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ABSTRACT 

 

Translation is a cyclic process, consisting of four stages: initiation, elongation, termination 

and recycling. Recycling is important, as it ensures that ribosomal subunits become available 

for new rounds of translation. It is tightly coupled to termination: in eukaryotes termination 

factors eRF1 and eRF3 together with ATPase Rli1 induce peptide release and subsequent 

ribosome dissociation.If during translation elongation a ribosome stalls it will be unable to 

terminate and cannot be recycled via the canonical pathway.  

The highly conserved factors Dom34 and Hbs1 form a complex structurally similar to the 

eRF1-eRF3 complex that, together with Rli1, dissociates eukaryotic ribosomes stalled on a 

messenger RNA (mRNA) as well as vacant ribosomes in vitro. Dom34 and Hbs1 are also 

known to function in RNA quality control pathways that target mRNAs (No-go decay or 

NGD) and ribosomal RNAs (Non-functional 18S rRNA decay or 18S NRD) that cause 

inefficient translation. NGD and 18S NRD share several characteristics, including the 

mechanism that triggers these pathways (ribosomal stalling) and the involvement of Dom34 

and Hbs1. It has therefore been proposed that they may reflect one single pathway, in which 

ribosomal stalling induces ribosome dissociation and degradation of mRNA and rRNA. 

In the first part of my PhD work I tried to obtain more insight into the functional requirements 

of Dom34 and Hbs1 for RNA quality control. In addition I studied how NGD and 18S NRD 

relate and what other factors play a role in these pathways. I performed, together with our 

collaborators, a structure-function analysis of the Dom34-Hbs1 complex in the yeast 

Saccharomyces cerevisiae. I found that the GTPase activity of Hbs1 is required for both NGD 

and 18S NRD. However, disruption of Dom34-Hbs1 interaction affected the complex�s 

function in NGD but not in 18S NRD, showing that the role of Dom34-Hbs1 in the two 

pathways can be genetically separated. My results could suggest that mRNA and rRNA in a 

stalled translational complex may not always be simultaneously degraded upon ribosomal 

stalling. To further examine whether mRNAs that cause NGD may induce degradation of 

ribosomal RNA or protein, NGD substrates were translated in vitro in S. cerevisiae extract. 

No indications of ribosomal RNA or protein degradation were found. To identify factors other 

than Dom34 and Hbs1 that are involved in NGD and 18S NRD, I developed methods to 

specifically purify stalled ribosomes No new interacting partners could be identified.    

The second part of my PhD work focused on identifying roles of Dom34-Hbs1 mediated 

ribosome dissociation beyond RNA quality control. This resulted in finding a role of Dom34-
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Hbs1 and Rli1 dissociating inactive ribosomes that accumulate, due to a global inhibition of 

translation, during glucose starvation stress in S. cerevisiae. By making the ribosomal 

subunits of these inactive ribosomes available for initiation, the Dom34-Hbs1 complex 

stimulates restart of translation upon stress relief. Finally a combination of in vitro and in vivo 

data indicated that the role of Dom34-Hbs1 to make subunits available from inactive 

ribosomes is also required in non-stressed cells to allow optimal translation. These findings 

indicate that, upon ribosome recycling after translation termination, ribosomal subunits do not 

always immediately engage in a new round of translation. Instead they can form inactive 

ribosomes, that need to be dissociated by the Dom34-Hbs1 complex and Rli1 for their 

subunits to become available for translation. This could provide a new level of regulation of 

eukaryotic translation initiation. 
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RÉSUMÉ 

 

L'expression des gènes eucaryotes est un processus complexe se déroulant en plusieurs étapes. 

Un transcrit primaire, produit dans le noyau par la transcription de l'ADN, est transformé en 

un ARN messager (ARNm) mature par une succession de modifications. Il s'agit notamment 

de l'ajout d'une structure de coiffe en 5�, de l'épissage et de l'ajout d'une queue polyadénine 

(poly (A)) en 3�. Après export dans le cytoplasme, l'ARNm est généralement traduit en une 

protéine, avant d�être dégradé. La plupart de ces étapes sont soumises à des régulations, selon 

le type de cellule, le stade de développement et les conditions environnementales. Dans le 

cytoplasme, l'expression de la protéine est affectée par régulation de la traduction ainsi que 

par la dégradation de l'ARNm. 

La dégradation de l'ARNm sert au moins deux fonctions. Tout d'abord, le métabolisme des 

ARNm «normaux» permet une régulation quantitative et contribue à la régulation de 

l'expression des gènes au niveau post-transcriptionnel. Deuxièmement, les voies de contrôle 

qualité des ARN détectent et éliminent les ARNm défectueux, ce qui empêche la production 

de protéines aberrantes et potentiellement dangereuses. 

La traduction est effectuée par les ribosomes: de grands complexes composés d�ARN et de 

protéines assemblées sous la forme de deux sous-unités. La traduction est un processus 

cyclique qui se divise en quatre étapes. Dans la phase d'initiation, les ribosomes et d'autres 

facteurs nécessaires pour la traduction s�assemblent sur l�ARNm et se localisent sur le site 

d'initiation de la traduction (codon d'initiation). La régulation de la traduction se produit 

surtout au niveau de cette étape. Au cours de l'élongation, le ribosome produit une protéine en 

liant des acides aminés sous la forme d�un polypeptide. La séquence d'acides aminés est 

codée par la séquence des triplets de nucléotides (codons) présent dans l'ARNm. Les étapes 

de terminaison et le recyclage sont couplés étroitement. Quand le ribosome rencontre un 

codon stop, les facteurs de terminaison eRF1 et eRF3 sont recrutés. En collaboration avec 

l'ATPase Rli1, ils induisent la libération de la protéine alors complète et la dissociation 

subséquente du complexe traductionnel. Les sous-unités ribosomiques ainsi libérées 

deviennent disponibles pour des nouveaux cycles de traduction. 

Si lors de la traduction, le ribosome pause à cause d�une structure secondaire, une séquence 

particulière, ou un défaut de l�ARNm, il ne pourra pas terminer la traduction et être recyclé 

par la voie classique. Un mécanisme de recyclage alternatif a évolué pour dissocier de tels 

complexes arrêtés. Les facteurs Dom34 et Hbs1, conservés chez les eucaryotes et, au moins 
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pour Dom34, chez les archées, forment un complexe structurellement similaire au complexe 

formé par les facteurs de terminaison eRF1 et eRF3. Des expériences biochimiques ont 

montré que Dom34 et Hbs1 s�insèrent dans le site A du ribosome (le même site auquel eRF1 

et eRF3 se lient) et dissocient des ribosomes qui sont bloqués sur un ARNm, quel que soit le 

codon sur lequel le ribosome se trouve. En outre, Dom34 et Hbs1 dissocient des ribosomes 

qui ne sont pas liés à un ARNm. En dehors de la dissociation des ribosomes « pausés », 

Dom34 et Hbs1 sont impliqués dans des voies de contrôle qualité des ARN qui ciblent des 

ARNm et/ou des ARN ribosomiques (ARNr) engagés dans un complexe de traduction 

inefficace. Dans le No-go decay (NGD), un ARNm qui cause une pause traductionnelle lors 

de l'élongation est ciblé vers la dégradation. Ce processus est initié par un clivage 

endonucléolytique près du site de pause. L'accumulation des produits de clivage, visibles 

quand ils sont stabilisés artificiellement, dépend de Dom34 et Hbs1. Le Non-Functional 18S 

rRNA decay (18S NRD) cible les ARNr 18S fonctionnellement défectueux. Les ARNr 18S 

sont les ARNr qui composent une grande partie de la petite sous-unité ribosomique.  Lorsque 

de tels ARNs défectueux sont présents dans des ribosomes conduisant à une traduction  

inefficace, ils sont éliminés et leurs dégradations dépendent de Dom34 et Hbs1. Le NGD et le 

18S NRD partagent plusieurs caractéristiques, y compris le mécanisme qui initie ces 

processus (traduction inefficace), la participation des facteurs Dom34 et Hbs1 et leur 

localisation. Il a donc été proposé qu'ils pourraient représenter une voie unique, au cours de 

laquelle une pause traductionnelle induit la dissociation du ribosome, et la dégradation de 

l'ARNm et de l�ARNr. 

Dans la première partie de mon travail de thèse, j'ai essayé de définir les caractéristiques 

fonctionnelles de Dom34 et Hbs1 requises pour le contrôle qualité des ARN. De plus, j'ai 

étudié la relation entre le NGD et le 18S NRD et j�ai essayé d�identifier des nouveaux facteurs 

qui jouent un rôle dans ces deux voies. J'ai réalisé, en collaboration avec une équipe de 

biologie structurale, une analyse structure-fonction du complexe Dom34-Hbs1 de la levure 

Saccharomyces cerevisiae. Basé sur un modèle structural obtenu par nos collaborateurs, j'ai 

construit des mutants qui bloquent liaison du GTP sur la GTPase Hbs1 ainsi que des mutants 

qui perturbent l�interaction entre Dom34 et Hbs1. En étudiant l'effet de ces mutations sur le 

NGD et le 18S NRD, j'ai observé que l'activité GTPase de Hbs1 est nécessaire pour le NGD et 

le 18S NRD. Cependant, la perturbation de l�interaction entre Dom34 et Hbs1 empêche la 

fonction du complexe dans le NGD mais pas dans le 18S NRD, montrant que les roles de 

Dom34-Hbs1 dans ces voies peuvent être séparés génétiquement. Mes résultats pourraient 

suggerer que l�ARNm et l�ARNr dans un complexe de traduction « pausé » ne sont pas 
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toujours dégradés simultanément. Afin de savoir si, lors du NGD,  il y a dégradation de 

l'ARNr ou des protéines ribosomiques, des substrats ARNm qui causent le NGD ont été 

traduits dans un extrait cellulaire de S. cerevisiae. Aucune indication de dégradation des 

ARNr ou des protéines ribosomiques n�a été obtenue. 

Pour identifier les facteurs autres que Dom34 et Hbs1 qui sont impliqués dans le NGD et le 

18S NRD, j'ai essayé de purifier des ribosomes « pausés » pendant la traduction et les 

partenaires associés. J�ai mis au point une méthode pour la purification spécifique de 

ribosomes contenant un ARNr 18S défectueux. Cependant, aucun nouveau facteur associé à 

ces complexes n�a été identifié. 

La deuxième partie de mon travail de thèse s�est concentrée sur le rôle de Dom34-Hbs1 dans 

la dissociation des ribosomes en dehors du contrôle de qualité des ARN. Ces expériences 

m�ont permis de mettre en évidence un role de Dom34 et Hbs1 dans la sortie de stress.  

Beaucoup de conditions de stress provoquent un arrêt global de la traduction. Cela permet aux 

cellules d'utiliser économiquement des ressources limitées pour la production de protéines 

nécessaires pour s�adapter à l'état de stress. Lorsque le stress est terminé, la traduction 

redémarre rapidement. Ceci est possible car pendant le stress, les ribosomes inactifs sont 

stockés et peuvent être remobilisé rapidement. Au cours du stress resultant de la déplétion de 

glucose chez la levure, les ribosomes inactifs contiennent la protéine Stm1 dans une 

conformation qui maintient les deux sous-unités ribosomiques associées et empêche le 

recrutement d�un ARNm. Le redémarrage rapide de la traduction après l�arrêt du stress exige 

la dissociation des ribosomes inactifs pour rendre leurs sous-unités disponibles pour de 

nouveaux cycles d'initiation de la traduction. 

Je me suis demandé si Dom34 et Hbs1 pouvaient être responsables de la dissociation des 

ribosomes inactifs, stimulant ainsi le redémarrage de la traduction. A cette fin, j'ai analysé le 

rôle du complexe Dom34-Hbs1 dans le redémarrage de la traduction après déplétion de 

glucose chez S. cerevisiae. J�ai observé qu�en absence de Dom34 ou Hbs1, la reprise de la 

traduction après réadition de glucose est beaucoup plus lente que dans les cellules sauvages. 

Mes résultats montrent aussi que les ribosomes inactifs qui s�accumulent pendant la déplétion 

de glucose sont des substrats de protéines Dom34, Hbs1 et Rli1 recombinantes in vitro. De 

plus, l�affaiblissement de l'interaction entre les sous-unités ribosomiques par la suppression de 

Stm1 réduit le besoin de Dom34 pour la reprise de la traduction. Cela confirme que la 

stimulation par Dom34-Hbs1 de la reprise de la traduction dépend de leur activité de 

dissociation de ribosomes inactifs. Alors que Dom34 et Hbs1, ainsi que l'activité GTPase de 

Hbs1, sont nécessaires pour le redémarrage efficace de la traduction, l'interaction entre 
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Dom34 et Hbs1 ne l�est pas. Ces exigences sont similaires à celles requises pour le 18S NRD. 

Finalement, j'ai trouvé que le rôle du complexe Dom34-Hbs1 dans la dissociation des 

ribosomes inactifs et la stimulation de la traduction ne se limite pas aux conditions de stress. 

En effet, dans les cellules en croissance, des ribosomes inactifs sont produits, quoiqu�à un 

niveau moindre que lors d'un stress. J'ai constaté que, en absence de Dom34, ces ribosomes 

inactifs s'accumulent dans les cellules en croissance. Aussi, le complexe Dom34-Hbs1 est 

capable de stimuler la traduction effectuée par des ribosomes qui n'ont pas été exposés au 

stress Ces résultats suggèrent que, lors du cycle de traduction, après la terminaison, il est 

possible que des sous-unités ribosomiques ne s'engagent pas immédiatement dans un nouveau 

cycle de traduction. Ces sous-unités peuvent former des ribosomes inactifs qui doivent être 

dissociée par le complexe Dom34-Hbs1, en présence de Rli1 pour les rendre disponibles pour 

de nouveaux cycles de traduction. Cela pourrait créer un nouveau niveau de régulation de 

l'initiation de la traduction. 
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1. INTRODUCTION 



1.1 EUKARYOTIC GENE EXPRESSION: LIFE AND DEATH OF A 

MESSENGER RNA 

The central dogma of molecular biology resumes gene expression: DNA makes RNA makes 

protein. In eukaryotes this sequence of events is complicated by the fact that the transcription 

of a DNA sequence into an RNA sequence and the translation of RNA sequence into protein 

is spatially separated, the first occurring in the nucleus, the latter in the cytoplasm. Therefore 

the RNA needs to be exported from the nucleus into the cytoplasm before it can be translated. 

Apart from this, primary transcripts are extensively processed, before a mature messenger 

RNA (mRNA) is produced that can be translated. 

Gene expression is heavily regulated, which gives cells the opportunity to vary their content 

and function according to cell type, developmental stage and environmental conditions. 

Regulation occurs at practically all stages of gene expression: at the level of transcription, 

processing and export of the resulting RNA as well as localization, translation and stability of 

the RNA and localization and activity of the protein.  

This thesis focuses on the role of two protein factors in translation dependent detection and 

degradation of faulty RNAs and in regulation of translation, studied in the eukaryotic model 

system yeast (Saccharomyces cerevisiae). Therefore this first paragraph will, after a brief 

introduction of RNA production, processing and export, specifically focus on translation and 

RNA degradation in eukaryotes.   

 

1.1.1 Transcription, processing and export 

A gene can be defined as a DNA sequence that holds the information to produce a protein or a 

functional RNA. Transcription of a gene is mediated by RNA polymerases that incorporate 

nucleotides into an RNA molecule using a DNA strand as a template. RNA polymerases are 

recruited to the 5� end of a gene, the promoter region. This requires the assembly of various 

proteins, the general transcription factors, at the promoter. The promoter contains sequence 

elements that influence the rate of transcription of a gene, mostly by binding regulatory 

factors. The expression of a gene is also affected by regulatory sequence at a larger distance. 

Three different types of RNA polymerases each transcribe different classes of genes. mRNAs 

transcribed from protein encoding genes, are produced by RNA polymerase II.  

Eukaryotic transcripts are extensively processed (Figure 1). Much of this processing occurs or 

initiates while transcription is still ongoing. A cap structure is added to the 5� end of 

transcripts produced by RNA polymerase II. This cap consists of a guanine nucleotide that is 
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linked to the 5�end of the transcript via a 5� to 5� tri-phosphate linkage. The cap protects the 

mRNA from degradation and is important for translation (see paragraph 1.1.2.2). The protein 

coding sequence on DNA, and therefore also on a primary transcript, is interrupted by 

stretches of non-coding sequence, called introns. These are removed during by a large, 

dynamic assembly of RNA and proteins in a process called splicing. The use of splice sites 

can be regulated, which results in the potential to produce multiple, different mRNAs from a 

single gene. At their 3� end mRNAs are polyadenylated. The site of polyadenylation is 

determined by the recognition of a specific sequence, that recruits protein factors responsible 

for cleavage of the RNA and subsequent addition of the poly(A) tail.  

During transcription and processing the mRNA associates with a variety of proteins. Some of 

these proteins serve as signals needed for active export of the mRNA through the nuclear pore 

complex, a large multi-protein structure that forms a channel through the nuclear envelope. 

Once the mRNA is exported into the cytoplasm, it may be transported to a certain cellular 

location and it can be translated (Alberts et al, 2008). 

 

 
(Alberts et al, 2008) 

Figure 1 Transcription and mRNA processing in eukaryotic cells. 
 

1.1.2 Translation 

The nucleotide sequence of a mRNA is translated into a chain of amino acids, called a 

polypeptide, that will eventually fold into a protein.  Translation is mediated by large, highly 
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conserved complexes, the ribosomes, that operate in a four stage cyclic process (Figure 2). 

During translation initiation a ribosome assembles on a mRNA to form a functional ribosome. 

In the elongation stage the ribosome mediates incorporation of amino acids into a growing 

polypeptide chain, according to the nucleotide sequence of the mRNA. During the termination 

phase, the now completed polypeptide is released. In the ensuing recycling phase the post-

termination ribosome is released from the mRNA, making it available for new rounds of 

translation. In the following paragraphs the actors and stages of the translation cycle will be 

described in more detail. 

 

 
Figure 2 Translation is a cyclic, four stage process. 

 

1.1.2.1 The principle actors in translation 

 

1.1.2.1.1 The messenger RNA 

After export from the nucleus into the cytoplasm a mRNA can be translated. The amino acid 

sequence of the peptide to be produced derives from the mRNA nucleotide sequence. Each 

group of three consecutive nucleotides, which is called a codon, corresponds to a specific 

amino acid (see the genetic code in Figure 3). Translation starts at a start codon, which always 

consists of an AUG triplet, encoding the amino acid methionine. The codons downstream of 

the start codon then dictate the order of the following amino acids to be incorporated in the 
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growing polypeptide. The polypeptide is completed when one out of three stop codons (UAA, 

UAG or UGA) is encountered.  

 

 
(Alberts et al, 2008) 

 

Figure 3 The genetic code. 
Each nucleotide triplet, or codon, encodes an amino acid. 

 

The sequence between a start codon and the first stop codon found within the same reading 

frame is called an open reading frame (ORF). The non-coding sequences up- and downstream 

of an ORF, present in the mRNA, are called 5� and 3� untranslated regions (UTR) (Figure 

4A). mRNAs can circularize through interaction of cap-associated proteins with the poly(A) 

binding protein, called Pab1 in yeast (Alberts et al, 2008) (Figure 4B). 

 

 
 

Figure 4 Messenger RNA. 
A: Open reading frame (ORF) and untranslated regions (UTR) in a mRNA. 

B: mRNA circularization through the interaction of cap-binding proteins with the poly(A) binding protein Pab1. 
 

1.1.2.1.2 The transfer RNA 

Translation of a mRNA nucleotide sequence into a amino acid sequence requires adapter 

molecules: the transfer RNAs (tRNA). This adapter function is mediated by two functional 

sites of the tRNA. First, it contains an anticodon loop that basepairs specifically with a codon 

on the mRNA. Second, it can be charged with a specific amino acid, according to the identity 

of the anticodon loop and other features. Sequence complementarity between various regions 

in the tRNA molecule results in a cloverleaf-like arrangement, when drawn in 2D. In 3D the 

tRNA molecule adopts an L-shaped structure (Alberts et al, 2008) (Figure 5).  

 



 
(Alberts et al, 2008) 

Figure 5 Transfer RNA. 
2D (left) and 3D (right) structure an aminoacyl-tRNA molecule. 

 

1.1.2.1.3 The ribosome 

The translation of a mRNA into an amino acid sequence is catalyzed by ribosomes. These are 

large RNA protein complexes, varying in size from 2.3 MDa in bacteria to 4.3 MDa in higher 

eukaryotes (Figure 6). Ribosomes consist of a small and a large subunit, which are often 

named after their sedimentation rate (in bacteria: 30S and 50S subunit, in eukaryotes: 40S and 

60S subunit respectively). Together the subunits form the 70S (in bacteria) or 80S (in 

eukaryotes) ribosome (Alberts et al, 2008). Each subunit contains ribosomal RNA (rRNA) in 

complex with an array of ribosomal proteins. In the bacterial small ribosomal subunit a 16S 

rRNA is complexed with 21 proteins. In yeast or higher eukaryotes an 18S rRNA is 

complexed with 33 proteins. The bacterial large ribosomal subunit is composed of a 23S and a 

5S rRNA and 33 proteins. In yeast the large ribosomal subunit contains a 25S, a 5S and a 5.8S 

complexed with 46 proteins, whereas higher eukaryotes contain a 28S, a 5S and a 5.8S rRNA 

and 47 proteins (Melnikov et al, 2012).  

The core of the ribosome is, both in structure and function, highly conserved between all three 

domains of life. Since the early 2000s high resolution X-ray structures of bacterial and 

archaeal ribosomes have contributed immensely to our functional understanding of ribosomes 

from all domains of life (Schmeing & Ramakrishnan, 2009).  In recent years X-ray structures 

of eukaryotic ribosomes have become available (Ben-Shem et al, 2011; Ben-Shem et al, 2010; 

Rabl et al), shedding light on the function related structural differences between ribosomes 

from different domains, including the eukaryote-specific expansions that cause eukaryotic 

ribosomes to be significantly larger in size (Melnikov et al, 2012).  

 

 



 

 
(Melnikov et al, 2012) 

 
Figure 6 Bacterial and eukaryotic ribosomes 

Composition of bacterial (E. coli) and eukaryotic (S. cerevisae and H. sapiens) ribosomes, as well as their 
conserved core. Ribosomal RNA is indicated in blue, ribosomal proteins in red. RNA and protein conserved in 
all domains of life is indicated in light blue and light red respectively. 
 

 

 

       (Alberts et al, 2008) 

 
A translating ribosome is bound to a mRNA that threads through the 40S ribosomal subunit. 

The ribosome contains three binding sites for tRNAs : the A, P and E site (Figure 7). The 

tRNAs binding to these adjacent sites basepair with adjacent codons. The A-site (aminoacyl 

site) binds incoming aminoacyl-tRNAs. If their anticodons pair correctly with the A-site 

codon, the amino acid will be incorporated into the growing peptide chain. The P-site 

Figure 7 tRNA binding sites in the ribosome. 
An aminoacyl-tRNA binds to the A-site, the P-
site contains a peptidyl-tRNA and in the E-site 
a deaminoacylated tRNA leaves the ribosome. 
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(peptidyl site) contains the growing peptide chain associated to a tRNA. The E-site (exit site) 

is the site where a tRNA leaves the ribosome (Alberts et al, 2008).  

Two important functional sites are the decoding center in the small ribosomal subunit and the 

peptidyl transferase center in the large ribosomal subunit. The decoding center monitors  

correct codon and anti-codon base pairing in the ribosomal A-site. The highly conserved 

nucleotides G530, A1492 and A1493 (E. coli numbering) of the 16S rRNA are important. 

They interact directly with the codon-anticodon duplex in the A-site and form a static part of 

the decoding center, defining its spatial and stereo chemical properties. By forcing 

mismatching codon-anticodon duplexes into a specific, energetically unfavourable geometry, 

this is thought to cause their dissociation of the mismatching tRNA from the ribosome 

(Demeshkina et al, 2012; Ogle et al, 2001).  

The peptidyl transferase center catalyzes the formation of a covalent peptide bond between 

the peptide in the P-site and the amino acid in the A-site. No ionizing groups of the ribosome 

have been found to directly take part in this reaction. The center catalyzes the reaction by 

providing a network of interactions, thereby precisely orienting the two reactants, changing 

the transition state and lowering the activation entropy of the reaction (Alberts et al, 2008; 

Rodnina).  

 

1.1.2.2 Initiation 

All of the steps in eukaryotic translation initiation described below are depicted in Figure 8. 

Eukaryotic translation initiation starts with the formation of a 43S pre-initiation complex 

(PIC). The methionine bound initiator tRNA (Met-tRNAi), the anticodon of which is 

complementary to the AUG start codon, forms a complex with GTP-bound initiation factor 

eIF2, to form a ternary complex (TC) (1). The ternary complex binds to the P-site of a 40S 

ribosomal subunit, which is complexed with initiation factors eIF1, eIF1A, eIF3, to form the 

43S PIC that also contains eIF5 (2).  eIF1, eIF1A, eIF3 and eIF5 all contribute to efficient 

binding of the ternary complex to the 40S subunit. Binding of eIF1 and eIF1A to the 40S 

subunit induce an �open� conformation, which may facilitate ternary complex binding  
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(Aitken & Lorsch, 2012) 

Figure 8 Eukaryotic translation initiation 
For further details see text 
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(Aitken & Lorsch, 2012; Hinnebusch & Lorsch, 2012; Jackson et al, 2010). eIFs 1, 3, 5 and 

the ternary complex can also form a multifactor complex in absence of the ribosome (Asano 

et al, 2000), which opens the possibility that they can be recruited to the 40S subunit as one 

complex. 

The 43S PIC is recruited to the 5�end of a mRNA (3b). This is facilitated by additional 

initiation factors bound to the 5� end of the mRNA and the poly(A) tail bound factor Pab1 

(3a). At the 5� end of the mRNA an eIF4F complex is bound. This consists of the cap-binding 

factor eIF4E, eIF4G that acts as a scaffold and the helicase eIF4A. Stimulated by eIF4G and 

one of the homologous factors eIF4B or eIF4H, eIF4A unwinds the often structured 5� UTR 

of the mRNA. eIF4G also binds the poly(A) tail associated Pab1, thereby circularizing the 

mRNA, which may couple termination events to subsequent initiation on the same mRNA. 

For recruitment of the 43S PIC to the mRNA eIF3 appears to play an important stimulatory 

role. In higher eukaryotes it may do so by interacting with eIF4G. However, in yeast these 

two factors do not interact directly. eIF5 and eIF4B may also play a role in 43S recruitment to 

the mRNA. The 43S complex then starts scanning the 5�UTR (4), unwound by eIF4A, until it 

encounters the start codon. Other helicases, such as the essential Ded1 helicase in yeast and 

Dhx29 in mammals, were also found to be important for enabling scanning through structured 

5� UTRs. The eIF1 and eIF1A induced open conformation is essential for scanning and start 

codon localization. 

eIF1 functions as a gate keeper in start codon recognition. It is ejected from the scanning 43S 

complex upon the encounter of an AUG codon, which subsequently triggers the release of the 

inorganic phosphate that results from GTP hydrolysis by eIF2, and closing of the PIC. This 

results in a 48S complex (5). The ejection of eIF1 may be the consequence of the formation of 

a codon-anticodon helix between tRNAi and mRNA, which is sterically incompatible with 

eIF1 binding (Rabl et al, 2011). eIF1 release is stimulated by eIF5. After AUG recognition 

and the resulting conformational changes, GDP bound eIF2 and eIF5 dissociate. Then the 60S 

subunit joins, which is facilitated by the GTPase eIF5B (6). Subunit joining causes GTP 

hydrolysis by eIF5B, which leads to conformational changes in the 80S complex and the 

dissociation of eIF5B. Finally eIF1A is the last initiation factor to dissociate before translation 

elongation can start (7) (Aitken & Lorsch, 2012; Hinnebusch & Lorsch, 2012; Jackson et al, 

2010).  

The ribosome then starts translating the sequence of codons downstream the start codons. 

Once a ribosome has moved away from the start codon, a new ribosome can initiate. This 



results in one mRNA being translated by multiple ribosomes simultaneously. Together they 

form a polysome. 

1.1.2.2.1 Cap-independent translation initiation 

In several conditions, such as viral infection and stress, cap-dependent initiation is down 

regulated. Cap-independent pathways circumvent this down-regulation by using internal 

ribosome entry sites (IRES) in the 5�UTR. These IRES were first described in viral mRNAs. 

Several endogenous, eukaryotic mRNAs have since been identified to be capable of initiating 

translation by both cap-dependent and IRES dependent mechanisms. Viral IRESs are grouped 

into different types, depending on initiation factor requirements, the need for additional 

factors (IRES transacting factors or ITAFs) and whether the ribosome is recruited directly to 

the translation start site or not (Thompson, 2012). Further details for all categories are 

described in Figure 9. 

 

    (Thompson, 2012) 

Figure 9 Classificiation of internal 
ribosomal entry sites 
Type 1 and 2 IRESs recruit 43S PICs 
using eIF4G, eIF4A and eIF4B. Type 1 
IRESs require additional ITAFs, and the 
43S complex scans the mRNA from the 
IRES in 3� direction until it encounters a 
start codon. Type 3 IRESs can bind to a 
40S subunit without additional factors. 
To bind Met-tRNAi eIF3 and eIF2 or a 
functional analog (ligatin, eIF2A) are 
needed. At type 2 and 3 IRESs 40S 
subunits initiate directly at the site to 
which they are recruited. Type 4 IRESs 
do not require any initiation factors. 40S 
subunits initiate directly at the site to 
which they are recruited, on a non-AUG 
codon positioned in the A-site. Therefore 
the initiator Met-tRNAi is not required. 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.1.2.3 Elongation 

Following canonical translation initiation, an 80S 

ribosome is positioned over the start codon, with the 

Met-tRNAi bound in its P-site. Now an aminoacyl-tRNA 

can bind, that matches the codon present in the A-site. 

The aminoacyl-tRNA is escorted by the GTP bound 

elongation factor eIF1 . Correct basepairing between the 

codon and the anticodon is monitored during several 

proofreading steps and involves GTP hydrolysis. Correct 

basepairing results in accommodation of the amino acid 

bound end of the tRNA in the PTC of the 60S subunit. 

The PTC then catalyzes the transfer of the amino acid 

(or in later cycles, the peptide) from the P-site tRNA 

onto the amino acid bound to the A-site tRNA. This 

results in a now one amino acid longer peptidyl-tRNA in 

the A-site.  

Then a translocation takes place. This starts with the 

translocation of the large subunit, leaving the tRNAs in a 

so-called hybrid state. Whereas the deaminoacylated 

tRNA and the newly formed peptidyl tRNA are still in P 

and A-site position on the small subunit, they are now in 

E and P-site position in the large ribosomal subunit 

respectively. Subsequently, the small subunit 

translocates as well, moving three nucleotide (one 

codon) positions on the mRNA. This results in the 

deaminoacylated tRNA and the peptidyl tRNA ending 

up fully in E and P-site respectively. The E-site tRNA 

can then leave the ribosome. Translocation is highly 

stimulated by GTP hydrolysis by elongation factor eEF2. 

After translocation the A-site is vacant, a new 

aminoacyl-tRNA complementary to the new A-site 

codon can bind. The described process is repeated for all 

codons downstream the start codon, elongating the 
(Alberts et al., 2008) 

Figure 10 Translation elongation 

eIF1  

eIF2 
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peptide in production, until the ribosome reaches a stop codon.  

 

1.1.2.4 Termination  

Termination occurs when a stop codon enters the ribosomal A-site. Stop codon recognition by 

termination factors results in the hydrolysis of the ester bond between the P-site tRNA and the 

now completed polypeptide, the latter being released. There are three stop codons (UAA, 

UAG and UGA). A single termination factor, eRF1, recognizes all three of them (Ito et al, 

2002; Kervestin et al, 2001) and induces peptidyl-tRNA hydrolysis by the ribosomal peptidyl 

transferase center. Although eRF1 can induce peptidyl-tRNA hydrolysis by itself, it acts quite 

inefficiently. The GTPase eRF3 greatly stimulates eRF1 mediated peptide release, in a GTP 

dependent manner (Alkalaeva et al, 2006). 

eRF1 is composed of three domains and structurally resembles a tRNA molecule (Song et al, 

2000). It interacts with stop codons in the ribosomal A-site through its N-terminal domain. 

Various biochemical and in vivo studies together with bioinformatical analysis (e.g. Chavatte 

et al, 2002; Frolova et al, 2002; Liang et al, 2005; Seit-Nebi et al, 2002) have implicated 

several (groups of) conserved residues, among which the NIKS motif, in stop codon 

recognition. The central domain contains a highly conserved GGQ motif that is essential for 

triggering peptidyl-tRNA hydrolysis (Frolova et al, 1999; Song et al, 2000). Based on 

homologous bacterial processes, the GGQ motif is thought to locate in the peptidyl transferase 

center. This positioning causes rRNA rearrangements, making the ester bond of the peptidyl-

tRNA accessible for nucleophylic attack by a water molecule (Jin et al, 2010).  

eRF3 belongs to the same family of GTPase as eEF1  (Atkinson et al, 2008). Members of this 

family are highly similar with regard to their C-terminal domains (GTPase or G domain, 

domains II and III) , but differ in their N-terminal length and amino acid sequence (Inagaki & 

Ford Doolittle, 2000). eRF3 by itself has weak GTPase activity, which is greatly stimulated 

by the combined presence of eRF1 and the ribosome (Frolova et al, 1996).  

eRF1 and eRF3 stably interact mainly through their C-terminal domains (Cheng et al, 2009; 

Ebihara & Nakamura, 1999; Ito et al, 1998; Merkulova et al, 1999). Structural and 

biochemical data suggest additional interactions between the central domain of eRF1 and 

domains G, II and III of eRF3 (Cheng et al, 2009; Kononenko et al, 2008). Especially the 

interaction of eRF1 with the G domain of eRF3 may explain how eRF1 stimulates GTP 

binding (Hauryliuk et al, 2006; Mitkevich et al, 2006; Pisareva et al, 2006) and hydrolysis by 

eRF3. In yeast GTP binding is required for stable eRF1-eRF3 interaction (Kobayashi et al, 

2004). 
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Translation termination and subsequent recycling of the post-termination complex are tightly 

coupled. The key factor in ribosome recycling, the ATPase Rli1 (see next paragraph), was 

found to stimulate eRF1-eRF3 mediated peptide release four-fold, in a manner independent of 

its ATPase activity (Shoemaker & Green, 2011). 

The information above in combination with additional findings have led to a model of 

eukaryotic translation termination, which is depicted in Figure 11. It starts with the eRF1-

eRF3-GTP complex binding the stop-codon containing A-site of a ribosome (1). In its GTP 

bound form the complex adopts a conformation in which the GGQ motif of eRF1 is far away 

from the peptidyl transferase center (Taylor et al, 2012). Upon stop codon recognition by 

eRF1 the eRF3 bound GTP will be hydrolyzed (2). In its GDP bound form eRF3 will 

dissociate from the ribosome (3). ATP bound Rli1 will then bind at a site overlapping the one 

recognized by eRF3 (Becker et al, 2012). As a consequence of the last three processes, eRF1 

will accommodate, positioning its GGQ motif in the peptidyl transferase center (4). This leads 

to peptidyl-tRNA hydrolysis and the peptide being released from the ribosome (5). Rli1 

binding may stimulate peptide release by accelerating eRF1 accommodation (Shoemaker & 

Green, 2011), perhaps by facilitating eRF3 dissociation. 

 

 
(Shoemaker & Green, 2011) 

Figure 11 Eukaryotic translation termination and recycling. 
Steps 1 to 6 are discussed in the text. 



1.1.2.5 Recycling 

After peptide release, a post-termination complex containing a ribosome, mRNA, P-site 

tRNA, eRF1 and probably Rli1 needs to be dissociated to make its components available for 

new rounds of translation. Biochemical experiments have shown that Rli1, also known as 

ABCE1 in some organisms, mediates recycling of human, yeast and archaeal ribosomal 

subunits after translation termination (Barthelme et al, 2011; Pisarev et al, 2010; Shoemaker 

& Green, 2011) (step 6 in Figure 11). For convenience, this factor will from here on be 

referred to as Rli1. 

Susceptibility of post-termination complexes for Rli1 induced ribosome recycling does not 

depend on peptide release, but appears to require the presence of eRF1 (or a paralog, see 

paragraph 1.3.3) in the ribosomal A-site. Following puromycin caused peptide release the 

human Rli1 homolog cannot induce ribosome recycling. However, in presence of a 

catalytically inactive eRF1 mutant Rli1 mediated ribosomal subunit dissociation does occur 

(Pisarev et al, 2010). Consistently, archaeal Rli1 recycles post-termination complexes 

cooperatively with the archaeal eRF1 ortholog aRF1 (Barthelme et al, 2011). The affinity of 

Rli1 for the post-termination complex increases greatly in presence of a non-hydrolysable 

ATP analog, indicating that it binds in complex with an ATP molecule (Pisarev et al, 2010).  

Rli1 is an ABC (ATPase binding cassette) family ATPase, that is highly conserved in 

eukaryotes and archaea (Figure 12). Like in other members of its family, two nucleotide 

binding domains in a head to tail orientation create two composite nucleotide binding sites. 

Rli1 also contains a highly conserved iron-sulfur cluster domain containing two [4Fe-4S]2+ 

clusters (Barthelme et al, 2007; Karcher et al, 2008).  

 

  (Karcher et al, 2008) 

Figure 12 Structure of Rli1 
Structural model of  the Pyrococcus abyssi 
ortholog of Rli1, ABCE1. The iron-sulfur domain,  
depicted in green, contains two [4Fe-4S]2+ clusters 
(Fe in red, S in yellow). The two nucleotide 
binding domains NBD1 (yellow) and NBD2 
(orange) are oriented in a head-to-tail orientation, 
separated by a hinge domain (light blue). The 
NBDs together form two composite nucleotide 
binding sites, which here contain ADP molecules. 
 
 

 

 



 

The nucleotide binding domain of Rli1 is essential for ribosome recycling (Barthelme et al, 

2011) and in human and yeast in vitro systems ATP hydrolysis is needed for ribosome 

dissociation (Pisarev et al, 2010; Shoemaker & Green, 2011). Although the intrinsic ATPase 

activity of Rli1 is quite low, it is strongly enhanced by eRF1 bound post-termination 

complexes (Pisarev et al, 2010), indicating that ATP hydrolysis is induced in the ribosomal 

context.  

These findings led to a model for human and yeast Rli1, in which ATP hydrolysis causes 

conformational changes that lead to ribosomal subunit dissociation (Figure 13). However, 

Rli1 mediated ribosome recycling in archaea might be mechanistically different. Here ATP 

hydrolysis is not required for Rli1 and aRF1 induced splitting of vacant 70S ribosomes. 

Instead Rli1 dissociation from the ribosome requires ATP hydrolysis. A model has been 

proposed in which Rli1 binds to post-termination complexes, then acquires ATP which 

induces a change in conformation resulting in ribosome splitting. This is followed by ATP 

hydrolysis leading to dissociation of Rli1 and aRF1 (Barthelme et al, 2011). However, the 

different observations in eukaryotic and archaeal systems might be explained by a difference 

in experimental set up (the use of post-termination complexes in eukaryotic systems versus 

vacant 70S ribosomes in archaeal systems). 

 

 
(Jackson et al, 2012) 

Figure 13 Eukaryotic ribosome recycling 
Rli1 binds to an eRF1 bound post-termination complex. ATP hydrolysis induces a conformational change that 
leads to dissociation of the ribosomal subunits. 
 

The iron-sulfur cluster domain of Rli1 is also needed for recycling and its absence impedes 

binding of the archaeal Rli1 homolog to small ribosomal subunits (Barthelme et al, 2011). 

Together with the presence of a conserved positively charged patch on its surface, 

hypothetically interacting with negatively charged rRNA (Karcher et al, 2008), this suggests a 

role in ribosome binding. 
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Structural models of yeast and archaeal Rli1 in complex with a ribosome and eRF1 paralog 

Dom34 (Becker et al, 2012, see paragraph 1.3.3.2) have given additional insight into the 

mechanism of ribosome dissociation. Further mechanistical details about how ATP hydrolysis 

by Rli1 may cause ribosome dissociation will be discussed in paragraph 1.3.3.2.  

After human Rli1 induced ribosomal subunit dissociation, mRNA and P-site tRNA remain 

bound to the 40S subunit. Biochemical experiment using human factors have shown that their 

dissociation is mediated by initiation factors eIF1, 1A, 3 and the latter�s loosely associated 

subunit eIF3j (Pisarev et al, 2010). Whereas tRNA dissociation depends mainly on eIF1 and 

1A, in agreement with their binding close to the P-site (Lomakin et al, 2003; Rabl et al, 2011), 

mRNA dissociation requires all factors (Pisarev et al, 2010). The requirement of these factors 

binding to a 40S subunit during translation initiation suggests that they may directly connect 

ribosome recycling with a new round of translation (Aitken & Lorsch, 2012; Jackson et al, 

2010; Nurenberg & Tampe, 2013).   

