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A mis hermanas



No hay nada mas préctico que

una buena teoria.

(Kurt Lewin, 1952)

There is nothing more practical

than a good theory.

(Kurt Lewin, 1952)



Resumen

Actualmente, los dispositivos basados en materiales semiconductores estdn presentes en
varias aplicaciones de comunicacién y procesamiento de informaciéon. En estos dispos-
itivos, las distintas operaciones involucradas implican el desplazamiento controlado de
cargas. Para el almacenamiento de informacion, arreglos de miltiples capas formadas por
metales magnéticos, asi como materiales aislantes, son ampliamente utilizados. En este

ultimo caso, la informacion es registrada y recuperada al reorientar dominios magnéticos.

La posibilidad de construir dispositivos que uliticen otra propiedad de las particulas,
el llamado espin, da lugar al campo de la Espintronica, a diferencia de la electréonica
tradicional basada en la carga eléctrica de las particulas. Mas atn, la Espintrénica con
materiales semiconductores busca el desarrollo de dispositivos hibridos en los cuales las
tres operaciones bésicas (16gica, comunicacién y almacenamiento) puedan estar integradas
en un mismo material. A pesar de los grandes progresos y avances en esta direccién, son
varias las preguntas y dificultades técnicas que quedan por resolver. El desafio, entre
otros, es entonces entender cémo el espin se comporta e interacciona en un material
sélido. El espin, al ser una propiedad cuantica de cualquier particula elemental, estd
representada por un estado, susceptible de ser afectado por alguna dada interaccién. El
espin de un electrén, por ejemplo, puede no sélo interaccionar con un campo magnético
externo, sino también acoplarse a otro grado de libertad del electrén. La interaccién de
espin-6rbita, precisamente, se refiere al acoplamiento entre el espin y el estado orbital del
mismo electron.

En la primera parte de esta tesis consideramos este tltimo efecto, y en particular, nos
ocupamos de un semiconductor bulk de GaAs dopado, y estudiamos la relajacién de espin
debido a la interacciéon de espin-érbita. Las densidades de dopantes de nuestro interés
estdn en un rango cercano a la densidad critica correspondiente a la transicion metal-

aislante. Por debajo de esta densidad, la propiedades electrénicas del sistema son las de



Resumen

un material aislante, mientras que para densidades mayores, aparece un comportamiento
de tipo metalico y en consecuencia, la conductividad a temperatura nula adquiere un valor
finito. En esta tesis estudiamos la relajacién de espin del lado metalico de la transicion
debido a dos clases diferentes de interaccién espin-6rbita. La primera de ellas esta aso-
ciada a la presencia de impurezas, mientras que la otra aparece como consecuencia de la
asimetria de inversion causada por la presencia de dos tipos diferentes de dtomos en una
celda unidad. Es decir, esta ultima es una propiedad inherente de la estructura cristalina
del material y es también conocida como la interacciéon de Dresselhaus o BIA, por sus
siglas en inglés (bulk inversion asymmetry). Para atacar el problema de la dindmica
de espin, desarrollamos una formulacién analitica basada en la difusiéon de espin de un
electrén en el régimen metalico de conduccién en la banda de impurezas. A través de esta
derivacién logramos una expresion para el tiempo de relajacion de espin, dependiente de la
densidad de dopantes y de la intensidad de la interaccién de espin-érbita. Notablemente,
dicha expresién esta exenta de pardametros ajustables. Complementamos este esquema y
respaldamos los resultados obtenidos analiticamente con el cdlculo numérico del tiempo
de vida del espin. Para ello, llevamos a cabo la evolucién temporal de un estado inicial con
un espin definido. De esta manera, el valor medio del operador de espin evoluciona bajo
la influencia del Hamiltoniano completo, que comprende la interaccién de espin-orbita y
el Hamiltoniano del modelo de Matsubara-Toyozawa. Este tultimo describe la banda de
impurezas pero no toma en cuenta el espin. El estado inicialmente polarizado, al no ser un
autoestado del operador Hamiltoniano completo, experimenta un decaimiento temporal

siguiendo un dado comportamiento, del cual extraemos el tiempo de relajacién de espin.

En la segunda parte de esta tesis consideramos un sistema cuantico de dimension cero
(punto cuédntico o quantum dot) y estudiamos el efecto de la interaccién de espin-Grbita
sobre los autoestados. El quantum dot esté alojado entre dos heteroestructuras implan-
tadas en un nanohilo de material InAs. Este material presenta la particularidad que, al ser
crecido de manera unidimensional, adquiere una estructura de tipo wurtzita, a diferencia
de la estructura zinc blenda que tiene en su fase bulk. Aqui desarrollamos una solucién
analitica para el quantum dot, considerando la interaccién de espin-érbita propia de este
tipo de estructuras. Mas precisamente, tomamos la interacciéon de Dresselhaus de la banda
de conduccion de un material wurtzita que, ademas de un término ciibico en k -aunque de

diferente forma que el de zinc blenda- presenta uno lineal, propio de la wurtzita. El efecto
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de un campo magnético débil es introducido a través del acoplamiento de tipo Zeeman.
Entre los resultados se incluyen ademas la estructura de espin en el quantum-dot y el
calculo del factor g efectivo en funcién de las dimensiones del dot. Por ultimo, estudiamos
y calculamos la relajaciéon de espin debido a fonones acusticos, teniendo en cuenta para

ello los potenciales de fonén correspondientes a la estructura wurtzita.

Palabras claves: interaccion espin-érbita, relajacién de espin, semiconductores dopados,

nanoestructuras, puntos cudnticos, fonones
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Summary

Spin relaxation in doped semiconductors and semiconduc-
tor nanostructures

At present, information-processing and communications are mainly based on semicon-
ductor devices, within which all the operations imply the controlled motion of small pools
of charge. For information-storage, multilayers of magnetic metals and insulators are pre-
dominantly used. In this last case, the information is stored and retrieved by reorienting
magnetic domains. The possibility of building devices that use another property of parti-
cles, the spin, gives rise the so-called Spintronics, in contrast to the current charge-based
technology. Moreover, semiconductor spintronics pursues the development of hybrid de-
vices where the three basic operations -logic, communications and storage- within the
same materials technology would be possible. In spite of the strong progress and nu-
merous advances in the field, many fundamental questions and technical hurdles remain
unsolved. A lot of effort is therefore devoted to understand how the spin behaves and
interacts with its solid-state environment.

The spin, being a quantum property of any elementary particle, is represented by a state
that may change due to some given interaction. The spin of an electron, for example, can
not only interact with an external magnetic field, but also with another degree of freedom
of the electron. In this sense, the so-called spin-orbit interaction precisely refers to the
coupling between the spin and the orbital state of the same electron.

In the first part of this thesis we regard this latter effect, and in particular, we adress
the problem of the spin-relaxation in a bulk doped GaAs semiconductor resulting from
the spin-orbit interaction. Our interest is focused on donor density values close to a crit-
ical value, where a metal-insulator transition occurs. Below this density, the electronic

properties of the system correspond to that of the insulating regime, while for larger den-
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Summary

sities, a metallic behaviour appears and accordingly, a non-zero conductivity is measured
at T'= 0. It is on this metallic side of the transition where we study the spin relaxation
due to two different types of spin-orbit coupling. The first of them is associated to the
presence of extrinsic impurities, while the other one appears as a consequence of the bulk
inversion asymmetry (BIA) brought about by the the presence of two different atoms
(Ga and As) in a unit cell. This latter SOC is also known as the Dresselhaus coupling.
To tackle the spin dynamics problem, we develop an analytical formulation based on the
spin diffusion of an electron in the metallic regime of conduction of the impurity band.
The full derivation provides us with an expression for the spin-relaxation time, which
depends on the doping density and the spin-orbit coupling strength, and remarkably, is
free of adjustable parameters. We complement this approach and back our analytical
results with the numerical calculation of the spin lifetime. For this, we perform and track
the exact time evolution of an initial state with a defined spin state. We look at the
spin operator evolving under the influence of the full Hamiltonian, containing both the
spin-orbit interactions and the spin-free Hamiltonian (based on the Matsuba-Toyozawa
model) describing the impurity band. The initial polarized state, being no longer an
eigenstate, decays following a certain damped time evolution, from which we extract the

spin-relaxation time.

In the second part of the thesis we consider a zero-dimensional system and study the
effect of spin-orbit coupling on the eigenstates. The quantum dot is hosted between two
heterojunctions placed in an InAs nanowire. This semiconductor, when grown unidimen-
sionally, presents a wurtzite-type crystal structure, unlike its zincblende phase in bulk.
We develop here an exact analytical solution for the quantum dot, taking into account
the proper effective spin-orbit coupling for this type of material. We focus on the BIA
coupling, which presents a cubic-in-k SOC, yet with a different expression from that of
zincblende, and add also the linear-in-k SOC, characteristic of WZ materials. A Zeeman
interaction from an external magnetic field is included as well. We calculate the energy
spectra for different values of the spin-orbit coupling strength. We also display the spin
texture across the dot, compute the effective g-factor as a function of the dot size, and
calculate the spin-relaxation due to acoustic phonons, taking into account the phonon

potentials corresponding to the wurtzite structure.



Keywords: spin-orbit, spin-relaxation, doped semiconductors, nanostructures, quantum

dots, phonons
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Résumé de These

Actuellement, les dispositifs a base de matériaux semi-conducteurs sont présents dans
diverses applications de communication et traitement d’information. Dans ces dispositifs,
les différentes opérations impliquent le déplacement controlé des charges. Pour le stockage
d’information, des arrangements a multiples couches formées par des métaux magnétiques,
ainsi que des matériaux isolants, sont largement utilisés. Dans ce dernier cas, 'information
est enregistrée et récupérée en réorientant les domaines magnétiques.

La possibilité de concevoir des dispositifs qui utlisent une autre propriété des porteurs de
charge, le spin, fonde le domaine de la spintronique, contrairement a I’électronique tradi-
tionnelle, basée sur la charge des particules. De plus, la spintronique des matériaux semi-
conducteurs cherche a développer des dispositifs hybrides dans lesquels les trois opérations
basiques (c’est-a-dire logique, communication et stockage) peuvent étre intégrées dans un
seul matériau. Bien que il y a eu un grand progres dans cette direction, plusieurs questions
et difficultés techniques restent a résoudre. Le défi, entre autres, est alors de comprendre
le comportement et les interactions du spin dans un matériau solide.

Le spin, étant une propriété quantique commune a toutes les particules élémentaires,
est représenté par un état susceptible d’étre modifié par une interaction donnée. Le spin
d’un électron, par exemple, peut interagir avec un champ magnétique extérieur, mais
aussi peut-il se coupler a d’autres degrés de liberté de 1’électron. L’interaction spin-orbite
concerne précisément le couplage entre le spin et 1’état orbital du méme électron.

Dans la premiere partie de cette these nous considérons ce dernier effet, et en partic-
ulier, nous traitons un semi-conducteur de GaAs dopé, et nous y étudions la relaxation
du spin. Les valeurs de densité d’impuretés de notre intérét sont proches a la densité
critique ou une transition metal-isolant apparait. En dessous de cette densité, les pro-
priétés électroniques sont celles d’un matériau isolant, tandis que pour des densités plus

élevées, le comportement est métallique et par conséquent, la conductivité a une valeur
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Résumé de Theése

finie & température nulle. Dans cette these, nous étudions la relaxation du spin du coté
métallique de la transition, ou nous considérons deux types différents d’interaction de
spin-orbite. Le premier d’entre eux est associé a la présence d’impuretés, tandis que
I’autre se produit a cause de I'asymétrie d’inversion provoquée par la présence de deux
types d’atomes différentes dans la cellule élémentaire. Autrement dit, ce dernier est une
propriété intrinseque de la structure cristalline du matériau, également connu sous le nom
de interaction de Dresselhaus ou bien BIA (bulk inversion asymmetry). Pour s’attaquer
au probleme de la dynamique du spin, nous développons une formulation analytique basée
sur la diffusion du spin de I’électron dans le régime métallique de conduction dans la bande
d’impuretés. A travers cette dérivation nous obtenons une expression pour la durée de
vie du spin, qui dépend de la densité de dopage et de l'intensité du SOC, sans aucun

parametre ajustable.

Nous confirmons cette approche et constatons les résultats obtenus analytiquement
avec un calcul numérique de la durée de vie du spin. Pour cela, nous obtenons 1’évolution
temporelle & partir d'un état initial avec une orientation de spin definie. Ainsi, la valeur
moyenne de I'opérateur du spin évolue sous 'influence du hamiltonien complet, qui com-
prend l'interaction spin-orbite plus le hamiltonien du modele Matsubara-Toyozawa. Ce
modele décrit la bande d’impuretés, mais ne tient pas compte du spin. D’un autre coté,
I’état initialement polarisé n’est pas un état propre de 'opérateur hamiltonien complet,
et donc il décroit dans le temps suivant un comportement exponentiel, a partir duquel

nous extrayons le temps de relaxation du spin.

Dans la deuxieme partie de cette these, nous considérons un systeme quantique a di-
mension nulle (boite quantique ou quantum dot) afin d’étudier l'effet de l'interaction
spin-orbite sur les états propres du systeme. Le boite quantique est hébergée entre deux
hétérostructures implantées dans un nanofil de matériau InAs. La particularité de ces
nanofils de InAs est qu’ils présentent la structure cristalline de type wurtzite, méme si ce
matériau a une structure zincblende dans la phase massive. Nous développons ici une solu-
tion analytique pour la boite quantique en incluant l'interaction spin-orbite caractéristique
de ce type de structures. Plus précisément, nous prenons en compte 'interaction de Dres-
selhaus dans la bande de conduction d’un matériau wurtzite, qui présente un terme cu-
bique en k, pourtant avec une expression différente de celle de zincblende, et en plus un

terme linéaire, propre a la structure wurtzite. L’effet d’'un champ magnétique est introduit
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a travers le couplage de type Zeeman. De plus, nous avons étudié la structure spatiale
de la distribution de spin sur toute la boite quantique et calculé le facteur g effectif en
fonction de la taille du systeme. Enfin, le calcul exact des états propres nous permet
d’étudier la relaxation du spin diie aux phonons acoustiques, en utilisant pour cela les

potentiels d’interaction electron-phonon propres a la structure wurtzite.

Mots clés: interaction spin-orbite, relaxation du spin, semi-conducteur dopé, nanos-

tructure, boite quantique, phonon
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Résumé de Theése

Introduction

Le spin est une propriété intrinseque des électrons, photons, quarks et, en général, des
particules élémentaires, et son origine se trouve dans la physique quantique relativiste.
Son existence a été proposée il y a 90 ans par Pauli, en essayant de résoudre certaines
incohérences observées dans quelques spectres moléculaires. Il a ensuite appelé ce nouveau
degré de liberté le spin et a affirmé que dans le cas des électrons, il ne peut prendre que
deux valeurs possibles, ce qui était plus tard vérifié pour des électrons, ainsi que pour les
protons et les neutrons.

Conventionnellement, le spin est associé au moment cinétique intrinseque, et en raison
de la maniere dont il est couplé au champ magnétique, il est également considéré comme
un moment magnétique intrinseque de la particule. Ce moment magnétique interagit
avec un champ magnétique a travers un couplage donnée par S - B qui tend a aligner
l'orientation de spin avec ce champ. Une autre interaction qui est centrale a ce travail est
le couplage entre le spin et le mouvement de 1’électron -son degré de liberté orbital. Pour
illustrer cela, il suffit de considérer un électron qui se déplace dans un champ électrique.
Dans le systeme de référence de ’électron, ce champ électrique se transforme en un champ
magnétique qui interagit donc avec le spin. Cela donne lieu a ce qu’on appelle 'interaction
spin-orbite (SOC).

En physique des solides, I'interaction spin-orbite n’est pas seulement un élément clé dans
la phénoménologie de nombreuses observations expérimentales, mais elle peut également
étre utilisée pour controler ’état d’un spin. Par exemple, le fait que le spin de I’électron
ne peut prendre que deux valeurs et la possibilité de basculer entre ces deux états rend
I’électron un candidat idéal pour le calcul quantique. Dans ce contexte, chaque spin avec
ses deux valeurs possibles est équivalent a un bit d’information. D’ailleurs, le spin est lié
a la charge, qui peut se déplacer a travers le dispositif et transporter cette information.
C’est donc tres important que I'état de spin ne soit pas perturbé pour que l'information
codée dans son état reste récupérable. Cette fonctionnalité prometteuse a favorisé un
grand nombre de recherches dans cette direction en vue de 'application technologique
potentielle. Pendant les dernieres années, de nouveaux montages expérimentaux ont été
proposés et congus a la recherche de systéemes physiques ot le spin peut étre manipulé
d’une maniere efficace. Plus précisément, ses propriétés ont été intensément étudiées a

la fois en systemes massifs et systémes nanostructurés, ou le mouvement de 1’électron est
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spatialement confiné. Un archétype de ces systeémes est une boite quantique faite sur une
hétérostructure, ou la composition d’un matériau semi-conducteur est modifiée a I’échelle
nanométrique.

Le but de cette these est d’étudier plusieurs phénomenes résultant de 'interaction du

spin de I’électron avec son environnement et dans différents systemes semi-conducteurs.

Relaxation du spin dans des semi-conducteurs GaAs dopés

La premiere partie de cette these traite de la relaxation de spin dans un semi-conducteur
GaAs dopé au silicium. Notre étude s’inspire des travaux de Kikkawa et Awschalom [1],
qui ont mesuré en 1998 le temps de relaxation du spin et signalé I'influence du dopage
sur la relaxation de spin, montrant I'importance primordiale du réle des impuretés, et en
particulier, la forte dépendence entre la relaxation du spin et la densité de dopage. Dans
ce travail, des temps de relaxation de plus de 100 nanosecondes pour une densité dopage
de l'ordre de n, = 2 x 10%cm ™3 (voir Fig. 0.1) ont été atteints. Quatre ans plus tard,
Dzhioev et collaborateurs [2] ont realisé des expériences similaires, ou ils ont consideré
une grande gamme de densités de donneurs, afin d’établir une valeur plus précise pour le
maximum du temps de relaxation du spin et sa densité correspondante. Ces expériences
ont suscité 'intérét de la communauté de la spintronique et nombreuses tentatives ont
été effectuées pour expliquer les résultats. L’expérience de Dzhioev et al. montre tres
clairement (Fig. 0.1) que le temps de relaxation de spin le plus long apparait dans la
proximité de la densité de transition métal-isolant (MIT). Notre objectif est d’adresser
le probleme de la relaxation de spin sur le coté métallique de cette transition, et proche
de celui-ci. L’identification de l'interaction du spin dominant donnant un tel temps de
relaxation long est I'un de nos principaux buts.

Les temps de relaxation de spin pour des valeurs de densité loin de la densité critique
ont été comprises en termes de diverses théories existantes. Sur le coté extréme d’une
concentration des donneurs tres faible, les impuretés sont éloignées les unes des autres
et les électrons sont fortement localisés. La précession du spin se produit de maniére
indépendante dans les champs aléatoires statiques résultants des moments magnétiques
nucléaires. Dans cette situation, le mécanisme principal est I'interaction hyperfine, dont
lorigine est le couplage entre les électrons et le champ magnétique produit par les noyaux

atomiques. Dans l'expérience de Dzhioev et al., les auteurs attribuent I’augmentation du
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temps de relaxation avec la densité de donneurs dans la region des densités les plus faibles
a la moyenne dynamique de l'interaction hyperfine, ou I’électron passe moins de temps
dans chaque domaine de localisation a mesure que la densité augmente. L’interaction
pendant des temps plus courts avec plus de noyaux diminue ainsi I'effet des fluctuations
de ceux-ci.

Lorsqu’on augmente encore la densité de dopage, les électrons centrés autour des
impuretés voisines commencent a avoir un certain degré de chevauchement, et donc
I'interaction d’échange (ezchange interaction) devient pertinente. Cette interaction est
aussi d'importance dans le cas d’une double-boite quantique, par exemple. L’effet de
cette interaction est tel qu'un chevauchement plus fort entre les fonctions d’onde, en rai-
son d’une augmentation de la densité de dopage, produit une interaction plus forte, ce qui
a pour consequence une diminution des temps de relaxation. Cette situation est constatée
dans la Fig. 0.1 pour une densité de dopage juste au-dessous de n.. En effet, Kavokin [4]
a montré que le motional narrowing du terme de 'interaction d’échange anisotrope pour

deux électrons de la bande de conduction localisés explique la diminution de 7, dans la
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Figure 0.1: Les temps de relaxation du spin a basse température en fonction de la densité
de dopage (étiquetés comme n4) obtenus dans des différentes expériences sont
montrés. Les symboles vides correspondent aux données de Réf. [2], tandis
que les cercles pleins sont les résultats de expérience de [3, 1]. Les lignes
solides correspondent aux estimations théoriques, selon le mécanisme de re-
laxation de spin pertinent, indiqué par les étiquettes: DP pour Dyakonov-
Perel, I'interaction anisotrope, et I'interaction hyperfine (Réf. [2]).
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Figure 0.2: Des différents régimes de conduction selon la densité de dopants sont af-
fichés. A la densité critique d’hybridation ny, la bande d’impuretés se fu-
sionne avec la bande de conduction. En-dessous de ny, deux situations peu-
vent se présenter: entre n; et la densité de la transition metal-isolant n., on
observe le régime métallique avec des états délocalisés, alors que pour des
densités plus petits que n., le régime isolant est atteint, et la conductivité a
température nulle disparait.

région de densité intermédiaire 3 x 10 em =3 < n < n. de I'expérience de Dzhioev et al.

Pour les densités de dopage bien au-dela de la densité critique, c’est-a-dire le cas extréme
d’échantillons fortement dopés, ou la bande de conduction est principalement “peuplée”,
les mécanismes de relaxation de spin pour des électrons de conduction sont applicables.
En particulier, dans I'expérience de notre intérét, le mécanisme de Dyakonov-Perel est
pertinent. Cette interaction est présente lorsque la symétrie d’inversion dans les semi-
conducteurs est brisée par la présence de deux atomes différents du réseau de Bravais.
C’est le cas dans les semi-conducteurs ITI-V (par exemple GaAs) et II-VI (ZnSe). Les
valeurs mesurées de relaxation du spin pour les densités de dopage grandes sont bien
décrites par le mécanisme Dyakonov Perel, qui suppose que les électrons portent un nom-

bre d’onde k bien défini.

Pour une densité plus faible, juste au-dessus du point critique, on entre dans le régime
métallique de la bande d’impuretés, et donc la théorie décrite ci-dessus n’est pas applica-

ble.

Pour résumer, aucune des interactions que nous venons de décrire ne peut étre appliquée
au régime métallique de la bande d’impuretés. Pour cette raison, nous avons développé
dans ce travail une théorie appropriée pour le traitement de la relaxation de spin dans ce
cas, dans laquelle notre description de la relaxation est basée sur la notion de diffusion de
spin.

Comme nous l'avons déja mentionné, le role des impuretés est tres important dans

la détermination des temps de relaxation du spin, et donc lidentification des différents
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régimes de conduction dans la bande d’impuretés est nécessaire. Lorsque de nombreuses
impuretés sont présentes dans I’échantillon, de sorte que I’électron peut sauter de 'une
a l'autre, une bande d’impuretés apparait a partir des états donneurs de différentes im-
puretés. En augmentant la densité des donneurs, cette bande devient plus large et des
états électroniques s’étendent sur intervalle d’énergie plus large. Au-dela d’une certaine
densité, la bande de conduction et d’impuretés deviennent hybrides(Fig. 0.2). En dessous
de cette valeur, le systeme est dans le régime de conduction de la bande d’impureté, ou
deux phases différentes peuvent encore étre distinguées. En raison du fait que les im-
puretés sont distribuées de fagon aléatoire, le nombre d’onde % associé a la dynamique de

I’électron n’est plus un bon nombre quantique car I'invariance par translation est brisée.

Dans les systemes massifs désordonnés la coexistence d’états localisés et délocalises
dans la bande d’impuretés se produit pour une certaine gamme de densités. Les états
localisés apparaissent vers les bords de bande, tandis que les états delocalisés se trouvent
au milieu. La limite de séparation est appelée le bord de mobilité (mobility edge, E¢). Ici,
le niveau de Fermi joue un réle crucial: s’il est situé dans la région localisée (Er > E¢),
le systeme ne conduit pas a T = 0 et il se comporte comme un isolant. Pour 7" > 0, les
électrons peuvent étre excités thermiquement, soit a un état étendu soit a un autre état
localisé, ce qui donne lieu a la conduction de charge. Si le niveau de Fermi croise le bord

de mobilité, le systeme a un comportement métallique.

Dans cette these, nous avons fait une étude préliminaire sur I'influence du couplage de
spin-orbite dans la bande d’impuretés, pour des densités proches (sur le coté metallique)
de la transition métal-isolant (voir Réf. [5]). C’est précisément dans ce régime ot nous
étudions ensuite la relaxation de spin. Les mécanismes de relaxation de spin que nous
avons traité dérivent de deux types de couplages spin-orbite, dits Dresselhaus et Rashba.
Le terme de Dresselhaus est activé par ’absence de symétrie d’inversion dans le mas-
sif (BIA ou bulk inversion asymmetry) -il y a deux atomes différents dans une cellule
unitaire- et dépend donc de la structure cristalline considérée. L’autre terme, Rashba, est
dii & 'absence de symétrie d’inversion structurelle (SIA ou Structural Inversion Asymme-
try). Le terme SIA, également appelé extrinseque, apparait comme une conséquence des

positions aléatoires des impuretés.

Bien que le couplage de Dresselhaus et le terme extrinseque soient pertinents tous les

deux, le premier se révele comme le dominant. En ce sens, nous avons corroboré le résultat
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de Tamborenea et al. [6], selon lequel le temps de relaxation de spin donné par le terme
extrinseque était trop long en comparaison avec les résultats expérimentaux. Le fait de
garder le terme de Dresselhaus dans notre travail a donné lieu a des temps de relaxation
moins longs, cohérents avec les expériences.

Le calcul du temps de relaxation de spin a été fait par deux méthodes différentes.
La premiere d’entre elles est une approche analytique qui nous permet de dériver une
expression pour le temps de relaxation de spin qui contient le parametre du couplage
de Dresselhaus, la densité de dopage, le rayon effectif de Bohr de I’état d’impureté et
I’échelle d’énergie liée aux éléments de matrice de saut entre les sites d’impuretés. Nous
remarquons que cette fonction n’a pas de parametres ajustables et est valable pour tous les
semi-conducteurs dont la structure cristalline est de type zincblende. Pour corroborer nos
résultats, nous avons effectué une étude numérique dans laquelle I’évolution temporelle
du spin est calculée.

Un excellent accord entre les résultats analytiques et les calculs numériques est obtenu,
pour le coté métallique du MIT, ou les valeurs du temps de relaxation du spin sont
d’environ 100 ns pour le GaAs. De surcroit, les temps de relaxation de spin calculés sont
en accord avec les valeurs expérimentales. Ainsi, 'identification et caractérisation d’un
mécanisme de relaxation de spin ont été faites pour des électrons sur le c6té métallique du
MIT, ot aucune explication théorique appropiée avait été donnée jusqu’a présent. Notre
mécanisme dérive du couplage de Dresselhaus qui domine le terme extrinseque. Des
temps de relaxation qui sont en bon accord avec les valeurs mesurés expérimentalement

sont obtenus (voir Réf. [7]), ce qui résout un probléme de longue date de la spintronique.

Spin dans les nanostructures

Jusqu’ici, nous avons traité des électrons et des spins dans des systémes massifs, ou le
déplacement des électrons se produit dans les trois directions. En systemes de basse
dimensionnalité, en revanche, le mouvement des électrons est limité & deux, une, ou
meéme zéro dimensions. Un exemple d'un systeme quasi-unidimensionnel sont les nanofils
semi-conducteurs. Ils fournissent une plate-forme prometteuse pour les dispositifs de
spintronique. L’un de ses avantages est que des petites boites quantiques peuvent étre
définies dans ces nanofils en utilisant différentes techniques de fabrication.

Une boite quantique est un systeme zéro-dimensionnel, dans lequel le mouvement de
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I’électron est confiné dans les trois dimensions. FEn tant que tel, le spectre d’énergie
présente des niveaux discrétisées. Dans ce contexte, le spin de 1’électron dans une boite
quantique semi-conducteur est un candidat idéal pour les applications a l'information
quantique, et donc un grand effort a été consacré afin de comprendre et d’identifier les
effets produisant la perte d’information, soit par des processes de décohérence soit par des
processes de relaxation [8]. De nombreux travaux théoriques et expérimentaux ont été
realisés, et de nombreux écueils techniques ont été surmontés, pour aboutir finalement a
de grandes avances. La boite quantique est particulierement intéressante car elle constitue
la pierre angulaire des ordinateurs quantiques a 1’état solide. Toutefois, le défi majeur
central a I’heure actuelle: comment manipuler le spin dans un temps suffisamment court

avant qu’il perd son état (quantique) initial?

La boite quantique peut étre établie dans un nanofil grace a un procédé de fabrication
qui consiste & faire varier la composition des composantes durant le processus de crois-
sance. Cela permet d’établir des boites quantiques bien localisées dans un puits de con-
finement carré selon la direction longitudinale, et méme avec des largeurs tres controlables.
L’électron hébergé dans la boite est un électron de la bande de conduction de la struc-
ture sous-jacente, dont les propriétés sont égalment affectées par les effets de confine-
ment. Une étape nécessaire pour parvenir a une telle configuration est la formation d'une
hétérostructure unidimensionnelle, dans laquelle un nanofil unique contient différents seg-
ments, avec des interfaces abruptes et des barriéres (hétérostructure) d’épaisseur variable.
L’'image de la Fig. 0.3 montre I'image prise par la microscopie électronique en transmis-
sion (TEM) d’un nanofil constitué de InP et InAs, avec une interface remarquablement
abrupte entre eux, également affichée. Ce type de systeme a été soigneusement étudié au
cours des dernieres années et des propriétés liées au spin ont suscité beaucoup d’intérét.
En particulier, le facteur gyromagnétique g effectif, qui caractérise le couplage entre le

spin et le champ magnétique, a été mesuré en boites quantiques de nanofils de InAs [9].

Un aspect crucial des nanofils semi-conducteurs, et donc des boites quantiques y hébergées,
est qu’ils présentent souvent la structure cristalline de wurtzite, méme si le matériau ad-
met une structure de zincblende dans le massif. Ce changement structurel implique des
conséquences importantes pour la relaxation de spin car la structure détermine la forme
du terme de SOC de Dresselhaus (associé a Pasymétrie d’inversion). En effet, alors que

dans les semi-conducteurs de type zincblende le couplage de Dresselhaus est cubique dans
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Figure 0.3: Une image de microscopie électronique en transmission des barrieres d’InP
de différentes tailles a 'intérieur d’un nanofil d’InAs. La perfection cristalline
est montrée en bas, avec 'acuité de l'interface. Le diametre est de 40 nm [10].
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Figure 0.4: Un apercu de la boite quantique dans le nanofil. Deux barrieres d’InP
définissent la boite quantique dans le nanofil. Les facettes latérales forment
une section transversale hexagonale avec des barrieres de potentiel qui peu-
vent étre assimilées & des murs infinis [9].

le vecteur d’onde, dans les cristaux wurtzite un terme linéaire s’ajoute [11].

Nous avons analysé des boites quantiques définies dans ce type de nanofils (voir Fig. 0.4).
Les contributions linéaires et cubiques du couplage Dresselhaus ont été pris en compte,
ainsi que 'influence d’'un champ magnétique externe a travers le couplage Zeeman. Une
solution analytique pour les états électroniques qui a été précédemment trouvée pour
une boite quantique cylindrique crie sur un matériau zincblende avec interaction Rashba
est adaptée a notre systeme. L’idée originale d’une solution analytique a été présentée
initialement par Boulgakov et Sadrev pour des structures de zincblende en 2001 [12] et

étendue plus tard par Tsitsishvili et al. en 2004 afin d’inclure un champ magnétique [13].

Nous avons obtenu une solution analytique pour les états propres d’un systeme wurtzite,
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meéme si la solution pour les énergies propres implique la solution numérique de 1’équation
de quantification. Nous considérons le couplage effectif de Dresselhaus dérivé pour la
structure cristalline correspondante. Le confinement le long du fil et les valeurs des con-
stantes de spin-orbite pris du travail de A. De et C. De Pryor [14] nous aménent & con-
sidérer des régions pour les valeurs du spin-orbite non explorées par les travaux cités. Le
spectre d’énergie est calculé pour InAs, et les états électroniques sont caractérisés par leur
structure de spin. Ensuite, nous calculons le facteur g effectif et le temps de relaxation

du spin di aux phonons (voir Réf. [15]).

Le couplage spin-orbite dans la bande d’impuretés

Nous étudions numériquement les effets de I'interaction spin-orbite dans les semi-conducteurs
dopés n dans un modele 1ié au celui de Matsubara-Toyozawa [16] (MT), qui décrit les pro-
priétés de conduction dans la bande d’impuretés. Dans ce cas, le hamiltonien comprend
un terme d’énergie cinétique avec la masse effective de 1’électron et l'interaction Coulom-
bienne avec les impuretés. La base d’états utilisé est de type hydrogene ou chaque état
individuel a une drientation de spin bien définie.

Or, en raison du couplage spin-orbite, cet état électronique d’impureté n’est plus un
état propre du spin mais il devient une combinaison linéaire des spins opposés. Cette
extension du modele de Matsubara-Toyozawa a été proposée par Tamborenea, Weinmann
et Jalabert en 2007 [6], ou ils ont montré que la nouvelle fonction d’onde des états liés
porte une partie qui présente des variations spatiales aux grandes échelles (de symétrie
sphérique) et une partie périodique correspodante a la fonction de Bloch de la bande de
conduction qui contient un mélange de spin; par conséquent ils sont appelés des états de
Impurity Spin Admizture (ISA). En considérant un modele de Kane de 8 x 8, ou I'état
de type s et les trois états de valence de type p sont pris en compte, le hamiltonien k - p
peut étre exactement diagonalisé, donnant lieu aux états modifiés en raison du SOC, dont

I’expression résultante est décrite par

i (r—ry)

B (t) = Or — 1) (|u£,°>><r>+- u53>><r>). (0.1)
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ou le deuxieme terme est
[uM) = a; (|Ro) + @28 x |Ra) ). (0.2)

Létat [ufy,) est de type s et décrit la fonction d’onde non perturbée au point I'. Le vecteur
R) = (|X),|Y),|Z)) représente les états de valence p, et S est I'opérateur de spin. Les
) p b, p p

constantes oy et ap sont définies par

. < 3Eq + 27 > 12
ay = th
6m*Eg(EG + Ao)

et
27

V= 20 + 3Eq)

ou Eg est I'énergie du band-gap, m* la masse effective, et Ag est la différence d’énergie
entre la bande de split-off et les bandes de light-hole et heavy-hole, produites par le SOC.

Le hamiltonien pour décrire la bande d’impuretés est dérivé dans ’approximation de

la fonction enveloppe, et peut étre exprimé en langage de seconde quantification comme
H=Hy+H = Y 0.,y cmet D 0. ¢l cmo. (0.3)
m#m/,o m#m/’,o
ol le premier terme H, contient des amplitudes de saut
trm = D (o[ Volthmo) - (0-4)
pF#Em

et est associé au modele de MT, avec un potentiel de Coulomb produit par I'impureté
placée a 7, donné par

Vo(r) = —€*felr — 1.

Le deuxieme terme H; décrit le terme du spin-flip, dont les éléments de matrice de tran-

sition sont

gngm’ = Z<wm’?|‘/p|¢mo> 5 (05)
pF#EmM
avec 0 = —o. Le potentiel des impuretés peut, malgré le fait d’étre indépendant du spin,

donner lieu a des sauts d’électrons entre les différents sites avec renversement de spin, ce
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qui fournit un mécanisme de spin-flip en connectant les états o et .

Afin de caractériser les états propres électroniques dans la bande d’impuretés par rap-
port a leur extension spatiale, nous avons diagonalisé H, obtenant numériquement les
valeurs propres et les états propres {;,1;}, pour chaque configuration de désordre dans
laquelle NV impuretés sont placés aléatoirement dans un volume tridimensionnel. L’effet
du SOC sur la densité d’états (DOS) et le calcul du Inverse Participation Ratio (IPR)
permetent la caractérisation des états propres. En particulier, le dernier terme est utilisé
pour caractériser le degré de localisation spatial d’'un état donné, et il est calculé pour
chaque état propre; sa valeur s’approche a N pour les états delocalisés et a 1 pour le cas

localisé.

Nous avons fait une analyse préliminaire du modele MT original, ¢’est-a-~dire sans cou-
plage spin-orbite. Ici, nous constatons que les valeurs d’IPR dans les différents états
propres de la bande d’impureté different qualitativement de celles données par un modele
d’Anderson. Cette différence pourrait étre attribuée au fait que nous considérons ici un
potentiel a longue portée qui découle des impuretés, tandis que la plupart des modeles
d’Anderson ont des potentiels & courte portée. Dans notre systéeme physique, les bords
de mobilité (mobility edges) qui séparent la région d’états localisés et délocalisés dans
le spectre d’énergie, n’apparaissent pas comme des limites claires, mais on observe une

certaine tendance donnée par une rapide variation des valeurs d’TPR avec 1’énergie.

Nous avons ensuite effectué une analyse équivalente pour le modele étendu utilisant
les états ISA comme base dans laquelle la matrice H est construite. Dans le traitement
numérique du probleme, les tailles finies que nous sommes capables d’examiner nous
forcent a introduire une augmentation artificielle du couplage spin-orbite afin d’obtenir
une perturbation mesurable. Le IPR et la DOS sont alors obtenus en fonction d'un
parametre, R,., qui controle augmentation. Dans la Fig. 0.5, nous présentons la DOS et
IPR/N pour trois densités différentes et des valeurs diverses de R,. La DOS représentée
avec des lignes solides épaisses ne change pas sensiblement avec R,., et c’est pourquoi nous
ne présentons que le cas R, = 1. En ce qui concerne I'extension spatiale, nous montrons
dans chaque panneau (pour chaque densité) comment les courbes IPR/N sont modifiées

en fonction de R,.

L’augmentation de 'TPR/N avec R, dans la région d’états delocalisés (région centrale)

montre que le SOC a une tendance a délocaliser de plus en plus ces états et par conséquent,
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Figure 0.5: La densité d’états (DOS, ligne solide et échelle a droite) et Inverse Participa-
tion Ratio (IPR, tirets et échelle & gauche) pour trois densités différentes sur
le coté métallique de la transition métal-isolant. Les lignes pointillées avec
une épaisseur croissante sont pour R, = 50, 150 et 250, respectivement. R,
est une mesure de I'intensité du couplage SOC. Les lignes verticales indiquent
I’énergie de Fermi.
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les valeurs IPR/N croissent vers 1. Cet effet se révele encore plus marqué pour la densité
la plus grande, ou les courbes correspondantes a différentes R, sont séparées dans une
région plus large. Ce dernier effet est moins important lorsque I’énergie diminue. Dans
la région de basse énergie ou le modele MT donne des états localisées, on observe des
courbes d’TPR/N approximativement indépendantes de N, ce qui est une signature de ce

que le SOC favorise leur délocalisation.

En bref, dans cette analyse préliminaire du degré d’extension spatiale des états pro-
pres, nécessaire pour pouvoir aborder le probléeme de la relaxation de spin dans la bande
d’impuretés, nous avons trouvé une tendance générale a la délocalisation des états lorsqu’on
augmente l'interaction spin-orbite (voir Réf. [5]). De plus, nous avons pu établir que 1’état

au niveau de Fermi était délocalisé.

Nous nous concentrons maintenant sur le probleme de la relaxation de spin dans la
bande d'impuretés proche de la transition MIT. Pour I’étude de la relaxation du spin,
nous avons pris une approche alternative pour inclure le SOC induit par les impuretés. Au
lieu de considérer les états de spin mélangés, nous considérons un terme effectif provenant
de 'asymétrie d’inversion structurelle donnée par la distribution aleatoire des impuretés.
Meéme si cette interaction pourrait étre associée a un couplage Rashba, nous 'appelons
extrinseque a cause de son origine dans les impuretés. L’expression de cette interaction
est exactement la méme que le couplage de type Rashba avec une constante renormalisée,
calculée dans un modele a 8 bandes de Kane. On démontre 1’équivalence de ces deux

formulations. En plus, le couplage effectif de Dresselhaus a été inclus aussi.

Le hamiltonien total que nous considérons est donné par

H = Hy + Her + Hp (0.6)

du méme que dans 1’éq. 0.3, le premier terme qui représente 1’énergie cinétique plus le

potentiel des impuretés V' s’écrit:

Hy + V(r), (0.7)

2m*
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le terme effectif extrinseque lié a l'effet des impuretés s’éerit
Hoyr = No-VV xk (0.8)
et le couplage de spin-orbite de Dresselhaus est donné par

Hp = v [0uko (K, — k2) + cyclic permutations]. (0.9)

Ici, o est le vecteur des matrices de Pauli et k = p/h avec p l'opérateur de la quantité
de mouvement en ’absence de tout champ magnétique. k et est donc considéré comme
le gradient (fois —i). Le terme extrinseque provient du potentiel V(r) qui inclut tous les
potentiels sauf le crystallin. Les valeurs des constantes effectives sont: \* ~ -5.3A2 [17]

et v =27.58eV A’ [18]. Pour le rayon effectif de Bohr, on utilise a ~ 99 A.

