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Chapter 1

Introduction

In areas of modern research on the nanoscale, spintronics is an emerging ac-
tive field based on utilizing the electron spin to encode information in elec-
tronic devices. The essence of spintronics resides in the concept of magne-
toresistance where both the giant magnetoresistance (GMR) [Zutic 2004] and
tunneling manetoresistance (TMR) [Julliere 1975] phenomena resemble the
spin-polarized transport in either spin valves or magnetic tunnel junctions.
In this concept, a spacer, which could be either a non-magnetic metal or an
insulator, is sandwiched between two ferromagnetic electrodes such that the
difference in the resistance between parallel and antiparallel configurations
of the electrodes corresponds to the magnetoresistance. Considering the fact
that transport properties strongly depend on the magnetic properties, the
prospect of spintronics requires developing and employing materials with re-
markable magnetic properties. To this end, ab-initio calculations have become
an efficient tool to understand characteristic properties of materials and which
provides interpretation for experimentally observable phenomena.
The aim of this thesis is to understand the physics of functional magnetic ma-
terials proposed for spintronic applications using ab-initio density functional
simulations. In this respect, two classes of functional materials are consid-
ered: the magnetoelectric oxide, gallium ferrite (GFO), and the hybrid or-
ganic/ferromagnet interface, manganese phthalocyanine/cobalt (MnPc/Co).
In fact, both magnetoelectric and organic materials have received growing
interests in the field of spintronics.

1.1 Magnetoelectric materials

First, we consider the magnetoelectric materials. Such materials accommo-
date both magnetic and electric properties, i.e. coexistence of a magnetization
and polarization together with a coupling among these two degrees of freedom
known as the magnetoelectric effect. In fact, the magnetoelectric coupling
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provides the opportunity of the electric control of the magnetization and vice
versa. This feature triggered the proposals of possible spintronic device de-
signs where magnetoelectric materials are incorporated in a magnetoelectric
memory device [Bibes 2008, Binek 2005]. Such devices include TMR device
involving a magnetoelectric film as a tunnel barrier between two ferromag-
netic layers across which a bias voltage is applied. The other proposed device
is based on spin valves used in GMR systems where a magnetoelectric film
serves as a tunable pinning bottom layer. The principle of functioning in these
applications relies on the magnetoelectric coupling within the magnetoelectric
material and the exchange coupling across its interface with the ferromagnetic
adjacent layer.

Figure 1.1: Schematic of possible integration of a magnetoelectric material in a spin valve
[Bibes 2008].

In the frame of research on magnetoelectric materials that possess pe-
culiar properties, such as an overall non-vanishing magnetization holding
up to room temperature and a strong magnetoelectric effect, GFO has
so far appeared of particular interest [Remeika 1960, Rado 1964]. Indeed,
the electronic and magnetic properties of GFO have rarely been inves-
tigated theoretically. In particular, the theoretical investigation of the
experimentally-demonstrated dependence of GFO properties on the Fe con-
centration [Arima 2004, Trassin 2009] seems to be interesting. Besides, a more
detailed magnetic description on the microscopic scale is required, namely the
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anisotropic feature of the system. These issues are addressed in a considerable
part of this thesis.

1.2 Hybrid organic/ferromagnetic interfaces

Motivated by the scope of developing organic spin devices [Naber 2007], the
study of the spin properties of organic semiconductors have attracted con-
siderable attention [Dediu 2009, Atodiresei 2010, Iacovita 2008]. In fact, the
crucial property that introduces organic semiconductors as such good candi-
dates is that spin-orbit coupling and hyperfine interactions are predicted to be
extremely small [Dediu 2009, Sanvito 2007]. Interestingly, organic semicon-
ductors are capable of forming hybrid organic-ferromagnetic interfaces that
exhibit high spin-injection efficiency [Sanvito 2010]. In this case, the spin
injection can be controlled by tuning the interface electronic and magnetic
properties. The family of phthalocyanine (Pc) offers a potential choice for
these aforementioned hybrid interfaces due to their thermal stability and the
possibility to tune their structure, chemical, magnetic, and transport proper-
ties [Wang 2009, Liao 2001].
Theoretical and experimental studies have witnessed and described a distinc-
tive feature of Pc/ferromagnetic hybrid interfaces which is the presence of
spin-polarized states introducing hereafter the concept termed spinterface
[Methfessel 2011, Sanvito 2010]. In particular, manganese phthalocaynine
MnPc/Co(001) has so far revealed interesting properties residing in its mag-
netic active interface [Javaid 2010]. However, a better understanding of the
Co/MnPc interface is still required. For instance, a more detailed description
of the spinterface-formation mechanism is crucial. Besides, it is obviously
interesting to include spin-orbit coupling to gain detailed insight of its mag-
netic properties. In this respect, we address these arguments, in the second
part of this thesis, while trying to provide a more realistic description of the
interactions across a MnPc/metallic interface.
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This manuscript consists of four main chapters as follows:
In chapter 2, we provide an overview of the fundamental ideas of the den-
sity functional theory, in particular, the projector augmented wave method
is illustrated being the method used in the framework of this thesis. Chap-
ter 3 gives a brief review of the relativistic density functional theory and
the scalar relativistic approximation for the spin-orbit coupling. Besides, the
magnetocrystalline anisotropy is defined and the methods for calculating it
are described.
Chapter 4 is dedicated to the description of the properties of the magnetoelec-
tric gallium ferrite (GFO). The chapter starts by introducing the well-known
properties of GFO. Then, we show and discuss the results on the impact of
the Fe concentration on the different properties of GFO: structural, electronic,
magnetic, and magnetic anisotropy. The last part of this chapter addresses
the optical properties where the basic theory is described followed by the op-
tical properties of GFO; in particular, the optical properties are introduced
as a good tool to determine the cationic site occupation in GFO.
In chapter 5, the interface between manganese phthalocyanine and Co(001)
including both van der Waals and spin-orbit interaction is described and dis-
cussed. First, an overview of the well-known properties of Pc/metal interfaces
preceded by the properties of the Pc molecules is given. In the second part of
this chapter, the theoretical results on the electronic and magnetic properties
of Co/MnPc interface are presented and discussed in view of experimental
photoemission and x-ray magnetic circular dichroism (XMCD) results.
The manuscript ends up by drawing the main conclusions from this thesis and
providing a perspective concerning the two main subjects discussed.
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Density functional theory and

PAW method
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2.1 Introduction

The fundamental basis of understanding the different properties of materials
and phenomena relies upon understanding their electronic structure. Indeed,
developing theoretical approaches that can accurately describe a system of
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interacting particles, electrons and nuclei, emerged as a serious challenge en-
countering theoretical physics. An exact theory for a system of ions and
interacting electrons is intimately quantum mechanical based on solving a
many-body Schrödinger equation which is evidently complex. One of the
milestones in solving this problem is the Born-Oppenheimer approximation
[Born 1927]. Their idea was that the ions can be thought of as moving slowly
in space while the electrons respond instantaneously to any ionic motion.
Consequently, the many-body wave function becomes explicitly dependent on
the electronic degrees of freedom only. The validity of this approximation is
based on the huge difference of mass between ions and electrons which allows
considering the former as classical particles.

The simplification provided by the Born-Oppenheimer approximation doesn’t
resolve the entire problem’s complexity which now resides in the nature of the
electrons themselves, namely the electron-electron interactions. In fact, such
interactions involve the exchange property of the electrons which is an impli-
cation of Pauli exclusion principle beside the correlation property where each
electron is affected by the motion of every other electron in the system. Inte-
grating such complex types of interaction requires a more simplified approx-
imation known as the one-electron picture in which the system is described
by a collection of classical ions and single quantum particles that reproduce
the behavior of the electrons. In developing this picture the exchange and
correlation effects among electrons are not neglected, instead they are taken
into account in an average or effective way. This is often referred to as the
mean-field approximation for the electron-electron interactions.

The mean-field theory is the heart of the Hartree-Fock approximation
[Fock 1930a, Fock 1930b]. In this case, the wave function of the many-body
system is introduced as an antisymmetric product of single particle wave
functions where each satisfies a Schrödinger equation. This approximation
incorporates the exchange interactions which are the manifestation of Pauli
exclusion principle, that act as so to separate electrons of the same spin. Con-
sequently, a depletion of the charge density arises in the vicinity of a given
electron forming what is known as the exchange hole. Although the Hartree-
Fock approximation treats exactly the exchange, it neglects more detailed
correlations due to many-body interactions in particular long-range Coulomb
correlations. These missing correlations are reflected in the breakdown of the
Hartree-Fock approximation in treating metallic and bulk systems in general
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where it usually overestimates the band gap and underestimates the binding
energy.

The requirement for a computationally practicable approach that incorpo-
rates both the exchange and correlation prompted the arousal of the density
functional theory which has become the primary tool for electronic structure
calculations in condensed matter. In what follows we elucidate the fundamen-
tal ideas of the density functional theory. In particular, we illustrate on the
projector augmented wave method being the density functional-based method
used in the present work.

2.2 Density functional theory

2.2.1 Hohenberg-Kohn-Sham approach

In a series of seminal papers, Hohenberg, Kohn, and Sham developed a differ-
ent way of looking at the electronic structure problem which has been called
the density functional theory (DFT). This theory has a large impact on the
calculations of the properties of molecules and solids. The basic concept of
the DFT is that instead of dealing with the many-body Schrödinger equation
which involves the many-body wave function, one deals with a formulation of
the problem that involves the total density of the electrons.

DFT is based upon two theorems proved by Hohenberg and Kohn
[Hohenberg 1964] that apply to any system of interacting particles in an ex-
ternal potential Vext(r) including any problem of electrons and nuclei where
the Hamiltonian is written as

Ĥ = −
~
2

2me

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i 6=j

e2

|ri − rj|
. (2.1)

The two theorems state that:

• The external potential Vext(r) is a unique functional of the electron den-
sity, thus all the ground-state properties are solely determined by the
ground state density.

• The ground state energy is obtained variationally; the density that min-
imizes the total energy is the exact ground state density n0(r).
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Later in 1965, Kohn and Sham provided an approach which replaces the dif-
ficult interacting many-body system with an auxiliary system of independent
particles but with an interacting density [Kohn 1965]. The built-in assump-
tion is that the ground state density of the interacting system is equal to
that of some chosen non-interacting system. This brings out the Kohn-Sham
independent particle equations of the form

[−
∇2

2
+ Veff (r)]ψi(r) = ǫiψi(r). (2.2)

The effective potential is expressed as

Veff (r) = Vext(r) + VH(r) + Vxc(r), (2.3)

where the external potential generated by the nuclei at position Ri having
charge Zie is

Vext(r) =
∑

i

Zie
2

|r−Ri|
, (2.4)

the Hartree potential which is the electrostatic part of the electron-electron
interaction is

VH(r) =

∫

d3r′
n(r′)

|r− r′|
. (2.5)

The exchange-correlation potential Vxc is the part of the potential which incor-
porates all the difficult many-body interactions. The density of this auxiliary
system is constructed from the orbitals ψi(r) such that

n(r) =
∑

i

|ψi(r)|
2. (2.6)

Based on the nature of the Kohn-Sham approach where the effective potential
depends on the density and the density itself depends on the one-particle states
ψi, the solution of the Kohn-Sham equations is attained via self consistent
manner. An actual calculation procedure utilizes a numerical procedure that
successively changes Veff and n to approach the self-consistent solution. For a
given form of the exchange-correlation functional, a starting density is guessed
which in turn determines a potential Veff . This potential is used to obtain
a solution of KS equation from which a new density is constructed and used
to determine a new Veff . This iterative process is applied until the output
density doesn’t vary with respect to the input one.
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In the Kohn Sham approach to the full interacting many-body problem the
Hohenberg-Kohn expression of the ground state energy functional is written
as

EKS[n(r)] = T0[n(r)] +

∫

drVext(r)n(r) + EH [n(r)] + Exc[n(r)]. (2.7)

In this expression the first term represents the independent-particle kinetic
energy

T0[n(r)] =
occ
∑

i

〈ψi| −
~
2

2me

∇2|ψi〉. (2.8)

The accuracy of the ground-state density and energy obtained by solving the
Kohn Sham equations is limited by the approximation in the crucial exchange-
correlation functional since its exact form is unknown. In fact, Exc is often
relatively a small fraction of the total energy but is typically of large contri-
bution to the chemical bonding. Therefore, accurate approximations to the
Exc are required to the whole enterprise of the DFT. Despite the complexity
in the nature of the exchange-correlation functional, great progress has been
made with remarkable simple approximations; an issue that is addressed in
the following section.

2.2.2 Expressions of the exchange-correlation potential

Kohn and Sham proposed the most popular way of dealing with the complex-
ity of the exchange-correlation functional, the local-density approximation
(LDA). They suggested that solids can often be considered close to the limit
of the homogeneous electron gas which implies that the effects of exchange and
correlation are local in character. Thus, the exchange-correlation energy can
be simply expressed as an integral over all space with the exchange-correlation
density at each point assumed to be the same as in a homogeneous electron
gas with that density and is expressed as follows:

ELDA
xc [n(r)] =

∫

d3rn(r)ǫhomoxc (n(r)), (2.9)

where ǫhomoxc is the exchange-correlation energy per electron in a homogeneous
electron gas. Highly accurate results for the evaluation of this latter were
found by Ceperley and Alder [Ceperley 1980] using Quantum Monte-Carlo
techniques and parametrized by Perdew and Zunger [Perdew 1981a]. There-
fore, LDA is exact for a uniform density or more generally for densities that
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vary slowly in space. In particular, LDA should be valid when the length scale
of the density variation is large compared to the length scales set by the local
density such as the Fermi wavelength or the screening length. Consequently,
LDA is convenient for the description of simple crystalline metals while it is
worst for very inhomogeneous cases such as atoms.

Indeed, some of the well known failures of the LDA such as the overestima-
tion of the cohesive energies have stimulated the attempts to construct better
functionals. In this sense, the gradient-corrected functionals were introduced
as the simplest extension of LDA to inhomogeneous systems. In this case, not
only the local density but also its local gradient are used to incorporate more
information about the electron gas. The generalized-gradient approximation
(GGA) denotes a variety of ways proposed for functions that modify the be-
havior at large gradients in a way to preserve the desired properties. Thus,
the exchange-correlation functional is expressed as follows:

EGGA
xc [n(r)] =

∫

d3rn(r)ǫhomoxc (n(r))Fxc(n(r), |∇n(r)|), (2.10)

where Fxc is an enhancement factor that is expressed in terms of the average
distance between electrons rs and a dimensionless reduced density gradient
s(r):

Fxc(n(r), |∇n(r)|)→ Fxc(rs, s), (2.11)

and

s(r) =
|∇n(r)|

2kFn(r)
. (2.12)

The three most widely used forms of expressing Fxc have been proposed by
Becke (B88) [Becke 1988], Perdew and Wang (PW91) [Perdew 1992], and
Perdew, Burke, and Enzerhof (PBE) [Perdew 1996]. The behavior of GGA
functionals relative to LDA can be understood on the basis of many com-
parative studies that have been done and whose results yield the following:
(1) GGA improves the ground-state properties of atoms due to the lowered
exchange energies that lead to the reduction of the binding energies and cor-
rects the LDA over-binding. (2) Many properties of transition metals are
improved [Ozolins 1993]. (3) In general, the structural properties are im-
proved despite that GGAs sometimes overcorrect the LDA errors in lattice
parameters [Proynov 1995]. (4) The description of Mott-Hubbard insulators
is not significantly improved over the LDA [Terakura 1984, Pickett 1989].
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As a matter of fact, both LDA and GGA functionals break down in treat-
ing materials in which electrons are localized and strongly interacting such
as transition metal oxides and rare earth elements [Pickett 1989]. These sys-
tems contain localized atomic-like electronic states, originating from d or f

atomic states, together with delocalized band-like states, originating from s

and p states. The correct description of both set of states is problematic
as LDA and GGA provide orbital-independent potentials that may produce
incorrect occupancy of localized states leading to an incorrect description of
the properties of such materials. Therefore, several methods have been devel-
oped beyond the functional approach to incorporate strong electron-electron
correlations such as the self-interaction corrections (SIC) [Perdew 1981a] and
LDA+U method [Anisimov 1997]. In the framework of this thesis the LDA+U

approach was used and is addressed in the following section.

2.2.3 The LDA+U method

The LDA+U is an orbital-dependent method where the electrons are classified
into two classes: delocalized s and p which can be well described by the usual
LDA or GGA, and localized d or f electrons for which an orbital-dependent
term should be used to account for the Coulomb d-d and f-f interactions
known as the Hubbard-type interaction:

H =
1

2
U
∑

i 6=j

ninj, (2.13)

where

U = E(dn+1) + E(dn−1)− 2E(dn) (2.14)

is the Hubbard parameter representing the Coulomb energy cost to place two
electrons at the same site. The generalized LDA+U functional is defined as
follows:

ELDA+U [n(r), n̂] = ELDA[n(r)] + EU [n̂]− Edc[n̂], (2.15)

where n̂ is the density matrix for d or f electrons. The first term in Eq. 2.15
is the standard LDA energy functional and the second is the electron-electron
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Coulomb interaction energy given by:

EU [n̂] =
1

2

∑

m,σ

〈m,m′′|Vee|m
′,m′′′〉nσm,m′n−σ

m′′′,m′′′ − (〈m,m′′|Vee|m
′,m′′′〉)

−(〈m,m′′|Vee|m
′′′,m′〉)nσmm′nσm′′m′′′ ,

(2.16)
where m denotes the magnetic quantum number and Vee is the screened
Coulomb interaction among localized electrons. The third term is the energy
that corrects the double counting and is given by:

Edc[n̂
σ] =

1

2
UN(N − 1)−

1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)], (2.17)

where Nσ = Tr(nσmm′) and N = N↑ + N↓ while U and J are the screened
Coulomb and exchange parameters respectively. In this case, the effective
single particle Hamiltonian is:

Ĥ = ĤLDA +
∑

mm′

|inlmσ〉V σ
mm′〈inlm′σ|, (2.18)

where i denotes the site, n the main quantum number, and l the orbital
quantum number while the effective single-particle potential is expressed as:

V σ
mm′ =

∑

m̂

〈m,m′′|Vee|m
′,m′′′〉n−σ

m′′m′′′ − (〈m,m′′|Vee|m
′,m′′′〉)

− 〈m,m′′|Vee|m
′′′,m′〉)nσm′′m′′′ − U(N −

1

2
) + J(Nσ −

1

2
).

