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With the population growth, the increase of the new technologies and the transportation
requirements, the energy demand was never as high as today. To fulfill this increasing energy
need and to compensate the decreasing fossil fuel resources, new systems of energy
production have to be developed. Moreover, the global warming and the desire to improve our
life quality motivate the search of cleaner energies. Among possible energy conversion
systems, fuel cells represent a good alternative. They can be used in various applications such
as transport devices, cogeneration systems or mobil phone. In addition, the fuel cell system is
one of the less polluting systems with water as only product.

Nevertheless, the commercialization of these devices is currently limited by their cost. Indeed,
to get sufficient kinetics of the reactions occurring at the fuel cell electrodes, electrocatalysts
are required. Today, the most used catalyst for the oxygen reduction reaction (ORR) is
platinum which is highly active for this cathode reaction, but also very expensive. Therefore,
the current research target is to develop cheaper catalysts with equivalent electrocatalytic
activites. While in acidic media, only noble metals are stable and active for the ORR, various
materials such as non noble metal oxides are suitable for the ORR electrocatalysis in alkaline
media. Therefore, alkaline anion exchange membrane fuel cells represent interesting systems
in terms of fuel cell cost.

Perovskite oxides are promising materials. Their flexible structure tolerates a wide range of
oxide compositions and thus, offers a large window of properties. Then, perovskites are
suitable for numerous applications in heterogenous catalysis and electrocatalysis, in
particular, ORR electrocatalysis. To aim an alkaline anion exchange membrane fuel cell
application, the electrocatalytic activity of this oxide for the ORR should be sufficiently high
to get reasonable performances and they have to display long term stability. Also, in order to
improve the cathode composition, the ORR mechanism and the role of each component of the

catalytic layer have to be understood.

To answer these questions, the present thesis is divided in six chapters.

Chapter 1 gives a literature review on the ORR catalysts in general, and on perovskite oxides

in particular.

The materials and methods used in this work to study the perovskite catalysts are discribed in

Chapter 2.

16



Chapter 3 is devoted to the characterization of the oxides. It includes the material

characterization and the investigation of the electrochemical properties of various perovskites.

Carbon is usually added to catalytic layers to improve their conductivity. Its role in the
electrochemical and electrocatalytic behaviors of perovskite/carbon electrodes is studied in
Chapter 4. In this chapter, the catalytic activity of perovskite electrodes for the ORR is also

discussed according to their compositions.

Chapter 5 is focused on the understanding of the ORR mechanism on perovskite/carbon
composites. For this, the ORR and the transformation of a reaction intermediate, the hydrogen
peroxide, are studied experimentally on various perovskite-based electrodes and interepreted
with the help of a mathematical model.

The chemical and electrochemical stabilities of the perovskite electrodes under various
conditions are investigated in Chapter 6. In this chapter, the electrochemical response is
discussed together with the material characterization of the oxides.

Finally, the General conclusion and Outlook concludes the work.

At the end of the thesis, additional data can be found in the Appendix section.
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Literature Review
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1.1. Fuel cell technology and challenges

During the last decades, numerous studies were dedicated to the improvement and the
commercialization of new systems of electricity production to fulfill the growing energy
demand and the approaching lack of fossil fuel ressources.

With the purpose to develop clean energies, the fuel cell technology offers many
environmental advantages - no or few CO, emission, no emission of NOy, hydrocarbon or
particles, water as only product for hydrogen fuel cells — as well as automotive, mobile and

stationary applications.

In a fuel cell, the electricity is directly produced from chemical energy thanks to the oxidation
of a fuel (e.g. hydrogen) at the anode coupled with the reduction of an oxidant (e.g. oxygen
from air) at the cathode.

Depending on the nature of their fuel and of their electrolyte, several fuel cell systems exist.
Some of them are listed in Table 1. The solid oxide fuel cells (SOFC) have high operating
temperature — 700-1000°C — and are therefore only used for stationary applications. Low
temperature fuels cells such as alkaline fuel cell (AFC) or proton-exchange membrane
(PEMEC) are more suitable for transport applications.

Besides hydrogen, methanol in e.g. direct methanol fuel cells (DMFC) and borohydride in
direct borohydride fuel cell (DBFC) can be used as fuels.

Table 1 : Example of fuel cell systems

Fuel cell Ion Operating
Fuel Oxidant Electrolyte
name conducted temperature, °C
Proton exchange
PEMFC H, Air H* 60-100
membrane
AFC H, Air + H,O OH Alkaline electrolyte 60-90
H,, Alkaline anion
SAFC Air + H,O OH <90
CH;0H exchange membrane
CH,, H,, )
SOFC o Air o~ Oxide 700-1000
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The principal fuel cell component is the membrane electrode assembly (MEA) which is
composed of three main elements. One of them is the electrolyte which can be a liquid
electrolyte or a membrane and which serves as separator of the anode and the cathode
reagents, electronic insulator and ionic conductor. On both sides of this electrolyte lie the
cathodic and the anodic active layers where the electrochemical reactions occur. These layers
contain the catalyst material, which, for low temperature fuel cells, is usually mixed with or
deposited on carbon to ensure high particle dispersion and electronic conduction, and an
ionomer to allow the triple — ion, electron, gas — contact. At the back of the active layers and
for low temperature fuel cells, the gas diffusion layer (GDL), composed of a carbon paper and
polytetrafluoroethylene (PTFE), allows the reagent feeding, the product draining and the
current collecting.

Up to now, the main studied fuel cells are the PEMFC thanks to the existence of well-
developed proton-exchange membranes such as Nafion®. However, acid fuel cells require the
use of noble metal catalysts such as platinum, the price and availability of which limit the
commercialization of these fuel cells. Moreover, the active layers suffer from degradation
during PEMFC operation due to (i) Pt dissolution, (ii) carbon support corrosion and
subsequent Pt agglomeration, (iii) Pt migration to the electrolyte [1]. It results in an
accelerated decrease of the performance.

The alkaline fuel cells (AFC) present the advantage to allow the utilization of cheaper
catalysts. Indeed, numerous non noble metals and oxides are stable and active in this medium.
Nevertheless, carbon dioxide from air can react with the liquid electrolyte to form carbonate
species. This results in a loss of the performance due to the decrease of the electrolyte
conductivity and the blocking of the porous cathode by the carbonate precipitates.

The alkaline anion exchange membrane fuel cell - or solid alkaline fuel cell (SAFC) — offers a
good compromise between PEMFC and AFC. First of all, the alkaline membrane is less
affected by the carbonation since it does not contain mobile cations to form solid precipitates.
Then, the use of a membrane results in a compact system, contrary to an AFC. Finally, the
alkaline medium allows the utilization of less expensive catalysts than in a PEMFC. Even if
the improvement of the alkaline anion exchange membrane properties is still required [2],

SAFCs are considered as promising type of fuel cells.
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1.2. Oxygen Reduction Reaction (ORR)

The oxygen reduction reaction (ORR) is one of the most important processes in low
temperature fuel cells. However, the sluggish kinetics of the oxygen reduction reaction (ORR)
is largely responsible for the overpotential in these devices, even on the most catalytically
active Pt materials [3]. Therefore, intensive researches were performed during the last decades
to find suitable catalysts. The main issues of the catalyst material concern the performance,
but also the durability and the cost.

This section gives a succinct description of the ORR in acid and alkaline media, as well as a

brief review of the materials active for the ORR electrocatalysis in alkaline media.

1.2.1. ORR pathways

1.2.1.1. ORR in acid medium

The ORR has a complex mechanism involving several steps and intermediate species such as
O2.ads» HO2 245, H202 245, OHags, Oa4s Where “ads” stands for adsorbed species. Even if the ORR
has been widely studied on Pt-based materials, the nature of these steps is still debated.
Nevertheless, it is established that two main ORR pathways can occur, depending on the type
of electrocatalyst and the experimental conditions.

The first one - the so-called “direct” pathway - is the reduction of O, into H,O, written as
(Equation 1):

Reaction1: 0, + 4e~ + 4H™ 2 2 H,0, E° = 1.23 Vg at 298K (Equation 1)

in acid media, where E° stands for the standard potential. It is however not the direct
exchange of 4 electrons, but is called direct since none of the intermediate species of the
elementary steps is stable in aqueous electrolytes.
This is not the case for the “series” pathaway where O; is reduced in a 2 electron reaction to
H,0; (Equation 2):

Reaction2: 0, + 2 e~ + 2H" 2 H,0,,E° = 0.7 Vgyg at 298K (Equation 2)
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This H,O, intermediate is stable and can either:
- be reduced through a 2 electron reaction (Equation 3):

Reaction 3 : H,0, + 2 e~ + 2H* 2 2H,0,E° = 1.77 Vgyg at 298K (Equation 3)

- be catalytically decomposed into O, and H;O (Equation 4):
Reaction 4 : 2H,0, 2 2H,0 + 0O, (Equation 4)

- or diffuse away from the electrode surface to the bulk of the electrolyte.

These processes are often represented through the following Wroblowa’s scheme (Figure 1).

ey

Figure 1 : Simplified scheme of the ORR, adapted from [4], where k; is the rate constant of the
reaction i

When the reduction or the decomposition of H,O, occurs, the global number of exchanged
electrons is 4, as for the “direct” pathway. However, the presence of H,O; is detrimental for
fuel cells since it degrades the catalyst layer and the membrane [5,6]. Therefore, if the ORR
follows a “series” pathway, a high activity of the catalyst for H,O, transformation is required
to reduce the degradation caused by the H,O, presence.

In order to study whether the ORR is a ““series” or a “direct” pathway, researchers usually use
the rotating-ring disk electrode (RRDE) technique. With this method, the ORR occurs at the
disk, and eventual H,O, species formed during a “series” ORR pathway will be oxidized at
the ring, which therefore serves as a detector. It should however be noticed that if the H,O,
transformation is fast on the electrode surface, no H,O, intermediate will be detected. In the
case of a “series” pathway, it can also be useful to study the kinetics of the H,O, reduction

and H,O, decomposition reactions.

1.2.1.2. ORR in alkaline medium

In alkaline electrolytes, the main ORR pathways are similar to those in acidic media.

Neverthelss, in alkaline solution, H,0, is transformed into HO, according to (Equation 5):
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H,0, + OH™ 2 HO, + H,0 (Equation 5)

The pKj of this reaction is 11.7 [7]. Then, the ORR “direct” pathway is (Equation 6):
0,+4e” +2H,0 24 0H7,E°=0.401 Vg at 298K (Equation 6)

and the main steps of the “series” pathway are (Equation 7) (Equation 8) (Equation 9):
0, + H,0 + 2e™ 2 HO, + OH™ ,E° = —0.065 Vgyg at 298K (Equation 7)

HO,™ + 2e™ + H,0 2 30H™,E° = 0.867 Vs at 298K (Equation 8)
2HO,” 2 20H™ + 0, (Equation 9)

Also, HO; species may diffuse in the electrolyte.
It should be noticed that, by misuse of language, HO, intermediate species are often referred

to H,O, in the literature.

1.2.2. ORR electrocatalysts in alkaline media

The ORR Kkinetics is strongly sensitive to the type of the catalyst surface. Therefore, highly
active materials have to be chosen. Besides, the catalysts should also be stable, selective and
able to reduce O, to OH, producing as little as possible HO;'.

This section gives a non exhaustive review of ORR catalysts in alkaline media.

1.2.2.1. Noble metals

The high ORR activity of platinum motivated intensive researches on reaction kinetics and
mechanism. Fundamental studies were perfomed on Pt single crystals. In 0.1M KOH, Pt(111)
demonstrated the highest ORR activity [8,9]. The lower activity of Pt(110) and Pt(100) was
attributed, with the help of the study of the temperature dependence of the HO, yield and
modeling, to the irreversible adsorption of OH species which limits the reaction kinetics. The
study of the HO, reaction suggested that, despite the low amount of HO,™ detected, the ORR
is mainly a “series” pathway on Pt single crystals, with the reduction of HO,  intermediate.
The latter is inhibited in the hydrogen underpotential deposition region, leading to high yields
of HO,. The “series” pathway was also reported for polycrystalline Pt surfaces [10,11].
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For practical applications, it is necessary to reduce the Pt loading to decrease the catalyst cost.
Therefore, Pt in fuel cells is usually used in the form of carbon supported Pt nanoparticles.
Genies et al. [12] studied the effect of the Pt loading and the particle size in Pt/C electrodes on
the ORR electrocatalysis. They found that the specific activity - normalized to the surface area
- decreases with the particle size. Indeed, the kinetic currents at -0.06 V vs Hg/HgO in 1M
NaOH was 290 pA.cm'zpt for the Pt/C electrodes with 80% Pt (particle size of ca. 25 nm),
while only 70 pA.cm™p was measured on the electrode containing 5% Pt (particle size of ca.
2 nm). Using the RRDE technique, they measured very little amount of HO, produced during
the ORR. The higher amount detected for the electrode with the lower Pt loading was
attributed to the reduction of O, into HO,™ on the carbon support.

Another way to decrease the catalyst cost is to use other noble metals. For instance, Lima et
al. investigated the ORR on various noble metals in 0.1M NaOH [13]. They observed that, in
alkaline media, the most active single crystal surfaces were Pt(111) and, interestingly,
Pd(111), followed by Rh(111), Ag(111), and further, Ir(111) and Ru(0001) which display
significantly lower onset potentials. While Au(111) demonstrated high ORR kinetic currents,
it involves only 2 electrons in the ORR whereas other noble metals catalyse a 4 electron
pathway. The same trends were observed for noble metal nanoparticles deposited on high
surface area carbon. By plotting the kinetic current for single crystals, carbon-supported
nanoparticles as well as Pt monolayers on single crystal surfaces versus the d-band center
energies, a Volcano relationship was observed [13]. The d-band center should have an
optimum value. High values of the d-band center lead to strong O, bonding. Then the O,
splitting — assuming a ‘“direct pathway” - easily occurs, but the surface is covered by
oxygenated species which are strongly adsorbed. On the other side, low values of the d-band
center allow a weaker adsorption of oxygen-containing species but the bonding is not
sufficient to perform the O splitting.

Reviews on Pt-based catalysts including alloys can be found in the literature [14,15].

To conclude, noble metals are highly active for the ORR. Nevertheless, their price is a
limiting factor. Alternative candidates are carbon materials (see section 1.2.2.2) and non noble
metal oxides (see section 1.2.2.3) which are more interesting from the point of view of cost
and availability.

Much interest has been attracted to FeN,/C materials which will not be considered in this

review.
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1.2.2.2. Carbon materials

While not active in acid medium, carbon is able to catalyse the oxygen reduction in alkaline
medium. As reported in some reviews [16,17], several mechanisms were proposed for the
ORR on carbon materials. They depend on the allotropic form of carbon but also on the
eventual pretreatment (e.g. polishing, fracturing, reduction/oxidation [18,19]) of the surface.
Despite the mechanistic differences, the authors agree that the ORR on carbon catalysts
results in HO,", which is not suitable for fuel cell applications.

The characteristic two wave shape of the ORR voltammograms on glassy carbon (GC)
electrodes was attributed to two consequitive 2 electron reductions of O, into HO,". At low
overpotential, this reaction occurs on the most active sites. Thanks to the comparison of the
ORR on bare GC and on quinone-modified GC electrodes, Tammeveski et al. determined that
these actives sites are the quinone groups [20]. On bare GC, the surface concentration of these

sites is limited, leading to a decrease of the current at high overpotentials.

With the purpose to improve its ORR activity, carbon can be doped with heteroatoms. For
instance, Pan et al. [21] doped graphene with N and observed very high ORR activity in 0.1M
KOH, comparable to that of Pt/C. Besides, P-doped carbon materials were also reported to be
active towards the ORR in alkaline media [22]. Moreover, they display some activity for the
HO; reduction. Also, almost 4 electrons were involved in the ORR on graphene-based carbon

nitride electrodes [23].

1.2.2.3. Non noble metal oxides

In alkaline solutions, contrary to acid media, non noble metal oxides are stable and can serve
as ORR electrocatalysts. Simple oxides such as spinel or manganese oxides, as well as
complexe oxides including pyrochlore and perovskite oxides demonstrated significant ORR

activities.
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1.2.2.3.1. Spinel oxides

Oxides with spinel structure — xX*y? +202'4 general formula — have shown activity for both the
ORR and the oxygen evolution reaction (OER) electrocatalysis in alkaline media.

The most common spinel catalyst for these applications is the Co-based spinel. Compared to
carbon, Co304 displays higher ORR activity with four global electrons involved in the
mechanism [24-26]. This is due to the high activity of this spinel catalyst for the
decomposition or the reduction of HO,. Although NiO is not capable to reduce or
decompose HO; species [25], the substitution of Co* by Ni%* to form NiCo0,04 oxide does
not affect the number of electrons which remains equal to 4 [24,25]. Also, the Mn-substituted
MnCo,04 spinel shows higher ORR activity than carbon [26] and De Koninck et al. [27]
demonstrated that the highest ORR activity of MnyCu;xC0,04 compounds is obtained when
both Mn and Cu cations are present.

Besides, the electrocatalytic activities of AMn,O4 spinels were investigated using the RRDE
technique. Ortiz et al. [28] studied the ORR on Cr; CuMn,;04 oxides and measured the
lowest amount of HO, release when x=0.75. Later, Ponce et al. [29] observed that the ORR
kinetic currents of NiMn,0Os were significantly higher than those of NiysAlysMn,0O4 and
AlMn,;04 compounds, showing the detrimental effect of the Al substitution. Regarding the
high amount of HO, measured, the authors concluded that the ORR on the studied spinel
oxides was a “series” pathway.

Usually, spinel electrodes contain the spinel oxide physically mixed with a carbon material.
With the purpose to increase the catalytic activity, some authors directly grow spinel oxides
on graphene. For instance, Liang et al. [30] have investigated the ORR activity of Co304
grown on graphene in alkaline electrolyte and measured enhanced activity compared to spinel
alone or graphene alone. This activity was even higher when graphene was doped with N.
Then, the hybrid Co3;O4/N-doped graphene displayed comparable current densities to Pt/C
and, more importantly, higher stability. The authors also compared the ORR and OER
activities of Cos3Qg4/graphene to that of MnCo,04/grapheme [31]. Both act as bifunctional
catalysts but MnCo,0; is the most active for the ORR. When grown on N-doped graphene,
MnCo,0; catalyst has a halfwave potential at only 20 mV below that of Pt/C electrodes for
the same catalyst loading in 1M KOH. Moreover, the activity of the spinel/graphene hybrid
catalyst was stable for at least 6h while the ORR current on Pt/C decreased by ca. 30%. In
addition, little amount of HO, was detected in the course of ORR on the spinel electrode,

proving efficient reduction to OH'. The activity of the hydrid material was significantly higher
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than that of MnCo,04 alone and MnCo,0, physically mixed with N-doped graphene. This
was attributed to the intimate interaction between the two components in the hybrid electrode

which ensures high conductivity and electrochemical activity.

1.2.2.3.2. MnOy

Without carbon, Mn oxides are not very active for the ORR [32]. However, when supported
on carbon materials, they display very high electrocatalytic activity, comparable to Pt/C
[32,33]. Although the authors generally agree on the involvement of the redox transitions of
Mn and of 4 global electrons involved in the ORR, conclusions on the reaction mechanism are
contradictory. Some of the authors suggested that the ORR follows a “direct” pathway on
MnOy [33,34] at least at low overpotentials, while others proposed a “series” pathway, either
exclusively on the Mn oxide [35] or with the reduction of O, into HO;, on the carbon
material, followed by the HO, reduction/decomposition on MnOy [32,36-38]. This could
explain why the number of involved electrons, and thus, of the HO, release, strongly depend
on the MnOOH to carbon ratio [39].

The electrocatalytic activity of Mn material could be improved by doping. For example,
Roche et al. [33] showed that the amount of HO, produced could be decreased by doping of
MnO,/C by Ni or Mg. Also, Wu et al. [40] reported that the ORR activity of MnO,/C
catalysts was not stable. A loss of kinetic currents and a decrease of the number of electrons

were observed after cycling. This could be avoided by doping the catalyst with Ni(OH),.

1.2.2.3.3. Pyrochlore oxides

Pyrochlores are complex oxides of the general formula A;B,0;, where A is often a trivalent
rare-earth cation, and B, a tetravalent transition metal cation. These species were also studied
for the ORR electrocatalysis and display quite high activity.

For instance, Saito et al. [41] investigated the ORR on various Ln,Ru;O7.5 (Ln=Pr, Nd, Sm,
Gd, Dy, Yb) oxides in 0.1M KOH using the RRDE technique and measured substantial
electrocatalytic activity and less than 20% of released HO, species. Moreover, this activity
could be increased by partially substituting Ru by Mn cation. Indeed, the ORR onset potential
on Nd;Ru; 75Mng 25075 pyrochlore is only 50 mV below that of Pt/C and less than 10% of
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HO, was detected on the pyrochlore electrode. Interestingly, it was also demonstrated that
pyrochlores show higher selectivity towards the ORR than Pt/C. By adding methanol in the
alkaline electrolyte, the ORR onset potential of Pt/C drops due to the methanol oxidation,
while the ORR activity of Nd,Ru; xMn,O7_s remains stable.

The ORR activity of Ln;B,07.5 pyrochlores was also studied with Zr or Sn in B position [42].
For both cations, the most interesting pyrochlore structures regarding the HO, release were
those with La as the A cation, while almost 80% were measured at the ring of the RRDE on
the Yb-based electrode. In fact, the activity of Yb,Zr,O7.5 was very similar to that of ZnO; in
the mentioned work, suggesting low influence of the structure on the electrocatalytic activity
in that case. The authors also reported that the incorporation of LaMnO; perovskite in
La,Zr,0.; significantly enhances its electrocatalytic activity by positively shifting its onset

potential.

1.2.2.3.4. Perovskite oxides

The perovskite structure is particularly interesting considering its flexibility (see section 1.3).
Then, it allows the tuning of the oxide properties by varying its composition, giving
promising materials for various catalysis applications.

Peroskite oxides have been intensively used as heterogenous catalysts for e.g. hydrocarbon
combustion [43-55], Fischer-Tropsch synthesis [56,57], oxidation of ethanol [55,58] or
toluene [59], CO oxidation [60-63], NO and N,O decomposition [64,65], but are also suitable
for electrochemical applications.

For example, they serve as cathode materials for solid oxide fuel cells (SOFC) [66-71] thanks
to their mixed conductivity and thermal stability. Since the seminal work of Matsumoto et al.
[72,73] and Bockris et al. [74,75] on the study of the OER and ORR electrocatalysis on
perovskite pellets, there is also an increasing interest for perovskite oxides as OER [76-81],
ORR [82-95] or bifunctional electrocatalysts [96-102] for low temperature applications such
as liquid and solid alkaline fuel cells, water splitting and metal-air batteries.

The perovskite oxides are indeed highly active for the ORR electrocatalysis since activities
close to that of Pt/C were reported for some perovskite electrodes [84,85,103]. Their

applications as ORR catalysts will be discussed in more detail in section 1.4.

29



1.3. Perovskite structure

This section gives a brief description of the perovskite structure. Reviews on this structure can

be found in [104-106].

1.3.1. Ideal structure

The general formula of perovskite oxides is ABOs, where A is a large cation with low valence
(usually 3+ or 2+) and B is a smaller cation, in general a transition metal cation, with a similar
or higher valence (usually 3+ or 4+). A wide range of cations can be inserted in A and B sites
thanks to the structure flexibility.

The ideal structure of perovskites is cubic. As represented in Figure 2, BOg octahedra form a
three dimensions array by sharing their corners, and A cations lie in the cavity created by
eight octahedra. From another point of view, the structure can be seen as being composed of
cubes of A with O in the center of the faces and B in the center of the octahedron formed by O

ions. Thus, the angle formed by B-O-B is equal to 180°.

Figure 2 : Two views of the ideal cubic structure of perovskite, adapted from [106]

In the ideal cubic structure, the distances between B and O atoms (Dg.o), and A and O atoms
(Da-o) follow the relationship: \2 (Dg.o) = Da.o. However, in practice, few ABO; structures
respect this rule due to various cation sizes. Therefore, Goldschmidt [107] introduced the
tolerance factor t given by (Equation 10) to estimate the deviation from the ideal structure

(t=1).
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Ra+Ro

= m (Equation 10)

with R, : ionic radius of A, Rg : ionic radius of O anion, and Rg: ionic radius of B cation.

If t is different from 1 but is comprised between 0.75 and 1.05, the structure is perovskite but
experiences internal strains. Thus distortions are required to stabilize the structure and
structures with lower symmetry, such as orthorhombic or rhombohedral, are obtained.

In the 70’s, Glazer proposed a table of predicted structures for distorted compounds which
display cation ordering and octahedral tilting [108,109]. This table was further improved by
Woodward [110,111].

1.3.2. Distortions

A tolerance factor t below 1 often indicates that the cation in A-sites is too small, leading to a
too large cavity and therefore an unstable cubic structure. Thus, the BOg octahedra tilt around
a crystallographic axis in order to lower the strain by reducing the site size. This tilting is
performed without changing the size of the octahedra, neither the connectivity, in order to
minimize the distortion energy. The resulting B-O-B bonds are bended.

For t above 1, some octahedra share their faces instead of their corners, leading to both cubic
and hexagonal layers. The latter layers can be stable without cations in the B-sites.

When the electronic configuration of a component presents a degeneracy, the structure breaks
this degeneracy by displacing cations and distorting octahedra. It is the Jahn-Teller effect

which allows the structure to reduce the energy involved by the degeneracy.

1.3.3. Cation ordering

If some A or B cations are substituted by cations of similar size and charge, the different
cationic species will be randomly distributed in the structure, each site being equivalent.
However, if the two cationic species present sufficiently distinct charge and/or size, a cation
ordering will occur.

Generally, in A xA’xBOs structures, A-site species are ordered in the layer arrangement, each
layer containing one type of cations. In AB;4B’O; structures, the preferential order is the

NaCl arrangement where the two species B and B’ alternate in the octahedral site. The
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obtained structure is often called “double perovskite” since the cell unit is doubled. When the
two species do not have the same size, a displacement of O is required to adjust the bond

length.

1.3.4. Atomic vacancies

Perovskite structures can involve A or O atomic vacancies (O0), whereas B-defictive
perovskites are not stable, except in face-sharing octahedra layers as mentioned above. Also,
interstitial ions are not thermodynamically favorable in perovskite structures. The oxygen
excess reported in LaMnOs3,5 compounds should rather be viewed as cation deficiencies.

In the bronze structures 0xA; xBOs3, the ordering of the vacancies is generally accompanied by
the tilting of BOg octahedra. The A cation may also be totally absent in the structure since the
array formed by B and O atoms is very stable. The remained oBOj structure either keeps the
cubic structure, as for oReOs, or is distorted.

Besides, several structures of anion-deficient perovskites were reported [112,113]. When
present in high quantity — up to ABO, structures - the oxygen vacancies lead to a cation
ordering depending on the Jahn-Teller effect, but also on the coordination preference of the B
cations. B can lie in a square planar configuration, like ACuO, [113], or in the tetragonal
pyramids and octahedra of brownmillerite A;B,03,,; structure.

When the structure presents both O and A vacancies (0BOs.s), it might translate along an axis
which does not contain oxygen atoms to eliminate the vacancies. Then, the structure -
crystallographic shear structure - is constituted of edge-sharing octahedra.

One should also mention the existence of the layered perovskites. These structures are
composed of 2D layers of corner-sharing octahedra separated by layers of cations. The most
common layers perovskites are the Ruddlesden-Poper A,;1B,X3,+1 and the Dion-Jacobson
A.B X304 structures, where n is the number of octahedra layers. This type of structure is the

only one which can support interstitial ions.

The extended perovskite composition and structure possibilities result in a large spectrum of
properties such as magnetic properties, electrical and ionic conductivities, thermal stabilities
or adsorption properties [114] which allow the utilization of perovskites for various catalytic

applications.
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1.4. Perovskites as ORR catalysts

In this section, the reported results concerning the electrode configuration, the ORR activity

and mechanism as well as the stability of perovskite catalysts will be discussed.

1.4.1. Configuration of perovskite electrodes

Various electrode configurations have been applied to study the ORR/OER electrocatalysis on
perovskites, including gas-diffusion electrodes, pellets, films obtained by painting the oxide
slurry on a metal foil, or by spreading oxide particles and a binder, with or without carbon, on
a glassy carbon support. This section is a brief review of the perovskite electrodes reported in

the literature.

1.4.1.1. Gas diffusion electrodes

With the increase of the interest to fuel cells, gas diffusion layers (GDL) became more
frequently used for perovskite oxides [83,86,87,94-96,99-102,115,116]. A GDL electrode
consists of a gas supply layer and of a reaction layer. The gas supply layer is a hydrophobic
layer usually made of carbon and PTFE which allow electronic connection and reactant
diffusion, and the reaction layer contains a catalyst, in this case perovskite oxide. To build
these layers, a mixture of a catalyst, carbon and PTFE in an organic solvent is rolled into a
layer of ca. 200 um and heated. Finally the active and gas supply layers are rolled together
with a metallic mesh (Ni, stainless steel ...) in between.

For GDL electrodes, perovskite oxide is usually mixed with carbon black particles, eventually
treated at high temperature to obtain graphitized carbon. However, some authors reported also
the use of carbon nanotubes (CNT) [115] and carbon nanocapsules (CNC) [116] instead of
carbon black. Moreover, perovskite oxides of GDLs can be directly supported on a carbon

material, as found in [83,86,87].
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In order to measure ORR activities in fuel cell conditions, perovskite-based gas diffusion
cathodes are prefered. However, the complex configuration of these electrodes makes difficult
the study of ORR mechanism and the electrochemical behavior of the perovskite. Therefore
other electrodes such as pellets or thin layers, more suitable for electrochemical studies, are

often utilized to investigate perovskite materials.

1.4.1.2. Pellet electrodes

For the first studies with perovskites, researchers mostly used pellets to investigate the OER
and ORR. In the 70s, Matsumoto et al. studied the ORR activity of LaNiO3 [72], as well as of
LaTiOs, SrFeOs, SrVO3, StRuO3, V(,Ti; 303 and La;SrxMnOj3 perovskite pellets [73]. In the
80s, Bockris et al. [74,75] studied a wide range of perovskite compositions both for the OER
and the ORR using pellet configuration. Pellet electrodes consist of a perovskite powder
pressed into disk electrodes, connected to a metallic wire. In general, only one face of the
pellet is in contact with the electrolyte. Other faces are isolated with epoxy material.

Nowadays, only few authors reported the use of perovskite pellets [91,92]. Indeed, the pellet
electrodes have the advantages to avoid binders or other additives, but their disadvantage lies
in the high porosity and concomitant internal diffusion complications. For example, Bockris
et al. [75] estimated the roughness factor of perovskite pellets prepared by solid state
synthesis as ca. 1000 and El Baydi et al. [117] found a roughness factor of ca. 1500 for
LaNiO; pellets prepared using the malic acid method. Moreover, electrode formulations
containing perovskites alone usually suffer from high Ohmic losses, posing problems for the

ORR investigation.

1.4.1.3. Thin layer electrodes

Very thin layers (ca. 1 um) of perovskite oxides can be obtained by drop casting on inert
support, for example on glassy carbon (GC) surface [78,82,84,85,88,89,93,103]. The thin
film approach is compatible with the rotating disc (RDE) and the rotating ring disc electrode
(RRDE), the advantage compared to the gas-diffusion electrode consisting of a more reliable
separation of kinetic and mass transport contributions. However, the drop casting of

perovskite particles is a very sensitive technique for which the particle dispersion on the GC
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surface strongly depends on the perovskite suspension preparation and on the drying method.
Several solvents were utilized for preparing perovskite suspensions, such as water [85], 2-
propanol [82,93], I-hexanol [89] or tetrahydrofuran (THF) [78,88,103]. Moreover, some
researchers speed up the drying by placing deposits under light [82,93] while other authors
reported a slow drying under a close jar [78,88,103]. Except for a few publications [85],
perovskites are usually mixed with carbon particles or eventually supported on carbon
materials (e.g. [89]) to improve the electrode conductivity. In order to fix catalyst particles on
the GC surface, a binder such as Nafion transformed from protonated into a cationic form is
usually used. It can be directly mixed with the catalyst suspension [78,85,103] or deposited on

a dried catalyst layer [82,88,93].

1.4.1.4. Alternative electrodes

Besides the mentioned electrode configuration, some authors utilized other electrode types.
One example is the layer of perovskite with [90] or without carbon [80,117] painted on a
metal foil (Ti, Ni...).

Another type of electrode is the paste electrode. It consists of a mixture of perovskite, carbon
and oil pressed into a porous material, as used in references [77,118,119]. The resulting

electrode is highly dense, contrary to pellet electrodes.

1.4.2. ORR activity of perovskite oxides

After the electrode preparation, ORR activites of perovskite-based cathodes are measured in
an O,-containing alkaline electrolyte by taking polarization curves for gas diffusion layer
electrodes and by RDE technique for thin layers. Thanks to these electrochemical techniques,
it was demonstrated that perovskite-based electrodes display higher ORR activities — higher
currents at lower overpotential - than the corresponding carbon support [82,83,100,115,116].
For example, Hayashi et al. reported ORR current densities of 300 mA.cm'zgeo at -80 mV wvs.
Hg/HgO for carbon supported LaMnOs.s, while similar current densities are only reach at ca.
-230 mV vs. Hg/HgO for carbon alone [83]. It proves that perovskites are good candidates for
ORR electrocatalysis. More interestingly, some authors reported ORR activity of perovskite

electrodes close to the “state-of-the-art” Pt/C. Indeed, at the benchmark potential of 0.9 V vs.
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RHE and in 0.1M KOH, ORR current densities of 40 pA.cm'zoxide were measured on LaNiO;
electrodes while Pt/C reaches 320 pA.cm'zpt [103]. Therefore only one order of magnitude
separated the perovskite material from the Pt electrode. Moreover, low cost of oxide materials
allows one to increase the catalyst loading in the fuel cell electrode to reach higher currents.
ORR activites comparable to that of Pt/C were also reported for Mn-perovskites, such as
LaMnOs,5[84], Lag 4SrosMnO3 [85] and Lag ¢Cag4MngoFeq 103 [86].

It is generally accepted that the active site for the ORR on ABO; perovskites is the B cation,
while the choice of an A cation and its partial substitution by a lower valence cation indirectly
impact the catalytic activity by changing the B oxidation state and the oxygen stoichiometry.
For low temperature applications, the most studied perovskites for the ORR are the La-based
oxides. They were studied either without doping [72,83,87,88,118] or doped with Sr
[85,89,115] or Ca [82,86,90-93,95,96,99,100,102,116]. Besides La-based perovskites, some
authors also investigated Pr-based [94] and Nd-based [119] perovskite oxides. For all these
perovskites, partial doping of the perovskite by a low valence A cation leads to an improved
ORR electrocatalysis [85,91,92,94,119]. For example, non doped NdCoOs; reaches 40 mA.cm®
deo at ca. -340 mV vs. Hg/HgO while Nd, sSr;,CoO3 reaches same ORR current densities at a
lower overpotential, i.e. at ca. -60 mV vs. Hg/HgO [119]. According to Tulloch et al., for La;.
w1xMnQOs3, about one order of magnitude separates current densities for non doped LaMnO;
from Sr-doped perovskites, the latter one being more active for the ORR [85]. Moreover,
while current densities of ca. 185 mA.cm™ geo for PrMnO3 and ca. 220 mA.cm™ geo fOT
CaMnO:s are reported in reference [94], ProcCapsMnO; displays ORR current densities of ca.
320 mA.cm™ geoat -150 mV vs. Hg/HgO.

In the reported studies, the perovskites which display significant ORR activities are those
containing Mn [83,85,87,89,93,94], Co [77,82,90-92,95,96,99,100,102,115] and Ni
[72,88,101,119]. Ir might also be a good candidate according to Chang et al. who partially
substituted Co by Ir in Lag¢Cap4CoOs perovskites and observed an increase of the ORR
activity [116]. However, Fe cation should be avoided in perovskite electrodes. Indeed, by
gradually incorporating Fe in Lag4CagsMn;.,Fe,O3 structure, Yuasa et al. [86] demonstrated
that Fe-based perovskites are less active than Mn-based perovskites for the ORR
electrocatalysis.

It should be noticed however that there is no agreement in the literature concerning the best
B-cation for the ORR in alkaline media. On the one hand, Suntivich et al. studied a wide
range of LaBOj3 perovskites in 0.1M KOH and reported the highest activity for LaMnOs;.s and
LaNiOs, which was at only one order of magnitude inferior to that of Pt/C [84,103]. On the

36



other hand, Sunarso et al. [88] investigated Ni, Co, Fe, Mn, and Cr as B cations for LaBOs
perovskites in 0.1M KOH too, and showed that LaCoOs is the most active in terms of the
ORR onset potential, in contradiction with the above mentioned publication. This emphasized
difficulties in comparing published results since the authors use different ways to prepare and
study perovskite electrodes. These differences concern material parameters such as the
perovskite synthesis, the electrode type and preparation, the nature of the carbon support, the
nature of the electrolyte, as well as the way the electrocatalytic activity is determined which
depends on the electrochemical method utilized for the study, the correction of the mass
transport contribution, and the normalization of the current by the oxide surface.

Among the mentioned parameters, the presence and the nature of the carbon support have a
great effect on the ORR performance of perovskite electrodes. Indeed, by varying the
perovskite to carbon ratio and by varying the carbon morphologies, several authors showed
that the composition of perovskite electrodes strongly impacts the perovskite utilization, and,
a fortiori, the ORR activities. Indeed, perovskite electrodes without carbon [82,88] or with an
insufficient carbon content [83,87] show very little ORR activities due to their low electronic
conductivity. This highlights that the addition of carbon powders significantly improves the
electrical contact between perovskite particles. On the other hand, Miyazaki et al. [89]
compared composites of La;SryMnOs/carbon nanotubes (CNT) with electrodes of Laj.
S1,MnO3; mixed with carbon black particles with a similar perovskite loading, and found that
the former leads to higher ORR activities. Similar behavior was observed for Lag ¢Sty 4C0O3
electrodes by Thiele et al. [115] who compared perovskites mixed with CNT and perovskites
mixed with acetylene black particles. Electrodes containing CNT displayed larger ORR
activities, attributed to a better electrical contact between the perovskite particles. Therefore,
an optimization of the perovskite based electrodes concerning both the perovskite/carbon ratio
and the electrode composition and morphology is required to increase the electrocatalytic
efficiency.

Recently [120], it was reported that the nature of the cation of the alkaline electrolyte plays a
significant role in the ORR mechanism. In the mentioned work, the use of NaOH, KOH or
LiOH electrolyte results in very different ORR activities for LaMnQOs,;, the highest activity
being measured in KOH and the lowest — one order of magnitude lower - for LiOH. This
points out to the fact that the use of different electrolytes may lead to different activities for a
given catalyst.

To conclude, ORR activites of perovskite electrodes reported by different groups are difficult

to compare since researchers use various methodologies. Nevertheless, perovskite oxides
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seem to be promising candidates for the cathode of an alkaline fuel cell. This brings up the

question of the ORR mechanism.

1.4.3. ORR mechanisms on perovskite electrodes

In order to investigate the ORR mechanism on perovskite oxides, several approaches have
been applied in the literature. First of all, the presence of HO, intermediate, proof of a
“series” ORR pathway, was investigated by the rotating ring-disk electrode (RRDE). This
intermediate can then be further reduced or decomposed (see section 1.2.1). Thus, the kinetics
of both HO;" electrochemical reduction and HO,  chemical decomposition were studied by a
few groups to determine the predominant ORR mechanism on perovskite oxides. Carbon
being an almost indispensable component of perovskite-based electrodes, it is also interesting
to investigate its exact role in the ORR electrocatalysis on composite electrodes. Finally, the
relationship between the electronic properties of the oxide and its electrocatalytic activity will

be discussed.

1.4.3.1. Identification of “series” versus “direct” ORR pathway by RRDE

studies

Thanks to the RRDE method, any stable HO,™ intermediates produced at the disk during the
ORR can be oxidized at the ring, resulting in a positive current at the ring. With this
technique, the amount of HO, formed during the ORR on LaMnO3; measured by Konishi et
al. [42] as well as on various LaMO3; and LaNiysM(s03; oxides (M = Ni, Co, Fe, Mn, Cr)
measured by Sunarso et al. [88] was very low. Therefore, the authors suggested that the ORR
mainly occurs through a “direct” ORR pathway without formation of HO, on perovskite
oxides. On the other hand, Tulloch et al. [85] found that the amount of HO, detected — and
thus the percentage of the “direct” pathway - is strongly dependent on the Sr doping by
studying various La; xSryMnOj; perovskites. Indeed, up to 80% of HO, were measured during
the ORR on LaMnOj3 while La 4St9 sMnOs3 displayed only 15% of HO,". Different amounts of
HO;" were also measured for LayCayp4MnQOj3 perovskites by Yuan et al. [93] with ca. 24% of
HO,;  for stoichiometric perovskites and around 10% for non-soichiometric oxides in both 1M

and 6M KOH. The authors attributed these differences to a more pronounced participation of
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Mn reduction/oxidation transitions in the ORR mechanism in non stoichiometric perovskites
which would favor the “direct” ORR pathway. According to Matsumoto et al. [72], a low
amount of HO,™ detected at the ring of a RRDE may be due to a fast transformation of HO,
on perovskite oxides rather than a “direct” ORR pathway. They proposed that after being
formed through the adsorption and reduction of O,, HO, stayed adsorbed on LaNiO; surface
and was rapidly reduced by a rearrangement on oxygen vacancies. High reactivity of HO,
and its concomitant short life time did not allow it to desorb and to diffuse away from the
diskelectrode to be detected at the ring.

Besides, the ORR on LapcCap4Co0O3; was studied using a channel flow cell [90] where
eventual intermediate species are formed on a generator electrode, transported by the laminar
flow of an electrolyte and collected by a downstream electrode. The presence of HO, in the
ORR mechanism was evidenced, and the comparison of the kinetics of the reductions of O,
into OH" and of O, into HO; led the authors to discard a possible “direct” ORR pathway on
the perovskite. The results obtained on LagcCag4CoOs/carbon electrodes also proved the
ability of this perovskite to reduce or decompose HO, contrary to carbon electrodes. The
“series” ORR pathway was also highlighted by Li et al. [82] on the same perovskite
(Lap6Cap4Co03) for various concentrated alkaline electrolytes using the RRDE method. The
currents measured on the ring during the ORR were non-negligible, suggesting a significant
amount of HO, formed on this perovskite. The authors finally suggested an ORR mechanism
with two possible ways for the HO, intermediate. HO, can either stay adsorbed and be
reduced on perovskite surface or desorbs and be detected by the ring of RRDE. This is
consistent with the ORR mechanism proposed by Matsumoto et al. [72].

In conclusion, while some authors mentioned the “direct” ORR pathway on perovskite oxides,
it seems reasonable to also consider the “series” ORR pathway on these electrodes, the low
amount of HO,™ detected being possibly attributed to the fast transformation of HO, without
its desorption. Therefore, it is essential to study the kinetics of possible HO, transformations

to identify the mechanism.

1.4.3.2. Study of HO,  decomposition kinetics

The catalytic decomposition of HO, was studied on various perovskite oxides using the
gasometric method. It consists of placing a H,O, aliquot in a catalyst-containing solution and

to measure the volume of O, evolved during the catalytic HO,” decomposition reaction. With
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this method and regardless the perovskite composition, the HO,” decomposition was generally
found to be a first order reaction with respect to the H,O, concentration [121-127].

The rate constant was then calculated by different ways depending on the authors which
makes comparison difficult. Normally the heterogeneous rate constant is calculated in cm.s™
by multiplying the first order constant by the solution volume and normalizing it by the
surface area of the catalysts [122,123,125]. This way, Soleymani et al. [125] measured a
kinetic constant of ca. 5 10 cm.s™! for La;.Ca,MnQO3 while Falcon et al. [123] found more
than 107 cm.s™! for LaFe 1xNixO3. When the surface area of the perovskite oxides is unknown,
an alternative way to compare catalyst activities is to normalize the first order constant by the
catalyst mass since the activity increases linearly with the latter [127]. This was performed in
references [121,124,126,128]. Depending on the perovskite composition and the temperature,
the obtained kinetic constants range between 1072 and ca. 7. 10" g'.s”(the largest was
measured for Lag oSty NiO3 [121,124]) and the corresponding activation energy, between 20
and 50 kJ.mol™ [121,124,126], showing the differences of catalytic activities of various
perovskites.

It is generally accepted that cations in A position do not directly affect the activity of
perovskites for HO,” decomposition. However, the nature of B cations may strongly influence
the catalytic activity. For example, it was highlighted that Cr-based perovskites are less active
than Ni-based for HO, decomposition since the reaction rate decreases by substituting Ni by
Cr in Lag ¢St 1Ni; xCriOs perovskites [121]. Magalhaes et al. [129] found that the presence of
Mn in LaMnFe,Mo0,03 (x+y+z=1) perovskites is essential to achieve high activity for HO,
decomposition while the increase of Fe and/or Mo contents leads to a decreasing catalytic
activity. The reasons of the higher activity of Mn and Ni cations are not understood yet but
were investigated by several authors. In general, the activity of Mn-perovskites for HO,
decomposition is related to Mn**/Mn>*" mixed valence ratio [125,126,130]. However, the same
authors also mentioned that the presence of oxygen vacancies might play a role in the
catalytic reaction. Lee et al. [127] studied various Ln;  A’MnO; and concluded that the
activity for the HO, decomposition is not determined by Mn surface concentration or
Mn**/Mn’* ratio, contrary to conclusions of other authors, but only by the oxygen non-
stoichiometry of the perovskites. They therefore proposed a HO, decomposition mechanism
involving the oxygen vacancies. By studying various Ni-based perovskites, the activity for the

HO;" decomposition was attributed to the facile redox transition of Ni cations [121-124].
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Numerous studies demonstrated the activity of perovskites for HO,  decomposition, but the
kinetics of this reaction is strongly influenced by the perovskite composition and, in

particular, by the oxidation state of the B-cation and the presence of oxygen vacancies.

1.4.3.3. Study of HO,™ reduction kinetics

While several researchers studied the HO, decomposition on perovskite oxides, very few
published results can be found for the study of the electrochemical reduction of HO, on
perovskite oxides.

In order to learn about the ORR mechanism in alkaline media, Wang et al. [131] and Zhuang
et al. [132] investigated the electrocatalysis of HO, reduction using cyclic voltammetry in
H,0;-containing 3M KOH electrolytes on La; «SrxMnO3 and La; CaCoOj3. Both perovskite
types showed activity for the mentioned reaction but conclusions on the reaction mechanism
and kinetics could hardly be obtained with the method applied. Nevertheless, it was found that
the amount of perovskite doping does not have any effect on the mixed potential of the
reaction. Moreover, Wang et al. [131] by varying the H,O, concentration from 0.4M to 1M
demonstrated that, at low potentials, the HO, reduction is controlled by diffusion on La;.
1xMnOj3 electrodes. Previously, Matsumoto et al. [72] proved with the RDE method in 1M
NaOH + 0.01M H,0O, that LaNiOs pellets display significant activity for HO, reduction. They
therefore suggested a “series” ORR mechanism where HO;" is rapidly reduced on perovskite
electrode thanks to the participation of oxygen vacancies. This fast transformation of HO,
into OH" avoids its desorption from perovskite surface and thus this intermediate cannot be
detected by the ring of the RRDE, leading to an apparent “direct” ORR pathway. In his PhD
thesis, Hermann investigated the electrocatalysis of HO, reduction on Lag¢Cag4CoOs [133].
Both RDE and flow cell methods were used and several electrode configurations were tested
for various H,O, concentrations in 1M KOH electrolytes. For all tested electrodes, HO,
reduction occurred in a mixed regime on the studied perovskites. Indeed, the measured
currents suggest that the perovskite can indeed reduce HO,™ but the currents were only slightly
dependent on the mass transport, indicating that the reaction kinetics was slow. The author
concluded that the perovskite rather transformed HO,™ by a chemical decomposition for which
the perovskite showed significant activity, followed by the reduction of the formed O,.
Besides the ORR investigations, the H,O, reduction/oxidation electrocatalysis was also

studied with the aim to build perovskite-based H,O, sensors [134-136]. However, these
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researches were performed in neutral solutions and thus can differ from the reactions actually
occurring during the ORR in alkaline media. The activity of Lage6St933:MnO3 for H,O,
reduction/oxidation was demonstrated thanks to a great increase of the measured current in
the presence of H,O, compared to graphite electrodes [135]. The same authors observed that
Sr-doping of La; xAxMnOj; leads to more efficient activity than Ca-doping. Shimizu et al.
[134] tested the activity of several LagcCag4B;xB’xO3 oxides (B=Cr, Mn, Fe, Co, Ni, B’=Fe)
and concluded that Lay¢CagsNig7Fex03035 is the most active for the H,O, reaction
electrocatalysis and that carbon is required in the electrode to achieve a good H,O; response.
Others authors [136] proposed the involvement of oxygen vacancies in the H,O, reduction on
Lag sS195C003.5, in agreement with the mechanism proposed by Matsumoto on LaNiOs [72].
Ahn et al. also evidenced differences in the catalytic behavior for the reduction and the
oxidation of H,O,.

In conclusion, it appearss that HO, can be reduced on perovskite oxides but further work has

to be performed to investigate the reduction mechanism and kinetics in more detail.

1.4.3.4. Carbon contribution in the ORR mechanism

It was shown in sections 1.4.1 and 1.4.2 that most perovskite electrodes currently contain a
certain amount of carbon in order to improve the perovskite utilization. However, as
mentioned in section 1.2.2.2, carbon is known to be active for the O, reduction into HO, in
alkaline media. Therefore it brings up a question on the separation of contributions from the
two components in the perovskite/carbon composite materials.

Most studies of the ORR on perovskite oxides neglect the contribution of carbon into the
ORR kinetics, even if the latter is added to the thin film electrodes. For example, Suntivich et
al. [103] reported a methodology to quantify specific ORR activies of perovskites without
considering carbon contribution to the ORR electrocatalysis, and normalizing the kinetic
current by the oxide surface area. On the other hand, some authors have investigated the ORR
mechanism by the RDE [82,88] or channel flow cell [90] on carbon and
Lag ¢Cap4CoOs/carbon electrodes to identify the role of each component. By comparing the
ORR onset potential and the number of involved electrons for both electrodes, it appeared that
the role of carbon may not be limited to the improvement of an electrical contact in the
catalytic layer. In fact, carbon probably participates in the first steps of the ORR, i.e. the O,

reduction into HO,". Then, the role of oxide may indeed be limited to the decomposition or
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reduction of HO, into OH  in the presence of carbon, leading to a higher number of electrons

than carbon alone.

1.4.3.5. Influence of electronic structure of perovskite oxides on the ORR

electrocatalytic activity

In the 70’s, Matsumoto et al. [73] proposed a relationship between the ORR electrocatalytic
activity and the electronic structure of perovskites. They observed that the ORR activity
increased with the doping of LaMnOs by Sr and suggested that it is related to the availability
of a localized e, orbital on the transition metal ion of the doped perovskite to form a o* bond
with the surface oxygen. They also observed that perovskites with empty o* bonds display
low ORR activity and proposed therefore that an electron is required in this bond to allow the
exchange of an electron in the rate-determining step of the ORR. For these authors, the O,
adsorption is an end-on type adsorption on perovskite surface and therefore occurs through
the orientation of the m* orbital of O, toward the e, orbital of the transition metal. If the
overlap of these orbitals is high, the electron transfer probability will be high. In other words,
the reaction rate will be high and the perovskite will be highly active for the ORR. When the
perovskite structure is distorted due to a small A cation, the random direction of e, orbitals
complicates their overlap with the n* orbital of O, and leads to low activity.

Some years later, Bockris et al. [75] studied the OER on perovskite oxides ant arrived at
important conclusions which can be applied to the ORR as well. First of all, they showed that,
in alkaline media, perovskite oxides are highly covered by OH species. Secondly, they plotted
the OER activity in function of the number of d-electrons and found a direct correlation
between them, suggesting that the transition metal determines the electrocataytic activity.
Also, they observed that the OER current decreases when the bond strength between the
transition metal cation and OH species increases. Thus, the breaking of this bond was
proposed to be the rate determining step of the OER. According to the molecular-orbital
approach and knowing that, at the perovskite surface, the e, orbital is split into the d,2 level at

a lower electron energy and a d,z_y2 level at a higher electron energy, the authors proposed

that the filling of the d,= orbital determines the OER activity. When electrons are present in
this orbital, the occupancy of the antibonding o* orbitals of B-OH increases, resulting in a

weaker bond, and thus, to higher OER rate.
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By using the density functional theory (DFT), Fernandez et al. [137] demonstrated that the
adsorption energies for O and OH on transition metals and transition metal oxides is
determined by the strength of the coupling of the valence states of the adsorbates with the d
states of the transition metal.

Very recently, after the start of the present thesis, Suntivich et al. [84] studied a wide range of
perovskites and found a M-shape relationship between the ORR activity and the number of d
electrons. The maximal activity was measured at high spin d* and low spin d’. This
corresponds to an e.-filling of 1. By plotting the electrocatalytic activity of perovskites in the

ORR in function of their e,-filling, a volcano shape was observed, as shown in Figure 3.

Figure 3 : ORR potentials at 25 ,uA.cm'zox as function of e, orbital in perovskite-based oxides.
Data symbols vary with type of B ions (Cr, red; Mn, orange; Fe, grey, Co, green; Ni, blue;
mixed compounds, purple), where x = 0 and 0.5 for Cr, and 0, 0.25 and 0.5 for Fe. Error bars
represent standard deviations. Reprinted from [84] with the permission of Nature Publishing
Group.

To account for the observed volcano-type relationship, the authors proposed the following
explanation. When the e,-filling is equal to one, one electron lies in the d,z orbital which is
directed towards the surface oxygen. This is therefore an o* electron which can destabilize the
B-OH bond in favour of the B-O, bond. When the e,-filling is higher than 1, the B-O, bond is
weak — it was confirmed by the O, temperature-programmed desorption. Then the

replacement of OH by O, hardly occurs and is therefore the rate determining step of the ORR.
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On the contrary, when the eq-filling is lower than 1, the B-O; is strong, leading to a difficult
regeneration of the surface OH.

To conclude, the authors proposed the filling of the e, orbital of the transition metal at the
perovskite surface as the ORR activity descriptor. Nevertheless, this volcano relationship
should be taken with caution, first of all because the determination of the ec-filling was not
precise, and secondly because the contribution of carbon in the ORR activity is neglected in
the mentioned study despite the fact that carbon was present in the thin layer electrodes in

high quantities.

1.4.4. Stability of perovskite electrodes

With the purpose to use perovskites as catalysts in SAFCs, sufficient stability of the oxide
properties is required. It includes the (i) thermodynamic stability of the perovskite structure,
(i1) chemical stability of perovskites in alkaline media, (iii) reversible transformations of
perovskites with the electrode polarization and (iv) sustainable ORR activity with stable oxide

properties after electrocatalysis.

1.4.4.1. Structure stability

As mentioned in section 1.3, AMO; oxides with a tolerance factor between 0.75 and 1.05
have stable perovskite structure. These considerations are based on the cation radii, but
thermodynamic data can also give information about the structure stability.

With this purpose, Calle-Vallejo et al. [138] calculated the formation energies of various
perovskites using the DFT and found values in very good agreement with reported
experimental free energy values. Two mains conclusions emerge from the comparison of the
free energies for different perovskites (Figure 4). First of all, it is observed that the stability
decreases with the increase of the atomic number of transition metal M. This is attributed to
the relative ease to exchange atoms, which is the easiest for the cation with the lowest number
of electrons in the 3d band, Ti, and the hardest for the one with the highest number of
electrons in the 3d band, Cu. Secondly, it is noticed that perovskites with A and M cations of

the same oxidation state, e.g. LaMO3s and YMO; with A and M in the oxidation state (3+), are
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more stable than those which have different oxidation state for the two cations, e.g. BaMOs3,
CaMOj; and SrMOj; with A in oxidation state (2+) and M in the oxidation state (4+). This
trend is supported by the values for doped La;,SrMO; perovskites. Indeed, they have
intermediate formation energies, consistent with their doping degree, showing that the

oxidation states of the perovskite components are determining factors in the structure stability.

Figure 4 : Trends in formation energies from elements for various families of perovskites
(AMO3), in terms of the atomic number of M. Symbols indicate calculated values for
individual perovskites, and lines show the best fit for each family. Reprinted from [138] with
the permission of John Wiley and Sons.

1.4.4.2. Chemical stability

As SAFCs require the use of alkaline membranes, the stability of perovskite oxides in
concentrated alkaline media is necessary.

Towards this goal, the chemical stability of La-based perovskite oxides was investigated by
XRD after 12h in 9M NaOH at 80°C [139]. After this treatment in the strong alkaline
medium, LaCoOs; was almost completely transformed into lanthanum hydroxide. LaMnO;
and LaNiOs also showed some traces of lanthanum hydroxide while LaCrOs;, LaFeO; and

Lag ¢Sr94FeO3; demonstrated a stable perovskite structure. Interestingly, it was found that a
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partial substitution of Fe by Co or Mn in Lag ¢Sro 4FeO3 perovskite does not alter its chemical
stability.

On the other hand, several researchers worked with perovskite electrodes in alkaline media
and did not report such significant changes. In particular, the stability of both ORR
[83,94,100] (see section 1.4.4.4) and OER [75,100,101] activities in alkaline media indirectly

prove the stability of Co-based and Mn-based perovskite oxides in these media.

1.4.4.3. Electrochemical stability

The ORR occurs under a cathodic polarisation of an electrode. Therefore, it is desirable to
study eventual transformations of perovskite oxide with the electrode potential.

In order to investigate the electrochemical stability of Ca; Ce,MnOj perovskite, Lucas et al.
[140] performed XRD, SEM and roughness factor measurements before and after CVs in
alkaline media. They found that an increase of the roughness of the electrode occurs with the
polarization, and, from a careful study of peak dependencies and from the change of the
electrolyte color, attributed these to the dissolution of high oxidation state Mn*" cation (x > 4)
at high potentials (ca. +0.4 V vs Hg/HgO). Despite this dissolution, XRD analysis proved that
the perovskite structure was preserved in the bulk after CV measurements. On their side,
Carbonio et al. [118] studied the effect of polarization on LaFe(,5Nig7503 and SrFeOs;
perovskites using the in-situ Mossbauer effect spectroscopy analysis in 0.1M KOH. For the
former, no modifications occur in the perovskite bulk with electrode polarization, while for
the latter, the perovskite is irreversibly reduced to Fe(OH), at potentials below -0.7 V vs
Hg/HgO. LaNiO; also demonstrates an irreversible transformation with decreasing potential.
Indeed, Karlsson [141] observed an increase of the ohmic resistance of the mentioned
perovskite upon electrode reduction in 1M KOH at 55°C and, by employing the XRD
analysis, concluded that LaNiOs is reduced to a poorly conductive layer of La(OH); and
Ni(OH),.