Bien que le couplage de Dresselhaus et le terme extrinseque soient pertinents tous les
deux, le premier se révele comme le dominant. En ce sens, nous avons corroboré le
résultat de Tamborenea et al. [6], selon lequel le temps de relaxation de spin donné par
le terme extrinseque était trop long en comparaison avec les résultats expérimentaux.
Notre approche numérique que nous expliquons ci-dessous, confirme cette affirmation.

Par conséquent, nous ne gardons que le terme de Dresselhaus par la suite.

La premieére voie que nous prenons consiste a une approche analytique qui considére
la rotation de spin liée a la diffusion spatiale des électrons dans le réseau des impuretés.
Chaque saut de I’électron est accompagné d’une rotation de spin. Toutefois, I'angle de
rotation est petit en raison de la faiblesse du couplage spin-orbite, et il s’accumule alors
de fagon diffusive pendant la propagation des électrons. Le processus complet peut étre
assimilé & une diffusion de l'orientation du spin sur la sphere de Bloch. Apres un cer-
tain nombre de sauts, la direction du spin devient indéterminée. Grace a une dérivation
completement analytique, nous pouvons obtenir une expression pour le temps de relax-
ation du spin 7,

L_0) (0.10)

Ts 37,

ott {#?) est un angle typique de rotation de spin & chaque saut, et 7. est le temps moyen en-
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tre deux sauts (mean-hopping time). On calcule ces deux valeurs en prenant une moyenne

sur les configurations de désordre, résultant en

2

1 v 3\1/2
—~04 i : 11
- 0 8@%7i (nia®) (0.11)

ou Vy est une échelle d’énergie liée aux éléments de matrice de saut entre les sites
d’impuretés. Nous remarquons que cette fonction n’a pas de parametres ajustables et est
valable pour tous les semi-conducteurs dont la structure cristalline est de type zincblende.

Une autre méthode consiste a simuler numériquement 1’évolution du spin d’'un état
initial donné. En diagonalisant le hamiltonien total avec un calcul exact des états propres,
on peut suivre I’évolution d’un certain état de départ. Nous choisissons des états de départ
proches du niveau de Fermi, avec une projection de spin bien définie. Il s’agit donc d’états
spatialement délocalisés. Ensuite, nous extrayons la durée de vie de spin par I’ajustement
d’une décroissance exponentielle a I’évolution temporelle du spin obtenue numériquement.

La faiblesse du couplage spin-orbite se traduit en énergies des perturbations liées au
SOC qui sont des ordres de grandeur plus petits que I'espacement typique des niveaux
MT. Cette grande différence entre les deux échelles d’énergie dans les simulations masque
la physique du spin-orbite, et nous oblige a suivre un chemin indirect: nous introduisons,
comme nous l'avons fait précédemment, un renforcement artificiel du couplage 77y, ou
le parametre de controle est 7, tandis que le couplage SOC réel est v. De la méme
maniere que le procédé standard du scaling pour les tailles finies des systemes est utilisé
pour extrapoler le résultat de tailles infinies, nous avons fait une analyse additionnelle de
scaling pour le parametre 1. En extrapolant la taille vers 'infini et le parametre n vers 1,
cette méthode en deux étapes nous fournit la valeur du temps de relaxation de spin pour
des tailles macroscopiques et pour la valeur réelle de la force de spin-orbite. Cette valeur
est notre meilleure prédiction pour des systemes réalistes.

Dans la Fig. 0.6, nous présentons les temps de relaxation du spin résultants de notre
approche numérique pour GaAs pour quatre densités d’impuretés au-dessus du MIT (cer-
cles pleins). Nous incluons aussi la prédiction de I’éq. (0.11) et les données expérimentales
disponibles & partir des références [1, 19, 2, 20]. Les lignes verticales indiquent la densité
critique (foncée) et d’hybridation (claire). On trouve que les deux approches décrivent
les données compte tenu de l'incertitude expérimentale. Ils reproduisent correctement la

dépendance du temps de relaxation du spin en fonction de la densité. L’écart entre les
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Figure 0.6: Temps de relaxation du spin en fonction de la densité de dopage. Pour
GaAs, la prédiction de 1'éq. (0.11) (ligne solide) et les résultats numériques
(o) pour le régime métallique entre la transition métal-isolant (ligne verticale
épaisse fonceée) et I'hybridation de la bande d’impuretés avec la bande de
conduction (ligne verticale épaisse claire), obtenus en utilisant v = 27eVA3,
sont comparés aux expériences. Les données sont prises de la Réf. [2] pour
T =2K (o) et T = 4.2K (O), Réf. [1] (), Réf. [19] (A), et RéL. [20] (V7).
Le cas d'un autre matériau (CdTe) est représenté par la ligne en pointillés
(éq. (0.11)), résultats numériques (+) et des données experimentales de la
Réf. [21] ().
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résultats analytiques et numériques n’est pas significatif, en considérant les approxima-
tions faites dans les deux voies de calcul suivies et la définition du temps de relaxation
dans chacun d’entre eux. Nous obtenons sur le c6té métallique du MIT des valeurs de
7s 2, 100ns, ce qui est en bon accord avec les valeurs experimentales.

En ce qui concerne d’autres matériaux, la relaxation du spin a récemment été mesurée
dans le CdTe pour plusieurs densités de dopage [21]. Les auteurs ont estimé une valeur
de 7, = 2.5ns, proche du MIT, & une densité N,,; = 5 x 10%cm™ (affichée dans la
figure 0.6). Dans ce cas, les données expérimentales pour des densités proches du MIT
(* dans la Fig. 0.6) sont également bien décrites par les valeurs numériques (+) et par la
prédiction de I’éq. (0.11) & partir de notre théorie.

L’accord entre théorie et expérience a la fois pour GaAs et CdTe, malgré leurs parametres
tres différents de matériau, illustre la large applicabilité de notre théorie et nos résultats.
Nous avons donc identifié un mécanisme de relaxation du spin d’électrons caractéristique
du coté métallique de la transition métal-isolant dans la bande d’impuretés des semi-
conducteurs. Ceci résout un probleme de longue date dans le domaine de la spintronique.
Notre mécanisme est basé sur le couplage spin-orbite de type Dresselhaus, et nous con-
statons qu’il domine en général par rapport a sa contrapartie extrinseque, et fournit des

temps de relaxation qui sont en bon accord avec les valeurs expérimentales.

Boites quantiques

Dans la derniere partie de la thése, nous étudions les effets de I'interaction spin-orbite sur
les états électroniques des boites quantiques cylindriques définies sur des fils quantiques
avec une structure cristalline de type wurtzite. Les contributions linéaire et cubique du
couplage Dresselhaus sont prises en compte, ainsi que l'influence d’'un champ magnétique
externe, dans la direction le long du fil. Notre approche consiste a étendre la solution
analytique précédemment trouvée pour I’équation de Schrodinger pour un électron dans
une boite quantique cylindrique a potentiel infini aux bords pour une structure de type
zincblende avec une interaction Rashba. Dans le cadre d’une théorie effective pour la
bande de conduction, nous adaptons la solution au cas des boites quantiques a base
de nanofils, ol le nanofil présente une structure wurtzite. Le hamiltonien effectif (dans

Papproximation de la fonction enveloppe) pour un seul électron dans la bande de con-
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duction d’'un matériau wurtzite [22, 17] incorpore un terme de couplage spin-orbite de

Dresselhaus linéaire [11] et cubique [23, 24]

H = Ho + Hy + H3 + Hy, (0.12)
p2
Ho = 5— + Velz,y, 2), (0.13)
Hy = o (kyoy — ko), (0.14)
Hy =y (0kZ — k7 — ky) (kyou — kuoy), (0.15)
1
Hz = 59" Bo, (0.16)

ou V; est un potentiel de confinement nanoscopique, o est 'operateur de spin, «, 7, et b
sont des parametres qui dépendent du matériau, g* est le facteur gyromagnétique effectif
du bulk, pg est le magnéton de Bohr, et B est le champ magnétique extérieur orienté
dans la direction z. Ici, nous n’incluons I'action du champ magnétique que par le terme
Zeeman, puisque nous considérons des champs relativement faibles dont les effets orbitaux
peuvent étre ignorés.

Jusqu’a présent, il n’a pas été possible de déterminer o, v et b d’'un point de vue
expérimental, et en consequence, dans notre étude, nous nous appuierons sur les es-
timations théoriques obtenues par De et Pryor [14]. Ces auteurs ont calculé tous les
parametres pertinents de la structure de bande de plusieurs matériaux wurtzite, y com-
pris InAs. Avant d’aborder le probleme de boites quantiques, nous avons considéré un
systeme quasi-bidimensionnel et nous calculons les valeurs propres et les états propres
de celui-ci, a partir desquels les solutions de la boite quantique sont construites. Ainsi,
nous choisissons V., = V.(z) afin de confiner les électrons dans la direction z. La partie
longitudinale Hy peut étre separée comme Hy = HyY + H, avec un terme dépendant des
coordonnées transversales HyY = (p2 +p;)/2m* et Hi = p?/2m* 4 V(). En utilisant des

coordonnées cylindriques, I’expression complete du hamiltonien est

2 2
Jr R <V2+a>+Vc(z)+H1

2m* 0722
i 0 2
+= 0| =55 |+ V| Hi+ Hz. 0.17
a [ ( 822> ! d (0.17)
ou V2 = 38722 + 83722 = %% + 8‘9722 + %26‘9—:2. Nous proposons ensuite une solution pour
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I’équation Schrodinger indépendante du temps H® = EP,

nmwz

D (1,0, 2) = Wy (1, ) sin (T) . (0.18)

v B Upn (1) €M%
nm (T, ) = _ ; (0.19)
Vpyn (1) €119

OU Upy (1) €6 Uy (1) sont des fonctions réelles et U, (r, ©) est un état propre de J, avec

une valeur propre j, = m + 1/2. L’énergie totale correspondante est
E'' =FE,+ E?, (0.20)

avec la partie radiale F, et une énergie longitudinale E? = (h?/2m*)(nn/L)? provenant du
confinement dans la direction z. Nous remplagons (0.18) dans 'équation de Schrodinger,

et nous obtenons pour u,,, and v,,, les équations couplées

(=V2, + ) tm(p) + (al, +7'V2) (m;—l + gp) Vnm () = Entinm(p) (0.21)
(_V?nJrl - h') Unm(/)) + (O/;L + 7/V3n+1) (TZ - aap) unm(p) = 6nvnm(p) (0'22)

ou
10 & m
- m. (0.23)

v? — -
" p8p+8p2 p?

Dans les égs. (B.3) et (0.22) nous avons introduit R, un parametre a définir a posteriori
dans le cadre de boites quantiques, et uy = h?/2m*R? comme des unités de longueur
et d’énergie, respectivement. Cela nous permet de définir des parametres adimensionnels
p=r/R, K =kR, v = v/ugR3 et h = gugB/2us. La dépendance du nombre quan-
tique “longitudinal” n a été incorporée au probléeme dans le plan via la redéfinition de la

constante de couplage « afin d’obtenir un parametre adimensionnel donné par

2
o, = [a +b (%) } JugR, (0.24)
Les solutions pour les égs. (B.3) et (0.22) sont

U (P) = Jn(Kp),  Vnm(p) = dndimi1(Kp), (0.25)
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ce qui nous conduit & I’équation suivante

K*+h—e, o,K—~yK3\ (1

=0 (0.26)
o K—+K3> K*—h-—g¢g, d,
dont les solutions sont
ene = K2+ \/K2 (a!, — ' K?)* + h2. (0.27)
L’énergie totale est donnée par
Ehy = (enx + &5 ue (0.28)

olt €2 = EZ Jug, = (nmR/L)?. Les coefficients des états propres sont déterminés par

_6ni—K2—h

s = o TR (0.29)

Comme dans le probléme linéaire Rashba, il y a deux énergies possibles ¢,+ pour une

seule valeur de K.

Dans la Fig. 0.7 nous presentons la relation de dispersion (0.28) pour InAs (lignes
solides) avec les parametres indiqués dans la Réf. [14] (nous les étiquetons avec r) o, =
0.571 eVA  ;~, = 571.86VA3,; b = 4 et une masse effective m* = 0.026 m,, [9]. Nous
montrons également l'effet de supprimer le terme cubique, mais en gardant la contribution
de «y dans 'éq. (0.24) du terme linéaire (tirets), ainsi que le terme de Rashba avec v =0
(ligne pointillé). Les lignes bleues (rouges) correspondent & &, (€, ), et les lignes épaisses
correspondent a n = 1, comme il est indiqué entre les deux panneaux. Les courbes g5_ et

e3_ pour le cas du SOC complet sont également représentées (lignes fines).

Nous présentons ainsi (inset) les énergies avec la contribution parabolique sustraite afin
de montrer clairement le croisement des deux branches qui apparait & K = /o//+" (ici

K =19.34).

Pour le probleme de la boite quantique cylindrique avec un confinement aux bords durs
(de rayon R et de longueur L), nous utilisons les solutions obtenues & partir du systéme
bidimensionnel. Pour une énergie donnée, nous combinons deux solutions, I'une de chaque

branche, et recherchons les énergies propres discretes de la boite quantique, a partir de
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Figure 0.7:

XXXVI

Dispersion de 'énergie (éq. (0.28)) avec (droite) et sans champ magnétique
(gauche). Pour la sous-bande n = 1, trois cas sont considérés: les
lignes solides épaisses correspondent au SOC complete, les tirets au cas in-
termédiaire sans le terme de SOC cubique en k, mais le parametre o est
renormalisé par v (0.24), et les lignes pointillées pour le cas olt seulement
I'interaction de Rashba est considerée, c’est-a-dire linéaire en k. Des lignes
bleues (rouges) correspondent & e, (,4). Les lignes solides plus fines sont
les sous-bandes n = 2 et 3. Inset: Dispersion d’énergie pour les trois cas sans
la contribution parabolique, pour n = 1. L’effet Zeeman et un croisement
évité sont apergus plus clairement sur cette échelle d’énergie.



la condition suivante. Les états propres de la boite quantique en forme de disque doivent
satisfaire la condition du potentiel infini au bord circulaire, raison pour laquelle la valeur
de la fonction d’onde doit s’annuler aux bords de la boite quantique. Avec deux solutions
de K, K, et Ky, associées a chaque branche ¢, on peut écrire la fonction d’onde dans le

plan comme

Jm Ka eimga Jm K eim“‘J
U (p, ) = ca (Hap) } + ¢ (o) 4 , (0.30)
d+(Ka)Jm+l(Kap)el(m+l)(P d_(Kb)Jm+1(Kbp)eZ(m+1)%"

et la condition aux limites U,,(p =1, ¢) = 0. Cela meéne a la équation suivante
I (Ky) d—(Kp) Jm1(Kp) — I (Kp) dy (Ko) Jma1(Ky) = 0, (0.31)

dont les solutions sont les énergies discretes, puisque K, () et Kp(¢). Nous résolvons cette
équation numériquement, ce qui nous fournit une famille de solutions pour chaque valeur
de m qui correspondent aux énergies discretes de la boite quantique. Toutes ces solutions
ont une valeur bien définie de j, = m + 1/2, et en I'absence d’un champ magnétique, les
solutions j, et —j, sont dégénérés. Les résultats pour les niveaux d’énergie sont présentés
dans la figure 0.8 en fonction de la force du couplage SOC, ou les états des différents |7.,]
sont affichés avec une couleur différente. Pour montrer leffet du couplage spin-orbite,
nous partons du cas de SOC nul dans le centre de la figure et augmentons l'intensité du
couplage SOC jusqu’aux valeurs prédites «,. et v, (situées aux extrémités gauche et droite
de la figure). Le coté gauche de la figure correspond au cas sans champ magnétique. Sur le
coté droit, lorsqu’un champ magnétique est inclus (a droite), I'énergie de Zeeman sépare
les différents niveaux. En présence de SOC, le moment cinétique orbital I, et le spin s se

mélent, et c¢’est pourquoi nous utilisons j, par la suite.

Afin de distinguer les effets des différents termes du SOC, nous augmentons le SOC en
deux étapes. Nous considérons d’abord le probleme standard de Rashba en mettant v = 0
et en variant le couplage linéaire av de zéro & a,, = 0.571eVA. Cette situation est illustrée
dans la partie intérieure de la Fig. 0.8. L’étape qui suit consiste a fixer @ a a,. et en méme
temps augmenter la valeur de v de zéro a ~, = 571.8 eVA®. Le résultat est raccordé avec
la courbe précédente et tracé dans les panneaux extérieurs de la figure. Il faut noter que

détermine non seulement le couplage de SOC cubique en k, mais il entre également dans
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Figure 0.8: Energies propres d’'une boite quantique avec un rayon R = 275A et une
hauteur L = 100A pour n = 1, représentées en fonction de la force du cou-
plage spin-orbite « et 7y, sans champ magnétique (coté gauche) et avec champ
magnétique B = 2.5T (coté droite). Les états avec |j.| = 1/2,3/2,5/2,7/5,
et 9/5 sont représentés par différentes lignes noires, bleues, vertes, rouges et
oranges, respectivement. Dans les panneaux centraux nous avons pris v = 0
et nous faisons varier a de zéro jusqu’a o, = 0.571eVA (valeur proposée dans
la Réf. [14]). Dans les courbes des panneaux extérieurs, v est fixé a «,., et v

augmente de zéro jusqu’a la valeur finale de v, = 571.8 eVA®. Au milieu des
panneaux, les valeurs de [, associées aux états a SOC nul sont indiqués.

le couplage linéaire en k (cf. éq(0.24)). Ici, nous apercevons effet significatif de v sur les
énergies propres, qui conduit a des changements d’énergie beaucoup plus forts que a. On
peut également observer que la séparation de Zeeman diminue lorsque le SOC augmente,
car le mélange du spin apporté par celui-ci augmente en conséquence.

Ensuite, nous étudions le facteur g effectif en utilisant la formule suivante

1 OAE e
e 32
g =55 ~ 9 on (0.32)

évaluée a h = 0. On trouve alors une expression pour geg donnée en fonction de K, et
Ky,. Dans la Fig. 0.9, nous présentons nos résultats pour des dimensions différentes avec
une longueur allant de 50 A & 200 A et un rayon de 150 A & 500 A. Nous avons constaté
empiriquement que les données tombent sur une seule courbe lorsque gog est tracé versus

a~t. Cette observation indique que la dépendance en L et R du facteur effectif g.g est

donée approximativement par une fonction de a~'.

En général, on trouve des valeurs
négatives pour geg, cohérent avec les résultats théoriques de la Réf. [13] et les données

expérimentales de la Réf. [9], les valeurs absolues de g que nous trouvons sont plus petits
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Figure 0.9: Les valeurs calculées du facteur g effectif sont affichées pour des boites quan-
tiques cylindriques de longueur L et rayon R différentes, tracées versus a~!

3

avec les parametres SOC de Réf. [14]. Pour les rayons R, des valeurs de 150 A
jusqu’a 500 A sont utilisées, et pour L de 50A and 200A. La ligne horizontale
bleue indique la valeur effective de g massif, g* ~ —14.7. Les symboles X
correspondent aux données expérimentales de la Réf. [9].

que les valeurs effectifs g* du massif.
La derniere partie de notre étude comporte le calcul du temps de relaxation de spin due

aux phonons acoustiques. Pour cela, on utilise la Regle d’or de Fermi
2 .
Liny = 5 D _IUUAQIDPr(Q)S(AE — huwa) (0.33)
Q.

ou Q est la quantité de mouvement du phonon; I'étiquette A = [,¢ fait référence aux
modes longitudinaux et transverses, respectivement; n(Q) est la distribution de Bose-
Einstein des phonons avec une énergie fiwy = hc)@, ou ¢y est la vitesse du son pour le
mode correspondant; AE = Ey—E; est la différence d’énergie entre 'état électronique final
|f) et initial |¢) et détermine, en raison de la fonction ¢, I'énergie des phonons impliquée
dans le processus de relaxation. Le potentiel Uy(Q) contient a la fois le potentiel de

déformation et le potentiel piézoélectrique [25, 26, 27]. En général, il est donné en termes
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des potentiels de phonons caractéristiques de la structure cristalline, avec les constantes
du matériau.

Les résultats pour la relaxation de spin en fonction du champ magnétique sont présentés
dans la Fig. 0.10. Les états propres initial et final sont les deux sous-niveaux de Zeeman
du premier état. Dans la Fig. 0.10, la famille de courbes noires correspond aux cas de
température nulle, et chacune représente la contribution au taux de relaxation selon les
différents potentiels de phonon. Comme on peut observer dans I’éq. (0.33), la dépendance
en température entre a travers la distribution de Bose-Einstein, et par conséquent, le
changement du taux de relaxation du spin avec la température peut étre obtenu facilement.
Le résultat pour le mécanisme dominant (TA-piézo) est représenté par une courbe grise
dans la Fig. 0.10. On a pu constater également que nos résultats sont du méme ordre de
grandeur par rapport a ceux de la Réf. [25], dans laquelle la relaxation du singlet-triplet
pour une boite quantique dans un nanofil de InAs a été calculée. Néanmoins, dans ce
travail, seul le couplage de déformation a été pris en compte, en se basant sur ’hypothese
qu’il est le mécanisme dominant. Cela va a la rencontre notre résultat. Nous trouvons que
pour InAs, le taux de relaxation de spin est principalement donné par le potentiel piézo-
électrique (transversal) pour les champs magnétiques en-dessous de 1.25T. Au-dela de
cette valeur, le potentiel de déformation semble surmonter la contribution piézo-électrique,
mais notre théorie ne nous permet pas de traiter de telles valeurs de champs magnétiques.
En fait, comme expliqué dans la Réf. [28], il y a une concurrence entre les deux composants
qui dépend de la taille de la nanostructure. Par exemple, le role principal du couplage
piézo-électrique pour des champs magnétiques faibles a également été signalé [29] pour

des boites quantiques quasi-unidimensionnels en forme de “cigare”.

Conclusion

Parmi les réussites de ce travail de these, la premiere d’entre elles concerne les longs temps
de relaxation de spin mesurés dans des semi-conducteurs dopés avec une structure de
type zinc-blende, pour une densité de dopage proche de la transition métal-isolant. Nous
avons trouvé que le couplage de Dresselhaus permet d’expliquer les valeurs experimentales
observées (voir Réf. [7]), résolvant ainsi une question de longue date du domaine de la

spintronique.

x1



10°
— 10° L
=
—
10" |-
S — TA-Piezo |
) do e LA-Piezo
107 ---- LA-Defo
' I | I | I | I | I
0 0.25 0.5 0.75 1 1.25
B(T)

Figure 0.10: Le taux de relaxation induit par des différents potentiels de phonon en
fonction du champ magnétique, pour InAs. Les courbes noires correspon-
dent aux taux de relaxation a température nulle produits par le potentiel
piézo-électrique transversal (TA-Piezo), le piézo-électrique longitudinal (LA-
Piezo), et le potentiel de déformation (LA-Defo). La ligne grise indique le
taux de relaxation a T' = 10K, seulement pour le cas TA-Piezo.
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Dans la deuxieme partie de cette these nous abordons I'étude des effets du couplage
spin-orbite dans une boite quantique, en mettant ’accent sur le fait qu’elle est hébergée
dans des nanofils avec une structure cristalline de type wurtzite. En prenant en compte les
termes du SOC appropriés, nous avons trouvé une solution analytique pour les énergies et
les états propres. Nous continuons avec le calcul des quantités d’intérét physique comme le
facteur g effectif et la relaxation de spin diie aux phonons (voir Réf. [15]). La comparaison

avec des expériences est toujours pendante.
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Chapter 1

Introduction

1.1 General Presentation

The spin is an inherent property of electrons, photons, quarks and in general, any elemen-
tary particle. Its nature lies in quantum mechanics. Its existence was proposed nearly
90 years ago by Pauli, while trying to solve some inconsistencies observed in molecular
spectra. He then called this new degree of freedom spin and claimed that in the case of
electrons, it could only take two possible values, which was later on verified for electrons,
as well as for protons and neutrons.

The spin is ubiquitous in many phenomena in condensed matter physics. For example,
in magnetic resonance imaging (MRI) the spin of the proton is used to visualize internal
structures of the human body. Another celebrated example is that of itinerant ferromag-
netism, where the electron spin appears as a crucial ingredient. An understanding of the
interactions that affect the spin dynamics is therefore necessary, both to describe observed
phenomena in physical systems and to exploit the possibilities it offers for technological
applications.

Conventionally, the spin is associated to an intrinsic angular moment, and due to the
way it couples to a magnetic field, it is also viewed as an intrinsic magnetic moment of
the particle. Its dipole-like magnetic moment interacts with a magnetic field, such that it
experiences a torque S x B that tends to align the spin orientation with this field. Another
interaction that is central in this work is the coupling between the motion of an electron
-its orbital degree of freedom- to the spin. To illustrate this, it suffices to consider an

electron moving in an electric field. In the electrons’ frame of reference, this electric field
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is transformed into a magnetic field, which according to what we have just mentioned,
interacts with the electronic spin. This gives rise to the so-called spin-orbit interaction

(SOC).

In solid state physics, the electronic spin is necessary to explain many phenomena, like
the ferromagnetism as we have just cited. Ferromagnetic metals are constituted of atoms
with a partially filled electronic shell. This means that for each spin in the shell with a
given state there is not another spin with the opposite state. The spontaneous alignment
(being an additional and distinct effect) of these unpaired spins along the same direction
creates a net magnetization by effect of the exchange interaction, even though no external

magnetic field is necessarily present.

Spin-orbit interactions are not only a key ingredient in the phenomenology of many
experimental observations, but can also be used to control the state of a spin. For example,
the fact that the spin of an electron may only take on two values, and the possibility to
switch between these two states by means of any of the interactions with the environment,
makes the spin an ideal candidate for computation. In this context, each of the two
possible values is equivalent to a bit of information. The spin is bound to the charge,
that may displace across the device, transporting this information. It is then important
that the spin state remains unperturbed so that the information encoded in its state is
not lost. This promising feature fostered a great deal of research in this direction in
view of its technological potential. In recent years, new experimental setups have been
proposed and designed in the search of physical systems where the spin can be efficiently
manipulated. More precisely, its properties have been intensely studied both in bulk and
low-dimensional systems, the latter meaning that the motion of the electron is spatially
confined. An archetype of these systems is a quantum well made on a heterostructure,
where the composition of a semiconductor material is changed on the nanoscale [30]. For
example, a GaAs layer between two Al,Ga;_,As layers makes up a quantum well, where
the motion of the electrons parallel to the layers remains free, but is confined in the

transverse direction.

Low-dimensional systems have also been widely used to test fundamental physical con-
cepts, such as the quantum-mechanical version of the Hall effect: in a two-dimensional
sample, and at low temperatures, the quantization of the conductivity as a function of the

applied magnetic field was first observed in 1980 by Klaus von Klitzing, later on awarded
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with the Nobel Prize.

The purpose of this thesis, expressed in a broad sense, is to study the interaction of the
electron spin with its solid-state environment in semiconducting systems. This may be
reckoned as the central question of the so-called spintronics discipline, which in contrast

to conventional electronics involving the charge, makes use of the spin instead.

1.2 Spintronics

Even though the success of any spintronic device hinges on the controlled manipulation
of the spin degree of freedom, finding an effective way to polarize a spin system, having
a long lifetime of the spin orientation, and being able to detect it are the three major
challenges.

Many techniques are utilized nowadays for the generation of spin polarization. The
optical orientation and the electrical spin injection are among the better developed. While
the former is based on the transfer of angular momenta from circularly polarized photons
to electrons, the second one uses a magnetic electrode connected to a sample. The injected
spin-polarized electrons flow from the electrode to the sample, and a non-equilibrium spin
accumulation may so be achieved. The spin population, no matter how it is generated,
will eventually evolve towards equilibrium by means of spin relaxation mechanisms, many
of which involve the aforementioned spin-orbit interaction.

Before describing some spintronic devices, it is worth pointing out that in what follows
we also refer to the term spin as meaning an ensemble of individual spins. Historically,
spintronic devices used these ensembles to store information, but nowadays, experimental-
ists have been able to address and control one single spin. In addition to this distinction,
we mention that spintronic devices are normally made either of semiconductor or metallic
(normal or ferromagnetic) materials, or of a combination of both.

In the case of metals, the discovery of Giant Magneto Resistance represented a big
boost for spintronics. It generated a great deal of interest in the academic field, but
also in industry because of the technological applications it enabled. It was observed in
1988 by Fert [31] and afterwards by Griinberg et al. [32]. Soon after, it was successfully
applied in data storage technologies [33]. IBM bolstered the role of spintronics in 1997
when it introduced the first hard-disk drive based on the GMR technology. The imple-
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mentation of such structures by IBM for new read heads into their magnetoresistance
hard-disk drives was just the first step of a race towards smaller and smaller hard-disks,
found currently in any mobile device. In a typical GMR device, a non-magnetic metal-
lic spacer is placed between two ferromagnetic layers. The relative orientation of the
magnetization polarization of these layers determines the overall resistance. The physical
principle behind the GMR is the fact that the scattering of electrons travelling through
a ferromagnetic conductor depend on the relative orientation of their spin with respect
to the magnetization direction of the conductor. This means that electrons bearing a
spin aligned with the magnetization axis scatter differently from those having an opposite
spin. Actually, those oriented parallel scatter less often than those oriented antiparallel.
In the GMR setup we have just described, this effect can be exploited in the following
way: the electrons injected from one of the magnetic conductors into the non-magnetic
conductor will be preferentially oriented in one direction. If these electrons then arrive to
the second ferromagnetic layer, they will pass into it freely from the non-magnetic metal,
without undergoing strong scattering, only under the condition that their preferred ori-
entation is parallel to the magnetization of the second layer. Hence, the resistance of the
trilayer arrangement depends strongly on the relative magnetization direction of the two
ferromagnetic layers. Although the whole process is about the flow (or not) of electrons,
the fact that the spin is used to control this flow is the reason to reckon it as a great

inspiration for the spintronic field [34].

Another closely related phenomenon is observed if the spacer is replaced with a non-
magnetic insulating layer, giving rise to a magnetic tunnel junction, or tunneling magne-
toresistance (TMR) device. In this configuration, the electrons tunnel through the layer
without flipping its spin. Although being proposed in 1975 by F. Julliere, the observation
of magnetoresistance in such junctions was possible only in 1995, when certain experi-
mental difficulties were overcome. After this achievement, the challenge to develop new
magnetic random access memory (MRAM) using this technology attracted a lot of at-
tention from the community, and finally the first MRAM product was presented in 2006.

Fast read/write times, as of the order of 5 ns, are now pursued [35].

There is still another experimental setup based on the so-called Tunneling Anisotropic
Magnetoresistance, where only a single magnetic layer is needed. In this case, the re-

sistance depends on the angle of the magnetization vector of this layer with respect to
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some crystallographic axis of an adjacent semiconductor layer. The TAMR, necessitates a
semiconductor material with a strong spin-orbit coupling and some magnetic anisotropy

to be efficient. In Ref. [36], this type of magnetoresistance is explained in more detail.

The use of semiconductors in a spintronic device was firstly proposed in 1990, when
the Datta-Das transistor, known also as the Spin-Field effective transistor (SFET) [37],
was presented. It illustrates the fundamental ideas of a spin-based logic device. In it, a
drain and a source made of ferromagnetic materials (with parallel magnetic moments; see
Fig 1.1) provide the necessary pieces to inject and detect the spin, respectively. Between
them, a non-magnetic semiconductor sample makes up a narrow channel for the electrons
to flow ballistically from the source to the drain. The electrons injected by the source
are spin-polarized. If the electron polarization arriving at the drain is parallel to the
drain magnetic moment, the electron goes through. Otherwise, it is scattered off and a
large resistance is measured. The degree of spin rotation so determines whether there is
a current or not. In order to control this amount of rotation, a voltage gate is applied
on top of the semiconductor channel. This electrostatic potential, in combination with
the confinement geometry of the channel and the spin-orbit coupling in the substrate
constitute an effective magnetic field that makes the spin precess across the sample. The
final effective result is the ability to control the spin rotation, and thereby the current,
by means of the gate voltage. Other proposals akin to the Datta-Das transistor have
been put forward, for example, by Schliemann et al. [39], where the condition of ballistic
transport is relaxed by tuning the Rashba and the Dresselhaus (to be explained below)
spin-orbit couplings so that the eigenspinors become momentum-independent. Hence,
elastic or inelastic scattering processes changing the wave vector do not randomize the

spin state of transmitted electrons.

An important remark here is that the spin-flip process involved in any of the spin tran-
sistors described above requires less energy than the energy needed for charge transport,
which inevitably entails energy dissipation, as in the conventional field-effect transistor.
From this point of view, spintronics is also a key player in power consumption optimiza-

tion.

All these devices, as we said, require in general long spin lifetimes. And that is why
semiconductors are so relevant in spintronics. Their great advantage is that besides the

long lifetimes, the spin can be manipulated via the characteristic strong spin-orbit coupling
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Figure 1.1: In the scheme of the Datta-Das spin field-effect transistor (SFET), a fer-
romagnetic emitter (spin injector) and a ferromagnetic collector (spin de-
tector) are placed with parallel magnetic moments. In between, an In-
GaAs/InAlAs heterojunction in a plane normal to n generates a channel
for two-dimensional electron transport between the two ferromagnetic elec-
trodes. The spin-polarized electrons injected by the source with wave vector
k move ballistically across the channel. Due to the spin-orbit interaction,
the spins precess about the precession vector 2, defined also by the structure
and material properties of the channel. The strength of €2 can be tuned by
the gate voltage applied on the top of the channel, which indirectly controls
the degree of rotation of the spin. In the end, the current is large if the
electron spin at the drain points in the initial direction (top row), and small
if the direction is reversed (bottom) The current is so modulated by the gate
electrode. Taken from Ref. [38]

of these materials. An example of this rather long spin relaxation times is encountered in
bulk doped GaAs semiconductors. In this case, it was observed that spin relaxation times
of the order of 100ns can be obtained at certain doping densities, the spin relaxation
times being strongly affected by the impurity density, as we will see in the next section.

We concentrate on this problem in the first part of the thesis.

When a semiconductor is doped, the impurities are not arranged in a regular way as
the crystal structure hosting them does. They form a random distribution inside the
perfectly ordered crystal structure. This feature leads then naturally to the theory of
transport in disordered systems. The first research works on such systems go back to
the late fifties when P. W. Anderson published his pioneering paper Absence of Diffusion
in Certain Random Lattices. Although many works that followed dealt with the electri-
cal conduction (or equivalently electronic eigenstates) in disordered systems, Anderson’s
paper context was the diffusion of an initial spin excitation which, according to the ex-

perimental observation [40], seemed to remain localized for low-concentration of spins.
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Interestingly, the opening sentence in Anderson’s abstract [41] was

This paper presents a simple model for such processes as spin

diffusion or conduction in the impurity band.

In the first part of this thesis we also consider the impurity band of a GaAs semiconductor,
where spin related processes are examined and the spin relaxation time is calculated.
Many aspects of the physics in the impurity band will be carefully unfolded in the following
sections.

Anderson’s cutting-edge ideas about localization could have been regarded, as he points
out in Ref. [42], as the germ of modern quantum computation: localization would provide
the necessary isolation to have independent sites with a quantum entity (spin) inside,
thereby forming a two-level system, and sufficiently protected from loss of coherence.
Needless to say that the very word ”qubit” did not exist at the time. In spintronics, a
qubit means a bit of quantum information, or equivalently, a controllable quantum two-
level system. A superposition of these states represents a possible configuration that can
be changed via a unitary evolution, performing many classical computations in parallel.
The common condition of the various spin-based quantum computers that have been
proposed is the manipulation of the dynamics of the spin. Many of them employ GaAs
quantum dots [8] or Si systems [43], to be introduced later. As a zero-dimensional example,
a quantum dot is built upon spatially confining one or many conduction band electrons in
its three directions. Nowadays, the so-called qubits are commonly realized in quantum dot
nanostructures, as originally proposed in 1998 [8], but they can also be found in trapped
atoms or ions, in quantum states of Josephson junctions, and other examples.

One of the challenges in these confined systems is to manipulate the electron spin in
a short time, shorter than the time for it to lose the coherence of information. It is
precisely the long coherence times (of the order of hundred of nanoseconds) of spin that
make them suitable for quantum computation. However, the electrical read-out of the
state of an individual electron spin (the spin orientation) was possible only in 2004 [44],
reported by the group of Kouwenhoven. In their experiment, an electron is trapped in
a quantum dot, in the presence of a magnetic field that separates the energy of the two
possible spin states (Zeeman splitting). An electrostatic potential is tuned such that if
the spin is down (antiparallel to the magnetic field), the electron leaves the dot; otherwise

it stays. In this way, the charge of the state in the dot is correlated to the spin state of
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the electron. Using a nearby quantum point contact, they were able to detect whether
the dot was occupied or not. In 2010, the same group described in Ref. [45] an ingenious
experiment, where they claimed to be able to control the individual spin in a quantum
dot via the spin-orbit interaction. The more sophisticated arrangement consisted of two
quantum dots hosted in a InAs nanowire, a quasi-one-dimensional structure where the
electrons can flow in one direction. The quantum dots are defined within the nanowire by
making use of gate voltages applied over it. In the experimental setup, the electrons in
both dots are individually addressable. In this scheme, fast qubit rotations and universal
single-qubit control were accomplished using only electric fields, coupled to the spin via
the SOC.

In the second part of the thesis we focus on InAs nanowires. This specific choice is re-
lated to the fact that, when grown unidimensionally, this semiconductor material acquires
a wurtzite-type (WZ) crystal structure, unlike the zincblende case that we considered for
the spin relaxation in a bulk GaAs sample. We specifically study a quantum dot in such
a wire, with cylindrical shape and in particular, we consider the case where the radius is
larger than the length (”pillbox”-like). Taking this into account, we analyse different elec-
tronic properties by including the appropriate effective spin-orbit coupling terms derived
for a WZ structure.

As a general remark, it is worth emphasizing that spintronics, far from being only a
topic in the realm of fundamental science, promises new technological applications to keep
up with the demand on the increasing number of transistors in computer processors, and
the continuing miniaturization of electronic devices. This is largely a motivation to foster
the scientific research in this field.

In the following, we go through the two main subjects already mentioned, starting
with the spin relaxation in a doped semiconductor as well as the physics related with the
metal-insulator transition, and secondly, we describe quantum nanostructures in more

detail.

1.3 Spin relaxation in n-GaAs

As it was already indicated, the first part of this thesis deals with the spin relaxation in

a doped bulk GaAs semiconductor. The role of impurities is of paramount importance,
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and in particular, the spin relaxation depends strongly on the doping density. We start
by recalling the different density ranges of interest, in which distinct electronic transport
properties are observed. Afterwards, we resume the study of the spin-orbit coupling and

spin relaxation.

1.3.1 Different doping density regimes in a bulk semiconductor

Let us first consider the extreme situation of a single impurity placed in the semiconductor
host lattice. If the impurity is a donor, as it is in our case, a new electronic state is created
close to the conduction band, within the energy gap of the semiconductor. As other
impurities are added, so that the electron may jump from one to the other, an impurity
band will arise out of the donor states of different impurities. If we further increase
the donor density, this band gets broader and the electronic states span over a larger
energy interval. Beyond a certain density -the hybridization density- the impurity and
conduction bands merge. Below this value, the system is in the impurity band regime,
where two different phases can still be distinguished. It is important to remark that due
to the fact that the impurities are randomly distributed, the wave number k associated
to the crystal momentum of the electron is not a good quantum number anymore since
the translational invariance is broken.

One common property of three dimensional disordered systems is the coexistence of
localized and extended states, as it is illustrated in Fig. 1.2. In a density of states picture,
the localized states appear towards the band edges, while the extended states are located
in between. The separating limit is called the mobility edge (E.). Here the Fermi Level
comes into play. If it is situated in the localized region (|Er| > E¢), the system does
not conduct at T = 0 and it behaves as an insulator. For T" > 0, the electrons can
be thermally excited, either to an extended state or to another localized state, thereby
giving rise to conduction. Conversely, once the Fermi Level enters the extended region,
the metallic regime is reached.

In the Anderson model, the metal-insulator transition takes place when the two mo-
bility edges come together, and the energy spectrum contains only localized states [46]. At
the precise density of n., disorder systems show interesting properties like fractality [47].