(2.19)

The matrix elements of Vee can be expressed in terms of complex spherical
harmonics and effective Slater integrals F k as follows:

〈m,m′′|Vee|m
′,m′′′〉 =

∑

k

ak(m,m
′,m′′,m′′′)F k, (2.20)

where 0 ≤ k ≤ 2l and

ak(m,m
′,m′′,m′′′) =

4π

2K + 1

k
∑

q=−k

〈lm|Ykq|lm
′〉〈lm′′|Y ∗

kq|lm
′′′〉. (2.21)

The relations between the slater integrals and the Coulomb U and exchange
J parameters for 3d or 4d systems are:

U = F 0, J =
F 2 + F 4

14
, (2.22)

while for 4f or 5f systems:

J =
286F 2 + 195F 4 + 250F 6

6435
. (2.23)
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2.2.4 Solving Kohn-Sham Equations

The Kohn-Sham equations, with the underlying independent-particle ap-
proach, provide a way to obtain the exact ground state density along with
a self-consistency requirement. In solids, a further simplification is provided
by Bloch’s theorem as the charge density and consequently the single-particle
Kohn-Sham Hamiltonian has the periodicity of the lattice. Thus, the Kohn-
Sham orbitals with different Bloch momenta are coupled through the density-
dependent potential. Accordingly, the single particle Kohn-Sham equations
may be solved separately on a grid of sampling points in the symmetry ir-
reducible wedge of the Brillouin zone, and the resulting orbitals are used to
construct the charge density. Indeed, there are several electronic structure
schemes used to solve the Kohn-Sham equations providing different represen-
tations of the charge density, potential, and the Kohn-Sham orbitals. In the
following we give a quick overview of these approaches.

1. Planewave pseudopotentials

In this method, the Kohn-Sham orbitals are expanded in a complete set
of planewaves eik.r while the strong core potential is replaced by a pseu-
dopotential whose ground state wave function mimics the all-electron
valence wave function outside a selected core radius. A pseudopoten-
tial can be generated in an atomic calculation and then used to compute
properties of valence electrons in molecules or solids since the core states
remain almost unchanged [Singh 2006]. In fact, since pseudopotentials
are not unique, this allows the freedom to choose forms that simplify
the calculations and the interpretation of the resulting electronic struc-
ture. Many of these ideas originated in the orthogonalized plane-wave
(OPW) approach [Callaway 1955] that handles the eigenvalue problem
in terms of a smooth part of the valence wave function plus core or
core-like wave functions. Later, the OPW method was brought into the
modern framework of energy functionals by the projector augmented
wave (PAW) [Blochl 1994] approach which uses pseudopotential opera-
tors while keeping the full core wave functions.

2. Localized atomic-(like) orbitals

The basic idea of these methods is to use atomic orbitals as the basis
set to expand the single-electron wave function in the Kohn-Sham equa-
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tions. The well-known method in this class is the linear combination of
atomic orbitals (LCAO) where the semi-empirical tight-binding method,
associated with Slater and Koster, is considered to be simple and in-
structive since one needs only the matrix elements of the overlap and
Hamiltonian [Slater 1954]. Besides, full potential calculations are done
with localized bases such as gaussians, Slater-type orbitals, and numer-
ical radial atomic-like orbitals. The full potential non-orthogonal local
orbital (FLPO) method [Eschrig 1987] uses, in addition to the spheri-
cal average of the crystal potential, the so-called confining potential to
compress the long range tail of the local orbitals.

3. Atomic-sphere methods

The basic idea is to divide the electronic structure problem providing
efficient representation of atomic-like features that are rapidly varying
near the nucleus and smoothly varying functions between the atoms.
Methods in the class can be considered as a combination of plane-wave
method and localized atomic orbitals where localized atomic orbitals are
employed near the nuclei and plane waves in the interstitial region. The
heart of the augmented plane wave (APW) [Slater 1953] and Green’s
function Korringa-Kohn-Rostoker (KKR) [Korringa 1947, Kohn 1954]
method is that smooth functions are augmented near each nucleus by
solving Schrödinger equation in the sphere at each energy and matching
to the outer wave function. Indeed, the APW and KKR methods suffer
from the fact that they require solution of nonlinear equations. Accord-
ingly, advances made use of the linearization of the equations around
reference energies which allows any of the augmented methods to be
written in the form of secular equation linear in energy involving an en-
ergy independent Hamiltonian and overlap matrix. This simplification
led to further advances, such as developing full-potential methods (e.g.
LAPW [Singh 2006] and LMTO [Andersen 1975]).

2.3 Projector augmented wave method

The projector augmented wave (PAW) method [Blochl 1994] is an approach
that combines the flexibility of LAPW method and the simplicity of the plane
wave pseudopotential approach bringing out the most general augmentation



2.3. Projector augmented wave method 15

scheme. Being an all electron method, the extracted matrix elements and
expectation values correspond to the all-electron state subjected to the full
all-electron potential. Indeed, PAW utilizes the frozen core approximation
where the core states are imported from the isolated atom since they are
slightly affected upon bond formation.

2.3.1 Decomposition of the wave function

In materials, wave functions have different signatures in different regions of
space: they vary smoothly between the atoms due to the weak potential while
they rapidly oscillate near the nuclei since the electrons feel the large attractive
potential of the nuclei. Consequently, a reasonable treatment of the wave
function requires dividing the space into two regions which is the heart of the
augmented wave methods.

• Augmentation region consists of non-overlapping atom-centered spheres
of radius rac where a is the atom index.

• Interstitial region which covers the space between the augmented
spheres.

Accordingly, the idea is to the expand the wave function of the valence elec-
trons into different basis: plane waves in the interstitial region and atomic-like
partial waves in the augmentation region. Indeed, the dual representation of
the wave function together with its derivative should be assured to be contin-
uous at the boundaries of the spheres.

Figure 2.1: Illustration of the dual representation of the space: interstitial region and
augmentation region.
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The PAW formalism is based on a linear transformation T̂ that transforms
the physically relevant all-electron wave function |ψn〉 onto fictitious pseudo
wave function |ψ̃n〉:

|ψn〉 = T̂ |ψ̃n〉, (2.24)

where the index n resembles the band and the k vector indices. The transfor-
mation operator T̂ is defined as follows:

T̂ = 1 +
∑

a

T̂ a, (2.25)

such that T̂ a are local atom-centered contributions each of which acts only
within an augmentation region Ωa. This implies that the all-electron and the
pseudo- wave functions coincide outside the augmentation regions. In fact,
to define the local terms T̂ a, the all-electron wave function is expanded into
all-electron partial waves φai , within Ωa, to each of which is defined a smooth
pseudo partial wave |φ̃ai 〉 such that:

|φai 〉 = (1 + T̂ a)|φ̃ai 〉. (2.26)

Each all-electron partial wave |φai 〉 is identical to its smooth counterpart |φ̃ai 〉
outside the augmentation region. Besides, these pseudo partial waves should
also form a complete set within the augmentation region so that every pseudo
wave function can be expanded into pseudo partial waves:

|ψ̃n〉 =
∑

i

cai,n|φ̃
a
i,n〉, within Ωa, (2.27)

where cai,n are some expansion coefficients to be determined. Since |φai 〉 =

T̂ |φ̃ai 〉, the corresponding all-electron wave function which is expressed as:

|ψn〉 = T̂ |ψ̃n〉 =
∑

i,n

cai,n|φ
a
i 〉, within Ωa, (2.28)

has the same expansion coefficients cai,n. Indeed, the transformation T̂ is
required to be linear, which implies that the coefficients cai,n should be linear
functionals of the pseudo wave function |ψ̃n〉. Hence,

cai,n = 〈p̃ai |ψ̃n〉, (2.29)

where |p̃ai 〉 are some fixed functions termed projector functions such that there
is exactly one projector function for each pseudo partial wave. In the aug-
mentation region, the projector functions must fulfill the condition:

∑

i,a

|φ̃ai 〉〈p̃
a
i | = 1, (2.30)
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which implies that

〈p̃ai |φ̃
a
j 〉 = δi,j. (2.31)

In principle, there are no restrictions on the choice of the projector functions
outside the augmentation regions but for convenience they are chosen to be
localized in the augmentation regions.

As a consequence, the linear transformation between the valence wave func-
tions and the pseudo wave functions is written as:

T̂ = 1 +
∑

i,a

(|φai 〉 − |φ̃
a
i 〉)〈p̃

a
i |. (2.32)

Thereby, by using this transformation the all-electron Kohn-Sham wave func-
tion is obtained from the pseudo wave function as follows:

|ψn〉 = |ψ̃n〉+
∑

i,a

(|φai 〉 − |φ̃
a
i 〉)〈p̃

a
i |ψ̃n〉. (2.33)

Thus, the transformation is determined by: the all-electron partial waves
|φi〉 which are determined by solving the radial Schrödinger equation for the
isolated atom and orthogonalized to the core states, the pseudo partial waves
|φ̃i〉 which are expanded into planewaves, and a projector function |p̃i〉 which is
localized within the augmentation region associated with each pseudo partial
wave. The projectors are calculated as a radial function multiplied by spherical
harmonics but are then transformed into planewave representation.

Figure 2.2: Comparison of the real Ψ to the pseudo Ψ̃ wave function and the real V to
the pseudo potential Ṽ .
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2.3.2 Expectation values of operators

In the PAW method, the pseudo wave functions are the variational parameters
instead of the all-electron wave function. As a consequence, the observables
must be given in the form of expectation values of the pseudo wave func-
tions which requires transforming the operators into pseudo operators. The
expectation value of some operator 〈A〉 is defined as,

〈A〉 =
∑

n

fn〈ψn|A|ψn〉, (2.34)

where fn is the occupation of the state and n is the band index. Using the
definition of the transformation T̂ ,

〈A〉 =
∑

n

fn〈ψ̃n|Ã|ψ̃n〉. (2.35)

In the case of local operators, the pseudo operator is expressed as:

Ã = T̂ †AT̂

= A+
∑

i,j

|p̃i〉(〈φi|A|φj〉 − 〈φ̃i|A|φ̃j〉)〈p̃j|.
(2.36)

Indeed, for nonlocal operators an additional term ∆A is added to the expres-
sion:

∆A =
∑

i

|p̃i〉(〈φi| − 〈φ̃i|)A(1−
∑

j

|φ̃j〉〈p̃j|) + (1− |p̃j〉〈φ̃j|)A(|φi〉 − |φ̃i〉)〈p̃i|.

(2.37)

2.3.3 Charge density

In DFT the charge density is obviously a very important quantity where all
observables are calculated being functionals of it. In fact, to obtain the charge
density at a point r in space, the expectation value of the real space projection
operator |r〉〈r| must be determined:

n(r) =
∑

n

fn〈ψn|r〉〈r|ψn〉. (2.38)

According to Eq.2.36 , n(r) is written as:

n(r) = ñ(r) + n1(r)− ñ1(r), (2.39)
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where
ñ(r) =

∑

n

fn〈ψ̃n|r〉〈r|ψ̃n〉, (2.40)

and
n1(r) =

∑

i,j,n

fn〈ψ̃n|p̃i〉〈φi|r〉〈r|φj〉〈p̃j|ψ̃n〉, (2.41)

and
ñ1(r) =

∑

i,j,n

fn〈ψ̃n|p̃i〉〈φ̃i|r〉〈r|φ̃j〉〈p̃j|ψ̃n〉. (2.42)

In other words, a smooth pseudo core density is constructed which is identical
to the core density outside the augmentation region and has a smooth contin-
uation inside, such that n1 contains the core states contribution while ñ and
ñ1 contain the contribution of the pseudo core states.

2.3.4 Total energy

In the DFT, the total energy of a system which is the expectation value of
total Hamiltonian is given by:

E[n] =
1

2

∑

n

fn〈ψn| − ∇
2|ψn〉+

1

2

∫

d3rd3r′
[n(r) + nZ(r)][n(r′) + nZ(r′)]

|r− r′|

+

∫

d3rn(r)ǫxc(n(r)).

(2.43)
This expression contains, respectively, the terms resembling: the kinetic en-
ergy of the electrons, the Coulomb interaction among the charges i.e. electrons
and nuclei (Z), and the exchange-correlation energy.
Based on the PAW formalism, the energy expression can be rewritten in the
form:

E = Ẽ + E1 − Ẽ1. (2.44)

Ẽ is the smooth part which is evaluated on regular grids in the real or Fourier
space while E1 and Ẽ1 are sum of atomic contributions evaluated on radial
grids in angular momentum representation.
On these bases, the decomposition of the terms in the total energy expression
are described below.

1. The kinetic energy is written as:

Ek = Ẽk + E1
k − Ẽ1

k , (2.45)
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where
Ẽk =

1

2

∑

n

fn〈ψ̃n| − ∇
2|ψ̃n〉, (2.46)

and
E1
k =

1

2

∑

i,j,n

fn〈ψ̃n|p̃i〉〈φi| − ∇
2|φj〉〈p̃j|ψ̃n〉, (2.47)

and
Ẽ1
k =

1

2

∑

i,j,n

fn〈ψ̃n|p̃i〉〈φ̃i| − ∇
2|φ̃j〉〈p̃j|ψ̃n〉. (2.48)

2. The exchange-correlation energy is obtained straightforward using the
previously shown decomposition of the charge density in Eq.(2.39):

Exc = Ẽxc + E1
xc − Ẽ1

xc

=

∫

d3rñ(r)ǫxc(n(r)) +

∫

d3rn1(r)ǫxc(n
1(r))−

∫

d3rñ1(r)ǫxc(ñ
1(r))

(2.49)

3. The Hartree term is both nonlocal and nonlinear, which requires more
care while introducing the PAW transformation into its expression. To
this extent, a compensation charge density n̂ which is localized in the
augmentation region is introduced to treat the long range interaction
between the charges within the augmentation region and those outside.
In fact, this compensation charge density is added to pseudo charge
density and its one-center expansion such that the difference between the
all-electron and pseudo one-center contributions to the charge density
has vanishing electrostatic multipole moments. Thus, the total charge
density is expressed as:

n+ nZ = (ñ+ n̂) + (n1 + nZ)− (ñ1 + n̂) (2.50)

The compensation charge density is given as a summation of atomic
contributions n̂ =

∑

a n̂
a where:

n̂a(r) =
∑

L

Qa
Lg

a
L(r). (2.51)

The function gaL is localized within the augmentation region and ex-
pressed as generalized Gaussians:

gaL(r) = Cl|r−Ra|lYL(r−Ra)e
−(

|r−R
a|

rac
)2
, (2.52)
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where the normalization constant Cl is determined such that its multi-
pole moment is unity:

∫

d3r|r−Ra|lYL(r−Ra)gaL(r−Ra) = 1, (2.53)

and YL is a spherical harmonic function with L = (l,m) being the angu-
lar momenta in spherical harmonics expansion while Ra stands for the
nuclear positions. The multipole moments are given by:

Qa
L =

∫

d3r|r−Ra|lY ∗
L (r−Ra)[na,1(r) + na,Z(r)− ña,1(r)]. (2.54)

To obtain the expression of the Hartree energy, one should evaluate the
following term as:

[n(r) + nZ(r)][n(r′) + nZ(r′)] = [ñ(r) + n̂(r)][ñ(r′) + n̂(r′)]

+ [n(1)(r) + nZ(r)][n(1)(r′) + nZ(r′)]

− [ñ(1)(r) + n̂(r)][ñ(1)(r′) + n̂(r′)]

+ [n(1)(r) + nZ(r)− ñ(1)(r)− n̂(r)][ñ(r)− ñ(1)(r)]

+ [n(1)(r′) + nZ(r′)− ñ(1)(r′)− n̂(r′)][ñ(r′)− ñ(1)(r′)].

(2.55)
Indeed, ñ = ñ(1) within the augmentation region while n(1) = ñ(1) and
nZ = n̂ outside the augmentation region. Consequently, equation sim-
plifies into:

[n(r) + nZ(r)][n(r′) + nZ(r′)] = [ñ(r) + n̂(r)][ñ(r′) + n̂(r′)]

+ [n(1)(r) + nZ(r)][n(1)(r′) + nZ(r′)]

− [ñ(1)(r) + n̂(r)][ñ(1)(r′) + n̂(r′)].

(2.56)
Thus, the three components of the Hartree energy term are:

ẼH =
1

2

∫

d3rd3r′
[ñ(r) + n̂(r)][ñ(r′) + n̂(r′)]

|r− r′|
(2.57)

E
(1)
H =

1

2

∫

d3rd3r′
[n(1)(r) + nZ(r)][n(1)(r′) + nZ(r′)]

|r− r′|
(2.58)

Ẽ
(1)
H =

1

2

∫

d3rd3r′
[ñ(1)(r) + n̂(r)][ñ(1)(r′) + n̂(r′)]

|r− r′|
(2.59)
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Summing up all the energy contributions , the Kohn-Sham total energy can
be separated into a part calculated on smooth functions and some atomic
corrections involving quantities localized around the nuclei. Indeed, both the
forces and the Hamiltonian can be derived from the total energy functional
which is discussed in the following subsections.

2.3.5 The transformed Kohn-Sham equation

In the PAW formalism, the pseudo wave function is the variational quan-
tity from which other quantities are determined. To obtain the pseudo wave
function one needs to solve the eigenvalue equation:

H̃ψ̃n(r) = ǫnÕψ̃n(r). (2.60)

2.3.5.1 Overlap operator

In the all-electron representation, the overlap matrix is given by the matrix
elements of the unity operator:

Oij = 〈i|j〉. (2.61)

Besides, the all-electron wave function is characterized by the following or-
thogonality relation:

〈ψn|ψm〉 = δn,m. (2.62)

However, in the pseudo representation and using Eq.(2.36), the unity operator
transforms to a nonlocal operator of the form:

Õ = 1 +
∑

i,j

|p̃ai 〉[〈φ
a
i |φ

a
j 〉 − 〈φ̃

a
i |φ̃

a
j 〉]〈p̃

a
j |. (2.63)

Indeed, the pseudo overlap operator differs from unity but it reduces to unity
if the norm-conserving condition is imposed (〈φai |φ

a
j 〉 = 〈φ̃

a
i |φ̃

a
j 〉).

