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Résumé 

Cette thèse traite des propriétés de systèmes d'écoulements biphasiques immiscibles en géométrie 
confinée, en présence de matériaux granulaires immergés. En particulier, elle traite des propriétés 
des expériences rapportées par B. Sandnes et al., Patterns and flow in frictional fluid dynamics (Nat. 
Commun, 2, 288, 2011). Le résultat principal est un article qui introduit l'application de ces systèmes 
à la formation d'intrusions magmatiques. D'autres résultats consistent en deux schémas numériques 
qui peuvent simuler différents aspects de la dynamique, et en un ensemble de résultats théoriques 
qui permettent des prédictions quantitatives quand aux modes d'écoulement et de déformation de 
système bi-fluides/grains. 
  

 

Résumé en anglais 

This thesis is about properties of a two-phase flow system in a confined geometry, containing 
submerged granular material. In particular, it investigates properties of experiments reported in B. 
Sandnes et al., Patterns and flow in frictional fluid dynamics (Nat. Commun, 2, 288, 2011). The main 
result is a paper which introduces the application of these systems to the formation of magmatic 
intrusions. Other results are two numerical schemes which can be used to simulate different aspects 
of the dynamics, and a number of theoretical considerations which give quantitative predictions 
regarding features of the flow behavior. 
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Résumé des contributions scientifiques

Ma thèse débute par une introduction générale de la problématique. Les chapitres 

suivants correspondent à des articles publiés ou soumis dans des revues internationales de 

rang A.

Ci-dessous suivent les résumés des articles scientifiques qui constituent cette thèse. Des 

commentaires sur ma propre participation à ces différents projets sont en italique.

Article 1/ Chapitre 1: Numerical approach to frictional fingers

J.A. Eriksen, R. Toussaint, K.J. Måløy, E.G. Flekkøy, et B. Sandnes,

en cours de review, Phys. Rev. E

Cet article présente une nouvelle stratégie pour simuler des doigts frictionnels dans la 

dynamique d’interfaces dans des systèmes granulaires/bifluides. Il se fonde sur une 

approche précédente développée par Henning Knudsen [32], mais surmonte une 

limitation inhérente en représentant le front granulaire comme un champ de densité en 

deux dimensions, plutôt que comme une quantité co-mobile avec l’interface. La stratégie 

de simulation permet de simuler les doigts à un niveau supérieur de fraction solide, ce qui 

est essentiel pour les simulations présentées dans l’article 2. En outre, le document 

comprend une description claire et détaillée de la la géométrie de l'état d'équilibre d'un 

front le long d’un doigt isolé . Bien que cet argument soit parallèle à l'argument présenté 

dans [32], il contient une correction à l'état stable de la relation entre l'épaisseur du front 

et la courbure à l'extrémité du doigt. Le document considère comme loi de frottement 

statique un comportement qui varie linéairement avec l'épaisseur du front, plutôt que la 

loi de frottement plus compliquée sur la base de l'hypothèse utilisée par Janssen [32]. La 

loi linéaire peut être considérée comme une linéarisation d'un comportement plus 

compliqué de la contrainte par rapport à l'épaisseur du front (voir par exemple [3] ou 

l’article 3), et est validée par la comparaison entre la prédiction théorique de la largeur de 

doigt et les observations expérimentales, pour les gammes de paramètres qui sont 

considérées. Cette comparaison permet également la détermination du coefficient linéaire 

nécessaire dans la loi de frottement.

Je suis le principal contributeur au développement et à la mise en œuvre du schéma 

numérique, aux arguments théoriques sur l’état d’équilibre et la croissance du doigt et à 

l'écriture de cet article, tout en bénéficiant des commentaires et corrections des co-

auteurs.

Article 2 / Chapitre 2: Model of finger formation at the tip of propagating dykes

J.A. Eriksen, R. Toussaint, K.J. Måløy, E.G. Flekkøy et B. Sandnes,

soumis



Dans cet article, nous présentons des expériences et des simulations de croissance de 

digitation frictionnelle sous gravité dans une cellule inclinée. Nous élaborons des mesures 

expérimentales, simulations et théories sur la façon dont ce système explique les motifs 

qui se émergent naturellement dans les premiers stades de la formation de dykes, lorsque 

le magma déplace la roche en fusion et accumule des grains de minéraux solides grains à 

l'interface. Comme l'air est plus léger que le liquide dans les expériences, la gravitation 

agit pour stabiliser la frontière air-liquide se déplaçant vers le bas, l’air étant au dessus. 

Les doigts ont tendance à s’aligner et à croître en parallèle, et un diagramme de phase du 

comportement observé expérimentalement et numériquement est tracé, en fonction de 

l’angle d'inclinaison et du remplissage solide. Nous identifions une transition d’un 

alignement vertical vers un alignement horizontal des doigts, à savoir un passage de 

croissance parallèle à une croissance transversale par rapport à l’écoulement moyen. 

Nous donnons en outre une argumentation théorique sur la base des variations de la limite 

plastique du front, ce qui explique qualitativement la transition. 

On note que l'argument théorique de la transition du comportement d'alignement repose 

sur un calcul de la largeur d'un doigt qui dévie de celle utilisée dans le Chapitre 1. Bien 

que l'argument du Chapitre 1 soit plus détaillée en termes de la géométrie du doigt, les 

hypothèses sous-jacentes ne sont pas nécessairement valable pour les doigts en 

compétition dans un champ gravitationnel. L'argumentation présentée ici est plus simple, 

et ne sert qu'à donner à la largeur du doigt la dépendance fonctionnelle sur la fraction de 

remplissage. Il est basé sur une hypothèse de minimisation du travail effectué plutôt que 

sur une croissance du doigt à l'état d'équilibre des forces. Les deux résultats sont en 

accord en ce qui concerne la forme fonctionnelle de la fraction solide à l’ordre dominant 

(comparer les équations. 15 et 16 de l’article 1, avec l’Eq. 5 de l’article 2).