 

1.1.3 Messenger RNA degradation 

Ultimately all mRNAs will be degraded. Cytoplasmic mRNA degradation in eukaryotes 

serves several functions. First, �regular� mRNA turnover determines, together with the rate of 

production, the level of a certain mRNA in the cell. Continuous mRNA degradation allows 

changing rates of transcription to regulate cellular mRNA concentrations. Second, mRNA 

turnover itself can be regulated. For example, the binding of certain transacting protein and/or 

RNA factors to regulatory elements in the mRNA can induce rapid degradation of a mRNA in 

conditions in which this is necessary. Finally, RNA quality control pathways detect and 

degrade faulty RNAs that may result from aberrant RNA production of processing.  

RNA decay mechanisms have been extensively studied in yeast. Considering the topic of my 

PhD work and the model organism used, this paragraph will introduce the major cytoplasmic 

degradation pathways with an emphasis on yeast. All data referred to are obtained with yeast 

systems, unless mentioned otherwise. In large part, cytoplasmic RNA quality control 

pathways make use of these pathways. The quality control pathways I studied during my PhD 

will be introduced in further detail in paragraph 1.4.  
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1.1.3.1 The major cytoplasmic RNA decay pathways 

In yeast cytoplasmic RNA decay occurs via two general pathways: one that degrades mRNAs 

in 5� to 3� direction and one that operates in 3� to 5� direction (Figure 14). Both pathways start 

with a deadenylation step, which is often rate limiting.  

 

 
 

Figure 14 The major cytoplasmic mRNA decay pathways in yeast 
 

1.1.3.1.1 Deadenylation 

Two deadenylase complexes mediate this step: the Ccr4-Not complex (Daugeron et al, 2001; 

Tucker et al, 2001) and the Pan2/Pan3 complex (Boeck et al, 1996).  In both mammalian and 

yeast cells, deadenylation appears to be biphasic. First the poly(A) tail is shortened by the 

Pan2/Pan3 complex. This can be followed by a more rapid Ccr4-Not mediated deadenylation 

step (Brown & Sachs, 1998; Yamashita et al, 2005). Deadenylation in general as well as 

deadenylation of specific mRNAs is controlled by several factors. An example is the poly(A) 

binding protein Pab1, which stimulates Pan2/Pan3 activity and inhibits Ccr4-Not activity in 

vitro (Brown & Sachs, 1998; Tucker et al, 2002). Consistent with Pab1 affecting 

deadenylation, a mutation in its C-terminus was found to inhibit mRNA decay in vivo, 

probably by interfering with Pab1 release from the poly(A) tail to be degraded (Simon & 

Seraphin, 2007). An example of factors that regulate deadenylation of specific mRNAs is the 

proteins of the Puf family, which bind to elements in the 3�UTR of mRNA subsets (Hook et 

al, 2007; Olivas & Parker, 2000).  

Importantly, in several stress conditions deadenylation of certain mRNAs is inhibited, due to 

inhibition of both Pan2/Pan3 and Ccr4-Not action (Hilgers et al, 2006). This may promote the 

preservation of these mRNAs during stress, when there is a general shut down of translation 

and many mRNAs are degraded (Arribere et al, 2011; see paragraph 1.2).  
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1.1.3.1.2 Decapping and 5� to 3� decay 

The 5� to 3� degradation pathway is the predominant pathway in general mRNA turnover. 

Following deadenylation, the 5� cap structure is removed. This is mediated by a complex 

formed by the catalytic subunit Dcp2 (van Dijk et al, 2002) and Dcp1, that stimulates Dcp2 

activity by promoting an active conformation (She et al, 2008). The resulting 5�-

monophosporylated mRNA is a substrate for rapid and processive degradation by the 

exonuclease Xrn1 (Hsu & Stevens, 1993). A structural study indicates that Xrn1 can unwind 

structured RNA, which explains the enzymes high processivity without the requirement of a 

helicase (Jinek et al, 2011). 

Dcp1/Dcp2 needs additional factors for maximum activity. These function to enhance 

decapping through different mechanisms. While some factors act by directly stimulating 

decapping, others appear to stimulate decapping by inhibiting translation. Several 

observations indicate that decapping is in competition with translation initiation.  This may 

seem easy to understand from the fact that initiation factor eIF4E, required for translation 

initiation, is bound to the cap and may interfere with accessibility for Dcp1/Dcp2. Indeed the 

eIF4E cap-binding protein inhibits decapping in vitro (Schwartz & Parker, 2000). 

Consistently, mutating initiation factors increases the rate of decapping (Schwartz & Parker, 

1999). The factors Dhh1 and Pat1 are examples of enhancers of decapping that act through 

repressing translation (Coller & Parker, 2005). The exact mechanism by which this repression 

of translation leads to decapping is not known. Other factors enhance decapping by directly 

stimulation Dcp1/Dcp2. Pat1 also stimulates decapping by this mechanism. Similarly to 

another factor, Edc3, it acts by directly binding to Dcp2 (Nissan et al, 2010). Pat1 acts in a 

complex with a ring of seven Sm-like proteins, Lsm1-7, typically know to bind RNA 

(Salgado-Garrido et al, 1999). Edc1 and Edc2 stimulate decapping by binding to Dcp1, using 

a proline rich motif (Borja et al, 2011).  

 

1.1.3.1.3 3� to 5� decay by the exosome 

Following deadenylation a mRNA can be further digested by a large exonuclease complex 

that degrades in 3� to 5� direction: the exosome (Anderson & Parker, 1998). The exosome has 

multiple functions. Not only does it degrade mRNAs in the cytoplasm, it is also present in the 

nucleus. Here it functions in the maturation of several types of stable RNAs, including 

rRNAs, and in the degradation of aberrantly processed RNAs and various types of unstable, 

non-coding RNAs. The composition of the exosome as well as the cofactors it uses to be 



recruited to its substrates differs depending on subcellular localization and type of substrate 

(Lykke-Andersen et al, 2011).  

The exosome is composed of a catalytically inactive core, composed of a ring formed by six 

subunits with similarity to bacterial RNase PH, flanked on the top by three RNA binding 

domain containing proteins (Figure 15). The inactive core is associated with one or two 

catalytically active subunits. In yeast the cytoplasmic exosome is bound to a single catalytic 

subunit: Dis3 (Dziembowski et al, 2007; Liu et al, 2006). Dis3 possesses both exo- and 

endonucleolytic activity, the first located in its RNB domain, the latter in its PIN domain 

(Dziembowski et al, 2007; Lebreton et al, 2008). Regular mRNA turnover depends mainly on 

Dis3 exonuclease activity. However, for the degradation of some aberrant RNAs known to be 

substrates for RNA quality control either exo- or endonuclease activity is sufficient (Schaeffer 

& van Hoof, 2011; see paragraph 1.4.3.2). Although catalytically inactive, the core, which 

forms a channel, is important for RNA degradation. Probably the RNA substrate is threaded 

through the channel before it reaches the catalytic subunit (Bonneau et al, 2009). Occlusion of 

the channel impairs exo- and endonucleolytic function in vitro and in vivo (Drazkowska et al, 

2013; Wasmuth & Lima, 2012). 

 

 
(Liu et al, 2006) 

Figure 15 Inactive core of the exosome from S. cerevisiae. 
On the left : top view, showing the three RNA binding domain containing proteins. On the right : bottom view, 
showing the six proteins similar to bacterial RNase PH. 

 

Cytoplasmic mRNA decay by the exosome also requires the GTPase Ski7 and the Ski 

complex (Anderson & Parker, 1998; van Hoof et al, 2000). The Ski complex (Figure 16) 

consists of Ski2, a helicase, Ski3 and two copies of Ski8 (Brown et al, 2000). Ski7 belongs to 

the same family of GTPases as eIF1 , the C-terminal domain being homologous to other 

GTPases in this family. The N-terminal domain of Ski7, that lacks sequence similarity within 

this family, is sufficient for general RNA turnover. This domain interacts with both the 

 



exosome and the Ski complex (Figure 16) and breaking these interactions inhibits RNA decay 

(Araki et al, 2001). Both the N and the C-terminal domain of Ski7 play a role in the 

degradation of certain RNAs that lack a stop codon and are substrates for RNA quality control 

(van Hoof et al, 2002).  

 
(Lebreton & Seraphin, 2008) 

Figure 16 Cytoplasmic mRNA degradation by the exosome requires Ski7 and the Ski complex 
 

1.1.3.1.4 P-bodies 

In yeast and mammalian cells, factors involved in decapping and downstream 5� to 3� mRNA 

degradation co-localize in cytoplasmic granules, called processing bodies or P-bodies. These 

include Ccr4-Not, Dcp1-Dcp2, Pat1, Lsm1-7, Edc3, Dhh1 and the exonuclease Xrn1. P-

bodies were found to be sites of active mRNA degradation (Cougot et al, 2004; Sheth & 

Parker, 2003; van Dijk et al, 2002).  Ribosomal proteins and most translational factors are 

absent from P-bodies in yeast (Teixeira et al, 2005). It may therefore seem contradictory that 

for some mRNAs polyadenylation and decapping were found to occur on polysomal mRNA 

(Hu et al, 2009). However, most factors found in P-bodies are also found diffusely distributed 

in the cytoplasm (Eulalio et al, 2007). Some RNA degradation may therefore initiate or occur 

entirely outside P-bodies. 

Apart from mRNA decay factors, P-bodies also contain factors involved in translational 

repression, RNA quality control and, in metazoan cells, factors involved in miRNA mediated 

silencing, with silenced mRNAs accumulating in P-bodies (Eulalio et al, 2007). Importantly, 

P-bodies increase in number and size during stress (Brengues et al, 2005; Kedersha et al, 

2005; Teixeira et al, 2005). This will be discussed further in paragraph 1.2.3. 
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1.1.3.2 Cytoplasmic RNA quality control 

Aberrant mRNAs can be be the result of errors in mRNA production and processing. When 

translated they may produce defective, potentially toxic proteins. Cells have mechanisms to 

detect and degrade these faulty mRNAs in pathways collectively referred to as RNA quality 

control. In several cytoplasmic RNA quality control pathways aberrant mRNAs are detected 

during translation. mRNAs containing premature stop codons are detected and degraded in 

the Nonsense mediated decay (NMD) pathway, mRNAs without stop codon in Non-stop 

decay (NSD) and mRNAs that contain sites causing ribosomes to stall during elongation in 

No-go decay (NGD). Related to the latter is a pathway that targets defective rRNAs causing 

inefficient translation: Non-functional rRNA decay acting on 18S rRNA substrates (18S 

NRD). 

RNA degradation in NMD requires the formation of a surveillance complex, which forms as a 

consequence of premature termination. This complex includes the helicase Upf1 as well as 

Upf2 and Upf3. Depending on the organism, a combination of additional factors participates 

in premature stop codon recognition and downstream events. In multicellular organisms 

proteins of the SMG family are required, whereas in mammalian cells the exon junction 

complex plays a role in NMD (Kervestin & Jacobson, 2012). The latter complex is deposited 

near many but not all exon-exon junctions during splicing (Le Hir et al, 2000; Sauliere et al, 

2010; Sauliere et al, 2012) and is displaced by ribosomes during translation. The presence of 

an exon junction complex 3� of a terminating ribosome plays a role in mammalian NMD 

(Kervestin & Jacobson, 2012).  In yeast NMD substrates are degraded by the major 

cytoplasmic degradation pathways. In Drosophila melanogaster, degradation is initiated by an 

endonucleolytic cleavage. In mammalian cells NMD substrates can be degraded by the major 

degradation pathways as well as by the endonucleolytic cleavage mechanism (Nicholson & 

Mühlemann, 2010). NMD endonucleolytic cleavage was found to be mediated by the SMG 

factor SMG6 (Eberle et al, 2009; Huntzinger et al, 2008). 

The other RNA quality control pathways will be introduced in detail in paragraph 1.4. 

 

1.2 TRANSLATION INHIBITION IN STRESS CONDITIONS 

Cells encounter many stress conditions that require changes in gene expression to adapt to the 

change in environment. Exposure to stress induces a variety of adaptive responses, both at the 

transcriptional and the post-transcriptional level. During my PhD work I studied a role of the 
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Dom34-Hbs1 complex in translation initation, in cells recovering from stress. This paragraph 

will therefore focus on stress related changes at the level of translation. 

During many types of stress a global shut down of translation occurs. As translation is a 

energy consuming process, this has the advantage that the cells save vastly on their energy 

expenditure. In addition, it causes a reduction in the levels of proteins that might interfere 

with the stress response. At the same time a subset of genes, required for cell survival during 

stress, is selectively translated (Holcik & Sonenberg, 2005).  

 

1.2.1 Mechanisms of general translation inhibition 

A global shutdown of translation during stress is mostly mediated by a general inhibition of 

translation initiation. The mechanistic details of this inhibition differ per type of stress. Many 

stress induced translation inhibiting mechanisms involve altered concentrations or activities of 

translation initiation factors. Two important mechanisms will be described below. This is by 

no means an exhaustive overview of all mechanism of stress related translation inhibition 

described in literature (see also Figure 17). 

 

1.2.1.1 The TOR pathway and 4E-BPs 

The target of rapamycin (TOR) pathway is the major nutrient sensing pathway in cells. TOR  

interacts with other factors to form two distinct complexes. These complexes integrate 

information coming from at least five major signaling pathways that indicate energy status, 

stress, concentrations of oxygen, amino acids and growth factors. According to these signals 

the TOR pathway regulates major cellular processes, including translation. Growth permitting 

conditions (nutrient availability, absence of stress etc.) stimulate translation via this pathway. 

In mammalian cells the major effector proteins of the TOR pathway that affect translation are 

the 4E binding protein 4E-BP1, which prevents eIF4E from interacting with eIF4G, and the 

S6 kinases 1 and 2 (S6K1 and 2) (Ma & Blenis, 2009).  

Upon stress, inactivation of the TOR pathway results in hypophosphorylation of 4E-BP1, 

which then tightly binds and sequesters eIF4E, thereby preventing the recruitment of other 

initiation factors and the 43S PIC to the caps of mRNAs. Inhibition of the TOR pathways also 

results in dephosphorylation and inactivation of S6K1. This results in reduced activity of the 

RNA helicase eIF4A and also affects eIF3 function. Apart from direct effects on translation 

initiation factors, S6Ks also control ribosome biogenesis (Ma & Blenis, 2009). An example of  

4E-BP mediated translation inhibition in stress is the response to heat shock in mammalian 
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cells (Vries et al, 1997). The 4E-BP Eap1 may also play a role in heat shock associated 

translation inhibition in yeast (Meier et al, 2006). Eap1 also plays a role in cadmium and 

diamide induced oxidative stress (Mascarenhas et al, 2008). In mammalian cells 4E-BP1was 

mediates translation inhibition in response to DNA damage induced by ionizing radation 

(Braunstein et al, 2009) or hypoxia (Connolly et al, 2006).  

 

1.2.1.2 eIF2  phosphorylation 

Many types of stress induce phosphorylation of the  subunit of initiation factor eIF2 at serine 

51. eIF2, in its GTP bound form binds methionyl initiator tRNA to form a ternary complex, 

required for translation initiation. During initiation the eIF2 bound GTP is hydrolyzed (see 

paragraph 1.1.2.2). The guanine-nucleotide exchange factor eIF2B is responsible for replacing 

the resulting GDP with GTP, thereby making eIF2 competent for tRNA binding and 

participation in translation initiation again. Phosphorylated eIF2 acts as an inhibitor of eIF2B, 

which causes the levels of GTP bound eIF2 and ternary complex to drop, resulting in a 

reduced rate of translation initiation (Safer, 1983).  

Several kinases have been described to phosphorylate eIF2 . Amino acid starvation stress 

causes an increase in the level of uncharched tRNAs. In yeast and mammalian cells this 

causes activation of the kinase Gcn2, which targets eIF2  (Dever et al, 1992; Harding et al, 

2000).  Gcn2 dependent phosphorylation of eIF2  also mediates translation inhibition in yeast 

exposed to oxidative stress (Mascarenhas et al, 2008; Shenton et al, 2006) and high NaCl 

concentrations (Goossens et al, 2001) and in UV irradiated mammalian cells (Deng et al, 

2002). Translation inhibition upon membrane stress in mammalian cells and yeast (De Filippi 

et al, 2007) and upon cold shock in mammalian cells (Underhill et al, 2006) also depends on 

eIF2  phosphorylation. Other kinases that induce translation inhibition by phosphorylating 

eIF2  include PERK, HRI and PKR. They play a role in translation inhibition due to elevated 

levels of reactive oxygen species in hypoxia (Koritzinsky et al, 2007; Liu et al, 2008), hemin 

depletion and virus infection respectively (Hinnebusch, 2005), in mammalian cells.  



 
(Simpson & Ashe, 2012) 

Figure 17 Mechanisms of inhibition of translation initiation during stress in S. cerevisiae. 
 

1.2.1.3 Translation during stress 

Apart from a global repression of translation, the translation of stress-specific subsets of 

mRNAs is specifically upregulated. Therefore these mRNAs should evade the generally 

targeting inhibitory mechanisms described above. One way to escape translation inhibitory 

mechanisms that target cap-dependent translation, is the use of cap-independent mechanisms, 

such as IRES. It was shown that in yeast starved of a carbon source, translation of mRNAs 

containing IRESs is upregulated (Paz et al, 1999). IRES dependent translation of several 

genes is required for invasive growth, important for yeast survival in nutrient deplete 

conditions, during starvation (Gilbert et al, 2007). It has been estimated that up to 10% of 

cellular mRNAs contain IRESs (Mitchell et al, 2005). 

A more specific, well described example of upregulated translation during stress concerns the 

yeast mRNA GCN4 (Figure 18). The resulting protein promotes the expression of stress-

related genes. The GCN4 mRNA contains four upstream ORFs (uORFs). The level of ternary 

complex regulates whether a uORF or the actual GCN4 ORF is translated. In mammalian 

cells translation of the stress response gene ATF4 is regulated in a similar way (Harding et al, 

2000).  
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(Hinnebusch, 2005) 

Figure 18 Gcn4 translation during stress 
The GCN4 mRNA contains 4 upstream ORFs (uORFs). After translating uORF1, the context of termination is 
such that a proportion of 40S subunits stays associated to the mRNA, resumes scanning and reinitiates at a 
downstream ORF. When ternary complex (TC) is available, it is likely to bind the 40S subunit before it reaches 
the AUG of uORF2, 3 or 4. This results in translation of the uORFs, followed by termination and dissociation of 
the ribosome. During stress conditions in which TC levels are low, e.g. amino acid starvation, a TC will more 
frequently bind to the scanning 40S subunit only after it has passed the other uORFs but before reaching the 
AUG of the actual GCN4 ORF. This results in translation of the GCN4 ORF. 

 

1.2.2 Translation inhibition in glucose depletion 

Part of the work reported in this thesis describes a role of the factors Dom34 and Hbs1 in 

restart of translation after glucose starvation stress. Mechanisms controlling the translational 

response to this stress are described in more detail in this paragraph.  

Glucose depletion causes a strong, rapid inhibition of translation (within 10 minutes), that is 

readily reversed upon glucose addition in yeast (Ashe et al, 2000). This rapid inhibition is not 

a general reaction to depletion of a carbon source, as translation inhibition does not occur or 

occurs after a longer delay upon starvation of cells grown on several other carbon sources 

(sucrose, raffinose, maltose, galactose) (Ashe et al, 2000). After ~60 minutes of starvation, 

global translation partly recovers. This probably reflects the translation of genes induced by 

the glucose starvation stress response, which are required for surviving the glucose depleted 

condition (Arribere et al, 2011).  
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The mechanism that causes translation inhibition in glucose depleted cells is not completely 

understood. In yeast translation inhibition does not depend on phosphorylation of eIF2 . In 

presence of a non-phosphorylatable eIF2  mutant inhibition of translation still occurs, the 

level of phosphorylated eIF2  does not increase and GCN4 translation does not increase 

(Ashe et al, 2000; Castelli et al). Translation inhibition does not depend on 4E-BPs Eap1 and 

Caf20 either (Castelli et al). It was observed in S. cerevisiae that during glucose depletion 

initiation factor eIF4A disappears from ribosomal fractions. At the same time the level of 

interaction between eIF3 and eIF4G increases. This suggests that due to a problem in 5�UTR 

scanning because of the absence of the helicase eIF4A in the PIC, initiation is blocked and 

43S complexes accumulate (Castelli et al).  

Glucose depleted yeast is completely or partially resistant to translation inhibition when it 

lacks factors involved in decapping and 5� to 3� mRNA degradation, such as Dcp1, Dcp2, or 

Lsm1 and Pat1. These mutant strains are also resistant to translation inhibition caused by 

other stresses, including amino acid starvation, addition of lithium, rapamycin (inhibitor of 

the TOR pathway) or the fusel alcohol butanol (Holmes et al, 2004). This suggests that 

translation inhibition may be affected by the total level of mRNAs available for translation. 

Interestingly it was found by genome wide analysis of mRNA abundance that upon glucose 

starvation in yeast changes in mRNA abundance in polysomes mirror changes in the total 

level of that mRNA, without any large changes in polysome occupancy (the ratio of the level 

of a particular mRNA in polysomal fractions and of its total level) (Arribere et al, 2011). 

Based on the combination of these results it has been suggested that the rapid inhibition of 

translation upon glucose depletion could be caused by rapid degradation of mRNAs (Arribere 

et al, 2011). 

An alternative explanation suggested that interfering with mRNA degradation could 

overcome translation inhibition due to increased mRNA levels. The increased amount of 

mRNAs overwhelms the translation control mechanism acting by mass action (Holmes et al, 

2004). Supporting this hypothesis it was found that accumulation of other factors needed for 

translation initiation (increased levels of free 40S accumulating due to defects in 60S 

biogenesis, eIF4G overexpression) also suppress glucose depletion induced translation 

inhibition (Holmes et al, 2004). However, neither one of the aforementioned hypotheses can 

explain why also strains lacking Xrn1, in which decapped and therefore translationally 

uncompetent mRNAs accumulate, are resistant to translation inhibition and why strains 

defective in deadenylation (ccr4 , pan2 pan3 ), in which translation competent mRNAs are 

expected to accumulate, are not resistant to translation inhibition (Holmes et al, 2004). 
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1.2.3 P-bodies and stress granules 

What happens to the large amount of mRNAs that is no longer translated when translation is 

inhibited during stress? Several reports indicate that they localize to specific granules that 

assemble in the cytoplasm upon stress, where they may be degraded or stored. 

In yeast and mammalian cells several stress conditions cause an increase in size and number 

of P-bodies (Brengues et al, 2005; Kedersha et al, 2005; Teixeira et al, 2005). It is thought 

that during translation inhibition mRNAs can accumulate in P-bodies. This is supported by 

the finding that reporter mRNAs localize to P-bodies upon glucose depletion (Brengues et al, 

2005). During stress the mRNAs in P-bodies may be degraded or stored in a translationally 

repressed condition, to reenter the translation cycle upon stress relief. While the first idea is 

supported by the observation that the levels of many mRNAs decrease upon glucose 

starvation stress (Arribere et al, 2011),the latter is supported by the finding that upon restoring 

non-stressed conditions after glucose starvation reporter mRNAs disappear from P-bodies, but 

only if translation initiation can occur (Brengues et al, 2005). 

In mammalian cells a second type of cytoplasmic granules accumulates as a consequence of 

defective or inhibited translation initiation. These granules are named stress granules. They 

contain non-translating mRNAs as well as initiation factors eIF4E, eIF4G, eIF4A, eIF3, eIF2, 

40S ribosomal subunits and Pab1. Stress granules are therefore thought to be places where 

mRNAs associated with stalled 48S complexes, which may accumulate as a consequence of 

translation inhibition, initially localize during stress (Anderson & Kedersha, 2008). Stress 

granules and P bodies have different dynamics, but they share several components and P 

bodies can transiently dock on stress granules, suggesting movement of factors and mRNAs 

between the two types of granules. Moreover, overexpression of factors that promote mRNA 

decay induce fusion of stress granules and P bodies (Kedersha et al, 2005). The highly 

dynamic nature and the composition of stress granules together with stress granule and P body 

dynamics have led to the idea that in stress granules a process of mRNA triage takes place 

(Figure 19). Some mRNAs will bind to factors promoting degradation and move to P bodies 

for decay. Others will associate to stabilizing factors and be exported or stored (in or outside 

stress granules or P bodies). Alternatively mRNAs can reenter the translation cycle (Anderson 

& Kedersha, 2008). In yeast heat shock causes the appearance of granules very similar in 

composition to mammalian stress granules (Grousl et al, 2009). 
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(Kedersha et al, 2005) 

Figure 19 Model of the relationship between stress granules and P-bodies. 
Stress granules are thought to be sites of mRNA triage. While some are stabilized and stored, others are targeted 
for degradation and directed to P-bodies. A third category reenters the translation cycle. 

 

In glucose starved yeast a third type of granules form, called EGP bodies. They differ in 

composition from stress granules: whereas initiation factors eIF4E and eIF4G, Pab1 and 

reporter mRNAs accumulate in EGP bodies like in stress granules, eIF4AI and eIF3b do not 

(Hoyle et al, 2007). Therefore EGP bodies may contain circularized mRNAs but cannot be 

viewed as places where mRNAs associated with stalled 48S complexes localize upon stress. 

Whereas this may reflect a difference in translation inhibiting mechanism, the EGP bodies 

also differ from stress granules in their dynamics. EGP granules only form upon prolonged 

glucose starvation (20-25 minutes), long after the appearance of P-bodies (Hoyle et al, 2007) 

and mutations inhibiting P-body formation also inhibit EGP body assembly (Buchan et al, 

2008). This chronology and dependence suggests that mRNAs first localize to P-bodies, to 

then move to EGP bodies which might serve as sites of long term storage of mRNAs during 

glucose depletion stress (Lui et al, 2010). Genome wide data indicate that the population of 

mRNAs stored during glucose starvation consists mainly of those encoding ribosomal 

proteins. These mRNAs reenter the translation cycle when after a brief period of starvation 

glucose is added (Arribere et al, 2011).  
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1.2.4 Ribosome hibernation 

In many translation inhibiting stress conditions ribosomes that can no longer initiate new 

rounds of translation accumulate as inactive, �hibernating� ribosomes. Storing ribosomes in 

an inactive state may protect them from damage and ensures that upon stress relief translation 

can quickly recover without the energy and time consuming need for extensive ribosome 

biogenesis. For example in yeast, inactive ribosomes that accumulate during glucose 

starvation stress rapidly redistribute into polysomes upon glucose addition (Ashe et al, 2000). 

In bacteria hibernating ribosomes have been well studied. In Eschericia coli stress induced 

factors bind to ribosomes in a translation inhibiting conformation. One of these factors, RMF, 

has been found to be induced in at least ten different stress conditions (Moen et al, 2009). 

Binding of RMF to inactive ribosomses causes 70S ribosomes to dimerize into 90S 

complexes. The binding of a second factor, HPF, further stabilizes the dimer, and converts it 

into a 100S particle (Ueta et al, 2008). Alternatively, a factor, Yfi1, may bind and stabilize the 

formation of inactive, monomeric 70S ribosomes (Agafonov et al, 1999). Structural studies 

have shown that binding of RMF interferes with binding of the small ribosomal subunit to a 

mRNA, whereas association of ribosomes with HPF or Yfi1 is incompatible with mRNA and 

tRNA binding (Polikanov et al, 2012). This provides an explanation for the translation 

inhibitory effect of these factors.   

In eukaryotic cells inactive ribosomes also accumulate during stress. Although in rat cells 

inactive ribosome dimers have been observed in amino acid starved conditions, these have not 

been observed in any other eukaryotic organism so far (Krokowski et al, 2011). In many cell 

types 80S ribosomes accumulate during a wide variety of stress conditions. This was shown 

for example to occur in mammalian cells upon serum-depletion (Nielsen et al, 1981), in yeast 

and mammalian cells after amino acid shortage (Krokowski et al, 2011; Tzamarias et al, 

1989) and in yeast during osmotic stress (Uesono & Toh, 2002), lithium induced stress 

(Montero-Lomeli et al, 2002), and after exposure to fusel alcohols (Ashe et al, 2001). The 80S 

ribosomes that accumulate in S. cerevisiae during glucose starvation stress (Ashe et al, 2000) 

contain the protein Stm1 in a conformation that is incompatible with translation and that 

stabilizes the inactive 80S monomers (Ben-Shem et al, 2011). This factor and its role in 

translation inhibiting stress will be discussed in further detail in the paragraphs below. 
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1.2.5 Stm1 

In S. cerevisiae the Stm1 protein was originally identified as a factor binding specific DNA 

structural elements: G4 quadruplexes (Frantz & Gilbert, 1995) and purine motif triple helical 

DNA (Nelson et al, 2000). It was implicated in several processes including promotion of 

apoptosis-like cell death (Kazemzadeh et al, 2012; Ligr et al, 2001) and telomere replication 

(Hayashi & Murakami, 2002).  

 

1.2.5.1 Stm1 and translation 

Although, in agreement with a function in telomere replication, a fraction of Stm1 localizes to 

the nucleus, a much larger amount is found in the cytoplasm (Van Dyke et al, 2004). Here it 

binds to ribosomes (Inada et al, 2002; Van Dyke et al, 2004). Whereas Stm1 was found in 

fractions of the cell lysate, obtained from growing yeast, that contain 80S ribosomes or 

polysomes, none could be detected in fractions not containing any ribosomes (Van Dyke et al, 

2004). In high speed sedimentation complexes Stm1 is found to be present in similar 

quantities as several ribosomal proteins (Van Dyke et al, 2006). Together these findings 

suggest that a large majority of Stm1 is bound to ribosomes, and that nearly all ribosomes, 

including the translating ones, are bound to Stm1.  

Several effects of deletion or overexpression of Stm1 have been reported. In S. cerevisiae 

deletion of STM1 causes a reduction in overall protein synthesis. Overexpression of Stm1 

causes a reduction of protein synthesis as well, but only in the first hour of overexpression, 

accompanied by an increase in polysome/80S ratio (Van Dyke et al, 2009). The latter suggests 

that Stm1 negatively affects elongation, termination or recycling. It should be noted that these 

overexpression experiments were performed in yeast in which protein degradation by the 

proteasome was inhibited. Stm1 overexpression caused the accumulation of an ubiquitylated 

form, whereas the level of unubiquitylated Stm1 was essentially unaffected (Van Dyke et al, 

2009). This suggests that the protein level of Stm1 is tightly controlled and that the effects 

observed in these overexpression conditions might be due to the accumulation of 

ubiquitylated Stm1. On the other hand, in support of the effects being due to Stm1 

overdosage, in yeast lysate and rabbit reticulocyte lysate addition of Stm1 also inhibits 

translation in a manner independent of the presence of a cap or poly(A) tail on the translated 

mRNA. Moreover, in yeast lysate Stm1 addition causes trapping of a reporter mRNA in 80S 

ribosomes, in a way that is dependent on translation initiation (Balagopal & Parker, 2011). 
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These findings support a negative effect of an excess of Stm1 on translation by affecting a 

step downstream of translation initiation. 

 

1.2.5.2 Stm1 and recovery from translation inhibiting conditions 

Stm1 appears to be important for recovery of growth after certain growth limiting conditions. 

Absence of Stm1 reduces the amount of S. cerevisiae cells recovering from nitrogen 

starvation (Van Dyke et al, 2006).  S. cerevisiae lacking Stm1 also takes more time to recover 

growth upon glucose addition, after spending several days in stationary phase. This coincides 

with a strong reduction in the reappearance of polysomes (Van Dyke et al, 2013), indicating 

that Stm1 is needed for restart of translation when cells shift from growth inhibiting to growth 

permitting conditions. Several observations indicate that the importance of Stm1 for recovery 

of growth and translation depends on a role of the protein promoting the preservation of 

ribosomes during stress or other situations that reduce the rate of translation in a cell. First of 

all it was observed that deletion of Stm1 leads to a decrease in the 80S ribosome peak in 

polysome profiles during stationary phase as well as a reduction in the level of 60S subunit 

protein L3 (Van Dyke et al, 2013). Second, Stm1 was found to be bound to inactive 

ribosomes accumulating during glucose starvation stress in S. cerevisiae, in a conformation 

that clamps the subunits together. X-ray crystallography studies on ribosomes purified from 

glucose starved S. cerevisiae (Ben-Shem et al, 2011) demonstrate that the protein follows the 

path of the mRNA from the ribosomal mRNA entry tunnel to the P-site (Figure 20). It 

contacts several conserved 40S subunit residues important in mRNA and tRNA binding in 

both A and P-site. This conformation of Stm1 therefore prevents mRNA and tRNA binding. 

From the P-site it crosses to the 60S subunit, where it contacts 60S rRNA and protein. This 

conformation of Stm1, interacting with both subunits, clamps them together, preventing 

subunit dissociation (Ben-Shem et al, 2011). A similar conformation of Stm1 homologs was 

observed recently in human and Drosophila ribosomes (Anger et al, 2013). A function of 

Stm1 stabilizing ribosomal subunit association is further supported by the observation that 

adding Stm1 to ribosomal subunits in vitro induces subunit joining into an 80S ribosome 

(Correia et al, 2004).  

The stabilizing, translation inhibiting conformation of Stm1 during stress suggests a function 

analogous to RMF, HPF and YfiA in bacteria. A major difference, however, is that Stm1 is 

not induced in stress conditions and also binds to polysomal, and therefore translating 

ribosomes in non-stress conditions (see above). This suggests that ribosome bound Stm1 can 
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adopt at least two conformations: one that is compatible and one that is incompatible with 

translation.  

 

 
(Ben-Shem et al, 2011) 

Figure 20 Stm1 in a ribosome from glucose starved S. cerevisiae. 
Stm1 interacts with both ribosomal subunits and partly occupies the mRNA tunnel. It interacts with conserved 
rRNA residues known to interact with mRNA and tRNA (magenta). Stm1: red, 40S subunit: grey, 60S subunit: 
orange. 
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1.3 THE TERMINATION FACTOR-LIKE COMPLEX DOM34-HBS1 

 

Central to my PhD work are the factors Dom34 and Hbs1, which form a complex with 

ribosome dissociating activity, acting on both RNA bound and RNA free ribosomes. The 

complex has been implicated in various RNA quality control pathways that act on stalled 

translational complexes. The Dom34-Hbs1 complex will be introduced in this paragraph. 

Dom34 (also known as Pelota in many organisms) and Hbs1 are two factors with sequence 

similarity to translation termination factors eRF1 and eRF3 respectively. Hbs1 is a GTPase 

belonging to the family of eEF1 -like GTPases, like termination factor eRF3 and elongation 

factor eEF1  (Atkinson et al, 2008; Wallrapp et al, 1998). For convenience all Dom34-Pelota 

orthologs will be refered to as Dom34 from here on. 

Dom34 and Hbs1 have been shown to interact in vivo by yeast two hybrid and GST pull down 

experiments (Carr-Schmid et al, 2002), as well as in vitro (Graille et al, 2008). Dom34 and 

Hbs1 are conserved proteins. Dom34 has orthologs in eukaryotes and archaea (Eberhart & 

Wasserman, 1995; Ragan et al, 1996). Whereas Hbs1 has orthologs only in eukaryotes 

(Inagaki & Ford Doolittle, 2000; Wallrapp et al, 1998), the function of an archaeal Dom34 

GTPase partner appears to be filled by aEF1 . Archaeal Dom34 and aEF1  interact as shown 

by yeast two hybrid experiments, co-immunoprecipitation of recombinant proteins, and co-

crystalization experiments (Kobayashi et al, 2010; Saito et al, 2010).  

Structural resemblance of the Dom34-Hbs1 complex to the eRF1-eRF3 complex and other 

ribosome binding complexes (see 1.3.2.1) suggests that the Dom34-Hbs1 complex can bind 

the ribosomal A-site. This was further confirmed by cryo-EM studies on ribosome bound 

Dom34-Hbs1 complex (Becker et al, 2011) and biochemical competition experiments, in 

which the presence of inactive eRF1 reduced Dom34-Hbs1 activity (Shoemaker et al, 2010). 

Interaction with Dom34 increases the affinity of Hbs1 for GTP 5 to 12-fold (Chen et al, 2010; 

Graille et al, 2008), whereas GTP binding by Hbs1 increases its affinity for Dom34 9-fold 

(Chen et al, 2010). Interaction with both Dom34 and a ribosome stimulates GTP hydrolysis 

by Hbs1 maximally (Pisareva et al, 2011; Shoemaker et al, 2010). 

Dom34 and Hbs1 are cytoplasmic proteins (Huh et al, 2003; Xi et al, 2005). In Drosophila 

Dom34 mRNA is expressed at various stages of development and in adults (Eberhart & 

Wasserman, 1995). Hbs1 is expressed during early mouse embryonic development and in 

various tissues in adult mice (Wallrapp et al, 1998). In subcellular fractionation experiments 
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on human Hep2G cells Dom34 co-localizes with actin microfilaments and it is found near the 

nuclear envelope, presumably at the endoplasmic reticulum (Burnicka-Turek et al, 2010).  

 

1.3.1 Phenotypical analysis 

In the yeast S. cerevisiae deletion of DOM34 was reported to cause slow growth, exhibit a G1 

delay and to be defective in meiotic division, sporulation and in pseudohyphal growth (Davis 

& Engebrecht, 1998). However, the growth defect might be dependent on the genetic 

background of the strain (see also paragraph 1.3.1.1), as it was not reproduced in other reports 

(Carr-Schmid et al, 2002), see also result section). In higher eukaryotes absence of Dom34 

appears to have a more severe impact. In Drosophila males homozygous for dom34 mutations 

are sterile due to a defect in spermatogenesis. The cell cycle arrests early in the first meiotic 

division, where no breakdown of the nuclear envelope or spindle formation occurs. In 

addition dom34 mutants have eye defects, with the eyes of homozygous mutants being 30 % 

smaller than those of heterozygous siblings (Eberhart & Wasserman, 1995). It was also found 

that Dom34 controls self-renewal of germline stem cells by repressing differentiation (Xi et 

al, 2005). Mouse embryos lacking Dom34 do not develop past day 7.5 of embryogenesis, due 

to a defect in proliferation after formation of the three germ layers (Adham et al, 2003). In 

human Hep2G cells overexpression of Dom34, which is physically associated with the actin 

cytoskeleton, disrupts actin stress fibers and negatively affects cell growth (Burnicka-Turek et 

al, 2010).  

Hbs1 was identified as a multicopy suppressor of a slow growth phenotype in strains that lack 

cytosolic Hsp70 proteins Ssb1 and Ssb2 (Nelson et al, 1992). The Ssb proteins are chaperones 

that prevent newly produced polypeptides from aggregating, aiding their correct folding 

(Willmund et al, 2013). It has been suggested that Hbs1 might function to catalyze stop-codon 

independent peptide release from ribosomes stalled due to nascent peptide aggregation 

(Inagaki & Ford Doolittle, 2000). Although Hbs1 is similar in structure to termination factor 

eRF3 (see paragraph 1.3.2.1), it cannot complement its absence, nor does it interact with the 

binding partner of eRF3, eRF1 (Wallrapp et al, 1998).   

 

1.3.1.1 Dom34 and Hbs1 are important in strains with 40S subunit deficiency 

In S. cerevisiae deletion of either DOM34 or HBS1 results in synthetic slow growth defects 

with deletion of genes encoding a copy of a 40S ribosomal subunit protein. This effect is most 

pronounced at low temperatures (Bhattacharya et al, 2010; Carr-Schmid et al, 2002). Because 



most ribosomal proteins are encoded by two gene copies (e.g. ribosomal protein S28 by 

RPS28A and RPS28B), these strains have reduced levels of a particular 40S subunit protein, 

which results in 40S subunit deficiency (Bhattacharya et al, 2010; Carr-Schmid et al, 2002). 

This is accompanied by a reduction in the number of polysomes and protein production, 

indicating that the decreased number of 40S subunits available result in reduced translation 

initiation (Figure 21). Deletion of DOM34 or HBS1 causes an increase in the amount of 80S 

ribosomes and, especially at lower temperatures, a slight reduction in the number of 

polysomes. The slowly growing double mutants (rpsX dom34  or rpsX hbs1 , in which X 

can represent various numbers corresponding to different 40S subunit proteins) combine the 

40S subunit deficiency with the increase in 80S ribosomes of the two single mutants. The 

number of polysomes and protein production are further reduced, most likely explaining the 

growth defect (Bhattacharya et al, 2010; Carr-Schmid et al, 2002).  

 

A              B 

  
(Bhattacharya et al, 2010) 

 
Figure 21 Deletion of Dom34 causes growth defect in 40S subunit deficient yeast. 