In conclusion, for three dimensions, depending on the doping density, there may be a

coexistence of both localized and extended eigenstates in the energy spectrum, separated
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A

Figure 1.2: Schematic representation of the density of states of a disordered system as
a function of energy within the Anderson model. The coloured zone repre-
sents localized states, while the extended states are in between. The energy
separating them is called the mobility edge.

n,=8:10"cm™
conduction bmd%
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n,=2-10"cm™

impurity band regime

Figure 1.3: Different conducting regimes according to the dopant density are shown. At
the hybridization critical density n;, separates, the impurity band merges
the conduction band. Below ny, two situations may arise: between n;, and
the MIT density n., we observe the metallic regime with delocalized states,
while for densities smaller than n., the insulating regime is reached, and the
conductivity at zero temperature vanishes.

by the mobility edge cited before. For one dimensional systems, instead, the Anderson
model predicts that all the eigenstates are localized no matter how weak the disorder
is [41]. For two dimensions the scaling theory of localization yields an insulating phase
for any degree of randomness, but the localization length may be extremely large. Ex-
periments exhibiting the signature of metallic behaviour, have often been interpreted by
going beyond single-particle modes and invoking the interaction between electrons [48]. Tt
has also been found in two dimensions that spin-orbit coupling favors the delocalization

of the electrons.

Our study deals with three dimensional systems, and focuses on the spatial extension of

one-particle electronic states in the impurity band, of which we present a detailed study
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in Chap. 3. We start there with a preliminary analysis that does not contain the spin,
and then we look at the spin-orbit coupling effects on the density of states, as well as
the distribution of the so-called Inverse participation ratio, that measures the degree of
extension of a wave function. The original results presented in this Chapter have been

published in Ref. [5].

1.3.2 Spin dephasing and spin relaxation

We now come back to the description of the spin and discuss the key concepts concern-
ing the spin decay time. The first step is to address the precise meaning of the word
spin relaxation, in contrast to the spin dephasing concept. Microscopically, relaxation
and dephasing are driven by different spin processes, although both lead to spin-lifetime
decays [49]. In general, the relaxation time T3 (also called longitudinal time) and the
dephasing time 75 (transverse) are two characteristic times that appear in the context
of the magnetization produced by a spin ensemble. The Bloch-Torrey equation describes
the precession, decay and diffusion of the magnetization M (associated to the spin) in the

case of mobile electrons. These equations include the two times in question [38],

oM, M.
T o= MxB),—=—=+D zMx
ot V(M B)o — =+ DV
GMJ M,
Y = 4y(MxB), — =2+ DV*’M
oM. M, — MO
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at rY( X )Z Tl + V z

where a magnetic field B(t) = Byz+B (t) with a static part By and a transverse oscillating
B, are assumed to be applied. D is the diffusion coefficient, v = ugg/h is the electron
gyromagnetic ratio including the Bohr magneton pp and the electron g-factor; M? = y By
is the thermal equilibrium magnetization with y being the static susceptibility. These
phenomenological equations show that 7} is related to the time it takes for the longitudinal
magnetization to reach equilibrium. FEquivalently, it accounts for the non-equilibrium
population decay, in which a certain amount of energy has to be transferred from the
spin system to the lattice, for example, via phonons. The time 75, on the other hand,

measures how long the transverse component of the spin ensemble is well-defined and can
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precess around the longitudinal direction.

Regarding this spin dephasing time, there are two processes that contribute. The first
contribution to 75 comes from the so-called inhomogeneous broadening, that appears for
example as a consequence of the inhomogeneities in the g-factor [49], that leads ulti-
mately to different precession frequencies of the individual spins. This broadening might
also be brought about by a momentum-dependent spin-orbit coupling or an energy-(or
momentum-) dependent g-factor. Conventionally, when the spin dephasing time includes
this type of broadening related to reversible processes, it is refered as T5. By contrast,
if the phase is lost due to spatial or temporal fluctuations of the precessing frequencies
(or magnetic fields equivalently) leading to irreversible dephasing, the term homogeneous
broadening is used, and the time T, does not bear a star symbol. In the case of mobile
electrons, the different momentum states have slightly different g-factor and thus differ-
ent precession frequencies. This inhomogeneous broadening is however surpassed by the

so-called motional narrowing, that we next explain.

For mobile electrons, the times T} and T» are calculated by averaging the spin over
the thermal distribution of the electron momenta. The different momentum states have
different spin flip characteristics, and therefore momentum scattering entails spin-flip
scattering. This means that when an electron undergoes a momentum scattering, its spin
orientation might change, which is equivalent to having a fluctuating effective magnetic
field. The physics of the spin dephasing in this inhomogeneous magnetic field is governed
by the so-called motional narrowing, that also introduces another relevant timescale, as

we nNow see.

Let us consider a spin precessing about a given axis with a Larmor frequency 2. This
frequency may change randomly between —€) and 2, which means that the spin rotates
clock- or counterclockwise. Let us assume that a correlation time 7. determines the
probability that the spin continues its precession in the same direction, or changes it.
During this time 7., a phase is accumulated dp =  7.. If we now consider the spin
precession as a random walk with this precise step dip, after N steps, we simply have that
the spread of the total accumulated phase is v = d¢ v/N. On the other hand, the number
N depends on time and is indeed equal to t/7.. Identifying the phase relaxation time t,,
with the time at which the phase spread reaches unity, we have that 1 = §p?¢, /7. Finally

we get the important result
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The inverse relation between the two times is characteristic of the motional narrowing,
and implies that the longer the correlation time, the smaller the phase relaxation time,
and vice versa. In our language, the motional narrowing is related to 75 and is the main
source of spin dephasing. For conduction electrons, to a very good approximation, the
relation 73 = 75 holds.

In the case of electrons bound to impurities or quantum dots, the inhomogeneities
are static and the g-factor-induced broadening due to spatial inhomogeneities plays an
important role. Nevertheless, thanks to a technique known as spin-echo, it is possible
to suppress these reversible phase losses, and the sole contribution to 75 comes from the
homogeneous dephasing. For example, the time 77 has been measured in lightly n-doped
GaAs samples, yielding values ~ 5 ns [50]. In general, T is the quantity of most interest
in quantum computing and spintronic, whereas 77 is usually easier to measure.

However, in electronic systems at relatively weak magnetic fields, the useful relation
T, = T5 holds for isotropic and cubic solids (if this last condition is not fulfilled, an
anisotropy factor of order unity is introduced) [51]. To determine the validity of this
equality, we must resort again to the correlation time 7. introduced for the motional
narrowing. The phase losses occur during time intervals of 7., and in consequence 1/7,
gives the rate of change of the effective magnetic field. If this rate is such that 1/7, > vBy,
then Ty = T,. For electrons, 7, can be identified either with the momentum scattering
time or with the time of interaction of the electrons with phonons or holes. As they can
be as small as a picosecond, the equality between 77 and T is satisfied up to several
Tesla. In many cases, therefore, a single term 7, is used to refer to spin relaxation or
spin dephasing, indistinctly. In the experiments of our interest, since the magnetic field
is weak, we will use 7, and call it the spin-relaxation time, making it clear that the spin
decay will be driven by the spin-orbit coupling.

We finally mention that in our discussion about spin relaxation, we deal with many-spin
systems. In the context of quantum computation, another term is utilized for the spin
dephasing of a single -or few- spin, namely the spin decoherence. But we do not discuss
it in what follows.

The experimental results that motivated the first part of our work are presented in the
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next part, while the techniques are succinctly described afterwards.

1.3.3 The experiment

As we have mentioned, the first part of this thesis deals with GaAs samples, doped with
Silicon, and is inspired in the work of Kikkawa and Awschalom [1]. These authors mea-
sured in 1998 the spin relaxation time and observed the influence of the doping on the
spin relaxation. Interestingly, relaxation times longer than 100 nanoseconds for a doping

3 were reported. Four years later, Dzhioev and collabora-

densitiy of the order of 10'cm™
tors [2] carried out similar experiments, but they swept a larger range of donor densities,
establishing a more accurate value for the longest relaxation time and the corresponding
density. These valuable experiments raised the interest of the spintronics community and
many attempts were performed to explain the results. The experiment of Dzhioev et al.
showed very clearly (Fig. 1.4) that the longest spin relaxation time was in the proximity of
the Metal-Insulator transition density, that occurs within the impurity band of a n-doped
semiconductor. The physics around this critical point is still not understood due to the
competition of disorder and electron-electron interaction.

Our aim is to tackle the problem of the spin relaxation on the metallic side of the
MIT, and close to it. The identification of the dominant spin-interaction giving such long
relaxation times is one of our major goals.

As we will later see in this chapter, the spin relaxation times for different density values
far away from the critical one have been understood in terms of various existing theories.
Nevertheless, none of these can be applied to the precise density range near the metal-
insulator transition that is the center of our attention. Before describing these theories,

we quickly review the experimental techniques involved in the measurements.

1.3.4 Experimental techniques

We briefly describe here the different experimental techniques encountered in the literature
reporting spin relaxation measurements.

In Ref. [1], Kikkawa et al used the so-called Time-resolved Faraday rotation (TRFR)
technique, with a temporal resolution going from femto to nanoseconds. This pump-probe
technique uses the Faraday rotation as the fundamental principle. The initial circularly

polarized light (pump) creates a net magnetization in the sample, and subsequently, with
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a time delay At, a second linearly polarized light crosses the sample (probe). The angle
of polarization changes according to the degree of magnetization present in the system,
and by changing the time delay At, a time-resolved observation is obtained. The TRFR,
was also used in lightly (< 2 x 10cm™3) doped n-GaAs to measure spin-flip times as a
function of magnetic field and temperature [52, 50].

The experiment of Dzhioev et al. used the combination of the optical orientation and
the Hanle effect, which is the depolarization of the photoluminescence with a transverse
magnetic field. The polarization created by the initial circularly polarized light is sup-
pressed by the presence of a transverse magnetic field, and therefore, by measuring the
corresponding photoluminescence polarization, the spin-relaxation can be inferred. In
this case, the degree of spin polarization is detected by observing circularly polarized
luminescence coming from the recombination of the spin-polarized electrons and holes.

In both cases, the initial step is to create an electron-hole pair by circularly polarized
light (optical spin orientation). The hole loses very rapidly its initial spin state and

it recombines with an unpolarized equilibrium electron (the probability of recombination
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Figure 1.4: The spin-relaxation time at low temperatures as a function of the doping den-
sity (labeled as np) obtained in different experiments is shown. Open symbols
correspond to the optical orientation data from Ref. [2], while the solid circles
are the results from a Faraday Rotation experiment from [3, 1]. Solid lines
correspond to parameter-free theoretical estimates, considering the relevant
spin-relaxation mechanism indicated by the labels: DP for Dyakonov-Perel,
anisotropic interaction, and hyperfine interaction. Taken from Ref. [2]

15



Chapter 1 Introduction

with a photoexcited electron is negligible under low pump intensity). Thus, spin-polarized
photoexcited electrons eventually create a spin polarization accumulation in the crystal.

A totally different technique was also applied for measuring the spin-relaxation in n-
doped bulk semiconductors. It is based on the spin noise spectroscopy [19], and it maps the
ever present stochastic spin-polarization fluctuations of free and localized carriers at ther-
mal equilibrium and the Faraday effect onto the light polarization of an off-resonant probe
laser. The advantage of this tool over other methods is that it measures the disturbance-
free spin dynamics in the semiconductors with high accuracy, and undesired effects such as
carrier heating or injection of interfering holes are not present. Employing this technique,
the spin-relaxation rate in samples with doping densities close to the metal-insulator tran-
sition was measured, for temperatures between 4 K and 80 K. A clear difference in the
spin-relaxation times was observed when varying the doping densities and moving from
the regime of localized electrons to that of free electrons. We discuss about this in more
detail in Chap. 4, and only mention here that the longest spin relaxation time at the

critical density was verified for the lowest temperature range, up to 70 K [20].

1.3.5 The existing theories

Having already identified the different doping density regimes, we can now move to the
existing theories in terms of which the different spin relaxation times measured in the
experiment can be explained. However, we insist that none of them can be applied to the

metallic regime of the impurity band, which will be covered by our theory afterwards.

Hyperfine interaction

For the smallest doping densities, the different impurities are far from each other and
one expects electrons to be deeply localized. In this case, the measured spin-relaxation
times can be understood by appealing to the hyperfine interaction. On the extreme side
of very low donor concentration, the electrons are isolated and precess independently in
the random static nuclear fields of the impurity domains. The origin of the hyperfine
interaction is the coupling between the electrons and the magnetic field produced by the
atomic nuclei. This magnetic coupling affects the localized spins, such as those confined in
quantum dots or bound to donors, and it may produce spin dephasing as well as single spin

decoherence. The interaction, although it is suitable for localized electrons, was shown
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to be too weak for itinerant electrons (free electrons in metals or bulk semiconductor) in
Ref. [53].
The hyperfine Hamiltonian reads

2
H= éNOgONBzi:h'Yn,iS’I(S(T_Ri) (1.1)

where g denotes the vacuum permeability, up the Bohr magneton, gy = 2.0023 is the
free-electron g-factor, ¢ labels the nucleus at position Ry, while S and I corresponds to the
electron spin operator and the nucleus spin operator, respectively, both expressed in units
of h. 7, stands for the nuclear gyromagnetic ratio. It can be shown that this interaction
can be expressed as A(IS) (Fermi contact interaction), with A being proportional to
the square of the electron wave function at the location of the nucleus [54]. Both the
properties of nuclei involved and the degree of localization of the electron, which may be
spread over many lattice sites (typically 10*—10°) are decisive to determine the strength
of the interaction. In Si, for instance, most of the nuclei carry no spin: only the isotope
2Si with spin 1/2 produces hyperfine interaction, but its natural abundance is too low
(4.6%) [38]. In GaAs, on the other hand, all the nuclei have spin 3/2, whence the stronger
hyperfine interaction of a localized electron in it.

There are in general three mechanisms where the hyperfine interaction plays a major
role in the electron spin relaxation. The first of them deals with independent evolution of
the nuclei and electron spins, i.e, small orbital and spin correlations. The spatial variations
of B,, -the magnetic field experienced by the electron- lead to inhomogeneous dephasing
of the spin ensemble. This dephasing has been measured in Si in Ref. [40], the same
experiment that inspired Anderson. If this effect is removed by a spin-echo technique,
then the temporal fluctuation of B, due to nuclear dipole-dipole interaction leads to
irreversible dephasing and decoherence of the electron spin, which makes the second case
of the list. The third regime corresponds to the hopping regime of the electron between
adjacent states and thus important at finite temperatures. Here the spin precession due
to B, is motionally narrowed, as explained before, and limited by the direct exchange
interaction, which causes individual spin decoherence.

In the experiment by Dzhioev et al., the authors attribute the increase in the relaxation
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time with dopant density for the lowest density range to the dynamical averaging of the
hyperfine interaction, where the electron passes less time in each localization domain as
the density increases, interacting for shorter time with more nuclei, thus diminishing the

effect of the nuclei-spin fluctuations.

Anisotropic exchange

As we further increase the doping density, electrons centered around neighboring impurity
centers start having some degree of overlap, and therefore the exchange interaction be-
comes relevant. It is worth mentioning here that since we discuss the case of two localized
electrons in what follows, the same physics does indeed apply to double quantum dots,
with an electron in each of them.

The origin of the exchange term is in the Coulomb interaction between electrons, that
gives a spin-dependent energy contribution as we require the total wave function -including
spin- of the two-electron system be anti-symmetric with respect to the exchange of their
coordinates. What this means is that if the spins of the electrons are parallel, the spatial
coordinate part of the wave function must be antisymmetric, meaning that it must change

sign upon exchanging the spatial coordinates of the electrons:

Wi (71, 72) = =Wy (7, 77)

This ultimately implies that electrons with parallel spin tend to be far apart, reducing
their mutual repulsion, and consequently diminishing the electrostatic energy.

Let us now consider the effect of the spatial anisotropy arising from the crystal en-
vironment and introduce the isotropic exchange interaction. The spins of two localized
electrons are actually coupled by two kinds of interaction, the magnetodipole and the
exchange interactions. In an isotropic system, the latter is described by the Heisenberg
Hamiltonian

H.,=2JSs-Sg

where J is the exchange coupling constant, and S denote the spin operator of the corre-
sponding electron. Interestingly, this isotropic (or scalar) interaction conserves the total
spin of the two electrons, and consequently, it does not cause any spin relaxation. However,

in the presence of a crystal environment, the previous expression should be generalized [4]
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1.3 Spin relaxation in n-GaAs

to
Hez = AaﬂSAaSBﬁ

where A turns out to be a second-rank tensor defined by the structure symmetry. Anisotropic
interactions of this kind appear in crystal structures lacking inversion symmetry, as in
bulk semiconductors with zincblende and wurtzite structures. The spin-orbit coupling
gives rise to this anisotropic part of the exchange term, whose form is also known as the
Dzyaloshinskii-Moriya interaction, and it may even dominate over the isotropic part. Al-
though the spin-orbit interaction disappears on averaging over the localized wave function
of a single-electron state, it is no longer the case for two electrons at a pair of donors close
to each other, or quantum dots alternatively.

Qualitatively, the process can be described in the following way, as Kavokin explained
in Ref. [4]. If we take two sites A and B, and consider an electron tunneling from one
site to the other one, it will experience the influence of the spin-orbit field. This field
makes the spin rotate a small angle. Reversely, the tunneling of the other electron in the
opposite direction is accompanied by a spin rotation through the same angle, but in the
opposite direction, because the internal field arising from the SOC, changes its polarity
for the backward motion. This makes that an interchange of the electrons also implies
a relative rotation of their spins. As a result, we expect to have an effective coupling
between these rotated spins, whose relative angle is determined by the SOC. In other

words, we end up with an interaction between tipped spin operators of the form

H., =2JS), - S},

If one wishes to express this interaction in terms of the original spin operators S, and

Sp, the appropriate transformation yields

H., =2JS4Sgcos(y) + %] (bS4) (bSp) (1 —cos(y)) + %b (Sa x Sp)sin(y) (1.2)

where v is the relative angle of rotation and b stands for the internal magnetic field
produced by the spin-orbit coupling. The last two terms correspond to the anisotropic

contribution [4]. Although we will not work out the full derivation of the anisotropic

19



Chapter 1 Introduction

Hamiltonian, we just emphasize some important aspects of it. The first of them is related
to the general structure of the electron wave function. As mentioned before, we consider
semiconductors lacking inversion symmetry, where an effective spin-orbit coupling in the

conduction band (this is further explained in Chap. 2) presents the general form

Hsoc = isgBsoc(k) - S

where Bgoc represents an effective spin-orbit field that depends on the wave vector, only
via odd powers of k.

As it is usually very weak, it has no incidence on the binding energy and the wave
function shape near the localization center. However, away from it, it strongly modifies
the wave function, even though the potential energy at large distances can be neglected.

As shown by Kavokin [55], the wave function at a (large) distance r from the center is

& oot onp (muBngoc(E ~7f(rny)) S )
h? o
where the length scale ry = (\/@)’1 has been introduced. Ep denotes the binding
energy, and m the effective mass of a conduction electron. The second part of this formula
resembles a spin rotation operation, meaning that if near the center the spin is pointing
along a certain axis, then at a given distance r the spin have the same projection but on

an turned axis, whose angle is equal to

() = m,uBngoc(E =7/(rro))r

around the spin-orbit field Bsoc. This asymptotic behaviour has an influence on the
spin dynamics. To show this, the next step is to consider the two centers A and B, and
notice that the two wave functions of the electrons localized at each site are no longer
orthogonal, even though they have opposite spin projection (along a common axis). This
implies at the same time that an electron tunneling from, say, site A to site B will turn
its spin through an angle given by v(Rap). If the site B is occupied by another electron

(described also by an asymptotic wave function), the exchange interaction will couple both
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electrons which are defined in different primed coordinate frames, as shown before. Upon
transforming this primed Hamiltonian back to a common frame, the resulting exchange

interaction (1.2) accounts for the full process.

From this description, yet not totally formal, it is reasonable to expect that a stronger
overlap between the wave functions, due to a increasing doping density for example, will
produce a stronger exchange and yield lower values for the spin-relaxation times. This
situation is consistent with the dip observed in Fig. 1.4 for a doping density just below the
critical one. Indeed, Kavokin showed that the motional narrowing of the anisotropic term
for two conduction-band electrons localized at shallow centers (donors or quantum dots)
accounts for the decrease of 7, in the intermediate density region 3 x 10%cm™3 < n < n,

of the experiment of Dzhioev et al..

If we now leap over the critical density and consider the extreme case of highly doped
samples, beyond the hybridization density, where the conduction band is mainly pop-
ulated, we expect the usual spin-relaxation mechanisms for conduction electrons to be

applicable. We address two of them in the following section.

The Elliot-Yafet mechanism

We briefly describe here the spin-relaxation mechanism that despite not being suitable in
our specific context, it certainly helps to understand the theory developed later for the
impurity band. In a regular array of ions, the periodic potential V,,, induces a spin-orbit

coupling term

Hsoc = R(VVCW Xp)-o

h
2
0

where my is the free electron mass, p = —ihV is the linear-momentum operator, and

o is the spin operator. This term couples different single-electron Bloch states, and

therefore, they are no longer o, eigenstates, but a mixture of spin-up and spin-down.

Elliot first considered the case of a metal with a center of symmetry, for which these

modified eigenstates read

21



Chapter 1 Introduction

Vi (1) = [ain ()] 1) + b (7] D)™ (13)
Va7 = [0 (] 1) = V(7] 1)] ] (14)

where the different coefficients ay, and by, measure the degree of spin mixture of the
state in the band n, for each wave vector k. The spatial-inversion operator and the
time-reversal operator (both of them commute with the Hamiltonian) connect these two
degenerate states. The labels 1 and | are justified by the fact that the spin-orbit coupling
is weak and consequently, the typical value of |by,| << 1. This estimation can be done in
the following way: since Hgoc has the periodicity of the lattice, it only connects states
with opposite spin but the same k at different bands n. If a typical coupling matrix
element is given by |Hgsocl|, and we denote the distance between these states by a gap
AFE, then
b |Hyl/ AE,

which is usually much smaller than 1, because the spin-orbit coupling is much smaller
than a typical energy gap. Given this, we observe that some mechanism of momentum
scattering will produce spin relaxation, because states with different k’s have different
spin orientations. Or to put this differently, every time the electron suffers a scattering
event that changes its momentum, its spin state may change as well. In Fig. 1.5, the
process is sketched. At each scattering on a center (phonon, impurity, etc), the electron
has a small chance to flip its spin. Elliot’s formula [38] states that the spin-relaxation

rate is proportional to the momentum relaxation rate
I's= Tgl ~ <b2>FP

where I') = 7,7 ! is the momentum relaxation rate determined by “up” to “up” scattering
[56]. The spin-flip length turns out to be proportional to the mean-free path (or to the

diffusion constant):

As =V Dy

The Elliot-Yafet mechanism is known to be very effective in metals, but it also enters

the physics of semiconductors. It is applicable for conduction electrons in the presence of
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1.3 Spin relaxation in n-GaAs

an inversion symmetric crystal structure. When this last condition is not fulfilled, another
mechanism appears and competes with it, namely the Dyakonov-Perel mechanism that

we discuss in the sequel.

D‘yakonov-Perel

The inversion symmetry in semiconductors can be broken by the presence of two distinct
atoms in the Bravais lattice. This happens to be the case in groups III-V (such as GaAs)
and II-VI (ZnSe) semiconductors. In heterostructures, instead, the source of this breaking
is the asymmetric confining potential. In general, in asymmetric systems the spin-orbit
interaction leads to the Dyakonov-Perel mechanism for conduction electrons. Due to the
lack of translational invariance, the eigenenergies do no longer satisfy Eyx, = Eiq, but
since the time-reversal symmetry is still present (as long as no external magnetic field
is applied), the following relation holds Ex, = E_x4. The spin splitting so produced is
equivalent to consider an intrinsic k-dependent magnetic field B;(k), perpendicular to k,
that induces a Larmor precession around it with a frequency of Q(k) = (e/m)B;(k). This
intrinsic magnetic field derives (and depends on) from the spin-orbit coupling in the band

structure, whose effective interaction term reads

H(k) — %ho LK)

where o are the Pauli matrices and k is the momentum state label of the electron in the

A 4\ J®\ ®-.
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Figure 1.5: The Elliot Yafet mechanism, relevant for conduction electron in centrosym-
metric crystals, is sketched. The spin-orbit interaction makes a spin-up
(down) Bloch state bear a small contribution of spin-down (up) amplitude.
Impurities, boundaries or phonons, even being spin independent potentials,
may induce transition between quasi-up and quasi-down states [56].
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conduction band. Therefore, the combination of the momentum relaxation described by
a characteristic time 7, and the momentum-dependent spin interaction gives rise to spin
dephasing. If we further define €2, as the average of the intrinsic Larmor frequency over

the electronic momentum distribution, two different cases can be distinguished.

If Q4,7, > 1, the momentum relaxation time is long enough as to permit the spin to
precess a full cycle before being scattered to another momentum state. In general, the spin
dephasing time is given by 1/7; & AQ, where AQ is the width of the distribution sampled
by the ensemble of spins. For ¢ < 7, all the spins dephase reversibly, but afterwards, this

coherence is irreversibly lost due to randomizing scattering.

In the other case, €,,7, < 1, the electrons changes its momentum rapidly and so does
the magnitude and direction of the intrinsic magnetic field. The time step 7, determines
the “small” rotation angle of the spin 0® = €2, 7, between two successive scattering events.
The spin phase then accumulates diffusively and after a certain number of steps given by

t/1,, the total phase is calculated as

O(t) = 5o/ t/Tp

The presence of the square root coming from the random walk picture must be noticed. If
we now define 7y as the time at which ®(7;) = 1, then we come across the usual “motional
narrowing” equation

1/7s = inTp

In this case, the total phase accumulated by a single electron consist of a sum of different
Larmor frequencies (randomly taken) multiplied by 7,, such that Q(k) is sampled by the
distribution of these sums. Its variance is, according to the central-limit theorem, very
small. Randomizing is very effective in this case because there are other spins bearing

different momentums, and thus precessing with different Larmor frequencies.

The simple picture of the Dyakonov-Perel mechanism is presented in Fig. 1.6. As the
spins in the bands are no longer degenerate, the spin-up state carries a different energy
from a spin-down state with the same momentum. The electrons moving throughout the
sample experience an internal magnetic field, dependent on momentum, that makes the

spin precess along such field, until the electron momentum changes by scattering due to
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.V/ Y

Figure 1.6: The Dyakonov-Perel mechanism applies in non-centrosymmetric structures,
where the spin bands are no longer degenerate, and a spin up state with a
given momentum has a different energy from the spin down state with the
same momentum. Therefore, the effective picture is an internal k-dependent
magnetic field, along which the spin precesses. When the electron is scattered
by a phonon, a boundary or an impurity, the precession continues along a
different axis [56].

a impurity, boundaries, or phonons. The precession then continues, but along a different
axis, because the k has changed. In this case, unlike the Elliot mechanism, the smaller
the momentum scattering time the longer the spin relaxation time. A large momentum
scattering rate prevents the spin to perform a full cycle of spin rotation, whereby spin
relaxation would be enhanced.

As it has been pointed out, the Dyakonov Perel mechanism is suitable for conduction
electrons with a well-defined crystal momentum k. In the case of doped semiconductor, for
large densities (Fig. 1.4) where the conduction band is well populated, the spin-relaxation
times can be understood in terms of this mechanism. For a smaller density, just above
the critical point, we enter the metallic regime of the impurity band, and therefore the
aforementioned theory is not applicable. We have developed in this work a suitable
theory for treating the spin relaxation in this case, whose results can be found in Ref. [7].
However, we anticipate that the notion of spin diffusion will be used upon constructing

our description for the spin-relaxation in the impurity band.

1.4 Spin in nanostructures

So far we have dealt with electrons and spins in bulk systems, where the electron moves
in the three directions. In low-dimensional systems, by contrast, the electron motion is

restricted to two, one, or even zero dimensions. Nevertheless, bulk and low-dimensional
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physics are not completely dissociated. For example, lightly doped GaAs has been studied
in view of the similar spin properties observed for electrons localized on isolated donors and
for electrons localized in quantum dots [50], since in both cases the electron is effectively
confined in a zero dimensional enclosure. As it is mentioned by Kavokin in Ref. [55], an
understanding of the spin behaviour in the impurity band of bulk semiconductors would
be a proper basis for the study of localized electronic spins in wells or dot arrays. However,
the confinement potential in nanostructures is in general less isotropic than the localizing
potentials of donors in bulk systems.

The importance of low-dimensional semiconductor systems is related to their great
flexibility in manipulating charge and also spin properties of the electronic states. Here,
spin relaxation is also caused by random magnetic fields originating either from the base
material or from the heterostructure itself, and the Dyakonov-Perel and the Hyperfine
interaction are believed to be the most relevant mechanisms [38]. As the spin relaxation
and spin dephasing in these systems should be reduced for technological applications, a
great deal of research has been devoted to understand them.

From the point of view of applications, an additional motivation for studying low-
dimensional spin-based electronics is its close connection to the current trend in technology
of requiring smaller and smaller devices. In this sense, spintronics also belongs to the field
of nanotechnology.

In the second part of this thesis we concentrate on a semiconductor quantum dot,
explained in Chap. 5. Before that, we briefly describe the various low-dimensional systems,

starting with the two-dimensional case.

1.4.1 Quantum wells

An example of low-dimensional system is the quantum well. In this case, the carriers are
confined on a planar region, whose thickness is comparable to the de Broglie wavelength of
the carriers. The setup consists of an ultra-thin layer of a small band gap semiconductor
between larger gap semiconductor materials, that effectively forms an attractive potential
in which electrons are trapped. In heterostructures made of GaAs and AlGaAs, the two-
dimensional electron gas (2DEG) is formed between the spacer (AlGaAs) and the buffer
layer (GaAs) [57]. In these systems, electrons spins have been successfully manipulated

by means of electric fields, which allows to set and control the g-factor value -so varying
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the coupling between the magnetic field and the spin- throughout the well, and thereby
tuning the electron spin resonance [57, 58]. An equivalent g-tensor modulation resonance
technique that used a gigahertz electric field was proposed in Ref. [59]. After it, a different
approach that also made use of time-dependent electric fields, was put forth by Rashba
and Efros [60, 61]. These electric fields change the orbital state of the electrons, and
couple to the spin via the spin-orbit coupling. Their alternative gate-voltage induced spin
resonance mechanism, known as the Electric Dipole Spin Resonance (EDSR), was later

on extended for quantum dots.

1.4.2 Nanowires

Another example of a lower dimensional system is a wire, in which the electrons are
confined to one single dimension, as in a rod or a whisker. They are typically grown
by the so-called metalorganic vapor phase epitaxy (MOVPE), a chemical -in contrast to
physical- method used to grow thin films of a given material. The desired atoms diffusing
through the gas phase deposit onto the wafer (substrate surface) atomic layer by atomic
layer. The chemicals are vaporized and injected into a reactor together with other gases,
where a critical chemical reaction takes place, turning the chemicals into the desired
crystal. A compound semiconductor can also be grown using this technique [62]. This
procedure needs a seeding nanoparticle, deposited on the substrate, in order to induce
the process. The nanoparticle size determines the diameter of the nanowire, which can
typically reach 100nm [63]. The structural properties of the nanowires are usually studied
using a high-resolution transmission electron microscopy (TEM).

Nanowires have been proposed for several practical applications. In Ref. [64], the
possibility to use a ferromagnetic gate as a spin-polarization filter for one-dimensional
electron systems was put forward. Nowadays, an additional interest on these wires is
rising, because in contact with normal (gold) and superconducting electrodes, they can
be used for the seek of the novel Majorana fermions [65]. In this thesis we do not deal
with this interesting subject.

An appealing feature about the nanowires is the possibility to host a quantum dot,
by confining the electron in the axis of the wire. The electron dwelling in the dot is a
conduction band electron of the underlying structure that is affected by the confinement

effects. A necessary step for achieving such a setup is the formation of one dimensional
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Figure 1.7: A transmission electron microscopy of InP barriers of various sizes inside InAs
nanowhiskers. In the lower figure the crystalline perfection is showed, along
with the interface abruptness. The InAs whisker diameter is 40 nm [10].

heterostructures, in which a single whisker contains various segments, with abrupt inter-
faces and heterostructure barriers of varying thickness. The picture in Fig. 1.7 shows the
transmission electron microscopy (TEM) image of a nanowhisker made of InP and InAs
pieces, with a remarkably sharp interface between them, also displayed.

By using these InAs nanowires, the group in Sweden headed by L. Samuelson [66] came
across a novel device. They designed a few-electron quantum dot in these semiconductor
nanowires, by introducing a double barrier made of InP heterostructures. The quantum
dot is hosted between the barriers, and by increasing the gate voltage, they added electrons
one by one into the dot, up to 50. This is the type of quantum dot that we study, and we

next describe it in more detail.

1.4.3 Quantum Dots

A quantum dot is a zero-dimensional system in which the motion of the electron is confined
in its three dimensions. As such, the energy spectra presents discretized levels. The
electron spin in a semiconductor quantum dot is a promising candidate for quantum
information applications, and therefore much effort has been devoted to understand and
identify the effects producing the loss of information either via decoherence or relaxation.
The original proposal of implementing a two-level system -associated to the electron spin-
as a quantum bit (or qubit) in a quantum dot was published in 1998 by D. Loss and D.
DiVincenzo [8]. Many theoretical and experimental works followed thereafter, and many
technical pitfalls have been overcome, eventually leading to great advances. Only in recent

years systems where the properties of individual electrons can be measured have been
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Figure 1.8: An outline of the nanowhisker quantum dot. Tho InP tunnel barriers de-
fine the quantum dot in the InAs nanowire. The lateral side facets form a
hexagonal cross section with presumably hard wall conditions [9].

achieved. Among those, the quantum dot is particularly appealing since it constitutes
the building block for scalable solid-state quantum computers. The central and major
challenge notwithstanding remains in the present: how to manipulate the spin in a short
time before it loses its (quantum) initial state. The simplest idea would be to think about
resonant magnetic fields. In Ref. [67], the group of L. P. Kouwenhoven claimed to control
coherently a single spin in a dot by applying short bursts of oscillating magnetic fields. The
problem is that the field involved cannot be spatially localized, the strength of it renders
the time to reverse the spin too slow, and the experiment has to be performed at very low
temperatures and at high frequencies [68]. All these shortcomings make the experiment
as well as the technological application a very hard task. A more desirable approach was
conceived in 2007 by Nowack and collaborators [69], where the coherent control of the
spin by means of oscillating electric fields generated in a local gate was performed. They
reported induced coherent transitions (Rabi oscillations) as fast as 55 nanoseconds, and
their analysis indicated that the spin-orbit interaction was the driving mechanism. The
manipulation times obtained in these GaAs quantum dots, about 110ns for a spin flip,
were not fast enough, hindering a quick and precise control. This deficiency was partially
improved again by Kouwenhoven’s group [45]. Here the one dimensional wire was made
of indium arsenide, whose spin-orbit coupling is known to be stronger. In this spin-orbit
qubit, spin-flip times of about 8 ns were obtained. The quantum dot in this latter example

is defined by using an array of 5 contiguous gates (no structuraly defined tunnel barriers
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are present), where two quantum dots are hosted. One of them serves only for reading
purposes. Operating in the Coulomb blockade regime, that prevents the electron from
escaping from the dot, a microwave-frequency electric field applied to one of the gates
forces the spin inside the wire to oscillate, so inducing resonant transitions between spin-
orbit states when the a.c frequency is equal to the Larmor frequency. The Electric Dipole
Spin Resonance mechanism, already mentioned for 2D systems and extended for quantum

dots in Ref. [70], is at the basis of the comprehension of the experimental results.

Another property of interest in quantum dots is the effective g-factor. It has been
measured in InAs nanowire quantum dots for various dot sizes in Ref. [9], where a strong
dependence on the dot sizes is exhibited in the case in which few electrons occupy the
lowest discretized energy states. This sensitivity leads to a possible setup for individually
addressable spin qubits, if the nanowire has multiple dots with different g-factors along

it.

Our reference to the specific material InAs is not casual. We consider an quantum
dot like the one sketched in Fig. 1.8. The dot is hosted between the two InP tunnel
barriers. Our point of interest is the intrinsic spin-orbit coupling related to a particular
property of these systems: the crystal structure of InAs presents a zincblende form in the
bulk phase, but it acquires a wurtzite-type structure when grown unidimensionally [71].
Moreover, a crossover to the zincblende crystal structure has been observed as a function
of the wire diameter [72], and theoretically explained by classical nucleation modeling.
Logically, the commonly cited form of the effective Dresselhaus spin-orbit coupling for
zincblende (cubic-in-k) is not expected to be applicable to the wurtzite case. Indeed, the
effective spin-orbit coupling for the conduction band of WZ contains a linear-in-k term,
firstly proposed in Ref. [11]. In addition, and only recently, a cubic-in-k term has been
shown to be present [24] as well, and the corresponding coupling parameters have been

calculated [14].

In our study about spin-orbit effects in InAs-based quantum dots, we treat both terms

on equal footing (see Ref. [15]).
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1.5 Outline of this thesis

The outline of the thesis is as follows. In Chap. 2 we review the theoretical formalism
related to our work. We begin by exploring the origin of the spin-orbit interaction starting
from the Dirac equation. After this and by way of a digression, we introduce basic concepts
of group theory, that provide us with a convenient language to treat the symmetries
encountered in crystal structures. The zincblende and the wurtzite structures are there
described. The chapter finishes with the effective theories whereby we can deal with the
behaviour of an electron without taking into account all the microscopic details concerning
the crystalline structure.

In Chap. 3 we present our characterization of the impurity band, and more precisely,
our study about the effect of the spin-orbit interaction on the localization of the wave
function. We consider a suitable parameter to measure the degree of spatial extension of
the calculated eigenfunctions, and how it changes upon increasing the spin-orbit coupling
strength, in this case, given by an extrinsic-type SOC associated to the impurities.

In Chap. 4 we tackle our main subject related to spin-relaxation on the metallic side
of the metal-insulator transition of a doped semiconductor. In addition to the extrinsic
term, we add the Dresselhaus (cubic-in-k) SOC derived for zincblende structures. Our
approach to the spin diffusion in the impurity band is carefully explained, along with the
complete analytical treatment of the density dependence of the spin relaxation for dopant
densities slightly larger than the one corresponding to the metal-insulator transition. We
also performed some numerical calculations for the estimation of the spin relaxation by
considering the time evolution of an initial state. After presenting the numerical results,
we compare and discuss the agreement of our theory with the experiment of Fig. 1.4.

In Chap. 5 we concentrate on the behaviour of a conduction electron confined in a
cylindrical quantum dot. The effective spin-orbit coupling terms related to the wurtzite
structure, here containing both a linear-in-k and a cubic-in-k contribution, are exactly
treated. A two-dimensional system is firstly considered, and the energy dispersion as a
function of k is derived analytically. A further confinement is imposed with cylindrical
hard-wall boundary conditions to make up a pillbox-like quantum dot. Here, an equation
for the discretization of the energies is found, and a numerical solution is thus imple-
mented. The resulting g-factors are evaluated.

The conclusions brought about by our theoretical work, as well as the perspectives are
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in terms of further theoretical and experimental research discussed in Chap. 6.
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Spin-orbit interaction in semiconductors

2.1 Dirac-Spinor

The spin-degree of freedom associated with an intrinsi angular momentum S couples to a
magnetic field exactly in the same way as a dipole magnetic moment does. This magnetic
moment is related to S via the definition u = gugS, where g is the g-factor and up is
the Bohr magneton. But in spite of this interaction, which has a classical form, the spin
degree of freedom itself does not have any classical analog. Even though the spin emerges
naturally in relativistic quantum mechanics, its existence is revealed solely by a lineariza-
tion of the Schrodinger equation, without appealing to any relativistic theory, as it is
elegantly exposed in [73]. Such linearized equation is equivalent to the usual Schédinger
equation, but in contrast to the latter, this one is linear both in (9/9¢) and in (0/0z). The
Pauli equation can be thus derived and the correct value for the g-factor results. Here,
however, we will follow the more conventional way of using a Quantum Electrodynamics
framework, in order to treat the interaction of an electron with an electromagnetic field.
The basic goal is to see how the spin-orbit coupling (SOC) comes out, or equivalently,
to trace back its origin. For this, the Dirac equation will be unfolded, and the spin g-
factor will appear as well. In the beginning we succinctly sketch the derivation of the
Dirac Equation, following [74]. The road map starts from the Schrodinger equation, fol-
lowed by its relativistic counterpart, and we finish by deriving a new Schrédinger equation
as a non-relativistic limit.