When possible and depending on the nature of the B cation of perovskites, the ORR should be

studied in a restricted potential window to avoid irreversible modifications of the oxides.

1.4.4.4. Electrocatalytic stability
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Usually, the electrocatalytic stability of a material is investigated by potentiostatic or
galvanostatic experiments in the presence of a reactant.

By these methods, the stability of the ORR activity was studied on various perovskite
catalysts. For example, galvanostatic measurements at -300 mA.cm'2geo were performed in 8M
KOH at 60°C in the presence of air and showed that LaMnO3s demonstrated a stable ORR
activity for at least 140h [83]. In the same electrolyte and at similar cathodic current densities,
Hyodo et al. [94] reported a stable ORR activity for ca. 200h of a PrysCay4sMnOs; electrode.
By performing XRD analysis before and after electrocatalysis, the authors showed that this
perovskite did not show noticeable changes in the structure. It is not the case of
Lag ¢Cap4Co0Os which, according to XRD, is largely decomposed into La(OH); probably due
to the interaction with the alkaline electrolyte (see section 1.4.4.2). This transformation results
in an increase of the overpotential of ca. 110 mV in 120h. These results are however not in
agreement with Zhuang et al. [100] who also studied Lag¢Cap4CoO3 and observed a rather
stable ORR activity during 120h at -50 mA.cm'zgeo. Interestingly, it was found that
Ndy.§Sr92Co05 perovskite demonstrates higher durability towards the ORR with pure O, than
with air [119], showing the importance of the partial pressure of oxygen on the mass transport
resistance and thus on the ORR activity. In this work, the stability of the ORR activity was
significantly improved with the partial substitution of Co by Ni. However, Karlsson [141]
showed that the ORR activity of LaNiO3 in 1M KOH at 55°C decreases significantly with the
time due to the irreversible reduction and transformation of the perovskite into La(OH); and
Ni(OH); species with the polarization (see section 1.4.4.3).

Besides, some authors have studied the stability of perovskite electrodes in the HO, reduction
reaction, as a possible step of the ORR. For instance, Wang et al. [131] by
chronoamperometry measurements at various potentials showed that a Mn-based perovskite
(Lap4S1ro6MnOs3) has a stable activity for the HO, reduction in 3M KOH + 0.6M H,O, at
25°C. A Co-based perovskite - Lag sCap4C00O3 — also displays stable activity for this reaction,
as demonstrated by galvanostatic measurements at various cathodic current densities in 3M
KOH + 0.4M H,0, at 25°C [132]. However, the durations of the tests — 30 min — is too short
to conclude on the long-term stability versus HO;  reactions.

In conclusion, no clear tendency of the electrocatalytic stability of perovskite oxides emerges
from the literature. Moreover, the stability of perovskite catalysts is not systematically
investigated although required for practical applications. Thus, search of on active ORR

catalysts should be accompanied by stability tests.
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1.5. Conclusions of Chapter 1 and Objectives

Regarding the increasing electricity production requirements and the environmental concerns,
fuel cells represent an attractive energy conversion technology. In particular, the solid alkaline
fuel cell (SAFC) is a promising system which allows the use of inexpensive materials.
Although the oxygen reduction reaction in the alkaline medium is often faster than in the
acidic, it is still a very slow process which largely limits the performance of fuel cells. Thus,
numerous studies have been performed to search for the most active and stable catalysts for
this reaction. In alkaline media, besides noble metals, various materials, including metal free
materials and transitions metal oxides, demonstrate noticeable ORR activity. Among these
materials, perovskite oxides appear to be suitable catalyst regarding their ORR activities and
their price. The present thesis is therefore focused on the investigation of perovskite oxides,
the catalytic behavior of which is not fully understood yet.

The flexible perovskite structure tolerates a wide range of A A’B;,B’yO3 compositions,
and thus, allows tuning of the oxide properties. The nature of the B cation was reported to
have a great impact on the ORR activity and doping of the A cation by cation of lower
valence may increase the ORR kinetics. Among perovskites of various transition metals Mn
and Co-containing perovskites have shown the most attractive catalytic activities. This work
therefore includes the study of several doped and non-doped perovskites of Mn and Co to
determine the relationship between their material properties and their catalytic activities.

In the literature, a large range of electrode configurations were used to measure the ORR
activities of perovskite materials. However, only one — the thin layer approach — is compatible
with the rotating (ring) disk (R(R)DE) techniques. Thanks to these techniques, careful
measurement of the kinetic activities and mechanistic studies of the ORR are possible in
liquid media. Therefore, liquid electrolyte and thin layers of perovskites are utilized in this
work.

However, perovskite-based electrodes generally suffer from high resistance between the oxide
particles (or agglomerates), which limits the ORR studies but also the application of these
oxides as cathode materials in fuel cells. The addition of carbon significantly improves the
conductivity of perovskite electrodes and thus, their performance. While carbon materials

show significant ORR activities in alkaline media which might interfere with that of
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perovskites, the role of carbon in perovskite/carbon composite electrodes is still unclear. In
this thesis, the impact of the carbon on the ORR mechanism will be investigated by
systematically varying the perovskite to carbon ratio in composite electrodes. Also, the
possibility to evaluate the intrinsic activity of perovskites in the ORR is an important issue
which will be addressed in this work.

The ORR has a complex multi-step mechanism which may involve the HO, intermediates if
it occurs through the “series” pathway. In the literature, some contradictions about the ORR
mechanism appear for perovskite-based electrodes. Indeed, both the “series” and the “direct”
pathways were reported. This might be the result of the utilization of different electrode
configurations, compositions and catalyst loadings. Therefore, the impact of the electrode
composition in terms of perovskite and carbon loadings as well as the oxide nature on the
HO; production during the ORR will be studied in this work using the RRDE technique.

If the ORR is indeed a “series” pathway with production of the HO, intermediates, the
investigation of the kinetics of its transformations is mandatory for the understanding of the
mechanism. From the literature, it is known that the HO,  decomposition kinetics is strongly
dependent on the nature of the B cation. Besides, little work has been performed on the HO,
reduction on perovskites, therefore the kinetics of this reaction remains largely unknown. The
present work includes the study of the HO, reduction/oxidation and the HO,  decomposition
for various perovskites to extend the understanding of the ORR.

Finally, with the purpose to use perovskite oxides as cathode materials in fuel cells, long term
performance stability is required. Literature data indicate that some perovskites might not be
stable in alkaline media. On the other hand, the stability of the electrocatalytic activity of
perovskites is not always performed, while being vital for fuel cell applications. Therefore,
the chemical and the electrochemical stability of perovskite oxides will be investigated in this
work. It includes not only the monitoring of the electrocatalytic activity but also the

characterization of the perovskite material after its eventual degradation.

To sum up, the present thesis will regroup kinetic, mechanistic and stability studies on various
electrode compositions. These studies are rarely combined in the literature but are required to
fully understand the ORR electrocatalysis. The present work therefore links fundamental

studies of the ORR to potential applications of perovskites as cathode materials for SAFCs.
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Chapter 2 :

Materials and Methods
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2.1. Synthesis of perovskite oxides

2.1.1. Synthesis procedure

The most commonly used method to prepare oxides with perovskite structure is the solid state
synthesis in which oxides are mixed in stoichiometric amounts and heated at high temperature
(1000-1400°C). However, for electrocatalysis purpose, this method is not suitable since only
powders with low surface area can be prepared.

The perovskite oxides studied in this work were all synthesized in the Moscow State
University by F. Napolskiy [142] with a soft chemistry method using polyacrylamide gel.
This method was described by Douy [143] and provides materials with higher surface areas
than conventional high temperature approaches.

For this synthesis, nitrate and acetate of the desired components are required. In case they are
only available in the form of oxides or carbonates, the latter were reacted with nitric acid to
form nitrates. Precursors - nitrate and acetate solutions - were weighted according to the
required stoichiometry, mixed with a solution of acrylamide and bis-acrylamide and heated at
around 300°C to form a polyacrylamide gel. Then, this gel was heated in air from 25°C to
650°C at 5°C.min"' and annealed at 650°C for 1h to decompose the gel and form perovskite
oxides. This temperature was chosen since it usually results in smaller particle size than
higher temperature synthesis [143]. After cooling, the oxides were milled in a planetary mill
in the presence of ethanol for 3 h at 120 rpm using WC balls to separate particles and thus to

obtain microfine oxide powder.

2.1.2. Choice of studied compositions

In this work, various perovskite compositions were studied in order to understand the
influence of the B cation, the A cation and the perovskite doping on the ORR mechanism and
on the perovskite stability.

It is known from literature that ORR activity is mainly linked to the nature and the oxidation

state of the B cations. That is why it was chosen to study two different B cations to confirm
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this behavior: Co and Mn, which demonstrated ORR activity in the literature (see section
1.4.2). One of the most common A cation for ORR catalysts being La, the main studied
components were therefore LaCoO3 and LaMnOs to allow comparison with the literature data.
In order to vary the oxidation state of Mn and/or the number of oxygen vacancies and a
fortiori the ORR activity, the effect of partial substitution of La** by a A?* cation in LaMnOs
oxides was also investigated by thoroughly studying LaggSro,MnOs. Finally, PrCoOs,
PrMnO; and LaygCap,MnO3 were tested as ORR catalysts and compared to LaCoO3; and
LaMnOs to check the influence of the nature of the A and A’ cations and their effect on the
perovskite structure and on the ORR activity.

Beside perovskite oxides, simple oxides of Co — Co304 spinel — and Mn — Mn,03 — were also
synthesized by the polyacrylamide gel method and studied for ORR electrocatalysis in order
to verify the importance of the perovskite structure.

Other components studied in this work — La oxide (La;O3, 99.99%, Aldrich) and carbonate
(Lay(CO3)3, xH,0, Aldrich), Co hydroxide (Co(OH),, 99.9%, Alfa Aesar), Na hydroxide
(NaOH, >99%, SDS) and carbonate (Na,CO3, >99.5%, SDS) , and Pt/C (40 wt. % Pt on

carbon black, Alfa Aesar) — are commercial materials.
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2.2. Material characterization

Several techniques were used to characterize the studied catalysts before and after
electrocatalysis. They gave access to volume properties - crystallographic properties from X-
Ray Diffraction (XRD), morphologic properties from Scanning Electron Microscopy (SEM),
and composition properties from Energy-Dispersive X-Ray Spectroscopy (EDX) — as well as
to surface properties - surface composition from X-Ray Photoelectron Spectroscopy (XPS)
and specific surface from Brunauer, Emett and Teller (BET) technique. This section describes

the methods employed and their principles.

2.2.1. X-Ray Diffraction (XRD)

2.2.1.1. XRD principle

Nature and structure of cristalline phases of a material can be determined by X-ray diffraction
(XRD) technique. This technique is based on the Bragg diffraction, which is a consequence of
the interference between waves reflecting from different crystal planes of a solid. When a X-
ray beam reaches the sample to study, it is diffracted according to the Bragg’s law (Equation
11):

2dsin® = nA (Equation 11)

with d, spacing between two cristallographic plans, 0, Bragg angle, which is half of the angle
between the incident beam and the detector direction, n, the order of reflection, and A, the
wavelength of the incident wave. Then the diffracted X-rays are collected in function of the 20
angle. The pattern produced by XRD therefore gives information on the inter-layer spacing of
atoms in the crystal structures of the sample.

Unless specified, X-Ray powder diffractions were recorded with D8 Advance Brucker
diffractometer equipped with a copper anticathode using the Kal radiation. For powder
samples, the oxide powders were first ground in a mortar to break down eventual
agglomerates, then deposited as a powder thin layer on a glass support, and finally

immobilized thanks to ethanol which is evaporated before analysis. For carbon paper samples
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(see section 2.5.4.1), the samples were placed as received on the glass support in the presence
of ethanol. The sample holder was rotated at 15 rpm during analysis to measure X-Ray
intensities in each direction. Diffraction patterns were collected at room temperature for 20
between 20 and 100°. The acquisition time was 2 h for powder samples and 8 h for carbon
paper samples in order to distinguish perovskite peaks from the background contribution of

the carbon paper.

2.2.1.2. Determination of bulk composition and structure

Each cristalline phase leads to a unique diffraction pattern. Thus reference cards of the
International Centre of Diffraction Data (ICDD) database were used to determine the structures
present in the studied samples. The cards containing the expected elements — such as La, Co
and O in the case of LaCoO; - were collected and compared to experimental diffraction
patterns after the background correction. Those which present similar position peaks and peak
intensity ratio were considered corresponding to the bulk structure of the sample. When peaks
could not be identified with this method, the search/match procedure was repeated with other
possible components such as WC traces, NaOH traces or carbonates. This method has
however its limits: peaks can be shifted compared to reference cards when the sample is too
thick, for example, and the relative height of the peaks can be different from theory due to
preferential orientation, insufficient number of crystallites or peak superposition. Moreover,
amorphous phases cannot be identified by the XRD technique.

Previously to this work and immediately after the perovskite synthesis, unit cell parameters
and quantification of the phases present in the initial oxides were determined by F. Napolskiy
at the Moscow State University (142). The X-ray powder diffractions for this refinement were
recorded with Huber G670 Image plate Guinier diffractometer (CuKal radiation, curve) and
the unit cell parameters were refined by the full profile Rietveld analysis [144,145]. This
method consists of simulating a diffraction pattern from a crystallographic model of the
sample, and then of adapting the parameters of this model to fit the experimental diffraction

pattern.
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2.2.1.3. Determination of the crystallite size

The particle size of a crystalline material, or, more precisely, the size of a coherently
scattering domain, can be estimated from the Scherrer equation which relates the mean
crystallite size to the broadening of a peak in a diffraction pattern.

This equation can be written as (Equation 12):

t= Kt (Equation 12)

" bcosh

with t, the mean size of crystallites in nm, k, the shape factor, which is 0.89 for D8 Advance
Brucker diffractometer, A, the X-Ray wavelength which is 0.15418 nm for Cu, b, the peak
width at half of maximal intensity in radian, and 0, the Bragg angle in radian. It is only valid
for nano-scale particles. The crystallite size obtained with this equation is smaller or equal to
the grain size. Therefore, one can estimate the particle size and surface area of the studied
material, assuming that particles are spherical. In this study, crystallite sizes were determined

at low 0 values to have more precision, with single peaks.

2.2.2. Particle Size Distribution

Particle size distribution was determined in the Moscow State University by a laser diffraction
analysis. This technique is based on the principle that particles passing through a laser beam
will scatter light at an angle and intensity that is directly proportional to their size. It therefore
gives the distribution of the relative amount of particles or agglomerates present in the studied

material according to their size.

2.2.3. Scanning Electron Microscopy (SEM) and Energy-
Dispersive X-Ray Spectroscopy (EDX)

2.2.3.1. SEM principle

Morphology, particle size, and distribution homogeneity of a sample can be observed by the

scanning electron microscopy (SEM). This technique produces largely magnified image of a
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sample thanks to the interactions between electrons and matter. Indeed, an electron beam
scans the sample surface, which produces elementary particles in response. These particles are
then accelerated to detectors which amplify the electrical signal. The signal intensity depends
on the sample nature at the point of impact, as well as its morphology. Nanometer size objects
can be observed by this technique.

The particles produced by the excited sample include secondary electrons, backscattered
electrons and photons. Whereas photons are used for the elemental analysis of the sample,
secondary and backscattered electrons are used for imaging the material. The secondary
electrons show the morphology and topography of the sample since the number of secondary
electrons is function of the angle between the surface and the beam. The detection of these
electrons is made by secondary electron image (SEI) and low secondary electron image (LEI)
detectors. The SEI mode gives better resolved images, but LEI is preferred in case of charging
of the sample. The backscattered electrons through a COMPO detector illustrate contrasts in
the composition of the sample. Indeed, their intensity is strongly related to the atomic number
of the beamed species.

The morphology of perovskite samples was analyzed with a Jeol 6007F apparatus at [IPCMS,
Strasbourg on ground perovskite powders and on perovskite/carbon thin layers on glassy
carbon support (see section 2.3.2) as well as on carbon paper (see section 2.5.4.1). Perovskite

powders were analyzed as received, without a conductive layer addition.

2.2.3.2. EDX principle

The energy-dispersive X-ray (EDX) spectroscopy is an analytical technique used for the
elemental analysis of a sample from the detection of the photons produced by the excited
sample. Indeed, the X-ray energy produced during the relaxation of excited atoms is
dependent on their chemical nature. Therefore, by selecting energies, one can identify the
atoms present in the sample at the point of impact. If the beam scans the whole screen, it is
possible to make an elemental mapping of the sample and thus, to observe the distribution of
various components over the surface.

The elemental distribution of the composite perovskite/carbon electrodes was studied in

parallel to the SEM analysis with the Jeol 6007F apparatus at [IPCMS, Strasbourg.
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2.2.4. Brunauer, Emett and Teller (BET) technique

The specific surface area of a solid sample, i.e. the accessible surface for gas molecules per
mass unit, is a determining factor for catalytic activity. While it can be evaluated thanks to
hydrogen underpotential deposition for Pt samples (see section 2.3.4.3), other techniques are
required for perovskites. The most common technique for oxide samples is the Brunauer,
Emmet, and Teller (BET) method, developed in 1938 for the gas physisorption [146]. The
physisorption phenomenon is the adsorption of gas molecules on the solid surface involving
only Van der Waals forces. The BET model is based on three hypotheses: (i) adsorption
enthalpy of molecules other than those in the first layer is equal to the liquefaction enthalpy,
(i1) there is no interaction between adsorbed molecules, and (iii) the number of adsorbed
layers is infinite at the saturated vapor pressure.

The BET equation is (Equation 13):

P 1 c-1 _ P .
VOB VG + Ve X ;(Equaﬂon 13)

with P: equilibrium pressure, P°, vapor pressure of the adsorbate at the test temperature, V,
adsorbed gas volume per gram of the solid at P, V,, gas volume required to completely cover
the solid surface with a molecular monolayer of the adsorbate, and C, characteristic constant
of the system gaz - solid. Thus, by plotting P / [V(P° — P)] versus P/P°, one can determine V,
and C from the slope and y-intercept of the obtained straight line. Then, the specific surface

area Sggr of the studied sample can be determined from (Equation 14):

YmNa© (Equation 14)
Vm

Sger =

with N,, Avogadro number, 6.022 103 mol'l, o, surface area occupied by a gas molecule,
which is 0.162 nm? for N, at 77K, and V1, molar volume.

The specific surface area of perovskite powders was determined by BET method using a
Micrometrics Tristar 3000 apparatus. A certain amount of oxide was first degassed at 200° for
ca. 8h to remove moisture and adsorbed species from the sample. The exact mass was
measured after this degassing step. The measurements were then performed at 77 K using
liquid nitrogen to achieve the adsorption of the introduced nitrogen gas on the sample. The
successive measurements of the adsorbed gas volume and of the equilibrium pressure gave the
adsorption isotherm from which the specific surface of the catalyst could be determined,

knowing its mass.
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2.2.5. X-Ray Photoelectron Spectroscopy (XPS)

2.2.5.1. XPS principle

When a solid is irradiated by a beam of X photons, its atoms emit photoelectrons. The
principle of X-ray photoelectron spectroscopy (XPS) consists of analyzing the kinetic energy
Ex of these photoelectrons. Then the binding energy Eg, which characterizes an electron at a
given electronic level, can be calculated from the relationship of energy conservation
(Equation 15):

Eg = hv — Eg (Equation 15)

with hv, the energy of the incident X photons. As binding energies of core electrons are
specific to an atom, it is then possible to identify and quantify the atoms present on the
surface of a sample thanks to this technique.

When an atom is involved in a chemical compound, its core levels are modified compared to
the levels of the isolated atom. In particular, orbital energies are shifted of some eV since they
depend on the chemical bonds established by the atom, as well as its nature and its
coordination number. This chemical shift allows for example the identification of the
chemical bonds involved in chemical species, or the oxidation state of an element.

One should note that the apparent binding energy of photoelectrons is function of the
conductivity of the studied sample. Actually, for an insulating material, a positive charge is
created by photoemission, leading to a decrease of the kinetic energy, and thus to an increase
of the apparent binding energy. This charge effect is usually compensated by using the Cls
peak of adventitious carbon as reference.

XPS is a surface analysis since thicknesses of only 1 to 5 nanometers can be studied. Indeed,
the analyzed thickness is limited by the mean free path of the photoelectrons — the distance
crossed between two collisions — which is dependent on Ex and on the composition and
density of the studied material. Identification of the surface composition is particularly
important in catalysis since most reactions occur at the surface.

In this work, XPS analysis was performed with a Multilab 2000 Thermoelectron spectrometer
with Al Ka (hv = 1486.6 eV) source under the pressure of 10 mbar. Spectrum analysis was
performed with the Avantage software, and the binding energy of adventitious carbon was set

at 284.6 eV to calibrate the peak positions. Perovskite powders were ground before being
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applied on the carbon scotch of the sample holder to break down agglomerates and thus

minimize charge effects, and to get a fresh surface.

2.2.5.2. Identification of the present species

In a typical XPS analysis, a survey scan was first operated in a large binding energy window —
usually from ca. 1200 eV to 0 eV - to check the elements present. For reference, the
Handbook of X-ray Photoelectron Spectroscopy [147] was used. Once the elemental
composition was determined, more detailed scans of each element were performed in the
corresponding binding energy window, and the background signal was subtracted using the
Shirley method. Cls peak was first analyzed in order to perform the calibration of the peak
position. Then other components were labeled according to their electronic structure, and their
corresponding peaks were identified thanks to deconvolution.

The deconvolution process of a photoelectron peak consists of simulating a theoretical
spectrum close to the experimental one by varying (i) the number of individual components —
element or chemical components, (ii) their binding energy, (iii) their peak width, and (iv) their
intensity. The choice of these parameters was based on the literature.

In addition to photoelectrons emitted in the photoelectric process, Auger electrons can be
emitted because of the relaxation of the excited ions remaining after photoemission. These
Auger electrons can have binding energy close to the binding energy of the photoelectrons
and high intensities. Therefore, they should also be taken into account in the deconvolution

process.

2.2.5.3. Quantitative analysis

The quantification of an element or a chemical component can be achieved from the intensity
I of a photoemission peak. Indeed, after background subtraction and peak deconvolution, this
intensity is dependent on the atomic concentration N of the considered component on the
surface according to the relationship (Equation 16):

[ = KNoA (Equation 16)
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with K, a constant dependent on the detection of the signal, A, the mean free path of
photoelectrons which varies with the kinetic energy, and o, the photoelectron cross section -
section where the photoionisation is efficient - which is dependent on the electronic structure
and can be determined from the Scofield’s tables [148].

One can therefore easily obtain the atomic ratio of two components A and B according to

(Equation 17):

Na Ia GB)\B .
—= =2 x—(E ion 17
N o X oata (Equatio )

The error of the quantification thanks to this technique is about 10%.

2.2.6. Inductively Coupled Plasma - Mass Spectrometry (ICP-
MS)

Inductively coupled plasma - Mass spectrometry (ICP-MS) was used to quantify the eventual
dissolved species in electrolyte. This technique combined an ICP source which converts the
atoms of the elements present in the sample into ions, and a mass spectrometer, which

separates and quantifies these ions. It was performed at IPHC, Strasbourg.
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2.3. Electrochemical techniques

2.3.1. Cleanliness of experiments

Very clean equipments and solutions have to be used for electrochemical analysis to avoid
any troubles with impurities and therefore to increase reproducibility of the experiments. This

was achieved by using very pure water and by thoroughly cleaning electrochemical cells.

2.3.1.1. Ultrapure water

The water used in the following experiments was ultrapure water. To obtain water of this
purity, demineralized water was first distillated to remove main impurities, and then filtered
and deionized with a Purelab Ultra apparatus (ELGA). The resulting water displays the
typical resistivity of 18.2 MQ.cm at 25°C and the amount of total organic carbon (TOC)
inferior to 3 ppb.

2.3.1.2. Piranha solution

Piranha solution was used to clean glassware. This solution is obtained by adding hydrogen
peroxide solution (H,O,, 35% in solution, stabilized, Acros Organics) to concentrated sulfuric
acid (H,SOy4, 95-98%, Sigma-Aldrich) in the volume ratio 1:1 under magnetic mixing. The
resulting reaction is (Equation 18):

H,S0, + H,0, — H,S05 + H,0 (Equation 18)

This reaction being exothermic, the addition of H,O, to H,SO4 should be performed slowly
and the reaction vessel should be surrounded by ice to avoid overheating of the mixture. The
obtained solution is a strong oxidizing agent which can remove most organic matter. Its high

acidity also allows the dissolution of oxides.
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The prepared solution was active for around 6 months — proof of activity can be checked by
presence of bubbles in the solution — and was stored under the hood in not tightly closed

bottles.

2.3.1.3. Cleaning procedure

Glassware as well as plastic material such as Teflon cell should first be carefully rinsed with
ultrapure water to remove for example alkaline and most catalysts traces. Under the hood,
piranha solution is added in the item to be washed when possible, or the material is placed in
a large beaker containing piranha solution. This material is covered to avoid solution
evaporation, but not tightly closed to avoid internal pressure. After one night, the piranha
solution is recovered and the material is washed several times with ultrapure water to remove
piranha solution traces. Any remaining traces can lead to unexpected behavior such as
dissolution of catalyst due to acidic traces or reduction current due to H,O, traces. After

careful rinsing of the material, it can be used for experiments.

2.3.2. Electrode preparation

Thin layers of perovskite/carbon were prepared following the procedure adapted from
Schmidt et al. [149]. This method allows a good reproducibility, a complete utilization of the
catalyst for sufficiently thin layers and is adapted for RDE and RRDE studies.

2.3.2.1. Carbon choice

Thin layers of perovskite usually suffer from low conductivity, therefore carbon material was
added into the catalytic layer. Carbon of the Sibunit family was chosen for its high purity (ash
content <0.4 wt%), avoiding reactions catalyzed by impurities, and high electron conductivity
(around 10 S.cm™) [150-152].

Sibunit carbons are obtained by pyrolysis of hydrocarbons onto a template such as carbon
black. Then a steam activation leads to the formation of the porous structure of Sibunit carbon

by burning off the carbon black particles. By carefully choosing the template, i.e. the size of
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carbon black particles, and by controlling the activation step, i.e. the manner and the duration
of the activation, one can obtain carbon with the desired surface area and pore size.

The carbon used in this study was mainly Sibunit carbon of BET surface area of 65.7 m”.g"
supplied by P. Simonov of the Boreskov Institute of Catalysis. Sibunit carbon of lower

surface area (6 m”. g'l) from the same supplier was also studied for comparison.

2.3.2.2. Catalyst thin layer

The perovskite oxide powders (black powders) were first ground with a pestle in a mortar to
break down agglomerates. For each experiment, controlled amounts of oxide and carbon
powder were mixed together and ultrapure water (18.2 M cm, Purelab) was added to get the
desired suspension of the powder. The suspension was then treated in an ultrasonic bath
during 30 minutes to break down remaining agglomerates and disperse particles. Making
fresh suspensions for each experiment is preferable for two reasons: (i) an eventual error in
the preparation of a suspension will not be reproduced; (ii) oxide suspensions might not be
stable during time, as discussed in section 6.2.2.

A glassy carbon (GC) rotating-disc electrode (RDE) (0.07 cm? geometric area, Autolab) or a
GC rotating ring-disc electrode (RRDE) (0.2 cm? geometric area, PINE) was successively
polished with 1.0, 0.3 and 0.05 um alumina slurry (Escil) and rinsed with ultrapure water to
get a mirror finish. When GC disc was dried, 3.2 uL of the catalyst suspension for RDE
experiments or 10 puL for RRDE experiments were taken under sonication to keep a
homogeneous mixture, drop cast onto the GC support, and dried under N,. This last operation
— deposition and drying - was repeated three times in order to get a homogeneous coverage of
the electrode and to improve the reproducibility. Thus, one should for example prepare a
suspension containing 0.67 g.L™' of perovskite and 0.27 g.L" of carbon to get a catalytic layer
of 91 u g.cm'2 perovskite and 37u g.cm'2 carbon on RDE GC of 0.07 cm? via 3 depositions of
3.2 uL.

The obtained thin layer was observed with an optical microscope (IPCMS, Strasbourg) to
check the distribution of the particles. Optical photograph in Figure 5 shows that perovskite

and carbon particles cover rather homogeneously the whole glassy carbon surface.
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Figure 5 : Perovskite/carbon thin layer on glassy carbon observed by optical microscopy

The apparent thickness tcr, of the catalytic layer was estimated using (Equation 19)

te, = —— + —2 (Equation 19)

mrip, Trp,

with m; and m; - the mass of the perovskite oxide and carbon, respectively; p; and p; - the
powder density of the perovskite oxide and carbon, respectively; r — the radius of the RDE
(0.15 cm) or RRDE (0.3 cm). The powder densities were estimated by measuring the volume
of water added to a known mass of powder material to reach a desired volume. No setting of
the powder were performed. The obtained powder densities were 0.65 and 0.4 g.cm'3 for
perovskite oxides and the Sibunit carbon, correspondingly.

Both RDE and RRDE experiments were performed with various amounts of perovskite and
carbon to study the role of each component in electrocatalysis (see sections 4 and 5). RRDE
experiments were performed with thinner catalytic layers than RDE to facilitate diffusion, and
thus increase the probability of detection, of the H,O, intermediate out of the layer. In order to
better identify the contribution of carbon, electrodes containing only Sibunit carbon - no
perovskite - were prepared following the same procedure and quantity as perovskite/carbon
thin layers. The contribution of the support was also evaluated by using polished GC
electrode without any deposition.

Pt/C is usually utilized as a benchmark of the ORR activity [3]. Therefore, electrodes were
prepared from suspensions containing Pt/C (40 wt. % Pt on carbon black, Alfa Aesar). For the
ORR RDE study, the Pt/C electrodes contained 91 ug.cm™ Pt to be compared to perovskite
electrodes, and for RRDE and HO, reduction/oxidation RDE experiments, Pt/C electrodes
with lower thickness were utilized to avoid strong capacitive contribution. No Sibunit carbon
was added for these electrodes. The roughness factor of Pt particles on the electrode was

estimated using the coulometry of the hydrogen underpotential deposition and found to be 26
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cm2pt.cm'2geo for ORR RDE study and 6 cm2pt.cm'2geo for RRDE calibration (see section

2.3.5.2) and HO; reduction/oxidation RDE study (see section 2.3.5.1).

2.3.2.3. Binder layer

Thin layers prepared from perovskite oxides were unstable when the electrode was placed in
an alkaline electrolyte. In order to improve the adhesion of the particles onto the GC support,
a binder layer was then added on the dried catalyst layer. Nafion is often used as binder for
thin layer applications. Nevertheless, as experiments were performed in alkaline media, an
alkaline ionomer was preferred to allow diffusion of OH ions through the binder, and to
avoid any dissolution of oxide in contact with acidic medium of Nafion. The chosen ionomer
is AS-4 from Tokuyama Company. It has a linear hydrocarbon backbone with quaternary

ammonium group (Figure 6) [153].

Figure 6 : Schematic representation of the structure of AS-4 ionomer [153]

RDE and RRDE experiments were performed with different catalyst layer thicknesses and
therefore required different amounts of ionomer. Thus, AS-4 ionomer solution (5 wt% in 1-
Propanol) was diluted in water to obtain a 2.2 10~ vol% solution (8.68 uL AS-4 jonomer
solution in 4 mL water) for RDE and a 1 102 vol% solution (5.2 uL AS-4 ionomer solution in
5 mL water) for RRDE. An aliquot of 2 uL of 2.2 107 vol% solution for RDE and of 6 uL of
1 107 vol% solution for RRDE was deposited on the dried layer of a catalyst. The final
apparent thickness of the binder tg was estimated to be around 15 nm for RDE and 7.5 nm for
RRDE. Schmidt et al. [149] and Paulus et al. [154] showed that the film diffusion resistance is
negligible for thin Nafion layers (below 0.1 um). After extrapolation of this conclusion to
alkaline ionomer, and as the binder thickness was very low compared to the thickness of the
catalyst layer (> 0.4 um, see sections 4 and 5), the diffusion resistance into the binder layer
was neglected in this work. Moreover, one can assume that such a thin binder layer did not

lead to the blocking of the catalyst surface.
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When the ionomer layer was dried, the electrode was immersed in a beaker containing

electrolyte and it appeared that the depositions with the binder layer were stable.

2.3.3. Setup for electrochemical measurements

2.3.3.1. Three electrode cell

A standard three electrode cell was used for electrochemical measurements. All parts of the
electrochemical cell in contact with the alkaline electrolyte — such as the bottom of the cell or
the reference electrode - were in Teflon whereas the rest was in Pyrex. The electrolyte was
100 mL of 1 M NaOH prepared from extra pure NaOH solution (50 wt. % solution in water,
Acros Organics) and ultrapure water, at 25°C. The temperature was controlled by a thermostat
bath. Since the preparation was performed in air, carbonate impurities cannot be completely
excluded. Depending on the type of experiments, the working electrode was RDE, RRDE or
carbon paper with perovskite/carbon thin layer. The counter electrode was a platinum wire in
a separated compartment to avoid side reactions such as HO, decomposition on Pt. This
counter electrode should have a higher surface area than the working electrode to avoid
current limitation by the counter electrode. The reference electrode - to which the applied
potential was referred - was a Hg/HgO electrode (IJ Cambria Scientific) filled with 1M
NaOH.

The electrolyte resistance was measured by potential electrochemical impedance spectroscopy
(PEIS) at open circuit potential (OCP) from 100 kHz to 1 Hz and was equal to ca. 15 Q. For
the currents measured during electrochemical experiments, the IR correction was negligible -

less than 2 mV shift for highest currents - and was therefore not applied.

2.3.3.2. Reference electrode calibration

The potential of the Hg/HgO/1M NaOH electrode was calibrated vs. the reversible hydrogen
electrode (RHE). The utilization of this electrode allows to correct for thermodynamic effect
of pH on electrochemical processes. For this electrode, the relation between the potential and
the pH is given by (Equation 20).

E,(RHE) = 0.000 — 0.059 x pH (Equation 20)

67



Therefore, electrochemical processes appear at the same potentials vs. RHE in electrolytes of
different pH, unless pH influences the process kinetics. For calibration, 1M NaOH electrolyte
was saturated with H, — after N,-purging to remove any oxygen traces — and the open circuit
potential was measured between a working electrode of platinum (typically a Pt wire or a
platinized Pt foil) and the Hg/HgO/1M NaOH electrode. This open circuit potential was equal
to +0.93V vs. RHE. In what follows the electrode potentials are given in the RHE scale.

2.3.3.3. Typical electrochemical experiments

All electrochemical measurements were performed using Autolab potentiostat with an analog
scan generator, and the scan rate was usually 10 mV.s" (unless otherwise stated). Each
experiment was made at least two (but in general three or four) times to check the
reproducibility of the catalyst loading and of its electrocatalytic behavior. Some of the
repeated experiments can be seen in Appendix 1.

For all experiments, the 1M NaOH electrolyte was first purged with N, gas during at least 1h
to remove oxygen traces. Then the working electrode — RDE or RRDE - was immersed in the
N,-purged electrolyte and cyclic voltammetry (CV) measurements were performed without
electrode rotation until a stable voltammogram was obtained — usually 10 cycles. The
potential window was restricted to +0.43 V / +1.23 V vs. RHE in order to avoid the
irreversible oxide reduction at more negative potentials (see section 3.3.1), or the carbon
oxidation at more positive potentials. The obtained voltammogram was used as a background
for the ORR rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) as well as
for HO, reduction/oxidation RDE measurements. These reactions were then studied with
hydrodynamic methods, description of the experiments is given in the corresponding sections

(see section 2.3.5).

2.3.4. Cyclic voltammetry (CV)

2.3.4.1. CV principle

The voltammetry is a method to study the electrode processes by controlling the potential

variation (Equation 21):
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E(t) = E; £ vst (Equation 21)

with E;, the initial electrode potential in V vs. the reference electrode, v, the sweep rate in
V.s", and t, the time in s. The evolution of the current passing in an electrochemical system is
then measured in function of the time and plotted versus the applied potential to give a
voltammogram (Figure 7). Thus, if the potential is swept in the negative direction, the
reduction of the electroactive species which can be reduced in this potential window will
occur, giving a negative faradaic current which increases when the potential decreases. Due to
consumption of species in the vicinity of the electrode surface and mass transport limitations,
the absolute current will then decrease if the potential is kept decreasing. A current peak will
therefore appear in the voltammogram. Usually, the electrode is immobile during
voltammetry, but this technique can also be combined with hydrodynamic methods such as
rotating disk electrode to change mass transport conditions.

The voltammetry is called cyclic voltammetry when the sweep direction is inverted at a
chosen potential. Therefore, if the potential was first swept in the negative direction, the
products of the reduction can be oxidized when the potential is swept in the positive direction.
Several cycles between two potential values — Ei, and Eyax - can be performed during an

experiment (Figure 7).
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Figure 7 : (a) Variation of the applied potential with time in cyclic voltammetry and (b)
schematic current response versus applied potential. The arrows indicate the potential sweep
direction.

The total current I(t) measured during voltammetry is given by (Equation 22):

I(t) = I¢(t) + I4(t) (Equation 22)
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with I, the faradaic current, and Iy, the capacitive current. The faradaic current is due to
electrochemical processes and is directly proportional to their reaction rates. The capacitive
current is due to the double layer charging — modification of the electrical charge distribution
at the electrode-electrolyte interface - and increases with increasing the sweep rate (Equation
23).

Ig(®) = Cdldi—it) (Equation 23)

with Cq, the capacity of the double layer, in Farad. In order to study only faradaic processes,
one should subtract the capacitive current from the total current. The charge — in Coulomb —
of the double layer Qg can be evaluated by integrating the capacitive current in function of the
time, and the charge associated to an electrochemical reaction Qg,g, by integrating the
faradaic current.

In order to study the interfacial properties of the studied oxides, CV measurements were
performed in the N»-purged electrolyte in various potential windows and at various scan rates.
With this method, the potential window in which the oxides were electrochemically stable
was investigated, as well as the roughness of the catalyst layer and the reversibility of the

perovskite redox transitions.

2.3.4.2. Reversibility of electrochemical systems

The notion of reversibility in electrochemistry differs from that one in thermodynamics.

Various physico-chemical processes can be involved at the electrodes, such as the electron
transfer between the current collector and a redox couple, i.e. the redox reaction, the mass
transport of the species in the electrolyte and the adsorption and desorption processes — i.e.
electrosorption reactions — occurring on electrode surface. Electrochemical systems can be
classed into three categories, depending on their kinetics. A system is called fast when it is
controlled by diffusion. When both diffusion and electron transfer control the electrode
process, the system is considered as moderate. Finally, a process exclusively limited by the
charge transfer is considered as slow. According to Matsuda’s criteria, reversible redox
systems — i.e. systems which are controlled by mass transport and have almost identical

. . . . . . . -1 . 12 12
reduction and oxidation reaction rates - have kinetics constant in cm.s™ superior to 0.3 v,"*n"

172_1/2
/n/

while irreversible systems display kinetics constant below 2.107 v, . Kinetic constants

between these two values correspond to quasi-reversible systems. Clearly, the reversibility of
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a reaction depends on the time constant of a method, and for linear sweep and cyclic
voltammetry, on the sweep rate. Indeed, high sweep rates lead to too short time to reach
equilibrium at the electrode surface, thus slow sweep rates should be applied such that a
reaction satisfies the reversibility conditions.

Considering the redox reaction O 4+ ne 2 R from species in solution, several equations were
obtained — as for example demonstrated by Bard et al. [155] and Diard et al. [156] — to

calculate the peak currents and potentials in function of the reaction kinetics.

redox,rev 2

For a reversible redox system in solution, the peak current I peax is proportional to VS”

(Equation 24):

nFvgDg
RT

It pear 9% = —0.446nFAC, (Equation 24)

with n, the number of involved electrons, F, the Faraday constant, A, the electrode surface
area, Co, the initial concentration of O in the solution, Do, the diffusion coefficient of O, R,
redox,rev Of

the gas constant, and T, the temperature in Kelvin. Moreover, the peak potential Epcax

a reversible system does not depend on the sweep rate (Equation 25):

redox,rev __ o RT \/D_R 1.109RT .
Epeak =Eoir°+—In <\/T_o> — =——— (Equation 25)

with Eq/r°, the standard potential of the redox couple O/R, and Dg, the diffusion coefficient of

redox,c

R ; and the reduction peak — cathodic peak Epeax — and the oxidation peak - anodic peak

redox,a

Epeak - are separated by a constant potential gap for any sweep rate. This potential gap is

equal to (Equation 26):

redox,c redox,a| _ 2.3RT .
|Epeak — Epeak | = QF (Equation 26)

which is 59/n mV at 25°C. For an irreversible redox system, however, the oxidation of the R
species hardly occurs, and the peak potential gap between anodic and cathodic peaks is higher
than this value. Indeed, peak potentials Epeakredox’i”ev depend on vy for irreversible systems

(Equation 27):

dox.i _ o RT Kk°RT :
Epeakre oxirrev _ EO/R + m []n (W D_o> — 0_780] (Equation 27)

with k°, the standard constant of electronic transfer, and o,, the symmetry factor, which
indicates the feasibility in terms of enthalpy of the considered half-reaction — here, the
reduction. Peak currents are proportional to v, as for reversible systems, but the equation

redox,irrev

which gives the peak current I peax contains the symmetry factor (Equation 28):
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arnFvgDg

— (Equation 28)

It peak S2O¥"Y = —0.496nFAC,

Finally, quasi-reversible redox systems are characterized by a peak current which is not

proportional to v,

and by peak potentials as well as a peak potential gap which are
dependent on v. In particular, the potential gap between anodic and cathodic peaks is higher
than for reversible systems.

For the electrosorption reaction A~ 4+ * 2 A,ads + e~, where * is a free site on the electrode
surface, and A,ads stands for A adsorbed on the electrode surface, it was shown [156] that
peak potential of reversible electrosorption reactions Epea”* "™ does not depend on the
sweep rate (Equation 29) while peak potential of irreversible electrosorption reactions

Epea™ "™ does (Equation 30), as for redox processes:

electros,rev __ RT ky .
Epeak =57 In (koA—*) (Equation 29)

lectros,irrev RT aoFvs .
| ’ = ln( ) Equation
peak ooF RTkoA— (Equation 30)

with A™*, the initial concentration of A" in the bulk, and k, and k., the kinetic constant of
electronic transfer in the oxidation direction and in the reduction direction, respectively.
However, contrary to redox processes from species in solution, the peak current of
electrosorption reactions varies linearly with vy for reversible (Equation 31) as well for
irreversible (Equation 32) reactions:

electrosrev _ F2ATvg .
It peak = T (Equation 31)

electros,irrev _ F2ATaovs .
It peak = — - (Equation 32)

with I', number of sites per surface unit, and e, electron charge.
Therefore, by studying the dependence of the peak current and potential on the sweep rate, it

is possible to determine the nature and the kinetics of an electrode process.

2.3.4.3. CV of platinum electrodes

Polycrystalline platinum electrodes display a typical voltammogram on which three regions
may be distinguished. At high potentials, the “oxygen region” is characterized by an anodic

current of hydroxide anions adsorption and Pt oxide formation and by a cathodic peak of

72



reduction of this Pt oxide - hydroxide layer. A region of very low current is found in the
center of the voltammogram. This is the double layer region where only capacitive processes
occur. This region is narrower in alkaline media than in acidic media due to an earlier surface
oxide/hydroxide formation. Finally, the “hydrogen region” appears at low potentials. With the
decrease of the potential, the adsorption of hydrogen — also called hydrogen underpotential
deposition - takes place, until hydrogen evolution near 0 V vs. RHE. When the potential is
inverted and increased again, hydrogen is then desorbed. This interpretation was based on
works on Pt single crystals in alkaline media [8,157].

Figure 8 presents the CV of a Pt/C electrode in N,-purged 1M NaOH electrolyte. This CV is
very similar to the CV found for Pt/C electrodes in alkaline media in the literature

[12,158,159].
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Figure 8 : CV of GC-supported thin films of Pt/C in Ny-purged IM NaOH electrolyte at 10
mV.s". Measurements were performed with 91 ug.cm™ geo Pt. Currents are normalized to the
geometric area of the electrode

The hydrogen adsorption process is often used to evaluate the real Pt surface area. Indeed, the

real surface area Aquomp can be calculated as (Equation 33):

73



Acoulomb = Naagny (Equation 33)

with N,, the Avogadro’s number, ay, the area occupied by each adsorbed hydrogen atom, and
ny, the amount in moles of adsorbed hydrogen atoms. ny can be estimated assuming a one-

electron charge transfer process (Equation 34):

ny = Q—FH (Equation 34)

with Qp, the charge associated with the formation of a monolayer of adsorbed hydrogen.

Then, the real Pt surface area is (Equation 35):

Acoulomb = Naa—:QH (Equation 35)

in which N,ay/F is usually equal to 210 pC.cmp” for polycrystalline platinum [160]. The
charge Qu can be measured by integrating the faradaic current - capacitive currents can be
deduced from the double layer region - between t;, the time when the hydrogen adsorption
starts, and t¢, the time when the monolayer is completed.

With this method, the surface areas of Pt particles of Pt/C electrodes were estimated as 1.8
cm?p, for 91 pg.cm™ loading used for the ORR RDE study and 0.4 cm? p, for 20 pg.cm™
loading used for the HO, reduction/oxidation RDE study. The corresponding roughness

2 2 )
factors of these electrodes were therefore 26 cm?p.cm “geo and 6 cm?pi.cm g0, respectively.

2.3.5. Hydrodynamic methods

2.3.5.1. Rotating disk electrode (RDE)

2.3.5.1.1. Principle

RDE consists of a conductive disk electrode — in this work glassy carbon with
perovskite/carbon thin layer — surrounded by an insulating ring (Figure 9). By rotating this
electrode at various rotation rates, the mass transport conditions near the electrode surface are
set due to forced convection and well defined. Therefore the activity of an electrocatalytic
system can be determined by separating mass transport limitations and charge transfer losses.
This correction is not possible in stagnant electrolyte where diffusion is the main transport

process.
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Figure 9 : Schematic cross view of a RDE

For a RDE experiment, cyclic voltammetries are performed at various rotation rates in an
electrolyte containing the studied reactant. In order to obtain the faradaic current by removing
the capacitive contribution to the total current (Equation 22), the capacitive current was
approximated as being the current of the CV in the electrolyte without reactant. In this study,
this corresponds to the CV in Ny-purged 1M NaOH electrolyte. An example of background
corrected RDE voltammograms is shown in Figure 10.

The qualitative and quantitative interpretations of these curves were discussed in

[155,156,161] and are summarized below.
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Figure 10 : RDE voltammograms of GC-supported thin films of LaCoOj3 + Sibunit carbon in
Os-saturated IM NaOH electrolyte at various rotation rates and at 10 mV.s"\. Measurements
were performed with 91 pg.cm™ geo perovskite and 37 ug. em’ geo Sibunit carbon. Currents are
normalized to the geometric area of the electrode and corrected to the background currents
measured in the N, atmosphere.

When the applied potential moves away from the equilibrium potential of the studied reaction
(1.23 Vgyg for the ORR at 25°C), it reaches the onset potential where the reaction starts,
leading to an increase of the absolute faradaic current. The faster the reaction kinetics, the
smaller is the overpotential. In other words, for a reduction reaction, the faster the kinetics, the
more positive is the onset potential. The reaction is exclusively limited by the reaction
kinetics at these low overpotentials and the current does not depend on the rotation rate.

When the overpotential is gradually increased, the reaction becomes limited by both reaction
kinetics and mass transport. And at low potentials for reduction processes and at high
potentials for oxidation processes, i.e. at high absolute overpotentials, the charge transfer
kinetics becomes very fast and the reaction is exclusively limited by the mass transport of

reactants. This results in a current plateau I on the RDE voltammograms, which is dependent

76



on the concentration of reactants and increases linearly with the square root of electrode

rotation rate ® according to Levich equation (Equation 36):
2 1 1
lIp| = 0.62n AF D3 v7s Co, w2 (Equation 36)

with the following parameter values in 1M NaOH at 25 °C: the concentration of O, in the
saturated electrolyte, Co; = 8.4 X 107 mol.cm'3, the diffusion coefficient of O, Doy = 1.65 x
10 cm2.s™ [163], the kinematic viscosity of electrolyte, v = 0.011 cm2s™ and the electrode
geometric surface area A = 0.07 cm”. The RDE voltammograms are usually plotted with
normalization of the current by the geometric surface area to have direct access to the
diffusion limited current density. According to the Levich equation, the slope of the linear
curve of Ip versus ' gives the number of electrons involved in the studied reaction.
However, the RDE technique is only valid for uniformly accessible thin layers. For too thick
or not well dispersed catalytic layers, Levich equation is not applicable. In particular, the layer

thickness should be lower than the diffusion layer thickness & (Equation 37):
1 1 1
d =1.61 D3 ® 2 ve (Equation 37)

The electrode rotation rates used in this study were usually 400, 900, 1600 and 2500 rpm. The
corresponding O values were therefore 30, 20, 15 and 12 pm, respectively. Thus, all
perovskite/carbon electrodes used in this study, except the one containing the highest amount
of carbon (820 u g.cm'zgeo), present a catalytic layer thickness lower than the diffusion layer
thickness (see sections 4 and 5).

According to Koutecky-Levich, the faradaic current Iy is related to the kinetic current Iy which

determines the electrocatalytic activity, i.e. charge transfer limitation, by (Equation 38):

1 1 1 .
m = m + ol (Equation 38)

with Ip, the current from mass transport limitations, determined by Levich equation
(Equation 36). The kinetic currents are usually normalised by the real surface area of catalyst
(jx) to obtain the specific catalytic activity, and plotted in logarithmic scale versus the applied
potential, i.e. in a Tafel representation.

It is possible to determine I, with two methods. The first one consists in plotting II{" in
function of @'’ for various potentials. The obtained curves should be linear with a slope
directly linked to the number of electrons and the y-interecept (extrapolation to m=0) gives the

value of /" at the corresponding potential. In particular, at high overpotentials, [T should
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be equal to zero due to the very fast reaction kinetics. Kinetic currents obtained with this
method are presented in Figure 11 with the red curve for a glassy carbon disk.

The second method is the mass transport correction with direct application of the Koutecky-
Levich equation at a given rotation rate. Indeed, for a rotation rate, Ip can be determined from
the current plateau value, and therefore its inverse can be substracted to the inverse of the
faradaic current at this rotation rate to obtain the inverse of the kinetic current. Kinetic
currents obtained for the glassy carbon disk with this second method are presented in Figure
11 with the green curve. The kinetic currents obtained with the two different methods are
close (Figure 11), but the second method was preferred in this work since the first method is
hardly applicable at low overpotentials, the curves III" versus @' being not parallele

anymore at low overpotentials.
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Figure 11 : Tafel plots from mass-transport corrected positive-going scans of GC in O;-
saturated 1 M NaOH at 10 mV.s™. Color codes: kinetic currents obtained from y-intercepts of
Koutecky-Levich plots (red), kinetic currents obtained with direct application of Koutecky-
Levich equation to a RDE curve at a single rotation rate (green). Currents are normalized to
the geometric surface area for GC.

For the one electron redox system O + e R, the kinetic current densities ji are related to the

overpotential N = E - E¢q by the Butler-Volmer relationship (Equation 39):

Jk = Jo [eXp (O;LTFT]) — exp (—O;L‘TFT])] (Equation 39)
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with, ap and og, the symmetry coefficient of the oxidation and reduction, respectively (oo +
ar = 1), F, the Faraday constant, R, the gas constant, and T, the temperature in Kelvin. j, is the
exchange current density (Equation 40):

jo = FK°R*R0Q**0 (Equation 40)

in which k° is the standard constant of electronic transfert kinetics in the redox system in
cm.s”, and R* and O*, the oxidant and reductant concentration in the solution, supposed
constant. However, this relationship is valid for a one electron redox system while ORR is a
multi electron process involving several electrochemical, chemical and adsorption steps. For
multistep reactions such as ORR, the kinetic currents are governed by the rate determining
step, i.e. the elemental step with significantly lower reaction rate than the other steps.

With the purpose to compare the electrocatalytic activity of various catalysts, the ORR kinetic
currents of the different catalysts are determined thanks to the RDE technique and plotted in
Tafel plots. The most active catalyst is then that which displays higher kinetic currents at the

lowest overpotential.

2.3.5.1.2. Experimental study of the ORR by the RDE

After acquisition of the background voltammogram in N,-purged 1M NaOH electrolyte, O,
gas was bubbled through the electrolyte for at least 45 minutes to get a O,-saturated solution
in order to study the ORR. Depending on the stability of the voltammogram, 3 to 5 cycles
were performed without rotation in O,-saturated electrolyte. RDE voltammograms were then
taken at various rotation speeds of 400, 900, 1600, 2500 rpm with 2 cycles at each rotation. At
10 mV.s" scan rate, the difference of the positive and the negative ORR scans after the
background correction — a CV under N, atmosphere — was negligible and therefore, unless

specified, only anodic scans were used for determining the ORR activity.

2.3.5.1.3. Experimental study of the HO,™ reduction/oxidation by the RDE

As HO; reduction might be a step in the ORR mechanism on perovskite oxides, this reaction
was also investigated. For that, an aliquot of SupraPur H,O, (H,O, 30 wt% solution in water,
SupraPur, Merck) previously titrated with standardized KMnOy (see section 2.4.1) was added

to the Np-purged 1M NaOH after measuring the background voltammogram. For this study, it
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was chosen to mainly work with a concentration of H,O, of 0.84mM, which corresponds to
the concentration of O; in O, saturated electrolyte and thus, the maximum concentration of
HO;" which can be formed during the ORR. The addition of H,O, was made under rotation of
the working electrode and during bubbling of N, to achieve convection and thus good mix of
solutions. RDE voltammograms were then taken at various rotation speeds of 400, 900, 1600,
2500 rpm with 2 cycles at each rotation with as low as possible waiting time between each

rotation to minimize the effect of HO, decomposition in the electrolyte.

2.3.5.2. Rotating ring-disk electrode (RRDE)

2.3.5.2.1. Principle

A RRDE is a rotating setup constituted of a disk and a ring, separated by an insulating ring to
keep them electrically isolated (Figure 12). The disk behaves like a RDE, but the ring is
polarized at a different potential than the disk in order that the products formed at the disk can
be, depending on the ring potential, reduced or oxidized at the ring after diffusion through the
electrolyte. Then, the current measured at the ring gives an indication of the quantity of
transformed species. It is particularly useful for quantifying stable intermediates of multistep
reactions. For example, it is possible to quantify HO, formation during the ORR if the

potential of the ring is sufficiently high to oxidize HO, (Figure 12).
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Figure 12 : Schematic cross view of a RRDE during the ORR

80



Indeed, during the ORR, the disk current I is the sum of the current of the “direct” pathway
Ioy. - from O, to OH - and of the current of the “series” pathway Iyp,. - from O, to HO,
(Equation 41):

Ip = Iou- + Igoz- (Equation 41)

Ioo- can be determined from the ring current Iy after its normalization by the collection factor
N (Equation 42), which represents the amount of diffused species which can be detected by
the ring:

lho2- = %R (Equation 42)

N is lower than 1 since a part of generated species escape to the bulk solution and thus, are
not accessible to be detected at the ring. Then, the percentage of the “series” pathway, i.e.
HO; yield, can be calculated from the molar flux rates of O, (fp2(4e’) ) and HO, (np2(2¢€))
(Equation 43):

HO,” yield = 100 —222¢) ___ (Equation 43)

npz(2e7)+npz(4e7)

The molar flux rates are given by (Equation 44) (Equation 45):

il (2€) = 2= (Equation 44)

g, (4e) = Ii% (Equation 45)

Then, the HO, yield can be determined directly from the disc and the ring current thanks to

(Equation 46):

IR
>N

HO,  yield = 100 (Equation 46)

IR
ID+N

It should however be noticed that HO, has to desorb and diffuse away from the working
electrode to be detected at the ring. Thus, if HO, formed during the ORR is reduced without
desorption or desorbs and the readsorbs at neighbor site, the ORR mechanism will appear —
incorrectly - as a direct 4 electron pathway.

In this work, the disk electrode was a GC disk with a thin layer of perovskite/carbon
deposited as usually, the insulating ring was a Teflon tube and the ring electrode was a Pt
ring. Before use, the Teflon tube was cleaned with Piranha solution for one night and rinsed
carefully with water. As the Pt ring could not be detached from the RRDE support, strong

chemical or thermal treatment could not be applied to clean Pt surface. Thus, an
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electrochemical cleaning was applied to the ring by performing at least 100 cycles at 200
mV.s" in Ny-purged 1M NaOH electrolyte in the potential window [+0.13 ; +1.23 V vs.
RHE]. The resulting CV presented well defined hydrogen adsorption/desorption peaks,
showing that the Pt surface was cleaned.

After ring cleaning and acquisition of the disk background voltammogram in N,-purged 1M
NaOH electrolyte, O, gas was bubbled through the electrolyte for at least 45 minutes to get a
saturated solution and RRDE voltammograms were then taken at various rotation speeds of
400, 900, 1600, 2500 rpm with 2 cycles at each rotation. A +1.23V vs. RHE potential was
applied on the ring to oxidize HO, species, while the potential at the disc was swept between

+0.43 V and +1.23 V vs. RHE.

2.3.5.2.2. RRDE calibration

The collection factor N of the RRDE used in this work was determined both experimentally
and theoretically. The theoretical value of N is obtained from geometry parameters by

(Equation 47) [155]:
N=1-F(%)+ B[ — F(o)] — (1 +a+ B)s {1-F [(£) @+« + B)]} cEquation 47)

with (Equation 48)(Equation 49) (Equation 50):

1\3
_ (V3 <1+93> 3 26%—1 1 .
F(0) = (E) In T + 5 arctan ? + " (Equation 48)

3
_ Iy .
o= (_rl) — 1 (Equation 49)

B = (r_3)3 - C—j)3 (Equation 50)

rp

and ry, radius of the disk (2.5 mm), r,, radius of the disk and insulating ring (3.25 mm) and r3,
radius of the disk, insulating ring and ring (3.75 mm) (Figure 12). The obtained N was 0.255,
independently of the electrode rotation rate.

N was also estimated experimentally using the reversible Fe(CN)e"/ Fe(CN)g" redox couple.
Indeed, N is directly related to the disk and the ring current for reversible reactions

(Equation 51):

N=— ;—R (Equation 51)
D
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In order to simulate the thickness of the perovskite/carbon electrodes, the calibration was
performed with a thin layer of Pt/C deposited on the GC disk rather than on a polycrystalline
Pt disk. After ring cleaning and acquisition of the disk background voltammogram in N,-
purged 1M NaOH electrolyte, the RRDE was placed in another electrochemical cell
containing 10 mM Kj3Fe(CN)g and 1M NaOH, purged with N,. Alkaline solution was also
chosen in references [90,154,164] and its use avoids Prussian blue formation which occurs
more likely in acidic media [162]. CVs were first performed without rotation on disk and ring
electrodes, independently. The CV obtained in the potential window [+0.98 V ; +1.53 V wvs.
RHE] at various sweep rates displayed a cathodic and a anodic peak with similar coulombic
charge (not shown). As (i) the peak potential was independent of the sweep rate, (i) the
potential gap between anodic and cathodic peaks was 59 mV, and (iii) the peak current
increased linearly with the square root of the sweep rate, the reversible behavior of Fe(CN)g/
Fe(CN)s" was confirmed. RRDE voltammograms were then taken at various electrode
rotation rates at 10 mV.s" in the same potential range and a +1.48V vs. RHE potential was

applied on the ring to achieve Fe(CN)s* oxidation. The results are shown in Figure 13,a.