Growth curves (A) and polysome profiles (B) of wild type (WT), dom34 , rps6a  and rps6a dom34  S. 
cerevisae. A. Deletion of Dom34 does not affect growth in a wild type strain, but severly slows growth in a 
strain lacking one copy of the two genes encoding ribosomal protein S6. B. In absence of Dom34 causes an 
increase in 80S ribosomes and a slight reduction in polysomes, both in wild type and in 40S subunit deficient 
rps6a  yeast. 
 

Further supporting a critical role of Dom34 and Hbs1 in conditions where translation 

initiation is reduced is the observation that deletion of DOM34 or HBS1 causes slow growth 

in yeast in which translation is inhibited by constitutive phosporylation, and thereby inhibition 

of initiation factor eIF2 (Carr-Schmid et al, 2002). Interestingly, the yeast strain in which 
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single deletion of DOM34 causes a slow growth phenotype has relatively low levels of free 

40S subunits and high levels of 60S subunits (Davis & Engebrecht, 1998), suggesting that the 

strain has a pre-existing 40S subunit deficiency, making Dom34 and Hbs1 important for 

growth. In this strain overexpression of RPS30A, encoding 40S subunit protein S30, rescues 

the dom34  slow growth phenotype (Davis & Engebrecht, 1998).  

 

1.3.2 Structural models of Dom34 and Hbs1 

Structural information on Dom34 and Hbs1 is available from X-ray crystallography studies on 

Dom34 from S. cerevisiae (Graille et al, 2008), its archaeal paralogs from Thermoplasma 

acidphilum (Lee et al, 2007), Archaeoglobus fulgidus and Sulfolobus solfataricus (Lee et al, 

2010), on Dom34 in complex with Hbs1 from S. pombe (Chen et al, 2010) and on the archaeal 

Dom34 in complex with its partner aEF1  from Aeropyrum pernix (Kobayashi et al, 2010). In 

addition a cryo-EM study on the S. cerevisiae Dom34-Hbs1 complex bound to a ribosome has 

been published (Becker et al, 2011).   

Dom34 is composed of three domains (Figure 22). The individual domains are highly similar 

between structures obtained from different orthologs, but the relative positions of the domains 

with respect to each other differ. This indicates flexibility of the linker regions connecting the 

domains and suggests that large conformational changes are essential for the function of 

Dom34 (Graille et al, 2008; Lee et al, 2010; Lee et al, 2007).  

Whereas the central and C-terminal domains of Dom34 are similar in sequence and structure 

to those of translation termination factor eRF1, the N-terminal domain is not (Figure 22). It 

adopts a highly divergent Sm-fold (Graille et al., 2008; Lee et al., 2007). The Sm-fold is 

found in the Lsm family of proteins, which form RNA binding hexa- or heptemers (Khusial et 

al, 2005). However the N-terminal domain of Dom34 lacks the Sm1 and Sm2 motifs 

implicated in RNA binding and has structural impairments preventing oligomerization 

(Graille et al, 2008). Because of its difference from eRF1, the Dom34 N-terminal domain 

lacks conserved residues essential for stop codon recognition in eRF1, such as the NIKS loop 

(Frolova et al, 2002). 

The central domain of Dom34 is structurally similar to that of eRF1. A major difference 

resides in the absence of the GGQ motif and the length of the -helix following it (Graille et 

al, 2008; Lee et al, 2007) (Figure 22). In eRF1 the GGQ motif is essential for triggering 

peptidyl-tRNA hydrolysis, thereby releasing the peptide (Frolova et al, 1999). It is therefore 

unlikely that Dom34 can induce peptidyl-tRNA hydrolysis.  
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(Graille & Seraphin, 2012) 

Figure 22 Dom34 versus eRF1 
Crystal structures of S. cerevisiae Dom34 (Graille et al, 2008) and human eRF1 (Song et al, 2000). The positions 
of the highly conserved GGQ and NIKS motifs in eRF1, important for peptidyl-tRNA hydrolysis and stop codon 
recognition respectively, are indicated.  
 

Hbs1 consists of three structured domains, the domains G, II and III, preceded by an 

unstructured N-terminus (Chen et al, 2010). The three structured domains resemble those of 

EF-Tu, the related bacterial GTPase responsible for bringing tRNAs to the ribosomal A-site 

(Chen et al, 2010). The G domain harbors the GTP binding and hydrolysis activity of Hbs1, 

as in other GTPases. G domains have a universal structure and contain several highly 

conserved elements important for its activity. These include the P-loop - a phosphate binding 

loop � and two switch regions I and II, which change conformation between GTP and GDP 

bound state (Vetter & Wittinghofer, 2001).   

 

1.3.2.1 The Dom34-Hbs1 complex 

Three sets of structural data are available on Dom34 in complex with a GTPase partner.  In 

case of archaeal Dom34, this binding partner is not Hbs1 but aEF1  (Saito et al, 2010). All 

complexes structurally resemble other complexes that bind the ribosomal A-site, such as the 

bacterial EF-Tu-tRNA complex (Chen et al, 2010; Kobayashi et al, 2010).  
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(Graille & Seraphin, 2012) 

Figure 23 The archaeal Pelota-aEF1  complex structurally resembles the bacterial EF-Tu complex 
Crystal structures of the Aeropyrum pernix Pelota-aEF1  complex (Kobayashi et al, 2010) and the E. coli EF-
Tu-tRNA complex. Domains are depicted in different colours.  
 

A major difference between the Dom34-Hbs1/aEF1  complexes is found in the orientation of 

the G domain. In the S. pombe complex it rotates away from domains II and III and does not 

interact with Dom34 (Chen et al, 2010). In the archaeal complex and the ribosome bound S. 

cerevisiae complex it rotates towards domains II and III and participates in interaction with 

Dom34 (Becker et al, 2011; Kobayashi et al, 2010). Whereas the latter two structures are 

obtained from complexes containing GTP and the GTP analog GDPNP respectively, the S. 

pombe structure was obtained from a complex not binding any nucleotide (Becker et al, 2011; 

Chen et al, 2010; Kobayashi et al, 2010). This might suggest that the orientation of the G 

domain depends on whether a GTP molecule is bound or not. However, this is not in line with 

the observations of our collaborators Julien Henri and Marc Graille, who found Hbs1, without 

nucleotide or bound to GDP, to be in a similar conformation as Hbs1 in the archaeal and the 

S. cerevisiae ribosome bound complexes (see result section). Alternatively, the deviating 

orientation of the G domain in the S. pombe model could be due to crystal packing. Clearly 

the conformation in which the G-domain rotates towards II and III is the one that is adopted 

when binding the ribosomal A-site. 

The interface between Dom34 and Hbs1 or Dom34 and aEF1  involves multiple domains of 

both proteins. In all three models the C-terminal domain of Dom34 interacts with domain III 

of Hbs1 and the central domain of Dom34 interacts with domains II and III of Hbs1. In the 



archaeal and the S. cerevisiae ribosome bound model the central domain of Dom34 also 

interact with the G domain of Hbs1. The molecular details of the interactions differ between 

the models. Notably a conserved positively charged loop in the central domain of Dom34 is 

participating in Dom34-Hbs1/aEF1  interaction in all models: in the S. pombe model it 

contacts Hbs1 domain II and III, whereas in the other two models it interacts with switch I in 

the G domain. Another highly conserved Dom34 central domain motif, PGF, interacts with 

switch I and II of the Hbs1 G domain in the archaeal model. 

 

1.3.2.2 Interaction of the Dom34-Hbs1 complex with the ribosome 

The cryo-EM model of S. cerevisiae Dom34 and Hbs1 bound to a ribosome shows that two 

loops in the N-terminal domain of Dom34 reach deep into the decoding center of the 

ribosomal A-site. Here they interact with rRNA and with ribosomal proteins that contact 

residues important in decoding. Binding of Dom34-Hbs1 to a ribosome stalled on an mRNA 

causes the densities that represent mRNA in the ribosomal P-site to disappear. This suggests 

that Dom34-Hbs1 binding induces destabilization of mRNA-ribosome interaction. The model 

identified a structured part of the N-terminus of Hbs1, located at the mRNA entry site of the 

ribosome (Figure 24). In the ribosome bound model switch I of Hbs1 is resolved, whereas in 

the non-ribosome bound models it was not completely resolved (Becker et al, 2011). This, 

and the observation described above that Dom34 directly interacts with the switch regions, 

may provide a structural explanation on how interaction with Dom34 and the ribosome 

promote GTP binding and/or hydrolysis by Hbs1 (Chen et al, 2010; Graille et al, 2008; 

Shoemaker et al, 2010).  

 (Becker et al, 2011) 

Figure 24 Cryo-EM model of ribosome 
bound Dom34-Hbs1. 
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1.3.3 The Dom34-Hbs1 complex dissociates ribosomes 

Dom34 and Hbs1 can dissociate the subunits of ribosomes that are stalled on mRNAs as well 

as vacant, mRNA-free ribosomes. For efficient dissociation the ATPase Rli1 is required as 

well.  

 

1.3.3.1 In vitro dissociation of stalled and vacant ribosomes 

The first evidence that the Dom34-Hbs1 complex can dissociate stalled ribosomes came from 

biochemical experiments, in which in vitro assembled translational complexes, stalled on 

either a sense or a stop codon, were incubated with S. cerevisiae Dom34 and Hbs1. This 

resulted in ribosome dissociation and the release of a peptidyl-tRNA, with the rate of 

dissociation being independent on the codon type (Shoemaker et al, 2010). In contrast 

incubation with termination factors eRF1 and eRF3 causes peptide release only from 

ribosomes with a stop codon in their A site. Dom34-Hbs1 mediated peptidyl-tRNA release is 

a factor 15 slower than eRF1-eRF3 mediated peptide release. (Shoemaker et al, 2010). Further 

biochemical experiments reported that human Dom34 and Hbs1 can dissociate not only 

ribosomes stalled on a mRNA, but also in vitro assembled 80S ribosomes that are not 

associated with mRNA or translation factors. In both cases the human ortholog of Rli1 is 

required as well (Pisareva et al, 2011). In agreement with this Rli1 was also found to stimulate 

the rate of yeast Dom34-Hbs1 mediated dissociation of ribosomes stalled on a mRNA more 

than ten-fold (Shoemaker & Green, 2011). These biochemical studies, together with structural 

studies on Dom34 and Rli1 bound to a ribosome have given insight into the mechanistic 

details of Dom34-Hbs1 mediated ribosome dissociation. 

 

1.3.3.2 Mechanistic details of Dom34-Hbs1 and Rli1 mediated ribosome dissociation 

Whereas both Dom34 and Rli1 strongly contribute to the rate of ribosome dissociation, Hbs1 

is less required. The incubation of vacant or stalled ribosomes with all three human factors for 

10 minutes results in complete dissociation. Whereas absence of Rli1 blocks dissociation 

completely, absence of Hbs1 merely leads to a reduction in the fraction of ribosome 

dissociated (Pisareva et al, 2011). Kinetic analysis of the contribution of the yeast factors in 

dissociating stalled ribosomes indicates that whereas absence of Rli1 slowed dissociation 

more than 10-fold, absence of Hbs1 reduced the dissociation rate only 2,5-fold (Shoemaker & 

Green, 2011). On the other hand, adding Hbs1 but blocking its GTPase activity, either by 

addition of the non-hydrolyzable GTP analog GDPNP or by mutating the Hbs1 G domain, 
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causes a large reduction in  dissociation of both vacant and stalled ribosomes (Pisareva et al, 

2011; Shoemaker et al, 2010; Shoemaker & Green, 2011). For example, a yeast Hbs1 GTPase 

mutant slows dissociation of stalled ribosomes more than 20-fold (Shoemaker & Green, 

2011). These observations indicate that Hbs1 is not absolutely required for Dom34 to bind the 

ribosomal A-site and induce ribosome dissociation. However, when Hbs1 complexes with 

Dom34, its GTPase activity is essential for binding of the complex to the ribosome and/or 

inducing ribosome dissociation. 

Cryo-EM studies of S. cerevisiae Dom34 and Rli1, as well as their archaeal (Pyrococcus 

furiosus) orthologs bound to a ribosome stalled on a mRNA in presence of non-hydrolysable 

ATP analog ADPNP show that Rli1 occupies the same place as Hbs1 in the ribosomal A-site, 

where it interacts with the C-terminal domain of Dom34. Therefore Hbs1 and Rli1 cannot 

bind the ribosome or Dom34 simultaneously and should bind sequentially (Becker et al, 

2012). The presence of a non-hydrolysable GTP analog prevents Hbs1 from dissociating from 

the ribosome (Shoemaker & Green, 2011). This may explain why the GTPase activity of 

Hbs1 is important for ribosome dissociation, by allowing Rli1 to bind after GTP hydrolysis 

dependent Hbs1 release.  

Like other members of the ABC protein family, Rli1 contains a twin nucleotide binding 

domain, in a head to tail orientation (see paragraph 1.1.2.5). These nucleotide binding 

domains change from a closed conformation to an open conformation upon ATP hydrolysis. 

This causes a tweezer-like power stroke, which causes conformational changes in other 

domains of the protein itself as well as associated proteins (Hopfner & Tainer, 2003). Rli1 

ATPase activity is essential for inducing ribosome dissociation, as the presence of non-

hydrolysable ADPNP was shown to strongly inhibit yeast Dom34 and Rli1 mediated 

dissociation of stalled ribosomes (Shoemaker & Green, 2011). It has been proposed, based on 

structural models, that the conformational change in Rli1 induced by ATP hydrolysis is 

transmitted to Dom34, via the interaction between the iron-sulfur domain of Rli1 and the C-

terminal domain of Dom34. The change in conformation of Dom34 may then induce 

separation of the ribosomal subunits (Becker et al, 2012).  

Based on these structural and biochemical observations a model of Dom34, Hbs1 and Rli1 

mediated ribosome dissociation can be proposed, that is depicted in Figure 26 (Becker et al, 

2012; Shoemaker & Green, 2011). Dom34 in complex with GTP bound Hbs1 binds to a 

ribosome stalled on a mRNA or a vacant ribosome (1). An unknown signal induces GTP 

hydrolysis (2), which causes Hbs1 to dissociate (3) and makes the complex competent for 

recycling. ATP bound Rli1 can then bind (4).  ATP hydrolysis causes conformational changes 
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in Rli1 and Dom34, which result in destabilization of ribosomal subunit interaction and, in 

case of a stalled ribosome, release of the peptidyl-tRNA (5). 

 

 
Adapted from (Shoemaker & Green, 2011) 

 
Figure 25 Ribosome recycling by Dom34, Hbs1 and Rli1. 

For further details see text. 
 

It is unclear what happens to the mRNA, in case of mRNA bound ribosomes. Following 

dissociation of stalled yeast ribosomes it stays associated to the 40S subunit (Shoemaker et al, 

2010), but after dissociation of stalled human ribosomes it was found to be not ribosome 

bound (Pisareva et al, 2011). This difference may depend on the length of the part of the 

mRNA that is interacting with the ribosome (see below). 

Human orthologs of Dom34, Hbs1 and Rli1 only dissociate stalled ribosomes efficiently if the 

length of the mRNA extending 3� of the ribosomal P-site is shorter than 13 nucleotides 

(Pisareva et al, 2011). Yeast Dom34-Hbs1 and Rli1 dependent dissociation of stalled 

ribosomes also exhibits a dependence on the length of the mRNA 3� of the ribosome, 

although to a lesser extent than the human factors. In the yeast system, ribosomes stalled on 

mRNAs with a length up to 23 nucleotides downstream the P-site are dissociated with equal 
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efficiency. Beyond 23 nucleotides the length of the mRNA downstream of the P-site 

negatively correlates with the dissociation rate. In the yeast system the mRNA length 

dependence depends on the presence of Hbs1. It has been speculated that the N-terminus of 

Hbs1 is involved in monitoring mRNA length downstream of the ribosome, as it is located 

near the mRNA entry site (see paragraph 1.3.2.2) (Shoemaker & Green, 2011). The mRNA 

length dependence in vitro suggests that in vivo Dom34-Hbs1 and Rli1 mediated dissociation 

of ribosomes stalled in the middle of a mRNA might be preceded by a step shortening the 

mRNA downstream of the stalled ribosome, e.g. by endonuclease cleavage (see paragraph 

1.4.1).  

 

1.3.3.3 Dom34-Hbs1 mediated ribosome dissociation in vivo 

Two reports have been published that describe situations in which Dom34, Hbs1 and Rli1 

mediated ribosome dissociation may play a role. When mRNAs do not have a termination 

codon the ribosomes that translate them cannot terminate and recycle via the canonical route. 

This causes stalling of ribosomes at the 3� end or, in case the mRNA has a poly(A)tail, on the 

poly(A)tail of the mRNA. This, as well as the pathway that rapidly degrades these non-stop 

mRNAs will be described in further detail in paragraph 1.4.3. The ribosomes stalled on non-

stop mRNAs may block passage of the degradation machinery responsible for rapid decay of 

the mRNA. It was found that in absence of Dom34 or Hbs1 non-stop mRNAs are stabilized, 

suggesting that these factors are needed for removing the stalled ribosomes. Moreover it was 

found that absence of functional Dom34 or Hbs1 caused accumulation of ribosome associated 

peptidyl-tRNAs, further supporting this hypothesis (Tsuboi et al, 2012).  

Dom34-Hbs1 and Rli1 mediated ribosome dissociation may also be important for ribosome 

biogenesis. It was shown that during ribosome maturation 60S subunits associate with 

immature pre-40S subunits (Lebaron et al, 2012; Strunk et al, 2012). This is thought to serve 

as a quality control step. In absence of Dom34, or when Rli1 is depleted, ribosome assembly 

factors, which normally co-sediment mainly with pre-40S subunits, were found to co-

sediment with 80S ribosomes. This was interpreted as an accumulation of pre-40S � 60S 

complexes, indicating that Dom34 and Rli1 are involved in their dissociation (Strunk et al, 

2012). However, a wild type control strain was missing in these experiments. In another strain 

with a wild type-like genotype but grown in other conditions (with galactose as a carbon 

source instead of glucose), a similar set of assembly factors was found to co-sediment with 

80S ribosomes, making it questionable whether Dom34 and Rli1 are really involved in 

dissociating immature ribosomes.  
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1.4 CO-TRANSLATIONAL RNA QUALITY CONTROL ON 

INEFFICIENTLY TRANSLATING COMPLEXES 

 

Stalling of ribosomes during translation elongation makes a cell face two problems. First, an 

incomplete peptide is produced that is potentially toxic. Second, depending on the strength 

and cause of stalling a ribosome may not be able to terminate and therefore canonical peptide 

release and recycling cannot occur. Stalling can lead to queuing of ribosomes upstream of the 

primary stalled ribosome resulting in a large reduction in the rate of translation of the affected 

mRNA and, if stalling occurs with high frequency, potential sequestration of translation 

factors.  

Cells have acquired pathways to deal with the causes and results of inefficient translation. In 

eukaryotes three pathways have been described that detect and degrade RNAs that cause 

ribosome stalling. These are No-go decay (NGD), Non-functional rRNA decay (NRD) and 

Non-stop decay (NSD). Although identified as separate pathways that target RNAs, they have 

many characteristics in common and are tightly associated with mechanisms that deal with the 

consequences of ribosome stalling. The three pathways will be introduced in the following 

paragraphs. While I did not study NSD during my PhD, it will be introduced in detail because 

of its mechanistic overlap with the other two pathways. 

 

1.4.1 No-go decay 

In NGD stalling of a ribosome during elongation causes the degradation of the mRNA on 

which it is stalled.  

 

1.4.1.1 Mechanism of No-go decay 

NGD was first described by Doma & Parker in the yeast S. cerevisiae. They found that the 

insertion of a stem-loop, which was known to block the passage of elongating ribosomes 

(Hosoda et al, 2003), causes the destabilization of a PGK1 reporter mRNA. Its half life 

decreases two-fold compared to a reporter without stem-loop. This destabilization does not 

depend on the major 5� to 3� or 3� to 5� cytoplasmic degradation pathways or on NMD as 

absence of functional Dcp2, Ski7 or Upf1 does not affect the stability of the reporter. 

Insertion of a stem-loop in the 3�UTR, blocking ribosome scanning and thereby initiation, or 

insertion of a termination codon upstream of the stem loop prevented degradation. This 
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supports the idea that translation of the NGD reporter and subsequent ribosome stalling is 

required for substrate detection.  

In strains in which 5� to 3� degradation is blocked (xrn1 ) a degradation intermediate 

accumulates that corresponds in size to a fragment covering all nucleotides between stem-

loop and 3� end. When 3� to 5� degradation is blocked (in absence of functional Ski complex 

or Ski7) an intermediate accumulates that corresponds in size to a fragment covering all 

nucleotides between 5� end and stem-loop. This indicates that degradation of the mRNA is 

initiated by an endonucleolytic cleavage in the vicinity of the ribosome stall site, and that the 

resulting decay intermediates are substrates of Xrn1 and the cytoplasmic exosome (Doma & 

Parker, 2006) (Figure 26). The accumulation of at least the 5� cleavage products was found to 

be dependent on the presence of the factors Dom34 and Hbs1 (Doma & Parker, 2006), which 

was interpreted as Dom34 and Hbs1 stimulating mRNA cleavage.  

When Xrn1 mediated degradation is blocked, a stemloop containing PGK1 mRNA, or a 

product containing its 3� end, accumulates in P-bodies. This suggests that NGD 3� cleavage 

products are degraded in P-bodies (Cole et al, 2009). A NGD intermediate resulting from a 

stem-loop containing PGK1 reporter mRNA was also shown to accumulate in Drosophila S2 

cells (Passos et al, 2009), indicating that the pathway is conserved in higher eukaryotes. This 

intermediate accumulation is dependent on the presence of the Dom34 ortholog in 

Drosophila. 
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Figure 26 No-go decay model. 

 

1.4.1.2 Stall sites that cause NGD 

Apart from a stem-loop, other sites that cause ribosomal stalling were shown to induce NGD 

in S. cerevisiae. These include pseudoknots, rare codons and premature termination codons, 

although NGD efficiency is low when compared to a stem-loop (Doma & Parker, 2006). Also 

RNA damage causes mRNA destabilization that may be related to NGD. The Pokeweed 

antiviral protein (PAP) is normally expressed in the pokeweed plant (Phytolacca americana) 

and is known to depurinate viral RNAs. When the Brome mosaic viral RNA3 is co-expressed 

in S. cerevisiae with PAP, causing depurination at specific sites, this leads to destabilization 

of the RNA. In analogy with NGD substrates, blocking the major cytoplasmic RNA 

degradation pathways caused the Dom34-Hbs1 dependent accumulation of RNA degradation 

intermediates (Gandhi et al, 2008).  This suggests that depurinated RNA might cause 

ribosome stalling and induce NGD. However, the mechanistic characteristics of RNA 

degradation differ from NGD as described above. Instead of accumulation of a 5� 

intermediate in a strain in which 3� to 5� degradation was blocked and accumulation of a 3� 
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intermediate in a strain in which 5� to 3� degradation was blocked, the authors observed the 

accumulation of a 3� intermediate in the first strain and a 5� intermediate in the second strain.  

This does not correspond to the results of an NGD endonucleolytic cleavage, but could 

instead be the consequence of the depurination site blocking progress of the exonucleases that 

might start degrading the RNA from its ends.   

An mRNA that contains a sequence encoding multiple consecutive basic amino acids induces 

NGD. The production of a stretch of positively charged amino acids causes ribosomes to 

pause due to interaction of the positively charged nascent peptide with the negatively charged 

ribosomal tunnel in vitro (Lu & Deutsch, 2008; Lu et al, 2007). In vivo positively charged 

amino acids have been shown to locally slow down translating ribosomes (Charneski & Hurst, 

2013). Similar to stem-loop induced NGD, stretches of 12 arginines (R12) or lysines (K12) 

cause the accumulation of a 5� degradation intermediate in a ski2  strain and a 3� intermediate 

in a xrn1  strain, when inserted between GFP and FLAG in a GFP-FLAG-HIS3 reporter 

gene, indicating endonucleolytic cleavage. The level of the 5� intermediate is at least partly 

dependent on the presence of Dom34 (Kuroha et al, 2010). 

A quadruple repeat of the very inefficiently translated arginine codon CGA (Letzring et al, 

2010) appeared particularly efficient in triggering NGD. It causes a 5-fold decrease in the half 

life of a reporter PGK1 mRNA (Chen et al, 2010). Whereas for other stall sites either 

translational stalling or RNA degradation appear thus inefficient that steady state levels of full 

length mRNAs are not visibly affected (Kuroha et al, 2010), see results section), a CGA 

repeat reduces them by 75%. The CGA repeat causes the accumulation of NGD intermediates 

when Xrn1 or exosome-mediated degradation is defective. In contrast to other stall sites, 

deletion of Dom34 or Hbs1 does not lead to reduced accumulation of the intermediates, 

indicating that their production and decay are Dom34-Hbs1 independent (Chen et al, 2010).  

Finally G-rich nucleotide sequences have been shown to cause the accumulation of expected 

NGD intermediates in strains defective for Xrn1 or exosome-mediated degradation, when 

inserted in a GFP-FLAG-HIS3 reporter mRNA. It was proposed that these G-rich sequences 

form a stable quadruplex structure that does not allow ribosomes to pass. The accumulation of 

NGD intermediates is Dom34-Hbs1 dependent (Tsuboi et al, 2012). 

In summary various stall sites can induce NGD. The efficiency of mRNA degradation and the 

Dom34-Hbs1 dependence of NGD intermediate accumulation vary per type of stall site. 
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1.4.1.3 Endonucleolytic cleavage 

NGD starts with an endonucleolytic cleavage. The identity of the endonuclease has not been 

identified so far. The N-terminal domain of Dom34 from S. cerevisiae and an archaeal 

paralog has been reported to have ribonuclease activity in in vitro experiments(Lee et al, 

2007). However, these observations could not be reproduced with S. cerevisiae Dom34 

(Passos et al, 2009). That Dom34 is not the endonuclease is further supported by many in vivo 

studies in which reporter mRNAs were still cleaved in absence of Dom34, even though in 

most cases with less efficiency (Chen et al, 2010; Kuroha et al, 2010; Passos et al, 2009). It 

has also been excluded that the endonuclease activity of the exosome is responsible for NGD 

cleavage (Schaeffer & van Hoof, 2011). 

Several attempts have been made to map the exact sites of cleavage induced by various stall 

sites, using methods like analysis of the resulting fragments on gel or by northern blotting, 5�-

RACE and primer extension experiments. In most cases cleavage sites were identified at one 

or multiple locations upstream of the site where a ribosome was expected to stall (Chen et al, 

2010; Doma & Parker, 2006; Tsuboi et al, 2012). At least in case of a stem loop, some 

cleavage sites were identified downstream of the stall site as well (Doma & Parker, 2006). 

If stalling is strong and certainly if stalled ribosomes cannot be released, one would expect 

that additional ribosomes queue up upstream of the primarily stalled ribosome. These 

secondarily stalled ribosomes may also induce mRNA cleavage. Indeed there is evidence that 

multiple cleavages can occur due to queuing of ribosomes (Tsuboi et al, 2012) (see 

paragraphs 1.4.4.1 and 1.4.5).   

 

1.4.2 Non-functional ribosomal RNA decay 

In NRD rRNAs that are defective in translation are degraded. The pathway was first described 

by LaRiviere et al. in 2006 and has only been studied in S. cerevisiae. It was found that 

specific mutations in rRNAs that make them functionally defective do not affect their 

maturation, but the resulting mature rRNAs are rapidly degraded. This leads to a 5 to 10-fold 

decrease in their steady state level. The mutants studied affected either positions G530 or 

A1492 (E. coli numbering system) of the 18S rRNA, which are important nucleotides in the 

decoding center, and positions A2451 or U2585 of the 25S rRNA, located in the peptidyl 

transferase center (LaRiviere et al, 2006).  
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1.4.2.1 Non-functional ribosomal RNA decay on defective 18S rRNAs 

Mutant 18S rRNAs localize in the cytoplasm, with the same diffuse distribution as wild type 

18S rRNAs. Their degradation is inhibited by the translation elongation inhibiting antibiotic 

cycloheximide (Cole et al, 2009) and they are found in both 40S and 80S peak of polysome 

profiles obtained by sucrose density sedimentation (LaRiviere et al, 2006). This suggests that 

40S subunits containing defective 18S rRNAs can associate with 60S subunits, that the 

affected 40S subunits participate in (inefficient) translation and that this participation in 

translation is required for the detection and degradation of the defective 18S rRNA.  

The mechanism of defective 18S rRNA degradation and the machinery involved is not 

completely known (Figure 27). Although mutant 18S rRNAs are partly stabilized (2-fold) in 

strains defective for recruitment of the cytoplasmic exosome (ski7 ), a mutation in the 

exosome�s catalytic subunit Dis3 does not affect their stability. In some genetic backgrounds, 

but not in others, mutant 18S rRNAs are partly stabilized (3-fold) in strains lacking Xrn1. 18S 

NRD targets co-localize with NGD targets in P-bodies when Xrn1 mediated degradation is 

blocked. Importantly, mutant 18S rRNAs are stabilized 2-fold in absence of Dom34 or Hbs1, 

with deletion of Dom34 or Hbs1 in combination with deletion of Xrn1 or Ski7 resulting in a 

dramatic, synergistic stabilization (Cole et al, 2009). Possibly, Dom34-Hbs1 mediated 

ribosome dissociation is required to make the defective 18S rRNA in the 40S subunit 

accessible for the degradation machinery. 

The 18S NRD pathway may target 18S rRNAs other than those with defects in the decoding 

center. In yeast with reduced activity of the Rio1 protein, a factor involved in 40S ribosomal 

subunit maturation, 40S particles containing 20S precursors of the 18S rRNA were found to 

accumulate and 18S rRNA levels were dramatically decreased. These immature 40S subunits 

are capable of binding 60S subunits and mRNA. The levels of 18S and 20S rRNAs suggested 

that large part of the accumulating 20S rRNAs are rapidly degraded. These findings, 

indicating degradation of immature rRNAs, that are part of ribosomes that may initiate 

translation but are probably defective in translation elongation, resemble the characteristics of 

18S NRD. Moreover it was found that deletion of DOM34 or HBS1 causes a restoration of 

18S rRNA levels accompanied by a decrease in 20S rRNA levels and it rescues the strain�s 

growth defect. The authors� interpretation suggested that in absence of Dom34 or Hbs1 less 

efficient 20S rRNA degradation causes more pre-40S subunits to be available as substrates for 

the partially defective Rio1 to complete 40S subunit maturation (Soudet et al, 2010).  

In summary, 18S NRD is a second pathway in which RNAs that cause inefficient translation 

are targeted for degradation and in which the Dom34-Hbs1 complex plays a role. 
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Figure 27 Non-functional 18S rRNA decay model. 
 

1.4.2.2 Non-functional ribosomal RNA decay on defective 25S rRNAs 

25S NRD differs from 18S NRD in several mechanistical aspects. In contrast to mutant 18S 

rRNAs, degradation of mutant 25S rRNAs is not inhibited by cycloheximide and is therefore 

not translation dependent. The RNA degradation machinery involved differs as well: no 

nucleases destabilizing defective 25S rRNAs have been identified so far. In particular Xrn1 

and the exosome or the factors Dom34 or Hbs1 do not affect mutant 25S rRNA stability (Cole 

et al, 2009). Although deletion of Xrn1 does not affect the rate of degradation of a defective 

25S rRNA, it results in the appearance of a shorter fragment (Cole et al, 2009) suggesting that 

the exonuclease might be involved in the degradation of decay intermediates produced from 

defective 25S rRNAs. Mutant 25S rRNAs localize at different sites than 18S rRNAs.  They 

have been found in perinuclear foci, contrasting with the diffuse localization of mutant 18S 

rRNAs (Cole et al, 2009). 25S NRD was found to depend on several factors involved in 

protein degradation. This suggests that degradation of ribosomal proteins or ribosome 

associated proteins precedes and is required for the degradation of defective 25S rRNAs.  18S 

NRD does not depend on these factors (Fujii et al, 2009; Fujii et al, 2012). 
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1.4.3 Non-stop decay 

In NSD mRNAs that lack a termination codon are rapidly degraded. Translation of these non-

stop (NS) mRNAs results in stalled ribosomes, as in absence of a stop codon no canonical 

termination is possible. The term NSD has been used to describe the rapid decay of two types 

of non-stop mRNAs that mechanistically share some characteristics but differ on other points 

(Figure 28).  

 

1.4.3.1 NSD substrates 

The first type of these NS messages are polyadenylated mRNAs of which the ORF lacks an in 

frame termination codon. Poly(A)+ NS messages can result from the use of polyadenylation 

signals in an ORF or from point mutations that change a stop codon into a sense codon. 

Whereas translation of the first type results in the production of a truncated protein, the 

second type produces a longer protein consisting of a translated ORF and 3�UTR. In both 

cases the C-terminus of the protein contains a stretch of lysines resulting from translation of 

the poly(A) tail. As described in paragraph 1.4.1.2, a stretch of lysines causes ribosomes to 

stall. It is therefore not surprising that NSD and NGD share several mechanistic 

characteristics. 

Genome wide analyses of mutations and SNPs in humans have identified over 100 mutations 

that change a stop codon into a sense codon {(Hamby et al, 2011; Yamaguchi-Kabata et al, 

2008). Several diseases have been described to be caused by mutations turning stop codons 

into sense codons (Klauer & van Hoof, 2012). In some of these cases the affected mRNAs do 

not contain stop codons in the 3�UTR, downstream of the mutated stop codon, turning them 

into NS mRNAs  (e.g.(Seminara et al, 2003; Taniguchi et al, 1998).  The pathological effect 

of these mutations may result from the low protein levels produced from the NS transcripts. 

Therefore, if protein products from the NS mRNAs are not toxic the NSD mechanism 

contributes to pathology instead of preventing it.  

The biological relevance of the NSD pathway is more likely to result from reducing levels of 

proteins produced from mRNAs that are prematurely polyadenylated. Premature 

polyadenylation is likely to occur with a certain frequency: many ORFs identified in human 

and yeast contain a consensus sequence for 3� cleavage and polyadenylation in their coding 

region (Frischmeyer et al, 2002). Moreover, it was found in HeLa cells that introns frequently 

contain cryptic polyadenylation signals (Kaida et al, 2010). Although premature cleavage and 
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polyadenylation at these sites is suppressed in a U1-dependent manner, NSD could provide a 

mechanism to prevent protein production from mis-spliced mRNAs. 

A second type of NS mRNAs lacks both a stop codon and a poly(A)  tail. These poly(A)- NS 

mRNAs may result from endonucleolytic cleavage in the ORF of an mRNA, such as occurs 

during NGD (Doma & Parker, 2006) or during NMD in some species (Eberle et al, 2009; 

Gatfield & Izaurralde, 2004). Translation of poly(A)- mRNAs would result in the production 

of a truncated protein. To study the fate of poly(A)-  NS mRNAs, constructs have been used 

in which a hammerhead ribozyme (Rz) sequence was inserted in an ORF (Kobayashi et al, 

2010; Meaux & Van Hoof, 2006; Schaeffer & van Hoof, 2011). The Rz cleaves the mRNA, 

and therefore transcription of these genes results in a capped mRNA sequence that lacks stop 

codon and poly(A)  tail but contains instead an unconventional 2�-3� cyclic phosphate at its 3� 

end. 

 

 

 

Figure 28 NSD substrates 
 

1.4.3.2 Mechanism of non-stop mRNA degradation 

Poly(A)+  NS mRNAs are unstable compared to their stop codon containing counterparts. 

This destabilization has been described for various mRNAs in S. cerevisiae, human and 

mouse cells (Frischmeyer et al, 2002; Inada & Aiba, 2005; Ito-Harashima et al, 2007; Kong & 

Liebhaber, 2007; Saito et al, 2013). The reduction in stability varies between different 

mRNAs, ranging from a reduction in half life that is 1.7-fold for a GFP-2A-HIS3-NS mRNA 

(Ito-Harashima et al, 2007) to 6.5 fold for a PGK1-NS mRNA (Frischmeyer et al, 2002) in S. 

cerevisiae. This indicates that the efficiency of NSD may depend on the type of mRNA or 

genetic background. In mammalian cells, variation in NSD efficiency appears even larger, 

with some NS mRNAs not being targeted for degradation at all. In HeLa cells the RNA level 

of GFP-NS was found to be similar to the mRNA level of its stop codon containing 

counterpart (Akimitsu et al, 2007) and in a mitochondrial neurogastrointestinal 
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encephalomyopathy patient a TYMP-NS mRNA was present at the same level as wild type 

TYMP mRNA (Torres-Torronteras et al, 2011).  

Addition of cycloheximide stabilizes PGK1-NS mRNAs in S. cerevisiae and RPS19-NS 

mRNAs in human cells (Chatr-Aryamontri et al, 2004; Frischmeyer et al, 2002). In HeLa 

cells decay of a Flag- -globin-NS mRNA was inhibited by cycloheximide and stimulated by 

specific translational activation (Saito et al, 2013). These observations indicate that NSD of 

poly(A)+ substrates is translation dependent.  

Rapid degradation of both poly(A)+ and poly(A)- NS mRNAs is mediated by the cytoplasmic 

exosome and requires Ski7 and the Ski complex in S. cerevisiae (Figure 29). Absence of 

either one of the latter factors increases PGK1-NS stability to almost the same level as that of 

PGK1. (Frischmeyer et al, 2002; van Hoof et al, 2002). Absence of Ski7 leads to increased 

stability of the the poly(A)- NS mRNAs ProteinA-Rz (Meaux & Van Hoof, 2006) and GFP-

Rz (Tsuboi et al, 2012) and Ski2 deletion causes increased levels of  GFP-Rz mRNA 

(Kobayashi et al, 2010).  

NSD of poly(A)+ substrates, of poly(A)- substrates and normal cytoplasmic mRNA turnover 

by the exosome differ in at least three aspects. Whereas for normal turnover and poly(A)- 

NSD only the N-terminal part of Ski7 is needed, poly(A)+ NSD requires both the N-terminal 

and the C-terminal parts of Ski7 (Tsuboi et al, 2012; van Hoof et al, 2002). Together with the 

fact that the C-terminal part of Ski7 resembles the C-terminal parts of other translational 

GTPases that bind the ribosome (see paragraph 1.1.3.1.3) and the finding that Ski7 physically 

interacts with the exosome (Araki et al, 2001; van Hoof et al, 2002), this suggests that Ski7 

recruits the exosome to ribosomes stalled on poly(A)+  NS mRNAs. A second difference is 

that either the exo- or the endonuclease activity of the exosome�s catalytic subunit Dis3 is 

sufficient for both poly(A)+ and poly(A)- NSD, whereas normal turnover is mediated by the 

exonuclease activity only (Schaeffer & van Hoof, 2011). Finally, whereas normal mRNA 

turnover by the exosome is preceded by a rate-limiting deadenylation step (see paragraph 

1.1.3.1.1), in S. cerevisiae as well as mouse MEL/tTA cells the rapid decay of poly(A)+ NS 

mRNAs does not involve or depend on deadenylation by the deadenylases that act in regular 

RNA decay (Kong & Liebhaber, 2007; van Hoof et al, 2002).   

As Ski7 is present only in a subset of Saccharomycete yeasts (Atkinson et al, 2008), NSD in 

all other eukaryotic cells should differ in mechanistic details. In HeLa cells it was found that 

the rapid degradation of the poly(A)+ Flag- -globin-NS mRNA requires the two human Ski2 

homologs Ski2 and Mtr4 and exosome subunit Dis3. Moreover it was found that also Hbs1, 

which is the protein most closely related to Ski7 in mammalian cells, and its partner Dom34 
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are required for efficient NSD. As these factors were observed to physically interact with the 

exosome and Ski complex, it was suggested that in mammalian cells they might replace Ski7 

function and recruit the exosome to ribosomes on a poly(A)+ NS mRNA (Saito et al, 2013). 

On the other hand, the requirement of the Dom34-Hbs1 complex for NSD can be explained 

by its function to dissociate ribosomes stalled on the NS-mRNA. When not removed these 

ribosomes may block passage of the exosome (see paragraph 1.4.4.1). 

It has been reported that the 5� to 3� degradation pathway also plays a role in poly(A)+  NSD. 

A dcp1-2 mutant causes further stabilization of NS mRNAs in a ski7  background (Inada & 

Aiba, 2005). However, from the presented data it cannot be excluded that this is only because 

the (partly stabilized) NS mRNAs are substrates of �normal� cytoplasmic mRNA turnover.  

 

 

 

Figure 29 Non-stop decay model 
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1.4.4 The fate of stalled ribosomes and their nascent peptides 

The detection of NGD, NSD and 18S NRD substrates all depend on translation that results in 

stalling of a ribosome at a site where it cannot terminate. Whereas in 18S NRD, a defective 

ribosome may not translate far enough into the ORF to produce peptides of biological 

significance, in NGD and NSD this may lead to the production of potentially harmful protein 

products. Another problem is that translation cannot terminate properly and without 

alternative recycling mechanisms peptidyl-tRNA containing ribosomes get stuck on the 

mRNA. To deal with these problems, cells have mechanisms to degrade the produced peptide 

and to release the ribosomes that cannot terminate. These mechanisms were all studied in S. 

cerevisiae. 