The Schrodinger Equation can be obtained by using the quantum prescription p —

33



Chapter 2 Spin-orbit interaction in semiconductors

(—ih)V and E — ih% for a conservative mechanical system

h? oY
—— VY 4+ Vip =ih— 2.1
5V YT VY =ihg (2.1)
with m the free-electron mass, V' a potential energy and i the Planck’s constant.
On the other hand, leaving out the potential energy, the relativistic energy-momentum
relation is

E? — p* = m2ct

In the so-called covariant notation, this is expressed as :
P'p,—mi =0 (2.2)

where = 0,1,2,3. The 0 component is associated to the energy (zo is the time coordi-
nate), while the other three correspond to the momentum components. We note that the
space and time coordinates appear on equal footing in this last equation. The Einstein
notation has been used for the sum. For our purposes, it is enough to know that the super

and subscript notation simply mean
atb, = a’by + a'by + a®by + adby = a'° — a'bt — o*0? — 3V°

where a and b are operators. Every time we want to rise the index of an operator, we have
to multiply it by —1 only if u = 1,2, 3. The 0-component remains the same. In relativistic
language, po = E/c and P = (p1, pa, p3) is the linear momentum operator. If we followed

the aforementioned quantum prescription, we would arrive to the Klein Gordon equation

—10%
2 0%

e ()

The fact of being second order in ¢ poses a problem based on the statistical interpreta-
tion of |1|2. To circumvent this difficulty, Dirac sought an equation linear in 9/0t, and
compatible with the relativistic energy-momentum relation (2.2). Dirac’s proposition was

to split the energy-momentum relation (2.2) in two parts :

P'pu—m*c® = (BFpr + me)(v pa —me) =0 (2.3)
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2.1 Dirac-Spinor

thereby imposing the energy-momentum relation. If this equation is to be satisfied, then
any of the two terms of the decomposition is a solution to the total problem. It also im-
plies that the linear equation is attained. Remarkably, the simple requirement in eq. (2.3)

leads to the conditions to be met by the §’s and 7's :

o fr=1"

the v's must be matrices

the smallest dimension of these matrices can be 4 x 4

o () =1
° ('yi)g =—-Ifori=1,2,3

VA + 4Py =0 if (u # v) (the anti-commutation relation)

The last item defines an algebra, and there are several equivalent ways of representing

the 7's. One of them is

o I 0
0 —I
and
: 0 o
V= .
-0 0

Each block in these matrices is a 2 x 2 matrix; I is the identity and o; are the Pauli
matrices.

Another choice is the so-called Majorana basis. It takes up different expressions for the
~ matrices, which of course satisfy the same algebra, and imply ultimately the existence
of a particle that is its own antiparticle, i.e. a Majorana Fermion.

Back to our derivation, the usual substitution p, = %0, is inserted into the eq. (2.3),

and any of the two terms can be named the Dirac Equation :

thy" 0, —mceyp = 0. (2.4)
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Chapter 2 Spin-orbit interaction in semiconductors

Nevertheless, it must be noted that i is a four-component spinor; it is NOT a four-
component vector, since it does not transform under the ordinary Lorentz rules. We
mentioned that the spin-orbit coupling is our final objective, and therefore the effect of
an electromagnetic field needs to be included. The requirement of preserving the gauge

invariance dictates that the spatial and time derivatives must be replaced by

where A is the magnetic vector potential and ¢ the electric scalar potential. In covariant

notation, the Dirac equation including this quadripotential is

" (ih0, — ZAM) — md(z) = 0. (2.5)

In order to recover the Schrodinger equation, the linear time derivative can be separated

from all the other terms by multiplying (7°c) from the left

[7°¢] [4°(ihdy — %AO) + i (ihd; — SAZ-) — mdw(z) = 0. (2.6)

Using the property (7°)? = 1, the time derivative is written on the left side, while the rest
of the equation passes to the right

ih% = eAgp — Vovi(ihc)&w + e’y A +0m ) = ki (2.7)

If the potential A, is restored to its original form and the product of matrices is renamed

as
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2.1 Dirac-Spinor

then & in eq. (2.7) can be re-expressed as

which is in the original form put forth by Dirac.
We now analyze the non-relativistic limit limit of this equation, setting our sight on
the Schrodinger equation. For this purpose, the equation (2.7) will be considered, along

with a decomposition of the four-component spinor ¢ into two components

14
Y= /
X
We then have
o ! cd - Ty
anl 7] = AX + e T ime| 7
o\ v ¢ - 11/ X —X
where ¢ = (0,,0,,0,) and the generalized momentum operator has been introduced

fi= p—(e/ c)ff If we further separate the largest energy scale, namely the rest energy,

in the following way
w — ¥ — 6—i(m02/h)t

a new expression for the eq. (2.7) is obtained

& 11 0
zh% L AX +e¢ 7 - 2m c? (2.9)
X ca - Ilp X —X

A 7formal” solution for the lower part of the spinor can be written as

g-T  ihd —ep
Y = — 2.10
X 2me 14 2mc? X ( )

If only the first term were retained, the Pauli equation would result in the magnetic dipole
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Chapter 2 Spin-orbit interaction in semiconductors

interaction, with the correct value of 2 for the spin g-factor. The second term must be
kept for the spin-orbit coupling to appear. In our formulation, we can consistently argue
that the first term in eq. (2.10) is the dominating one, as the second one is divided by the
rest mass (largest energy scale)

This way, the equation can be solved iteratively in order to get x as a function of ¢

G- ih2 —eo (G-10
X = p— —2& < )cp (2.11)

2me 2mc? 2me

This relation is then substituted in the eq. (2.9) for ¢ and what is left can be identified
with the Hamiltonian of the problem. Nevertheless, the wave function must be normalized
before this; otherwise the Hamiltonian is not Hermitian. This technical step is excluded
here, and we only take care of the two products of operators containing & and .

The first of them is

where the kinetic energy is represented by I1% and the correct electron g-factor equal to 2

is immediately recognized, once the following identifications are done

B .
and for the Bohr magneton

_eh

HB 2mc

26 T)0(6 1) = PP+ g0 (V6 X 7)

4m2c

The pép term has no classical analogue, and is of order (v/c)?. The second term accounts

for the sought spin-orbit coupling. The total result for the Hamiltonian, with the correct
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2.1 Dirac-Spinor

normalization of the wave function, gives

— 7 E - (2.12)

The last bracket in the expression contains the total spin-orbit coupling, and leads, for
example, to the fine structure of atoms. In this case, the presence of a symmetric spherical

potential leads to

- (VxE)=0
and
e = e ov (7 e 1oV, -
- 7. (E - . (Ixpg)=—=2"3.L.
dm?c? ( p) am22’ oy (’I“ x ) dm2r or

This formula shows that the correct Thomas Precession -one half the result obtained for
an electron at rest in the magnetic field of a proton circling around it- is obtained as well.
Finally, the term p" E , associated to the Darwin force is not discussed here as it is beyond

the scope of our subject.

In this preliminary section we have introduced the spin degree of freedom and the
resulting spin-orbit coupling. The results we have got are valid for a free electron in the
presence of a general potential V(7). Exactly the same spin-orbit coupling exists in solids,
where the electron sees a crystalline landscape. However, the effective theories we will
work with, allow to stow the information about the hosting crystalline structure and its

parameters in the coupling constants, and derive effective spin-orbit Hamiltonians.

The derivation of these effective terms and the associated parameters makes use of the
crystalline properties of the underlying structure. For this reason, we continue in the next

section by briefly introducing Group theory, an appropriate frame to study symmetries.
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Chapter 2 Spin-orbit interaction in semiconductors
2.2 A brief summary on Group Theory

Semiconductors, and metals alike, are generally made of regular arrays of ions. This
ordered feature offers the possibility of identifying symmetry operations that leave the
crystal unchanged. Indeed, this property is exploited to facilitate the study of solids, and
in particular, the electron band structure. For example, if two different states labeled
with k and ¥ are related to each other via a symmetry operation of the crystal, then the
electronic energies of these two different states must be identical. This implies that we
need to calculate the energy of one state, and infer the other one by symmetry consider-
ations. The second consequence is related to the wave function: they can be expressed in
a symmetrized fashion, meaning that they have certain transformation properties defined
by the symmetries of the crystal. Therefore, given a symmetry operation, we can classify
and group the wave functions according to it. In doing so, we can deduce if a matrix
element -or equivalently, an operator coupling two states- vanishes or not, depending on
the symmetry properties of the operator. These gives the so-called selection rules. As we
will see below, the symmetry operations must also cope with the spin degree of freedom as
well, and so a convenient extension of the symmetry operations reserved for crystal struc-
ture without spin will be necessary. Once the importance of regarding and identifying the
symmetry operations has been highlighted, a systematic way of sorting them is of great
utility. The suitable conceptual framework to handle this is Group Theory. Though we
do not make a thorough description of this theory here, we discuss some relevant concepts
and the widely used terminology in solid state physics.

A group is a set of elements (operations in our case), where the successive application
or multiplication between any two elements belongs to the set. If a and b belong to G,

the multiplication must satisfy five conditions:

e Closure = The result of the operation ab is another element of the group.

e Associativity = It is equivalent (ab)c = a(bc)

e Identity = An element e is the identity if Va € G — ea = a

e Inverse = Every element of G has its inverse element a~! such that e ta = ¢

In principle, the successive application of two operations in the group does not commute.
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2.2 A brief summary on Group Theory

In the case of crystal lattices, although there are many symmetry operations, we can list
some basic operations in terms of which any other may be written. The defintion for them

is

C; is an i — fold rotation about a given axis

o is the reflection about a plane

1 is the inversion

S; means the rotation C; followed by a reflection about the plane perpendicular to

the rotation axis

the identity operation E.

If we now compute all the possible symmetry operations of this kind, but with the ad-
ditional restriction that at least one point fized and unchanged in space, we obtain the
so-called point group, related to rotation, inversion and reflection symmetries. Crystals,
on the other hand, also have translational symmetries, which also form a group. Groups
that contain both rotation and translations are space groups. The point group of the
zincblende structure is denoted by 7%. The translational symmetry operations are defined
in terms of the three primitive lattice vectors (see Fig. 2.1.), which are at the same time
used to define the point group operations, with the origin at one of two atoms in the
primitive cell.

With this choice of coordinates, the 24 operations for 77 are enumerated below (usually

introduced equivalently for the methane molecule):

E : the identity

e (3 clockwise and counterclockwise rotations of 120° about the [111],[111], [111],

and [111] axes, respectively (8 operations);
e (5 : rotations of 180° about the [100], [010], and [001] axes, respectively (x3)

o Sy : clockwise and counterclockwise rotations of 90° about the [100], [010], and [001]

axes, respectively, followed by a reflection(x6);
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Chapter 2 Spin-orbit interaction in semiconductors

Figure 2.1: The set of three primitive lattice vectors is shown for the face-centered cubic
lattice.

e o : reflections with respect to the (110), (110), (101), (101), (011), and (011) planes,

respectively (x6).

So far we have taken care of the pure description of the crystal in terms of its sym-
metries. A question might arise: How does an operator generating any of the symmetry
transformations cited above act on the wave function? For this, we need a representation
of the operator. One way is the matrix representation of an operator in a given basis set

¢:(7), spanning the Hilbert space,

H(7)i(F) = Y Huon(7), (2.13)

where Hj; is the matrix element between the states i and k. If we are to consider the

effect of any operation S upon the basis set, we must also operate on the spatial variable

7 [75], such that
$i(SF) =Y Siehi(7) (2.14)
k

This leads to an expression for the matrix elements of a Hamiltonian which is transformed

under the same S, i.e H(S7)
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2.2 A brief summary on Group Theory

Hij — ZSJlHlkSkj (215)

kl

Assuming that S is any operation of the symmetry group of the Hamiltonian (H re-
mains unchanged under .S), we obtain the following condition for the commutator of both

operators

[H,S] = 0

This means that a given symmetry of the Hamiltonian, and thus of the crystal, can be
expressed via a vanishing commutator of it with the corresponding symmetry operator.
Once we fix a basis for each element S of the group, there is a corresponding matrix S;y.
The correspondence between the elements of a group and the matrices representing them is
such that for a, b, ¢ € G, the multiplication ab = ¢ corresponds to M, M, = M., where M,,
the matrix associated with the group element o = a, b, ¢ is termed the representation of a
group. Such a correspondence is not unique, since the basis can be arbitrary chosen. There
is actually -for a given group- an infinite number of such groups of matrices, each of them
being connected to its counterpart in another representation via a unitary transformation
(they are said to be equivalent). Among all of them, there is one special basis set, namely

the eigenbasis U;(7) which satisfies

H(7)W;(r) = ¥;(7) (2.16)

The transformed equation can be consistently expressed as

H(SF)W,(SF) = ¢ V,(S7) (2.17)

and as S stands for a symmetry operation

H(F) W,(SF) = 04 (S7) (2.18)
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Chapter 2 Spin-orbit interaction in semiconductors

This result evinces that U,;(Sr) is itself an eigenfunction with the same energy. In case
of having a n-fold degenerate level €,, with eigenfunctions denoted by W9 (r =1,2,3..,n),

the implication of the symmetry operation is

To(SF) =Y W () (2.19)

p=1
which means that the transformed wave function can be written as a linear combination

involving only partner wave functions with the same energy

The matrix representation of S has block-diagonal form

SO0

0 S

Every square diagonal submatrix has a dimension n, Xn,, determined by the degeneracy
of the level a.. All the other operations in the group can be similarly reduced to this shape.
A representation is said to be reducible if the same similarity transformation brings all
the matrices of a representation into the same block diagonal form. i.e all of the new
matrices have diagonal submatrices with the same dimension at the same position. On
the other hand, when each of the blocks cannot be further reduced, the representation is
called irreducible. A similarity transformation can convert a reducible representation into
a block-diagonal form, where each block is a irreducible representation. The possibility of
having the irreducible representation of a group -matrices such as S of minimum order
ne- simplifies the multiplication of two matrices of the representation, because it only
involves one subspace

R@ — gla)p(a)

The powerful implication that follows is the connection between degeneracy and dimension
of irreducible representation. Let us suppose that we have a given representation of a
group. If the matrix of any observable, the Hamiltonian for example, is invariant under
the group, then it commutes with the irreducible representation of any element of the
group. Shur’s lemma then ensures that the eigenvalues of the observable can be put
into sets with the same degeneracy n,. Of course, this does not give the magnitude of

the eigenvalues, but since the irreducible representation can be calculated from the basic

44



2.2 A brief summary on Group Theory

operations of the group, it provides very useful information about the solution. In other
words, the problem of classifying the eigenvalues of the Hamiltonian is solved if the small
number of inequivalent irreducible representations of the symmetry group is found. Of
course, the eigenfunctions of an operator form a basis for an irreducible representation of
the operator, but to find them is the difficult task. In conclusion, we have that for each
eigenvalue of a Hamiltonian, there is a unique irreducible representation of the group
of that Hamiltonian. Besides this, the degeneracy of an eigenvalue coincides with the
dimensionality of this irreducible representation, and thus, the dimensionalities of the
irreducible representations of a group are equal to the degeneracies of Hamiltonians (with
that symmetry group). Group theory thus provides labels corresponding to irreducible
representations and to which eigenfunctions belong. This is a very useful result that
group theory gives to quantum mechanics. To illustrate the idea behind the irreducible
representations, let us take the example of the reflection of coordinates about the yz-plane,

which is represented by the matrix

-1 0 0 T
M=]10 10 Y
0 01 z

This is a reducible representation, since the same transformation can be done by applying

three one-dimensional matrices in the following way

(=D (Dy; (1)2]

and in this last case, the representation cannot be further reduced (it is the irreducible
representation). The irreducible representation of a rotation through 180° (a 2-fold ro-
tation axis) is also one-dimensional (a sign reversal), provided a suitable choice of coor-
dinates is made. However, the 3-, 4- and 6-fold rotation axes (except the 360° rotation)
always involve two coordinates changes and the irreducible representation is therefore two-
dimensional. A more physical example concerning the rotation operator is given in [76].
Suppose we have a simultaneous eigenket of J and J, called |4, m). The rotation operator

describing a rotation of ¢ around the n-axis reads
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Chapter 2 Spin-orbit interaction in semiconductors

and the matrix elements for this operator in the basis of eigenkets of J? and .J, is accord-

ingly

(9) i

Y = (j,m|e” T, m) (2.20)

where the same j is considered on both sides because the rotation operator does not mix

states with different j-values, as a direct consequence of the relation
(3%, Ji] =0 Vk.

The (25 + 1) x (25 + 1) in?m/ matrix is said to be a (2§ + 1)-dimensional irreducible
representation of the rotation operation ®.

To finish with the classification of the elements of a group, we now fetch the class notion.
This concept allows us to assemble all the elements of a group into smaller subsets. If two
elements s and ¢ in a group satisfy that xs = tx for some element x in the group, then s
and t are said to be conjugate (they are related by a similarity transformation). A class

contains all the elements of a group that are conjugate to each other. To find the class

where an element is, one considers the products of the form

EsE™' vsv!

for every element v in the group. E is the identity. Several of these products coincide
with other elements of the group. By combining and grouping them, we form a class [77].
This transformation also implies that s = z~'tx, showing that we can get the same result
of the transformation s by means of an application in a certain manner involving two
other operations ¢t and z. In the case the group is represented by matrices, the similarity
transformation that connects all the elements within a class implies that their traces are
all the same. The traces of the matrices in a representation are called its characters. A
physical interpretation for this might be as follows: if the symmetry operations that the
elements of the group represent satisfy the above relation B = X "1 AX, it means that the
net operation B can be equally obtained by first rotating the object by X, then carrying
out the operation A and finally undoing the initial rotation by X~!. Taking for example
A as a rotation, then B is also a rotation through a different rotation axis.

For zincblende, for example, we had that the point group has 24 symmetry operations.

All these can be further divided in five classes:
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{E}v {803}7 {302}7 {654}7 {60}

We have introduced classes because group theory provide us here with a valuable the-
orem: the number of classes is equal to the number of inequivalent irreducible represen-
tations. We thus learn now that Ty (the point group of zincblende) has five irreducible
representations.

Let us finally regard the notation used in band structure. At the center of the Brillouin
zone, the so-called I'-point, the wave functions always transform according to the irre-
ducible representation of the point group of the crystal. Therefore, for ZB we label the
irreducible representation by I';, where the subscript ¢ = 1,2,3,4,5 simply refers to the
irreducible representation in Koster notation. With the introduction of the spin degree
of freedom, this notation changes, as the point group itself does (see section 2.6.1).

As we have seen, group theory provides a suitable mathematical tool and terminology
to study symmetric structures. We next describe specifically the two crystal structures

that concern this thesis, namely zincblende and wurtzite.

2.3 Crystal Structures: Zincblende and Wurtzite

While most of the ITI-V semiconductors crystallize in the zincblende (ZB) structure, the
family of the II-VI and IV-VI compounds exhibit a greater variety [78]; they can be
found in the ZB form, others are wurtzite (WZ) and some of them can be found in
both forms. InAs, for example, presents a ZB structure in the bulk, but it is of the WZ
type when grown in quasi one-dimensional quantum wires. A further key feature of a
band structure in semiconductors is its band gap: it can be either a direct-gap, as in
some zincblende and wurtzite-type semiconductors, or an indirect-gap, as in silicon. In a
direct-gap semiconductor the maximum of the valence band coincides with the minimum
of the conduction band. Since electrons in semiconductors mostly populate the lowest
states in the conduction band, it is possible to concentrate on the electronic states near
the single conduction band minima. In this thesis, we rely on this condition as we only
consider direct-gap cases.

As we have seen, the crystal structure is very important because it determines the

symmetry properties of the system, and hence the correct irreducible representation in
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® o
O as

Figure 2.2: The conventional cubic cell for the diamond structure consists of two inter-
penetrating face-centered cubic. Each of the sublattices contains a different
kind of atoms (Ga and As), making up the zincblende structure.

the band center, which is a key step in the construction of the k-p Hamiltonians, explained
in the ensuing section. We also present there the corresponding SOC both in ZB and WZ

materials, whose crystalline properties are now described.

Zincblende

The underlying structure of ZB is the diamond lattice, which consist of two interpene-
trating face-cented cubic Bravais Lattices, displaced along the diagonal of the cubic cell
(see Fig. 2.2) by ¢ = (T 4y +2z) [79]. It must be noted that the diamond structure is not
a Bravais Lattice. In the diamond structure each lattice point and its 4 nearest neighbors
form a regular tetrahedron. The zincblende case is obtained when the two fcc lattices
are made of different atoms, for example GaAs, which is a IT1I-V compound. Concerning
its symmetry properties, we have already mentioned that its space group is 77 while its
point group is Ty, containing 24 basic operations listed before. For ZB materials, the
characteristic representations for the band center is sketched in Fig. 2.3 where the effect
of the spin-orbit coupling manifest in the split off of the valence band, which are p-like
with orbital angular momentum [ = 1 at the band center. Without spin-orbit, the valence
would be three-fold degenerate at the band center. In the presence of SOC, the valence
band degeneracy is lifted in two ways. The band with total angular momentum J = 1/2,
the so-called split-off band, separates from the heavy hole and light hole bands (both of
them with total angular momentum J = 3/2). The combination of the SOC and the lack
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Figure 2.3: The effect of the spin-orbit coupling is shown for the zincblende material.
The labels correspond to the group symmetry of the corresponding band,
and in the case of SOC, the double group notation is used.

of inversion symmetry leads to an energy splitting for conduction and valence states with
k # 0, even if the magnetic field is zero. As a consequence, the heavy-hole and light-hole
bands have different energies for the same k. The influence of the SOC in the electron
energy levels for bulk semiconductors was pointed out by Elliot [80] and Dresselhaus [81]

and will be further studied in the coming sections.

Wourtzite

The building block for the wurtzite material is the hexagonal close-packed structure (hep),
obtained as two simple hexagonal Bravais Lattices displaced in the horizontal direction,
such that the points of one lattice coincides with the center of the triangles formed by
the other one. In the vertical direction, the displacement is along the c-axis and the
distance is given by ¢/2 (see Fig. 2.4). The space group of WZ is C¢, , and the symmetries

comprising rotations are the identity, clockwise and counterclockwise rotations of /3
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Figure 2.4: The hexagonal close-packed crystal structure is shown. Two interpenetrating
simple hexagonal Bravais lattices, displaced along the vertical axis (c-axis),
and displaced horizontally so that the center of the triangle of one lies exactly
above the point of the other. The three primitive vectors are a; = af a, =
a/2% + \/3a/2§ (horizontal arrows) and asz = ¢z (vertical arrow).

about the c-axis, and reflections in vertical planes defined by the c-axis and the reciprocal
lattices (51, —52, b + 52)

The rotations by m and by +7/6 around the c-axis, and the three reflections in the
planes containing the c-axis and @7, dz, and @3 must be followed by a displacement along
[0,0,¢/2] in order to leave the crystal unchanged. The inversion is not a symmetry since
different type of atoms occupy the horizontal planes in the z-direction.

In WZ, the spin-orbit coupling has also an effect in the band structure, as it is seen in

Fig. 2.5.

The topic of our next section is precisely to introduce the spin-orbit coupling, and

describe how they modify the band structure of solids.

2.4 Spin-orbit in solids

In this section, we consider the spin-orbit coupling in crystalline solids. In addition to the

Zeeman term, already present in the Pauli Equation, we found

HSOC','Uac = )\uaco ' (E X vv) (221)
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Figure 2.5: The same picture as in Fig. 2.3 is depicted for the wurtzite case.

where \yge = —% ~ —3.7 x 107542 and Ak = p. The subscript vac underlines the fact

that we are dealing with an electron in vacuum. This remark will become significant as
the effective theory for the SOC is discussed.

In a crystal, the electrostatic potential V' can be split off as the sum of a crystal
contribution V,,,, that should be separated from Ve, including any other kind of electric

potential due to impurities, boundaries, etc.
V = ‘/crys + M)ther (222)

The distinction drawn for the possible types of electrostatic potential leads to a classi-
fication of the different kinds of SOC. In this sense, we will use the terms intrinsic and

extrinsic spin-orbit coupling, even though it is not unique across the literature. We will
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refer to the term extrinsic as the spin-orbit contribution that depends on the impurities,
in accordance with the definition given in Ref. [82]. The intrinsic SOC, on the other
hand, means that the spin-orbit field in the solid system is solely related to the structural
properties of the system and arises even in the absence of impurities. The inversion sym-
metry needs to be broken to get such a term. Such a definition is based on the idea of
intrinsic semiconductors, which are so pure that, at a sufficiently high temperature, the
impurity contribution to the carrier density is negligible, and result in intrinsic conduc-
tivity. At lower temperatures, the extrinsic properties emerge as the contribution to the

carrier density from impurities dominates.

The well-known “Rashba” coupling, for two dimensional systems, arises as consequence

of the asymmetry in the confinement potential.

In three dimensional systems, the expression for the intrinsic SOC depends on the
crystal structure and band parameters, and as we will see below when we study the

Dresselhaus coupling, the zincblende and the wurtzite examples exhibit different Hj,,;.

In contrast to this, an extrinsic SOC accounts for the coupling of the moving spin in
the presence of the electric field due to impurities. Hence, the extrinsic coupling is also

present even if the inversion symmetry is preserved. An extrinsic term looks like [82]
Hep = Mo - (k x VV) (2.23)

where ) is an effective constant that contains information about the band structure. The

role of V' is played, for example, by the impurities potential.

The effective constants and effective SOC terms are obtained by appealing to the so-
called k - p method. In combination with the envelope function approximation, it allows
to include the effect of the SOC close to the band minima. We start with the envelope
function approximation, and then introduce the k - p method. This latter contains the
Kane Model in which the effective SOC terms can be calculated. Since the full derivation
exceeds the scope of this thesis, it is not carried out in detail. The main ideas and hints

will be exposed nevertheless.



2.5 The envelope function approximation

2.5 The envelope function approximation

The envelope function approximation (EFA) copes with the behaviour of electrons and
holes in the presence of electric or magnetic fields that vary smoothly in the length scale
of the crystal. It describes the electron wave function in terms of band-edge Bloch Func-
tions, which renders the method very useful for the subsequent systematic perturbation
treatment [18]. To observe how these conditions are introduced, it is instructive to see

the derivation of the EFA Hamiltonian, which starts with the Schrédinger Equation

Vi .
2my Y 4mic?

((mv + (e/c)A)? _h ((_mv + (e/c)A) x VVo) (2.24)

+ V) +5und - B) W) = BU().

The potential Vj represents the periodic potential, the vector A generates the magnetic
field B, and V (7) accounts for the slowly varying potential. The next step is to expand
the eigenfunctions in terms of band-center Bloch functions, in the same spirit as the k- I

method in next section.

W(f) = Zwu’a’(f&)uu’()(f‘)|0/> (225)

vio!

where u,q are the quickly oscillating Bloch Functions of the v-band at k = 0 and |o”)
are the spin eigenstates in the S, basis. The t,/,/(r) play the role of the expansion coef-
ficients or enwvelope functions, now position-dependent, that modulate the function. We
then insert this Ansatz in the eq. (2.25) and integrate over one unit cell. At this stage,
we appeal to the smoothly varying character of the field and ; we consider that within
one unit cell these quantities do not change considerably and therefore, we take them out
of the integral. We then come across a set of coupled equations called multiband (many

bands are in principle involved) or EFA Hamiltonian:
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n (—ihV ;rm(:/c)A)2

S G (2.26)

-,

1 g ’ !
(=¥ + (e/)A) - Peg) + S

v,V v,V
0

(420 Boyu] } Woror(7) = BW,(7)

where
Po = (volTi|v'o’)

with

. B

I=p+ o x VW

4myyc?
and
, h
N7, = ——(va|[p-d x (VVp)] |V o).

v 9m2e?
We notice that the characteristic feature in the EFA set of equations is the presence the en-
velope functions instead of Bloch-Functions. Using quasi-degenerate perturbation theory
we can convert this infinite-dimensional eigenvalue equation into a solvable problem.

We have done here a simple exercise of deriving a Hamiltonian that contains a slowly
varying potential whereby we expected to get envelope functions. We now step back
to consider a situation without this smooth potential. We wish instead to describe the
energy dispersion E(E) close to some point k= Eo in the band structure. For this, we
will resort to a method, called the k - p method, that in analogy to the EFA, considers a
linear combination of many bands to build up a solution.

In the end, we will see that the EFA Hamiltonian can be derived from the k - p method

by some proper substitutions.

2.6 k- p method

A simple tight-binding (TB) model would be enough to understand how the discrete levels

of the atoms merge and form a band when they come closer. Such a quasi-continuous
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energy levels arise as a consequence of the atomic wave-function overlapping of different
atoms. Depending on the type of orbital, the bands may have positive or negative cur-
vatures. The cosine-like energy dispersion given by the TB method resembles the real
band structure for k values close to the band extrema. In this region, one can often
make a parabolic approximation for the energy dispersion and attribute an effective mass
to the electron. The effective mass then allows to pack information about the physical
system in a parameter, and to have a simpler Hamiltonian (as simple as the free-electron

Hamiltonian, for example), yet restricted to a given energy region.

In this section we will explain how the concept of effective mass arises in more sophis-
ticate descriptions of band structures. The k - p method used to introduce it has proved
to be successful for the calculation of energy dispersion near a given I;O, which for us will

be the I" point or zone center [83].

First of all, we cite the Bloch Theorem, which states that the solutions to the Hamil-

tonian containing a periodic potential Vj

2
(2pm0 + Vb) \I/n,; = EnE\IlnE (2.27)

can be written
U (F) = e*T oy () (2.28)

where u, z(7) is a periodic function with the periodicity of the lattice and m is the free-
electron mass, and k -the wave vector- is associated to the crystal momentum of the
electron. If we now replace this function into eq. (2.27), an equation for the periodic part

of the Bloch Function (BF), known as the k - 7 equation, is obtained

2 . 27.2
p k-p Rk
—+Vo+h— r=FE u - 2.29
(2 0+ o+ o + 2m0>unk ki Unk ( )

At k = 0, this equation reduces to

2
2m0
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Now we assume we know the solution to this equation. It can be shown that the periodic
functions u,o with different n’s form a complete set of basis, and so we can exploit this
property to expand the wu,y in terms of these band-edges states and treat the fik - p/m as

a perturbation. The general expression for the proposed solution is

u = Z ¢ (K)o (2.31)

For simplicity we consider the band structure to have a minimum at F,q = 0 and no

degeneracy exist at this point.

At this point, we can proceed by using standard perturbation theory, and take the k- p
operator as the “weak” term. In this case, we obtain the correction terms to u,o (the

“unperturbed state”)

~ h <un0|E . ﬂun’0>
R 3 Pltwo), 2.32
Uk tno mo n'#n E”O - En’O tn'o ( )
and for E,
~ h2]€2 ‘ un0|k ﬁ]un/0>|
E-=F, E S 2.33
nk o+ 2m /2 n,¢n nO _ K ' 0 ( )

We note that there is no linear dependence on k, because the energy has been chosen to

be an extreme. The following parabolic energy dispersion for small values of k

- h2k>?
E -=FE, 2.34
nk 0 + om* ( 3 )
defines the effective mass of the band as
1 1 ‘ Un()|k' ﬁ]un/0>|
_ 2.35
m*  mg ka% Z Eno — Eno (23)

by likening the corresponding terms. This formula shows explicitly the correction to the

free-electron mass due to the k - p coupling between this band and the neighboring ones,
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and it is valid as long as the energy region of interest is close to E,o. We note that the
wave function u,g couples to another u, o via the p operator. The importance of group
theory becomes evident here. The operator p, responsible for the coupling between the
two states, has a ['y symmetry in the ZB case (it transforms like a vector). Therefore,
applying the matrix element theorem and group theory, we can anticipate that a
conduction band state with symmetry I'y. will be coupled only to valence band state ~ T'y,
(and in principle, also to a T'y.). The T'y, state, besides being coupled to I'y, also interacts
with I's, I'y, and I'; states. This is just an example exhibiting how group theory provides a
way to discard certain matrix elements based on symmetry properties. Secondly, it must
be also noticed that the energy separation between the two states weights the relative
contribution of n’ to the effective mass of the band n, and could eventually give rise to
a negative or a positive contribution to m*. These two general features can be applied
to several direct band gaps of the group-III-V and II-VI. To illustrate the idea we take
zincblende GaAs and calculate the effective mass of a conduction electron. In Fig. 2.3,
the zone-centers states for this material [84] are shown using the group notation for the

identification of the symmetry properties of the states involved. We also know that

FlNS

and

r,~X,Y,Z

The names S and (X, Y, Z) are used because of the similarity between the I'y and I'y
states and the atomic p states (three fold degenerate with [ = 1) and s states, respectively.

The other important point is that

(Slp=| X) = (Slpy[Y) = (SIp:|Z)

and that there is no term like (S|p,|Y"). This implies that the effective mass (which should
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be defined ultimately as a tensor) is isotropic in this case and so

11 2 [(Sp X2 2 [(S|pal X2
112 SIdXP 2 [(ShlXe) 036)
m* mo my Erln - EF4u my EF4c - EFM

where we include the interaction between the lowest conduction band I';. and both the
upper conduction band I'y. and the valence bands I'y,. In ZB, the last term happens to be
smaller that the preceding correction term, and so m* < myg. Using the same method, we
can correct only one of the three p-like valence bands; only the light hole band couples to
the conduction band T'y. along a given direction (the A direction). The result here is that
my, < 0, which means that the correction ”"bends” this valence band downwards. The
k - p interaction is then capable of changing the curvature of the conduction and valence
in certain cases. Within this simple one-band model, the heavy-hole band can also be
derived, but in this case, unlike the light-hole band, the interaction of the valence band
and the more remote I'y. state must be necessarily considered.

The general k - p method framework -beyond perturbation theory- allows to describe
the coupling between heavy holes and light holes, and other interactions such as non-
parabolicity or spin splitting in the band structure. Let us now derive the k-p Hamiltonian

with SOC. We must thus include

h
Hsoc = —WU'P x VVy
0

in eq. (2.29). The resulting equation for the periodic Bloch equation |nk) is

P’ R R = B B
Vot 5—+ —k- 11— : Vo) nk) = E -|nk 2.37
(2m0+ 0+2m0+m0 4m0020 pxV 0) [nk) znk) ( )
with
H=p+ o x V.

4mc?

It must be noted that owing to the SOC, the newly defined functions |nE> are two-
component spinor, and the label “n” is a common label both for the orbital motion and
for the spin degree of freedom. The indices arise from the irreducible representations of

the double group of the band.

However, we will expand the Bloch Functions as before in terms of band-center states,
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which also are spin eigenstates:

=
U

=
Il
o

S

t\

N

—~
=

o' (2.38)

with [/o’) = |/,k = 0) @ |0). The next step is to replace this expansion in (2.37)
and multiply from the left by (vo|, and in virtue of the orthogonality of the band-center

functions, the resulting equation is

> IE (oH@ Sysboes + T P 4 L (k) = Eo(E)ep o (k) (2.39)
v 2m0 vv'Ogo’ mo ! ! nv' o’ — Lp nv' o’ .

v ol

where the eigenvalue E,(0) of [¢/¢’) has been introduced.

As the matrix elements appearing in this case 131,";’/ and A%% are the same as those in
the EFA Hamiltonian (2.27), it seems natural that the EFA Hamiltonian can be obtained
from the k- p Hamiltonian by replacing the vector Bk = P — —ihV + %/T, adding the
slowly varying potential V(7) and the Zeeman term (go/2)ppo - B. It is worth pointing
out that in the EFA case, k (or p) is the operator of kinetic momentum and must be
distinguished from the canonical momentum “—iAV”. In particular, if no magnetic field
is present, then they coincide. If also V'(¥) is zero, then the wave vector k is equivalent
to the operator k from EFA.

If a non-zero magnetic field is considered instead, then no matter what Gauge is chosen,

the components of the operator £ do not commute and
kxk~B
Likewise, we find that

[k, V(7)) = —iVV(7).

Let us see in what follows how the %k - p method works for the energy dispersion calcu-

lation close to the band center.
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2.6.1 The Kane Model : First-order

In the previous section we have found the energy dispersion by means of perturbation
theory. Nevertheless, the expansion of the periodic Bloch Function (2.31) can be applied
to replace the differential equation (2.29) by the corresponding matrix, in which case
an infinite representation naturally appears. As we can only handle finite matrices, an
approximation must be done. This consists of the diagonalization within an appropriate
subspace, where the interaction between some bands is exactly treated, whereas the cou-
pling to the more distant bands is incorporated through a perturbation scheme. These
various models, referred as Kane models, build a hierarchy depending on how and which
bands are taken into account. For example, the simplest 4 x 4 Kane model contains the
interaction between the conduction band I';, ~ S and the three-fold degenerate valence

band Iy, ~ X,Y, Z. The resulting Hamiltonian [85], in the basis {5, —i X, —iY, —iZ}, is

e(k)+ E, kP k,P kP

. k) 0 0
H(k) = . (2.40)
t e(k) 0
e(k)
where e(k) = % is the free-electron energy dispersion and P = —ihmo(S|P,|X) is related

to the coupling between different bands. The energy dispersion is
h2k?

2mo

E(E) = E(E) + % +4/ % + k2P? electrons

G(E) + % — \/W light-hole

We see that 2 valence bands are not modified respect to the free-electron one, while

twice heavy-hole

the conduction band and the light-hole band [k change and acquire a certain curvature.
The effective masses within this model are isotropic, but the heavy-hole band hh is the

free-electron one. The [h band then presents non-parabolicity.

The effective-masses for electrons and holes are

1 1 E,
=— (1=
m*  my E,
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respectively. The Kane parameter E, = thozp ® has been defined.

So far we have neglected the spin-orbit coupling. In the & - p equation (the equation for

the periodic Bloch function), the interaction enters as

h 1 -
H =—5=(oxVV)-p+—= (e xVV)- -k 2.41
soc Imie (o )P+ Imic (o ) (2.41)
if the spin-orbit coupling is applied to the total function u,, EeiE‘F. The second term in

eq. (2.41), being smaller than the first one, is often neglected. The inclusion of spin
transforms the 4 x 4 case into the 8-band Kane model. The spin-orbit coupling lifts the
three-fold degeneration present so far in the valence band at the I' point, leaving only a
two-fold degeneration and shifting the energy of the third valence bands to lower energies.
This spin split-off band is then considered, and therefore an extra parameter /Ay appears.

It denotes the energy difference between these two valence bands.

As we have anticipated, the introduction of the spin also entails a modification in the
symmetry group of the crystal. The necessity for such a modification can be easily justified
if one considers that a orbital part of a wave function remains the same under a rotation
of 27, whereas the spin wave function changes sign under the same operation. Following
the notation of Ref. [83], we call E the 27 rotation about a given axis. For a spinless
particle E is the identity operation; for a spin-1/2 particle it represents an additional
symmetry operation. This implies that if G is the point group without spin of a crystal,
the new group including spin must be EG, and it is twice as large as the original one.

The name for this kind of groups is accordingly double group.

Since the Hgoc operates on spin states, we also have to analyze the symmetry properties
of the spin matrices, and then review the representations of the symmetry operators. We
expect the number of irreducible representations of the double group to increase as well,
as the group is “bigger”. The number of elements of the point group in ZB is, as we know,
24 and it is 48 for the double group. However, while the number of classes of the single

point group is 5, for the double group it is 8, not 10. Therefore, I'; will run over 1, ..., 8.

In our ZB example, elements in {3C;} and elements in {3EC;} belong to the same
class, like {60} and {6Ec}. This explains why the number of irreducible representations
is larger but not doubled. The spin-orbit coupling also forces us to adopt other basis

functions. The eigenstates of Hgpoc are also eigenstates of the total angular momentum
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J =L+ S and its z-component. The appropriate basis is now

3 1.3 3, ,1 1
.z: 7a:|:777>:|:7777 5
1, 32) = (15,5, 15,00 15,20}

We have just seen how the SOC splits the j = 3/2 states from the j = 1/2 states.
Concerning the notation, the four-fold degenerate j = 3/2 states belong to a I's represen-
tation, since this is the only four-dimensional representation in the point group. In the
case of j = 1/2, the irreducible representation may be in principle either I's or 'z, both
of them being two-dimensional, but it can be shown that it actually belongs to I';. This

observation completes the understanding of Fig. 2.3.

Back in the 8-band Kane model, the bands considered are the Tg., I's, and I'7,, these

two last bands separated by /\¢. The basis is the following

. 3 1.3 3 .1 1 .
{|ZS T>7 |§’i§>7 |§7i§>7 |§7i§>7 |ZS \L>a}

and matrix elements such as

1 1
— P(k, + ik
7 (ks + ik,)

. 33,
(st 1H]55) = (IS 1 |H] 7

(X +i¥) 1) =

must be calculated. Solving for the energy dispersion, the effective masses are derived.

The result shows that for the electron

1 1 2F 1 FE
= —(1+24 -7 2.42
Me m(,( +3Eg+3Eg+A0) ( )
Likewise, for the light hole,
1 1 2FE,
—=—(1—-== 2.43
myp mo ( 3 Eg> ’ ( )
the heavy hole,
1 1
—_ = (2.44)
Mhph mg
and the spin hole or split-off band,
1 1 E
L P 2.45
Mmgh mo ( 3(Eg + AQ)) ( )
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remote
o Iy = 4 bands
= \
o [';. =2 - )W
o ['ge =2
e
A
o [y, =4
o 'y, =2

Figure 2.6: The energy separation at the I' point is shown with the coupling parameters
of the 14 x 14 Kane model.