0.4 : : 0.30
= al b
o ' T F - i R Rl Rt R
0.0 Pt ring at 1.48V = =
-0.2 £ o020t - - - -Theoretical N
o4l § ®  Experimental N
< 400rpm o 015
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~ ~--°[600rpm o
-0.8 Lecoi = 010+
1ol S = 10 MM K,Fe(CN),
;ggg:g;: 10 mM K Fe(CN), = 005!} + 1M NaQH
-1.2F
2500rpm + 1M NaOH
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E/Vvs. RHE Reotation rate / rpm

Figure 13 : (a) RRDE voltammograms of GC-supported thin film of Pt/C and corresponding
currents on Pt ring polarized at +1.48 V vs. RHE, in N>-purged 10 mM K;Fe(CN)s + IM
NaOH electrolyte at various electrode rotation rates and at 10 mV.s”. Measurements were
performed with 20 ug.cm™ geo Pt. Color codes for rotation rates : 400 (pink), 600 (red), 900
(orange), 1200 (green), 1600 (blue), 2000 (purple), and 2500 rpm (black). Disk currents are
corrected to the background currents measured in the N, atmosphere in the absence of
K3Fe(CN)g. (b) Corresponding \Ixl/\Ipl ratio at +0.98 V vs. RHE versus rotation rate.

The disk and ring currents reach a plateau at low potential values. At 0.98 V vs. RHE, both

disk and ring currents increase linearly with the square root of the rotation rate, showing that
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the current is limited by diffusion at this potential. By plotting the ratio lIzl/lIpl at this potential
(Figure 13,b), N appears to be 0.25 and nearly constant with the rotation rate. This value is
close to the theoretical N value — 0.255 — calculated from (Equation 47) and was therefore

used for the RRDE analysis.
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2.4. HO, decomposition study

During the ORR electrocatalysis on oxides, eventual HO, intermediates might decompose.
Therefore this decomposition reaction was investigated using a volumetric technique to

determine its Kinetics.

2.4.1. Titration of H>O»

As H,O, might already decompose into O, and H,O during its storage, it should be titrated

before being used for HO, decomposition and HO, reduction/oxidation experiments.

2.4.1.1. Preparation of KMnQ, solution

Solutions of approximately 0.02 M KMnO, were prepared by dissolving 1.6 g of potassium
permanganate (KMnQy, Prolabo) into an Erlenmeyer containing 500 mL of ultrapure water
under magnetic mixing at 95°C during 2 hours. The Erlenmeyer was then protected from light
with aluminum foil and cooled at ambient temperature during the night. Then, the solution
was filtered with a Buchner funnel containing a filter paper (Verlabo) to remove undissolved
species. The filtered solutions were finally kept in opaque bottles to protect them from light.

The day before each standardization, the KMnO, solutions were heated at 95°C during 2

hours again, cooled at ambient temperature during one night and filtered.

2.4.1.2. Standardization of KMnQO, solution

The prepared KMnOy solution was standardized with sodium oxalate in the presence of an
excess of sulfuric acid to ensure a stoichiometric reaction. Thus a 250 mL-solution containing
IM H,SO4 and 0.006 M Na,C,04 was prepared with 14 mL of H,SO4 (HySO4, 95-98%,
Sigma-Aldrich), 30 mL of Na,C,04 (Nay;C;04, 0.05M, Fluka) and ultrapure water in order to
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have a equivalence volume of around 30 mL, and placed in an Erlenmeyer with a magnetic
stirrer. The prepared KMnOy solution was then placed in a burette, and the titration was
performed at around 80°C under magnetic mixing.

The reaction which occurs during this titration is (Equation 52)

2Mn0,” + 5H,C,0, + 6 H* = 2Mn,* + 10CO, + 8 H,0 (Equation 52)

Therefore, the exact concentration in MnO,; of the KMnO,; solution Cyo4.° can be
determined thanks to Vyo4.®, the volume of KMnO, added at the equivalence point
(Equation 53):
2 o
Cmno,~° = % (Equation 53)
with ng>c204°, the initial mole quantity of H,C,O4 in the Erlenmeyer. This standardization

was performed before each H,O, titration.

2.4.1.3. Titration of H,O, with standardized KMnQO, solution

For HO,™ decomposition and HO,™ reduction/oxidation experiments, SupraPur H,O, (H,0, 30
wt% solution in water, SupraPur, Merck) was used to avoid impurities and stabilizers often
found in H,0O, solutions of lower purity. This SupraPur solution was titrated with the
standardized KMnQO, solution in the presence of an excess of sulfuric acid to ensure
stoichiometric reaction. Thus a 250 mL-solution was prepared with 4 mL of H,SO4 (H,SOy,
95-98%, Sigma-Aldrich), 100 uL of SupraPur H,O, (H,O, 30 wt% solution in water,
SupraPur, Merck) and ultrapure water in order to have an equivalence volume of around
20mL, and placed in an Erlenmeyer with a magnetic stirrer. The standardized KMnOj4
solution was then placed in a burette, and the titration was performed at ambient temperature
under magnetic stirring.
The reaction which occurs during this titration is (Equation 54):

2MnO,” + 5H,0, + 6 H* = 2Mn," + 50, + 8 H,0 (Equation 54)
Therefore, the exact concentration of H>O, solution Cyp02° can be determined thanks to
Vo4, the volume of KMnQO,4 added at the equivalence point (Equation 55):

5 e
o __ EVMnO4_ qCMnO4_

(Equation 55)

C
Hzoz VHzOZO
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with Cymo4-°, the concentration of the standardized KMnO, solution and Vip0,°, the initial
volume of H,0; added in the Erlenmeyer (100uL).
This titration was performed each week and shows that H;O, concentration is indeed quite

stable - around 10 M - with time in the bottle.

2.4.2. Volumetric follow-up of the O, formation

In this section, the study of HO, decomposition reaction is described.

2.4.2.1. Theory and approximations

The reaction studied in this section is the HO, decomposition into OH and O, (Equation

56):

HO,” = OH™ + -0, (Equation 56)

Therefore, the number of O, moles, ngy,is (Equation 57):

ng, = (nHOZ_O)Z_(nHOZ_) (Equation 57)

with ngos., the number of HO,  moles at a given time and nyo,.°, the initial number of HO,
moles. It is possible to estimate the volume of O,, Vo, thanks to the perfect gas
approximation (Equation 58):

PVp, = ng,RT (Equation 58)

with P, the atmospheric pressure, 1.013 x 10° Pa, R, the gas constant, 8.314 ] .K'l.mol'l, and T,
the temperature in Kelvin which was taken as equal to 289K — 25°C, the temperature of the
cell — even though the temperature of the gas was not controlled. Thus, the volume of O,

produced during the reaction is (Equation 59):

Vo, = [(CHOZ_0)_(CHOZ_)]Vsolution

RT )
) > (Equation 59)

with Cyoy., the HO, concentration at a given time, Cyop.°, the initial HO, concentration

(which is equal to the initial H,O, concentration), and Vjuion, the volume of the solution. In
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max

particular, the maximum volume of O, - Vg, - formed when all HO, is consumed is

(Equation 60):

o
max __ CHOZ_ Vsolution
Vo =

= (Equation 60
5 P (Equation 60)

In conclusion, one can follow the HO, concentration evolution by measuring the O, volume

at various states of advancement (Equation 61):

Cho,~ = CHOZ_O (1 - V:Onﬁax> (Equation 61)
2

Several works showed that HO,  decomposition is a first order reaction on perovskite oxides
[121-127] and it was confirmed in this work (see section 5.4.2). Therefore, the reaction rate

can be expressed as (Equation 62):

dCyo.—
—_ Z_SZ = kCyo,- (Equation 62)

with k, the first-order constant in s'. This expression can be integrated as (Equation 63) since

Cho2-= Chop-° att =0:

In CLZ’_O = —kt (Equation 63)

CHo,~

which finally gives (Equation 64):

In (1 ~ Yo ) — —kt (Equation 64)

O2max

By plotting In(1-Voo/Voo™) versus the time, one can determine the first order constant k
from the slope of the straight line. The heterogeneous rate constant kpe, expressed in cm.s™,

can be calculated thanks to (Equation 65):

Kpet = k Vsolution (Equation 65)

m SBgT

with m, the mass of catalyst utilized for the study, and Sggr, the BET surface of the catalyst.

Then, the catalytic activity per unit surface area of different catalysts can be compared.

2.4.2.2. Setup used for the study of HO,” decomposition

As suggested by the previous equations, the kinetic rate of the catalytic HO,  decomposition
can be determined by the follow-up of O, formation. Therefore, a setup was built to measure

the volume of O, during the decomposition of HO, on perovskite oxides. A photograph of the
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setup can be found in Figure 14. It was inspired by setups described by Deren et al. [165] and
Minami et al. [166]. As O, was evolved during the decomposition reaction, O, formation was
visualized in the manometer. Water was then run down from the burette to measure the O,

volume.

Figure 14 : Setup of volumetric follow-up of O, formation, inspired from [165,166]

As glass is attacked by NaOH to form sodium silicates, the reaction cell was made of Teflon.
This cell was built with a round-shape bottom to avoid that catalyst particles stick to the edges
and an oval magnetic stirrer was placed in the bottom of this cell to avoid mass transport
limitations. The cell was immersed into a thermostat bath at 25°C. The control of the solution
temperature is essential since the kinetic constant is dependent on the temperature T according

to Arrhenius law (Equation 66):

k= Aexp (— %) (Equation 66)

with R, the gas constant, A, the pre-exponential factor and E,, the activation energy.

In a typical experiment, the desired amount of a milled catalyst was placed into the cell
through a funnel and the electrolyte was added through the same funnel to avoid loss of the
catalyst. A 10 mL-solution containing a certain amount of H,O, was prepared, placed in the
V-shaped tube and protected from light with an aluminium foil. The electrolyte was then
saturated with O, during at least 1h. Thanks to this O, saturation, all O, formed during the

HO, decomposition will be transferred from an electrolyte to the gas phase and can be
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measured by the volumetric method. When the electrolyte was saturated, the cell was closed
with caps and the gas-tight behavior was ensured with the presence of grease and paraffin film
around the caps. The level in the U-manometer is initialized by removing water from the
burette — initially full of water - until the levels in the two tubes are identical, and the
corresponding volume in the burette is marked as the initial volume. Then, the V-shaped tube
is turned around to discharge the H,0O,-containing solution in the electrolyte and the
chronometer is started. Finally, the O, volume formed during the HO, decomposition was
measured regularly by running down water from the burette.

It should be noted that, with this setup, the temperature of the gas was unfortunatelly not
controlled, therefore the gas volume might be slightly different from theory. Moreover, some
gas diffusion through the liquid filling the manometer — colored water — could not be

excluded.

2.4.2.3. Electrolyte and H,O,-containing solution

The electrolyte used in this work was 1 M NaOH prepared from extra pure NaOH solution
(50 wt. % solution in water, Acros Organics) and ultrapure water in polypropylene volumetric
flasks. The volume initially placed in the reaction cell was 100 mL.

The V-tube was containing a 10 mL-solution prepared with ultrapure water and the H,O,

volume Vo, of (Equation 67):

reaction reaction
_ CHzOZ VH

2Y2 .
Vh,0, = s Toraton (Equation 67)
H,03,

reaction reaction

with Cioo , the desired concentration in the reaction cell, V g0z , the final volume
of electrolyte in the reaction cell which is 110 mL (100 mL + 10 mL), and C gp0,""™"*", the
concentration of the source H,O, solution, which was obtained by titration. This solution was
prepared in an opaque bottle to protect it from light.

According to (Equation 60), the maximum volume of O, which can be formed during HO,
decomposition can be estimated. Most of experiements were therefore performed with a 0.03
M H,0O, concentration since it corresponds to a maximum volume of ca. 40 mL. Higher
concentrations would have led to higher O, volumes and thus, no plateau could be reached in
the 50 mL burette used in the setup. Lower concentrations could be used but the small volume

changes with time would have caused imprecise volume determination.
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2.4.2.4. Determination of the kinetic constant

Various experiments were performed to thorouhgly study the HO, decomposition reaction.
First of all, the non catalytic HO,  decomposition was studied by adding an H,O,-containing
solution in a cell without catalyst. Various H,0O, concentrations were tested in order to
determine the rate order of this reaction. These experiments were also used as a background to
correct the experiments performed in the presence of a catalyst since non catalytic reaction
can also occur during these experiments. Secondly, the reaction order of the catalytic
decomposition reaction was investigated on LaMnO; and extrapolated to other perovskites.
For that, various catalyst masses and H,O, concentrations were studied. By varying the
catalyst mass, one can verify if the reaction is indeed limited by the kinetics. Thanks to the
various H,O, concentrations, the reaction order of the catalytic reaction could be determined
and the accuracy of the perfect gas law could be verified by comparing the experimental
maximal O, volume with the theoretical one. Finally, the catalytic activity of various
perovskite oxides, simple oxides, Pt/C and carbon were measured in presence of 0.03M H,0,

and the heterogeneous constants were compared.
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2.5. Perovskite stability study

Various stability tests were performed on perovskite catalyst to validate their possible fuel cell

application.

2.5.1. Thermal treatment of perovskites

Perovskite powders were stored in air for several months after the synthesis, and thus
formation of the carbonates on perovskite surface can occur. To remove eventual carbonates,
a thermal treatment was applied. This thermal treatment was similar to the annealing step of
the synthesis. Indeed, the powder placed in a crucible was heated in air from room
temperature to 650°C at 5°C.min"" and annealed at 650°C for 1h. An annealing temperature of
700°C was also tested. After cooling, the treated powders were analyzed by XPS to determine
the surface composition, and their electrochemical properties were investigated by CV and

RDE techniques.

2.5.2. Chemical stability of perovskite suspensions

The stability of aqueous suspensions of oxides was also studied. XPS characterization was
performed for four different suspensions of 2g.L" of LaCoOs. The first one — suspension A -
was made from unground LaCoOj3; powder, whereas the three others — suspensions B, C and D
- were prepared with ground powder as usually. This was done to detect eventual influence of
the grinding - obtaining of fresh surface - on the stability of the perovskite surface in water.
Suspensions A, B and C were placed in ultrasonic bath for 30 minutes, while suspension D
received a 2 h-ultrasonic bath treatment in order to identify the impact of this violent
treatment on the perovskite state. Suspensions A, B and D were analyzed immediately after
preparation and suspension C after one week to determine the effect of the storage time. Table
2 summarizes the studied suspensions. It should be noted that suspension B represents the

usual way to prepare the catalyst suspension.
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For XPS analysis, a 100 uL drop of a desired suspension was directly deposited on the carbon

scotch placed on a XPS sample holder.

Table 2 : Aqueous suspensions of LaCoQOj tested by XPS

Grinding in a Duration of ultrasonic
Suspension Storage time
mortar treatment (min)
Suspension A No 30 (no storage)
Suspension B Yes 30 (no storage)
Suspension C Yes 30 7 days
Suspension D Yes 120 (no storage)

2.5.3. Chemical stability of perovskite in alkaline media

The chemical stability of the perovskite oxides was tested by immersing 100 mg of a
perovskite powder in 50 mL of 1M NaOH in a Nalgene bottle. The bottles were closed,
shaken by hand to obtain a homogeneous suspension, and placed on a roller-mixer with a
rotation speed of 60 rpm. These experiments were performed at room temperature. After the
desired duration, the samples were shaken by hand and filtered through a filter paper placed in
a plastic funnel. The filter paper was then dried in air during one night. The filtered solution
was analyzed by ICP-MS to detect eventual dissolved species, whereas the perovskite powder
recovered on the dried filter paper was scrubbed to be detached and characterized by XPS and
XRD as soon as possible. The immersion durations were 2 days, 7 days, 18 days and 1 month.
One can expect sodium hydroxide precipitation or sodium carbonates formation on perovskite
surface during the filtration step. Thus, the effect of rinsing was investigated by rinsing the
powders with various amounts of ultrapure water and analyzing them by XPS. However, the
results were irreproducible due to possible surface modification by the rinsing. It was
therefore chosen not to rinse the samples for further experiments. Results shown in section 6

correspond to samples without rinsing before the characterization.
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2.5.4. Electrochemical stability of perovskite/carbon composites

2.5.4.1. Electrode preparation for stability tests

As RDE and RRDE display too small geometric surface area to perform material
characterization after electrocatalysis, another working electrode type was used for stability

experiments.

2.5.4.1.1. Carbon paper choice

The Toray carbon paper TGP-H-60 (Alfa Aesar) usually used as a gas-diffusion layer (GDL)
in fuel cells was chosen as support. The carbon paper used in this work does not contain any
PTFE, and thus can display hydrophilic properties after an appropriate treatment. It is
supplied in a foil form, from which any size of electrode can be cut, depending on the
application. In order to have sufficient surface area to perform material characterization,
electrodes of 1 cm x 1 cm were cut with a scalpel. The thickness of 0.19 mm of the carbon

paper is small enough to have negligible impact on the material characterization such as XRD.

2.5.4.1.2. Hydrophilic treatment on the carbon paper

Electrodes of 1 cm? were attached to a gold wire through a hole made in the carbon paper and
immersed in ca. 50 mL of 1M NaOH - prepared from extra pure NaOH solution (50 wt. %
solution in water, Acros Organics) and ultrapure water - at ambient temperature during one
night in order to make carbon paper hydrophilic. The rigidity of the gold wire allows the
carbon paper to stay immersed in the alkaline solution despite its initial hydrophobic
properties. Then, electrodes were rinsed by immersing them several times in fresh ultrapure
water. It was observed than carbon paper electrodes can be more easily immersed in water

after this treatment.
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2.5.4.1.3. Catalyst thin layer

The treated carbon paper was placed on a support with contact only on the edges to allow gas
circulation through the electrode. 9 aliquots of 20 puL of a suspension of 0.33 g.L'1 of
perovskite and 0.14 g.L”" of Sibunit carbon were taken under sonication of the suspension and
drop casted on the dried carbon paper, each drop deposited in a different area to completely
cover the carbon paper. The electrode was then dried under N,. This last operation —
deposition of 9 drops and drying - was repeated three times in order to get a homogeneous
coverage of the electrode and to improve the reproducibility. Finally, the total amount of
suspension deposited was 540 uL (3 x 9 x 20 pL), which gives a loading of 180 pg.cm™
perovskite and 74 pg.cm™ Sibunit carbon on the 1 cm? electrode. This loading was low
enough to avoid loss of particles from the porous and rough carbon paper without addition of
an ionomer. Moreover, this low loading allowed a lower ohmic resistance and a more uniform
electrical contact between carbon paper, oxide particles and Sibunit carbon than for thicker

catalyst layers.
2.5.4.1.4. Material characterization

These electrodes were prepared to allow material characterization after chemical and
electrochemical treatments. This characterization was performed using XRD and XPS
techniques to check stabilities of the bulk and surface composition, respectively. Each
stability test was therefore performed on two identical samples in order to carry out both
analyses simultaneously. In parallel, the stability was performed on carbon paper without thin
layer deposition to get the support signal. All analyses were made the same day as the
treatment to avoid modification of the catalyst with atmosphere. As XRD is a non-destructive
method, the samples could be recovered when required for successive SEM characterization
to detect eventual modification of morphologies and agglomeration. Unfortunately ICP
technique could not be used to detect eventual dissolved species since the catalyst quantities

were small.
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2.5.4.2. Stability after polarization and electrocatalysis

Electrochemical stability of oxides was investigated after polarization in inert atmosphere,
after ORR and after HO, reduction/oxidation since all these processes were utilized for ORR
studies. For all experiments, the carbon paper sample with perovskite/carbon thin layers was
attached to a gold wire soldered in by Pyrex to avoid gas leakage and immersed in 1M NaOH
electrolyte at 25°C. Then the solution was purged with N, gas during at least 1h to remove
oxygen traces from electrolyte and from carbon paper and 10 CV cycles were performed at 10
mV.s" between +0.43 V and +1.23 V vs. RHE using Autolab potentiostat. No agitation was
performed in the cell during CV measurements to avoid loss of electrical contact between the
carbon paper and the gold wire.

For the polarization stability study, additional 20 CV cycles were performed in the N>-purged
electrolyte. At 10 mV.s™' in the studied potential window, this corresponds to around 1h of
polarization. For the ORR stability study, O, gas was bubbled through the electrolyte for at
least 2h to get a saturated solution and to allow O, molecules to enter the porous structure of
the carbon paper. 20 CV cycles were then performed in this media. For HO;
reduction/oxidation stability study, an aliquot of titrated SupraPur H,O, (H,O, 30 wt%
solution in water, SupraPur, Merck) was added in the N,-purged 1M NaOH to get a 0.84mM
H,0;-containing electrolyte. The addition of H,O, was made during bubbling of N to achieve
convection and thus good mix of solutions. 20 CV cycles were then performed in this media.
For all experiments, the samples were removed from solution after CV measurements, placed

on a tissue to remove liquid traces and characterized immediately. No rinsing was applied.

2.5.4.3. Stability in alkaline media

To be used as a background and to separate perovskite modifications due to chemical
instabilities from modifications due to electrochemical instabilities, the chemical stability of
the perovskite/carbon composites was investigated in 1M NaOH solution.

For these tests, carbon paper samples with perovskite/carbon thin layers were placed in
Nalgene bottles containing around 50 mL of 1M NaOH. The bottles were closed and placed
on a roller-mixer with a rotation speed of 60 rpm at room temperature. After 3h —

corresponding to the duration of an electrochemical experiment - the samples were removed
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from the alkaline solution, placed on a tissue to remove liquid traces and characterized

immediately. No rinsing was applied.

2.5.5. Stabilty of the ORR activity studied by

chronoamperometry

2.5.5.1. Principle of the test

Chronoamperometry was used to check the stability of the activity, i.e. the current, with time
at a given potential. This was performed with RDE GC-supported thin layer electrodes. Three
different potentials were tested. The first one corresponded to the kinetic region — ORR
current of ca. 0.01 mA - the second one, to the halfwave potential and thus to the mixed
kinetic-diffusion region, and the last one was taken at the lower potential limit - +0.43V vs.
RHE - to correspond to the diffusion region. The potential values were determined from the
RDE curves of the studied sample. These tests were performed in O,- and H,O,-containing
media to determine the stability of the ORR activity and of activity for the HO, reduction,
respectively, and in Np-purged electrolyte to study the effect of polarisation. Before and after
each chronoamperometry measurement, CV in inert atmosphere was recorded to follow
eventual modification of interfacial properties of perovskite, and RDE voltammogram at 2500
rpm in the studied media — O, or H,O,-containing — was carried out to have an overview of
the electrocatalytic stability. The experiments were performed with a rotation rate of the
electrode of 2500 rpm to avoid mass transport limitation, except for chronoamperometry
measurements in Np-purged electrolyte which was performed without rotation to minimize the

influence of eventual O, traces.

2.5.5.2. Typical chronoamperometry experiment

The 1M NaOH electrolyte was first purged with N, gas during at least 1h to remove oxygen
traces and the temperature was controlled at 25°C. Afterwards the working electrode was
immersed in the N-purged electrolyte and CV measurements were performed at 10 mV.s" in
the potential window of +0.43 V / +1.23 V vs. RHE with the Autolab potentiostat. Then, the

electrolyte was prepared for the reaction study. For the ORR stability study, O, gas was
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bubbled through the electrolyte for at least 45 minutes to get a saturated solution, and for HO,
reduction stability study, an aliquot of titrated SupraPur H,O, (H,O, 30 wt% solution in
water, SupraPur, Merck) was added in the N,-purged 1M NaOH to get a 0.84mM H,0;-
containing electrolyte. RDE voltammograms were then recorded at 2500 rpm before applying
the desired potential and performing the chronoamperometry at 2500 rpm during 10,000
seconds with interval time of 1s. Immediately after the chronoamperometry measurement,
RDE voltammograms at 2500 rpm were recorded again. Finally, CV measurements were
perfomed in N, atmosphere. In the case of the ORR studies, the same electrolyte was purged
with N for 1h to remove O,. In case of the HO, reduction studies, the working electrode with
the used catalyst was removed from the first cell and immersed in the second cell containing
Ny-purged 1M NaOH.

In order to study the effect of polarisation during these stability experiments,
chronoamperometry in N-purged electrolyte was performed at the desired potential without
rotation immediately after the CV measurement. No RDE voltammogram was recorded in this

case.
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Chapter 3 :

Properties of perovskite catalysts
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3.1. Introduction

Before being used as ORR catalysts, the perovskite oxides should be characterized to check if
they display the expected structure and to learn about their surface composition. This was
investigated by XRD and XPS techniques, respectively. Moreover, it is necessary to know the
available surface area of a catalyst to normalize its electrocatalytic activity. SEM analysis of
the oxide morphology, with the help of BET measurements, gave an estimation of the
accessible surface. In order to learn about the distribution of particles in the perovskite/carbon
composite electrodes, SEM was associated to EDX. Finally, the interfacial properties of the
oxides were studied by CV. This technique permits to identify the potential window of the
perovskite stability, essential for further electrochemical measurements, but also to investigate
the redox transitions occurring in the studied oxides.

All these characterizations will help to understand the catalytic behavior of the perovskite

oxides.
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3.2. Physical and chemical properties

3.2.1. Structure of the bulk

3.2.1.1. Identification of the cristalline phases

XRD characterization for each of the samples was performed twice. Firslty, XRD patterns
(not shown) were taken by our project partner F. Napolskiy at the Moscow State University
[142] right after the synthesis in order to confirm the formation of the expected perovskite
structure and check the possible presence of impurity phases. The structure symmetry as well
as the unit cell parameters were determined using the Rietvield refinement [144,145] and can
be found in Table 3 for the studied oxides.

Secondly, the XRD characterization was repeated in Strasbourg after a few months storage of
the samples under ambient conditions and shortly before performing electrochemical
measurements in order to check possible perovskite modification during storage (Figure 15).
For this second set of measurements, the Rietvield refinement was not applied and the unit
cell parameters were estimated by comparing the peak positions and peak intensity ratio with
the ICDD reference cards. The ICDD reference cards which fitted the most closely to the

experimental patterns are indicated on Figure 15 and reported in Table 3.
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ICDD reference card number

v LaCoQ3 - 01-084-0848
v La0.851Mn0.95103 - 01-089-8775
v La0.78r0.3Mn0O3 - 01-089-4461
+ La0.7Ca0.3MnQ3 - 01-070-2664
v PrCoO3 - 01-089-8415
v Pr0.96Mn0.98203 - 01-085-2203
v Co304 - 00-042-1467
Mn203 - 00-041-1442
+ SrCO3- 00-005-C0418
WC - 03-065-8828
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Figure 15 : X-Ray powder diffraction pattern (step size = 0.0223°, step time = Is) of
perovskite and simple oxide powders after storage under ambient conditions, and the
corresponding ICDD reference cards. The diffraction patterns were corrected from the
background signal.
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Table 3 : Structure and unit cell parameters of oxide powders determined Rietveld refinement
right after synthesis and from comparison with ICDD reference cards after atmospheric

storage

Structure determined by Rietveld

Structure reported in ICDD
reference cards fitting with XRD
patterns after atmospheric storage

(Figure 15)

LaCoO; (01-084-0848), rhombohedral
R-3c,
a=5.378 A, a = 60.80°
WC traces (03-065-8828)

Lag.os1Mng,05;03 (01-089-8775),
rhombohedral R-3c,a=b=5.515A, ¢
= 1334 A, a=p=90°y=120°
WC traces (03-065-8828)

Lay7Sro3MnO; (01-089-4461),
rhombohedral R-3c,a=b=5.502 A, ¢
=1335A, a=p=90°y=120°
WC traces (03-065-8828)
SrCOj; traces (00-005-0418)

Lag7Cag3MnO; (01-070-2664),
orthorhombic Pmna,
a=5462A,b=7719A,c=5483 A
WC traces (03-065-8828)

PrCoO; (01-089-8415), orthorhombic
Pmna,
a=5340A,b=7574 A, c=5375A
WC traces (03-065-8828)

Compounds refinement right after synthesis [142]
LaCo0Qs3, rhombohedral R-3c,
LaCoO; o
a=5.385 A, a=60.68°
LaMnOs;, rhombohedral R-3c,
LaMnO; a=5.465 A, a.=60.52°
WC traces
Lag §Srg-MnQOs, rhombohedral R-3c, a =
LagsSro.MnO; 5.473 A, o = 60.42°
WC 2%
Lagy gCag,MnOs3, orthorhombic Pnma,
Lay3Ca).MnO; a=5.459, b=7.724, c=5.498
PrCoQs, orthorhombic Pbnm,
PrCoO;3 a=5378 A,b=5343 A, c=7.580 A
WC <1%
PrMnOs, orthorhombic Pbnm,
PrMnO; a=5461A,b=5496 A, c=7.713 A

WC 3%

Pro.96Mng 05203 (01-085-2203),
orthorhombic Pbnm,
a=5456A,b=5.594 A, c=7.663 A
WC traces (03-065-8828)
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CO304, C0304 (00—042— 1467),

CO304 o o
cubic Fd-3m, a=8.083 A cubic Fd-3m, a =8.084 A
Mn, 03, Mn,O3 (00-041-1442),
Mn203 o o
cubic Ia-3,a=9412 A cubic Ia-3, a=9.409 A

First of all, it was observed right after synthesis that all the synthesized perovskites present
perovskite characteristic crystalline peaks, as expected, and no precursors traces were
remaining. Therefore, the soft chemistry synthesis using polyacrylamide gel is appropriate to
obtain perovskite compounds. After storage, no perovskite phase decomposition could be
observed showing the stability of the perovskite structure under ambient conditions. As
rhombohedral structure is characterized by a doublet peak around 33°, while orthorhombic
structure presents a simple peak at this angle, one can see from XRD patterns and
corresponding ICDD reference cards that the crystal symmetry is function of the nature of the
A cation of the perovskite. Indeed, non-doped and Sr-doped La-based perovskites show
rhombohedral structure, in agreement with the literature for LaCoOs3 [47,55,59,60,88,97,167-
171] and for La; xSryMnOs [45,58,83,167-169,171,172] whereas Lag gCag,MnQO3 and Pr-based
perovskites present orthorhombic structure, as found in reference [65] for PrMnOs. This can
be explained from the Goldschmidt tolerance factor (Equation 10) (see section 1.3). The ionic
radii of A cation are in the order Pr’* < Ca®* < La** < Sr**. Therefore, since the ionic radii of
Pr’* and Ca’* are smaller than the ionic radii of La** and Sr**, the tolerance factors of Pr-
based oxides and LapgCap,MnQOs; are smaller than those of LaCoO;, LaMnOs; and
Lay gS1po.MnOs. In other words, the former present lower symmetry (orthorhombic structure)
than the latter (rhombohedral structure).

As shown in Table 3, some differences in the perovskite structure are observed between the
results obtained right after the synthesis and those obtained after a few months storage. This is
partially due to the less precise method using the ICDD reference cards. Indeed, for a given
compound, the theoretical and the experimental diffraction patterns can differ since
theoretical diffraction patterns were either calculated or measured for an ideal structure under
ideal conditions, contrary to experimental diffraction patterns. Thus, the experimental
diffraction pattern may appear closer to another compound than the one it really belongs and
would lead in a wrong interpretation. It might be the case for La; xA’xMnO; (A’ = Sr or Ca)
perovskites, for which the ICDD reference cards with x = 0.3 are the closest to the
experimental patterns, whereas x is expected to be 0.2. Moreover, there is a lack of ICDD

reference cards for some compounds, in particular for PrtMnQOj3 perovskites which were rarely
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studied. Nevertheless, one can notice in Table 3 that LaMnO3; and PrMnO3 samples are closer
to non stoichiometric compounds than to stoichiometric ones after storage. This is in
agreement with the literature since Mn-perovkites often present oxygen excess or cation
vacancies, especially for synthesis in oxygen containing atmospheres [58,83,88,167-169,171-
173]. From this observation, one may infer that Mn probably exists in both Mn** and Mn**
oxidation states in non-doped Mn perovskites, as for A2+—doped perovskites.

After storage under ambient conditions, the LaggSro,MnO3; compound shows the presence of
SrCOs; traces which were not present in the fresh powder and thus which do not originate
from the synthesis precursors but rather from the interaction of the sample with atmospheric
COa,. Such SrCOs; traces were also found by XRD analysis in the literature for La;  SrxCoOs
compounds [43,59,174].

One can notice that WC traces resulting from the ball milling are found in the studied
compounds. However, this component is in trace form and is not expected to be active for
ORR [175]. This phase was therefore neglected for electrocatalysis studies and the perovskite
oxides were considered as single phase compounds.

The simple oxides Co3;O4 and Mn,O3 present different structure from the perovskite oxides.
Indeed, these compounds display strong and sharp peaks showing high cristallinity, and their

structures are cubic according to both Rietvield refinement and ICDD reference cards.

3.2.1.2. Oxide crystallite size

The crystallite size of the studied oxides was determined from Scherrer equation (Equation
12). The equation was applied to two single peaks at low 0 values of the diffraction pattern

(Figure 15), and the mean crystallite size is presented in Table 4.
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Table 4 : Crystallite size from experimental diffractograms, particle density from
corresponding ICDD reference cards and calculated XRD surface area of perovskite and
simple oxide powders

Mean crystallite
Particle density p from Calculated XRD
size determined by
Compounds corresponding ICDD surface area
Scherrer equation

reference cards (g.cm'3 ) Sxrp (mz-g'l)
(nm)
7.29
LaCoO; 31 27
(LaCo0O3 01-084-0848)
6.59
LaMnO; 27 34
(La0,95 1Mng 95103 01 —089—8775)
6.45
Lao_ssl’o.le‘lOg, 22 43
(La0,7Sr0.3MnO3 01-089-4461 )
6.10
Lao,scao_zMnO;; 15 66
(Lap7Cap3sMnO; 01-070-2664)
7.57
PrCoOs; 26 32
(PrCo0O; 01-089-8415)
6.74
PrMnO; 16 57
(Pr0.96Mn0.98203 01 -085-2203)
6.06
C0304 49 20
(Co304 00-042-1467)
5.04
Mn203 53 22

(Mn,03 00-041-1442)

The perovskite crystallite sizes are between ca. 15 and 30 nm according to Scherrer equation.
However, from the particle size distribution performed on perovskite with laser diffraction
analysis [142], it was observed that most of particle sizes lied between 300 nm and 30 um
(Figure 16 for Lag gSrp,MnOs). This showed that the perovskite crystallites are agglomerated.
The simple oxides Co3;0O4 and Mn,0; show bigger crystallites than perovskite with a mean

crystallite size of ca. 50 nm.
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Figure 16 : Particle size distribution of LaggSro.MnQO; determined by laser diffraction
analysis [142]

The XRD surface area Sxrp of the studied material can be calculated from crystallite size
thanks to (Equation 68) if particles are considered as spherical and if the grain size diameter
is supposed to be equal to the crystallite size. Thus, Sxrp represents the maximal possible
surface area of the oxide which would have been observed if crystallites were not

agglomerated.

Sxrp = % (Equation 68)

with r: the radius of the spherical particle which is equal to the half of the crystallite size, and
p, the particle bulk density, estimated from corresponding ICDD reference cards. Table 4
shows that the XRD surface area of perovskite oxides is between 30 and 70 m2.g™". In order to
estimate the extent of crystallite agglomeration, these surface areas will be compared to BET
values in section 3.2.3. Due to their smaller crystallite size, simple oxides have XRD surface

area of only ca. 20 m2.g”".

3.2.2. Morphology and dispersion of particles

3.2.2.1. Oxide powder

In order to validate the particle size estimated from XRD and to learn about morphological

aspects, perovskite powders were examined by SEM technique. Typical SEM images are
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perovskites, and in Figure 19 for simple oxides.
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presented in Figure 17 and in Figure 18 in larger resolution for some ground La-based

Figure 17 : SEM images (SEI) of (a),(b) LaCoOs3, (c),(d) LaMnOs and (e),(f) Lap.sSro.MnO3
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100 nm 'oiD 3.0mm

Figure 18 : SEM image (SEI) of LaCoOjs perovskite powder in higher resolution

SEM analysis (Figure 17) revealed that perovskite oxides have a porous morphology
composed of agglomerates, in agreement with the particle size distribution. These
agglomerates are not uniform in size and shape. Indeed, some platelet agglomerates can be
observed as well as more complex structures, and agglomerate size ranges from several
hundred nanometers to a few micrometers. They consist of spherical nanoparticles of 50-100
nm size (Figure 18), which is larger than the particle size estimated from XRD. This can be
explained by the fact that one grain can contain several crystallite domains. No significant

differences in morphology were noticed between doped and undoped La perovskites.
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Figure 19 : SEM images (LEI) of (a),(b) Co304 and (c),(d) Mn;Oj3 simple oxide powders

It can be seen from Figure 19 that simple oxides present a very different microstructure from
perovskite oxides. Indeed, the particles seem to be bigger, in agreement with XRD results,
and strongly agglomerated with not well-defined grain boundaries, i.e. particles are
interconnected. Therefore, one can expect that the accessible surface for these simple oxides
is very low, and, considering that these oxides have low conductivity, that it would probably

lead in high ohmic drop in the catalytic layer.

3.2.2.2. Oxide/carbon composite

In order to explore the homogeneity of the composite oxide/carbon electrodes, a thin layer of
LaCoOs/carbon was deposited on a glassy carbon support in the same manner as for
electrochemical experiments and studied with SEM/EDX technique. Figure 20 shows a SEM
image of this composite electrode, and the EDX spectrum and elemental mapping of various

components across this image.
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Figure 20 : (a) SEM image (LEI), (b) EDX spectrum averaged across the frame and elemental
mapping of (¢) Na, (d) La, (e) Co and (f) C for LaCoOj3/Sibunit carbon composite deposited
on glassy carbon. The dotted line delimits an aggregate of LaCoQOj3 particles

According to the EDX spectrum (Figure 20, b), C, O, Co and La are present in the sample
meaning that both Sibunit carbon and perovskite are represented. La and Co (Figure 20, d,e)
as well as C (Figure 20, f) elemental mappings were therefore performed across the frame to
visualize the distribution of perovskite and Sibunit carbon agglomerates, respectively. A
background measurement was performed through the elemental mapping of Na (Figure 20, c).
Figure 20 shows that La, Co and C are well dispersed and suggests that the perovskite is well
intermixed with carbon in the catalytic layer. Thus, the thin layer preparation method used in
this study is valid to get homogeneous (on the micrometer scale) perovskite/carbon
composites.

The elemental mapping also allows to distinguish areas enriched either in perovskite or in
carbon. For example, one may notice a perovskite agglomerate (Figure 20, dotted line
delimited area) featuring high concentration of Co but impoverished in C. Indeed, the
micrometer size of this agglomerate makes difficult its mixing with carbon. Although the
presence of carbon in the electrode is confirmed by EDX, Sibunit particles could not be

clearly visualized and distinguished from the perovskite.
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3.2.3. Specific surface area

Further to SEM analysis, a more precise accessible surface determination was required. Thus
the specific surface of various compounds was determined using the BET technique. The
obtained specific surface areas are listed in Table 5 and compared to XRD specific surface

(see section 3.2.1.2).

Table 5 : Comparison of specific surfaces of perovskite and simple oxide powders measured
by BET and calculated from XRD patterns

Calculated XRD
BET specific surface
Compounds 5 1 surface area Sxrp
Sper (m”.g") 2 a1
(m".g")

LaCoO3 10 27
LaMnO; 14 34
Lao_ssl‘o,zMnO;; 17 43
Lao.scao_le‘lOg, 20 66
PrCoOs; 10 32
PrMnO; 18 57
CO304 2 20
Mn203 3 22

First of all, it can be observed that the tendency is the same between the surfaces determined
by BET and the one determined by XRD. Indeed, oxides with the lowest XRD specific
surface are also those which possess the lowest BET specific surface. The BET surface area
of perovskite oxides is between 10 and 20 mz.g'l, close to BET values found for similar
perovskite syntheses in the literature [45,59,98,169,172]. There is a factor of ca. 3 between
BET and XRD surfaces, showing the extent of crystallite agglomeration, in agreement with
SEM and laser scattering analysis. In what follows, BET surface area was used to calculate

the specific electrocatalytic activity since it corresponds to the accessible surface area.
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Concerning simple oxides, a factor of 10 is found between XRD and BET surfaces, the latter
being around 2 m2.g”. It can be explained on the basis of a SEM observation where it was

observed that these oxides present a strong particle agglomeration (see section 3.2.2.1).

3.2.4. Surface composition

The nature of the species on the perovskite surface was first investigated by a XPS scan in a
large binding energy window. From this survey spectrum, the presence of A and B cations as
well as of O anions on the perovskite surface was confirmed. High resolution spectra of each

component were then studied.

3.2.4.1. Presence of A and B cations on the perovskite surface

Figure 21 shows the XPS spectra of various A cations — La3d, Pr3d, Sr3d and Ca2p -
potentially present in the studied perovskites. It is clear from these results that these species
are indeed present in the corresponding perovskite compounds. The dashed lines indicate the
peak positions and the corresponding binding energies are reported in Table 6 for perovskite

oxides and in Table 7 for other oxides and carbonates.
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Figure 21 : XPS spectra of (a) La3d, (b) Pr3d, (c¢) Ca2p and (d) Sr3d of perovskite and
lanthanum oxide and carbonate powders. Lines are guides for the eye and indicate the
experimental positions.

La3d spectrum (Figure 21,a) presents two double peaks for La; <A’xMnOs perovskites. The
split of La3ds/, and La3ds/, peaks into two components may be due to the charge transfer from
the valence band of oxygen to the unfilled La4f level [176]. The La peak positions for Mn-
perovskites are 834.1 eV and 838.1 eV for La3ds, and 850.7 eV and 854.9 eV for La3ds.
This is very similar to other XPS studies performed on La-based perovskites
[43,52,58,60,174,177,178]. La3d spectrum of perovskites is also very close to La3d spectra of
commercial lanthanum oxide (La>O3, 99.99%, Aldrich) and lanthanum carbonate (Lay(COs)s,
xH,0, Aldrich), the peak positions of which are 834.5 eV and 838.1 eV for La3ds;, and 851.3
eV and 854.9 eV for La3ds.,, as shown in Figure 21,a. The spectra of these lanthanum species
are in agreement with the literature [46,52,60,179,180] and lead to the conclusion that it is
difficult to distinguish lanthanum from the perovskite structure from lanthanum oxides or

carbonates. Moreover, for all perovskites, La Auger peaks can interfere with La3d peaks, thus
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deconvolution can hardly be performed on La spectrum. For LaCoOs3, however, the double
peaks are not well defined and a shoulder can be distinguished at lower binding energies.
Similar La3d shape was found for Co-perovskites in the literature [43,46,47,170] but is not
fully understood yet. It can be due to different peak positions between La peaks from Co-
perovskite (at lower binding energies) and La peaks from lanthanum oxide and carbonate (at
higher binding energies), contrary to perovskites made with other transition metals where
La3d peaks from perovskites and carbonates appear at the same binding energy. This is well
illustrated by Milt et al. [46] as shown in Figure 98 (see Appendix 2).

One can also not exclude some contributions of Co Auger peaks which occur at similar

binding energies.

Peak positions in Pr3d spectrum (Figure 21,b) are in agreement with other XPS studies of Pr-
based perovskites [65,181]. Yaremchenko et al. [181] suggested that both Pr’* and Pr*
cations display peaks at ca. 929 and 933 eV in Pr3ds,; spectrum, and by peaks at ca. 950, 954
and 958 eV in Pr3ds; spectrum. However, a contribution at ca. 946 eV is attributed to prtt
species. Such a contribution is visible in PrMnOs spectra. Thus, one can propose that
differences observed in Pr3d spectra for PrCoOs; and PrMnOs; compounds are linked to
differences in the Pr oxidation states. In PrCoQOs, Pr’* is the only oxidation state of Pr, while
Pr’* and Pr'** coexist in PrMnOs. Coexistence of Pr’* and Pr** was also observed in simple Pr-

oxides [182].

Concerning the Ca2p spectrum of LapsCap,MnO; (Figure 21,c), two distinct peaks are
visible. The first one at 346.3 eV is attributed to Ca2ps3, whereas the second one at 349.9 eV

is Ca2p, ., in agreement with XPS analysis of LaggCap,MngoFeq 03 [86].

Sr3d spectrum (Figure 21, d) reveals a broad peak composed of at least two peaks
corresponding to Sr3ds,; and Sr3ds,. As the peak area of Sr3ds3, peak is expected to be lower
than that of the Sr3ds/, peak, other contributions must be present to give the observed shape of
Sr3d spectrum. According to references [62,67,174,177,183], one of these contributions can

be due to SrCOs3 species, the presence of which was confirmed by XRD in Lag 3Sro>,MnOs.
Figure 22 shows the XPS spectra of various B cations — Co2p and Mn2p — potentially present

in the studied perovskites. As for A cations, it is clear that these species are indeed present in

the corresponding perovskite compounds. The dashed lines indicate the peak positions and the
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corresponding binding energies are reported in Table 6 for perovskite oxides and in Table 7

for other oxides and carbonates.
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Figure 22 : XPS spectra of (a) Co2P and (b) Mn2p of perovskite, cobalt oxide and hydroxide,
and manganese oxide powders. Lines are guides for the eye and indicate the experimental
positions.

Figure 22,a presents the Co2p spectra of LaCoOs, of PrCoOs3, of commercial cobalt hydroxide
(Co(OH),, 99.9%, Alfa Aesar) and of Co3;04. For both perovskites, Co2ps/, appears at 779.9
eV and Co2p;, at 795.2 eV, as found for some Co-perovskites in the literature
[43,55,59,60,67,174,184]. Work on simple cobalt oxides [185-187] and on doped cobalt
perovskites [188,189] showed that Co oxidation state can hardly be determined from the main
peaks but Co™ presence leads to a satellite peak between 785 and 788 eV. This is confirmed
by the Co2p spectrum of Co(OH); - containing mainly Co* - (Figure 22,a) on which the main
peak positions are 780.6 eV for Co2ps;, and 796.7 eV for Co2pip, and satellite peaks are
found at 786.5 and 802.4 eV, respectively. Thus, from the peak positions and the absence of
satellite peaks in Co2p spectra, one can reasonably assume that no Co™ species are present in
perovskite compounds, Co existing mainly in Co”* form. Eventual Co*™* cannot be excluded
due to the asymmetric shape of the peak, but is not likely regarding the low stability of this
cation.

One should note that deconvolution of the Co spectrum is difficult because of various possible
Co oxidation states, but also due to Co Auger peaks which appear in the same binding energy
range. Moreover, it can be supposed that the intensity shift of Co spectrum of PrCoO; at high

binding energies is linked to the Pr Auger peaks occurring at around 788 eV.
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The Co2p spectrum obtained for Co3Oy4 is quite unusual. In theory, both Co?* and Co™* are
present in this compound, but the spectrum shape and the peak positions do not correspond to
these oxidation states of Co. This might mean that the surface is covered by a layer of another

Co oxide. However, the bulk is definitely CoszO4, as confirmed by XRD (see section 3.2.1.1).

No significant differences between various Mn-perovskites and Mn,03 can be observed from
Mn2p spectra (Figure 22,b). The peak positions observed are 642.1 eV for Mn2ps/, and 653.5
eV for Mn2p;,, for Mn,03;, LaMnOs3, PrMnOs3 and Lay sCay>,MnOs3, and 642.4 eV for Mn2ps)»
and 653.8 eV for Mn2p,,, for LapgSro,MnOs. Similar peak positions were found for Mn-
perovskites in the literature [45,53,58,65,86,127,171] as well as for Mn,O3 [190]. According
to these authors, the broad and assymetric shape of Mn2p peaks may be explained by the
presence of at least two different Mn oxidation states — Mn>* at low energies and Mn™** at high
energies — in the doped and non doped Mn-perovskites. The slight shift of the peak position
for LaggSro,MnO3s compared to other Mn-oxides in the Mn2p spectra may indicate that the
amount of Mn"* is larger in this compounds, thanks to the Sr** doping. No differences due to
Mn?** presence to balance the eventual existence of Pr** can be found in the Mn2p spectrum of

PrMnOs.

3.2.4.2. Presence of carbonates on perovskite surfaces

For all the studied perovskites, a strong peak at low binding energies and a smaller one at
higher binding energies were present in the Cls spectra (Figure 23,a). The first peak can be
separated in two contributions, one for adventious carbon which is also the reference at 284.6
eV, and one for C=0 bonds (arising from the partial oxidation of carbon) at 286 eV. The peak
around 288-289 eV is attributed to carbonate species after comparison with the Cls spectrum
of (Lay(CO3)3 (Figure 23,a) and considering XPS spectra of A cations which evidence the
presence of La and Sr carbonates. This deconvolution, shown in (Figure 23,a), is based on the
literature [44,46,60,69,174,177,191] and proves the presence of carbonate species at the

perovskite surfaces.

117



Binding Energy / eV

,‘ = . ! ——~ |
Ha (CO) ~ ~. T~ g |-
L ~ t—~ ~_ |77 1]
L — B —]
. T TN -
= FPrMnO _ - .
R S "~ R
S T _ ]
2 T prooo N ]
® 70 e — . .
= — —
E N P S //—_‘\‘\\ -.
© fLaCa Mo, - S E
=0 o E
‘% [La,,5r,MnO T ™~ ]
2 — - —
g r TN ]
£ }LaMnO o ~ q
E e S =
= P adventitious -
[ 12co0 carbonates —"c.c  S_carbon ~ ]
-0 i —C-0 % a
292 290 288 286 284 282

Intensity / arbitrary units

PrCal

3

[ s

Ca

S VNG

L Lavini,

MnC
08 02T

attice,

Figure 23 : XPS spectra of (a) Cls and of (b) Ols of perovskite and lanthanum carbonate
powders, and corresponding peak deconvolution. Lines are guides for the eye and indicate

the experimental positions.

As these carbonate species contain oxygen, they are also present in the Ols spectra and

should therefore be separated from the lattice oxygen. Ols spectra of the studied perovskites

are presented in Figure 23,b. Three main contributions can be distinguished according to the

literature [43,44,46,51,54,62,64,171,174,191]. The first one, occurring at 528.6 eV for Co-

perovskites and at 529.2 eV for Mn-perovskites, corresponds to the lattice oxygen. The

second Ols contribution around 531 eV is characteristic of hydroxide and carbonates species.

This is confirmed by Ols spectrum of Lay(COs);. By calculating the atomic ratio from Cls

and from Ols spectra thanks to Scofield factors, a ratio of ca. 1:3 was found, corresponding to

carbonate CO5” species. Thus, hydroxide fraction is indeed low compared to the carbonate

fraction on the perovskite surface. Finally, adsorbed water appears at around 533 eV in the

Ols spectra. This deconvolution gives access to the lattice oxygen and therefore allows a

comparison of its atomic concentration to those of A and B cations in a given perovskite.
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Table 6 : Binding energies of XPS peaks (in eV) of perovskite oxides

Compounds La3ds, Pr3ds, Ca2ps, Sr3ds, Co2ps, Mn2ps, Cls Ols

833.2 284.6  528.6

LaCoO3 834.1 - - - 779.9 - 286.2 531.3
838.1 288.7 5327

834.1 284.6 5293

LaMnO; 238 1 - - - - 642.1  286.2 531.0
288.7 5328

8341 284.6  529.2

La) sSro,MnO; 238.1 - - 132.3 - 6424  286.1 531.0
288.5 5327

8341 284.6 5292

Lay3Cay.MnO3 238 1 - 346.3 - - 642.1  286.1 5309
288.6 5325

284.6  528.7

PrCoO; - 928.0 - - ;;23 - 286.1 531.2
288.8 5332

284.6 5293

PrMnO; - 928.0 - - - 642.1  286.1 531.1
288.5 5328

Table 7 : Binding energies of XPS peaks (in eV) of simple oxides and carbonates

Compounds La3ds, Co2pszz, Mn2ps;

o, b1 -
o 0
com. -~ 107
wor - T
Mn;03 - - 642.1

3.2.4.3. Surface atomic ratio

The atomic ratio of various perovskite components were calculated using the peak area after
the background correction and considering Scofield factors. Results are displayed in Figure 24

for various perovskites and compared to an ideal ABO; perovskite phase (first column).
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Figure 24 : XPS atomic ratio of A (blue), A’ (purple), B (green) and O from perovskite lattice
(red) in perovskite oxides calculated with Scofield factors after background correction of XPS
spectra.

First of all, one can notice that atomic ratios of Mn-perovskites are closer to theory, with a
A:B:O ratio of about 1.5:1:2.5, than Co-perovskites which present a A:B:O ratio of 5:1:4.
Then, it can be observed that all perovskites, and especially Co-perovskites, present an
enrichment of the A cation on the surface. This is probably due to the formation of carbonates
of A cation, as emphasized by detailed analysis of C, O and A XPS spectra. It is also
supported by numerous studies which showed that perovskites
[43,44,46,51,52,54,55,58,60,62,69,170,174,177,191-193] as well as lanthanum oxides
[46,180,194] tend to form carbonates on their surfaces when exposed to ambient conditions,
leading to a non stoichiometric A:B atomic ratio. According to the atomic ratio obtained for
various perovskites, A cation seems to be less stable and to form more carbonates in Co-

perovskites than in Mn-perovskites.

All conclusions from the XPS analysis concern the surface — some nanometers depth - rather
than the bulk, which is mainly composed of perovskite as shown by XRD (see section
3.2.1.1). However, this surface composition raises some questions. First, the formation of a

carbonate layer on the perovskite surface can lead to an increase of the ohmic drop in the
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catalytic layer, hampering electron transfer processes, and to a decrease of the available
surface area. Secondly, this carbonate layer is composed of A cation, whereas the ORR active
site is rather B cation as it will be highlighted later in this work. Thus the segregation of A on
the perovskite surface can decrease its catalytic activity and also suggests that only the surface
and the near surface region of perovskite oxides is only partially represented by the perovskite

ABOs structure.
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3.3. Interfacial properties

The electrochemical properties of the oxide materials were studied using cyclic voltammetry
without electrode rotation in Np-purged 1M NaOH electrolyte. Various potential windows as
well as various sweep rates were used to investigate the interfacial behavior of the catalysts.
These experiments were performed with carbon addition in the catalytic layer to avoid any

conductivity limitations, but the exact role of carbon will be investigated in section 4.

3.3.1. Potential window stability of perovskite oxides

The open circuit potentials (OCP) of various perovskite/carbon electrodes studied in this work
were between 0.9 and 1V vs. RHE in N»-purged electrolyte. Therefore, a first CV cycle was
performed between 0.93 V vs. RHE (close to OCP) and 1.23 V vs. RHE. The positive
potential limit (1.23 V vs. RHE) was chosen to minimize the oxidation of the carbon
contained in the electrodes. The potential window stability of the electrodes was then
investigated by decreasing progressively the lower potential limit down to 0.13 V vs. RHE.
After each CV cycle, a reference CV was performed in the initial potential range of [0.93 ;
1.23 V vs. RHE] to check the stability of the voltammogram. The results are shown in Figure
25 for the LaCoO3/C, LaMnOs3/C and LagsSro,MnOs/C electrodes, to represent non doped
Co-perovskites, non doped Mn-perovskites and doped Mn-perovskites, respectively. The first
cycle, performed in the potential range [0.93 ; 1.23 V vs. RHE], is represented in black with
the number one. Then, the increasing numbers indicate the order in which the cycles were
made, and the same number and color was used for the reference CV in the interval [0.93 ;
1.23 V vs. RHE] after a given cycle. For example, the fifth cycle (green in Figure 25,a,b,c)
was performed in the potential range [0.53 ; 1.23 V vs. RHE], and before the sixth cycle (light
blue in Figure 25,a,b,c) in the range [0.43 ; 1.23 V vs. RHE], a reference cycle was recorded
in the range [0.53 ; 1.23 V vs. RHE], and is represented in green in Figure 25,d,e.f.
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Figure 25 : (a,b,c) CVs in various potential windows and (d,e,f) corresponding reference CVs
of GC-supported thin films of (a,d) LaCoOj3 + Sibunit carbon, (b,e) LaMnQOj3 + Sibunit
carbon, (c.f) Lay.sSro.MnQOj3 + Sibunit carbon in N>-purged IM NaOH electrolyte at 10 mV.s
! Measurements were performed with 91 ug. cm'zgeo perovskite and 18 ug. cm'zgeo Sibunit
carbon. Currents are normalized to the geometric area of the electrode. The number and
color indicate the sequence of the scans.

For LaCoOs; electrodes (Figure 25,a,d), it can be observed that, up to 0.43 V vs. RHE, the

absolute current increases with decreasing the lower potential limit leading to an appearance
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of an anodic and a cathodic peaks. Moreover, reference voltammograms are stable after these
cycles. Thus, the perovskite is stable in the range [0.43 ; 1.23 V vs. RHE]. However, when the
potential is decreased to lower values, the anodic peak is shifted and reference
voltammograms are modified, showing the irreversibility of LaCoO3 reduction below 0.43 V
vs. RHE.

Non-doped (Figure 25,b,e) and doped (Figure 25,c,f) LaMnO; perovskites display similar
behavior. When the lower potential limit is gradually decreased, the absolute current increases
and a first anodic peak is visible around 1 V vs. RHE. By decreasing further this potential,
two cathodic peaks and an additional anodic peak appear. For potentials below 0.43 V vs.
RHE, the electrochemical behavior of the perovskites is irreversibly modified, showing lower
cathodic currents at high potential values. One can note that the reference voltammograms in
the potential range [0.93 ; 1.23 V vs. RHE] show an irreversible increase of the absolute
current with the number of cycles. The cause of this behavior is not understood yet but might
be linked to a modification in the capacitive properties, such as an increase of the roughness.
One may also suppose that a distortion of the perovskite oxide is occurring when the potential
is decreasing, leading to an increase of the number of available electrochemically active sites.
The potential window kept in the following experiments was [0.43 ; 1.23 V vs. RHE] in

which stable voltammograms were observed for both Co-based and Mn-based perovskites.