2.3.5.2 Hamiltonian Operator

The Hamiltonian operator is determined as the first derivative of the total
energy functional with respect to the density operator. Meanwhile, the pseudo
Hamiltonian operator is constructed from the pseudo density operator ρ̃ as:

H̃ =
∂E

∂ρ̃
, (2.64)
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with,

ρ̃ =
∑

n

fn|ψ̃n〉〈ψ̃n|, (2.65)

where the pseudo wave functions obey the orthogonality condition. To obtain
the pseudo Hamiltonian, the transformation is straight forward for the local
parts of the Hamiltonian. To determine the nonlocal part, we make use of:

∂E

∂〈ψ̃n|
= fnH̃|ψ̃n〉, (2.66)

to write down the expression of the pseudo Hamiltonian:

H̃ = −
1

2
∇2 + Ṽeff (r) +

∑

a,i,j

|p̃ai 〉D
a
ij〈p̃

a
j |, (2.67)

where the last term resembles the nonlocal part of the pseudo Hamiltonian
while

Ṽeff (r) = VH [ñ+ ña,Z ] + Vxc[ñ]. (2.68)

is the local part of the potential.

2.3.6 Forces

In the ground state, the forces on each nucleus Fa can be calculated as the
derivative of the total energy with respect to the atomic position Ra:

Fa = −
dE

dRa

= −

(

∂E

∂Ra

)

ψ̃

−

[

∑

n

(

∂E

∂|ψ̃n〉

)

Rb

(

∂|ψ̃n〉

∂Ra

)

Rb

+ h.c.

]

,
(2.69)

where h.c denotes the hermitian conjugate. While the second term is purely
of quantum origin, the first term represents the variation of the total energy
for an infinitesimal displacement of the atomic position Ra and is written as:

(

∂E

∂Ra

)

ψ̃

=
∑

n

fn〈ψ̃n|∇
aH̃|ψ̃n〉. (2.70)

In fact, the forces resulting from an infinitesimal change in the wave functions
due to the displacement of atomic positions are called Pulay forces that re-
semble the forces on the electrons that are dragged along with the nucleus
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due to the position-dependent basis-set. Within the frozen core approxima-
tion employed in the PAW method, one should consider both the Pulay forces
from the frozen-core electrons that shift rigidly with the nucleus as well as the
contribution from the augmentation region. Besides, an infinitesimal change
in the atomic positions is necessarily accompanied by a change in the wave
functions which restores the orthogonality. However, the new occupied wave
functions are required to span the same portion of the Hilbert space that was
occupied before the atomic displacement such that the new wave function can
be expressed as a linear combination of the pseudo wave functions with the
undisplaced atomic positions:

|ψ̃n(R
a + dRa)〉 = |ψ̃n(R

a)〉+
∑

m

|ψ̃m(R
a)〉ΛnmdR

a. (2.71)

Λnm is matrix composed of a hermitian hnm and an antihermitian part anm

such that:
Λnm = hnm +Anmn

hnm =
1

2
(Λnm +Λ†

nm)

Anm =
1

2
(Λnm −Λ†

nm)

(2.72)

Indeed, the orthogonality condition to linear order in the displacement dRa

applies to the new wave functions:

〈ψ̃n(R
a + dRa)|Õ(Ra + dRa)|ψ̃m(R

a + dRa)〉 = δnm, (2.73)

where

Õ(Ra + dRa) = Õ(Ra) +

(

∂Õ(Ra)

∂Ra

)

dRa. (2.74)

Consequently, the hermitian part of the matrix ∆nm is written as:

hnm = −
1

2
〈ψ̃n(R

a)|

(

∂Õ(Ra)

∂Ra

)

|ψ̃m(R
a)〉. (2.75)

Hence, the derivative of the wave function with respect to the atomic positions
can be expressed as:

∂|ψ̃n〉

∂Ra
= −

1

2

∑

m

|ψ̃m(R
a)〉〈ψ̃m(R

a)|

(

∂Õ(Ra)

∂Ra

)

|ψ̃n(R
a)〉+

∑

m

|ψ̃m(R
a)〉Anm.

(2.76)
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Besides,
(

∂E

∂|ψ̃n〉

)

Ra

= fn〈ψ̃n|H̃. (2.77)

Therefore, the expression of the total force including the force on the nucleus
and the Pulay force becomes:

Fa = −
∑

n

fn〈ψ̃n|∇
aH̃|ψ̃n〉+

∑

n,m

fn − fm
2

Anm〈ψ̃n|H̃|ψ̃m〉

+
∑

n,m

fn + fm
2

〈ψ̃m|
∂Õ(Ra)

∂Ra
|ψ̃n〉〈ψ̃n|H̃|ψ̃m〉.

(2.78)

2.4 Conclusion

In this chapter, we have provided a short review of the density functional the-
ory and we elaborate on the projector augmented wave (PAW) method which
is used in the framework of this thesis to calculate the electronic structure. In
fact, the PAW method bridges the gap between the augmented wave meth-
ods and the pseudopotential methods and underscores the relation between
these two approaches. It is capable of handling even the most difficult case,
such as strong magnetic moments and large electronegativity differences, with
remarkable precision [Kresse 1999] which proves its reliability and efficiency
in electronic structure calculations. In this work, we have used the PAW
formalism as implemented in Vienna ab initio simulation package (VASP).
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3.1 Introduction

Despite its wide applicability in determining the electronic structure of most
materials, the non-relativistic density functional theory remains insufficient
to explain many phenomena related to magnetism and optical properties.
One prominent example is the position of the optical absorption edge of gold
[Christensen 1971]. In fact, relativistic effects, in particular spin-orbit cou-
pling (SOC), influence the electronic structure of magnetic solids giving rise to
a variety of effects such as the magneto-optical Kerr effect, Faraday effect, and
magnetic dichroism [Schutz 1987]. Those phenomena are the consequences of
the lowered symmetry and the lifted energetic degeneracies caused by coupling
the spin and orbital degrees of freedom. Besides, including spin-orbit interac-
tions adds an orbital contribution to the magnetic moment [Ebert 1988] where
the scalar product of the spin and orbital moment involves the presence of an
angle between the crystallographic and the magnetization axis. This gives rise
to the phenomena of magneto-crystalline anisotropy, which is the dependence
of the energy on the magnetization orientation.
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To incorporate relativistic effects into electronic structure calculations, quan-
tum electrodynamics supplies a proper framework for a relativistically con-
sistent density functional theory based on Dirac equation. Nevertheless, for
many cases it is well justified to deal with relativistic effects by introducing
corrections to the Schrödinger equation using the second variational technique.
In this chapter we give a brief review of the relativistic density functional
theory and the scalar relativistic approximation for the spin orbit coupling.
Then, we define the magnetocrystalline anisotropy and the ways of treating
it; special attention is paid to the force theorem.

3.2 Relativistic density functional theory

In fully relativistic calculations, the Dirac equation is employed where the spin
angular momentum and its coupling to the orbital angular momentum arises
naturally. By constructing a set of 4×4 matrices, Dirac was able to construct
a relativistic energy operator and to outline its properties. In relativistic DFT,
one solves the following Kohn-Sham-Dirac equation [Rajagopal 1973]:

[

cα.

(

~

i
∇+

e

c
Aeff )

)

+ βmc2 + Veff (r)

]

ψi(r) = εiψi(r) (3.1)

where ψi(r) is the four-component Dirac wave function with the corresponding
single-particle energies εi. The α matrix is a defined to be α = αxx̂+αyŷ+αz ẑ

where:

αx =

(

0 σx

σx 0

)

αy =

(

0 σy

σy 0

)

αz =

(

0 σz

σz 0

)

(3.2)

where the two-component Pauli matrices are defined as:

σx =

(

0 1

1 0

)

σy =

(

0 −i

i 0

)

σz =

(

1 0

0 −1

)

(3.3)

The β Dirac matrix is scalar defined as:

β =

(

I2 0

0 −I2

)

where I2 =

(

1 0

0 1

)

(3.4)

In fact, the effective scalar Veff and vector potential Aeff are expressed as:

Veff = −e

[

A0
ext(r) +

1

c

∫

d3r′
J0(r′)

|r − r′|
+ c

∂Exc[J
µ]

∂J0(r)

]

(3.5)
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Aeff = −e

[

Aext(r) +
1

c

∫

d3r′
J(r′)

|r − r′|
+ c

∂Exc[J
µ]

∂J(r)

]

. (3.6)

Obviously, the central quantity that determines the properties of the system
is the four-component current Jµ which is defined by:

J0 = −ec
∑

i

ψ†
iψi (3.7)

Jµ = −ec
∑

i

ψ†
iβα

µψi (3.8)

where J0/c is identical to the usual electronic charge density ρ while the other
components Jµ give the spatial components of the electronic current density.

To simplify this general scheme, an approximate relativistic approach is usu-
ally employed by performing the Gordon decomposition of the spatial current
density into its orbital and spin parts [Eschrig 1985, Ebert 2000]:

J =
1

2m
ψ†β[−i

←−
∇ + i∇+ 2eA]ψ +

1

2m
∇ψ†βσψ (3.9)

The first term in Eq.(3.9) represents the orbital current density while the
second is the spin current density. The spin current density is the current of
a corresponding spin magnetization density m defined as:

m = −µB
∑

i

ψ†
iβσψi (3.10)

In fact, one can see that the spin dependent DFT arises naturally from the
general four-current Kohn-Sham-Dirac equation, as by ignoring the orbital
current density contribution one arrives at an equation that is analogous to
the non-relativistic spin dependent DFT Schrödinger equation.

3.3 Scalar relativistic approximation and SOC

Accounting for SOC in a full-relativistic calculation is quite computer de-
manding. However, this difficulty can be avoided by exploiting the fact that
SOC is generally a small effect, especially in light elements, which provides
the possibility of treating it by perturbation theory. In fact, the second varia-
tional method for relativistic calculations is derived from the scalar relativistic
approximation as proposed by Koelling and Harmon [Koelling 1977]. Thus,



30 Chapter 3. Relativistic effects

as a first step, the scalar relativistic bands where SOC is neglected should be
calculated.
In the scalar relativistic approximation, the Kohn-Sham-Dirac Eq.(3.1) is
solved considering the potential to be spherical V(r). The solution is a four-
component spinor of the form:

ψ =

(

gκ(r)χκµ

ifκ(r)χ−κµ

)

(3.11)

where fκ(r) and gκ(r) satisfy the following coupled radial equations:

c
(

dfκ
dr

+ 1−κ
r
fκ
)

= −(ε− V −mc2)gκ

c
(

dgκ
dr

+ 1+κ
r
gκ
)

= (ε− V +mc2)fκ
(3.12)

χκµ are spherical spinors that are analogous to the spherical harmonics where
κ represents the relativistic quantum number giving both l and j and its the
eigenvalue of K defined by:

K =

(

σ · L+ 1 0

0 −(σ · L+ 1)

)

(3.13)

Using the coupled equations in Eq.(3.12), we arrive at:

−
~
2

2Mr2
d

dr

(

r2
dgκ
dr

)

+ [V+
h2κ(κ+ 1)

2Mr2
gκ −

h2

4M2c2
dV

dr

dgκ
dr

−
h2

4M2c2
dV

dr

1 + κ

r
gκ = (ε−mc2)gκ

(3.14)

where M = m + ε−mc2−V
2c2

. Since κ(κ + 1) = l(l + 1), the first two terms in
Eq.(3.14) will resemble the non-relativistic contribution, while the third term
is the Darwin term. Indeed, the last term is the only one that depends on the
sign of κ and it represents the spin-orbit interaction. The scalar-relativistic
approximation removes this term so that to obtain an orbital equation which
is decoupled from the spin and thus keeping the spin as a good quantum
number.
After solving the scalar relativistic equation with the SOC term dropped, a
second variational secular equation is set up using the lowest scalar relativistic
orbitals as basis functions. Further, in the second variation bases, the over-
lap S is diagonal and the Hamiltonian is just the SOC term plus the scalar
relativistic eigenvalues on the diagonal:

Hij = εiδij +HSO
ij (3.15)
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where i and j indices run over spins and the bands that are included in the
second variation while Sij = δij for the low lying bands. Moreover, the spin-
orbit contribution to the Hamiltonian is expressed as:

HSO =
~
2

2M2c2
1

r

dV

dr
L · σ (3.16)

This term is straightforward to calculate in the second variational basis since
it originates deep in the core near the nucleus (where 1

r
dV
dr

is large). As a
consequence, it is negligible outside the augmentation region, while inside
it can be, to a very good approximation, calculated as if the atoms where
spherical.

3.4 Magneto-crystalline anisotropy

Magneto-crystalline anisotropy is one of the most important intrinsic proper-
ties of magnetic materials from both a technological and fundamental point of
view. In fact, magnetic materials exhibit intrinsic easy and hard directions of
the magnetization with respect to the crystalline axis and the external shape
of the body. The preferred orientation of the magnetization is determined by
the magneto-crystalline anisotropy energy (MAE) which is the change in the
free energy upon rotation of magnetization. MAE is typically of the order of
10−6 to 10−3 eV/atom thus it is a very small correction to the total magnetic
energy [Bruno 1993]. It actually arises form the relativistic corrections to the
Hamiltonian which breaks the rotational invariance with respect to the spin
quantization axis. The magneto-crystalline anisotropy originates from spin-
orbit coupling while the shape anisotropy energy originates from dipole-dipole
interaction present in the Breit term [Jansen 1988].
Following the proposal of van Vleck [Vleck 1937] that spin orbit coupling in-
duces magneto-crystalline anisotropy, many calculations, pioneered by Brooks
[Brooks 1940] and Fletcher [Fletcher 1954], have been done using simplified
tight-binding and perturbation methods to calculate the MAE for Fe and Ni.
Later, calculations were based on more realistic electronic structures using
the precise first principle methods [Daalderop 1990]. Indeed, since MAE is
usually a very tiny quantity which is often calculated by subtracting two en-
ergy values, it is thus quite sensitive to fine electronic structures and requires
careful convergence tests of the k-mesh and basis sets. Besides, the exchange-
correlation functionals influence the MAE values [Trygg 1995, Yang 2001].
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While the SOC can be dealt with by either the four-component full-relativistic
scheme or second variational procedure, calculating the MAE can be done by
three different methods: total energy, force theorem, or the torque method
[Wang 1996b]. In the framework of this thesis, we have used the first two
methods to calculate the MAE. As the calculation of the full-relativistic total
energies is quite computationally demanding, the use of the force theorem be-
comes reasonable considering the fact of the usually weak SOC in 3d transition
metals. An overview of the force theorem is given in the following paragraph.

3.4.1 The Force theorem

The force theorem, as proposed in [Weinert 1985, Wang 1996a], relates small
changes in the total energy to changes in the eigenvalues upon the variation of
the magnetization orientation. This assumption is based on scalar relativistic
treatment of SOC beside a frozen-potential approximation. In this later, the
same potential is used in different calculations for different magnetization
orientation to obtain the respective eigenvalue sums.

For an unperturbed system the total energy is expressed as:

E = T0[n(r)] +

∫

drVext(r)n(r) +

∫

d3rd3r′
n(r) · n(r′)

|r− r′|
+ Exc[n(r)] (3.17)

In scalar relativistic treatment, SOC is considered a perturbation that is intro-
duced as a change in the total energy to the first order in the charge density:

δE =δT0[n(r)] +

∫

d3rVext(r)δn(r) +

∫

d3rd3r′
n(r) · δn(r′)

|r− r′|

+

∫

d3rεxc[n(r)]δn(r) +O(δn2)

(3.18)

Meanwhile, the total Kohn-Sham potential Veff can be written as:

Veff = Vext + VH + Vxc (3.19)

where Vxc(r) = n(r) δεxc[n(r)]
δn(r)

+ εxc[n(r)]. Indeed, according to the Kohn-Sham
equations the kinetic energy term can be expressed in terms of the one-particle
energies εi as follows:

T0[n(r)] =
∑

i

εi −

∫

d3rVeff (r)n(r) (3.20)



3.5. Conclusion 33

Thus, one obtains:

δT0[n(r)] = δ
∑

i

εi −

∫

d3rδVeff (r)n(r)−

∫

d3rVeff (r)δn(r) (3.21)

As mentioned before, the force theorem exploits the frozen potential approx-
imation so that the expression of the perturbed energy simplifies to:

δE = δ
∑

i

εi (3.22)

Consequently, the force theorem allows to obtain the total energy difference,
in other words the MAE, as the difference between the sum of one-particle
energies. The usual procedure for calculating MAE within the force theo-
rem is to perform a self-consistent spin-polarized calculation for the scalar
relativistic Hamiltonian followed by non self-consistent calculations including
SOC for different magnetization orientations and finally taking the difference
between the sums of the one-particle eigenvalues. Results reported on several
materials have shown that the force theorem is reliable for evaluating MAE
[Daalderop 1990, Daalderop 1991].

3.5 Conclusion

Small corrections to the Hamiltonian give rise to the important property of
magnetic anisotropy. MAE is very subtle and depends on the band structure
of the material in a complicated manner which makes its calculation difficult.
Besides, its tiny values require high accuracy in the total energy calculations.
In this respect, the force theorem provides a feasible method to evaluate MAE.
Indeed, a better understanding of magnetic anisotropy beyond bare numbers
requires investigating related quantities such as the orbital moment which is
in turn due to SOC. In this sense, Bruno has demonstrated, using the second
perturbation, that MAE is proportional to the orbital moment anisotropy
[Bruno 1989]. His model works well for strong ferromagnets like Co where
the spin up channel is completely occupied while later Wang [D.Wang 1993]
and van der Laan [van der Laan 1998] derived a more exact model considering
spin-flip processes. In this thesis, we explore the magnetic anisotropy of the
bulk magnetoelectric GFO and MnPc/Co interface.
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4.1 Introduction

Magnetoelectric materials, coupling both magnetic and electric properties,
have received growing interests motivated by the possibility of integrating
them in potential technological devices. Indeed, a few materials have been re-
ported to exhibit a sizable magnetoelectric effect, among which Ga2−xFexO3
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(GFO) appears to be of considerable significance due to its features demon-
strated experimentally; being ferrimagnetic at room temperature and exhibit-
ing a large linear magnetoelectric effect. In the context of a better understand-
ing of these properties, we have performed an ab-initio study, within different
levels of approximation and including spin-orbit coupling, to investigate the
electric, magnetic, anisotropy, and optical properties of bulk GFO with differ-
ent iron concentrations. In the first part, we proceed by giving an overview
that introduces GFO and its well-known properties and in the second part
we show and discuss the results on the impact of the Fe concentration on the
different properties of GFO. The third part addresses the optical properties
where the basic theory is described followed by the optical properties of GFO.
In particular, we show that the optical properties provide a good tool to de-
termine the cationic site occupation in GFO which is proven to accommodate
a high percentage of site disorder.