While the heavy-hole band still has the free-electron mass (because the remote conduction
band is not included), we see that the introduction of the spin modifies the effective mass

of the split-off band.

2.6.2 The Kane Model : Second-order

As we previously mentioned, the first-order Kane model deals with states within the
desired subspace, and contains k-linear coupling terms between the s and the p states.
The inclusion of remote bands (T'y. for example) leads to quadratic terms (second order)
both in the diagonal and the off-diagonal matrix elements. An example of extended Kane
model takes up the I'y, valence bands (6-fold degenerate with spin), the I';. (2-fold), and
the T'y. (6-fold). In double group notation, the bands considered are listed in Fig. 2.6
in increasing order of energy, and with the dimension of the irreducible representation
besides.

This extended Kane model forms a 14 x 14 model that takes ezactly into account all the
k- p and spin-orbit interaction between the above-mentioned bands. The interaction with

other bands is considered using second order perturbation theory [18], or alternatively,
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by means of a block-diagonalization, known as the Lodwin Partitioning, which is actually
a unitary transformation that converts the original Hamiltonian into a block-diagonal
matrix (keeping terms up to the desired order).

We now describe the Dresselhaus SOC term, for which a 14 x 14 Kane Model must be

considered. An 8 model is not enough.

2.6.3 Dresselhaus SOC

The time-reversal symmetry, preserved in the presence of the SOC, changes the sign of

the vector k and ” flips” the spin such that its effect is
Time-reversal — E. (k) = E_(—k) (2.46)

The symmetry provided by an inversion symmetric systems ensures that the energy is

unchanged if k — —k, whereas the spin remains the same

Inversion symmetry — Es (k) = Ey(—Fk) (2.47)

-,

The combination of both properties result in a spin-degeneracy E, (k) = E_(k), which is
lifted upon the inclusion of an inversion symmetry breaking mechanism. This is indeed
the case that we will next consider: systems without a center of inversion or equivalently,
with bulk inversion asymmetry (BIA). In zincblende or wurtzite material, the inversion
symmetry is broken due to the different type of atoms in the cell, and we expect therefore
an energy splitting for a given k. Nevertheless, we still have Kramers degeneracy as we
firstly mentioned. The wave vector k defines a spin orientation axis n(E) that depends
on E, and we have an eigenstate of the spin operator pointing along this direction. The
time-reversed partner carrying the same energy, points in the direction defined by —K.
All these symmetries imply that in these materials without bulk inversion symmetry, only
odd powers of k are generally allowed in the energy expansion around the symmetry point
I'. This effect is know as the Dresselhaus or Bulk Inversion Asymmetry (BIA) effect. In
ZB, the lowest term is cubic, unlike the WZ case having a linear-in-k term. One way of
approaching the problem is the Theory of invariants.

Although this theory has not been detailed here, it basically states that since the

Hamiltonian of a system must be invariant under the same symmetry operations of the
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crystal involved (the Ty for the zincblende), the only possible effective Hamiltonian terms
containing k£ and ¢ must be compatible with this symmetry. In this way, one can rule out

other terms that must necessarily vanish.

Zincblende structures

For example, if we focus on the higher order term in the conduction band T'g. of a
zincblende material, we know that there is no linear-in-k spin splitting, because the term
o - (k x VV) in first order perturbation and the term o - (5 x VV) coupled via k - 7 in
second-order perturbation theory gives zero matrix elements [85]. This means that the
spin splitting is cubic in k, and so the theory of invariants gives a general expression of

this term in zincblende structures, that is known as the “Dresselhaus” term.

He6e — (kz(kz _ kg)gz + cp) (2.48)

where c.p. means cyclic permutations. This is the lowest-order term producing a spin-
splitting in the conduction band. The method gives equivalently invariant terms for the
valence band that will be omitted here. In the language of Kane models, we get the
Dresselhaus term from an extended Kane model, considering the I'z,, I's,, ['ge, ['7¢, and
I'se, i.e. a 14 x 14 model.

The figure 2.6 shows these bands and the parameters for the BIA splitting. The prefactor
involves the product PP’'Q, which means that the origin of the spin-splitting resides in

the - P interaction between :

e the valence band states and the T'g, state (matrix element P)
e the T'g. and the I';, or Ts. (P')
e the valence band states and the I'7. or I's. (Q)

The spin-orbit split-off energies Ay and 2\; also appear in the formula, as we see in the

total expression (the leading order) for this coefficient

1 1
(Eg + A())(Eg B Eg/] B A6) Eg(Eg - Eé)

Ye=PPQ (2.49)
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For electrons confined to two dimensions, the bulk Hamiltonian cited in eq. (2.48) leads
to two contributions. In this case we must take the expectation value of the Hamiltonian.
To see how it works, we assume that the confinement direction is along the [001]. In
this case, we can separate our solution to the Schrédinger equation in two parts. One of
them contains the variables on the plane, while the other one depends on z. Due to the
confinement, the energies associated to this latter part are well separated. Usually, only
the lowest energy is taken, and an average over the corresponding state is performed. For
our averaged BIA Hamiltonian, we must look at the expectation values (k.) and (k2).
Whereas (k.) = 0, the other value k% ~ (7/d)?[82], d being the small confinement width.

As a consequence, one obtains a linear Dresselhaus term for 2D systems,

Hl()l,)Zd = B(kyor — kyoy)

with 8 = —7.(7/d)? and a remaining cubic term given by
HE), = yekaky(kyo, — k
D2d = VeRw y(kyos 20y)

The same average procedure will be applied in this thesis in our approach to quantum
dots in nanowires, when the SOC is included in 2D-WZ systems.
Next we consider the spin-orbit coupling terms corresponding to the bulk wurtzite- type

case.

Wourtzite structures

Let us briefly discuss the linear spin splitting that occurs in wurtzite materials. The focus
is on the conduction band, even though it is also present in the valence band. The Theory

of Invariants indicates that the only possible term linear in k is [11]

H ~ (kyo, — kyoy) (2.50)

Note that there is no linear-in-k, spin-splitting, if z is along the c-axis. It can be shown
that the k-dependent SOC (~ (VViys X k) - &) contribution is zero up to first-order
perturbation for the conduction band, in contrast to the valence band where it yields a
contribution. The leading term will then result from the second-order coupling between

the electron state and the valence band states with I'g,I'7, and I';7 symmetries. Nev-
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ertheless, due to its symmetry, the state associated to I'g does not contribute anyway.
In addition to this linear term, the Cj, double point group corresponding to the WZ

symmetry also allows a cubic-in-k spin-splitting [23], given by

H ~ (02 = k}) (ko0 — kyo) (2.51)

2.6.4 Rashba SOC

Another source of spin-splitting in semiconductor quantum structures is given by an in-
version asymmetry in the structure (SIA) due to the confining potential V'(7), for example
at a heterostructure. The potential producing the symmetry breaking may be a built-in
potential, an external potential, etc, but also some experiments have shown that it is

possible to tune the SIA spin-splitting by means of external gates [86, 87].
The lowest order in k and V (7) in the conduction band I'¢ is given by the Rashba [18]

HE . = 1%%F - (k x E) (2.52)

where E denotes the electric field caused to the asymmetry of V(7). The constant r®6¢

is a material-specific parameter, that vanishes if the bulk split-off energies Ay and A are
zero. It is worth pointing out that the calculation of the Rashba coefficient can be made by
using the subband k-p method in a 8 x 8 Kane Hamiltonian, in contrast to the Dresselhaus
coupling, that needs a 14 x 14 model. Further details about the widely studied Rashba
model can be found in [82] and references therein. The Theory of Invariants indicates
that this is the only term that is linear both in k£ and the electric field E compatible with
the symmetries of the conduction band. Assuming that the electric field E = (0,0, E.),

the Rashba energy dispersion results

7 hz C,0C
Ey(k) = Tm*kﬁ + (%% Bk (2.53)
where EH = (ks ky). The magnitude (r%% E.) means an average over the confining

dimension, and is usually denoted with «. It is interesting to note that, unlike the BIA
case, the SIA spin-splitting depends both on the microscopic details of the underlying
Gc,ﬁc)

crystal (through r and the macroscopic field given by E,. We thus obtain a linear

energy dispersion (that depends on the modulus of EH)? such that for each state labeled
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E(k) 1

Figure 2.7: Energy dispersion of a state with Rashba splitting (bottom part) together
with the spin orientations of electrons(arrows in the upper part).

by (ky, k,) a spin orientation is determined, as shown in Fig. 2.7

Although the Rashba is derived for the case of a Structural Inversion Asymmetry,
we could equally argue that the SOC induced by the electric field of an impurity (the
extrinsic term) causes an asymmetry in the structure, and could be therefore also be
dubbed “extrinsic”. Furthermore, due to this equivalence it is not surprising that both

the Rashba term and the extrinsic term look alike, as we will see in a subsequent section.

The Rashba term is widely used to take into account the structural asymmetry in
quasi-2D problems. But an important remark is here noteworthy. This term must not be
mistaken with the linear-in-k BIA spin-splitting already mentioned in eq. (2.50). There,
the WZ symmetry allows such a linear term for the bulk inversion asymmetry, whereas

for the ZB symmetry the lowest term is cubic.

In our approach to WZ quantum dots, which includes the computation of the energy
dispersion of a quasi-2D system, we do not consider the Rashba term explicitly. Neverthe-
less, as our formulation includes the linear Dresselhaus term, Rashba is therein implicit.
What it would merely change is the value of the coupling strength parameter, which for

us will be given only by band structure calculations found in Ref. [14].
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2.7 Impurities

Impurities or defects, despite the negative nuance in their names, can be useful in semi-
conductors, because they change the electronic properties in such systems. Depending on
what kind of effect is desired, some defects (or impurities) prove to be appropriate and
others do not. Obviously, the experimental control over these defects is a major task, and

it also determines whether they can be used in a device or not.

At the theoretical level, the study of the electronic properties of defects is required. Al-
though there is a full classification of impurities, we will mention only those corresponding
to our study. The GaAs semiconductor we consider here is doped with Silicon impurities.
An impurity like Silicon, being different from the atoms in the host crystal (Gallium and
Arsenide) is an extrinsic defect. Since Silicon appears isolated in the underlying crystal,
it receives the name of point defect. Additionally, since it tends to substitute the Ga it
gives an electron to the crystal, hence the name donor, in contrast to acceptor impurities.
Conversely, Silicon may be an acceptor in another type of crystal or semiconductor. In
GaAs, a Silicon atom substitutes a Ga atom of the host crystal, and in this situation,
the defect is said to be substitutional. Compared to the Ga atom (group III), Silicon
(group IV) has an extra negative charge, that interacts with the nucleus of the Si atom
through the attractive Coulomb potential, but screened by the core and the other va-
lence electrons. The other source for screening comes from the valence electrons of the
neighboring atoms of the host crystal. This gives the intuitive idea that the Silicon atom
behaves effectively as though it were an hydrogen atom embedded in a medium where
the attractive potential is weaker due to the screening effect. The consequence for the
electron is that it is loosely bound to the Si ion and it can be easily ionized by thermal or
electrical excitations. The exact calculation of this screening is a difficult task, and one
way to overcome it is to assume a screening controlled by the dielectric constant of the

host crystal in the electrostatic potential:

v=-< (2.54)

er
where € is the dielectric constant. We will use this as the Coulomb potential produced
by the impurity ion. The Silicon impurity is also in our case a shallow tmpurity: the

electronic states associated to it have an energy close to the conduction band such that

69



Chapter 2 Spin-orbit interaction in semiconductors

they can be calculated in the effective-mass approximation, as we will see below. The
approximation made for U is our starting point in our path towards the derivation of the
equation describing the donor state. We recall that based on the previous ideas we expect
an hydrogen-like equation. On the other hand, we are under the conditions required for
the Envelope-function approximation described before, because the potential in (2.54) is
a smoothly varying one. We thus anticipate an envelope function solution for the donor,
multiplied by some Bloch Function. We perform here anyway the full derivation in order
to see a concrete example of the EFA. In what follows we develop the derivation based on
Bloch Functions, although the same result can be achieved in terms of Wannier functions,

as it is neatly developed in Ref. [83].

Our derivation starts by considering the crystal Hamiltonian Hy and the impurity po-
tential U. To solve the problem of the full Hamiltonian, we will consider the case that
we have a (non-degenerate) minimum of the conduction band at k = 0. The unperturbed
Hamiltonian Hj is

Hy = —h—zvz + Verys(7) (2.55)

2m0
whose solution is W,, ;(7) ~ (7).

For the perturbed problem H = Hy(7) 4+ U(F), we will propose a solution of the kind
U= A (k) (2.56)
n,k

As usual, we try to isolate an equation for the A’s, and therefore we insert the proposed

solution into the full Schrodinger equation and we subsequently multiply the equation by

/dF vy

The following equation results

(En(k) — E)Ay (k) + > (n, K|U|n', K') Ay (K') = 0 (2.57)

n' k'

We now examine the matrix element of the potential, accounting for the coupling between
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different Bloch states via the perturbation.

ad =, 62 1 ST TN 62
'K = * _ s wdr = — * 7 i(k'—k)- _ s
0 U ) = [ 0= S = [ s DSy (259
where the u’s are the periodic part of the Bloch function.
One can cast this matrix element into the form
- . 1 o o
(n,k|UIn K"y = V/dru;kun/,k/ez(k BT () (2.59)
1 T L -
= v / dru #p g, e’ T Z e Fu N (k) (2.60)
ku
1 . R
= v ZU(ku) /dru;kunlﬁk/e“k —hthku) T (2.61)
ku,
1 - A
= V Z U(k‘u>5G,k’71€+ku /dru;kungk/e_la'r (262)

ku,G

where the periodicity of the function uj, yu,  has been taken into account in the last
step by using an expansion over the reciprocal vectors G. The Fourier transform of the
potential U has been introduced. We recall that the electron is weakly bound to the ion,
and so its wave function must resemble a conduction state in the band minimum, with
contributions coming from small Es. Hence, we can restrict the values of /;7 K and I;u to
a small region around 0, which leads to the condition G = 0 for the matrix elements we
are dealing with. On the other hand, if we take the limit of Ky — 0, the delta function
0G0k —k+o implies that

/dFu;‘L,k(f)un/,k(F) X O

The eq. (2.57) is thus reexpressed as

(Ee(k) — E)Au(k) + > (e, k|Ule, KYALK) D (e, KU K Aw(K) =0 (2.63)

n'#c,k’

71



Chapter 2 Spin-orbit interaction in semiconductors

for the conduction band n = ¢. A valid approximation, based on our previous re-
marks, is to discard the equation for n # ¢ and assume that the leading contribution

comes from only one band. We can additionally use for E. the dispersion relation given

K2
2m*

(. k|U|c, K'Y — _VETIS'ELZEP‘ The final result is

k* approximation (valid for small E) and the matrix element

by the effective-mass

% S 4me? 1 -
B —F) AJlk) = A (Y =0 2.64
(et = ) A8 - 2 A B) (2.0

In this equation it must be noted that k and k' lie within the first Brillouin zone (FB)
and the restriction can be safely omitted. By extending the sum over K beyond the FB

zone, we end up with the equivalent equation

( LT E) Au(R) — 4‘722 3 L Ay =0 (2.65)

2m* all k’ |k—l€/|2

The Schrodinger equation in momentum space is recognized by transforming AC(E) to the

coordinate space F(7) = v Y a1« A (K)e®™ We thus get

( i V2~ j) F(7) = EF(7). (2.66)

2m*

The envelope function F(7) represents the solution to the hydrogen-like problem of an
electron with a renormalized mass m* in the presence of a Coulomb potential diminished

by a factor of €. The eigenenergies for the problem are well-known

[

1 (e*/e)
E,=—= j=12,.. 2.67
T 42 2R2m J B ( )

—

whereas the eigenfunction for the ground state is

F(7) = 7T/, (2.68)
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The redefinition of the mass and the dielectric constant also determines the effective Bohr

Radius

h2e

mre2’

Even though this formulation leads us to the initial intuitive idea that a donor electron
should effectively behave as in hydrogen-like landscape, it is worth pointing out that the
function F(7) is not the total wave function. The full wave function is in fact the linear

combination

V() =S AF)Uo k(@) = —= > A(F)upe® 2.69
) Xk: (k)W () W; (ke (2.69)

As we said before, AC(E) is confined in a small range around k = 0 and hence we only
keep u,, for small k.

Ue,k ~ Ue,0

which turns the aforementioned linear combination into

\I’(F) ~ YLC,O(ﬁF(m = F(F) uc,()(F)BiO'E

where we explicitly added in the last term the exponential in order to highlight that the
total wave function is indeed an envelope function multiplying a Bloch function. The
approximation made for AC(E) can be verified by noting that its magnitude is appreciable
for k less than 1 /a*. The contribution from the other bands can also be shown to be

negligible as long as the effective Bohr radius is large

EO a
Al ~ =—|A
| n‘ Eg a*| 0|
with I the ionization energy and E, the band gap. We have just treated the case of a

single impurity, and found the shape of the ground state of the donor electron. Yet in

a bulk semiconductor sample there are many impurities. For our purposes, a model is
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needed for the electron in the presence of many randomly placed impurities. For this, we
rely on the Matsubara-Toyozawa Model described in the end of this chapter.
Concerning the impurities, we finally address the SOC term calculation related to the

electrical potential produced by themselves.

2.8 An effective SOC derivation

In this section we work out the derivation of an effective spin-orbit coupling term arising
from the impurity potential. For this, we aim at decoupling the conduction band from
the valence band, in a similar way as the one done in Ref. [22] by Nozieres and Lewiner.
Though the procedure followed by the authors is physically transparent, it can also be
stated in a more formal -yet less transparent- way known as quasi-degenerate perturbation
theory. We make some remarks about this in the sequel.

We now start our derivation that goes along the same line as that of Ref. [22]. In our
case, the time-independent Schrédinger equation is used instead, since we do not consider
any time-dependent effect, but we arrive to the same result. We consider the Schrodinger

equation in matrix form,

E (4 _ Hy h U1 (2.70)

1/]2 hT H2 ¢2

where we have split ¢ into two parts. The term 1), corresponds to the component in the
conduction band “subspace”, while all the other bands components are assigned to some
V.

The origin of energy is set to the bottom of the conduction band, H; is thus of the order
of a typical conduction electron energy, i.e. e€p, and Hs is of the order of the band gap. We
redefine it as H, = Hy+ H, in order to measure the valence state energies from the valence
state at k = 0. We also assume that H} is an intraband Hamiltonian. Despite the authors
deal with time-dependent Hamiltonians, we restrict our case to the more simplified case
of a static interaction denoted h. The approximation to be made considers that the band
gap is much larger than the Fermi energy €p, and it is thus possible to make an expansion

over 1/H,. We can formally express the solution
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_ 1 t
1/)2—<E_H2>h¢1

The term with the denominator can be approximated as

Lo 1 1 1 ( F
E—Hy, HQ(lig)N H, H,
Hy

since Hj is of the order of the band gap. On the other hand,
11 1 H}
H, H,+H, H, H,)"

Within these approximations, the expression for ¢, translates into

_ L Ly
e = i, (1 + i, Hg) h'4y (2.71)
We will need later
(thaltha) = (Y1|Alehr) (2.72)

where we have consistently kept terms up to second order 1/H, g2 and defined

1
— i
A=h th

By replacing 1, in the eq. (2.70), we finally get an eigenvalue equation for 4.

1 1 1,1
l+h—hl By, = (H —h—h!+h—H),—h!
( +hngh) U1 ( 1 hth +hHg 2th)¢1

(2.73)
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E(1+ Ay = Hy,. (2.74)

The operator H is defined in an obvious way. We then attained an equation for ; that
is decoupled from the subspace 5. Furthermore, an effective Schrodinger equation can

be derived by multiplying from the left with (1 — %)

E(L+2)h = (1-5)Hy

(1+A)p = (1—§>H<1—§> <1+§>¢1
?) b = (1—§>H<1—§> <1+§> P (2.75)

by noting that (1+ £)(1 — ) =1 up to second order.

R

—

|
| > | >
b SN— ~—

A
—
|
—~
—
+

The eq. (2.75) allows us to define the effective wave function

A
[Verf) = (1 + 2) (o

and an effective Hamiltonian given by

_ A A\ HoA + AH, 1,1 .
Heff_(l 2>H<1 2)_H0 5 +hHgH2th (2.76)

with Hy = H; — hH%]hT. It is important to note that the newly defined effective function

is properly normalized, since

Weprlers) = (W1 + A1) = (W |en) + (1] Aln) = (Wr1]r) + (altbe) =1

for which the relation previously found in eq. (2.72) has been used.

As we mention in the beginning, the theory just exposed can be framed in quasi-

perturbation theory as well. This is a more general and abstract avenue to treat the
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problem by means of a unitary transformation U, such that a new Hamiltonian
H =UHU! (2.77)

is made up out of the original one H. In general, the transformation operator U can
be expressed as e if S is an anti-Hermitian operator such that St = —S. On the
other hand, two subspaces must be distinguished here: a subspace A that for us are the
conduction states, and another one B (the valence band). The idea behind this approach
is the same as before: the transformation we seek is such that the rotated Hamiltonian
H' does not have any off-diagonal matrix element linking the two subspaces. The next

step is to separate the original Hamiltonian in two parts

H=Hp+ Hnp

where Hp is a block-diagonal Hamiltonian that couples the states within their correspond-
ing subspaces. In our notation, this is Hp = H; + Hs. Hyp, on the other hand, stands
for the coupling term that connects the two subspaces -in our case this is h. What the
method pursues is the transformation matrix S that makes the matrix elements of H’
between A-states and B-states to vanish up to the desired order. In order to be able to

S

work order by order, the operator e can be expanded

1 1 .
s _ L, 1w
e —1+S+2!S +3!S

The condition on the removal of the non-diagonal elements in H' leads to a system of
equations for the successive approximation of S = S' + 52 + S + ..., that according to

the Ref. [18] is, up to second order in 1/H?:
0
S = Hy (2.78)
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and
0 _ 1 [Llh _ @]
5@ — Hy L Ho o Hy (2.79)
1 [niH Hiht 0 ’
T Hy | 'Hy T Hy

The effective Hamiltonian H' after computing all the commutators between H and S up

to order 1/H is exactly the same as that of eq. (2.76).

To apply this method to the specific case of the conduction and the valence band in a
wide gap semiconductor like GaAs, we must consider the aforementioned k- P’ equation
or EFA equation with the electron mass renormalized. The interaction that couples the
subspace A and B is the operator k-Tl = h with k = —iV (the canonical momentum)

and ﬁ, the vector operator with matrix elements

AY
Hnn’ - <un,0| - Eo|un/,0>7 (280)

i.e. those from the Kane Theory. In order to take into account the impurities, we intro-
duce in the conduction band the impurity Coulomb-like potential “V;” and in the valence
band the equivalent one “V5”; we consider that this potential does not contribute to the

interband coupling v. Hence

Vi=V, = V(1) (2.81)

We keep the names V; and V5 in order to track each potential individually, and seek for
the effective terms produced by these potentials. According to eq. (2.76), the V; effect

enters as
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1
Vi — §(AV1 +ViA) (2.82)
while V5 appears in
hivih*—§ kHin;Hi—E o Vo Tl T (2.83)
HgQHg —aﬂaaH9255Hg_aﬂa26aH92ﬂ .

We emphasize here that k is an operator.

All these ingredients can be gathered to write an effective potential for the impurity
potential, as we shall see now. We know that because of spin-orbit coupling, the six-fold
degenerate valence band (at k = 0) splits in a four-fold band (quadruplet) and a doublet.
In this case, the matrix elements of II between these states and the conduction band
states must be calculated. In particular, by looking at eq. (2.83), we note that we need

the following expression

Haf};Hﬁ -5 [5“‘3 ((zm e Ao>n)
+ 2i€apySy <(_6g i Agy (_;)nﬂ (2.84)

taken from Ref. [22]. In addition to the energy gap H,, the orbital matrix element
P = (s|—iV,/mo|p.) appears. While S denotes the spin operator, Ag corresponds to the
split-off energy difference at k = 0 between the valence bands. If we now only concentrate
in the spin-dependent effect (those containing S), we note that the contribution from
eq. (2.82) vanishes: the operator A is related to the matrix element in (2.84) with n = 1,
which must be multiplied with k,kgVi and V; k kg. These two terms are symmetric under
a — B if they commute, and therefore, the multiplication with the spin-dependent part
including €., cancels out. Conversely, the contribution of the impurity potential in the

valence band yields a term proportional to
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kaVQ k56a57 (285)
Due to the non-commutation of ks and V5, the preceding equation transforms into

oV,
ke (/%v2 - &c;) €ay (2.86)

The first term is again zero due to the “contraction” of a symmetric and an anti-

symmetric tensor, while the second one gives the sought result
(/5 X VVQ) 'S (2.87)

Two important points to be mentioned are that according to eq. (2.84), the spin-orbit
contribution of the impurities is zero if A is set to zero. We have also made use of the
commutation of ks and k,, which is no longer valid when a magnetic field (and thus the

substitution (k — —iV — eA/c ) is introduced.

In conclusion, for a conduction-band electron in the absence of spin-orbit interaction,
the electron acquires an effective-mass and in a first approximation and close to the band
extrema, the energy dispersion is quadratic with a renormalized mass. Due to the pres-
ence of the external potential V' (r), there appears a “Rashba-like” or “Structural Inversion
Asymmetry” (SIA) spin-orbit interaction [22, 18, 17, 88], that we call here extrinsic term

to emphasize that it is an potential produced by the impurities

Heow = N o -VV %, (2.88)

where o is the vector of Pauli matrices, k = p/h, and A* is the effective spin-orbit cou-

pling constant given by
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PP 1 1
=l - 2.89
3 |H2  (H,+ Do) (2.89)

g

It is interesting to note that while the vacuum coupling constant is Ag = h?/4 m2c* ~ 3.7x
10_6A2, the renormalized one is, for example, A\* ~ —5.3 A® for GaAs and \* ~ —120 A”
for InAs, that is, more than six orders of magnitude larger.

We have presented an illustrative way of deriving an effective Hamiltonian for the
SOC, that allowed us to examine its precise origin. Nevertheless, there is yet another
equivalent approach to take into account the effect of the spin-orbit coupling and the
potential produced by the impurities. It consist of extending the Matsubara-Toyozawa in
order to incorporate the spin-orbit interaction in the impurity states. We next continue
in the next section with the description of the Matsubara-Toyozawa model in its original
version, and leave the extension proposed in Ref. [6] for the first part of next chapter, as

an intermediate step before we present our results for this extended model.

2.9 The Matsubara-Toyozawa Model

The Matsubara-Toyozawa tackles the problem of an electron in a random lattice. Their
pioneering work dealt with a high degree of impurity concentration, but not as high as
to set the Fermi energy in the conduction band. Some works before the MT publication
had used perfectly mobile states (from the energy band), and took into account the effect
of the disorder within a perturbative scheme. Alternatively, others started with localized
states, and the effect of the disorder gives rise to hopping events of the carriers. The
common point in both approaches is that the initial states differ little from an eigenstate.
Matsubara and Toyozawa studied instead the case where the eigenstates of the system
had neither a definite momentum nor a definite localization. In this theory, there is
no “disturbance” that cause the scattering of carriers, because the random potential is
already included in the calculation of the impurity band. Based on the Green Function
formalism, they analytically obtained the level density and the electrical conductivity. In
this work we will be mainly concerned with their model and not with their results.

The MT model consists of a tight-binding approximation built from the ground state
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(the hydrogenic-like s state) of the doping impurities we have seen in Section (2.7).

AT = 30 01F) g )~ 6(7) g ) (2:90)

-

We denote ¢(k) the Fourier transform of the hydrogenic envelope function, while u; ,(7)
represents the periodic part of the Bloch functions of the conduction band states. Its
dependence on k, is much smoother than that of ¢(E), and leads to the last relation in
eq. (2.90). In second-quantization notation, the Hamiltonian of the MT model can be
simply expressed as

Hy= Y 1%, ¢l Cmo. (2.91)

m#m/,o

where cjn,o represents the creation operator of an electron eigenstate at the impurity site
m'. The annihilation operation is ¢,,,. The integral for the energy transfer from site m

to m’ is given by a sum over impurities p’s

Zzo;n’ = Z<wm’o|vp|wm0> ) (292)

pFEmM

while the Coulomb-like potential produced by the impurity placed at 7, is
Vp(r) = —e?/elr — 1,

We use e for the static dielectric constant and e for the electron charge. Due to the
exponential decay of the envelope functions, the dominant term in eq. (2.92) is the two-

center integral corresponding to p = m’ and so

(Ywo Vi [ma) = Vo (1 + Tme) exp (—r";m’), (2.93)

with V, = e? /ea and 7,y being the distance between the two impurities.

Back in the beginning of the eighties, the Hamiltonian in eq. (2.91) was studied using
different analytical and numerical techniques [16, 89, 90, 91], yielding a thorough descrip-
tion of the impurity band and its electronic transport properties. In addition, MT was
employed as a realistic model to study the Anderson Transition in three dimensional doped

semiconductors [90]. It must be clear that the MT Model does not take into account the
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spin degree of freedom, and in consequence we must find the proper way to include it.
This was firstly done in Ref. [6], where the model was extended and the impurity states
modified accordingly.

We begin next chapter by describing this Impurity Spin-Admixture theory, and we
subsequently apply it to study how the spin-orbit interaction affects the localization of

the eigenstates.
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Chapter 3

SOC in the impurity band

In this section we study numerically the effects of the spin-orbit interaction in n-doped
semiconductors in a model closely related to the one we have just exposed: the Matsubara
and Toyozawa. The influence of the SOC on the density of states (DOS) and the calcu-
lation of the so-called inverse participation ratio (IPR) are addressed. The latter term is
utilized for characterizing the degree of localization of the spin-orbit perturbed states in

the MT set of eigenstates.

In the numerical treatment of the problem, the finite sizes that we are able to consider
force us to introduce an artificial enhancement of the spin-orbit coupling strength in order
to obtain a sizeable perturbation. The IPR and DOS are then obtained as a function of
an enhancement parameter. This study allows us on the one hand to appreciate the effect
of the SOC on the impurity band, and at the same time, to examine the coexistence of
localized and extended states in this band. In particular, the degree of spatial extension at
the Fermi energy is of crucial importance in the ensuing problem of the spin relaxation,
where besides the extrinsic contribution to the SOC, we also consider the Dresselhaus
term. Although this latter term turns out to play a relevant role in relaxation, we do not
include it here. The enhancement procedure followed in this chapter provides us with a
qualitative description of the impurity band, and as we do not aim at any quantitative

result, the inclusion of the Dresselhaus term is not determinant.
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3.1 Presentation

In this chapter we focus on the effect of the spin-orbit interaction in n-doped semi-
conductors when the doping density is close to the critical density associated to the
metal-insulator transition (MIT). For a n-doped GaAs, the critical density occurs at
n. = 2 -10%m=3. Since in the case of the n-doped semiconductors, the MIT appear
at doping densities where the Fermi level is in the impurity band [92, 93], a description
taking into account only the electronic states built from the hydrogenic ground state of
the doping impurities is suitable. For densities slightly larger than the critical one (i.e. on
the metallic side of the transition) non-interacting models, like the Matsubara-Toyozawa
(MT) [16], are applicable. Furthermore, the description in terms of impurity sites can be
regarded as an Anderson model of a tight-binding lattice with on-site or hopping disorder.
In the profuse numerical work devoted to the Anderson model [94], the critical exponents
obtained fit reasonably well those of the experimental measurements [95]. The inclusion
of spin is equally interesting, in view of the fact that the maximum spin relaxation times
in n-doped semiconductors have been observed for impurity densities close to that of the
MIT [96, 1, 2, 20]. At the level of models, the generalization of the Anderson model in
order to include some spin-orbit coupling has been provided by Ando [97]. While this
model turns out to be very useful to study the progressive breaking of the spin symme-
try [98], its connection with experimentally relevant systems requires the estimation of
coupling parameters which are not obtainable from first principles. In order to adapt the
problem of the spin-relaxation in three dimensional systems, Tamborenea and collabora-
tors [6] reviewed the MT model and incorporated in it the spin-orbit interaction. In their
proposition, the impurity states are no longer spin eigenstates, but a spin mixture of up

and down states.

As we make use of the Impurity Spin-Admixture (ISA) model in this chapter, we start
by describing it in the following section. Immediately after this, we present the results
obtained in the context of this thesis, starting with a preliminary study of the “bare” MT
model. After including the SOC interaction, we proceed with the characterization of the
impurity band. We then identify the regions of extended and localized states, and analyze

the limitations of the model and the conditions of applicability.
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3.2 Tight-binding model with impurity spin admixture

We found before that the donor wave function can be approximated by

() = o7 F(7) (3.1)

where u, o denotes the periodic Bloch function in the band center (k =0) and F(7) is an
envelope function. In order to introduce the spin, we switch to the spinor notation and

generalize this solution :

(Vo (M)] = F(7)[ueo(7)] (3:2)

So far this spinor is trivial because it is an eigenstate of ¢, with eigenvalues o = *1.
This will be no longer the case once the spin-orbit interaction is included. By way of
reminder, we have observed before that the valence band is split at the I point due to
the SOC, and its degeneracy is partially lifted. The split-off band (j = 1/2) separates
from the light-hole and the heavy-hole bands (j = 3/2) by an amount equal to Ag. We
have also found that the hydrogenic character of the envelope function fits very well in
our intuitive conception of the donor electron. With SOC the expressions for these states
are not so simple however, as it renders the description of the wave function a bit more
sophisticated. To see how, we must step back to the very beginning, and recall that a

Bloch Function can be written (in spinor language)

[, 2 (7)) = e*u, )

Equivalently, one can use the following expansion
(W] = ™Y e[, 1)

which turns out to be more convenient when the bands a weakly coupled. By setting a
8 x 8 Kane model, where the s-like (j = 1/2) and the three p-like valence (j = 3/2 and
j = 1/2 separated by Ap) bands are taken into account, the k - p Hamiltonian can be
exactly diagonalized. By solving for the eigenenergies and the eigenvectors, one finds that

the conduction-band states at finite wave vector get spin-mixed, whereby the total wave
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function now becomes

[0 A) = N eulk)u, p_o) — €™ [iino]

n

The periodic function [ug.] in eq. (3.2) has been replaced by a spin-mixed conduction-

band state, that in bra-ket notation, is given [99] by

ko) = |u?0)> +k- |u?1)>7 (3.3)
where the second term reads
lufy) = a1 (|Ro) + @S x |Ro) ). (3.4)

The state [ufy)) is s-like and is equal to the original state uco(r) in eq. (3.2), since it
describes the unperturbed wave function at the I'-point. The vector |R) = (|X),|Y), |Z))
represents the three p-like valence states and S is the spin operator. Obviously, the state
|tio) is then no longer an eigenstate of S,. However, it is still labeled with o since the

oh

mixing is small, and (i, |9 |tks) is much closer to %' than to

—oh

5. In relation to this,

the spin mixing is weighted by the small constants

, ( 3Eq + 24 )1/2
oy = ih
Gm*Eg(EG + Ao)

and
2/

272N, + 3Eg)

where all the constants keep the same meaning as in the previous chapters.

In order to extend the MT model and incorporate the SOC in the model, Tamborenea et
al. [6] propose to generalize the shallow-donor wave functions: these functions are built
out of conduction states, and therefore they are expected to be modified accordingly.
However the SOC coming from the microscopic crystal details does not modify in an
appreciable way the envelope functions ¢(r), and will mainly affect the spinor part [uy].
The mixing of different bands turns the complete donor state of an impurity centered at

r,, into
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3.2 Tight-binding model with impurity spin admixture

o)) = ot =) x ([0 + 2525 ). 69)

a |r—r,

In Appendix B the detailed derivation of this term is worked out. The hopping of an elec-
tron between different ISA states involve the hopping between different impurity sites,
and it provides a mechanism for spin flip by connecting the o and @ = —o states. It must
be noted that even a spin-independent potential like the impurity Coulomb potential
induces spin-flip transitions, since it couples states with different spin orientations. Simi-

larly to eq. (2.91), the EFA Hamiltonian expressed in second-quantization language is now

H=Hy+H = Y 70, cmet D 0. chs cmo (3.6)

m#m/,o m#m/’,o

where H; describes the spin-flip term. The transition matrix elements are given by

;‘nﬁm’ = Z<¢m’3|%|'&ma> B (37)

p#EmM

whose addends read

(2= zm) = (2= 2m)(r — 1)

- S 3 (r—rm)
R R e | A1
o (A= EaL 1 ] (3.3

a

The following definitions have been used
C = Vylou *as/ma?,

ry = 1y,
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Chapter 3 SOC in the impurity band

and

Qa3 = BA()(A() + 2Eg)/(2Ao + 3Eg)2.

In order to calculate the integral in eq. (3.8), a rotation of coordinates from the crys-
tallographic system (z,y, z) is performed. The new system has the z-axis along the line
joining m and m’. Taking the origin at the middle point between these impurities, scal-
ing all lengths with the distance r,,,//2, and using dimensionless cylindrical coordinates

(Z,p, ®), the following expression is computed (see AppendixA)

(| VolYme) = Cwmmlrz / Tz / dp / o (3.9)

(cos @ + i €08 B,y SIN @)
[P+ 03+ (Z ~ 2,)2 — 2ppycos (6 — ¢,)]
exp (<rum [V E 1P + VP @7 20)
VP (Z-12/p+(Z2+1)?

where @,y and 60,,, are the polar angles of the vector r,,,  in the original coordinate

system, and (Z,, pp, ¢,) are the cylindrical coordinates of r, in the new coordinate system.

As in the spin-conserving model, we first look at the case with p = m/. The correspond-
ing two-center integral is obtained by putting Z, = 1, p, = 0 in eq. (3.9). Interestingly,
@m/E\szhﬁmU} = 0 due to the symmetry of the angular integral. As a remark, this im-
portant fact is ultimately responsible for the large values of the spin lifetime given by this
type of coupling in the regime of impurity-band conduction. This said, looking back to the
integral, the leading order is then determined by the three-center integrals corresponding
to p # m,m/, which are in general very difficult to calculate in closed form [100]. The
angular integral in eq. (3.9) can be performed in terms of elliptic functions, but since only
the small arguments of the latter are relevant for the remaining integrals, the following

expression results
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3.3 The impurity band from the Matsubara-Toyozawa model

P! 2
Ce mm ’]TTm

1 ™ 0p(COS @y + i COS O,y SI0 )

“+o00 [e'e] p2 3/2
dZ d
[m /0 p(p2+p§+(3—3)2>

exp(—rmm/ [\/,02+ —12+/p2+(2+1) ]/2a)
VPHEZ =12 PP+ (Z+1)?

(D Vlthmo) =

. (3.10)

Using this expression for the matrix element, we can next focus on how the character of
the MT eigenstates changes under the spin-orbit coupling strength.

In order to characterize the electronic eigenstates in the impurity band from the point
of view of their spatial extension, we obtain numerically the eigenvalues and eigenstates
{&s,1;} of H for given configurations in which N impurities are randomly placed in a three-
dimensional volume. For each configuration we calculate the energy-dependent density of
states,

DOS =Y d( — &), (3.11)

and the inverse participation ratio of the state |¢),

-1

PR — | Zom [{Smlwl* 2
(S Kol )

(3.12)

According to this definition, the IPR approaches the system size N for extended states,
while it is equal to 1 for a localized one. In the following section we present the results

for these two quantities obtained for the MT Model, before introducing the SOC.

3.3 The impurity band from the Matsubara-Toyozawa

model

We first start by considering the bare MT model without spin. For this purpose, we

perform an exact diagonalization of the MT Hamiltonian, for a given configuration, and
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Chapter 3 SOC in the impurity band

calculate the Density of States from its energy spectrum. By solving also for the eigen-
states, the corresponding IPR for each eigenstate is computed. This process is repeated
for many disorder realizations, and the resulting averages for both quantities is shown in
Fig. 3.1. Three densities on the metallic side of the transition were considered. Each of
the panels contains different system sizes, distinguished by the solid, dashed and dotted
lines. As we can see, the impurity band develops around the E = 0 level of the isolated
impurity in an asymmetric fashion: the DOS exhibits a long low-energy tail while the
high-energy part is bounded by E = 1 (in units of V). We also verify that the width of
the impurity band increases with the doping density, as we expect due to the stronger

coupling between sites.

The numerically obtained DOS for different densities are well reproduced by approxi-
mate methods like diagrammatic perturbation obtained by Matsubara and Toyozawa [16].
Also the moment-expansion presented in Ref. [101] resembles our results. There, an
adapted version of the moment expansion technique for disordered systems in three di-

mensions is employed to estimate the electronic density of states in the impurity band.