3.3.2. Perovskite redox transitions

3.3.2.1. ldentification of the redox transitions

The CV of various oxides studied in this work are presented in Figure 26. Three distinct
behaviors can be observed, the CV of perovskites being strongly dependent on the nature of
the B cation. Indeed, perovskites with the same A cation and different B cations, such as
LaCoOs3 and LaMnOs, have very different electrochemical behavior, while perovskites with
the same B cations show similar CVs. It can already be concluded that the redox transitions
occurring at the surface of perovskite oxides are related to B cations rather than to the
structure symmetry or to A cations, even if the latter are in high quantities on the perovskite
surface in the carbonate form, as shown by the XPS analysis (see section 3.2.4.3). The

electrochemical stability of the A cations is in agreement with Pourbaix diagrams [195,196]
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which show that the La**, Ca®*, Sr** and Pr’* oxidation states are stable in the studied

potential range at pH14 (1M NaOH).
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Figure 26 : CVs of GC-supported thin films of (a) Co-based oxides + Sibunit carbon and (b)
Mn-based oxides + Sibunit carbon in No-purged 1M NaOH electrolyte at 10 mV.s™.
Measurements were performed with 91 u g.cm'zgeo oxide and 37 ug. cm'zgeo Sibunit carbon.
Grey and black lines show CV for GC and 37 u g.cm'zgeo Sibunit carbon, respectively.
Currents are normalized to the geometric area of the electrode.
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First, the two Co-based perovskites — LaCoOs; and PrCoOs; — display an identical
voltammogram with poorly defined pair of peaks (Figure 26,a). As mentioned above, the OCP
of various perovskite/carbon electrodes were between 0.9 and 1V vs. RHE. According to the
Pourbaix diagrams [195] of Co-oxides at this potential and at pH14, the surface equilibrium
of Co-perovskites is expected to be determined by the Co**/Co®* redox couple. This
interpretation should be taken with caution since potential/pH diagrams were calculated for
simple oxides only, but the presence of Co’* on the perovskite surface is in agreement with
the XPS results (see section 3.2.4.1). Thus the pair of peaks observed in the voltammogram
can be tentatively attributed to Co’*/Co®* transitions. The reduction of Co* into Co** might
lead to the formation of oxygen deficient perovskite structure on the surface and probably also

in the near surface region [197].

Secondly, it can be noticed that all Mn-based perovskites — LaMnOs, LaggSro.MnOs,
Lap3Cap,MnO3; and PrMnO; — present two cathodic and two anodic peaks (Figure 26,b).
However, the peaks at lower potentials values are shifted towards positive potentials for
PrMnO; compared to La-perovskites. The OCP observed for these perovskites can correspond
to the Mn**/Mn’* redox couple according to Pourbaix diagrams [195] for Mn-oxides. This is
consistent with the XPS results which suggested the presence of both oxidation states on the
surface of the studied perovskites (see section 3.2.4.1). Moreover, the cathodic peak at 0.85 V
vs. RHE and the anodic peak at 1 V vs. RHE may correspond to the reduction of Mn** and the
oxidation of Mn*, respectively. Similar CV peak attributions were made for doped-CaMnOs
perovskites in the literature [140,198]. The cathodic and anodic peaks appearing at lower
potentials might be linked to the Mn**/Mn** redox couple since the latter oxidation state
appears below 0.7 V vs. RHE in Pourbaix diagrams [195]. These assumptions are supported
by in-situ characterization of simple Mn oxides. Indeed, Lima et al. [199] combined in-situ X-
ray absorption near edge structure (XANES) to CV characterization of Mn oxides and, by
comparing to reference Mn oxides, found that Mn**/Mn’" transitions occur at high potentials
(between -0.1 and 0.4 V vs. Hg/HgO, corresponding to ca. 0.8 V and 1.3 V vs. RHE in IM
KOH) and Mn**/Mn** at low potentials (between -0.7 and -0.1 V vs. Hg/HgO, corresponding
to ca. 0.2 V and 0.8 V vs. RHE in 1M KOH). This is also in agreement with in-situ Raman
results on Mn electrodes of Messaoudi et al. [200]. During electrochemical reduction of
MnO,, it is generally accepted that protons and electrons are inserted into the oxide bulk [201-
203]. These inserted protons compensate the Mn** vacancies (“Ruetshi” protons) or are

associated with Mn™* cations (“Coleman” protons). They become associated with O, ion to
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form OH ion in the solid phase. However, regarding the CV charge (see sections 3.3.3 and
4.2 for further details), the transitions are likely to occur only at the oxide surface for the
perovskites studied in this work.

The broad character of the peaks suggests that several contributions are involved. It can be
due to heterogeneities in the surface sites, identical redox transitions occurring at slightly
different potentials on the different sites. Moreover, from Figure 25, it seems that the peaks
are not independent. The cathodic peak around 0.85 V vs. RHE (presumably reduction of
Mn** to Mn™*) appears only when the lower potential limit is decreased, and thus, when the
peaks corresponding to Mn**/Mn** are visible. This might be a proof that the amount of Mn™**
cation is small in the initial samples, and that a reductive transformation of the surface is
required to favor its further creation. The positive shift of the peaks of presumably Mn**/Mn**
redox couple in PrMnOj3 cannot be explained yet. Anyhow, it cannot be due to an eventual
presence of Mn”* in the initial perovskite since it would have shifted the potential of the
Mn**/Mn?* redox couple towards smaller potential values according to the Nernst equation.
Indeed, at equilibrium, the potential E¢q of the redox reaction );; viA; + vee 2 0, with v; and

V., the algebric stoichimetric coefficients, is given by (Equation 69):

Eeq =E°+ %ln(]_[i a;"1) (Equation 69)

with E°, the standard potential of the redox couple, R, the gas constant, T, the temperature in

Kelvin, F, the Faraday constant (96485 C.mol'l), aj, the species activities.

Finally, a yet distinct behavior was found for Co3;04 (Figure 26,a) and Mn,O3 (Figure 26,b)
electrodes. They display very low currents and a voltammogram very close to the one of the
carbon contained in the electrodes. These compounds are known to display very low electrical

conductivities [204,205], hampering their participation in electrochemical processes.

3.3.2.2. Reversibility of the redox transitions

From the dependence of the peak current and potential with the sweep rate, one can get
information on the reversibility of the redox transitions occuring in perovskites. In this
section, Co-based perovskites are not considered since their redox peaks are not clearly
defined in CVs. CVs at various sweep rates were therefore performed for LaggSro,MnQOs, as

an example for Mn-based perovskites. The results are shown in Figure 27,a.
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For all sweep rates, the two cathodic peaks (C1 and C2) and the two anodic peaks (Al and
A2) already mentioned in the previous section are observed. An additional cathodic peak
appears at 5 mV.s™" at 0.73 V vs. RHE. The nature of the process involved at this potential is
not understood yet, but it is undoubtly an irreversible process since it can be observed only at
a slow sweep rate and since no corresponding anodic peak is visible.

In order to better visualize the modification of the CV shape, the CVs were normalized by the
sweep rate in Figure 27,b. It is observed that both the CV charge and the peak current
densities are almost proportional to the sweep rate, as expected for a surface process (see

section 2.3.4). Therefore the peaks correspond neither to diffusion nor to bulk processes.
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Figure 27 : (a) CVs of GC-supported thin films of Lag sSro.MnQOj3 + Sibunit carbon in N;-
purged IM NaOH electrolyte at various sweep rates. Corresponding (b) CVs normalized by
the sweep rate and (c) peak potential versus the sweep rate. Measurements were performed
with 91 pg.cm™ geo perovskite and 18 ug.cm™ geo Sibunit carbon. Currents are normalized to

the geometric area of the electrode.
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The potentials of the various peaks observed on the CV are plotted versus the sweep rate in
Figure 27,c. The determination of these potentials were however not precise due to the large
breadth of the peaks. As the peak potentials of peaks Al and C1 do not change with the sweep
rate and as anodic and cathodic peak currents are similar, one may suggest that the redox
couple involved at this potential (probably Mn**/Mn") is a reversible process. However, the
potential splitting between the two peaks is higher than expected. Indeed, a splitting of ca. 140
mV is found whereas reversible processes involving one electron should display a peak
splitting of 59 mV at 25°C. Such a behavior is not fully understood yet but might be related to
the complexity of the redox transition involved and probably some slow chemical steps
associated to the electrochemical process.

For A2/C2 peak couple, both peak potential and potential peak splitting are dependent on the
sweep rate. Therefore this redox transition is rather an irreversible process. This intepretation
is emphasized by the difference in coulombic charge of the two peaks. Indeed, the charge
under C2 peak is greater than the charge of A2 peak. The reason of this irreversibility is not
clear yet, but might be a proof of a rearrangement of the perovskite structure near the surface
which accompanies the reduction of B** into B**. In particular, it can be expected that oxygen
vacancies are formed to ensure the electroneutrality of the perovskite structure. Also, studies
on simple Mn oxides with RRDE [200] and in-situ XANES [206] proved that the formation
of Mn in the low oxidation state results in a dissolution of Mn from the electrode. However,
these low valence cations might be more stable in the perovskite structure than in simple

oxides. Indeed, no current loss was observed upon 30 minute cycling.

3.3.3. Roughness of the perovskite electrode

Knowing the BET surface area Sggr (see section 3.2.3) of a perovskite, the roughness of the

perovskite electrode can be determined with (Equation 70):

R¢ = Sgpr X Sm—p (Equation 70)
geo

Mmp

where is the perovskite loading in the electrode. Therefore, for an electrode containing for

geo
example a loading of 91 ug.cm'zgeo LaygSroo,MnQOs, the roughness factor is ca. 15

2 -2 2 -1
CIM perovskite.CIM  geo (SBET =17m -g for LaO.Ssr0.2MnO3)-
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The roughness factor of an electrode can be related to its double layer capacity Cq. The
method to estimate the double layer capacity of perovskites was inspired by the literature
[75,140,160,198,207]. CVs were performed on perovskite/carbon electrodes at various sweep
rates in a restricted potential window of 100 mV size where few faradaic processes occur.
However, these processes cannot be totally excluded since the redox peaks are broad. CVs in
the same potential range were also measured for carbon electrodes and subtracted from the
corresponding CVs of perovskite/carbon electrodes in order to remove the pseudocapacitive
contribution of carbon. The obtained corrected CVs are presented in Figure 28,a for

Lag 8Sr92MnO:s.
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Figure 28 : (a) CVs in the capacitive region of GC-supported thin films of La sSro.MnO3; +
Sibunit carbon in N;-purged 1M NaOH electrolyte at various sweep rates, and (b)
corresponding absolute current density at +0.73V vs. RHE versus the sweep rate.

Measurements were performed with 91 ug.cm™ geo perovskite and 37 ug. em’ geo Sibunit
carbon. Currents are normalized to the geometric area of the electrode.

The rectangular shape of the CV indicates a typical capacitive behavior. By plotting the
current versus the sweep rate (Figure 28,b), a linear relationship is obtained as expected from
(Equation 23). The capacity per geometric surface area can therefore be estimated from the
slope of this curve and was found to be 1.2 mF.cm'zgeo for the studied perovskite. Then the
capacity per surface area of the oxide was calculated using R¢= 15 (see above) and found to
be 80 pF. Cm_zperovskite (Equation 71):

1.2 mF.cm™?geq

Cq = = 80 pF. cm™2 peroyskite (Equation 71)

Rf

This value is close to the theoretical capacity of a smooth oxide surface — ca. 60 pF.cm'zoxide -

found thanks to modeling of the double layer of non porous oxides by Levine et al. [208] and
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therefore suggests that the perovskite surface is not significantly blocked by carbonates.
Moreover, it demonstrates that only the perovskite surface is involved in the electrochemical

processes, bulk participation would have led to a higher capacity.
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3.4. Conclusions of Chapter 3

Thanks to the XRD analysis, it was shown that the perovskites synthesized for this study
displayed a perovskite structure without precursor traces and that the bulk of the phase was
stable under an atmospheric storage. The symmetry of the structure appeared to be strongly
dependent on the size of the A cation. The perovskite oxides observed by SEM were
constituted of small particles of 50-100 nm arranged in micrometer size agglomerates. This
particle agglomeration led to a BET specific surface area of 10-20 m2.g"', lower than expected
from XRD for non-agglomerated crystallites. From SEM, it was also observed that the
perovskite/carbon thin layers prepared for electrochemical measurements were well dispersed
with a good mix of both electrode components. The perovskite surface, important for
electrocatalysis, was studied by XPS. It confirmed the presence of A cation, B cation and O
from the lattice since the binding energies of the various components were in agreement with
the literature data on perovskite oxides. However, the atomic ratio of these components did
not match the stoechiometry atomic ratio. Indeed an enrichment of A cation was observed for
all perovskite samples. This was probably due to the presence of carbonates, according to Cls
and Ols spectra.

From CV measurements, the perovskites were found to be stable in the potential window
[0.43 ; 1.23 V vs. RHE]. In this potential range, redox transitions were attributed to B cations
rather than to A cations, and no effect of carbonates species was visible. For Co-based
perovskites, redox transitions were poorly resolved in CVs, while Mn-based perovskites
presented two anodic and two cathodic peaks. The redox couples involved in these peaks were
supposed to be Mn**/Mn’" at high potentials and Mn>*/Mn?* at lower potentials, the former
transition is most likely reversible while the latter is probably irreversible. The ORR activity
of these perovskite oxides will be studied in the following chapter.

The oxides synthesized for comparison displayed a cubic structure, but their surface area was
significantly lower than the perovskite one — factor of ca. 5 — due to a high degree of the
particle agglomeration. Moreover, their low conductivity hampers their investigation with

electrochemical methods.
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Chapter 4 :
Dual role of carbon in the catalytic layers

of perovskite/carbon composites
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4 1. Introduction

Although numerous oxides of perovskite type display intrinsic electronic conductivities
sufficient to be used in electrochemical systems, perovskite catalytic layers suffer and a
fortiori, from low catalyst utilization factor. This high resistance of the perovskite catalytic
layers may be attributed to the contact ohmic drop between perovskite aggregates. Several
studies [82,83,87-89,115] have proven that addition of carbon powders is required to increase
the electrocatalytic efficiency of perovskite materials for ORR by significantly improving the
conductivity of oxide-based electrodes (see section 1.4). However, carbon materials are
known to be active for ORR electrocatalysis in alkaline media by reducing O, into HO,
[209,210]. This brings up a question on the separation of contributions from the two
components in the composite oxide/carbon electrodes. A recent study of the ORR on
perovskite oxides proposed a methodology to determine ORR activity from RDE
measurements by neglecting the contribution of carbon into the ORR kinetics, even if the
latter is added to the thin film electrodes [103].

Therefore, the objectives of this chapter are to determine the role of carbon in
perovskite/carbon composite cathodes, and to verify the correctness of conventional
approaches to quantify the activity of perovskites by either neglecting or subtracting the
contribution of carbon to the ORR kinetics. In order to achieve this goal, the oxide to carbon
ratio was varied systematically and electrochemical and electrocatalytic properties of thin film

composite electrodes were studied using cyclic voltammetry and the RDE method.

This chapter is based on the published article : Poux, T., Napolskiy, F.S., Dintzer, T.,
Kéranguéven, G., Istomin, S.Ya., Tsirlina, G.A., Antipov, E.V., Savinova, E.R. Dual role
of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic
oxygen reduction reaction. Catalysis Today. 2012, Vol. 189, 83-92 [211] and completed with
unpublished results.

The contribution of the author of the present thesis in this publication was comprised of the
following: the entirety of the experimental part except perovskite synthesis, the analysis and
the discussion of the experimental data, as well as the participation in the preparation of the

manuscript for the publication.
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4.2. CV in supporting electrolyte: influence of

carbon on the electrical contact

In order to investigate the role of carbon on the electrical properties of perovskite/carbon

catalytic layers, electrodes with constant amount of perovskite (91 ug.cm'zgeo) and various

amounts of carbon were prepared for LaCoOs, LaMnOs and LaggSro,MnOs;. The tested

compositions are listed in Table 8, where the roughness factors were calculated from BET

surface area values (see section 3.2.3 and 3.3.3). The three perovskites were chosen to

represent non doped Co-perovskites, non doped Mn-perovskites and doped Mn-perovskites,

respectively. Electrodes containing only carbon were prepared with the same amount of

carbon and were used for comparison.

Table 8 : Loading, roughness factors and estimated thickness (calculated with (Equation 19))
of RDE thin layers with constant perovskite loading

Electrodes Constant perovskite loading
Perovskite loading (u g.cm'2geo) 91 91 91 91 91 91
LaCoOs3 roughness factor
5 9.1 9.1 91 91 91 91
(szoxide-cm_ geo)
LaMnOs; roughness factor
) 13 13 13 13 13 13
(szoxide'cm- geo)
Lay gSto,MnOs roughness factor
5 16 16 16 16 16 16
(szoxide-cm_ geo)
Carbon loading (u g.cm'2geo) 0 18 37 140 270 820
Carbon roughness factor
s 0 12 24 90 178 540
(szcarbon-cm_ geo)
Content of perovskite in the composite
100 83 71 40 25 10
(Wt%)
Estimated layer thickness (um) 1.5 1.9 23 438 8.2 22
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Figure 29 shows representative CVs in N,-purged 1M NaOH electrolyte. It should be noticed
however that repeated independent experiments were performed for each electrode to check
the reproductibility of the results. Some of the repeated CVs can be seen in Appendix 1
(Figure 94).

From Figure 29.b,c.d, it was observed that the addition of carbon strongly affects CV of
perovskite oxides with an increase of the current density with the carbon loading. However,
similar effect was found for carbon electrodes (Figure 29,a). Thus, in order to better visualize
the influence of carbon on the current originating from perovskite oxides, difference
voltammograms were constructed by subtracting the CV of carbon electrodes from the CV of
the composite perovskite/carbon electrodes containing the same amount of carbon (Figure
30). For electrodes containing very large fraction of carbon (> 75 wt.%), such procedure leads

to a very large error and is therefore not shown.
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Figure 29 : CVs of GC-supported thin films of (a) Sibunit carbon, (b) LaCoO3 + Sibunit
carbon, (c) LaMnQO;+ Sibunit carbon, (d) Lag sSroMnOs+ Sibunit carbon in N>-purged IM
NaOH electrolyte at 10 mV.s”. Measurements were performed with a constant amount of
perovskite (91 u g.cm'zgeo ), except for carbon electrodes which do not contain perovskite, and
variable amount of Sibunit carbon. Color codes for Sibunit carbon loading: 0 (pink), 18 (red),
37 (orange) and 140 ,ug.cm'zgeo (green). GC is displayed in grey. Currents are normalized to
the geometric area of the electrode.
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MnOjs. Measurements were performed with a constant amount of perovskite (91 u g.cm'2 geo)
and variable amount of Sibunit carbon. Color codes for Sibunit carbon loading: 0 (pink), 18
(red), 37 (orange) and 140 ug. cm’? geo (green). Currents are normalized to the geometric area

of the electrode.
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Two effects are observed with the addition of carbon to the thin film electrodes. First, the total
charge under the CV increases for the three perovskites with the quantity of carbon even after
subtraction of the carbon contribution. One may assume that carbon improves the contact of
perovskite particles — which are agglomerated (see section 3.2.2.1) - with the current collector
and thus allows higher utilization of their surface. It was noticed that even higher carbon
quantities are required when perovskite powder was not ground before use, since
agglomerates where even bigger. In order to quantify the improvement of the catalytic layers
with the addition of carbon, the total charge was calculated by integrating the current of the
corrected CV in function of the time and normalizing it by the BET surface (Table 5) and

plotted versus carbon loading (Figure 31).
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Figure 31 : Half of the total charge calculated from difference voltammograms of perovskite
+ Sibunit carbon electrodes in N;-purged 1M NaOH electrolyte at 10 mV.s'I(Figure 30) and
normalized by oxide surface area (Table 5), versus the carbon loading. Measurements were
performed with a constant amount of perovskite (91 u g.cm'zgeo ) and variable amounts of
Sibunit carbon. Color codes: LaCoQj; (green), LaMnQOj3 (blue), Lay s Sro> MnOj3 (red). Error
bars represent standard deviation from at least two independent repeated measurements.

It is clear from this figure that increasing the carbon loading leads to an increased access to

the perovskite surface by at least a factor of two. For LaggSrg,MnOs3, the charge seems to

level off around 37 pg.cm'2geo of carbon whereas, for LaCoOs; and LaMnOs, it keeps
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increasing. This difference in behavior of the three studied oxides upon carbon addition is
related to the oxide conductivity. Indeed, Lag sSro,MnO3 has a lower intrinsic resistivity (ca. 2
10" Q.cm [73]) than LaMnOs (ca. 2 Q.cm [73,75]) or LaCoO; (ca. 4 Q.cm [75]), due to Sr
doping which insures the presence of electronic and ionic defects. Therefore, the doped
perovskite required less carbon to achieve sufficient layer conductivity.

In order to evaluate the amount of perovskite responsible for the electrochemical currents, the
charge involved on the surface of one monolayer was approximated. The surface area of one
rhombohedral unit cell is a2, thus, according to XRD results (a is about 5.4 A, see section
3.2.1) the surface area is ca. 30 10'® ¢cm?. The number of surface sites in one unit cell is 1 4
B cations which are shared between 4 unit cells). For a 1 electron transfer, i.e. for a charge

exchanged of 1.6 10" C, the expected charge for one monolayer may therefore be

1+1.6%10~1°

310-15 60 uC.cm™2, and for a 2 electron transfer, the charge is about

approximated as :

120 puC.cm™. Thus, with this approximation, the measured charge indicates that one
monolayer is involved in the redox transitions of LaCoOs (1 electron exchanged during the
CV cycle) and of Mn-perovskites (2 electrons exchanged during the CV cycle, see section
3.3). The electrochemical processes are therefore surface rather than bulk processes,
consistent with section 3.3.3.

The second effect observed with the addition of carbon is the decrease of the splitting between
the anodic and the cathodic peak potentials. This suggests that the presence of carbon
decreases the ohmic resistance of the layer. Indeed, although intrinsic conductivities of
perovskites are relatively high, the ohmic resistance of compacted oxide powders is
dominated by the contact resistance between agglomerated particles, and the presence of
carbonate surface layer exacerbates this resistance. Addition of small carbon particles allows
“wiring” oxide particles and improves “particle — particle” as well as “particle - current
collector” electrical contact. This leads to a strong decrease of the ohmic resistance and an
enhancement of the surface utilization. For example, redox peaks of LaCoO; shift by more
than 100 mV when carbon is added. According to the Ohm law (Equation 72):

U = R, X I (Equation 72)

with U, the potential shift, the layer resistance R; was estimated to be above 100 kQ in the CV
current region (ca. 0.01 mA.cm™ * 0.07 cm?). Simultaneously, the total charge increases by
more than a factor of 2 suggesting ca. twice higher utilization of the perovskite surface.

Thus, CV in supporting electrolyte confirm that, in agreement with the literature data

[82,83,87-89,115], carbon is indeed required for improving the quality of the thin film
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perovskite electrodes. The increase of the number of accessible active sites is expected to
affect the measured catalytic activity in the ORR and will be discussed in the following

sections.
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4.3. RDE study in O,-saturated electrolyte:
influence of carbon/ perovskite ratio on ORR

electrocatalysis

4.3.1. Influence of carbon loading

The ORR activity of LaCoO3s, LaMnO3 and Lag gSrp,MnO; oxides was studied with various
quantities of carbon (Table 8) using the RDE in O;-saturated 1M NaOH. Different rotation
rates were applied to separate kinetic from diffusion limitations. Typical anodic sweeps
shown in Figure 32 for thin film RDE electrodes containing 91 p g.cm'2geo perovskite and 37
pg.cm'2geo carbon, other electrodes presenting similar evolution with the rotation rate. It is
clear that the absolute limiting current density increases with the rotation rate, as expected
from Levich thoery. However, while LaCoO; electrodes show constant kinetic current
densities, it seems that the kinetic current densities of Mn-perovskites is not stable and
decrease with cycles/rotation. This behavior will be studied in more detail in the stability

section (see section 6.3), and will be neglected in this chapter.
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Figure 32 : Positive scans of the RDE voltammograms of GC-supported thin films of (a)
LaCoOj; + Sibunit carbon, (b) LaMnQOs+ Sibunit carbon, (c) Lag.sSro,MnOs+ Sibunit carbon,
in Oz-saturated 1M NaOH electrolyte at various rotation rates and at 10 mV.s.

Measurements were performed with 91 ug.cm™ geo perovskite and 37 ug. em’ geo Sibunit
carbon. Color codes for rotation rates: 400 rpm (pink), 900 rpm (red), 1600 rpm (orange)
and 2500 rpm (green). Currents are normalized to the geometric area of the electrode and

corrected to the background currents measured in the N, atmosphere.
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Typical positive scans of the RDE voltammograms at 900 rpm for electrodes containing
various quantities of carbon are shown in Figure 33 and compared with the activity of GC,
Pt/C, and electrodes containing variable amounts of carbon. Only one representative curve is
presented for each electrode while repeated independent experiments were performed to
check the reproductibility of the results. Some of the repeated RDE voltammograms can be
seen in Appendix 1 (Figure 95).

Figure 33,b,c,d indicates that electrodes containing perovskites without carbon show very low
ORR onset potentials due to the insufficient access to perovskite active sites. This is
especially true for LaCoO3; whose onset potential is close to that of glassy carbon (Figure
33,b). Moreover, it can be observed that the ORR current densities of perovskite electrodes
without carbon do not reach the diffusion limiting plateau. Similar RDE data were observed
for La; xSrxMnQOs perovskites by Tulloch et al. [85] and for Lag¢Ca4CoO; perovskites by Li
et al. [82] without carbon addition to the electrode layer. One may see that addition of carbon
strongly increases the activity of the perovskite thin film electrodes which shows up a
systematic shift of the RDE voltammograms towards positive potentials, and an increase in
the absolute value of the limiting current density. Interestingly, the evolution of

voltammograms is similar for composite and for pure carbon electrodes (Figure 33,a).
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Figure 33 : Positive scans of the RDE voltammograms of GC-supported thin films of (a)
Sibunit carbon, (b) LaCoQOj3 + Sibunit carbon, (¢) LaMnQO;z+ Sibunit carbon, (d)
LaysSro,MnQO;+ Sibunit carbon, in O»-saturated IM NaOH electrolyte at 900 rpm and 10
mV.s". Measurements were performed with a constant amount of perovskite (91 u g.cm'zgeo ),
except for carbon electrodes which do not contain perovskite, and variable amount of Sibunit
carbon. Color codes for Sibunit carbon loading: 0 (pink), 18 (red), 37 (orange) and 140
ug.cm-2geo (green). Grey and black lines show RDE curves for GC and Pt/C, respectively.
Currents are normalized to the geometric area of the electrode and corrected to the
background currents measured in the N, atmosphere.

Hence, the discussion is started with the analysis of the ORR data for GC and for carbon film
electrodes. This will then help in the understanding of the results for perovskite/carbon
composites. For the GC electrode (Figure 33,a), one may notice a particular shape of the RDE
voltammogram which shows a broad maximum around 0.55 V vs. RHE and, as discussed
below, does not attain the diffusion limiting current density in the potential window studied.
This was also observed by Tammeveski et al. [19,20,212] and explained by the surface
functional group mediated oxygen reduction to hydrogen peroxide. The most active sites

responsible for the positive onset of the ORR and the maximum in the RDE are limited in
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number, and were attributed to quinone groups. The RDE shape was quantitatively modeled
[20] with an EC mechanism with the first step being reversible reduction of quinone to
semiquinone surface groups. The latter chemically react with molecular oxygen to form
superoxide radical which is transformed into HO, either in a chemical or in an
electrochemical consecutive step. The onset and the shape of the RDE voltammogram thus
depend on the type and the red-ox potential of active surface groups on the GC surface.

When a Sibunit carbon film is deposited on the GC electrode, the RDE curve shifts positive as
expected due to the increase of the active surface area (Table 8). Then an increase of the
amount of deposited carbon results in a systematic positive shift of the ORR onset and half-
wave potential E;; and in an increase of the absolute value of the limiting current density. The
RDE voltammograms of carbon electrodes and their positive shift with an increasing amount
of carbon are in agreement with the well known fact that carbon materials are active catalysts
of the ORR in alkaline media [209,210].

Figure 34,a shows the Koutecky-Levich plots of the limiting current densities — at +0.5 V vs.
RHE - for GC and for carbon film electrodes with various loadings. For the highest carbon
loading of 820 u g.cm'zgeo, the measured limiting current density is in reasonable agreement
with the theoretical value calculated using the Levich equation with a number of electrons of
2. This is consistent with the current understanding of the ORR on carbon electrodes which
predominantly proceeds to hydrogen peroxide in the investigated potential interval
[20,209,213].

It should be noted however that nonzero y intercepts are observed for carbon electrodes with
carbon loading below 820 pg.cm'zgeo as well as for GC Figure 34,a. Various reasons can be
proposed to account for this phenomenon, namely (i) an inhomogeneity of the catalyst
distribution on the current collector, (ii) a diffusion resistance in the ionomer film
[82,88,149,154], (iii) an O, concentration gradient within a thick catalyst film [214,215], or
(iv) a limited number of active sites leading to the adsorption limitation [215,216].

The linearity of Koutecky-Levich plots, even at high rotation rates, ensures that the
characteristic size of eventual inhomogeneities of the electrode layers is inferior to the
thickness of the diffusion layer, which allows to discard the first hypothesis. The apparent
thickness of the ionomer film in this work was estimated as ca. 15 nm, which makes the
second hypothesis very unlikely. The third option does not seem realistic either since the
intercept drops down with the thickness of the carbon film. Finally, the most likely
explanation of the nonzero y intercept decreasing with the film thickness is a limited number

of active sites on the carbon surface. As the loading of carbon increases, the number of active

147



sites increases as well, and the current density attains the diffusion limiting value determined
by the Levich equation. This explanation is also in agreement with the data for GC reported in

this work as well as in the literature [20].
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Figure 34 : Koutecky-Levich plots of the ORR current measured at +0.5 V vs. RHE by thin
layer RDE method in O, saturated IM NaOH at 10 mV.s_Ifor (a) Sibunit carbon, (b) LaCoOj3
+ Sibunit carbon, (c¢) LaMnQOj; + Sibunit carbon and (d) Lag sSro-MnOs+ Sibunit carbon.
Measurements were performed with a constant amount of perovskite (91 ug.cm™ geo) for (b),
(c) and (d), and variable amount of Sibunit carbon. Color codes: 0 (pink), 18 (red), 37
(orange), 140 (green) and 820 ug cm™ geo (light blue). Grey and black symbols stand for GC
and Pt/C electrodes, respectively. Dotted lines represent theoretical current values for 2 and
4 electrons in I M NaOH at 25 °C. Currents are normalized to the geometric area of the
electrode and corrected to the background currents measured in N, atmosphere. Error bars
represent standard deviation from at least two independent repeated measurements.

Now the discussion is turned to the analysis of the ORR on perovskite oxides. The most
striking influence of the addition of perovskites to carbon is the increase of the absolute value
of the limiting current density, which for perovskite/carbon composites approaches the value
observed for Pt/C electrode, corresponding to the transfer of 4e-. The slopes of Koutecky-
Levich plots (Figure 34,b,c,d) for perovskite-based electrodes confirm the transfer of 4e- in

the overall ORR reaction. Similar numbers of transferred electrons were reported in the
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literature for perovskite cathodes [82,88,103]. Contrary to carbon materials, transition metal
oxides, and perovskites in particular, are known to be active catalysts of the catalytic
hydrogen peroxide decomposition [121-127], as well as its electrocatalytic reduction
[72,131,132]. In addition, perovskites may also be active in the first steps of the ORR by
activating the O, molecule [72,84,85]. For a 4 electron mechanism, experimental data do not
allow the clear differentiation between an OH transformation via intermediate HO, without
desorption, i.e. without possible detection by the ring of RRDE, or via the so-called “direct”
4e” pathway occurring through 0,/O> splitting. Nevertheless, the “series” pathway with
adsorbed HO, seems to be more likely on perovskite oxides since the mechanism proposed
by Suntivich et al. [84] was further validated by Wang et al. [217] using density functional
theory (DFT) calculations. This will be studied in more details in section 5.

As for carbon electrodes, composite electrodes present nonzero y intercepts on the Koutecky-
Levich plots (Figure 34,b,c,d). This can be due to an adsorption limitation as mentioned
above, either on carbon sites or on perovskite sites since carbon addition increases the access
to perovskite sites. Moreover, the hypothesis of an O, concentration gradient in the catalyst
film can be reasonable in this case. Indeed, for perovskite electrodes with carbon loading
higher than 140 u g.cm'zgeo, the absolute value of the limiting current density does not increase

with the electrode thickness anymore, in agreement with [214].
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Figure 35 : ORR halfwave potential of RDE voltammograms at 900 rpm (Figure 33) of GC-
supported perovskite/carbon thin films in O,-saturated IM NaOH electrolyte. Color codes:
Sibunit carbon (black stars), electrodes with 91 ug. cm” geo LaCoOs3 + Sibunit carbon (green
triangles), electrodes with 91 ug. cm” geo LaMnQOs + Sibunit carbon (blue circles) and
electrodes with 91 ug. cm’ geo Lap sST92MnOj3 + Sibunit carbon (green).

149



In order to better understand the observed behavior with carbon addition, the evolution of the
half-wave potential E;, for composite electrodes and for the electrodes containing carbon
alone were compared. Figure 35 shows E;;, versus the carbon loading. First of all, these
results indicate that Mn-perovskites have higher mass activities in the ORR compared to
LaCoOs. Then, it can be observed that the three perovskites present higher half-wave
potentials than carbon alone, but the evolution with the carbon quantity is similar to that
observed for pure carbon. Moreover, while the maximum difference of E;, for pure
perovskites and composite electrodes amounts to more than 250 mV, the difference between
E,/, for pure carbon and composites reaches at most 37 mV for Lag gSrp,MnO3z with 37 ug.cm’
deo carbon, and 33 mV for LaMnOs3 and 18 mV for LaCoO3 with 140 u g.cm'2geo carbon. This
confirms that the carbon contribution to the ORR on composite perovskite / carbon electrodes

cannot be neglected.

4.3.2. Influence of perovskite loading

In order to better understand the role of perovskite oxides in the ORR, electrodes with a
constant amount of carbon (37 pg.cm'zgeo) and various quantities of perovskites (Table 9)

were studied (Figure 36).

Table 9 : Loading, roughness factors and estimated thickness of RDE thin layers with
constant carbon loading

Electrodes Constant carbon loading

Perovskite loading
46 91 180

(Mg.cmge0)

Carbon loading

5 37 37 37 37
(ug.cmgeo)

Content of
perovskite in the 0 56 71 83

composite (wWt%)

Estimated layer
1.6 23 37
thickness (um)
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The results displayed in Figure 36,a suggest that an addition of 46 u g.cm'zgeo LaCoOs to the
carbon electrode results in doubling the ORR current density in the kinetic and mixed region,
while further increase of the LaCoO; loading to 91 and then 180 pg.cm'zgeo leads to a
marginal increase of the current density in the kinetic and mixed region. Such a behavior is
consistent with an increase of the rate constant of the chemical disproportionation step as
shown by the modeling work of Jaouen [214]. The catalytic activity of perovskites in the HO,’
disproportionation has been demonstrated in numerous publications [121-127]. One should
note however that the same effect is expected if LaCoOs; were active in the electrochemical
HO; reduction. This suggests that once HO, is produced on the carbon component of a
composite electrode, the role of LaCoO; is largely reduced to the catalysis of HO;
transformations, either in the chemical disproportionation or in the electrochemical reduction
reaction. More detailed mechanistic studies are required to differentiate between these
possibilities and will be performed in the next chapter (see section 5). Therefore, for
LaCoOs/carbon composites, the first steps of the ORR are mainly electrocatalyzed by carbon.
This is in part due to the lower specific surface area of LaCoO3; compared to carbon (Table 8),
and in part due to its fairly low specific ORR electrocatalytic activity [91,92]. Experiments
were also performed by replacing the usual Sibunit carbon (Sggr = 65.7 mz.g'l) by a Sibunit
carbon with lower specific surface area (Sggr = 6 mz.g'l) to diminish differences in surface
area between the perovskite and the carbon. The results are presented in (Figure 37). Identical
effect — current of LaCoOs/carbon composites equal to the double of current of carbon alone —

was observed, confirming the low activity of LaCoO; for O, activation.
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Figure 37 : Positive scans of the RDE voltammograms of GC-supported thin films of LaCoOj3
+ Sibunit carbon in Oy-saturated 1 M NaOH at 900 rpm and 10 mV.s'. Measurements were
performed with 91 u g.cm'zgeo perovskite and 37 ug. cm'zgeo Sibunit carbon of various surface
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+ Sibunit carbon 65.7 mZ.g'] (orange), LaCoOj3 + Sibunit carbon 6 mz.g'l (red). Currents are
normalized to the geometric area of the electrode and corrected to the background currents
measured in N, atmosphere.

The composite electrode may thus be considered as a bifunctional catalyst with carbon
catalyzing the ORR into HO,, and perovskite catalyzing further HO, chemical /
electrochemical transformations. Ultimately, O, on a composite electrode is reduced to OH,
while carbon alone is only capable to support the reduction to HO,". Similar mechanism was
proposed for Lag¢Cag4CoOs [82,90,133], for LaNiOs [88], for CoFe,O4 [218] and for MnOy
[36,37] in oxide/carbon composite electrodes. However, unlike this work, the oxide to carbon
ratio was not varied systematically in the mentioned studies, the assumptions being based on
the ORR activities of only one amount of oxide and carbon.

Very recently, after publication of our results [211], the bifunctionnal behavior of
perovskite/carbon electrodes was confirmed by Malkhandi et al. [219]. The authors studied
the ORR activities of various composite electrodes containing (i) different perovskite to
carbon ratio, (ii) different conductive additives including various carbon materials and gold
nanoparticles, (iii) oxides containing different transition metals. First of all, it was observed
that the ORR activity of perovskite is significantly increased with the addition of carbon, in

agreement with the present thesis. By varying the nature of the conductive additives, it was
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demonstrated that the role of carbon is not limited to the improvement of electrical contact but
also includes an active participation of carbon in the ORR. Indeed, the addition of gold
nanoparticles — less active for the ORR but highly conductive - does not lead to an
enhancement of the ORR activity while carbon does. The authors concluded, with the help of
an RRDE study of the ORR and study of HO; reduction and decomposition reactions for
various electrode compositions, that oxygen is reduced into HO, on carbon sites, and HO,  is

further decomposed on a perovskite.

For LaMnOs3 and LaggSrp>2MnOs, the behavior is quite different (Figure 36,b,c). The RDE
curve is shifted more positive compared to carbon and LaCoOs, and the increase of the
amount of perovskite has a pronounced influence on the ORR onset. Similar behavior was
observed for LaMnOj in literature [83,87]. This may be attributed to the contribution of Mn-
perovskites to the first steps of the ORR. It can also be noticed that both Mn-perovskites, and
in particular LaggSro,MnOs show a significant modification of the RDE shape with the
perovskite/carbon ratio (Figure 36,b,c). At high potentials, ORR occurs on Mn-perovskite
sites while at lower potentials, ORR is predominantly catalysed on carbon sites. Thus the
modification of the RDE shape is most probably linked to the percentage of carbon
contribution in the ORR. For low perovskite loadings, the surface area of carbon is larger than
the one of perovskite (Table 8). It is therefore reasonable to imagine that a large amount of O,
molecules are reduced on carbon sites rather than on perovskite sites, and conversely for
electrodes with high perovskite loadings. Differences between LaMnO3 and Lag gSro>,MnOs
can then either be related to the specific surface area of the perovskite - LaggSro,MnOs3 has a

higher BET surface area — or to the perovskite activity for the O, activation.
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4.4. How to evaluate the intrinsic electrocatalytic
activity of perovskite in perovskite/carbon

composites?

4.4 1. Subtraction of carbon contribution

The above discussion shows that carbon actively participates in the ORR on
perovskite/carbon composites. Thus, the ORR on the carbon and the oxide components must
be considered as coupled (or tandem) reactions. Depending on the catalytic activity of
perovskite materials in the various steps of the multistep ORR mechanism, different
mechanisms may be expected. This poses problems for the evaluation of the intrinsic
electrocatalytic activity of perovskites. In the literature, the participation of carbon in the ORR
on perovskite/carbon composites is often neglected and the specific ORR activity may be
calculated by normalizing the kinetic current to the surface area of a perovskite material
[84,103]. However, this work demonstrates that the contribution of carbon to the ORR cannot
be ignored.

In case of a minor coupling of reactions on oxide and on carbon, the contribution of the latter
could be removed by subtracting the ORR current measured on pure carbon electrodes. In
order to elucidate the applicability of such an approach to carbon/perovskite composites, the
following procedure was employed. In the first place, kinetic currents Iy were calculated by
performing the mass transport correction (Equation 38) to the ORR faradaic currents, obtained
from capacity-corrected positive-going RDE scans. Considering that diffusion limited
currents are accessible only for some samples, the theoretical values of Ip (normalized to the
geometric surface area) of 2.71 and 1.36 mA.cm'zgeo were applied for the four and two
electron reactions, respectively. Then, the current density of the ORR on perovskites ji* was
calculated by using (Equation 73):

(Ikp+c_lkc)

AggtP

iKP = (Equation 73)

Here I,”*¢ is the kinetic current of perovskite/carbon composite determined using (Equation

38), Li° is the corresponding kinetic current of carbon alone determined for the same quantity
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of carbon, and Aggr® is the surface area (in cmzoxide) of perovskite calculated from the BET
data (Table 5). Tafel plots calculated with the said procedure for composites and Tafel plots
for pure carbon normalized to the carbon surface area are presented in Figure 38.

It can be observed that Tafel plots for carbon electrodes in the interval of loadings from 18 to
140 pg.cm'2geo are almost superposed (Figure 38,a). Glassy carbon shows slightly higher
kinetic current densities, which is probably due to an underestimation of its active surface area
that was assumed to be equal to the geometric area. The electrode with the highest amount of
carbon presents slightly lower current densities than other carbon electrodes. This can be
explained by (Equation 74):

Iy = Ikth * Up (Equation 74)

with 1™, the kinetic current without mass-transport or ohmic limitations in the layer, and u¢
the utilization factor [220]. For thin layers, the utilization factor is equal to 1. For thick layers

however, it is inferior to 1, due to the mass transport hindrance of oxygen molecules within

the catalytic layer [3,215,220].
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Figure 38 : Tafel plots from mass-transport corrected positive-going scans of GC supported
thin film RDE in O»-saturated 1 M NaOH at 10 mV.s™. (a) Sibunit carbon, (b) LaCoO3 +
Sibunit carbon, (c) LaMnOj; + Sibunit carbon, (d) LaggSro.MnQOj3 + Sibunit carbon.
Measurements were performed with a constant amount of perovskite (91 pg.cm™ geo) for (b),
(c) and (d), and variable amounts of carbon. Color codes: 0 (pink squares), 18 (red
diamonds), 37 (orange triangles), 140 (green rectangles) and 820 ug.cm™ geo (light blue
circles). Grey symbols stand for the GC electrode, while black for the Pt/C electrode. Error
bars represent standard deviation from at least two independent repeated measurements.
Currents are normalized to the specific surface area of carbon for carbon electrodes, to the
BET surface area of perovskites after subtraction of the kinetic ORR current on carbon for
composite electrodes, to the platinum electrochemical active surface area for Pt/C, and to the
geometric surface area for GC.

For LaCoOs;, Tafel plots with various amounts of carbon are not superposed (Figure 38.,b).
Indeed, it is observed that the higher the quantity of carbon added to the composite electrode,

the higher is the kinetic current density. It is instructive to compare the degree of the kinetic
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current density enhancement with the increase of the charge which is proportional to the
number of accessible active sites, shown in Figure 31. For example, an increase of the amount
of carbon from 18 to 140 ug.cm'zgeo leads to ca. factor of 2 enhancement of the total charge
and ca. factor of 10 increase of the kinetic current density at +0.8 V vs. RHE. In agreement
with the discussion above, this confirms that the role of carbon extends beyond the
improvement of the layer conductivity, and involves also its active participation in the
mechanism of the catalytic ORR reduction. This suggests that subtracting the ORR current in
the absence of perovskite (Equation 73) does not allow to properly account for the carbon
contribution.

In the case of LaggSro,MnOs (Figure 38.d), for electrodes containing more than 29% of
carbon (37 p g.cm'zgeo), Tafel plots are almost superposed confirming, on the one hand, that
this amount of carbon is sufficient to achieve a good electrical contact between
Lay gS19.MnOs particles, and, on the other hand, that the catalytic activity of this perovskite
material in the electrochemical ORR is much superior of that of carbon.

LaMnO; electrodes display an intermediate behavior (Figure 38,c). In the presence of carbon,
their kinetic current densities are dependent on the carbon loading, but less significantly than
for LaCoOs; electrodes. This can either be due to a participation of carbon in the ORR
mechanism or to a non sufficient electrical contact. Indeed, the strong difference between
electrodes with carbon and electrodes without carbon suggest a low conductivity of this
perovskite.

Convergence of Tafel plots for LapsgSro,MnOs; at high carbon loadings and high
overpotentials indicates that (Equation 73) may be applied for estimating the intrinsic
catalytic activity of this oxide material for a certain range of carbon/perovskite ratios.
However, this conclusion cannot be generalized to all types of perovskite/carbon composite
electrodes since, as discussed above, a mechanism consisting of carbon catalyzed reduction of
O, into HO, followed by a perovskite catalyzed HO, transformation would also be able to
account for a significant positive shift of the onset of the ORR even if the oxide were inactive

for the ORR electrocatalysis.

158



4.4.2. ORR activity: function of oxide nature and composition

4.4.2.1. Role of B cation in the ORR activity

For each electrode composition, Mn-perovskites are more active than LaCoOs3, as seen from
ORR mass activities (Figure 35). For example, at the typical benchmark condition of 0.9 V
vs. RHE [3], and for an electrode containing 60% of carbon (140 ug.cm'zgeo), the current
density is 3.6, 7.7 and 8.7 pA.cm'Zoxide for LaCoQOs;, LaMnO; and LaggSry,MnQOs,
correspondingly. These values can hardly be compared to the data from the literature for
several reasons: (i) the mass transport correction is not always performed
[72,73,95,100,101,172], (ii) the quantity and the type of carbon in the composite electrodes, if
any, is not always similar to the one used in the present work [82,84,89,95,100,101] and it
was shown in this study that it has a strong influence on ORR activities, (iii) contribution of
carbon support is never substracted to the activity of the composite electrodes
[82,84,89,95,100,101], and (iv) the kinetic currents are sometimes not normalized to the oxide
surface area, and the latter is not always precisely measured. Therefore, it is only possible to
compare electrodes without carbon to the literature.

Without carbon, the current density at 0.9 V vs. RHE is 1.6 pA.cm'zomde for Lag gSrp-,MnOs,
while Bockris et al. [74] found around 0.1 ;le.cm'zoxide for La; xSrxMnOj pellets (~0.1 mA.cm
Zelectrode with a reported roughness factor ~10° cm?gxide/CM%electrode). Differences are probably
related to the ohmic resistance and to the mass transport losses in the pellets, and show that
the thin film approach based on the application of oxide/carbon composite layers leads to a
better utilization of the surface of oxide particles. Tulloch et al. studied ORR activities of thin
layers of La; xSrxMnQO3 without carbon and measured a current density of ca. 10 uA.cm'zoxide
at 0.9 V vs. RHE for LapsSro,MnO;. This value is somewhat higher than the activity
measured in this work. However, these authors also found strong differences (more than one
order of magnitude) between doped and non-doped Mn-perovskites [85]. This is not in
agreement with this work, neither with other publications [73,172,221] in which La;.
S1xMnOj3 perovskites with x below 0.2 display close activities.

The Tafel slopes in mV.decade’ were calculated from Tafel plots (Figure 38) and are

presented in Table 10 for various composite electrodes.
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Table 10 : Tafel slopes calculated from Tafel plots (Figure 38) of GC supported thin film RDE
in Oy-saturated 1 M NaOH at 10 mV.s™. Measurements were performed with a constant
amount of perovskite (91 u g.cm'zgeo ) except for carbon electrodes which do not contain

perovskite, and variable amounts of carbon. n stands for overpotential.

Electrode composition and

Electrodes
corresponding Tafel slopes
Carbon loading (u g.cm'zgeo) 0 18 37 140 820
-80 -71 -78 -69
Carbon electrodes (highn) (highn) (highn) (highn)
Tafel slope (mV.decade™) R -51 -49 -53 -48
(lown) (owmn) (lowmn) (lown)
LaCo0Os electrodes
Tafel slope (mV.decade™) ! o 9 02 >
-103 -81 -71
LaMnO; electrodes (highn) (highm) (highn)
Tafel slope (mV.decade'l) o7 106 -69 -57 -48
(own)  dowm) (lown)
-150 -125 -95 -81
Lag §Sro,MnOs electrodes (highn) (highm) (highn) (highn)
Tafel slope (mV.decade'l) 13 =75 -67 -60 -46

(lown) (down) (dowm) (lown)

For the glassy carbon support, a Tafel slope of 60 mV.decade™ is measured. This value is
consistent with Tammeveski et al. [20]. Thanks to the grafting of quinone groups on the GC
surface and with the help of mathematical modeling, the authors attributed this slope to the
EC mechanism with the first step being the reversible one electron reduction of quinone to
semiquinone. These semiquinone species further react with oxygen to form adsorbed
superoxide radical through a slow chemical step.

For Sibunit carbon electrodes, the Tafel slope is ca. 50 mV.decade at low overpotentials and
ca. 70/80 mV.decade™ at high overpotentials. The slopes at low overpotentials are similar to
those measured for other types of carbon (Vulcan XC72R and Chezacarb SH) in alkaline
solutions by Moureaux et al. [38]. But, as reported in section 1.2.2.2, there is no general

agreement on the rate determining step of the ORR on carbon materials.
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LaCoOs electrodes display Tafel slopes of ca. -90 mV.decade™ for electrodes without carbon
and with low quantities of carbon, and of ca. -60 mV.decade™ with higher carbon quantities.
This is in very good agreement with Malkhandi et al. [219] and with Li et al. [82] who studied
Co-based perovskites. The authors suggested that the rate determining step is the first electron
transfer between the adsorbed species O;.4s and Oj,4s on carbon sites in the presence of
carbon or on perovskite sites in the absence of carbon. In parallel, similar Tafel slopes (-60
mV.decade’) were also observed for ORR on various perovskite/carbon electrodes —
including LaMnO3/C and LaCoOs/C - by Suntivich et al. [103]. These authors attributed this
slope to the slow replacement of OH,gs by O, .45 species accompanied by the oxidation of B

cation.

At low overpotentials and with high amounts of carbon, Mn-perovskites also display Tafel
slopes of ca. -50/-60 mV.decade™!. This is consistent with the work of Suntivich et al. [103]
mentioned above and it is also in agreement with literature data on Mn oxides [33-
35,199,222]. Nevertheless, the mechanism responsible for this slope on Mn oxides is unclear.
On the one hand, from the slope dependence on pH and on the oxygen partial pressure, Cao et
al. [34] and Roche et al. [33] proposed that the ORR on MnOx electrodes is a direct 4 electron
pathway with the intervention of the redox couple Mn**/Mn** in the ORR mechanism and a
one electron transfer as a rate determining step. However, the authors disagree on the nature
of this step. Roche et al. mentioned the electrosplitting of O, adsorbed species as the slowest
step, while Cao et al. suggested that the rate determining step is OH™ formation from adsorbed
O" species and Mn oxidation. Besides, Su et al. [223] performed DFT calculations on Mn
oxides and demonstrated that the theoretical rate determining step for a direct ORR
mechanism is the reduction of adsorbed OH into OH" species. On the other hand, Lima et al.
[35,199] combined in-situ XANES with an ORR study and concluded that the ORR on MnOy
electrode is a “series” pathway with the rate determining step being the reversible redox
transition of Mn** into Mn®* followed by a slow electron transfer between Mn cations and
0O2,ds-

One should note that, despite the disagreement on the ORR mechanism, the quoted authors
proposed that O, reacts with Mn®*. This is consistent with the work of Stoerzinger et al. [221]
who, by comparing the ORR activities of nanometer thin films of single crystal of LaMnOs,
Lag 67S1933Mn0O3 and CaMnQs;, found that the ORR active site is Mn>*.

In the present work, for Mn-perovskite electrodes with high amounts of carbon, the Tafel

slope at high overpotentials is lower than that at low overpotentials. This suggests that the rate
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determining step is different in the two potential regions. Although the reasons of the presence
of these two disctinct Tafel slopes are not understood yet, it can be mentioned that this may
result from (i) potential dependent kinetic constants, (ii) activation/deactivation of perovskite
sites with the potential, (iii) contribution of carbon in the ORR kinetics in a given potential
window. The latter is supported by the fact that different Tafel slopes are obtained for the
electrodes with various carbon loadings. For low carbon loadings and without carbon, the
lower Tafel slopes may indicate a lower participation of carbon in the ORR, or the effect of a
poor electrical contact in the catalytic layer. Indeed, it can be supposed that without carbon in

the layer, the electron transfer is slower and the redox transitions are irreversible.

4.4.2.2. Role of A cation in the ORR activity

It was observed that the choice of the B cation is significant for ORR activities of La-based
perovskites, in agreement with Bockris et al. [74]. In order to investigate the role of the A
cation in this ORR electrocatalysis, the perovskites PrCoOs;, PrMnO3; and LagsCap,MnOs
were investigated with an intermediate amount of carbon (37 u g.cm'zgeo). The obtained RDE

voltammograms and carbon corrected Tafel plots are presented in Figure 39.
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Figure 39 : (a) Positive scans of the RDE voltammograms and (b) Tafel plots from mass-
transport corrected positive-going scans of GC-supported thin films of oxide + Sibunit carbon
in Oz-saturated 1M NaOH electrolyte at 900 rpm and 10 mV. s, Measurements were
performed with 91 ug. cm'zgeo oxide + 37 u g.cm'zgeo Sibunit carbon. Color codes: LaCoO3 +
Sibunit carbon (pink), PrCoQOs+ Sibunit carbon (purple), LaMnQO; + Sibunit carbon (red),
PrMnO; + Sibunit carbon (brown) Lay sSro.MnQOj3 + Sibunit carbon (green) and
LaypsCagoMnQOjs + Sibunit carbon (blue). Grey and black lines show RDE curves for GC and
Pt/C, respectively. Black symbols on Tafel plots stand for the Pt/C electrode. RDE currents
are normalized to the geometric area of the electrode and corrected to the background
currents measured in the N, atmosphere. Kinetic currents of Tafel plots are normalized to the
BET surface area of perovskites after subtraction of the kinetic ORR current on carbon for
perovskite electrodes, and to the platinum electrochemical active surface area for Pt/C. Error
bars represent standard deviation from at least two independent repeated measurements.

From this figure, it is observed that the voltammogram shapes and the onset potentials as well
as the kinetic current densities and the Tafel slopes seem to be significantly dependent of the
nature and the oxidation state of the B cation. Indeed, there is stong similarity between non
doped Co-perovskite (LaCoOs; and PrCoOs3), non doped Mn-perovskites (LaMnO; and
PrMnO;) and doped Mn-perovskites (LaggSrooMnOs; and LaggCap,MnQOs), respectively.
Independently of the nature of A cation and a fortiori of the structure symmetry, Mn-
perovskites display higher ORR activities than Co-perovskites. It should be noted that all Mn-
perovskites demonstrate more pronounced voltammetric peaks than Co-perovskites in the
potential interval of interest on CV in N-purged electrolyte (Figure 26), so their higher ORR
activity might be due to easier redox transition of the oxide itself (see section 4.4.2.1). It can
also be related to the higher amount of carbonates species on surface of Co-perovskites than

on Mn-perovskites (see section 3.2.4.3).
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One may notice that the specific ORR activities of perovskite-based electrodes are still
inferior (ca. one order of magnitude) to the activity of the state of the art Pt/C catalyst, the
latter reaching 150 pA.cm™p at 0.9V vs. RHE (Figure 39) — close to the value obtained in the
same media for Pt/C (40% Pt) by Genies et al. [12]. It should be noted however that, contrary
to noble metals, the loading of which is constrained by the cost considerations, the loading of
non-precious metal oxide catalysts is only limited by the thickness constraints because of the
decline of the utilization factor caused by ohmic and mass transport limitations in thick layers
[3,215,220]. Thus, to compensate the lower specific activity, one may envisage higher
loadings of metal oxide catalysts. Also, it will be interesting to increase the surface area of the
catalysts to get high activities with low loadings. Moreover, it is expected that fine tuning of
the perovskite composition will in the future allow to significantly increase the specific

activity of this promising class of materials [84].

4.4.2.3. Role of oxide structure in the ORR activity

The perovskites oxides were also compared to the simple oxides Co3O4 and Mn,0O;3 to
investigate the importance of the perovskite structure on the ORR activities (Figure 39).

As observed on CV in Nj-purged electrolyte (Figure 26), the currents displayed by these
electrodes are very low compared to carbon electrodes. This is attributed on the one hand to
low oxide conductivity of these oxides. Indeed, the resistivity at 25°C of Mn,O3; was reported
to be ca. 10° Q.cm [205], and that of Co304, ca. 10* Q.cm [204], i.e. a conductivity around
four orders of magnitude below that of perovskite oxides. On the other hand, the observed
low activity of simple oxides may be due to their low specific surface area (BET of ca. 2 m*.g”
") compared to carbon. It is clear from RDE voltammograms that these simple oxides have
lower activity than Sibunit carbon for O, reduction into HO,". Tafel plots can therefore not be
calculated by substracting carbon activity.

Whereas Co3;04 does not lead to any additional current compared to carbon, Mn,Oj3 electrodes
show cathodic current at low potential values. From Koutecky-Levich plots (not shown), it
was found that about 3.5 electrons were exchanged on Mn,Os/carbon electrodes. This
suggests that Mn,0O3 can transform HO; in OH’, either through a chemical disproportionation
or through an electrochemical reduction, contrary to carbon. This conclusion is in agreement

with the literature on Mn oxides [32,36,37,39,222,224-226].
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As simple oxide studied in this work consists of larger particle agglomerates than perovskite
oxides (see section 3.2.2.1), one may suggest that selection of a more appropriate quantity and
type of carbon might improve the oxide layer conductivity and lead to higher currents. Even
more promising is the utilization of carbon-supported nanosized oxide particles. For example,
Liang et al. [30] reported enhanced ORR activities for grapheme supported Co304

nanocrystals (see section 1.2.2.3.1).
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4.5. Conclusions of Chapter 4

This work shows that carbon is required in the catalytic layers containing perovskite oxides in
order to achieve high ORR activity and that perovskite/carbon electrodes catalysed a overall 4
electron ORR process. Carbon in the catalytic layer plays a dual role. On the one hand, it is
required to improve the electrical contact between perovskite particles and the current
collector, and to ensure maximum utilization of the perovskite surface. On the other hand,
carbon plays an active role in the ORR by catalyzing O, reduction to HO,. The ORR on the
carbon and the oxide components of composite electrodes must be considered as coupled
reactions whose contributions cannot be always separated. Depending on the type and the
surface area of perovskite and of carbon, but also on the electronic conductivity of the
perovskite material, carbon may fully take over the catalytic role of the electrochemical O,
activation. In such a case the role of perovskite is reduced to either chemical
disproportionation or electrochemical reduction of HO, to achieve a global 4 electron
process. Then, calculation of the electrocatalytic activity by normalizing the measured kinetic
current to the surface area of perovskite (with or without subtraction of the carbon
contribution) will lead to erroneous results. In this work, carbon contribution is more
pronounced for Co-perovskites than for Mn-perovskites, which display higher ORR activities,
while the nature of A cation has only a minor influence on the electrode performance.