4.2. GFO the magnetoelectric ferrimagnet: An overview 37

4.2 GFO the magnetoelectric ferrimagnet: An

overview

The first Gallium ferrite crystals, Ga2−xFexO3 with 0.7 ≤ x ≤ 1.4, were
synthesized by Remeika [Remeika 1960] who introduced it as a ferromag-
netic piezoelectric material. Later, the structural characterization was pre-
liminary determined by Wood and then confirmed by Abrahams et al.

[Abrahams 1965]. GFO crystallizes in the orthorhombic space group Pc21n

with the following lattice parameters for GaFeO3: a = 0.87512 ± 0.00008

nm, b = 0.93993 ± 0.00003 nm and c = 0.50806 ± 0.00002 nm. The Fe
and Ga cations occupy four different cationic sites: three irregular octahedral
sites (Fe1, Fe2, Ga2), and a regular tetrahedral site oriented along b-axis:
Ga1, while the O anions are positioned in six different sites forming a double
hexagonal compact arrangement (c.f. Figure 4.1).

Figure 4.1: GaFeO3 unit cell. Fe,Ga, and O atoms are represented by green, gray, and
red balls respectively. The different atomic sites are also marked.

As for the magnetic order, Frankel et al. [Frankel 1965] were first to show the
ferrimagnetic order in GFO using Mössbauer spectroscopy which was later
confirmed by Bertaut et al. [Bertaut 2008] using neutron diffraction in ad-
dition. Ga1 and Fe1 sites are found to be antiferromagnetically coupled to
Ga2 and Fe2 sites which in principle should result in an overall antiferromag-
netism for x = 1. Nevertheless, a net magnetic moment is observed which
proposes a possible existence of site disorder. An issue that was described in
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Arima’s et al. work [Arima 2004] which demonstrated a strong dependence
of the magnetic properties of GFO on the Fe/Ga ratio that is in turn highly
influenced by the preparation method. Indeed, the ferrimagnetism was inter-
preted as follows: the magnetic Fe cations occupying site Fe1 adopt magnetic
moment which has antiparallel orientation to that of Fe cations positioned on
sites Ga2 and Fe2 due to the super-exchange mechanism that favors an anti-
ferromagnetic coupling. Besides, since the sum of Fe amount at the Fe2 and
Ga2 sites is larger than the Fe amount on Fe1, antiferromagnetic alignment
of the Fe moments causes the ferrimagnetic magnetization along the c-axis.
Indeed, another interesting aspect of GFO, which has been demonstrated ex-
perimentally, is that its magnetic transition temperature could be tuned with
the Fe/Ga ratio and increased with the Fe content to a value which is supe-
rior to room temperature for x ≥ 1.1. Besides, a large linear magnetoelectric
effect was measured for GFO single crystals which is larger by one order of
magnitude than the value reported on Cr2O3.

Figure 4.2: Fe partial occupancies at the Ga1, Ga2, Fe1, and Fe2 sites as deduced by a
Rietveld analysis of neutron powder diffraction of FZ-melt GFO samples at room temper-
ature. The parameters for the flux-grown samples x=1.15 crystal are listed for comparison
[Arima 2004] .

Despite several experimental reports investigating the properties of GFO,
there are only few theoretical ones. Early theoretical first principle calcu-
lations reported on an ideal system revealed a stable antiferromagnetic state
with a zero net spin and orbital moment [Han 2007]. More recently and based
on previous x-ray and neutron diffraction experiments [Arima 2004] reveal-
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ing cation site disorder in GFO, Roy et al. [Roy 2011] demonstrated that
interchanged Fe and Ga cation sites is at the origin of altering the magnetic
moments on the Fe sites thereby leading to the overall ferrimagnetism. Al-
though this site disorder is not spontaneous at the ground state, it might be
driven by thermal energy. This finding is consistent with experimental demon-
strations that the magnetic properties of GFO are highly influenced by the
preparation method [Arima 2004]. Although, to some extent, demonstrated
experimentally [Arima 2004, Trassin 2009, Mukherjee 2011], we are not aware
of any theoretical study of GFO with variable iron composition. For instance,
the dependence of the lattice parameters and the Ga/Fe partial occupancies
on the Fe composition were deduced by Rietveld analysis of synchrotron x-ray
diffraction at room temperature as demonstrated in [Arima 2004] and shown
in Table 4.2. In fact, studying GFO with variable iron composition interest-
ingly addresses the evolution of the properties of GFO via tuning the Ga/Fe
ratio which seems to be promising precisely in terms of the magnetic proper-
ties. This is the subject of our results that are discussed in what follows.
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4.3 Impact of Fe concentration on the proper-

ties of GFO

4.3.1 Calculation details

Our density functional-based calculations were carried out using the VASP
package [vas ], [Kresse 1999] by employing the projector augmented wave
method [Blochl 1994] to solve the Kohn-Sham equations. The noncollinear
spin-orbit coupling is included in the calculations as implemented in VASP
[Hobbs 2000]. The GFO system was modeled by 8 formula-unit supercell. For
all the considered configurations; i.e. ideal and Fe-excess; we have performed
both atomic and volume relaxation. This was done by employing the Quasi-
Newton method (as implemented in VASP) and for a large plane wave cutoff
of 550 eV until the pressure on each atom reaches zero and Hellmann-Feynman
forces are less than 0.1 meV/Å . As for the k-space integrations, we have found
that 441 k points in the irreducible Brillouin zone are needed to converge the
ground state energy and the magnetocrystalline anisotropy energy to within
10 µeV. We have performed our calculations within both the local density ap-
proximation (LDA) as parametrized by Perdew and Zunger [Perdew 1981b]
and the generalized gradient approximation GGA as parametrized by Perdew,
Becke and Ernzerhof [Perdew 1996] to investigate the influence of different
types of exchange-correlation energies on the electronic and magnetic proper-
ties of GFO and examine how robust the results are. The LDA calculations
failed to describe the properties of GFO as compared to experimental results:
a narrow band gap (0.53 eV), reduced magnetic moment (3.5 µB), and wrong
magnetization easy axis (b-axis) are obtained. Such a failure of the LDA is
expected in correlated systems as transition metal oxides [Anisimov 1997].
Thereby, to account for the strong on-site Coulomb repulsion among the lo-
calized Fe 3d electrons, we have used the rotationally invariant LDA+U for-
malism as described in [Liechtenstein 1995] represented by the Hubbard-like
term U and the exchange term J which led to an improvement of the ground
state properties such as the band gap and the magnetic moments. The value
of J was set to 1 eV. Meanwhile, the Coulomb repulsion parameter U was
varied over a wide range starting from U = 2eV and reaching U = 8eV in
order to observe at what stage do the ground state properties compare well
to experimental ones at the level of the band gap and the magnetic moment.
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Figure 4.3 shows the variation of the band gap Eg and the magnetic moment
of the iron site in a GaFeO3 unit cell as a function of the U . It can be no-
ticed that both the LDA+U and GGA+U yield a band gap ( 3.2 eV) and a
magnetic moment (4.4 µB/Fe2) at U = 8eV ; which is not far away from the
experimental values.

Figure 4.3: Variation of the band gap and the magnetic moment on the Fe2 site as a
function of increasing the Coulomb repulsion parameter U obtained within both LDA+U

and GGA+U .

The on-site Coulomb interaction of transition metals is usually very large
in insulating oxides due to the poor screening. In fact, the constrained
LDA of the Coulomb interaction of Fe in LaFeO3 to be used in the stan-
dard LDA +U showed that U is about 7.8 and 9.2 eV for Fe2+ and Fe3+,
respectively[Solovyev 1995]. However, the J0 values for the trivalent M3+ are
found to be about 1 eV for all 3d transition metals M in LaMO3. Similar
results are found for the magnetite [Madsen 2005]. On the other hand, Bulut,
Scalapino, and White [Bulut 1993] showed that the renormalization of the
Coulomb interaction depends on the type of model employed. Since the local
density approximation is not a diagrammatic method, we do not know what
type of renormalization is the most appropriate for the LDA +U model. In
the so-called LDA +U2 based on the assumption that only 3d states of t2g
symmetry are localized and the eg are itinerant, and participate therefore to
the screening of the localized t2g electrons, significant lower values of Ut2g are
found. This second approach confirms the view of Bulut et al. [Bulut 1993].
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This approach will not work for GFO where a strong distortion of the Fe oc-
tahedra and tetrahedra strongly mix the eg and t2g states. It is therefore clear
that using the effective Coulomb interaction U as an adjustable parameter is a
valuable approach. We believe that the U used in the model calculation is just
an effective Coulomb interaction and cannot be directly compared to the one
obtained from experimental photoemission data. Finally, to assess the effect
of relaxation on GFO’s properties, calculations have been performed, within
both approximations LDA+U and GGA+U with both values of U, using the
experimental parameters and positions reported in [Arima 2004].

4.3.2 Properties of ideal GaFeO3

In this section, we present the electronic and magnetic properties of an ideal-
composition GaFeO3 unit cell. The structural optimization of the system
based on energy minimization revealed a stable antiferromagnetic coupling
between the Fe ions occupying Fe1 and Fe2 sites. It can be noticed from Fig-
ure 4.3 that for U = 8eV the LDA+U and GGA+U yield an energy band gap
of 3.32 eV and 3.23 eV respectively which is not far away from the experimen-
tal value (3.2 eV) estimated from optical measurements [Kalashnikova 2005].
Meanwhile, using the experimental parameters without relaxation resulted in
band gap values that are coincident to those of a relaxed unit cell and the same
applies for the magnetic moments hereafter. The spin magnetic moments ob-

Figure 4.4: LDA+U (U=4 eV) charge distribution plotted across the three crystallo-
graphic directions in GaFeO3 unit cell using a logarithmic scale.

tained for the ideal GaFeO3 result in a net vanishing magnetization of the unit
cell which describes a perfect antiferromagnetism where a local spin moment
on the Fe ions of about 4.01 µB/Fe2 is calculated within LDA+U and 4.1
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µB/Fe2 within GGA+U for U = 4eV . Interestingly, both the LDA+U and
GGA+U gave a corresponding value of 4.4 µB/Fe2 using U = 8eV which is
close to the experimental value of 4.5 µB/Fe2. The value of the local orbital
moment calculated is 0.026 µB/Fe2 within LDA+U and 0.022 µB/Fe2 within
GGA+U for U = 4eV , whereas using U = 8eV values of 0.018 µB/Fe2 and
0.016 µB/Fe2 are obtained respectively. These values are comparable to the
one obtained experimentally at 190 K from XMCD sum rules (0.017 µB/Fe)
[Kim 2006]. The net orbital moment of the unit cell vanishes as the spin
moment. Those results are consistent with the previous work in [Roy 2011].
However, experiments have reported the dependence of GFO’s magnetic prop-
erties on the Ga to Fe ratio [Arima 2004]; more precisely an enhancement of
the magnetic properties as the iron concentration increases. In this sense, we
have investigated the electronic and magnetic properties of Ga2−xFexO3 with
different Fe-compositions.

4.3.3 Structural properties

We have concentrated our study on three different compositions with: one,
two, and three excess Fe ions corresponding respectively to: x = 1.1, 1.2, and
1.4 compositions. Following the procedure described earlier, we relaxed each
composition with all its possible configurations in terms of the site occupa-
tion that the excess Fe ions might adopt and the kind of magnetic coupling
to the surrounding ions. The relaxed lattice parameters relative to the dif-
ferent values of x obtained within LDA+U and GGA+U using U = 4eV and
U = 8eV are plotted and compared to the experimental values in Figure 4.5.
As compared to the experimental values reported previously in [Arima 2004]
and more recently in [Mukherjee 2011], LDA+U underestimates the lattice
parameters whereas GGA+U overestimates it. It seems that the relaxation
is highly affected by the value of U. For instance, within LDA+U the higher
value of U yields more underestimated a and b parameters despite a better
value of c. This, as shown in 4.5, results in a more underestimated volume of
the unit cell. On the other hand, GGA+U behaves just the opposite resulting
in a less overestimated volume obtained using U = 8eV .

Indeed, an isotropic change of the a and b lattice parameters with the increase
in the Fe content is observed, within both approximations, which is similar to
the experimental behavior. This is attributed to the different ionic radius of
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Figure 4.5: Variation of the lattice parameters, calculated within LDA+U and GGA+U

for U = 4eV and U = 8eV , in the GFO unit cell as a function of the variable Fe content as
compared to the experimental values reported in [Mukherjee 2011].

Fe3+ and Ga3+ which drives the elongation of the bonds in the case where an
Fe ion occupies the Ga site. As for the lattice parameter in the c-direction,
the relatively smaller increase reported by experiment couldn’t be reproduced
by either approximations in our calculations. Figure 4.6 display the different
octahedral sites in a unit cell of GFO with the bond lengths as obtained from
the LDA+U and GGA+U calculations for both values of U. The off-center
shift of the Fe ion from the center of the oxygen octahedron along the b-axis
is highlighted in red color. Compared to the experimental values where a
displacement of +0.2 Å is observed for Fe1 site and −0.1 Å for Fe2 site
[Arima 2004], it can be seen that using a value of U = 4eV underestimates
the Fe1 displacement but overestimates that of Fe2. Nevertheless, calculations
with U = 8eV results in less distorted sites compared to U = 4eV . On the
other hand, the Ga2 octahedral site appears to be more regular than the Fe-
sites. We come back later to those aspects in the context of discussing the
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Figure 4.6: The different octahedral sites (Fe1, Fe2, Ga2) in GFO unit cell with the bond
lengths displayed in units of Å as obtained from (a) LDA+U and (b) GGA+U calculations
for U = 4eV (Left panel) and U = 8eV (Right panel). The red arrows represent the off-
center movement of the Fe1 and Fe2 ions from the center of the oxygen octahedra; whereas
the Ga2 octahedron is less distorted.

magnetic anisotropy of GFO.

Afterward, a self-consistent static calculation was performed to obtain the
ground state properties. By comparing the different ground state energies
we come out with two conclusions that are consistent with the experimental
observations [Arima 2004] and previous theoretical results [Roy 2011]. First,
the excess Fe ions are more likely to occupy the Ga2 sites than the Ga1 ones.
Meanwhile, the energy minimization favors an antiferromagnetic coupling be-
tween the excess Fe ions occupying Ga2 sites and the Fe ions at Fe1.
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Figure 4.7: The variation of the energy band gap Eg as a function of increasing the Fe
content in GFO unit cell as obtained from both LDA+U and GGA+U for U = 4eV and
U = 8eV . Experimental values, as reported in [Kalashnikova 2005, Kalashnikova 2009], are
also shown for comparison.

4.3.4 Electronic properties

Now we discuss the impact of the excess Fe on the electronic properties in
terms of the band gap and density of states. As the Fe content is increased,
the band gap decreases, as it can be seen from Figure 4.7. Such behavior seems
to be independent of the approximation and the U value. This decrease of the
energy band gap as x increases is consistent with the experimental results re-
vealing a decrease reaching a value of 2.84 eV for x = 1.75 [Kalashnikova 2009].
This behavior is emphasized by comparing the density of states; at this stage
we choose to proceed the interpretation within the LDA+U and remark that
GGA+U calculations yielded the same behavior. The total density of states
corresponding to different iron content x are plotted as well as the d-states
contribution of the Fe projected density of states (Figure 4.8 (b)) for both
values of U. Before going into details we shall point out that, as expected
from the LDA+U formalism [Anisimov 1997], the increased U value pushes
the occupied d-states of Fe lower in energy unlike the unoccupied ones which
are shifted upward. Rather than this fact, the following discussion applies for
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Figure 4.8: Left panel: (a) LDA+U total density of states for variable Fe content in
Ga2−xFexO3, (b) PDOS of the Fe excess Fe ion at Ga2 site and Fe ion at Fe2 site. Right
panel: LDA+U partial charge distribution over the energy range marked in (a) by arrows,
drawn with a logarithmic scale along the three crystallographic directions of the GFO unit
cell and for varied Fe content. The Fe ion placing the Ga2 site is marked by stars. (The
results are shown for both values of U ).

both values of U.