By looking at the IPR values, we observe that the highest-energy states correspond
to electronic wave functions localized on small clusters of impurities. In these clusters,
the strong coupling of adjacent sites gives rise to high-energy states. To illustrate this
situation we can think on the extreme case of a cluster as a group of n impurities close to
each other but far from any other not in the cluster. In it, they interact with each other
so strongly that this will be represented in the Hamiltonian as a block (with a dimension
equal to the number of sites in the cluster in question) matrix full of 1 (in units of V4). If
the diagonal elements are zero (a finite value would introduce a shift in this extreme case)
it can then be shown that the maximum eigenvalue of such a matrix is 1, irrespective
of the system size. Furthermore, this eigenvalue is (n — 1)-fold degenerate. The other
eigenvalue of the matrix is € = —n (in units of Vj). Since all the clusters, no matter their
size, contribute to the DOS for € = 1, there will be a strong peak at such a value, and
a long tail arising from the remaining eigenvalue ¢ = —n (the size of each cluster) plus
the eigenvalues not associated with a given cluster. This could explain the tendency for
the DOS to develop a “peak” close to one, and a roughly flat region for negative energies.
The clustering of impurities is known to happen in real physical systems since impurities

have a very weak long-range interaction, resulting in a lack of hard-core repulsion on the
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3.3 The impurity band from the Matsubara-Toyozawa model

scale of the lattice constant [102, 6]. As the lattice constant does not appear any more, we
use the letter a for the effective Bohr radius henceforth. In our model, we do not impose

any kind of limit for the distance between impurities and this feature thus emerges.

Before continuing with the analysis of the numerical results obtained from the MT
model, we discuss some technical features of the model and the difficulties that we face in
trying to improve upon it. Firstly, we notice that the chosen basis set is not orthogonal.
In principle, we can deal with this issue by writing a generalized eigenvalue problem which
includes the matrix of orbital overlaps [103, 89]. This procedure results in unphysical high-
energy states (with E > 1) that necessitate the inclusion of hydrogenic states beyond the
1s orbital in order to be properly described. However, care must be taken since enlarging
the basis set leads to the problem of overcompleteness. Fortunately, for the properties
we are interested in, the effects arising from non-orthogonality are known to be small for
moderate doping densities, and that is why we do not consider them in the numerical
work, thus staying within the original MT model. Finally, another drawback of the MT
model is that the high-energy edge of the impurity band overlaps with the conduction
band, which starts at V;/2 (the effective Rydberg) and this effect is not included in the
MT description. As seen in Fig. 3.1 the DOS beyond V4/2 is always very small, and
therefore we can ignore the effects that the hybridization of the bands would yield in a
more complete model. As another remark, the development of tails at the band edges
we observe in our results is a characteristic feature of random disorder potential with

long-range interaction [104].

The determination of the mobility edges by studying the size scaling of IPR/N values in
Fig. 3.1 is not straightforward. We expect the value IPR/N to vanish for increasing N if
the state is localized, and become independent of IV for extended states. The difficulty in
the determination of E. (the mobility edge) arises from the heavily structured DOS of the
MT model [89]. At low energy the small values of the DOS translates into a poor statistics
for feasible sizes. In the high-energy part of the impurity band the separation between
the curves corresponding to different values of NV is masked by the small values of the
IPR/N. For the highest density (top panel) the IPR/N exhibits a relatively flat region
at intermediate energies, which is approximately independent of N for the two largest
system sizes. The lower mobility edge can be located roughly at E ~ 3.5, where the

latter curves separate. For lower impurity densities (lower panels) the previous analysis
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Figure 3.1: Deunsity of states (DOS, thick line and right scale) and inverse participation

94

ratio (IPR, thin lines and left scale) for three different densities on the metallic
side of the metal-insulator transition, obtained through impurity averaging
in the Matsubara-Toyozawa model. The solid, dashed and dotted curves of
IPR/N are for a number of impurities N = 2744, 4096 and 5832, respectively.
The vertical lines indicate the Fermi energy and the DOS are scaled with
respect to the effective Bohr radius a.



3.4 Spin-orbit coupling in the MT Model

becomes increasingly demanding in terms of system sizes. We see that the flat region
of IPR/N shrinks, from which we can conclude that the lower mobility edge is shifting

towards higher values of F, as the density diminishes.

3.4 Spin-orbit coupling in the MT Model

We next include the spin in our model and basically repeat the procedure followed previ-
ously for characterizing the energy eigenstates. We address this by means of the Impurity-

spin admixture proposed in Ref. [6], focusing at the extrinsic SOC. We take the term

Hi= > 7, s cmo (3.13)
m#m/ o
(@ = —0o) and add it to Hy. Similarly to the spin-conserving case, we have
thEm' = Z<wm’5|‘/p|wmo> (314)
p#m

with the wave function v,,,, denoting the impurity spin-admixed (ISA) state. In Ref. [6]
an approximate analytical expressions of t77 , was provided using the saddle-point ap-
proximation, valid under the condition 7y, > a. At the MIT, for example, this relation
is mm/a = 3.7. In this sense, we found that the analytical approximation proposed
in [6] overestimates the real values. To avoid this approximation, we take the route of
the numerical evaluation of the three-center integrals. We show typical absolute values
of these matrix elements in Fig. 3.2 averaged over the orientation angles and over many

realizations.

We next include the Hamiltonian H; and carry out the diagonalization of the full
Hamiltonian. Concerning the SOC strength, we note that the matrix element in eq. (3.14)
is proportional to the effective spin-orbit coupling A which for a zincblende semiconductor
can be orders of magnitude larger than the one of vacuum Xy ~ 3.7 x 10-A%. For the
case of GaAs we treat here, A ~ —5.3A” [18], which is notably different from bulk InAs
with A = —120A%.
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Figure 3.2: The absolute values of the matrix elements for the spin-flip hopping between
two sites m and m’ is shown as a function of the distance between them.
H;s4 is the Coulomb potential generated by the randomly placed impurities.

3.4.1 Spectral decomposition of MT states

The spin-admixture energy shifts are, even for the largest system sizes that we can treat
numerically, orders of magnitude smaller than the MT level spacing. The consequence of
this is that the eigenstates have either an almost-up spin orientation or an almost-down,
and the spin-orbit-induced effects are not observable for the system sizes we are able
to consider. We are then lead to consider an enhancement factor R, that multiplies A
and makes the two previous energy scales comparable. The wave function are expected to
acquire a stronger mixing of spin orientation. This effect is displayed in Fig. 3.3. In it, the
spectral decomposition of a MT eigenstate (also called the local density of states LDOS)
with ¢ = 1 in the basis of spin-admixed eigenstates of Hy + H; is shown. The arrows T
and | in the figures denote the two subspaces of the spin projection of the spin-admixed
states. It must be noted that we leave this “tagging” even for the largely enhanced cases.
We can observe that if there is no enhancement (R, = 1), the spin polarized MT states
projects very well onto one of the spin-admixed subspaces (look at the y-scale in the
figure), in this case up. As R, is increased, we obtain significant projections on both

subspaces as a manifestation that the spin-admixture gets larger. This consideration on
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Figure 3.3: Spectral decomposition of a Matsubara-Toyozawa eigenstate into the basis set
formed by the eigenstates of the spin-orbit extended model. The system size
is N = 1000 and the density is given by (n;a®)!/® = 0.33. The enhancement
factor R, is indicated in each panel.
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a given state shows the effect on a given MT state. Alternatively, the decomposition of
an ISA eigenstate in the MT subspaces (each of them with a defined spin eigenvalue) is
also expected to change in a similar way as the one just exposed. We study precisely the
effect of the spin-orbit coupling both on the DOS and IPR of the ISA eigenstates, using

R, as a control parameter.

3.4.2 Inverse Participation Ratio and DOS

Since we have already described the procedure followed to calculate the DOS and the IPR
in the spinless case, we only need to mention here the modification for the IPR as the
spin degree of freedom is included.

Since the eigenstates of the full Hamiltonian are no longer spin eigenstates, the IPR
should be calculated by projecting the state onto each impurity orbital including both

spin orientations. The new IPR parameter is given by
~1
N 2
Zm (Za ‘<¢m0|¢7>|2)

IPR = -
(0o 1ol ?)

(3.15)

where |1);) is the eigenstate whose localization degree is to be calculated. The states |¢,,)
are localized on site m and are assumed to be spin polarized. In Fig. 3.4 we present the
DOS and IPR/N of the extended model for the three densities previously treated and
various values of the spin-orbit coupling strength R,. The DOS depicted with solid thick
lines do not change noticeably with R,, and that is why we only present the R, = 1
case. Regarding the spatial extension, we show in each panel (for each density) how the
IPR/N curves are modified as R, changes. The increase of the IPR/N as a function of R,
in the region of extended states (central region) shows that the SOC tends to delocalize
more and more these states as the IPR/N values grow towards 1. This effect turns
out to be even more pronounced for the larger density, where the curves belonging to
different R,’s separate in a wider region. This latter effect becomes less prominent as the
energy decreases. In the low-energy sector, where the MT model yields states identified as
localized, we observe IPR/N curves approximately independent of N, which is a signature
that the SOC is favouring their delocalization.

Finally, we also performed a finite-size scaling of the IPR/N for a given density above the
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Figure 3.4: Density of states (DOS, solid line and right scale) and inverse participation
ratio (IPR, dashed lines and left scale) for three different densities on the
metallic side of the metal-insulator transition. Dashed lines with increasing
thickness are for R, = 50, 150 and 250, respectively. The vertical lines
indicate the Fermi energy.
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Figure 3.5: Density of states (DOS, thick line and right scale) and inverse participation
ratio (IPR, left scale) for a density on the metallic side of the metal-insulator
transition, three different system sizes, and a fixed spin-orbit enhancement
factor of R, = 50. The solid, dashed and dotted curves of IPR/N are for
N = 2744,3375 and 4096, respectively, and the vertical line indicates the
Fermi energy.

MIT critical density and one value of the spin-orbit coupling enhancement factor, namely
R, = 50. The result in Fig 3.5 evinces that the relative insensitivity of IPR/N with N
implies that the region of localized states (with vanishing IPR/N) has been considerably

shifted towards a lower energy. We thus expect to have a lower mobility edge.

3.5 Conclusion

To sum up, we have considered the problem of the characterization of the eigenstates of the
Matsubara-Toyozawa model regarding their spatial localization. We find that the obtained
IPR values among the different eigenstates of the impurity band differ qualitatively from
those given by a more thoroughly studied Anderson model. One reason for this is that we
consider here a long-range potential that stems from the Coulombic impurity. Anderson
models mostly deal with short-range potentials. In our physical system, the mobility edges
do not appear as clear-cut limits, yet we observe a trend in the degree of localization of

the eigenstates.
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3.5 Conclusion

When a similar analysis is performed in the extended model including the spin-admixed
nature of the donor states originated by the spin-orbit coupling, we have to take into ac-
count the spin-flip event caused by the electrostatic potential of the hydrogenic impurities
(that in spite of being spin-independent, couples states of different spin). We found that
while the density of states is not considerably modified by the spin-orbit interaction, the

states tend to be more delocalized as the SOC gets stronger.

101






Chapter 4

Spin-relaxation in the impurity band

In the previous chapter we studied the effects of the extrinsic-type SOC in the eigenstates
of the impurity band. In what follows, we concentrate on the spin-relaxation driven by
spin-orbit coupling in n-doped semiconductors, considering again a GaAs system in its
zincblende phase. The tight-binding model of impurities including spin-orbit coupling due
to the electrostatic impurity potentials, developed in Ref. [6], results in spin relaxation
times much larger than the experimental values, suggesting that other mechanisms should
be active in this density range. We include in this chapter the Dresselhaus term, and we
unambiguously identify it as the source of the dominant spin-relaxation mechanism in
the impurity band of a wide class of n-doped zincblende semiconductors. We conceive
two complementary approaches. The first of them comprises an analytical diffusive time-
evolution of the spin vector, while the second method treats the problem numerically and is
based on a finite-size scaling study of the spin-relaxation time. The Dresselhaus hopping
terms are derived and incorporated into an effective tight-binding model of impurity
sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-

relaxation times in good agreement with experimental values.

4.1 Presentation

As we mentioned in the Introduction, a theoretical understanding of the spin-relaxation
close to the MIT was still lacking before we undertook this work, in spite of some earlier
attempts to identify the relevant mechanisms [105, 4, 106, 107, 6] in this regime. In partic-
ular, in Ref. [105], Shklovskii proposed the applicability of the well-known Dyakonov-Perel
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mechanism, usually valid in the conduction band, on the metallic side of the transition.
Moreover, he considered the same spin-relaxation mechanism for the variable range hop-
ping conductivity, which describes the conductivity in strong disorder systems at low
temperatures. In this particular regime, the conductivity results from the electron hopps
from one localized site to another one. This mechanism is therefore valid for density
values below the critical one. As we emphasized before, the DP mechanism is based on
the scattering of free electrons due to charged impurities. However, in the regime we
are interested in, the electronic states are built from the impurity states, and hence, no
scattering brought about by impurities is possible. Shklovskii’s approach does not lead
to a direct quantitative comparison with the experiment.

Our study starts with the construction of an effective spin-orbit Hamiltonian for the
impurity system (an EFA Hamiltonian) and continues with an analytical and a numerical
solution for the time evolution of a single spin in a random lattice. The resulting spin-
relaxation times are in good agreement with the existing experimental values for GaAs

and CdTe.

4.1.1 Temperature effects

Before addressing the description of our model and the obtained results, we consider the
influence of the temperature on the spin-relaxation. The reason for this is that our theory
does not include any temperature effect, whereby a justification is worth.

The influence of the temperature in the electron-spin relaxation has been thoroughly
examined for various GaAs samples in Ref. [20] by Romer and collaborators, using a
spin-noise technique. For high temperatures, as it was already known, the electrons
become delocalized and the spin dynamics can be described by the spin Bloch equations.
This is also the situation when the density is well above the critical value. Here the
conduction band is populated even at very low temperatures because the impurity band
and the conduction band hybridize. The Fermi level is in the conduction band, and the
spin-relaxation mechanism is understood in terms of the Dyakonov-Perel mechanism, the
impurity scattering being the main electron-scattering phenomena.

On the other extreme, where the donors are far away from each other, the dominant
mechanism is the hyperfine interaction with nuclear spins. A more doped sample (ng =

2.7 x 10%cm=3), but still below the MIT, is also studied in their experiment. In this case,
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the 7, scarcely varies up to 20K, which is consistent with the exchange interaction between
the donor electrons. A decrease in 7, is then observed for temperatures higher than
30K, where the ionization of the donor levels starts being effective. The DP mechanism
overcomes at this point the hyperfine interaction, whose efficiency decreases due to the

interaction of the localized and the free electrons.

The last sample analyzed in Ref. [20] had a doping density right at the MIT. Although
it led to a relaxation time of 267 ns, which is higher than the one reported in Ref. [2], they
were able to confirm the longest spin-relaxation time for this sample at very low temper-
atures ~ 4K and extend it up to 10K. The spin-relaxation time remains approximately
constant in between, and decreases above it. At 70K, its value gets even smaller than
that of the most doped sample. In fact, by measuring the conductivity they found that
it followed a hopping transport formula governed by an exponential term, instead of the
usual metallic behaviour. They then claimed that the temperature dependence of the spin
relaxation in the hopping regime depends on the conductivity and would be described by
the same exponential law. This hopping transport for such a density was shown to be

valid for temperatures below 60 K.

The authors attempted to explain their results in this hopping regime appealing to two
spin relaxation mechanism: the DP-like mechanism put forth by Shklovskii [105] that we
have already discussed, and an anisotropic spin-exchange interaction found in Ref. [108]
and [109]. For the latter, the estimation for the spin relaxation yielded consistent values

with the experimental result.

The convincing conclusion they drew was that the DP mechanism applies at high tem-
peratures for all samples. Below 10K and doping concentrations lower than n., 7, is
independent of temperature, because the electrons are localized. Up to the MIT, the hop-
ping regime explains well the conductivity behaviour and the spin relaxation temperature
dependence. The inelastic processes, as scattering due to phonons, on the other hand,
are irrelevant at low temperatures anyway. According to this report, the longest spin-
relaxation time occurs at the MIT. On the other hand, their evidence on the temperature-
independent spin-relaxation over a region of low temperatures is what allows us to work
within a zero-temperature formalism. We shall now present how we tackle the problem

for spin-relaxation on the metallic side of the MIT.
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4.1.2 Description of the model

The envelope-function approximation (EFA) for describing conduction-band electrons in
zincblende semiconductors incorporates the lattice-scale physics (described by the periodic
part of the Bloch wave function) into the effective one-body Hamiltonian [22, 17]. As we

saw in Chap.3, the resulting Hamiltonian operator comprises three terms

H = Hy+ Hey + Hp (4.1)

The first term represents the kinetic energy plus the potential of the impurities V:

2

_ b
HO = Y m* + V(I‘), (42)

the effective extrinsic term related to the effect of the impurities
Hoyr = N0 - VV xk (4.3)
and the Dresselhaus or BIA-driven spin-orbit coupling given by

Hp = 7 [0uko (K, — k2) + cyclic permutations]. (4.4)

Here o is the vector of Pauli matrices and k = p/# is the momentum operator in the

absence of any magnetic field, and is therefore taken as the gradient (times —i).

The extrinsic term stems from V' (r) which includes all potentials aside from the crystal
one. The effective spin-orbit coupling \* is usually orders of magnitude larger than the
one of vacuum, and when calculated within the 8-band Kane model, for GaAs it yields
N~ —53A% [17]. We include here the extrinsic term in eq. (4.3) as an equivalent
approach as considering the Impurity Spin-Admixture model introduced in the previous

chapter, as we will see. The potential V (r) due to the ionized impurities is given by

2

UOEDNLEED Sh s (45)
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where € is the dielectric constant of the semiconductor and R,, represents the impurity
positions. The potential of a single impurity V,, gives rise to the hydrogenic states centered
at the impurity p. In order to build the basis of electronic states we only consider the
ground state ¢,(r) = ¢(|r — R,|), with ¢(r) = (1/v/7a3) exp (—r/a), and a the effective
Bohr radius.

In second-quantized form, the total Hamiltonian (4.1), reads

Hy = Z (m'c|Holmo) ¢, ¢, (4.6)
m#m/ o
MHso = Y, (m'lHso|mao) cl iy cpys (4.7)
m#m/ o
where the label SO stands for “extr” or “D”, and 7 = —o.

4.1.3 Extrinsic Term matrix elements

The impurity potential given in eq. (4.5) may be regarded as an external potential pro-
ducing a structural inversion asymmetry (or Rashba-like) spin-orbit coupling through
eq. (4.3), and which we have been referring to as “extrinsic” along this thesis. In order
to construct a tight-binding Hamiltonian including this SOC, we will now compute the
matrix elements of Hgyt between the 1s states of two different impurities. As we will see,
the final expression turns out to be equal to the one we found previously in the Impurity
Spin-Admixture theory. The spin-flip hopping amplitudes complement the non-spin-flip
hopping amplitudes of the Matsubara-Toyozawa model.

Let us first expand Hey:

Heyy = A* l:o'm <a‘/kz - ka) — Oy (a‘/kz - ka)

y 0z Ox 0z
ov ov
—ky, — — . 4.
(W )] .
With the notation @ = —o, we obtain that (¢|o,|o) = 1 and (7|o,|0) = io. Using these

relations, the spin-flip hopping matrix element for the Hamiltonian in eq. (4.8) between

impurities m and m’ becomes
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- @V OV oV o
(M'G|He|mo) = A ((m | a9 k, P kylm) — io(m/| e k., P kz|m)> . (4.9)

where |mo) denotes a 1s state (¢,,(r) = (r/m)) with spin o at an impurity located at R,,.
Carrying out an integration by parts and regrouping terms we obtain (see Appendix I for

a derivation)

— _ oN* G (T) D (1)
(G| Hoalmo) = 5 [ drVie) =g =g
[(Z - Zm)('f‘g - R7n/0) - (Z - Z'm')(TJ - Rma)]7 (410)

where 7, = x + ioy and R,,, = X,, + t0Y,,. This expression agrees with the matrix
element in eq. (3.8) of the previous chapter, by replacing the impurity states by the
corresponding 1s hydrogenic-like states and the impurity Coulomb potential. Of course,
it also coincides with eq. (11) of Ref. [6], with a slight difference concerning r, that was
overlooked in that reference. We recall that the term corresponding to p = m’ in V(r)
inside the integral (4.10) yields a vanishing contribution to the matrix element, due to the
axial symmetry of the two-center integrals. Therefore, the remaining matrix elements are
given by three-center integrals, resulting in very slow spin relaxation in comparison with
experimental results, as noted in [6]. We will come back to this later on this chapter.

In next section we make a similar calculation for the matrix elements coming from
the Dresselhaus SOC. The typical matrix elements are presented and compared to these

three-center integrals we have encountered in this section.

4.1.4 The Dresselhaus matrix elements

We now treat the Dresselhaus spin-flip hopping matrix elements between 1s eigenstates
of donor impurities. The effective Dresselhaus Hamiltonian for the conduction band of

zincblende semiconductors is cubic in the wave vector and is given by
Hp = Y[ooke(k; — k2) + c.p.] (4.11)

where 7 is a material-dependent constant, and c.p. stands for cyclic permutations of x,y,

and z. In order to calculate the matrix element between two sites, we consider as before
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two impurities located at R, and R,,, with 1s states (¢(|r—R,,|) = (1/vma3) exp (|r — R,,|/a),

with opposite spin, denoted as |mo) and [ng). The matrix element between these states is

(no|Hplmo) = y[(nolocks(ky — k2)Imo) + (naloyk, (k2 — k;)|mo)]
= (nlko(ky = k2)lm) + isgn(o) (nlky (k2 — kD)lm)],  (4.12)
where the spin dependence was readily obtained using (¢|o,|0) = 1, and (7lo,|o) =

isgn(c). For the orbital part, as the EFA formalism indicates, we replace k, = —id/0x,

and analogously for k, and k.. Thus, by performing integration by parts once, we obtain

6 =80 = 2 [t e = = =

Pl (413)

while for the second term in eq. (4.12) we obtain an analogous expression

<n|ky(k2 k2 |m = */ |I‘— ¢m( ) (y_yn)

nHr_ R, [?

(&= 2m)* = (2 — 2m)?] B + h_lRJ . (4.14)

Changing to coordinates r — r — R, and introducing R,,,, = R, — R,,, we get

(ng|Hplmo) = %/dr ¢(|I;‘_II{{7;Z|)£(T)((1+T)

[580(0) (Y = Yum) (2 — 2%) +i (& = 2am) (y* — 2%)]. (4.15)

Q

Using the form of the 1s wave functions and expressing all distances within the integral
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in units of a we get

v ef|r7an| e "

(ng|Hp|mo) (1+7)[sgn(0)(y = Ym) (@* — 2%)

7@ | R
+i (x - xnm)(?ﬁ - 22)}

v .
@ [Sgn(g) Iy,nm + Ix,nm] ) (416)

where we have defined the integrals I, ., and I, in an obvious way. We now per-
form a rotation of the coordinate system and then switch to cylindrical coordinates in
order to perform analytically one (the angular) integral. We further use that R, =
Ry(sin @ cos o, sin fsin ¢, cos §) and rotate the axis by the angles ¢ and 6 so that the vec-
tor R,,,, in the new system is given by (0,0, Ry). Since I, ,,,, has the same value as I .
provided z,,, and y,,, are interchanged, we evaluate hereafter only I, ,,, which in the

rotated coordinate system is

224y +(z Ro)2 -
1+r
Ty /W”yH_RO)( )

(x cosfcosp — ysinp + zsinh cos  — Rysin b cos p)

[(x cos@sinp + ycosp + zsinfsing)? — (—wsinf + zcos0)?]. (4.17)

We switch to cylindrical coordinates (z,y, z) = (pcos @, psin «, z) and obtain:

o=V PP+(=Ro)? o—\/p?+22

Linm = dpdzp (L++/p*+ 2?)

02+ (2 — Ro)? (p? + 22)3/2

/da [pcosacos@cosp — psinasing + (z — Ry) sin 6 cos ¢]
[ (pcos a cos @ sin o + psin a cos p + zsin O sin )?

—(—pcosasing + zcosf)?]. (4.18)

After performing the integral over o we obtain

e—\/pz-&-(z—Ro)2 ef\/p2+z2

VP R (77 + )

X [e1p’z+ c2p*(z — Ro) + ¢32°(2 — Ro)] (4.19)

Il‘,n’m = 7 dp de (]_ + p2 + 22)
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where

c; = 2sinfcos?fcos (1 +sin?p) — 2sinfsin® pcos ¢,
co = sinfcos®fsin’® pcos — sin® 6 cos ¢ + sin b cos® o,
cs = 2sin®#sin® @ cos — 2sin 6 cos® f cos . (4.20)

The integral I, ,,, for the same geometry is obtained by evaluating I, n, with ¢ — 5 — .

The material dependence appears only in the prefactor in eq. (4.16), which depends on

the Dresselhaus constant and the effective Bohr radius.

Concerning the parameters ¢’s in eq. (4.20), it can be easily proved that the coefficients

satisfy ¢1/2 = ¢y and ¢ = —c¢;. A more simplified formula is then obtained for the integral

ef\/p“r(szo)2 e—\/92+22
VP + (2 = Ro)? (p* + %)%

' |:p22(32 — Ry) — 2*(z — Ry) (4.21)

Linm = mc [ dpdzp (1++/p?+22)

where ¢ = ¢q. To further simplify the form of the integrals, we can now make a rigid shift
in the z-direction, such that z — 2’ + Ry/2 and rescale all distances with Ry/2. In the

resulting integral, we make use of prolate spheroidal coordinates (1, &, ¢), defined by

(Ro/2) sinh(&) sin(n) cos(¢) (4.22)
y = (Ro/2) sinh(¢)sin(n) sin(¢)
z = (Ro/2) cosh(§)cos(n)

8
I

with £ € [0,00), n € [0,7], and ¢ € [0,27). Remarkably, with the help of these coordi-

nates, we have been able to preform the integral which leads to the simple expression

TC R() 2 _R
Iacm’m = —\ 0/a7 4.23
| T (2) e (1.23)
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Figure 4.1: The absolute value of the Dresselhaus spin-orbit coupling is calculated for
GaAs for a fixed orientation of the impurities given by ¢ and 6. The x-axis
denotes the distance between the two impurities m and m’ in units of the
effective Bohr radius a. The magnitude of these matrix elements are to be
compared to the values in Fig. 3.2.

where ¢ = 2cospsin® [1 — sin? (1 + sin? ¢)] = ¢; and Ry is the distance between the
impurities involved in the matrix element.

In Fig. 4.1, the typical Dresselhaus matrix elements for GaAs as a function of the
distance between impurities are exposed. A comparison with the equivalent values in
Fig. 3.2 is meaningful, since it clearly hints at the dominance of the Dresselhaus coupling
over the extrinsic counterpart. In this figure we present results for GaAs, whose v =
27.58eV A’ [18], and a =~ 99 A. Other ZB materials exhibit rather different parameters.
For example, for InAs v = 27.18eV AS, a ~ 337A, and for InSb v = 760.1eV Ag, a ~
681 A [18]. Tt is interesting to note that, considering these parameters, the Dresselhaus
matrix elements result larger for GaAs than for InAs or InSb, an unusual situation among

the semiconductor spin-orbit effects.

So far we have shown the various elements that constitute the model we use to describe
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4.2 Diffusion on the Bloch sphere

our system. We still have not explained how we study the spin dynamics in the impurity

band. This is the subject of next section.

4.2 Diffusion on the Bloch sphere

The probability of a spin-flip at a hop given by the transition matrix elements, either
by Dresselhaus or by extrinsic SOC, is much smaller than the probability of keeping the
spin unchanged during the hop. Therefore, we need a scheme to account for the fact
that the electron undergoes a spatial diffusion through the network of impurities, that is
accompanied by a small spin-rotation angle at each hop. To combine these two processes,
we introduce the Bloch sphere, a concept usually employed whenever the dynamics of a
spin vector is analyzed. It appears typically in Rabi oscillations where a spin, under the
influence of an external magnetic field, is studied. It turns out that if this magnetic field
is conveniently set, a complete spin flip is possible. In our case, we start with an electron
in an eigenstate of the MT Hamiltonian, i.e. a state with a definite spin, say, along
the z-direction. Due to the perturbation produced by the spin-orbit coupling, this state
evolves, and the spin direction rotates a small angle at each hop. The path stroked by
the spin vector on the Bloch sphere is like a random walk, with very short steps (angles)
along the surface of the sphere. Equivalently, the tip of the vector is a moving point on
the sphere, and it is equally probable that it makes an angular displacement « in any
direction. Hence, the goal is to find the distribution of this tip after a (asymptotically)
large number of infinitesimal steps. This random behaviour yields a variance of the angle

in the in-plane motion equal to

where N is the total number of steps and «; the infinitesimal displacement at the i-th

step. If we assume second moments (a?

2y = (a?) , this result translates into

In the specific case we treat here, the rotation of a vector occurring around each of the

three x,y, z axis is taken into account. This implies that we have a spin rotation angle
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for each component, and we shall sum over all of them
(0%) = (02) + (03) + (02)
However, for an isotropic problem where (62) = (62) = (62) we obtain
(0%) = 3(67)

If we further choose to assign the initial direction at every step to be along z-direction,

then the variance associated to the small rotation angle o means for us
(o) = (62) + (07)
from which we conclude that
(%) = §<92>

and therefore, the expression for the angle variance yields

Var =N §<92> (4.24)

We have begun with this quantity because the time-dependent probability distribution
p(t) we need to calculate the spin behaviour, is given in terms of it. To show this, we
rely on the formulation of Ref. [110], to be described now. In this Reference, the random
walk of a moving point on a sphere is considered. The succession of random steps is
equally probable for all directions from the starting point. Let us suppose that an initial
probability distribution is given for a certain point ry on the sphere. A sequence of
displacements brings this initial point to other points r1,75... on the sphere, each step
having an displacement characterized by an angular distance, and equally probable to
any direction. The solution we need is the probability distribution of these points as a

function of time. We take the length of the step -a rotation angle- to be constant.
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4.2 Diffusion on the Bloch sphere

Let us take an initial distribution at time ¢t = 0 given by

oo

2n+1
Po = Z p P,(cosb) (4.25)

n=0

with P, the Legendre Polynomial of order n and 6 the angle with respect to the starting

axis. As stated in Ref. [110], at a time ¢ later, the same distribution will have evolved to

oo

2 1
_ Z n4+ e,in(ml)var(t)pn(cos 0) (4.26)
7

n=0

We note that the variance appears in the exponential and it bears the time dependence.
Since we are interested in the evolution of the S, operator, we project this distribution
on the z-axis by multiplying it by cos(f) and calculate the spin expectation value by

integrating over the angles as

(0.()) = /0 " d0sin(0) /O " do cos(0)p(t) (4.27)

21 /07r df cos(0) sin(0)p(t) (4.28)

Recalling that p(t) only depends on cos(f), the substitution u = cos(f) is convenient.

Furthermore, if we insert the expression of eq. (4.26) in (4.28), we are left with

<0z(t)> = / Z 2n 41 —77L(7L+1)V(t)Pn(u) (429)
- =0
1 & !
- 52 (20 1 1)~ V) / duPy (u) Py (1) (4.30)
1

where the relation P;(u) = u has been used. The orthogonality relation over the integra-

tion region [—1, 1] satisfied by the Legendre polynomials

1
2
[1 du Pm(u) Pn(u) = mdnm
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brings the partial result of eq. (4.30) to

(02(t)) = e2¥ (0, (4.31)

The variance V,, contains the total number of steps NV after a time ¢, and so we can easily

estimate it as
N =—. (4.32)

Here we introduced a new time scale given by 7., which is the mean time between hops
and we name it mean-hopping time accordingly. In combination with our expression for
the variance, we get

(0.(£)) = exp <;<02>t> — exp (’5) (4.33)

c TS

The spin-relaxation time 7, in the exponential has been defined through

()
T (4.34)

This is our sought result. The last equation indicates that 7. and (6?) must be next
calculated. Let us take care of the first of them and postpone the second for the next

section.

The typical time between two hopping events is much smaller that the time scale
associated to spin-relaxation, since the energy given by the MT hopping terms are larger
than transfer energies coming from the spin-orbit coupling, either by the extrinsic or the
Dresselhaus terms. The time 7. can then be estimated from time-dependent perturbation
theory, regarded as the time needed for the initial-state population on an impurity site
to drop from 1 to 1/2. In order to calculate such a time, let us notice first that it is

mainly determined by the MT Hamiltonian, since we can disregard the small effect of the
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4.3 The small spin rotation angle

spin-flip terms. Next we assume that the initial state is a localized state at the impurity
site labeled m. In Ref. [6], it is shown that a similar result is obtained if this initial state

is extended. From perturbation theory, we know that for short times, the evolved state

(1 - ZI;Q Im)

which must be projected over the other impurities (excluding the site m) using the pro-

satisfies

W(t)

jection operator

P, = Z |m/y(m/|

m/'#m

Setting the probability at time ¢ = 7. equal to 1/2, then

P(r,) =05 = % 3" |y (! [H|m)

m/#m

The final result for 7, including the spin value o of the initial state, then reads

1/2
Tlc = % ( > |<m'0|Ho|mU>I2> (4.35)

m#m/

where we only keep the non-flip matrix elements as the leading contribution to this spatial
diffusion since they largely exceed the spin-flip terms. It must be noticed that 7, is neither
the correlation time appearing in the Dyakonov-Perel mechanism nor the momentum re-
laxation time. We come back to this equation when we perform the average over impurity

configurations, in which case we convert the sum to an integral.

4.3 The small spin rotation angle

In the preceding section we have found that our analytical approach necessitates the
calculation of the small spin rotation angle between two hops. The calculation of this

small angle assumes that it occurs in a very short time, so that first order perturbation
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theory can be used. In this case we consider the initial general state to be a localized state
centered at the impurity mgy and with a general spin-orientation n given by the angles 6,
and ¢g.

[W(t = 0)) = |mo, ) = cos(fo/2)|mo 1) +sin(f/2)e"*[mq |) (4.36)

As time evolves, the state changes according to the unitary time evolution operator, which

when expanded for short times leads to

(1 -2 o)

= |Uy) — % (cos(Bo/2)|mg 1) + sin(fo/2)e* |mg 1)) (4.37)

W(t))

To proceed, we insert the unity operator

I= Z |m/o) (m/o]

in order to make the Hamiltonian matrix elements appear. We then obtain

W) = 1W0) — 5 cos(bo/2) 3 (' 4ty + I D, )

m/

(—Z;) sin(fy/2)e' Z ( |m/ Wi T |m/ T}tf,[mo )

m/

= |¥y) — % {Z ( cos(0o/2)t,5 + sin(00/2)ei¢0t;jm0 ) m')} ®|4)

m!

+

m’

it . i _
<_h> { E (cos(bo/2)t; . + sin(bo/2)e’ ), ) |m'>} ® | 1.
By writing g explicitly, we have

() = {|m0> sin(fy/2)e'” + (_hlt> Z (cos(90/2)t;jm0 + sin(€0/2)ei¢0t;,_m0) m’)} ® |

m!

+ {|m0> cos(6y/2) + <—Z£) Z (COS(HO/Z)t;TmO + sin(90/2)ei¢“t;,_mo) |m'>} ® | 1).

m!

If we start with an initial up state, i.e. cos(6p/2) = 1 and sin(6y/2) = 0, the last
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equation is reduced to

@) = St m) @)

m/

+{|m0 ( )Ztmmo }®|T> (4.38)

where it can be readily recognized, that the state acquires a | contribution owing to the
SOC matrix elements. If we write instead a general evolved state in the impurity basis

set as

W(0)) = 3 e ( cO8(B/2) 1" 1) + im0 /20 |’ 1) )

m!

and compare the two expressions

W tde = Cnv sin (6, /2)e'om’ (4.39)
it
%t:;mo = Cow c0S(O /2) (4.40)

we get an expression for the angle 6, , required for our spin diffusion scheme.

[t O
m’mg

We have assumed that the spin rotation angle 6,,, is small, since the SOC is weak.

For the general case of an initial state with an arbitrary spin orientation given by (6, ¢o)

we find the following formula

20450 1711 4 sin®(6o) cos®(¢o)]
|2 + 2sin(2600) cos(go) Re[(t1H V(¢ )]

m/mg m/mg

08 (O3 {00, P0}) = |t EEST=
m/mo m/mo
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which is reduced for small angles to

—+ |

o
b (B0, o) = 2\/1 -+ sin? (6lg) cos*(¢o) |tT’+ ot

m’mo |

We now need to average over (6, ¢p) in order to take into account all the possible initial

angles, and obtain the typical angle of rotation. The result is

1 s ) 2T
<972n’> = E/ d@oSlH(Q())/ dd)o 9%1(90,(&))
0 0
1 b2
- 4—71_/6[90 dpod (1 + sin®(6y) cos* (b)) |t;£7L::|2
16 [ 17, |
— ETi 0|2 (4.42)

where the 47 in the denominator accounts for the normalization of the initial angles.
This formula thus gives the typical rotation angle -in terms of its variance- for an electron
jumping from impurity mg to impurity m’, no matter the initial orientation of the spin.

An ensemble average must still be done, taking into account the fact that there is a
certain (homogeneous) distribution probability for the position between the impurities,

and therefore, many configurations of disorder have to be considered.

4.4 An analytical expression for the spin-relaxation time

We now undertake the last stage of the calculation towards a formula of the spin-relaxation
rate. In the sequel, we complete the calculation by performing the ensemble average
explicitly and we arrive to an analytical expression for the spin-relaxation time, free of
adjustable parameters. We complete the analysis with an alternative numerical approach
afterwards.

In the next two subsections we take care of the impurity averages for the hopping time

and for the typical rotation angle separately.
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Mean-hopping time

We start by making the impurity average for the calculation of the mean-hopping time
in eq. (4.35). We note that the formula for 7, involves a sum over all the impurities, and
so we convert this sum into a integral assuming a uniform distribution for the impurities
positions, weighted by a doping density n;. We take a random distribution for the impurity
positions without hard-core repulsive effects on the scale of the effective Bohr radius [111,

6).

Let us first make a little digression about the ensemble average. An average over
impurity configurations involves indeed a sum over different configurations and a sum

over every impurity position in each realization. Such an average would read

TR ) NZZf o)

¢ m#mg

where ¢ tags the realization, m labels the impurity and N, is the number of realizations.

The function f( is any function that depends on the distance between the impuri-

mmo)

ties m and mg. The same expression may be written as an integral in the following way

¥ Z/CPR f(R) Y 6(R-ERY,)= /d3Rf Z > (R -RY,,)

m#mo c m#mg

Lo (1
/d3Rf(R) <N225 (R—RY,.) - fz}s ) (4.43)
If we further consider an homogeneous independent impurity distribution, we have that

N%ZZ‘S (R—R©,.)=mn

where the impurity density n; has been introduced. In eq. (4.43), the second term within

the brackets yields no contribution, and so the final result is
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i;;f@fnmg: / d*Rf(R)n; = 4n / dRR*f(R)n;. (4.44)

The second equality holds as long as the function depends only on the distance between
impurities and not on their relative position. As we see in eq. (4.44), the probability of
finding an impurity in an infinitesimal volume around the position coordinates (6, ¢, R)
is n; R?sin(f) df d¢ dR, and the configuration averaging is implicit.

This said, let us resume the calculation. The sum we must take care of is given in

eq. (4.35). We now concentrate on the average and perform the integral
2 2 P ey
> [(mlo|Ho|mo)| >V (1 + ) e et
m#£m/ m#m/

T 2 oo
= VE]Q/ d@m/ sin(@m/)/ d¢,,Ll/ dRm/an/
0 0 0

Rm/ 2 2R
n; (1+ ) e e (4.45)
a

Ry
a

= TmnaVy. (4.46)

The final result for 7. then is

1 \/i
— / 43172
- Trna’Viy. (4.47)

It is worth pointing out that only the density n;, the effective Bohr radius and V;, appear.