Thus, development of perovskite materials for SAFC should go along with the understanding
of the mutual influence of perovskite and carbon in the catalytic layer and an improvement of
the composition and morphology of carbon/perovskite composites. It also requires the
understanding of the participation of carbon and perovskite materials in the various ORR
steps. Further detailed RRDE studies of the ORR, as well as investigations of the HO,
chemical and electrochemical reactions on perovskites were performed in section 5 to
conclude on “direct” 4e- vs. “series” 2e-+2e- ORR process on composite electrodes. Note that
the ORR on carbon materials cannot be fully neglected even if perovskite materials are highly
active in the “direct” 4 electron ORR. Indeed, if carbon is part of the cathode layer, HO,
produced on its surface must be either decomposed or reduced in order to prevent corrosion of
the electrode layer and the membrane. Thus, along with the ORR activity, perovskites must

possess significant activity in the HO, transformation.
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Chapter 5 :
ORR mechanism on perovskite/carbon

composites
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5.1. Introduction

In section 4, it was shown by the RDE study that 4 electrons are globally involved in the ORR
on perovskite/carbon electrodes. However, despite numerous studies, the exact ORR
mechanism on perovskites is still unclear. As mentioned in section 1.4.3.1, both “direct” [88]
and “series” pathway occurring via the HO, intermediate [82,90] were proposed for
perovskite cathodes. Therefore, the ORR mechanism was investigated with the RRDE method
for various electrode compositions, in order to unveil the influence of the perovskite/carbon
ratio as well as the electrode thickness on the nature of the ORR pathway.

Since RRDE experiments confirmed that the HO, intermediate is indeed formed on various
perovskite oxides, it was necessary to study the kinetics of the HO, reduction and
decomposition reactions to identify the nature of the second ORR step, i.e. the HO;
transformation, occurring on perovskite oxides. Moreover, the RDE study of the ORR on
perovskite/carbon composites has shown that carbon plays an active role in the ORR by
catalyzing O, reduction to HO;, (see section 4). HO, intermediate produced on the carbon
surface can lead to the corrosion of the electrode layer and of the membrane in fuel cells. It is
therefore necessary that perovskites have the ability to rapidly transform HO, to avoid
accumulation of this species in a fuel cell. Thus, in order to investigate the activity of
perovskite for these transformations, both HO, chemical decomposition and HO;
electrochemical reduction on perovskite oxides will be studied in this section in H,O,

containing electrolytes.

The studies of this section were performed on three selected perovskites: LaCoO3;, LaMnOs3
and Lag 3Sro,MnOs, representing a non doped Co-perovskite, a non doped Mn-perovskite and
a doped Mn-perovskite, respectively, since they displayed distinct behaviors for the ORR (see
section 4).

Based on the experimental results both in O, and H,0O, containing electrolytes, a model was
constructed by Dr. Antoine Bonnefont (Institut de Chimie, Université de Strasbourg) to
support the data interpretation and to better identify the differences between various

perovskites (see section 5.5).

168



5.2. RRDE study in O,-saturated electrolyte:
quantification of the HO, formation during the
ORR

In order to quantify the HO, production during the ORR and to conclude on “direct” vs.
“series” (with HO, intermediate) ORR process on composite electrodes, the rotating ring-disk
electrode (RRDE) method was applied. Catalysts were deposited in the form of thin layers on
a GC disk [154]. In order to understand the role of carbon and perovskite oxides in the HO,
production, various thin layer compositions, as indicated in (Table 11), were investigated.
Considering that the probability of the H,O, detection depends on the catalyst loading
[164,214,227], the catalyst loading was varied from 23 to 91 p g.cm'zgeo.

Table 11 : Loading and estimated thickness (calculated with (Equation 19)) of RRDE thin

layers
RRDE experiments
Electrode Constant perovskite Constant
or carbon loadings carbon/perovskite ratio
Perovskite loading
> 46 0 46 23 46 91
(Hg.cm™geo)
Carbon loading
5 0 19 19 9 19 37
(ng.cmgeo)
Content of
perovskite in the 100 0 71 71 71 71
composite (Wt%)
Estimated layer
0.8 0.4 1.2 0.6 1.2 2.3
thickness (um)
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5.2.1. Impact of the electrode composition on the HO, release

5.2.1.1. Influence of the perovskite/carbon ratio

Previous experiments showed that the presence of carbon in the perovskite catalytic layer
enhances the ORR (see section 4) electrocatalysis by improving the electrical contact between
perovskite particles. Moreover, carbon may be directly involved in the ORR mechanism by
electrocatalyzing the O, reduction into HO;', especially in the case of perovskite oxides with
low activity in the ORR (the case of LaCoQO3) (see section 4). Thus, the presence of carbon is
expected to strongly affect the quantity of HO, formed during the ORR. To investigate this,
RRDE experiments were performed on electrodes containing perovskite alone, carbon alone
or both perovskite and carbon, in O,-saturated electrolyte (Table 11). The obtained disk and
ring currents, as well as the amount of HO;™ produced during the ORR (HO; yield) calculated
by (Equation 46), are shown in Figure 40 for glassy carbon support, LaCoOs and
LaggSrpo.MnOs electrodes and in Figure 41 for electrodes containing perovskite alone,
containing carbon alone and composite electrodes. The blue curves of Figure 41 corresponds
to Figure 40.

One may notice that ring currents are normalized by the collection factor to facilitate their
comparison with the disc current. The percentage of HO, is not shown for high potentials
where very low disk and ring currents result in a high error of the HO,™ yield determination.
Figures show representative results of RRDE studies. It should be noticed however that at
least two (but often 3 or 4) independent experiments were performed for each electrode to
check the reproductibility of the results. Some of the repeated RRDE voltammograms can be
seen in Appendix 1 (Figure 96).

The effect of the rotation rates on the ORR currents and HO, yield is studied in section

5.2.1.2.
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Figure 40 : Positive scans of the RRDE voltammograms of GC-supported thin films of
perovskites in Oz-saturated IM NaOH at 900 rpm and 10 mV.s™ : (a) percentage of HO»
formed, (b) ring currents at 1.23V vs. RHE versus disk potential, (c) disk voltammograms.

Color codes for the electrode composition: glassy carbon alone (black), 46 u g.cm'zgeo

LaCoO:s; (light blue), 46 ,ug.cm'zgeo Lay sSro2MnQOs (pink). Disk currents are normalized to the
geometric area of the disk electrode and corrected to the background currents measured in
the N, atmosphere. Ring currents are normalized to the geometric area of the disk electrode

and to the collection factor.
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Figure 41 : Positive scans of the RRDE voltammograms of GC-supported thin films of (a,b,c)
LaCoO; and (d,e.f) LagsSro.MnO3 in Os-saturated IM NaOH at 900 rpm and 10 mV.s~!:
(a,d) percentage of HO; formed, (b,e) ring currents at 1.23V vs. RHE versus disk potential,
(c.f) disk voltammograms. Measurements were performed for electrodes containing only

perovskite, for electrodes containing only Sibunit carbon, and for composite perovskite +
Sibunit carbon electrodes. Color codes for electrode composition: 46 u g.cm'zgeo perovskite
(blue), 46 ug. cm” geo perovskite + 19 u g.cm'2 geo Sibunit carbon (green), 19 ug. cm” geo Sibunit
carbon (red). Disk currents are normalized to the geometric area of the disk electrode and

corrected to the background currents measured in the N, atmosphere. Ring currents are
normalized to the geometric area of the disk electrode and to the collection factor.
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For layers containing perovskites only, the currents measured at the disk (Figure 40,c) and at
the ring (Figure 40,b) result in a quantity of HO, produced during the ORR of more than 30%
(Figure 40,a). Taking into account that some amount of HO, may stay adsorbed or be reduced
or decomposed before being detected at the ring, and thus, that the true HO, quantity may be
even higher than measured, it can be argued that the ORR on the studied perovskite oxides is
mainly a “series” pathway occurring via HO,™ intermediate. Similar results were also obtained
for LaMnOj; (Figure 99 in Appendix 3) and are consistent with data of Tulloch et al. [85] who
studied Mn-containing perovskites without carbon addition and found up to 80% of HO,
using the RRDE.

From the HO, yield plots (Figure 40,a), it can be observed that the percentage of HO,
depends on the potential applied to the disk, suggesting that an electrochemical step may be
involved in the HO, transformation. For both LaCoOs; and LaygSry,MnO3;, a maximum
seems to be reached around +0.7V vs. RHE. For potentials above this value, one cannot
discard the probability that the detected HO, species are formed on the GC support surface.
Indeed, the low perovskite loading does not lead in a full GC coverage and the ring onset
potential of perovskite electrodes is similar to the one of GC (Figure 40,b). At lower
potentials, the decrease of HO; yield may result from a reduction of HO, on the perovskite
surface. As LaCoOs3 and Lag gSro,MnOs display very close HO; yield plots without carbon, it
seems that they have similar activity for the HO, reduction (decomposition) in the absence of

carbon.

For glassy carbon (GC) support (Figure 40, black curves) and for electrodes containing
carbon only (Figure 41, red curves), more than 85% of HO, are detected at the ring. This is in
agreement with the low activity of carbon for HO, reduction and decomposition reported by
several authors [20,209,213,218,228] and experimentally confirmed in this work (see section
5.3 and 5.4). However the HO, yield does not reach 100% as expected. This may be due to a
partial chemical disproportionation of HO, before reaching the ring [33], either non
catalytically in the electrolyte or catalytically on impurity traces. Indeed, despite the careful
cleaning performed before all experiments, one cannot exclude some remaining oxide

impurities on the insulating Teflon ring.
As carbon is only active for the reduction of O, into HO,", one might expect that the addition

of carbon in the catalytic layer increases the amount of HO, formed during the ORR.

However, the opposite effect was observed. Indeed, by adding 19 p g.cm'zgeo carbon (i.e. 29
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wt% carbon) to the perovskite powder, the disk current increases (Figure 41,c,f) and the ring
current decreases (Figure 41,b,e), leading in a drop of the HO, yield below 15% for LaCoOs
composites, and below 8% for LaygSroo.MnO; composites (Figure 41,a,d, green curves).
Similar effect was observed by Li et al. [82] on Lay¢Cap4CoOs electrodes with carbon
addition. As observed in Figure 31, the addition of 29 wt% of carbon to the perovskite powder
(corresponding to 91 pg.cm'zgeo perovskite + 37 u g.cm'zgeo carbon) leads to a multiplication of
the pseudocapacitive charge after carbon correction by more than a factor of 2, suggesting that
at least 2 times more perovskite sites are electrically accessible thanks to the improvement of
the contact between the oxide particles and the current collector. Thus, the decrease of the
HO,; yield with the carbon addition can be attributed to a faster electrocatalysis of the HO,
reduction on perovskite oxides.

Both the decrease of the HO, yield with the improvement of the electrical contact and its
dependence to the electrode potential suggest that an electrochemical step is involved in the
HO,; transformation on perovskite electrodes. Nevertheless, the shape of the ring current for
perovskite/carbon electrodes, similar to the one observed on Lag¢Cay4CoQOs/carbon electrodes
by Li et al. [82] et Malkhandi et al. [219], does not correspond to the slope expected for a
reaction limited by an electrochemical step, as demonstrated by modeling by Ruvinskiy et al.
[229]. This shows that the reduction of HO, is rather a complex multistep mechanism with an
eventual chemical step as a rate determining step.

Additionnaly to the global decrease of the HO, yield, it is interesting to note that the addition
of carbon results in a positive shift of the onset of the ring current (Figure 41,b,e). This is
partially due to an increase of the number of perovskite sites, leading to a positive shift of the
ORR onset on the disc too (Figure 41,c,f). It may also be due to the formation of HO, on
carbon sites, especially for LaCoOs/carbon electrodes (see section 4). In any case, the addition
of carbon results in a global decrease of the HO, yield compared to a perovskite alone

suggesting fast reduction (decomposition) of HO;™ on perovskite sites.

5.2.1.2. Influence of the perovskite composition

Figure 42 shows the mass transport dependence of the ORR and the HO, formation for
LaCoOs and LaggSrgo,MnOs electrodes. The results for LaMnOs electrodes are shown in

Figure 100 in Appendix 3.
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As expected, the faster the rotation rate, the higher are the measured currents at the disk and at
the ring. Regardless the nature of the perovskite, the formation of HO; in the catalytic layers
is confirmed by the increase of the HO, yield with the rotation rate, observed in Figure
42,a,d. Indeed, at high rotation rate, HO, diffuses faster away from the electrode, therefore

more HO, can be detected at the ring, as proved by modeling by Jaouen [214].

Figure 42 also shows that in the presence of carbon the quantity of HO, detected during the
ORR is strongly dependent on the perovskite nature, contrary to the behavior of the
perovskite alone (see section 5.2.1.1). One of the possible causes for this is the difference
between the two perovskites in terms of the ORR activity. It was shown in section 4 that for
LaCoO3/C composites the first steps of the ORR mainly occur on carbon sites, while Mn-
perovskites were able to catalyse O, activation at higher potentials than carbon. This is
confirmed by the current measured at the disk and at the ring (Figure 43,a) which show that
both the ORR and the HO, formation start at higher electrode potentials for Lag gSro,MnO3/C
than for LaCoQOs/C. Thus, for LaygSry,MnQOs, both the HO, formation and the reduction
(decomposition) of HO, to OH™ occur on the perovskite surface (either on the same or on two
different types of active sites). Meanwhile, for LaCoO3;, HO; intermediate is first formed on
carbon, and should then desorb and diffuse to perovskite sites to be further transformed. This
way, some HO, can diffuse out of the electrode thin layer and be detected at the ring, leading
to a high HO, yield. This also explains why differences in the HO, yield were observed for
Mn-based and Co-based perovskite/carbon electrodes and not for perovskite electrodes
without carbon. Another explanation of the differences in the HO, yield observed for the two
perovskites would be a different catalytic activity for HO,™ transformation in the presence of

carbon. This will be further verified in section 5.3.
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Figure 42 : Positive scans of the RRDE voltammograms of GC-supported thin films of (a,b,c)
LaCoOj + Sibunit carbon and (d,e,f) LaysSro.MnQOj + Sibunit carbon in O;-saturated 1M
NaOH at various rotation rates and 10 mV.s™" : (a,d) percentage of HO, formed, (b,e) ring
currents at 1.23V vs. RHE versus disk potential, (c,f) disk voltammograms. Measurements
were performed with 46 pg.cm™ geo perovskite and 19 ug. em’ geo Sibunit carbon. Color codes
for electrode rotation rate: 400 rpm (pink), 900 rpm (red), 1600 rpm (orange) and 2500 rpm
(green). Disk currents are normalized to the geometric area of the disk electrode and
corrected to the background currents measured in the N, atmosphere. Ring currents are
normalized to the geometric area of the disk electrode and to the collection factor.
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In order to investigate the effect of the electrode surface state on the HO; release during the
ORR, negative and positive scans of the RRDE voltammograms are presented in Figure 43.
The discussion is started with the ring shape (Figure 43,a) for which Lag sSro,MnO3 displays a
hysteresis between the anodic and the cathodic scans. The lower current, i.e. the lower amount
of HO, detected at the ring (Figure 43,c), measured on the positive scans compared to
negative scans suggested that the reduced form of the perovskite is more efficient to reduce
HO;  than the oxidized form of the perovskite.

On disk voltammograms, however, the hysteresis can hardly be noticed. As the ORR onset
potential coincids with the peak assigned to the Mn**/Mn®* couple (Figure 43,b,d), one may
suggest that Mn™* is involved in the O, activation step. This is in agreement with the
mechanisms proposed for simple Mn oxides in which ORR occurs through oxidation of Mn™*
into Mn*" [33-35,199] (see section 4.4.2).

Besides, the ORR on LaCoOj; electrodes leads to negligible current hysteresis at the ring and
at the disk. This may be related to the very small redox peaks observed in the CV in inert

atmosphere (Figure 43,d), showing the little effect of the potential on the surface state.
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Figure 43 : Negative and positive scans of RRDE voltammograms in O,-saturated IM NaOH
at 900 rpm: (a) ring currents at 1.23V vs. RHE versus disk potential, (b) disk
voltammograms, (c) percentage of HO; formed, and (d) CV in N;-purged 1M NaOH at 0
rpm, of GC-supported thin films of perovskite + Sibunit carbon at 10 mV.s™". Measurements
were performed with 91 u g.cm'zgeo perovskite + 37 ,ug.cm'zgeo Sibunit carbon. Color codes:
LaCoQOs; (pink for positive scan and purple for negative scan) and Lay gSro,MnQOj; (green for
positive scan and olive for negative scan), the arrows indicate the scan direction. Disk
currents are normalized to the geometric area of the disk electrode and corrected to the
background currents measured in the N, atmosphere. Ring currents are normalized to the
geometric area of the disk electrode and to the collection factor.

5.2.2. Impact of the catalyst loading on the HO,™ detection

The catalyst loading, i.e. the number of active sites, is known to have a great influence on the
detection of H,O, by RRDE for platinum [229-231] as well as for non noble catalysts
[214,227,232].
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Indeed, if the density of active sites on the disk is high (high loading for thin layer electrodes),
the HO,  intermediate has high probability to be further reduced or decomposed on the disk to
ultimately form OH'. As a consequence, for electrodes with high active site density, a “series”
ORR mechanism cannot be distringuished from a “direct” 4 electrons ORR mechanism.
Consequently, literature data reporting on the “direct” 4 electrons ORR mechanism must be
taken with caution if high catalyst loadings are utilized.

In order to learn more about the contribution of the “series” versus “direct” ORR pathways for
Co-based on Mn-based perovskite-type electrodes, composite electrodes with various
perovskite loading and a constant perovskite/carbon ratio were tested (Table 11) (Figure 44).
The green curves of Figure 44 correspond to the green curves of Figure 41 (46 pg.cm'zgeo

perovskite + 19 u g.cm'zgeo carbon).
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Figure 44 : Positive scans of the RRDE voltammograms of GC-supported thin films of (a,b,c)
LaCoOj + Sibunit carbon and (d,e,f) Lay.sSro.MnQOj + Sibunit carbon in O;-saturated 1M
NaOH at 900 rpm and 10 mV.s™ : (a,d) percentage of HO, formed, (b,e) ring currents at

1.23V vs. RHE versus disk potential, (c,f) disk voltammograms. Measurements were

performed for electrodes containing constant perovskite/carbon ratio (71 wt.% perovskite +
29 wt. % Sibunit carbon, Table 11) and various catalyst loadings. Color codes for electrode

loading: 23 ug.cm™ geo perovskite + 9 ug. em’ geo Sibunit carbon (orange), 46 u g.cm” geo
perovskite + 19 ug.cm™ geo Sibunit carbon (green), 91 ug.cm” geo perovskite + 37 ug.cm™ geo
Sibunit carbon (purple). Disk currents are normalized to the geometric area of the disk
electrode and corrected to the background currents measured in the N, atmosphere. Ring
currents are normalized to the geometric area of the disk electrode and to the collection
factor.

180



It was observed that for both perovskites the amount of HO, detected at the ring increases
systematically as the loading of perovskites is decreased from 91 to 23 u g.cm'zgeo (Figure 44).
Such an increase of the HO, yield suggests a significant contribution of a “series” ORR
mechanism for both perovskite composite electrodes. Hermann et al. [90] investigated the
ORR on Lag¢Cag4CoOs/carbon cathodes with a channel flow cell and also concluded on a
predominant “series” pathway for composite electrodes.

In a “series” ORR mechanism, HO, formed in a 2 electron ORR reaction may either desorb
and diffuse to be ultimately detected at the ring, or readsorb and further react to OH. The
probability of the HO, detection at the ring thus depends on the ratio between the HO,
desorption and reduction rate constants, and, as explained above, decreases with the number
of active sites and the catalytic layer thickness. This efficient transformation of HO, within
thick layers leads to a low HO; yield (Figure 44, purple curves), i.e. an apparent 4 electrons
pathway, as found by Koutecky-Levich plots in Figure 34. Thus, the low quantity of this
intermediate reported for some perovskite/carbon cathodes in the literature [88] may be due to
a “series” ORR pathway within a thick catalytic layer with high catalyst loading (a loading of
ca. 160 u g.cm'2gco perovskite + 40 pg.cm'zgeo carbon was used by the mentioned authors)
rather than the “direct” 4 electron ORR process proposed by the authors. Also Malkhandi et
al. [219] measured a very low amount of HO, formed during the ORR on perovskite
electrodes with and without carbon and attributed it to a fast HO, decomposition on

perovskite sites. However, the loading was very high (400 pg.cm'zgeo perovskite).

It can be noticed that current of the ring starts to increase at ca. +0.8 V vs. RHE,
independently of the thickness of the catalytic layer, whereas the onset of the ORR at the disc
increases with the active site loading. One may suggest that the ORR occurs through a
“direct” 4 electron pathway on some perovskite sites at high potentials - above +0.8 V vs.
RHE - whereas the “series” pathway is potential-dependent and its contribution increases as
the electrode potential is shifted towards the negative [229]. However, a “series” pathway in
the whole potential range will also result in the observed behavior, as it will be shown in
section 5.5 thanks to modeling.

As mentioned previously, the higher HO, yield detected for LaCoO; compared to
LaygSroo.MnOs is likely to be related to either larger carbon contribution in the HO,
formation for the former or faster HO, reduction kinetics on the latter. This last hypothesis

will be studied in the following section.

181



5.3. RDE study in the presence of H,O.: kinetics of

the HO, reduction/oxidation

RRDE study showed that ORR predominantly occurs through the formation of HO,
intermediate which is further transformed on perovskite sites. While several researchers
studied the catalytic HO, decomposition kinetics on perovskite oxides (see section 1.4.3),
very few published results can be found for the study of the electrochemical reduction of HO,
on perovskite oxides [72,131,132] and these are unfortunately not detailed.
Thus, in order to investigate the kinetics of the HO, reduction/oxidation on perovskite oxides
which is important for the understanding of the ORR and is missing in the literature, a RDE
study was performed in a Np-purged electrolyte containing H,O,.
As mentioned in section 1.2.1.2, H,O, transforms into HO,  with contact of alkaline solution
according to (Equation 5). Four reactions can theoretically occur in the presence of HO;:
HO; reduction into OH" (Equation 75), HO; oxidation into O, (Equation 76), and the inverse
reactions, OH" oxidation into HO, (Equation 75) and O, reduction into HO,™ (Equation 76).
HO, + 2e™ + H,0 2 30H7,E° = 1.71 Vgyg at pH 14 (Equation 75)

HO,” + OH™ 2 0, + H,0 + 2e™,E° = 0.77 Vgyg at pH 14 (Equation 76)

Regarding the standard potential of HO,/OH" couple, the OH" oxidation into HO, has very
little chance to occur in the studied potential range. Thus, the activities of the perovskite
electrodes for the three other reactions will determine the current-potential curve in a H,O,

containing electrolyte.

5.3.1. Characteristics of HO, reduction/oxidation reactions

In this section, various rotation rates of the RDE were used to study whether the HO,
reactions are limited by mass transport or by kinetics. Also, the influence of the presence of

O; in the electrolyte and of the H,O, concentration will be studied in section 5.3.1.2.
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All these experiments were performed with carbon addition to ensure sufficient conductivity
of the catalytic layer (see section 4). In order to evaluate the effect of carbon on the HO,
reactions, the electrocatalytic activity of various electrode compositions including perovskite
without addition of carbon will be investigated in section 5.3.1.3.

As for the ORR study, at least two independent experiments were performed for each
electrode to check the reproductibility of the results. Some of the repeated RDE

voltammograms in the presence of H>O, can be seen in Appendix 1 (Figure 97).

5.3.1.1. Effect of the rotation rate and number of involved electrons

First of all, the effect of the electrode rotation rate on HO; reactions was studied using RDE
in Np-purged 1M NaOH containing 0.84 mM H,0,. Typical positive scans of RDE
voltammograms at various rotation rates are shown in Figure 45 for LaCoOs/carbon,
LaMnOs/carbon and Lag gSrg,MnQOs/carbon electrodes, as well as for Pt/C electrode. These
curves are corrected from the background CV in N,-purged 1M NaOH.

For each electrode, an increase of the current in cathodic region at low potentials and in
anodic region at high potentials can be observed with H,O, addition compared to the
background CV. Moreover, the current densities increase with the rotation rates. This
demonstrates that the studied electrodes are active for HO, reduction into OH at low
potentials and HO,™ oxidation into O, at high potentials.

The RDE curves in the presence of H,O, cross the zero y-axis at a mixed potential where the
sum of all currents is equal to zero [233-235]. In this study, it is observed that the mixed
potential is mass transport dependent for both perovskite and Pt electrodes (Figure 45).
Indeed, the RDE curves at various rotation rates seem to cross each other at a negative current
value, corresponding to negative shift of the mixed potential with the increase of the rotation
rate. The same behavior was observed by Kastounaros et al. on Pt electrodes [234]. Below
(and above) the potential where the RDE curves at various rotation rates cross each other, i.e.
below (and above) ca. +0.93V vs. RHE, the currents vary with the rotation rate and with the
potential, suggesting a mixed region, limited by both HO,™ reduction (oxidation) kinetics and
HO, mass transport.

At potentials below +0.6 V and above +1.1 V vs. RHE, HO;, reduction and oxidation
currents, respectively, reach a plateau on Pt/C electrode, suggesting that currents approach the

-1/2

diffusion limiting values. This may be proven by plotting j' vs. o (Koutecky-Levich plots,
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Figure 46). Furthermore, such plots allow the determination of the number of electrons

involved in the studied reactions using Levich equation (Equation 36).
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Figure 45 : Positive scans of the RDE voltammograms of GC-supported thin films of (a)
LaCoOj; + Sibunit carbon, (b) LaMnQOjs+ Sibunit carbon and (c) Lag.gSro,MnOs;+ Sibunit
carbon, in N>-purged 1M NaOH + 0.84 mM H,O; at various rotation rates and at 10 mV.s™.
Measurements were performed with 91 u g.cm'zgeo perovskite and 37 ug. Cm-zgeo Sibunit
carbon. Color codes for rotation rates: 400 rpm (pink), 900 rpm (red), 1600 rpm (orange)
and 2500 rpm (green). Currents are normalized to the geometric area of the electrode and
corrected to the background currents measured in the N, atmosphere without H>O; presence.

The Koutecky-Levich plots of HO, reduction at +0.5 V vs. RHE and HO; oxidation at +1.2
V vs. RHE are shown in Figure 46,a and Figure 46.,b, respectively, for perovskite/carbon
composites and for Pt/C electrodes. For both reactions, the plots obtained for Pt/C are linear,
with identical slopes, and cross the origin. This confirms that the reactions are diffusion-
limited at the studied potentials on Pt/C. As it is known that 2 electrons are involved for each
reaction on platinum electrodes [8,234,235] and knowing the H,O, concentration in the
electrolyte (Cppo2 = 8.4 X 107 mol.cm™ ), one can determine the diffusion coefficient of HO,

using Levich equation (Equation 36). Thus, the diffusion coefficient of HO, in 1M NaOH at
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25°C was estimated as 7.3 10® cm2s™. This value is close to the value found in the same
electrolyte by Paliteiro et al. [236,237], i.e. 5.5 10 cm2.s'1, and from the value found in 1M
KOH by Van den Brink et al. [238], i.e. 8.4 10° cm2s™.

For the three studied perovskite/carbon composites, Koutecky-Levich plots at +0.5V vs. RHE
are linear and their slopes are close to those of Pt/C (Figure 46,a). This shows that two
electrons are involved in the HO, reduction on perovskite oxides too. For LaMnO; and
Lay gS192,MnOs, the plots cross the origin showing that the HO,™ reduction is diffusion-limited
at low potentials on Mn-perovskite electrodes. This means that, at these low potentials, the
studied reaction is not controlled by the charge transfer, and thus, HO, is rapidly reduced. For
LaCoOs electrodes, the Koutecky-Levich plots do not cross the origin showing a positive
intercept. Thus, for LaCoOs3, due to a slower HO, reduction kinetics, the diffusion limiting
current is not reach at +0.5V vs. RHE. This explains why the amount of HO,™ detected at the
ring of the RRDE fro Mn-based perovskites is smaller than for LaCoOs (see section 5.2).
Contrary to HO, reduction, the plots for HO, oxidation (Figure 46,b) do not cross zero for
the three perovskites. This demonstrated that the reaction is controlled by the charge transfer
at the studied potential on perovskite electrodes — and especially for LaCoOs - and is therefore
slower than on Pt/C. Nevertheless the slope of the plots is similar to that of Pt/C showing that

2 electrons are also involved in that reaction on the perovskite composites.
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Figure 46 : Koutecky-Levich plots of (a) the HO; reduction current measured at +0.5 V vs.
RHE and (b) the HO, oxidation current measured at +1.2 V vs. RHE by thin layer RDE
method in N>-purged IM NaOH + 0.84 mM H>O; at 10 mV.s~'. Measurements were
performed with 91 ug.cm™ geo perovskite and 37 ug. em’ geo Sibunit carbon. Color codes:
LaCoOj; + Sibunit carbon (green), LaMnQOj3 + Sibunit carbon (blue), Lay sSro.MnQOj3; + Sibunit
carbon (red), Pt/C (black). Currents are normalized to the geometric area of the electrode
and corrected to the background currents measured in the N, atmosphere without H,O»
presence. Error bars represent standard deviation from at least two independent repeated
measurements.
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5.3.1.2. Dependence on the H,O, and O, concentrations

In order to check if the cathodic current observed in Figure 45 on perovskite composite
electrodes is really due to the HO, reduction or rather to the reduction of oxygen formed via
HO, oxidation, experiments were performed in O,-saturated 1M NaOH with addition of
H,0,. The results are displayed in Figure 47 (brown curves) and compared to experiments in
O;-saturated 1M NaOH in absence of H,O, (usual ORR experiment, Figure 47 (black curves))
and to experiments in Np-purged 1M NaOH in presence of H,O, (usual H,O, experiment
Figure 47 (orange curves)). In O,-saturated 1M NaOH, it is clear that the absolute value of the
cathodic limiting current is higher in the presence of H,O, than in the absence of H,O,. Thus,
the additional current observed with H,O, cannot be due to the ORR (since the electrolyte is
saturated with O;) and really represents the HO, reduction current. One may also see that the
HO; mixed potential is more positive than the ORR onset confirming that the polarization
curve observed on the H;O;-containing electrolyte is indeed due to the HO, reduction.
Furthermore, one may see that the polarization curve obtained in the presence of both H,O,
and O is (within the experimental error) a sum of the HO, and O, reduction currents for both
perovskites. Indeed, the curve (Figure 47, red curves) obtained by subtracting the current
obtained in Nj-purged 1M NaOH with 0.84 mM H,0, (Figure 47, orange curves) from the
current obtained in O,-saturated 1M NaOH with 0.84 mM H,0, (Figure 47, brown curves) is
almost superposed to the current measured in O,-saturated 1M NaOH without H,0O, (Figure
47, black curves).

As mentioned above, the onset potential of the ORR is lower than the mixed potential in the
presence of HO, for the studied electrodes. This suggests that HO, intermediates eventually
formed during the ORR can be reduced into OH on perovskite composite electrodes, in
agreement with the RRDE results (see section 5.2). Moreover, the mixed potential might
represent the highest onset potential that perovskite/carbon electrodes can reach for the ORR
in case the ORR follows a “series” pathway, even after the electrode composition
optimization. Indeed, at potentials higher that the mixed potential, HO, eventually produced

in the ORR would be oxidized, resulting in an overall zero ORR current.
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Figure 47 : Positive scans of the RDE voltammograms of GC-supported thin films of (a)
LaCoOj + Sibunit carbon and (b) Lay sSro.MnQOs+ Sibunit carbon, in IM NaOH electrolyte
containing H,0, and/or O; at 900 rpm and 10 mV.s™ . Measurements were performed with 91
ug.cm? geo perovskite and 37 ug. em’ geo Sibunit carbon. Color codes for electrolyte
composition: 1: N>-purged IM NaOH + 0.84 mM H»O; (orange), 2: Os-saturated IM NaOH
(black) and 3: Oz-saturated IM NaOH + 0.84 mM H>O; (brown). The curve in red was
obtained by substracted curve 1 (orange) to curve 3 (brown). Currents are normalized to the
geometric area of the electrode and corrected to the background currents measured in the N

atmosphere without H,O, presence.
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The concentration of H,O, usually chosen in this study - 0.84 mM — corresponds to the
concentration of O, in an O,-saturated 1M NaOH electrolyte. It therefore corresponds to the
maximal concentration of HO, that can be formed during the ORR in the corresponding
electrolyte. In fact, even lower HO, concentrations are expected near the electrode surface
since HO, formed during the ORR can further react to form OH". Thus, a lower H,0O,
concentration — 0.42 mM — was also tested for the HO, reduction/oxidation RDE study.
Figure 48 shows the positive scans of the RDE voltammograms of perovskite/carbon
electrodes in Np-purged 1M NaOH with 0.84 mM H,O, (orange curves) and with 0.42 mM
H,0; (green curves).

When the concentration of H,O, is decreased by a factor of 2, the voltammogram shapes
remain the same and the limiting current is divived by 2, in agreement with the Levich theory.
However, the mixed potential is slightly dependent on the H,O, concentration since it is
shifted positively by about 10 mV when H,O, concentration is divided by 2. This indicates
that the HO, reduction and the HO, oxidation reactions have different concentration
dependence on the perovskite oxides. This will be further corroborated with the help of

mathematical models in section 5.5.

With the purpose to link the HO,™ reduction/oxidation experiments to the HO,  decomposition
measurements (see section 5.4), higher quantities of H,O, (0.03M and 0.1M H,0; in 1M
NaOH) were tested. However, in such media, the rotation rate of the RDE did not have the
expected effect: the current densities of HO, reduction were almost superposed for different
rotation rates tested on perovskite electrodes. This was probably due to a limitation by the
number of available active sites of the reaction or to the blocking of the surface by the oxygen
gas bubbles formed during HO,™ oxidation, since the quantity of the catalyst was small (ca. 10
ug of perovskite on a RDE), and the concentration of H,O,, high. Thus, studies of HO,
reduction/oxidation reactions wih high H,O, concentrations were abandoned.

Nevertheless, it can be noticed that the minor influence of the mass transport on the reduction
currents observed by Hermann et al. [133] for Laj¢Cap4CoO3 perovskite may be due to a too

high H,O, concentration compared to the number of active sites.
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Figure 48 : Positive scans of the RDE voltammograms of GC-supported thin films of (a)
LaCoOj; + Sibunit carbon, (b) LaMnQOjs+ Sibunit carbon and (c) Lag.gSro,MnOs;+ Sibunit
carbon, in N;-purged 1M NaOH with various H,O; concentrations at 900 rpm and 10 mV.s™.
Measurements were performed with 91 ug. cm'zgeo perovskite and 37 ug. Cm-zgeo Sibunit
carbon. Color codes for H;O; concentration: 0.42 mM H>O; (green), 0.84 mM H,O;
(orange). Currents are normalized to the geometric area of the electrode and corrected to the
background currents measured in the N, atmosphere in the absence of H;O:.
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5.3.1.3. Influence of the carbon loading

The experiments presented above were performed with the addition of carbon to the catalytic
layers. However, it was demonstrated in section 4 that carbon plays a dual role in the
perovskite/carbon composite electrodes for the ORR electrocatalysis. Also, the RRDE study
showed that the presence of carbon leads to an increase of the HO, reduction kinetics on the
studied perovskite oxides (see section 5.2.1.1). Thus, in order to determine the role of carbon
for the HO, reduction/oxidation reactions, the carbon loading in the composite electrodes was
varied and the RDE voltammograms in the presence of H,O, were investigated.

Figure 49 shows the positive scans of the RDE voltammograms of perovskite/carbon
composite thin layer electrodes in the presence of H;O, for various carbon loadings. It is
evident that perovskite electrodes without carbon, and especially non-doped LaCoO;3 and
LaMnOs perovskites, show little activity for the HO, reduction/oxidation (Figure 49, pink
curves). For all studied perovskites, addition of carbon in the catalytic layer leads to an
enhancement of the electrocatalysis of HO, reactions (Figure 49, red, orange and green
curves). Carbon (Figure 49, grey curves) shows a small activity for the HO,™ oxidation, but is
inactive for the HO, reduction — the observed cathodic current may be due to the reduction of
O, formed via HO, oxidation. Thus, the enhancement of the electrocatalysis in HO;
reactions observed upon addition of carbon to perovskite oxides is attributed to an improved
access to perovskite sites, especially for the non-doped perovskites which displayed lower
conductivity and thus require more carbon to achieve a sufficient layer quality (see section
4.2). Thanks to the improvement of the electrical contact in the catalytic layer, HO,
intermediate can be reduced into OH on perovskite sites, whereas in the absence of carbon
the reduction can hardly occur due to the low conductivity of the layers. This confirms that
the decrease of the HO, yield with the carbon addition observed in the RRDE study of the
ORR (see section 5.2.1.1) is achieved thanks to a faster electrocatalysis of the HO, reduction
on perovskite oxides.

It is noticed that the more carbon in the electrode, the faster is the electrocatalysis.
Nevertheless, regarding little differences between various perovskites, the role of the carbon
loading seems to be less important for HO,™ than for the O, reaction electrocatalysis. The role
of carbon for HO, reduction/oxidation electrocatalysis is limited to the improvement of the
electrical contact in the layer and a concomitant increase in the number of active sites,

contrary to the ORR electrocatalysis where it is also involved directly in the reaction

191



mechanism. One can observe that for the highest amount of carbon (140 u g.cm'zgeo) (Figure
49, green curves), the limiting plateau measured on perovskite/carbon electrodes appears at
lower absolute current values than for lower carbon loadings for which the limiting currents
were very close to those of Pt/C electrode. This is linked to the HO, mass transport losses in
a thick catalytic layer, such that the HO, concentration in the vicinity of the outer surface of
the thick layer is above zero. Therefore the intermediate quantity of 37 pg.cm'zgeo (at least for
the 65.7 m”.g”" Sibunit carbon utilized in this work) seems to be an optimum loading for HO,

reactions and was kept at this value for other experiments.

While Mn-based perovskite electrodes display similar mixed potential with and without
carbon in the catalytic layer, the mixed potential for LaCoO; electrodes is shifted positively
with the carbon addition. For LaMnO; and Lag sSry>MnQOs;, the addition of carbon results in
the increase of the perovskite utilization, and thus of a simultaneous enhancement of the
electrocatalytic activity for the HO, reduction, the HO, oxidation and the ORR on perovskite
sites. Therefore the mixed potential is not affected. However, in the case of LaCoOs/carbon
composites, the increase of the perovskite utilization only enhances the HO, reaction
electrocatalysis and the ORR now occurs on the carbon added to the catalytic layer (see

section 4), leading to a positive shift of the mixed potential.
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Figure 49 : Positive scans of the RDE voltammograms of GC-supported thin films of (a)
LaCoOj; + Sibunit carbon, (b) LaMnQOs+ Sibunit carbon and (c) LaygSro,MnOs+ Sibunit
carbon, in Ny-purged IM NaOH + 0.84 mM H,0, at 900 rpm and 10 mV.s'. Measurements
were performed with a constant amount of perovskite (91 ,ug.cm'zgeo ) and variable amount of
Sibunit carbon. Color codes for carbon loading: 0 (pink), 18 (red), 37 (orange) and 140
ug.cm™ geo (green). Black lines show RDE curves for Pt/C. Currents are normalized to the
geometric area of the electrode and corrected to the background currents measured in the N
atmosphere without H,O presence.
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5.3.2. Study of the influence of the electrode composition on the

HO, reduction/oxidation kinetics

A comparison of the electrocatalytic activity of the three studied perovskites/carbon
composites for the HO, reduction/oxidation is shown in Figure 50. As observed previously
(see section 5.3.1.1), these perovskite electrodes almost reach the limiting current of Pt/C
electrodes (Figure 50, black curves). However, they all display a mixed potential higher than
Pt/C.

From the current slope near the mixed potential and from the reported modeling of the
oxidation and reduction contributions of the voltammograms on Pt electrodes [239], it appears
that H,O, reactions are reversible for Pt/C. Thus, the positive shift of the mixed potential for
oxides compared to Pt may be due to a slow HO, oxidation, i.e. which requires high
overpotential, on the perovskite electrodes. This is consistent with the Koutecky-Levich plots
of HO, oxidation (see section 5.3.1.1). On carbon electrodes (Figure 50, grey curves), the
mixed potential is lower than on perovskite/carbon electrodes. This is due to the very small —
almost inexistent — activity of carbon for the HO;, reduction compared to its activity for the
HO, oxidation.

One can notice that, for Pt/C electrodes, the mixed potential for HO, reduction/oxidation
(Figure 50, black curves) is lower than the ORR onset potential (Figure 39, black curves).
This means that HO,™ eventually formed by O, reduction above the mixed potential would be
oxidized back into O,, resulting in an apparent zero current. Thus, the current measured above
the mixed potential might be a sign of “direct” ORR process without an HO;™ intermediate.
This is consistent with the work of Ruvinskiy et al. [229] who demonstrated by combining
experiments and modeling that the ORR on Pt nanoparticles occurs via a direct ORR pathway

close to the onset potential and through HO, intermediate at lower potentials.
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Figure 50 : Positive scans of the RDE voltammograms of GC-supported thin films of oxide +
Sibunit carbon in N>-purged IM NaOH + 0.84 mM H,O, at 900 rpm and 10 mV.s7.
Measurements were performed with 91 ,ug.cm'zgeo oxide + 37 ,ug.cm'zgeo Sibunit carbon. Color
codes: LaCoQj; + Sibunit carbon (pink), LaMnQO; + Sibunit carbon (red), LaysSro.MnOs3+
Sibunit carbon (green), Mn,O3 + Sibunit carbon (khaki), and Co;O4 + Sibunit carbon
(brown). Grey and black lines show RDE curves for 37 u g.cm'zgeo Sibunit carbon and Pt/C,
respectively. Currents are normalized to the geometric area of the electrode and corrected to
the background currents measured in the N, atmosphere without H,O; presence.

The Mn-based LaMnO; and LaggSro,MnO; perovskites display close mixed potentials, in
agreement with works on La;SryMnO; [131], and very similar activity for HOj,
reduction/oxidation with the optimum carbon loading (37 p g.cm'zgeo carbon) in the catalytic
layer (Figure 50, red and green curves). This similarity for the HO, reduction/oxidation
reactions is in agreement with the similarity observed between their activities for the ORR
(see section 4.4). Above (see section 5.3.1.1), it was discussed that LaCoOQs is less active than
either LaMnO; or LajgSro>,MnOs for the HO, reaction electrocatalysis. The comparison of
the current slope near the mixed potential for various perovskites (Figure 50) is consistent
with this hypothesis. As the mixed potential of LaCoQOs is positively shifted compared to Mn-

perovskites, it seems in particular that HO,™ oxidation is slower on the cobalt perovskite.
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From experimental curves, one can notice that two slopes are visible on the cathodic current
of RDE voltammograms in H,O, containing electrolyte for LaCoO; electrodes (Figure 50,
pink curves). This indicates that at least two steps are involved in the HO,™ reduction reaction,
such as a chemical step followed by an electrochemical step, in agreement with the ring slope
observed in the RRDE study of the ORR (see section 5.2.1.1). Howerer, at this stage, the
nature of the chemical step is unknown but might be linked to an interaction between the
perovskite surface and the adsorbed HO,". This hypothesis will be further corroborated in

section 5.5 with the help of the mathematical modeling.

The electrode surface composition has a great influence on the HO, reduction/oxidation
electrocatalysis. Indeed, it was reported that both the shape and the potential at zero current of
H,0,; reduction/oxidation curves are function of the sweep direction for Pt electrodes [8,233-
235,239,240]. This was linked to the potential-dependent oxide coverage of Pt surfaces, and
points out to the influence of the surface oxidation state for the H,O, reaction [241].
Furthermore, Savinova et al. found that the reaction rate of HO, reduction on silver
electrodes is strongly dependent on the surface state of silver [242].

As already mentioned, the nature of the B cation of the perovskite oxide has a strong
influence on the voltammetric peaks observed in the supporting electrolyte (Figure 51,a). In
order to investigate the effect of these redox transitions on the electrocatalytic activity, Figure
51,b presents the negative and the positive scan of the RDE voltammograms in the H;O;-
containing electrolyte for LaCoO;3; and LaggSroo,MnO; perovskites, after the background
correction. The behavior of LaMnO3 was similar to Lag gSto,MnOs (Figure 101 in Appendix
3).

LaggSroo.MnOs which displays more pronounced voltammetric peaks than LaCoO; also
displays stronger hysteresis in the presence of H,O,. Indeed, for LagsSro,MnQOs3, the positive
scan is shifted positively by ca. 25 mV compared to the negative scan while LaCoO3 presents
almost superposed positive and negative scans. This shows that there is a “memory effect” of
the surface state of Mn oxides on the HO, activity. Based on these results and according to
section 3.3.2, the following hypotheses may be proposed: perovskite in the oxidized state is
more active for oxidation — negative shift of the mixed potential - thanks to the presence of
Mn in the 4+ oxidation state, while perovskite in the reduced state is more active for reduction
— positive shift of the mixed potential — thanks to the presence of Mn in the 3+ oxidation state
and eventual modification of the surface and/or near surface structure and formation of

oxygen vacancies. This is in agreement with the RRDE results (see section 5.2.1). As the
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nature of the redox transitions occuring in Mn-perovskites is not fully understood, the exact
active sites for HO, reduction electrocatalysis cannot be identified yet.

It should be mentioned that the involvement of the redox couple Mn**/Mn’" as an active site
for the HO, decomposition is discussed in the literature for Mn-based perovskites
[125,126,130] and simple Mn oxides [243]. If this reaction is assumed as being the sum of
HO; reduction and HO, oxidation, it can be tentatively proposed that Mn** favorises HO,
oxidation reaction and Mn3+, HO; reduction reaction. On the other hand, one may also
suppose that oxygen vacancies — accompagnying the reduction of Mn - are involved in the
mechanism, as mentioned by Matsumoto et al. [72] for HO, reduction on LaNiO;3 perovskites
and by Lee et al. [127] for HO, decomposition on A;x A’xMnO; perovskites (A=La, Nd,
A’=K, Sr).
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Figure 51 : Negative and positive scans of (a) CV in Nr>-purged IM NaOH at O rpm and (b)
RDE voltammograms in N;-purged IM NaOH + 0.84mM H,0; at 900rpm, of GC-supported
thin films of perovskite + Sibunit carbon at 10 mV.s™'. Measurements were performed with 91

,ug.cm'zgeo perovskite + 37 ug.cm'zgeo Sibunit carbon. Color codes: LaCoO3 + Sibunit carbon

(pink for positive scan and purple for negative scan) and Lay sSro,MnQO3 + Sibunit carbon

(green for positive scan and olive for negative scan), the arrows indicate the scan direction.

Currents are normalized to the geometric area of the electrode. For RDE voltammograms in
N>-purged IM NaOH + 0.84mM H>0,, the currents are corrected to the background currents

measured in the N, atmosphere without H,O; presence.
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Composite electrodes of simple oxides of cobalt and manganese were also studied in order to
identify the role of the perovskite structure and of the transition metal in the electrocatalysis
of HO;, reduction/oxidation reactions. On the one hand, it appears that Co3;Oy is not active for
the HO, reduction (Figure 50, brown curves), but the increase of the current at high potentials
shows that it is slightly more active than carbon (Figure 50, grey curves) for the HO;
oxidation. On the other hand, Mn,0O3 is not very active for the HO, oxidation since the
current at high potential for Mn,O3/C composites (Figure 50, khaki curves) is similar to the
current displayed by carbon alone (Figure 50, grey curves), but the currents measured at low
potentials suggest some activity for the HO, reduction, consistent with the literature data for
Mn oxides [32,226] and RDE results for the ORR (see section 4.4.2.3). From these results, it
seems that both the nature of the transition metal — in agreement with data for perovskite
oxides - and the oxide structure are determining the activity for the HO, reduction/oxidation.
Nevertheless, as mentioned previously (see section 4.4.2.3), the low electrocatalytic activity
of simple oxides may be related to their low conductivity and low surface area and might be
enhanced by improving the catalytic layer quality. This is supported by the fact that improved
structures such as vertically aligned Co3;O4 nanowalls [244] demonstrated activity for HO,

reduction/oxidation in the literature.

199



5.4. Study of the catalytic HO,” decomposition

In section 5.3, it was demonstrated that perovskite oxides are active for HO, reduction and
oxidation reactions. In order to complement the study of the oxygen and HO, reactions, the
catalytic decomposition of HO, was also studied using the volumetric method presented in
section 2.4.2.

The establishement of the method (including the design of the setup, the establishement of the
experiment procedure, and the choice of H,O, concentrations and the catalyst masses) were
performed by the author of the present thesis. Further experiments on the study of the HO,
decomposition were carried out by the master trainees Maximilien Huguenel (ECPM) and

Elaine Dahlen (University of Savoie) under the supervision of the author of the present thesis.

5.4.1. Non catalytic HO,  decomposition: limits of the method

Hydrogen peroxide is known to decompose in time, even in the absence of a catalyst, and this
process is faster in alkaline media. In order to estimate the rate of the non catalytic
decomposition, experiments were performed without a catalyst and with various

concentrations of H,O,.
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Figure 52 : a. The volume of evolved O; (V;) and b. the corresponding plots of In (1 —

14 . . . .
= ) vs. the time for a solution of O»-saturated IM NaOH + various concentrations of
O2max

H>0,. Color codes for H>O; concentrations: 0.03 (green), 0.07 (blue), 0.015 (purple) and
0.3M (dark red).
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As the plots Vo, versus time are not superposed for the different HO, concentrations (Figure

Vo,

52,a), the zero order reaction is excluded. For all concentrations, In (1 — ) relationship

O2max

gives a linear plot in function of the time (Figure 52,b), as expected for a first order reaction
(Equation 64). However, depending on the H,O, concentration, two distinct first order
constants were found. For low H,O, concentrations (0.03M and 0.07M) the constant was ca.
1.3 107 s, while for higher H,O, concentrations (0.15M and 0.3M) it was ca. 3.3 100 s

The reasons of these differences are unknown but might be linked to the presence of
remaining catalyst traces in the Teflon cell. Indeed, despite the careful cleaning procedure
using piranha solution, a complete removal of catalysts is difficult to achieve due to the
porosity of Teflon. In the presence of catalyst traces, a certain amount of HO, would
therefore be decomposed on the catalyst, reaction which is faster than the non catalytic
decomposition. One may suppose that, for high H,O, concentrations, the percentage of non
catalytic reaction is larger than the percentage of the catalytic decomposition due to a limited
number of catalyst sites. This would therefore lead in a global kinetic rate lower than for

lower H,0, concentrations which are less affected by the catalyst site number.

This shows the limits of the method to measure very low kinetic constants. Therefore, the
higher constant obtained without catalyst (1.3 107 s'l) was taken as an estimation of the error
for the calculation of the first order rate constant.

In the following, the experiments were repeated three times (or twice when reproducibility

was good). Then, a typical evolution of the volume of evolved O; is presented in the Figures

“a”, and the plots of In <1 - VVOZ ) in the Figures “b” are calculated from the average values

O2max

of the repeated experiments. The errors bars in these plots were estimated from the
reproductibility of the experiments and were in general larger than the error estimated from
non catalytic decomposition. The first order rate constants were then determinated within the

largest error.
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5.4.2. Reaction order of the catalytic HO," decomposition

In order to determine the reaction order of the catalytic HO, decomposition on perovskite
oxides, experiments were performed on a chosen perovskite (LaMnOs3) with various catalyst

masses and H,O, concentrations.

5.4.2.1. Dependence of the HO, decomposition on the H)O,

concentration

The volumes of evolved O, during HO," decomposition on LaMnOs in the presence of various
concentrations of H,O, are displayed in Figure 53,a. For each concentration, the theoretical
maximum volume of Oy V™ calculated from perfect gas law (Equation 60) — 14 mL for

0.01M, 27 mL for 0.02M and 41 mL for 0.03M H»O, — is reached.
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Figure 53 : a. The volume of evolved O, (Vo) and b. the average plots of In (1 —7 Yo, ) VS.

O02max

the time for 10 mg of LaMnQOj3; powder in O;-saturated IM NaOH + various concentrations of
H>0:. Error bars represent standard deviation from at least two independent repeated
measurements. Color codes for H,O, concentrations: 0.01 (purple), 0.02 (orange) and 0.03M
(black).

Figure 53,b shows In (1 —VVOZ ) in function of the time. The good linearity with a

O2max

correlation coefficient higher than 0.99 indicates that the reaction rate is first order with

respect to H>O, concentration. This is in agreement with literature data on perovskites [121-
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125,127,133,189]. The first order constant k was then determined from the slope of this plot
(Equation 64) and is presented in Table 12 for various H;O, concentrations. All
concentrations display similar k values within the experimental errors, as expected for a first
order reaction.

Then, the heterogenous constant kye was calculated using (Equation 65) with Sggr = 14 mz.g'1
(LaMnOs, Table 5), m = 10 mg and Vouion = 110 mL. For all HO, concentrations, Ky 1S
close to 3.7 107 cm.s™ (Table 12). This demonstrates the ability of perovskite to catalytically

decompose HO;'.

Table 12 : First order constant k and heterogeneous constant ky.; of HO> decomposition for
10 mg of LaMnOj powder in Os-saturated IM NaOH + various concentrations of HO.
Errors were estimated from non catalytic decomposition measurements or from the
reproducibility of the experiments (see section 5.4.1).

H,0, concentration (M) k (10'4 s'l) Khet (10'5 cm.s'l)
0.03 4.7 £1.1 3.7+0.9
0.02 4.5 +0.8 3.5+0.7
0.01 5.0+0.2 3.9+0.2

5.4.2.2. Dependance of the HO, decomposition on the mass of the

catalyst

The volumes of O, evolved during the decomposition of 0.03M H,0, in the presence of
different amounts of LaMnOj3 are displayed in Figure 54,a. It is clear that the decomposition
kinetics is dependent on the catalyst loading. The higher the catalyst mass, the higher is the O,

volume, reaching Vo™ more rapidly.
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Figure 54 : a. The volume of evolved O, (Vo) and b. the average plots of In (1 —7 Yo, ) VS.

O02max

the time for various masses of LaMnQOj; powder in O»-saturated IM NaOH + 0.03M H,0.
Error bars represent standard deviation from at least two independent repeated
measurements. Color codes for perovskite masses: 2 (red), 5 (green), 10 (black) and 20 mg
(blue).

Figure 54,b points out that In (1 -3 0z ) decreases linearly with the time, with a correlation

O2max
coefficient higher than 0.99. The first order constant k was then determined from the slope of

this plot (Equation 64).

Table 13 : First order constant k and heterogeneous constant kpe; of H,O, decomposition for
various masses of LaMnQOj3; powder in O,-saturated IM NaOH + 0.03M H,0,. Errors were
estimated from non catalytic decomposition measurements or from the reproducibility of the
experiments (see section 5.4.1).

Mass of catalyst (mg) k (10'4 s'l) Khet (10'5 cm.s'l)
20 10.2 £0.9 4.0+0.4
10 4.7 £1.1 3.7+0.9
5 2304 3.6 £0.6
2 1.0 £0.2 3.9 +0.8

It is evident that k increases with the catalyst mass (Table 13), consistent with the work of Lee
et al. [127] on Lag 7S1o3MnO3 perovskite.

The heterogeneous constant kye; was then determined from (Equation 65) with Sggr = 14 m>. g
Iand Voltion = 110 mL. For all LaMnO3s masses, ke 1S close to 3.7 10° cm.s™ (Table 13), as

found for various H,O, concentrations on the same perovskite oxide (see section 5.4.2.1).
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Thus, the similarity of kpe values between the various perovskite masses suggests that the
catalytic HO, decomposition reaction is indeed limited by the reaction kinetics rather than by

mass transport or number of active sites.

5.4.3. Heterogeneous constant of the HO, decomposition on

various oxide catalysts

Figure 55 shows the volume of evolved O, and the In (1 — Yo ) relationship in function of

O2max

the time for HO, decomposition on various oxide catalysts in the presence of 0.03M H,O,.
The linearity displayed in Figure 55,b confirms the first order of the catalytic HO;
decomposition reaction on perovskite oxides, as demonstrated in section 5.4.2 for LaMnOs,

and reported in the literature [121-125,127,133,189].
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Figure 55 : a. The volume of evolved O, (Vo) and b. the average plots of In (1 —7 Yo, ) VS.

O02max

the time for 5 mg of various catalysts in Os-saturated IM NaOH + 0.03M H,O,. Error bars
represent standard deviation from at least two independent repeated measurements. Color
codes: LaCoOj (red), LaMnQOj3 (green), LagsSro-MnQO; (purple), Co304 (grey), Mn,O;
(black).
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Table 14 : Specific surface of catalyst, and first order constant k and heterogeneous constant
kner of H>O3 decomposition for 5 mg of catalyst in O,-saturated IM NaOH + 0.03M H>0O;.
Errors were estimated from non catalytic decomposition measurements or from the
reproducibility of the experiments (see section 5.4.1).

Catalyst Sepecitic (M”.g™") k (107 s™) Knet (10° cm.s™)
LaCoO3 10 2.8 +0.5 6.2 +1.0
LaMnO; 14 23404 3.6 £0.6
LaysSro,MnO3 17 3.3 +0.3 43 +0.3
Co304 2 0.2 +0.1 2.0 +1
Mn,0; 3 15.8 +0.1 120 +1
Sibunit carbon 66 0.2 +0.1 0.06 +0.04
Pt/C 28 (Pt) 12 +1.0 (1 mg Pt) 48 +5.0

The heterogenous constant kpe was calculated using (Equation 65) with Sqpecific €qual to Sger
for oxides (Table 5), to the surface provided by the supplier for C, and to the electrochemical
active surface area for Pt/C (see section 2.3.4.3), with m = 5 mg (except for Pt/C : m = 1 mg

Pt) and with Vjyion = 110 mL.

The Mn-perovskites studied for the decomposition reaction — LaMnOs and Lag gSrp,MnO; -
display a kye of ca. 4 10° cm.s™ (Table 14). This is consistent with the value found by
Soleymani et al. [125] for La; (CayMnOs3 (ke between 5 and 7 107 cm.s'l). LaCoOs is
slightly more active in this study with a ky¢ of ca. 6 10° cm.s™ (Table 14), close to the value
found by Hermann [133] for Lay¢Cap4CoOs3 (ca. 10 10° cm.s™! with Sger = 18 mz.g'1 and
Volution = 50 mL). This suggests that HO, decomposition is not responsible for the lower

ORR activity observed on Co perovskites compared to Mn perovskites.

Since its first order constant is very close to the one of a non catalytic reaction, one may
conclude that Sibunit carbon has low activity for the catalytic decomposition of HO,™ (Table
14), in agreement with literature data for other carbon materials [209,218,228]. This confirms
that perovskite oxides are much more active than carbon to decompose HO;'.

