. ¢° and &
-V

are the local and global plastic deformations, respectively. ¢ and ¢ are the local

and global internal stresses. We note that the p value is quite large and thus the

plastic deformation deviation is suppressed (g° —&” — 0). Therefore, the predicted
results of Kréner model are close to the ones of Taylor-type models (see section

1.8.1).

1.8.5.2  Hill model

Hill (1965) has proposed a more complex model, which successfully take into account
elasto-plastic interaction between the grains and the aggregate. The interaction law of

Hill model is represented as follow:

c-o=L"-(c"-¢) (1-46)

The interaction tensor L is expressed as:

L = <|_ L+D)* (- |_)> (1-47)

Here, L and L represent the local and global tangent modulus tensors,
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respectively.
1.8.5.3  Berveiller and Zaoui model

Berveiller and Zaoui (1979) proposed a model based on the interaction law of Kr&ner
(1961). The spherical grains are taken into consideration and the elastic propriety is
assumed to be isotropic in this model. As mentioned above (see section 1.8.5.1), the
predicted results of Kré&ner model are close to the ones of Taylor-type model due to
the high value of p. In order to solve this problem, Berveiller and Zaoui (1979)
added a plastic accommodation factor o into the interaction law of Krcner. When
the Poisson ratio is about 1/3 (B~ 0.5), the interaction law of Berveiller and Zaoui

(1979) can be expressed as:

0~ = ople" ) (1-48)
where:
1
o= —
1+ uh (1-49)

The parameter h depends on the state of pl