Typical spin rotation angle

An electron hopping between the impurities m and m' rotates by a typical angle given in
eq. (4.42). On can also estimate the probability of jumping from an impurity mg to an

impurity m’ as
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oo 2
|tm0m’ |

D L
m/#mg |Ymom/’

containing only non-flip matrix elements due to the larger magnitude of the MT energies

over the SOC terms. This allows us to extract the mean-squared rotation angle per hop

1
(?) = Y (O, (4.48)

Zm”;ﬁmo tmgm”' m'#£mg

where we can still replace (6%,) and obtain

oo 2
<92> = E Zm’;ﬁmg |tmom’|
3 Dt [ 2

(4.49)

The impurity average is to be done now. However we note that the sum in the denomina-
tor has just been calculated in the preceding section -see eq. (4.46)- upon the calculation

of 7.. We are then left with the numerator. Recalling that
170 = L (0L, + i
m'mo = 3 Olym'mo T w,m’mo>
we need to calculate the following integral

2 2
> Il = / ARy B2, sin(0r) Oy s 0 (73>
Ta

m/#mo

(‘Iy,m’mo|2 + |Ix,m’mo|2) . (4.50)

Replacing the corresponding terms in eq. (4.49), we obtain
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16 / v \2 n;a® B
<02> = ? (ﬁ) WQ . <C2>(7T/6)2/dRR2R4e 2R. (451)

The partial results

and

4
/ dRR*R'e ! = §5

allow us to conclude

16/ v \° 1 16 145 v\’ /8
0% = — Qg = — ] . 4.52
o) 3 (Vga3> T 10562 8 (Vga3 21 ( )
We observe that in the previous derivation, the integral has been split since the angular
dependence appears in the parameter ¢ of the function I, ;m, and I, ;m,, Whereas the
radial integration variable enters as (R/a)(e /%)%, We underline that we now have the
mean squared rotation angle as a function of the coupling parameter ~y, the effective Bohr
radius a, and the energy V = €?/ea coming from the MT matrix element. By combining
the values we have for 7, and the just calculated (6?), we attain the formula for the spin-
relaxation time
1 1(0%

2
Y 1/2
— = ———= ~048——N,"". 4.53
Ts 2 T a6‘/[)h'/vl ( )

where NV; = n;a3. A point to be stressed is that the expression in (4.53) is free of adjustable
parameters, and depends only on the properties of the material. We remark also that this
expression for the spin-relaxation time is somewhat universal as it is valid for all n-doped
zincblende semiconductors, in the vicinity of the MIT. Our analytical prediction for the
spin-relaxation time using this formula is shown in Fig. 4.5 with solid lines. As it is
evident, this result agrees very well with the experimental values for GaAs. The dashed
line in the left lower part of the graphic corresponds to the analytical prediction for another

7ZB material, namely CdTe. The comparison with other relaxation mechanisms lets us
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t{h/Va]

; 0 100 200 300 400 500

Figure 4.2: Spin survival probability P for an initial MT eigenstate at density N; = 0.029
and system size N = 3375 are shown with solid lines of increasing thickness
(for n =75, 100, and 150). The corresponding time scale is in the upper
z-axis. The other three curves are the average (over configurations) of the
survival probability of an initial totally localized state (randomly taken),
evolved under the influence of the full Hamiltonian (including SOC) for the
same three different 1 values. Another time scale in the lower z-axis is used
for them.

conclude that the Dresselhaus coupling we have considered dominates in the impurity
band for all zincblende semiconductors except the narrow-gap ones. To support this
statement, we have also performed a numerical calculation of the spin-relaxation time, as

described in next section.

4.5 Numerical calculation of the spin-relaxation time

Numerical calculations of the spin-relaxation time within our model provide an alternative
path which is free of the simplifications used in the analytical approach. The numerical
procedure starts with the calculation of the matrix elements (4.16) for Hp (and similarly

for Hexty, numerically performed without approximations) for a given impurity configura-
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tion. We then diagonalize the total Hamiltonian H including the two contributions to the
spin-orbit coupling and perform the time evolution of a given initial state. To determine
this, we also diagonalize the bare MT Hamiltonian so as to take the initial state out of
its set of eigenstates. In particular, only a reduced number of states with energies equal
or slightly larger than the Fermi level are employed, all of them with o = 1. We follow
their spin evolution by calculating the mean value of o, (¢) numerically and extract the

spin lifetime thereof.

The weakness of the spin-orbit coupling translates into spin-admixture perturbation
energies which are, even for the largest system sizes (in terms of number of impurities, N)
that we are able to treat numerically, orders of magnitude smaller than the typical MT
level spacing. This large difference between the two energy scales in finite size simulations
masks the spin-orbit-driven physics, and forces us to follow an indirect path: we intro-
duce, as we did before, an artificially enhanced coupling constant 77y, where the control

parameter is 7, while 7 is the real SOC coupling.

In Fig. 4.2, two different time-evolution curves are plotted. The curves with varying
thickness correspond to the calculation of the average of the spin operator as a function
of time ¢, in units of [h/Vp], shown in the upper z-scale. In this case, a single system
size N = 3375 and density Nja® = 0.029 just above the MIT transition is considered, and
the three lines of increasing thickness are produced with three different enhancing values
n = 75,100,150. The largest n value generates, as expected, the fastest decay (thickest
curve). The initial state is an eigenstate of the MT model at the Fermi level. For long

times, the asymptotic behaviour is reached for the three curves indistinctly.

The other family of curves in Fig. 4.2 display the survival probability of an initial
localized state, where the full Hamiltonian including SOC has been used for the time
evolution. Here, a state localized on an initial randomly chosen site is evolved under the
influence of the full Hamiltonian. Since this is not an eigenstate of the full A, its projection
onto the same site results in what is known as the survival probability. At time t = 0,
this probability starts with a value of 1 and decays as the electron visits other impurities,
although there is a quantum probability to return back. The three curves correspond to
the same three different 1 values just mentioned, and the time scale for them is placed in
the lower z-axis. As it is clearly shown, the survival probability does not depend on the

enhancing factor, and is consistent to our previous assumption: the survival probability
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4.5 Numerical calculation of the spin-relaxation time

Figure 4.3: Size dependence of 7, for = 50 at densities N; = 0.02 (¢), 0.029 (M), 0.037
(A), and 0.06 (V). Lines are linear fits to the data that allow to extrapolate
to the infinite-size values.

related to the mean-hopping time is mainly driven by the MT Hamiltonian, which is of
course not affected by the enhance procedure. On the other hand, this probability tends
asymptotically to zero in the long-time regime as the initial localized states diffuses and
covers more and more sites. Upon observing the two sets of survival curves, the two
largely different time scales (upper and lower z-axes) are to be noticed.

The procedure for the calculation of the spin-relaxation time continues with a fitting of
the spin survival curve, restricting the time interval to a certain window. After the initial
perturbative regime characterized by a quadratic time decay, the spin survival continues
with an exponential-like (though not strictly) decay. It was precisely this latter energy
window that was identified and selected for the fitting stage, from which the relaxation

! was calculated. For long times instead, the finite size effects manifest, giving rise

rate 7,
to logarithmic decays.

In the same way as the standard finite-size scaling is used to extrapolate the infinite-
size result, we have done something similar for the n scaling. Before this, we considered

different systems sizes in order to perform a finite size-scaling for each value of 7.

We devised thus a method that combines both scalings: for each density and effective

1

coupling constant 77, the asymptotic value of 7, was obtained by extrapolating the

finite-N values to the infinite size limit. In Fig. 4.3, the curves correspond to different
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Figure 4.4: Scaling figure of the spin relaxation time extrapolated to infinite system size
with the spin-orbit enhancement factor 7, for densities N; = 0.02 (#), 0.029
(M), 0.037 (A), and 0.06 (¥). The lines are fits of a quadratic dependence of
the relaxation rate on 7. Times are given in units of 7/V;.

densities, and for each of those, various sizes were considered. The infinite-size limit was
obtained by calculating the crossing with the y-axis. The same procedure was followed
for each value of 7. We so obtained a set of values 7,(N — 00, n;, n) for each n. The extra
scaling was then performed for the parameter n (for each doping density), aiming at the
real physical value n = 1 (see Fig. 4.4). The four extrapolated values for each density are
our best estimation of the spin-relaxation time.

Applying the numerical procedure just described to the widely studied case of GaAs,
we find that the numerically extracted values of the spin relaxation times associated
with Hex, are, consistently with the results of Ref. [6], considerably larger than the ones
observed experimentally. Therefore, we neglected this term in the numerical calculations,
and concentrated on the spin evolution governed by Hp. We then ran a sufficiently large
number of impurity configurations (typically 200) to make the statistical errors negligible
(smaller than the symbol size in the Fig. 4.4). In agreement with our analytical results,
an inverse quadratic dependence of 75 on the coupling strength is obtained (also shown
in Fig. 4.4). The fitting of this dependence of 75 on 7 allows us to extrapolate the spin-
relaxation values to the physical values (n = 1) of the SOC strength. The results following
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4.6 Results and conclusion

this procedure are shown in Fig. 4.5 with purple filled circles for GaAs. The agreement
with the experimental results is here remarkable as well, and we discuss them in the next
section.

Other materials with other coupling parameters can be used by applying the same
method. Moreover, we use the numerical results extracted for GaAs for the case of CdTe,
which has a different v value. To do this, the ) values used for GaAs are renormalized and
redefined so that the relation 177y|gaas = 77Y|care holds. For CdTe, the red plus symbols

in Fig. 4.5 show our numerical results.

4.6 Results and conclusion

In Fig. 4.5 we present the spin-relaxation times resulting from our numerical approach
for GaAs at four different impurity densities above the MIT (filled circles). We in-
clude the prediction of eq. (4.53) (solid line), and the available experimental data from
Refs. [1, 19, 2, 20]. The vertical lines depict the critical (dark) and the hybridization
(light) densities. We note that both approaches describe the data within the experimen-
tal uncertainty and correctly reproduce the density dependence of the spin-relaxation
time. The departure of the analytical and numerical results is not significant, taking into
account the different approximations of both paths and the arbitrariness associated with
the definition of relaxation times in both formulations.

While in the critical region and deep into the localized regime there is some dispersion
of the experimental values for GaAs, depending on the different samples and measurement
technique, on the metallic side of the MIT, values of 7, 2 100 ns are consistently obtained.
Our analytical and numerical results in Fig. 4.5 (solid line and filled circles, respectively)
are obtained using for GaAs the values Vj = 11.76 meV and v = 27eVA? without any
adjustable parameter. We also remark that these results are quite sensitive to the value
of 4. For example, taking the smaller values suggested in the literature [51, 112] results
in larger relaxation times. The identification of the Dresselhaus coupling as the dominant
channel for spin relaxation close to the MIT provides a strong motivation to pursue further
experimental and theoretical work in order to determine a more precise value of .

Regarding other materials, spin-relaxation measurements have recently been performed

in bulk CdTe at various doping densities [21]. A non-monotonic behaviour was obtained
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Figure 4.5: Spin relaxation time as a function of doping density. For n-doped GaAs

130

(blue), the prediction of eq. (4.53) (solid line) and our numerical results (e)
for the metallic regime between the metal-insulator transition (dark thick
vertical line) and the hybridization of the impurity band with the conduction
band (light thick vertical line) obtained using v = 27 eVA3? are compared to
experiments. Data are taken from Ref. [2] for T = 2K (o) and T = 4.2K
(0), Ref. [1] ({), Ref. [19] (A), and Ref. [20] (7). The case of CdTe is shown
by the red solid line (eq. (4.53)), numerical results (e) and experimental data
from Ref. [21] (x).



4.6 Results and conclusion

and in particular, an substantial increase of the spin-relaxation time for density values

larger than 5 x 10°cm™ was observed. The authors estimated an optimal value of

7, = 2.5ns close to the MIT, at a density n”" = 5 x 10'%cm™3 (shown in Fig. 4.5).

After this, a decrease in 7, was measured for densities > 107cm=3.

Also in this case
the experimental data for densities near the MIT (x in Fig. 4.5) are well described by
the numerically extracted values of 75 (+) and by the prediction of eq. (4.53) from our
theory. Our numerical calculations are universal and the material parameters enter upon
performing the scaling procedure.

The agreement between theory and experiment for both GaAs and CdTe in spite of
their dissimilar material parameters illustrates the wide applicability of our results. In
narrow-gap semiconductors, like InAs and InSb, the particularly large Bohr radii lead to
very long Dresselhaus relaxation times, which in the first case are even longer than those
yielded by the extrinsic coupling [6]. However, the extremely low critical densities of these
materials make it difficult to probe the physics of spin relaxation in the impurity band,
and in these cases of low-densities, the spin relaxation has been proposed to be governed
by other mechanisms [99].

In conclusion, we have identified a spin-relaxation mechanism characteristic of electrons
on the metallic side of the metal-insulator transition in the impurity band of semicon-
ductors, thereby solving a longstanding problem in spintronics. Our mechanism is based
on the Dresselhaus spin-orbit coupling, and we find that it dominates over the usually
stronger extrinsic counterpart, and provides relaxation times that are in good agreement

with the experimentally measured values.
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Chapter 5

Quantum Dots

In the last part of the thesis we study the effects of spin-orbit interaction on the elec-
tronic states of cylindrical quantum dots defined on quantum wires having wurtzite lattice
structure. The linear and cubic contributions of the bulk Dresselhaus spin-orbit coupling
are taken into account, along with the influence of an external magnetic field, pointing in
the direction along the wire. The previously found analytic solution to the one-particle
Schrodinger equation for an electron in a quantum dot with a cylindrical hard-wall con-
fining potential in a zincblende lattice structure with Rashba interaction is extended to
the case of nanowire-based quantum dots, where the nanowire presents a wurtzite-type
structure. We display the effect of the spin-orbit coupling on the energy levels and present
examples for the spin structure of the one-particle eigenstates. We also address the exper-
imentally accessible effective g-factor of the quantum dots, and analyze in the sequel the

spin relaxation due to the coupling to phonons. After that, we discuss the conclusions.

5.1 Presentation

Nowadays, it is possible to produce sharply defined quantum dots with square-well con-
finement in the longitudinal direction of a nanowire, with highly controllable lengths. An
important aspect of these semiconductor nanorods is that they often display the wurtzite
crystal structure even though the constituting material has a zincblende structure in the
bulk [71]. Since the dot is built by confining a conduction electron, this structural change
affects the spin properties of the dots. Notably, while in the zincblende semiconductors

the leading Dresselhaus spin-orbit coupling term is cubic in k, in wurtzite crystals a linear
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term appears [11]. While this last term has been known for some time [11], the cubic term
in k has been obtained only recently within the k - p approximation for different wurtzite
semiconductors [23, 24]. De and Pryor [14] calculated the band-structure parameters of
several binary compounds which normally display the zincblende structure in the bulk
assuming that they have the wurtzite structure. These parameters are thus available for
the study of wurtzite nanowires. These new data pave the way to a realistic study of

nanowire-based quantum dots with wurtzite structure, which we next undertake.

Disk-shaped quantum dots with the Rashba structural SOC have been shown to admit
an analytical solution for their energy eigenstates, without [12] and with [13] an applied
perpendicular magnetic field. This solution, as we show here, can be conveniently ex-
tended to wurtzite quantum dots having cylindrical symmetry around the crystal c-axis,
either with flat (disk) or elongated (“rod”) geometry. This is the case since the linear
wurtzite Dresselhaus coupling is mathematically equivalent to the Rashba linear spin-orbit
coupling characteristic of asymmetric semiconductor quantum wells, and furhermore, the
newly obtained cubic term of wurtzite admits in the quasi-two-dimensional case the same
eigenstates as the linear term. In this work we exploit these similarities in order to give
solutions of the eigenvalue problem of the wurtzite quasi-two-dimensional structures and
cylindrical quantum dots. As we will see, in a confined geometry, the wurtzite cubic term
of the Dresselhaus coupling gives rise to an additional linear contribution that reinforces or
counteracts the bare linear term. This reinforcement can be actually much bigger than the
original linear term, opening up an unexplored regime of strong “Rashba-like” spin-orbit
coupling in quantum wells and dots. Also, the combination of these linear Dresselhaus
terms with the standard Rashba term due to structural asymmetry could give rise to
new possibilities. For instance, flexible schemes of spin-orbit coupling cancellation could
be implemented leading to very long spin relaxation times in wurtzite structures having

particular geometric shapes [113].

We next continue with the spin-orbit coupling terms in a quasi-two-dimensional confined
system, including both the spin-orbit coupling for wurtzite structures and a Zeeman
interaction. Afterwards, we make use of these solutions to address problem of a cylindrical

quantum-dot problem with a variable length and hard-wall confinement potential.
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5.2 Intrinsic spin-orbit coupling in wurtzite-based confined geometries
5.2 Intrinsic spin-orbit coupling in wurtzite-based
confined geometries
Within the envelope-function approximation for conduction-band electrons in wurtzite

semiconductors, the effective Hamiltonian [22, 17] incorporating the linear [11] and cubic

[23, 24] Dresselhaus spin-orbit couplings reads

H=Hy+ Hy+ Hs + Hy, (5.1)
p2
Hy = %‘FVC(%%Z) (52)
Hy = a (kyoy — ko), (5.3)
Hy =~ (bkz - ki - k;) (kyoy — kyoy), (5.4)
1 *
Hy = Lo Bo. 55)

where V. is a nanoscale confinement potential, o is the spin operator, «, 7y, and b are
material-dependent parameters, g* is the bulk effective gyromagnetic factor, ug is the
Bohr magneton, and B is an external magnetic field assumed to be applied in the z-
direction. Here we include the magnetic field only through a Zeeman term since we

consider only relatively weak fields whose orbital effects can be safely ignored.

The catalytically grown nanorods made out of materials which have the zincblende
crystal structure in the bulk can adopt either the zincblende or the wurtzite structure
depending on the size of the nanoparticle seed and other growth conditions. However,
experimental data allowing to determine «, v, and b are not yet available, so in our study
we will rely on the theoretical estimates obtained by De and Pryor [14]. These authors
calculated all the relevant band-structure parameters assuming a wurtzite structure for
the semiconductor binary compounds that have a zincblende structure in the bulk. In
order to give a wider applicability to our results, whenever possible we present them for
reasonably large ranges of parameters so that they can be adapted to different materials

and to parameters newly obtained, either experimentally or theoretically.

In what follows we consider quasi-two-dimensional systems, whose solutions are used

for the quantum dot problem.
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5.3 Quasi-two-dimensional systems

Before tackling the quantum-dot problem it is useful to consider the eigenvalue problem of
a quasi-two-dimensional system. Thus, we choose V, = V,(z) which confines the electrons
only along the z-direction, such that Hy can be separated as Hy = Hy® + HE, with an
in-plane term Hy” = (p2 + p;)/2m* and Hg = p?/2m* + Ve(2).

5.3.1 Linear term

If we leave aside for the moment the cubic term Hj and the external magnetic field, we
are left with a situation analogous to the classic Rashba problem in which the spin-orbit
coupling originates from an asymmetric potential. Since the Hamiltonian is separable
we can start working with the two-dimensional problem in the (z,y) plane given by

Hy = H)Y + H;. Tts well-known solution is [88]

v 1 se”! (#x=3)
s(r) = exr , 5.6
21.2
E(k,s) = % — sak. (5.7)

In these expressions and in what follows r = (z,y), k = (ks ky), k = \/k2 + k2, ¢y is the
angle of k in polar coordinates, and A is the area of the sample. The spin quantum number
s = %1 denotes spin-up and spin-down eigenstates with respect to the spin quantization
axis which lies in the xy-plane and is perpendicular to k with a polar angle ¢ — /2. Note
that the spin-orbit term in the energy has a minus sign compared to the usual Rashba
expression, coming from the minus sign used in eq. (5.3). The states (5.6) are degenerate
for given k and s. This plane-wave solution is convenient in most contexts and has the
advantage that its spin quantization direction is position independent. However, (5.6)
does not profit from the fact that the z-component of the total angular momentum J,
commutes with the Hamiltonian and therefore provides a good quantum number, which
is an extremely useful property when one tackles cylindrically symmetric nanostructures.

The common eigenstates of H and J, are given by [12]

v B I (kr) e™?
m,k,s (Ta 90) - " . (58)
SJm+1(]€’F) eL(ﬁL+1)(p
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5.3 Quasi-two-dimensional systems

The states (5.8) are degenerate with those of (5.6) for given k and s, and can be expressed
as superpositions of them. Note that while the spin of the basis states (5.6) lies always
in the xy-plane, that is not the case for the states (5.8), which are superpositions of the
states (5.6) within degenerate subspaces. Furthermore, the spin direction in the latter is

space-dependent while in the former it is not.

5.3.2 Cubic term

Let us now include the cubic-in-k term of the Hamiltonian, Hj, given in eq. (5.4), and
the Zeeman energy, eq. (5.5). As usual, we work in the envelope-function approximation
where the Hamiltonian H is expressed by replacing k by —V. We adopt cylindrical

coordinates (r, ¢, z) and for the in-plane coordinates we have

o, _ 0  sing 0
k, = —ig, = Tie0spo- +i— 7 (5.9)
by = —ig. =i singp% - icoiwai (5.10)
2 2 2 2
2 0 02 10 0 10 (5.11)

T e Pl
oz 0y?  ror  Orr  r2op?
Note that we use the symbol V? to represent the two-dimensional Laplacian. Leaving H;

unexpanded for the moment, the Hamiltonian reads

wo(_, o
H:_Qm* (V +822>+Vc(z)+H1
Y 0? 2
|5 ) + V| Ha ot Hy (5.12)

Assuming that V.(z) is an infinite potential well of length L, the proposed solution of
the time-independent Schrodinger equation H® = E® is

a1, 9, 2) = V(1 0)sin (“1) (5.13)

\IJ | wam(r) eime
(T, ) = _ ; (5.14)
Vpn (1) €07 F1%

where (1) and vy, (r) are real functions and W,,,(r,¢) is an eigenstate of J, with
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eigenvalue j, = m + 1/2. The corresponding total energy is
E! =E,+ E?, (5.15)

with the radial part F, and the longitudinal energy E? = (h*/2m*)(nn/L)? from the
confinement in z-direction. After plugging (5.13) in the Schrodinger equation, we obtain

the following coupled equations for u,,, and v,

2 ' " m+1 0 _
(=V2, + ) tm(p) + (al, +7'V2) (p + 8p) Vi (P) = Entlnm(p) (5.16)
(=Viis = h) vam(p) + (o, + 7' Vi 10) (ZL - a@p) Unm (P) = EnVnm(p) (5.17)

where
2 = 1o  9* m?

In egs. (5.16) and (5.17) we have introduced R, a parameter to be defined in the quantum-
dot context, and uy = h*/2m*R?, as units of length and energy, respectively. This
allows to define dimensionless parameters as p = r/R, K = kR, 7 = v/uzR?, and
h = gugB/2up. The dependence on the (“longitudinal”’) quantum number n has been
incorporated to the in-plane problem via the redefinition of the coupling constant « to

write the dimensionless
, nm\ 2
a, = |a+7b (f) JusR , (5.19)

and the in-plane dimensionless energy is given by &, = E,, /uy.

To solve egs. (5.16) and (5.17) we make the ansatz

Unm(p) = Jm(Kp),  Vam(p) = dnJmi1 (Kp). (5.20)

Using the property of the Bessel functions

m 0
(p - ap) Tn(Kp) = K T (K p), (5.21)
m—+1 0 _
(p ; ap) Tnsi (Kp) = K J(Kp), (5.22)
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5.3 Quasi-two-dimensional systems

one obtains from (5.16) and (5.17) the 2 x 2 eigenvalue equation

K?+h—¢e, o, K—-—~K?3 1

=0 (5.23)
A K —~vK? K?—h-—¢g, dy,
whose solutions are
ene = K2 & \/K2 (a!, — ' K2)* + h2. (5.24)
Then, the total energy is given by
Epy = (ns + &) us, (5.25)

with €2 = EZ Juy, = (nmR/L)?. The coefficients in the eigenvectors are determined by

_Eni—Kz—h

dni - OZ;.LK — ’)//Kd . (526)

The obtained solution, egs. (5.24) and (5.26), reduces to the one of the linear Hamiltonian
analyzed in Sec. 5.3.1, given by eqs. (5.7) and (5.8), when the cubic term and the Zeeman
energy are neglected. As in the linear Rashba problem, there are two possible energies
ens for a given value of K. The energies ¢,+, being a function of K2, are independent
of the sign of K. Because of the (anti-)symmetry of the Bessel functions with respect to
a change of sign in the argument, considered along with the change of sign of d,y, the
wavefunctions corresponding to K are not independent. We therefore keep only positive

values of K.

In the presence of a magnetic field, and for in-plane energies &, close to zero, eq. (5.24)
has solutions with imaginary K = ix. Since J,(ikp) = ™I, (kp), where I, is the
modified Bessel function of order m of the first kind, the corresponding wavefunctions
grow exponentially with increasing p and are thus not normalizable in an infinitely large
system. Such solutions are therefore discarded in the context of two-dimensional systems,

yet they become relevant for the case of quantum dots discussed in Sec. 5.4.

In Fig. 5.1 we present (solid lines) the dispersion relation (5.25) for InAs with the
parameters suggested in Ref. [14] from band-structure calculations (we label them with
an index )

a, = 0571 eVA 4, = 571.8 eVA®,
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600

200

Figure 5.1: Energy dispersion from eq. (5.25) with (right) and without magnetic field
(left). For subband n = 1, three cases are considered: thick solid lines
correspond to the full SOC, dashed lines to an intermediate case with no
cubic-in-k SOC, but with the a parameter renormalized by v (5.19), and
dotted lines to the bare Rashba interaction, linear in k. Blue (red) lines
correspond to €,_ (g,4). The thinner solid lines are the lower branches of
subbands n = 2 and 3. Inset: Full SOC dispersion relation without the
parabolic contribution for n = 1. The Zeeman effect and an avoided crossing
are more clearly distinguished on this energy scale.
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5.4 Quantum dots

b = 4 and an effective mass m* = 0.026m, [9]. The two energy branches are plotted
for B = 0T (left) and B = 20T (right). In this figure we consider a large value of
the magnetic field just for illustrating more clearly its effects on the energy levels. We
also show the effect of suppressing the cubic term, but keeping the contribution of « in
eq. (5.19) on the linear term (dashed line), and also the usual Rashba case with v = 0
(dotted line). Blue (red) lines correspond to €,— (€,4). Thick lines correspond to n =1,
as indicated between the two panels. Also shown are the curves of 5 and £3_ including
the linear and cubic spin-orbit contributions (thin lines). For n =1 and B = 0T there is
a crossing of the two branches at K = /a//+/ (K = 19.34 in our plot). This feature has
been discussed in the literature as a possible opportunity to implement long-lived spin
qubits [114]. The crossing becomes avoided for finite B, although the level splitting can
hardly be seen on the right panel of Fig. 5.1. For this reason we plot in the inset the
energies subtracting the trivial parabolic contribution. This allows for a smaller energy
range such that one can clearly note the Zeeman splitting at K = 0 and the avoided
crossing.

In Fig. 5.1, the thin solid lines are the lower branches of subbands n = 2 and 3.
Even though they lie at sufficiently high energies so as not to affect our further analysis,
which concentrates on low energies, we note that they could become relevant if the region
of the avoided crossing mentioned above is explored. Also, we point out a potentially
interesting degeneracy point of all the lower branches of the different subbands, which
happens at K = 1/by’ (K = 17.58 in our plot), where the curves become independent of
n. This massive degeneracy is due to the renormalized linear spin-orbit term. Although
this feature may be physically relevant, we mention that higher values of n correspond to
higher &, and eventually the energies of eq. (5.25) obtained in third-order perturbation

theory in wavevector cease to be reliable.

5.4 Quantum dots

5.4.1 Effect of spin-orbit coupling on the energy levels

We now consider cylindrical quantum-dots with hard-wall quantum confinement having
radius R and length L. The discrete eigenenergies and states of this problem will be

obtained from the quantum-well solutions found in the previous Section. In order to

141



Chapter 5 Quantum Dots

get the energetically lowest states, we keep only the lowest subband, n = 1, and omit
the subindex n from now on. In all cases we work with & low enough to stay in the

perturbative regime of SOC.

The eigenstates of the disk-shaped quantum dot have to satisfy the circular bound-
ary condition (the hard-wall confinement forces a zero of the wave function at the dot
boundary). This can be achieved at particular values of the in-plane energy ¢ for linear
combinations of two degenerate eigenstates of the quantum-well problem. Those quan-
tized energies are then the eigenenergies of the quantum dot. In the general case including
a finite magnetic field, there are three energy ranges (see Fig. 5.1) with different situa-
tions:

i) energies in the low “belly” of the e_ branch, e < —|h|;
ii) energies above the energy gap caused at K = 0 by the Zeeman splitting, ¢ > |h|;

iii) energies in the Zeeman gap, —|h| < e < |h].
We now consider these three cases separately.

Case i): two real values of K, K, and K, associated to the e_ branch (in the “belly”

region) are involved in the dot solution. The in-plane wave function is thus written as

I (Ko p)e™? T (K, p)e™?
Un(p,p) = ca (Het) , + ¢ (Hs) _ . (5.27)
d_(K) T i1 (K,p)eltmthe d_(Ky) T i1 (Fyp)eitm+e

with the boundary condition ¥,,(p = 1,¢) = 0. A non-trivial solution (K,, K;) will be

given by the condition
I (K o) d_(Kp) Jinr1 (Ky) — I (K) d—(K) Jma1 (K,) = 0. (5.28)

Case ii): the two quantum-well states involved in the dot solution belong to different

branches, €, and ¢_, with real values of K, K, and K,:

T (Kap)e™? T (Kpp)e'™?
Uin(p; ) = Ca () , +a o) , . (5.29)
Ao (K) i1 (Kqp)eitmte d_(Ky) T i1 (K p)eitm+De

The boundary condition W,,(p = 1, ) = 0 leads to

I (Ka) d—(Kp) S 1 (Kp) = Jin(K3) d (Ka) Jmia (Ka) = 0. (5.30)
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Case #i): one imaginary value of K, K, = ik,, and a real value K} are involved. The

energy associated to K, is

€4 = —K2 4 \/—Hg (o, + 7’/{3)2 + h2, (5.31)

and the coefficient for the wave function

Exat+KE—h

dx(Ka) = (=) ol ke +'K3

= —id+(Ka) - (5.32)
With J,,(ikp) = ™1, (kp), the quantum-dot wave function is then written as

L (Kap)e™ I (K p)et™?
Uo(p, ) = i (Rap)e™ Yo (Hap)e™® . (5.33)
5i(Ha)-[’rn+1("€ap)el(m+1)¢ d—(Kb)JnH—l(Kbp)el(erl)Ap

The boundary condition ¥,,(p = 1, ) = 0 leads to
Im(ﬁa)d*(Kb)Jerl(Kb) - Jm(Kb)(Si(Ha)Ierl =0. (534)

Equations (5.28), (5.30), and (5.34) express a root-finding problem, which we solve
numerically. We find a family of solutions for each value of m that correspond to the
discretized energies of the quantum dot. All of these solutions carry a well-defined value
of . = m+1/2, and in the absence of a magnetic field, the j, and —j, solutions are

degenerate.

The results for the energy levels are presented in Fig. 5.2 as a function of the SOC
coupling strength. The states of different |j,| are shown in different color. To show
the effect of the spin-orbit coupling, we start from the case of vanishing SOC in the
center of the figure and increase the SOC strength up to the predicted values «, and ~,
corresponding to the left and right edge of the figure.

Without SOC (inner edges of the plot), the electronic states can be characterized by
the orbital angular momentum [, along the z-axis and the spin s = +1/2, in addition to
the total angular momentum j, = I, + s. The values of |l,| corresponding to the states
are indicated in the center of the figure. Without magnetic field (left side), the states
characterized by (I.,s) = (£]|l.|, £1/2) are degenerate. When a magnetic field is included

(right side), the Zeeman energy splits the different spin orientations. In the presence of
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Figure 5.2: The discrete eigenenergies of a quantum dot with radius R = 275A and
height L = 100A for n = 1, shown as a function of the spin-orbit coupling
strengths « and «, without magnetic field (left side) and with B = 2.5T
(right side). States with |j.| = 1/2,3/2,5/2,7/2, and 9/2 are represented by
different black, blue, green, red, and orange lines, respectively. In the central
panels we keep v = 0 and vary a from zero up to o, = 0.571eVA, reported
in [14]. Conversely, in the following curves (outside panels) « is fixed at a.,
and v increases from zero to its final value of v, = 571.8 eVA®. In between
the panels, the values of the quantum numbers [, associated to the nearby
states at zero SOC are indicated.

SOC, the orbital angular momentum and the spin get mixed, [, and s cease to be good
quantum numbers. In this case only the total angular momentum quantum number j,,
shown by the different colors in Fig. 5.2 characterizes the states. It can be seen that the
SOC splits states characterized by different values of j,, while they correspond to the

same |l,| at zero SOC.

In order to separate the effects of the different SOC terms, we increase the SOC in two
steps. We first consider the usual Rashba problem by setting v = 0 and varying the linear
coupling strength o from zero up to a, = 0.571eVA. This situation is depicted in the
inner part of Fig. 5.2, where the left side corresponds to the case of zero magnetic field
and the right side to B = 2.5'T. The ensuing step is to fix « at «, and increase the =y
value from zero to «,. = 571.8 eVA®. The result is matched with the previous one and
traced by the adjoining curves in the outer panels of the figure. It must be noted that
v determines not only the cubic-in-k SOC coupling, but it also enters in the linear-in-k
coupling (cf. eq. (5.19)). Consequently, at the end of each curve we find the energy of the

quantum dot for the corresponding ;. and 7,. This way of presenting the results shows
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separately the contribution of each of the SOC parameters.

The significant effect of v on the eigenenergies, that leads to much stronger energy
changes than « alone, must be noted. It brings, for example, the lowest pair of levels
with j, = £1/2 (lowest black curves) down to energies that are below EF. Moreover, level
crossings occur as a function of v, changing the order of the states in energy with respect
to the case of vanishing SOC. This happens mainly for the lowest energy states of a given
|7.| that are pulled down by the SOC below the higher energy states with lower values of
|7:]. We remark that the full range of eigenenergies that we consider has not been explored
in previous studies, and that we explicitly include allowed energy values that lie within
the gap of the two-dimensional dispersion relation of Fig. 5.1, that is —|h| < e; < |h|. It
can also be observed that the Zeeman splitting shrinks as the SOC increases, while the
spin mixture brought about by the latter increases accordingly. This indicates that the
effective g-factor in quantum dots is affected by the SOC and depends on the geometry.

We come back to this after next section, where we study the spin texture.

5.4.2 Spin structure of the eigenstates

We now examine the spin structure of the quantum dot states. The spinor states of egs.
(5.27), (5.29), and (5.33) determine the spin texture of states across the dot. Without
SOC and in the presence of a magnetic field, even a very weak one, the states are spin
polarized, and the spin texture of the one-electron states is uniform throughout the dot.
The appearance of a non-trivial spin texture is therefore a signature of the SOC, and can
be seen as the degree of mixing of the two spin components in an eigenspinor. To obtain
the spin texture corresponding to a state, we compute the expectation value of the spin

operator

Ul (r)o¥(r)
r)y=—/——-—+= 5.35
@) = G (53%)
for each spatial point r inside the quantum dot. Because of the separability of the wave-
functions (5.13), the spin orientation is independent of the longitudinal coordinate z.
Moreover, the rotational symmetry of the dots around the z-axis imposes that the re-

sulting spin orientations present the same symmetry. Therefore, their projection on the

@p-direction vanishes, such that the local spin direction

(o) (r) = 7cos(B(r)) + Zsin(B(r)) (5.36)
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Figure 5.3: Spin textures in cylindrical quantum dots with L = 100 A and R = 275 A.
Left and right panels show results for the lowest and the second lowest states
with |j,| = 1/2, respectively. The arrows and colors indicate the spin ori-
entation as a function of the position in the xy-plane. Below the disks, the
same data are shown for a linear cut through the center of the sample

has only a radial component and a component along the z-axis. The angle of the local
spin orientation with respect to the zy-plane 5 depends only on the radial coordinate r.
We construct the full eigenstate solution ¥ with energy € as (5.27), (5.29), and (5.33),
depending on the value of ¢, with the corresponding K,(¢), and Kj(e) obtained from a
numerical solution of the quantization conditions (5.28), (5.30), or (5.34).

In Fig. 5.3, we present two examples of spin textures in cylindrical quantum dots of
length L = 100 A and radius R = 275 A, in the presence of the full linear and the cubic
SOC terms with the coupling strengths «, and ~, predicted in Ref. [14]. The left panel
shows the dependence of the spin orientation on the position in the zy-plane for the lowest
energy states that have |j,| = 1/2. This spin texture corresponds to the ground state of
the dot, shown in Fig. 5.2 by the two lowest levels depicted in black. The right panels
show the spin texture for the next higher levels that are characterized by |j.| = 1/2,

corresponding to the second pair of levels (black lines starting at |I,| = 1 in Fig. 5.2).

We next examine the effective g-factor of the dot.

5.4.3 Effective g-factor in quantum dots

From the experimental point of view, the effective g-factor is an accessible quantity, and it
is thus a widely studied property. The measurements reported in Ref. [9] are an example.
In that reference, the effective g-factor has been observed to depend on the dot size with
absolute values that are reduced as compared to the bulk effective g-factor ¢* ~ —14.7
(value from Ref. [115]). Experimentally the effective g-factor is extracted from the linear

term of the magnetic-field induced energy splitting
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Figure 5.4: The calculated effective g-factors (full black circles) for cylindrical quantum
dots of different length L and radius R, plotted versus 1/’ defined in (5.19),
with the SOC parameters from Ref. [14]. The data points are for dots with
radii R from 150 A to 500 A, and lengths values L in the range between 50 A
and 200 A. The crosses represent experimental data from Ref. [9], obtained
with a magnetic field perpendicular to the symmetry axis of the quantum
dot. The blue horizontal line indicates the bulk effective value ¢* ~ —14.7.

AE = |getpip Bl (5.37)

of two states that are characterized by the same |j,| and degenerate in the absence of a
magnetic field. According to this definition, each quantum-dot state has its own effective
g-factor, and we will focus on the effective g-factor of the ground state which is often the
most relevant. To calculate the effective g-factor we can use different approaches. The
most direct way is to set the magnetic field strength to a small finite value, B = 0.1T,
and to calculate the difference between the two lowest dot energies, using the procedure of
Sec. 5.4.1. To avoid the finite value of the magnetic field, we express the effective g-factor

as
1 OAE |, Oe

Jeft = ;TBTB =g 9h (5.38)

in terms of the sensitivity de/0h of the quantized dot energy levels with respect to the
magnetic field, at h = 0.
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To determine this derivative, we proceed as in the case of Rashba SOC treated in
Ref. [13], and derive the quantization condition, (5.28) for negative in-plane energy e < 0,

and (5.30) for positive € > 0. The resulting expression for the effective g-factor is

Lsgn(e)u(Ka) + u(Kp)
u(K,)u(Ky)

gt = —g (5.39)

Jm(Ka)Jerl(Kb)
C(Ka, K [2K, + sgn(e)u! (K,)] " + sgn(e)C(Ky, K,) 2K, — w/(Ky)] ™"

where we have defined the functions

C(Kaa Kb) = Jm(Kb)Jrlwz+1(Ka) + Sgn(g)J;n(Ka)Jm-&-l(Kb) (5~40)

and u(K) = o’/ K —'K3. We denote by J! (K) and v'(K) the derivatives of the functions

Jm and u with respect to K.

The expression of eq. (5.39) is a generalization of the result of Ref. [13], and reduces
to the result given in eq. (13) of that publication in the case of vanishing cubic-in-k SOC
(v = 0). In order to compute the effective g-factor using the analytic expression (5.39),
we first determine the eigenenergies and the corresponding pair of wave-vectors K, and
K, by solving numerically the quantization condition of egs. (5.28) and (5.30) at h = 0,

and then evaluate (5.39) using the obtained values.

In Fig. 5.4 we present our results for different dot dimensions with length ranging from
50 A to 200 A and radii from 150 A to 500 A. We have checked that a direct numerical
evaluation of the level splitting from numerically calculated energies at small values of

magnetic field B yields consistent results.

In the figure, the numerical data for g.q (black dots) is plotted as a function of the
inverse effective dimensionless linear in-plane spin-orbit coupling o/~ (see eq. (5.19)).
The data corresponding to different dot sizes approximately collapses on a single curve.
While a plot as a function of o shows the same data collapse, the presentation of Fig.
5.4 allows for greater clarity in the comparison with experiment. Such a single-parameter
scaling shows that the dependence of the ground state effective g-factor ges on L and

R is, at least within the range of explored sizes, to a good approximation given by a
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function of /. Thus, the main mechanism giving rise to a size-dependence of the effective
ground-state g-factor is the L-dependent renormalization of the effective linear coupling

strength o by the cubic SOC ~, and its scaling with R.

For a fixed value of L, the renormalized linear-in-k coupling strength o' is proportional
to 1/uxR. Since uy o< R72 we have o/ o R such that the effective linear coupling
decreases with decreasing R. It can be seen in Fig. 5.4 that the value of g.s increases
(in absolute value) towards the bulk effective g-factor g* (blue line) as R and thus the
effective coupling o decreases. An increase in R leads to a larger o, and according to Fig.
5.2, the Zeeman splitting of the levels decreases as the SOC increases. The consequence
is that |geg| diminishes. Conversely, for a given radius R, the increase in L leads to a

decrease of the effective linear-in-k coupling o', with the result of an approach of geg to

*

g*.

The effective cubic-in-k coupling 7" oc 1/uzR? o< 1/R increases when R decreases, and
a competition between o' and 4 can be expected. However, the spectrum of the lowest
energies is related to small values of K and mainly dominated by the linear SOC (see
Fig. 5.1), at least for the not too small values of R that we consider. The scaling of
the results with o leads to the conclusion that the main effect of the cubic Dresselhaus
coupling ~ is the renormalization of the effective linear-in-%£ coupling, and that the impact
of the effective cubic-in-k coupling strength 4" seems to be of minor importance. However,
the above arguments are relevant for the case under study of not too small R and low-
energy dot states. More important effects of the cubic-in-k coupling +' can be expected

for the g-factor of excited states and in dots with very small R.