 

1.4.4.1 Recycling of stalled ribosomes 

Translation of NGD and NSD substrates, or by defective ribosomes result in stalling of 

ribosomes on sense codons or without any codon in their A-sites. The latter occurs on 

poly(A)- NS mRNA and on NGD substrates after cleavage, which results in a ribosome 

associated stop codon-less 5� fragment similar to a poly(A)- NS mRNA. These ribosomes 

cannot terminate or recycle via the canonical pathway. Impaired recycling is expected to 

cause queuing of upstream ribosomes and a decreased rate of translation. Indeed a HIS3-NS 

mRNA is associated with higher polysome fractions than its stop codon containing 

counterpart in S. cerevisiae (Inada & Aiba, 2005) and both in S. cerevisiae and in HeLa cells 

initiation-independent repression of translation of poly(A)+ NS mRNAs has been described 

(Akimitsu et al, 2007; Ito-Harashima et al, 2007). Dom34, Hbs1 and Rli1 provide a rescue 

mechanism that allows the recycling of stalled ribosomes, independent of the codon in the A-

site. 

Together with Rli1, Dom34 and Hbs1 can induce the dissociation of ribosomes stalled on 

mRNAs in vitro (Pisareva et al, 2011; Shoemaker et al, 2010; Shoemaker & Green, 2011). 

Several lines of in vivo evidence, in S. cerevisiae, support that these factors dissociate 

peptidyl-tRNA associated ribosomes stuck on poly(A)+ and poly(A)- NS mRNAs.  

First, in absence of Dom34 peptidyl-tRNA produced from the poly(A)- NS mRNA GFP-Rz 

remains ribosome bound, which is not the case when Dom34 is present, supporting the idea of 

Dom34 dependent dissociation of the stalled complex. Second, deletion of DOM34 stabilizes 

GFP-Rz, HIS3-NS and RNA14-NS mRNAs in wild type or xrn1  but not in ski2  

background. This suggests that in absence of functional Dom34-Hbs1 complex, a non-
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dissociated ribosome at the 3� end of these mRNAs blocks degradation by the exosome 

(Tsuboi et al, 2012). On the other hand, it could also be interpreted as Dom34 being needed 

for exosome recruitment (Saito et al, 2013). Third, in a ski2  context, in which poly(A)- NS 

mRNAs are stabilized, deletion of Dom34 causes a large reduction in the level of protein 

produced from a GFP-Rz mRNA (Kobayashi et al, 2010; Tsuboi et al, 2012).  This can be 

interpreted as inhibited recycling of stalled ribosomes severely reducing translation rates. 

Finally, deletion of Dom34 in a ski2  or xrn1  background leads to the appearance of a 

ladder of stabilized mRNA fragments resulting from a GFP-Rz mRNA and a HIS3-NS 

mRNA, that differ in size by the space a ribosome would occupy on the mRNA (Tsuboi et al, 

2012). This was interpreted to reflect queuing of stalled ribosomes on a poly(A)+ NS mRNA 

when their dissociation is inhibited, with endonucleolytic cleavages being induced at different 

places between stalled ribosomes, reminiscent of the cleavages observed in NGD.  

In vitro Dom34-Hbs1-Rli1 mediated dissociation of stalled ribosomes was efficient only 

when the RNA downstream of the A-site was of small length (Pisareva et al, 2011; 

Shoemaker & Green, 2011). This suggests that during NGD mRNA cleavage precedes 

ribosome recycling. The fact that the 5� cleavage product is similar to a poly(A)- NS mRNA 

suggests that recycling of ribosomes stalled on NGD substrates follows a mechanism similar 

to recycling of ribosomes on poly(A)- NS mRNAs. Indeed, deletion of Dom34 in a wild type 

background, causes accumulation of 5� cleavage products from mRNAs containing G-rich 

sequences, K12 or a stretch of rare (mostly arginine) codons, suggesting that stalled 

ribosomes block passage of the exosome (Tsuboi et al, 2012). 

 

 

1.4.4.2 Nascent peptide degradation 

The peptides produced from mRNAs containing a stall site are actively degraded. This was 

first described for truncated proteins produced from a GFP-HIS3-K12 reporter, which were 

found to be highly unstable (Ito-Harashima et al, 2007). Incomplete proteins produced from 

K12 or R12 containing mRNAs were found to be degraded by the proteasome, a large protein 

complex that is responsible for the majority of protein degradation in the eukaryotic cell. 

Inhibition of the proteasome leads to the accumulation of a truncated protein product from 

GFP-K12-FLAG-HIS3 and GFP-R12-FLAG-HIS3 reporters and from similar reporters 

containing insertions of endogenously occurring sequences that encode K/R rich peptides 

(Dimitrova et al, 2009). The accumulation of these truncated proteins depends on the presence 

of Rack1. Absence of this ribosome associated factor results in increased levels of full length 
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proteins and in a slight reduction in NGD efficiency. It is therefore proposed that Rack1 is 

required for ribosome stalling on stretches of basic amino acids (Kuroha et al, 2010). 

Proteins are targeted for proteosomal degradation by polyubiquitination. Two E3 ubiquitin 

ligases were found to be responsible for targeting incomplete proteins produced from mRNAs 

containing K12 or R12 stall sites for degradation. These factors are Ltn1 and Not4. Deletion 

of Not4 inhibits the degradation of truncated proteins produced from GFP-K12-FLAG-HIS3 

and GFP-R12-FLAG-HIS3 mRNAs (Dimitrova et al, 2009). Ltn1 is responsible for 

polyubiquitination and degradation of a GFP-FLAG-HIS3-K12 protein product, the stability 

of which is not affected by Not4 (Bengtson & Joazeiro, 2010). This suggests that the targets 

of Not4 and Ltn1, although both characterized by basic amino acid dependent ribosome 

stalling, may not overlap and depend on other factors than the stall site itself. Interestingly no 

truncated protein product resulting from a stem loop containing GFP-SL-FLAG-HIS3 mRNA 

was detected upon proteasome inhibition (Dimitrova et al, 2009). As stem loop containing 

NGD substrates are polyubiquitinated in rabbit reticulocyte lysates (Shao et al, 2013), this 

probably reflects the weakness of stem loop induced stalling in yeast.  

Proteins produced from poly(A)+ NS mRNAs are also rapidly degraded: in S. cerevisiae their 

half lives are reduced compared to those of proteins translated from their stop codon 

containing counterparts (Bengtson & Joazeiro, 2010; Ito-Harashima et al, 2007). Similarly to 

truncated peptides produced from mRNAs containing a K12 stall site in their ORF, NS-

proteins are degraded by the proteasome (Bengtson & Joazeiro, 2010; Ito-Harashima et al, 

2007). Their degradation requires ubiquitination by Ltn1 (Bengtson & Joazeiro, 2010; Wilson 

et al, 2007). Polyubiquitination of the peptide by Ltn1 occurs at least partly while it is still 

associated with the ribosome as a peptidyl-tRNA: in a ltn1  strain the poly(A)+ NS protein 

accumulates in the 80S fraction (Bengtson & Joazeiro, 2010). The degradation mechanism of 

NS proteins strongly resembles that of peptides produced from some mRNAs containing K12 

or R12 stall sites. Since the poly(A) tail translates into a stretch of polylysines, it is 

conceivable that stalling of a ribosome translating the poly(A) tail plays an important role in 

triggering the degradation of the peptide produced. 

In rabbit reticulocyte lysate it was found that peptides produced from poly(A)+ NS mRNAs, 

poly(A)- NS mRNAs, and mRNAs containing a K12 or stem loop stall site are 

polyubiquitinated while still linked to the tRNA and bound to the ribosome. For a poly(A)- 

NS protein it was specified further that efficient ubiquitation requires dissociation of the 

stalled ribosome (see below) and that it depends on the Ltn1 homolog Listerin, which binds 

mainly to the ribosomal 60S subunit (Shao et al, 2013). Studies in S. cerevisiae showed that 
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ubiquitination of poly(A)+ NS-peptides by Ltn1 can start on 80S ribosomes, but that larger 

ubiquitin chains are found associated to ribosomes. Together these findings suggest that 

ubiquitination may start on 80S ribosomes, but, at least in mammalian systems, requires 

ribosomal subunit dissociation to produce larger chains. 

Recent studies in S. cerevisiae found Ltn1 to be part of a Ribosome Quality Control complex 

(RQC) that also comprises the factors Tae2, Rqc1 and the hexamer forming protein Cdc48 

with its cofactors (Figure 30). The whole RQC associates with 60S ribosomal subunits and its 

factors are needed for the degradation of peptides produced from poly(A)+ NS mRNAs and 

mRNAs containing an R12 stall site (Brandman et al, 2012; Defenouillere et al, 2013; Verma 

et al, 2013). Cdc48 is a force generator that in several of its functions extracts proteins or 

peptides from protein complexes or through pores across membranes (Stolz et al, 2011). It 

was therefore hypothesized that Cdc48 may extract the peptide from the 60S subunit�s peptide 

tunnel and escort it to the proteasome (Brandman et al, 2012; Defenouillere et al, 2013; 

Verma et al, 2013).  

Together these observations indicate that stalled ribosomes bind the RQC, possibly already 

when ribosomal subunits are still associated, but more so after subunit dissociation (see 

below). Ltn1 in the RQC ubiquitinates the 60S bound peptidyl-tRNA. Then Cdc48 and its 

cofactors can extract the peptide and guide it to the proteasome.  

 

 
(Brandman et al, 2012) 

Figure 30 Model of RQC mediated degradation of nascent peptides produced by stalled ribosomes. 
 

1.4.5 Multiple roles for the Dom34-Hbs1 complex? 

The Dom34-Hbs1 complex has been interpreted to play two separate roles in quality control 

pathways acting on stalled translational complexes. First, their absence was observed to cause 

a reduction in the accumulation of mainly the 5� NGD cleavage product, in strains deficient 

for exosome mediated degradation (see paragraph 1.4.1.1). This was interpreted to reflect 
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stimulation of the endonucleolytic cleavage by the Dom34-Hbs1 complex (Doma & Parker, 

2006; Tsuboi et al, 2012). Second, the complex dissociates stalled ribosomes, which is 

thought to make ribosomal subunits and other translational factors available for new rounds of 

translation, and promotes the degradation of no-go and non-stop mRNAs (Pisareva et al, 

2011; Shoemaker et al, 2010; Shoemaker & Green, 2011; Tsuboi et al, 2012) (see paragraph 

1.4.4.1). However, one could argue that the dependence of NGD cleavage product 

accumulation on the Dom34-Hbs1 complex can be attributed to its ribosome dissociating 

activity too.  

As described in paragraph 1.4.4.1, absence of Dom34 stabilizes poly(A)- NS mRNAs, which 

mimic 5� NGD intermediates, in wild type and xrn1  background, suggesting that non-

recycled ribosomes block passage of the exosome. In contrast, in a ski2  strain, in which the 

NS mRNA is stabilized, absence of Dom34 causes destabilization of poly(A)- NS mRNAs. 

This was interpreted to be the result of multiple endonucleolytic cleavages induced by the 

queue of ribosomes stalled in absence of Dom34-Hbs1 mediated release (Tsuboi et al, 2012). 

By the same mechanism absence of functional Dom34-Hbs1 could cause destabilization of 5� 

NGD cleavage products, in strains defective for cytoplasmic exosomal degradation. 

Following this explanation, the lower level of 5� NMD cleavage products in absence of 

Dom34 or Hbs1 is not due to Dom34-Hbs1 being required for their production, but because in 

absence of Dom34-Hbs1 the fragments are destabilized.  
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1.5 PROJECT OUTLINE 

In my PhD work I studied the function of the complex formed by Dom34 and Hbs1. In the 

first part of my work I focused on RNA quality control pathways the Dom34-Hbs1 complex 

functions in. In the second part I studied the biological relevance of Dom34-Hbs1 mediated 

ribosome dissociation. This included a search for roles of the complex beyond RNA quality 

control. 

 

1.5.1 The Dom34-Hbs1 complex and RNA quality control 

NGD, 18S NRD and NSD share several characteristics, including inefficient translation or 

ribosomal stalling as a trigger for RNA degradation and the involvement of Dom34 and Hbs1.  

At the moment my work on this project started, the involvement of Dom34 and Hbs1 in NSD 

was not yet defined, therefore my work focuses on NGD and 18S NRD. Because of the 

similarities between these pathways it has been hypothesized that they may reflect one single 

pathway, in which the recruitment of Dom34 and Hbs1 to stalled ribosomes induces 

degradation of mRNA and 18S rRNA and induces ribosome dissociation (Cole et al, 2009; 

Soudet et al, 2010).  

During my thesis I tried to obtain more insight into the function Dom34, Hbs1 and other 

factors in NGD and 18S NRD. Questions I addressed were: 

 What are the functional requirements of the Dom34-Hbs1 complex in NGD and 18S 

NRD? More specifically I addressed the importance of the GTPase activity of Hbs1 and 

the interaction between Dom34 and Hbs1. 

 How do NGD and 18S NRD relate? Do they represent one single pathway in which 

stalled ribosomes induce degradation of both mRNA and 18S RNA, or do they occur 

independently? 

 What is the endonuclease responsible for mRNA cleavage in NGD? 

 Are there other, thus far unidentified factors acting on stalled ribosomes? 

 

To address these questions various approaches were used, using the yeast S. cerevisiae as an 

experimental system. These include a structure-function analysis on the Dom34-Hbs1 

complex, in collaboration with Dr. Julien Henri and Dr. Marc Graille, in vitro translation 

experiments, the development of protocols to specifically purify stalled ribosomes with their 

associated factors and the analysis of the effect of several gene deletions on NGD and 18S 

NRD. 
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1.5.2 Biological relevance of Dom34-Hbs1 mediated ribosome dissociation 

So far in vivo experiments have concentrated mainly on the role of the Dom34-Hbs1 complex 

in RNA quality control (Tsuboi et al, 2012). Defective RNAs that cause ribosomes to stall are 

expected to occur with low frequency and may therefore have relatively small consequences 

for the viability of individual cells, cell populations, or an entire organism. This is consistent 

with Dom34 being non-essential for viability in yeast, but contrasts with the more severe 

phenotypes of DOM34 deletion in higher organisms. For example, in mice Dom34 deficient 

zygotes do not develop past a stage several days post-fertilization (Adham et al, 2003). I 

therefore tried to identify other situations in which Dom34-Hbs1 mediated ribosome 

dissociation is required. More specifically I addressed the following questions: 

 Can the Dom34-Hbs1 complex dissociate inactive ribosomes, not associated with mRNA 

or translation factors, that accumulate during stress conditions, and thereby stimulate 

recovery of translation upon stress relief?  

 Can the Dom34-Hbs1 complex act on post-termination complexes, and thereby replace 

eRF1-eRF3? 

 Is Dom34-Hbs1 mediated removal of ribosomes from mRNAs needed for efficient 

degradation by Xrn1 or the exosome in general? 

 

These questions where addressed using S. cerevisiae. The action of Dom34-Hbs1 on inactive 

ribosomes was studied in and after glucose depletion stress. Translation was monitored using 

polysome profiles obtained on sucrose density gradients and by measuring protein production. 

In collaboration with Anthony Schuller and Dr. Rachel Green (Johns Hopkins University, 

USA) biochemical ribosome recycling experiments were performed. Other experiments 

included the analysis of genetic interactions of Dom34 and Hbs1 with termination factors and 

RNA degradation factors. 

 

The results of my work will be presented in the next section and include one paper published 

in Nature Structural and Molecular Biology in 2010 and one manuscript that is currently 

submitted for publication. 
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2. RESULTS



2.1 STUDY OF THE ROLE OF DOM34-HBS1 IN RNA QUALITY 

CONTROL  

The RNA quality control pathways NGD and 18S NRD have several features in common. In 

both pathways the recognition of RNA targets depends on inefficient translation and in both 

pathways Dom34 and Hbs1 affect RNA degradation. In 18S NRD the factors stimulate the 

degradation of defective 18S rRNAs. In NGD, accumulation of at least the 5� degradation 

intermediate that results from mRNA cleavage, depends on Dom34 and Hbs1. It has been 

hypothesized that NGD and 18S NRD may represent one single pathway, in which ribosomal 

stalling causes Dom34-Hbs1 recruitment, which leads to ribosome dissociation and 

degradation of at least the mRNA and 18S rRNA (Cole et al, 2009; Soudet et al, 2010). 

Because Dom34 and Hbs1 are central players in both pathways, we performed a structure-

function study on the complex they form. This study resulted in a publication in Nature 

Structural and Molecular Biology. A summary of this work together with the published article 

will be presented in the next paragraph. Supplementary data of the publication can be found in 

the supplementary information of this thesis. 

 

2.1.1 A structure-function study of the Dom34-Hbs1 complex 

Our collaborators, Dr. Julien Henri and Dr. Marc Graille, obtained X-ray crystallographic 

structures of S. cerevisiae Hbs1, in apo and GDP bound form. They also made a structural 

model of the Dom34-Hbs1 complex, based on superposition of Hbs1 and Dom34 crystal 

structures (Graille et al, 2008; Lee et al, 2007) on eRF1-eRF3 interacting domains (Cheng et 

al, 2009) and optimization based on comparison of calculated curves with small angle X-ray 

scattering data obtained from a yeast Dom34-Hbs1 complex. The Dom34-Hbs1 model overall 

resembled the structural models obtained from archaeal Dom34-aEF1  (Kobayashi et al, 

2010) and ribosome bound Dom34-Hbs1 from S. cerevisiae (Becker et al, 2011) and differed 

from the S. pombe Dom34-Hbs1 crystallographic structure (Chen et al, 2010) in the 

orientation of the Hbs1 G domain (see paragraph 1.3.2.1). Similarly to the first two structures, 

this domain packs against domains II and III of Hbs1. This observation invalidates the 

hypothesis that the conformation in which the G domain packs against domains II and III is 

induced by GTP binding (see paragraph 1.3.2.1). In addition to the contacts between the C-

terminal domain of Dom34 and domain III of Hbs1, similar to the interaction between the 

corresponding domains in eRF1-eRF3, the model of the complex predicts a second interface 

between the central domain of Dom34 and the G domain of Hbs1.  
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Based on these structural data I studied the importance of the GTPase activity of Hbs1 and of 

the interaction between Dom34 and Hbs1 for Dom34-Hbs1 function in S. cerevisiae. I 

produced mutants targeting the GTP binding site of Hbs1 as well as Dom34 and Hbs1 

mutants that disrupt the interaction between the two factors. The effect of these mutations on 

Dom34 and Hbs1 function was studied. NGD was assayed by monitoring the Dom34-Hbs1 

dependent accumulation of a degradation intermediate (see Figure 31). The effect of the 

Dom34-Hbs1 mutations on 18S NRD was analyzed by monitoring the steady levels of an 18S 

rRNA with a defect in the decoding center. In absence of Dom34 or Hbs1 the level of this 18S 

rRNA increases due to inefficient NRD. Finally, the effect of the Dom34-Hbs1 mutations on 

growth of yeast strains with a 40S subunit deficiency was studied. As described in paragraph 

1.3.1.1, in these strains the absence of functional Dom34 or Hbs1 causes growth defects.  

 

 

 

Figure 31 No-go decay assay 
In a ski7  strain the 5� intermediate (in red rectangle) resulting from mRNA cleavage accumulates. This 
accumulation is dependent on the presence of functional Dom34 and Hbs1.   
 

I found that GTP binding by Hbs1 is required for all functions tested. A stable interaction 

between Dom34 and Hbs1 was also required for their function in NGD. However, Dom34-

Hbs1 interaction was not or much less important for the complex�s function in 18S NRD. 

Mutations that disrupt Dom34-Hbs1 interaction had no or hardly any effect on growth in a 

strain with 40S subunit deficiency either. Moreover, an asymmetry was observed between the 
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effect of mutating Dom34 and mutating Hbs1 residues involved in the interaction. Whereas 

mutating Dom34 residues important for interaction with Hbs1 had a small effect on 18S NRD 

and growth in 40S subunit deficient strains, Hbs1 mutations affecting the other side of the 

interface had no effect at all.  

In the paper these results were interpreted as Dom34 and Hbs1 interaction being required for 

efficient NGD endonucleolytic cleavage, but not for efficient 18S NRD or growth in a 40S 

subunit deficient strain. The ability to genetically separate these pathways would then indicate 

that upon recruitment of Dom34-Hbs1 to stalled ribosomes, mRNA and rRNA may not 

always be degraded simultaneously. However, as described in paragraph 1.4.5, the Dom34-

Hbs1 dependence of NGD intermediate accumulation may not represent Dom34-Hbs1 

dependent mRNA cleavage but could instead be caused by destabilization of the 5� NGD 

intermediate in absence of Dom34-Hbs1. This hypothesis would need a different 

interpretation of these data. This will be addressed further in the discussion section of this 

thesis.  
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2.2 STUDY OF THE MECHANISTICAL DETAILS OF RNA QUALITY 

CONTROL ON STALLED TRANSLATIONAL COMPLEXES 

 

2.2.1 The functional relationship between No-go decay and Non-functional 

18S rRNA decay 

The data presented above gave an indication that Dom34-Hbs1 dependent 18S rRNA 

degradation can occur independently of Dom34-Hbs1 dependent alteration in mRNA 

stability. I aimed to further study the relationship between NGD and 18S NRD. More 

specifically I analyzed whether the translation of a NGD substrate (a stall site containing 

mRNA) induces degradation of rRNAs or ribosomal proteins.  

To address this question I used an in vitro translation method in S. cerevisiae extract, 

developed by Anne-Laure Finoux (Finoux, 2006). A yeast extract was obtained based on a 

method published by (Tuite & Plesset, 1986). In this extract, cellular mRNAs were still 

present, and needed to be removed to allow optimal translation of in vitro added mRNAs. 

Therefore the extract was first treated with micrococcal nuclease (MNase). The digestion time 

needed to be optimized: a treatment too short would not remove cellular mRNAs sufficiently, 

whereas a treatment too long would cause degradation of rRNA, thereby decreasing 

translation efficiency. To determine the optimal digestion time, aliquots of the yeast extract 

were incubated with 150 U/ml MNase for varying amounts of time. Then 500 ng mRNA 

encoding firefly luciferase (Gallie et al, 1991) was added to 15 µl translation reactions, to be  

 

 
Figure 32 Optimization of micrococcal nuclease digestion time. 

Translation efficiency, represented by the activity of luciferase produced after one hour of translation, is plotted 
against the time yeast extract was treated with MNase.  
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translated during one hour. Luciferase activity was determined, as a measure of protein 

production. Figure 32 shows that, using this quantity of enzyme, optimal translation occurred 

after 4 minutes of MNase treatment. 

The yeast extract was used to translate a mRNA encoding a TAP tag, consisting of protein A 

and calmodulin binding peptide (CBP) (Rigaut et al, 1999) linked to a triple HA tag and green 

fluorescent protein (GFP). This mRNA contained a stem loop stall site (Doma & Parker, 

2006) between the 3HA and GFP sequence (TAP-SL-GFP mRNA). A negative control did 

not contain the stem loop (TAP-GFP mRNA). The aim was to study whether translation of the 

stall site containing mRNA caused destabilization of the rRNA and proteins of the ribosomes 

translating it. For such a destabilization to be visible as a reduction in total rRNA or 

ribosomal protein level over time, it is important that a large part of the ribosomes present in 

the extract engage in translation of the stall site mRNA. The fraction of translating ribosomes 

is expected to depend on the concentration of the mRNA that is translated. To optimize the 

mRNA concentration, both TAP-SL-GFP and TAP-GFP were added in different amounts to 

15 µl translation reactions, followed by translation for one hour. The amount of protein 

produced was then determined by western blot (Figure 33). Optimal protein production was 

achieved when between 600 and 1200 ng mRNA was added to the extract. 

 

 

 

Figure 33 Optimization of the mRNA concentration. 
Protein produced from the indicated quantities of TAP-GFP and TAP-SL-GFP mRNA after one hour of 
translation in yeast extract. Proteins were detected by western blot using peroxidase anti-peroxidase (PAP, 
Sigma). 
 

600 ng of the stem loop or control mRNA was translated in 15µl translation reactions that 

were stopped at different time points. RNA and protein content were analyzed by northern 

blot and western blot respectively.  

Figure 34 shows that the levels of 18S and 25S rRNAs do not decrease over time, during 

translation of a NGD substrate. Neither does the level of 60S subunit protein Rpl1A or the 

ribosome associated protein Stm1 change.  



 

 
 

Figure 34 The effect of translating a stem loop containing mRNA on ribosomal RNA and protein stability. 
TAP-GFP and TAP-SL-GFP were translated for the indicated amounts of time in yeast extract. The levels of 
rRNAs and ribosomal or ribosome associated proteins were determined at the indicated timepoints. 18S rRNA 
and 25S rRNA were detected by northern blot using probes OBS4814 and OBS5408 respectively. Rpl1A and 
Stm1 were detected by western blot using polyclonal rabbit antibodies AbBS6 and AbBS8 respectively. TAP-
GFP or TAP-SL-GFP protein was detected by PAP. 
 

In summary no signs of ribosomal RNA or protein degradation as a consequence of ribosomal 

stalling induced by a mRNA stall site are visible. However, it cannot be excluded either. First 

of all because it is not clear what fraction of ribosomes in the extract is translating. If only a 

small fraction of ribosomes translates and stalls on the stem loop mRNA, their degradation 

will not be visible. Second, the stem loop appears to be a very inefficient stall site. The stem 

loop mRNA produces full-length protein at a level practically indistinguishable from the level 

of protein produced from the control mRNA (Figure 33 and  

Figure 34). This indicates that, even if a high proportion of ribosomes may be translating, 

only a small fraction will stall and therefore stalling induced ribosome degradation may not be 

visible. The use of a stronger stall site, perhaps a CGA repeat (see paragraph 1.4.1.2) should 

improve the assay. Finally, the in vitro conditions may not be representative of the in vivo 

situation. It should be tested whether the extract contains the machinery necessary for stalling 

induced rRNA degradation. To get an indication it could be verified whether a mutant 18S 

rRNA is a subjected to NRD in yeast extract. 

 

2.2.2 Search for the No-go decay endonuclease 

The endonuclease responsible for endonucleolytic cleavage of the mRNA in NGD has not 

been identified so far. In humans and Drosophila, the NMD pathway involves an 

endonucleolytic cleavage of the mRNA that is mediated by the protein Smg6 (Eberle et al, 



2009; Huntzinger et al, 2008). The yeast proteins Esl1 and Esl2 show sequence similarity to 

human Smg6. Moreover, Esl2 was reported to interact with ribosomes (Fleischer et al, 2006). 

I therefore tested whether one of these factors could be responsible for the mRNA cleavage in 

NGD. The NGD assay depicted in Figure 31 was used to test whether the absence of Esl1 or 

Esl2 resulted in reduced intermediate production. The reporter mRNA used contained a 

sequence encoding CBP linked to a 3HA tag, followed by the same stem loop as used in 

(Doma & Parker, 2006) (CBP-3HA-SL). A control reporter did not contain a stem loop (CBP-

3HA). The CBP-3HA-SL reporter efficiently produced a 5� NGD intermediate in a ski7  

background, indicating mRNA cleavage. The absence of Esl1 or Esl2 did not reduce the 

accumulation of this 5� intermediate (Figure 35). This suggests that Esl1 or Esl2 are not the 

endonucleases responsible for mRNA cleavage in NGD. However, it cannot be excluded that 

there is redundancy between these factors or between these factors and other unknown 

factors. A triple ski7 esl1 esl2  mutant would elucidate whether the first possibility is true.  

 

 
 

Figure 35 Esl1 and Esl2 are not required for No-go decay endonucleolytic cleavage. 
Northern blot analysis of the steady state levels of a 5� degradation intermediate produced by endonucleolytic 
cleavage from the indicated mRNA reporters was used to determine the requirement of Esl1 and Esl2 for mRNA 
cleavage in NGD. mRNA was detected by probe OBS4671. 
 

2.2.3 A method to purify ribosomes with a defective 18S rRNA 

Questions remain about what factors are involved in RNA degradation in NGD and 18S 

NRD. As already indicated above, the endonuclease responsible for mRNA cleavage in NGD 

has not been identified. For 18S NRD, the mechanistic details of rRNA degradation are not 

clear. At the time this research was performed, little was known about what happened to the 

peptide produced by a stalled ribosome. In an attempt to obtain more insight into the 

mechanisms acting on stalled ribosomes, I designed a method to purify defective ribosomes.  

The purpose of this method was to specifically purify ribosomes containing a mutation in the 

18S rRNA, rendering them non-functional and therefore substrates for 18S NRD. By 

comparing the set of proteins that co-purify with mutant ribosomes with the set of proteins 
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that co-purify with wild type ribosomes, I hoped to identify proteins that specifically interact 

with defective ribosomes and that may act in 18S NRD and perhaps also in associated 

pathways. 

 

2.2.3.1 Tandem affinity purification 

The tandem affinity purification (TAP) method allows the purification of a protein and factors 

interacting with this protein under native conditions. When combined with mass 

spectrometry, it can be used to identify proteins interacting with a given target protein (Rigaut 

et al, 1999).   

 

 
(Huber, 2003) 

Figure 36 Tandem affinity purification. 
 

The target protein is linked to a tag that consists of protein A and CBP, separated by a TEV 

protease recognition site. The method consists of two subsequent purification steps (see 

Figure 36). In the first step, cell lysate is incubated with IgG beads, to which protein A binds. 
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The target protein and associated factors are eluted from the IgG beads by the action of TEV 

protease, which cleaves the linkage between protein A and CBP. The eluate is then incubated 

with calmodulin beads, which binds the CBP-tagged complex. Elution occurs by the addition 

of EGTA, which chelates Ca2+ ions needed for CBP-calmodulin interaction. 

 

2.2.3.2 Construct production and validation 

Ribosomes in which residue A1492 (E. coli counting), an important residue in the decoding 

center, is mutated (A1492C) are known substrates for 18S NRD (Cole et al, 2009). To 

specifically purify mutant ribosomes, a human U1 stem loop was inserted in a mutant 18S 

A1492C rRNA construct, which was produced in the lab of Dr. Melissa Moore (LaRiviere et 

al, 2006). In this construct a rDNA gene is under the control of a promoter that is induced in 

presence of galactose but repressed in presence of glucose. This construct contains a tag 

inserted in the 18S rRNA sequence that allows its specific detection by probe FL125 in 

northern analysis, while it is co-expressed with endogenous rDNA genes.  

A loop in helix 39 or helix 44 of the 18S rRNA sequence was replaced with the U1 stem loop. 

It had been shown before that yeast strains expressing only 18S rRNAs with tags inserted at 

these positions were viable (Petrov & Puglisi, 2010). In the crystal structure of the yeast 80S 

ribosome (Ben-Shem et al, 2011) these sites are exposed on the 40S subunit surface. The 

tagged mutant 18S rRNA was co-expressed with the RNA binding domain of human protein 

U1A, which interacts with the U1 stem loop (Nagai et al, 1995). This U1A RNA binding 

domain was linked to a TAP-tag at its C-terminus, resulting in a U1A-TAP construct. The 

TAP-tag allowed the purification of U1 containing mutant ribosomes. 18S rRNA constructs 

with a U1 stem loop inserted in antisense direction, which does not bind to U1A, served as a 

negative control. An overview of the construct is given in Figure 37. 

 

 
 

Figure 37 Method to purify a defective ribosome. 



 

First, the expression of the tagged 18S rRNA and the U1A-TAP or TAP-U1A proteins was 

tested. Insertion of a U1 stem loop, in sense or antisense direction, in helix 39 caused a 

reduction in the steady state level of wild type 18S rRNA (Figure 38A). An explanation could 

be that the insertion causes the rRNA to be non-functional, making it a substrate for 18S 

NRD. Therefore this construct was not further analyzed. Insertion of the U1 stem loop in 

helix 44 did not affect the steady state level of either wild type or mutant 18S rRNA (Figure 

38A). This indicates that insertion of the tag at this position is less likely to affect ribosome 

function and does not interfere with the 18S NRD process. The 18S rRNA with the U1 stem 

loop inserted in helix 44 will from here on be referred to as 18S-U1 rRNA. U1A-TAP protein 

was expressed equally well in yeast co-expressing tagged 18S rRNA constructs and yeast not 

expressing these constructs (Figure 38B). 

 

 

 

Figure 38 Steady state levels of tagged 18S rRNAs and U1A-TAP protein. 
A: 18S rRNA (wild type or mutant) with a U1 stem loop (sense or antisense) inserted in helix 39 or helix 44 was 
expressed in S. cerevisiae grown in the presence of 2% galactose. 18S rRNA was detected by northern analysis 
using probe OBS3118. scR1 RNA was used as a loading control and detected by probes resulting from random 
priming of a scR1 PCR product. B: U1A-TAP protein was co-expressed with 18S rRNA (wild type or mutant) 
containing a U1 stem loop (sense or antisense) in helix 44 in S. cerevisiae grown in the presence of 2% 
galactose. Protein was extracted using a rapid protocol (Kushnirov, 2000) and U1A-TAP was detected by 
western analysis using PAP. Stm1 was used as a loading control and was detected by the antibody AbBS8. 
 

I then tested whether U1A-TAP binds to translating ribosomes. Their sedimentation through 

sucrose density gradients was followed and compared with the sedimentation pattern of 18S-

U1 rRNA and with the profile formed by (mainly ribosomal) RNA. First of all, this allowed 



us to see whether U1A-TAP binds to ribosomes at all: if not it will be present on the top of the 

gradient only. Second, it gives an indication on whether U1A-TAP binds to ribosomes that 

participate in translation, depending on whether it co-sediments with polysomes. 

Figure 39A shows that U1A-TAP binds translating ribosomes, as it was found in polysomal 

fractions when co-expressed with wild type 18S rRNA containing a sense U1 stem loop. As 

expected, U1A-TAP did not bind to ribosomes when the U1 stem loop was inserted in 

antisense direction (Figure 39B). The A1492C mutation caused 18S rRNAs to shift to lower 

density fractions (compare Figure 39C and D to A and B): the mutant 18S rRNA is less 

represented in polysomal fractions and more in 80S fractions compared to wild type 18S 

rRNA. As expected, the U1A-TAP distribution displays a similar shift to lighter fractions 

(compare Figure 39C and A).  

 

 

 

Figure 39 Sedimentation of 18S wild type and mutant rRNA and U1A-TAP. 
Sucrose density sedimentation of the lysate obtained from S. cerevisiae co-expressing U1A-TAP and 18S rRNA 
(wild type or mutant) with a U1 stem loop (in sense or antisense direction) inserted in helix 44. Yeast was grown 
on medium containing 2% galactose. U1A-TAP was detected by western analysis on samples of equal size taken 
from gradient fractions produced by a gradient fractionator, using PAP. 18S rRNA was extracted from equal size 
samples taken from fractions produced by a gradient fractionator, and was detected by northern analysis, using 
probe OBS3118. 
 



All together, these data show that insertion of the U1 stem loop does not interfere with 

ribosome function and that it efficiently binds U1A-TAP. In addition, as the antisense U1 

stem loop does not bind U1A-TAP, this construct should be a valid negative control in 

ribosome purification experiments. 

 

2.2.3.3 Optimization of the purification protocol 

A purification protocol generally consists of a step in which cells are lysed, a step in which 

the lysate is cleared, often by high speed centrifugation, and finally the actual purification. 

The conditions for all these steps were optimized for purification of ribosomes and factors of 

which the binding to ribosomes may be sensitive to high salt concentrations. 

First of all, cells were lysed by vortexing in presence of glass beads. This relatively gentle 

way of lysing cells has been shown before to be effective in ribosome purification methods 

(Ben-Shem et al, 2011; Ben-Shem et al, 2010) and was chosen to minimize the loss of 

interaction between ribosomes and associated proteins. It further has the advantage that this 

method does not disrupt mitochondria (Lang et al, 1977), which avoids contamination with 

mitochondrial ribosomes. Second, lysis and purification buffers were optimized for the 

purification of ribosomes and associated proteins. All buffers contained 10 mM Mg2+, to 

stabilize ribosomal subunit interaction, and relatively low salt concentrations were used (a 

maximum of 100 mM NaCl). Third, clearing the lysate in a high speed centrifugation step 

may cause ribosomes to sediment and therefore be lost from the cleared lysate, due to their 

large size. Therefore the speed and time of centrifugation was optimized to end up with a 

maximum quantity of ribosomes in the cleared lysate (see below). Finally, the time between 

cell lysis and the final elution was kept as short as possible: cell lysis and purification steps 

were all performed in a single day. 

 
 

Figure 40 Optimization of centrifugation speed and time. 
A: S. cerevisiae lysate was subjected to centrifugation at the indicated relative centrifugal forces (RCF) in a JA-
25.50 (30.9x103 and 48.3x103 x g) or a 50.2 Ti rotor (75.3x103 and 108x103 x g) for 84 minutes. B: S. cerevisiae 
lysate was subjected to centrifugation at 30.8 x g for the indicated times in a JA-25.50 rotor. To determine the 
presence of ribosomes in pellet (P) and supernatant (SN), samples taken from supernatant and pellet, 
resuspended in the same volume as the supernatant, were analyzed by western blot. The ribosomal protein 
Rpl1A was detected using antibody AbBS6.  



In search for optimal lysate clearance conditions, yeast lysate was subjected to centrifugation 

at four different speeds for 84 minutes. As shown in Figure 41A, the lowest centrifugal force 

(30.9x103 x g) resulted in the highest fraction of ribosomal protein in the supernatant. It was 

then tested if, at that speed, the centrifugation time affected the fraction of ribosomal protein 

in the supernatant. Figure 40B shows that a longer centrifugation time did not result in a 

higher fraction of ribosomal protein in the supernatant. Therefore I decided to apply a 

centrifugal force of 30.8 x g for 30 minutes in the purification protocol. 

 

 

 

Figure 41 Purification of wild type ribosomes via U1 stem loop and U1A-TAP. 
A tandem affinity purification was performed on lysate from yeast expressing 18S-U1 rRNA (sense or antisense) 
and U1A-TAP, grown in presence of 2% galactose. A: 3,3 x 10-6 fractions of each purification step (except for 
the elutions which are 75 x more concentrated) were analysed by western blot: the presence of U1A-TAP (after 
TEV cleavage U1A-CBP) was followed using peroxidase anti-peroxidase (Sigma). B: Elution fractions of a 
similar purification were analyzed by western blot for the presence or ribosomal protein Rpl1A, using antibody 
AbBS6. C: Elution fraction E2 of the purification shown in A was separated on a 15% SDS-PAGE and 
visualized by silver staining. The arrows indicate bands that were analyzed by mass spectrometry.  
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Purifications were then performed, using the optimized TAP method, on yeast co-expressing 

wild type 18S-U1 rRNA and U1A-TAP. The presence of U1A-TAP was followed throughout 

the purification. Figure 41A shows that, as expected, U1A-TAP was purified from yeast 

expressing 18S rRNA with the U1 stem loop inserted in sense direction, as well as from yeast 

expressing 18S rRNA with the U1 stem loop inserted in antisense direction. Most of the U1A-

TAP stays bound to the calmodulin beads after elution, it only dissociates from the beads in 

presence of 1% SDS. However, when elution fractions were analyzed for the presence of 

ribosomal protein Rpl1A, most of this protein eluted in elution fractions E2 and E3 (Figure 

41B). Elution fractions E2 were concentrated by lyophilisation and analyzed on a 15 % SDS-

PAGE. Three of the bands that appeared after silver staining were analyzed by mass 

spectrometry (indicated by arrows in Fig. 42B). All bands contained a mixture of several 40S 

and 60S subunit proteins, confirming that the method I developed purifies ribosomes. 

Finally, purifications were performed on yeast co-expressing wild type 18S-U1 rRNA and 

U1A-TAP and on yeast co-expressing mutant 18S-U1 rRNA and U1A-TAP. The culture 

volume used for purification was twice higher for strains containing mutant ribosome than for 

strains containing wild type ribosome, to approximately compensate for the reduced levels of 

mutant ribosomes as a consequence of 18S NRD. For each purification, elution fraction E2 

was concentrated by lyophilization and analyzed on a 10-20 % gradient SDS-PAGE. To also 

compare large size proteins, a second elution fraction was analyzed on a 7% SDS-PAGE. The 

pattern of bands obtained from the purification of mutant 18S-U1 sense rRNA was compared 

with that obtained from the purification of wild type 18S-U1 sense rRNA (Figure 42). On the 

two gels, 11 bands were identified that were present in the elution of the mutant ribosome 

purification, but not in the elutions of the wild type ribosome purification. These bands were 

cut from the gels and analyzed by mass spectrometry. Bands cut from similar positions in the 

wild type elution were used as negative controls. 

