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Preface

I prepared my PhD at the Charles Sadron Institute, Strasbourg, from September
2009 to June 2013 under the supervision of Carlos Marques and Fabrice Thalmann,
on phase transitions in ternary mixtures of lipids and cholesterol.

Lipid membranes have captivated physicists, chemists and biologists alike owing
to their central role in living cells, their biochemical diversity and the fascinating
polymorphism of their structural organization. Lipid mixtures are remarkable for
their complex phase behavior, in which cholesterol molecules play a very special
role. Gel and fluid states are the most striking manifestation of the thermotropic
behavior of phospholipds, separated by a melting transition. This main transition
corresponds to a sharp change in the statistical conformations of the hydrophobic
chains, coupled with a lateral extension and a reduction of the thickness of the
membrane. It is a weakly first order transition for membranes of pure composition.

In the recent years, ternary lipid systems comprising phospholipids and choles-
terol were established as important model systems in relation with lateral lipid
segregation phenomena in membranes. Ternary systems comprising a phospholipid
in the liquid state, a second phospholipid in the gel state and cholesterol display
several unique characteristics, including a surprising fluid-fluid coexistence, beside
the more usual fluid-gel coexistence.

Membranes are dynamic and fluctuating. They constantly rearrange, reorga-
nize and react to external perturbations. There is currently no technique capable
of imaging membranes at the resolution (100 nm or less) and speed (1µs or less)
where phenomena such as membrane severing and fusion, domain formation, pro-
tein diffusion and interactions happen. Experiments provide ensemble averaged or
time averaged information, and theoretical models are the necessary link between
the microscopic reality and the experimental measurements.

The aim of this work is to build a simple and predictive theoretical model for
determining the phase stability of ternary lipid-cholesterol mixtures, and to examine

xi
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the implications of this model regarding interactions between heterogeneous com-
ponents in such model membranes.

The first chapter is an introduction to the biophysics of phospholipid membranes.
I first present the nature of lipids and cholesterol, the structure and the mechanical
properties of self-assembled bilayers, their thermal phase transitions and the various
phase coexistences in multicomponent systems (Gibbs diagrams). In a second part,
I mention different experimental methods which have revealed this phase behavior,
and determine the thermodynamic stability of each phase. This includes X-ray
scattering, NMR and fluorescence spectroscopy, microscopy and calorimetry. Finally
I give an account of the state of the art with theoretical models of binary and
ternary lipid mixtures, from the early 1970s to now. In a last part, I briefly remind
the wetting theory about binary system and the Cahn’s approach using graphical
arguments.

In the second chapter, I introduce a thermodynamic model which allows de-
termining the phase stability of the ternary DOPC/DPPC/Cholesterol mixture. I
discuss the structure of the model and describe an original method based on a dis-
crete geometry algorithm for computing numerically the convex hull of the Gibbs
free-energy surface in three dimensions.

The third chapter explains how I refined the diagrams by solving numerically
the Gibbs equations for binary and ternary coexistence, and for the critical point.
The difficulty comes from the explicit presence of the scalar order parameter as-
sociated with the fluid-gel state of the membrane. This analytical determination
allows us to find the tie-lines, the critical plait point position and the boundaries
of the binary and ternary domains. I determined the Gibbs diagrams of several
other ternary mixtures such as DOPC/PSM/Chol., POPC/PSM/Chol., and Diphy-
tanoylPC/DPPC/Chol. and their temperature dependence. I finally attempt to
improve the binary coexistence diagrams by taking into account the variation of
area per molecule during the melting transition.

In the last chapter, I introduce a Landau-Ginzburg extension of this thermo-
dynamic model. I compute the line tension between a liquid ordered and liquid
disordered domain. Then, I consider the wetting of large and intermediate size cir-
cular inclusions, when the binary mixture is slightly off-coexistence. I determine the
“pre-wetting” horn of the system, discuss the effect of the curvature on wetting, and
the thermodynamic stability of the profiles which are obtained.





Chapter 1

Introduction

1.1 Biomembranes

1.1.1 Presentation

The cells are the structural units of all unicellular or multicellular organisms. Bacte-
ria are prokariotic cells, while plants, animals and fungi are composed of eukariotic
cells (1.1).

Figure 1.1 – Internal view of the cell (adapted from [1]).

A prokariotic cell is not compartmentalized and possesses a strong plasmic mem-
brane, simple or double, depending on the so-called positive Gram or negative Gram

1



2 Chap. 1: Introduction

character. The plasmic membrane isolates the interior of the cell from the exterior,
regulates the inner medium, and provides metabolic energy. An eukariotic cell has
a plasmic membrane, and in addition many internal membranes or biomembranes
delimiting organelles inside the cell, such as the endoplasmic reticulum, the mito-
chondria, the Golgi apparatus, or the peroxisomes, all in charge of performing various
vital functions (figure 1.1). Eukariotic cells are significantly larger than prokaryotic
cells and their architecture is much more sophisticated. They compose the tissues
of higher organisms where they perform a large number of different functions, both
individually and collectively.

The internal compartments allow cells to perform simultaneously several an-
tagonist bio-chemical reactions, such as proteins synthesis and degradation, and
setting up electrochemical gradients. Biomembranes regulate the intake of essential
molecules for its structure, operation and the excretion of toxics resulting from its
metabolism. They assure protection against the environment. The biomembrane
is semipermeable or provided with a selective permeability so that water molecules
go through easily, while ions or larger molecules are stuck on each side. Many
substances (peptides, proteins, ions, nucleic acids...) are not able to proceed pas-
sively through the membrane but rely on using trans-membrane carriers (ionic chan-
nels, permeases, and active transport proteins). Finally membranes can internalize
macromolecules by endocytosis, and excrete substances by exocytosis mechanism.
The endocytosis consists in plasmic membrane invaginations localized on specific
domains called coated pits, in which membrane receptors activate the endocytic
processes. The exocytosis phenomenon corresponds to fusion between intracellular
vesicles and plasmic membrane in order to release their content outside the cell. The
collective behavior of cells in organ and tissues requires a constant communication
between cells and a synchronization of their functions, for which the external mem-
brane is the central gateway. The studies of the cell properties and functions is the
focus of cellular biology.

Biomembranes are composed of a wide variety of chemical compounds, namely
lipids, proteins and oses. To simplify to the extreme, lipids play a structural role
while proteins play many different functional roles (for many of them still unknown),
such as signalling channels, anchoring to the internal cell cytoskeletton or the ex-
tracellular matrix, and performing enzymatic reactions. Lipids represent a very
diverse class of chemical compounds, characterized by their poor solubility in water.
Some lipids, commonly referred as “fat” or “grease” are almost insoluble. These
are believed to represent a form of metabolic energy storage. Other lipids are only
partially soluble, a property known as amphiphilic character (see section 1.1.3 be-
low). Amphiphilic compounds are the one that chiefly contributes the biomembranes
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structure.

Lipid membrane composition varies enormously from one cell to the other, and
within a cell. This lipid diversity constitutes a puzzle, biologists and biochemists are
far from understanding the reasons for these compositional variations, nor do they
apprehend the subtle regulations operating among them. Unlike proteins and nucleic
acids, which seem to work in a highly specific and specialized manner, the lipid
functions are somewhat “fuzzy”. Understanding the lipid functions requires some
knowledge and techniques pertaining to the field of physics and physical chemistry:
rheology, mechanics, phase transitions, critical phenomena to name a few. This is
why the study of membranes and membrane properties has become a popular topic
in modern biophysics.

1.1.2 The concept of bilayer

In 1925, Gorter et Grendel [2] demonstrated that the monolayer area of lipids ex-
tracted from red blood cells is twice as large as the contour area of these cells. They
were the first to suggest that lipid compounds (originally referred as “lipoids”) self-
assemble into a bilayer structure.

Much later, in 1972, Singer and Nicolson [3] came up with a new model of cell
membrane known as the fluid mosaic model (1.2). They suggested that membrane
proteins are actually dispersed in a fluid “sea” of lipids, free to move around with
either one or two sides exposed the free water solution surrounding the membrane.
The mosaic term then refers to the inhomogeneous and spontaneously fluctuating
arrangement of the membrane components.

Lipids are subject to intramolecular rotations and isomerizations, as well as in-
termolecular lateral diffusion. The bilayer is divided in two opposing leaflets. A
lipid move consisting in leaving one leaflet for the other is known as flip-flop ex-
change. The solubility of most lipids is so small that they remain trapped within
membranes for very long times. Beside these individual motions, membranes are
subject to collective out-of-plane undulations. Altogether, the fluid membrane state
looks very disordered and fluctuating.

1.1.3 Size and structure of lipids

Two major families of membrane forming lipids are the glycerophospholipids and
the sphingolipids. They are amphiphilic compounds, with an hydrophilic, bulky
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Figure 1.2 – Artist view of a cell membrane.

moiety commonly designated as the head or headgroup and two distinct hydrophobic,
aliphatic oligomers known as tails (1.3.a)

The length of these molecules lies between 2 and 3 nm, the molecular cross-
section area ranges from 0.60 to 0.75 nm2 [4]. A single lipid has a typical volume of
1 nm3, for a molecular mass of about 800 g/mol.

(a) Representation of a lipid

Hydrophobic tails

Hydrophilic head

(b) Skeletton of a lipid

Figure 1.3 – Glycerophospholipid molecule.

Glycerophospholipids are composed of a glycerol backbone linked to phosphate
group (abbrev. P) and a polar or charged headgroup on the 3rd carbon (1.3.b).
Common headgroup names (ethanolamine, choline, glycerol. . . ) are shortened to
their first letter (E,C,G. . . )(1.4). Two saturated or unsaturated fatty acids are
linked by an ester bond, respectively to the 1st (sn1 ) and 2nd (sn2 ) carbon of the
glycerol backbone. Common fatty acids possess an even number of carbons starting
from 12 to more than 20, with possibly cis insaturations. Common fatty acid names
are abbreviated as depicted in Table 1.1. Following this rule, the acronym DOPC
naturally stands for 1,2-dioleoyl-sn-glycero-3-phosphocholine, while 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphoethanolamine is referred as POPE.

Sphingolipids are today recognized as essential components of the plasmic mem-
brane. Their architecture is somewhat similar to glycerophospholipid, except but
a single labile fatty acid (amide bond) attached to a long chain called sphingosine.
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_
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Phosphoric   acid
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Glycerol

Phospholipid

Phosphatidic acid

Phosphatidylcholine

Phosphatidylethanolamine

Phosphatidylserine

Phosphatidylglycerol

Phosphatidylinositol

(PA)

(PE)

(PC)

(PG)

(PS)

(PI)

Figure 1.4 – Molecule of glycerophospholipid with different headgroups (adapted from [1]).

Usual name Formula Symbol
Saturated fatty-acid

(L) Lauric CH3 − (CH2)10 −COOH 12:0
(M) Myristic CH3 − (CH2)12 −COOH 14:0
(P) Palmitic CH3 − (CH2)14 −COOH 16:0
(S) Stearic CH3 − (CH2)16 −COOH 18:0

Usual name Formula Symbol
Insaturated fatty-acid

(O)
Oleic

CH3 − (CH2)7 −CH = CH 18: 1(9)
−(CH2)7 −COOH

(Li)
Linoleic

CH3 − (CH2)4 −CH = CH 18: 2(9,12)
−CH2 −CH = CH − (CH2)7 −COOH

(Lic)
Linolenic

CH3 −CH2 −CH = CH 18: 3(9,12,15)
−CH2 −CH = CH −CH2 −CH = CH − (CH2)7 −COOH

(A)
Arachidonic

CH3 − (CH2)4 − [CH = CH −CH2]3 20: 4(5,8,11,14)
−CH = CH − (CH2)3 −COOH

Table 1.1 – Examples of saturated and insaturated fatty acids (adapted from [5]).
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They are commonly abbreviated as SM (1.5).

Figure 1.5 – A sphingosine.(N-lauroyl-1-deoxysphingosine (m18:1/12:0)).

The insaturated fatty acids present a cis- trans isomerism, the cis isomer showing
a kinked orientation of its tail of about 120○. This kink causes an increase of the
mean volume occupied by the molecule, and destroys the regular packing of the
tails, as it occurs for instance in the low temperature crystalline phases of paraffins.
These effects are all the more pronounced that the insaturation is located near the
middle of the chain. As we will see in the next sections, the existence of these kinks
has important consequences as far as membrane thermodynamics is concerned.

Figure 1.6 – Lipid species. with a cis insaturated fatty-acid kinked tail (left) and lipid with two
saturated tails (right).
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1.1.4 Cholesterol

Cholesterol is considered as a lipid, due to its amphiphile character and its signifi-
cant presence in some membranes. However, the cholesterol structure differs greatly
from the two previous lipid families. Cholesterol possesses a non-aromatic polycyclic
structure terminated by a short hydrophobic tail at one side and an hydrophilic al-
cool residu at the opposite side (1.7). It is a member of an important class of
molecules known as steroids.
Cholesterol is found in various proportions in eukaryotic cells, and reaches signif-
icant fractions in the outer plasma membrane. Its biological role is manifold and
still matter of debate and question. For instance, the stiffness, the elasticity, the
thickness and the permeability of membranes are all affected by the amount of
cholesterol. The molecule has a condensing effect, which means that the area of a
cholesterol-saturated lipid mixture is less than the specific area of its components,
consistent with a strong mutual affinity between the two components. The choles-
terol molecule is flat on one side, and rough on the opposite side, medling with
the usual arrangement of phospholipid tails, bringing order to the disordered lipid
phases and disorder to the ordered lipid phases [6]. Cholesterol is specific to higher
eukaryotic organisms, where its presence is necessary for membrane fluidization, but
analogue molecules are found in vegetals, yeasts or fungi. Cholesterol is not found
in prokaryotes (bacteria).

Figure 1.7 – Cholesterol molecule and formula.
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1.1.5 Self-assembly and lyotropic meso-phases

The poor solubility of glycerophospholipids is documented in ref. [7]. As a result of
their amphiphilic character and their molecular shapes, these lipid molecules self-
assemble in water to form extended structures, called mesophases. Lamellar phases
are common, but other structures are also seen, depending on pH, temperature and
composition (figure 1.8). Lamellar phases are favored, as this is optimal in terms
of molecular packing, shielding the hydrophobic part from, and exposing the polar
head to the water solution.

Figure 1.8 – Example of surfactant morphologies. (a) Micellar tubes, (b) spherical micelles, (c)
disc-shaped bicelles, (d) hexagonal phase, (e) cubic phase, (f) langmuir monolayer
at the air–water interface, (g) lamellar phase, (h) multilamellar liposomes, and (i)
stacked bilayers on a solid support[8].

The sophisticated balance between hydrophilic and hydrophobic, electrostatic
and dispersive forces leads to a number of possible structures, function of the amount
of water in the mixture, referred as the lyotropic behavior of the amphiphile.

(a) Lα lamellar fluid
phase.

(b) Inverted hexagonal
phase.

(c) Pn3m inverse cubic
bicontinuous lamellar
phase.

Figure 1.9 – Several lipid mesophases[9].
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We can observe on figure (1.8) closed and opened meso-phases composed of
surfactant monolayers (a,b,c,d,e,f) and surfactant bilayers (g,h,i). The name meso-
phase is given because the scale of the regular spatial variations is mesoscopic, larger
than the microscopic size of the lipids. Lipids in water give also various meso-phases,
though with a lesser diversity, shown on figure (1.9).

We show on figure (1.10) the ideal diagram of a lyotropic species, with different
domains of stability for each meso-phase, as water dilution increases. Real am-
phiphilic compounds display many of the phases featured in this diagram.

Figure 1.10 – Schematic phase diagram of a lyotropic species. The a,b,c,d phases are cubic phases.
[9].

1.1.6 Vesicles

At low concentration, lipid water dispersions lead to closed compact structures
known as vesicles (1.11). Single, isolated bilayers with free edges are not stable
and close spontaneously to form spherical vesicles. These structures are filled with,
and surrounded by water.

Vesicle diameters range from 50 nm for the small ones, up to 50 µm for the large
ones, while their thickness corresponds roughly to the double of a lipid length, say
5 nm. Small vesicles are known as SUV (small unilamellar vesicles) or liposomes
with a diameter less than a micrometer. Large vesicles are referred as LUV or GUV
(large or giant unilamellar vesicles). The vesicle size is not under thermodynamic
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control, and depends mainly on the lipid suspension preparation procedure. In term
of mesophases, lipid vesicles can be assimilated to highly hydrated lamellar phases.

The range of applications of lipid vesicles is immense, whether one is interested
in fundamental issues or biotechnological applications. Lipid vesicles form an im-
portant class of model membrane systems, for carrying out structural, mechanical
and biochemical studies [10]. On the other hand, encapsulation of chemicals and
drugs into vesicles offer important prospects in biotechnology.

GUV are particularly suitable for optical and fluorescence microscopy studies,
and can be individually manipulated by means of micropipette aspiration techniques.
Two techniques are widely used to produce GUV: the gentle hydration technique
and electroswelling technique (growth assisted by electric fields). Depending on the
procedure, the yield, the sizes and the shapes of the resulting vesicles may differ.
Moreover, significant fluctuations of composition from one vesicle to another have
been reported, due to the complex formation process.

(a) Schematic vesicle. (b) Microscopy observation by differen-
tial interference contrast of a lipid vesi-
cle. [10]

Figure 1.11 – Lipids vesicles.
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1.2 Lipid bilayer: a biomembrane model

1.2.1 Bilayer lipids phases

Lipid bilayers display a number of different thermodynamic phases and phase coexis-
tences. The complexity of the phase diagram increases with the number of different
components: single component bilayers, binary or ternary mixtures all display rich
phase diagrams as a function of composition and temperature.

For instance, the lipid composition of the red blood cell membrane, once all
non lipid factors have been removed, features about 250 different lipid species [11].
Membrane with artificial composition are de facto over-simplified. An alternative
to circumvent this limitation consists in making vesicles with biological membranes
extracts.

The lipid organization at molecular scale depends on multiple factors, size and
charge of the headgroup, length and packing properties of the chains, mutual chem-
ical affinities, etc. . . As a rule, chain length mismatches and poor packing of unlike
chains tend to segregate different lipids, while entropic contributions favor homoge-
neous mixing.

Temperature, which enters in the entropy contribution −TS of the free-energy,
plays a prominent role as far as lipid chain ordering is concerned. Usual phospho-
lipids present a marked thermotropic behavior, i.e. the existence of various phases
depending mainly on the applied temperature.

At low temperatures, the membrane is in a crystal phase Lc, where the tails are
extremely ordered, nested together, and the headgroups arrange along an hexagonal
lattice. When the temperature increases, the membrane adopts gradually a less
ordered organization called gel phase Lβ, in which headgroups and lipid molecules
enjoy some rotational freedom while chain tails stay ordered. At high temperatures,
one observes a fluid phase Lα, in which headgroup positions and tail conformations
are both disordered, with thousands of different possible conformational isomers [12].
We can see on figure (1.12) a representation of the different phases in membranes
composed of pure POPC at different temperatures.

The presence of cholesterol in large amount in some membranes motivated stud-
ies on the cholesterol-membrane structure relationship, and also on the phase be-
havior of phospholipid-cholesterol mixtures. First came experimental evidences of
a fluid-fluid coexistence in binary mixtures. This coexistence is still debated to-
day as different experimental techniques deliver seemingly conflicting conclusions
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L
α

L
β

L
C

Figure 1.12 – The three phases for a pure lipid POPC mixture, as predicted by molecular dynam-
ics simulations. Orange: phosphorus, red: oxygen, blue: nitrogen, gray: palmitic
chains, green: oxygen water, beige: oleic chains [13].

(see experimental section below). The fluid-fluid coexistence in ternary mixtures is,
however, widely accepted.

In this fluid-fluid coexistence, one of the phase is depleted in cholesterol and
sound similar to the Lα fluid phase. This phase is referred as the disordered phase
Ld in the context of phospholipid cholesterol systems. The other phase is enriched
in cholesterol, and phospholipid tails look much more ordered, thereby leading to a
liquid ordered phase Lo. The liquid ordered phase, however, is less ordered and less
densely packed as the gel phase Lβ. Cholesterol molecules confer to the phospholipid
bilayer containing them both order and fluidity.

We can notice on the figure (1.13) that the insertion of cholesterol orders lipids
in membrane by decreasing the width of the middle zone where the lipids from the
upper and lower layers join, and induce a membrane thickening [14]. Moreover,
cholesterol plays a role in the rigidity of membrane in increasing its flexibility [15].

1.2.2 Mechanical properties of the membrane

A widely accepted argument states that the self-assembled lipid structure depends
primarily on the molecular shape, as illustrated on figure (1.14). The molecular
shape enters as a dimensionless ratio between the occupied molecular volume and
the product of the headgroup area with the chain length. One distinguishes three
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Figure 1.13 – A) Ld Disordered-liquid (DOPC), B) Lo Ordered-liquid (DOPC/Cholesterol).
Cholesterol molecules, colored goldenrod, are shown in stick representation, the
terminal methyl groups are represented as spheres and colored purple and magenta
to distinguish the methyls of each leaflet. Acyl chains shown in stick representation
are gray. Phosphatidylcholine headgroups are also shown in stick representation and
colored according to the element (red: oxygen; blue: nitrogen; gold: phosphorus;
white: hydrogen). Water is represented by the aquamarine bands. [14].

general lipid shapes: an inverted conical shape (A) which gives micelles or cylindrical
micelles, a cylindrical shape (B) which forms preferentially bilayers, and finally a
conical shape , which gives the hexagonal cylindrical inverted micelles H2.

Figure 1.14 – Illustration of the shape-structure concept of lipid polymorphism, indicating the
overall shape of the molecules and examples of the aggregated structures[16].

The optimal packing of lipids with non spherical shapes corresponds ideally to a
curved monolayer, such as in hexagonal or micellar assemblies. The lipid assembly
is therefore associated with a non vanishing spontaneous curvature C0. In the case
of a symmetric bilayer, with two leaflets of identical composition, the overall spon-
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taneous curvature of the membrane vanishes, and the membrane stays flat. If the
two leaflets have an asymmetric composition, the bilayer may show a non vanishing
spontaneous curvature (figure 1.15). A spontaneous curvature may also be induced
by an asymmetric composition (ionic content, pH...) of the solutions across the
bilayer.

Even in a symmetric bilayer, each leaflet (or monolayer), can be associated to a
spontaneous curvature C0, consequence of the individual lipid shapes, corresponding
to the curvature that the monolayer would adopt if it was possible to isolate it from
its environment. The monolayer spontaneous curvature C0 is an important intrinsic
property of the membranes, linked to the functional properties of associated proteins
[6].

Figure 1.15 – Bilayer made of two different monolayers.

Figure 1.16 – Three modes of membrane deformations [17].

Out of the three main deformation modes represented on figure (1.16), two are
elastic: the bending and the stretching deformation. Shear deformation offers no
static resistance in fluid membranes, although the existence of a cytoskeletton in
biological membranes renders the situation more complex. Each elastic mode is
characterized by an elastic coefficient. The stretching coefficient KA is defined as
the ratio KA = Adσ/dA of the variation of surface tension σ accompanying a change
in membrane area (strain dA/A). The mechanical determination of KA for pure
DOPC is estimated to KA ≈ 270mN.m−1 for a range of tensions between 10−6 N and
10−4 N [15].

The bending moduli appear in the total bending energy ES of the system, which
is given by the Helfrich expression:

ES = ∫ [κ2 ( 1
R1

+ 1
R2

− 2
R0

)
2
+ κG
R1R2

] dA (1.1)
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Here R1 and R2 are the two principal radii of curvature describing the local curva-
ture, R0 the spontaneous radius of curvature of the membrane (figure 1.17), κ is the
normal bending modulus and κG the Gaussian bending modulus. Expression (1.1)
describes a situation of bending at constant area. This limit is indeed justified in
many experimentally relevant situations, as stretching a membrane is energetically
much less favorable than bending it.