By comparing the Fe PDOS of the excess Fe ion occupying Ga2 to that oc-
cupying Fe2 site, it can be observed that the unoccupied states of the former
are closer to the Fermi level. Consequently, the effect of the excess Fe is to
enhance the d-symmetry character of the bottom of the unoccupied states and
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hence reducing the energy band gap. A better understanding of this change
in the density distribution upon increasing the Fe-composition is provided by
plotting the partial charge distribution shown in right panel of Figure 4.8 over
the energy interval corresponding to the change in the band gap (marked by
arrows in Figure 4.8 (a)). It can be observed that all the Fe ionic sites con-
tribute to the states appearing at the bottom of the unoccupied band, while
the largest contribution seems to be that of the excess Fe ion. Meanwhile,
all the Fe ionic sites show an increase in the states as the Fe-composition
increases. The charge distribution plots along the different crystallographic

x = 1 x = 1.1 x = 1.2 x = 1.4

Ga1 +1.788 +1.8 +1.796 +1.798

Ga2 +1.832 +1.85 +1.847 +1.851

Fe1 +1.633 +1.646 +1.641 +1.638

Fe2 +1.631 +1.645 +1.644 +1.646

Fe at Ga2 - - +1.659 +1.653 +1.657

O1 −1.21 −1.2 −1.179 −1.161

O2 −1.183 −1.183 −1.175 −1.168

O3 −1.091 −1.085 −1.069 −1.057

O4 −1.198 −1.206 −1.192 −1.186

O5 −1.028 −1.04 −1.038 −1.037

O6 −1.172 −1.179 −1.178 −1.179

Table 4.1: LDA+U (U = 4eV ) calculated Bader charges per ion in GFO unit cell with
variable Fe composition.

directions in the GFO unit cell (Figure 4.4 and Figure 4.8) show a non-trivial
degree of charge sharing between the ions; regardless of the value of U used.
This precise observation is obtained using the logarithmic scale, unlike the
previously reported results that showed insignificant degree of covalency by
using a linear scale for the charge distribution plots [Roy 2011]. The validity
of these preliminary observations has been tested by performing Bader charge
analysis [Tang 2009] on the different Fe-composition GFO unit cells. We have
converged our results with respect to a fine fft-grid 400× 432× 240 within a
relative error of ±0.005e−. The LDA+U (U = 4eV ) obtained Bader charges
on each ion are compiled in Table 4.1. It can be observed that these values are
smaller than the former charges on each ion indicating a partial ionic bond-
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ing. Indeed, analyzing the Bader charges variation as a function of the Fe
composition, one can point out that the Fe ion occupying the Ga2 site has a
smaller Bader charge than the Ga ion occupying this site, i.e., the degree of
covalency increases in the case of Fe-excess GFO unit cell which is consistent
with the result of the band gap decrease. This decrease in the Bader charge is
an implication of the increase in the Fe(@Ga2)-O bond lengths as compared
to the Ga2-O by an average of 0.02 Å .
At this stage, we should mention that the calculations using U = 8eV within
either approximations yielded an increase of the Bader charge on the Fe ions
by 0.1. This is interpreted by the smaller bond lengths obtained with the
larger value of U (c.f. Figure 4.6). Such increase in the degree of ionicity
is correlated to the wider band gap calculated for U = 8eV . Besides, the
previous discussion on the evolution of the Bader charges as a function of the
Fe-content for U = 4eV also applies for larger value of U.

4.3.5 Magnetic properties

The issue of interest is the magnetic properties of such Fe-excess GFO sys-
tems. The spin and orbital moments of each Fe ion were obtained from the
relativistic self-consistent calculations. Comparing the results for different Fe-
content (Table 4.2), we observe almost the same behavior. The excess Fe ions
occupying the Ga2 sites hold each a spin moment of about 4.08 µB (4.15 µB),
obtained within LDA+U (GGA+U) for U = 4eV .

µS[µB] x = 1 x = 1.1 x = 1.2 x = 1.4

Fe at Ga2 - - 4.08 4.08 4.08

LDA+U Fe at Fe1 −4.02 −3.98 −3.97 −3.94

Fe at Fe2 4.01 4.01 4.02 4.02

Fe at Ga2 - - (4.7) 4.15 4.15 4.15

GGA+U Fe at Fe1 −4.11 (−3.9) −4.10 −4.08 −4.07

Fe at Fe2 4.10 (4.5) 4.11 4.11 4.11

Table 4.2: Evolution of the spin moments on the different Fe ionic sites with the Fe content
obtained within LDA+U and GGA+U for U = 4eV . The values in parentheses correspond
to the spin moments estimated experimentally from Rietveld analysis [Arima 2004].

Comparing these calculated values to the ones estimated by Rietveld analysis
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performed on the experimental data of [Arima 2004], the consistency appears
in the way that the Fe ion occupying the Ga2 site holds a spin moment larger
than Fe2 by 1.8 % and 4.4 %, obtained from our calculation and experiment,
respectively. On the other hand, a decrease of the spin moment with the
increase of the number of excess iron ions is observed for the ones occupying
the Fe1 sites being antiferromagnetically coupled to the irons occupying Fe2
and Ga2 sites. In an overall picture, Fe ions occupying Fe2 and Ga2 sites,
on the one hand, are greater in number and hold spin moments higher than
those occupying Fe1 sites. This difference among the atomic sites gives rise to
a net non vanishing magnetization which is larger than that of the ideal unit
cell. As for U = 8eV , the calculations show the same behavior as a function
of increasing x despite that the spin moments are found to be larger (e.g. for
x = 1: µS(Fe1)= −4.44µB, µS(Fe2)= 4.44µB while µS(Fe at Ga2)= 4.46µB).
It is worthy to mention that using U = 8eV , both LDA+U and GGA+U gave
almost identical values of spin moment per Fe site.
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Figure 4.9: Evolution of the orbital moment per Fe site as a function of iron content
x; calculated within both LDA+U and GGA+U shown for U = 4eV and U = 8eV . The
scattered symbols refer to the orbital moment per excess Fe ion occupying the Ga2 site.

A similar interpretation is ascribed to the orbital moment as our calculations
show that the excess Fe ions occupying Ga2 site hold a larger orbital moment
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compared to the parent Fe sites and its preferentially antiferromagnetically
coupled to Fe1 sites (Figure 4.9). Indeed, it turns out that increasing the on
site Coulomb U energy, which further localizes the Fe-3d orbital, results in
smaller values of the orbital moment. For instance, the orbital moment per
Fe site decreases by about 23% within GGA+U (U = 8eV ) as compared to
(U = 4eV ) and by 25%− 35% (depending on the Fe site) within LDA+U .

4.3.6 Magnetic anisotropy energy

We discuss now the magnetic anisotropy of GFO. To investigate the strong
magnetic anisotropy observed experimentally, we carried out total energy cal-
culations including the spin-orbit coupling in a self-consistent manner for
a unit cell initialized with different orientations of the magnetic moments.
Knowing that the magnetic anisotropy is the dependence of the system’s total
energy on the orientation of the magnetic moment, the magnetocrystalline
anisotropy energy (MAE) is the difference in the total energies obtained for
two different orientations of the magnetic moment. As the MAE is a quantity
highly-sensitive to the k-point mesh, a fine sampling mesh is required to ac-
count for the numerical fluctuations. In this sense, we have performed several
calculations for different numbers of k -points until a convenient convergence
of the MAE value was reached (within a relative error of ±0.02). Figure 4.10
shows the convergence of the magnetocrystalline anisotropy energy for ideal
GFO unit cell, calculated between the b and c-axis within LDA+U (U = 4eV ),
to a value around 2 meV.

In comparison, the GGA+U calculations yielded smaller magnetic anisotropy
energy values. This difference found between the two approximations can
be understood in the context of the orbital moment values; as the GGA+U

favors smaller orbital moments compared to LDA+U . The left panel of Figure
4.11 shows the evolution of the MAE of a GFO unit cell with the Fe content
obtained for U = 4eV and U = 8eV . A decrease in the magnetic anisotropy
energy, as x increases, is obvious in the results of both approximations and
U values while all the different Fe-content systems conserve the positive sign
of the MAE. Indeed, the relatively large value, in the order of meV, of the
magnetic anisotropy energy indicates a strong anisotropy which favors the
c-axis as the magnetization easy axis in a reasonable agreement with the
experimental finding as reported for bulk [Arima 2004] and thin GFO films
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Figure 4.10: Magnetocrystalline anisotropy energy of GFO (x = 1) unit cell plotted as a
function of the number of k -points in the Brillouin zone.

[Trassin 2009].

The direction of the magnetization easy axis is well explained by considering
the direction of the octahedral distortions. From the bond lengths, one can
distinguish that Fe1, Fe2, and Ga2 sites are distorted in the ab plane (Figure
4.6); though the degree of distortion is minimal for Ga2. This finding coincides
with the argument provided by Kim et al. to explain the anisotropy in GFO
[Kim 2006]. As the distortions are the largest along the b direction, this
strengthens the hybridization and charge transfer along this axis. Thus, the
resulting orbital moment and consequently magnetization easy axis is oriented
along the c axis.

In the following we consider the reason driving the decrease of anisotropy with
the increase of the iron content x. Based on the ground state optimization
described earlier, the excess iron ion occupies the Ga2 site preferentially. As
mentioned previously, the bond lengths obtained from the ground state show
that the Fe1 and Fe2 octahedra are significantly more distorted (by one order
of magnitude) than the Ga2 octahedron. Consequently, once the iron ion
occupies the Ga2 site, it becomes less anisotropic than the parent Fe sites
(Fe1 and Fe2); thereby the overall anisotropy of the unit cell decreases. This
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Figure 4.11: LDA+U and GGA+U variation of (left panel) magnetocrystalline anisotropy
energy and (right panel) orbital moment anisotropy as a function of increasing the iron
content in a GFO unit cell. The results are shown for both: U = 4eV (upper panel) and
U = 8eV (lower panel). The scattered open symbols denote the MAE calculated using the
experimental parameters of GFO (x = 1) unit cell.

idea is supported by the MAE value (1.7 meV) calculated for a GFO (x = 1)
unit cell with site disorder; interchange between Fe2 site Ga2 site; which is
smaller than the value in the ideal case (2 meV).

As a matter of fact, the MAE values calculated with either approximations
are affected by the choice of the U value. It can be seen that increasing the
U to 8 eV gives values of MAE which are lower than the ones obtained for
U = 4eV by about 58% and 53% within LDA+U and GGA+U respectively.
This is interpreted by the fact, mentioned earlier, that U = 8eV calculated
orbital moments are lower than those obtained using U = 4eV .

In the context of analyzing these results on the magnetic anisotropy of GFO,
we discuss its possible link to the changes in the spin and the orbital moments
induced by the reorientation of the spin quantization axis. The spin moments
obtained from both LDA+U and GGA+U are almost isotropic (the change is
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within 0.05% from LDA+U and 0.002 % from GGA+U). Meanwhile, the two
approximations result in a similar decreasing behavior of the orbital-moment
anisotropy, e.g., in case x = 1 the orbital moment reduces by about 4% upon
passing from the easy to the hard magnetization axis. From a qualitative
point of view, Figure 4.11 reveals that the MAE and orbital anisotropy follow
the same trend as the Fe-content increases. Thus, one can conclude that the
decreasing orbital anisotropy as a function of the Fe-content is at the origin
of the obtained decreasing MAE values within both approximations. Indeed,
the anisotropic behavior of the system is dominated by the Fe1 site which
appears to be the more distorted one.
In sight of this discussion, it may be thought that the calculated MAE is very
sensitive to the structural properties that are basically determined by the re-
laxation conditions. To know where our results lie with respect to the actual
anisotropic state of GFO, we choose to do sort of reference calculation using
the experimental parameters (available for x = 1) without performing any
relaxation. As mentioned earlier, such calculations led to the same electronic
(band gap) and magnetic properties (spin and orbital moments). Regarding
the magnetic anisotropy energy, the values designated by open symbols in Fig-
ure 4.11 reveal that the relaxation affects the MAE values by about −7% and
−20% within LDA+U and GGA+U respectively without affecting the favor-
able magnetization direction. Thus, we can conclude that the smaller MAE
values obtained either with GGA+U or a higher value of the Coulomb repul-
sion are due to the improved level of approximation describing the interaction
among the d -states rather than the difference in the structural distortions
induced by relaxation.
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4.4 Optical properties

Before going into the details of the optical properties of GFO, it is important
to give an overview of the theory used to calculate the optical spectra within
the framework of the density functional theory.

4.4.1 Theory behind optical spectra calculations

So far, we have discussed the ground state of a physical system that is at
rest. Nevertheless, our knowledge of its electronic structure is represented in
reproducing some theoretical observables that are measured in experiments.
In particular, the response of a material to an external electromagnetic field
is represented by evaluating the static and frequency-dependent dielectric re-
sponse functions, such as absorption, reflectance, and electronic loss spectra.
The evaluation of these quantities is important from theoretical point of view
to interpret the measured optical properties of materials.
Indeed, it is now generally accepted that an accurate quantitative description
requires a treatment beyond the independent-particle picture though a quali-
tative agreement between theory and experiment can often be achieved on the
level of DFT, i.e. by using the Kohn-Sham eigenvalues and their eigenfunc-
tions. In this chapter, we give an overview of the methodology of the linear
response used within DFT formalism and in particular the optical response
represented by the dielectric function.

4.4.1.1 Linear Response

Static response functions

Static response functions correspond to the response of electrons to static
perturbations (e.g. strain or electric field) or to response at low frequencies
that can be considered adiabatic. Thus, it is convenient to start from the
perturbation theory where the Hamiltonian is expressed as:

H = H(0) + λ∆H (4.1)

where H(0) is the unperturbed Hamiltonian and ∆H represents the perturba-
tion and it is expanded by organizing terms in powers of the parameter λ. For
small perturbations, it is enough to employ an expansion to first order in ∆H

whereas for higher order expansions the variation in the wave function must
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be determined such that for a many-body system it is expressed in terms of a
sum over the excited states of the unperturbed Hamiltonian:

∆Ψi(ri) =
∑

j 6=i

Ψj(ri)
〈Ψj|∆H|Ψi〉

Ei − Ej
(4.2)

As for a ground state operator Ô, the change in its expectation value upon
perturbation is written as:

∆〈Ô〉 =
∑

j 6=i

〈∆Ψj|Ô|Ψi〉+ c.c. =
∑

j 6=i

〈Ψi|Ô|Ψj〉

Ei − Ej
+ c.c. (4.3)

In the independent-particle approximation, the variation of the independent-
particle orbitals ∆ψi(r) to the first order in the perturbation theory is written
in terms of sum, over all the occupied and empty states, of the unperturbed
effective Hamiltonian H(0)

eff as:

∆ψi(r) =
∑

j 6=i

ψj(r)
〈ψj|∆Heff |ψi〉

ǫi − ǫj
(4.4)

Besides, ∆Ô shall be expressed in terms of the independent-particle orbitals
ψi and the variation of the effective Hamiltonian ∆Heff such that:

∆〈Ô〉 =
occ
∑

i=1

〈ψi + δψi|Ô|ψi + δψi〉

=
occ
∑

i=1

empty
∑

j

〈ψi|Ô|ψj〉〈ψj|∆Heff |ψi〉

ǫi − ǫj
+ c.c.

(4.5)

The expression of the change in the density operator in response to a static
perturbation follows from Eq.4.5 and is written as:

∆n(r) =
occ
∑

i=1

empty
∑

j

ψ∗
i (r)ψj(r)

〈ψj|∆Veff |ψi〉

ǫi − ǫj
+ c.c. (4.6)

The density response function to a perturbation Veff (r′)n(r′) is defined as the
response to a variation of the effective potential:

χ0(r, r′) =
δn(r)

δVeff (r′)
= 2

occ
∑

i=1

empty
∑

j

ψ∗
i (r)ψj(r)ψ

∗
j (r

′)ψi(r
′)

ǫi − ǫj
(4.7)
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For further simplification, it is yet more useful to use the Fourier transform
of the response function:

χ0(q,q′) =
δn(q′)

δVeff (q)
= 2

occ
∑

i=1

empty
∑

j

M∗
ij(q)Mij(q

′)

ǫi − ǫj
(4.8)

where Mij(q) = 〈ψi|e
iq·r|ψj〉.

The simplest treatment of the response function χ0 is within approximations
where electrons are considered to be non-interacting such that ∆Veff = ∆Vext

and χ0 represents the response to an external perturbation. However, in
Kohn-Sham theory where the effective mean-field theory is employed, the
Hamiltonian must be found based on the self-consistent field approach in
which many-electron system is described by a time-dependent interaction of
a single electron with a self-consistent electromagnetic field. In this case, the
total field depends upon the internal potential such that: Veff = Vext+Vint[n]

and the response to the external field is given to linear oder by:

χ(q,q′) =
δn(q)

δVext(q′)
(4.9)

or it can be rewritten as:

χ =
δn

δVeff

δVeff
δVext

= χ0

[

1 +
δVint
δn

δn

δVext

]

= χ0(1 +Kχ) (4.10)

where the kernel K is given by:

K(q,q′) =
4π

q2
δq,q′ +

δ2Exc[n]

δn(q)δn(q′)
≡ VC(q)δq,q′ + fxc(q,q

′) (4.11)

Many approximations for fxc have been introduced one of which is the random
phase approximation (RPA) where fxc = 0 [Pines 1964]. Yet, the extension
of the static response to dynamical response approaches more the description
and understanding of electronic excitations.

Dynamic response

The basic ideas of linear response are derived starting from the classical har-
monic oscillator [Martin 1968]. The response to a force F (t) = F (ω)e−iωt with
frequency ω is given by:

χ(ω) =
x(ω)

F (ω)
=

1

M

1

ω2
0 − ω2 − iωΓ/M

(4.12)
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where x is the displacement and Γ is a damping term. Indeed, the Kramers-
Kronig relations allow to derive the real and imaginary parts of the response
function from one another as follows:

Reχ(ω) = − 1
π

∫∞

−∞
dω

′ Imχ(ω′)
ω−ω′ Imχ(ω) = 1

π

∫∞

−∞
dω

′ Reχ(ω′)
ω−ω′ (4.13)

When considering the non-interacting particle approximation, the response
function can be written as a complex function with a small imaginary damping
factor η:

χ0
a,b(ω) = 2

occ
∑

i=1

empty
∑

j

[Ma
ij]

∗M b
ij

ǫi − ǫj + ω + iη
(4.14)

whereMa
ij = 〈ψi|Ô

a|ψj〉 are the matrix elements of a given operator. Following
the Kramers-Kronig relations, the real and imaginary part can be written
explicitly as:

Reχ0(ω)a,b =
∑occ

i=1

∑empty

j

[Ma
ij ]

∗Mb
ij

(ǫi−ǫj)2−ω2

Imχ0(ω)a,b =
∑occ

i=1

∑empty

j [Ma
ij]

∗M b
ijδ(ǫj − ǫi − ω)

(4.15)

The generalization of the independent-particle expressions to self-consistent
field methods is straightforward except that the effective field is itself
frequency-dependent (Veff (ω)). Thus, the expression of the kernel K in
Eq.4.11 is generalized as to include the frequency-dependence:

K(q,q′, ω) = VC(q)δq,q′ + fxc(q,q
′, ω) (4.16)

In this case, the Coulomb interaction is considered to be instantaneous. It
follows, the dynamical generalization of the response function in Eq.4.10:

χ(ω) = χ0(ω)[1− χ0(ω)K(ω)]−1 (4.17)

4.4.1.2 Dielectric functions

Dielectric tensor

Dielectric functions are one of the most important response functions in con-
densed matter physics. They can be defined in terms of currents and fields
or densities and scalar potentials. The expressions follow from the Maxwell’s
equations so that to describe the interaction of matter with an external time-
dependent field. In this case, the charges and currents are divided into an
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internal and external contribution such that the general expression of the in-
ternal current density is given to linear order in terms of the total electric field
E in the material as:

jint(r, t) =

∫

dr′
∫

dt′σ(r, r′, t− t′)E(r′, t′) (4.18)

where σ is the microscopic conductivity tensor. Indeed, for a time-dependent
perturbation which is proportional eiωt the expression becomes:

jint(r, ω) =

∫

dr′σ(r, r′, ω)E(r′, ω). (4.19)

Thus, by applying the Maxwell’s equations the total field is written as:

E(r, ω) =

∫

dr′ε−1(r, r′, ω)D(r′, ω), (4.20)

or one obtains the expression of the field which is only due to external sources
D,

D(r, ω) =

∫

dr′ε(r, r′, ω) · E(r′, ω) (4.21)

where,

ε(r, r′, ω) = δ(r− r′) +
4πi

ω
σ(r, r′, ω). (4.22)

In this case, ε and σ are the response to the total field E and they satisfy the
Kramers-Kronig relations.