The low intensity of the bands cut, corresponding to low amounts of proteins, complicated 

reliable identification of the proteins they represented. Most proteins identified were 

represented by only few peptides. For many bands peptides were identified that corresponded 

to a mixture of proteins that were either ribosomal proteins, proteins commonly associated 

with translating ribosomes or highly abundant proteins like GAPDH. All of these were 

considered to either co-purify non-specifically with mutant ribosomes or to represent proteins 

associated with both the mutant and wild-type ribosomes. Also several factors involved in 

ribosome biogenesis were identified, such as Noc4, Nob1 (band 1), Krr1, Nop1 (band 3). This 

may be a consequence of overrepresentation of mutant 18S rRNA in pre-40S subunits, due to 



their rapid degradation once they are mature. Although it has been excluded before that the 

mutation used here causes a problems in 18S rRNA processing (Cole et al, 2009), it is also 

possible that 18S A1492C ribosomes stay associated with ribosome assembly factors longer 

than their wild type counterparts. Finally, it cannot be excluded that in our strain background, 

the A1492C does inhibit pre-40S maturation. 

 

 

 

Figure 42 Purification of wild type and mutant ribosomes via U1 stem loop and U1A-TAP. 
A tandem affinity purification was performed on lysate from yeast expressing 18S-U1 rRNA (wild type or 
mutant, sense or antisense) and U1A-TAP, grown in presence of 2% galactose. A: Elution fraction E2 was 
separated on a 10-20 % gradient SDS-PAGE and visualized by silver staining. The arrows indicate bands that 
were analysed by mass spectrometry. B: Elution fraction E3 was separated on a 7 % SDS-PAGE and visualized 
by silver staining. The arrows indicate bands that were analysed by mass spectrometry.  
 

In conclusion, a method was developed that allows the specific purification of ribosomes 

containing a mutation in their 18S rRNA. However, using this method, no factors that are 

candidates for acting on stalled ribosomes were identified.  
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2.2.4 Analysis of the role of Ltn1 in peptide stability and mRNA 

degradation. 

Ltn1 is responsible for polyubiquitination of peptides produced by ribosomes that stall on a 

subset of stall site containing mRNAs. This targets these peptides for degradation by the 

proteasome (Bengtson & Joazeiro, 2010). In rabbit reticulocyte lysates it was shown that 

Dom34-Hbs1 mediated dissociation of the stalled ribosomes is needed before efficient 

ubiquitination by Ltn1 can occur (Shao et al, 2013).  Biochemical experiments indicate that 

ribosomes can only be dissociated by Dom34-Hbs1 if their mRNA does not extend too long 

downstream of the P-site (Pisareva et al, 2011; Shoemaker & Green, 2011). This suggests that 

the mRNA cleavage seen in NGD precedes ribosome dissociation. These observations suggest 

that Ltn1 acts downstream of mRNA cleavage. Although the majority of Ltn1 and its 

associated complex RQC is found to be associated to 60S subunits, in yeast some 

polyubiquitination was reported to occur on 80S ribosomes, hence before subunit dissociation 

(Defenouillere et al, 2013). This opens the possibility that Ltn1 and other components of the 

RQC may bind to stalled ribosomes before subunit dissociation, and affect mRNA cleavage 

and/or subunit splitting. I studied whether the absence of Ltn1 has an effect on the efficiency 

of mRNA cleavage. 

To study this question, first it needed to be validated whether Ltn1 was required for peptide 

degradation in our yeast strain. A set of reporters was prepared that contained various 

ribosomal stall sites (a stem loop (SL) or stretches of basic amino acids (K12, encoded by 

AAG codons, and R12)) inserted between a sequence encoding a TAP-3HA sequence and a 

sequence encoding GFP (see Figure 43A). Negative control reporters did not contain any stall 

site (two types, as the sequence in which a stem loop was inserted differed from the sequence 

the other stall sites were inserted in). A second type of negative control, R12FS, contained the 

same nucleotide sequence as the R12 stall site, but with a frame shift. This resulted in a 

peptide that did not contain 12 consecutive arginines but rather the peptide sequence 

PGDDGAAGDDGAA (one amino acid more due to insertion of 3 nucleotides to establish the 

frame shift). All reporters were under the control of a galactose inducible promoter. The 

presence of the GFP sequence downstream of the stall site allowed a clear distinction, based 

on a difference in size, between full length protein (50-54 kDa) and a truncated protein 

produced by a stalled ribosome (~24 kDa).  

In Figure 43A it is shown that for most reporters, even in absence of a stall site, truncated 

proteins were detected in yeast that expresses Ltn1 (wild type). These might be protein 



degradation products. For the reporter containing a R12 stall site deletion of LTN1 caused the 

appearance of a truncated peptide (red rectangles), suggesting its Ltn1 dependent degradation. 

In agreement with previous observations, in which proteasome inhibition did not cause 

accumulation of a truncated peptide produced from a stem loop reporter (Dimitrova et al, 

2009), no peptide produced from a stem loop reporter accumulated in absence of Ltn1.  

 

 
Figure 43 Effect of LTN1 deletion on peptide stability and mRNA cleavage in NGD. 

A: Steady state levels of protein produced from the depicted reporter mRNA containing the indicated stall sites. 
Protein was extracted from S. cerevisiae grown in presence of 2% galactose using a rapid protocol (Kushnirov, 
2000) and was detected by western blot using PAP. B: Steady state levels of the same mRNA reporters used in 
A, and their degradation intermediates that accumulate in ski7  strains, in presence and absence of Ltn1. C:  
Steady state levels of the depicted reporter mRNA containing the indicated stall sites, and their degradation 
intermediates that accumulates in ski7  strains, in presence and absence of Ltn1. All RNA was analyzed by 
northern blot, using probe OBS4671 which hybridizes to the 3HA tag.  
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Surprisingly, and contrasting with previous data, no accumulation of a truncated peptide 

produced from a K12 reporter was observed either. Possible explanations why truncated 

peptides produced from reporters containing stall sites other than R12 do not accumulate are 

that these stall sites are less efficient in inducing stalling, or that a weak accumulation of the 

peptide is masked by the truncated protein signals that are also present in wild type strains. 

Now that there was an indication that Ltn1 dependent degradation of stalled ribosome 

produced peptides occurs in our strain, at least in case of an R12 stall site, I tested whether 

Ltn1 had an effect on mRNA cleavage on the same mRNA reporters. For this purpose the 

NGD assay described in Figure 31 was used. Figure 43B shows that the absence of Ltn1 did 

not cause any visible reduction in the level of 5� degradation intermediate produced from K12 

and R12 reporter mRNAs. Because the 5� intermediate signal from the TAP-3HA-GFP 

reporters was quite low, the experiment was repeated using a reporter in which a stall site was 

inserted downstream of a CBP-3HA encoding sequence (Figure 43C), from which the 5� 

intermediate accumulated at higher levels. Again Ltn1 deletion did not cause any visible 

reduction in the level of 5� intermediate produced from any of the reporter mRNAs. In this 

experiment no evidence was found supporting an effect of Ltn1 on NGD endonucleolytic 

cleavage. 

 

2.2.5 Nuclease requirement for exosome-mediated No-go decay 

intermediate degradation 

The 5� intermediate that results from mRNA cleavage in NGD is degraded by the cytoplasmic 

exosome. Dis3, the catalytic subunit of the cytoplasmic exosome, has both exo- and 

endonuclease activity (Dziembowski et al, 2007; Lebreton et al, 2008). General mRNA 

turnover depends on the exonuclease activity of Dis3. Meanwhile, for degradation of NSD 

substrates, both poly(A)+ and poly(A)-, either endonuclease or exonuclease activity is 

sufficient (Schaeffer & van Hoof, 2011). I examined what activity of Dis3 is required for 

degradation of a NGD 5� intermediate. 

I tested if mutation of the Dis3 exonuclease catalytic site (D551N), mutation of the Dis3 

endonuclease catalytic site (D171N) (Dziembowski et al, 2007; Lebreton et al, 2008), or 

mutation of both resulted in stabilization of a 5� intermediate produced from a stem loop 

containing CBP-3HA-SL mRNA. This NGD reporter was expressed in S. cerevisiae in which 

the essential chromosomal DIS3 gene was controlled by a doxycycline repressible promoter 



(tet-off). Dis3, wild type or mutant, was expressed from a plasmid. In presence of 

doxycycline, degradation by the exosome depended on the plasmid expressed Dis3.  

As shown in Figure 44, mutation of endo- or exonuclease activity did not or hardly cause any 

stabilization of the 5� intermediate. However, when Dis3 lacks both activities, the 

intermediate accumulates to the same extent as in absence of the protein. These data confirm 

that degradation of the 5� NGD intermediate depends on the exosome. They show that either 

either the endo- or the exonuclease activity is sufficient for intermediate degradation. The 

similarity in requirement of Dis3 activity to that observed for NSD substrates supports the 

hypothesis that NGD and NSD are closely related, and that the 5� NGD intermediate may be 

functionally similar to a poly(A)- NS mRNA.  

The intermediate is stabilized to higher levels a strain lacking Ski7 than in a strain in which 

Dis3 is repressed. This might be due to incomplete repression of chromosomal Dis3. 

 

 

 
Figure 44 Requirement of exosomal endo- and exonuclease activity for NGD intermediate degradation. 

S. cerevisiae containing DIS3 under the control of a doxycycline repressible promoter and expressing the 
indicated Dis3 mutants and a CBP-3HA-SL NGD reporter from a galactose inducible promoter was grown in 
presence of 2% galactose and, if indicated, exposed to 20 µg/ml doxycycline during 7 hours. Steady state levels 
of the NGD reporter mRNA and a 5� degradation intermediate produced from it were analyzed by northern blot 
using probe OBS4671. For each mutant the ratio of 5� intermediate over full length mRNA signal was calculated 
and then standardized for the ratio calculated for Dis3 wild type. 
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2.3 STUDY OF THE BIOLOGICAL IMPORTANCE OF DOM34-HBS1 

MEDIATED RIBOSOME DISSOCIATION 

The observation that Dom34 and Hbs1 (or alternative Dom34 partner aEF1 ) are conserved in 

two domains of life suggest that they have an important function in basic cellular processes. 

This is supported by the embryonic lethality in mice (Adham et al, 2003) and the sterility 

observed in Drosophila lacking Dom34 (Eberhart & Wasserman, 1995). Much of the research 

on Dom34 and Hbs1 has focused on their role in RNA quality control. However, one could 

question whether Dom34-Hbs1 acting on translational complexes that stall due to accidental 

errors in RNA production or processing explains their high level of conservation.  

The RNAs that have been used to study NGD, NSD and 18S NRD were all artificial, 

overexpressed and not necessarily representative of naturally occurring situations. The natural 

occurrence of NGD, NSD or 18S NRD substrates in a cell and the importance of Dom34-

Hbs1 for removing them has not been the subject of any study so far and is therefore 

unknown. Especially stall sites that have been studied to induce NGD, such as large 

secondary structures, stretches of rare codons or of codons encoding basic amino acids, are 

not expected to be produced by mutations or aberrant processing with high frequency. Non-

stop mRNAs may be produced more often, especially when produced as a result from the use 

of cryptic splice sites in the ORF. Defective ribosomes may result from aberrant rRNA 

production, but might also result from chemical damage. Moreover, because of their long life 

span, the impact of a defect in a ribosome is likely larger than that of a faulty mRNA. 

However, the impact of one or few ribosomes stalled on an equal number of mRNAs in a cell 

is not likely to have a deleterious impact. Consistently, overexpression of mRNA reporters for 

NSD or NGD or high-level expression of 18S NRD substrates has little impact on cell growth 

rate. 

I was therefore interested in studying whether Dom34-Hbs1 mediated ribosome dissociation 

may play a role beyond RNA quality control.   

 

2.3.1 Dom34-Hbs1 overexpression 

Genetic studies in S. cerevisiae have mainly addressed the effect of DOM34 or HBS1 

deletion. Although the absence of Dom34 has been reported to cause a reduced growth rate 

(Davis & Engebrecht, 1998), this observation was not supported by other reports (Carr-

Schmid et al, 2002), see also Figure 48). Here I studied the effect of Dom34-Hbs1 

overexpression on yeast growth.  
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Dom34 and/or Hbs1 were expressed in wild type S. cerevisiae from plasmid, either from their 

endogenous promoters or from a galactose inducible promoter. A C-terminal 3HA-tag or 

protein A-tag allowed the detection of Dom34 and Hbs1 respectively. It was confirmed that in 

presence of galactose Dom34 and Hbs1 were expressed from the galactose inducible 

promoters at much higher levels than from their endogenous promoters, at 30°C (Figure 45A). 

 

 

 

Figure 45 Effect of Dom34-Hbs1 overexpression on yeast growth. 
Dom34 and/or Hbs1 was expressed from their endogenous promoter or a galactose inducible promoter in wild 
type S. cerevisiae. A: Hbs1-protein A and Dom34-3HA are overexpressed from galactose inducible GAL1 and 
GAL10 promoters respectively. Protein was extracted from yeast grown at 30°C in CSM-Leu medium containing 
2% galactose using a rapid protocol (Kushnirov, 2000). Dom34-3HA and Hbs1-Protein A are detected by 
western analysis using anti-HA antibody and PAP respectively. Stm1 served as a loading control and was 
detected by antibody AbBS8. B: Yeast was grown on CSM-Leu medium containing 2% galactose or 2% glucose 
at the indicated temperatures. Two independent clones are represented for each strain grown at 16°C in presence 
of 2 % galactose. 
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Overexpression of Dom34 and/or Hbs1 from galactose inducible promoters did not have any 

effect on yeast growth at 25, 30 or 37°C (Figure 45B). At 16°C reduced growth was observed 

in yeast overexpressing Hbs1 and to a lesser extent also in yeast overexpressing Dom34 

(Figure 45B, clone 2). However, this effect could not be reproduced with another set of 

independent clones grown on a second plate (Figure 45B). It was therefore concluded that 

Dom34-Hbs1 overexpression may reduce yeast growth only to a small extent, if any. 

 

2.3.2 Can Dom34-Hbs1 complement the absence of eRF1-eRF3? 

The eRF1-eRF3 complex and the Dom34-Hbs1 complex have in common that they bind to 

the ribosomal A-site and that, together with Rli1, they can induce dissociation of mRNA 

bound ribosomes. Whereas eRF1-eRF3 acts specifically on ribosomes with a stop codon in 

their A-site, Dom34-Hbs1 dissociates ribosomes with any codon in their A-site, including a 

stop codon (Pisareva et al, 2011; Shoemaker et al, 2010; Shoemaker & Green, 2011).  

Yeast lacking eRF1 or eRF3 is inviable. The effect of their absence can be studied using 

thermosensitive mutants, that are inactive at 37°C. We hypothesized that overexpression of 

the Dom34-Hbs1 complex may rescue strains lacking functional eRF1-eRF3 complex, by 

releasing ribosomes that cannot terminate. Although they are paralogs, Hbs1 has been shown 

not to be able to complement the absence of eRF3. This is not surprising, as Hbs1 does not 

interact with eRF1 (Wallrapp et al, 1998), and is therefore unlikely to stimulate its activity. 

That does not exclude that high levels of the entire Dom34-Hbs1 complex may complement 

the absence of eRF1-eRF3 activity, which was tested here. 

Dom34 and Hbs1 were overexpressed from galactose inducible promoters (see Figure 45A) in 

S. cerevisiae strains with thermosensitive eRF1 (sup45) and eRF3 (sup35) mutants. In Figure 

46 it is shown that at 37°C, when there is no functional eRF1-eRF3 complex, overexpression 

of Dom34-Hbs1 complex does not rescue yeast growth. This indicates that increased Dom34-

Hbs1 availability cannot replace the role of the eRF1-eRF3 complex in translation termination 

and recycling in vivo.  

There can be several explanations. First, the level of overexpressed Dom34-Hbs1 complex 

may not be sufficient to replace eRF1-eRF3. Second, the rate of Dom34-Hbs1 mediated 

dissociation may be lower than that of eRF1-eRF3 induced recycling. Third, Dom34-Hbs1 

may not act on ribosomes stalled on stop codons in vivo. Finally, an important explanation 

may be found in the fact the Dom34-Hbs1 complex cannot induce peptide release, as Dom34 

lacks the GGQ motif required for peptidyl-tRNA hydrolysis (Graille et al, 2008; Lee et al, 



2007). Importantly, peptides produced by ribosomes stalled on NS-mRNAs have later been 

shown to be degraded by the RQC (Brandman et al, 2012; Defenouillere et al, 2013; Verma et 

al, 2013). Recent reports indicate that this peptide degradation depends on Dom34-Hbs1 

mediated dissociation of these stalled ribosomes (Shao et al, 2013). These observations 

suggest that, even if Dom34-Hbs1 dissociate ribosomes stalled on stop codons in absence of 

eRF1-eRF3, they may not rescue protein synthesis because all peptides are targeted for 

degradation. 

 

 

 

Figure 46 Dom34-Hbs1 overexpression does not rescue yeast lacking eRF1-eRF3. 
In S. cerervisiae containing temperature sensitive mutants of eRF1 (sup45 ts) and eRF3 (sup 35 ts) Hbs1-protein 
A and/or Dom34-3HA were expressed from galactose inducible GAL1 and GAL10 promoters respectively. 
Yeast, in 10-fold dilution series, was grown on CSM-Leu medium containing 2 % galactose at 25°C (eRF1 and 
eRF3 are expressed from their mutant genes), 30°C and the non-permissive temperature 37°C (eRF1 and eRF3 
are not expressed from their mutant genes).  
 

 

2.3.3 Dom34-Hbs1 mediated dissociation of ribosomes bound to mRNAs 

that are being degraded 

It has been reported that the first steps of cytoplasmic mRNA degradation, deadenylation and 

decapping, can occur on polysomal mRNAs (Hu et al, 2009). If the exosome and Xrn1 also 

act on ribosome associated mRNAs, the ribosomes may block their passage. Especially in 

case of exosome mediated degradation this would be problematic: at some point the exosome 

would digest the stop codon, making it impossible for elongating ribosomes to terminate. A 

mechanism would be required to remove these ribosomes, to allow efficient mRNA 



degradation. I studied whether the Dom34-Hbs1 complex is needed for efficient cytoplasmic 

mRNA degradation.  

 

2.3.3.1 Genetic interaction with factors involved in cytoplasmic degradation 

In yeast defective for decapping, 5� to 3� mRNA decay cannot occur. General turnover is then 

dependent on the 3� to 5� pathway. The thermosensitive dcp1-2 allele produces functional 

Dcp1 at 25°C, the permissive temperature. However, at the non-permissive temperature, 

37°C, no functional Dcp1 is produced and 5� to 3� mRNA decay cannot occur (Tharun & 

Parker, 1999). In yeast lacking Ski7 or a component of the Ski complex, 3� to 5� mRNA 

decay cannot occur and general turnover depends on 5� to 3� degradation. Strains lacking both 

pathways are not viable (Anderson & Parker, 1998).  It was examined whether in strains in 

which only one of the two mRNA decay pathways occurs, the presence of Dom34 is required 

for efficient growth. 

Figure 47A shows that dcp1-2 mutant yeast did not grow at all at non-permissive temperature 

(37°C). At temperatures at which the mutant strain did grow, it was observed that deletion of 

DOM34 negatively affected growth in the mutant background (at 30, 32 and 34°C), but not in 

wild type background. A synthetic slow growth phenotype was also observed for SKI7 and 

DOM34 deletion, but only at low temperature (16°C) (Figure 47B).  

 

 
 

Figure 47 Genetic interaction of Dom34 with Dcp1 and Ski7. 
Ten-fold dilution series of the indicated S. cerevisiae strains, grown on YPDA medium at the indicated 
temperatures. 
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These observations suggests that Dom34 function is needed for efficient 3� to 5� mRNA 

turnover by the exosome, and at low temperatures also for efficient 5� to 3� mRNA decay by 

Xrn1. The synthetic growth phenotype of Dom34 with Ski7 only being observed at low 

temperature is in agreement with the effect of DOM34 deletion in 40S subunit deficient 

strains also affecting growth most at low temperatures (Bhattacharya et al, 2010; Carr-Schmid 

et al, 2002). An explanation may be that some energy demanding processes, e.g. ribosome 

dissociation or translation, occur less efficiently at low temperatures, making the need for 

Dom34-Hbs1 action higher. In theory, translating ribosomes may slow down Xrn1 function 

but should not block it completely, as translating ribosomes move in the same direction as 

Xrn1 and will eventually be released from the mRNA, after termination. If, at low 

temperatures, translation elongation, termination or recycling proceeds less efficiently, 

Dom34-Hbs1 mediated ribosome dissociation may be required for Xrn1 to proceed 

efficiently. 

To test whether the genetic interaction between Dcp1 and Dom34 is caused by Dom34 being 

required for efficient 3� to 5� degradation, the stability of reporter mRNAs was determined in 

dcp1-2 and dcp1-2dom34  yeast. As the reporters used, MFA2 and PGK1, were expressed 

from plasmids and under the control of galactose inducible promoters, this experiment 

required growing the mutant strains in media different from the ones used in Figure 47. It was 

therefore first confirmed that in CSM media containing either 2% galactose or 2% glucose 

absence of Dom34 also had a negative effect on growth of dcp1-2 mutant yeast at 34°C 

(Figure 48A). 

Yeast strains expressing MFA2 or PGK1 reporters were grown at 25°C, at which functional 

Dcp1 is produced, in presence of 2% galactose. Then they were shifted to 37°C for one hour, 

to inhibit Dcp1 activity, followed by resuspension in medium containing 4 % glucose at 37°C, 

to switch off reporter gene transcription. Reporter gene levels were then followed over time. 

As our hypothesis was that in absence of Dom34 translating ribosomes may block passage of 

the exosome, one would not expect stabilization of the entire mRNA in the dcp1-2dom34  

strain, but rather of a fragment containing the 3�UTR and large part of the ORF. Such a 

fragment should be well separated from full length mRNA in case of the relatively short 

MFA2 mRNA, which was separated on a 6 % acrylamide urea gel. However, no truncated 

mRNA fragment was detected for either MFA2 or PGK1 (Figure 48B and C).  

A truncated mRNA produced from the longer PGK1 reporter may not be well separated from 

the full length mRNA on the 1,5 % agarose formaldehyde gel used. Therefore the half life of  



 

 

Figure 48 Effect of Dom34 on exosome mediated mRNA degradation. 
A: Ten-fold dilution series of the indicated S. cerevisiae strains, grown on CSM medium containing 2% glucose 
or galactose at the indicated temperatures. B and C: Chase experiment to determine the stability of a galactose 
inducible PGK1 (B) of MFA2 (C) reporter mRNA in the indicated strains. Yeast was grown in CSM-Ura 
containing 2% galactose. Upon resuspension in CSM-Ura containing 2% glucose, thereby switching off reporter 
mRNA transcription, PGK1 and MFA2 mRNA levels were followed over time. mRNA was detected by 
Northern analysis using probes OBS5598 (for PGK1) and OBS1160 (for MFA2). 
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full length PGK1 was determined for dcp1-2 and dcp1-2dom34  strains, being 67 minutes 

and 61 minutes respectively.  

In summary no indications for a need for Dom34 in exosome mediated mRNA turnover were 

found. However, this does not exclude the requirement for Dom34 in regular 3� to 5� mRNA 

turnover. mRNAs other than the reporters used may require Dom34-Hbs1 action for efficient 

3� to 5� degradation. Even the reporters used may require the complex. They both contain a 

poly(G) tract in their 5�UTR, which is known to partially block exosome progression 

(Anderson & Parker, 1998). For the PGK1 mRNA it is possible that a truncated mRNA 

stabilized due to the presence of this poly(G) tract was not separated from the full length 

mRNA on gel. One explanation why no stabilizing effect of DOM34 deletion was observed 

could be that it was masked by the stabilizing effect of the poly(G) tract. 

 

2.3.3.2 Is dissociation of ribosomes on Nonsense mediated decay targets needed for 

degradation? 

Besides �normal� mRNAs, mRNAs containing a premature stop codon that are therefore 

targets of the NMD pathway have also been shown to be decapped while still polysome 

associated (Hu et al, 2010). I examined whether efficient mRNA degradation in NMD 

requires Dom34-Hbs1 action. 

A reporter PGK1 mRNA containing a premature stop codon was expressed from a galactose 

inducible promoter. Steady state levels of the full length NMD substrate and degradation 

intermediates were compared between wild type and dom34  yeast, by northern analysis 

using a probe that hybridizes to a poly(G) sequence in the 3� UTR. No differences were 

observed (Figure 49).   

Although I did not find any indication of Dom34-Hbs1 facilitating mRNA degradation by the 

exosome or Xrn1, this does not mean that it does not occur. Especially if the exosome 

degrades ribosome associated mRNAs, digestion of the stop codon may cause ribosomes to 

get stuck on the mRNA. However, in S. cerevisiae the major pathway for general mRNA 

turnover is the 5� to 3� pathway. To find a biologically significant role for the Dom34-Hbs1 

complex facilitating mRNA degradation, it would therefore make sense to look more 

specifically into mRNAs that are known to depend mainly on the exosome for degradation. In 

yeast, the principal cytoplasmic exosome substrates characterized so far are NS mRNAs, with 

or without poly(A) tail. As recent evidence strongly indicates that degradation of these 

mRNAs is indeed stimuted by Dom34-Hbs1 mediated ribosome dissociation (Tsuboi et al, 

2012), this line of research was not further continued. 
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Figure 49 Effect of Dom34 on the degradation of NMD substrates. 
Steady state levels of wild type and dom34  S. cerervisiae expressing a reporter PGK1 mRNA with or without 
premature stop codon. The PGK1 reporter was expressed from a galactose inducible promoter and yeast was 
grown in presence of 2% galactose. Total RNA was extracted and analyzed by northern blot, using probe 
OBS1298, hybridizing to the poly(G) tract. 
 

2.3.4 Dom34-Hbs1 mediated dissociation of inactive ribosomes 

Many stress conditions cause an inhibition of translation. Ribosomes accumulate in an 

inactive 80S form, which protects the ribosomal subunits from degradation and makes sure 

that there is a pool of ribosomes available for rapid restart of translation when this is required 

(see paragraph 1.2). Glucose depletion is an example of a translation inhibiting stress 

condition. The inactive 80S ribosomes that accumulate contain Stm1 in a conformation that is 

incompatible with translation and that clamps the ribosomal subunits together (Ben-Shem et 

al, 2011). When glucose is added, these inactive ribosomes are rapidly mobilized and 

translation restarts quickly. To become available for translation initiation, the subunits of the 

inactive 80S ribosomes need to be dissociated. I hypothesized that the Dom34-Hbs1 complex 

may dissociate the accumulated 80S ribosomes and thereby stimulate restart of translation 

after stress.  

The study I performed resulted in a manuscript that was submitted for publication and is 

currently under revision. A brief summary of the work will be given here, followed by the 
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submitted manuscript. Supplementary data of the manuscript can be found in the 

supplementary information of this thesis. Finally, some additional experiments that are not in 

the manuscript will be presented. 

By analyzing polysome profiles obtained from S. cerevisiae before, during and after glucose 

starvation stress, I found that Dom34 and Hbs1 stimulate a rapid restart of translation upon 

glucose addition, especially at low temperatures (16°C). This was confirmed at the level of 

protein production, by monitoring 35S-methionine incorporation. The Stm1-bound inactive 

ribosomes that accumulate during glucose depletion differ from known Dom34-Hbs1 

substrates. To test whether Dom34-Hbs1 dissociate Stm1-containing ribosomes, I applied for 

an EMBO short term fellowship to visit the lab of Dr. Rachel Green (Johns Hopkins 

University, USA) who had developed a biochemical ribosome dissociation assay for 

translating ribosomes. In collaboration with Anthony Schuller in her lab, we showed that 

these inactive ribosomes are indeed substrates of Dom34, Hbs1 and Rli1. That Dom34-Hbs1 

and Rli1 also dissociate inactive ribosomes in vivo was supported by the finding that deletion 

of Stm1, which antagonizes ribosome dissociation, rescues the defect in translational restart 

upon glucose addition seen in strains lacking Dom34. Mutational analysis showed that the 

GTPase activity of Hbs1 was required for the Dom34-Hbs1function studied here, but that a 

stable interaction between the two factors was not. The N-terminal domain of Hbs1, of which 

the function is unknown, was not required either.  

The pool of inactive ribosomes that accumulates during glucose depletion contains a large 

fraction of all ribosomal subunits in the cell. In growing, non-stressed cells, inactive 80S 

ribosomes form as well, although to a lesser extent. I hypothesized that they may be substrates 

of Dom34-Hbs1 as well. Supporting this, I found by polysome analysis in presence of high 

salt concentrations, that the increased 80S peak observed in dom34  strains is accounted for 

by an accumulation of inactive ribosomes. Moreover, I found that the Dom34-Hbs1 complex 

stimulates translation in a yeast extract.  

In summary I found that the Dom34-Hbs1 complex dissociates inactive ribosomes, thereby 

making their subunits available for translation initiation. This is particularly important in cells 

recovering from stress, but my data indicate that it also occurs in non-stressed cells. 
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Abstract 

Following translation termination, ribosomal subunits are dissociated to become available for 

subsequent rounds of protein synthesis. In many translation inhibiting stress conditions, e.g. 

glucose starvation in yeast, free ribosomal subunits reassociate to form a large pool of non-

translating 80S ribosomes stabilized by the �clamping� Stm1 factor. The subunits of these 

inactive ribosomes need to be mobilized for translation restart upon stress relief. The Dom34-

Hbs1 complex, together with the Rli1 ATPase, have been shown to split ribosomes that are 

stuck on mRNAs in the context of RNA quality control mechanisms. Here, using in vitro and 

in vivo methods, we report a new role for the Dom34-Hbs1 complex and Rli1 in dissociating 

inactive ribosomes, thereby facilitating translation restart in yeast cells recovering from 

glucose starvation stress. Interestingly, we found that this new role is not restricted to stress 

conditions, indicating that in growing yeast there is a dynamic pool of inactive ribosomes that 

needs to be split by Dom34-Hbs1 and Rli1 to participate in protein synthesis. We propose that 

this could provide a new level of translation regulation. 
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Introduction 

 

The production of proteins by ribosomes can be divided into four stages that together form the 

translation cycle: initiation, elongation, termination and recycling {Krebs, 2011 #542}. 

Eukaryotic translation initiation requires separate 40S and 60S ribosomal subunits, which 

assemble on the initiation codons of messenger RNAs (mRNA) to form the actively 

translating 80S ribosome. Ribosomal subunits available for initiation result from ribosome 

recycling, which occurs after, and is tightly coupled to translation termination. Termination 

and recycling are triggered when a translating ribosome encounters a termination codon. At 

this point, the termination factors eRF1 and eRF3, together with the ATPase Rli1 (also known 

as ABCE1), catalyze peptide release and subsequent ribosome dissociation {Pisarev, 2010 

#10;Shoemaker, 2011 #21}.  

Many stress conditions cause a global shut down of translation, allowing cells to 

economically use limited metabolic resources to only produce proteins important for 

adaptation to the changing environment. Ribosomal subunits that are released through 

recycling may not engage in new rounds of protein synthesis, but instead associate to form a 

large pool of non-translating, inactive ribosomes. Formation of these inactive ribosomes may 

protect ribosomal subunits from damage and/or degradation. Moreover, upon stress relief, 

these inactive ribosomes can be easily and economically mobilized without a requirement for 

ribosome biogenesis. Upon prolonged stress, ribosomes may eventually be degraded by 

ribophagy to provide cells with energy and nutrients {Kraft, 2008 #395}. 

In bacteria, it is well described that stress-induced factors bind to �hibernating� ribosomes and 

induce the formation of ribosome dimers (70S + 70S). The binding sites of the stress-induced 

factors overlap with those of mRNA and transfer RNA (tRNA) thus inhibiting normal 

ribosome activities {Polikanov, 2012 #276}.  

Eukaryotic hibernating ribosomes may in some organisms also form dimers {Krokowski, 

2011 #315}, but mostly accumulate as inactive 80S monomers. This was shown for example 

to occur in mammalian cells upon serum-depletion {Nielsen, 1981 #506}, in yeast and 

mammalian cells after amino acid shortage {Krokowski, 2011 #315;Tzamarias, 1989 #483} 

and in yeast during osmotic stress {Uesono, 2002 #488}, lithium induced stress {Montero-

Lomeli, 2002 #501}, and after exposure to fusel alcohols {Ashe, 2001 #505}. The most 

detailed example stems probably from the analysis of glucose starvation in the yeast 

Saccharomyces cerevisiae. This condition leads to the accumulation of 80S ribosomes {Ashe, 

2000 #168} that contain the protein Stm1 in a conformation that clamps the ribosomal 
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subunits together {Ben-Shem, 2011 #173}. This structure is incompatible with translation as 

Stm1 occupies part of the mRNA channel. Consistent with this structural observation, Stm1 

was identified as a ribosome-binding factor {Inada, 2002 #317;Van Dyke, 2006 #172} and 

has translation inhibiting activity in vitro {Balagopal, 2011 #169}. In addition, Stm1 was 

shown to enhance recovery following nutritional stress {Van Dyke, 2006 #172}, having a 

positive effect on the number of ribosomes preserved during nutrient deprivation {Van Dyke, 

2013 #320}.  

Mobilization of inactive ribosomes, which allows a rapid restart of translation upon stress 

relief {Ashe, 2000 #168} requires dissociation, making their subunits available for initiation. 

We wondered whether this process, in analogy to ribosome recycling after termination, 

depends on recycling factor activity. 

In addition to normal termination and recycling factors that are thought to function on stop 

codons, recent studies in yeast and mammalian systems identified Dom34 (Pelota in humans) 

and the GTPase Hbs1, forming a complex structurally similar to eRF1 and eRF3 {Chen, 2010 

#83;Kobayashi, 2010 #85;van den Elzen, 2010 #80}, that together with Rli1 similarly 

promote subunit dissociation. Interestingly, however, these factors appear to function on 

mRNA-bound ribosomes in a codon-independent manner {Shoemaker, 2010 #22;Shoemaker, 

2011 #21} or to promote subunit splitting on completely empty ribosomes {Pisareva, 2011 

#62}. Current models suggest that the Dom34-Hbs1 complex binds to the ribosomal A site, 

followed by GTP hydrolysis, dissociation of Hbs1 and accommodation of Dom34 in the 

ribosome. Rli1 then binds and induces ATP dependent subunit dissociation {Shoemaker, 2011 

#21}. CryoEM structures provide clear support for eRF3/eRF1/Rli1 and Hbs1/Dom34/Rli1 

playing related roles in ribosome recycling {Becker, 2011 #180;Becker, 2012 #19}. 

In addition to these biochemical insights, Dom34 and Hbs1 were shown in genetic 

experiments to be important for RNA quality control in No-Go Decay targeting aberrant 

mRNAs {Doma, 2006 #91}) and in 18S NRD targeting defective or incompletely matured 

40S ribosomal subunits {Cole, 2009 #117;Soudet, 2010 #540}. In NGD, the Dom34-Hbs1 

complex may use its dissociation activity to release ribosomes that are stalled at the 3� end of 

mRNAs lacking a termination codon {Tsuboi, 2012 #67}. Recent reports also suggest that the 

Dom34-Hbs1 complex and Rli1 mediate dissociation of pre-40S and 60S subunits in a quality 

control step during ribosome maturation {Lebaron, 2012 #336;Strunk, 2012 #332}. Most of 

these processes involve the recognition of ribosomes stalled on an mRNA during translation. 

We report here a new function for Dom34-Hbs1. We observe that Dom34-Hbs1 stimulates the 

dissociation of non-translating ribosomes that accumulate upon glucose starvation in yeast. 
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The biological relevance for this activity is seen in the dependence on these proteins of 

translational recovery in yeast cells after glucose deprivation. We further extended these ideas 

and show that Dom34-Hbs1 mediated dissociation of non-translating ribosomes can stimulate 

translation even in non-stressed conditions. 
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Results 

 

The Dom34-Hbs1 complex stimulates restart of translation after glucose starvation 

When the yeast S. cerevisiae is exposed to media lacking glucose for as little as 10 minutes, a 

change in the polysome profile occurs that is characteristic of translation inhibition: the 

polysome levels drop and ribosomes accumulate in a large 80S peak {Ashe, 2000 #168}. 

These 80S ribosomes are known to be inactive, bound by Stm1 in a conformation 

incompatible with translation {Ben-Shem, 2011 #173}. Glucose addition leads to a rapid 

recovery of translation, characterized by the reappearance of polysomes and a decrease in the 

80S peak {Ashe, 2000 #168}. These observations were reproduced in our hands with strong 

translational recovery detectable 5 minutes after glucose addition (Figure 1A).  

The process of translation initiation depends on the activities of separate ribosomal subunits. 

As such, the restart of translation in yeast recovering from glucose deprivation must depend 

on the dissociation of the large pool of inactive, Stm1-bound 80S ribosomes. Since human 

and yeast Dom34-Hbs1 complex with Rli1 can very effectively dissociate ribosomal subunits 

assembled with or without an mRNA in vitro {Pisareva, 2011 #62;Shoemaker, 2010 

#22;Shoemaker, 2011 #21}, we hypothesized that these factors might also be needed to split 

Stm1-bound ribosomes in vivo. To test this possibility, we monitored the polysome profiles of 

isogenic wild type, dom34  or hbs1  strains in glucose-depleted conditions and after glucose 

addition. In contrast to the wild type strain, we found that in the absence of Dom34 or Hbs1, 

the 80S peak did not diminish and the polysomes did not increase after the addition of 

glucose. A small delay in recovery of translation was observed in mutant strains at 30°C (data 

not shown), but the effect was much more prominent at reduced temperatures (16°C, Figure 

1A and B, see also Figure 4A) where ribosomal subunit dissociation is likely to be 

energetically more demanding. 

To further evaluate the role of Dom34-Hbs1 in promoting the restart of translation after 

glucose starvation, we monitored overall 35S-Met incorporation as a measure of protein 

synthesis in wild type and mutant cells. While in wild type cells, protein synthesis is 

equivalent in unstarved cells or cells recovering from starvation (Figure 1C), we see that 

protein synthesis was decreased in dom34  cells recovering from glucose starvation 

compared to unstarved cells (Figure 1D). These results indicate that the Dom34-Hbs1 

complex is involved in the restart of translation in yeast recovering from glucose starvation. 
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Dom34-Hbs1 and Rli1 dissociate inactive ribosomes that accumulate in glucose-starved 

yeast.  

Because of its ribosome dissociating activity in vitro {Pisareva, 2011 #62;Shoemaker, 2010 

#22;Shoemaker, 2011 #21} it is likely that Dom34-Hbs1 stimulates restart of translation by 

splitting inactive 80S ribosomes that accumulate during glucose starvation. These inactive 

ribosomes differ from known Dom34-Hbs1 substrates in that they contain the protein Stm1 in 

a conformation that clamps the subunits together {Ben-Shem, 2011 #173}. We performed 

biochemical recycling assays to test whether the Dom34-Hbs1 complex could act on these 

Stm1-bound inactive ribosomes.  

In in vitro recycling assays, ribosomes are radioactively labeled and then incubated with 

various factors (Dom34, Hbs1, Rli1). The complexes are then analyzed on sucrose gradients 

or on native gels to determine the level of �splitting� {Shoemaker, 2010 #22;Shoemaker, 

2011 #21}. The protein Tif6, an initiation factor that binds to the subunit interface on the 60S 

subunit, is included in all experiments to trap ribosomes that undergo stimulated dissociation. 

For the experiments described here, ribosomes were non-specifically radiolabeled using 

casein kinase II {Shoemaker, 2010 #22}.  

In a first experiment, �inactive� ribosomes isolated from glucose-starved yeast were incubated 

with various combinations of Dom34, Hbs1 and Rli1 (in addition to Tif6) and the samples 

were analyzed on a sucrose gradient. We see that after 15 minutes of incubation, all 80S 

ribosomes were dissociated into separate subunits when all three factors were added (Figure 

2A, red curve). The elimination of either Rli1 or Dom34 significantly diminished the amount 

of dissociation observed, though not completely (Figure 2A).  

In order to more precisely define the efficiencies of these splitting reactions, we used native 

gel electrophoresis (Supplementary Figure 1) to analyze equivalent experimental samples 

over time to determine relative rate constants. The rates that we measure for 

Dom34/Hbs1/Rli1-mediated splitting of Stm1-bound ribosome�s is ~1.2 min-1 which is 

similar to the rate we previously observed (~1.6 min-1) for elongating ribosomes bound to 

mRNA and peptidyl-tRNA {Shoemaker, 2011 #21}. In the absence of Rli1, the rate of 

dissociation decreased by 15 fold, close to earlier reports of a ~ 10 fold contribution 

{Shoemaker, 2011 #21}. In absence of in vivo data indicating that Rli1 is involved in 

dissociating inactive ribosomes (RLI1 is an essential gene involved in other important 

processes) these results strongly support its participation in this process. Similar to the results 

of the sucrose gradient analysis (data not shown) and previous studies {Pisareva, 2011 

#62;Shoemaker, 2011 #21}, elimination of Hbs1 had little effect on the observed rate of the 
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splitting reaction, though blocking Hbs1 GTPase activity by the inclusion of a non-

hydrolyzable GTP analog (GDPNP) diminished the rate of splitting by 3 fold (Figure 2B).  