Figure 1.17 – Main curvature radius[9].

In the case of a closed object the Gauss-Bonnet theorem allows us to rewrite ES
as below:

ES = ∫ [κ2 ( 1
R1

+ 1
R2

− 2
R0

)
2
] dA + κG4π(1 − g) (1.2)

with g, the genus number which describes the topology of the object (g = 0 for a
sphere and higher values for more complex objects with “holes”). In many practical
cases, the Gaussian modulus plays no role.

The bending modulus changes by a large amount at the lipid main transition.
Unsurprisingly, the rigidity of the fluid phase is much less than the one of the gel
phase, leading to values of the bending modulus respectively equal to κ ≃ 10kT
(fluid phase) and κ ≃ 200kT (gel phase).

There is a work by S.Leibler and D.Andelman [18] which relates curvature and
composition, with the prediction that regions of strong curvature accommodate
better the lipid fluid phase because the cost in energy to curve the membrane is
higher when the lipids are ordered.
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We show in figure (1.18) the lateral pressure profile π(z) of the membrane as
a function of the depth z in the membrane. The interfacial tension located at
the polar-apolar interface induces a negative pressure compensated by a positive
lateral pressure in the headgroups and acyl chains region due to steric repulsive
forces. We can estimate the lateral pressure in the interior of the lipid bilayer by
considering that the interfacial tension at the hydrophobic-hydrophilic interface is
about 50 mN/m [19]. The lateral pressure in the interior of the membrane has to
balance this interfacial tension, leading to pint. = 2γ/d ≃ 350 atm, d ≃ 3nm being
the membrane thickness. The lateral pressure profile is related to the lipid shapes
and to the spontaneous monolayer curvature C0. Membrane proteins embedded in
membranes have therefore to deal with significant lateral stresses.

Figure 1.18 – Schematic representation of the lateral pressure profile in the lipid bilayer. [16].

1.2.3 Lateral membrane organization: Hydrophobic match-
ing and rafts

Hydrophobic matching

Transmembrane proteins display a significant hydrophobic lateral surface, which
must be coated with lipids in order to minimize their exposure to water molecules.
When the length of the hydrophobic domain differs from the length of the hydropho-
bic region of the bilayer, the latter tries to adjust its thickness to the protein domain.
The concept of hydrophobic matching is believed to play a leading role in the orga-
nization of biological membranes. We notice on the figure (1.19.a ) that the lipids
try to match the transmembrane protein thickness, similar to the meniscus seen
when a liquid wets a solid surface. This restructuring is a 3D phenomenon, as seen
on the figure (1.19.b), which alters the local membrane thickness. In the thickness
matching process, a transverse elongational or compressive work is balanced with
a reduction of the interfacial hydrophobic energy [20]. It is therefore legitimate to
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consider that the local lipid environment of an inclusion may differ significantly, in
terms of lipid composition or lipid tail elongation, from the average membrane state.

The need of accommodating several different proteins may be one of the reasons
behind such a diversity of lipid compounds in a real membrane. Similar issues arise
when it comes to design nanocarriers with optimal membrane interactions.

(a) Schematic hydrophobic mismatch in a lat-
eral cut view.

(b) Schematic hydrophobic mismatch in a 3D
view.

Figure 1.19 – Hydrophobic mismatch[21].

Rafts

This lipids reorganization accompanying protein inclusions is believed to induce
domains with specific lipids and electrostatic bonding that could act as receptors for
signaling an entrance point in the cell. Domains could be formed with 40 to 80 lipids
molecules, depending on the associated protein diameter [6]. The presence of very
small lateral structures in biological membranes, called rafts, is currently a domain
of intense speculations and investigations, because it could be a key ingredient of
the signalling and endocytic pathway across cell membranes [22].

Up to now, these structures were not put in evidence because of their nano-
metric length scales, and because of the difficulty to demonstrate that a lipid or a
protein is indeed confined into a such a tiny and transient region of the membrane
surface (1.20). These rafts are composed of cholesterol and sphingolipids with long,
saturated, elongated chain tails, similar to some extent to the liquid ordered phase
Lo seen in mixtures of saturated PC and cholesterol. These domains are believed to
be significantly thicker than the rest of the membrane. They should therefore accom-
modate preferentially proteins with extended hydrophobic domains and peripheral
proteins with grafted long hydrocarbon tails.
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Figure 1.20 – Confocal fluorescence microscopy in ternary mixture DOPC/DPPC/Chol in which
fluid-ordered/fluid-disordered (round domains) phases coexist [23].

1.3 Main phase transition (Lβ → Lα)

We can notice on Table (1.2) that pure lipids transit at a well defined temperature Tm
from their gel phase to their fluid phase. This transition is first order, characterized
experimentally by a narrow peak of calorific capacity (figure 1.21), associated with a
finite enthalpy of transition ∆H. Saturated lipids such as DPPC, DLPC, or DMPC
have a significantly higher transition temperature than unsaturated lipid such as
DOPC or POPC. This is a consequence of the poor packing properties of the cis-
unsaturated chains (kinks) which lower the stability of the low temperature phase.

Lipid formula T ℃ ∆H kcal/mol (kj/mol)
DOPC -21 7.7 (32.2)
DPPC 41.5 8.7 (36.5)
POPC -3 5.4 (22.6)
PSM 41 7.5 (31.4)
DPPC-d62 37.8 8.7(36.5)
DiphyPC -120 7.4 (31)
DSPC 55.5 10.6 (46)
DMPC 23.5 6.2 (26)
DMPE 49.5 5.8 (24.3)
DLPC -1.8 4.8 (20)
DPPE 63 8.8 (36.8)

Table 1.2 – Transition temperatures and enthalpy changes for selected pure lipids.



1.3 Main phase transition (Lβ → Lα) 19

Figure 1.21 – Heat capacity as a function of temperature (adapted from [19]).

1.3.1 Binary systems phase diagrams

As a rule, a binary lipid mixture at a temperature comprised between the two
pure species melting temperatures is subject to demixing, or equivalently, phase
separation. Binary separation is driven by the competition between two antago-
nistic effects: the entropy of mixing which favors homogeneity and the enthalpic
interactions which favors the aggregation of likewise molecules. In the precise case
of binary lipid mixtures, the repulsive interactions originate from the incompatible
packing properties between the high temperature melting lipids which tend to adopt
an ordered gel-like conformation and the low temperature melting lipids which adopt
a disordered fluid-like conformation. The chemical mismatch between insaturated
and saturated chains comes as an additional interaction term.

We can observe this mechanism at work on the DOPC/DPPC-d62 phase dia-
gram, represented on figure (1.22), and which shows a phase separation between the
upper and lower transition temperatures of the lipids (between −21℃ and 37.8℃).

The coexisting phases are a gel phase containing an excess of high melting point
lipid species (compared with the average mixture composition) and a fluid phase
depleted in the same compound. The respective amount of gel and fluid obeys the
thermodynamic lever rule.
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Figure 1.22 – Binary lipids mixture diagram DOPC/DPPC[24].

1.3.2 Lipid-cholesterol binary phase diagrams

The binary mixture lipid/cholesterol is one of the most important topic in lipid
science with regards to the central role of cholesterol in membrane cell biology.
Cholesterol is unique in its ability to stabilize the liquid ordered phase Lo, along
with only a few other higher sterols, such as ergosterol.

Cholesterol is a small molecule compared with usual phospholipids, it occupies
only half of the area of a phospholipid (about 0.40 nm2). It inserts in the fluid
disordered phase more easily than in the tightly packed gel ordered phase. As a
matter of fact, gel phases can only accommodate tiny amounts of cholesterol. On
the other hand, the stiff and planar steroid rings interact more favorably with the
elongated lipid tails than with the disordered conformational chains that dominate
the Lα phase. Therefore, cholesterol has a tendency to increase the amount of order
in the surrounding chains, thereby favoring the emergence of an intermediate fluid
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but axially ordered environment, the liquid ordered phase Lo. Beyond this basic
principles, the existence of specific favorable interactions with some species (sph-
ingolipids for instance) and unfavorable interactions with insaturated lipid chains
complete this complex picture.

Cholesterol is twice a shorter molecule than phospholipids and it promotes a
tilting of the molecules around it to prevent the water intake in the membrane.
This effect is called umbrella effect [25, 26] (see section 1.5.4 below).

There are both experimental and theoretical evidences that the preference of
cholesterol for a locally ordered environment is strong enough to promote a real
binary phase coexistence, in which cholesterol accumulates into Lo regions. The
striking feature of the ordered regions is that cholesterol preserves a high lateral
mobility of the membrane components, similar by a factor 2 to the mobility in the
disordered phase. This is in stark contrast with the gel phase mobilities which are
so low that the overall phase seems almost solid.

We present on figure (1.23) an experimental DPPC-d62/Cholesterol phase dia-
gram, and on figure (1.36) another measurement above the transition temperature
of DPPC-d62 (deuteration is required for NMR studies). We observe a coexistence
between two fluid phases above the phospholipid main melting transition temper-
ature Tm. We also see that the liquid ordered phase is not subject to a melting
phenomenon at Tm. First the binary coexistence bubble ends in a critical point
(upper critical solubility transition) which marks the convergence of the two flu-
ids region. It is worth mentioning, however, that other recent observation denied
the existence of fluid-fluid coexistence in binary systems, allowing only for gel-fluid
coexistence below the melting temperature Tm (see figure 1.37).

1.3.3 Ternary mixture of lipids and cholesterol

The existence of fluid-fluid domain coexistence is non ambiguous in the case of
ternary mixtures, as if the third component was enhancing the trends towards do-
main formation. Quite naturally, these ternary lipid systems have been considered
as canonical raft forming mixtures, speculating on the connexion between liquid
ordered phase and biological raft domains. Another reason to consider ternary
mixtures is the need to simplify the complex composition of biological membranes
in order to disentangle the respective contribution of each lipid species. There is,
obviously, a limit in what membranes of artificial composition can reproduce, in
the absence of active processes or biochemical transformations. Nevertheless model
systems have proved valuable for structural and mechanical investigations.
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Figure 1.23 – Binary lipid mixture DPPC-d62/Chol diagram. The asterisk indicates the approxi-
mate location of the critical point [27].

Canonical raft mixtures are composed of a low melting point lipid, a high melting
point lipid and cholesterol. Low melting point lipids often present unsaturated chains
while high melting point lipids have saturated chains. We show on figure (1.24) the
Gibbs triangle representation at a fixed temperature of a ternary mixture of lipids
and cholesterol. Usually, the unsaturated lipid is placed at the left corner of the
triangle and the saturated species at the right corner, while the cholesterol is located
on top.

Each side of the triangle is an isothermal cut-line of the binary phase diagram of
the two species located on this side. One distinguishes on the Gibbs diagram a triple
coexistence zone (triangular shape) surrounded on its upper left side by a “bubble”
of binary fluid Ld-fluid Lo coexistence, ending at a critical plait point. On the lower
and right sides of the triple coexistence domains are two binary coexistence regions
between Ld and Lβ and between Lo and Lβ respectively. To establish the ternary
coexistence diagram, the GUV were observed by confocal fluorescence microscopy
with selective probes showing the fluid phase as green and the gel phase as red. The
boundary between domains depends on temperature.
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Figure 1.24 – Ternary mixture of lipids and cholesterol. GUV images reveal the upper and side
boundaries of Lα +Lo. Samples range from mostly Lα (green, A–C) to mostly Lβ
(red, G and H). Vesicles close to the top nearly horizontal boundary (D, E and G)
change abruptly to uniform (e.g., F) with a small addition of cholesterol (0.5 mol%
more cholesterol from panel G to F). GUVs were prepared by gentle hydration[28].

1.3.4 Phase transitions in membrane

Phase transition is an ubiquitous phenomenon which describes the sudden switching
between two states of organization, characterized by some kind of internal order: spin
orientation in magnetism, atomic positions in melting processes, lateral arrangement
of lipid headgroups and elongation of lipid chains in lipid bilayers. . . Phase transi-
tions belongs to two different classes, following Ehrenfest, either first order or second
order.

A first order transition is a discontinuous phenomenon, with coexistence of two
phases at constant temperature, and an associated latent heat due to a finite jump
in the specific entropy and enthalpy of these two phases. The heat capacity (second
derivative of the free energy) can be assimilated to a singular Dirac distribution.
Well known examples are the melting and boiling transitions of pure species.

A second order transition is a more continuous process with no latent heat and
a single, though strongly fluctuating, state throughout the system. The presence
of a critical point at the transition temperature is the hallmark of second order
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transitions. At the vicinity of the critical point, the calorific capacity scales as
C(T ) ≈ C0 + ∣Tc − T ∣−α with a critical exponent α < 1 (as the singularity in C(T )
remains integrable). Other system susceptibilities show similar divergences and sin-
gularities. The paramagnetic/ferromagnetic transition (Curie-Weiss temperature)
and the liquid-vapor critical point are well known examples.

In membranes, we can observe several phase transitions of DPPC between the low
temperature crystalline phase Lc and the liquid disordered phase Lα, schematically
depicted on figure (1.25). These transitions are easily put in evidence by means of
calorimetric measurements, as showed on figure (1.26), where we see first the small
peak of the pretransition between the tilted gel phase Lβ′ and the ripple phase Pβ′ ,
and then the large peak of the main transition between the ripple phase and the
fluid phase Lα. Not shown is the subtransition between the crystalline phase Lc and
the gel phase Lβ′ . This sequence of transitions is typical from PC headgroups.

Figure 1.25 – Schematic representation, according to T.Heimburg, of lipid bilayer phases at dif-
ferent temperatures: Lc crystalline phase, Lβ′ gel-phase (tilted phase),Pβ′ ripple
phase, Lα liquid disordered phase. Tp and Tm denote the pretransition and the
main transition temperatures respectively [29].

The picture is notably different when the membrane is a binary mixture, with
an enlargement of the calorimetric peak between the two main melting tempera-
tures. In ternary lipid mixtures, calorimetry alone cannot provide a determination
of the phase coexistence regions. Figure (1.27) shows a simulated lipid system with
domains which are good raft candidates.
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Figure 1.26 – Calorimetric peaks of the pretransition and the main transition [30].

Figure 1.27 – Simulation of a raft in the framework of the coarse-grained Martini model [31].

1.4 Experimental methods

In lipid science, there are several methods to investigate the membrane properties,
and we present below the principles and the validity domains of some of the most
useful ones.
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1.4.1 X-ray diffraction and neutron scattering methods

Scattering methods rely on the interaction between an incident wave and a sample to
determine its structure and dynamics. The scattered wave contains an elastic and an
inelastic contribution. The inelastic component probes the dynamical changes in the
sample, while the elastic part measures the static, equilibrium structural properties.
We restrict the discussion to the elastic scattering, which preserves the energy h̵ω
of the scattered wave, and gives access to spatial correlations in the sample.

X-ray and neutron scattering are two essential methods to determine the mem-
brane structure, and are often used together to refine the results.

In small angle X-ray scattering (SAXS), the variation of the wave vector is small
and reveal structural features of the order of 1 nm or more, i.e. the order of magni-
tude of the bilayer thickness. At the opposite, wide angle scattering (WAXS) probes
smaller length scales, but cannot be used on the highly disordered fluid membrane
structures. However WAXS is useful for studying low temperature gel or crystalline
phases, where hydrocarbon chain tails packing details can be resolved [32].

Small angle scattering can be performed on oriented lamellar phases or small
unilamellar vesicles (SUV). X-ray interact mainly with electrons, and probe the
electronic density profile (EDP) distribution. Neutrons interact with nuclei, which
are spatially less extended, and reveal a scattering length density (SLD) distribution.
Neutrons and X-rays are therefore complementary, as strong neutron scatterers and
strong X-ray scatterers are very distinct: X-ray interact strongly with heavy atomic
elements, while neutrons are strongly scattered by hydrogen nuclei. Neutrons offer
the possibility to match the bilayer-solvent contrast by means of selective deutera-
tion of the lipids. X-ray have a short penetration length and are used for surface
studies while neutrons penetrate the bulk, so that they are used also for volumic
investigations. Finally, X-ray beams are much more intense than neutrons beam,
resulting in different irradiation times and damages.

The outcome of a scattering experiment consists in the determination of the
structure factor F (R), by measuring the intensity I(R) ≈ ∣F (R)∣2 of the scattered
wave. The incident wave (with wave vector k⃗i) hits at the sample and is diffracted
as a new wave (wave vector k⃗s) in a direction forming an angle 2θ with the incident
direction, with a transfer momentum R⃗ = k⃗s − k⃗i (figure 1.28). The structure fac-
tor F (R) is the Fourier transform of the electronic density profile ρ(r⃗). Different
distributions ρ(r) can be tested, until agreement with the experimental ∣F (R)∣ is
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obtained.

ρ(r⃗) = ∫ F (R)e−ir⃗.R⃗ dR (1.3)

On figure (1.29), the electron density profile of a DMPC bilayer at a fixed tem-

Figure 1.28 – X-ray or neutron scattering by two points in a plane [19].

perature is shown. We notice the two main peaks associated with the phosphate
groups, a plateau for the double-chain methylenes on each side of the bilayer and
a central hole at the terminal methyls. The electron density profile in the gel (Lβ)
phase shows a pair of distinct secondary peaks.

Neutron scattering probes the so-called scattering length density profiles, which
depend on which nuclei isotopes are presents in the solvent and the bilayer. Com-
bining electron density profiles and scattering length density profiles allows for the
determination of the main structural informations: bilayer thickness and area per
lipid for instance.

Figure 1.29 – Electron density profiles of a DMPC membrane for different phases[33].

Finally, neutrons and X-rays can be used for reflectivity studies. In this set-up, a
beam is sent on a thin layer oriented on a flat surface, and the reflected beam gives



28 Chap. 1: Introduction

the structural information. The specular reflectivity corresponds to a reflection
angle equal to the incident angle (Descartes reflection) and probes the electron
density or the scattering length density in the direction normal to the surface, in
good agreement with small angle diffusion results. Off-specular diffusion gives access
to the out-of-plane fluctuations of the bilayer (roughness) which is linked with the
mechanical properties of the bilayer [34, 35].

1.4.2 Nuclear Magnetic Resonance (NMR)

NMR determines the chemical compositions and the molecular orientations by using
the dynamic properties of nucleus subject to a strong magnetic field. A nuclear
magnetic moment µ with a non-zero spin I put in a magnetic field B0 has (2I +
1) energy states. For instance, the nuclear spin of hydrogen is I = 1

2 , so that
the magnetic moment shows two orientations separated by a gap in energy ∆E,
proportional to the product of the gyromagnetic ratio γ and the magnetic field
B0. The nuclear magnetic resonance is obtained by applying an additional time-
dependent orthogonal magnetic field B1 which leads to transitions between these
two levels. Two identical nuclei in two different environment gives different peak
positions (chemical shifts). The NMR relaxation signal depending on the different
∆E is treated with a Fourier transform, and gives characteristic peaks relative to
each nucleus.

NMR studies of lipid bilayers belong to a class of solid state techniques because
lipids have very slow orientational dynamics. This downgrades the resolution of the
NMR spectra and makes the use of the technique very challenging. NMR can be
usefully applied to 31P nucleus naturally present in glycerophospholipids.

However, the most striking use of NMR concerns the deuterated lipid compounds,
for which a special phenomenon called deuterium quadrupolar splitting provides
very accurate information on the lipid ordering with respect to the magnetic field.
Deuterium, which has a nuclear spin 1, is sensitive to the relative orientation of the
chemical bond C-D with the applied field B0. This averaged orientation of the bond
C-D is encoded in an order parameter SCD, called NMR order parameter [36], and
similar to the order parameter of a nematic liquid crystal.

Figure (1.30) shows two NMR spectra of a cholesterol-DOPC-DPPC mixture.In
the first case, the spectrum was done with deuterated cholesterol-d1, and in the
second case with perdeuterated DPPC-d62. The mixture at 25○C has a phase sep-
aration, with two Lo and Ld phases, and a single phase above this temperature.
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Well oriented C-D bonds lead to wide NMR signals. The orientation is better
in the gel or liquid ordered phases than in the disordered fluid phases, so that
each phase has a clear spectroscopic signature. In the presence of coexistence,
and provided the domains are large enough, the spectra can be decomposed into
contributions proper to each participating phase. In the case of small domains, the
diffusional exchanges are so fast than the signatures of the two phases disappear
leading to a composite spectrum.

Veatch et al. [37] determined a phase diagram by means of NMR spectra, a few of
them being represented on figure (1.30). At a temperatures above 25℃, there is only
one phase and the deutered cholesterol presents a standard quadrupolar spectrum
with a weak signal due to the single deuterium label on the molecule (a). At a
temperature below 25℃ the phase separation temperature, cholesterol presents two
peaks since the existence of two phases because its different orientations in the two
phases(b). Above the transition temperature the methyl groups are well mixed in
the membrane, and all the groups share the same average environment, leading to
a superposition of about the same signal with a small splitting (c) while below 25℃
the middle methyl group peak (d) split due to the difference of environment between
the two phases.

a

b
d

c

Figure 1.30 – NMR spectra for 1:1 DOPC/DPPC + 30% Chol-d1 (A) and for 1:1 DOPC/DPPC-
d62 + 30% Chol (B) (adapted from[37]).

1.4.3 Fluorescence microscopy

Fluorescence techniques such as SPT (simple particle tracking), FRET (fluorescence
resonance energy transfer), FCS (fluorescence correlation spectroscopy), and FRAP
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(fluorescence recovery after photobleaching) are currently used to visualize lipid
domains and phase separations, to measure diffusion coefficients and fluctuations.
We give hereby a brief overview on fluorescence techniques, and point out their use
for the characterization of phase separations.

Many of these fluorescence methods use confocal microscopes, based on a very
small depth of field given by a pinhole which leads to a plane by plane scanning,
allowing for a 3D image reconstruction. Confocal microscopy provides a unique way
of visualizing domains in 3D.

Single particle tracking

SPT is based on the observation of a fluorescently labelled particles, such as proteins,
in a membrane to determine their diffusion behavior. Their trajectories provide
information on the interactions that drive the particle motion. This technique yields
properties lateral mobility and diffusion coefficients. For example figure(1.31) shows
the motion of charged nanoparticles on the cell surface, tracked by SPT, and gives
information on lipid headgroups-particles electrostatic interactions.

Figure 1.31 – Trajectories of three fluorescent-labeled nanoparticles, indicated in different colors
on a GUV surface[38].

FRET

The FRET phenomenon consists in a non-radiative energy transfer between two flu-
orophores, a donor and an acceptor, due to electromagnetic dipole-dipole coupling.
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In order to interact, it is necessary that the emission spectra of the donor overlaps
with the absorption spectra of the acceptor, and that the fluorophore separation
remains under a critical distance called Förster radius RF . Förster radii are all in
the range 1 to 10 nm.

Special fluorescently labelled lipids must be chemically prepared in order to tar-
get specifically one of the lipid phase. For instance, J.Silvius used the 7-nitrobenz-
2-oxa-1,3-diazol-4-yl (NBD)-labeled tetraacyl lipids as donor, and a rhodaminyl-
labelled acceptor [39]. When the donor transfers its energy to the acceptor, the
acceptor radiates according to its own emission spectrum, leading to a significant
spectroscopic change in the fluorescent signal (figure1.32). Roughly speaking, the
color of the secondary fluorescent emission changes, and is red-shifted.

Figure 1.32 – The donor (green) looses its energy in favor to the acceptor (red).

Figure 1.33 – FRET mechanism with one acceptor matched with two donors[39].

One can investigate lateral inhomogeneities in membranes by the FRET tech-
nique by using two donors D1 and D2 matched with the same acceptor A. The idea
is illustrated schematically on figure (1.33).