4.4.1.3 Dielectric response for non-interacting particles

The general case of time-dependent electric and magnetic fields can conve-
niently be treated by calculating the current response to the the vector po-
tential A. The perturbation can be written in terms of A as:

∆H(t) =
1

2me

∑

i

{

[

pi −
e

c
A(t)

]2

− p2
i

}

(4.23)

where E(t) = −1
c
dA
dt

and E(ω) = − iω
c
A(ω). The response is the macroscopic

average of current density:

j = −e〈v〉 = −
e

m
〈p+

e

c
A〉 (4.24)

By using Eq.4.14 and 4.22, the expression of the dielectric tensor follows:

εαβ(ω) = δαβ−
e2

meΩ

1

ω2

∑

i

[

fiδαβ +
∑

j

fi − fj
~me

〈ψi|pα|ψj〉〈ψj|pβ|ψi〉

ǫi − ǫj + ω + iη

]

(4.25)
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where fi are occupation numbers and η is a small damping factor. The p
matrix elements do not vary rapidly as a function of the energy for transitions
between each pair of bands of electronic states so that the imaginary part of
ε(ω) directly reveals singularities in the density of states for optical transitions.
In particular, in the case of independent-particle approximation, this is a
joint density of states for transitions between pairs of filled and empty bands
weighted by the matrix elements.

Dielectric functions in the self-consistent field theory

The general form of response functions in self-consistent field theories is ex-
pressed in terms of the non-interacting response functions χ0 and the interac-
tion kernel K as given in Eq.4.17. Indeed, in a periodic medium at any given
point q in the Brillouin zone, χ0 can be written as a matrix over reciprocal
lattice vectors as [Adler 1962, Wiser 1963, Ehrenreich 1959]:

χ0
G,G′(q, ω) =

1

Ω

∑

n,n′,k

2wk(fn′k+q − fnk)

×
〈ψn′k+q|e

i(q+G)r|ψnk〉〈ψnk|e
−i(q+G′)r′ |ψn′,k+q〉

ǫn′,k+q − ǫnk − ω − iη

(4.26)

where Ω is the volume of the primitive cell and the wk are k-point weights while
f are the Fermi weights that are 1 for occupied and 0 for unoccupied states. G
and G′ are reciprocal lattice vectors and q stands for the Bloch vector of the
incident wave. The Fourier transform of the frequency-dependent symmetric
dielectric matrix is given by:

εG,G′(q, ω) = δG,G′ −
4πe2

|G+ q||G′ + q|
χ0
G,G′(q, ω) (4.27)

The evaluation of the macroscopic dielectric matrix ε∞(q, ω) is as follows:

1

ε∞(q̂, ω)
= lim

q→0
ε−1
0,0(q, ω) (4.28)

In this case, the local field effects, which are the changes of the cell periodic
part of the potential, are included on the Hartree level only. Nevertheless, if
the local field effects are neglected, in other words if the off-diagonal elements
of the dielectric matrix are negligible, the macroscopic dielectric function can
be approximated as:

ε∞(q̂, ω) ≈ lim
q→0

ε0,0(q, ω) (4.29)
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Following this simplification, the imaginary part of the macroscopic dielectric
function is given by:

ε(2)∞ (q̂, ω) =
4π2e2

Ω
lim
q→0

1

|q|2

∑

c,v,k

2wkδ(ǫck+q − ǫvk − ω)× |〈uck+q|uvk〉|
2 (4.30)

where the indices c and v correspond to the conduction and valence band
respectively. The dielectric function depends on the direction q̂ = q/|q| such
that:

ε∞(q̂, ω) = lim
q→0

ε∞(q, ω) =
∑

α,β

q̂αεαβ(ω)q̂β (4.31)

Indeed, the 3× 3 Cartesian tensor εαβ is defined by its imaginary part as:

ε
(2)
αβ(ω) =

4π2e2

Ω
lim
q→0

1

q2

∑

c,v,k

2wkδ(ǫck − ǫvk − ω)× 〈uck+eαq|uvk〉〈uck+eβq|uvk〉
∗

(4.32)
whereas the real part is obtained from the imaginary part using the Kramers-
Kronig transformation:

ε
(1)
αβ(ω) = 1 +

2

π
P

∫ ∞

0

ε
(2)
αβ(ω

′)ω′

ω′2 − ω2
dω′ (4.33)

where P denotes the principle value.

Figure 4.12: Calculated and experimental optical spectra of GaAs comparing the ex-
perimental and the two density functional calculations: the LDA and exact exchange
[Staedele 1999].
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The dielectric properties are affected by interactions among the electrons,
in particular the electron-hole attraction leads to bound states in the gap.
Thus, including these interactions induces changes in the spectrum. Indeed,
many calculations done using adiabatic LDA and GGA have improved the
agreement with experiments over the non-interacting approximation though
better results could be obtained using many-body calculations (GW quasi-
particles). Figure 4.12 shows the optical spectra of GaAs compared between
experiment and different levels of theory, LDA and exact exchange, where
the LDA underestimation of the band gap versus the improvement obtained
by using the exact exchange is depicted [Staedele 1999]. Nevertheless, the
inclusion of the electron-hole interaction remains a barrier toward achieving
consistency between calculated and measured optical spectra; a problem that
is overcome by solving the two-particle Bethe-Salpeter equation.

4.4.2 Optical properties of GFO: An insight of cationic

site occupation

The aforementioned interesting aspects of GFO, in particular the exotic
disorder-driven ferrimagnetism and the concentration dependent properties
pushes forward the inquiry about a more detailed understanding of the prop-
erties of this material. In this sense, investigating the optical properties seems
to be an important approach. As the optical spectra of such transition metal
oxide resembles the intra-band as well as the charge transfer transitions, a
direct comparison between experimental spectroscopic results and theoreti-
cal calculated spectra will be of great interest to understand the electronic
properties and the disorder in GFO.

In the following, the dielectric function is calculated considering different
cation site occupations to have access to the effect of disorder. Besides, the
effect of the composition is addressed by considering different Fe concentra-
tions (1 ≤ x ≤ 1.4). The exchange-correlation potentials used were within
the GGA+U employing U = 4eV and J = 1eV . The frequency dependent
dielectric matrix was calculated after the ground state has been determined.
In particular, the imaginary part is calculated by a summation over the empty
states, as shown in the previous section, according to the following equation
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(as implemented in VASP [Gajdos 2006]),

ε
(2)
αβ(ω) =

4π2e2

Ω
lim
q→0

1

q2

∑

c,v,k

2wkδ(ǫck − ǫvk − ω)× 〈uck+eαq|uvk〉〈uck+eβq|uvk〉
∗,

(4.34)
where c and v refer to the conduction and the valence band states, and uck

is the cell periodic part of the wave functions at the k-point k while the
vectors eα are unit vectors for the three cartesian directions. The real part
ε(1) of the dielectric tensor is straight forward obtained by the Kramers-Kronig
transformation. Due to computational limits, the local field effects as well
as excitonic effects were neglected in our calculations. Our calculations are
used to support spectroscopic ellipsometry measurements performed by our
experimental colleagues in the group of Nathalie Viart.

4.4.2.1 Effect of Fe concentration

Figure 4.13: Calculated (a) ε(1) and (b) ε(2) spectra for various values of Fe content x in
Ga2−xFexO3 unit cell.

As mentioned earlier, the properties of GFO are highly influenced by the
Fe/Ga ratio. In this sense, we address in this section the evolution of the
optical properties as a function of increasing the Fe concentration x 1. Figure
4.13 displays ε(1) and ε(2) spectra calculated for different values of x. We notice

1The crystallographic orthorhombic structure of GFO implies that its optically biaxial.
However, we proceed the discussion considering the average of the three components of the
dielectric function.
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that the static dielectric function increases almost linearly with x, from 4.6

for x = 1 to 5.3 for x = 1.4 which is in good agreement with the experimental
results shown in Figure 4.14; 4.75 is reported for x = 1 and 5.5 for x = 1.4.
Indeed, concerning the ε(2), we note a difference in the low-energy region

Figure 4.14: a) Real and (b) imaginary parts of ε spectra modeled with eight Tauc-
Lorentz oscillators for the Ga2−xFexO3 (x = 0.9, 1.0 and 1.4) thin films..

between our calculated curves and the experimental ones, due to the fact that
the excitonic effects are excluded in our calculations. The calculated spectra
show two main features at 3.5 and 4.7 eV which weakly depend on x. We first
verify the electronic origins of the two main structures for the ε(2) spectra. To
this end, we plot in Figure 4.15 the Fe and O projected density of states (DOS)
in the region of interest, i.e. the valence and conduction states. Here we show
both the eg and the t2g orbitals of Fe as well as the p-states of O and Fe.
In fact, charge transfer transitions in a metal-oxide complex involve electron
transition from O 2p toward 3d orbitals of the Fe sites, which is allowed from
the point of view of electric-dipole transitions provided that there exists a
spatial overlap of the wave functions of these orbitals and that one of them
is occupied and the other empty. As a first stage, one can observe from the
DOS plots that both the O p-states and the Fe d -states lie almost on the same
energy range. This finding is supported by the partial charge plots, shown in
the right panel of Figure 4.15. In particular, we present the partial charge
densities integrated over a small energy interval around the peaks designated
by arrows in both the valence and the conduction bands. These plots show
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Figure 4.15: Left panel: d-states of Fe and p-states of O and Fe in an ideal GaFeO3

unit cell. The red arrows mark the main peaks in the valence band of the O-p and the
conduction band of Fe-d that are involved in the charge transfer transitions. Right panel:
Partial charge distribution integrated over the energy range around the highest marked
peak in the Fe-conduction band and the lowest one in the O-valence band, drawn with
a logarithmic scale along the three crystallographic directions of the GFO unit cell. The
spatial overlap between the O-p and the Fe-d orbitals can be observed..

a substantial spatial overlap between the O orbitals, which are obviously of
p-like character, and the Fe orbitals, which have a d -like one. This finding also
brings us to a fact that the presented p-states of Fe are in part the projection
of the O p-states into the Fe spheres. Indeed, the energies of such kind of
excitation, O-p to Fe-d charge transfer, involves the difference of the energy
of a valence state and a conduction one. It can be easily remarked that the
energies of the transitions obtained from the marked peaks in Figure 4.8 show
good correspondence to the energies of the two main structures rising in the
ε2 spectrum. Thereby, we assign these two features to the O-p to Fe-d charge
transfer transitions in GFO which is consistent with the current and previous
experimental results [Kalashnikova 2005, Choi 2012].

However, the oscillatory strength of the main features of ε2 increases with x

which is consistent with the experimental observation shown in Figure 4.14.
This can be understood in terms of promoting more O-2p to Fe-3d transitions
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as the Fe-d unoccupied DOS increases enhancing drastically the oscillator
strength at the vicinity of those peaks.

4.4.2.2 Effect of site disorder

Ga1 Ga2 Fe1 Fe2 Disorder%

0 0 1 1 0%

0 0.25 1 0.75 12.5%

0 0.5 0.75 0.75 25%

0 0.75 0.75 0.5 37.5%

0 1 0.5 0.5 50%

Table 4.3: Description of the type of disorder considered for the Fe-Ga site interchange
in a GaFeO3 unit cell.
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Figure 4.16: Calculated ε(2) spectra for different percentages of site disorder, Fe-Ga2 site
interchange, in the GaFeO3 unit cell.

It is noteworthy that the experimental and theoretical ε(2) spectra agree better
for larger x, in terms of the relative amplitudes of the two main structures at
3.5 and 4.7 eV. This is linked to the fact that Fe-Ga site interchange has a di-
minishing probability as more Fe ions are populated into the unit cell. In fact,
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disorder in the cationic site occupation imposed itself as a property accompa-
nying all elaborated GaFeO3 samples regardless of the method of preparation,
though its percentage is influenced by the recipe. To explain the observed
differences in the ε(2) spectra between the experiments and calculations for
small x values, we considered possible disorder in the cationic site occupa-
tions. To this extent, we have modeled different percentages of cation site
disorder in a GaFeO3 unit cell, in particular interchange between Fe and Ga
ions as detailed in Table 4.3. The calculated spectra presented in Figure 4.16
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Figure 4.17: Calculated d-DOS contribution of the Fe projected DOS in GaFeO3 unit
cell shown for different percentages of site disorder.

reveal that the oscillator strength of the first major peak at 3.5 eV decreases
as the disorder is enhanced, which is also accompanied by the broadening of
the second major peak at 4.7 eV. Now, we consider the origin of the particular
changes in the ε(2) spectra induced by promoting the cationic site disorder.
To this end, we show in Figure 4.17 the Fe-d DOS as a function of different
levels of disorder. We interpret the broadening of the second structure in the
ε(2) spectra at 4.7 eV as the change in the unoccupied Fe d-DOS that become
more dispersed in energy as the percentage of disorder increases.

The Ga1 site is probably very little influenced by the cationic disorder. Our
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Figure 4.18: Calculated ε(2) spectra for the interchange of one Fe from the Fe2 site into
the Ga1 or Ga2 sites in the GaFeO3 unit cell.

calculations show that exchanging one Fe cation from the Fe2 or Fe1 site with
the Ga1 site does not allow reproducing the shape of the experimental spectra,
as opposed to the case of Fe sites with Ga2. Figure 4.18 shows the calculated
ε(2) spectra obtained for the interchange when the origin of the interchanged
cation is the Fe2 site. Similar curves are obtained when the Fe1 site is taken
as the origin of the exchange.
In fact, the calculated spectra become more comparable to the experimental
data for either large site disorder or large x. Large x compositions implicitly
imply the occupation of Ga sites by Fe. Therefore, our observations suggest
that, for all compositions, some Ga sites are occupied by Fe, which in turn
suggests a high level of site disordering for GFO films containing a low amount
of Fe atoms in its unit cell.
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4.5 Conclusion

In summary, we have presented an investigation of the evolution of the struc-
tural, electronic, and magnetic properties of the polar ferrimagnet Ga2−xFexO3

with increasing the iron concentration. We found that setting the U value
to 8eV describes well the experimental observations. Bader charge analysis
shows that the bonding in GFO is not completely ionic and that the energy
band gap decreases while increasing the iron content x. We demonstrate that
the structural parameters are influenced by the iron concentration which sup-
ports previous experimental findings. Though the magnetic properties seem
to be enhanced as the iron concentration increases, the value of the magne-
tocrystalline anisotropy energy declines while conserving the magnetic easy
axis. The direction of the magnetization easy axis and the drop of the MAE
value was discussed and explained in view of the differences among the atomic
sites. Indeed, the particularity of this system resides in this interplay between
the structure, namely the different atomic sites, and its magnetic properties.
Besides, we have presented the optical properties of GFO where we interpret
the main optical structures arising from charge transfer transitions taking
place from the O-2p toward the Fe-3d states. The intensity of these structures
is influenced by both Fe-Ga site interchange and the Fe content. We found
that a better agreement with experimental results is achieved while promoting
more site disorder or increasing the Fe content. Our results point toward high
levels of disorder present in GFO samples, exceeding 50%.
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5.1 Introduction

Organic semiconductors constitute promising candidates in spintronics-driven
applications. In particular, metal phthalocyanines (MPc) have so far emerged
as prototypical single molecule magnets that possess wide applicability in
the field of molecular spintronics. Thanks to the bonding-induced exchange
interaction, MPcs adsorbed on ferromagnetic substrates constitute a typical
model of hybrid (semiconductor/ferromagnet) interface which serves as a key
element toward building advanced spintronic devices where the electron spin
is manipulated at the molecular level. In this chapter, we present a theoretical
and experimental- coordinated study on the model spinterface between MnPc
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molecule and a Co single crystal surface. In the first section, we provide
an overview of the well known properties of Pc/metal interfaces preceded by
the properties of the Pc molecules. In particular, we consider the manganese
phthalocyanine (MnPc) molecule which is the issue under investigation in the
framework of this thesis. In the second part of this chapter, we present our
results on the electronic and magnetic properties of Co/MnPc interface within
including the van der Waals interaction and spin-orbit coupling.
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5.2 MPc/metal interface: An overview

A meaningful interpretation of the hybrid Pc/metal system requires, as a first
step, an accurate description of the electronic structure and the properties of
a single molecule.

5.2.1 Phthalocyanine molecules

Phthalocyanines (Pcs) are organic planar macrocycles, with D4h symmetry,
that host a central atom that is often either a metallic one or H2 in the case
of a metal-free Pc. The central atom coordinates with four pyrrole rings. Pcs
have been of wide interest in the scientific world especially from the nano-
technological point of view where MPcs are considered as prototypical or-
ganic semiconductors that serve as potential candidates for constituting light
emitting diodes, field-effect transistors, and single-molecule devices. In this
respect, MPcs show remarkable features such as their ordered growth in thin
films and thermal stability during deposition. Besides, the unique structure
and shape of Pcs make them ideally suited for scanning tunneling microscopy
(STM) studies.