Overall, these data demonstrate that Stm1-bound 80S ribosomes from glucose-starved yeast 

are good substrates for Dom34/Hbs1/Rli1-mediated subunit splitting in vitro. Indeed, while 

these samples were prepared at different times from different yeast cultures, the similarity in 

these values with earlier measurements for related but distinct complexes suggests that these 

ribosome complexes are equivalent targets for Dom34/Hbs1/Rli1 mediated recycling. We 

note that because the rates are measured with saturating amounts of Dom34/Hbs1/Rli1, the 

measured values are rate constants, thus allowing more readily for longitudinal comparisons 

to be made.  

 

Deletion of STM1 suppresses the requirement for Dom34-Hbs1 to restart translation in vivo. 

We reasoned that if the Dom34-Hbs1 complex stimulates restart of translation by dissociating 

Stm1-bound 80S ribosomes, weakening subunit interactions might reduce the requirement for 

the Dom34-Hbs1 complex. We tested this hypothesis by comparing the translation recovery 

of strains following glucose starvation and the re-addition of glucose in stm1  and 

stm1 dom34  strains. In Figure 3B, we see that deletion of STM1 rescued the dom34  

recovery deficient phenotype (Figure 3B). Importantly, deletion of STM1 alone had no effect 

on translation inhibition or translation recovery (compare Figure 3A and Figure 1A).  

The observation that the weakening of ribosomal subunit interactions reduces the requirement 

for Dom34 for recovery from starvation supports a model where Dom34/Hbs1/Rli1 promotes 

the dissociation of ribosomes in vivo.  

 

Functional requirements of Dom34-Hbs1 for translational reactivation. 

Our biochemical assay indicated that Hbs1 was not essential for the dissociation of inactive, 

Stm1-bound ribosomes in vitro (Figure 2B). To test the role of Hbs1 in vivo, we compared 

polysome profiles from a hbs1  mutant strain carrying the wild type HBS1 gene on a plasmid 

or an empty vector. Analysis of polysomes at different time points during a glucose 

starvation/recovery experiment indicated that Hbs1, like Dom34, is required for optimal 

translational restart (Figure 4A). 

We next explored the requirement of several functional regions of the Dom34-Hbs1 complex 

for this process. Hbs1 is a GTPase belonging to the eEF-1 -like family of GTPases 

{Atkinson, 2008 #144;Wallrapp, 1998 #337}, which includes the termination factor eRF3 and 

the elongation factor eEF-1 . Both of these factors function essentially to deliver their cargo, 
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eRF1 and aminoacyl-tRNA, respectively, to the ribosomal A site. We asked whether the 

GTPase activity of Hbs1 is required for efficient restart of translation in vivo and found that 

the GTP-binding defective Hbs1 mutant V176G {van den Elzen, 2010 #80} did not promote 

effective recovery from glucose starvation (Figure 4A). 

We next probed the importance of the interaction between Dom34 and Hbs1 for the recovery 

from glucose starvation. The interface of these two proteins is comprised of contacts between 

several different regions in multiple domains of each protein {Chen, 2010 #83;Kobayashi, 

2010 #85;van den Elzen, 2010 #80} where interaction defective mutants have been previously 

characterized {van den Elzen, 2010 #80}. The Hbs1 R517E mutant was shown by two-hybrid 

analysis to bind poorly to Dom34 {van den Elzen, 2010 #80}. Interestingly, this mutation did 

not affect the restart of translation following glucose starvation, indicating that a stable 

Dom34-Hbs1 interaction is not needed for this function (Figure 4A). In parallel, we used the 

Dom34 E361R mutant that similarly blocks formation of the Dom34-Hbs1 complex {van den 

Elzen, 2010 #80}, but in this case, the mutation diminished the recovery of cells from glucose 

starvation (Figure 4B). This asymmetric requirement for the interaction surfaces of Hbs1 and 

Dom34 suggests that Dom34 E361 may be important for other functions in addition to its 

interaction with Hbs1 (see discussion).  

Members of the family of eEF1 -like GTPases are highly similar with regard to their C-

terminal domains, but differ in their N-terminal length and amino acid sequence {Inagaki, 

2000 #271}; the function of the N-terminus of Hbs1 is not known. Cryo-EM analysis of the 

Dom34-Hbs1 complex bound to an 80S ribosome revealed that it is located proximal to the 

mRNA entry channel {Becker, 2011 #180}. When this cryoEM structure was aligned with the 

high-resolution crystal structure of the ribosome from glucose-depleted yeast {Ben-Shem, 

2011 #173}, we found that the N-terminus of Hbs1 would be in close contact with a portion 

of Stm1 located in the mRNA channel (Supplementary Figure 2). We therefore asked whether 

the N-terminus of Hbs1 plays a role in stimulating translation recovery after glucose 

depletion. Deletion of N-terminal amino acids 2-149 (mutant Hbs1 N-ter) did not reduce the 

efficiency of translation re-initiation (Figure 4A).  

 

The Dom34-Hbs1 complex stimulates translation in non stress-related conditions. 

In non-stressed conditions, the polysome profiles of yeast lacking functional Dom34 or Hbs1 

show elevated 80S peaks, which, especially at low temperatures, are combined with reduced 

levels of polysomes (Compare the polysome profiles on the left in Figures 1A, B and 4A, B, 

see also {Bhattacharya, 2010 #234;Carr-Schmid, 2002 #131}. This observation suggests that 
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even in non-stressed conditions, there may be inactive 80S ribosomes that depend on Dom34-

Hbs1 and Rli1-mediated dissociation for their subunits to become available for translation 

initiation. The higher 80S peak could due to some amount of Stm1-bound ribosomes, of 

empty ribosomes lacking Stm1, or of mRNA-bound ribosomes that result, for example, from 

a Dom34-Hbs1 dependent defect in late translation initiation or early elongation. To 

distinguish between these possibilities, we analyzed the polysome profiles of wild type and 

dom34  strains in high and low salt sucrose gradients. High salt treatment is known to 

dissociate non-translating but not mRNA-bound 80S ribosomes {Martin, 1970 #342;Zylber, 

1970 #348}. As we see in Figure 5A, in low salt conditions the 80S peak was higher for the 

dom34  strain compared to wild type (Figure 5A), while the 80S peaks were small and 

equivalent for the wild type and dom34  strains when analyzed in high salt conditions (Figure 

5B). These data indicate that in the absence of Dom34, primarily non-mRNA-bound 80S 

ribosomes accumulate. 

This observation supports a potential role for Dom34-Hbs1 and Rli1 in dissociating mRNA-

free 80S ribosomes even in actively growing cells. If this is true, then the Dom34-Hbs1 

complex would likely stimulate translation even in non-stressed conditions. To test this 

hypothesis, we used an in vitro translation assay where a synthetic mRNA encoding the 

firefly luciferase was incubated in cellular extract from a dom34 hbs1  strain, and varying 

amounts of recombinant Dom34 and Hbs1 were added. Luciferase activity measurements 

were used to monitor translation. We see that the addition of increasing concentrations of the 

Dom34-Hbs1 complex stimulated the translation of a firefly luciferase reporter mRNA up to 

3-fold, whereas addition of Hbs1 alone did not (Figure 5C).  

Together these results support the idea that the Dom34-Hbs1 complex generally stimulates 

translation in cells, stressed or non-stressed, by facilitating the dissociation of mRNA-free 

80S ribosomes into their constituent 40S and 60S subunits. 

  



 127

Discussion 

Currently the Dom34-Hbs1 complex is considered a central player in co-translational quality 

control on RNAs that cause inefficient translation {Graille, 2012 #390;Shoemaker, 2012 

#352}. Dom34-Hbs1 stimulates degradation of such mRNAs and rRNAs {Cole, 2009 

#117;Doma, 2006 #91}, most likely by facilitating the removal of stalled ribosomes from 

mRNAs {Tsuboi, 2012 #67}. Here we show that the Dom34-Hbs1 complex is a key player in 

the quick recovery of cells from stress and also stimulates translation under non-stress 

conditions. These observations expand the biochemical and physiological roles of Dom34-

Hbs1 in the cell because every inactive 80S ribosome becomes a potential substrate for this 

complex. 

 

Dom34-Hbs1 dissociates inactive ribosomes, promoting recovery after stress. 

Our data show that the Dom34-Hbs1 complex is critical for the restart of translation in yeast 

recovering from glucose starvation. Two independent lines of evidence provide support for 

the idea that this stimulation depends on Dom34-Hbs1 dissociating inactive ribosomes, 

liberating subunits for new rounds of translation initiation. First, we showed that inactive 

ribosomes from glucose-depleted yeast are biochemical substrates of the complex (Figure 2). 

Second, deletion of Stm1, that stabilizes ribosomal subunit interaction {Ben-Shem, 2011 

#173;Correia, 2004 #330} and therefore antagonizes dissociation, abolishes the need for the 

Dom34-Hbs1 complex for recovery.  

The GTPase activity of Hbs1 was previously shown to be important for all of the protein�s 

identified functions including RNA quality control {Kobayashi, 2010 #85;van den Elzen, 

2010 #80}, complementation of a growth defect in a rps30a hbs1  or a rps28a hbs1  strain 

{Carr-Schmid, 2002 #131;van den Elzen, 2010 #80} and Dom34-Hbs1-Rli1 mediated 

dissociation of ribosomes {Pisareva, 2011 #62;Shoemaker, 2010 #22;Shoemaker, 2011 #21}. 

Our data here are consistent with these earlier observations. First, GTPase defective Hbs1 

variants were unable to function in the recovery of cells from glucose starvation. Second, the 

substitution of GDPNP for GTP in the in vitro subunit splitting assays resulted in an overall 

inhibition of the reaction. Interestingly, as previously reported for other ribosomal substrates 

{Pisareva, 2011 #62;Shoemaker, 2011 #21}, Hbs1 did not increase the rate of splitting in the 

in vitro reactions, despite beings required in vivo for translational restart. Since the principle 

role of Hbs1 is likely to be in the loading of Dom34 into the ribosome, the high 

concentrations of Dom34 supplied in the in vitro reactions may minimize the contribution of 
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Hbs1. Because the cellular concentrations of Dom34 and Rli1 are much lower, the stimulatory 

effect of Hbs1 could be more relevant for dissociation of inactive ribosomes in the cell.  

We further tested the importance of the interface between Dom34 and Hbs1 for promoting 

glucose starvation recovery. Here, we were somewhat surprised to see that mutation of the 

interface of Hbs1 had little impact on the in vivo phenotype while the Dom34 interface was 

critical to its function. Hbs1 being required for ribosome dissociation in vivo, these data 

suggest that Dom34 and Hbs1 could bind the ribosome independently, their mutual 

interaction being stabilized by the ribosomal context. The greater importance of the Dom34 

interface may be rationalized by the fact that Dom34 must interact with Rli1 and changes 

conformation while bound to the ribosome {Becker, 2012 #19}. Dom34 E361 may at some 

stage during recycling interact with Rli1 or the ribosomes. We note that mutation of the 

Dom34-Hbs1 interaction surface had a similar asymmetric impact on 18S NRD {van den 

Elzen, 2010 #80}. However, we cannot definitively exclude that the mutation on the Hbs1 

interface less effectively diminishes interactions with Dom34 than the chosen Dom34 

mutation. 

 

A general role of Dom34 �Hbs1 in modulating translation by controlling ribosomal subunit 

availability 

Beyond its role in stress recovery, we observed that Dom34-Hbs1 mediated dissociation of 

inactive ribosomes can more broadly function to stimulate translation initiation. In the 

absence of Dom34 and/or Hbs1, polysome profiles generally have elevated 80S peaks 

(compare leftmost polysome profiles in Figures 1A, 1B and 4A; see also {Bhattacharya, 2010 

#234;Carr-Schmid, 2002 #131}, due to accumulation of inactive ribosomes not bound to 

mRNA templates (Figure 5A and B). We show here that even in non-stressed conditions, 

Dom34-Hbs1 appears to broadly stimulate translation efficiency by making subunits available 

for new rounds of protein synthesis (Figure 5). This observation is consistent with the fact that 

depletion of orthologs of Rli1 - which acts together with Dom34-Hbs1 to dissociate inactive 

ribosomes � similarly results in accumulation of 80S ribosomes and decreased levels of 

polysomes in yeast, human and Drosophila cells {Andersen, 2007 #257;Chen, 2006 

#261;Dong, 2004 #260}. Additionally, in a strain with impaired initiation (inhibition of eIF2), 

deletion of Dom34 or Hbs1 results in a synthetic growth defect {Carr-Schmid, 2002 #131} 

that might suggest that these factors work in a common pathway. Finally, both Dom34 and 

Hbs1 are important for normal growth of yeast strains with reduced amounts of 40S subunits 
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{Bhattacharya, 2010 #234;Carr-Schmid, 2002 #131;van den Elzen, 2010 #80} likely because 

these double mutant strains have too few ribosomes available to function. 

During glucose deprivation, inactive ribosomes contain Stm1 in a conformation that inhibits 

translation and stabilizes subunit interaction {Ben-Shem, 2011 #173}. It is not clear whether 

this mechanism of ribosome inhibition is broadly used in response to stress, or whether it is 

used in a wide variety of physiological conditions. Our results show that in non-stressed 

conditions, deletion of Stm1 reduces the elevated 80S peak that forms in the absence of 

Dom34 to almost wild type levels (compare leftmost polysome profiles in Figure 1B and 

figure 3B). This suggests that the translation inhibiting conformation of Stm1 is present in a 

large fraction of inactive 80S ribosomes, even in non-stressed cells. A role for Stm1 in 

antagonizing Dom34-Hbs1 mediated dissociation of inactive 80S ribosomes likely explains 

why overexpression of Stm1 in dom34  yeast causes a growth defect {Balagopal, 2011 

#169}. 

 

Conclusion 

Our work shows that Dom34-Hbs1-mediated subunit dissociation is critical in the recovery of 

yeast cells from glucose starvation. Our data further suggest that Dom34-Hbs1 plays a similar 

role in non-stressed cells, dissociating unproductive empty 80S ribosomes so that normal 

translation initiation can occur. These observations provide insights into a novel general 

mechanism for the control of translation wherein ribosomes are stored in an unproductive 

state (either with Stm1 bound or simply not containing an mRNA) that is readily reversed by 

the activities of Dom34, Hbs1 and Rli1.  

We emphasize that this mechanism is likely widely used by cells to dissociate various 

ribosome complexes to maintain an active supply of ribosomal subunits. Indeed, a general 

shut down of translation is a hallmark of a cell�s response to many stress conditions including 

nutrient depletion, temperature shock, hypoxia and DNA damage {Spriggs, 2010 #152}. 

Moreover, Dom34 and Hbs1 are conserved proteins: Dom34 has orthologs in eukaryotes and 

archaea {Eberhart, 1995 #537;Ragan, 1996 #338}. And, whereas Hbs1 has orthologs only in 

eukaryotes {Inagaki, 2000 #271;Wallrapp, 1998 #337}, the function is filled even in archaea 

by the related protein aEF1  {Kobayashi, 2010 #85;Saito, 2010 #112}.  
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Material and Methods 

 

Yeast strains, media and plasmids 

Yeast strains and plasmids are listed in Supplementary Table 1. Yeast strains, derivatives of 

of BMA64, were constructed by standard methods. The plasmid pBS4415 was constructed by 

inverse PCR on a pBS3614 template {van den Elzen, 2010 #80} using oligonucleotides 5�-

ATATCATGAGGTTTCTTTGGTTTCATCTCGATAGTCAATAGTTGTCG-3� and 5�-

CCAAAGAAACCTCATGATATTTCTGCATTTGTTAAATCTGCCTTAC-3� and was 

verified by sequencing. 

Glucose rich and glucose depleted media were YPDA and YPA (for strains without plasmids) 

or CSM-Ura 2% glucose and CSM-Ura without glucose (for strains containing Dom34 or 

Hbs1 encoding plasmids) respectively. 

 

Glucose starvation and repletion 

Yeast was grown at 30°C at 170 rpm to an OD600 of 0.6, then shifted to 16°C for 2 hours. The 

culture was then split into multiple 100 ml cultures that were pelleted at 5400 x g for 6 min at 

16°C, resuspended in 100 ml of media (precooled at 16°C) without or with 2% glucose and 

incubated at 16°C for 10 minutes at 170 rpm. Cells were pelleted, resuspended in 100 ml 

media with glucose and incubated at 16°C at 170 rpm for the indicated times.  

 

Polysome analysis 

At the indicated times after glucose depletion or glucose addition cycloheximide was added 

(100 µg/ml final concentration) and cells were pelleted at 5400 x g for 6 min at 4°C. Cells 

were washed and then lysed at 4°C in lysis buffer (10 mM Tris-Cl pH 7.5; 100 mM KCl; 5 

mM MgCl2; 6 mM -mercaptoethanol; 100 µg/ml cycloheximide) or in lysis buffer 

containing 400 mM KCl (Figure 4B) containing glass beads by 5 cycles of 1 minute vortexing 

followed by 1 minute on ice, in presence of glass beads. 9 OD260 units of lysate were loaded 

on a 7-47% sucrose gradient in lysis buffer, or lysis buffer containing 400 mM KCl (Figure 

4B). After a 14 h spin at 16.9 krpm in an SW41 rotor (Beckman Coulter), absorbance (254 

nm) was measured on a ISCO Teledyne Foxy Jr. fraction collector. 

 
35

S-Methionine incorporation 

Yeast was grown in CSM-Met containing 2% glucose, shifted to 16°C, split into 8 ml cultures 

and resuspended in 8 ml CSM-Met with or without 2% glucose for 10 minutes as described 
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above. Then cells were resuspended in 8 ml CSM-Met 2% glucose (16°C) containing 4 µl 
35S-Methionine (1175 Ci/mmol, 5 mCi/0,49 ml, Perkin Elmer) and incubated at 16°C. At the 

indicated time points 1 ml samples were taken and 35S-Methionine incorporation was 

measured as described {Ashe, 2000 #168}. 

 

In vitro ribosome dissociation 

80S ribosomes purified from glucose-depleted yeast were kindly provided by S. Melnikov 

and Dr. Marat Yusupov. 100 pmol ribosomes were 32P-labeled using 500 U casein kinase II 

(NEB) and 32P -ATP in the manufacturer�s recommended buffer, then pelleted through a 600 

µl 1.1 M sucrose cushion in buffer E (20 mM Tris-Cl pH 7.5, 2.5 mM Mg(OAc)2, 100 mM 

KOAc pH7.6, 2 mM DTT, 0.25 mM spermidine) at 75000 rpm 1 h 4°C in a MLA-130 rotor 

followed by resuspension in buffer E. 6,25 pmol ribosomes were incubated in 25 µl buffer E 

containing 1 mM GTP or GDPNP and 1 mM ATP at 26°C for 15 minutes with 50 pmol 

Dom34, 50 pmol Hbs1, 50 pmol Rli1 and 625 pmol Tif6 - purified as described previously 

{Shoemaker, 2010 #22;Shoemaker, 2011 #21}. Dissociation was analyzed by centrifugation 

through a 10-30% sucrose gradient in buffer E at 38500 rpm for 3,5 h at 4°C in a SW41 rotor. 

Fractions were counted in Bio Safe II scintillation fluid. Kinetic analysis was performed by 

loading 2 µl fractions of the reactions on a 3% acrylamide gel in THEM buffer (34 mM Tris 

base, 57 mM Hepes, 0.1 mM EDTA, 2.5 mM MgCl2) {Acker, 2007 #476} at indicated time 

points, running the gel in THEM buffer at 12W at 4°C. Gels were dried and quantified using a 

Typhoon 9410 phosphoimager and ImageQuantTL (GE Healthcare Life Sciences). The 

fraction of dissociated ribosomes was plotted against time and, using KaleidaGraph for curve 

fitting, rate constants were determined. 

 

In vitro translation 

Translational extracts were prepared from a dom34 hbs1  strain (BSY2550) essentially as 

described {Tuite, 1986 #255}. A synthetic firefly luciferase-A(50) mRNA {Gallie, 1991 

#273} was incubated in this extract supplemented, or not, with recombinant Dom34-Hbs1 

purified as described previously {Collinet, 2011 #331} and luciferase activity was assayed. 

Translation conditions have been described by Tharun et al. {Tarun, 1995 #256} (see 

Supplementary data for details).  

 

 

 



 132

Acknowledgements 

Authors are grateful to S. Melnikov and M. Yusupov for purified ribosomes and discussions, 

F. Wyers and F. Lacroute for the stm1  strain, M. Gas Lopez for the hbs1 N-ter (2-149)-

PROTEIN A construct, and our team members as well as A. Ben-Shem for discussions. We 

thank the IGBMC mass-spectrometry platforms for their help in the early part of this project 

and IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) for assistance. 

This work was supported by grants from the CERBM-IGBMC, the Ligue Contre le Cancer 

(Equipe Labellisée 2011), the CNRS and the Agence Nationale de la Recherche (ANR 11 

BSV8 009 02) to BS. A.M.G.v.d.E. was supported by predoctoral fellowships from Université 

de Strasbourg, the Fondation pour la Recherche Médicale and an EMBO short-term 

fellowship.  

 

 

Author Contribution  

AMGvdE performed all the in vivo experiments, as well as the in vitro translation, with input 

from BS. In vitro analyses of ribosome dissociation were performed by AS and AMGvdE 

with input from RG and BS. BS supervised the project. AMGvdE, AS, RG and BS wrote the 

manuscript. 

 

Conflict of Interest 

The authors declare that they have no conflict of interest.   



 133

References 

Acker MG, Kolitz SE, Mitchell SF, Nanda JS, Lorsch JR (2007) Reconstitution of yeast 
translation initiation. Methods Enzymol 430: 111-145 
 
Andersen DS, Leevers SJ (2007) The essential Drosophila ATP-binding cassette domain 
protein, pixie, binds the 40 S ribosome in an ATP-dependent manner and is required for 
translation initiation. J Biol Chem 282: 14752-14760 
 
Ashe MP, De Long SK, Sachs AB (2000) Glucose depletion rapidly inhibits translation 
initiation in yeast. Mol Biol Cell 11: 833-848 
 
Ashe MP, Slaven JW, De Long SK, Ibrahimo S, Sachs AB (2001) A novel eIF2B-dependent 
mechanism of translational control in yeast as a response to fusel alcohols. EMBO J 20: 6464-
6474 
 
Atkinson GC, Baldauf SL, Hauryliuk V (2008) Evolution of nonstop, no-go and nonsense 
mediated mRNA decay and their termination factor-derived components. BMC Evol Biol 8: 
290 
 
Balagopal V, Parker R (2011) Stm1 modulates translation after 80S formation in 
Saccharomyces cerevisiae. RNA 17: 835-842 
 
Becker T, Armache JP, Jarasch A, Anger AM, Villa E, Sieber H, Motaal BA, Mielke T, 
Berninghausen O, Beckmann R (2011) Structure of the no-go mRNA decay complex Dom34- 
Hbs1 bound to a stalled 80S ribosome. Nat Struct Mol Biol 18: 715-720 
 
Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, Sieber H, 
Ungewickell C, Berninghausen O, Daberkow I, Karcher A, Thomm M, Hopfner KP, Green R, 
Beckmann R (2012) Structural basis of highly conserved ribosome recycling in eukaryotes 
and archaea. Nature 482: 501-506 
 
Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M 
(2011) The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334: 1524-1529 
 
Bhattacharya A, McIntosh KB, Willis IM, Warner JR (2010) Why Dom34 stimulates growth 
of cells with defects of 40S ribosomal subunit biosynthesis. Mol Cell Biol 30: 5562-5571 
 
Carr-Schmid A, Pfund C, Craig EA, Kinzy TG (2002) Novel G-protein complex whose 
requirement is linked to the translational status of the cell. Mol Cell Biol 22: 2564-2574 
 
Chen L, Muhlrad D, Hauryliuk V, Cheng Z, Lim MK, Shyp V, Parker R, Song H (2010) 
Structure of the Dom34-Hbs1 complex and implications for no-go decay. Nat Struct Mol Biol 

17: 1233-1240 
 
Chen ZQ, Dong J, Ishimura A, Daar I, Hinnebusch AG, Dean M (2006) The essential 
vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J Biol Chem 281: 7452- 
7457 
 



 134

Cole SE, LaRiviere FJ, Merrikh CN, Moore MJ (2009) A convergence of rRNA and mRNA 
quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Cell 

34: 440-450 
 
Collinet B, Friberg A, Brooks MA, van den Elzen T, Henriot V, Dziembowski A, Graille M, 
Durand D, Leulliot N, Saint Andre C, Lazar N, Sattler M, Seraphin B, van Tilbeurgh H 
(2011) Strategies for the structural analysis of multi-protein complexes: lessons from the 3D 
Repertoire project. J Struct Biol 175: 147-158 
 
Correia H, Medina R, Hernandez A, Bustamante E, Chakraburtty K, Herrera F (2004) 
Similarity between the association factor of ribosomal subunits and the protein Stm1p from 
Saccharomyces cerevisiae. Mem Inst Oswaldo Cruz 99: 733-737 
 
Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in 
translation elongation. Nature 440: 561-564 
 
Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, Hinnebusch AG (2004) The essential ATP 
binding 
cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J 

Biol Chem 279: 42157-42168 
 
Eberhart CG, Wasserman SA (1995) The pelota locus encodes a protein required for meiotic 
cell division: an analysis of G2/M arrest in Drosophila spermatogenesis. Development 121: 
3477-3486 
 
Gallie DR, Feder JN, Schimke RT, Walbot V (1991) Post-transcriptional regulation in higher 
eukaryotes: the role of the reporter gene in controlling expression. Mol Gen Genet 228: 258-
264 
 
Graille M, Seraphin B (2012) Surveillance pathways rescuing eukaryotic ribosomes lost in 
translation. Nat Rev Mol Cell Biol 13: 727-735 
 
Inada T, Winstall E, Tarun SZ, Jr., Yates JR, 3rd, Schieltz D, Sachs AB (2002) One-step 
affinity purification of the yeast ribosome and its associated proteins and mRNAs. RNA 8: 
948-958 
 
Inagaki Y, Ford Doolittle W (2000) Evolution of the eukaryotic translation termination 
system: origins of release factors. Mol Biol Evol 17: 882-889 
 
Kobayashi K, Kikuno I, Kuroha K, Saito K, Ito K, Ishitani R, Inada T, Nureki O (2010) 
Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1alpha 
complex. Proc Natl Acad Sci U S A 107: 17575-17579 
 
Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively 
degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin 
protease. Nat Cell Biol 10: 602-610 
 
Krebs JE, Goldstein ES, Kilpatrick ST (2011) Lewin�s Genes X, Sudbury, MA.: Jones and 
Barlett Publishers. Krokowski D, Gaccioli F, Majumder M, Mullins MR, Yuan CL, 



 135

Papadopoulou B, Merrick WC, Komar AA, Taylor D, Hatzoglou M (2011) Characterization 
of hibernating ribosomes in mammalian cells. Cell Cycle 10: 2691-2702 
 
Lebaron S, Schneider C, van Nues RW, Swiatkowska A, Walsh D, Bottcher B, Granneman S, 
Watkins NJ, Tollervey D (2012) Proofreading of pre-40S ribosome maturation by a 
translation initiation factor and 60S subunits. Nat Struct Mol Biol 19: 744-753 
 
Martin TE, Hartwell LH (1970) Resistance of active yeast ribosomes to dissociation by KCl. J 

Biol Chem 245: 1504-1506 
 
Montero-Lomeli M, Morais BL, Figueiredo DL, Neto DC, Martins JR, Masuda CA (2002) 
The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces 
cerevisiae. J Biol Chem 277: 21542-21548 
 
Nielsen PJ, Duncan R, McConkey EH (1981) Phosphorylation of ribosomal protein S6. 
Relationship to protein synthesis in HeLa cells. Eur J Biochem 120: 523-527 
 
Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, 
Hellen CU, Pestova TV (2010) The role of ABCE1 in eukaryotic posttermination ribosomal 
recycling. Mol Cell 37: 196-210 
 
Pisareva VP, Skabkin MA, Hellen CU, Pestova TV, Pisarev AV (2011) Dissociation by 
Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation 
complexes. EMBO J 30: 1804-1817 
 
Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA 
turn off protein synthesis. Science 336: 915-918 
 
Ragan MA, Logsdon JM, Jr., Sensen CW, Charlebois RL, Doolittle WF (1996) An 
archaebacterial homolog of pelota, a meiotic cell division protein in eukaryotes. FEMS 

Microbiol Lett 144: 151-155 
 
Saito K, Kobayashi K, Wada M, Kikuno I, Takusagawa A, Mochizuki M, Uchiumi T, Ishitani 
R, Nureki O, Ito K (2010) Omnipotent role of archaeal elongation factor 1 alpha (EF1alpha in 
translational elongation and termination, and quality control of protein synthesis. Proc Natl 

Acad Sci U S A 107: 19242-19247 
 
Shoemaker CJ, Eyler DE, Green R (2010) Dom34:Hbs1 promotes subunit dissociation and 
peptidyl-tRNA drop-off to initiate no-go decay. Science 330: 369-372 
 
Shoemaker CJ, Green R (2011) Kinetic analysis reveals the ordered coupling of translation 
termination and ribosome recycling in yeast. Proc Natl Acad Sci U S A 108: E1392-1398 
Shoemaker CJ, Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 

19: 594-601 
 
Soudet J, Gelugne JP, Belhabich-Baumas K, Caizergues-Ferrer M, Mougin A (2010) 
Immature small ribosomal subunits can engage in translation initiation in Saccharomyces 
cerevisiae. EMBO J 29: 80-92 
 



 136

Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during 
conditions of cell stress. Mol Cell 40: 228-237  
 

Strunk BS, Novak MN, Young CL, Karbstein K (2012) A translation-like cycle is a quality 
control checkpoint for maturing 40S ribosome subunits. Cell 150: 111-121 
 
Tarun SZ, Jr., Sachs AB (1995) A common function for mRNA 5' and 3' ends in translation 
initiation in yeast. Genes Dev 9: 2997-3007 
 
Tsuboi T, Kuroha K, Kudo K, Makino S, Inoue E, Kashima I, Inada T (2012) Dom34:Hbs1 
plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' 
end of aberrant mRNA. Mol Cell 46: 518-529 
 
Tuite MF, Plesset J (1986) mRNA-dependent yeast cell-free translation systems: theory and 
practice. Yeast 2: 35-52 
 
Tzamarias D, Roussou I, Thireos G (1989) Coupling of GCN4 mRNA translational activation 
with decreased rates of polypeptide chain initiation. Cell 57: 947-954 
 
Uesono Y, Toh EA (2002) Transient inhibition of translation initiation by osmotic stress. J 

Biol Chem 277: 13848-13855 
 
van den Elzen AM, Henri J, Lazar N, Gas ME, Durand D, Lacroute F, Nicaise M, van 
Tilbeurgh H, Seraphin B, Graille M (2010) Dissection of Dom34-Hbs1 reveals independent 
functions in two RNA quality control pathways. Nat Struct Mol Biol 17: 1446-1452 
 
Van Dyke N, Baby J, Van Dyke MW (2006) Stm1p, a ribosome-associated protein, is 
important for protein synthesis in Saccharomyces cerevisiae under nutritional stress 
conditions. J Mol Biol 358: 1023-1031 
 
Van Dyke N, Chanchorn E, Van Dyke MW (2013) The Saccharomyces cerevisiae protein 
Stm1p facilitates ribosome preservation during quiescence. Biochem Biophys Res Commun 

430: 745-750 
 
Wallrapp C, Verrier SB, Zhouravleva G, Philippe H, Philippe M, Gress TM, Jean-Jean O 
(1998) The product of the mammalian orthologue of the Saccharomyces cerevisiae HBS1 
gene is phylogenetically related to eukaryotic release factor 3 (eRF3) but does not carry 
eRF3-like activity. FEBS Lett 440: 387-392 
 
Zylber EA, Penman S (1970) The effect of high ionic strength on monomers, polyribosomes, 
and puromycin-treated polyribosomes. Biochim Biophys Acta 204: 221-229 
  



 137

Figure Legends 

 

Figure 1. Dom34 stimulates restart of translation in yeast recovering from glucose 

starvation stress. (A) and (B) Dom34 stimulates the rapid reappearance of polysomes in cells 

recovering from glucose starvation stress. Polysome profiles of wild type (A) or dom34  (B) 

yeast grown in glucose rich medium (left graph), after 10 minutes of glucose starvation 

(second graph) and 5 and 30 minutes after glucose repletion (third and fourth graph) at 16°C. 

(C) and (D) Dom34 stimulates protein production in cells recovering from glucose starvation 

stress. Wild type (C) and dom34  (D) depleted of glucose or grown in glucose rich medium 

for 10 minutes at 16°C was resuspended in glucose rich medium containing 35S-Methionine, 

followed by incubation at 16°C. 35S-Methionine incorporation was measured at the indicated 

time points. Means and SD of 3 independent experiments are shown. 

 

Figure 2. Dom34-Hbs1 and Rli1 participate in the dissociation of inactive, Stm1-

containing, 80S ribosomes.  

Dom34-Hbs1 and Rli1 dissociate ribosomes from glucose-starved yeast in vitro. 32P-labeled 

80S ribosomes purified from glucose-starved yeast were incubated with the indicated proteins 

in presence of ATP and GTP or GDPNP. (A) After 15 minutes of incubation dissociation was 

monitored by sucrose density gradient centrifugation and scintillation counting of collected 

fractions. (B) Observed rate constants were determined by monitoring the fraction of 

dissociated ribosomes over time on a native gel system (see Supplementary Figure 1). Means 

and SD of 3 independent experiments are shown. 

 

Figure 3. Weakening ribosome subunit interaction reduces the need for Dom34 during 

restart of translation after glucose starvation stress. 

Polysome profiles of stm1  (A) and dom34 stm1  (B) yeast grown in glucose rich medium 

(left graph) exposed to glucose starvation (second graph) and 5 and 30 minutes after glucose 

readdition (third and fourth graphs) at 16°C.  

 

Figure 4. Restart of translation after glucose depletion stress requires Hbs1 GTPase 

activity but not Dom34-Hbs1 interaction or the Hbs1 N-terminus. 

Polysome profiles of hbs1  (A) or dom34  (B) yeast transformed with plasmid expressing 

the indicated mutants, grown in glucose rich medium (left graph), exposed to glucose 

starvation (middle graph) and after glucose readdition (right graph) at 16°C.  
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Figure 5. The Dom34-Hbs1 complex stimulates translation in non stress-related 

conditions.  

(A) and (B) Inactive 80S ribosomes accumulate in dom34  yeast. Polysome profiles were 

obtained from wild type and dom34  yeast in low (100 mM KCl) (A) and high (400 mM 

KCl) (B) salt conditions. Yeast strains were grown at 30°C. (C) Dom34-Hbs1 stimulates 

translation by ribosomes that were not exposed to starvation stress. A firefly luciferase mRNA 

was translated for 1 hour in cell extract obtained from a dom34  hbs1  strain, after which 

luciferase activity was measured. Addition of increasing amounts of recombinant Dom34-

Hbs1 complex, but not of Hbs1 alone, stimulated luciferase production. Means and SD of 3 

independent experiments are shown.  
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In the manuscript it was shown that in S. cerevisiae lacking Dom34 translation did not recover 

30 minutes after glucose addition, whereas in wild type strains in the same time window full 

recovery was observed, at 16°C. I studied how much time it took for dom34  yeast to reach 

full translational recovery after glucose starvation. In Figure 50 it is shown that this took 

between two and four hours. 

 

 

 

Figure 50 Recovery of translation after glucose starvation in absence of Dom34. 
Translational recovery after glucose starvation takes two to four hours in absence of Dom34. Polysome profiles 
of dom34  S. cerevisiae grown in glucose rich medium (YPDA, first graph), after 10 minutes of glucose 
starvation in YPA (second graph) and 30, 60, 120 and 240 minutes after glucose addition (resuspension in 
YPDA, third to sixth graph) at 16°C. Due to a technical problem with the UV monitor the tip of the 80S peak in 
the 240 minute recovery graph is missing. 
 

A failure to efficiently restart translation upon stress relief is expected to translate itself into a 

failure to resume cell growth and proliferation. I examined whether yeast lacking Dom34 

grew more slowly than wild type strains, after exposure to glucose depletion stress.  

Cell density, estimated by OD600 reading, was followed over time in cells that, after a brief 

period of glucose starvation, were grown in presence of glucose. Because the experiment was 

performed at 16°C, even wild type cells not exposed to stress grew slowly, making 

differences between the conditions very small. Consistent with the defect in translational 



recovery, a dom34  strain grew more slowly in the first few hours after glucose starvation 

than a wild type strain (Figure 51). 

  

 
Figure 51 Recovery of growth following glucose starvation in presence and absence of Dom34. 

Cell density (OD600) was monitored in S. cerevisiae, grown in presence of glucose (in YPDA), followed by 
glucose starvation or continued growth in glucose rich medium (resuspension in YPA or YPDA respectively) for 
10 minutes, and then grown in presence of glucose (resuspension in YPDA) at 16°C. Timepoint 0 minutes 
corresponds to the moment of resuspension in YPDA.  
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2.4 DOM34-HBS1 INTERACTION 

Not presented here were data I produced in which I show by co-purification experiments on 

recombinant Dom34 and Hbs1 from bacteria, that the C-terminal domain of Dom34 is 

essential for Dom34-Hbs1 interaction. These data were published (Collinet et al, 2011), the 

paper is included in the supplementary information section of this thesis. 
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3. DISCUSSION
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In my work I identified a new role for the ribosome dissociating Dom34-Hbs1 complex. It 

stimulates translation, by making the subunits of inactive 80S ribosomes available for 

initiation. Especially in cells recovering from translation inhibiting stress, this proved to be 

important for translational recovery. My work also gives new insights into RNA quality 

control mechanisms acting on stalled translational complexes, in which the Dom34-Hbs1 

complex also functions, and into how these pathways relate to each other. 

  

3.1 RNA QUALITY CONTROL ON STALLED TRANSLATIONAL 

COMPLEXES 

The Dom34-Hbs1 complex acts in three RNA quality control pathways that have several 

characteristics in common. Apart from sharing the involvement of Dom34-Hbs1, NGD, 18S 

NRD and NSD all target ribosomes that translate inefficiently or stall on a mRNA. In all three 

pathways Dom34-Hbs1 affects the degradation process of the RNAs that cause ribosomal 

stalling (Cole et al, 2009; Doma & Parker, 2006; Saito et al, 2013) and in NSD there are 

indications that the complex dissociates stalled ribosomes (Tsuboi et al, 2012). A lot of 

questions remain on the mechanisms of NGD, 18S NRD and NSD and how these mechanisms 

relate.  

 

The endonuclease responsible for cleaving the mRNA in NGD has not been identified so far. I 

excluded the factors Esl1 and Esl2 as candidates. These paralogs have been predicted in the 

SMART database to contain a PIN domain (Bleichert et al, 2006), a domain that has been 

shown to have endonuclease activity in several other factors (Huntzinger et al, 2008; Lebreton 

et al, 2008). Yeast has several other factors that contain a PIN domain. Based on their 

localization and the conservation of their active sites, these factors could be tested for 

endonuclease activity in NGD. Another question is how the endonuclease is recruited to a 

mRNA with one or more stalled ribosomes. If the Dom34-Hbs1 acts upstream of the 

endonuclease cleavage step, the complex may play a direct role in recruiting the 

endonuclease. The discovery of the identity of the endonuclease will help greatly in studying 

the mechanism of its recruitment and in studying the sequence of events in NGD.  

At the moment it is not clear whether the recruitment of the Dom34-Hbs1 complex to a 

ribosome stalled on a NGD substrate always causes mRNA cleavage. Biochemical 

experiments indicate that Dom34-Hbs1 mediated dissociation of stalled ribosomes only 

occurs if the mRNA extending downstream of the ribosomal P-site is of limited length 
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(Pisareva et al, 2011; Shoemaker & Green, 2011), suggesting that mRNA cleavage precedes 

ribosome dissociation. However, in theory it is possible that in vivo ribosome dissociation 

may occur without mRNA cleavage. If the identity of the endonuclease were known, in vitro 

experiments could give more insight into this. It could then be tested whether the addition of 

cell lysate, lacking the endonuclease, to an in vitro assembled translational complex stalled on 

a mRNA that extends far beyond the P-site results in ribosome dissociation.  