The H,0O, decomposition mechanism is not yet understood, a large variety of pathways having
been proposed for different catalysts. Some authors proposed that H,O, decomposition occurs
through a chemical pathway [214,245,246], while others suggest that the decomposition

reaction is the sum of electrochemical reduction and oxidation of H,0O, [247,248]. Both may
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involve the redox transition of a metal cation. For example, FeEOOH was widely studied and
different authors proposed either chemical [246] or electrochemical [248] H,0,
decomposition mechanism with the participation of Fe’*/Fe** redox couple. For perovskite
oxides too, the redox transitions of metal cation were mentioned as being involved in the HO,
decomposition mechanism for Ni-based [121-124] as well as for Mn-based perovskites
[125,126,130] (see section 1.4.3.2). Based on the latter publications, one can reasonably
assume that the redox transitions of Mn participate in the HO, decomposition mechanism on

LaMnOs and Lag gSrg>MnOs3, as for ORR and HO,  reduction reaction.

As for carbon, the first order constant of Co304 is very close to the one for non catalytic
reaction, proving low activity of this catalyst for the catalytic decomposition of HO, (Table
14). Cos04 catalysts were also studied by several authors, and their activity appears to be low
in the absence of either doping or a carbon carrier [166,228,249]. For exemple, Deraz [249]
found a heterogenous constant of ca. 10° cm.s™ (with a reaction rate constant per unit surface
area of ca. 5 102 min".m™ and Violution=10.5 mL) for Co3;04 without ZnO doping, and up to
10° ecm.s?  with ZnO doping. The authors proposed that this improvement is due to an
increased number of ions pairs (Co”*—~Co”* and Co**~Zn?") at the catalyst surface, and thus to
the enhancement of the redox pathway involved in the HO, decomposition reaction.
According to Jiang et al. [228], an improvement of the catalyst morphology by precipitating
the cobalt oxide directly on graphite surface can strongly increase the catalytic activity for
HO, decomposition. Moreover, Goldstein et al. [250] showed that the surface area of cobalt
oxide catalysts has a strong impact on the heterogeneous activity — i.e. after surface
normalization - for HO,  decomposition. Indeed, in their work, cobalt oxides with low surface
area display significantly lower heterogeneous activities that high surface area oxides and a
zero order reaction instead of a first order reaction due to the high HO, concentration

compared to available active sites.

Therefore the low conductivity (see section 4.4.2.3) as well as the low accessible surface area
due to strong particle agglomeration (see section 3.2) of Co304 used in this study may be the
cause of its low catalytic activity for HO, decomposition. Regarding the linear relationship
observed between Vo, and the time in Figure 55, and contrary to the previous approximation
as a first order reaction, HO, decomposition on Co3;0O4 may be a zero order reaction, as found
by Goldstein et al. [250]. Then, the volume of oxygen is linked to the zero order constant kg

by (Equation 77) :
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kot = Cy,0,° (%) (Equation 77)

Vo,
Thus, ko = 6.4 107 M.s™ for Co304 and the corresponding heterogenous constant is 7 10°

mol.m>.s™.

However, Mn,03, which shows similar microstructure to Co3O4 and low conductivity too,
displays a very high catalytic activity — ca. 20 times higher than perovskite oxides - for the
studied reaction. High catalytic activity was also observed in previous works on Mn oxides
[224,225], but is not consistent with the low activity of Mn,Os for HO, reduction and
especially for HO, oxidation observed in this work. Thus, it suggests that the HO;
decompositon occurs predominantly via a chemical rather an electrochemical mechanism on
this simple oxide. One should also note that HO;, reactions are probably dependent on the
H,0; concentrations (see section 5.3.1.2 and 5.4.1). In this work, high H,O, concentrations (>
0.01 M) were used for HO, decomposition study for technical reasons (see section 2.4.2)
while electrochemical reactions were investigated at lower concentrations (< 0.084 mM).

The differences of the HO, decomposition activity between Mn,O3; and Mn-based perovskites
can be due to (i) different mechanisms such as an electrochemical pathway for perovskite
oxides and a chemical mechanism for the simple oxide, which is less conductive and/or to (ii)
an underestimation of the active surface for Mn,Os. Indeed, it is known that redox transitions
of Mn propagate into the bulk of Mn simple oxides (while the CV charges suggest that they
occur only on the surface of the perovskite oxides (see sections 3.3.3 and 4.2), therefore the
BET surface is not suitable to evaluate its active surface.

Regardless its origin, the activity of Mn,O3; for HO, decomposition confirms that this catalyst
can transform HO, formed on carbon into OH’, leading to an ORR process of more than 2
electrons on Mn,Os/carbon electrodes, as found in section 4.4.2.3. In this work, Mn,Os is
even more active for HO, decomposition than Pt/C which displays a heterogenous constant
of ca. 48 10° cm.s”. This value is three times smaller than the one found by
Venketachalapathy et al. [247] in 1M KOH (144 10” cm.s™). It is certainly due to differences
in the platinum type - the mentioned authors studied Pt/C with 10 m”.g" Pt - and thus in

differences in particle size and presence of defects which affect the catalytic activity.
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5.5. General discussion of the ORR on

perovskite/carbon composites

In the previous sections of this chapter, an interpretation of the experimental data was
presented. It should be noted however that this interpretation was not solely based on the
experiments but was much inspired by numerous discussions with Dr. Antoine Bonnefont
(Institut de Chimie, Université de Strasbourg) who, based on the experimental data, set up a
kinetic model aimed at reproducing, semiquantitatively, the ORR and the HO;
reduction/oxidation currents obtained for LaCoO; and Lag §Sro,MnO3 perovskites.

In this section, this model will be presented. In the first part of this section, the chosen
mechanism and the corresponding kinetic equations are described, while the simulated curves
are compared to the experimental data in the second part in order to validate the model

assumptions.

5.5.1. The model

The model was developed as follows. First of all, the mechanism was chosen considering both
the literature and the experimental results. Secondly, the kinetic equations were written and
simplified following the electrochemical kinetic laws [155,156]. Then, the rate constants were
varied such as to reproduce semiquantitatively the experimental data. This procedure was first
applied to electrocatalysis on carbon. Secondly, the simulation parameters of the perovskite
and perovskite/carbon curves were adjusted taking into account the contribution of carbon.
Since there are many unknown parameters, the rate constants of the model were chosen to
reproduce the experimental trends of all experimental data, namely RRDE voltammograms
(ORR disk current, HO, ring current and HO, yield) for various electrode compositions, as
well as RDE voltammograms in electrolytes containing different concentrations of H,O,.

At this stage, the aim of the modeling is to better understand the ORR electrocatalysis on the
composite electrodes and to identify the contribution of perovskite and of carbon to the ORR

steps, rather than to precisely determine the kinetic rate constants. The development of the
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model is still under progress, therefore the rate constants and the potentials chosen for the

kinetic equations are preliminary

5.5.1.1. Tentative ORR mechanism on carbon

As mentioned in section 1.2.2.2, there is no common view on the ORR pathways occurring on
carbon materials. Moreover, the understanding of the ORR mechanism on carbon is beyond
the purpose of the present thesis. Therefore, it was chosen to use the simplest mechanism
description for the ORR on carbon. The same mechanism was used for glassy carbon and for

Sibunit carbon.

It was demonstrated in this work that carbon is able to reduce O, into HO,". Thus, the first
ORR step occurring on carbon may be the adsorption of O, on free sites of carbon (Equation
78):

Step 1, carbon : O, + * 2 0, 545(Equation 78)

where * is a free site on the carbon surface, and “ads” stands for an adsorbed species. The

kinetics of this step can be written as (Equation 79):

V1,c = K1,cC82°(1 = Boz,c — Broz—c) — K-1,c002,c(Equation 79)

where k;c and k¢ are the rate constants of O, adsorption and desorption on carbon,
respectively, C02x=0 represents the O, concentration at the electrode surface in mol.cm>and
002.c and Opos-c are, correspondingly, the coverage of O, and HO, species on the carbon
surface. Thus (1- 002, - Ogo2-c) is the fraction of free carbon sites while 8¢, ¢ is the fraction of
carbon sites covered by O, which can desorb through the inverse reaction. The unit of the
reaction rate v is s

To reproduce the experimentals curves, the following rate constants were chosen: k; ¢ = 108
cm’.mol™.s" and k¢ =510%s”. Three time higher rate constants were used for the ORR
modeling on Pt nanoparticles attached to vertically aligned carbon nanofilaments

(Pt/VACNF) by Ruvinskiy et al. [229].

Then, the adsorbed O, is reduced into the adsorbed HO, through a two electron charge
transfer step (Equation 80). This step is in fact the sum of at least two individual electron

charge transfers.
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Step 2, carbon : 03,45 + H,0 + 2™ 2 HO, ™, + OH™(Equation 80)

According to the Bulter-Volmer theory, for a one electron rate determining step, the kinetics

can be expressed as (Equation 81):

~(1-)F(E-E°) F(E-E°) .
Vz,c = Kz,cB02,cexp (%) — k2,cOHo2-cexp (aTZ) (Equation 81)

with k; ¢, the rate constant, and a, the symmetry factor of the charge transfer in the oxidation
direction. The choice of the potential E,° is given in Table 15.

From experimental curves, it was observed that, while the ORR is relatively fast on carbon
(see section 4), the oxidation of HO, hardly occurs (see section 5.3.1.3). Thus a symmetry
factor of 0.3 was chosen for the oxidation reaction.

The rate constant was chosen as k; ¢ =0.01 s in order to reproduce the experimental data.

The present study confirms the well known fact that carbon is not able to catalyse HO,
reduction or decomposition. Thus the formed adsorbed HO;  is then desorbed and diffuses to
the electrolyte according to the inverse reaction of (Equation 82):

Step 3, carbon : HO,™ + * 2 HO, ™ _ ;. (Equation 82)

With the rate expressed by (Equation 83):

V3¢ = K3cCiio- (1 — 002,c — Broz-c) — K—3,cBn02- ¢ (Equation 83)

where k3 ¢ and k3¢ stand for the rate constants of HO, adsorption and desorption on carbon,
respectively, and CHoz_Xzo represents the HO, concentration at the electrode surface in
mol.cm™,

The experimental data could be reproduced using ks ¢ = 10’ cm’.mol s and k3c=50 s
It was shown in section 4 that carbon is involved in the ORR mechanism on

perovskite/carbon electrodes. Therefore the contribution of the above mechanism was used

not only for carbon electrodes but also for composite electrodes.

5.5.1.2. Tentative ORR mechanism on perovskites

The mechanism of the ORR on perovskites was inspired by the work of Suntivich et al. [84]
validated by the density functional theory (DFT) calculations of Wang et al. [217] and

adapted in order to reproduce the experimental findings of this work.
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The proposed mechanism is in agreement with the behavior observed in this work and
discussed in sections 4 and 5: (i) ORR is a “series” pathway, (ii) the HO, intermediate is
reduced through a chemical step followed by an electrochemical step, (iii) the redox
transitions of the B cations are involved in the mechanism (this will be further confirmed in

section 6).

The first ORR step on perovskites is expected to be an electrosorption step, i.e. an
adsorption/desorption step coupled with a charge transfer, to replace OH,q4s adsorbed on an
active site by O 45 (Equation 84):

Step 1, perovskite : 0, + OHugs + €7 2 0,445 + OH™ (Equation 84)

This reaction is potential activated and depends on the concentration of O, (Equation 85):

Vip =
_ —(1-)F(E—E;°) F(E-E;%)
k1pC82°(1 — 802 — OHo2p — O0p) EXP (%) — k_1pB02pexXp (och)
(Equation 85)

where (1- Op2p - Ouo2p - Bop) is the fraction of perovskite sites covered by OH (these are all
sites which are not occupied by O,, HO, or O species) and 0o, p is the fraction of sites covered
by O.
It is postulated that O, .4 1s further reduced through a one electron charge transfer to form
HO, species (Equation 86):

Step 2, perovskite : 0,,45 + H,0 + e~ 2 HO, .45 + OH™ (Equation 86)

with (Equation 87):
~(1-a)F(E-E;° F(E-E;° .
Vzp = KzpB02peXp (%) — Kz,pBno2,pexXp (%) (Equation 87)

The experiments showed that LaCoOs is less active than Lag gSro,MnO; for the ORR and for
the H,O, oxidation. Therefore a factor of ca. 3 was chosen between the rate constants of the
two perovskites for the 1* and 2™ steps, and for the corresponding inverse reactions.

The rate constants used to reproduce the experimental data are presented in Table 16. As a
first attempt, the symmetry factors were all taken equal to 0.5. Table 15 gives the corrected

standard potentials utilized in the kinetic equations.
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The formed HO; 4 may then desorb from the perovskite surface in favor of OH,4. Also, HO,
species, for example formed on carbon surface (see section 5.5.1.1) or placed in the
electrolyte, can be adsorbed on the perovskite surface (Equation 88):

Step 3, perovskite : HO,™ + OHags & HO; 45 + OH™ (Equation 88)

The kinetics of this adsorption/desorption step is described by (Equation 89):

V3p = K3pCios-(1 = B02p — Onozp — B0p) — K_3pBHo2p (Equation 89)

For a first attempt of modeling, identical rate constants were chosen for the two perovskites

for this reaction (Table 16).

It was demonstrated that, contrary to carbon, perovskite oxides are able to reduce HO; »45 into
OH’ to ensure a global transfer of 4 electrons in the ORR. Moreover, the current slope at the
ring and the RDE voltammogram shape in the presence of H,O, suggest that the reduction of
HO; 445 probably occurs through a chemical step followed by an electrochemical step. The
chemical step may be the splitting of HO, and OH into O species on the perovskite surface
(Equation 90).

Step 4, perovsKite : HO, ;45 + OHygs = 2 0495 + H, O (Equation 90)

This step is irreversible and does not depend on the applied potential. Therefore the reaction

kinetics is described by (Equation 91):
Vap = KapBro2p(1 — 002p — Bozp — Bo,p) (Equation 91)

For this reaction, identical rate constants were chosen for the two perovskites as well (Table

16).

Finally, O,4s1s electrochemically reduced into OH,4s through step 5 (Equation 92):
Step 5, perovskite : 0,45 + H,O0 + e~ 2 OH,qs + OH™ (Equation 92)

This reaction is potential dependent (Equation 93), hence the HO, yield varies with the

potential.
—(1-a)F(E-E5°)
Vsp = KspBppexp (%) - kS,P(1 — 002, — OHo2p —

00,p)exXp (@) (Equation 93)

This reaction (Equation 92) also described redox transitions of B™*/ B™ (Co**/Co** or

Mn**/ Mn®*) occurring with the polarization and observed in CVs in N, atmosphere. O
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species are supposed to be adsorbed on B™"* (B=0) and OH species, on B™ (B-OH).
Indeed, these intermediates — OH and O - are known to be strongly adsorbed on the perovskite
surface according to DFT calculations [217].

The RDE voltammograms in H,O,-containing electrolyte and the HO;" yield during the ORR
suggested that LaCoOs is less active for the HO;, reduction reaction than Mn-perovskites.
Also, the redox transition of the former perovskite are less pronounced than the latter. This
may be due to a slightly weaker adsorption on LaCoO; [137]. Thus, a lower rate constant was
chosen for the LaCoOj3 perovskite.

In order to investigate the choice of the value of this constant on the results, the modeling was

also performed with identical constants for both perovskites and is presented in Appendix 4.
It can be noticed that, in this model, O, reacts with Mn in the 3+ oxidation state (Mn-OH,

Mn-0O,) for Mn-perovskites, which is consistent with literature data on Mn oxide (see section

44.2.1).

Table 15 : Corrected standard potentials used in the mathematical model.

E;° V vs. RHE Correction
o 13 Potential of O,/HO, couple corrected to the
1 .
solubility of O, in 1M NaOH for step 1
Potential of O,/HO, couple corrected to the

E,° 0.953 - _

solubility of O, in 1M NaOH for step 2
Es° 0.98 Potential of the redox of B™"* /B™ couple
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Table 16 : ORR rate constants used in the mathematical model to fit the experimental curves
of LaCoOj; and Lay.sSro-MnQOj; electrodes.

ORR steps LaCoO; LajgSro>2MnO;
kip=5 10% cm®.mol™.s™! ki p=14 10° cm®.mol™.s™
Step 1: 5 _—
k.l’p= 510° s k-l,p: 1.410° s
electrosorption of Oy 445
o =0.5 o =0.5
(Equation 84)
(Equation 85) (Equation 85)
Step 2 : kop-10s" kop-30s"
reduction of Oy 445 o =0.5 o =0.5
(Equation 86) (Equation 87) (Equation 87)
Step 3 : ksp=510" cm’.mol”.s™ ksp=510" cm’.mol s
adsorption of HO 45 ks3c=20 st k3c=20s"
(Equation 88) (Equation 89) (Equation 89)
Step 4 :
P kip=30s" ksp=30s"
splitting into Oygs ) )
(Equation 91) (Equation 91)
(Equation 90)
k5,P: 0.1 S-1 1
Step S : 0. ) ksp=0.2s
(ksp=0.2 s in Appendix 4)
reduction of O, o =0.5
) o =0.5
(Equation 92) (Equation 93)
(Equation 93)

5.5.1.3. Equation simplifications and approximations

With the RDE technique, the mass transport phenomena are controlled and the processes
occur under stationary conditions. Therefore, several simplifications can be applied and

relationships between different terms can be found.

In particular, within the diffusion layer thickness & given by (Equation 37), a linear

concentration profile is assumed (Equation 94):

aC; _ Ci*—C;(0) .
P (Equation 94)
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The diffusion coefficients of O, and HO, in 1M NaOH were determined with Pt/C electrodes
as Dopp=1.5 10° cm®.s™! and Duo-= 0.8 107 cmz.s'l, respectively. Thus, the diffusion layer
thickness at 900 rpm is 19 um for O; and 15 um for HO;'". The electrode thickness is assumed
to be sufficiently small to keep this linear concentration profile. Also, it is assumed that the
perovskite and carbon are well mixed in the catalytic layer and that the concentration of O,
(or HO;,) is the same in the vicinity of carbon and perovskite sites.

At the electrode surface, the consumption of O, and HO;" is related to the reaction rates of the

corresponding adsorption and electrosorption steps (Equation 95)(Equation 96):

ac .
Do, ( 622) = Tgeo,cV1,c * Tgeopv1p (Equation 95)

ac _ .
DHOZ—( 222 ) = r‘geo,CU3,C + l-‘geo,PU3,P (Equation 96)

where I'ye, stands for the number of active sites per geometric area of the electrode.

The number of active sites per specific area I'ecific was taken as 4.14 101 mol.cm'%xide
considering the atomic structure of perovskites. It is one order of magnitude less than the
number of Pt active sites on Pt electrode (2.2 107 mol.cmzpt).

Then, the number of active sites per geometric area I'ge, in the perovskite electrode can be
approximated knowing the catalyst loading 1 and the specific surface area, i.e. the BET
surface area Sggr, of the perovskite (Equation 97).

Fgeo = SpET * T'specific * | (Equation 97)

For example, for an electrode containing 46 pg.cm'zgeo of LaggSrg,MnOs3, the number of
active sites is Tgeora0.8502mn03 = (17 10%) * (4.14 107%) * (46 10°) = 3.2 10” mol.cm™y,. For
an electrode containing 91 p g.cm'zgeo or23 u g.cm'zgeo perovskite, the number of active sites is
multiplied or divided by 2, respectively.

However, this approximation is only valid for electrodes with an optimal carbon loading. For
perovskite electrodes without carbon, the electrical contact is not sufficient to ensure
participation of all active sites in electrochemical processes. Therefore, a lower value of Iy,
was used, in agreement with the charge measured by CV in N, atmosphere for electrodes with
an insufficient amount of carbon (Figure 31).

For the first attempt of modeling, the number of active sites per specific area I'gpecific 0f carbon
was assumed to be comparable to that of a perovskite. Then, I'ye, was calculated using a
roughness factor of 1 for glassy carbon, and using the specific surface area and loading for

Sibunit carbon.
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The values of I'y, used in the model for carbon and perovskite are listed in Table 17 for

electrodes containing 46 u g.cm'zgeo perovskite and/or 19 p g.cm'zgeo carbon.

Table 17 : Number of carbon and perovskite ORR active sites per geometric area used in the
mathematical model to fit the experimental curves of LaCoQOj; and Lay sSro.MnQOj3 electrodes
containing 46 u g.cm'zgeo perovskite and/or 19 ug. Cm-zgeo carbon

Number of Number of
Quantity of carbon in Number of
LaCoOj; sites LaggSro,MnOj sites
the catalytic layer carbon sites 5 5
(46 pg.cm™ge) (46 pg.cm™y)
410710 mol.cm'zgeo 0 5 0 )
Without Sibunit carbon 8 107" mol.cm ™, 8 107" mol.cm g,
(glassy carbon)
With 19 pg.cm™g,
HECH 10° mol.em™y, 1.9 10” mol.em?, 3.2 107 mol.cm ™y,

Sibunit carbon

The temporal variation of the site coverage by a given species can be calculated from the rate
of the reactions involving this species. Under stationary conditions, the temporal variation is
equal to zero and this therefore gives relationships between the reaction rates. The mentioned

relationships are: (Equation 98) (Equation 99) on carbon,

d?j(sz = Ly c— Ly = 0 (Equation 98)
dOHo2— i
1;(32 = Uyc+ U3,C = 0 (Equation 99)

and (Equation 100)(Equation 101)(Equation 102) on perovskite.

d?j(sz = v1p — Vyp = 0 (Equation 100)
decIl{tO2 = Uzp +V3p — Lgp =0 (Equation 101)
dde_to = 2vu4p — VUsp = 0 (Equation 102)

Finally, according to the Faraday law, the ORR current density measured at the disk Jorg is

(Equation 103):

Jorr = —F (ngeo,cuzjc + Fgeo,P(Ul,P +v,p + 05,p)) (Equation 103)

and the corresponding HO,™ ring current Jescapeo2- 1S — assuming a collection factor of 1 -

(Equation 104):
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ac _ .
Jescapetioz— = —2FDyop— (7222=)  (Equation 104)

Thus, several relationships relate the unknown terms.

5.5.2. Comparison of modeling and experimental results

In this section, the curves obtained by mathematical modeling are compared to the
experimental results obtained in this work. The reader should note that the experimental
curves shown in this section were already shown in section 5.2 for RRDE data, in section 4.4
for Tafel data and in section 5.3 for HO, reduction/oxidation data and are only presented here

for comparison with the modeling.

The discussion is started with the RRDE study of the ORR. The simulated (plots on the left
hand side) and experimental (plots on the right hand side) results are shown in Figure 56 for
LaCoOs3 and Figure 57 for Lag §Srp,MnOj electrodes, with and without carbon.

The model well reproduces the experimental features. The perovskite alone displayed quite
low ORR activity, and this electrocatalytic activity is increased with the addition of carbon in
the catalytic layer. Moreover, the HO,  yield is decreased when carbon is added, even if high
amount of HO, species is formed on carbon. This is due to the increase of perovskite
utilization which allows a faster HO, reduction. In addition, the HO,™ yield is dependent on
the potential, as for experimental data.

Similar modeling results were obtained when the rate of the O,q4s reduction on LaCoO3 was

doubled (Figure 102) (see Appendix 4).
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Figure 56 : RRDE voltammograms of GC-supported thin films of LaCoOj3 + Sibunit carbon in
Os-saturated IM NaOH at 900 rpm: (a,b,c) simulated curves with ksp = 0.1 s’ and (d,e.f)
experimental positive scans at 10 mV.s™. (a,d) Percentage of HO; formed, (b,e) ring currents
versus disk potential, (c,f) disk voltammograms. Measurements were performed for electrodes
containing only perovskite, for electrodes containing only Sibunit carbon, and for composite
perovskite + Sibunit carbon electrodes. Color codes for electrode composition: 46 pg.cm™ geo
perovskite (blue), 46 ug.cm™ geo perovskite + 19 ug.cm” geo Sibunit carbon (green), 19 ug.cm’
2 geo Sibunit carbon (red). Disk currents are normalized to the geometric area of the disk
electrode and corrected to the background currents measured in the N, atmosphere for the
experimental curves. Ring currents are normalized to the geometric area of the disk electrode
and to the collection factor.
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Figure 57 : RRDE voltammograms of GC-supported thin films of Lay sSro.MnQOj + Sibunit
carbon in Os-saturated IM NaOH at 900 rpm: (a,b,c) simulated curves and (d, e,f)
experimental positive scans at 10 mV.s™". (a,d) Percentage of HOy formed, (b,e) ring currents
versus disk potential, (c,f) disk voltammograms. Measurements were performed for electrodes
containing only perovskite, for electrodes containing only Sibunit carbon, and for composite
perovskite + Sibunit carbon electrodes. Color codes for electrode composition: 46 ug. cm'zgeo
perovskite (blue), 46 ,ug.cm'zgeo perovskite + 19 u g.cm'zgeo Sibunit carbon (green), 19 ug.cm’
2geo Sibunit carbon (red). Disk currents are normalized to the geometric area of the disk
electrode and corrected to the background currents measured in the N, atmosphere for the
experimental curves. Ring currents are normalized to the geometric area of the disk electrode
and to the collection factor.
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The simulated ORR currents for perovskite/carbon composites presented in Figure 56,c, green
curves, and in Figure 57,c, green curves take into account the ORR activity on perovskite
(with high perovskite utilization thanks to the presence of carbon) and on carbon. Tafel plots
were then constructed from the simulated ORR currents on perovskite only, normalized to the

specific surface area of perovskite and presented in Figure 58,a.
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Figure 58 : Tafel plots from mass-transport corrected scans voltammograms of GC-supported
thin films of perovskite + Sibunit carbon in O;,-saturated 1M NaOH: (a) simulated curves
without ORR contribution of carbon and (b) experimental positive scans at 10 mV.s™" after
subtraction of the kinetic ORR current on carbon. Measurements were performed with 71

wt.% perovskite + 29 wt. % Sibunit carbon. Color codes: LaCoQOj + Sibunit carbon (pink) and

Lay sSro2MnOs + Sibunit carbon (green). Kinetic currents of Tafel plots are normalized to the
BET surface area of perovskites. Error bars represent standard deviation from at least two

independent repeated measurements.

The change of Tafel slopes observed in experimental curves for LaygSro,MnO; electrodes is
also seen on the simulated curves (Figure 58,b,green curves), showing that the mechanism
chosen for the model is consistent. For LaCoQOs3, however, the simulated Tafel plot is different
from the experimental plot since no Tafel slope change was observed experimentally.

By varying the values of the rate constants, it was observed that the ratio k; p:k, p determines
the Tafel slopes. For a low kjp:k,p ratio, i.e. for a slow 1™ step, only a slope of 120
mV.decade™ was observed in the studied potential range. On the other hand, the higher the

k; p:ky pratio, i.e. the slower the pnd step, the more pronounced change of slope was observed —
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up to 120 mV.decade™ at high overpotentials and 35 mV.decade at low overpotentials were
calculated — and the lower is the potential where this change of the slope occurs.

Therefore, the careful observation of the effect of these rate constants on the Tafel slopes —
and thus, on the rate determining step - and on HO, currents will allow a more precise

determination of the model.

The influence of the catalyst loading was also modeled with the mechanism presented above
by varying the number of accessible active sites on the perovskite surface. The corresponding
simulated results (plots on the left hand side) are shown in Figure 59 for LaCoO3 and Figure
60 for LajsSro>MnO3 and compared to the experimental one (plots on the right hand side).
Once again, the model very well reproduces the tendency observed in the experiments.
Indeed, the electrodes with a low catalyst loading display high HO; release, while those with
high loading present low HO, yield due to efficient reduction of HO, species on the
abundant active sites.

One can note that the onset potentials of the ring current are identical for different catalyst
loadings with the “series” pathway used in the model. This shows that a zero current on the
ring is not necessarily a sign of a “direct” ORR pathway.

When the rate of the O, reduction on LaCoO3 was doubled, similar catalyst loading effects
were observed (Figure 103) (see Appendix 4). Moreover, the HO, yield was still higher than
that observed on Lag gSrp>,MnO3 while the HO, reduction rates were identical in that case (k4 p
=30s", ksp= 0.2 s™). For example, for the electrode with the lowest loading (23 g.cm'zgeo
perovskite + 9 pg.cm'zgeo carbon), ca. 20% of HO, were detected for LaCoOs3/C electrodes
(Figure 103) and only 10% for LaygSro,MnQO3/C electrodes (Figure 60). This points out that
the high HO, yield observed for LaCoO; is predominantly due to its low activity for the

ORR, and thus, to the formation of HO, on carbon sites.
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Figure 59 : RRDE voltammograms of GC-supported thin films of LaCoO3 + Sibunit carbon in
Os-saturated IM NaOH at 900 rpm: (a,b,c) simulated curves with ksp = 0.1 s’ and (d,e.f)
experimental positive scans at 10 mV.s™. (a,d) Percentage of HO; formed, (b,e) ring currents
versus disk potential, (c,f) disk voltammograms. Measurements were performed for electrodes
containing constant perovskite/carbon ratio (71 wt.% perovskite + 29 wt.% Sibunit carbon,)
and various catalyst loadings. Color codes for electrode loading: 23 ug.cm™ geo perovskite + 9
ug.cm? geo Sibunit carbon (orange), 46 ug.cm™ geo perovskite + 19 ug. em’” geo Sibunit carbon
(green), 91 ug.cm™ geo perovskite + 37 u g.cm” geo Sibunit carbon (purple). Disk currents are
normalized to the geometric area of the disk electrode and corrected to the background
currents measured in the N, atmosphere for the experimental curves. Ring currents are
normalized to the geometric area of the disk electrode and to the collection factor.
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Figure 60 : RRDE voltammograms of GC-supported thin films of LaysSro.MnOj + Sibunit
carbon in Os-saturated IM NaOH at 900 rpm: (a,b,c) simulated curves and (d, e,f)
experimental positive scans at 10 mV.s™". (a,d) Percentage of HO, formed, (b,e) ring currents
versus disk potential, (c,f) disk voltammograms. Measurements were performed for electrodes
containing constant perovskite/carbon ratio (71 wt.% perovskite + 29 wt.% Sibunit carbon,)
and various catalyst loadings. Color codes for electrode loading: 23 ug.cm™ geo perovskite + 9
ug. cm'zgeo Sibunit carbon (orange), 46 u g.cm'zgeo perovskite + 19 ug. Cm-zgeo Sibunit carbon
(green), 91 u g.cm'zgeo perovskite + 37 u g.cm'zgeo Sibunit carbon (purple). Disk currents are
normalized to the geometric area of the disk electrode and corrected to the background
currents measured in the N> atmosphere for the experimental curves. Ring currents are
normalized to the geometric area of the disk electrode and to the collection factor.
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Then, the modeling of the HO, reduction/oxidation reactions was performed. The RDE
voltammograms of perovskite composite electrodes in H,O,-containing electrolyte are the
sum of three main contributions, as shown on the simulated curves in Figure 61. The anodic
branch is composed by the HO,™ oxidation into O,, while the cathodic branch consists of the
HO; reduction into OH" and the reduction of the O, formed during the HO,™ oxidation. The
contribution of the HO, oxidation and of the ORR on carbon to the overall current is
negligible according to the modeling.

The deconvolution of the whole current into these individual contribution shows that the
kinetic currents of the HO, reduction cannot be directly obtained from the total currents,

contrary to what was performed in the literature [133,251].
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Figure 61 : Simulated RDE voltammograms of GC-supported thin films of (a) LaCoO3 +
Sibunit carbon and (b) LaggSro>MnQO; + Sibunit carbon in N>-purged IM NaOH + 0.84 mM
H>0; at 900 rpm. Measurements were modeled with 91 ug. cm'zgeo perovskite + 37 ug. cm'zgeo

Sibunit carbon. Color codes for the individual contributions: HO; reduction contribution
(pink), O, reduction contribution (blue), HO; oxidation contribution (green) and total
current obtained by the addition of the previously mentioned contributions (black). Currents
are normalized to the geometric area of the electrode.

The total current obtained by this model (Figure 62,a, black curves) well reproduces the
experimental voltammograms of LaCoO; and LaggSro,MnO3; composite electrodes (Figure
62,b). Indeed, an almost reversible voltammogram is calculated for LaggSro,MnO;3; while
LaCoOs displays significantly smaller currents. Moreover, a change in the current slope is
visible for LaCoOs, as for experimental curves. The only noticeable difference between the

simulated and the experimental curves is the decrease of the HO, oxidation current at high
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potentials for the model. It is caused by the decrease of the number of active B™" sites in favor
of the formation of B™"* cations. In practice, one may suppose that some B™" cations are
still present at these high potentials.

Interestingly, it was noticed that, when the O,q4s reduction rate was doubled and thus the HO,
reduction was accelerated, the global current calculated on LaCoOs; electrode was still lower
than that of LaggSro,MnOs (Figure 104) (see Appendix 4), in agreement with the high HO,
yield measured on the former (Figure 103) (see Appendix 4). This is due to the smaller

number of active sites on the Co-based perovskite and to its low activity for ORR and HO,

oxidation.
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Figure 62 : RDE voltammograms of GC-supported thin films of Lay sSro.MnOj + Sibunit
carbon (solid lines) or of LaCoQOj + Sibunit carbon (dash lines) in N;-purged 1M NaOH +
0.84 mM H;O0; at 900 rpm: (a) simulated curves and (b) experimental positive scans at 10

mV.s~'. Measurements were performed with 91 ug.cm™ geo perovskite + 37 ug.cm? geo Sibunit

carbon. Color codes for the model contributions: HO; reduction contribution (pink), O;

reduction contribution (blue), HO, oxidation contribution (green) and total current obtained
by the addition of the previous mentioned contributions (black). Currents are normalized to
the geometric area of the electrode and corrected to the background currents measured in the
N atmosphere in the absence of H,O; for the experimental curves.

The influence of the H,O, concentration on the RDE voltammograms was also investigated
using the mathematical modeling. The results are displayed in Figure 63,a. Besides the normal
decrease of the diffusion limiting current, a positive shift of the mixed potential is observed
when the concentration is decreased (Figure 63,a,black curves), similar to the experimental
results (Figure 63,b).

Varying the H,O, concentration directly affects the reaction rate of the adsorption/desorption

of HO,. (Equation 89) and therefore the site coverage by HO, species (8gozp). On the
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cathodic branch, the decrease of the HO, concentration does not lead to a strong slowing
down of the splitting into O,qs species since the splitting rate depends on both 0yo2.p and Oomp
(=1- B02.p — Ouozp - Bop) (Figure 63,a,pink curves). On the other hand, in the anodic direction,
the decrease of Byoy p causes a reduction in the speed of formation of Oj a4 from HO; 445, the
step which depends on the potential. Thus, the onset potential is shifted positively (Figure

63.a,green curves) and therefore, the mixed potential too (Figure 63,a,black curves).
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Figure 63 : RDE voltammograms of GC-supported thin films of Lay sSro.MnO3 + Sibunit
carbon in N;-purged 1M NaOH with 0.84 mM H>0: (solid lines) or 0.42 mM H>O; (dash
lines) at 900 rpm: (a) simulated curves and (b) experimental positive scans at 10 mV.s™!.
Measurements were performed with 91 ug. cm'zgeo perovskite and 37 ug. Cm-zgeo Sibunit
carbon. Color codes for the model contributions: HO, reduction contribution (pink), O>
reduction contribution (blue), HO, oxidation contribution (green) and total current obtained
by the addition of the previous mentioned contributions (black). Currents are normalized to
the geometric area of the electrode and corrected to the background currents measured in the
N> atmosphere in the absence of H,O, for the experimental curves.

The model used in this work helped in the understanding of the ORR mechanism on
perovskite electrodes. However, at the time of writing, the adjustement of the rate constants is
still in progress. Indeed, model parameters will be adjusted thanks to additional on-going
experiments with other H,O, concentrations and with the careful study of the effect of the

choice of kinetic constants on the Tafel slopes.
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5.6. Conclusions of Chapter 5

In this section, the interpretation of the experiment features was combined with a
mathematical model developed by Dr. Antoine Bonnefont (Institut de Chimie, Université de
Strasbourg) and allowed to propose a tentative ORR mechanism on perovskite electrodes.

It was demonstrated that, on perovskite as well as on perovskite/carbon electrodes, ORR is
mainly a “series” pathway with formation of the HO, intermediate. This intermediate species
is further reduced on perovskite sites, likely through its splitting into O species, followed by
an electrochemical reduction of O, into OH, with the help of redox transitions of the B
cation of the perovskite. The amount of HO, detected at the ring of the RRDE strongly
depends on (i) the perovskite loading (thick layers leading to an apparent “direct” ORR
mechanism due to an efficient HO, reduction), (ii) the carbon addition (which affects both the
perovskite utilization and the HO, production), and (iii) the nature of the perovskite.

Indeed, studied perovskite electrodes showed significant activity for HO, reduction/oxidation
reactions in the investigated potential range, but LaCoO3; showed lower reaction rates than Mn
perovskites. This is due to the low electrocatalytic activity of the former perovskite for the
ORR and for HO, oxidation, but probably also to the easier redox transitions of Mn
compared to Co cation. As for the ORR, the addition of carbon to perovskite thin layer
electrodes significantly enhanced the reaction rate of the HO, reduction by increasing the
catalyst utilization, which leads to a lower HO,™ detection at the RRDE ring.

In addition to the activity for HO, reduction, perovskite oxides demonstrated significant
activity for the HO, decomposition compared to carbon. This reaction appeared to be a first
order reaction on the studied oxides and the heterogeneous rate constant for this reaction
shows only slight differences between Co and Mn-based perovskites. The study of HO,
reactions of Mn,O3 points out that HO, decomposition is a chemical pathway rather than an
electrochemical pathway, at least on this oxide.

In conclusion, HO; species can be transformed on perovskite sites and therefore will not

survive in a fuel cell, provided that sufficiently thick catalytic layers are utilized.
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Chapter 6 :
Stability of perovskites as ORR catalyst
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6.1. Introduction

The perovskites studied in this work show promising ORR activity for fuel cell applications.
However, fuel cell components should display sufficient stability to ensure their long term
performance. This chapter is therefore focused on the study of the stability of perovskite
oxides.

First of all, the effect of the storage under ambient conditions and successive thermal
treatments on the state of the perovskite surface was studied by XPS. XPS was also applied to
check the oxide surface stability in the suspensions used for electrochemical measurements. In
fuel cells, perovskite oxides will be in contact with either concentrated alkaline media or an
OH’ conducting membrane which is also strongly basic. Thus, the stability of their structure
and composition after immersion in alkaline solutions was investigated using XRD, ICP and
XPS techniques. The immersion duration was extended up to one month.

Secondly, the durability of the ORR activity was studied by chronoamperometries at various
applied pontentials for perovskite and perovskite/carbon electrodes. The effect of the
electrocatalytic reaction on the interfacial properties of perovskites was investigated by CV
under N, atmosphere at the end of the measurements. Also, as HO, is formed during the ORR
on perovskite electrodes (see section 5), similar experiments were performed for the HO,
reduction. In order to visualize eventual modifications of the bulk structure, the electrode
morphophogy and the surface composition of perovskites, and to understand the evolution of
their electrocatalytic activity, electrodes were studied using XRD, SEM/EDX and XPS

analysis after electrocatalysis.
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6.2. Chemical stability of perovskite oxides

6.2.1. Surface modification under the atmospheric storage and
after the thermal treatment

XPS data (see section 3.2.4) showed that La:Co ratio on the surface and near-surface region of
LaCoOs; stored under ambient conditions significantly exceeds the theoretical 1:1 ratio
characteristic of the ABOj structure. Moreover, the analysis of the Ols and Cls spectra
indicated the presence of carbonates on the sample surface. From these observations, it was
concluded on the presence of Lay(COs)s on the surface which is apparently formed via

interaction with CO, from atmosphere.

With the purpose to remove these species, a thermal treatment was applied to the oxides as
described in section 2.5.1: the sample was kept during 1h at 650°C or 700°C in air. The
treated perovskites were then studied by XPS, CV and RDE under O, atmosphere to
investigate the impact of the thermal treatment on the surface composition, the interfacial
properties and the ORR activity, respectively. Figure 64 presents the XPS spectra of LaCoO3
before and after the thermal treatment. The corresponding La3d, Co2p, Cls and Ols peak
binding energies and atomic ratios are shown in Table 18 and Figure 65. In the following, the

XPS peak attributions are similar to that of section 3.2.4.

First of all, it is noticed that the peaks of the La3d spectra are better defined and shifted
towards lower binding energies after the thermal treatments (Figure 64,a and Table 18),
suggesting the removal of lanthanum carbonates (see section 3.2.4.1 and Appendix 2, Figure
98). It is observed that the fraction of carbonates indeed decreases with the thermal treatment
by comparing the peak areas of carbonates to other components in the Ols spectrum (Figure
64,c,d and Table 18). Similar decrease of the carbonate quantity was observed for LaMnOs
and Lag §Sry,MnOs after the thermal treatment at 650°C (not shown).

Thermal treatment at 650°C in air results in the decrease of the amount of La,(COs3); and a
partial recovery of the ABOs perovskite structure for LaCoOs. However, electrochemical

measurements have shown that the decrease of the amount of carbonate species on the surface
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does not lead to changes either in the CV under N, or RDE voltammograms in O,-saturated

electrolyte. This means either that Lay(CO3); — which itself is inactive in the ORR - forms on

the surface a porous layer which does not block an access of O, to the active sites, or that this

carbonate layer is destroyed (or dissolved) either during the thin layer electrode preparation or

during the contact with the alkaline electrolyte. Considering that Lay(COs3); is not soluble in

NaOH (tested in laboratory), the latter hypothesis in unlikely. Meanwhile, XPS measurement

of LaCoO; after an ultrasonic treatment in an aqueous suspensions indeed suggest a partial

decomposition/dissolution of the carbonate species (see section 6.2.2)
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Figure 64 : XPS spectra of (a) La3d, (b) Co2p, (c) Cls and (d) Ols of LaCoQOj before and
after thermal treatment, and corresponding peak deconvolution. Lines are guides for the eye

and indicate the experimental positions.
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Table 18 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for LaCoO3
before and after thermal treatment

Cls Ols
. Carbonate
LaCoO; La3ds;, | Co2ps, | Adventious c=0 Carbonate | © Iattice and Adsorbed
carbon . water
hydroxide
833.2
Initial 834.1 779.9 284.6 286.2 288.7 528.6 531.3 533.7
LaCoO; 838.1 (7%) (26%) (9%) (8%) (12%) (20%) (5%)
(13%)
After 3334
thermal 837.5 779.9 284.6 286.2 288.7 528.7 531.0 533.7
treatment at ) (6%) 21%) (7%) (4%) (23%) (19%) (7%)
(14%)
650°C
After 3334
thermal 837.5 779.9 284.6 286.3 288.7 528.6 531.0 533.7
treatment at ) (4%) 31%) (9%) (8%) (16%) (14%) (7%)
(9%)
700°C
1,4
1
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Figure 65 : XPS atomic ratio of La (blue), Co (green) and O from perovskite lattice (red) in
LaCoOj; before and after thermal treatment, calculated with Scofield factors after background
correction of XPS spectra.

6.2.2. Surface modification in aqueous suspensions

Usually, perovskite is ground and aqueous suspensions are freshly prepared before
electrochemical studies, as described in section 2.3.2.2. This procedure was developed after

an observation of modifications in the behavior of suspensions of LaCoO;3; with the time.
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Indeed, after several utilizations — and therefore successive ultrasonic treatments - and storage
during few days under atmospheric conditions, the colour of the LaCoOs suspension changes
from black to yellow-brown, even when protected from light. Moreover, the CV was
significantly affected by the freshness of the suspension, as can be observed from Figure 66.
“Old” suspension leads to additional current peaks at high potentials, suggesting the presence

of new redox couples.

0087 | Lacoo,C T

0.03

geo

0.00 -
fresh suspension

-0.03

i/ mA.cm?

-006 suspension after 1 week storage |

04 05 06 0.7 08 09 10 1.
E/Vvs. RHE

1 12 13

Figure 66 : CV at 0 rpm and 10 mV.s” of CP-supported thin films of LaCoO3 + Sibunit
carbon in No-purged 1M NaOH. Measurements were performed with 180 pg.cm™ geo
perovskite + 74 ,ug.cm'zgeo Sibunit carbon. Color codes: fresh suspension (black), suspension
after one week storage under atmospheric conditions (grey). Currents are normalized to the
geometric area of the electrode.
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In order to investigate the modification of the perovskite surface in aqueous suspensions,
various suspensions of LaCoOs; in ultrapure water were prepared as described in section 2.5.2,
drop cast on carbon scotch placed on an XPS sample holder and studied by XPS. The
obtained XPS spectra are presented in Figure 67, and the corresponding binding energies of

the elements and their atomic ratios, in Table 19 and Figure 68.

By comparing the XPS data from fresh perovskite suspensions to data of the initial powder, it
is observed that La3d spectrum shows better defined peaks (Figure 67,a), appearing at lower
binding energies (Table 19), for fresh LaCoOs suspension. Moreover, the ratio La:Co proves
that the excess of La is less pronounced for perovskite suspension than for the LaCoOj3
powder stored in air (Figure 68). This suggests a decrease of the quantity of lanthanum
carbonate on the perovskite surface after sonication in ultrapure water. This might be caused
by the slightly acidic pH of this water with contact of CO, of air [252] or to the ultrasonic

treatment.

All the fresh suspensions — with ground and not ground powder, and with various durations of
ultrasonic treatment — show (i) similar XPS spectra (Figure 67), (ii) similar peak binding
energies (Table 19) and, (iii) within the experimental error, similar atomic ratios of the La, Co
and O (Table 19 and Figure 68). This proved that the powder grinding in a mortar as well as a

longer ultrasonic treatment do not significantly affect the perovskite surface.

After storage of the suspension during one week under ambient conditions, several changes in
the XPS spectra can be observed. First of all, the La3d spectrum is significantly modified with
high peak intensities at high binding energies. The origin of this modification is not
understood yet but might suggest that lanthanum is not in the perovskite phase at the oxide
surface. However, lanthanum carbonates and oxides are excluded since the La3d spectrum is
different from the commercial La;(COs3); and La,O5 (Figure 21,a).

Cobalt also seems to be affected by the storage. Indeed, the Co2ps3., peak is slighty shifted
towards higher binding energies (Figure 67,b and Table 19), and the atomic ratio evidences a
larger amount of cobalt on the perovskite surface than either in the initial powder or fresh
suspensions (Figure 68). This cobalt is probably not only in the perovskite structure since the
fraction of O from the perovskite lattice is very low (Figure 68). In fact, the Ols peak ratio
suggests a high amount of carbonates and/or hydroxide species compared to perovskite
without suspension storage (Figure 67,d). Therefore hydroxide and/or carbonate of cobalt are

probably formed during this storage.
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Although the presence of carbonates is suggested from Ols and Cls spectra (Figure 67,c,d),
Co(CO:s) is unlikely because no satellite peaks corresponding to Co?" can be observed in the
Co2p spectra (Figure 67,b). Similarly, Co(OH), should be discarded. Also, one can see that
the Co2p spectra of the stored suspension (Figure 67,b) is different from the spectrum of the
commercial Co(OH), (Figure 22,a). On the other hand, if the high oxidation state Co™ was
formed to compensate the loss of lanthanum carbonates on the perovskite surface mentioned
for the fresh suspensions, it could not explain the modification of the CV (Figure 66) since
according to Pourbaix diagrams [195] redox transitions of Co*/Co™ occur at potentials
higher than the potentials studied in this work. The most probable specie present on the
perovskite surface is therefore either Co(OH); or CoOOH. Then, the redox peaks observed in
the CV (Figure 66) can be attributed to Co>*/Co®* redox couple from different phases
(perovskite, hydroxide...). Also, a little shift observed in the Co2p spectra can be related to a
change of the chemical bonds and the coordination number of Co. In addition, the formation
of Co(OH)3 or CoOOH species can be at the origin of the color change of the suspension.

As Co(OH); is not active for the ORR [253], the ORR activity of LaCoOs from old
suspensions was investigated. Interestingly, it was observed that the activity was not affected
by the freshness of the suspension since fresh and old suspensions lead to superposed RDE
voltammograms (not shown). Moreover, the CV after electrocatalysis from old suspensions
displays a similar shape to the CV of fresh suspensions (not shown), suggesting that the initial
interfacial properties are recovered. Therefore, it seems that the ORR and/or the HO;

reactions lead to a removal of the eventual Co(OH); or CoOOH layer.

For Mn perovskites, no significant CV or color changes were observed after the suspension
storage, suggesting higher stability of Mn-containing perovskites compared to Co-containing
perovskites. This is consistent with the higher stability of the LaMnO; structure compared to

the LaCoOQOs structure [138] (see 1.4.4.1).

To ensure high reproductibility, only fresh suspensions were used for electrocatalytic studies

for all perovskites.
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Figure 67 : XPS spectra of (a) La3d, (b) Co2p, (c) Cls and (d) Ols of various suspensions of
LaCoOs3. Lines are guides for the eye and indicate the experimental positions.
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Table 19 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for LaCoQO3
of various suspensions

Cls Ols
. Carbonate
LaCoO; La3ds;, | Co2ps; | Adventious c=0 Carbonate | © Iattice and Adsorbed
carbon . water
hydroxide
833.2
Initial 834.1 | 779.9 | 2846 2862 2887 | 5286 5313 5337
LaCoO; 838.1 | 4%) | (25%)  (8%) (7%) 8%)  (36%) (2%)
(10%)
not milled, 3332
30’ in a3y | 7799 | 2846 2867 2882 | 5286 5310 533.8
ultrasonic ) (6%) 27%) (8%) (8%) (13%) 21%) (8%)
(9%)
bath
i “in | 8332
ml'llllter‘;’sigic'“ c3ys | 7799 | 2846 2865 2892 | 5286  S3LS 533.6
' 4 27 11 7 11 2 2
bath 9%) (4%) (27%) (11%) (7%) (11%) (29%) (2%)
milled, 30’ in | 833.2
ultrasonic | 837.5 | 7802 | 2846 2865 2895 | 5287 5315 533.2
bath, 7 days | 839.8 | (6%) | (18%)  (8%) (9%) 6%)  (40%) (5%)
storage (8%)
8332
3 b
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Figure 68 : XPS atomic ratio of La (blue), Co (green) and O from perovskite lattice (red) in
LaCoOj; of various suspensions, calculated with Scofield factors after background correction
of XPS spectra.
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6.2.3. Properties of perovskite oxides after immersion in 1M
NaOH

In order to investigate the stability of the perovskite oxides in alkaline media, LaCoOs3,
LaMnO; and LaggSrp,MnO3; were studied after storage in 1M NaOH for various durations

using XRD, ICP-MS and XPS.

6.2.3.1. Structure of the bulk and perovskite dissolution after immersion
in 1M NaOH

XRD was used to check the presence of the perovskite phase. After immersion in 1M NaOH
and for all the studied perovskites, the perovskite structure remained and no additional peaks
could be observed in XRD patterns (Figure 69 for LaCoOs), showing the stability of this

structure in alkaline media for at least one month.
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Figure 69 : X-Ray powder diffraction pattern (step size = 0.0223°, time step = Is) of LaCoO3
powder before and after immersion in IM NaOH. The triangle symbols indicate the ICDD
reference card LaCoO3 — 01-084-0848. The diffraction patterns were corrected from the
background signal.

The alkaline solution in which the perovskite powder was immersed was analysed by ICP-MS
to quantify eventual dissolved species. While La, Co and Mn were stable in the three studied
perovskites with an amount of corresponding dissolved species below the detection limit, it
was observed that ca. 3 wt.% of the initial mass of Sr contained in LaggSrg,MnOs; was
dissolved after two days in alkaline media. No additional dissolution occured for longer
immersions. The bulk structure was not affected by this dissolution since the expected
perovskite structure was still observed by XRD, as mentioned above. However, one can
expect that the loss of Sr should be compensated locally, either by a change in the oxidation
state of Mn or by the formation of oxygen vacancies.

The higher extent of dissolution of Sr compared to La, Co and Mn species can be related to
the higher solubility of Sr** hydroxides in alkaline media compared to those of La**, Mn** and
Co>*. Indeed, the logarithm of the solubility product in alkaline media of Sr(OH), (-3.5) is
higher than that of La(OH); (-18.7), Co(OH)3 (-43.8) or Mn(OH); (-36) [254].
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Despite the fact that, according to the XRD analysis, the bulk phase composition did not
change, the perovskite surface may be degradated. Indeed, it was noticed that the bottle
containing LaCoOs changes from white to brown after long immersion of the perovskite in
IM NaOH, while the bottles containing Mn-based perovskites kept their white color during
the whole tests. Thus, the brown color is attributed to the surface degradation and formation

of a new Co phase during alkaline immersion.

6.2.3.2. Surface composition after the immersion in 1M NaOH

An eventual modification of the surface composition of the perovskites after the immersion in
alkaline media was studied by XPS. In the following, the behavior of each perovskite is

analysed separately.

6.2.3.2.1. LaCoOs

Figure 70 shows the XPS spectra of LaCoOs after various durations in 1M NaOH. The
discussion of XPS spectra is started for samples after storage for periods up to 18 days. The
data obtained after 1 month in 1M NaOH will be discussed later.

After alkaline treatment, the La3d peaks are better defined but appear at higher binding
energies than expected for LaCoOj3 perovskite (Figure 70,a). By comparing the La3d spectrum
and its peak binding energies (Table 20) to XPS data of commercial La;O3; and La(COs3)s
(Figure 21,a and Table 7), it is reasonnable to believe that there is formation of oxide,
hydroxide and/or carbonate of lanthanum on LaCoOs; surface, already largely covered by
lanthanum carbonates before the alkaline treatment (see section 3.2.4). The formation of
lanthanum hydroxide after immersion in alkaline media of Co-based perovskites was also
reported in the literature [94,139] and may negatively affect the ORR activity of the
perovskite [94,253].

Besides, the atomic ratio of La:Co shows that the immersion in alkaline solution also leads to
an increase of the quantity of cobalt on the perovskite surface (Figure 71). The Co2p spectrum
displays assymetric peaks slightly shifted to higher binding energies (Figure 70,b and Table
20), consistent with the formation of Co** or Co®* from non perovskite phases such as oxides

(e.g. CoO, which is however not supposed to be stable at OCP) or hydroxides (e.g. Co(OH)3).
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Moreover, these new phases can be at the origin of the change of the bottle color mentioned
previously (see section 6.2.3.1). The absence of satellite peaks proves that Co®, and in
particular CoCQOs, is not formed during the immersion in alkaline media.

Small fraction of the lattice oxygen compared to the fraction of La and Co (Figure 71)
confirms that both cations are not in the perovskite form at the surface. From O1 spectrum
(Figure 70,d) and the atomic ratio (Table 20), it is clear that the predominant species are
carbonates and/or hydroxides on the LaCoOs; surface. In addition to La and Co species, the
presence of Na,CO; or NaOH is suggested by the atomic ratio (Table 20).

Indeed, the sample was directly analysed after immersion in 1M NaOH without rinsing. As
mentioned in section 2.5.3, the effect of the rinsing was investigated but the results were not
reproducible probably due to the longer storage under atmospheric conditions which is

required to performe the rinsing and which could modify the perovskite surface composition.
After 1 month in 1M NaOH, all the spectra display significant shape change. This is probably

due to a charge effect with the formation of the insulating phases mentioned above on the

perovskite surface.
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Figure 70 : XPS spectra of (a) La3d, (b) Co2p, (c) Cls and (d) Ols of LaCoO3 before and
after immersion in IM NaOH. Lines are guides for the eye and indicate the experimental
positions.
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Table 20 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for LaCoQO3

before and after immersion in IM NaOH

Cls Ols
L . Carbonate
aCoO3 La3ds; | Co2ps; | Adventious c=0 Carbonate | © lattice and Adsorbed Nals
carbon . water
hydroxide
833.2
Initial 834.1 779.9 284.6 286.2 288.7 528.6 531.3 533.7
LaCoO; 838.1 (4%) (25%) (8%) (7%) (8%) (36%) (2%)
(10%)
834.6
After 2 days 338 | 780.4 284.6 286.2 288.9 528.6 530.8 533.6 1071.3
in 1M NaOH (9(7') (6%) (10%) (4%) (11%) (5%) (39%) (9%) (8%)
o
834.6
After 7 days 338 | 780.4 284.6 286.2 288.9 528.8 530.8 533.6 1071.3
in 1M NaOH (9(7') (7%) (11%) (2%) (11%) (6%) (33%) (11%) (9%)
0
d:;stei; 11?\’[ Zig? 779.9 284.6 286.2 288.9 528.8 530.8 533.6 1071.3
NaOH (10%) (7%) (10%) (2%) (11%) (5%) (37%) (10%) (8%)
834.1
779.
m ﬁf:le'l;lllM 837.5 783 ? 284.6 286.5 288.4 528.6 530.9 533.6 1073.6
0 ! 840.6 ) (7%) (2%) (19%) (2%) (36%) (11%) (5%)
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(11%)
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1 o
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Figure 71 : XPS atomic ratio of La (blue), Co (green) and O from perovskite lattice (red) in
LaCoQOj; before and after immersion in IM NaOH, calculated with Scofield factors after

background correction of XPS spectra.
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6.2.3.2.2. LaMnOs;

For LaMnOs;, a similar negative shift of 0.4 eV is observed in La3d, Mn2p and Ols spectra
after immersion in alkaline media (Figure 72,a,b,d, Table 21) and no significant modification
of the spectra shape is visible. Thus, the shift is probably due to charging rather than to
surface modification. Also, the atomic ratio (Figure 73) shows that the surface of LaMnOj; is
rather stable after a long immersion in 1M NaOH, contrary to LaCoQOs3, probably due to the
higher stability of the former perovskite structure [138].

Only the formation of some carbonates species occurs. Indeed, the presence of carbonates is
highlighted in Cls and Ols spectra (Figure 72,c,d) and the atomic ratio of carbonates from
Cls to carbonates and hydroxides from Ols is ca. 1:3 (Table 21), consistent with presence of
COs> species. In fact, the presence of Na in the XPS scan (not shown) as well as the atomic
ratio Na:carbonates (Table 21) suggest that a large part of the carbonates present on the

perovskite surface are Na,COj3 formed during perovskite storage in 1M NaOH.