Two domains are represented in black (disordered phase) and in gray (ordered
phase). The acceptor A and the donnor D1 have a strong preference for the dis-
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ordered phase, while the donnor D2 has a clear preference for ordered phase. The
affinity of donors and acceptors for each phase depends on the chemical structure,
and must be carefully checked experimentally. In the situation A, donors and accep-
tors are spatially close and homogeneously mixed (figure 1.33(A)). Energy transfer
is efficient and the signal associated with the donnor is significantly reduced. In
the situation B, donors and acceptors are spatially separated, except at the vicin-
ity of the boundary between domains (figure 1.33(B)), and the energy transfer is
inefficient. The fluorescence efficiency of the two samples can be measured, and
the reduction of the donor fluorescence efficiency (quenching) is interpreted as an
evidence of domains of nanometric size.

Fluorescence labelling of domains

Fluorescence is often used as an evidence for phase separation phenomena in giant
vesicles. In the case of ternary mixtures of lipids and cholesterol, it is possible
to discriminate liquid ordered phases and liquid disordered phases with different
probes having their own color and phase preference. It leads to colored domains at
the vesicle surface, and allows for identification of the domain boundaries between
binary and ternary coexistences in the Gibbs diagram (figure 1.24). We can see on
figure (1.34) a vesicle composed of DOPC, sphingomyeline and cholesterol subject to
phase separation, labelled by two probes, one of them preferring the ordered liquid
phase and the other the disordered liquid phase. Such images of domains were seen
for the first time by Bagatolli et al. [40]. Since then, it has become a method of
choice for studying domain coexistence and lateral separations in giant vesicles.

Figure 1.34 – Labelling phase separation on a vesicle surface [41].
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1.4.4 Differential Scanning Calorimetry (DSC)

We show on figure (1.35) the principle of a DSC apparatus which measures the heat
capacity with respect to the temperature, and allows to determine the enthalpy
jump at the transition. We can notice the reference-cell which contains water or
buffer, the cell which contains the sample, and the heating and temperature control
system. The apparatus scans in temperature the two cells, and always keeps the
temperature difference between the two cells equal to zero. In order to have the
same temperature in the two cells, the system heats the sample-cell to compensate
for the heat absorbed or released upon melting, and finally plots this supplied heat
as a function of temperature (figure 1.21). The area under the thermal capacity
peak is the enthalpy of transition at melting. DSC is an universal technique for
detecting structural changes induced by temperature variations. This is because all
phase transitions are associated to specific heat anomalies.

Figure 1.35 – DSC apparatus: S, sample cell; R, reference cell; H, heating coil; IC, insulating
casing; TS , temperature sensor; TS and TR are the currently measured temperatures
in sample-and reference cell and; (PR; left) and (TS=PS ; right) are the heat output
for the reference and sample cell [42].
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1.5 Theoretical study of binary and ternary mix-
tures: the state of the art

1.5.1 Transition liquid/gel for one lipid

The first theoretical investigations on membrane behavior started with Whittigton
[43] and Chapman [44] with Monte-Carlo simulations on the hard-core repulsion
effects and carbon chain packing in different isomeric states, for which they found
that chains can rotate in the case of low molecular density. Afterwards, J.F Nagle
[45] in 1973 proposed a statistical model of the lipid membrane, assuming that the
excluded volume interactions and conformational change of lipids (kinks) are the
main driving factors of the melting transition. He built a microscopic model taking
in account the details of bond/bond orientations. He considered long chains and
repulsive interactions between molecules located on a lattice. These assumptions
were pointing to a phase transition.

S.Marcelja in 1974 [46] considered the attractive interaction between chains,
with a phenomenological orientation potential inspired by nematic liquid crystals
concepts. He showed that although the transition is of first order, it is close to a
critical point and could be a second order transition. The same year D. Marsh [47]
proposed an explicit statistical calculation of the different rotation isomers along the
carbon chains, and calculated enthalpies and entropies in the fluid state. He could
also estimate the enthalpy change at the transition.

In 1975, H.L.Scott [48] and R.E.Jacobs et al. [49] estimated the partition function
of the excited states of the molecular chain in a molecular field representing the Van
Der Waals chain-chain, headgroup dipolar attractive forces and the sterical repulsion
forces.

In 1978, S. Doniach [50] took into account that the transition is close a critical
point [46] and mapped the problem onto a 2d Ising model under low magnetic field.
By doing so, he neglected the positional degrees of freedom at the transition (0.5
kBT per molecule) compared with the contribution of intrachain melting entropy
(14 kBT per molecule). Secondly, he lumped together all the excited states into a
single representative state whitout the microscopic molecular details of the chain,
using Ising variables with two order/disorder states. This amounts to considering
that at the transition, the chains move from a rigid and long state to a kinked and
short state. At the same time, Caille et al. [51] introduced a two states Ising-like
model including Van der Waals interactions.
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In 1988, J.H.Ipsen and O.G.Mouritsen [20] proposed a thermodynamical model,
based on a regular solution approach, and where the interaction parameters between
species with same headgroups but different tail lengths are inferred from mechanical
stresses and hydrophobic mismatch considerations. In particular bilayer thickness
variations are found to depend on the membrane stretching coefficient. They ob-
tained very accurate binary phase diagrams with only one adjustable parameter, and
the extension to mixtures of different headgroups were quite satisfactory as well.

In 1989, R.Goldstein and S.Leibler [52] introduced a Landau model with an order
parameter ψ = δ−δo

δo
related to the membrane thickness, δo standing for the equilib-

rium thickness of the membrane in its liquid phase, and δ being the actual membrane
thickness. They obtain a phase diagram for multilamellar meso-phase structures,
accounting for hydration effects and direct interactions between membranes.

1.5.2 Binary mixture of lipids

A.G.Lee, in 1977 and 1978 [53, 54] was the first to calculate diagrams of binary lipids
mixtures. These were obtained with a theory of regular solutions, i.e. considering
the entropy of mixing of an ideal solution plus an adjustable parameter for describing
the non-ideality of the mixture. Shortly after, Simon et al. [55] showed that the
regular solution model is not satisfactory for lipids membranes, based on a partition
coefficient argument.

In 1980, R.G.Priest [56] proposed a Landau [57] phenomenological model with
an order parameter S related to the fraction of gauche bonds in the aliphatic chain
tails. Thanks to a number of adjustable parameters, he fitted binary diagrams for
the PC sequence of lipids. I.Sugar and G.Monticelli [58], in 1983, extended the
Priest model to lipids with different headgroups and obtain several other binary
diagrams.

1.5.3 Binary mixture of lipids with cholesterol

The experimental approach of M.R.Vist in 1984 [59] on mixtures of cholesterol and
lipids, using deuterium NMR spectroscopy, improved by M.R.Vist and J.H.Davis
in 1990 [60] gave the binary diagram for a cholesterol/DPPC mixture (figure 1.36).
Their diagram clearly displays a fluid-fluid coexistence above the DPPC melting
temperature.

Based on such results, H.J.Ipsen et al. introduced a statistical model for binary
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Figure 1.36 – Partial phase diagram for cholesterol/DPPC mixtures.

cholesterol-lipid mixtures which was able to reproduce the main experimental trend
[61]. This very important study opened a new era in lipid understanding because
they experimentally brought to light the ordered liquid phase Lo, or Lβ, induced by
specific cholesterol/lipid interactions.

The initial observation of H.J.Ipsen et al. was that the lipid main transition
consists in a simultaneous elongation of the chain tails and ordering of the lipid cen-
ter of mass, but that these two phenomena could under some specific circumstances
be dissociated. In the presence of two distinct transitions, an intermediate phase,
elongated along the bilayer normal direction, but still disordered in the lateral di-
rections could exist, which was named liquid ordered. Cholesterol was then seen as
the element provoking this dissociation.

Their model is a lattice gas with two order parameters, one for the tails order (or-
dered or disordered liquid), and one for the relative positional order, modeled with
a 10 states Potts variable (symmetric liquid phase or symmetry broken solid phase)
and a number of coupling parameters to fit the data. They considered that choles-
terol interacts favorably with the liquid phase, but disturbs ordered solid states (the
gel phase). Note that in 1995, T.MacMullen and R.McElhaney [62] proposed a new
DPPC/Cholesterol binary diagram using DSC (figure1.37), in partial disagreement
with the previous work of Vist and Davis [60].

In 1999 Nielsen et al. performed Monte Carlo simulations of binary mixtures
of phospholipid and cholesterol, and showed that the insertion of cholesterol in
membranes causes a decoupling effect between the two types of order present in
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the gel phase, which are the lipid-chain crystalline packing (translational degrees of
freedom) and lipid-chain conformational ordering (internal degrees of freedom)[63].
Finally, in 1999 Sugar et al. simulated with Monte Carlo a two components lattice
model, and reproduced heat capacity curves, and conforted the first order nature of
the transition [64].

Figure 1.37 – Phase diagram for cholesterol/DPPC mixtures.

Following the works of Sankaram and Thompson in 1991 [65] on lipids-cholesterol
interactions (NMR and calorimetry), in which they showed that the membrane thick-
ness increases in the presence of large amounts of cholesterol , Komura et al. in 2004
presented a thermodynamic mean field theory [66]. They used an order parameter
related to the membrane thickness analogue to the one originally introduced by
Goldstein and Leibler [52], in addition to a special interaction term for the choles-
terol, interfering with chain melting and assimilable to an external field.

They obtained diagrams for ternary mixtures of saturated and unsaturated lipids
and for binary mixtures of lipid and cholesterol. They distinguished the ordered
liquid phase Lo and the disordered liquid phase Ld based on the value taken by the
order parameter ψ, close to zero in the Ld phase and finite in the Lβ phase.
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1.5.4 Ternary mixture of lipids and cholesterol

In the early 2000s, Huang, used Monte Carlo simulations to investigate cholesterol
super-lattices (highly regular lateral distributions) and showed that this structure
necessites multiples interactions and not only pairwise interactions [67] . Moreover,
he found that cholesterol super-lattices reveal favorable mixing between lipid and
cholesterol but an unfavorable chain multibody interaction which increases with the
number of cholesterol contacts. This result is called “umbrella effect” and consists
for polar phospholipid headgroups in covering the non-polar cholesterol molecules
to shield them from exposure to water, and compensating for the sharp decrease of
acyl chain conformational entropy due to the proximity of cholesterol.

Recently, several experimental results on ternary mixtures of lipids and choles-
terol were published, such as DOPC/DPPC/Cholesterol by Veatch et al.[37], [68]
using NMR and fluorescence microscopy, and PSM/POPC/Cholesterol by Almeida
et al. [69] using fluorescence techniques.

Following this results, Komura et al. [70] built Gibbs ternary diagram with three
lipids whithout cholesterol in extending the model they used for binary diagram cited
above [66].

In 2008, G.Putzel and M.Schick [71] used a phenomenological model with an
order parameter δ representing the saturated chain order equal to 0 for unsatu-
rated pur lipid, equal to 1 for saturated pur lipid and equal to 2 for the gel, and
parameters to fit the experimental data. They considered three interactions, first
the saturated/saturated lipid, secondly the saturated/unsaturated lipid because of
their poor mutual packing, and finally the saturated/cholesterol interaction. More
recently in 2011, de Joannis et al. [72] showed with the help of molecular dynamic
simulations that the affinity of DOPC and DPPC with cholesterol depends on the
tilting distribution of cholesterol, confirming that cholesterol has a condensing effect.

1.6 Wetting

1.6.1 Wetting and lipid domain formation

We have reviewed in the sections above how, under certain conditions, two distinct
liquid phases can form in a ternary mixture of lipids containing cholesterol, leading
to phase coexistence phenomena such as that showed in the figure (1.38) where dif-
ferent coexisting Lo and Ld domains can be seen. Whether or not similar domains



1.6 Wetting 39

can form at the nano-scale has been debated in the literature following publication
[73, 74] of the so called raft hypothesis. Lipid rafts, supposedly small lipid domains
enriched in cholesterol and saturated lipids such as sphingomyelin would, under this
hypothesis, play a crucial role for cell metabolism, contributing for instance to the
recruitment of proteins and other biomolecules that initiate cell signalling and other
membrane-supported functions. It is thus of prime interest to understand how a
lipid mixture reacts to the presence of membrane inclusions such as proteins, the
different interactions between the inclusion and the lipids being potentially a factor
for a local enrichment of the protein vicinity by certain species of lipids. In three
dimensions, the perturbations of local composition changes of liquid mixtures in the
presence of interfaces have been studied in the context of wetting. In this paragraph
we introduce the reader to wetting and recall some of the theoretical concepts devel-
oped to understand wetting phenomena. The concepts will be further developed in
Chapter 4 to study two-dimensional wetting phenomena in ternary lipid mixtures.

Figure 1.38 – Two-photon microscopy images of GUVs with Lo and Ld phase coexistence [75].

Wetting phenomena is related to the very general issue of spreading of a liquid on
a solid or a liquid surface or to the adhesion between two solids such as the adhe-
sion that explains the peculiar properties of the gecko when it walks on a vertical
wall (fig 1.39). A water droplet deposited on a substrate can either totally or par-
tially spread or remain just as a droplet . Partial or total spreading of the droplet is
named respectively partial-wetting or complete-wetting. The same phenomenon can
be seen in a capillary filled with a liquid, where we can observe that the liquid climbs
in the tube, the raising level depending on the interactions between the liquid, the
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air, and the glass (fig 1.39). When a droplet is deposited on a substrate (fig 1.40),

Figure 1.39 – Left:A geko on a sheet; Center:Partial wetting of water droplet on a plant;
Right:Water in a capillary.

wetting results from the balance of its weight and the three line tensions γ, γSL, and
γSG acting at the triple line. There is a competition between two opposite aspects.
On one hand, the affinity between the droplet and the substrate which tends to
spread the droplet by reducing its energy and on the other hand the extension of
the liquid/gas interface which requests a surplus of energy.

γ

γ
SL

γ
SG

Gas

Liquid

Substrate

(a) Partial wetting.

Substrate

Liquid

Gas

(b) Complete wetting.

Figure 1.40 – Water droplet on a substrate.

When one considers off-coexistence systems, such as a stable phase of a binary mix-
ture of liquids where we insert a inclusion (for instance a colloidal particle) with
curvature radius R, the interactions between the colloidal particle and the liquid
might result into preferential wetting of the colloidal surface by one of the liquids.
Under certain conditions, one can observe strong changes in the nature of the liq-
uid layer that wets the colloidal surface as a function of temperature, a phenomena
called a wetting transition. Such transition is characterised by the enrichment and
growth of the interfacial layer domain as the temperature changes. In membranes
prone to liquid-order liquid-disorder coexistence, an inclusion inserted in a homo-
geneous phase close to the coexistence boundary – see fig 1.41) – might induce the
formation of a two-dimensional wetting layer around the inclusion. The changes of
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composition and thickness ξ of the wetting layer with temperature or with inclusion
radius R can be studying with the framework of wetting theory.

Stable  Phase

Unstable Phase

R

ζ

A

B

Figure 1.41 – Pre-wetting of width ξ surround a circular inclusion in a stable phase (corresponding
point A in the diagram) of radius R by an unstable phase (corresponding point B
in the gibbs diagram).

1.6.2 Wetting theory for a binary system at coexistence

The wetting theory for a binary system was first developed by J.W.Cahn [76] ,
here we follow the arguments and the notation of a review on wetting published
D.Bonn and D.Ross [77]. We first briefly remind Cahn’s approach. We consider
two coexisting phases φA and φB in contact with a one dimension-wall, such as a
water droplet and its vapour in contact with a substrate (fig 1.40). We assume that
the phase φA has some chemical affinity with the substrate that leads to spreading
of the phase φA on the substrate reducing the total energy of the system. At the
same time, spreading increases the interface between the two phases φA and φB and
costs a surplus of energy for the system. The droplet can either completely wet the
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substrate if the gain of the energy of wetting is higher that the loss of the energy of
interface or partially wet in the opposite case.
In order to model the binary system ( liquid and vapour ), we use an energy density
functional that measures the thermodynamic potential V(φ) at each point of the
profile as well as the penalty for concentration profile distortions by square gradient
terms. V(φ) is the free energy of the binary system as a double well function. Surface
field contributions ES account for the specific interactions between the liquid and
the substrate (z = 0 is the position of the wall):

ES(φS) + ∫
∞

0
[V (φ) + α2 (dφ(z)

dz )
2

] dz (1.4)

The surface field energy represents both the wetting interaction between the phase
φA and the substrate (lowing the total energy) and the interaction between the two
phases φA and φB (increasing the total energy) denoted by: ES = hφ2

S − γφS.
We minimize this functional (AnnexB) of energy with respect to φ and φs and obtain
the associated Euler-Lagrange differential equations with corresponding boundary
conditions (α = 1):

dV
dφ = αd2φ

dz2

dφS
dz = 2hφS − γ (1.5)

By multiplying the first equation by dφ/dz one gets:

V = 1
2(dφ

dz )
2 (1.6)

Finally we have:

dφ
dz = ±

√
2V

dφS
dz = 2hφS − γ (1.7)

We assume that φA > φB and then we choose the solution dφ/dz = −
√

2V because
φ(z) decreases from φ(z = 0) to φ(z = ∞) = φB. We now recall the Cahn method
[77] for determining the solutions for the profile and its thermodynamic stability.
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For that, we plotted the two equations( 1.7) on fig( 1.42a) on the axis (φ,−dφ/dz).
We can observe three solutions φ1, φ2 and φ3 which correspond to the intersections
between the two curves. Cahn proved that the thermodynamic stability of the solu-
tions φ1, and φ3 is determined by the ratio of the area B to the area C; the solution
φ2 being always unstable . If the ratio is greater than 1, the solution φ1 is more
stable (partial wetting) than the solution φ3. In the opposite case, when the ratio
is shorter than 1, the solution φ3 (complete wetting) is more stable than φ1.

-
dΦ

dz

Φ
ΦB Φ1 Φ2ΦAΦ3

A
B

C

(a) T < TW

-
dΦ

dz

Φ
ΦB Φ1 Φ2 ΦA Φ3

A

B

C

(b) T ≈ TW

d�

dz

A

B

C

-

�
B

�
A

�
3

�
2

�
1

�

(c) T > TW

Figure 1.42 – Cahn Diagrams.

We also show on the diagrams( 1.42) how those area ratios as modified as the tem-
perature changes, due to the modification of the free energy V. For a temperature
below the wetting temperature (a), the system has a partial wetting and the solution
φ1 is a decreasing exponential function without any swelling of the φA phase near
the wall; on the other side for a temperature above the wetting temperature (c), the
system has a complete wetting with a macroscopic swelling of the φA phase near the
wall which is characterised by a swelling length ξ. We plotted on the figure (1.43)
the two profiles φ1 and φ3 which are respectively partial wetting and complete wet-
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ting solutions for which one can see the swelling of the phase φA.

Z

Φ

Φ3

ΦA

Φ1

ΦB

Figure 1.43 – Partial wetting in green and complete wetting in red.

Finally, we show on figure( 1.44) the binodal coexistence curve of a binary mixture
and the transition wetting temperature. Below this temperature the system displays
partial wetting while above the system undergoes a wetting transition which leads
to a complete wetting.

T

TC

TW

Φ

Φ1 Φ2

Figure 1.44 – Binary phase diagram with the wetting transition temperature.

1.6.3 Wetting at off-coexistence

In this section we study the effect of exposing an off-coexistence binary mixture to
the contact with an interface. The mixture composition is represented by a point
A which is at a short distance from the coexistence line at a temperature above the
wetting transition temperature as showed in figure ( 1.45).
We plotted the energy profile on the figure ( 1.46) for this off-coexistence system in
which we can observe that the point A is a minimum of the curve (stable phase) but
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Figure 1.45 – Binary phase diagram with the pre-wetting horn. A is a point in the stable phase
inside the horn which gives pre-wetting in off-coexistence. B is a point in the stable
phase outside the horn which doesn’t give pre-wetting.

the other unstable minimum C is located at a higher value, because it is no longer
a coexistence point; the profile keep its double well topology.
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ф

Figure 1.46 – Energy profile for an off-coexistence system; in red the profil for A near from the
coexistence line; in green the profil for A far from the coexistence line; in orange
disappearing from the second well.

It can be shown that as C goes up (and becomes C’) as high as A is distant from the
coexistence line. When the point A exceeds a certain distant from the coexistence
line, the point C disappears and the profil is no longer a two wells profil. Henceforth
we have choosen a point A in a such manner that the energy profile conserves two
wells, in order to have a binary system. In the case that the point A is not so far
from the coexistence line and keeps a double wells energy profil, the system could
patially or completely wet somewhere near the C point under the same conditions
described in the previous section with the Cahn diagram represented in figure( 1.47).
This wetting is called pre-wetting, because the off-coexistence nature of the system
and the green dashed line in the figure( 1.45) called pre-wetting horn fixes the pre-
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wetting limit.
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Figure 1.47 – Cahn diagram for a off-coexistence binary system.



Chapter 2

Thermodynamic model

2.1 Presentation

In the Introduction, we reviewed the different statistical and thermodynamical ap-
proaches used in previous works, from the early 1970s till very recently, to deter-
mine the behavior of mixtures of phospholipids with cholesterol. In this chapter, we
present a theoretical model based on a mean field treatment of an Ising-like model
with an internal order parameter. Our purpose is to build a simple and predictive
model starting from the thermodynamic data of each species.

First we build the model for the lipid/lipid and lipid/cholesterol binaries, by in-
troducing an order parameter relative to the specific phospholipid tail ordering in the
liquid and gel phases, with an additional interaction between this order parameter
and cholesterol. Secondly we present the results obtained for binary mixtures such as
the phase diagram, the heat capacity curve and a comparison with experimental re-
sults. Finally we extend this study to ternary mixtures of saturated and unsaturated
lipids and cholesterol, leading to a Gibbs diagram at a fixed temperature as well as
its temperature evolution, in the case of a mixture DOPC/DPPC/Cholesterol.

2.2 Theory of regular solutions

The theory of regular solutions describes mixtures by considering two terms, one for
the ideal entropy of mixing contribution, the other for a quadratic interaction term
between inequivalent species.

47
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The mixing component of the free-energy Greg(x) of a binary mixture is:

β
Greg

N
(x) = g(x) = x ln(x) + (1 − x) ln(1 − x) + χx(1 − x) (2.1)

with x the molar fraction, N the total number of molecules, β = 1/kT and χ the
interaction parameter, which traduces the differences of shape and chemical affinity
between the two species.

This expression works well for mixtures composed of similar components, which
can be mutually substituted for without changing too much their statistical molec-
ular arrangements. The main feature of this approach is the existence of a critical
value χ = 2 for the interaction parameter, above which the binary mixture under-
goes a phase separation known as spinodal decomposition. This arises because the
function g(x) ceases to be a globally convex function of x, as it is clear from its
second derivative g′′(x) = 2χ − 1/[x(1 − x)].

Flory and Huggins realized that the theory of regular solutions was not describing
satisfactorily a class of mixtures called polymer melts. These systems are charac-
terized by macromolecules with sometimes very dissimilar molecular masses, and a
strong entropic contribution of their internal conformational degrees of freedom [78].
They proposed a new expression for these melts, originally derived from a mean-field
lattice model of the polymer chains. The results can be expressed in terms of the
volume fraction φ.

β
GFH(φ)

N
= φ
a

ln(φ) + (1 − φ)
b

ln(1 − φ) + χφ(1 − φ) (2.2)

with a and b the dimensionless molecular masses of each component. In the next
chapter, we will make use this model in an attempt to account for the variation in
area per molecule at the transition.