Figure 5.1: A schematic of the structure of a metal phthalocyanine molecule.
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5.2.1.1 Electronic structure

The investigation of the electronic structure of MPcs has been the subject
of different theoretical studies. In fact, determining and understanding the
sequence of the outer molecular orbitals is of primary importance from a fun-
damental point of view, to interpret later the interface properties issued from
molecule/substrate interactions, along with the interest in analyzing photoe-
mission, optical, and transport experiments. In this sense, a detailed elu-
cidation of the electronic structure of the MPcs and their ions is presented
in the work of Liao et al. [Liao 2001]. According to the irreducible rep-
resentation of the D4h point group, the five metal d-orbitals transform as
a1g(dz2), b1g(dx

2 − y2), eg(dzx, dyz), and b2g(dxy). Taking the molecule to lie in
the xy plane, the dxz ,dyz orbitals have π-character and the rest may be con-
sidered of σ type. In Figure 5.2, the highest occupied (HOMO) and the lowest
unoccupied molecular orbitals (LUMO) of different MPcs are presented. In
fact, the positions of the HOMO and LUMO highly depend on the central
atom. Generally, the d-orbitals of the central metal atom move lower in en-
ergy as the atomic number of this atom increases such that: for M= (Fe or
Co), the HOMO is mainly of d-character wheres for M= (Ni to Zn) the HOMO
is determined by the a1u Pc-orbital. On the other hand, the LUMO is mainly
dominated by the 2eg Pc-orbital contribution. In the framework of this thesis
we are interested in the MnPc molecule. The electronic structure of MnPc
is investigated in Calzolari et al. work [Calzolari 2007] where both the GGA
and the GGA+U were explored due to the half occupation of the highly cor-
related 3d shell of the Mn central cation. Figure 5.3 shows their calculated
spin resolved density of states (DOS) of the MnPc corresponding to PBE (a)
and PBE+U functional. For the spin-up channel a1u and 2eg states are singly
occupied HOMO and LUMO respectively, while the b1g orbital is empty where
the energy difference is E = E(2eg)−E(a1u) = 1.41 eV. As for the spin down,
the HOMO and the LUMO are almost dominated by the degenerate couple
of e1g states, that are π-like orbital extended over the Mn and the Pc ring,
where ∆E = 0.16 eV. Indeed, the a1g and the b2g states, which are σ-like, are
partially filled in the spin-up channel while the b1g is completely empty in both
spin channels. The unbalancing of these three orbitals between the spin up
and down component results in a total magnetization of the MnPc molecule
of 3µB. However, the description of the electronic structure is improved by
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Figure 5.2: Orbital energy levels for the outer orbitals of different MPc molecules as
presented in [Liao 2001].

adding the Hubbard term U = 3eV on the Mn site, such that ∆E = 0.46 eV
(c.f. Figure 5.3(b)). Later, Stradi et al. [Stradi 2011] presented a systematic
study of the electronic structure of MnPc using different exchange-correlation
functionals ranging from B3LYP to HSE06 and the results were compared to
UPS experiments. The results are shown in Figure 5.4. It was found that
the screened hybrid HSE06 functional gives the overall best description of the
MnPc electronic structure where a HOMO-LUMO band gap of 0.82 eV is cal-
culated. However, reasonable results are obtained when the PBE0 functional
is used.



76 Chapter 5. Properties of MnPc/Co spinterface

Figure 5.3: MnPc spin-resolved density of states (DOS) corresponding to (a) PBE calcu-
lation and (b) PBE +U (U = 3 eV) functionals. The shaded areas are the projections on
the atomic Mn states. Vertical arrows and labels identify the energy position of the peaks
corresponding to molecular orbitals [Calzolari 2007].

5.2.1.2 Magnetic properties

The interesting class of MPcs is the one exhibiting a magnetic order due to the
presence of a transition metal atom in the central site of the molecule. As im-
portant molecular magnets, 3d transition MPc were systematically studied in
the bulk form, and it is well known that only the β-form polymorph of MnPc
is ferromagnetic [Lever 1965]. This ferromagnetic behavior is explained quali-
tatively by the 90°superexchange interaction between nearest-neighboring Mn
atoms via N atoms in Pc rings, resulting in the ordering of Mn2+ having an
S = 3/2 state [Barraclough 1970]. In this case, the stacking arrangement
of the planar MnPc molecules is along the monoclinic b-axis where each Mn
atom lies directly above or below the N atom of the adjacent parallel molecule
and the distance between Mn and the adjacent N atom is 3.38 Å . However,
it has been shown that the magnetic properties differ between the bulk crys-
tals and thin films of MnPc which has been attributed to the difference in
superexchange interaction caused by microscopic modification of the crystal
structure, i.e., the stacking arrangement of the molecules [Yamada 1998]. For
instance, as shown in Figure 5.5 when the angle between the b-axis and the
Pc-ring denoted by θ increases from 45°to 65°, the overlap of the dz2 and
the adjacent π orbital moves from the electron-rich N atom toward the node.
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Figure 5.4: Projected Density Of States of MnPc, for PBE, PBE0, and HSE06 (ω = 3

Å −1) functionals [Stradi 2011].

As a result the ferromagnetic interaction becomes weak. In order to cause
antiferromagnetic superexchange coupling, it is necessary to make the medi-
ating orbital to have a large overlap with both metal orbitals. Among the
possible superexchange pathways in MnPc, eg − eg interactions via π orbital
with Eg symmetry can be antiferromagnetic. While in contrary to a1g, the
eg − Eg interaction among adjacent molecules does not become weak when
θ changes from 45°to 65°. Another interesting aspect of the MPc molecules
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Figure 5.5: A schematic illustration of the ag − Eg and eg − Eg interactions in MnPc
when θ = 45°and θ = 65°[Yamada 1998].

Figure 5.6: Total spin MS and orbital ML magnetic moments, and magnetocrystalline
anisotropy energies EMCA in different MPc molecules as calculated in [Wang 2009]. Positive
and negative signs of EMCA correspond to perpendicular and in-plane easy axes, respec-
tively.

lies in theoretically exploring their magnetic anisotropy which is imperative
in guiding the design of MPc-based molecular magnets. To this end, Wang
et al. [Wang 2009] calculations showed that the spin magnetic moments of
MPcs can be expressed as 8 − n µB (n = 5, 6, 7, 8 for Mn, Fe, Co, and Ni).
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Indeed, enhanced orbital moments were calculated for MnPc, FePc, CoPc.
For instance, the orbital magnetic moment of MnPc is 0.19 µB which is the
largest for the Mn atom in different environments. Another important finding
was that MnPc molecules have sizable MAE = 2.72 meV with an easy axis
perpendicular to the plane of molecule. Again, this MAE is large for Mn,
which typically has it 3d shell filled (empty) in the majority (minority) spin
channel.

5.2.2 MPcs adsorbed on metallic surfaces

The adsorption of a molecule on a metallic surface is governed by the type
of interfacial interactions. The molecule might be either physisorbed in the
absence of chemical interactions at the molecule/metal interface, where the
weak van der Waals forces mediate the interactions, or chemisorbed in the
presence of chemical interactions. In the later, the electronic states are signif-
icantly modified giving rise to modifications mainly in the molecule’s proper-
ties. An interesting aspect is the magnetic interactions that arise in the case
of a molecule adsorbed on a ferromagnetic surface.

In particular, we consider here the class of organic molecules due to the afore-
mentioned interest in the hybrid organic/metal interface they form and which
might display a high spin injection efficiency. In fact, the indirect exchange
interaction might drive a ferromagnetic coupling between the metal site in
the metallo-organic molecule and a ferromagnetic substrate which provides
the possibility of controlling the magnetization of the molecular magnet. This
kind of coupling have been demonstrated for Fe porphyrin molecules on fer-
romagnetic Ni and Co films in [Wende 2007]. Besides, another distinctive
feature of the hybrid interfaces is the presence of spin polarized hybrid inter-
face states that play a crucial role in the spin-injection efficiency across the
interface thereby manipulating the magnetoresistance in organic spin valves.
Such spin polarized hybrid interface has been investigated recently in CuPc/Fe
hybrid interface [Methfessel 2011].

The interest in investigating MPc/metal interfaces has grown rapidly in the
past few years motivated by the promising technological applications. Com-
bined experimental and theoretical studies have been employed to unravel the
properties and the physics underlying these hybrid interfaces ranging from the
nature and geometry of the MPc’s adsorption on the surface, to the electronic
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and magnetic properties issued from the interaction across the interface. Con-
cerning the adsorption, near edge X-ray absorption fine structure spectroscopy
(NEXAFS) as well as scanning tunneling microscopy (STM) results have re-
ported the flat lying of the Pcs on metallic surfaces for ultra thin films which
is the result of the domination of the molecule-substrate interactions over
the molecule-molecule ones [Biswas 2007, Peisert 2005, Takacs 2008]. Indeed,
DFT calculations have predicted the central atom-surface distances and the
adsorption sites for different Pcs on metallic substrates which showed good
agreement with X-ray standing wave spectroscopy (XSW) and STM experi-
ments [Baran 2010, Heinrich 2010].

In fact, metallic substrates have strong impact on the electronic, magnetic,
and transport properties of Pc molecules via the interactions present at the
interface. Obviously, the type and strength of such interfacial interactions,
determined by the adsorption site and distance, demonstrate to what extent
the Pc ’s properties are influenced. For instance, it has been shown that the
hybridization and in particular the spin-polarized charge transfer at the inter-
face promotes a reduction of the local magnetic moment of the central atom
in MPcs [Brede 2010, Heinrich 2010, Iacovita 2008]. Besides, STM and DFT
studies demonstrated that different strength of interfacial interactions, such
as the strong chemisorption of CoPc on ferromagnetic Co(111) and its weaker
one on paramagnetic Cu(111) surface, strongly influences the molecular con-
ductance [Takacs 2008, Chen 2010].

5.2.3 MnPc adsorbed on metallic surfaces

In the framework of this thesis, we have considered the model interface be-
tween manganese phthalocaynine and the ferromagnetic Co(001) surface. In
fact, the adsorption of MnPc on Co(001) or Cu(001) metallic surfaces has been
the subject of the thesis of S. Javaid [Javaid 2011]. Preliminary DFT-GGA
calculations and XAS experiments demonstrated that MnPc is physisorbed
on Cu(001) while it is chemisorbed on Co(001). The calculated spin-polarized
PDOS of MnPc/Cu(001) and MnPc/Co(001), shown in Figure 5.7, are com-
pared to the Mn PDOS for free MnPc molecule. Due to physisorption of MnPc
on Cu(001), the electronic structure of MnPc would not change significantly
from that of a free molecule. However, the electronic structure of MnPc is
strongly modified due to the influence of Co(001) substrate. Nevertheless,
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the adsorption mechanism of MnPc on Cu(001) changes from physisorption
to weak chemisorption upon adding van der Waal (vdW) interactions to the
calculations, which showed to be consistent with the performed XSW ex-
periments. Indeed, both calculations and x-ray magnetic circular dichroism
XMCD measurements showed that the Mn of the MnPc is ferromagnetically
coupled to Co(001) and a reduction of the Mn magnetic moment to 2.9 µB

was calculated.

Figure 5.7: The calculated spin-polarized PDOS of Mn within the free MnPc molecule
compared with the Mn, N and Cu(Co) spin-polarized PDOS for MnPc on (a) Cu(001) and
(b) Co(001). Inset to panel (b): spin ↑ PDOS of MnPc/Co near EF [Javaid 2013].

After this comprehensive study of the strong impact of the ferromagnetic Co
substrate on the properties of MnPc, a better understanding of the Co/MnPc
interface is still required. For instance, a more detailed description of the
interface-formation mechanism is crucial. Besides, it is obviously interest-
ing to include spin-orbit coupling to have access to calculating the orbital
moments as well as the magnetic anisotropy of the molecule. In fact, our
study, presented in the following section, basically addresses these arguments
while trying to provide a more realistic description of the interactions across
a MnPc/metallic interface.
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5.3 Co/MnPc spinterface

Interestingly, spin-polarized direct and inverse photoemission experiments,
performed by our experimental colleagues, have revealed a high degree of
spin polarization at room temperature at the Co/MnPc interface. Besides,
a magnetic moment was measured on the molecule’s nitrogen π-orbitals by
means of XMCD. These two findings invoked a more insight theoretical anal-
ysis of the interactions taking place at this interface. In this respect, we have
conducted a systematic theoretical study of the magnetic properties of the
Co/MnPc interface including the van der Waals interactions and spin-orbit
coupling.

5.3.1 Computational details

Our density-functional based (DFT) calculations were carried by means of
the VASP package [vas , Blochl 1994] and the generalized gradient approxi-
mation for exchange-correlation potential as parametrized by Perdew, Burke,
and Ernzerhof [Perdew 1996]. We used the projector augmented wave (PAW)
pseudopotentials as provided by VASP [Kresse 1999]. The van der Waals
(vdW) weak interactions were computed within the so called GGA-D2 ap-
proach developed by Grimme [Grimme 2006] and later implemented in the
VASP package [BucÌko 2010]. Our formalism can correctly reproduce the ex-
perimentally determined atomic distances between molecular sites and metal-
lic sites. Fcc Co(001) surface was modeled by using a supercell of 3 atomic
monolayers of 8x8 atoms separated by a vacuum region. The lattice vector
perpendicular to the surface is 3 nm. This results in a supercell of 249 atoms,
including the 57 atoms of the MnPc molecule. Since experiments used cobalt
epitaxially grown on Cu, we used the fcc lattice parameter of 0.36 nm for
both cobalt and copper. We have found that additional monolayers will not
change significantly the results [Chen 2010]. The distance between the ad-
sorbed molecule and the Co surface was found to be 2.1 Å . A kinetic energy
cutoff of 450 eV has been used for the plane-wave basis set. For our study of a
single molecule on metallic surfaces, we used only the gamma point to sample
the first Brillouin zone. DOS were calculated using a 1 meV energy mesh and
a Gaussian broadening of 20 meV full-width at half-maximum. The spin-orbit
coupling was included as a perturbation in the augmentation region at each
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atomic site as implemented in VASP [Kresse 1996]. The magnetic anisotropy
energy (MAE) is calculated, as proposed in the force theorem, for two different
spin quantization axes.

5.3.2 The highly spin polarized Co/MnPc interface

5.3.2.1 Photoemission results

Spin-polarized direct and inverse photoemission (PE) experiments were per-
formed at room temperature (RT) on interfaces between fcc Co(001) and
MnPc or H2Pc as potential spinterface candidates. Those PE experiments re-
veal the presence of Pc-induced states close to EF . In fact, to extract the sig-
nal coming only from the molecular sites, a subtraction procedure that takes
into account the attenuation of the signal arising from ever deeper atomic
sites away from the sample surface was adopted. The spin-resolved differ-
ence spectra of direct and inverse PE spectroscopy of Co/MnPc at RT (2.6
ML MnPc for direct and 2 ML MnPc for inverse PE) that were obtained by
this subtraction procedure are shown in Figure 5.8. Both direct and inverse

Figure 5.8: Spin-resolved difference spectra of direct (closed symbols: hν = 20 eV)
and inverse (open symbols) photoemission (PE) spectroscopy at room temperature of
Co/MnPc(2.6(2.0) ML for direct(inverse) PE) reveal a P = 80% at EF .



84 Chapter 5. Properties of MnPc/Co spinterface

PE experiments reveal significant (nearly no) spin ↑ (↓) intensity at/near EF ,
which indicates a high polarization P of the Pc-induced states in the vicinity
of EF . It is noteworthy to state that very similar difference spectra (indirect
PE) are also obtained in the case of H2Pc, which shows that the central Mn2+

ion in MnPc plays a minor role in the formation of the spinterface. Indeed,
the RT P at EF of the first two layers of MnPc or H2Pc adsorbed on Co(001)
reaches 80% ±10%, i.e. is opposite in sign to that of bare Co.

5.3.2.2 Theoretical description of the spinterface

To more realistically describe the interface, our formalism now relaxes atomic
positions and includes van der Waals forces so as to quantitatively reproduce
the crucially important molecule-substrate distance inferred from x-ray stand-
ing wave measurements. This leads to a final distance ∆z between Co and
the adsorbed molecule of 2.1 Å .

Figure 5.9: The z and planar density of states of the Co and the MnPc molecular sites
calculated for three different configurations with varied ∆z distance between the molecule
and the surface. ∆z = 2.1 Å corresponds to the final position of the spinterface..

To unravel the formation of the spinterface, we first consider the molecule-Co
system as calculated using the actual atomic positions of the final interface,
but we artificially impose ∆z = 6.6 Å . Consequently, we can examine the
states of the two systems using a common Fermi level in the absence of inter-
actions between them as shown in Figure 5.9(a). The Co d-spin ↓ band crosses
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EF , while the d-spin ↑ band ends at E − EF = −0.7 eV. Above this energy
level, the spin ↑ sub-band exhibits only small DOS spikes that correspond to
surface states. We note in particular one surface state at EF with a strong
perpendicular component (z-DOS, black) compared to its planar counterpart
(pl-DOS, magenta). We emphasize that these surface states also exhibit a
s-component of DOS (gray). Near EF , the molecule exhibits a molecular or-
bital (MO) only in the spin ↓ channel. Adsorption-induced displacements of
the molecule’s atoms overall promote a slight energy shift (∼ 30 meV) of the
MOs.

We now turn on interactions between the molecule and the Co surface by
reducing ∆z to 3.5 Å as shown in Figure 5.9(b). At this distance, π orbitals
that spatially extend perpendicularly to the nascent interface promote wave
function overlap between the molecule and Co surface sites, causing EF to
shift from E = −2.4 eV to E = −2.2 eV. At the vicinity of EF , the Co spin ↓
states and spin ↑ surface states are little affected. In contrast, the interaction
strongly modifies the molecule’s states: while planar states remain mostly
unaffected, perpendicular states experience the onset of hybridization. In
particular, this results in the energy dispersion of the initially sharp spin ↓
states in Figure 5.9(a) at −2.4 eV and −2.2 eV. We emphasize here that there
are no spin ↑ MO at/near EF at ∆z = 3.5 Å .