245



L after 1 month in 1M NaOH P

L after 1 month 1
in 1M NaOH :

| afier 7 days in iivi NaOH

intensily / arbitrary units
il R SURR—

intensity / arbitrary units

I after 2 days in iivi NaOH | ‘ 4
. i o
ooy i i ; <
i initial LahnQ, ; . . :
i a - | ‘ h
865 860 855 B850 845 840 835 830 660 655 650 645 640
Binding Energy / eV Binding Energy / eV
O T T T ‘ T ] : T
. C1s| oot
|after 1 month 4 ! ~EE)
bin 1M NaOH g - after 1 month in 1ivi NaOH I g
o [ 1 2 :
= = :
ST ] S i E
S 4 2. | after 18 days in 1M NaOH i
z 12 ¥ :
o . © i
= ] o= : )
= 1 = T after7 daysin 1M NaOH 5
= 1 2 E
Z 2 | ahter 2daysin 1M NaOH - ]
X ] L :
.g _E T
L ] - initial LaMnO, i b
[ initial LaMnO, ~ | A
L | n 1 L 1 L 1 Il L 1 ] | 1 1 1 1 1 1 : 1 |
292 290 288 286 284 282 542 540 538 536 534 532 530 528 526
Binding Energy / eV Binding Energy / eV

Figure 72 : XPS spectra of (a) La3d, (b) Mn2p, (c) Cls and (d) Ols of LaMnOj before and
after immersion in IM NaOH. Lines are guides for the eye and indicate the experimental
positions.
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Table 21 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for LaMnO3

before and after immersion in IM NaOH

Cls Ols
LaM . Carbonate
aMnO; La3ds; | Mn2p3;, | Adventious =0 Carbonate O lattice and Adsorbed Nals
carbon . water
hydroxide
. 834.1
Initial 238.1 642.1 284.6 286.2 288.7 529.3 531.0 532.8
LaMnO; (14 % (9%) (17%) (6%) (5%) 22%)  (21%) (7%)
0
833.7
After 2 days 8377 641.8 284.6 286.2 288.5 528.9 530.9 533.0 1071.3
in 1M NaOH (101%) (8%) (13%) (2%) (7%) (20%) (20%) (10%) (10%)
0
833.7
After 7 days 8377 641.8 284.6 286.2 288.5 528.9 531.0 533.0 1071.3
in 1M NaOH (101% ) (8%) (11%) (6%) (6%) (16%) (18%) (14%) (10%)
0
d:;:‘:l 11?\/[ Z;;; 641.8 284.6 286.2 288.5 528.9 530.9 533.0 1071.3
NaOH O%) (7%) 9%) (6%) (7%) (13%) (21%) (14%) (12%)
moﬁfl:e:nllM 2?3; 641.8 284.6 285.9 288.5 528.9 530.9 533.0 1071.3
) 7 1 7 1 1 1
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Figure 73 : XPS atomic ratio of La (blue), Mn (green) and O from perovskite lattice (red) in
LaMnQOj; before and after immersion in IM NaOH, calculated with Scofield factors after

background correction of XPS spectra.
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6.2.3.2.3. Lao_gsro.gMnO3

After immersion in the alkaline solution, no modification of the La3d spectra is noticed for
Lag gS19.MnOs (Figure 74,a), but a small shift towards lower binding energies is observed in
Mn2p spectra (Figure 74,b and Table 22). This is likely related to a decrease of the amount of
high oxidation state Mn** in the perovskite as a consequence of the dissolution of Sr** from
the perovskite observed by ICP-MS (see section 6.2.3.1) and probably responsible for the
slight modification of the Sr3d spectra shape (Figure 74,c). However, the quantity of
dissolved Sr species (3 wt.%) is smaller than the XPS error (ca. 10%) and is therefore not
clearly visible in the atomic ratio (Figure 75).

As for LaMnOs3, XPS results evidences the presence of Na,COj; regarding the atomic ratio of
Na and carbonates species (Table 22). Nevertheless, regarding the negligible changes in the
spectra shape, peak binding energies and atomic ratio (Figure 75) with the immersion in
alkaline solution, the surface of LajgSro,MnQOj3 seems to be rather stable after long immersion

in IM NaOH, similar to the non doped LaMnOs.
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Table 22 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for
Lay sSro,MnOs; before and after immersion in IM NaOH

Cls Ols
L . Carbonate
a9.s5rgMnO; | La3ds, | Sr3ds, | Mn2ps; | Adventious =0 Carbonate | © lattice and Adsorbed Nals
carbon . water
hydroxide
. 834.1
Initial cagl | 1323 | 6424 2846 2861 2885 | 5292  531.0 5327
LagsSroaMn0; | oo | (6%) (8%) (22%)  (5%) (5%) | (22%)  (13%) (9%)
0
| 8341
After2daysin | oo | 1323 | 6418 2846 2864 2885 | 5292  531.0 5327 | 10713
1M NaOH p 7‘) (4%) (9%) (13%)  (5%) 4% | Q%)  (11%) (16%) | (9%)
(o}
ﬁfter f‘ftf;; Zzgi 1323 | 6418 2846 2864 2885 | 5292  531.0 5327 | 10713
agiglﬁ p o y | e (9%) (14%)  (4%) 6% | Q0%)  (12%) (14%) | (8%)
41
A;ter a}f:i‘i\;s zgg || 1323 | o418 2846 2861 2885 | 5290  531.0 5329 | 10713
aliZ'OH s | G (9%) (16%)  (5%) % | Q1%  15%)  (1%) | (9%)
834.1
Aftetrha,fte;;q cxgq | 1323 | 6418 2846 2861 2885 | 5290  531.0 5329 | 10713
mo;a(;';{ p o y | e (9%) (17%)  (4%) 5% | Q1%  (14%) (9%) (9%)
1.2
1
1.5
.E 0.0 mD
E It
204 1 B 1 ma
=
5 ma
- . I I I l I
H ! !
e eelinan allen 2 eliysiin alles Todivgsing allen TR elmsing altes Timennbrin
AlBAU2BOE LAl By J..él"."ll'll_'lf 1% MNaiiH LI ™alH L ™alH 170 MNaiiH

Figure 75 : XPS atomic ratio of La (blue), Sr (purple), Mn (green) and O from perovskite
lattice (red) in LagsSro2MnQj before and after immersion in IM NaOH, calculated with
Scofield factors after background correction of XPS spectra.
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6.3. Electrochemical stability of perovskite

electrodes

In the previous section, it was observed that Mn-perovskites present rather stable surface in
alkaline medium, whereas LaCoOs; is significantly affected with probable formation of
lanthanum and cobalt hydroxide species.

During the ORR electrocatalysis in alkaline medium, the electrode polarization, as well as the
interaction of the perovskite surface with O, and HO,  — since ORR occurs through a “series”
pathway — may also affect the stability of the perovskite oxides. Thus, in order to study the
electrochemical stability of perovskite electrodes, the stability of the electrocatalytic activities
and interfacial properties were studied in the first place, and then, the material properties of

the perovskites were investigated.

6.3.1. Stability of the electrocatalytic activity

The stability of the electrocatalytic activity of perovskite electrodes was evaluated by
chronoamperometry at various potentials, as described in section 2.5.5, both in the presence
and in the absence of carbon in the catalytic layer. Distinct behaviors were found for Co-
based and for Mn-based perovskites and are presented in sections 6.3.1.1 and 6.3.1.2,
respectively.

Each experiment was repeated at least two times. Only reproducible results are presented in

this section.

6.3.1.1. Stability of Co-based perovskite electrodes

6.3.1.1.1. Without carbon in the catalytic layer

Figure 76,a presents a typical RDE voltammogram of GC-supported thin film of 91 pg.cm
deo LaCoOs3 in Oj-saturated 1M NaOH. The potentials of interest, i.e. in the kinetic region
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(ORR current of ca. 0.01 mA), in the mixed kinetic-diffusion region (ORR halfwave
potential), and in the diffusion region (lower potential limit) are +0.76 V, +0.67 V and +0.43
V vs. RHE, respectively, and are indicated in the voltammogram in O,-saturated electrolyte
(Figure 76,a), as well as in the voltammogram in H,O,-containing electrolyte (Figure 76,d).
The chronoamperometries at the mentioned potentials are shown in Figure 76,b for ORR and
in Figure 76,e for HO, reduction. For comparison, Figure 76,c,f presents these
chronoamperometries after normalization by the current value at the end of the measurement
at t=167 min in order to better visualize and compare the activity loss'. In addition, RDE
voltammograms were performed before and after each chronoamperometry to better visualize

the stability of the activity. The obtained voltammograms are displayed in Figure 77.

! It should be noted that normalization to the current at t=0 was not feasible due to a strong initial current
drop.
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Figure 76 : (a,d) Positive scans of RDE voltammograms at 10 mV.s!, (b,e)
chronoamperometry at various potentials and (c,f) corresponding normalization by the last
current value of GC-supported thin films of LaCoOj3 at 2500 rpm in (a,b,c) Oz-saturated 1M

NaOH and (d,e,f) N>- purged IM NaOH + 0.84mM H,0,. Measurements were performed
with 91 ,ug.cm'zgeo perovskite. Color codes for applied potential: +0.76 V vs. RHE (black),
+0.67 Vvs. RHE (red) and +0.43 V vs. RHE (green). Currents are normalized to the
geometric area of the electrode.
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The discussion is started with the stability of the ORR activity. After 10,000 seconds of
chronoamperometry at +0.76 V, +0.67 V and +0.43 V vs. RHE in Os-containing electrolyte,
the remaining ORR currents are ca. -120 pA.cm'deo, -800 uA.cm'Zgeo and -1.6 mA.cm'deo,
respectively (Figure 76,b). This corresponds to a total current loss of ca. 10, 15 and 25%,
correspondly, with the half of the loss occurring during the first 20 min (Figure 76,c). Thus,
the lower the applied potential, or in other words the higher the overpotential, the less stable
the ORR current is.

The comparison of the ORR RDE voltammograms before and after each chronoamperometry
measurements (Figure 77,a,b,c) shows that the currents at high potentials were not affected.
This proves the stability of the ORR kinetic currents on LaCoOj electrode. On the other hand,
the currents at low potentials decrease significantly after chronoamperometry, in particular
when the applied potential is low (+0.43 V vs. RHE).

First of all, the O, consumption in the ORR was estimated to check whether the observed
current decrease might be due to the O, concentration drop. The variation of molar quantities

of O, Ang; was roughly estimated using the Faraday law (Equation 105)
An; = V“—F Q (Equation 105)

where v; is the stoichiometric number of the reactant (1 for O,), v, is the number of involved
electrons (4 for ORR), and Q is the faradic charge (Equation 106):
Q = |I|At (Equation 106)

with I, the current, and At, the duration of the reaction.

Therefore, the maximal quantity of O, consumed during chronoamperometry — corresponding

to the maximal measured current - at +0.43 V vs. RHE in O;-containing electrolyte is
(Equation 107):

1%2.2 mA.cm™24¢(#0.071 cm™24¢(#10000 s
4%96485 C.mol~1

Ang, = = 0.004 mmol (Equation 107)

This corresponds to a decrease of at most 5% of the initial amount of O, (0.84 mM in 100 mL
= 0.084 mmol). O, consumption can therefore not explain the loss of 25% of the ORR
current.

Then, two hypotheses can be proposed to explain the loss of currents at low potentials. The
first one is the formation of a non conductive layer on the perovskite surface - such as
lanthanum or cobalt hydroxides formed throug contact with the alkaline media (see section
6.2.3.2) - during the ORR. Then, the layer ohmic drop will be more pronounced at high

currents, leading to stronger effect on the current transients at high overpotentials.
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The second explanation of the instability of currents at high overpotentials can be the
degradation of the active sites for HO, transformation, if it is supposed that different active
sites are responsible for the ORR and for the HO, reduction reaction on LaCoOj3 electrodes.
For example, ORR could occur on the GC surface and HO, formed on GC is further
transformed on perovskite sites (see section 5.2.1.1). The currents at low overpotential are
therefore not affected because the sites actives for the ORR (carbon sites) are relatively stable,
while the number of actives sites for the HO, reduction reaction (perovskite sites) decreases,
which leads to a decrease of the currents at high overpotentials.

One shoud note that the two hypotheses could be linked. Indeed, the formation of insulating
phases such as La(OH); or Co(OH);, non active for ORR [94,253] would decrease the

perovskite surface area and lead to a decrease of activity.
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Figure 77 : Positive scans of RDE voltammograms at 2500 rpm and 10 mV.s™" of GC-
supported thin films of LaCoOj3 in (a,b,c) Oz-saturated 1M NaOH and (d,e,f) N»- purged IM
NaOH + 0.84mM H,0, before and after chronoamperometry at various potentials (Figure
76). Measurements were performed with 91 ug. cm'zgeo perovskite. Color codes for applied
potential: +0.76 V vs. RHE (before : black, after : dash grey), +0.67 V vs. RHE (before : red,
after : dash orange) and +0.43 V vs. RHE (before : green, after : dash olive). Currents are
normalized to the geometric area of the electrode and corrected to the background currents
measured in the N, atmosphere in the absence of H>0.
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In order to investigate the stability of LaCoOs; sites versus HO, reduction,
chronoamperometry measurements were performed in H,O,-containing electrolytes. In this
case, the remaining currents after 10,000 seconds of chronoamperometry at +0.76 V, +0.67 V
and +0.43 V vs. RHE are ca. -140 pA.cm’go, -340 pA.cm?y, and -530 pA.cm g,
respectively (Figure 76,e). This corresponds to a total current loss of ca. 35% at low
overpotentials and 40% at high overpotentials, with the half of loss occurring during the first
30 minutes (Figure 76,f). This loss is significantly stronger than in the presence of O, (Figure
76,¢).

With the purpose to quantify the amount of HO, consumed during chronoamperometry, the
Faraday law is applied for HO, reduction with v;, the stoichiometric number of reactant (1 for

HO;) and v., the number of involved electrons (2 for HO, reduction) (Equation 108):

1%0.9 MA.cm %5 *0.071 cmM ™ 24¢,*10000 s
2%96485 C.mol~1

ANy, = = 0.003 mmol (Equation 108)

Thus, ca. 4% of the initial amount of HO, (0.84 mM in 100 mL = 0.084 mmol) is consumed
by electrochemical reduction.

One should also take into account that a part of HO, can be consumed by catalytic
decomposition on perovskite sites. For LaCoOs, the heteregenous constant of HO;
decomposition is 6.2 10° cm.s™ (see section 5.4.3). On the RDE electrode used for
chronoamperometry, the perovskite mass is 6.4 ug (9lug.cm?geo * 0.071 cngeo), which
corresponds to a perovskite surface of 0.64 cmzpemvskite (Sger(LaCo0O3) = 10 m. g'1 (see section

3.2.3)). Therefore, from (Equation 65), the first order constant k is (Equation 109):

1075 1y 2
K = 8210 rems <064cm” 4 10751 (Equation 109)

100 cm3

Based on (Equation 63), the H;O, consumption by catalytic HO,  decomposition on LaCoO;

electrode during chronoamperometry is (Equation 110):

1—M202 — 1 oyn(—4+10"7s"! « 10000 s) = 0.4% (Equation 110)

CHzOZ

which is negligible. Clearly, the maximal HO, consumption — ca. 4.4% all in all - is not
sufficient to justify the strong current losses observed in chronoamperometries.

The observation of the RDE voltammograms in H,O,-containing electrolyte (Figure 77,d,e,f),
indicates a global decrease of the HO, reduction after chronoamperometries. This is
consistent with the hypothesis of an irreversible modification of the active sites for the HO,
reduction, i.e. of the perovskite sites. Also, as the HO, reduction/oxidation currents are

affected more than the ORR, it confirms that different types of active sites are involved for the
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O, and for the HO, reactions: probably glassy carbon for the former and perovskite for the
latter.

However, no significant differences were observed between the CV before and after
chronoamperometries (not shown) which could support the possible degradation of the

interfacial properties of LaCoOs.

6.3.1.1.2. With carbon in the catalytic layer

In the previous section, it was mentioned that the ORR may lead to an increase of the ohmic
drop in the electrode. As the addition of carbon is known to have a great impact on the
electrical contact into the perovskite layer, the effect of its presence on the electrocatalytic
stability was investigated.

However, carbon is corroded in the presence of H,O, [209,255], and this corrosion may
induce a degradation of the catalytic layer. For instance, Kinumoto et al. [255] observed that
the carbon corrosion in the presence of H,O, causes the agglomeration of Pt particles and a
fortiori the decrease of the active surface area.

Thus, in order to study the effect of carbon presence on the electrochemical and
electrocatalytic stability of perovskite electrodes, chronoamperometries were also performed
on perovskite/carbon composites. Figure 78,a presents a typical RDE voltammogram of GC-
supported thin film of 91 pg.cm'2geo LaCoOs + 37 pg.cm'zgeo carbon in O-saturated 1M
NaOH. The potentials of interest, i.e. in the kinetic region, in the mixed kinetic-diffusion
region and in the diffusion region are +0.85 V, +0.78 V and +0.43 V vs. RHE, respectively,
for LaCoO3/C composite, and are indicated in the voltammogram in O,-saturated electrolyte
(Figure 78,a), as well as in the voltammogram in H,O,-containing electrolyte (Figure 78,d).
The chronoamperometries at the mentioned potentials are shown in Figure 78,b for ORR and
in Figure 78,e for HO, reduction, and Figure 78,c,f presents these chronoamperometries after
normalization by the current value at the end of the measurement at t=167 min. The RDE
voltammograms obtained before and after each chronoamperometry are displayed in Figure

79.
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Figure 78 : (a,d) Positive scans of RDE voltammograms at 10 mV.s!, (b,e)
chronoamperometry at various potentials and (c,f) corresponding normalization by the last
current value of GC-supported thin films of LaCoQOj + Sibunit carbon at 2500 rpm in (a,b,c)

O;-saturated IM NaOH and (d,e,f) N>- purged IM NaOH + 0.84mM H>O,. Measurements
were performed with 91 u g.cm'zgw perovskite + 37 u g.cm'zgw Sibunit carbon. Color codes
for applied potential: +0.85 V vs. RHE (black), +0.78 V vs. RHE (red) and +0.43 V vs. RHE

(green). Currents are normalized to the geometric area of the electrode.
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First of all, it can be noticed on the chronoamperometry results that the ORR currents are
rather stable in the presence of carbon (Figure 78.,b,c). Also, the ORR RDE voltammograms
are not significantly affected by the chronoamperometries (Figure 79,a,b,c). Indeed, only a
little decrease of the diffusion limited current can be observed and may be attributed to the O,

consumption — ca. 8% at +0.43 V vs. RHE.

In the presence of H,O, (Figure 78,e,f), the current losses are somewhat stronger than in the
presence of O, (Figure 78,b,c), but are less pronounced than for electrodes without carbon
(Figure 76,e,f).

In the RDE voltammogramms after long HO,™ reduction, it is observed that the currents have
decreased and that the mixed potential is shifted toward lower potentials (Figure 79.,d,e,f). A
part of the current decrease is a consequence of the HO, consumption, evaluated as ca. 5% at
+0.43 V vs. RHE, but the negative shift of the mixed potential indicates that the reaction rate
of HO, reduction has decreased. This is probably due to the degradation of perovskite active
sites mentioned previously, but one can also not exclude corrosion of some carbon particles
due to the presence of H,O; in the electrolyte [209,255]. Then, the carbon corrosion would
cause a deterioration of the electrical contact within the catalytic layer [1] and therefore to a
lower perovskite utilization.

To conclude, the following hypothesis is made. During the ORR, an electrochemically
inactive and insulating phase is formed on LaCoQOs sites. This leads to (i) an increase of the
ohmic drop in the layer, which can be minimized with the addition of carbon and (ii) a
decrease of the accessible perovskite area and thus, a decrease of the electrocatalytic activity.
As carbon is more active than LaCoOs; for the ORR, the ORR kinetic currents are not
affected. However, the activity for the HO, reduction which occurs on perovskite sites is

decreased.
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6.3.1.2. Stability of Mn-based perovskite electrodes

The behaviors observed for LaMnOs; and LaypgSroo,MnOs; perovskites concerning
electrochemical and electrocatalytic stability were similar to each other. Therefore, only data

for Lag §Srp,MnOj are presented in this section.

6.3.1.2.1. Without carbon in the catalytic layer

Figure 80,a presents a typical RDE voltammogram of GC-supported thin film of 91 pg.cm
deo Lag gSrpo,MnO; in O;-saturated 1M NaOH. The potentials of interest, i.e. in the kinetic
region, in the mixed kinetic-diffusion region, and in the diffusion region are +0.83 V, +0.69 V
and +0.43 V vs. RHE, respectively, and are indicated on the voltammogram in O,-saturated
electrolyte (Figure 80,a), as well as on the voltammogram in H,0O,-containing electrolyte
(Figure 80,d). The current transients at the mentioned potentials are shown in Figure 80,b for
ORR and in Figure 80,e for HO, reduction, and Figure 80,c,f presents these current transients
after normalization by the current value at the end of the measurement at t=167 min. The
RDE voltammograms obtained before and after each chronoamperometry are displayed in

Figure 81.
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Figure 80 : (a,d) Positive scans of RDE voltammograms at 10 mV.s”, (b,e)
chronoamperometry at various potentials and (c,f) corresponding normalization by the last
current value of GC-supported thin films of LaysSro.MnQOj3 at 2500 rpm in (a,b,c) O;-
saturated IM NaOH and (d,e,f) N;- purged IM NaOH + 0.84mM H,0,. Measurements were
performed with 91 ug.cm™ geo perovskite. Color codes for applied potential: +0.83 V vs. RHE
(black), +0.69 V vs. RHE (red) and +0.43 V vs. RHE (green). Currents are normalized to the
geometric area of the electrode.
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The discussion is started with the stability of LaggSroo,MnO; versus the ORR. From
chronoamperometries, it is observed that the ORR currents are strongly affected (Figure 80,b).
The remaining current densities are -84 pA.cm'deo, -940 uA.cm'Zgeo and -2.0 mA.cm'zgeo at
+0.83 V, +0.69 V and +0.43 V vs. RHE, respectively. In particular, it corresponds to a loss of
ca. 45% in the kinetic region, significantly higher than the ca. 25% losses in mixed and
diffusion regions (Figure 80,c). From the RDE voltammograms (Figure 81,a,b,c), it is
observed that, regardless the applied potential during the chronoamperometries, the kinetic
currents are indeed decreased. This suggests an irreversible modification of the active sites for
O; activation followed by a decrease of the ORR kinetics.

After chronoamperometry at +0.43 V vs. RHE, the whole currents are decreased, and in
particular at low potentials. The origin of this loss is not understood yet but may be due to a

decrease in the active site number.

During the HO; reduction, ca. 25% of the current is lost whatever the applied potential is
(Figure 80,f). Then, the remaining current densities after 10,000 s chronoamperometry are -
220 pA.cm g, -630 pA.cm”y, and -800 pA.cm g, at +0.83 V, +0.69 V and +0.43 V vs.
RHE, respectively (Figure 80,e). Then, for all the applied potentials, the RDE
voltammograms present a global decrease of the current densities and a positive shift of the
mixed potential (Figure 81,d,e,f). This is not only due to the decrease of the HO,
concentration (ca. 4% loss) and may indicate, among others, a decrease of the HO,™ oxidation

reaction rate, the inverse reaction of the ORR.
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Figure 81 : Positive scans of RDE voltammograms at 2500 rpm and 10 mV.s” of GC-
supported thin films of Lay sSro.MnQO3 in (a,b,c) Os-saturated IM NaOH and (d,e,f) N»-
purged IM NaOH + 0.84mM H,O; before and after chronoamperometry at various potentials
(Figure 80). Measurements were performed with 91 pg.cm™ geo perovskite. Color codes for
applied potential: +0.83 V vs. RHE (before : black, after : dash grey), +0.69 V vs. RHE
(before : red, after : dash orange) and +0.43 V vs. RHE (before : green, after : dash olive).
Currents are normalized to the geometric area of the electrode and corrected to the
background currents measured in the N, atmosphere in the absence of H;O:.
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In order to investigate the eventual modifications of the interfacial properties of
Lag gS19o.MnOs, CVs were performed before and after chronoamperometries in Nj-purged
electrolyte (Figure 82).

For each applied potential, and after both ORR and HO; reduction, the CVs are significantly
affected with a strong decrease of the charge and less defined redox peaks. This supports the
previous idea that the perovskite sites are degraded in the course of the O, and HO, reactions.
Moreover, the potential splitting between the anodic and the cathodic peaks increases,
suggesting an increase of the ohmic drop in the catalytic layer. This may be caused by the
formation of insulating phases on the surface during reactions. Also, the increase of the ohmic
drop in the perovskite layer might partially explain the decrease of the electrocatalytic

currents, strongly dependent on the electrical contact.
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Figure 82 : CV at 0 rpm and 10 mV.s! of GC-supported thin films of LaysSro>MnQO3 in N,-
purged IM NaOH before and after chronoamperometry at various potentials in (a,b,c) O-
saturated IM NaOH and (d,e,f) N;-saturated 1M NaOH + 0.84mM H,0, (Figure 80).
Measurements were performed with 91 ug.cm™ geo perovskite. Color codes for applied
potential: +0.83 V vs. RHE (before : black, after : dash grey), +0.69 V vs. RHE (before : red,
after : dash orange) and +0.43 V vs. RHE (before : green, after : dash olive). Currents are

normalized to the geometric area of the electrode.
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6.3.1.2.2. With carbon in the catalytic layer

In order to study the effect of the electrical contact on the electrocatalytic stability and to
better understand the modifications occurring in Mn-perovskites, carbon was added to the
catalytic layer and the electrochemical and electrocatalytic stability of LaggSrgoMnOs
electrodes was investigated. Figure 83,a presents a typical RDE voltammogram of GC-
supported thin film of 91 p g.cm'2gco Lag gStoo.MnOs + 37 u g.cm'zgeo carbon in O,-saturated
IM NaOH. The potentials of interest, i.e. in the kinetic region, in the mixed kinetic-diffusion
region, and in the diffusion region are +0.9 V, +0.8 V and +0.43 V vs. RHE, respectively, and
are indicated on the voltammogram in O,-saturated electrolyte (Figure 83,a), as well as on the
voltammogram in H,O;-containing electrolyte (Figure 83,d). The chronoamperometries at the
mentioned potentials are shown in Figure 83,b for ORR and in Figure 83,e for HO, reduction,
and Figure 83,c,f presents these chronoamperometries after normalization by the current value
at the end of the measurement at t=167 min. The RDE voltammograms and the CV in N;-
purged electrolyte obtained before and after each chronoamperometry are displayed in Figure

84 and in Figure 85, respectively.
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Figure 83 : (a,d) Positive scans of RDE voltammograms at 10 mV.s, (b,e)
chronoamperometry at various potentials and (c,f) corresponding normalization by the last
current value of GC-supported thin films of Lag sSro>MnQO3 + Sibunit carbon at 2500 rpm in

(a,b,c) Oz-saturated IM NaOH and (d,e,f) N»- purged IM NaOH + 0.84mM H,O.
Measurements were performed with 91 u g.cm'zgw perovskite + 37 ,ug.cm'zgeo Sibunit carbon.
Color codes for applied potential: +0.9 V vs. RHE (black), +0.8 V vs. RHE (red) and +0.43 V

vs. RHE (green). Currents are normalized to the geometric area of the electrode.
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From chronoamperometries in O,-saturated electrolyte, it is noticed that the higher the applied
potential, the stronger the current loss is (Figure 83,b,c). Indeed, ca. 70% of the current is lost
after 10,000 s at +0.9 V vs. RHE. On the other hand, a decrease of only ca. 10% of the ORR
current is observed for chronoamperometry at +0.43 V vs. RHE.

The RDE voltammograms confirm the current loss in the kinetic region (Figure 84,a,b,c), in
agreement with stability tests on LaggSroo,MnO; electrodes without carbon. Besides the
negative shift of the onset potential, one can notice the modification of the voltammogram
shape. This suggests a decrease of the participation of perovskite sites for the ORR in favour
of carbon sites (see section 4.3.2). In other words, the number of perovskite sites is decreased,
leading to a lower ORR current on perovskite, while the number of carbon sites, and thus the
ORR current on carbon, remains the same and then becomes predominant. This also explains
the onset potential shift observed in RDE voltammograms with various rotation rates (Figure
32): after each cycle (and a fortori each rotation), the onset potential is decreased due to the
degradation of perovskite sites.

However, from the small current loss observed in the current transient at low potential (Figure
83,b,c) and from the slight decrease of the limiting plateau in RDE voltammograms (Figure
84,a,b,c), the number of electrons involved in the ORR does not seem to be affected. Indeed,
the loss of current is consistent with the consumption of O, (ca. 8% for chronoamperometry at
+0.43 V vs. RHE). Therefore, it means that, despite the possible degradation of the perovskite
most active sites for the ORR, the intermediate HO, — for example formed on carbon sites —
is invariably reduced on perovskite sites. In fact, at low potentials, the HO, reduction is quite
fast on LaggSro,MnO; since it occurs in the diffusion limited regime, and therefore the

decrease of the number of active sites may not affect the limiting current value.
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Figure 84 : Positive scans of RDE voltammograms at 2500 rpm and 10 mV.s™ of GC-
supported thin films of LaysSro.MnQOj + Sibunit carbon in (a,b,c) O»-saturated IM NaOH
and (d,e,f) N>-purged IM NaOH + 0.84mM H>O; before and after chronoamperometry at

various potentials (Figure 83). Measurements were performed with 91 ug. cm'zgeo perovskite +
37 ug. cm'zgeo Sibunit carbon. Color codes for applied potential: +0.9 V vs. RHE (before :
black, after : dash grey), +0.8V vs. RHE (before : red, after : dash orange) and +0.43 V vs.

RHE (before : green, after : dash olive). Currents are normalized to the geometric area of the
electrode and corrected to the background currents measured in the N, atmosphere in the

absence of H;O;
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The discussion is now turned to the stability of perovskite oxides versus HO, reduction. First
of all, one can notice that the current at +0.9 V vs. RHE surprisingly increased with the time
(Figure 83,e,f). As the applied potential is very close to the mixed potential of HO, reactions
(Figure 83,d), the current increase may be due to a positive shift of this mixed potential. At
other applied potentials, the currents decrease with time, with a loss of ca. 25% (Figure
83,e,1).

On RDE voltammograms after chronoamperometry (Figure 84,d,e,f), the global current is
decreased and the mixed potential is slightly shifted towards higher potentials, as suggested
above. These two effects are partially the consequence of the decrease of the HO,
concentration (see sections 5.3.1.2 and 5.5). However, the chronoamperometry at +0.9 V vs.
RHE shows that the shift of the mixed potential occurs rapidly, already in the first 10 min of
the reaction and, considering the small overall current at +0.9 V, could hardly be solely due to
the concentration change. This may suggest that the currents are also affected by a decrease of
the HO, oxidation rate due to a degradation of perovskite sites. Neverthess, the loss of the
global current is less pronounced than for experiments without carbon thanks to the better

electrical contact in the catalytic layer.

From the CVs after chronoamperometries in O, and H,O, containing electrolytes (Figure 85),
it is clear that Laj gSro»,MnQOs irreversibly changes during these reactions. One may notice that
the strongest current drop is observed in the potential range of the redox peaks, while the
capacitance does not seem to decrease much. The latter allows one to discard loss of catalyst
as a possible reason for the observed CV changes. Modification of the redox transitions of the
perovskite and/or formation of electrochemically inactive phases seems more likely. The
latter would explain the increase of the ohmic drop observed in electrodes without carbon. In
both cases, this shows that the electrocatalytic activity is closely related to the redox behavior

of the catalyst.
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Figure 85 : CV at 0 rpm and 10 mV.s”! of GC-supported thin films of LaysSro.MnQOj + Sibunit
carbon in N;-purged 1M NaOH before and after chronoamperometry at various potentials in
(a,b,c) Oz-saturated 1M NaOH and (d,e,f) N>-saturated IM NaOH + 0.84mM H,O; (Figure
83). Measurements were performed with 91 ug. cm'zgeo perovskite + 37 ,ng.cm'zgeo Sibunit
carbon. Color codes for applied potential: +0.9 V vs. RHE (before : black, after : dash grey),
+0.8 Vvs. RHE (before : red, after : dash orange) and +0.43 V vs. RHE (before : green, after
:dash olive). Currents are normalized to the geometric area of the electrode.
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In order to discard the electrode polarization as the possible cause of the observed
modifications, chronoamperometries were also performed in N>-purged electrolyte, in absence
of O, or H,0,, at the same potentials (+0.9 V, +0.8 V and +0.43 V vs. RHE) during 10,000 s.
The CVs were measured before and after these chronoamperometries and are presented in
Figure 86. The pseudocapacitance is slightly decreased but the redox peaks are still visible
and the differences are clearly less evident than after ORR or HO; reductions. Thus, it is
justified to attribute the perovskite degradation to electrocatalytic reactions rather than to the
electrode polarization alone. Dissolution of the Mn in low oxidation state reported in the
literature for simple Mn oxides [200,206] seems unlikely since the CV modifications are not

more pronounced after chronoamperometry at low potentials where Mn is reduced to Mn?".
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Figure 86 : CV at 0 rpm and 10 mV.s! of GC-supported thin films of Lay.gSro-MnQO; + Sibunit
carbon in N;-purged 1M NaOH before and after chronoamperometry at various potentials in
Ny-purged 1M NaOH. Measurements were performed with 91 ug.cm™ geo perovskite + 37
ug.cm? geo Sibunit carbon. Color codes for applied potential: +0.9 V vs. RHE (before : black,
after : dash grey), +0.8 V vs. RHE (before : red, after : dash orange) and +0.43 V vs. RHE
(before : green, after : dash olive). Currents are normalized to the geometric area of the

electrode.
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Interestingly, instabilities versus ORR were also reported for MnO,/C electrodes. Indeed, Wu
et al. [40] performed accelerated aging tests by performing up to 2500 CV cycles in O-
saturated 0.1M NaOH and observed (i) a negative shift of the ORR onset potential, (ii) a
decrease of the absolute value of the limiting current and (iii) a decrease of the peak area of a
CV in inerte atmosphere. With the support of XRD and XPS analysis before and after the
accelerated aging tests, the authors attributed these modifications to a decrease of the number
of ORR active sites with the formation of an inactive Mn3Oy4 phase. The formation of Mn3;Oy4
on MnOy electrodes during the ORR was also observed thanks to XPS and in-situ XANES
studies in reference [190]. Moreover, TEM studies by Wu et al. [40] and Roche et al. [256]
highlight a change in the morphology of MnO,/C electrodes after the ORR, i.e. particle
agglomeration and increase of the particle size which result in a lower accessible surface area.
The increase of the particle size was confirmed by XRD [256]. In addition, the chemical
analysis of the alkaline electrolyte where MnO,/C electrodes were prematurely aged at 80°C
in the presence of O, revealed a partial dissolution of the active material [256].

The similarity of the behavior of these simple oxides with the Mn-perovskites studied in this
work show that the mentioned modifications probably occur on Mn-perovskites too. While
the increase of particle size in unlikely regarding the large particle size of perovskites in this
work and since a minor decrease of the double layer capacitance observed in CVs allows one
to discard the dissolution of the active material, the formation of Mn3;O,4 phase seems to be a
reasonable explanation of the electrocatalytic activity loss. Indeed, this phase is
electrochemically irreversible, thus it can explain the loss of redox peaks in CVs.
Characterisation of the perovskite after electrocatalysis will be performed in the following

section to confirm or discard this hypothesis.

One should note that comparison of the activity degradation with literature data on perovskite
oxides (see section 1.4.4) is hardly possible since the applied potential or current may be
different. Indeed, it was shown in this section that disctint potentials (or currents) lead to

completely different stability behaviors.
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6.3.2. Catalyst properties after electrocatalysis

It was observed that the ORR and HO, reduction electrocatalysis strongly affect the
perovskite interfacial properties and electrocatalytic activites. To investigate in more detail
the modifications occurring on perovskite electrodes, electrodes were analysed after

electrocatalysis using XRD, SEM/EDX and XPS.

6.3.2.1. Electrocatalytic response

To allow material characterization, electrodes with more suitable geometries than a GC RDE
were built using carbon paper, as described in section 2.5.4. The carbon paper covered with a
layer of perovskite/carbon was attached to a gold wire which served as a current collector and
CVs were performed in a Njp-purged electrolyte, Oj-saturated electrolyte or N,-purged
electrolyte containing H,O,.

HO; reduction/oxidation and O, reduction currents are observed on carbon paper electrodes
even in the absence of an oxide (Figure 87,a). However, currents in the presence of perovskite

oxides are higher and occur at lower overpotentials (Figure 87,b,c).

The CVs were stable during at least 30 cycles. In particular, the kinetic currents of Mn-
perovskites were not shifted towards lower potentials with the time, as it was observed for
thin film RDE electrodes. This suggests that under the applied experimental conditions,
degradation of perovskite is negligible.

To check it, CVs in Np-purged electrolyte were measured after a CV in O,-saturated
electrolyte and are shown in Figure 88. The pseudocapacitance is slightly decreased but the
redox peaks are still visible and the modifications are not as impressive as for the RDE
(Figure 85). This may be partially due to the lower overall charge passing through the CP
electrode. For one cycle, i.e. for 160 s (potential window of 1.6 V and sweep rate of 10 mV.s’
1), the maximal current measured on the CP electrode is 0.5 mA.cmdeo. Thus, the maximal
charge involved in one cycle is: 0.5 mA.cm2geo * 160 s = 80 mC.cm2geo. As the CP contains
180 u g.cm'zgeo perovskite, the charge passed per perovskite unit of the perovskite mass is 440

C.g'lpemvskite. For RDE however, the maximal charge involved in one cycle of 160 s at the
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lowest rotation rate (400 rpm) for an electrode containing 91 pg.cm'zgeo perovskite (+37
pg.cm'2gco carbon) is ca. 1.5 mA.crnzgeo * 160 s = 240 mC.cngeo, which corresponds to a
charge per perovskite units of 2700 C. g'lperovskite. This is almost one order of magnitude higher
than for CP electrodes thanks to the faster mass transport. For CP electrodes, electrolyte
agitation could not be performed due to a fragile connection between the gold wire and the
carbon paper. Also, the nature and the morpholohy of the carbon support are different in the
two approaches and this certainly affects the electrical connection between the perovskite
particles, and thus may affect the degradation of the electrode.

Unfortunately, this observation implies that the modifications occurring during the ORR and
the HO, reduction for RDE electrodes of Mn-perovskites will probably not be observable

with carbon paper electrodes.
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Figure 87 : CV at 10 mV.s” of (a) carbon paper (CP) and CP-supported thin films of (b)
LaCoOj + Sibunit carbon and (c) Lag.sSro.MnQOj + Sibunit carbon in various electrolytes.
Measurements were performed with 180 ug.cm™ geo perovskite + 74 ug.cm™ geo carbon. Color
codes: N>-purged IM NaOH (black), N>-purged 1M NaOH + 0.84M H,O; (pink) and O--
saturated 1M NaOH (purple). Currents are normalized to the geometric area of the electrode.
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Figure 88 : CV at 10 mV.s! of CP-supported thin films of LagsSro.MnQO3 + Sibunit carbon
before, during and after ORR. Measurements were performed with 180 ug. cm'zgeo perovskite
+ 74 ,ug.cm'zgeo carbon. Color codes: N>-purged IM NaOH, initial scan (black), O,-saturated
IM NaOH (purple) and N>-purged IM NaOH, scan after ORR (grey). Currents are
normalized to the geometric area of the electrode.

6.3.2.2. Structure of the bulk after electrocatalysis

First of all, the crystalline structure of perovskites supported on carbon paper electrodes was
investigated using XRD after polarization (CV in Np-purged 1M NaOH), HO,
reduction/oxidation (CV in Np-purged 1M NaOH + 0.84 mM H,0,) and ORR (CV in O,-
saturated 1M NaOH), and compared to electrodes without treatment and after an alkaline
treatment (storage in 1M NaOH during 3h), and to pristine perovskite powder. These
comparisons allow one to separate the effects due to electrocatalysis from those due to the
polarization alone — which may change the perovskite into hydroxide species [141] - and
those due to contact with an alkaline solution (see also section 6.2.3.2).

The obtained XRD patterns are displayed in Figure 89,a for LaCoO; and in Figure 89.,b for
Lag 8Sr92MnO:s.

First of all, it is noticed that the peaks attributed to the perovskite structure are visible for all

samples, whatever the treatment was, showing that the perovskite phase is still present after

electrochemistry.
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Compared to the initial LaCoO; powder, the XRD pattern of perovskite/carbon layer on
carbon paper shows additional peaks and a shoulder at ca. 26°, 43° and 54°. They are
attributed to the carbon paper support which displays similar XRD peaks, as shown in Figure
89.

No additional peaks were visible after the chemical treatment in NaOH electrolyte, electrode
polarization or HO;™ reduction/oxidation. However, the ORR leads to the appearance of new
XRD peaks, e.g. at 32.3°, 34.3°, 35.2°, 38.0° and 39.0°, for both LaCoO3 and Laj gStro>,MnOs3
electrodes. Interestingly, these peaks also appear on the carbon paper alone after the ORR.
This shows that the new phases arise from a modification of the carbon paper support with O,
rather than a modification of the perovskite itself. The nature of these new phases is not
identified yet, but some peaks may be attributed to sodium carbonate species, as shown in
Figure 89 by comparison with commercial Na,CO3 (>99.5%, SDS). The high amount of this
species on the carbon paper after the ORR is likely to be due to the increased wettability of
carbon paper after the ORR [209]. Indeed, one can guess that the NaOH electrolyte easily
enters into the pores of the hydrophilic carbon paper. Then, the drying of the alkaline
electrolyte present in the electrode results in the formation of sodium carbonate species.
However, no traces of La(OH)s or Co(OH); eventually formed upon contact with the alkaline
solution (see section 6.2.3) could be distinguished for LaCoOs3, and no XRD peaks of Mn3;04
could be observed for LaggSroo,MnO;. This suggests that these species, if formed, are only

present on the perovskite surface.

As shown in section 3.2.1.2, XRD data also allow an estimation of the crystallite size thanks
to Scherrer equation. Before and after the electrochemical treatment, the crystallite sizes were
ca. 30 nm for LaCoOs3 and ca. 20 nm for LaggSroo,MnOs;. Thus, the perovskite particle size
does not seem to be affected by the ORR electrocatalysis, contrary to Pt [255] or MnOx
(40)(256) [40,256]. This is likely to be due to the large crystallite size of the perovskite

oxides.
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Figure 89 : X-Ray diffraction pattern (step size = 0.0223°, time step = 8s) of CP-supported
thin films of (a) LaCoOj3 + Sibunit carbon and (b) LaggSro2MnQO3 + Sibunit carbon before
and after chemical and electrochemical treatments. The symbols indicate the ICDD reference
card of (a) LaCoO3 — 01-084-0848, (b) Lay 7Sro3sMnO3; 01-089-4461. Measurements were
performed with 180 ug.cm™ geo perovskite + 74 ug.cm™ geo Sibunit carbon. X-Ray diffraction
patterns of carbon paper after chemical and electrochemical treatments as well as
commercial Na;COj3; (>99.5%, SDS) are given as comparison. The diffraction patterns were
corrected from background signal.
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6.3.2.3. Electrode morphology after electrocatalysis

In order to complement XRD results and verify whether the perovskite particle morphology is
indeed not affected by the ORR electrocatalysis, SEM analysis coupled with EDX was
applied to carbon paper supported perovskite electrodes before and after the ORR. EDX was
used to identify the elemental composition. Typical SEM images are shown in Figure 90 for
LaCo0Os;. Similar observations were made for Mn-perovskites (not shown).

First of all, EDX analysis (not shown) confirmed the presence of perovskite components (La,
Sr, Co, Mn, depending on the perovskite) on the carbon paper electrodes before and after
various treatments. The dispersion of the particles of perovskite and Sibunit carbon on the
fibers of the carbon papers is similar before and after electrocatalysis (Figure 90,a,d). In
particular, the particle agglomeration is not more pronounced after the ORR than initially
(Figure 90,b,e) and no significant morphological change due to carbon corrosion in alkaline
media [209] could be dinstinguished. SEM images at high magnification (Figure 90,c,f) show
that, in agreement with the XRD data, the size of perovskite particles does not increase after
electrocatalysis. Thus, the electrochemical instabilities observed in section 6.3.1 cannot be
explained by a morphological change of the perovskite oxides.

Thanks to the EDX, the large component observed in Figure 90,e was identified as being
mainly composed of Na. Other morphologies of Na components were observed, such as
needles (not shown). EDX method does not allow an exact identification of these phases, but,
from XRD analysis, one may invoke formation of sodium carbonate and probably some

NaOH deposits.
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Figure 90 : SEM image (a,d : LEI b,c,e,f : SEI) of CP-supported thin films of LaCoO3 +
Sibunit carbon before (a,b,c) and after (d,e,f) ORR. Measurements were performed with 180
u g.cm'zgw perovskite + 74 ,ug.cm'zgw Sibunit carbon.
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6.3.2.4. Surface composition after electrocatalysis

XRD analysis showed that the bulk structure of perovskite oxides is stable after
electrochemical treatments (see section 6.3.2.2). However, this does not mean that no changes
occur on the perovskite surface. To check eventual surface modifications, XPS was applied on
carbon paper electrodes after electrochemical treatments and anlayzed in the following

sections.

6.3.2.4.1. LaCoOs3

XPS spectra of carbon-supported thin layers of LaCoOs/carbon are presented in Figure 91.
The corresponding peak binding energies and atomic ratios are reported in Table 23.The
electrochemical treatment of LaCoOs/C electrodes leads to a shift toward higher binding
energies of La3d spectra (Figure 91,a and Table 23) probably due to an increased amount of
lanthanum hydroxides or carbonates. Besides, the Co2p spectrum (Figure 91,b) is not affected
by electrochemical treatments. In particular, no evidences of cobalt hydroxide formation upon
contact with the alkaline solution could be observed neither after soaking in 1M NaOH nor
after electrochemical treatments. This is probably due to too the short duration of the
experiment. Regarding the very small fraction of La3d and Co2p compared to other
components, the atomic La:Co ratio cannot be precisely determined.

Among all the electrode treatments, only the ORR has an effect on the Cl1s spectrum (Figure
91,c). Indeed, the intensity of the peak corresponding to C=0 bonds is significantly increased
after the ORR. The relative amount of carbonate species also seems to be higher after the
ORR than after the other treatments.

The Ols spectrum (Figure 91,d) of the pristine electrode shows a strong peak of adsorbed
water, related to water from the aqueous suspension. After chemical and electrochemical
treatment of the electrodes, new peaks appear at high binding energies (ca. 536 eV). By
comparing the O1 spectra of the carbon paper electrodes to the commercial Na,CO; (Figure
91.,d), these peaks were identified as being Na Auger peaks. Indeed, high amount of Na is
present on the electrode surface according to the atomic ratio of Nals, and especially after the
ORR (Table 23). Ols spectra also show that a high relative amount of hydroxide and
carbonate species covered the perovskite surface (Figure 91,d). Regarding the atomic ratios of

the various surface components (Table 23), the major surface species are sodium carbonates
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rather than lanthanum hydroxides or carbonates. In agreement with XRD and SEM/EDX

results, the concentration of sodium carbonates is increased after the ORR, likely due to the

wettability of the carbon paper, as mentioned previously (see section 6.3.2.2).
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Figure 91 : XPS spectra of (a) La3d, (b) Co2p, (c) Cls and (d) Ols of LaCoOj before and
after chemical and electrochemical treatments. Measurements were performed with 180

ug. cm'zgeo perovskite + 74 ug. cm'zgeo Sibunit carbon. Ols XPS spectrum of commercial
Na;CO; (>99.5%, SDS) is given as comparison. Lines are guides for the eye and indicate the

experimental positions.
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Table 23 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for LaCoQO3
before and after chemical and electrochemical treatments

Cls Ols
LaCoO,/C . Carbonate Adsorbed
on CP La3ds; C02p3/2 Advelll)tlous C=0 Carbonate | O lattice and water or Nals
carbon hydroxide Na Auger
833.5
Without 837.8 795.5 284.6 286.1 287.8 529.0 531.1 533.6
treatment 841.3 (2%) (57%) (10%) (4%) (6%) (6%) (11%)
(4%)
. 834.0
After 3h in 2378 795.5 284.6 286.1 289.3 529.0 531.9 536.0 1072.1
1M NaOH (2(7') (1%) (46%) (19%) (7%) (3%) (15%) (2%) (5%)
0
833.5
After 835.2 795.5 284.6 285.9 289.5 529.0 531.6 535.8 1072.0
polarization 838.4 (1%) (42%) 21%) (7%) (1%) (16%) (3%) (6%)
(2%)
834.3
795.5 284.6 285.9 289.9 529.0 532.1 536.4 1072.2
After ORR 838.4
0.4%) 03%) | 22%)  (32%)  8%) | (02%)  (18%) (1%) | (13%)
4%
) 833.5
?t;er tI:I(I)IZ/ 835.2 795.5 284.6 286.1 289.0 529.0 5314 535.6 1072.0
ecuctio 8384 | Q%) | @71%)  (11%)  (9%) Q%) (19%) (2%) (6%)
oxidation %)
0

6.3.2.4.2. LaMnO3;

For LaMnOs;, La3d and Mn2p spectra are similar before and after electrochemical
experiments (Figure 92,a,b and Table 24). This proves that La and Mn are not significantly
modified by the ORR and HO; reduction/oxidation electrocatalysis.

After the ORR, the peak corresponding to C=0 is significantly increased in the C1 spectrum
of CP-supported LaMnOs (Figure 92,c and Table 24), as for CP-supported LaCoO;. In
addition, an increase of the relative amount of hydroxide and carbonate species is visible after
the ORR in Ols and Cls spectra (Figure 92,c,d). Regarding the high amount of Na (Table
24), it is clear that species such as NaOH or Na,COs; are covering the perovskite surface after
the ORR electrocatalysis, resulting in a very low relative amount of O from the perovskite
lattice (Figure 92,d and Table 24), as well as La and Mn (Table 24). The same effect —
formation of sodium carbonates and hydroxides on perovskite surface - was also observed but
to a lesser extent after the HO, reduction/oxidation and an alkaline treatment, compared to

electrodes without any treatment (Figure 92,d and Table 24).
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The origin of the negative shift of the peak lattice oxygen in the Ols spectra (Figure 92,d and

Table 24) after electrochemical treatment is not understood yet, but it cannot be related to

oxygen vacancies formation since they are not stable in LaMnOs (oxygen excess is more

likely).

In summary, besides the formation of sodium species, no clear evidence of perovskite surface

modifications could be observed after electrocatalysis.
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Figure 92 : XPS spectra of (a) La3d, (b) Mn2p, (c) Cls and (d) Ols of LaMnO3 before and
after chemical and electrochemical treatments. Measurements were performed with 180

ug. cm'zgeo perovskite + 74 ug. cm'zgeo Sibunit carbon. Ols XPS spectrum of commercial
Na;CO; (>99.5%, SDS) is given as comparison. Lines are guides for the eye and indicate the

experimental positions.
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Table 24 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for LaMnO3
before and after chemical and electrochemical treatments

Cls Ols
LaMnO,/C . Carbonate Adsorbed
on CP La3ds, Mn2p3,2 Advelll)tlous C=0 Carbonate | O lattice and water or Nals
carbon hydroxide Na Auger
834.3
Without 838.5 642.1 284.6 285.6 288.0 529.6 531.4 533.0
treatment (4%) (3%) (45%) (23%) (7%) (8%) (6%) (4%)
. 834.3
After 3h in 838.5 642.1 284.6 2859 288.3 529.3 531.7 535.7 1072.1
1M NaOH (2(7') (1%) (40%) (18%) (14%) (2%) (14%) (3%) (5%)
0
834.3
642.1 284.6 286.0 290.2 529.3 532.2 536.4 1072.3
After ORR 838.5
(0.3%) (0.2%) (23%) (21%) (9%) (0.3%) (21%) (9%) (16%)
. (%)
Iz.\i;tler tI:I(I)lzl gi;z 642.1 284.6 286.0 289.5 529.3 5314 535.6 1072.1
ecuctio ‘ (2%) @6%)  (20%)  (6%) | (%)  (14%) G%) | (6%)
oxidation 2%)

6.3.2.4.3. Lao_gsro_gMnO3

The XPS results for LaygSro,MnO; are very similar to those of LaMnOs. Indeed, (i) La3d,

Mn2p, Sr3d are not affected by electrocatalysis (Figure 93, Table 25), (ii) the ratio of

hydroxides and carbonates are increased after soaking in NaOH, electrode polarizarion and

HO; reduction/oxidation, and even more increased after the ORR, leading to a small fraction

of O lattice in the Ols spectrum (Figure 93, Table 25), (iii) Na is present in high amount in

the treated samples, and in particular after the ORR (Table 25). This shows that, after

treatment and especially after the ORR, LajgSro,MnOs is covered by a layer of sodium

hydroxide and carbonate species, probably due to the increase wettability of the carbon paper

support. Also, as for LaMnOs3, a shift of the lattice oxygen towards lower binding energies is

observed, but its cause could not be identified.
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Figure 93 : XPS spectra of (a) La3d, (b) Mn2p, (c) Sr3d, (d) Cls and (e) Ols of
Lay sSro.MnOj before and after chemical and electrochemical treatments. Measurements
were performed with 180 ug.cm™ geo perovskite + 74 ug. em’ geo Sibunit carbon. O1s XPS
spectrum of commercial Na;COj3; (>99.5%, SDS) is given as comparison. Lines are guides for
the eye and indicate the experimental positions.
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Table 25 : Binding energies (in eV) of XPS peaks and atomic ratios (in brackets) for

Lay sSro2MnQOj before and after chemical and electrochemical treatments

Cls Ols
L30~ssr0-2MnO3 . Carbonate Adsorbed
/C on CP La3d5/2 Sl‘3d5/2 Mll2p3/2 S GO C=0 Carbonate 0 and water or Nals
carbon lattice .
hydroxide Na Auger
834.3
Without 838.5 132.6 642.3 284.6 285.7 289.6 529.5 531.2 533.0
treatment (2%) 2%) 2%) (46%) (26%) (6%) (5%) (5%) (4%)
. 834.3
After 3h in IM 3385 132.6 642.3 284.6 286.2 289.6 529.4 531.8 535.9 1072.1
NaOH 0 o )| aw (1%) @3%)  (1%)  (6%) | Q%)  (14%) (3%) (7%)
o
834.3
After 3385 132.6 642.3 284.6 285.9 289.5 5294 531.5 535.2 1071.1
polarization (2(7') (1%) 2%) (43%) (22%) (5%) (3%) (13%) (3%) (6%)
o
834.3
After ORR 3385 132.6 642.3 284.6 286.1 290.4 529.4 532.5 537.2 1072.8
(2(7') (1%) 2%) (30%) (22%) (7%) (3%) (20%) (3%) (11%)
o
; 834.3
it;fll;tl;lo(r)lzl 3385 132.6 642.3 284.6 285.9 289.4 529.4 531.6 535.2 1072.1
L ' (1%) (2%) A1%)  (22%) Q%) | 4%  (12%) (3%) (6%)
oxidation (2%)

In conclusion, no clear evidence of perovskite surface modifications which could explain the
irreversible changes of the perovskite interfacial properties and the decrease of ORR activity
observed with RDE for Mn perovskites (see section 6.3.1.2) could be distinguised with XPS.
Several reasons could be proposed to explain this result. First of all, XPS might not be an
adequate method to observe the occurring modifications. Indeed, different oxidation states of
Mn and Co are hardly discernable with this method and therefore the perovskite modification
might not be visible. Secondly, the XPS analysis was performed several minutes after the
electrochemical treatment, after the transfer of the sample from an electrochemical cell into
the XPS spectrometer under ambient condition. Then, modification of the surface could
happen between the electrocatalytic test and the material characterization. In-situ
measurements would be more suitable to investigate electrode surface changes with
electrocatalysis but were not available for the present work. Finally, as mentionned in section
6.3.2.1, the ORR activity and the interfacial properties of Mn perovskites on carbon paper
were not modified to the same extent as for the RDE. Therefore future measurements should
be performed with electrodes showing similar ORR currents and electrode morphology to

RDE to expect the same behavior, and thus, the same modifications.
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6.4. Conclusion of Chapter 6

In this section, it was shown that the lanthanum carbonate species formed on perovskite
surface during storage under ambient conditions can be partially removed by thermal
treatment and are probably destroyed during sonication in aqueous suspension. It was also
observed that LaCoQOs; is very sensitive to its chemical environment. Indeed, the extended
immersion of this perovskite in ultrapure water leads to the formation of cobalt hydroxide
layer which affects the CV response of the electrode. Also, the long immersion of LaCoOs3 in
alkaline solution causes the transformation of the perovskite surface to cobalt and lanthanum
hydroxide species. The surface of Mn-perovskites is more stable, no significant modifications
of Mn being visible by XPS after the immersion in alkaline medium. Only a slight dissolution
of Sr species could be detected by ICP for LajsSro,MnOs3 but does not affect the bulk which
preserves its perovskite structure for all the studied samples after one month exposure in 1M
NaOH.

The study of the stability of the electrocatalytic activity showed that the ORR electrocatalysis
leads to a decrease of the number of perovskite sites. This probably occurs through the
formation of an electrochemically inactive phase on the perovskite surface. This does not
affect the ORR kinetic currents on LaCoOs3/C electrodes since the ORR predominatly occurs
on carbon sites in these electrodes, but only decreases their HO, reduction activity. On the
other hand, the ORR activity of LajgSro,MnO3/C electrodes is strongly reduced with the
decrease of the active site number, the remaining kinetic current being largely ensured by
carbon sites. The relationship observed between the decrease of the activity and the
disappearance of the redox peaks in the CV in N, points out to the role of the redox transitions
in electrocatalysis. Nevertheless, the high activity of LaggSro,MnO; for the HO, reduction
ensures a 4 global electron pathway even with a lower number of active sites. For both studied
perovskites, it was observed that the ohmic drop caused by the formation of the insulating
layer on the perovskite surface may be minimized with addition of carbon in the catalytic
layer.

However, the XPS analysis did not detect changes of the Co and Mn cations on the perovskite
surface after electrocatalysis. Moreover, no significant modifications of the bulk structure and
electrode morphology were observed. Only the formation of sodium carbonates from carbon

support hydrophilization is visible after the ORR. Nevertheless, the method used for the
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electrode characterization has its limitations and might not be suitable to observe possible

degradations which lead to the ORR activity loss.
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General conclusion and Outlook

295



The aim of the present thesis was to check if the perovskite oxides are suitable ORR catalysts
for SAFC applications in terms of activity and stability, and to clarify the ORR mechanism on
these oxides.

In order to pursue these objectives, the thin layer approach was used and the experiments
were performed in liquid electrolyte to allow a control of the mass transport and

electrochemical phenomena and a better understanding of the mechanisms.