The theory of regular solutions cannot account for differences related to the
internal order of the lipid chains. As the driving force behind lipid lateral separations
comes primarily from these effects, the only way to describe binary lipid mixtures
would require an ad-hoc behavior of χ and would not be predictive. For this reason
we need something different for incorporating the order parameter into the picture.
Residual interactions between different species, however, will be accounted for by
quadratic terms as in eq. (2.2).

2.3 Mean field model for lipid/lipid interaction

This section introduces the Doniach order parameter m.
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We assume that each phospholipid tail can adopt two states, called gel in the
ordered, low temperature state and liquid in the disordered, high temperature state.
The two phospholipid species, labelled with an index r = 1,2, are characterized by
their gel/liquid main transition temperature TMr , and their entropy jump at the
transition ∆Sr, in the pure component limit. The variation ∆Sr is linked to the
enthalpy change ∆Hr by ∆Hr = TMr∆Sr as usual in first order transitions.

We can expand the free-energy difference between the gel and fluid phases
at the vicinity of the main transition temperature. The result reads Gl − Gg =
(∆S)r(T −TMr), given that these free-energies are, by definition, equal at the tran-
sition temperature. This expansion is consistent with a stable liquid state for T > TM
and a stable gel state for T < TM .

We place all the molecules on a square lattice with Nt sites, and assign to each
site i an occupancy variable Ci equal to 1 or 2 depending on the chemical nature of
the species occupying the state (Potts variables), and an internal state variable Qi

arbitrarily set to 1 for the liquid state, and to -1 for the gel state (Ising variable).
We consider that the area per site in the lattice is equal to a2, so that the total area
of the system is given by A = Nt ⋅a2. The variable Qi is similar to the spin variables
introduced by Doniach. A spin hamiltonian follows:

βH =∑
i

[ − h(1)δci,1Qi − h(2)δci,2Qi] − ∑
(i,j)

JQiQj (2.3)

h(r) is a dimensionless number vanishing linearly with temperature near the melting
transition TMr of species r. It acts like a “switch”, favoring the liquid phase Qi > 0
for T > TMr , and the gel phase Qi < 0 for T < TMr . Its expression reads:

h(r) = (∆S)r
k

T − TMr

2TMr

, (2.4)

with k the Boltzmann constant. Within the Ising model analogy, h(r) is the magnetic
induction. J is an interaction parameter which tend to propagate spatially the
internal tail order, i.e. the ferromagnetic coupling.

A mean-field expression associated with the above hamiltonian can be derived
by rewriting the statistical variables as a sum of a non-fluctuating and a fluctuating
part: Qi = m + δQi and δCi,r = φr + δφi,r, r = 1,2. Denoting with brackets ⟨⋅⟩ the
statistical average over Qi,Ci, one has by construction m = ⟨Qi⟩ the order parameter
and φr = ⟨δCi,r⟩ the surface fraction. As δCi,1+ δCi,2 = 1, the relation φ1+φ2 = 1 holds
automatically.

The mean-field hamiltonian is obtained by neglecting the quadratic fluctuation
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terms δQiδφr,i in eq. (2.3), leading to

βHMF = Nt ⋅ a2[h(1)φ1m + h(2)φ2m + zJm
2

2 ] +∑
i

[ − h(1)φ1 − h(2)φ2 − zJm]δQi

+∑
i

[ − h(1)mδCi,1 − h(2)mδCi,2] (2.5)

Here z is the coordination number of the lattice (number of neighbors of a given
site), i.e. z = 4 for a plane square lattice. The partition sum over the statistical
variables δCi,r, Qi can be carried out exactly. The free-energy can be expressed a
sum of the averaged hamiltonian, expressed in terms of m and φi, and an entropic
contribution −TS.

The averaged mean-field hamiltonian reads:

β⟨HMF ⟩ = −Nt ⋅ [h(1)φ1m + h(2)(1 − φ1)m + 2Jm2] (2.6)

where Nt is the total number of sites. The canonical entropy S is given by a sum
over all microstates probabilities pu.

S = −k∑
u

pu ln(pu) (2.7)

In the mean field theory, one consider each spin with its own probability. One has
Qi = 1 with probability (1+m)/2, Qi = −1 with probability (1−m)/2, δCi,1 = 1 with
probability φ1 and δCi,1 = 0 with probability 1 − φ1. Therefore,

−TS = Nt ⋅ kT[φ1 ln(φ1) + (1 − φ1) ln(1 − φ1)

+(1 +m
2 ) ln(1 +m

2 ) + (1 −m
2 ) ln(1 −m

2 )] (2.8)

Adding both terms, one obtains the free-energy

βG = β⟨HMF ⟩ +∑
u

pu ln(pu) (2.9)

Finally the total free energy of the lipid/lipid mixture a2βGll/A is given by:

a2βGll

A = −h(1)φ1m − h(2)(1 − φ1)m − 2Jm2 + φ1 ln(φ1) + (1 − φ1) ln(1 − φ1)

+(1 +m
2 ) ln(1 +m

2 ) + (1 −m
2 ) ln(1 −m

2 ) (2.10)
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with A/a2 = Nt, a2 the surface area per molecule.

It may be noted that our lipid/lipid free energy term is closed from a version of
the Blume-Emery-Griffiths model (1970’s) which was developped by Lajzerowicz et
al. [79].

In the following we note: Gll(T,φ1,m) = βa2Gll/A, the free energy density per
unit area. We observe that all the references to the square lattice have been re-
moved, and that expression (2.10) is meaningful in terms of continuous, off-lattice
description of the system.

We first consider binary mixtures and set φ1 = φ to simplify the notation. The
order parameter m is not directly controllable. As the internal state is correlated
with various structural properties (membrane thickness, area per lipid), the order
parameter m is indirectly coupled to external fields, such as the membrane tension
or the isotropic pressure. Provided that these external fields remain low, one can
consider that m is unconstrained. If we integrate the Boltzmann distribution over
all the values of m, one finds that, in the thermodynamic limit, the integral is
dominated by a saddle-point value m∗, minimum of Gll(T,φ,m) with respect to m.

∫
m=1

m=−1
e−βGll(T,φ,m) dm ≃ e−βGll(T,φ,m∗) (2.11)

The value m∗ is determined by:
∂Gll
∂m

= 0 = −h(1)φ − h(2)(1 − φ) − 4Jm∗ + 1
2 ln(1 +m∗

1 −m∗) (2.12)

It results that the total free-energy depends on the temperature T and the surface
fraction φ and we call gll(T,φ) this free-energy function. The minimum m∗becomes
implicitly a function of φ, so that the free-energy Gll(T,φ,m) reduces to a function
of T , φ only. gll corresponds to the projection of the free-energy surface Gll(T,φ,m)
onto a direction perpendicular to the m axis, as shown on figure (2.1). Depending
on the value of J , the shape of gll(T,φ) may display a double wells, with cusps
resulting in a swallow tail topology as depicted on the yellow curve (2.1). In fact
φ(m∗) is given by equation (2.12) and as a consequence, one must study φ(m∗) in
details to understand the behavior of the system and find the best value of J .

Spinodal stability requires that the free-energy surface G(T,φ,m) is locally con-
vex, or in other words, the Hessian, matrix of the second derivatives of the free-
energy surface,

HG =

⎛
⎜⎜⎜⎜⎜
⎝

∂2G
∂φ2

∂2G
∂φ∂m

∂2G
∂φ∂m

∂2G
∂m2

⎞
⎟⎟⎟⎟⎟
⎠

(2.13)
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�(T,�,m*(�))
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Figure 2.1 – φ(m∗) in red, G(φ,m∗(φ)) in blue and g(φ) in yellow. In this calculation we put
these following values: TM1 = 1, TM2 = 2, T = 1.5, (∆S)1/k = (∆S)2/k = 1, J = 0.3

must be a positive definite matrix. A breakdown of this condition means that
the system free-energy can be lowered by splitting the system into two or more
components with distinct (φ,m) values. As in most regions the criterion is satisfied,
it is possible to locate the boundary between stable and unstable region by solving

det(HG) = 0. (2.14)

This defines the spinodal line.

Setting α = h(1) − h(2), we find that the spinodal line obey the equation (cf
appendix A)

φ(1 − φ) = 1 − 4J(1 −m∗2)
α2(1 −m∗2) (2.15)

We now discuss the trajectory φ(m) compared with the location of the thermody-
namic stability region (spinodal line) that has been derived above. In the follow-
ing discussion, we take the following numerical values TM1 = 1, TM2 = 2, T = 1.5,
(∆S)1/k = (∆S)2/k = 1.

The spinodal region appears when the coupling constant value reaches Jcri. =
0.2422, and presents a contact point atm∗ = 0 with φ(m∗), as showed on figure (2.2).
Jcri. is obtained by replacing m∗ = 0 in the equation (2.12). One has φcri. = h(2)

h(2)−h(1) ,
which is inserted in the spinodal equation (2.15).

When J reaches a value Jcusp = 0.25, φ(m∗) becomes non-monotonous and
presents two extrema. When m sweeps the interval [−1,1], φ increases up to the
point A, decreases down to B, and increases again as shown on figure (2.3). The
function m∗(φ) becomes multivalued.
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m

ΦHmL

Figure 2.2 – φ(m∗) representation in red with the spinodal in blue dashed line for J = 0.2422. The
two curves are in contact at m∗ = 0

The equation ∂φ
∂m∗ = 0 reads J = 1

4(1−m∗2) > 1/4. Therefore, J must be greater
than Jcusp = 1/4 for the equation to have a solution.

In order to obtain a two wells shape of energy it is necessary that J > Jcusp
although that all the points inside the spinodal which are between M and N rep-
resent unstable thermodynamic states as A and B the two extrema. The positions
of the extrema relative to the spinodal endpoints are determined by replacing the
condition ∂φ(m∗)

∂m∗ = 0 in the Hessian and find it is negative as an unstable state.

�(m)

m

A

B

M

N

Figure 2.3 – φ(m∗) representation in red, with the spinodal in blue dashed line for J = 0.25.

We plot the corresponding free-energy for J = 0.25 on the figure (2.4) and mark
some important points as A, B the extrema of φ(m∗), and M, N the spinodal
endpoints. The result is a swallow-tail shape with two intersecting branches which
are thermodynamically stable up to M for the branch 1 and from N for the branch
2 .
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Figure 2.4 – Representation of g(φ) for J=0.25.

We notice for example on this picture that the point C is stable with respect
to φ as the point D below, although it has an other value of m which confers it a
meta-stable state. From an external point of view, C and D are not distinguish-
able, because they share the same value of φ but with a different value of the order
parameter m. These two states are therefore not identical, one representing a pre-
dominantly fluid state, the other a predominantly gel state.

2.4 Determination of (∆S)r for a lipid

The single component φ1 = 1 free-energy reads:

Gll(T,φ,m∗) = −h(r)m∗ − 2Jm∗2 + (1 +m∗

2 ) ln(1 +m∗

2 ) + (1 −m∗

2 ) ln(1 −m∗

2 )

(2.16)
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Thermodynamic data tables, established after DSC measurements, list the melting
temperature TM and the enthalpy jump (∆H) at the transition. A classic thermo-
dynamic identity relates the Gibbs free-energy G and the enthalpy H:

∆H = ∂(β∆G)
∂β

(2.17)

with β = 1/(kT ). Using the expression (2.16), we obtain:

−∂h
(r)

∂β
∆m = −∂h

(r)

∂T

∂T

∂β
∆m = TMr(∆S)r

2 ∆m = (∆H)r (2.18)

The optimal values m∗ have the same magnitude but opposed signs. At the coex-
istence temperature h = 0, the discontinuity in m is simply ∆m = 2m∗. From the
relation (2.12) reduced to one component, one finds that m∗ obey

4Jm∗ = 1
2 ln(1 +m∗

1 −m∗) , (2.19)

a transcendental equation which can be solved numerically, as represented on fig-
ure (2.5).

Δm

m*

0.5ln(1+m*/1-m*)

4Jm*

Figure 2.5 – Geometric representation of the transcendent equation 2.19.

In fact we find that ∆m is generally of the order of 1.8 and close to 2. In the
following we simply write:

(∆H)r ≈ TMr(∆S)r (2.20)
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2.5 Binary phospholipid phase diagram

2.5.1 Maxwell construction

If the two lipids are similar, the molar fractions xA, xB and the surface fractions
φA, φB are identical. The molar fractions are xA=NA/(NA+NB) and xB = NB/(NA+
NB), and φA = xA, φB = xB. The reason for using surface fractions here is that it
is consistent with the Flory-Huggins expression. When the area per lipid differs
between species, one looses the equivalence between x and φ.

We so far obtained an expression for the free-energy of homogeneous binary
systems. Looking at the free-energy curve shown on figure (2.7), one realizes that
at temperature low enough, the curve looses its convexity. The total free-energy
can therefore be lowered by separating the system into two coexisting phases with
different composition , see figure (2.6). The Maxwell constructions allows to find out
the optimal composition of the two coexisting phases which appear in the instability
region, as illustrated on figure (2.7).

Let NA,1, NB,1, NA,2, NB,2 the number of A and B molecules respectively in
phase 1 and phase 2, and the associated surface fractions φA,1 = NA,1/(NA,1 +NB,1),
φA,2 = NA,2/(NA,2+NB,2). Let η be the ratio between the surface occupied by phase 1
and the total surface. Mass and area conservation of A (and B) molecules implies
φA = ηφA,1 + (1 − η)φA,2. On the other hand, the free-energy of the biphasic system
per unit of area is

Gtot. = G(φA1)η + G(φA2)(1 − η) (2.21)

provided one neglects all interfacial contributions. When η increases from 0 to 1,
the free-energy G appearing in eq. (2.21) spans the straight segment lying below
the curve of figure (2.7), thus lowering the free-energy compared with the one of
a monophasic system with similar composition. The Maxwell construction consists
in finding the unique double tangent to the curve, touching the latter on points of
abscissa φA,1 and φA,2. This geometrical construction determines the composition of
the two coexisting phases, as well as the fraction η of each one of them (lever rule).

This geometrical construction leads to the following set of analytical equations,
∂G(φA1)
∂φA1

= G(φA2) − G(φA1)
φA2 − φA1

∂G(φA2)
∂φA2

= G(φA2) − G(φA1)
φA2 − φA1

(2.22)
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Figure 2.6 – Phase separation of a binary mixture.

which must be solved in terms of φA1 and φA2 . We observe that the equations (2.22)
correspond to a double equality, first between the slopes at φA1 and φA2 , and second
the equality between the common slope and the slope of the straight line joining
φA1 and φA2 (figure2.7).

These equations can be viewed as the equality of chemical potentials µi = ∂G(φAi
)∂φAi

(up to a constant) and the equality of the osmotic pressure p = µiφAi
− G(φAi

) in
each phase i.

2.5.2 Binary phase diagram of DOPC/DPPC

In the context of our model, we calculate the chemical potential and the osmotic
pressure and obtain:

µ = −h(1)m∗ + h(2)m∗ + ln(φ) − ln(1 − φ) (2.23)

p = h(2)m∗ + 2Jm∗2 − (1 +m∗

2 ) ln(1 +m∗

2 ) − (1 −m∗

2 ) ln(1 −m∗

2 ) − ln(1 − φ)

(2.24)

We solve numerically the system of equations (2.22) for a given value of the tem-
perature T , and plot the binary diagram for a mixture of DOPC (TDOPC = −21℃,
∆H = 7700kcal/mol [5]) and DPPC-d62 (TDPPC = 37.8℃, ∆H = 8700kcal/mol [80]),
with a value of J = 0.35 which was chosen in a way to offer the best agreement with
the experimental data. We plot on the same figure (2.8) our theoretical diagram
and the experimental data points (green pluses) published by Schmidt and Davis
[24].

The plot agrees fairly with the experimental data, and the deviations seen on
the gel phase coexistence line close to the upper transition temperature could in
principle be improved by accounting for the area differences between the two lipids.
An attempt to do this in this direction will be attempted in next section.
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Figure 2.7 – Maxwell double tangents construction (in black the double tangent), φA and φB the
phases in equilibrium.

We plot the same DOPC/DPPC binary phase diagram on figure (2.9), superim-
posing a color chart map of the internal order parameter m values. One notices that
the order parameter switches bluntly from m ≃ −1 (gel state in red) to m ≃ 1 (liquid
state in blue), and there are no intermediate values associated with a smooth tran-
sition. The abruptness of the transition is controlled by the value of the coupling
parameter J .

2.6 Determination of the heat capacity

In this section, we determine the heat capacity as a function of temperature within
the context of our model, and compare our results to published calorimetric results.
The heat capacity is defined as the first derivative of the enthalpy with respect to
the temperature CP = dH/dT with H = dβG/dβ. In order to calculate the heat
capacity, we have to consider a fixed value of φ0 the surface fraction of DOPC, to
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Figure 2.8 – Calculated DOPC/DPPC phase diagram (J=0.35) in red and experimental data in
green pluses. Comparison between our theoretical prediction (full line) and data
(pluses) from Schmidt and Davis [24] on the DPPC-DOPC coexistence diagram as
determined from NMR.

Figure 2.9 – Calculated DOPC/DPPC phase diagram (J = 0.35) with the superimposition of m,
(blue m = 1, liquid state and red m = −1 gel state).

evaluate the enthalpy first and finally the heat capacity.

There are two categories of points, labeled M and N on figure (2.10). M cor-
responds to an homogeneous phase and N to a biphasic φ1 and φ2 point. For the
biphasic mixture (point N) the enthalpy is:

Hll(T,φ0) = ηHll(T,φ1,m) + (1 − η)Hll(T,φ2,m
′) (2.25)

with η = (φ2 − φ0)/(φ2 − φ1) the fraction of the molecules in phase 1. The heat
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capacity reads:

Cp(T,φ0) =
dη
dT [H(T,φ1,m) −H(T,φ2,m

′)] + η [∂H(T,φ1,m)
∂T

+ ∂H(T,φ1,m)
∂φ1

⋅ ∂φ1

∂T
]

+(1 − η) [∂H(T,φ2,m′)
∂T

+ ∂H(T,φ2,m′)
∂φ2

⋅ ∂φ2

∂T
]

(2.26)

For a point of homogeneous composition M, the heat capacity is given by the
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Figure 2.10 – Calculated DOPC/DPPC phase diagram with the labeled points M for the homo-
geneous phase, and N for the biphasic region.

equation (2.26) with η = 1. Details of the derivation of the expression of the heat
capacity are provided in the appendix (D).

We compute the heat capacity for different ratio of DOPC/DPPC (figure 2.11)
and compare it to the measurement by Schrader et al. We observe that the results
are in good agreement with the experiment datas.

Various hypothesis can be formulated to explain the discrepancy between our
theoretical and the experimental data. First the experimental apparatus induces
a widening of the curve, due to the kinetics of the thermal response and to the
structural polydispersity of the system, causing a rounding of the peaks.

It is important to note that the height of the calculated peaks is systematically
larger than the experimental ones. In 2001, Ivanova et al. [82] made Monte-Carlo
simulations on the thermodynamics of liposomes, took into account the strong cur-
vature of these small systems and especially the area difference between the inner
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Figure 2.11 – Calculated heat capacity curves for three DOPC/DPPC binary mixtures. The
DOPC/DPPC proportions are indicated in the table (25/75 in red, 10/90 in blue).
The values shown on the dotted line indicate the experimental data found in [81].
CP is given in kJ/mol.K

and the outer leaflets. They proved that the heat capacity curves show a signifi-
cant dependence with curvature, reaching a factor of three (figure2.12) for vesicles
of 100 nm, the size of the ones that were used in [81]. This effect could very well
explain the difference between our calculation at zero curvature, and the measures
done with liposomes.
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Figure 2.12 – Heat capacity profiles for bilayers with two different mean curvatures, c=0 (solid
lines) and 1/c=r=60 nm (dotted lines)[82].

2.7 Binary cholesterol-phospholipid phase diagram

2.7.1 The specific cholesterol entropy: the umbrella effect

The specific interaction between cholesterol and lipid is dealt with separately be-
cause experiments and simulations either suggest that cholesterol may form transient
bound complexes with phospholipid moieties surrounding them [25, 26]. The pres-
ence of such complexes prevents cholesterol molecules from occupying too many
neighboring positions, thus giving the semblance of a large excluded volume. In or-
der to model this umbrella effect in the study of ternary mixtures below, we consider
a mixture composed of two lipids and cholesterol and derive a specific term for a
entropy of mixing term.

In establishing the specific entropy of cholesterol Gcle(T,φ1, φ2,m), we assume
that each of the Nc cholesterol molecules is surrounded by δ lattice sites (Nt the
total sites in the lattice) which cannot be occupied by other cholesterol molecules
(excluded cholesterol on figure 2.13).
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Figure 2.13 – Schematic representation from a lattice with cholesterol (C) and lipid (L) which are
disposed in a such manner that cholesterol cannot be surrounded of more than one
other cholesterol.

We estimate the number of possible configurations with cholesterol molecules to
be:

Ω(2) = Nt(Nt − δ)(Nt − 2δ) . . . (Nt −Ncδ + δ)
Nc!

= δNc(Nt/δ)!
Nc!(Nt/δ −Nc)!

(2.27)

where correlations between the mutual cholesterol exclusion domains have been dis-
regarded, as in the usual Flory-Huggins counting procedure. If two or more phospho-
lipids components are present, one must account for a residual combinatorial contri-
bution corresponding to the Nt −Nc sites that are left available to these molecules.
We obtain:

Ω(3) = Ω(2) × (Nt −Nc)!
N1!N2! (2.28)

and finally the specific entropy of cholesterol:

Gcle(T,φ1, φ2) = − ln(Ω(3)) = φ1 ln(φ1) + φ2 ln(φ2) + φC ln(φC)
−(φ1 + φ2) log(φ1 + φ2) + (δ−1 − φC) log(1 − δφC)

(2.29)

with φ1 = N1/Nt, φ2 = N2/Nt, φc = Nc/Nt and φ1 + φ2 + φc = 1.

This non-ideal entropy term accounts for both the mixing properties and the
cholesterol-cholesterol excluded surface, with the same level of accuracy as a Van
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der Waals description of interacting fluid mixtures. The physical content of this
expression is that cholesterol molecules appear "bigger" to other cholesterol molecules
than they do to phospholipid molecules. The mixture is non additive with respect to
mutual exclusion distances. Expression (2.29) reduces to ideal mixing when δ → 1,
and resembles the entropy of Komura et al. for binary systems and δ = 2 [66]. It
accounts for both the mixing term and the excluded volume between cholesterol
molecules, consistent with the presence of cholesterol complexes. It finally sets a
maximal value φC ≤ 1/δ to the mixture content in cholesterol.

In the case of the binary lipid (φ2=0)-cholesterol (φC) mixture, Gcle(T,φC) be-
comes:

Gcle(T,φC) = = φC ln(φC) + (δ−1 − φC) log(1 − δφC)
(2.30)

The value of δ is bound by the maximum amount of cholesterol that a membrane
can hold, estimated here to φC ≃ 0.45, or equivalently δ = 1/φC = 2.2 [28].

2.7.2 Interaction lipid-cholesterol

Cholesterol-phospholipid interactions are further accounted for with a specific inter-
action term

Gcli(T,φC ,m) = −ξm(1 − φC)φC (2.31)

Eq. (2.31) comprises a m-dependent contribution, proportional to ξ, which marks
the preference of cholesterol for either the m = 1 liquid order, or the m = −1 gel
order, according to the sign of ξ.