Similarly to the results presented in Ref. [115], where a zincblende Hamiltonian with
adjustable parameters such as the energy band gap magnitude was used, we find negative
values for the ground state g-factor of the dot. However, in our case small positive values
do occur for short pillbox-shaped dots. In general, and similarly to the theoretical results
for Rashba SOC [13] as well as the experimental values of Ref. [9] (crosses in Fig. 5.4),
our effective g-factors are of reduced absolute value as compared to the bulk effective
g-factor g*. While the qualitative behavior and size-dependence of our results are clearly
consistent with the data of Ref. [9], a direct quantitative comparison cannot be made
since in the experiment the magnetic field direction is not aligned with the symmetry axis

of the dots. Also, while the effective g-factor has been measured for very different values
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of L, only a small range of radii has been covered in Ref. [9].

The last topic we analyze in the following section is the spin-relaxation rate due to

acoustic phonons.

5.4.4 Phonon-induced spin-relaxation rate

The spin lifetime may be limited by interactions with acoustic phonons. Therefore, we
study here spin-relaxation rate due to phonon scattering between a final eigenstate |f)

and an initial state |i) is given by Fermi’s Golden Rule
Liy = Z (FIOAQ)[8)[*n(Q)S(AE — hwy) (5.41)

where Q is the phonon momentum; the label A = [, ¢ refers to the longitudinal and the
transverse modes, respectively; n(Q) is the Bose-Einstein phonon distribution with energy
hwy = hea@, where ¢y is the sound velocity of the corresponding mode; AE = Ey — E;
is the energy difference between the two electronic states and determines, owing to the
0-function, the energy of the phonons involved in the relaxation process. The potential
Ux(Q) comprises both the deformation and the piezoelectric phonon potentials [25, 26, 27]

that in our case involves the wurtzite structure. For the longitudinal mode, we have

U(Q) = [E(Q) +iAi(Q) ] " (5.42)

with Z;(Q) being the deformation potential given by

=(Q) = S AV/Q (5.43)

where = is a bulk-phonon constant. The quantity A; = f h - contains the mass
density ¢ and the sample volume V. It must be noted the deformatlon has an identical
form as the zincblende case. The term A;(Q) accounts for the piezoelectric contribution

and upon introducing spherical coordinates (Q, 8,, ¢,) for the phonon momentum, it reads

AQ) = — =Ny cos(0,) (hss — sin® 6, h,) (5.44)

(21/2
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where h, = hss — 2hy5 — ha1. In general, h;; are bulk phonon constants and Ay = 47e/k;
where  is the dielectric constant and e the electronic charge. We emphasize that 6, is

the angle between Q and the z-axis (defined as the c-axis of the wurtzite structure).
The transverse mode is given by
U(Q) = A(Q)e’®" (5.45)
with
A(Q) = At#AO sin(8,) (s + cos?(6,)hy) (5.46)

The parameter A; is obtained by substituting ¢; by ¢; in the expression for A;. We
emphasize that in wurtzite, the transverse piezoelectric potential yields only one term,

unlike the GaAs case which presents two contributions.

The calculation of the relaxation rate involves the integral over the phonon and the

electron degrees of freedom in such a way that eq. (5.41) can be written as
27 iQ.rl-
Doy =~ > IMQ)PIS1e Y i) Pr(Q)S(AE — huwy) (5.47)
Q.

where M; = E/(Q) + iA(Q) and M; = A4(Q). We first note that the modulus of
the momentum Q is fixed by the d-function. Concerning the integral over the electronic
coordinates, we remark that both the initial and the final states denoted by o1 (p,0,2) =

ﬁ,i)(p, ¢, z) sin(nmwz/L) have the same z-dependent function. Therefore, the integral can

be further split into two parts by using cylindrical coordinates, leading to
[l = [Z(6,) P (G 0p) (5.48)

The integral over z can be analytically done, yielding

1 N 172
(2mn)? —q¢2 = ¢?

4

1Z(0,)* = (L/2)?¢2(1 — cos(qz)) (5.49)

where the definition ¢, = QL cos(6,) has been used. The other integral Y(6,, ¢,) reads
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1
T(Op, ) = / dpp | (ko (KL p) + l i (KL p) ) (€l (L) + ol (KLp)) - (5.50)
(g (KL p) + Ty 1 (KL ) ) (chdiTin, 11 (Kap) + iy, (KL)) |

27
/ dp ¢ —mi) iQsin(0y) cos(oy—)oR
0

The integral over ¢ can be easily performed by applying the Jacobi-Anger relation:

e el = N (x)e e (5.51)
Upon replacing eq. (5.51) in eq. (5.50) and carrying out the integration over ¢, all the

m-th terms vanish except when m = m; — my. The integral then results

2T
i dspe—i(mf—mz)weiQsin(f)p)COS(«Jp—w)pR — e mi—my)(eptm/2) Jm,fmf (pRQsin6,) (5.52)

As it can be seen in eq. (5.52), the complex exponential becomes a common factor in
eq. (5.50) and leads to |Y(6,,,)|* = f(6,), which is not surprising, since the cylindrical

symmetry is not broken by the phonon potential.

The calculation of the spin-relaxation rate still involves an integral over p, and a sub-
sequent integration over 6, (since neither |Y(6,,,)|* nor [M,(Q)[* depend on ¢, , cf.

eqs. (5.43), (5.44) and (5.46)) that have to be done numerically.

We present the results for the spin relaxation as a function of magnetic field in Fig. 5.5.
The initial and final eigenstates are the two lowest energy states (i.e the first Zeeman
sublevel). As the piezoelectric bulk constants for WZ InAs nanowires have not been
obtained so far from microscopic calculation, we follow the standard prescription [116,
26, 25, 117] of estimating them from the cubic structure by the use of the relations hys =
hsi = (—1/V/3)hua, hss = (2/v/3)h14 with hig being the ZB constant (3.5-105Vm~1 [25]).
In Fig. 5.5, the family of black curves correspond to the case of zero temperature, each
denoting the contribution from the different phonon potentials separately. The parameters
we use are p = 5900kg/m3, ¢ = 4410m/s, ¢; = 2130m/s, and =, = 5.8¢V, taken from
Ref. [25]. Our results show that the transverse piezoelectric mode yields the leading

relaxation rate for the magnetic field range below 1.257. We have checked that our
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Figure 5.5: The spin-relaxation rate due to different acoustic-phonon potentials as a func-
tion of magnetic field, for InAs. The dark curves correspond to the relaxation
rate at zero temperature yielded by the piezoelectric transverse (TA-Piezo),
the piezoelectric longitudinal (LA-Piezo), and the deformation (LA-Defo) po-
tentials. The grey line shows the spin-relaxation rate at 7" = 10K, only due
to TA-Piezo.

results are not very sensitive to the precise value of hy4: increasing the latter by a factor
of two results in an increase by a factor of 4 for the range of studied parameters.

As it can be noted in eq. (5.41), the temperature dependence enters through the Bose-
Einstein distribution, and therefore, the change with temperature of the spin-relaxation
rate can be easily obtained. The result for the dominating TA-piezo mechanism is shown
as a grey curve in Fig. 5.5

We also observe that our results are within the same order of magnitude compared
to those in Ref. [25], in which the singlet-triplet relaxation for an InAs nanowire-based
quantum dot is calculated. Nevertheless, in that work, only the deformation coupling
is taken into account. The same assumption was made in Ref. [26], where the electron
spin relaxation in a similar quantum dot was calculated. In both references, the dom-
inance of the deformation over the piezoelectric potential was justified on the fact that
they considered small semiconductor nanostructures. As explained in Ref. [28], there is

a competition between the two components that depends on the size of the nanostruc-
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ture. For instance, the leading role of the piezoelectric coupling for weak magnetic fields
has also been reported [29] for quasi-one-dimensional quantum dots in zincblende GaAs
nanowires, for “cigar-like” quantum dots. Also by considering GaAs quantum dots, a
crossing between the deformation and piezoelectric-induced rate curves as a function of
the magnetic field was found in Ref. [118]. In our case this occurs as well, though for lower
values than those in Ref. [118]. However, numerical calculations on InSb nanowires show
that the deformation potential dominates [29, 118] for this material, and in general, this
is believed to be the case for all narrow-gap semiconductors [119]. Yet this is in contrast
with some recent results on an InAs nanowire quantum dot [117], where the piezoelectric

coupling is crucial for the determination of the phonon spectrum.

Our result show that for InAs, which has a larger band gap than InSb, but smaller than
GaAs, the spin relaxation rate is mainly driven by the (transverse) piezoelectric phonon
potential for magnetic fields below 1.25 T. Beyond this value, the deformation seems to
overcome the piezoelectric contribution, but our theory does not allow us to treat stronger

magnetic fields.

5.5 Conclusion

We have presented an analytic solution to the problem of an electron in a quantum dot
in the presence of Zeeman interaction and spin-orbit coupling. The effective Dresselhaus
terms for this last interaction have been included taking into account the fact that we
are dealing with a crystalline structure of wurtzite type. We have first considered the
quasi-two-dimensional system, where two energy branches have been obtained. The effect
of the linear and the cubic SOC terms have been separately examined.

The particular feature of two branches in the energy spectrum of the quasi-two-dimensional
problem provides two degenerate solutions that can be combined in order to build a spinor
that satisfies the boundary conditions imposed in the cylindrical quantum dot problem.
We then come across an equation for the discretization of energies, which must be numeri-
cally addressed. By solving this root-finding problem, we obtain the allowed eigenenergies
of the quantum dot. In order to examine and exhibit the contributions of the linear SOC
term and the cubic SOC term, we calculate the energies as a function of the spin-orbit

coupling strength. We find that the inclusion of the cubic term leads us to a range of
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coupling strength not explored before (cf. Ref. [13]), and allows us to conclude that the
cubic term is of considerable relevance.

The calculation of the eigenstates also permits the study of the spin structure across
the dot. In particular, two spin textures of states with different energies -both of them
with |j, = 1/2|- are displayed.

We have also tackled the problem of the effective g-factor of the quantum dot. In
agreement with the results of Ref. [115], we also observe negative values for the effective
g-factor as a function of the dot size. Remarkably, we have found that our results scale
very well with the inverse effective dimensionless linear in-plane spin-orbit coupling o/~!
defined in eq. (5.19))

We have also been able to calculate the spin-relaxation rate due to phonons. We then
analyzed the phonon-induced rates as a function of magnetic field for the first Zeeman
sublevel, by taking into account the electron-phonon potential for the wurtzite structure.
The different rates arising from the longitudinal deformation, longitudinal piezoelectric,
and transverse piezoelectric contribution have been studied by using Fermi’s Golden Rule.
We obtain a good agreement between our results for the spin-relaxation rate due to the
deformation mechanism and the values shown in Ref. [25], where only the deformation
potential is included. In the same Ref. [25], it is claimed that the deformation potential is
the leading mechanism, under the assumption that they deal with small nanostructures.
However, our result shows that the transverse piezoelectric phonon potential gives the

largest rate.
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Chapter 6

Concluding Remarks and outlook

The spin-orbit interaction resulting from the coupling between the motion of the electron
and its spin, is the fundamental driving mechanism of many novel spintronic devices.
The promising possibilities for technological applications are thus a strong motivation for
exploring the various aspects of this interaction. Particularly important among them is
the influence on the spin-relaxation time, that is the time during which the spin keeps
its initial orientation. The subject of the first part of this thesis is the study of this
important time for the case of bulk semiconductors. More precisely, we focus on n-
doped semiconductors, GaAs doped with Silicon atoms representing a typical example.
Although this specific material has been deeply studied over the last years, open questions
have remained unsolved. This was firstly posed in 1998 by Kikkawa and Awschalom [1],
who measured the spin-relaxation time in GaAs for several doping densities, employing
a time-resolved Faraday rotation technique. They observed a non-monotonic behaviour
of the spin-relaxation time as a function of the doping density and maximum values
of the order of hundreds of nanoseconds. The confirmation was reported 4 year later,
by Dzhioev and collaborators [2]. They found, using an optical orientation technique,
two maximum values for the spin-relaxation time. While one of them is observed at a
density of 3 x 10%%cm ™ and yields a relaxation time of the order of 180 ns, the other one
occurs at the critical density of the metal-insulator transition (MIT), which for GaAs is
2 x 10%em 3. For this value, the relaxation time reaches 150 ns. At still higher doping
levels, the spin-relaxation times decrease strongly with increasing doping.

Throughout the first part of this thesis, we consider the metallic side of this transition,

i.e. we work with density values slightly larger then the critical one. For this range, we
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examine the effect of the spin-orbit coupling on the spin-relaxation time occurring in the
impurity band. A zero-temperature formalism, properly justified, is put forth for donor
electrons populating this band, without taking into account the electron-electron interac-
tion. As it is explained in Chap. 2, we work within the Envelope-Function Approximation,

and two different effective spin-orbit coupling terms have been included in our model.

On the one hand, the SOC associated to the extrinsic Coulomb potential of the disorder
impurities is used in a preliminary study of the influence of the SOC on the impurity band
(Chap. 3). We are interested in the characterization of the band, and in particular in the
density of states (DOS) and the degree of spatial extension of the electronic levels. For
the latter, we make use of the so-called Inverse Participation Ratio (IPR) parameter in
order to estimate how localized a state is. Our theoretical approach to an electron in
the impurity band is based on the Matsubara-Toyozawa (MT) Model, conceived for the
study of electron conduction at zero temperature in the presence of randomly placed
impurities. It consists of a tight-binding approximation built from the ground state of
the doping centers. For shallow donors, the impurity states are described by an envelope
function. The final MT Hamiltonian for the envelope function contains a kinetic energy
term with an effective mass, plus a Coulomb-like potential, resulting from the sum of each
Coulombic impurity center, in which the screening effect enters via a dielectric constant.
While the MT states are eigenstates of the spin operator S,, this is no longer the case
once the SOC is included. In order to take into account the SOC, we rely on the Impurity
Spin Admixture (ISA) theory proposed in Ref. [6], in which the SOC introduces a spin
admixture in the original spherical-symmetric (s-like) MT impurity states. Our study
then continues with the exact diagonalization of the MT Hamiltonian in the basis of
ISA states. This Hamiltonian matrix now contains a new spin-flip term connecting two
different sites, brought about by the spin-independent Coulomb potential. As it turns
out that two-center integrals -those in which the Coulombic center coincides with any of
the two sites involved in the hopping element- give vanishing contributions, the spin-flip
term is given by three-center integrals, which in this work are numerically performed,
for no analytical expression is available. For the systems sizes we can treat numerically,
the vanishing of the two-center integrals translates into a very weak SOC compared to
the MT energy level spacing, and the spin-driven physics becomes masked. We are thus

led to introduce an enhancement factor that multiplies the real SOC parameter, in order

158



to increase at will the coupling strength. Considering only the MT model, we obtain
localized states for the highest and lowest energy states, in agreement with the Anderson
Model. However, we are not able to clearly identify well-defined mobility edges in the
spectra, an observation already reported in Ref. [89]. We find that the DOS has a peak at
zero energy (the isolated impurity level), and that it decreases towards the band extremes.
Upon the inclusion of the SOC, we repeat this study by controlling its strength through
the enhancement parameter. While the DOS is not apparently affected by the SOC, the
IPR evidences some variations for certain energy regions. The effect of the SOC on the
central part of the spectra, which contains the most extended states, is to reinforce the
degree of delocalization. This effect gets more pronounced as the density is increased.
On the other hand, the states with highest energy, with a strong localization feature,
are scarcely modified due to the presence of SOC. This is not the case for the lower
energy region. Here we note that the SOC also tends to delocalize states, even though its
influence is diminished as we approach the band extreme. This permits us to claim that
the SOC likely “pushes” the lower mobility edge to a lower energy value. The general
behaviour we observe is the tendency to delocalize states caused by the SOC. We also
focus our attention on the state at the Fermi level. Since the states in its vicinity undergo
spin relaxation, the determination and characterization of it is of particular interest for
our study about spin dynamics in the impurity band. The work and the original results

that have just been discussed can be found in Ref. [5].

Still within a tight-binding approximation, we tackle the problem of electron spin re-
laxation for doping densities close to the metal-insulator transition. We incorporate in
our description a SOC term associated to the bulk-inversion asymmetry (named BIA
or Dresselhaus-like) of the zincblende structure we consider. We also keep the extrinsic
term, but in this case we take an alternative path. Since the ISA formalism and an effec-
tive theory of spin-orbit interaction driven by the electrostatic potential of impurities are
equivalent, we include here the extrinsic SOC term and work in the basis of hydrogenlike
impurity states, that is to say, in the MT basis. The Hamiltonian operator describing
an electron in the impurity band thus contains four terms altogether: the spin conserv-
ing part includes the ever present kinetic energy term plus the Coulomb potential of the
impurities, while the terms leading to spin-flip scattering are the Dresselhaus interaction

along with the extrinsic coupling. In order to study the spin dynamics, we develop a
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scheme of spin diffusion on the Bloch sphere. Two different time scales emerge thereof.
One of them is related to the SOC, and consequently to the spin-relaxation time. The
other time arises when the electron hop between two sites, no matter whether it entails
a spin-flip or not, is considered. This diffusive process is therefore governed by the MT
term, and its characteristic magnitude is much shorter than the spin decay time. We
complement the analytical approach with a numerical estimation of the spin-relaxation
time, which consists of tracking the spin evolution of an initial spin-polarized state under
the influence of the full Hamiltonian. We then extract from its decay the spin-relaxation
value. The size of the systems we are able to treat forces us, as before, to consider an
enhancement parameter for the SOC. We next devise a double-step scaling procedure. We
first calculate the spin-relaxation time (obtained as an average value over many disorder
configurations) for a fixed enhancement factor and several system sizes, and extrapolate
it to the infinite-size limit. Then, in a second extrapolation stage, the enhancement factor

is varied approaching unity, aiming at the spin-relaxation time without enhancement.

We are able to confirm the result given in Ref. [6] concerning the too long spin-relaxation
times yielded by the extrinsic SOC, justifying why we only keep the Dresselhaus term in
the rest of our work. This last term involves two-center integrals, for which we are able to
find a closed expression. We then carry on the analytical derivation and finally achieve a
formula for the spin-relaxation time in terms of the doping density, the renormalized Bohr
radius of the donor state, the MT energy scale, and the Dresselhaus coupling parameter.
It is worth pointing out that our result is free of adjustable parameters. We find that
the prediction it provides is in remarkably good agreement with the experimental values,
and the density dependence approaches the experimental values. Nevertheless, the rather
scattered experimental results do not allow us to reach a firm conclusion on this point. Not
only have we got an accurate analytical result, but also the numerical procedure’s results
fit very well with the measured values of Ref. [2]. Also the behaviour of the extracted spin-
relaxation times approach and follow the aforementioned analytical results. We can so
identify the Dresselhaus SOC as the dominant interaction in the spin-relaxation problem
in the impurity band. This original and relevant result has been published in Ref. [7].
We also claim that our theory is applicable to all zincblende semiconductors, except the
very narrow-gap ones. This statement is supported by the observation that our theory

yields for another recently studied material, CdTe, spin-relaxation times very close to the
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measured ones.

Nevertheless, more accurate experimental values would permit us to test the validity of
our model, as well as the wide applicability we assign to it. In narrow-gap semiconductors,
like InAs and InSb, the particularly large Bohr radii would lead to very long Dresselhaus
relaxation times. In this cases, the competition between the extrinsic and the BIA terms

brings up an interesting question.

Our description of the impurity band may be improved by considering the spatial
overlap between the localized site states. This renders the original basis non-orthogonal,
which would ultimately results in a time-independent Schrédinger equation in the form
of a generalized eigenvalue problem. This issue has already been studied in Ref. [89].
According to it, to a first approximation the DOS with overlap are like mirror images of the
densities obtained without overlap, the point of reflection being at £ = O. In their study
of the IPR, they do not observe any sensitive variation of the critical concentration due to
overlap effects. We do not expect any modification in the IPR landscape including SOC,
either, since its effect is of lower order than the MT-driven physics. In this sense, we do not
believe the spin-relaxation values should change appreciably. A much harder task would
be to include the electron-electron correlations. It is known that this interaction leads to
a metal-insulator transition, known as the Mott-transition, in contrast to the disorder-
driven Anderson transition, and occurs even in perfectly ordered systems. Nevertheless,
it has been shown that the interaction effects are much more important on the insulating
side of the transition than on the metallic side [120]. In Ref. [93] the metal-insulator
transition is studied considering both the disorder (only off-diagonal) and the electron-
electron interaction (in terms of a Hubbard U model with on-site repulsion). It is shown
that the one-particle DOS in the impurity band is well defined and does not exhibit any
gap on the metallic side of the transition, where the one-particle states at the Fermi energy
are extended. They also claim that for uncompensated samples, as is the case of this thesis,
the electron-electron interaction and disorder play an almost equally important role in
the determination of the critical concentration, while for compensated semiconductors
the disorder was the mechanism dominating the phenomenon of the MIT. However, by
1990, Mott concludes that the disorder is more important than the on-site Coulomb
repulsion in the MIT even for uncompensated samples, in which only off-diagonal disorder

is present [121, 122]. Therefore, the one-particle approach seems to be properly justified
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for the density range we consider in this thesis. Nevertheless, none of the works cited

above treat the spin-orbit coupling in the impurity band description.

In our numerical study about spin-relaxation, we consider an enhancement factor 7 that
allows us to make the SOC observable. This aspect of the calculation could be improved
by increasing the size of the system (thereby making the MT level spacings smaller),
and diminishing the value of 1 accordingly. Anyhow, we do not expect any considerable
change in the extracted spin-relaxation times, as the values of the spin-relaxation times

corresponding to smaller n’s should fit the curve of the enhancement scaling.

The second part of this thesis deals with zero-dimensional systems. Here we consider
a nanowire, within which the quantum dot is hosted. The nanowire material is InAs,
that, similar to other materials, presents the wurtzite-type lattice structure when grown
one dimensionally, whereas it is a zincblende material in its bulk phase. By taking this
particular feature into account, we consider the corresponding effective spin-orbit coupling
terms for the conduction band of a bulk wurtzite material. We then derive an analytical
solution to the problem of a confined electron in a quantum dot in the presence of both
Zeeman and spin-orbit interactions. The SOC that we consider is associated to the bulk
inversion asymmetry of the crystal (Dresselhaus) and contains two different contributions
for the three-dimensional system. On the one hand, a linear-in-k term, with the same
mathematical form as the Rashba coupling. In addition to this, there is a cubic-in-k term,
whose expression is different from the Dresselhaus SOC derived for zincblende materials.
We first consider the quasi-two-dimensional system. Analogously to the Rashba problem,
two energy branches are obtained. We examine the effect of the linear and the cubic SOC
terms separately, and the existence of a crossing point in the energy spectrum due to the

inclusion of the cubic term is shown.

A solution for the quantum dot can be built from these two branches in the following
way. The two branches provide two independent degenerate solutions that can be com-
bined in order to form a new spinor, which must satisfy the boundary conditions of the
cylindrical quantum dot problem, with lateral hard-wall confinement. This last condition
leads to an equation, whose solutions are the allowed discretized energies of the system.
By solving this root-finding problem, which requires a numerical solution, we obtain the
eigenenergies of the quantum dot. The results we present exhibit the effect of the lin-

ear and the cubic SOC term. By calculating the allowed energies as a function of the
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spin-orbit coupling strength, we find that the inclusion of the cubic term is of utmost
importance and leads us to a range of coupling strength values that had not been reached

in other works.

We next calculate the effective g-factor that is an accessible quantity from the exper-
imental point of view. We obtain negative values for the g-factor in the range of dot
sizes and for the coupling parameters that we consider, in agreement with the results of
Ref. [115]. Interestingly, we find that our results fit very well with the inverse effective
dimensionless linear in-plane spin-orbit coupling o/~ (see Eq. (5.19)), and which allows
to establish a relation between the g-factor and the dot sizes. Unfortunately, we cannot
directly compare our results for the g-factor with the experimental values reported in

Ref. [9], since in the experiment the magnetic field is aligned perpendicularly to the wire.

The exact calculation of the eigenstates allows us to display the spin texture across the
dot for two states with different energies. After that, we compute the spin-relaxation rate
due to phonons. For this, we analyze the phonon-induced rates as a function of magnetic
field for the lowest energy Zeeman sublevel. Consistently with our description of the
system, we consider the acoustic electron-phonon potentials for the wurtzite structure,
which present various terms, namely the longitudinal deformation, the longitudinal piezo-
electric, and transverse piezoelectric terms. By using the Fermi’s Golden Rule, we obtain
a good agreement between our results for the spin-relaxation rate due to the deforma-
tion potential and the values reported in Ref. [25], where the singlet-triplet relaxation is
studied, including only the deformation potential. The justification for this, given in the
same Ref. [25], is that for small nanostructures, the deformation potential is the leading
mechanism. The competition between the deformation and the piezoelectric mechanisms
in relaxation rates is studied as a function of the radius of a semiconductor nanocrystal in
Ref. [28]. According to their results, the deformation potential dominates for small sample
sizes, while for the larger ones, the piezoelectric potential prevails. Our result indicates
that the transverse piezoelectric phonon potential gives the largest spin-relaxation rate
for the dot sizes that we consider, and within the range of magnetic field strength values

that our theory allows us to study. A preprint of this work can be found in Ref. [15].

As we have pointed out, we have included in our model the effect of an external mag-
netic field only through the Zeeman interaction, and discarded the orbital effect of the

magnetic field. In Ref. [13], where only the Rashba coupling is taken into account, such
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a limitation is worked out by exchanging the Bessel functions by some other functions
(confluent hypergeometric series), which renders the whole formulation more difficult in
mathematical terms. However, since the analytical solution hinges upon the cylindrical
symmetry of the dot, our problem including the cubic-in-k SOC term, which preserves
this symmetry, would allow likewise an analytical solution if the full effect of magnetic
field were treated. Nevertheless, we believe that our results should be useful in view of
the rather weak magnetic fields considered in several related works (c.f. [123, 45]).

For the coupling strength parameters, we have relied on the theoretical estimations per-
formed in Ref. [14], where the parameters of the electronic band structure are predicted
for many ITI-V semiconductors in the wurtzite phase. An experimental measurement of
the parameters characterising the conduction band is desirable, since it would allow us to
test our results. The spin-relaxation rate due to phonons also involves an approximation
for the bulk phonon constants of a wurtzite material. We resort to a widely accepted
relation in which the various phonon potential couplings are related to a single value
corresponding to the bulk phonon constant hy4 of a zincblende structure. A precise deter-
mination of the validity of this relation, or alternatively, the measurements of the WZ bulk
phonon constants, would help us to clarify the dominance of the transverse piezoelectric
mechanism over the other ones in the phonon-induced spin-relaxation problem.

Finally, we mention and emphasize that we study the relaxation due to bulk phonons.
However, in small nanostructures, not only the electronic levels but also the vibrational
modes become discrete due to the confinement. A multi-peak structure of the singlet-
triplet relaxation rate as a function of magnetic field has been theoretically calculated
in an InAs-based quantum dot (see Ref. [25]). The electron spin relaxation induced by
confined phonons has already been studied in Ref. [26], but only for the deformation
phonon potential and the Rashba spin-orbit coupling. Further research is thus needed in
this sense.

We would like to cite the work in Ref. [45] as a strong motivation for continuing the
study on InAs-based quantum dots. In that reference, a spin-orbit qubit in an InAs
semiconductor nanowire is implemented, and the so-called electric-dipole spin-resonance
(EDSR) is invoked to account for the resonant transitions between spin-orbit states. It
would thus be interesting to incorporate our study about spin-orbit coupling effects to

the EDSR mechanism.
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Appendix A

Extrinsic spin-flip hopping matrix

element

In this appendix we derive the spin-flip hopping element of the extrinsic SOC between
two hydrogenic-like states, centered at different sites m and m’. We assume that the spin

at site m is o, while the spin at site m’ is —o = 7. We start from eq. (4.9):

- o (01— 2 — i g, 2
(M'G|He|mo) = A <<m | a9 k. o ky|lm) —io(m/| e k. P kIm>> : (A1)
Recalling that in the EFA formalism the wave vector K is an operator such that k; = f%,
we proceed as follows
(rtalma) = x| [ dra o) (Gob - 5ok, ) ontr)
—w/dr¢m, <8 >¢m( )}
Vv 0 8\/ 0]
= A { (88 0z 6y> 9m(r)
N ovo 0V o

_a/dr¢m,(r) (8:10 % " 5 8:10) Gm(r )} . (A.2)

Integration by parts on the variable corresponding to the partial derivative of V(r) yields

olHlma) =5 { =i |~ [av g (.52 )+ [avers (e.52)]

— [/drV(r)ai <¢:n,a(,j:j") +/drV(r)% (gz);,,a;z”)} } (A.3)
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The terms with second order derivatives cancel out and the remaining terms read

,f LT 061, 06w 085 o
(M'G|Hext|mo) = A {z/drV(r)( 9y 0- 9 8y>

00y 0w 007, Odn,
a/drV(r)( dr 0z 9z Ox )]

+

(A.4)

Oy

Jr y 0z ox

The hydrogenic character of ¢,,(r) leads to the following relation

00 _ (2= X
Oz a |r—Ry,|

v [ (o2 ) O (00, 00

A*
: Gou (0 0N, O (O
oA /drV(r) [82: (6m+way) or R (8x+

1-02
dy

5]
)]

(A.5)

and analogously for the partial derivatives with respect to y and z. The letter a denotes

the effective Bohr radius. The next step is to replace the equality in eq. (A.5) in order to

obtain

(ol Hoalino) = T [ arvie) Lo (oo~ ) iy — i)

Ir —R,/||r — R,
—(z = zw)[(x — X)) +io(y — Vi)l }
- 2y rV(r ¢m’(r)¢m(r)
= /d VO TR e - Ryl
[(z - Zm)(rﬂ - Rm’a) - (Z - Zm/)(ro - ng)}.,

The eq. (A.6) is exactly the expression of eq. (4.10), if the relations r, = = + ioy and

R,.. = X,, +icY,, are used.
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Appendix B

The Impurity Spin Admixture wave

function

In this appendix the derivation of the impurity spin admixture wave function is worked
out. Owing to the SOC in the conduction band states (cbs), the spin polarized unper-
turbed function ¢(7)[uz_, ,J(7) acquires a supplementary contribution that accounts for
the spin mixing. Since the SOC modifies the cbs, we expect the impurity state of shallow
donors, which are built out of cbs, to change accordingly. Starting from these modified
cbs, we will now derive the impurity spin admixture wave function, firstly proposed in
Ref. [6].

Using spinor language, a general impurity state located at the origin can be expressed

as

= D> ARy Tt g |(7) (B.1)

where the index j runs over all the units cells of the crystal, ¢(F) = (-%5)/%e~"/, and k
belongs to the first Brillouin zone. The SOC does not affect the envelope wave function
considerably [6], and we assume that only the spinor [ug |(7) is modified. It is thus no
longer an eigenstate of S, because the SOC leads to spin-mixed cbs at finite wave vectors.
Within the k - p approximation, the spinor [ug |(7) can be written in bra-ket notation

as [99, 6]
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o) = |uf_o) + k- [ufy) (B.2)

which in spite of not being an eigenstate of the spin, it can still be identified with a o
label if the spin mixing is weak. Whereas the state [uf_ ) is s-like since it represents the

periodic wave function at the I' point, the expression for |u‘<’1>> is

\uE’l)> = (|Ro) + @S x |Ro) ) (B.3)
and involves the p-like valence-band states R = (X,Y,Z). The angular momentum

operator is denoted by S. The constants oy = ih[(3E, + 2A)/6m*E,(E, + A)]' /2 and
as = 2A/ik(2A + E;) determine the degree of spin mixing. The energy E, is the band
gap, A is the spin-orbit splitting of the valence band, and m* is the conduction-band

effective mass. By replacing (B.3) in (B.1), we obtain

W) = DO B (7 ) + k- fufy)

7 K
(B.4)

We see that while the first term gives ¢(7")[uz_, ,|(7), the second term needs to be treated

in more detail. The calculation follows as

1 = _i(R.—7)-k 3 —i -
S ORI o) () e E = g ) N2 AR)-5VE D e H
J

E
(B.5)

We next convert the sum into an integral over the different site positions, and use the

fact that > e~ iR(Bi=r) — (R, —7)

S A fa) () ¢ TR 2 ) 09(-) [ dRG(R) ga(F - 7

J
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Integration by parts yields

S ORIk faog)(7) ¢ )7 (1) [ dts(i - v ot

Il

1 .
S07) ()Y g ()]

) () <—|"|> o(F) (B.7)

Il

where in the last step the hydrogenic character of the wave function ¢(7') has been used.

The full expression for the impurity state located at the origin is

r

r]

182307 = 609 (10207 + 25 ) ) (B5)

can be generalized for an impurity placed at position 7, to

1T —Tr,

alr —ry,l

U~ Fon) = 67— Ton) (|ug_0><f> n |uga>><m) (B.9)

which is the expression for the impurity spin admixture state presented in eq. (8) of
Ref. [6]. We recall that the spin mixing enters through |uf}))(r). Since this is a linear

combination of spin up and spin down states, it is not an eigenstate of S,.
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Appendix C

Impurity Spin admixture matrix element

We derive here the matrix elements between two ISA states, which have been obtained in
the previous appendix.
The full Hamiltonian contains the kinetic energy and the sum of the (screened) Coulomb

potential of the impurities. It reads

H=2_4Y"y, (C.1)

where the electrostatic energy is given by

62

v, = (C2)

-7
with 7, the position of a the impurity p that gives rise to the electrostatic field; € is the
dielectric constant, and e the electron charge.

The matrix elements (n|H|m) can be split into

(ol ) = (0l 4 Vit 32 Vylm) = e nlm) + 3 (ol ) (©3)

p#m pF#EmM

where we have assumed that (% + Vi)|m) = €m).
In the Matsubara-Toyozawa (MT) model the first term in eq. (C.3) is ignored by taking
the ground state of an isolated impurity as the zero of energy. On the other hand, in

the sum in eq. (C.3), only the integrals involving two centers are kept. This means that
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> pzm (PVplm) = (n|V,|m). In the MT model, the impurity sites are pure hydrogenic-like
wave function centered at the impurity. If we take the impurity n to be at the origin, its

wave function reads ¢(7) = (=35)!/?e™"/*, leading to

2 RTL77L
(n|V,|m) = —:—a (1 + ) o Bnm/a (C4)

a

where R,,, is the distance between the impurity n and m.

Nevertheless, the Impurity Spin Admixture theory goes beyond the MT model and the
impurity states are modified according to
i r—r

O = Tm) |t _o) () = &7 = Tm) (|ugo>(f*) L . |u§a)>(ﬂ) (C5)

alr—r

where the perdiodic contribution of the Bloch functions of the conduction-band states at
k = 0 on the left side has been included. The previous result of eq. (C.4) for the matrix
element within the MT model is recovered by separating the integral between an integral
over the unit cell where the integration of the rapidly oscillating wave function |uf_ )(7)

is performed, and then an integral over the smooth varying functions ¢(7).

We now consider the matrix elements between the ISA states (eq. (C.5)) and perform

the integrals in two steps as before.

The terms involving the periodic wave function [uf_ )(r) at k = 0 yield the Matsubara-

Toyozawa term:

The 04, accounts for the fact that no spin-flip occurs.

r—rm
[r—ry]

The crossed term involving the product (uf_ |

. |u‘(’1>> can be safely discarded
if one invokes the orthogonality of |S) with |X),|Y), and |Z), and under the assumption

that % can be taken constant when integrating over the unit cell.

We thus concentrate in the spin-flip matrix elements due to the electrostatic potential

at site
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vy = - [ L) e - R g e

o = ——= 7”#7 7)p(r — — I3 :
€a2 |7’ ‘ | _‘l (1) |T R | (1)

We resort to our previous argument and consider that the functions ¢, = R R and % do

not change considerably throughout the unit cell. We also assume that the impurities are
always at the same position in a unit cell. The integral is performed in two steps: we first
integrate over the unit cell and then over the smooth varying functions across the crystal

volume. The integral on the small scale with the origin of coordinates at position ﬁj reads

We need to examine the integral of the different components of the function [uz’ll)] For

this, we switch to bra-ket notation, so that the spin-mixing term [uf))]a(r) is

o axh R
lufy) = ai |XU>+%S(O’) (1]1Z7) — |Yo))| +

of |Ya>f“ih<\Zo>fs< ) Xo))| +

oz |ZJ> + @ (IY7) —is(o )|XE>)- (C.9)

where «; and s have been introduced in the previous appendix. The function s(o)

indicates the eigenvalue of the spin operator

s(o) =olo)

such that
s(t)=1and s(}) = —1
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We do not carry out the detailed calculation of the integrals here. The result for them

can be summarized as

LN = ) = ) = a1+ 2
Yooy = 0(1 o' (1) Yo (1) - I¥ 2 oo’

< (()‘Z()l qu,—y/zl)> = < (y) |uo"(l)> - _7;|a1|2a33(0')(5001
(u f(f?l Iurf’(l)> = —(u, (Z) |uo’(l)> | |*a3s(0) 0o
(i gty = —(uf (Z) ) = —ilas Pass(0)d,m (C.10)

After inserting these last expressions in eq. (C.8), we are left with the remaining part
of the integral of eq. (C.7), i.e. over the smooth variables. This means that we have to do
the integral over the sites R; introduced in eq. (C.8). For the specific case of ¢ =1 and
o’ =/, it finally reads

e~ (P=Rn|+|7=Fml|)/a
Ry || = Rl |7 = Ry|
|z = Z2) (7= R)- = (2 = Zo)(7 = Ra)-| (C.11)

Wt imd) = ¢ [ & =

where the subscript next to the brackets must be understood as Ry = X + ¢V and
C = Vylai|?az/ma*. The newly defined constant az regroups the spin split-off energy and

the band-gap:
3A(A 4 2E,)

g =
°7 (2A + 3E,)?

By comparing the integrals in eq. (A.6) and eq. (C.11), we note the equivalence of both

calculations. As mentioned before (or in Ref. [6]), it can be shown that the integral in

eq. (C.11) vanishes when the impurity n = p. The lowest contribution then involves

three-center integrals which must be numerically evaluated as no analytical formula is

available.
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i I Guido A. Intronati

- RELAXATION DE SPIN DANS LES SEMI-CONDUCTEURS
DOPES ET DANS LES NANOSTRUCTURES A BASE DE SEMI-
CONDUCTEURS
Résumé

Dans cette thése nous considérons un semi-conducteur de GaAs dopé, ou nous étudions la
relaxation du spin du coté métallique de la transition metal-isolant. Nous considérons deux types
différents d'interaction de spin-orbite. Le premier d'entre eux est associé aux impuretés et l'autre est
de type Dresselhaus. La dynamique du spin est traitée a travers une formulation analytique basée
sur la diffusion du spin de I'électron, et un calcul numérique de la durée de vie du spin.

Ensuite, nous considérons une boite quantique hébergée dans un nanofil de matériau InAs (avec
une structure cristalline de type wurtzite), afin d'étudier l'effet de I'interaction spin-orbite sur les états
propres du systéme. Nous développons ici une solution analytique pour la boite quantique en
incluant l'interaction spin-orbite (de type Dresselhaus propre a la structure wurtzite). Nous avons
calculé le facteur g effectif, ainsi que la relaxation du spin die aux phonons acoustiques, en utilisant
les potentiels d'interaction electron-phonon propres a la structure wurtzite.

Mots-clés: interaction spin-orbite, relaxation du spin, semi-conducteur dopé€, nanostructure, boite
quantique, phonon

Abstract

In the first part of this thesis we consider a doped GaAs semiconductor and study the spin relaxation
on the metallic side of the metal-insulator transition. We take into account two different types of spin-
orbit coupling, the first of them being associated to the presence of extrinsic impurities, while the
other one is the Dresselhaus coupling. To tackle the spin dynamics problem, we develop an
analytical formulation based on the spin diffusion of an electron in the metallic regime of conduction
of the impurity band. The full derivation provides us with an expression for the spin-relaxation time,
which is free of adjustable parameters. We complement this approach and back our analytical
results with the numerical calculation of the spin lifetime.

In the second part of the thesis we consider a quantum dot hosted in an InAs nanowire (with a
wurtzite crystalline structure) and study the effect of spin-orbit coupling on the eigenstates of the
zero-dimensional system. We develop here an exact analytical solution for the quantum dot, taking
into account the proper effective spin-orbit coupling for this type of material. We focus on the
Dresselhaus coupling, which presents a cubic-in-k term, along with a linear term, characteristic of
wurtzite materials. A Zeeman interaction from an external magnetic field is included as well and we
compute the effective g-factor as a function of the dot size. Finally, we calculate the spin-relaxation
due to acoustic phonons, taking into account the phonon potentials corresponding to the wurtzite
structure.

Keywords: spin-orbit, spin-relaxation, doped semiconductors, nanostructures, quantum dots,
phonons