  

In 18S NRD a defect in an 18S rRNA causes the degradation of the defective 18S rRNA, 

which is part of an inefficiently translating ribosome (LaRiviere et al, 2006). At the moment 

nothing is known about the fate of other components of the affected ribosomes. Are the 

associated 40S subunit proteins also degraded, or can they, or some of them, be recycled? 

And what happens to the 60S subunit? For the cell it would be energetically favorable to not 

degrade functional 60S subunits. The observation that Dom34-Hbs1 stimulates 18S rRNA 

degradation in 18S NRD (Cole et al, 2009) suggests that ribosome dissociation is required for 

rRNA degradation, possibly by making it accessible for the RNA degradation machinery. The 

60S subunit may thereby be released. As discussed in paragraph 1.4.2.1 it is thought that 18S 

NRD is induced by inefficient translation of the affected ribosome. The question is whether 

the cell has mechanisms to identify what part of the ribosome causes inefficient translation 

and selectively degrade only this component.  In vitro translation experiments in yeast extract, 

using only mutant 18S rRNA containing ribosomes, may answer the question whether a 

defective 18S rRNA results in destabilization of other ribosome components. 

  

The question above can be further extended. Also NGD substrates are recognized due to an 

inefficiently translating ribosome. Does a cell have mechanisms to distinguish between 

ribosomal stalling caused by a defective ribosome and stalling caused by a stall site in a 

mRNA? In other words, does a stalled ribosome induce degradation of both mRNA and 18S 

NRD, or do NGD and 18S NRD occur separately, depending on the cause of stalling? Again, 

if stalling is caused by a mRNA it would be energetically favorable for the cell to not degrade 

the ribosome, which can be reused.  

In my work I found that disrupting the interaction between Dom34-Hbs1 negatively affects 

accumulation of a 5� NGD intermediate in yeast deficient for cytoplasmic exosome function, 

but has no or much less influence on 18S NRD efficiency. This may give new information on 

how NGD and 18S NRD relate. The difficulty, however, is that the conclusions that can be 
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drawn from these observations depend on the interpretation of the role of Dom34-Hbs1 in 

NGD. 

In NGD the Dom34-Hbs1 complex is needed for accumulation of a 5� degradation 

intermediate produced from some, but not all NGD substrates, in yeast deficient for 

cytoplasmic exosome function. Although initially interpreted as Dom34-Hbs1 stimulating 

mRNA cleavage, and thereby intermediate production, it can also be interpreted as Dom34-

Hbs1 acting downstream of mRNA cleavage and its absence reducing intermediate stability 

(see paragraph 1.4.5). Comparison of the half-life of a full length NGD reporter mRNA in 

presence and absence of Dom34-Hbs1 would shed more light on which interpretation is 

correct.  

The conclusions that can be drawn from my findings depend on which interpretation of the 

effect of Dom34-Hbs1 on NGD intermediate accumulation is used. If the hypothesis that 

NGD cleavage is Dom34-Hbs1 dependent is true, my data would indicate that NGD and 18S 

NRD can be genetically separated. It would follow from this that Dom34-Hbs1 recruitment to 

stalled ribosomes may not always induce the degradation of both mRNA and 18S rRNA in 

parallel, and that 18S rRNA degradation is not dependent on mRNA degradation.  

According to the alternative hypothesis, the 5� intermediate, stabilized in ski7 , is partially 

destabilized in absence of functional Dom34-Hbs1, due to stalled ribosomes inducing 

multiple mRNA cleavages. In this context, my data would indicate that disrupting Dom34-

Hbs1 interaction interferes sufficiently with the complex�s function to allow stalled ribosomes 

to induce multiple cleavages, destabilizing the 5� mRNA intermediate in NGD. However, the 

complex still functions sufficiently to promote 18S NRD. This makes sense as in NGD, there 

would be a kinetic competition between Dom34-Hbs1 mediated ribosome dissociation and 

ribosome induced endonucleolytic cleavage, which is likely to be sensitive to small changes 

in Dom34-Hbs1 activity. On the other hand, in 18S NRD Dom34-Hbs1 has a stimulatory 

effect on rRNA degradation. Small changes in Dom34-Hbs1 activity will only have small 

changes on rRNA degradation. 

The relationship between NGD and 18S NRD was further studied. My results did not indicate 

that a stall site in a mRNA can cause degradation of rRNA or ribosomal protein, nor did they 

exclude it. It would also be interesting to study whether a defect in a ribosome causes 

degradation of the mRNA it translates. A first indication may be obtained from in vitro 

translation experiments, using a yeast extract containing mutant 18S rRNA ribosomes only. 

The half-life of the mRNA that will be added to the extract can then be compared between an 

extract containing mutant ribosomes and an extract containing wild type ribosomes. 



 151

  

Apart from sharing several characteristics with 18S NRD, the NGD pathway also appears to 

be closely related to the NSD pathway. When ribosomes translate poly(A)+ NS mRNAs, they 

translate the poly(A) tail into a stretch of lysines. As discussed in paragraph 1.4.1.2, a stretch 

of lysines can cause a ribosome to stall and induce NGD. It is therefore tempting to speculate 

on poly(A)+ NSD being a form of NGD, that starts with an endonucleolytic cleavage in the 

poly(A) tail and subsequent degradation of the large 5� fragment (which is a poly(A)- NS 

mRNA) by the exosome. However, cleavage in the poly(A) tail appears unlikely, as in yeast 

deficient for cytoplasmic exosome activity a PGK1-NS mRNA accumulates that contains a 

poly(A) tail with a length similar to that of a control PGK1 mRNA (~70 nucleotides) (van 

Hoof et al, 2002).  

The 5� mRNA cleavage product produced in NGD may be functionally identical to a poly(A)- 

NS mRNA. Both are capped mRNAs that lack a stop codon and a poly(A) tail and that are 

associated with translating ribosomes. In addition my data show that their rapid degradation 

depends on the same nuclease requirement of the exosome: in both cases Dis3 endo- or 

exonuclease activity is sufficient. If poly(A)+ NSD would start with an endonucleolytic 

cleavage in the poly(A) tail, the resulting 5� intermediate would therefore be expected to be 

degraded in a manner similar to a poly(A)- NS mRNA. However, poly(A)+ NSD and 

poly(A)- NSD differ mechanistically in that degradation of poly(A)+ NS mRNAs requires 

Ski7 N- and C-terminus, whereas the degradation of a poly(A)- NS mRNAs requires only the 

Ski7 N-terminus (Schaeffer & van Hoof, 2011). If poly(A)+ NSD is a form of NGD, this 

would suggest that the C-terminal domain of Ski7 has a function upstream of the processive, 

Ski7 N-terminus dependent 3� to 5� degradation of the major part of the NS mRNA. 

  

Finally, a very important question concerns the biological relevance of NGD, 18S NRD, NSD 

and the role Dom34-Hbs1 plays in these pathways. The frequency and impact of accidental 

defects in mRNAs or ribosomes that cause ribosomal stalling, or the importance of Dom34-

Hbs1 in dealing with them, have not been studied so far. There is the possibility that these 

mechanisms exist not only to deal with faulty RNAs, but also as a part of regulatory 

mechanisms. An example could be the regulated use of an alternative poly(A) signal, 

resulting in a NS mRNA which is consequently degraded. Genome wide data analysis, e.g. 

from ribosome profiling experiments, comparing strains with and without functional Dom34-

Hbs1 may give new insights. Analysis of different environmental conditions or, in case of 

higher eukaryotes, of different cell types or developmental stages may prove important. 
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3.2 FUNCTIONAL IMPORTANCE OF HBS1 GTPASE ACTIVITY AND 

DOM34-HBS1 INTERACTION 

I studied the importance of GTP binding by Hbs1 and the interaction between Dom34 and 

Hbs1 for several functions of the Dom34-Hbs1. Similarly to previous reports (Carr-Schmid et 

al, 2002; Kobayashi et al, 2010) I found that the binding and hydrolysis of GTP by Hbs1 is 

important for intermediate accumulation in NGD and for growth in 40S subunit deficient 

yeast. It also turned out to be required for efficient 18S NRD and for dissociation of inactive 

ribosomes in yeast recovering from stress. The latter finding parallels the requirement of Hbs1 

GTPase activity for the in vitro dissociation of ribosomes that are stalled on a mRNA, or 

vacant ribosomes (Pisareva et al, 2011; Shoemaker et al, 2010; Shoemaker & Green, 2011). 

GTP hydrolysis is required for Hbs1 dissociation from the ribosome and is thought to induce 

accommodation of Dom34 in the ribosomal A-site (Shoemaker & Green, 2011), thereby 

promoting binding of Rli1 and subsequent ribosome dissociation or any other function of 

Dom34. 

  

The interaction between Dom34 and Hbs1 is mediated by multiple domains of both proteins. 

The precise details of which residues in what domains participate in the interaction differ 

between different reports (Chen et al, 2010; Kobayashi et al, 2010). Our structural model of 

the Dom34-Hbs1 complex indicates that, apart from the interaction between C-terminal 

domain of Dom34 with domain III of Hbs1, there is an additional interface between the 

central domain of Dom34 and the G domain of Hbs1. Indeed, mutating conserved residues on 

both interfaces disrupted Dom34-Hbs1 interaction, as measured by yeast two hybrid analysis. 

Interestingly I found that disrupting the interaction by mutating Hbs1 did not affect 18S NRD 

efficiency, growth in 40S subunit deficient strains or dissociation of inactive ribosomes in 

yeast recovering from stress. On the other hand, the accumulation of a NGD intermediate in 

yeast deficient for cytoplasmic exosome function was dependent on Dom34-Hbs1 interaction. 

As described above, this may either reflect different functional requirements for Dom34-Hbs1 

induced mRNA cleavage, or the kinetic competition between Dom34-Hbs1 mediated 

ribosome dissociation and mRNA cleavage.  

It may seem surprising that both Dom34 and Hbs1 are required but their stable interaction is 

not for many of the complex�s functions. There are several explanations. Dom34 and Hbs1 

may be recruited to a ribosome independently as efficiently as in a complex. Their interaction 
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may then be stabilized in the ribosomal context. This explanation would suggest that the 

function of Hbs1 is not merely delivering Dom34 to the A-site, otherwise disrupting the 

interaction should give the same phenotype as absence of Hbs1. Its presence on the ribosome 

may change the conformation of Dom34. Alternatively, a third, unknown factor may stabilize 

the interaction between Dom34-Hbs1 outside the ribosome.  

Interestingly, disrupting the interaction between Dom34 and Hbs1 by mutating Dom34 does 

interfere with 18S NRD, growth in a 40S subunit deficient strain and dissociation of inactive 

ribosomes. This may be explained from the fact that Dom34 does not only interact with Hbs1, 

but also with Rli1. Alternatively, after conformational changes of Dom34 on the ribosome, 

some of these residues may interact with the ribosome itself. 

  

3.3 DOM34-HBS1 STIMULATES TRANSLATION BY MAKING 

SUBUNITS AVAILABLE FROM INACTIVE RIBOSOMES 

Addressing the biological relevance of Dom34-Hbs1, I identified a new role of the complex. 

It was found to dissociate inactive ribosomes that accumulate during translation inhibiting 

glucose starvation stress. Making ribosomal subunits available, the complex thereby 

stimulates rapid recovery of translation after stress relief. This finding expands the number of 

potential substrates of the Dom34-Hbs1 complex from a small fraction of ribosomes, stalled 

during translation, to a large fraction of all ribosomes in the cell, which form inactive 

ribosomes during stress. 

Dom34 and Hbs1, or alternatively aEF1 , are conserved in two domains of life (Eberhart & 

Wasserman, 1995; Inagaki & Ford Doolittle, 2000; Ragan et al, 1996; Saito et al, 2010; 

Wallrapp et al, 1998). The role of the complex in dissociating inactive ribosomes is therefore 

likely to be relevant in a wide range of organisms. Moreover, translation inhibition occurs in a 

variety of stress conditions (Spriggs et al, 2010). It would be reasonable to expect that 

Dom34-Hbs1 dependent stimulation of translation may be observed in many stress-related 

conditions. It will be important to verify these hypotheses, and test whether the Dom34-Hbs1 

complex stimulates restart of translation in a variety of cells from different organisms, that 

recover from different types of translation inhibiting stress. 

  

3.4 A NEW MECHANISM TO REGULATE TRANSLATION RATES? 

My data indicate that the role of Dom34-Hbs1 dissociating inactive ribosomes is not restricted 

to cells recovering from stress. In exponentially growing, non-stressed yeast, inactive 
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ribosomes are also present, although to a much lesser extent than in stressed cells. In yeast 

lacking functional Dom34-Hbs1 complex, inactive ribosomes accumulate, strongly suggesting 

that Dom34-Hbs1 are responsible for their dissociation. Moreover, in yeast extract Dom34-

Hbs1 complex stimulates translation. These observations suggest that Dom34-Hbs1 function 

may optimize translation efficiency, having a positive effect on ribosomal subunit availability 

for translation initiation.  

This hypothesis is supported by several earlier reports. Depletion of Rli1, which most 

probably acts with Dom34-Hbs1 to dissociate inactive ribosomes, results in accumulation of 

80S ribosomes and decreased levels of polysomes in yeast, human and Drosophila cells, 

similar to dom34  and hbs1  phenotypes (Andersen & Leevers, 2007; Chen et al, 2006; 

Dong et al, 2004), suggesting accumulation of inactive ribosomes. In yeast it was observed 

that deletion of DOM34 or HBS1 caused growth defects in strains in which translation 

initiation was limited by constitutive eIF2  phosporylation. This suggests that the absence of 

Dom34-Hbs1 may further reduce the rate of translation (Carr-Schmid et al, 2002). The 

hypothesis may also explain the growth defect caused by DOM34 or HBS1 deletion in 40S 

subunit deficient strains (Bhattacharya et al, 2010; Carr-Schmid et al, 2002). In these double 

mutant strains 40S subunit availability for translation initiation may decrease further by their 

sequestration in inactive 80S ribosomes. This idea is supported by the observation that in the 

slowly growing 40S subunit deficient rps6a dom34  strain, additional deletion RPL4A, 

encoding a 60S ribosomal subunit protein, partly restores growth (Bhattacharya et al, 2010). 

The decrease in 60S subunits should reduce 40S subunit sequestration. 

  

My data strongly indicate that Stm1, in its ribosomal subunit clamping conformation, 

antagonizes Dom34-Hbs1 mediated dissociation of inactive ribosomes in stressed cells. Up 

till now, there was no information on whether this translation inhibiting conformation of Stm1 

is specific for ribosomes in stressed cells, or whether it may occur in inactive ribosomes in a 

variety of conditions. When comparing Figures 1B and 3B of the manuscript, it can be seen 

that in non-stressed cells (leftmost polysome profiles), deletion of STM1 prevents the increase 

in 80S ribosomes caused by absence of Dom34. As I showed that this increase in 80S 

ribosomes is due to an increase in inactive ribosomes, this suggests that Stm1 antagonizes 

Dom34-Hbs1 mediated dissociation of inactive ribosomes in non-stressed cells as well. In 

other words, my data support that the ribosomal subunit clamping and translation inhibiting 

conformation of Stm1 is not specific for stress conditions, but also occurs in inactive 

ribosomes in non-stressed cells. This may explain why overexpression of Stm1 in dom34  



yeast causes a growth defect (Balagopal & Parker, 2011). Absence of Dom34 and 

overexpression of Stm1 both having a stabilizing effect on inactive ribosomes, this condition 

may lead to a reduced availability of ribosomal subunits for translation initiation and therefore 

suboptimal translation rates. 

  

 

  

Figure52 Model for the Dom34-Hbs1 complex affecting subunit availability in the translation cycle 
After termination and recycling, ribosomal subunits do not always engage immediately in a new round of 
translation. Instead they can associate to form inactive 80S ribosomes, not associated with a mRNA. 
Dissociation of these non-translating ribosomes, which depends on Dom34-Hbs1 and Rli1, is required to make 
their subunits available for new rounds of translation. Regulation of this dissociation process may form a new 
level of regulating translation initiation. 
  

My findings add a new component to the translation cycle as it is currently viewed 

(Figure52). In the recycling stage of the translation cycle, dissociation of terminated 

ribosomes results in a 40S subunit still bound to mRNA and tRNA. The release of both RNAs 

is mediated by initiation factors eIF1, eIF1A, eIF3 and eIF3j (Pisarev et al, 2010). The 

requirement of these factors binding to a 40S subunit during translation initiation suggests 

that they directly connect ribosome recycling with a new round of translation (Aitken & 

Lorsch, 2012; Jackson et al, 2010; Nurenberg & Tampe, 2013). My data emphasize that 

instead, ribosomal subunits that result from recycling may associate to form inactive 
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ribosomes. The Dom34-Hbs1 complex, and very probably Rli, are required for their 

dissociation, which allows the ribosomal subunits to re-enter the translation cycle 

(seeFigure52). This process may provide a new level of regulation of translation, by 

controlling ribosomal subunit availability. That such regulation may have an important effect 

on translation rates is supported by a recent report, in which it was predicted from a 

computational model that protein production in healthy yeast cells is typically limited by the 

availability of free ribosomes (Shah et al, 2013). 

  

An important question to address is whether ribosomal subunit availability may be regulated 

by changing Dom34-Hbs1 levels or activity. In other words: are Dom34 and Hbs1 regulated? 

One may expect that Dom34 and Hbs1 will be upregulated during stress conditions to allow 

cells to rapidly recover translation when conditions change for the better. Regulation of 

Dom34 and Hbs1 expression may occur on the level of mRNA (e.g. by transcriptional 

regulation or a change in mRNA stability) or protein abundancy (e.g. by regulation of mRNA 

specific translation or protein activity). Alternatively, post-translational modification may 

change protein activity.  

It will be very interesting to see whether mRNA or protein levels of Dom34 and Hbs1 change 

during stress. A search in the Yeastract database (Abdulrehman et al, 2011; Monteiro et al, 

2008; Teixeira et al, 2006), which reports direct or indirect regulatory associations between 

transcription factors and target genes in S. cerevisiae, implicates several stress related 

transcription factors in controlling Dom34 and Hbs1 transcriptional expression. These include 

Gcn4 (Moxley et al, 2009), Sfp1 which is involved in regulating the response to nutrient 

stress (Cipollina et al, 2008), Pho4 which plays a role in phosphate limited conditions, Gat1 

which is upregulated during nitrogen starvation, Msn2 and Msn4 which are upregulated 

during stress, Rtg1 and Rtg3, which are activated during glutamine starvation (Harbison et al, 

2004) and Leu3 which acts as an activator during leucine depletion (Tang et al, 2006), These 

transcription factors have been found by genome wide experiments to either bind directly to 

the DOM34 or HBS1 promoter region or indirectly affect their expression. 

Post-translational modifications may play a role in the regulation of Dom34-Hbs1 activity. 

Large scale mass spectrometric analyses identified S. cerevisae Hbs1 to contain a 

phosphoserine (Albuquerque et al, 2008; Li et al, 2007). It would also be interesting to 

examine whether Dom34 or Hbs1 in different organisms have motifs predicting conserved 

phosphorylation sites. To get an indication about whether posttranslational modifications play 
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a role in regulating Dom34-Hbs1 activity, it could then be tested whether mutating these sites 

affects recovery of translation after stress or the levels of inactive ribosomes.  

In higher eukaryotes Dom34-Hbs1 mediated regulation of ribosomal subunit availability may 

not only play a role in stress conditions, but also in developmental processes. During 

embryonic development, as well as in the maturation of certain cell types from stem cells into 

differentiated cells in mature organisms, translation rates will need to increase in stages of 

rapid proliferation. Strikingly, in higher eukaryotes absence of Dom34 causes defects in 

mitotic and meiotic cell division, leading to defective proliferation of the blastocyst inner cell 

mass and embryonic lethality in mice (Adham et al, 2003) and defects in spermatogenesis in 

Drosophila (Eberhart & Wasserman, 1995). It may be very interesting to examine whether 

these defects are accompanied by a failure of ribosomal subunits to redistribute from inactive 

80S ribosomes to the translating pool.  
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4. MATERIALS AND 

METHODS 



4.1 STRAINS AND MEDIA 

 

4.1.1 Bacterial media 

E. coli was grown in the following media : 

 LB:  10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl (Sigma L3022). 

 Autoinduction medium: 12 g/l tryptone, 24 g/l yeast extract, 3.3 g/l (NH4)2SO4, 6.8 g/l 

KH2PO4, 7.1 g/l Na2HPO4, 0.5 g/l glucose, 2.0 g/l -lactose, 0.15 g/l MgSO4, 0.03 g/l 

trace elements (Formedium AIMTB0210). 

Depending on the selection marker of the plasmid the bacterial strain was transformed with, 

the following antibiotics were added to the medium: ampicillin (50 µg/ml), kanamycin (50 

µg/ml), chloramphenicol (25 µg/ml).  

 

4.1.2 Bacterial strains and plasmids 

The MH1 (araD39, lacX74 , gal E, gal K, hsr, rpsL) E. coli strain was used for cloning and 

plasmid storage. For protein expression the following E. coli strains were used.  

 BL21 (DE3)  (fhuA2 [lon] ompT gal (  DE3) [dcm] hsdS ,  DE3 =  sBamHIo EcoRI-

B int::(lacI::PlacUV5::T7 gene1) i21 nin5) 

 BL21 CodonPlus-RIL (F� ompT hsdS(rB� mB�) dcm+ Tetr gal endA Hte [argU ileY leuW 

CamR]) 

Table 1 lists all plasmids used in E. coli. 

Bacteria were grown at 37°C, unless indicated otherwise, and shaken at 170 rpm in liquid 

culture. 

 

Table 1 List of E. coli plasmids.  
Plasmid Vector Insert Selection marker Reference / comment 
pBS3410 pET28 HBS1-6HIS KanR gift from M. Graille 
pBS3438 pACYC 

LIC+ 
DOM34-STREP cat 

(chloramphenicol 
resistance)

 

pBS4612 pUC19 T7-5�UTR (PGK1)-TAP-

3HA-GFP-3�UTR 

(PGK1)-(A)50

AmpR  

pBS4613 pUC19 T7 -5�UTR (PGK1)-

TAP-3HA-SL-GFP-

3�UTR (PGK1)-(A)50

AmpR  

pT7-LUC-
A50 

pBluescript T7-LUC-(A)50 AmpR (Gallie et al, 1991) 

 



 160

4.1.3 Yeast media 

Yeast was either grown in rich media or in synthetic defined drop out media, lacking one or 

several amino acids to select for yeast containing a plasmid with a selection marker that 

allows the synthesis of this particular amino acid. Both types of media were used with and 

without 2% glucose. Synthetic defined media containing 2% galactose were also used. In the 

chase experiment to determine mRNA half-life 4% glucose was used.  

Rich media: 

 YPDA (yeast peptone dextrose adenine) (Formedium CCM1010): 10 g/l yeast extract, 30 

g/l bacto peptone, 20 g/l glucose, 40 mg/l adenine sulfate. 

 YPA (yeast peptone adenine): 10 g/l bacto yeast extract (BD), 30 g/l bacto peptone (BD), 

40 mg/l adenine sulfate. 

Synthetic defined drop out media: 

 Complete supplement mixture (CSM) � amino acid (MP) (quantity defined by the 

manufacturer), 6.7 g/l difco yeast nitrogen base without amino acids (BD), 20 g/l (or 40 

g/l or 0 g/l) glucose or galactose, 50 ml Sorensen�s phosphate buffer (20x)1. 

When media were prepared in solid form, they contained 2% bacto agar (BD). Yeast was 

grown at 30°C, unless indicated otherwise, and shaken at 170 rpm in liquid culture. 

 

4.1.4 Yeast strains and plasmids 

S. cerevisiae strains used in this work are listed in  

Table 2. All strains, except Y190, were derived from BMA64 (ade 2-1 his3-11,15 leu2-3,112 

trp1  ura3-1 can1-100). Table 3 lists all yeast plasmids used in this work. 

 

Table 2 Yeast strains.  
Yeast 
strain 

Genotype  Reference / comment 

BMA64 MAT  (Baudin-Baillieu et al, 1997) 
BSY1486 MAT a esl1 ::TAP::KanR constructed by C. Faux 
BSY1624 MAT  dcp1-2 constructed by C. Faux 
BSY1699 MAT  ski7 ::Kan constructed by C. Faux 
BSY1883 MAT a KanMX:TetOFF-DIS3 (Lebreton et al, 2008) 
BSY1970 MAT  dom34 ::HIS3 constructed by D. Lebert 
BSY2029 MAT a dom34 ::HIS3 ski7 ::Kan R constructed by C. Faux 
BSY2051 MAT a dom34 ::HIS3 rps28A ::Kan R constructed by C. Faux 
BSY2145 MAT a hbs1 ::KanR constructed by C. Faux 

                                                 
1 The compositions of all buffers used are listed in paragraph 4.6. 
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BSY2204 MAT a ski7 ::KanR hbs1 ::KanR  
BSY2218 MAT a rps28A ::KanR hbs1 ::KanR  
BSY2219 MAT a sup45ts Gift from F. Lacroute 
BSY2221 MAT a sup35ts sup45ts Gift from F. Lacroute 
BSY2550 MAT a dom34 ::HIS3 hbs1 ::KanR  

BSY2553 MAT  ski7 ::Kan esl1 ::Kan  

BSY2554 MAT a ltn1 ::His3  

BSY2555 MAT  ski7 ::Kan ltn1 ::His3  

BSY2556 MAT a esl2 ::His3  

BSY2557 MAT  ski7 ::Kan esl2 ::His3  

BSY2625 MAT  dcp1-2 dom34 ::His3  

BSY2626 MAT a stm1 ::TRP1 dom34 ::HIS3  
N20T20 MAT a stm1 ::TRP1  Gift from F. Lacroute and F. Wyers 
Y190 MAT a  gal4 gal80 his3 trpl-901 ade2-101 

ura3-52 leu2-3, 112 + URA3::GAL-IacZ, 

LYS2::GAL(UAS)-HIS3 cyh r 

(Bai & Elledge, 1996) 

 

Table 3 Yeast plasmids. 
Plasmid Vector Insert Selection 

marker
Reference / comment

pACTII   TRP1 (Bai & Elledge, 1996)
pAS2   LEU2 (Bai & Elledge, 1996)
pBS2284 pRS416 GALp-PGK1pG URA3 (Finoux & Seraphin, 

2006) 
pBS3161 pRS416 GALp-PGK1pG-premature stop 

codon 
URA3 derived from pBS2284, 

constructed by D. Rispal
pBS3217 pRS415 DOM34 + 313 nucleotides 

upstream 
LEU2  

pBS3269 pFL36 lys2:DIS3-TEV-PROTEIN A LEU2 (Lebreton et al, 2008)
pBS3270 pFL36 lys2:DIS3 D551N -TEV-PROTEIN 

A  
LEU2 (Lebreton et al, 2008)

pBS3277 pFL36 lys2:DIS3 D171N D551N -TEV-

PROTEIN A 

LEU2 (Lebreton et al, 2008)

pBS3278 pFL36 lys2:DIS3 D171N -TEV-PROTEIN 

A  
LEU2 (Lebreton et al, 2008)

pBS3611 pRS415 HBS1 + 204 nucleotides upstream 
and 234 nucleotides downstream

LEU2 constructed by M.E. Gas 
Lopez 

pBS3614 pRS415 HBS1-PROTEIN A LEU2 derived from pBS3611, 
constructed by M.E. Gas 
Lopez 

pBS3675 pRS415 hbs1 V176G-PROTEIN A LEU2 derived from pBS3614
pBS3676 pRS415 hbs1 H255E-PROTEIN A LEU2 derived from pBS3614
pBS3677 pRS415 hbs1 256RDF258 AAA -PROTEIN 

A  
LEU2 derived from pBS3614

pBS3678 pRS415 hbs1 R517E-PROTEIN A LEU2 derived from pBS3614
pBS3679 pRS415 hbs1 R557A H558A-PROTEIN A + LEU2 derived from pBS3614
pBS3680 pRS415 hbs1 L520R-PROTEIN A LEU2 derived from pBS3614
pBS3685 pRS415 DOM34-3HA LEU2 derived from pBS3217
pBS3699 pRS415 hbs1 K180A-PROTEIN A LEU2 derived from pBS3614
pBS3701 pRS415 dom34 E361R-3HA LEU2 derived from pBS3685
pBS3702 pRS415 dom34 E361A Q364A-3HA LEU2 derived from pBS3685
pBS3703 pRS415 dom34 174KKKR177 AAAA -3HA LEU2 derived from pBS3685
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pBS3705 pRS415 dom34 
212

SPGF
215

 AAAA -3HA LEU2 derived from pBS3685
pBS3706 pRS415 dom34 Y300A E361A-3HA LEU2 derived from pBS3685
pBS4104 pRS426 GAL1p-CBP-3HA-SL-3�UTR 

(PGK1) 
URA3  

pBS4113 pRS426 GAL1p-CBP-3HA-3�UTR (PGK1) URA3 negative control for 
pBS4104 

pBS4197 pRS426 GAL1p-CBP-3HA-K12-3�UTR 

(PGK1) 
URA3  

pBS4199 pRS426 GAL1p-CBP-3HA-R12-3�UTR 

(PGK1) 
URA3  

pBS4201 pRS426 GAL1p-CBP-3HA-R12FS-3�UTR 

(PGK1) 
URA3  

pBS4203 pRS426 GAL1p-CBP-3HA-3�UTR (PGK1) URA3 negative control for 
pBS4197 and pBS4199

pBS4213 pRS415 DOM34-3HA (on negative strand)-
GAL1-10p-HBS1-PROTEIN A

LEU2  

pBS4214 pRS415 GAL10p-DOM34-3HA LEU2  
pBS4215 pRS415 GAL1p-HBS1-PROTEIN A LEU2  
pBS4290 2µ GAL7p-35S rDNA :18S U1 

stemloop in h39

TRP1 derived from pWL160-2

pBS4291 2µ GAL7p-35S rDNA :18S  U1 

stemloop antisense in h39

TRP1 derived from pWL160-2

pBS4292 2µ GAL7p-35S rDNA :18S U1 

stemloop in h44

TRP1 derived from pWL160-2

pBS4293 2µ GAL7p-35S rDNA :18S U1 

stemloop antisense in h44

TRP1 derived from pWL160-2

pBS4294 2µ GAL7p-35S rDNA :18S A1492C, 

U1 stemloop in h39

TRP1 derived from pWL160-
A1492C 

pBS4295 2µ GAL7p-35S rDNA :18S A1492C,  

U1 stemloop antisense in h39

TRP1 derived from pWL160-
A1492C 

pBS4298 pRS416 TPIp - U1A(1-120) - TAP URA3  
pBS4372 pRS426 GAL1p-TAP-3HA-SL-GFP-

3'UTR(PGK1)

URA3  

pBS4374 pRS426 GAL1p-TAP-3HA-GFP-

3'UTR(PGK1)

URA3 negative control for 
pBS4372 

pBS4375 pRS426 GAL1p-TAP-3HA-K12-GFP-

3'UTR(PGK1)

URA3  

pBS4376 pRS426 GAL1p-TAP-3HA-R12-GFP-

3'UTR(PGK1)

URA3  

pBS4377 pRS426 GAL1p-TAP-3HA-R12FS-GFP-

3'UTR(PGK1)

URA3  

pBS4378 pRS426 GAL1p-TAP-3HA-GFP-

3'UTR(PGK1)

URA3 negative control for 
pBS4375 and pBS4376

pBS4415 pRS415 hbs1 N-ter (2-149)-PROTEIN A LEU2 derived from pBS3614
pFL36   LEU2 (Bonneaud et al, 1991)
pRP469  GAL1p-PGK1pG URA3 (Doma & Parker, 2006)
pRP1251  GAL1p-PGK1pG-SL URA3 (Doma & Parker, 2006)
pRS415    (Sikorski & Hieter, 1989)
pRP485  GAL1 promoter-MFA2pG URA3 (Decker & Parker, 1993)
pWL160-
2 

2µ GAL7p-35S rDNA TRP1 (LaRiviere et al, 2006)

pWL160-
A1492C 

2µ GAL7p -35S rDNA 18S:A1492C TRP1 (LaRiviere et al, 2006)
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4.1.5 Gene deletion 

The selection marker to be used was amplified in a polymerase chain reaction (PCR), using 

Taq DNA polymerase and Thermopol buffer (New England Biolabs M0267), following the 

manufacturers recommendations and instructions. The primers used contained a 40-60 

nucleotides sequence upstream of the sequence used to amplify the cassette, that 

corresponded to sequences upstream and downstream of the gene to be deleted 

(recombination sites). The PCR product was verified on a TBE agarose 0.1% EtBr gel. The 

DNA product was then purified by adding 1 volume of phenol:chloroform:isoamyl alcohol 

25:24:1 (PCI), vortexing during 1 minute and centrifugation at 14000 rpm for 5 minutes. 

DNA in the upper phase was precipitated by addition of 1/10 volume of 3M NaAc pH 5.2, 2.5 

volume of 100% ethanol (-20°C) and 10 µg glycogen, followed by incubation at -20°C. 

Following centrifugation at 14000 rpm for 25 minutes at 4°C, the pellet was washed in 70% 

ethanol (-20°C) and spun at 14000 rpm for 10 minutes at 4°C. The PCR product was 

dissolved in 10 µL H2O. It was then used to transform the yeast strain of interest, as described 

in paragraph 4.1.7.  

Some of the resulting colonies DNA were grown in liquid YPDA and their genomic DNA 

was extracted as described in paragraph 4.1.6.1.2. Gene deletion was verified by PCRs that 

span the 5� and 3� recombination sites respectively, using Taq DNA polymerase. PCR 

products were analyzed on TBE agarose 0.1% EtBr gel.  

 

4.1.6 Cloning 

 

4.1.6.1 DNA isolation 

 

4.1.6.1.1 Isolation of plasmid DNA from E. coli 

Plasmids were purified from E. coli by NucleoSpin Plasmid kit (Macherey Nagel 740588.50) 

(miniprep) or NucleoBond Xtra Midi kit (Macherey Nagel 740410.10) (midiprep) following 

the manufacturer�s instructions. Plasmids were dissolved in 50 µl H2O. 

 

4.1.6.1.2 Isolation of yeast genomic DNA 

1 ml of saturated yeast culture was pelleted at 14000 rpm for 5 minutes, resuspended in 100 µl 

yeast lysisbuffer and shaken at 1400 rpm for 15 minutes. Addition of 500 µl H2O and 700 µl 

PCI to the lysate was followed by vortexing for 1 minute and centrifugation at 14000 rpm for 
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5 minutes. The DNA in the upper phase underwent an additional round of PCI extraction 

followed by ethanol precipitation as described in paragraph 4.1.5, and was dissolved in H2O. 

If DNA was extracted for verification of a gene deletion, DNA was dissolved in a 200 µl H2O 

of which 1 µL was used for a 20 µL PCR.  

 

4.1.6.2 PCR and digestion 

PCRs for cloning were performed using Phusion High-fidelity DNA polymerase and HF 

buffer (Finnzymes F-530) or PfuUltra II fusion HS DNA polymerase and the recommended 

buffer (Agilent 600670), following the manufacturer�s recommendations and instructions. 

PCR product and 1 µg of the vector in which the PCR product was to be inserted were then 

digested in 50 µl reactions by various restriction enzymes (New England Biolabs, Fermentas), 

following the manufacturer�s instructions. 

 

4.1.6.3 In gel ligation 

Digested plasmids and PCR products were separated on low melting agarose-TA gels run in 

TA buffer at 4°C. For fragments larger than 1 kb SeaPlaque® GTG® agarose (Lonza 50110) 

was used, for fragments smaller than 1 kb NuSieve agarose (Lonza 50084) was used. After 

staining in 0.5% EtBr in TA, bands were cut, melted at 68°C for 10 minutes and then kept at 

42°C. Approximately equal molarities of vector and PCR product were mixed in a 10 µl 

volume, then 10 µl T4 DNA ligase 20 U/µl in 2x T4 DNA ligase buffer (New England 

Biolabs M0202) was added followed by incubation at 16°C over night. Reactions were melted 

at 68°C, then kept at 42°C. 50 µl 50 mM CaCl2 was added and the reactions were cooled on 

ice. 

 

4.1.6.4 Bacterial transformation 

100 µl competent E. coli cells were added to 1-5 µl plasmid or the cooled ligation products as 

described above, followed by incubation on ice for 20 minutes. Cells were heat shocked at 

42°C for 90 seconds, then put back on ice. After addition of 1 ml LB, cells were incubated at 

37°C for 45 minutes. A fraction or the entire transformation (concentrated by a brief 

centrifugation step) was plated on solid LB medium, containing the appropriate antibiotic. For 

cloning MH1 cells were used. 
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4.1.6.5 Verification 

A number of the resulting colonies were grown in LB containing the appropriate antibiotic. 

Plasmids were purified by miniprep (see paragraph 4.1.6.1.1). Correct insertion of the PCR 

product was verified by digestion at sites that differentiate between empty vector (or the 

plasmid started from) and final cloning product. Digestion products were analyzed on TBE 

agarose 0.1% EtBr gel. Plasmids were sequenced at GATC Biotech. 

 

4.1.6.6 Insertion stem loop 

pBS4104 was generated by replacing a sequence inserted in a precursor plasmid between SpeI 

and NheI, the digestion of which generates compatible sticky ends, by a stem loop. The result 

is a plasmid that differs from pBS4113 only by the presence of the stem loop. The precursor 

plasmid (2 µg) was digested with SpeI and NheI (New England Biolabs) in a 100 µl reaction 

following the manufacturer�s instructions, followed by dephosphorylation of the resulting 

ends by adding 10 U calf intestinal alkaline phosphatase (New England Biolabs M0290) and 

incubation at 37°C for 30 minutes. The digested vector was PCI extracted, ethanol 

precipitated and dissolved in H2O. Oligonucleotide OBS4533 (CTAGCGATATCCCGTGGA 

GGGGCGCGTGGTGGCGGCTGCAGCCGCCACCACGCGCCCCTCCACGGGATATCG) 

is complementary to itself and annealing of two copies generates ends that are compatible 

with SpeI and NheI generated sticky ends. 7 µg OBS4533 was phosporylated at its 5� end 

using T4 polynucleotide kinase and reaction buffer A (Fermentas EK0032) in a 50 µl 

reaction, then PCI extracted, ethanol precipitated and resuspended in H2O. 200 ng vector and 

47 ng OBS4533 were ligated using T4 DNA ligase at 16°C for 2 hours. This was followed by 

addition of 50 µl 50 mM CaCl2 and transformation of competent MH1 cells. 

 

4.1.6.7 Site directed mutagenesis 

Point mutations were generated by site directed mutagenesis. Primers were designed to anneal 

to the exact same sequence in the plasmid on opposite strands. They contained the desired 

mutation flanked on each side by 15-25 nucleotides. The plasmid was linearly amplified, 

using 40 nM of each primer, 200 ng plasmid, 0.2 mM dNTPs, PfuUltra II fusion HS DNA 

polymerase and the corresponding buffer in a 50 µl reaction. The reaction went through 18 

cycles of 95°C 50 seconds, 60°C 50 seconds and 68°C for approximately 1.5 x the plasmid 

size (kb) in minutes, preceded by a step of 60 seconds at 95°C and followed by a step of 7 

minutes at 68°C.  Then 20 U DpnI (New England Biolabs) was added to the reaction followed 
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by incubation at 37°C for 1 hour, to remove the original plasmid. The product was PCI 

extracted, ethanol precipitated, resuspended in H2O and then used for MH1 transformation.  

 

4.1.7 Yeast transformation 

50 ml yeast culture in YPDA at OD600 0.8-1 was pelleted at 4500 x g, resuspended in 50 ml 

10 mM Tris pH 7.5 and immediately pelleted again as above. Yeast was then resuspended in 

LiT containing 10 mM DTT, followed by incubation at room temperature for 40 minutes. 

Yeast was pelleted as above and resuspended in 750 µl LiT containing 10 mM DTT. 100 µl 

competent yeast was then added to 1-5 µl plasmid DNA, 5 µl denatured carrier DNA (10 

mg/ml) and 50 µl LiT, followed by incubation at room temperature for 10 minutes. 300 µl 

PEG4000 in LiT (1g dissolved in 1 ml LiT) was added to each transformation, followed by 10 

more minutes at room temperature and 15 minutes at 42°C. Cells were pelleted at 14000 rpm 

for 10 seconds, resuspended in 1 ml YPDA and incubated at 30°C for 1 hour. Temperature 

sensitive strains (dcp1-2) were incubated at 25°C. Cells were pelleted at 14000 rpm for 60  

seconds, resuspended in 100 µl 10 mM Tris pH 7.5 and plated on the appropriate synthetic 

defined drop out medium. 
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4.2 YEAST GROWTH 

 

4.2.1 Glucose starvation and addition 

Yeast was grown at 30°C to an OD600 of 0.6, then shifted to 16°C for 2 hours. The culture was 

then split into multiple 100 ml cultures that were pelleted at 5400 x g for 6 min at 16°C, 

resuspended in 100 ml media (precooled at 16°C) without or with 2% glucose and incubated 

at 16°C for 10 minutes. Cells were pelleted, resuspended in 100 ml media with glucose and 

incubated at 16°C for the indicated times. 