2.7.3 DPPC cholesterol diagram

The free energy of the cholesterol-lipid mixture Gcl corresponds to the sum of the
specific cholesterol entropy, the lipid-cholesterol interaction and the internal entropy
given by:

Gcl(T,φC ,m) = φC ln(φC) + (δ−1 − φC) log(1 − δφC) − ξm(1 − φC)φC

−h(1)(1 − φC)m − 2Jm2 + (1 +m
2 ) ln(1 +m

2 ) + (1 −m
2 ) ln(1 −m

2 )

(2.32)

We use the same method as in section 2.5.2 to compute the DPPC/chol phase
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Figure 2.14 – Comparison between our theoretical prediction (full line) and boundary data (circles,
from NMR) from Vist and Davis [60] and (crosses and pluses, from GUVs observa-
tion) from Veatch et al. [68]. Pluses indicate a membrane composition for which an
homogeneous fluid state has been observed, they constitute an upper bound for the
right phase-boundary line. Crosses denote membrane compositions containing a gel
phase, and are expected to lie to the right of the upper phase boundary for the gel
phase.

diagram. We chose ξ = 1.8 to reproduce well the temperature behavior of the
miscibility gaps occurring between the Lβ-gel phase and the Lo liquid ordered phase
as determined from Giant Unilamellar Vesicles in [83] and from NMR [60] - see
fig. (2.14).

The plot on figure (2.14) shows experimental data for phase boundaries of the
binary system DPPC-Cholesterol. Data points at and above 304 K were determined
by NMR on dense lamellar structures, while data at lower temperatures was collected
from the optical observation of Giant Unilamellar Vesicles. We did not find in
the literature a comprehensive and consistent determination of the phase diagram
boundaries for this binary system. The incomplete data that we plot in figure (2.14)
clearly shows that a precise comparison between experiments and theory cannot
as yet be attempted. However, many predictions of our theory do correspond to
observed experimental properties. First, we do find as in experiments a succession
of three regions as the concentration of cholesterol is increased: the first and the
last regions corresponding to single phases respectively poor and rich in cholesterol,
separated by a phase coexisting region. Also, the theoretical and the experimental
widths of the phase coexisting gap are comparable, particularly when one considers
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the method used to determine the data points obtained from experiments in GUVs.
Indeed the only information that we have is that pluses and crosses must be to the
right of the actual respective phase boundaries.
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Figure 2.15 – Gibbs ternary diagram DOPC/DPPC/Cholesterol [68].

2.8.1 Free energy of the system

Arguably, the most widely studied ternary lipid phase diagram for membranes con-
taining cholesterol is the ternary mixture DOPC/DPPC/Chol -see figure (2.15).
DOPC is a double tail molecule with 18 carbons per tail and a cis-unsaturated
bond on the ninth carbon. It has a low main transition temperature T1 at −21○C
and an associated enthalpy change ∆H1 evaluated at 7.7 kcal/mol [5]. DPPC has
also a phosphatidylcholine head but here the two 16-carbon tails have no unsatu-
rated bonds, leading to a higher transition temperature T2 at 42○C, and associated
enthalpy change ∆H2 = 8.7 kcal/mol [5].
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Equation 2.32 requires to determine three parameters, δ, J , ξ: δ = 2.2 which is
bound by the maximum amount of cholesterol that a membrane can hold, ξ = 1.8
which quantifies the preference of cholesterol for the liquid disordered phase with
respect to the gel phase [6, 61] and J = 0.35 as discussed above. For a satisfac-
tory description of the ternary phase diagram our model also needs a repulsive m-
independent interaction between cholesterol and the unsaturated component (here
DOPC), given by χ. ξ takes in account the tails state of the species whereas χ
reflects the chemical nature of the lipids doing differences between saturated and
unsaturated molecules.

The free energy of the ternary mixture (φ1 + φ2 + φC = 1) is therefore given by:

G(T,φ1, φ2,m) = Gllc(T,φ1, φ2,m)

= φ1 ln(φ1) + φ2 ln(φ2) + φC ln(φC) − (φ1 + φ2) log(φ1 + φ2)

+(δ−1 − φC) log(1 − δφC) − h(1)φ1m − h(2)φ2m − 2Jm2

+(1 +m
2 ) ln(1 +m

2 ) + (1 −m
2 ) ln(1 −m

2 )

−ξm(φ1 + φ2)φC + χφ1φC

(2.33)

We end up with four parameters: δ, J , ξ, χ. The parameter χ is free and must be
chosen in order to reproduce the phase diagram as well as possible.

2.8.2 Method for the numerical Maxwell construction

We developed an original method for determining the different coexistence regions
of ternary mixtures. This method is by no means restricted to our own proposal,
and other models could be studied and compared with ours as well. This is why we
believe that this method should be exposed in detail here.

In the absence of surface tension, and assuming that changes in internal state
occur at constant volume, m fluctuates around its optimal value m⋆, with m = m⋆

in the thermodynamic limit. Therefore, the free-energy of mixing gmix(T,φ1, φ2) is
obtained by minimizing G(T,φ1, φ2,m) with respect to m at fixed temperature and
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surface fractions.

gmix(T,φ1, φ2) = min
m

[G(T,φ1, φ2,m)]∣T,φ1,φ2

= G(T,φ1, φ2,m
⋆(T,φ1, φ2)). (2.34)

The Gibbs free-energy surface gmix arises from projecting out m from the four-
dimensional potential G. Equivalently, gmix can be viewed as the restriction of G to
the submanifold ∂mG = 0. For J > Jcusp, the constraint ∂mG = 0 defines two stable
submanifolds, a negative mg(T,φ1, φ2) and a positive ml(T,φ1, φ2) branch, linked
respectively with the gel and liquid phases. At fixed (T,φ1, φ2), only one of the
two branches is the stable one, while the other branch remains metastable. Phase
coexistence is dictated by the convexity properties of gmix(T,φ1, φ2) relative to φ1, φ2.
The convex minimization of gmix reveal regions of three kinds. Points of the convex
hull in contact with the original surface are stable monophasic regions. Regions lying
above triple tangent planes corresponds to triple coexistence. The remaining part
of the convex hull correspond to developable patches of surface, wrapped around
double tangent lines that connects pairs of points with distinct composition (tie-
lines) [84]. It is of higher practical importance to determine the lower convex hull
g̃mix of the free-energy of mixing, which constitutes the proper generalization of the
Maxwell construction for cases where the Gibbs phase rule allows for three or more
coexisting phases. We used a public domain routine, qhull, to compute a discrete
approximation of g̃mix [85]. The starting point is a fine mesh discretization of gmix

over the relevant domain of composition {φ1, φ2 ≥ 0, φ1 + φ2 ≤ 1 − 1/δ}. Then qhull
computes a triangulated surface approaching g̃mix (fig. 2.16). Triple coexistence
correspond to facets with all sides much larger than the initial mesh size. Double
coexistence is associated with elongated triangles, with a shortest side much smaller
than the two longer sides, the latter being oriented parallel with the tie-lines. Finally,
small facets of the convex minimization are linked with stable monophasic regions.
The projection of the triangulated g̃mix surface onto the composition plane provides
directly an accurate approximation of the Gibbs phase diagram.

2.8.3 Results

At 10○C a value of χ = 6.0 promotes both a triple coexistence region and a large
biphasic domain, with oblique Lo/Ld tie lines of positive slope and a plait point on
the left side of the Gibbs triangle, in agreement with experimental findings [23]. A
larger value of χ would open there a miscibility gap, unseen for DOPC/Chol, while
a smaller value would drastically reduce the biphasic Lo/Ld domain. In our model
a continuous path connects the Lo and Ld regions around the critical point, where
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Figure 2.16 – a) 3D representation of g̃mix with the tie-lines in blue. b)3D representation of g̃mix
with the computed triangulated surface.

the order parameter m remains positive. The Lβ phase on the lower right corner
of the phase diagram is associated with a negative m-value and separated from the
rest of the diagram by a discontinuity in m across the coexistence gap (figure2.17).
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Figure 2.17 – Computed Gibbs diagram with our model. J = 0.35, δ = 2.2, ξ = 1.8, χ = 6.
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Chapter 3

Improvement and applications of
the model

3.1 Boundaries of the Gibbs triangular phase di-
agram

The Gibbs diagram obtained in the previous chapter was computed with a discrete
triangulation method. Refinements of this discrete solution are necessary to lo-
cate precisely the diagram boundaries, the tie-lines, and the possible critical points.
These boundaries are found by solving nonlinear systems of coupled equations, to
which the discrete approach provides an accurate initial seed. Similar nonlinear
equations can be obtained for triple coexistence regions and critical plait points.
Details of these calculations are given below.

3.1.1 Derivative of the implicit free-energy function

The potential gmix(T,φ1, φ2) defined in equation 2.34 corresponds to a minimization
of the order parameter dependent expression G(T,φ1, φ2,m). The minimization
equation ∂G = 0 may lead to many branches of solution mα(φ1, φ2) (theorem of
implicit functions). In the case that is considered in this approach, there are only
two relevant branches associated respectively with the liquid (ml > 0) and the gel
state (mg < 0). The projection step is equivalent to projecting out a shadow of the
original surface onto the (φ1, φ2) plane (figure3.1).

Working with an internal order parameter requires an adjustment of the standard

73
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equations of thermodynamics describing phase coexistence. We show in the following
how these equations can be written in terms of G(T,φ1, φ2,m) without having to
exhibit explicitly the dependence of m in φ1, φ2. Our procedure is generic and could
be applied to all similar approach, such as, for instance the model of Putzel and
Schick [71].

g
mix
(�)

φ

φ

g
mix

m

�

�(�,m)

Figure 3.1 – Projection of the free energy in the (φ1, φ2) plane.

It is convenient to introduce the generalized derivatives

Dφ1 = ∂φ1 + ∂φ1m ⋅ ∂m
Dφ2 = ∂φ2 + ∂φ2m ⋅ ∂m (3.1)

wherem(φ1, φ2) is one of the local branch solving ∂G = 0. The generalized derivatives
correspond to a differentiation of G following the local minimum in m. For instance:

Dφ1G = ∂φ1g and Dφ2G = ∂φ2g (3.2)

Derivatives of m with respect of φ1 and φ2 follows from a differentiation of the
identity

d∂mG = 0 (3.3)

from which one gets the two required partial derivatives

∂φ1m = −∂mφ1G
∂mmG

∂φ2m = −∂mφ2G
∂mmG

(3.4)

It is easy to check that the generalized derivatives commute

[Dφ1 ,Dφ2] = 0 (3.5)
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and it is possible to define generalized partial derivatives of higher order. For in-
stance:

D2
φ1φ2

=Dφ1Dφ2 =Dφ2Dφ1 =D2
φ2φ1

(3.6)

Thanks to the generalized derivatives, one can translate the well-known coexistence
conditions originally derived by Gibbs [84] to any thermodynamic function G de-
pending implicitly on a single explicit scalar order parameter.

3.1.2 Tie-lines and binary coexistence

The Maxwell conditions for two extreme conjugate points (φ1, φ2;m) and (ψ1, ψ2;n)
across a tie-line read:

∂mG(φ1, φ2,m) = 0
∂nG(ψ1, ψ2, n) = 0

Dφ1G(φ1, φ2,m) =Dφ1G(ψ1, ψ2, n)
Dφ2G(φ1, φ2,m) =Dψ2G(ψ1, ψ2, n)
G(ψ1, ψ2, n) = G(φ1, φ2,m) +Dφ1G(φ1, φ2,m)(ψ1 − φ1)

+Dφ2G(φ1, φ2,m)(ψ2 − φ2) (3.7)

It is important to realize that in the general case, the potential gmix is not explic-
itly given, and that one must resort to the original expression for G. The three
last relations are the standard ones for obtaining the tie-lines, expressed in term
of generalized derivatives, while the two first ones enforce the local minimization
condition. The six unknown parameters φ1, φ2, ψ1, ψ2,m,n obey five simultaneous
relations. The resulting binary coexistence boundary can be parameterized by a one
dimensional set of values, e.g. in terms of φ1, in agreement with the Gibbs phase
rule.
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3.1.3 Equations for the limits of the triple coexistence re-
gion

The three conjugate points (φ1, φ2,m), (ψ1, ψ2, n), and (κ1, κ2, s) delimiting the
triple coexistence region correspond to a triple contact with a tangent plane.

∂mG(φ1, φ2,m) = 0 (3.8)
∂nG(ψ1, ψ2, n) = 0
∂sG(κ1, κ2, s) = 0

Dφ1G(φ1, φ2,m) =Dψ1G(ψ1, ψ2, n) =Dκ1g(κ1, κ2, s)
Dφ2G(φ1, φ2,m) =Dψ2G(ψ1, ψ2, n) =Dκ2G(κ1, κ2, s)
G(ψ1, ψ2, n) = G(φ1, φ2,m) +Dφ1G(φ1, φ2,m)(ψ1 − φ1) +Dφ2G(φ1, φ2,m)(ψ2 − φ2)
G(κ1, κ2, s) = Gψ1, ψ2,m) +Dψ1G(ψ1, ψ2,m)(κ1 − φ1) +Dψ2G(ψ1, ψ2,m)(κ2 − ψ2)

(3.9)

3.1.4 Critical points

The spinodal line corresponds to the locus of points where the Hessian matrix (ma-
trix of second derivatives) is singular. In most cases, the singular Hessian has pos-
sesses a single non degenerate eigenvector E⃗ = (Eφ1 ,Eφ2) corresponding to the direc-
tion of vanishing Gibbs surface curvature. The critical points are the points where
the eigenvector E⃗ is tangent to the spinodal line, or equivalently, normal to the
gradient of the determinant of the Hessian.

E⃗ ⋅ ∇⃗det(H) = 0 (3.10)

This is because det(H) vanishes exactly on the spinodal line. The Hessian must be
expressed with generalized derivatives:

det(H) = ∣ D
2
φ1φ1
G D2

φ1φ2
G

D2
φ1φ2
G D2

φ2φ2
G ∣ (3.11)

The gradient of det(H) involves derivatives up to third order of G:

∇⃗det(H) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

(D3
φ1φ1φ1

G ×D2
φ2φ2
G −D2

φ1φ2
G ×D3

φ1φ1φ2
G)

+(D2
φ1φ1
G ×D3

φ1φ2φ2
G −D3

φ1φ1φ2
G ×D2

φ1φ2
G)

(D3
φ1φ1φ2

G ×D2
φ2φ2
G −D2

φ1φ2
G ×D3

φ1φ2φ2
G)

+(D2
φ1φ1
G ×D3

φ2φ2φ2
G −D3

φ1φ2φ2
G ×D2

φ1φ2
G)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(3.12)
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We can choose for the eigenvector E⃗ the following pair:

E⃗ = ( D2
φ2φ2
G

−D2
φ1φ2
G ) (3.13)

The critical points correspond to the solutions (φ1, φ2,m) of the following system of
three nonlinear equations:

∂mG = 0
det(H) = 0

E⃗ ⋅ ∇⃗det(H) = 0 (3.14)

We list the generalized derivatives of G in term of partial derivatives of G(φ1, φ2,m),
and give the expressions our specific case in the appendix (E).

3.2 Refinements of the DOPC/DPPC/Cholesterol
Gibbs diagram

We use the above set of equations to determine all the boundaries in the Gibbs tri-
angle using numerical equation solving iterative schemes, starting from the discrete
convex minimization of gmix (Mathematica).

We observe on figure (3.2) the refinements of the Gibbs diagram, which give in
blue the position of the critical point, in red the tie-lines and in green the ternary co-
existence domain. The set of parameters of our model {J̃ , δ, ξ, χ} was determined in

a) b)Chol.

DOPCDPPCDOPC

Chol.

DPPC

L
o

L
d
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β

Figure 3.2 – (a) Projected Gibbs diagram obtained after qhull calculation, viewed from below. (b)
Analytical refinement leading to our final diagram.
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Ternary χ ξ δ J̃ ∆H(∗)1 ∆H(∗)2 T
(∗)
1 T

(∗)
2

DOPC/DPPC 6 1.8 2.2 0.35 7.7 8.7 -21.1 37.8
DOPC/PSM 6 1.8 2.2 0.35 7.7 7.5 -21.1 41
POPC/PSM 6.3 1.8 2.2 0.35 5.4 7.5 -3 41
DiPhy/DPPC 6.6 2 2.4 0.35 7.4 8.7 -120 37.8

Table 3.1 – Tabular of data for our model.
(*)∆H en kcal/mol et T en ○C.

the previous chapter for the DOPC/DPPC/Chol mixture. It is of prime importance
to test the predictive power of the model by considering other ternary mixtures as
well. For that, we consider the ternary phase diagrams of several ternary mixtures,
namely: DOPC/DPPC/Chol., POPC/PSM/Chol., DiPhytanoyl/DPPC/Chol., and
DOPC/PSM/Chol.

We also analyze the behavior of these ternary mixtures by computing the evo-
lution of the diagrams for at least two different temperatures. The values used for
each ternary mixture are summarized in Table (3.1). For the three first cases χ
was adjusted to provide the best possible agreement with experimental data at low
temperature. We notice that the values are fairly constant, and do not depend on
the lipid species, but on the thermodynamic constraints. In the last case we had to
change also ξ and δ. The reason is probably because DiPhytanoyl-PC has a different
kind of melting transition, taking place at very low temperature.
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3.2.1 DOPC/DPPC/Cholesterol

We plotted on figure (3.3) the computed Gibbs diagram, and aside the experimental
diagram arising from NMRmeasurements at two temperatures [68]. We can compare
the evolution of the binary and the ternary domains with respect to temperature.
First, we remark that at T = 10 ℃, the measures confirm the presence of a ternary
triangular zone which disappears at about T = 30℃, and secondly the bubble bi-
nary coexistence zone swells but does not touch the left side of the Gibbs diagram.
The evolution of the Gibbs diagram with respect to temperature is displayed in

Chol. Chol.

DOPC DPPC DOPC DPPCT=10° T=30°

(a) Ternary diagram at T = 10℃ (left) and T = 30℃ (right). J = 0.35, δ = 2.2, ξ = 1.8,
χ = 6

(b) Experimental results with NMR. [68].

Figure 3.3 – DOPC/DPPC/Chol.

figure (3.4) in a single prism. The diagram was drawn here under the assumption of
a constant ξ parameter, and a constant value of the coupling contribution kBT ⋅ χ
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denoting its pure enthalpic nature. Our diagram at the lower temperature in fig-
ure (3.4) displays the main expected features for a DOPC/DPPC/Chol mixture.
As the temperature increases, the triple coexistence triangle shrinks and vanishes
between 15○C and 20○C. Also, the Lo/Ld biphasic region, resting initially on the
left side of the triangle, detaches and assumes a closed shape of decreasing area. A
first critical point, on the left side of the Gibbs diagram, evolves slowly away from
the edge [68]. A second critical point, initially hidden by the triple coexistence re-
gion, is predicted to emerge at the binary detachment temperature. Note also that
within our approach the extension of the Lβ domain, on the right bottom part of
the diagram, gradually decreases up to T2.

Cholesterol

DPPC

DOPC

Critical points

15°c

25°c

30°c

20°c

10°c

Figure 3.4 – Computed evolution of the DPPC/DOPC/Chol triangular diagram with temperature.
The computed diagrams display the main expected features for this lipid mixtures.

3.2.2 DOPC/PSM/Cholesterol

Sphingomyeline is a phospholipid with a choline head but no glycerol backbone, and
two inequivalent tails. One of the tail is variable, linked with an amide bond to the
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sphingosine chain. In PSM, this chain has 16 carbon atoms (the same as DPPC).
The resulting transition temperature is close to the DPPC melting temperature.
Sphingomyeline is an important component of cell membranes and contribute with

   Chol. Chol.

DOPC PSM DOPC PSMT=15° T=20°

(a) DOPC/PSM/Chol. ternary diagram at T = 15℃ and T = 20℃. J = 0.35, δ = 2.2, ξ = 1.8,
χ = 6.

PSMDOPC DOPC PSM

Chol.Chol.

15°C 23°C

(b) DOPC/PSM/Chol. ternary diagram at T = 15℃ and T = 23℃. Experimental results with
fluorescence microscopy [86]. White symbols denote that membranes are in a single uniform phase,
either liquid (circles) or solid (squares). Black circles denote coexisting liquid phases, and gray
squares denote coexisting solid and liquid phases.

Figure 3.5 – DOPC/PSM/Chol.

cholesterol to form raft. So it it of prime importance to understand better the behav-
ior of PSM, cholesterol and unsaturated lipid mixtures. We observe on figure (3.5)
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the computed diagrams and the fluorescence microscopy experimental measures.
First, at T = 15℃, we notice on figure (3.5.b) a binary liquid/liquid phase coexis-
tence domain at the center of the triangle (black circles) which swells at T = 23℃,
as we find in our computed diagram (3.5.a). Secondly the diagram presents an
other binary liquid/solid phase coexistence (gray squares) under the liquid/liquid
coexistence domain, which shrinks at T = 23℃ as we find in our computed trian-
gle. Notice that our model predicts a ternary phase coexistence region as a recent
compilation of experimental diagrams clearly shows [87]. Finally the two diagrams
present a critical point on the left of the liquid/liquid domain, even if its position
in our computed triangle is a too skewed to the left.

3.2.3 POPC/PSM/Cholesterol

After having substituted for the gel forming component in the previous diagram
(PSM instead of DPPC), we consider now the consequences of substituting the fluid
component DOPC in favor of POPC . POPC is a phospholipid with two different
tails, a 16 carbons saturated chain at the sn-1 position, and a 18 carbon unsaturated
chain at the sn-2 position. The cis insaturation occupies the 9th position, as in
DOPC. POPC is considered as an hybrid lipid because of the dual fluid and gel
character of the two tails, which are forced to coexist.

Brewster and Safran postulated that this unique property could confer to POPC
the ability to mix equally well with the fluid and gel phases. In other words, POPC
could be the natural lineactant (by analogy with surfactant) of biological mem-
branes, and could play an fundamental role for promoting the formation of small
domains and rafts [88]. This group investigated theoretically the influence of POPC
on the gel and fluid boundaries, and concluded that it was indeed possible to lower in
this way the line tension between these regions. The presence of POPC in biomem-
branes suggests that it is an important player in lateral separation phenomena.

We can compare the experimental results in figure (3.7) and our computed dia-
gram in figure (3.6), and notice that the binary mixture of POPC and cholesterol
gives a coexistence domain at about T=20℃ which disappears at about T=25℃ in
our diagram. Both diagrams present a ternary phase coexistence domain at T = 25℃.
Our diagram is consistent with the experiment data, whether one considers the phase
boundaries or the transition temperatures.

In ref. [69], ternary coexistence was not seen at T = 37℃ due to technical limita-
tions with only a putative ternary coexistence zone represented with a dashed red
line.(figure3.7)
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The presence of domains in binary POPC cholesterol mixtures is a matter of
controversy. Large domains are never seen while evidence of small domains (spec-
troscopic techniques) seem to exist.

POPC PSM

Chol.

POPC

Chol.

PSMT=18° T=25°

Figure 3.6 – POPC/PSM/Chol. ternary diagram at T = 18℃ and T = 25℃. J = 0.35, δ = 2.2,
ξ = 1.8, χ = 6.3

Figure 3.7 – POPC/PSM/Chol. ternary diagram at T = 23℃ (A) and T = 37℃ (B). Experimental
results with fluorescence microscopy and DSC method[69].
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3.2.4 DiPhytanoyl/DPPC/Cholesterol

Diphytanoyl is multi-branched acyl chain (figure 3.8) which was characterized by
Lindsey and Chan in 1979 [89]. It has a very low melting temperature, estimated at
T < 120℃. The bulky methyl groups work against the regular chain arrangements
and the concomitant gain in cohesion energy which is the signature of the gel phase,
thus disfavoring it on the thermodynamic point of view. The chains remains soft
enough to preserve the fluidity of the bilayer. Diphytanoyl is a lipid of choice
when one wishes to combine membrane fluidity and chemical stability such as the
resistance to oxidative stress.

Figure 3.8 – Diphytanoyl representation.