The present thesis demonstrates that electrodes made of perovskite oxides are active for the
ORR and can therefore potentially be used as cathode material in SAFC.
The studies of the catalysis of the ORR and the HO, transformations on various
perovskite/carbon composites with various compositions and loadings proves that, on these
electrodes, O, is reduced to OH  via a “series” ORR pathway with the HO, intermediate.
Based on the experimental data and with the help of mathematical modeling, the following
tentative mechanism was proposed for the ORR on perovskites, including the participation of
the redox transition of the transition metal B of the perovskite.
O, is reduced through the two following steps:

0, + OH,ads + e~ 2 0,,ads + OH™

0,,ads + H,0 + e~ 2 HO,,ads + OH™
The formed HO, species are further reduced through a slow chemical step followed by an
electrochemical step:

HO,,ads + OH,ads — 2 0,ads + H,0

0,ads + H,0+ e~ 2 OH,ads + OH™
or might desorb from the electrode through:

HO,,ads + OH™ 2 HO, + OH,ads
It should be stressed that the nature of the reaction intermediates is hypothetical, since the
only intermediate detected in this work is HO, . The reaction rates appear to be significantly
lower on LaCoQOs than either on LaMnOs or on Laj gStro,MnOj3 perovskites, leading to a lower
ORR onset potential, higher HO, yield, and slower HO, reduction/oxidation reactions for the
former. The reason of this reaction rate differences is probably due to distinct redox transition
behaviors of Co and Mn-based perovskites. The HO,™ yield not only depends on the nature
and the loading of perovskite, high perovskite loadings allowing a more efficient HO,
reduction, but also on the carbon loading.
Indeed, by carefully studying the impact of the carbon loading in the perovskite/carbon

composite electrodes on the electrocatalytic activity, it was proved that the carbon plays a
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dual role. First of all, it increases the perovskite utilization by improving the electrical contact
in the catalytic layer. This results in an increased electrocatalytic activity for ORR and HO,
reduction/oxidation, leading to a lower HO," yield. In addition, carbon is involved in the ORR
mechanism by catalyzing the reduction of O, into HO;', especially for perovskites with low
activity for this reaction such as LaCoQj3. Therefore, it shows that the contribution of carbon
cannot be neglected in the activity measurement, and that the intrinsic activity of the
perovskite may not be directly measurable if it is used in the form of oxide/carbon
composites. Moreover, the HO, produced on carbon may either desorb from the surface and
diffuse into the bulk of the electrolyte or be readsorbed on adjacent perovskite sites to be
further reduced.

Besides, it was observed that the ORR electrocatalysis leads to a decrease of the number of
perovskite active sites. The nature of this degradation is not fully understood yet but results in
distinct behaviors depending on the activity of the perovskite for the ORR. Indeed, for
LaCo0Os, which is less active than carbon for the ORR, currents at low overpotentials are not
affected by this degradation since the ORR predominantly occurs on carbon sites. However, a
current decrease at high overpotentials is observed due to slowing down the HO, reduction
with the decrease of the perovskite site number. On Mn-perovskites, the ORR onset potential
is significantly shifted towards lower potentials due to the degradation of the highly active Mn
sites. This also results in the disappearance of the redox peaks on the CV in the Nj-

atmosphere.

Even if this work answered numerous questions about the ORR on perovskite oxides, there

are still aspects to clarify and to improve in the future.

First of all, it appears that in-situ measurements are required, on the one hand to better
understand the ORR mechanism and the involvement of the redox transitions of the
perovskites, and on the other hand, to investigate the degradation of the catalyst during the
electrocatalysis. These may be performed using X-ray absorption spectroscopies (XAS), but
Raman spectroscopy is also a good tool to study the modifications of the catalysts and the
adsorbed species. However, this will require the design of an in-situ cell as well as the
development of a method to separate the bulk from the surface contribution. Moreover, such
measurements may result in a local heating which might affect the properties of the catalysts,
the nature and the coverage of adsorbates. The in-situ studies should be performed on oxides

with different oxidation states of the transition metals (e.g. doped and undoped perovskites,
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simple oxides) to allow the full understanding of the participation of the redox transitions in
electrocatalysis. Also, to complete the degradation study, it might be interesting to build a
flow cell with ICP or IR measurements downstream to detect the dissolved species in function
of the potential applied on the working electrode.

Thanks to the results of in-situ studies, together with the careful investigation of the effect of
the choice of kinetic rate constants on the voltammogram shapes and with the help of eventual
additional experiments (e.g. RDE study of HO, reduction/oxidation with other H,O,
concentrations), the mathematical model introduced in Chapter 5 to explain the ORR

mechanism could be improved to be as close as possible to the reality.

For the future, it will be interesting to further improve the catalytic layer composition
targeting maximum the perovskite utilization and high catalytic activity per unit mass.

For example, it is important to synthesize perovskites with higher specific surface area to
reach high activities without increasing the loading. Also, it might be useful to have a control
over the size of oxide crystallites, as well as the size of oxide or oxide-on-carbon
agglomerates (the latter could be achieved by using a sieve).

As perovskite and carbon work as a tandem in composite electrodes, one can expect that
higher activities will be reached with a better perovskite to carbon contact using carbon-
supported perovskite catalysts. In addition, promising bifunctionnal catalysts can be built by
combining a material very active for the reduction of O, to a perovskite highly active for the
reduction of HO,. The former may be carbon material, as in this work, or another material as
soon as it is (i) inexpensive, (ii) electrically conductive to ensure electronic contact in the
layer, (iii) active for the reduction of O, into HO,, (iv) stable. Eventually, by varying the
nature of the transition metal cations of the perovskites, one may find complementary

perovskites.

In order to validate the application of perovskites as SAFC cathode materials, fuel cell tests
will be required. This includes (i) the optimization of the catalytic layers and membrane-
electrode assemblies (MEAs), (ii) the management of water and hydroxide flows in the fuel
cell, (iii) the activity measurement and (iv) long-term stability tests. To optimize the catalytic
layers, an optimized ratio of perovskite, carbon and ionomer will have to be chosen to ensure
the triple contact. Besides the composition, also the procedure utilized for the preparation of
MEAs is of primary importance to insure high mass transport and ion transport rates, high

catalyst utilization, and ultimately, high performance and durability. This has to be performed
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together with the choice of the alkaline membrane which will serve as a hydroxide ion
conductor. This kind of membrane is strongly alkaline and may accelerate the degradation of
the catalyst layer. Therefore, the stability of the performance has to be investigated and the
duration of the stability tests should be comparable to real fuel cell operation, i.e. several
months. Also, post-mortem analysis of the MEA might be useful to better understand

degradation processes occurring in the fuel cell.
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Appendix 1 : Reproducibility of some

electrochemical experiments

In this section, the reproductibity of some electrochemical experiments are shown. However,
it should be noted that numerous other experiments were performed — each of the experiments

shown in this thesis was made at least twice — but are not shown to limit the number of pages.
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Figure 94 : Reproducibility of CV of GC-supported thin films of (a) LaCoO3 + Sibunit carbon
and (b) Lag.gSro.MnQO;z+ Sibunit carbon in N>-purged 1M NaOH electrolyte at 10 mV.s~.
Measurements were performed with a constant amount of perovskite (91 ug. cm'zgeo ) and

variable amount of carbon. Color codes for carbon loading: 0 (pink), 18 (red), 37 (orange)
and 140 ug.cm™ geo (green). Currents are normalized to the geometric area of the electrode.
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Figure 95 : Reproducibility of positive scans of the RDE voltammograms of GC-supported
thin films of (a) LaCoOj3 + Sibunit carbon and (b) LaggSro,MnQO;z+ Sibunit carbon, in O;-
saturated 1M NaOH electrolyte at 900 rpm and 10 mV.s”. Measurements were performed
with a constant amount of perovskite (91 u g.cm'zgeo ) and variable amount of carbon. Color
codes for carbon loading: 0 (pink), 18 (red), 37 (orange) and 140 ug.cm-2geo (green). Black
lines show RDE curves for Pt/C. Currents are normalized to the geometric area of the
electrode and corrected to the background currents measured in the N, atmosphere.
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Figure 96 : Reproducibility of positive scans of the RRDE voltammograms of GC-supported
thin films of (a,b) LaCoQOj3 + Sibunit and (c,d) Lay sSro.MnQO;3 + Sibunit in O,-saturated 1M
NaOH at various rotation rates and 10 mV.s™" : (a,c) ring currents at 1.23V vs. RHE versus
disk potential, (b,d) disk voltammograms. Measurements were performed with 46 ug.cm™ geo
perovskite and 19 ug. cm'zgeo carbon. Color codes for electrode rotation rate: 400 rpm (pink),

900 rpm (red), 1600 rpm (orange) and 2500 rpm (green). Disk currents are normalized to the
geometric area of the disk electrode and corrected to the background currents measured in
the N, atmosphere. Ring currents are normalized to the geometric area of the disk electrode

and to the collection factor.
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Figure 97 : Reproducibility of positive scans of the RDE voltammograms of GC-supported
thin films of (a) LaCoOj3 + Sibunit carbon and (b) Lag sSro2MnQO;z+ Sibunit carbon, in N-
purged IM NaOH + 0.84 mM H>O; at various rotation rates and at 10 mV.s™. Measurements
were performed with 91 ug. cm'zgeo perovskite and 37 ug. cm'zgeo carbon. Color codes for
rotation rates: 400 rpm (pink), 900 rpm (red), 1600 rpm (orange) and 2500 rpm (green).
Currents are normalized to the geometric area of the electrode and corrected to the
background currents measured in the N; atmosphere without H,O; presence.
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Appendix 2 : La3d XPS spectrum of perovskite

oxide — Literature data

Counts per second (au)

Figure 98 : Literature data reprinted from [46] with the permission of Springer.

La 3ds; core level spectra of: (a) LaFeOs, and (b) LaCoQOj3. The two arrow sets correspond to
LaMO; (M=Fe,Co) and La;0,COj3 species.

330



Appendix 3 : ORR and HO, reduction on LaMnQO;

In this section, the RRDE study of ORR and the RDE study of HO,™ reduction/oxidation

reactions are presented for LaMnOj; electrodes.
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Figure 99 : Positive scans of the RRDE voltammograms of GC-supported thin films of
LaMnQOj3 in O;z-saturated 1M NaOH at 900 rpm and 10 mV.s™' : (a) percentage of H,O»
formed, (b) ring currents at 1.23V vs. RHE versus disk potential, (c) disk voltammograms.

Measurements were performed for electrodes containing only perovskite, for electrodes
containing only carbon, and for composite perovskite/carbon electrodes. Color codes for
electrode composition: 46 pg.cm™ geo perovskite (blue), 46 ug.cm? geo perovskite + 19 ug.cm’
2 geo carbon (green), 19 ug. cm” geo carbon (red). Disk currents are normalized to the geometric

area of the disk electrode and corrected to the background currents measured in the N;

atmosphere. Ring currents are normalized to the geometric area of the disk electrode and to

the collection factor.
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Figure 100 : Positive scans of the RRDE voltammograms of GC-supported thin films of
LaMnOj; + Sibunit in O,-saturated 1M NaOH at various rotation rates and 10 mV.s™! (a)
percentage of H>O; formed, (b) ring currents at 1.23V vs. RHE versus disk potential, (c) disk
voltammograms. Measurements were performed with 46 ug. cm'zgeo perovskite and 19 ug.cm’
? geo carbon. Color codes for electrode rotation rate: 400 rpm (pink), 900 rpm (red), 1600 rpm
(orange) and 2500 rpm (green). Disk currents are normalized to the geometric area of the
disk electrode and corrected to the background currents measured in the N, atmosphere. Ring
currents are normalized to the geometric area of the disk electrode and to the collection

factor.
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Figure 101 : Negative and positive scans of (a) CV in N;-purged IM NaOH at 0 rpm and (b)
RDE voltammograms in N>-purged IM NaOH + 0.84mM H,O- at 900rpm, of GC-supported
thin films at 10 mV.s™'. Measurements were performed with 91 ug.cm™ geo perovskite + 37
ug.cm™ geo carbon. Color codes: LaCoOs (pink for positive scan and purple for negative scan)
and LaMnQOj; (green for positive scan and olive for negative scan), the arrows indicate the
scan direction. Currents are normalized to the geometric area of the electrode. For RDE
voltammograms in N»>-purged IM NaOH + 0.84mM H;O,, the currents are corrected to the
background currents measured in the N, atmosphere without H,O; presence.
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Appendix 4 : Modeling of ORR on LaCoO3

electrodes with faster HO, reduction

This section presents the modeling of ORR on LaCoOs; electrode using ksp = 0.2 s'l, 1.e. the

same rate constant as Lag gSrg»MnOs for the O,q4, reduction reaction.
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Figure 102 : RRDE voltammograms of GC-supported thin films of LaCoQO3 + Sibunit carbon
in Oz-saturated IM NaOH at 900 rpm: (a,b,c) simulated curves with ksp= 0.2 stand (d,e,f)
experimental positive scans at 10 mV.s™. (a,d) Percentage of HO; formed, (b,e) ring currents
versus disk potential, (c,f) disk voltammograms. Measurements were performed for electrodes
containing only perovskite, for electrodes containing only Sibunit carbon, and for composite
perovskite + Sibunit carbon electrodes. Color codes for electrode composition: 46 ug. cm'zgeo
perovskite (blue), 46 ug.cm™ geo perovskite + 19 ug.cm” geo Sibunit carbon (green), 19 ug.cm’
2 geo Sibunit carbon (red). Disk currents are normalized to the geometric area of the disk
electrode and corrected to the background currents measured in the N, atmosphere for the
experimental curves. Ring currents are normalized to the geometric area of the disk electrode
and to the collection factor.
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Figure 103 : RRDE voltammograms of GC-supported thin films of LaCoQO3 + Sibunit carbon
in Ox-saturated IM NaOH at 900 rpm: (a,b,c) simulated curves with ksp= 0.2 s’ and (d,e.f)
experimental positive scans at 10 mV.s™. (a,d) Percentage of HO; formed, (b,e) ring currents
versus disk potential, (c,f) disk voltammograms. Measurements were performed for electrodes
containing constant perovskite/carbon ratio (71 wt.% perovskite + 29 wt.% Sibunit carbon,)
and various catalyst loadings. Color codes for electrode loading: 23 ug.cm™ geo perovskite + 9
ug.cm? geo Sibunit carbon (orange), 46 ug.cm™ geo perovskite + 19 ug. em’” geo Sibunit carbon
(green), 91 ug.cm™ geo perovskite + 37 u g.cm” geo Sibunit carbon (purple). Disk currents are
normalized to the geometric area of the disk electrode and corrected to the background
currents measured in the N, atmosphere for the experimental curves. Ring currents are
normalized to the geometric area of the disk electrode and to the collection factor.
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Figure 104 : RDE voltammograms of GC-supported thin films of Lag gSro.MnQO; + Sibunit
carbon (solid lines) or of LaCoQOj + Sibunit carbon (dash lines) in N;-purged 1M NaOH +
0.84 mM H;0; at 900 rpm: (a) simulated curves with ksp= 0.2 s and (b) experimental
positive scans at 10 mV.s™'. Measurements were performed with 91 ug. cm'zgeo perovskite +
37 ug. cm'zgeo Sibunit carbon. Color codes for the model contributions: HO, reduction
contribution (pink), O, reduction contribution (blue), HO, oxidation contribution (green) and
total current obtained by the addition of the previous mentioned contributions (black).
Currents are normalized to the geometric area of the electrode and corrected to the
background currents measured in the N, atmosphere in the absence of H,O; for the
experimental curves.
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Résumé détaillé
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A. Introduction et objectifs

Face au besoin croissant d’énergie et au souci de I’environnement, les piles a combustible
représentent une technologie de conversion d’énergie attractive. Parmi les piles existantes et
en cours de développement, la pile a combustible alcaline a membrane échangeuse d’anion
(SAFC) est un systeme prometteur qui permet 1’ utilisation de matériaux peu couteux.

Bien que la réaction de réduction de 1I’oxygene (ORR) en milieu alcalin soit souvent plus
rapide qu’en milieu acide, il s’agit tout de méme d’un procédé tres lent qui limite largement
les performances des piles. Ainsi, de nombreuses études ont été effectuées dans le but de
trouver les catalyseurs les plus actifs et stables pour cette réaction.

En milieu alcalin, comme en milieu acide, les métaux nobles sont tres actifs pour I’ORR.
Cependant, contrairement au milieu acide, de nombreux matériaux dont certains sans métaux
nobles comme le carbone [a,b] et des oxydes de métaux de transition ont démontré des
activités notables pour I’ORR en milieu alcalin. Parmi ces matériaux, les oxydes de type
pérovskite apparaissent comme des catalyseurs prometteurs vis-a-vis de leur activité pour
I’ORR et de leur prix [c,d]. Le présent travail de doctorat est donc focalisé sur I’étude de ces

oxydes dont le comportement catalytique n’est pas encore complétement compris.

La structure flexible des pérovskites tolere une large gamme de compositions A A’«B.
yB’y05 et offre donc la possibilité d’adapter les propriétés physico-chimiques des oxydes [e.f].
Ces oxydes ont ainsi démontré des propriétés intéressantes pour la catalyse hétérogene, les
piles a combustible a hautes températures (SOFC), ainsi que pour I’ORR et I’OER a basses
températures [g,h]. Il est désormais accepté que la nature du cation en position B a une grande
influence sur 1’activité vis-a-vis de ’ORR et le dopage du cation en position A par un cation
de plus petite valence peut augmenter la cinétique de I’ORR. Parmi les diverses compositions
de pérovskites, les pérovskites a base de Mn et de Co font partie des oxydes les plus actifs. Il
a donc été choisi dans ce travail de se focaliser sur les pérovskites dopées et non dopées de
Mn et Co afin de déterminer les relations entre leurs propriétés intrinseques et leurs activités
catalytiques.

Dans la littérature, une large gamme de configuration d’électrodes a été utilisée pour mesurer
I’activité pour I’ORR des pérovskites comme les pastilles, les couches de diffusion de gaz ou
les couches minces. Cependant, seule I’approche couche mince est compatible avec les

techniques d’électrode a disque tournant (RDE) et d’électrode tournante a disque-anneau
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(RRDE) [c,i]. Grace a ces techniques en milieu liquide, les courants cinétiques peuvent étre
mesurés de maniere précise et des informations concernant le mécanisme de I’ORR peuvent
étre obtenues. Ainsi, un électrolyte liquide et des couches minces de pérovskites ont été
utilisés dans ce travail.

Cependant, les électrodes a base de pérovskite souffrent généralement d’une grande résistance
entre les particules (ou agglomérats) d’oxydes. Ceci limite non seulement 1’étude de I’ORR
mais aussi l'intégration de ces oxydes comme matériaux de cathode dans les piles a
combustible. L’ajout de carbone augmente de facon significative la conductivité, et donc la
performance, des électrodes de pérovskite [j,k]. Néanmoins, le carbone est également actif
pour I’ORR en milieu alcalin [a,b] et son activité peut interférer avec celle des pérovskites.
Dans ce travail de doctorat, le role du carbone dans le mécanisme de I’ORR sur les électrodes
composites pérovskite/carbone a été étudié en variant de maniere systématique le rapport
pérovskite:carbone. L’évaluation de 1’activité intrinseque des pérovskites pour I’ORR est

également une question abordée dans ce travail.

L’ORR suit un mécanisme complexe qui implique la formation de I’intermédiaire HO, s’il a
lieu via le mécanisme «en série ». Dans la littérature, quelques contradictions ont été
soulevées a propos du mécanisme ayant lieu sur les électrodes a base de pérovskites. En effet,
certains auteurs mentionnent un mécanisme « direct », ¢’est-a-dire sans formation d’HO, [1],
alors que d’autres suggerent un mécanisme «en série » [m,n]. Ceci peut étre le résultat de
I'utilisation de différentes configurations d’électrodes, différentes compositions d’oxydes
et/ou différentes quantités de catalyseurs. Pour éclaircir ce point, I’impact de la composition
de I’électrode en termes de quantité de pérovskite et de carbone ainsi que de nature de I’oxyde
sur la production d’HO; lors de I’ORR a été étudiée au cours de cette these grace a la
technique RRDE.

Si I’ORR est effectivement un mécanisme « en série » avec production d’HO;', la mesure de
la cinétique de transformation de cet intermédiaire est nécessaire pour la compréhension du
mécanisme. Des travaux antérieurs ont montré que la cinétique de décomposition d’HO; est
fortement dépendante de la nature du cation en position B de la pérovskite. Par contre, tres
peu de résultats ont été rapportés sur la réduction électrochimique d’HO; sur les pérovskites,
la cinétique de cette réaction reste donc aujourd’hui inconnue. Le présent travail inclut 1’étude
des réactions de réduction/oxydation et de décomposition d’HO; sur diverses pérovskites afin

d’étendre la compréhension de I’ORR.
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Enfin, dans le but d’utiliser les oxydes de type pérovskites comme matériaux de pile a
combustible, une stabilité sur le long terme est requise. D’une part, il a été rapporté dans la
littérature que certaines pérovskites se dégradent en milieu alcalin [o]. D’autre part, la
stabilit¢ de 1’activité électrocatalytique n’est pas étudiée de maniere systématique, bien
qu’indispensable pour une application industrielle. Ainsi, les stabilités chimiques et
électrochimiques des oxydes ont été explorées dans cette étude. Ceci implique non seulement
le suivi de I’activité électrocatalytique au cours du temps, mais aussi la caractérisation des

matériaux apres éventuelle dégradation.

Pour résumer, cette these regroupe des études cinétiques, mécanistiques et de stabilité pour
diverses compositions d’électrodes. Dans la littérature, ces études sont rarement combinées
mais permettent une complete compréhension de 1’électrocatalyse de I’ORR. Ce travail
permet donc de relier des études fondamentales de I’ORR a des applications potentielles des

pérovskites comme matériaux de cathodes dans les SAFC.

B. Propriétés des oxydes de type pérovskite

Les pérovskites utilisées dans ce travail ont été synthétisées par chimie douce par des
partenaires de 1’Université de Moscou. Les pérovskites choisies étaient principalement
LaCo0O3, LaMnOs et LaggSrp-,MnO; afin d’étudier I’influence de la nature du cation B et de
I’effet du dopage du cation A par un cation de plus petite valence sur I’ORR. Afin de vérifier
I’effet de la nature du cation A, les propriétés des pérovskites LagsCap,MnO3;, PrCoO; et

PrMnOs ont également été analysées.

Avant d’étre utilisés comme catalyseurs de I’ORR, les oxydes ont été caractérisés par diverses
techniques physico-chimiques afin de pouvoir relier leur comportement catalytique a leurs
propriétés.

Grace a la diffraction aux rayons X (DRX), il a été montré que les oxydes utilisés dans ce
travail présentaient effectivement la structure pérovskite sans traces des précurseurs. Cette
structure est stable apres stockage dans des conditions atmosphériques durant plusieurs mois,
seuls quelques traces de carbonates ont pu €tre observées apres vieillissement. La symétrie de

la structure est apparue comme étant dépendante de la taille du cation A. En effet, les
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pérovskites a base de La et Sr étaient de structure rhombohédrale alors que celles a base de Pr
et Ca, cations de plus petits rayons, étaient de structure orthorhombique.

La microscopie électronique a balayage (MEB) a été utilisée pour étudier la morphologie des
catalyseurs utilisés dans ce travail. L analyse par MEB a notamment permis de montrer que
les pérovskites étaient constituées de petites particules de 50-100 nm agglomérées dans des
agrégats de quelques micrometres. Cette agglomération entraine une surface spécifique —
mesurée par BET - de I"ordre de 10 2 20 m”.g”" pour les oxydes étudiés, ce qui est plus faible
que la surface estimée par DRX pour des cristallites non agglomérées. Toutefois, cette surface
reste supérieure a celle obtenue pour les pérovskites synthétisées a hautes températures et
permet donc d’atteindre des activités €lectrocatalytiques plus élevées avec la méme quantité
de catalyseurs.

La morphologie des couches minces de pérovskite/carbone utilisées pour les mesures
électrochimiques a également pu étre observée par MEB. Les cartographies élémentaires du
carbone et du cobalt ont prouvé que les deux éléments étaient bien dispersés sur LaCoOs/C,

démontrant que la pérovskite était globalement bien mélangée au carbone (Figure A).

7.0kV WD 15.5mm

Figure A : (a) Image MEB et cartographies élémentaires de (b) Co et (c) C d’un composite
LaCoOj; + carbone Sibunit déposé sur un support de carbone vitreux. Les pointillés délimitent
un agglomérat de particules de LaCoQOj3
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La composition de surface des oxydes, déterminante pour I’électrocatalyse, a été identifiée par
spectrométrie photoélectronique par rayons X (XPS). La présence des éléments de la
pérovskite a été confirmée puisque les énergies de liaisons des cations A, B et de I’oxygene
correspondaient a ceux rapportés dans la littérature pour des oxydes de type pérovskite.
Cependant, le rapport atomique de ces éléments n’était pas stoechiométrique. Toutes les
pérovskites, et en particulier celles a base de Co, ont présenté un enrichissement en cation A a
leur surface. Ceci est probablement di a la présence de carbonates de cation A a la surface des

pérovskites. Ces especes ont en effet été observées sur les spectres XPS de Cls et Ols.

Enfin, les propriétés interfaciales des oxydes ont été étudiées de maniere électrochimique par
voltamétrie cyclique (CV). Grace a cette technique, il a été démontré que les pérovskites sont
stables dans la plage de potentiel [0.43 ; 1.23 V vs. RHE] dans 1M NaOH. A des potentiels
plus faibles, les oxydes de type pérovskite sont réduits de maniere irréversible.

Dans la gamme de potentiel étudiée, les pics observés sur les voltammogrammes ont été
attribués aux métaux de transitions B, la nature du cation A n’ayant pas d’influence
significative sur les voltammogrammes (Figure B). Pour les pérovskites a base de Co, les
transitions redox n’étaient que faiblement visibles sur les CV (Figure B,a) alors que les
pérovskites a base de Mn présentaient deux pics anodiques et deux pics cathodiques bien
distincts (Figure B,b). Les couples impliqués dans ces pics sont probablement Mn**/Mn®* a

hauts potentiels et Mn>*/Mn®* 2 bas potentiels [p,q]. La premiére transition semble étre

réversible alors que la seconde est irréversible.
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Figure B : CV de composites a base de (a) Co ou (b) Mn déposés sur un support de carbone
vitreux dans IM NaOH désaéré, o 10mV.s”. Les électrodes contiennent 91 ug/cm? de
pérovskite et 37ug/cm? de carbone Sibunit.
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La voltamétrie cyclique dans une plage de potentiel restreinte ol seuls des procédés capacitifs
se produisent a permis de montrer que seule la surface de la pérovskite est impliquée dans les
procédés électrochimiques. De plus, la rugosité calculée grace a cette méthode était en accord
avec la surface spécifique mesurée par BET.

Afin de démontrer I'intérét de la structure pérovskite, les oxydes de type pérovskite ont été
comparés a deux types d’oxydes simples de métaux de transitions : un oxyde de Co de type
spinelle, Co304 et un oxyde de Mn, Mn;,03;, de structure cubique. Il a été observé que leur
surface spécifique était inférieure d’un facteur 5 par rapport a celles des pérovskites a cause
d’une forte agglomération de particules. De plus, leur faible conductivité complique leur

caractérisation par des méthodes électrochimiques.

C. Double réle du carbone dans les couches catalytiques

pérovskite/carbone

Pour identifier le role du carbone dans les composites pérovskite/carbone, le comportement
électrochimique et électrocatalytique de différentes €lectrodes a été étudié. Dans un premier
temps, la quantité de pérovskite a été fixée et la quantité de carbone a été variée. Des
électrodes de différentes quantités de carbone (sans pérovskites) ont également été examinées
en guise de référence. Le carbone choisi dans cette étude est le carbone Sibunit, obtenu par
pyrolyse d’hydrocarbone, qui est de grande pureté et présente une conductivité élevée.

Les CV en milieu inerte ont montré une augmentation systématique de la capacitance avec la
quantité de carbone. Afin d’identifier la contribution de chacun des composés de 1’électrode,
les CV d’électrodes de carbone seul ont été soustraites aux CV des composites (Figure C,a). Il
est clair que la capacitance augmente avec la quantité de carbone méme apres correction. Ceci
suggere que le carbone améliore le contact entre les particules de pérovskites, davantage de
sites actifs étant accessibles électroniquement. On observe également que la différence de
potentiel entre les pics anodiques et cathodiques des CV des pérovskites diminue avec la
quantité de carbone grace a une diminution de la résistance ohmique en présence de carbone.
Pour la pérovskite la plus conductrice, Lag gSro,MnQOs3, la quantité de carbone nécessaire pour
assurer un bon contact entre les particules d’oxydes est plus faible que pour les autres

pérovskites : 29 %poids de carbone suffisent pour obtenir la capacitance maximale.
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Figure C : (a) CV corrigées par soustraction des CV du carbone aux CV des composites
correspondants dans 1M NaOH désaéré et (b) courbes anodiques RDE a 900rpm dans 1M
NaOH saturé en oxygene de composites LaMnQj + carbone Sibunit déposés sur un support

de carbone vitreux a 10mV.s™. Les électrodes contiennent 91 ug/cm? de pérovskite et des

quantités variables de carbone Sibunit.

L’activité électrocatalytique des différentes électrodes de quantité de pérovskite constante a
ensuite été mesurée par RDE en milieu saturé en oxygene (Figure C,b). Sans carbone,
I’activité des pérovskites vis-a-vis de ’ORR s’est avérée tres faible et peu différente du
carbone vitreux. Avec ajout de carbone, le potentiel de demi-vague et le courant limitant
augmentent de maniere systématique avec la quantit€¢ de carbone dans les électrodes
contenant seulement du carbone et dans les électrodes composites. Ceci est lié a
I’augmentation du nombre de sites actifs accessibles avec I’ajout de carbone. Il faut cependant
noter que, lorsque la quantité de carbone est tres élevée, la couche catalytique devient trop
épaisse et la diffusion des molécules d’oxygene dans la couche devient 1’étape limitante. Cela
entraine une diminution du facteur d’utilisation de la surface.

L’équation de Levich qui relie le courant limitant a la vitesse de rotation de 1’électrode donne
alors une approximation du nombre d’électrons échangés. Contrairement au carbone qui ne
fait intervenir que deux électrons, le nombre global d’électrons impliqués dans I’ORR sur des
couches suffisamment épaisses de pérovskite est de quatre, comme sur le platine. Cependant,

a ce stade, le mécanisme exact — « direct » ou « en série »- ne peut €tre identifié.

Pour mieux comprendre le mécanisme de I’ORR, des composites contenants une quantité
constante de carbone et différentes quantités de pérovskite ont été testés. Deux
comportements distincts ont été observés. A partir d’'une certaine quantit¢ de LaCoOs,

augmenter la quantité de pérovskite ne semble pas affecter le courant cinétique. Cela suggere,
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de ce fait, que cette pérovskite est moins active que le carbone pour la réduction d’O, en HO,
. Cette étape est probablement principalement catalysée par le carbone. Le rdle de la
pérovskite se limite alors a la réduction ou a la décomposition chimique d’HO, pour obtenir
un mécanisme global de quatre électrons. Pour les pérovskites au manganese, LaMnOs et
LapgSroo.MnOs, les courants cinétiques augmentent avec la quantité de pérovskite. Ces
pérovskites sont donc plus actives que LaCoOs et que le carbone pour I’ORR. On peut
également penser que le carbone contribue a la réduction d’O; en H,O; lorsque les quantités
de pérovskite sont faibles, i.e. lorsque la surface active de pérovskite est faible par rapport a

celle du carbone.

Figure D : Courbes anodiques RDE de composites (a) LaCoOj3 + carbone Sibunit et (b)
LaysSro,MnQO;3; + carbone Sibunit déposés sur un support de carbone vitreux dans IM NaOH
saturé en oxygéne a 900rpm et a 10mV.s™. Les électrodes contiennent 37 pg/cm? de carbone

Sibunit et des quantités variables de pérovskite.

Afin de quantifier I’activité de la pérovskite seule, il a été proposé dans cette these de
soustraire les courants cinétiques du carbone aux courants cinétiques du composite (Figure E),
mais cette correction n’est valable que si le carbone n’intervient pas directement dans le
mécanisme de I’ORR. C’est le cas de la pérovskite LaygSro,MnOs pour laquelle le role du
carbone est limité a I’amélioration du contact électronique (Figure E,a). A partir de la quantité
de carbone optimale (37 pg.cm'l), les courants cinétiques sont alors superposés apres
normalisation par la surface spécifique d’oxyde. Cependant, pour LaCoQO3, I’augmentation de
I’activité avec la quantité de carbone est largement supérieure a I’augmentation de la charge
observée a I’aide des CV (Figure E,b), ce qui suppose une synergie entre le carbone et la

pérovskite dans le mécanisme de I’ORR. Dans tous les cas, la contribution du carbone dans la
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détermination de ’activit¢é de I’ORR ne doit pas €tre négligée contrairement a ce qui est

parfois proposé dans la littérature.
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Figure E : Courbes de Tafel de composites (a) Lay sSroMnQO3; + carbone Sibunit et (b)
LaCoOj + carbone Sibunit déposés sur un support de carbone vitreux obtenues par
correction du transport de masse des courbes anodiques RDE et soustraction de la

contribution du carbone dans IM NaOH saturé en oxygene a 10mV/s. Les électrodes
contiennent 91ug/cm? de pérovskite et des quantités variables de carbone Sibunit. Les
courants sont normalisés par la surface spécifique des oxydes.

En comparant des perovskites contenant divers cations en position A, il a été démontré que
I’activité pour I’ORR des pérovskites est principalement déterminée par la nature du cation en
position B, les pérovskites a base de Mn étant plus actives que celle a base de Co. Les oxydes
simples de ces deux métaux de transition Co304 et Mn,O3 ne sont quant a eux pas tres actifs
pour cette réaction a cause de leur faible conductivité. Cependant, il a été observé que le
nombre d’électrons échangés sur Mn,0Oj3 était supérieur a deux, ce qui suggere que cet oxyde

est capable de catalyser la réduction ou la décomposition d’HO;'.

On peut noter qu’au potentiel de référence de 0.9 Vgryg [r], les pérovskites ont une activité
électrocatalytique vis-a-vis de I’ORR a seulement un ordre de grandeur de celle des électrodes
Pt/C (Figure E). Cela est intéressant puisque le faible cotit des pérovskites offre la possibilité
d’augmenter la quantit¢ d’oxyde pour avoir une meilleure activité, contrairement aux

catalyseurs a base de platine.
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D. Mécanisme de 'ORR sur les composites pérovskite/carbone

Dans ce travail, I’étude RDE a montré que quatre électrons étaient globalement impliqués
dans I’ORR sur les électrodes pérovskite/carbone. Cependant, ceci ne permet pas de conclure
si ’ORR est un mécanisme « direct » ou « en série ». Pour éclaircir ce point, ’ORR a été
étudié par RRDE pour différentes électrodes. Pour un mécanisme «en série », une partie de
I’HO; " produit diffuse hors de I’électrode. Grace a la technique RRDE, cet intermédiaire est
réoxydé a I’anneau et peut donc étre quantifié a partir des courants du disque et de I’anneau.
La composition des électrodes a été variée afin d’étudier I’influence (i) de la présence de
carbone, (ii) de la nature de la pérovskite, et (iii) de la charge de pérovskite sur 1’électrode sur
le mécanisme de I’ORR.

Tout d’abord, il a été prouvé que les électrodes composées exclusivement de pérovskite
engendrent une grande quantit¢é d’HO, (Figure F, courbes bleues). Ceci prouve que I’ORR
est principalement un mécanisme « en série » sur les pérovskites. Comme la quantité¢ d’HO,
dépend du potentiel, la transformation d’HO, implique probablement une étape
électrochimique.

Le carbone seul catalyse la réduction d’O, en HO, mais ne permet pas la transformation de
cet intermédiaire (Figure F, courbes rouges). Pourtant, son ajout dans les couches de
pérovskite diminue sensiblement la quantité d’HO, détectée (Figure F, courbes vertes). Ceci
a été attribué a une augmentation de I’activité pour la réduction d’HO,™ grace a I’amélioration
du contact électronique en présence de carbone. Néanmoins, I’allure du courant a 1’anneau
indiquait que cette réduction n’était pas exclusivement électrochimique mais impliquait
également une étape chimique lente.

Ce travail a montré que davantage d’HO, était détecté pour les €lectrodes a base de LaCoO;
que celles a base de LapgSrooMnOs. Ceci a été attribué d’une part a la faible activité de
LaCoOs3 pour la réduction d’HO,', démontré par la suite, et d’autre part au fait que, pour cette
pérovskite, ’'HO, est formé sur le carbone et doit donc diffuser vers les sites pérovskites afin
d’étre transformé. Une grande probabilité de diffuser hors de 1’électrode et donc d’étre détecté

a I’anneau, en résulte de ce fait.
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Il a aussi été observé que l’activité des pérovskites a base de Mn était sensible a 1’état
d’oxydation de Mn. En effet, la pérovskite réduite semblait plus active pour la transformation
d’HO; car la quantité d’HO, détectée est plus faible apres réduction électrochimique de la
pérovskite. Ceci n’est pas le cas de LaCoO; pour laquelle peu de différences d’activité ont été
observées entre la pérovskite réduite et la pérovskite oxydée.

Afin d’étudier I'influence de la charge de catalyseur sur le mécanisme de ’ORR [s], des
électrodes de rapport pérovskite/carbone constant et de différentes charge de catalyseurs ont
été étudiées par RRDE (voir Figure I,d,e,f). Il a été€ observé d’une part que les électrodes les
plus fines — avec les plus faibles quantités de catalyseurs — entrainaient la détection d’une
grande quantité d’HO,", prouvant que I’ORR sur les électrodes composites est un mécanisme
«en série ». D’autre part, lorsqu’on augmente le nombre de sites actifs, on augmente la
probabilité de réduire ou décomposer HO, dans la couche. Cela se traduit par une diminution
du pourcentage d’HO, détecté a 1’anneau, soit un mécanisme apparent de quatre électrons.
Cela peut expliquer pourquoi certains auteurs suggerent un mécanisme direct sur les

pérovskites.

Comme les expériences RRDE ont confirmé que I'intermédiaire HO, est formé sur les
différents oxydes de type pérovskite, il était également nécessaire d’étudier la cinétique de
réduction et de décomposition de cette espece afin de déterminer la nature de la
transformation d’HO, sur les pérovskites. De plus, 1I’étude RDE de I’ORR sur les composites
pérovskite/carbone a montré que le carbone catalyse la réduction d’O, en HO, dans ces
électrodes. L’HO, formé sur le carbone peut entrainer la corrosion de la couche catalytique et
de la membrane de la pile a combustible. Il est donc nécessaire que la pérovskite utilisée dans
la cathode soit capable de transformer rapidement cet intermédiaire afin d’éviter son
accumulation dans la pile. Dans le but de déterminer 1’activité des oxydes pour cette
transformation, les réactions de réduction et de décomposition d’HO, ont été étudiées dans
des électrolytes contenant H,O,. En milieu alcalin, H,O; est transformé en HO;.

Dans 1M NaOH contenant H,O, et dans la plage de potentiel étudiée, des courants
cathodiques et anodiques ont été mesurés par RDE pour des électrodes de pérovskite (Figure
G). Ceci prouve que les pérovskites sont actives pour la réduction et I’oxydation d’HO," alors
que le carbone ne I’est pas (Figure G, courbes grises). Comme pour I’ORR, 1’ajout de carbone
dans la couche catalytique augmente de fagon considérable 1’activité pour la réduction d’HO,
en augmentant 1’utilisation du catalyseur. Ceci est a I’origine de la diminution de la quantité

d’HO, détectée par RRDE avec I’ajout de carbone (Figure F).
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Les pérovskites sont apparues comme considérablement plus actives que les oxydes simples
de Co et Mn pour les réactions électrochimiques avec HO,". Elles sont néanmoins moins
actives que le platine, notamment pour I’oxydation d’HO,, ce qui résulte en un potentiel
mixte plus positif pour les pérovskites (Figure G).

Le fait que les courants a bas potentiels se rapprochent du plateau de diffusion de Pt/C indique
que deux électrons sont échangés lors de la réduction d’HO,™ sur les pérovskites. Toutefois,
cette réaction est composée de plusieurs étapes. En particulier, le changement de pente
observé sur les voltammogrammes de LaCoOs/C (Figure G) suggere une étape chimique lente
suivie d’une étape électrochimique. Ceci est en accord avec 1’évolution du courant de
I’anneau de 1’électrode RRDE avec le potentiel (Figure F). Comme LaCoOs; atteint plus
difficilement les plateaux de diffusion de Pt/C et comme les courants autour du potentiel
mixte sont plus faibles que pour LaMnO3 ou Laj gSrp>,MnOs, la pérovskite a base de Co est
moins active pour les réactions de réduction/oxydation d’HO,. La plus grande quantité
d’HO, mesurée par RRDE pour cette pérovskite est, par conséquent, justifiée.

L’hystérese observée entre le balayage cathodique et le balayage anodique pour les
pérovskites a base de Mn dans un milieu contenant H,O, a confirmé que la pérovskite réduite
est plus active pour la réduction d’HO, que la pérovskite oxydée. En revanche, aucune
hystérése n’a pu €tre observée pour LaCoOs. Ces différences dans le comportement redox
peuvent €tre a ’origine de la plus faible activité de LaCoO3 par rapport aux pérovskites a base

de Mn.

Figure G : Courbes anodiques RDE de composites pérovskite + carbone Sibunit déposés sur
un support de carbone vitreux dans IM NaOH désaéré avec 0.84 mM H;O; a 900rpm et a
10mV.s™'. Les électrodes contiennent 91 u g.cm'zgeo de pérovskite et 37 ug/cm? de carbone

Sibunit.
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La concentration d’H,O; principalement utilis€ée dans ce travail était 0.84mM, correspondant
a la concentration d’O, dans une solution de 1M NaOH saturée. Pour étudier 1’effet de la
concentration d’H,O, sur le comportement des pérovskites, d’autres concentrations ont été
testées. Lorsque la concentration était divisée par deux, les courants 1’étaient également et le
potentiel mixte était légerement décalé vers les potentiels positifs. Un constat indiquant que
les vitesses de réduction et d’oxydation d’HO, n’ont pas la méme dépendance avec la
concentration d’ H,O,.

Dans le but de comparer les résultats électrochimiques aux résultats de décomposition d’HO,
décrits ci-apres, 1’étude RDE a également été effectuée avec de plus grandes concentrations
d’H,0,. Cependant, la cinétique de réaction dans ces milieux était tres lente, probablement a

cause d’un nombre limité de sites actifs.

Méme si la réduction électrochimique d’HO;, semble étre la réaction prédominante sur les
pérovskites, ’activité de ces oxydes pour la décomposition chimique d’HO, a également été
étudiée par suivi volumétrique [t] de la formation d’O, apres contact d’H,O, avec le
catalyseur.

En variant la concentration d’H,O,, il a été montré que le volume maximal d’O, formé est
dépendant de cette concentration (Figure H,a) et que les relations de 1% ordre liant le volume
d’O, au volume maximal sont linéaires dans le temps et superposées pour toutes les
concentrations (Figure H,b). Ceci indique que la décomposition chimique d’HO; sur les

pérovskites est une réaction d’ordre 1 vis-a-vis de la concentration d’H,O,.
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10mg de poudre de LaMnQO; dans IM NaOH saturé en oxygene avec différentes
concentrations d’'H;0;.
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Il a également été observé que, quel que soit la masse de pérovskite ajoutée dans la cellule, les
constantes hétérogénes obtenues par normalisation des constantes de 1° ordre par la masse de
catalyseur étaient égales.

De plus, on a démontré que les pérovskites étaient beaucoup plus actives que le carbone pour
la catalyse de cette réaction. Ainsi, que ce soit par réduction ou par décomposition, I’HO,
formé est rapidement transformé sur les pérovskites et ne peut donc survivre dans une pile.
LaCoOs est apparue légerement plus active que les pérovskites au Mn: la constante
hétérogene est d’environ 6 10” cm.s™ pour la pérovskite au Co, et autour de 4 10 cm.s™ pour
celles au Mn.

De maniere intéressante, il a été observé que I’oxyde simple Mn,0O3 est tres actif pour la
décomposition d’HO, avec une constante hétérogéne de 'ordre de 10 cm.s” alors que
I’oxyde simple Co3O4 n’est pas actif pour cette réaction. Le mécanisme de la réaction de
décomposition est encore flou puisque certains auteurs proposent un mécanisme chimique et
d’autres un mécanisme électrochimique. Mais la tres grande activité de Mn,Os3 pour la
décomposition alors que ce méme oxyde possede une faible activité pour la réduction
électrochimique d’HO;’, de méme que le fait que la pérovskite au Co moins active pour les
réactions électrochimiques est plus active pour la réaction catalytique hétérogene que les
pérovskites au Mn, tendent a prouver que la décomposition est plutdt un mécanisme

chimique, en tout cas pour certains matériaux.

Afin de mieux comprendre le mécanisme de ’ORR ayant lieu sur les pérovskites, un modele
mathématique a été développé par A. Bonnefont (Institut de Chimie, Université de
Strasbourg) a partir des données expérimentales obtenues au cours de ce doctorat. En utilisant
un mécanisme «en série » avec réduction d’HO, en deux étapes — une chimique et une
électrochimique - sur les sites pérovskites, les courbes simulées (Figure I,a,b,c) reproduisaient

de maniere satisfaisante les courbes expérimentales (Figure I,d,e,f).
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Figure I : Courbes anodiques RRDE de composites LagsSro,MnQOs + carbone Sibunit déposés
sur un support de carbone vitreux dans 1M NaOH saturé en oxygene a 900rpm : (a,b,c)
courbes simulées, (d,e.f) courbes anodiques expérimentales a 10mV.s”. (a) Pourcentage

d’HO; formé, (b) courant a I’anneau, polarisé a 1.23V vs. RHE, (c) courant au disque. Les
électrodes contiennent un rapport pérovskite/carbone constant (71 %poids pérovskite + 29
Yopoids carbone Sibunit) et différentes charges d’électrode.
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E. Stabilité des oxydes de type pérovskite comme catalyseurs
de 'ORR

Les pérovskites étudiées dans ce travail ont démontré des activités pour I’ORR prometteuses
pour des applications en pile a combustible. Cependant, les composants des piles doivent tre

suffisamment stables pour assurer une performance durable sur le long terme.

Afin de valider ce point, plusieurs études de stabilité ont été effectuées au cours de cette
étude. Tout d’abord, I’effet du traitement thermique sur la surface des oxydes apres stockage a
été analysé par XPS. Il a ainsi été montré que les carbonates de lanthane formés a la surface
des pérovskites sous conditions atmosphériques peuvent étre partiellement éliminés grace a un
traitement sous air a 650°C. Ces carbonates sont par ailleurs probablement détruits par
ultrasons lors de la préparation des suspensions aqueuses de pérovskites pour les mesures
électrochimiques puisque la proportion de carbonates observée par XPS était plus faible pour
les suspensions que pour les poudres initiales.

Il a également été observé que LaCoO; est extrémement sensible a son environnement
chimique. En effet, une immersion prolongée de cette pérovskite dans de 1’eau ultrapure
entraine la formation d’une couche d’hydroxyde de cobalt (visible sur le spectre XPS Co2p)
qui affecte la réponse voltamétrique de cette électrode. C’est pourquoi seules des suspensions
fraiches de pérovskite ont été utilisées pour les tests électrochimiques dans ce travail. De plus,
la longue immersion de LaCoO; dans une solution alcaline entraine la transformation de la
surface de la pérovskite en hydroxyde de cobalt et de lanthane. Ceci suppose la dégradation
du catalyseur au contact du milieu basique d’une pile a combustible alcaline.

La surface des pérovskites a base de Mn est plus stable. En effet, aucune modification
significative n’a pu étre observée par XPS apres immersion dans de 1’eau ultrapure ou dans un
électrolyte alcalin. Seule une dissolution partielle du Sr de Lag sSro>MnOs a pu étre détectée
par spectrométrie d'émission a plasma (ICP) apres trempage dans la solution alcaline, les
autres éléments étant stables. Néanmoins, aucune des modifications mentionnées n’affecte la
structure des catalyseurs puisque 1’analyse DRX a montré que la structure pérovskite est

maintenue pour toutes les pérovskites étudiées, méme apres un mois dans 1M NaOH.
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Par la suite, la stabilit¢ de D’activité électrocatalytique pour ’ORR a été étudiée par
chronoampérométrie a différents potentiels pour les électrodes a base de pérovskite, avec ou
sans carbone, dans un électrolyte saturé en O,.

Les courants obtenus pour des électrodes LaCoO3/C ont été normalisés par la derniere valeur
mesurée sur la Figure J,a. Ceci montre que ’activité pour I’ORR est relativement stable sur
ces électrodes. En mesurant les voltammogrammes RDE avant et apres la
chronoampérométrie (Figure J,b), il a pu étre observé que les courants cinétiques ne sont
effectivement pas affectés. En revanche, les courants a bas potentiels ont diminué apres
chronoampérométrie, et la perte de courant est supérieure a la consommation d’O; lors de
I’ORR. En effectuant les méme expériences dans un milieu contenant H,O,, il a été constaté
que les courants de réduction d’HO; ont considérablement décru aprés chronoampérométrie
(Figure J,c). Cet effet est encore plus prononcé en I’absence de carbone.

Il a donc été proposé dans ce travail qu'une phase électrochimiquement inactive et isolante est
formée sur la surface de LaCoOs; lors de I’ORR. Cela entraine (i) une augmentation de la
chute ohmique dans la couche, qui peut étre minimisée avec addition de carbone et (ii) une
diminution de la surface de perovskite accessible, ce qui diminue 1’activité électrocatalytique.
Comme le carbone est plus actif que LaCoO3; pour I’ORR, les courants cinétiques de I’ORR
ne sont pas affectés. L activité pour la réduction d’HO, qui se produit sur la perovskite est

cependant réduite.

Pour les électrodes a base de LaggSro,MnOs, la perte de courant en présence d’O, est
considérable, surtout dans la zone cinétique (Figure K,a,b). Ceci révele une modification
irréversible de la pérovskite, initialement active pour I’ORR. Le courant cinétique restant est
alors assuré par le carbone qui devient plus actif que la pérovskite suite a la diminution du
nombre de site de I’oxyde. Néanmoins, la grande activité de cette perovskite pour la réduction
d’HO, permet le maintien d’un mécanisme global de quatre électrons méme avec une
diminution du nombre de sites actifs.

L’effet de I’électrocatalyse sur les propriétés interfaciales a été étudié par CV en milieu inerte
a la fin des mesures. Apres I’ORR comme apres la réduction d’HO,, les CV de
Lap gS19o.MnOs ont présenté une forte diminution de la charge et des pics redox moins bien
définis (Figure K,c). Ceci confirme la dégradation de la pérovskite lors des réactions et pointe
la relation entre ses transitions redox et son activité électrocatalytique. Le méme

comportement a été observé pour LaMnOs.
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oxygene avec normalisation par la derniere valeur de courant, et courbes anodiques RDE a
2500rpm et 1 OmV.s avant et apres chronoampérométrie a +0.43V gryr dans (b) IM NaOH
saturé en oxygene et (c) IM NaOH désaéré avec 0.84 mM H,0,, de composites LaCoQOj; +

carbone Sibunit déposés sur un support de carbone vitreux. Les électrodes contiennent 91

u g.cm'zgeo de pérovskite et 37 ug/cm? de carbone Sibunit.
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Afin de visualiser d’éventuelles modifications dans la structure, la morphologie et la
composition de surface des catalyseurs et donc, de mieux comprendre la perte d’activité
électrocatalytique, des électrodes ont été créées pour permettre 1’analyse DRX, MEB et XPS.
Ces électrodes sont constituées de papier de carbone sur lequel est déposé un film mince de
pérovskite et carbone.

Apres plusieurs CV dans un milieu alcalin saturé en O, ou contenant H>O, pour reproduire
I’€électrocatalyse de I’ORR ou de la réduction d’HO,, ces électrodes ont été analysées.
L’étude DRX a prouvé que la structure pérovskite est toujours présente apres €lectrocatalyse.
L’analyse MEB a montré qu’aucune agglomération particuliecre n’a lieu lors de
I’electrocatalyse. Seules des traces de NaOH et Na,COs3 ont pu €tre observés par DRX et EDX
apres ’ORR, et résultent certainement du caractere hydrophile du papier de carbone dans ce
milieu.

Bien que les CV des couches minces apres chronoampérométrie aient suggéré un changement
de la surface de la pérovskite avec les réactions, aucune altération notable de Co ou de Mn n’a
pu étre observée par XPS apres électrocatalyse. Cependant, 1’utilisation d’électrodes de papier
de carbone pour la caractérisation des pérovskites a montré des limites et peut ne pas étre

adaptée pour observer la dégradation responsable de la perte d’activité pour ’ORR.

F. Conclusions

Cette these a démontré que les électrodes a base d’oxydes de type pérovskite étaient actives
pour I’ORR et pouvaient donc étre potentiellement utilis€ées comme matériaux de cathode
dans les SAFC.
Les études de la catalyse de I’ORR et des transformations d’HO, sur des composites
pérovskite/carbone de diverses compositions ont montré que, sur ces électrodes, O, est réduit
en OH™ via un mécanisme « en série » avec formation de 1’intermédiaire HO, . Basé sur les
résultats expérimentaux et avec l’aide d’un modele mathématique, un mécanisme a été
proposé pour I’ORR sur les pérovskites.
O, est réduit via les deux étapes suivantes ou « ads » signifie adsorbé:
0, + OH,ads + e~ 2 0,,ads + OH™
0,,ads + H,0 + e~ 2 HO,,ads + OH™
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L’espece HO, peut ensuite étre réduite par une étape chimique lente suivie d’une étape
électrochimique:

HO,,ads + OH,ads — 2 O0,ads + H,0

0,ads+ H,0+ e~ 2 OH,ads + OH™
ou désorbée de I’électrode:

HO,,ads + OH™ 2 HO, + OH,ads
La nature des intermédiaires est hypothétique, puisque le seul intermédiaire détecté dans ce
travail est HO,". Cependant, le mécanisme est inspiré de la littérature [u,v] et notamment de
calculs DFT sur les pérovskites [w].
Les vitesses de réactions sont considérablement plus faibles sur LaCoO3 que sur LaMnO3 ou
LaygSrpo.MnOs. Ceci entraine une plus grande surtension, un reldichement plus important
d’HO; et des réactions de réduction/oxydation d’HO," plus lentes sur la pérovskite au Co que
sur celles au Mn. Ceci est probablement di & un comportement redox différent des deux
métaux de transition. La quantité d’HO; relachée lors de I’ORR dépend non seulement de la
nature et de la quantité de pérovskite, de grandes quantités permettant 1’efficace réduction
d’HO,", mais également de la quantité de carbone.
En effet, en étudiant soigneusement I’impact de la quantité de carbone dans les composites
pérovskite/carbones sur 1’activité électrocatalytique, il a été montré dans cette these que le
carbone joue un double rdle. Tout d’abord, il permet I’augmentation de I’utilisation de la
pérovskite en améliorant le contact électrique dans la couche catalytique. Il en résulte une
augmentation de D’activité électrocatalytique pour ’ORR et pour la réduction d’HO,,
entrainant une diminution du relachement d’HO,". Ensuite, le carbone est impliqué dans le
mécanisme de I’ORR en catalysant la réduction d’O, en d’HO,, surtout pour les pérovskites
ayant une faible activité pour I’ORR comme LaCoO;. Ceci montre que la contribution du
carbone ne peut étre négligée dans la mesure de 1’activité, et que 1’activité intrinseque de la
pérovskite n’est pas directement mesurable dans les électrodes composites. De plus, I’'HO,
formé sur le carbone peut désorber pour diffuser dans 1’électrolyte ou se réadsorber sur des
sites pérovskites adjacents pour étre réduit.
Parallelement, il a été observé que I’électrocatalyse de I’ORR entraine une diminution du
nombre de sites actifs sur les pérovskites. La nature de cette dégradation est encore floue mais
son impact dépend de I’activité de la pérovskite étudiée pour I’ORR. En effet, pour LaCoO;
qui est moins actif que le carbone pour I’ORR, les courants a faible surtensions ne sont pas
affectés par la dégradation puisque I’ORR se produit principalement sur le carbone. En

revanche, une diminution du courant a grandes surtensions est observée suite au
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ralentissement de la réduction d’HO,™ avec la diminution du nombre de sites de la pérovskite.
Sur les pérovskites au Mn, le potentiel de début de réaction est considérablement déplacé vers
les potentiels plus négatifs avec la dégradation des sites les plus actifs. Ceci entraine

également la disparition des pics redox sur les CV en milieu inerte.
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Etude de la réduction d’oxygéne
sur les oxydes de type
pérovskite en milieu alcalin

Résumé

La cinétique lente de la réduction de 'oxygéne (ORR) est en grande partie responsable de la perte
d’énergie de nombreux systémes de conversion tels que les piles a combustible. Parmi les possibles
catalyseurs de I'ORR, les oxydes de type pérovskite sont des candidats prometteurs en milieu
alcalin. La présente thése est consacrée a I'étude de l'activité, du mécanisme et de la stabilité de
pérovskites a base de Co et Mn pour 'ORR. Grace aux techniques d’électrode tournante a disque et
disque-anneau (R(R)DE), les études de I'ORR et des transformations d’HO,™ sur les couches minces
de pérovskite/carbone dans une solution de NaOH ont montré qu’O. est réduit en OH. via un
mécanisme « en série » avec formation d’HO," intermédiaire. Pour des quantités d’oxyde suffisantes,
HO, est ensuite réduit, ce qui résulte en un mécanisme apparent de 4 électrons. Dans ces
électrodes, le carbone joue un double réle. Il augmente I'activité électrocatalytique en améliorant le
contact électrique et il est impliqué dans le mécanisme de 'ORR en catalysant la réduction d’O, en
HO,", surtout pour les pérovskites a base de cobalt qui sont considérablement moins actives que
celles a base de Mn. Néanmoins, I'électrocatalyse de 'ORR semble dégrader les sites actifs des
pérovskites.

Mots-clés : pérovskites; réaction de réduction d’oxygéne (ORR); électrolyte alcalin; electrocatalyse;
carbone; réduction et oxydation du peroxyde d’hydrogéne; décomposition du peroxyde d’hydrogene;
électrode a disque tournant (RDE); électrode tournante a disque-anneau (RRDE); cinétique et
mécanisme de 'ORR; couche mince; voltamétrie cyclique (CV)

Résumé en anglais

The sluggish kinetics of the oxygen reduction reaction (ORR) is largely responsible for the energy
losses in energy conversion systems such as fuel cells. Among possible inexpensive catalysts for the
ORR, perovskite oxides are promising electrocatalysts in alkaline media. The present thesis is
devoted to the investigation of the ORR activity, mechanism and stability of some Co and Mn-based
perovskites. The rotating (ring) disk electrode (R(R)DE) studies of the ORR and the HO:
transformations on perovskite/carbon thin layers in NaOH electrolyte prove that O is reduced to OH"
via a “series” pathway with the HO,™ intermediate. For high oxide loadings, the formed HO," species
are further reduced to give a global 4 electron pathway. In these electrodes, carbon plays a dual role.
It increases the electrocatalytic activity by improving the electrical contact and it is involved in the
ORR mechanism by catalyzing the reduction of O, into HO,", especially for Co-based perovskites
which display lower reaction rates than Mn-based perovskites.

Keywords : perovskite oxides; oxygen reduction reaction (ORR); alkaline electrolyte;
electrocatalysis; carbon; hydrogen peroxide reduction and oxidation; hydrogen peroxide
decomposition; rotating disk electrode (RDE); rotating ring-disk electrode (RRDE); ORR kinetics and
mechanism; thin layer; cyclic voltammetry (CV)
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