 

4.2.2 Drop assay 

Yeast was grown to mid-log phase in YPDA or in the synthetic defined drop out medium 

indicated. It was then diluted to OD600 0.1, then a 10-fold dilution series was made, diluting in 

growth medium. 2 µl of each dilution was spotted on the solid medium corresponding to the 

liquid medium the yeast was grown in. 

 

4.2.3 Growth curve 

Yeast was grown to OD600 0.6 at 30°C in YPDA, then shifted to 16°C for 2 hours. Yeast then 

underwent glucose starvation and glucose addition basically as described in paragraph 4.2.1. 

Each culture was split in 2, pelleted at 4500 x g for 10 minutes at 16°C, resuspended in 10 ml 

YPA (glucose starvation) or YPDA (no starvation) followed by 10 minutes incubation at 

16°C. Cells were pelleted at 4500 x g for 10 minutes at 16°C, resuspended in 10 ml YPDA 

and immediately diluted 4-fold to OD600 ~ 0.2 in 10 ml final volume YPDA. This was time 

point 0 minutes. The OD600 was measured immediately and at the indicated time points. Time 

point 0 minutes was normalized to OD600 0.2 for all cultures. All measurements 

corresponding to the same culture were corrected with the same factor.  
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4.3 RNA ANALYSIS 

 

4.3.1 RNA extraction 

For analysis of steady state RNA levels, 10 ml of yeast culture at OD600 ~ 0.8 was pelleted at 

4500 x g, resuspended in 750 µl H20, transferred to an eppendorf and pelleted in a micro spin 

centrifuge for 15 minutes. The pellet was frozen in liquid nitrogen and stored at -80°C.  

RNA was isolated by hot phenol extraction. After addition of 450 µl phenol (pH 4.5-5) to the 

frozen pellet it was shaken at 1400 rpm at 65°C during 30 seconds, then 450 µl TES buffer 

was added followed by incubation at 65°C for 30 minutes. These 30 minutes contained 1 

minute episodes of shaking at 1400 rpm separated by 5 minute intervals. Incubation at 4°C for 

10 minutes was followed by centrifugation at 14000 rpm for 5 minutes at room temperature. 

To the upper phase 450 µl phenol was added followed by manual shaking, incubation at 4°C 

for 5 minutes and centrifugation at 14000 rpm for 5 minutes.  To the upper phase 400 µl 

chloroform was added, followed by manual shaking and centrifugation at 14000 rpm for 5 

minutes. To 250 µl of the resulting upper phase 625 µl ethanol (-20°C) and 25 µl 3 M NaAc 

pH 5.2 were added followed by centrifugation at 14000 rpm for 15 minutes at 4°C. The pellet 

was washed with 700 µl 70% ethanol (-20°C) and spun at 14000 rpm for 5 minutes at room 

temperature. The pellet was resuspended in 40 µl H2O.  

 

4.3.2 Northern analysis 

 

4.3.2.1 Using an agarose-formaldehyde gel 

Northern analysis was performed basically as described in (Sambrook et al, 1989). 10 µg or 

15 µg (PGK1-SL) mRNA was mixed with 2 µl RNA loading dye, 2 µl 10x MOPS buffer, 3.5 

µl formaldehyde and 10 µl formamide, heated at 65°C for 15 minutes then cooled on ice for 

10 minutes, then loaded on an agarose-formaldehyde (6.7%) gel in MOPS buffer. All CBP-

3HA and TAP-3HA-GFP mRNAs were separated on gels containing 2% agarose, PGK1 

mRNAs on gels containing 1.25% agarose and all other RNAs on gels containing 1.5% 

agarose. 18x18 cm gels were run at 100 V, 10x10 cm gels at 50 V in MOPS buffer. All 

mRNAs containing a stem loop were separated on gels with bridges of Whatman paper 

separating gel from running buffer. The gel was washed in 10x SSC for 10 minutes 

(Invitrogen 15557-036). RNAs were transferred to a Hybond-XL membrane (GE Healthcare, 

RPN 203S) in 10x SSC by capillary elution over night. RNAs were cross linked to the 



 169

membrane by exposure to 240 mJ UV light. The membrane was stained in 0.1% methylene 

blue 0.5 M NaAc pH 5.2, then washed in H2O. 

The membrane was pre-hybridized in Church buffer, followed by hybridization in fresh, 

probe-containing Church buffer over night. For hybridization temperatures see Table 4. 

Membranes were washed at hybridization temperature in 2x SSC 0.5% SDS (1 quick wash, 

2x 15 minutes wash) and 0.1x SSC 0.5% SDS (1x 15 minutes wash). Signals were visualized 

with a Typhoon 8600 Variable Mode Imager and quantified using ImageQuant 5.2 software 

(Molecular Dynamics).   

 

4.3.2.2 Using a formaldehyde-urea gel 

4 µl of RNA was mixed with 5 µl loading dye, heated at 65°C for 15 minutes, then cooled on 

ice. A ~ 20 cm x 20 cm 6% polyacrylamide urea gel (for composition see paragraph 4.6) was 

pre-run at 3 W for 15 minutes. RNA was loaded and the gel was run in TBE at 15 W. RNA 

was transferred to a Hybond-XL membrane in a wet/tank electroblotting system at 200 mA, 

1.5 hour at 4°C. Membrane staining and hybridization as in paragraph 4.3.2.1. 

 

4.3.2.3 Probe labeling 

All probes used are listed in Table 4. They were labeled by incubating 15 pmol probe with 10 

pmol -32P ATP and 10 U T4 polynucleotide kinase in the enzyme�s buffer A in a 30 µl 

reaction for 45 minutes. The reaction was stopped by adding 2 µl 0.5 M EDTA. After addition 

of 30 µL H2O the unincorporated nucleotides were removed by passage through a pre-spun 

Micro Bio-Spin 6 column (Biorad 732-6221) at 3000 rpm for 1 minute. 

 

Table 4 Probes used for northern analysis 
Probe Sequence Hybridization 

temperature 
Reference 

OBS1160 GGCTTGTGTGGAAGCAGTGGTGATCGG 55°C  
OBS1298 ATTCCCCCCCCCCCCCCCCCCA 55°C  
FL125 CGAGGATCCAGGCTTT 40°C (LaRiviere 

et al, 2006) 
OBS4814 GTGCGGCCCAGAACGTCT 50°C  
OBS5408 CCGCACTCCTCGCCACAC 50°C  
OBS4671 GCCCGCATAGTCAGGAAC 49°C  
OBS5598 GATCAATTCGTCGTCGTCGAATAAAGAAGACAAG 55°C  
 

PGK1-SL and scR1 were detected by probes resulting from random priming of PCR product, 

using -32P dCTP and the NEBlot (New England Biolabs N1500L) , following the 

manufacturer�s instructions. PCR products were obtained using Taq DNA polymerase and 
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primers OBS1884 (GTGGGATGGGATACGTTGAG) and OBS1885 

(ATGGTTCAGGACACACTCCA) on genomic DNA for scR1 and primers OBS4139 

(AAGTCCAAATCTTGGACAGAGATCAATTCG) and OBS4164 

(CTAATTCGTAGTTTTTCAAGTTCTTAGATGC) on pBS3158 for PGK1. Hybridization at 

55°C (scR1) and 65°C (PGK1). 

 

4.3.3 Determine mRNA half-life 

150 ml yeast cultures were grown at 25°C in synthetic defined drop out medium containing 

2% galactose, which allowed expression or the galactose inducible reporter mRNA. At OD600 

~ 0.6, the culture was transferred to 37°C for 1 hour, to inhibit Dcp1 activity in dcp1-2 strains. 

Cells were pelleted at 4500 x g for 10 minutes at 37°C and resuspended in 15 ml of the same 

medium that now contained 4% glucose instead of galactose, causing the transcription of the 

reporter mRNA to switch off. Yeast was divided into 1 ml aliquots in eppendorf tubes, which 

were shaken at 1400 rpm at 37°C. Aliquots were pelleted for 15 seconds in a micro spin 

centrifuge and immediately frozen in liquid nitrogen. The time of freezing corresponds to the 

time points indicated in the result section. RNA was isolated by hot phenol extraction, as 

described in paragraph 4.3.1, and dissolved in 40 µl H2O. 4 µl (MFA2) or 5µl (PGK1) of each 

sample was analyzed by northern blot.  
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4.4 PROTEIN ANALYSIS 

 

4.4.1 Rapid protein extraction 

This protocol was based on (Kushnirov, 2000). Yeast was grown to OD600 ~ 1, then 1 ml of 

culture was pelleted at 14000 rpm for 1 minute and resuspended in 100 µl H2O. 100 µl 0.2 M 

NaOH was added, followed by 5 minutes of incubation at room temperature. After 

centrifugation at 14000 rpm for 5 minutes the pellet was resuspended in 50 µl protein loading 

dye.  

 

4.4.2 Protein gel 

 

4.4.2.1 SDS-PAGE 

Samples to be analyzed on protein gel were mixed with 3x protein loading dye. Before 

loading on gel, they were heated at 99°C for 5 minutes, then spun at 14000 rpm for 5 minutes. 

For western blot small, 8.5 cm x 6 cm SDS polyacrylamide gels (SDS-PAGE) were used, for 

analysis of the elutions of ribosome purifications large 16 cm x 20 cm SDS-PAGE were used. 

All gels were run in Laemmli buffer. The composition of the gel is described in paragraph 

4.6. Small gels were run at 120 V, large gels at 200 V. Proteins were stained using Coomassie 

staining followed by destaining in 20% ethanol 10% acetic acid, or by silver staining using a 

SilverQuest kit (Invitrogen LC6070) following the manufacturer�s instructions.   

 

4.4.2.2 Mass spectrometry 

Bands cut from the silver stained gels depicted in Figures 41 and 42 were analyzed by mass 

spectrometry. Bands were destained by incubating them for 15 minutes in a 1:1 mixture of 

solutions A and B from the SilverQuest kit, while shaking at 14000 rpm. The mixture was 

removed, then 200 µl H2O was added followed by shaking during 10 minutes. H2O was 

removed and the bands were incubed with 200 µl acetonitril while shaking for 20 minutes. 

The bands were analyzed by nanoLC-MS/MS at the Proteomics platform at the IGBMC. 

 

4.4.2.3 Western analysis 

Proteins were transferred from SDS-PAGE to a Protran nitrocellulose membrane (Whatman 

10401180) in a wet/tank electroblotting system in transfer buffer at 100 V during 1 hour at 

4°C. The membrane was washed in water and blocked in 5% milk in PBS-Tween. It was then 
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incubated with a primary antibody in 5% milk-PBS-Tween for 1 hour at room temperature or 

over night at 4 °C. Following 4 washes (1 quick, 3 x 10 minutes) in PBS-Tween the 

membrane was incubated with a secondary antibody for 1 hour at room temperature. After 4 

additional washes as above, the membrane was incubated with ECL (GE Healthcare), 

Luminata Crescendo (Millipore) or SuperSignal West Femto (Thermo Scientific) 

chemiluminescent reagent. Signals were visualized using a Image Quant LAS 4000 (GE 

Healthcare Life Sciences). All antibodies used are listed in Table 5. 

 

Table 5 Antibodies used for western analysis 
Name Against Source Concentration 
AbBS6 Rpl1A  Rabbit, polyclonal 1 : 10000 
AbBS8 Stm1 Rabbit, polyclonal 1 : 2000 
HA.11 Clone 16B12 
Monoclonal Antibody, 
Purified 

HA-tag Mouse, monoclonal 
Covance MMS-
101P 

1 :1000 

Goat anti-Rabbit IgG 
(H+L) Secondary 
Antibody, HRP 
conjugate 

rabbit IgG + IgM 
secondary antibody  

polyclonal  
Pierce 31460 

1 : 10000 

Peroxidase-AffiniPure 
Goat Anti-Mouse IgG + 
IgM (H+L) 

mouse IgG + IgM  
secondary antibody  

Jackson 115-035-
068 

1 :5000 

Peroxidase anti-
peroxidase 

binds to protein A Sigma P1291 3:10000 

 

 

4.4.3 Purification of ribosomes by TAP method 

The protocol that will be described here was used for purification of wild type ribosomes. For 

purification of mutant tagged ribosomes all quantities were doubled. Yeast was grown in 2 

liter cultures in CSM-Trp-Ura synthetic defined medium containing 2% galactose, to OD600 

0.8-1.0. Cells were pelleted at 4000 x g for 20 minutes at 4°C, resuspended in 20 ml H2O, 

transferred to a 50 ml falcon tube and pelleted at 4500 x g for 15 minutes at 4°C. The pellet 

was weighed and frozen in liquid nitrogen. All of the following steps were performed at 4°C 

unless otherwise indicated. The following day cells were thawed and resuspended in 1.6 ml of 

buffer A per gram of cell pellet, then transferred to round bottomed 35 ml tubes containing 3 

g glass beads per gram of cell pellet. Cells were lysed by 5 cycles of 1 minute vortexing / 1 

minute on ice. Beads were pelleted at 4343 x g for 6 minutes at 4°C and supernatant was 

further cleared at 30883 x g for 30 minutes at 4 °C. To the supernatant 50 µl 2 M Tris pH8.0, 

200 µl NaCl 5 M and 100 µl 10% Igepal were added and it was then rotated with 200 µl IgG 

Sepharose (GE Healthcare), prewashed with 5 ml buffer IPP100, in a closed 10 ml column for 
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2 hours. The column was drained by gravity flow, then washed with 30 ml IPP100 and 10 ml 

TEV cleavage buffer. The IgG sepharose was incubated with 100 U TEV enzyme (Invitrogen 

12575-015) in 1 ml TEV cleavage buffer for 2 hours at 16°C in a closed column. Eluate was 

collected, the dead volume was eluted by another 200 µl TEV cleavage buffer. To the eluate 3 

volumes of IPP100 calmodulin binding buffer and 0.0030 volumes of 1 M CaCl2 were added. 

It was then rotated with 200 µl calmodulin affinity resin (Agilent 214303), prewashed with 5 

ml buffer IPP100 calmodulin binding buffer, in a closed 10 ml column for 1 hour. The 

column was drained by gravity flow and washed with 30 ml IPP100 calmodulin binding 

buffer. Proteins were eluted by adding 200 µl calmodulin elution buffer to the resin, this was 

repeated 5 times. To verify if any protein was left bound to the IgG sepharose or calmodulin 

affinity resin, additional elutions were performed using 200 µl 1% SDS. Protein loading dye 

(3x) was added to samples taken from cleared lysate, resuspended pellet, flow through, both 

washes and all elutions. Equal fractions of all stages were analyzed by western blot. The final 

elutions were concentrated by lyophilization and analyzed on a large SDS-PAGE.  

 

4.4.4 Purification of recombinant factors 

Hbs1 containing a C-terminal 6His-tag was expressed from plasmid pBS3410 in BL21 

CodonPlus-RIL. It was also co-expressed with Dom34 containing a C-terminal strep-tag 

(expressed from plasmid pBS3438) in BL21 (DE3). Bacteria were grown in 500 ml 

autoinduction medium at 37°C to OD600 0.5, were then transferred to 25°C and grown further 

over night. Cells were pelleted at 4000 x g for 10 minutes at 4°C, resuspended in 40 ml H2O, 

transferred to a 50 ml falcon tube and pelleted at 4500 x g for 8 minutes at 4°C. All of the 

following steps were performed at 4°C or on ice.  

 

4.4.4.1 His-purification 

Cells were resuspended in 20 ml lysis buffer H and disrupted in a Cell Disruptor (Constant 

Systems) at 1.55 kbar, followed by rinsing with 10 ml buffer W. The resulting 30 ml cell 

lysates were cleared at 12000 rpm 30 min 4 C. The supernatant was passed through a 0.20 

µm filter and rotated with 400 µl Ni-NTA agarose (Qiagen), prewashed 3x in lysis buffer H, 

in a 50 ml falcon tube for 1 hour at 4°C. Then the lysate and agarose were transferred to a 10 

ml column which was drained by gravity flow. The column was washed with 10 ml wash 

buffer H. The agarose was then incubated for 5 minutes with elution buffer H, then elution 

fraction 1 was collected. This was repeated to collect elution fraction 2. The elution fractions 
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were pooled and injected into a Superdex 75 10/300 GL column (GE Healthcare) and eluted 

with 1 column volume buffer SE. The resulting 500 µl elution fractions were analyzed by 

SDS-PAGE. Fractions containing Hbs1 were pooled and further concentrated using an 

Amicon Ultra-4 50K centrifugal filter. 

 

4.4.4.2 Strep purification 

Strep purification on bacteria co-expressing Dom34 and Hbs1 was performed basically as in 

paragraph 4.4.4.1, but with different resin and buffers. The proteins were purified on 

streptactin sepharose (IBA 2-1201) on a 10 ml column to which the lysate was gradually 

applied, without incubation in a closed column. Cells were lysed and the column was washed 

in buffer W (IBA 2-1003) and protein was eluted with buffer E (IBA 2-1000). After further 

purification by gel filtration, the protein complex was concentrated using an Amicon Ultra-0.5 

ml 50 centrifugal filter.   

 

4.4.5 Yeast two hybrid analysis 

Two-hybrid Dom34 and Hbs1 (wild type and mutant) constructs were prepared as described 

before (Carr-Schmid et al, 2002), except that Dom34 was cloned into pAS2 and Hbs1 into 

pACTII. Y190 containing these plasmids was grown to mid-log phase, 750 l was pelleted, 

resuspended in 500 l buffer Z  and 200 l water saturated ether, spun for 1 minute, left to let 

ether evaporate for 10 min and incubated at 30°C for 5 minutes. Then 100 l ONPG (4mg/ml 

in buffer Z) was added and the reactions were incubated at 30 °C untill their colour changed 

into bright yellow. The reaction was then stopped by addition of 250 l 1M Na2CO3, reactions 

were spun for 5 minutes and OD420 was measured. The following formula was used to 

calculate ß-galactosidase activity:  

Activity = 1000 x OD420 / (OD600 x culture volume x reaction time). 
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4.5 STUDYING TRANSLATION 

 

4.5.1 Polysome analysis 

100 ml yeast cultures grown to OD600 ~ 0.8, or yeast exposed to glucose depletion and 

readdition (see paragraph 4.2.1) were pelleted at 5400 x g for 6 minutes at 4°C immediately 

after cycloheximide addition (100 µg/ml final concentration). At 4°C, cells were washed in 10 

ml polysome lysis buffer (PLB), pelleted at 5400 x g for 6 minutes, transferred to 15 ml corex 

tubes in 3 ml PLB, pelleted at 4343 x g for 6 minutes and resuspended in 500 µl PLB or PLB 

containing 400 mM KCl (manuscript, Figure 4B). 450 µl cold glass beads were added and 

cells were lysed at 4°C by 5 cycles of 1 minute vortexing followed by 1 minute on ice. Glass 

beads were pelleted at 4343 x g for 6 minutes at 4°C and the supernatant was transferred to 

eppendorfs and cleared in two centrifugation steps at 14000 rpm for 10 minutes at 4°C. OD260 

was measured by nanodrop and 9 OD260 units of lysate were loaded on a 7-47% sucrose 

gradient in PLB, or PLB containing 400 mM KCl. After a 14 h spin at 16.9 krpm in an SW41 

rotor (Beckman Coulter), absorbance (254 nm) was measured and 1 ml fractions were 

collected on a ISCO Teledyne Foxy Jr. fraction collector. From each fraction, a 40 µl sample 

was taken for protein analysis, to which 20 µl 3x loading dye was added. 5 µl of each fraction 

was used for western analysis. From each fraction, a 500 µl sample was taken for RNA 

analysis. The sample was stored at -20°C after addition of 1.5 ml ethanol. After pelleting at 

14000 rpm for 25 minutes at 4°C, RNA was extracted by two subsequent PCI extractions, 

followed by ethanol precipation. RNA was resuspended in 20 µl H2O and 5 µl was used for 

northern analysis. 

 

4.5.2 In vitro ribosome dissociation  

80S ribosomes purified from glucose-depleted yeast were kindly provided by S. Melnikov 

and Dr. Marat Yusupov and were purified as described in (Ben-Shem et al, 2011). 100 pmol 

ribosomes were 32P-labeled using 500 U casein kinase II (NEB) and 32P -ATP in the 

manufacturer�s recommended buffer, then pelleted through a 600 µl 1.1 M sucrose cushion in 

buffer E at 75000 rpm for 1 hour at 4°C in a MLA-130 rotor followed by resuspension in 

buffer E. 6,25 pmol ribosomes were incubated in 25 µl buffer E containing 1 mM GTP or 

GDPNP and 1 mM ATP at 26°C for 15 minutes with 50 pmol Dom34, 50 pmol Hbs1, 50 

pmol Rli1 and 625 pmol Tif6, all purified by C. Shoemaker (Shoemaker et al, 2010; 

Shoemaker & Green, 2011). Dissociation was analyzed by centrifugation through a 10-30% 
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sucrose gradient in buffer E at 38500 rpm for 3.5 hours at 4°C in a SW41 rotor. Fractions 

were counted in Bio Safe II scintillation fluid.  

 

4.5.3 35S-methionine incorporation 

Yeast was grown in CSM-Met containing 2% glucoseto OD600 0.6, shifted to 16°C for 2 

hours, split into 8 ml cultures and resuspended in 8 ml CSM-Met with or without 2% glucose 

for 10 minutes comparable to what is described in paragraph 4.2.1. Then cells were 

resuspended in 8 ml CSM-Met 2% glucose (16°C) containing 4 µl 35S-Methionine (1175 

Ci/mmol, 5 mCi/0,49 ml, Perkin Elmer) and incubated at 16°C. At the indicated time points 1 

ml samples were taken and 35S-Methionine incorporation was measured basically as described 

(Ashe et al, 2000). The 1 ml sample was added to 1 ml 20% trichloroacetic acid in a 50 ml 

falcon tube on ice, incubated at 95°C for 20 minutes and put back on ice. The precipitate was 

collected on 2.4 cm glass microfiber filter GF/C (Whatman 1822 024), using a holder for the 

filter on top of a vacuum flask. The filters were then washed with 10 ml 10% trichloroacetic 

acid and 10 ml ethanol, dried on air and counted in a scintillation counter in Ready Safe 

scintillation fluid (Beckman 141349). 

 

4.5.4 In vitro translation 

 

4.5.4.1 Preparation yeast extract 

Translational extracts were prepared essentially as described (Tuite & Plesset, 1986). 4 l of 

culture at OD600 1 was washed in 200 ml cold water, incubated in 100 ml -mercaptoethanol 

10mM; EDTA 2 mM for 30 minutes at room temperature, washed in 100 ml cold sorbitol 1M 

and resuspended in 1M sorbitol at room temperature at a concentration of 10 ml/g cells, 

spinning at 2000 x g for 5 minutes at 4°C in between. Zymolyase (Nacalai Tesque 07665-55) 

was added at 4 µg/ml final concentration. Spheroplast conversion was followed by comparing 

the OD600 of 15 µl yeast resuspended in 1 ml 1% SDS to that of 15 µl yeast resuspended in 1 

ml 1 M sorbitol.  The reaction was stopped by pelleting the resulting spheroplast at 1000 x g 

for 10 minutes at room temperature when 75% of cells had converted to spheroplasts. 

Spheroplasts were washed in 200 ml sorbitol 1.2 M and incubated in 500 ml YPDA-sorbitol 

1M at 25°C 40 rpm. Spheroplasts were harvested at 1000 x g for 10 minutes at 4°C and lysed 

using glass beads (0.5 ml/g cells) in lysis buffer T (1 ml/g cells) in 5 cycles of shaking 

vigorously at 2 Hz for 20 seconds with 1 minute intervals on ice. Lysates were cleared 



 177

spinning at 30 000 x g for 15 minutes at 4°C, then 100 000 x g for 30 minutes at 4°C. 

Glycerol was added at 10% final concentration for storage at -80°C.   

 

4.5.4.2 In vitro transcription 

Before in vitro transcription, a plasmid was cleaved at a site immediately downstream of the 

sequence to be transcribed, to allow termination of transcription. 10 µg pT7-Luc-A50 was 

digested by 50 U DraI (New England Biolabs) in a 500 µl reaction in the recommended buffer 

at 37°C for 90 minutes. 6.5 µg pBS4612 and pBS4613 were digested by 32.5 U BsmBI (New 

England Biolabs) in a 325 µl reaction in the recommended buffer at 55°C for 90 minutes. The 

digested plasmids were PCI extracted, ethanol precipitated and dissolved in H2O. In vitro 

transcription was performed using the mMessage mMachine T7 kit (Ambion M1344), 

following the manufacturer�s instructions, to generate capped mRNAs. DNA was removed 

using TURBO DNase, following the kit�s instructions, and mRNAs were PCI extracted,  

ethanol precipitated and dissolved in H2O. 

 

4.5.4.3 In vitro translation 

In vitro translation was performed basically as described in (Tarun & Sachs, 1995). 

Translational extracts were incubated with 1500 gel units/ml (corresponds to approximately 

150 Kunitz units/ml) micrococcal nuclease (New England Biolabs M0247) in presence of 480 

µM CaCl2 for the indicated time at 26°C. The reaction was stopped by adding 2 mM EGTA 

on ice. 7.5 µl extract was added to a 7.5 µl mix containing 0,1 µl RNasin (Promega N2515), 1 

µl mRNA (500 ng firefly luciferase-A(50) mRNA (Gallie et al, 1991) or other mRNA at the 

indicated quantity), 1 µl 4 mg/ml creatine phosphokinase (Roche 10127566001), 5 µl 3x 

translation buffer and 0.4 µl H2O. After 1 hour incubation at 26°C, luciferase activity was 

measured in 10 second measurements using a Lumat LB 9507 luminometer (Berthold 

technologies) adding 1 µl translation reaction to 50 µl luciferine mix. Alternatively, after an 

indicated time of translation protein content and RNA content in the translation reactions was 

analyzed. Translation reactions of which RNA was analyzed were stopped by addition of 15 

µl 2% SDS and transfer on ice. RNA was extracted after diluting the sample in H2O to 500 µl 

final volume, by PCI extraction and ethanol precipitation. RNA was dissolved in 40 µl H2O, 5 

µl of each reaction was analyzed by northern blot. Translation reactions of which protein was 

analyzed were stopped by addition of 7.5 µl 3x loading dye. 4µl of each reaction was 

analyzed by western blot. 
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4.6 LIST OF BUFFERS 

 

Table 6 List of buffers 
Buffer Composition 
Buffer A (ribosome 
purification) 

10 mM Hepes-KOH pH 7.9; 10 mM KCl; 10 mM MgCl2; 0.5 mM DTT; 0.5 
mM PMSF; 2 mM benzamidine; 1 mM leupeptin; 2 mM pepstatin A; 4 mM 
chymostatin; 2.6 mM Aprotinin; 0.040 U RNasin 

Buffer E 20 mM Tris-Cl pH 7.5; 2.5 mM Mg(OAc)2; 100 mM KOAc pH7.6; 2 mM 
DTT; 0.25 mM spermidine 

Buffer SE 20 mM Tris pH 7.5 ; 200 mM NaCl ; 5 mM -mercaptoethanol ; 5% 
glycerol 

Buffer Z 60mM Na2HPO4,; 40 mM NaH2PO4; 10 mM KCl, 1 mM MgCl2; 50 mM -
mercaptoethanol  

Coomassie staining 1 g/l Coomassie R-250; 45% ethanol; 10% acetic acid 
Elution buffer H 50 mM Hepes-KOH pH 7.9; 500 mM NaCl; 5 mM -mercaptoethanol; 300 

mM imidazole; 10% glycerol; 2 mM MgCl2 
IPP100 10 mM Tris-Cl pH8.0; 100 mM NaCl; 10 mM MgCl2; 0.1%  Igepal 
IPP100 calmodulin 
binding buffer 

10 mM -mercaptoethanol; 10 mM Tris-Cl pH8.0; 100 mM NaCl; 10 mM 
MgCl2; 1 mM Mg-acetate; 1 mM imidazole; 2 mM CaCl2; 0.1% igepal 

IPP100 calmodulin 
elution buffer 

10 mM -mercaptoethanol; 10 mM Tris-Cl pH8.0; 100 mM NaCl; 10 mM 
MgCl2; 1 mM Mg-acetate; 1 mM imidazole; 2 mM EGTA; 0.1% igepal 

Laemmli buffer 0.10 % SDS; 1.44% glycine; 0.30 % Tris base 
LiT 10 mM Tris pH 7.5; 100 mM LiOAc 
Luciferine mix 470 µM luciferine; 530 µM ATP; 270 µM coenzyme A; 20 mM Tris-

phosphate pH 7.8; 1.07 mM MgCl2; 2.7 mM MgSO4; 100 µM EDTA; 33.3 
mM DTT 

Lysis buffer H 75 mM Hepes-KOH pH 7.9; 300 mM NaCl; 5 mM -mercaptoethanol; 1% 
Tween 20; 20 mM imidazole; 10% glycerol; 2 mM MgCl2 

Lysis buffer T 20 mM Hepes-KOH pH7.4; 100 mM KOAc; 2 mM Mg(OAC)2; 2 mM 
DTT; 0.5 mM PMSF; protease inhibitor cocktail 

Loading dye 3x 
(protein gel) 

0.05% bromophenol blue; 50 mM Tris pH 6.8; 10% glycerol; 2% SDS  

MOPS buffer 0.10 M MOPS; 40 mM NaAc; 5.0 mM EDTA; pH 7 
PBS-Tween PBS; 0.2% Tween 20 
Polyacrylamide gel 
(RNA) 

6.0% polyacrylamide; 8.0 M urea; 1x TBE; 0.060% ammonium persulfate; 
0. 10% N,N,N',N'-Tetramethyl-ethylenediamine

Polysome lysis buffer 10 mM Tris-Cl pH 7.5; 100 mM KCl; 5.0 mM MgCl2; 6.0 mM -
mercaptoethanol; 100 µg/ml cycloheximide 

RNA loading dye 
(agarose gel) 

0.25% bromophenol blue; 0.25% xylene cyanol; 50% glycerol; 1.0 mM 
EDTA 

RNA loading dye 
(polyacrylamide gel) 

bromophenol blue; xylene cyanol; 95% formamide; 18 mM EDTA; 0.025% 
SDS 

SDS-PAGE % acrylamide: bis acrylamide 37,5 :1 as indicated ; 378 mM Tris pH 8.8 ; 
0.1% SDS ; 0.1% ammonium persulfate ; 0.1% N,N,N',N'-Tetramethyl-
ethylenediamine 

Sorensen�s phosphate 
buffer (20x) 

0.20 M Na2HPO4; 0.80 M KH2PO4; pH 6.25 

Stacking gel 5% acrylamide: bis acrylamide 37,5 :1 ; 126 mM Tris pH 6.8 ; 0.1% SDS ; 
0.1% ammonium persulfate ; 0.1% N,N,N',N'-Tetramethyl-ethylenediamine 

TA 40 mM Tris base; 1.14% acetic acid 
TBE 8.9 mM Tris base; 8.9 mM boric acid; 2.0 mM EDTA 
TES buffer 10 mM Tris pH 7.5; 10 mM EDTA; 0.50% SDS
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TEV cleavage buffer 10 mM Tris-Cl pH8.0; 100 mM NaCl; 10 mM MgCl2; 0.1%  Igepal; 0.5 
mM EDTA; 1 mM DTT 

Transfer buffer 
(western) 

3 g/l Tris base; 3 g/l glycine; 0.05% SDS; 20% ethanol 

Translation buffer 22 mM Hepes-KOH pH 7.4; 120 mM KOAc; 2 mM MgOAc; 750 µM ATP; 
100  µM GTP; 25 mM creatine phosphate; 40  µM amino acid mixture 
(Promega L4461); 1.7 mM DTT

Wash buffer H 50 mM Hepes-KOH pH 7.9; 500 mM NaCl; 5 mM -mercaptoethanol; 20 
mM imidazole; 10% glycerol; 2 mM MgCl2 

Yeast lysis buffer for 
DNA purification 

10 mM Tris pH 7.5; 1 mM EDTA; 3.0% SDS 
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Supplementary Material and Methods 

 

In vitro translation 

Translational extracts {Tuite, 1986 #255} were prepared from a dom34 hbs1  strain 

(BSY2550) as follows. 4 L of culture at OD600 = 1 was washed in 200 ml cold water, 

incubated in 100 ml -mercaptoethanol 10mM; EDTA 2 mM for 30 minutes at room 

temperature, washed in 100 ml cold sorbitol 1M and resuspended in 1M sorbitol at room 

temperature at a concentration of 10 ml/g cells, spinning at 2000 x g for 5 min at 4°C in 

between. Zymolyase was added at 4 µg/ml final concentration and the reaction was stopped 

by pelleting the resulting spheroplast at 1000 x g for 10 min at room temperature when 75% 

of cells had converted to spheroplasts. Spheroplasts were washed in 200 ml sorbitol 1.2 M 

and incubated in 500 ml YPDA-sorbitol 1M at 25°C 40 rpm. Spheroplasts were harvested at 

1000 x g for 10 min at 4°C and lysed using glass beads (0.5 ml/g cells) in lysis buffer (20 mM 

Hepes-KOH pH7.4; 100 mM KOAc; 2 mM Mg(OAC)2; 2 mM DTT; 0.5 mM PMSF; protease 

inhibitor cocktail) (1 ml/g cells) in 5 cycles of shaking vigorously at 2 Hz for 20 seconds with 
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1 minute intervals on ice. Lysates were cleared spinning 30 000 x g for 15 min at 4°C, then 

100 000 x g for 30 min at 4°C. Glycerol was added at 10% final concentration for storage at -

80°C.   

In vitro translation was performed basically as described in {Tarun, 1995 #256}. Translational 

extracts were incubated with 150 U/ml micrococcal nuclease (New England Biolabs) in 

presence of 480 µM CaCl2 for 5 minutes at 26°C, before adding 2 mM EGTA on ice. 7.5 µl 

extract was added to 7.5 µl translation mix containing 0,1 µl RNasin (Promega), 500 ng 

firefly luciferase-A(50) mRNA {Gallie, 1991 #273} and 4 µg creatine phosphokinase (Roche) 

in 22 mM Hepes-KOH pH 7.4; 120 mM KOAc; 2 mM MgOAc; 750 µM ATP; 100  µM GTP; 

25 mM creatine phosphate; 40  µM amino acid mixture (Promega); 1.7 mM DTT. After 1 h 

incubation at 26°C luciferase activity was measured in 10 s measurements using a Lumat LB 

9507 luminometer (Berthold technologies) adding 1 µl translation reaction to 50 µl luciferine 

mix (470 µM luciferine; 530 µM ATP; 270 µM coenzyme A; 20 mM Tris-phosphate pH 7.8; 

1.07 mM MgCl2; 2.7 mM MgSO4; 100 µM EDTA; 33.3 mM DTT).  

The Dom34-Hbs1 complex added to the translation reaction was purified as described in 

{Collinet, 2011 #331}. Hbs1 alone was purified from BL21 codon+ cells expressing C-

terminally 6xHis-tagged Hbs1 grown in Autoinduction media Terrific Broth Base including 

Trace elements (Formedium) over Ni-NTA agarose (Qiagen) after cell lysis in a Cell 

Disruptor (Constant Systems) at 1.55 kbar, using lysis buffer (75 mM Hepes pH 7.9, 300 mM 

NaCl, 5 mM -mercaptoethanol, 1% Tween, 20 mM imidazole, 10% glycerol, 2 mM MgCl2), 

wash buffer (50 mM Hepes pH 7.9, 500 mM NaCl, 5 mM -mercaptoethanol, 20 mM 

imidazole, 10% glycerol, 2 mM MgCl2) and elution buffer (50 mM Hepes pH 7.9, 500 mM 

NaCl, 5 mM -mercaptoethanol, 300 mM imidazole, 10% glycerol, 2 mM MgCl2). Both Hbs1 

and the Dom34-Hbs1 complex were further purified over a Superdex 75 10/300 GL column 

(GE Healthcare) in 20mM Tris-Cl pH 7.5, 200mM NaCl, 5mM -mercaptoethanol, 5% 

glycerol.  

 
 
Supplementary table 1: Strains and plasmids 
 
Strain or 
plasmid name 

Description  

(genotype for strains; vector/insert/marker for plasmids) 

Reference 

BMA64 MAT , ura31, trp1 , ade21, leu23,112, his311,15 {Baudin-
Baillieu, 1997 
#471} 
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BSY1970 MAT , ura31, trp1 , ade21, leu23,112, his311,15, 

dom34 ::HIS3 

{van den 
Elzen, 2010 
#80} 

BSY2145 MAT a, ura31, trp1 , ade 21, leu23,112, his311,15, 

hbs1 ::KanR 

{van den 
Elzen, 2010 
#80} 

BSY2550 MAT a, ade 2-1 his3-11,15, leu2-3,112, trp1delta ura3-1, 

dom34 ::HIS3, hbs1 ::KanR 

This study 

N20T20 MAT a, ura3-1, trp1 , ade2-1, leu2-3,112, his3-11,15, 

stm1 ::TRP1  

Gift from F. 
Lacroute and F. 
Wyers 

BSY2626 MAT a, ura3-1, trp1 , ade2-1, leu2-3,112, his3-11,15, 

stm1 ::TRP1, dom34 ::HIS3 

This study 

pBS3614 pRS415/ HBS1-PROTEIN A + promoter/LEU2 {van den 
Elzen, 2010 
#80} 

pBS3675 pRS415/ hbs1 V176G-PROTEIN A + promoter/LEU2 {van den 
Elzen, 2010 
#80} 

pBS3685 pRS415/ DOM34-3HA + promoter/LEU2 {van den 
Elzen, 2010 
#80} 

pBS3701 pRS415/ dom34 E361R-3HA + promoter/LEU2 {van den 
Elzen, 2010 
#80} 

pBS4415 pRS415/ hbs1 N-ter (2-149)-PROTEIN A + 
promoter/LEU2 

This study 
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Supplementary Figure 2. Localization of the Dom34-Hbs1 complex and Stm1 in a model 

of the 80S ribosome. 

Alignment of a high resolution structure of an 80S ribosome from glucose depleted yeast 

containing Stm1 (PDB  3u5b, 3u5c, 3u5d and 3u5e) {Ben-Shem, 2011 #173} and a cryo-EM 

structure of the Dom34-Hbs1 complex bound to an 80S ribosome (PDB 3IZQ) {Becker, 2011 

#180}. 
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Étude du complexe Dom34-Hbs1 ressemblant aux facteurs 

de terminaison: analyse fonctionnelle de ses rôles dans le 

contrôle qualité des ARN et dans la stimulation de la 

traduction par dissociation des ribosomes inactifs. 

 

 

 

Résumé 

Après un cycle de la production des protéines, les sous-unités des ribosomes terminés sont 
dissociés, afin de les rendre disponibles pour de nouveaux cycles de traduction. Si lors de la 
traduction le ribosome pause, il ne pourra pas terminer la traduction et être recyclé par la voie 
classique. Un mécanisme de recyclage alternatif a évolué pour dissocier de tels ribosomes arrêtés. 
Un complexe composé des facteurs Dom34 et Hbs1 induit leur dissociation. Ce complexe est aussi 
impliqué dans des voies de contrôle qualité qui ciblent des ARN qui causent des arrêts 
ribosomiques. Dans cette thèse, l'importance de plusieurs sites fonctionnels du complexe Dom34-
Hbs1 pour ces voies contrôle qualité des ARNs est étudiée. De plus, la relation entre ces voies et 
leurs détails sont examiné. Finalement, un nouveau rôle de Dom34-Hbs1, en dissociant des 
ribosomes inactifs ce qui rend leurs sous-unités disponibles pour de nouveaux cycles de la 
traduction, est décrit.  

 

Résumé en anglais 

Protein production is a cyclic process that consists of four stages: initiation, elongation, termination 
and recycling. During recycling the subunits of terminated ribosomes are dissociated, to make them 
available for new rounds of translation. If ribosomes stall during translation, ribosomes cannot 
terminate properly and canonical recycling cannot occur. Cells have mechanisms to rescue these 
stalled ribosomes. A complex formed by the factors Dom34 and Hbs1 induces their dissociation. This 
compex in RNA quality control, targeting RNAs that cause ribosomal stalling. In this thesis the 
importance of several functional sites of the Dom34-Hbs1 complex for the degradation of these RNA 
sis investigated. Details of and the relationship between RNA quality control pathways in which the 
complex functions are further investigated. Finally, a new role of this complex, dissociating inactive 
ribosomes and thereby making their subunits available to re-enter the translation cycle is described. 