Our model takes in account the transition temperature of the lipid species. We
show below the experimental results obtained by NMR and notices on both diagrams
the same topology of domains at comparable temperatures. First at T = 16℃, the
diagram displays a triangle ternary domain and a binary bubble zone which is a
slightly too swollen towards the left in the predicted diagram, while it is inflated
towards the top in the experimental diagram. Moreover, the bubble deflates at the
same temperature while the triangle disappears in the same time.
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Chol. Chol.

DiPhyPC DPPC DiPhyPC DPPCT=16° T=43°

Figure 3.9 – DiPhy./DPPC/Chol. ternary diagram at T=16℃ and T=43℃. J = 0.35, δ = 2.4,
ξ = 2, χ = 6.6

Figure 3.10 – DiPhy./DPPC/Chol. ternary diagram at T = 16℃ and T = 43℃. Experimental
results with NMR method[90].



86 Chap. 3: Improvement and applications of the model

3.3 Area changes in binary mixtures

In the previous chapter, we built the phase diagram of lipid/lipid binary mixtures
without considering changes in the area per molecule. In this section, we suggest
a way to take into account the variation of area per molecule occurring during
the liquid-gel transition, based on the Flory-Huggins expression for the entropy of
mixing of macromolecules with dissimilar molecular weights. We do not take into
account cholesterol in this study.

The area per molecule increases at the transition by 15 to 20%. The authors of
ref. [32] have performed structural studies of DPPC bilayers at 20 and 50○C (below
and above the transition), and find the following values for the molecular volume,
area per lipid and membrane thickness:

20○C 50○C

V (Å3) 1144 1232

a (Å2) 47.9 64
D (Å) 44.2 38.3

In order to allow for changes in the area per molecule, it is necessary to work
with the molecular fractions and not with the surface fractions as until now. If we
assume a change in area per molecule, the total area of the system is not conserved,
and the surface fraction is not well defined when molecules commute between gel
and liquid states, and vice-versa.

We consider the molecular fractions xi=Ni/(N1+N2) of each components, along
with a new expression of the Gibbs free energy fmix = βGmix/(N1+N2), where N1+N2

is the total number of the molecules and N1, N2 the number of molecules of each
species of lipids. We naturally assume that the number of molecules do not change,
these ones being only converted internally back and forth, from the gel to the liquid
state. We assume that the species 1 has NA molecules in their liquid state, and
N ′
A molecules in their gel state, while the species 2 has NB molecules in their liquid

state, and N ′
B molecules in their gel state. As a result, N1= NA+N ′

A and N2=
NB+N ′

B (figure 3.11). Our notations are the following: xA = NA/(NA + NB) and
xB = NB/(NA +NB) are the molecular fractions of the two lipids in the fluid state,
x′A = N ′

A/(N ′
A +N ′

B) and x′B = N ′
B/(N ′

A +N ′
B) are the molecular fractions of the two

lipids in the gel state.
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Figure 3.11 – Phase separation in a binary mixture of lipids.

Unlike what was done in the previous sections, we take here the limit m = 1
and m = −1 of our Gibbs free-energies, following in that sense the conventional
approach, with two strictly disconnected phases. We therefore derive the expression
of fmix(liq.), free-energy density in the liquid state (m = 1) in terms of xA, xB, and
of fmix(gel) in the gel state (m = −1) in terms of x′A, x′B.

3.3.1 Calculation of fmix(liq.) and fmix(gel.)

We consider that the fluid surface is Sl, and the gel surface Sg, such as A = Sl + Sg
with φA = aNA/Sl, φB = bNB/Sl in the liquid state and φ′A = a′N ′

A/Sg, φ′B = b′N ′
B/Sg

in the gel state. The parameters a, b, a′, b′ are the specific areas per molecule of the
species A,B in their respective phases.

This leads to the relations between molecular and surface fractions

φA = axA
axA + bxB

φB = bxB
axA + bxB

φ′A = a′x′A
a′x′A + b′x′B

φ′B = b′x′B
a′x′A + b′x′B

(3.15)
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xA = φA/a
φA/a + φB/b

xB = φB/b
φA/a + φB/b

x′A = φ′A/a′
φ′A/a′ + φ′B/b′

x′B = φ′B/b′
φ′A/a′ + φ′B/b′

(3.16)

In order to introduce the area per molecule, we set gmix,liq. and gmix,gel two di-
mensionless quantities separating the liquid state (m = 1) and the gel state (m = −1)
and obtain:

gmix,liq. = A[φA
a

ln(φA) +
φB
b

ln(φB) − [h(1)(T )φA
a
+ h(2)(T )φB

b
]]

gmix,gel = A[φ
′
A

a′
ln(φ′A) +

φ′B
b′

ln(φ′B) + [h(1)(T )φ
′
A

a′
+ h(2)(T )φ

′
B

b′
]] (3.17)

The first equality is obtained as a limit m = 1 of a Flory-Huggins entropy of mixing
term, and the second as a limit m = −1 of the same expression.

We substitute the surface fractions with the molecular fractions and obtain:

gmix,liq. = NA ln( axa
axa + bxb

) +NB ln( bxb
axa + bxb

) − (h(1)(T )NA + h(2)(T )NB)

gmix,gel = N ′
A ln( a′x′a

a′x′a + b′x′b
) +N ′

B ln( b′x′b
a′x′a + b′x′b

) + (h(1)(T )N ′
A + h(2)(T )N ′

B)

(3.18)

Finally we set fmix,liq. = gmix,liq./(NA +NB) and fmix,gel = gmix,gel/(N ′
A +N ′

B):

fmix,liq. = xA ln(axA) + (1 − xA) ln(b(1 − xA)) − [h(1)(T )xA + h(2)(T )(1 − xA)]
− ln(xA(a − b) + b) (3.19)

and

fmix,gel = x′A ln(a′x′A) + (1 − x′A) ln(b(1 − x′A)) + [h(1)(T )x′A + h(2)(T )(1 − x′A)]
− ln(x′A(a′ − b′) + b′) (3.20)
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We apply the Gibbs conditions for binary coexistence, rewrite the result in terms of
surface fractions, to obtain finally the following set of equations:

ln[1 − φA
1 − φ′A

] + φA
a − b
a

− φ′A
(a′ − b′)
a′

− 2h(2)(T ) = 0

ln(φA
φ′A

) + (1 − φA)
b − a
b

− (1 − φ′A)
b′ − a′
b′

− 2h(1)(T ) = 0 (3.21)

3.3.2 Calculation of the slopes of each branches in the bi-
nary diagram at φDOPC = 0.

The binary coexistence diagram is obtained by solving numerically the set of equa-
tions (3.21). It is possible to extract analytically the slopes of the coexistence lines
in the limit φA, φ′A ≪ 1 and (1 − φA), 1 − φ′A) ≪ 1. For instance, the expansion of
(3.21) at low φA, φ′A leads to

⎧⎪⎪⎨⎪⎪⎩

φ′A
b′
a′ − φA b

a = 2h(2)(T )
ln(φA

φ′A
) + b−a

b − b′−a′
b′ = 2h(1) (3.22)

This expansion is consistent with

2h(2)(T ) ≃ (∆H2)
RT 2

m,2
(T − Tm,2) = CB(T − Tm,2), (3.23)

and
2h(1) ≃ (∆H1)

RT 2
m,1

(Tm,2 − Tm,1) = CA(T − Tm,2) (3.24)

where 2h(1) is a positive constant. Alternatively, one may write a system of equations
for the slopes.

⎧⎪⎪⎨⎪⎪⎩

1
φA

dφA

dT − 1
φ′A

dφ′A
dT + (a−b)b

dφA

dT + (b
′−a′)
b′

dφ′A
dT = CA

dφ′A
dT − dφA

dT + (a−b)a
dφA

dT + (b
′−a′)
a′

dφ′A
dT = CB

(3.25)

with again CA = ∆H1
RT 2

1
and CB = ∆H2

RT 2
1
. The second equation in (3.22) gives:

φA
φ′A

= exp(2h(1) + a
b
− a

′

b′
) (3.26)

After substitution of φA, we obtain:
dφ′A
dT

∣φA=0 =
(∆H2)
RT 2

m,2

a
b

( b′aa′b) − exp(2h(1) + a
b − a′

b′ )
(3.27)

dφ′A
dT

∣φA=0 =
(∆H2)
RT 2

m,2

a
b exp(2h(1) + a

b − a′
b′ )

( b′aa′b) − exp(2h(1) + a
b − a′

b′ )
(3.28)
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Real slopes dT /dφA and dT /φ′A follows immediately.

We consider a situation where the melting temperature of the first species is
lower than the one of the second species (T1 < T2). When φDOPC ≃ 0, one has
T ≃ T2, and consequently h(1)(T ) ≫ 1, h(2)(T ) ≪ 1 and h2(T ) < 0. To illustrate this
effect, we also assume that a

a′ ≃ b
b′ . The new slopes dT

dφ′A
(φa = 0), and dT

dφA
(φa = 0)

therefore read:

dT

dφ′A
(φA = 0) = −

(exp(2h(1)(T ) + a
b − a′

b′ )
2CB a

b

(3.29)

and

dT

dφA
(φA = 0) = − b

2aCB
(3.30)

3.3.3 Binary phase diagram with area variation

We observe that the slopes depend on the two ratios a/b and a′/b′. The neighborhood
of φA ≃ 0 is controlled by the ratio a/b provided a/b and a′/b′ are small in front
of 2h(1). Conversely, the neighborhood of φA ≃ 1 is controlled by the ratio a′/b′,
provided a/b and a′/b′ are small in front of 2h(2).

We computed the binary diagrams for decreasing ratios b/a ≃ b′/a′, in order to
reduce the slopes of the two branches, with the constraints that the liquid phase
area per molecule is larger than the gel phase area. We set b = 1.4, a = 2, b′ = 1
and a′ = 1.8 and plot in green color the binary diagram, with on the same figure
in red the initial diagram corresponding to the constant areas (figure 3.12). We
notice some improvement of the diagram due to the change in area at the liquid/gel
transition. The use of a Flory-Huggins entropy of mixing is here phenomenological,
but allows us to correct to some extent the shape of binary lipid phase diagram.
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Figure 3.12 – DOPC/DPPC binary diagram: experimental values represented with black crosses,
in red the model without area variation, in green the model with area variation.
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3.3.4 Generalization for surface tension, and hydrostatic
pressure

The previous calculation is only correct provided the membrane tension is low
enough, which is usually considered as true. We can attempt to generalize the
expression of fmix by introducing the lateral membrane tension and the hydrostatic
pressure. Tension and pressure play to that respect the same role as temperature in
our thermodynamic model.

The intensive surface tension γ is conjugated with changes in molecular area ∆a,
and the intensive pressure P is conjugated with the variation of specific volume ∆va
of the molecules. Temperature was conjugated to enthalpy in the two first section (if
one considers G instead of βG, temperature is conjugated with entropy). We outline
below the way our formalism should be extended to account for mechanical stresses.
The expression for the lipid state (m = 1) is

fmix(liq.) = xA ln(axA) + xB ln(bxB) − ln(axA + bxB)
−m[h(1T )(T )xA + h2T (T )xB + h(1γ)(γ)xA
+h(2γ)(γ)xB + h(1P )(P )xA + h(2P )(P )xB] (3.31)

with

h(1T )(T ) = (T − Tref)∆a (3.32)
h(1γ)(γ) = (γ − γref)∆aa (3.33)

and
h(1P )(P ) = (P − Pref)∆va (3.34)

The gel state is similar, and can be obtained by changing a → a′, b → b′, A → A′,
B → B′.



Chapter 4

Line tension and Wetting

4.1 Line tension

4.1.1 Introduction

Giant Unilamellar Vesicles (GUV’s) made from ternary mixtures of one unsatu-
rated lipid such as DOPC, a saturated lipid like DPPC or sphingomyelin (SM) and
cholesterol provide a convenient and direct experimental platform to observe and
study phase coexistence between liquid-order and liquid-disorder domains. In this
geometry, the phase separated vesicle usually displays two domains with different
curvatures as shown in fig. 4.1. The crossover region between the domains, that can
be described at the macroscopic level as a line, is the analog in these two-dimensional
systems, of the water-vapour or the water-oil interfaces that separate two macro-
scopic phases at coexistence in three-dimensional systems. The cost of creating such
a linear interface, the so called line-tension, is measured in units of energy per unit
length or force. The line tension plays an important role in determining the shapes
of vesicles with phase separated domains[91]. By determining vesicle shape under a
fluorescent microscope while controlling membrane tension by micropipette suction
one can precisely measure values for the line tension, for instance as a function of
membrane composition. Typical values of line tension between two fluid phases are
of order of 1 pN [92, 93].

In this chapter, we first extend our thermodynamic theory for phase coexistence
in ternary lipid mixtures in order to account for composition inhomogeneities, thus
providing for theoretical predictions of line-tension values as a function of lipid mem-
brane composition, and for a direct comparison with experimental results. Then, we

93
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Figure 4.1 – Measurement of the line tension between two phase-separated liquid-ordered
and liquid-disordered domains. Given the pressure suction ∆P applied by
micropipette aspiration and the different geometrical parameters shown in
the figure, one can obtain the line tension values from τ = ∆P (cotψ1 −
cotψ2)(Rb2RP sinψ1)/(2(Rb −RP sinψ1))[91].

will consider the consequences of inserting proteins or other inclusions in a ternary
lipid membrane. The interplay of inclusion-lipid affinities may lead to phenom-
ena, in these two-dimensional systems, akin to wetting at interfaces between three-
dimensional coexisting phases [77]. After reviewing the classic concepts of wetting
theory, we study how the local lipid environment can be modified in the close vicinity
of an inclusion such as a protein.

4.1.2 The Landau-Ginzburg energy functional for an inter-
face

-Φb +Φb

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

Φ

E

Figure 4.2 – Schematic representation ("Mexican Hat") of the bulk energy density of two coexisting
phases, with equilibrium values of order parameters φb and −φb.

A standard thermodynamic description of the interface between two coexisting
phases is provided by the Landau-Ginzburg energy functional of the local order
parameter φ(z) where z is the distance from the interface. For a magnetic system
φ(z) would refer to the local magnetisation while for a binary system φ(z) would
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measure the local composition of one of the components. We recall here the simplest
version of this description where two semi-infinite bulk phases of order parameter
φb and −φb are separated by a flat interface. The order parameter φ(z) varies
continuously from −φb to φb as z spans the whole system from −∞ to +∞. The
most relevant variation takes place over a distance ξ around the interface position
at z = 0. ξ is often referred to as the interfacial thickness. The Landau-Ginzburg
functional F

F = ∫
+∞

−∞
[a2 (dφ

dz )
2
+ b2(φ2 − φb2)

2] dz (4.1)

considers two contributions to the local energy density at height z-see equation (4.1).
The first is the relevant Legendre transform of the bulk energy density displayed in
figure (fig. 4.2) as a “ Mexican Hat“, a shape that reinforces constant chemical po-
tential and osmotic pressure across the interface. The second contribution measures
surface inhomogeneities by a quadratic gradient term. The equilibrium order pa-
rameter φ(z) is obtained by functional minimization of with respect to φ, leading
to the associated Euler-Lagrange differential equation

−ad2φ

dz2 + 2bφ(φ2 − φb2) = 0 (4.2)

to be solved with boundary conditions, −φ(−∞) = φ(∞) = φb and dφ/dz∣−∞ =
dφ/dz∣∞ = 0.

By introducing the reduced order parameter Y = φ/φb and the length ξ−2 = bφb2/a
equation 4.2 can be rewritten as:

d2Y

dz2 = 2
ξ2Y (Y 2 − 1) (4.3)

with the associated first integral

(dY
dz )

2
= 1
ξ2 (Y

2 − 1)2 . (4.4)

The solution of equation 4.4 is given by Y (z) = tanh(z/ξ), the profile φ(z) being
thus written as φ(z) = ∆/2 tanh(z/ξ), with ∆ = 2φb as sketched in figure (4.3).

The interfacial energy τ associated with the inhomogeneous profile can be com-
puted by replacing the equilibrium profile Y (z) into the reduced form of the Landau-
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Figure 4.3 – Equilibrium inhomogeneous profile of the order parameter φ(z) that minimizes the
Landau-Ginzburg functional for an interface separating two coexistence phases of
order parameters −φb and φb. The chemical difference between the two phases is
measured by ∆ = 2φb, ξ is the typical thickness of the interface.

Ginzburg functional:

τ = bφb4ξ∫
∞

−∞
[1

2 (dY
dz̃ )

2
+ 1

2(Y 2 − 1)2] dz̃ (4.5)

with z̃ = z/ξ. Note that the prefactor of the numerical integral can be viewed as the
product of the typical scale for the bulk energy density bφb4 by the interfacial length
ξ. For interfaces separating two three dimensional bulk phases at coexistence, bφb4

is an energy per unit volume and τ has thus the dimensions of a surface tension.
For two coexisting bulk phases in two dimensions bφb4 is an energy per unit surface
and τ measures the line tension between the two phases. By using the identity
∫

1
−1(1 − Y 2)dY = 4/3, one gets:

τ = 4bφb4ξ
3 = a∆2

3ξ ≃ ∆3 (4.6)

Notice that τ scales as τ ≈ ∆3, where ∆ measures the length of the tie-line
between two coexisting phases, a classical result for this mean field description of
the interfacial energy. In the following paragraph we extend the Landau-Ginzburg
description of the interface to ternary lipid mixtures that involves two order param-
eters.

4.1.3 Interface between Lo and Ld domains

We consider the coexistence between the liquid ordered and liquid disordered phases
in a ternary mixture of saturated and unsaturated lipids and cholesterol, governed
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by the Gibbs free energy G(φ1, φ2,m) introduced in the chapter 2, equation 2.33,
where φ1 and φ2 are the surface fractions of each lipid, and m an order parameter
associated with the tails.

A

B

DOPC (!
1
) DPPC (!

2
)

C"#$. (!
%
)

C

D

Figure 4.4 – Gibb’s diagram for the mixture DOPC/DPPC/cholesterol.

We seek for a desription of the composition inhomogeneities φ1(z) and φ2(z)
as z, the distance from the line separating the Lo and Ld phases, varies from −∞,
deep in the Ld phase, to +∞ in the Lo phase. As an example we’ll study the
tenary mixture of DOPC/DPPC/Cholesterol. The Gibbs diagram for such mixture
(fig. 4.4), obtained from the minimization of G(φ1, φ2,m) was discussed in chapter
2; it shows two typical coexistence points A and B connected by a tie-line near
the critical point and two coexistence points C and D far from criticality. In our
thermodynamic description (eq. 2.33) such points have, for all practical purposes
m = 1 as discussed before. This simplifies the thermodynamic potential of the
ternary mixture that is now reduced to:

G(φ1, φ2,1) = φ1 ln(φ1) + φ2 ln(φ2) + φC ln(φC)
−(φ1 + φ2) ln(φ1 + φ2)
+(δ−1 − φC) ln(1 − δφC)
−{h1(T )φ1 + h2(T )φ2} − 2J̃
+χφ1φC − ξ(φ1 + φ2)φC

(4.7)

where the free energy is written in unit of kBT /S, with S a molecular lipid area.
As explained in the previous section, the relevant energy density for the description
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of two bulk phases at coexistence is given by the grand potential, which for two
composition variables reads

G(F )(φ1, φ2) = G(φ1, φ2,1) − φ1µφ1b
− φ2µφ2b

+Πb (4.8)

where µφ1b
= ∂G/∂φ1 and µφ2b

= ∂G/∂φ2 are the chemical potentials conjugated with
φ1 and φ2, φ1b and φ2b are the values of φ1 and φ2 in the respective bulk phases and
Πb = µφ1b

φ1b+µφ2b
φ2b−G(φ1b, φ2b,1) is the osmotic pressure. Extending to two order

parameters the previous interface description, we write

F = kBT
S ∫

∞

−∞
[ l

2

2 (dφ1

dz )
2
+ l

2

2 (dφ2

dz )
2
+ G(F )(φ1, φ2)] dz (4.9)

where l, which has the dimensions of length, measures the penalty for distorsions of
the composition profiles. Here, for simplicity, we use the same coefficient l for both
gradient terms, but extension into non-equal square gradient coefficients would be
straightforward. Notice that comparison between the experimental and the com-
puted phase diagrams fixes all parameters of G(F ). The length l is thus the only
unknown parameter in the Landau-Ginzburg functional (4.9). For practical purposes
we now express all length in units of l.

In order to find the equilibrium composition profiles, one needs to perform a
functional minimization of F resulting in the associated Euler-Lagrange differential
equations:

∂G(F )
∂φ1

= d2φ1

dz2

∂G(F )
∂φ2

= d2φ2

dz2 (4.10)

with
∂G(F )
∂φ1

= −h1(T ) + ln(φ1) − ln(φC) + ln(1 − δφC) − ln(φ1 + φ2)

+χ (1 − 2φ1 − φ2) − ξ (1 − 2φ1 − 2φ2) − µφ1b

∂G(F )
∂φ2

= −h2(T ) + ln(φ2) − ln(φC) + ln(1 − δφC) − ln(φ1 + φ2)

+χ φ1 − ξ (1 − 2φ1 − 2φ2) − µφ2b

(4.11)

We solve numerically the system of differential equations (4.10) by a relaxation
method [94] given the boundaries conditions φ1(−∞) = φ1A, φ2(−∞) = φ2A, φ1(+∞) =
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φ1B, φ2(+∞) = φ2B, dφ1/dz∣−∞ = dφ2/dz∣−∞ = dφ1/dz∣+∞ = dφ2/dz∣+∞ = 0 with
(φ1A, φ2A) and (φ1B, φ2B) the composition of the two coexisting phases A and B
- see figure (4.4).

Figure (4.5) shows a contour line representation for the grand potential G(F ). One
can draw a mechanical analogy to the minimization of the functional F and thus to
the solution of equations 4.10. In the mechanical analog a particle of coordinates
φ1 and φ2 mooves in the potential −G(F ) as a function of the time z. The two
equilibrium points A and B which represent the coexisting minima of same height
in the grand potential G(F ) correspond to two hill tops in the mechanical potential
−G(F ). Finding the profiles φ1(z) and φ2(z), is thus equivalent to determining the
trajectory of a particle that leaves the hill top A with zero velocity and reaches with
zero velocity also the hill top B after an infinite time.
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Figure 4.5 – Contour line representation of G(F )

In figure (4.6) we display results for the two couples of coexisting points, (A,B)
and (C,D) displayed in figure (4.4) with compositions (φ1A = 0.792, φ2A = 0.0225),
and (φ1B = 0.687, φ2B = 0.0341) near the critical point and (φ1C = 0.820, φ2C =
0.0325), and (φ1D = 0.615, φ2D = 0.0675) far from the critical point located at
(φ1cr = 0.769, φ2cr = 0.0083). The equivalent trajectory representation is shown in
figure (4.5) by an continuous line connecting points A and B.

As the figures clearly shows, the width ξ of the interface is similar for profiles
φ1 and φ2 and depends on the distance to the critical point. For the composition
far from the critical point the interface width is of order the molecular length l and
becomes much larger as l as one approaches the critical point. We now investigate
how ξ depends on the distance to the critical point.
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Figure 4.6 – (a) Profiles of φ1 near the critical point in red and far from the critical point in blue.
(b) Profiles of φ2 near the critical point in red and far from the critical point in blue.

4.1.4 Interfacial thickness near the critical point

We calculated the composition profiles for conjugated points located on the liquid
disordered - liquid ordered bulge. We computed the interfacial thickness from ξ =
∆/(2 ∗ φ′(0)) where ∆ is the length of the tie-line connecting the two coexisting
points. Figure (4.7) shows a log-log plot of ξ as a function of ∆ revealing the
expected scalling behavior ξ ≈ 1/∆ as one approaches the critical point ∆→ 0. The
blue line in the Gibbs diagram (4.4) is the locus of the middle points of the tie-lines.
If one measures the distance to criticality by the length δ from the tie-lines to the
critical point one has δ ≈ ∆2 and ξ ≈ 1/δ1/2.