At the final stage ∆z = 2.1 Å (Figure 5.9(c)), the molecule and Co sur-
face sites may fully hybridize to form the spinterface. More precisely, all
combinations of s − p, p − d and s − d hybridization may occur. Although
fcc Co(001) has, near EF , no p-states and a highly spin-polarized d-band, the
flat, spin-degenerate s-band that crosses EF is essentially responsible, through
s−d hybridization, for the only moderate 45% spin polarization of conduction
electrons. Yet, referring to Figure 5.9(c), the spinterface formation involves
Co s-states (gray datasets) only very weakly. Thus, although fcc Co(001) is
obviously not half-metallic, the Co/MnPc spinterface shall strongly transmit
the highly spin-polarized d-component of the Co DOS and attenuate the s
and p components.

In the following, we consider how the Co d-band DOS are transmitted onto the
molecule in each spin channel. Prior to adsorption and in the spin ↓ channel,
the Co d-band z-DOS intersects EF and the z-DOS of the free molecule also
exhibit a MO at/near EF . Hybridization is therefore governed by the well-
known spinterface mechanism of spin-dependent broadening of MOs due to
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Figure 5.10: Calculated MnPc z-DOS showing the different mechanisms responsible for
the spinterface formation. The area shaded by red resembles the band-induced spinter-
face states (BISS) while the green shaded one shows the surface-induced spinterface states
(SISS).

band hybridization [Schmaus 2011, Barraud 2010, Sanvito 2010]. The result-
ing BISS (band-induced spinterface states) are shaded in red in Figure 5.10.
These BISS exhibit a flat continuous energy dependence across EF . However,
the molecule does not exhibit any sizable, pre-existing spin ↑ z-DOS at the
vicinity of EF to hybridize with, and the Co surface’s d-band does not cross
EF . Another spinterface formation mechanism must therefore account for the
appearance of entirely new, hybrid states in the spin ↑ channel within −2.7
eV ≤ E ≤ −1.9 eV, i.e. at the vicinity of EF , (c.f. right-hand panel of Figure
5.9(c) and the segment of the spinterface z-DOS shaded in green in Figure
5.10). We propose that pre-existing Co surface states (c.f. left-hand panel of
Figure 5.9(a) and (b)) pin initially distant MOs to EF . The narrow energy
width of these surface-induced spinterface states (SISS) reflects that of both
the pre-existing Co surface states and of the pre-existing MOs. Due to the
Pauli exclusion principle, these newly formed SISS cannot occupy the spin
↓ states since they are already occupied by Co, and hence appear only in
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the spin ↑ channel. The presence of two sharp, tall peaks near EF reflects a
lifting of degeneracy induced by upward (downward) buckling of the benzene
rings below (at) EF along each of the two orthogonal axes that define the free
molecule’s 4-fold symmetry. This underscores how crucial it is to fully relax
the interface structure if one wishes to study SISS.

Figure 5.11: The calculated z-DOS per atomic species of the molecular sites showing that
all the molecular sites are spin polarized around EF .

Since surface states naturally lie at the vicinity of EF , so shall SISS. Although
SISS may appear as energetically sharp DOS peaks, which could reflect lo-
calization, SISS contribute to conduction across the interface. Indeed, the
spectral signature of the SISS appears in the spin ↑ z-DOS of both Co surface
and molecular sites. Focusing now on the DOS that contributes to trans-
port at RT, we present in Figure 5.12(c-d) spin-polarized spatial maps, taken
along the dashed line of Figure 5.12(a), of the Co/MnPc interface DOS within
EF − 25 meV ≤ E ≤ EF + 25 meV (c.f. Figure 5.12(b)). Aside from the cen-
tral Mn site, the remaining N and C sites exhibit very large positive P at EF
thanks to electronic states that are clearly hybridized with the Co interface
atoms. In fact, these interface states are present on all atomic species of the
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molecule, as it can be seen from Figure 5.11, and their amplitude trends with
the number of molecular nearest-neighbors for a given Co spinterface site.

Figure 5.12: (a) Adsorption geometry of MnPc on Co(001). (b) The spin ↑ and ↓ z-DOS
within EF −25 meV ≤ E ≤ EF +25 meV: SISS (BISS) lead to a sharp (monotonous) energy
dependence at EF ; and (c-d) spatial charge density maps, taken along the dashed line of
panel (a), show how the numerous C and N sites of MnPc exhibit a highly spin-polarized
density of states at EF that, furthermore, are hybridized with Co states and thus contribute
to conduction. The maps are in units of e·Å −3.

At EF , both the energetically smooth BISS in the spin ↓ channel and the ener-
getically sharp SISS in the spin ↑ channel define the sign and amplitude of the
spinterface’s P . Due in large part to the energetically sharp SISS that crosses
EF , we find that P = 80%. Thus, considering the limitations of the compar-
ison, we find that both theory and the direct/inverse PE experiments yield
the same sign and high amplitude of P at EF (Figure 5.8 and 5.11). Further-
more, peaks in the spin ↑ (↓) PE (Figure 5.8) and DOS spectra (Figure 5.10)
at E−EF = −0.3(−1.0) eV underscore a reasonably good agreement between
theory and the direct PE experiment thanks to its good energy resolution (130
meV), while a qualitative agreement is found with inverse PE.

5.3.3 Magnetic properties of Co/MnPc spinterface

Since both PE experiments and ab-initio theory describe how the molecule’s
sites are spin-polarized, we now consider the magnetic properties of the spin-
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MnPc MnPc MnPc/Co MnPc/Co

MS ML MS ML

Mn 3.1 +0.04 +2.54 +0.02

N (n.n) −0.12 +6.2× 10−4 +0.01 +1× 10−3

N (f.n) −0.02 +4.4× 10−4 +0.1 −1.3× 10−3

C (pyrrole) −0.09 −2× 10−4 +0.08 +0.4× 10−4

C (benzene) −0.02 −2.2× 10−4 −0.3 +5.7× 10−4

Table 5.1: Calculated spin and orbital moments (in units of µB) for the MnPc molecular
sites in the free molecule compared to those obtained when the molecule is adsorbed on the
Co surface. We denote by (n.n) the N atoms that are nearest neighbors to Mn and by (f.n)
the far neighbors.

terface. To get in sight of the magnetism of the spinterface, we compare in
Table 5.1 the spin and orbital moments per atomic species for the free MnPc
molecule and the adsorbed on Co surface and we show as well the local mag-
netization density plot in Figure 5.13.

Qualitatively, the hybridization of the molecule to the Co surface alters the
magnetic coupling among the molecular sites such that Mn becomes ferromag-
netically coupled to the N sites. The type of the magnetic coupling, whether
ferromagnetic (F) or antiferromagnetic (AF), can be explained by a simpler
picture based on Hund’s rule. The hybridization leads to the direct d− d FM
coupling between the Mn site and Co, since the Mn d-band is less than half
filled. Consequently, the N sites experience such coupling through the Mn-N
σ-bond and thus N sites become FM coupled to Mn and Co. Indeed, the C
sites in the benzene rings are AF coupled to the Co surface. Since the Co
d-band is more than half filled, only the minority spin states are responsi-
ble for the hybridization to the C sites. This direct p − d coupling leads to
an exchange splitting of the C majority and minority states in an opposite
direction to that of Co. On the other hand, the C sites of the pyrrole cage
experience an additional coupling to the N sites, i.e. two competing coupling
mechanisms, which leads to an overall spin moment which is parallel to that
of Co.

Meanwhile, x-ray magnetic circular dichroism (XMCD) experiments were per-
formed at the N K-edge of MnPc’s 8 nitrogen sites. Referring to Figure
5.14(a), we witness XMCD intensity within the energy range corresponding
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Figure 5.13: Top view of the on-site magnetization density of the MnPc molecule adsorbed
onto Co(001) surface.

to final 2p π (i.e. that probe the z-DOS just above EF ), but not 2p σ- states.
This unequivocal XMCD signal is very strong compared to the stray XMCD
signal obtained when MnPc is adsorbed onto Cu(001) (c.f. Figure 5.14(b)),
for which one does not expect the presence of on-site magnetic moments.
Since these are K-edge transitions, we can only state that an orbital magnetic
moment appears on the final N 2p π states at the Co/MnPc spinterface, the
sign of which is in agreement with that found theoretically (c.f. Table 5.1).
This experimentally confirms that the N z-DOS is spin-polarized as we have
previously described theoretically.

The evolution of the magnetic state of the MnPc molecule upon adsorption
on Co substrate can be analyzed in relation to the charge transfer occurring
at the interface. We show in Table 5.2 the calculated Bader charges per
atomic species using the Bader charge analysis [Tang 2009] on a fine fft-grid
of 216×216×320. It can be observed that, in total, the molecule gains about
3.5e−. In particular, the charge transfer from the Mn and pyrrole C molecular
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Figure 5.14: X-ray magnetic circular dichroic (XMCD) spectra reveal a magnetic polar-
ization of the N π-states of MnPc for (b) Co/MnPc but not (c) Cu/MnPc..

sites reduces their magnetic moment. On the other hand, the C atoms in the
benzene rings that gain electrons develop a larger magnetic moment than
those of the pyrrole cage.

5.3.3.1 Magnetic anisotropy

We discuss now the magnetic anisotropy of the MnPc/Co interface. For free
MnPc molecule, our calculations yielded a magnetic anisotropy energy value
MAE = 0.62meV calculated between in- and out-of plane magnetization
direction. This value is less, by an order of magnitude, than the one reported
using the full potential linearized augmented plane wave method [Wang 2009]
and is in turn related to the value of the orbital moment which is also lower by
an order of magnitude. This is due to the difference in treating the d-electrons
among the two methods beside the different methods used to calculate the
MAE. Nevertheless, the magnetization easy axis is found to be out of the
molecule’s plane consistently.
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Bader charge

Mn +1.03

N (n.n) −4.59

N (f.n) −4.81

C (pyrrole) +6.56

C (benzene) −3.52

Table 5.2: The calculated Bader charges on the MnPc molecular sites upon adsorption
on Co surface.

Figure 5.15: Structure showing the geometry of the MnPc molecule adsorbed on Co(001)
and a lateral view showing the molecular distortions where the sites lying along x-axis are
lower toward the surface than those along y.

Indeed, upon the molecule’s adsorption on Co surface, the magnetization easy
axis becomes along the molecule’s plane where MAE = 48 meV. This large
value is due to the fact that the magnetization of the system is overwhelmed
by the Co contribution. Yet it is also interesting to find out the exact direc-
tion of the in-plane magnetization easy axis. For this sake, the calculations
were performed along three in-plane magnetization directions along: x-axis,
y-axis, and 45°in between. The easiest axis is found to be along the x-axis
with MAE = 0.66 meV. In the following, we interpret the direction of the
magnetization easy axis in terms of the structural properties of the interface.
In fact, the atomic relaxation performed while including the van der Waals
interaction yielded a ground state structure with geometric distortions where
the molecular sites of the MnPc are vertically displaced (Figure 5.15). In
particular, one can distinguish two behaviors: along the x-axis the atoms are
displaced toward the Co surface with respect to Mn position, whereas along
y-direction the atoms are displaced away. This promotes the x-axis to be the
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magnetization easy axis. Indeed, a similar symmetry reduction was previously
reported for CoPc adsorbed on Cu(111) [Cuadrado 2010].

Figure 5.16: MnPc density of states for non-relativistic calculation of Co/MnPc compared
to two spin-orbit coupling calculations where the magnetization is aligned: (black) in the
molecule’s plane along x-axis, (red) perpendicular to the molecule along z-axis.

It is also interesting to analyze the changes in the density of states (DOS)
induced by including spin-orbit coupling as well as by changing the magneti-
zation direction. The MnPc DOS obtained for two magnetization directions
(x and z) are displayed in Figure 5.16 and compared to the non relativistic
DOS. In the first stage, including spin-orbit coupling induces a shift of the
molecular DOS peaks around EF by about 7 meV to lower energy. As for
the magnetization direction, the intensity of the DOS peaks when magneti-
zation is along x-axis, the easy magnetization direction, is smaller than that
when the magnetization is aligned along z-axis. In fact, spin orbit coupling
induces some changes in the electronic structure depending on the direction of
magnetization. Consequently, one may expect changes in the resistances espe-
cially that the energy range concerned is around the EF leading to anisotropic
magnetoresistance. Nevertheless, those limited differences in the DOS almost
cancel when integrated leading to the small value of MAE obtained.
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M ‖ x M ‖ z

Mn +2.542 +2.542

MS(µB)

N +0.11 +0.11

Mn +0.02 −0.011

ML(µB)

N −0.0003 +0.001

Table 5.3: Spin and orbital moment on Mn and N calculated for in plane x and out of
plane z magnetization orientation.

Another interesting aspect about the magnetic anisotropy of the MnPc/Co
interface is the re-orientation of the orbital moment upon changing the mag-
netization direction from in-plane to out-of-plane direction. We show in Table
5.3 the spin and orbital moments of the Mn and N corresponding to the hard-
est magnetization direction z and the easiest one x. It is obvious that the spin
moment is isotropic, whereas the orbital moment is not. In fact, the orbital
moment shows a remarkable behavior in response to the magnetization re-
orientation to the out of plane direction where it changes sign. In particular,
for the in plane magnetization direction, the spin and orbital moment of Mn
are parallel while those of N are antiparallel. Meanwhile, when the magne-
tization aligns out of plane, they become antiparallel for Mn and parallel for
N. This behavior conserves an antiparallel coupling between the Mn and N
orbital moments regardless of the magnetization orientation.

5.4 Conclusion

In this chapter, we have presented a comprehensive theoretical study of the
interface between manganese phthalocyanine and Co(001) including both van
der Waals and spin-orbit interaction. A high spin polarization is observed
around the Fermi level which is found to be consistent with photoemission re-
sults. We show in particular that the highly spin polarized interface is coordi-
nated with an induced magnetism on the molecule’s carbon and nitrogen sites
upon hybridization to the Co surface. These results are depicted in relation to
the charge transfer results obtained from Bader charge analysis. Besides, the
magnetic anisotropy of the interface is investigated and compared to that of
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a free molecule. Indeed, the Co/MnPc interface involves differing spinterface
formation mechanism in each spin channel which yield a high polarization.
Beside the initially described mechanism in terms of band-induced spinter-
face states (BISS), we propose to extend the spinterface concept to include
the additional spinterface formation mechanism of surface-induced spinterface
states (SISS). The direct hybridization which drives both mechanisms intro-
duces Co/MnPc spinterface as a strong candidate of an ideal spin polarized
current source which could be promising once integrated in spintronic devices.





Chapter 6

General Conclusion

In the active field of research on functional materials that represent potential
candidates for spintronics technological applications, a fundamental descrip-
tion of the electronic structure and magnetic properties of such materials be-
comes crucial. In this context, the present thesis addresses the investigation of
the properties of two different classes of functional materials by means of the
density functional theory (DFT) including the spin-orbit interactions. In par-
ticular, we have studied the magnetoelectric oxide gallium ferrite (GFO) and
the hybrid interface between the organic molecule manganese phthalocyanine
(MnPc) and the ferromagnetic Co(001) surface.

In the first part, we have presented a comprehensive study of the proper-
ties of GFO. Mainly, the dependence of the different properties on the iron
concentration x has been demonstrated and discussed from the theoretical
perception after it was witnessed experimentally in literature. At the first
stage, we showed that using the Hubbard term U = 8 eV best describes the
previously observed properties of GFO. The lattice parameters were found to
vary as x is increased leading to an overall increase of the unit cell volume.
We showed also that the band gap decreases while increasing x in relation to
the changes in the conduction band induced by the excess Fe atoms. Inter-
estingly, the magnetic properties seem to be enhanced with the increase of
x. Indeed, the calculated magnetic anisotropy values showed a decrease as
function of the Fe concentration while keeping the c-axis as the preferential
magnetization direction in good agreement with experimental observations.
The aspect and behavior of the magnetic anisotropy was interpreted in terms
of the difference in the distortion directions among the Fe atomic sites. Bader
charge analysis showed that the bonding in GFO is non completely ionic as
it was previously expected. Besides, the optical spectra were calculated and
directly compared to the experimentally measured once. The main optical
features were interpreted, in view of the electronic structure, to be rising from
the charge transfer transitions from the O 2p-states toward the Fe 3d-states.
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By comparing the calculated and measured optical spectra, we have proven
that the optical properties provide a good tool to determine the cationic site
occupation in GFO. As a consequence, we point out high levels of site-disorder
contained in GFO.

The peculiarity of GFO resides in the interplay between its structure and mag-
netic properties on one side and its electric and magnetic properties as well.
In this respect, it is of great interest to compute and tune the magnetoelectric
effect, i.e. the response to an electric field, in GFO which is unfortunately
beyond the scope of this thesis.

In the second part, we have presented the calculated properties of the
Co/MnPc interface, relaxed with including van der Waals interactions, which
provide an interpretation for the observed experimental results. Specifically,
the highly polarized interface measured by photoemission was verified by a
careful analysis of the interface density of states in the vicinity of the Fermi
level. In addition, this high polarization is coordinated with induced magnetic
moments on the molecular sites, in particular we calculate an orbital moment
on the N sites which was also verified by XMCD results. Indeed, the forma-
tion of the Co/MnPc spinterface was described by differing mechanisms in
each spin channel: the original spinterface formation mechanism BISS (band-
induced spinterface states) resulting from the spin selective broadening of
the molecular orbitals on one hand and the SISS (surface-induced spinterface
states) which is a new mechanism that we have proposed.

The direct hybridization which drives both formation mechanisms introduces
Co/MnPc spinterface as a strong candidate of an ideal spin polarized current
source which could be promising once integrated in spintronic devices. It is
noteworthy to state that the similar results of a high polarized spinterface wit-
nessed using other phthalocyanine molecules (e.g. H2Pc/Co(001)) provide a
direct proof of the promise behind the spinterface concept, which was initially
described in terms of band-induced spinterface states (BISS). We proposed
to extend this concept to include the additional spinterface formation mecha-
nism of surface-induced spinterface states (SISS) that appear if the FM band
of the dominant hybridization mechanism is absent near Fermi level in one
spin channel. For instance, this criterion is satisfied in the spin ↑ channel
by strong ferromagnets such as Co or Ni. By combining BISS and SISS in
separate spin channels, we can, thus, guarantee a large spintronic response of
a spinterface.
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