0.10 0.200.15

5.0

2.0

3.0

7.0

∆
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Figure 4.7 – Log-log representation of ξ as a function of ∆ in red. The green line represents a
scaling law ξ ≈ ∆−1.
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4.1.5 Line tension near the critical point
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Figure 4.8 – Line tension as a function of ∆ in red. The log-log inset shows also the scaling law
τ ≈ ∆3 in green.

We compute the line tension between the liquid ordered and the liquid disordered
domains by numerically integrating F (4.9) with the equilibrium profiles determined
above. Figure (4.8) shows the value of τ in units of kBT l/S as a function of the tie-
line length ∆. As the figure and its inset show the line tension obeys the expected
scaling behavior τ ≈ ∆3. Quantitatively one finds τ = 0.825∆3 to better than 1%
over the range of ∆ values explored here.

a) b)

Figure 4.9 – Measurement of the line tension in the ternary mixture DOPC/ESM/Chol. [91] a)
The crosses show the composition for which the line tension was measured at different
distances from the critical point. b) Line tension values as a function of the cholesterol
and ESM contents.
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Several authors have reported in the litterature line tension values for phase
coexisting domains [75, 91, 93]. The most extensive study is reported in [91] for
the ternary system DOPC/egg-Sphingomyelin/Cholesterol. The authors study the
line tension along a composition line that approaches the critical point by roughly
following the midpoint of the tie-lines in figure (4.9 a). They show that the line
tension vanishes at the critical point as shown in figure (4.9 b). We now attempt a
comparison between our theoretical prediction and these experimental results. Let’s
first notice that our ternary phase diagram shown in figure 4.4 was computed for the
ternary lipid system DOPC/DPPC/Cholesterol. However, the two ternary systems
DOPC/egg-Sphingomyelin/Cholesterol and DOPC/DPPC/Cholesterol display sim-
ilar experimental diagrams [68, 87] both with respect to coexistence domain shapes
and sizes, and to the position of the critical point. Because the experimental data in
[91] does not provide from an easy determination of the tie-lines length, we measure
the distance to the critical point by δ the length on the Gibbs diagram between the
sample composition and the composition of the critical point.
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Figure 4.10 – Comparison between theory and experiments for the line tension. δ is the distance
between the critical point and the tie-line. Experimental points from [91]. The red
line represents predictions from our theoretical model with S = 0.6 nm2 and l = 5 nm.
The blue line is the power law τ = 21 ⋅ δ3/2 pN.

Experimental points from [91] as a function of δ are displayed in figure (4.10)
that shows also theoretical predictions from our model as a red line. The theoretical
values were rescaled by assuming S = 0.6 nm2 and choosing the square gradient
prefactor l = 5 nm. The mean field prediction for the line tension as a function of δ is
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also plotted in the figure 4.10, with the best fit value τ = 21 ⋅δ3/2 pN. Our theoretical
results are thus in very good aggreement with experiments. The law describing
how the line tension vanishes as it approaches the critical point follows the mean
field prediction in the composition range covered by experiments. Remarkably, all
experimental points can be understood by the single parameter l, the macroscopic
length associated with the square gradient term. The value of l that better fits the
experiment is of order of the bilayer thickness. The linear interface separating two
lipid domains has thus a thickness of the order of a few lipid diameters.

4.2 Effect of inclusions on local composition

4.2.1 Introduction

In bilayers of biological relevance proteins play a crucial role for controlling mem-
brane function. Within the context of lipid phase separation it has been suggested
that proteins [95, 96] actively change the membrane local composition by recruiting
lipids to the protein vicinity. Such phenomena, akin to wetting, can be theoretically
studied within the Landau-Ginzburg formalism introduced in the previous section.
In the following we investigate the lipid recruitment efficiency of proteins as a func-
tion of protein size by mimicking the protein as solid membrane inclusions. The
inclusions are inserted in the homogeneous liquid disordered phase in the vicinity
of the boundary of the coexistence domain as shown in figure (4.11). The inclusion
exhibits a repulsion for unsaturated lipids and an attraction for the saturated ones,
a typical behaviour for proteins that are expected, in biological membranes, to play
a role in raft formation. In the first paragraph we consider large enough inclusions,
such that the inclusion lipid interface can be considered as flat for all practical pur-
poses. This will allow us to setup the proper theoretical environment for studying
wetting in systems described with two order parameters. In the second paragraph
we consider circular inclusions of finite radii [97, 98] and study wetting as a function
of inclusion size.

4.2.2 Wetting of a large inclusion by a liquid ordered phase

In this paragraph we extend the Landau-Ginzburg formalism introduced above to
account for interactions between the lipid phases and the inclusion and write:
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C

B

Figure 4.11 – C is a point in the homogeneous phase in the vicinity of B the initially coexistence
point.
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, φ2S

) + ∫
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2 (dφ1
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2

2 (dφ2

dz )
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+ G(F )(φ1, φ2)] dz (4.12)

with

ES(φ1S
, φ2S

) = [hφ1φ
2
1S
− γφ1 .φ1S

+ hφ2φ
2
2S
− γφ2 .φ2S

]
− [hφ1φ

2
1∞ − γφ1 .φ1∞ + hφ2φ

2
2∞ − γφ2 .φ2∞] (4.13)

a line energy contribution accounting for interactions between the unsaturated lipids
φ1 and the saturated lipids φ2 with the inclusion. Line energies γφ1 , and γφ2 represent
the energy gain (γφ1 , γφ2 > 0) or loss (γφ1 , γφ2 < 0) of moving lipids from the bulk
phase to the inclusion interface. Fields associated with the quadratic terms hφ1 and
hφ2 represent the changes of lipid-lipid interactions at the interface. The role of these
fields has been extensively studied in the context of the wetting theory for systems
described with one order parameter as briefly reviewed in chapter(1),section (1.6).
Subtraction of the second term of the right hand side of equation 4.13 allows FW to
measure only the energy cost of distorsion of the composition profiles.

Equilibrium profiles are obtained by minimization of the functional density FW
with respect to φ1, φ2, φ1S

, φ2S
resulting in the Euler-Lagrange system of equations

(4.10) with the associated boundary conditions.

dφ1S

dz = 2hφ1φ1S
− γφ1

dφ2S

dz = 2hφ2φ2S
− γφ2 (4.14)

Notice that boundary conditions 4.14 provide two equations for determining the
values of the profiles and of their gradients at the interface. They are therefore an
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infinity of surface fields that induces the same composition profile. As in the previous
section we solve the system of differential equations (4.10) with boundary conditions
4.14 by numerical relaxation methods [94]. Figure (4.12) shows the contour line
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Figure 4.12 – Contour line of the energy landscape G(F ).

representation of the energy landscape of the energy G(F ). Contrary to the case of
phase coexistence the two minima of the energy are not here at the same heigth as
further represented in the 3D plot of figure (4.13). A mechanical analogy can still be
drawn. One needs to find the trajectory of a particle in a two dimensionnal system
of coordinates φ1 and φ2 as a function of time z. The particle leaves from a level
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Figure 4.13 – (a) Landscape of energy seen in profile view along the φ1 axis with the stable phase
at the right(red point). (b) Landscape of energy seen in front view.

below the hill top heigth C with finite velocity components dφ1/dz∣z=0 and dφ2/dz∣z=0
finishing its course at point C with vanishing velocity after an infinite time. When
the particle trajectory passes trough the meta-stable minimum of the free energy,
it slows down leading to profiles of liquid ordered enrichment close to the interface.
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When the particle trajectory does not explore the meta-stable minimum, one gets
much less enrichment of the interface by the liquid ordered phase.

We computed profiles for the homogeneous liquid disordered phase C of compo-
sition φ1C

=0.835, φ2C
=0.0685 and surface field values γφ1=0.3, hφ1= 0.0025, γφ2=

-0.001, hφ2 = 0.5.10−5. Notice that the interface strongly repels the unsaturated lipids
and slightly attracts the saturated one. Results are plotted in figure (4.14). The fig-
ure displays two equally valid solutions of the differential equations with correspond-
ing boundaries conditions. As expected the profiles of the unsaturated lipids display
low values at the interface while those of the saturated lipids present higher values.
However unsaturated lipid decrease is larger than saturated lipid increase which
implies the enrichment of the inclusion interface by cholesterol (φch = 1 − φ1 − φ2).
Note the choice of γφ1 , hφ1 , γφ2 , hφ2 is not unique. There is an infinity of pairs (h,
γ) associated with a given value of the surface fields, φ1S

and φ2S
.
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(a) φ1 profile.
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Figure 4.14 – Equilibrium profiles for the interfacial behaviour of a liquid disordered phase of
composition φ1C

=0.835, φ2C
=0.0685 that interacts with an inclusion interface with

surface fields γφ1=0.3, hφ1= 0.0025, γφ2= -0.001, hφ2 = 0.5.10−5. This corresponds to
an inteface that stronger repels the unsaturated lipids φ1 and attracts the saturated
lipid φ2. Red and blue profiles correspond respectively to pre-wetting and partial
wetting solutions-see text for a full discussion.

The solutions in blue decay exponentially fast to the bulk value, they corre-
spond to a local enrichment with a limited extent. The red solutions display instead
thicker profiles that reveal pre-wetting behaviour of the inclusion by the liquid or-
dered phase. For systems with one order parameter only, the existence of a first
integral of the movement in the analog mechanical problem allows for the so-called
Cahn construction, a graphical representation that allows to distinguish the abso-
lute stability of the different solutions. For systems with two order parameters such
as ours there exists no Cahn construction and the stability analysis needs to be
performed by the numerical evaluation of the energy FW . We will perform such
analysis in the next section and show that for the surface field values of figure 4.14
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the red solution is the stable one.

4.2.3 Effect of inclusion size on the wetting properties

In the previous section we have shown that exposure of the inclusion interface to
an homogeneous phase of the ternary lipid membrane results in a build up of an
interfacial inhomogeneous profile that extends over a lenght ξ. For relevant inclusion
of a finite size that we model by circular interfaces of radius R we expect significant
effects when R becomes similar or equal to ξ. The composition profile can be
computed by minimization of functional density:

FW = ES(φ1S
, φ2S

) + ∫
∞

R

[ l
2

2 (dφ1

dz )
2
+ l

2

2 (dφ2

dz )
2
+ G(F )(φ1, φ2)] 2πrdr (4.15)

with:

ES(φ1S
, φ2S

) = 2πr [hφ1φ
2
1S
− γφ1 .φ1S

+ hφ2φ
2
2S
− γφ2 .φ2S

]
−2πr [hφ1φ

2
1∞ − γφ1 .φ1∞ + hφ2φ

2
2∞ − γφ2 .φ2∞] (4.16)

The energy functional FW and its surface field components ES have the same
structure as those of the flat interface 4.10 but have been adapted to the cylindrical
coordinates system. Minimization with respect to φ1, φ2, φ1S

, φ2S
– see Appendix

C – results in the Euler-Lagrange system of equations (4.17) with the associated
boundary conditions that can be written as in equation (4.14).

∂G(F )
∂φ1

= d2φ1

dr2 + 1
r

dφ1

dr

∂G(F )
∂φ2

= d2φ2

dr2 + 1
r

dφ2

dr (4.17)

We plotted equilibrium profiles for two values of the radius of the inclusion in
figures (4.15, 4.16) for field values γφ1=0.3, hφ1= 0.0025, γφ2= -0.001, hφ2 = 0.5.10−5.
As the figures show, for the same values of the surface fields, one obtains different
composition profiles for different values of the inclusion radius. The thickness of
the interfacial profile decreases as the radius is reduced. The pre-wetting line is
therefore a function of particle radius. In practice, this implies that no significant
recruitment of lipids can occur close to a protein with radius much smaller that the
typical thickness of the wetting layer. This is quantitatively shown in figure (4.17)
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Figure 4.15 – Circular inclusion profiles with R=100.
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Figure 4.16 – Circular inclusion profiles with R=50.

where we plot the value of the interfacial thickness ξ as a function of radius. ξ is
defined here for the wetting layer as the distance between the wall and the inflexion
point of the composition profile. As the figure shows, the inflexion point vanishes
for R < 1.8. This can be qualitatively understood by the balance between energy
gain by contact with the interface and the penalty for distortion of the profiles in
the wetting layer. As the radius is reduced, the gain of interfacial energy decreases
also, eventually being too small to compensate for profile distortion.

As explained above, two solution families obey the Euler-Lagrange equations.
They correspond to a partial wetting profile, characterized by an exponential re-
laxation decay and to a complete wetting profile. The relative stability of the two
solutions can be determined by numerically integrating the total energy FW . We
can observe on figure ( 4.18 ) the energy values for the two solutions as a function
of inclusion radius. As the figure shows, for these values of surface fields that corre-
spond to those of figures (4.15, 4.16) the wetting profile has always the lower energy,
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even though it becomes coincident with the second solution for radii smaller than
R = 16.
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Figure 4.18 – Total energy for each solutions with respect to the radius.

Our results are summarised in the Gibbs diagram (4.19) where we represent the
pre-wetting horn for R=25, other lines could be drawn for different values of the
radius. This line separates the stable phase in two regions. All points which are
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localized between the horn and the coexistence line give a pre-wetting solution, while
points localised further away do not display pre-wetting.
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(a) Pre-wetting horn in the Gibbs triangle.
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(b) Zoomed zone from the left triangle.

Figure 4.19 – Pre-wetting horn for R=25.



Conclusion

In this work we presented a simple and predictive model for the thermodynamics
of binary and ternary lipid mixtures containing cholesterol. This model makes an
intensive use of an internal order parameter discriminating between thegel and the
fluid phases. I ended up with a model with essentially a single free parameter
χ, the other parameters being strongly constrained by the known thermodynamic
properties of the system.

The determination of the ternary phase coexistence regions required a special
numerical approach, which turned out to be efficient, accurate and applicable to a
wide class of thermodynamic approaches with order parameter. We compared our
calorimetry with DSC experiments, with good qualitative agreement. We investi-
gated a number of other ternary lipid mixtures, which could all be reproduced. We
made a first step towards including the effect of a change in the lipid specific areas,
by extending to binary lipid mixtures the Flory-Huggins approach. This improved
the agreement with experimental results.

I extended the model to describe inhomogeneous phase profiles by introducing
a Landau-Ginzburg functional. I derived the concentration profile across a liquid
ordered-liquid disordered boundary within the framework of this model, and ob-
tained a value for the associated line tension. I then investigated various wetting
profiles around circular inclusions, and showed the possibility of having a swollen
liquid ordered domain around the inclusions even though the liquid disordered phase
remains thermodynamically favorable. These calculations are relevant for the sce-
nario consisting in creating rafts by a local nucleation of the liquid ordered phase
around the participating proteins.
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Appendix A

Spinodal calculation

The spinodal line corresponds to a singular Hessian matrix.

det(HG) = 0. (A.1)

with:

HG =

⎛
⎜⎜⎜⎜⎜
⎝

∂2G
∂φ2

∂2G
∂φ∂m

∂2G
∂φ∂m

∂2G
∂m2

⎞
⎟⎟⎟⎟⎟
⎠

(A.2)

We start from the derivatives of the free energy:

∂G
∂φ

= −h(1)m + h(2)m + ln(φ) − ln(1 − φ)

∂2G
∂φ2 = 1

φ
+ 1

1 − φ
(A.3)
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126 Spinodal calculation

∂G
∂m

= −h(1)φ − h(2)(1 − φ) − 4Jm + 1
2 ln(1 +m

2 ) − 1
2 ln(1 −m

2 )

∂2G
∂m2 = −4J + 1

2(1 +m) +
1

2(1 −m)

∂2G
∂m∂φ

= −h(1) + h(2)

(A.4)

We obtain:

[1
φ
+ 1

1 − φ] [−4J + 1
2(1 +m) +

1
2(1 −m)] − α

2 = 0 (A.5)

with α = h(1) − h(2), and finally find the spinodal equation:

φ(1 − φ) = 1 − 4J(1 −m2)
α2(1 −m2) (A.6)



Appendix B

Functional minimization

We perform the variation of the energy functional with respect to φ (with α = 1):

I(φ(z)) = ES(φS) + ∫
∞

0
[V (φ) + α2 (dφ(z)

dz )
2

] dz (B.1)

with: ES(φS) = 1/2hφ2
S − γφS.

It gives:

δI(φ(z)) = δφS
dES(φS)

dφS
+ δφ∫

∞

0
[dV

dφ − d2φ(z)
dz2 ] dz + [dφ

dz δφ]
∞

0
(B.2)

The integral term gives the equation for the bulk,

dV
dφ = αd2φ

dz2 , (B.3)

while the boundary contribution corresponds to a surface field equation (with
δφ(∞) = 0):

2hφ − γ = dφ
dz (B.4)
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Appendix C

Functional minimization in polar
coordinates

We perform the variation of the energy functional in the case of a circular inclusion
for a binary system parameterized with polar coordinates.

I(φ(r)) = ES(φS) + ∫
∞

R
[G(F )(φ) + 1

2 (dφ(r)
dr )

2

] 2πrdr (C.1)

We first obtain:

δI(φ(r)) = δφS
dES(φS)

dφS
+ ∫

∞

R
[δG

(F )(φ)
δφ

δφ + [dφ(r)
dr

dδφ(r)
dr ]] 2πrdr (C.2)

After developing:

δI(φ(r)) = δφS
dES(φS)

dφS
+ [rdφ

dr δφ]
∞

R

2π + ∫
∞

R
[dG(F )(φ)

dφ r − [dφ(r)
dr + rd2φ

dr2 ]] δφ(r)2πdr

(C.3)

The equation for the bulk component reads:

dG(F )(φ)
dφ = 1

r

dφ(r)
dr + d2φ

dr2 , (C.4)
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and the surface field condition, with δφ(∞) = 0 and δφS = δφ(R) becomes:

dES(φS)
dφS

− dφ(R)
dr 2πR = 0, (C.5)

which reduces to:

dφ(R)
dr = 2hφ − γ, (C.6)

if one takes ES(φS) = (hφ2 − γφ)2πR



Appendix D

Heat capacity relations

The total enthalpy of a biphasic mixture for a specific φ0 is given by:

H(T,φ0) = η ⋅H(T,φ1,m) + (1 − η) ⋅H(T,φ2,m
′) (D.1)

The heat capacity is defined as the constant pressure derivative of the enthalpy with
respect to temperature:

CP = dη
dT ⋅ [H(T,φ1,m) −H(T,φ2,m

′)] + η ⋅ dH(T,φ1,m)
dT + (1 − η) ⋅ dH(T,φ2,m′)

dT
(D.2)

It is essential to note that φ1, φ2 and m depend on temperature along the two lines
of coexistence, and this leads to:

dH(T,φi(T ),m(T ))
dT = ∂H

∂T
+ ∂H
∂φi

⋅ ∂φi
∂T

+ ∂H
∂m

⋅ ∂m
∂T

(D.3)

The m derivative do not contribute because of the minimization condition which
defines m∗:

∂H

∂m
= ∂

∂m
⋅ ∂βG
∂β

= ∂

∂β
⋅ ∂βG
∂m

= 0 (D.4)

Thus,

Cp =
dη
dT [H(T,φ1,m) −H(T,φ2,m

′)] + η [∂H(T,φ1,m)
∂T

+ ∂H(T,φ1,m)
∂φ1

⋅ ∂φ1

∂T
]

+(1 − η) [∂H(T,φ2,m′)
∂T

+ ∂H(T,φ2,m′)
∂φ2

⋅ ∂φ2

∂T
]

(D.5)
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We set Nt, the Avogadro number and obtain the enthalpy of the homogeneous phase:

H(T,φi,m) = d(βG(φi))
dβ

= Nt ⋅ T 2 ⋅m(φi) ⋅ [φi
(∆S)1

2TM1

+ (1 − φi)
(∆S)2

2TM2

] . (D.6)

The variation of the fraction η is obtained by differentiating the lever rule

η(T ) = φ0 − φ2(T )
φ1(T ) − φ2(T ) (D.7)

giving:

dη

dT
=
dφ1

dT
(φ2 − φ0) +

dφ2

dT
(φ0 − φ1)

(φ2 − φ1)2 (D.8)

The derivatives of the enthalpy in the homogeneous bulk phase are :

∂H

∂φi
= Nt ⋅ T 2 ⋅m(φi) ⋅ [

(∆S)1

2TM1

− (∆S)2

2TM2

] (D.9)

Altogether:

∂H

∂T
= −1
kT 2

d2(βG(φi))
dβ2

= Nt ⋅ [
dm

dT
(φi) ⋅ T 2 (φi

(∆S)1

2TM1

+ (1 − φi)
(∆S)2

2TM2

) + 2m(φi) ⋅ T (φi
(∆S)1

2TM1

+ (1 − φi)
(∆S)2

2TM2

)]

(D.10)

where the slope dm/dT comes from the differentiation of equation (2.12):

dm

dT
(φi) =

φi
dh(1)

dT
+ (1 − φi)

dh(2)

dT
1

1−m(φi)2 − 4J
(D.11)



Appendix E

Derivatives of G

E.1 Generalized derivatives of G

We list below the generalized derivatives in term of the partial derivatives of G(φ1, φ2,m).

Dφ1G = ∂φ1G
Dφ2G = ∂φ2G

D2
φ1φ1
G = ∂2

φ1φ1
G −

(∂2
mφ1
G)2

∂2
mmG

D2
φ2φ2
G = ∂2

φ2φ2
G −

(∂2
mφ2
G)2

∂2
mmG

D2
φ1φ2
G = ∂2

φ1φ2
G −

∂2
mφ1
G × ∂2

mφ2
G

∂2
mmG

D3
φ1φ1φ1

G = −3
∂3
φ1φ1m

G × ∂2
φ1m
G

∂2
mmG

− ∂3
mmmG ×

(∂2
φ1m

g)3

(∂2
mmG)3 + ∂

3
φ1φ1φ1

G

+3∂3
φ1mm

G × (
∂2
φ1m
G

∂2
mmG

)
2

D3
φ2φ2φ2

G = −3
∂3
φ2φ2m

G × ∂2
φ2m
G

∂2
mmG

− ∂3
mmmG ×

(∂2
φ2m
G)3

(∂2
mmG)3 + ∂

3
φ2φ2φ2

G

+3∂3
φ2mm

G × (
∂2
φ2m
G

∂2
mmG

)
2
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D3
φ1φ1φ2

G = −2
∂3
φ1φ2m

G × ∂2
φ1m
G

∂2
mmG

+ ∂3
φ1φ2φ2

G −
∂2
mφ2
G

∂2
mmG

(∂3
φ1φ1m

G + (∂φ1mG)2 × ∂3
mmmG

(∂2
mmG)2 )

+2
∂3
φ1mm

G × ∂2
φ1m
G × ∂2

φ2m
G

(∂2
mmG)2 +

∂3
φ2mm

G × (∂2
φ1m
G)2

(∂2
mmG)2

D3
φ1φ2φ2

G = −2
∂3
φ1φ2m

G × ∂2
φ2m
G

∂2
mmG

+ ∂3
φ1φ2φ2

G −
∂2
mφ1
G

∂2
mmG

(∂3
φ2φ2m

G +
(∂2

φ2m
G)2 × ∂3

mmmG
(∂2

mmG)2 )

+2
∂3
φ1mm

G × ∂2
φ1m
G × ∂2

φ2m
G

(∂2
mmG)2 +

∂3
φ1mm

G × (∂2
φ2m
G)2

(∂2
mmG)2 (E.1)

E.2 Partial derivatives of our model

We now give the the partial derivatives for our specific expression of G which is
introduced in our work, i.e. eq. (2.33).

∂φ1G(φ1, φ2,m) = −h1(T )m + ln(φ1) − ln(1 − φ1 − φ2) + ln(1 − δ(1 − φ1 − φ2))
− ln(φ1 + φ2) − ξ(m − 1)[1 − 2φ1 − 2φ2]
+χ[1 − 2φ1 − φ2] − ξ[1 − 2φ1 − 2φ2]

∂φ2G(φ1, φ2,m) = −h2(T )m + ln(φ2) − ln(1 − φ1 − φ2) + ln(1 − δ(1 − φ1 − φ2))
− ln(φ1 + φ2) − ξ(m − 1)[1 − 2φ1 − 2φ2]
−χφ1 − ξ[1 − 2φ1 − 2φ2]

∂mG(φ1, φ2,m) = −h1(T )φ1 − h2(T )φ2 − 4J̃m + 1
2 ln(1 +m

1 −m) − ξ(1 − φ1 − φ2)(φ1 + φ2)

∂m,φ1g(φ1, φ2,m) = −h1(T ) + ξ(2φ1 + 2φ2 − 1)
∂m,φ2g(φ1, φ2,m) = −h2(T ) + ξ(2φ1 + 2φ2 − 1)

∂2
mmG(φ1, φ2,m) = −4J̃ + 1

1 −m2

∂2
φ1φ1
G(φ1, φ2,m) = 1

1 − φ1 − φ2
+ δ

1 − δ(1 − φ1 − φ2)
+ 1
φ1

− 1
φ1 + φ2

+ 2ξ(m − 1) − 2(χ − ξ)

∂2
φ2φ2
G(φ1, φ2,m) = 1

1 − φ1 − φ2
+ δ

1 − δ(1 − φ1 − φ2)
+ 1
φ2

− 1
φ1 + φ2

+ 2ξ(m − 1) + 2ξ

∂2
φ1φ2
G(φ1, φ2,m) = 1

1 − φ1 − φ2
+ δ

1 − δ(1 − φ1 − φ2)
− 1
φ1 + φ2

+ 2ξ(m − 1) + 2ξ − χ
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∂3
φ1φ1φ1

G(φ1, φ2,m) = 1
(1 − φ1 − φ2)2 +

1
(φ1 + φ2)2 −

1
φ2

1
− δ2

[1 − δ(1 − φ1 − φ2)]2

∂3
φ2φ2φ2

G(φ1, φ2,m) = 1
(1 − φ1 − φ2)2 +

1
(φ1 + φ2)2 −

1
φ2

2
− δ2

[1 − δ(1 − φ1 − φ2)]2

∂3
φ1φ1φ2

G(φ1, φ2,m) = 1
(1 − φ1 − φ2)2 +

1
(φ1 + φ2)2 −

δ2

[1 − δ(1 − φ1 − φ2)]2

∂3
φ1φ2φ2

G(φ1, φ2,m) = 1
(1 − φ1 − φ2)2 +

1
(φ1 + φ2)2 −

δ2

[1 − δ(1 − φ1 − φ2)]2

∂3
φ1φ1m

G(φ1, φ2m) = 2ξ
∂3
φ2φ2m

G(φ1, φ2,m) = 2ξ
∂3
φ1φ2m

G(φ1, φ2,m) = 2ξ
∂3
φ1mm

G(φ1, φ2,m) = 0
∂3
φ2mm

G(φ1, φ2,m) = 0

∂3
mmmG(φ1, φ2,m) = 2m

(1 −m2)2 (E.2)

The above expressions were checked with the help of Mathematica software, which
was also used for solving numerically the non linear equations. The derivatives
∂3
φimm
G vanishes, which simplify a bit the expressions obtained for the third order

derivatives D3G.

Finally, let us mention a relation between the determinant of the Hessian matrix
and the original Hessian matrix:

RRRRRRRRRRRRRRR

∂2
φ1φ1
G ∂2

φ1φ2
G ∂2

φ1m
G

∂2
φ2φ1
G ∂2

φ2φ2
G ∂2

φ2m
G

∂2
mφ1
G ∂2

mφ2
G ∂2

mmG

RRRRRRRRRRRRRRR
= ∂2

mmG × ∣ D
2
φ1φ1
G D2

φ1φ2
G

D2
φ2φ1
G D2

φ2φ2
G ∣ (E.3)

The spinodal line can be found by setting any of the two above determinants to
zero. However, it did not seem to us that the use of the 3 × 3 matrix would lead to
simpler treatment than the 2 × 2 matrix that we considered in our approach.
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We introduce a simple and predictive model for determining the phase stability of ternary phospholipid-

cholesterol mixtures. Assuming that competition between the liquid and gel order of the phospholipids is

the main driving force behind lipid segregation, we derive a Gibbs free energy of mixing, based on the

thermodynamic properties of the lipids main transition. A numerical approach was devised that enables

the fast and efficient determination of the ternary diagrams associated with our Gibbs free energy. The

computed phase coexistence diagram of DOPC/DPPC/cholesterol reproduces well-known features for this

system at 10 �C, as well as its evolution with temperature.
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Lipid membranes have captured the attention of phys-
icists, chemists, and biologists alike owing to their promi-
nent structural and functional roles in living cells, and to
the pervading use of lipid based products in the pharma-
ceutical, food, and cosmetic industries [1,2]. In recent
years, ternary lipid systems comprising phospholipids
and cholesterol were established as important model sys-
tems in relation with lateral lipid segregation phenomena
in membranes. At the root of this rich phenomenology lies
a complex phase behavior of certain lipid mixtures, in
which cholesterol molecules play a unique role. Ternary
systems comprising a phospholipid in the liquid state, a
second phospholipid in the gel state and cholesterol display
several unique characteristics, the two most important of
them being arguably a wide binary coexistence gap be-
tween the so-called liquid disordered (Ld) and liquid or-
dered (Lo) phases, and a region of triple coexistence [3–5].

A prominent feature of phospholipid membranes is their
main thermodynamic transition, from a low temperature
gel or rippled gel phase (usually termed L�, P�), to a high

temperature liquid phase (L�) [2]. A sharp change in the
statistical conformations of the hydrophobic chains occurs
at the transition, associated with membrane thinning and an
increase of the area per phospholipid. The transition takes
place at a melting temperature Tm whose precise value
depends on the chemical structure of the chains. It is a
weakly first order transition for a membrane of pure com-
position. The thermotropic behavior of phospholipid bi-
nary mixtures has been studied since the seminal work of
Mabrey and Sturtevant [6] and supports the view that
liquid-prone and gel-prone lipids tend to phase separate.
This suggests that mixtures composed of phospholipids
with the same head group have their miscibility behavior
governed by the competition between their liquid and gel
conformations. Hence, a description of ternary lipid sys-
tems must necessarily, and to some extent, account for the
internal state of the phospholipids.

We introduce in this Letter a simple, robust, and pre-
dictive model of a phospholipid-cholesterol mixture’s

phase coexistence. Our model aims at predicting the mis-
cibility behavior of phospholipids, based upon the thermo-
dynamic properties of their main transition [7–10].
The thermotropic behavior of the phospholipid tails is
modeled with an internal order parameter, in a way that
schematically reproduces the thermodynamic features of
the liquid-gel transition. The peculiar features of
cholesterol-phospholipid interactions [11,12] are ac-
counted for by means of a nonideal mixing entropy, gen-
eralizing the one proposed by Komura et al. [13]. In
addition, we outline an original numerical procedure for
the derivation of ternary phase diagrams.
The stability of a mixture is governed by its Gibbs free

energy of mixing Gmix. This thermodynamic function
expresses the free-energy difference between the homoge-
neous mixed state and the system comprising the separated
pure components with the same global composition.
Ternary mixtures in membranes are therefore described
by GmixðT; n1; n2; n3Þ, where the ni are the molar contents
of each lipid, and T the temperature. We assume that the
hydrostatic pressure remains constant, close to the standard
value, and that lipid membranes have no tension, so that
these two intensive parameters are absent from Gmix.
Membranes are assumed to be well hydrated with a large
excess of water, and free from any other external fields [14].
The simplest realization of our model, described in this

Letter, assumes that the areas per lipid ai do not changewith
temperature. This allows us to express Gmix in terms of the
surface fractions �1, �2, and �C of each lipid component,
�C standing for the cholesterol. We claim that it is accept-
able to neglect all changes in the area per lipid at
T ¼ Tm, in a first approximation to the description of the
mixture phase coexistence, especially in the absence of
membrane tension. This restriction is not a fundamental
one, and versions of our model accounting for membrane
expansion at the transitionwill be presented elsewhere [15].
A frequent approximation to nonideal solutions is ob-

tained by combining an ideal mixing entropy with a qua-
dratic enthalpic term. For a membrane of area A, the free
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energy of mixing per unit of area, gmix ¼ �Gmix=A,
reads:

gmix ¼ �1

a1
lnð�1Þ þ�2

a2
lnð�2Þ þ�C

aC
lnð�CÞ

þ �12�1�2 þ �1C�1�C þ �2C�2�C; (1)

with �1 þ�2 þ�C ¼ 1 and � the Boltzmann factor
1=kBT, and a1, a2, and aC are the areas of the three
different lipid species. One observes that expression (1)
alone does not account for the main transition, and that the
effective interaction parameters �ij are expected to display

a nontrivial and unknown temperature dependence. We
could not obtain, based on (1), any diagram comparable
with the experimental ones. Moreover, our attempts to do
so lead to unexpectedly large values of aC, conflicting with
the view that cholesterol molecules are smaller than
phospholipids.

Both experiments and simulations suggest that choles-
terol may form transient bound complexes with phospho-
lipid moieties surrounding them [11,12]. The presence of
such complexes prevents cholesterol molecules from oc-
cupying too many neighboring positions, thus giving the
semblance of a large excluded volume. To account for the
statistical behavior of cholesterol molecules, we derived
the following entropic contribution, where all lipid areas
have been set to unit:

GðEÞð�1; �2Þ ¼ �1 lnð�1Þ þ�2 lnð�2Þ þ�C lnð�CÞ
� ð�1 þ�2Þ logð�1 þ�2Þ
þ ð��1 ��CÞ logð1� ��CÞ: (2)

This expression originates from a lattice enumeration of
configurations, following Flory, where each cholesterol
molecule deprives an average number � of neighboring
sites from the possibility of being occupied by another
cholesterol molecule. Expression (2) reduces to ideal mix-
ing when � ! 1, and is similar to the entropy of Komura
et al. for binary systems and � ¼ 2 [13]. It accounts for
both the mixing term and the excluded volume between
cholesterol molecules, consistent with the presence of
cholesterol complexes. It finally sets a maximal value
�C � 1=� to the mixture content in cholesterol.

Several Landau order parameters have been proposed
for describing the liquid-gel chain melting [7,8,10,13,16].
Theories based on a single scalar order parameter can
pretend to capture only rough features of the main transi-
tion. This is why, for simplicity and generality, we restrict
ourselves to a schematic approach, a two-state model based
on a scalar order parameter m restricted to the interval
[� 1, 1]. The mean-field Ising model under finite external
field serves as a guide [17].

GðIÞðT;�1; �2; mÞ ¼ �mfh1ðTÞ�1 þ h2ðTÞ�2g
� 2~Jm2 þ

�
1þm

2

�
ln

�
1þm

2

�

þ
�
1�m

2

�
ln

�
1�m

2

�
; (3)

with

h1ðTÞ ¼ �H1

2RT2
1

ðT � T1Þ; h2ðTÞ ¼ �H2

2RT2
2

ðT � T2Þ;
(4)

and R is the gas constant. Equation (3) represents a mean-
field Ising model in the presence of an effective external
field heff ¼ h1�1 þ h2�2. For ~J � ~Jc ¼ 1=4, the m de-

pendence of GðIÞ is shaped as a double well potential, with
a linear bias induced by heff . The order parameter m
fluctuates freely around an optimal value m? located at

the global minimum of GðIÞ, with (T, �1, �2) constant.
In practice, as soon as ~J is larger than 0.3, the two
local minima are close to �1. We conventionally ascribe
mg ’ �1 to represent the L� gel phase, while ml ’ 1 is set

to represent the L� liquid phase. The coupling ~J expresses
that neighboring lipid tails tend to be in the same state,
irrespective of the chemical species to which they belong.
This is the main cooperative effect that induces the liquid-
gel separation.
The term heff acts as a switch that drives the order

parameter from itsm? ¼ mg gel state to itsm
? ¼ ml liquid

state, upon changing its sign from negative to positive. One
sees from (4) that if lipid 1 is pure, h1ðTÞ changes its sign at
T ¼ T1 while m

?ðTÞ suddenly jumps from mg to ml, with

an amplitude �m? ’ 2. The enthalpic change is close to
�H1, so that �H1 can be identified with the molar latent
heat at the main transition. The difference in Gibbs free
energy between the liquid and gel phases at T � T1 is then
extrapolated linearly with T at the vicinity of the transition.

The contribution GðIÞ is thus entirely specified by the
temperature and the enthalpy difference at the transition
of the lipid species composing the mixture. This term
induces a liquid-gel separation in the whole temperature
range [T1, T2].
Cholesterol-phospholipid interactions are further ac-

counted for with a specific interaction term

G ðCÞð�1; �2; mÞ ¼ ��1�C � �mð�1 þ�2Þ�C: (5)

Equation (5) comprises a m-dependent contribution, pro-
portional to �, which marks the preference of cholesterol
for either them ¼ 1 liquid order, or them ¼ �1 gel order,
according to the sign of �. This interaction does not
discriminate between saturated and unsaturated lipids,
since it describes a coupling to the chain order. Other
cholesterol-phospholipid interactions are accounted for
by a m-independent contribution in �. This order-
insensitive interaction introduces a coupling between
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cholesterol and the unsaturated component. We found that
interactions between cholesterol and the saturated compo-
nent are not required to describe the experimental phase
diagrams.

The sum GðT;�1; �2; mÞ ¼ GðEÞ þ GðIÞ þGðCÞ is our
main thermodynamic potential. In the absence of surface
tension, and assuming that changes in the internal state
occur at constant volume, m fluctuates around its optimal
value m?, with m ¼ m? in the thermodynamic limit.
Therefore, the free energy of mixing gmixðT;�1; �2Þ is
obtained by minimizing GðT;�1; �2; mÞ with respect to
m at fixed temperature and surface fractions [10].

gmixðT;�1; �2Þ ¼ min
m

½GðT;�1; �2; mÞ�jT;�1;�2

¼ GðT;�1; �2; m
?ðT;�1; �2ÞÞ: (6)

The Gibbs free-energy surface gmix arises from project-
ing out m from the four-dimensional potential G.
Equivalently, gmix can be viewed as the restriction of G
to the submanifold @mG ¼ 0. For ~J > ~Jc, the constraint
@mG ¼ 0 defines two stable submanifolds, a negative
mgðT;�1; �2Þ and a positive mlðT;�1; �2Þ branch, linked,
respectively, with the gel and liquid phases. At fixed
(T, �1, �2) only one of the two branches is the stable
one, while the other branch remains metastable.

In ternary mixtures it is known that phase coexistence is
dictated by the convexity properties of gmixðT;�1; �2Þ
relative to �1, �2. Minimization of gmix is equivalent to
finding ~gmix, the lower convex hull of gmix, that displays
regions of three kinds. Points of the convex hull in contact
with the original surface are stable monophasic regions.
Regions lying above triple tangent planes correspond to
triple coexistence. The remaining part of the convex hull
corresponds to developable patches of surface, wrapped
around double tangent lines that connect pairs of points
with distinct composition (tie-lines) [18]. In practice,
we used a public domain routine, qhull, to compute a
discrete approximation of ~gmix [19]. The starting point is
a fine mesh discretization of gmix over the relevant domain
of composition f�1; �2 � 0; �1 þ�2 � 1� 1=�g. Then
qhull computes a triangulated surface approaching ~gmix.
Triple coexistence corresponds to facets with all sides
much larger than the initial mesh size. Double coexistence
is associated with elongated triangles, with a shortest side
much smaller than the two longer sides, the latter being
oriented parallel with the tie lines. Finally, small facets of
the convex minimization are linked with stable monopha-
sic regions. The projection of the triangulated ~gmix surface
onto the composition plane provides directly a fast and
accurate approximation of the Gibbs phase diagram shown
in Fig. 1(a). This discrete solution can then be refined
according to the usual rules for the determination of ternary
phase diagrams. Details of these calculations will be given
in a forthcoming publication [15].

Arguably, the most widely studied ternary lipid phase
diagram for membranes containing cholesterol is the ter-
nary mixture DOPC/DPPC/Chol. DOPC is a double tail
molecule with 18 carbons per tail and a cis-unsaturated
bond on the ninth carbon. It has a low main transition
temperature T1 at �21 �C and an associated enthalpy
change �H1 evaluated at 7:7 kcal=mol [20]. DPPC also
has a phosphatidylcholine head but here the two 16-carbon
tails have no unsaturated bonds, leading to a higher tran-
sition temperature T2 at 42 �C, and associated enthalpy
change �H2 ¼ 8:7 kcal=mol [20]. Within our approach,
the above temperature and enthalpy values and a single
coupling parameter ~J ¼ 0:35—see Eq. (3)—describe well
published data [21] for the experimental binary DOPC/
DPPC mixing behavior. For a complete description of the
ternary phase diagram our model further requires three
parameters: �, �, and �. The value of � is bound by
the maximum amount of cholesterol that a membrane
can hold, estimated here at �C ’ 0:45 or equivalently � ¼
1=�C ¼ 2:2 [3]. The parameter �, as defined in Eq. (5),
quantifies the preference of cholesterol for the liquid dis-
ordered phase with respect to the gel phase [1,22]. Binary
diagrams of DPPC/Chol computed with � ¼ 1:8 reproduce
well the temperature behavior of the miscibility gaps oc-
curring between the L�-gel phase and the Lo liquid ordered

phase as determined from giant unilamellar vesicles in [23]
and from NMR [24]—see Fig. 2. Equation (5) also includes
a repulsive m-independent interaction between cholesterol
and the unsaturated component, given by �. At 10 �C a
value of � ¼ 6:0 promotes both a triple coexistence region
and a large biphasic domain, with oblique Lo=Ld tie lines
of positive slope and a plait point on the left side of the
Gibbs triangle, in agreement with experimental findings
[5]. A larger value of � there would open a miscibility gap,
unseen for DOPC/Chol, while a smaller value would
drastically reduce the biphasic Lo=Ld domain. In our
model a continuous path connects the Lo and Ld regions
around the critical point, where the order parameter m
remains positive. The L� phase on the lower right corner

of the phase diagram is associated with a negative m value

a) b)Chol.

DOPCDPPCDOPC

Chol.

DPPC

Lo

Ld
L

FIG. 1 (color online). (a) Discrete approximation to the ternary
phase diagram obtained from the lower convex hull method
explained in the text. (b) Final phase diagram determined from
the analytical refinement of the discrete approximation.
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and separated from the rest of the diagram by a disconti-
nuity in m across the coexistence gap.

The evolution of the Gibbs diagram with respect to
temperature is displayed in Fig. 2. The diagram was drawn
here under the assumption of a constant � parameter, and a
constant value of the coupling contribution kBT� denoting
its pure enthalpic nature. Our diagram at the lower tem-
perature in Fig. 2, displays the main expected features for a
DOPC/DPPC/Chol mixture. As the temperature increases,
the triple coexistence triangle shrinks and vanishes be-
tween 15 �C and 20 �C. Also, the Lo=Ld biphasic region,
resting initially on the left side of the triangle, detaches and
assumes a closed shape of decreasing surface. A first
critical point, on the left side of the Gibbs diagram, evolves
slowly away from the edge [4]. A second critical point,
initially hidden by the triple coexistence region, is pre-
dicted to emerge at the binary detachment temperature.
Note also that within our approach the extension of the L�

domain, on the right bottom part of the diagram, gradually
decreases up to T2.

As a summary we presented a model for phase coex-
istence in ternary phospholipid-cholesterol mixtures. Our
approach is based on a mean-field two-state description of
the phospholipids and a nonideal mixing entropy for cho-
lesterol. All parameters but one in our system are bound by
known thermodynamic or physical properties. We com-
bined analytical theory and numerical convex minimiza-
tion to show the predictive power of our model for the
ternary mixture DOPC/DPPC/Chol. Resulting phase
coexistence diagrams reproduce well known features for

this system at 10 �C as well as the temperature variation of
the diagram.We are also encouraged by preliminary results
from related ternary systems that further indicate that our
model successfully describes a large variety of lipid/lipid/
cholesterol mixtures.
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Abstract We propose a new theoretical model for describing the formation and the
phase coexistence in ternary mixtures of phospholipids and cholesterol. This model com-
bines the properties of the liquid-gel phase transition, described with an internal order pa-
rameter, with some non ideal mixing behavior accounting for the influence of cholesterol,
and inspired by Flory’s description of polymer melts. Our thermodynamical approach
successfully accounts for the coexistence of binary phospholipid mixtures such as DOPC-
DPPC. The order parameter, originally introduced by Doniach, describes in a simplified
manner the thermodynamics of the alkyl chains in a lipid bilayer, by analogy with the Ising
model under magnetic field. We not only obtain ternary diagrams resembling to experi-
mental diagrams, but also discuss the evolution of these phase equilibria with temperature.
This approach is then generalized to other lipid components, namely PSM, POPC and
DiphytanoylPC. Our approach, made of a combination of discrete geometry calculations
and numerical resolutions of the analytical equations for determining the properties of the
Gibbs diagram is novel, and applies to a wide class of thermodynamic models with order
parameters. A Landau-Ginzburg extension of the above model allows us to study inhomo-
geneous systems. A first important application consists in determining the line tension τ
and the profile of an interface separating macrodomains of ordered and disordered liquid
phase. We extend Cahn’s wetting theory to the case of a circular inclusion of finite radius
R in a “lipid sea”, at coexistence and off-coexistence. We finally discuss the effects of the
proximity of a critical point, and the consequences relative to mutual interactions between
impurities induced by the wetting process.

Resume Nous proposons un modèle théorique original pour décrire le processus de
formation et la coexistence de phase dans les mélanges ternaires de phospholipides et de
cholestérol. Ce modèle combine les effets de transitions de phase liquide-gel, décrits à l’aide
d’un paramètre d’ordre interne, et les effets de mélange non-idéaux inspirés des modèles
de Flory pour décrire l’influence du cholestérol. Notre approche thermodynamique décrit
avec un réel succès la coexistence de mélanges phospholipide binaires, tel que DOPC-
DPPC. Le paramètre d’ordre inspiré de l’approche de Doniach et de l’analogie avec le
modèle d’Ising sous champ magnétique modélise de façon simplifiée la thermodynamique
des chaînes alkyles dans la bicouche lipidique. Nous obtenons d’une part des diagrammes
ternaires ressemblant aux diagrammes expérimentaux mais aussi la dépendance en tem-
pérature des équilibres de phases. Nous décrivons également des diagrammes pour d’autres
espèces, telles que PSM, POPC ou DiphytanoylPC. Notre approche, combinant géométrie
discrète et résolution des équations analytiques pour la détermination des caractéristiques
des diagrammes de Gibbs est novatrice, et s’applique à une classe étendue de modèles
thermodynamiques avec paramètre d’ordre. Nous cherchons ensuite à décrire des systèmes
inhomogènes à l’aide d’une généralisation de Ginzburg-Landau du modèle précédent. Une
application importante consiste à déterminer la tension de ligne τ et le profil d’une inter-
face entre macrodomaines de phase liquide ordonné et désordonné. Enfin, nous étendons
la théorie du mouillage de Cahn à la description de l’environnement d’une inclusion cir-
culaire de rayon fini R dans un “océan lipidique”, à coexistence et hors coexistence. Nous
discutons pour finir les effets de la proximité du point critique et ses conséquences quant
aux interactions entre impuretés induites par les effets de mouillage.