Ma principale contribution à cet article est le travail qui sous-tend les simulations,

et l'argument théorique qui donne l'explication qualitative pour la transition. Je suis 

aussi le principal contributeur à la rédaction du document.

Article 3 / Chapitre 3: Bubbles breaking the wall: Two-dimensional stress and sta-

bility analysis

J.A. Eriksen, B. Marks, B. et R. Sandnes Toussaint,

Physical Review E 91, 052204 (2015), sélectionné comme “Editor’s suggestion” 

Cet article propose une extension à deux dimensions du modèle de frottement du front 

introduit dans [32]. Le modèle étendu comprend les effets des contraintes dirigées 

tangentiellement par rapport à l'interface, ce qui est nécessaire pour la cohérence logique 

du cadre théorique, en particulier lorsque l’on décrit les contraintes dans les segments de 

fronts fortement courbés. Nous discutons les aspects du comportement de frottement qui 

sont potentiellement importants pour les oscillations en  « stick-slip » lors du 

comportement des bulles (voir le diagramme de phase en Fig. 1.7 ), en particulier en 

montrant comment le coefficient de Janssen - qui donne la relation linéaire entre les 



contraintes dans la direction normale et tangentielle par rapport à l'interface - peut 

dépendre de la courbure. Nous soutenons que ces effets sont importants pour les 

segments de fronts très courbes qui relient les différentes bulles.

Nous décrivons aussi la présence d'ondulations le long de l'interface des bulles en stick-

slip. Nous montrons que la longueur caractéristique de ces ondulations est compatible 

avec les longueurs d'onde les plus instables d'une analyse linéaire de la stabilité du 

modèle de friction.

L'extension du modèle théorique a été développée par moi-même en étroite collaboration

avec Renaud Toussaint. J’ai développé l'analyse de stabilité linéaire,

et fut le principal contributeur à l’écriture de cet article.

Chapitre 4 / Article 4: article en cours d’écriture : Phase field approach to viscous 

fronts

J.A. Eriksen, L. Cueto-Felgueroso and R. Juanes,

Manuscrit non encore soumis 

Cet article présente un modèle de champ de phase du front visqueux qui capture la 

tension de surface effective de l’interface, le comportement visqueux du front et la 

croissance du front due à l’accumulation de nouveaux grains. Le modèle cherche à 

décrire les éléments du comportement observé dans les structures en coraux représentées 

sur le diagramme de phase de la figure 1.7 (front visqueux), où des instabilités de 

digitation se développent à l’intérieur du front mobile.

Nous présentons également une simulation préliminaire de modèle de champ de phase, 

qui fournit une démonstration de faisabilité (une validation de concept). Je n’ai 

malheureusement pas trouvé le temps d’amener les résultats de cet article sous la forme 

d’un article prêt à être soumis durant le cours de mes recherches. Cependant, la version 

actuelle de cet article présente un medèle théorique complet des fronts visqueux, et donc 

un résultat que je souhaite présenter dans cette thèse. Une étude numérique complète des 

équations du modèle sont laissées pour des travaux futurs.

Le modèle a été développé par moi même, en étroite collaboration avec Luis

Cueto-Felgueroso et Ruben Juanes.
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Preface

This thesis is about properties of a two-phase flow system in a confined geometry, containing
submerged granular material. In particular, it investigates properties of experiments reported in
B. Sandnes et al., Patterns and flow in frictional fluid dynamics [1]. The main result is a paper
which introduces the application of these systems to the formation of magmatic intrusions.
Other results are two numerical schemes which can be used to simulate different aspects of
the dynamics, and a number of theoretical considerations which give quantitative predictions
regarding features of the flow behavior.

The underlying work was done between 2011 and 2015, at various institutions. Most of the
work was done at the AMCS group at the University of Oslo (UiO). I spent the year of 2013
at Juanes Research Group at Massachusetts Institute of Technology (MIT), and ten months of
2014 at the Institut de Physique du Globe de Strasbourg, at Université de Strasbourg (Unistra).

Eirik Grude Flekkøy and Knut Jørgen Måløy were my supervisors at UiO, and Renaud Toussaint
was my supervisor at Unistra. Bjørnar Sandnes (Swansea University), Benjy Marks (UiO), Luis
Cueto-Felgueroso (MIT) and Ruben Juanes (MIT) have also contributed to various parts of the
scientific work.

The research was funded by the Norwegian Research Council through Climit Project No. 200041,
with some additional funding from the AMCS group and the Department of Physics at UiO. The
time at Unistra was funded by Campus France through the Eiffel Grant.

In addition to the scientific papers which compromise this thesis, I have also contributed to two
other papers during my PhD studies. Both these papers discuss aspects of the experimental
system in question. First, B. Sandnes et al., The shifting shapes of frictional fluids [2], gives
a general discussion of the observed flow morphologies in the experimental setup. Second,
B. Marks et al., Compaction of granular material inside confined geometries [3], discusses
micro-mechanic aspects of a jammed plug of beads between two plates. I have, however, chosen
not to include these papers, as I want to limit the scope of this thesis to the work in which I have
been the main contributor.

The thesis is structured as follows: Chapter 1 provides an introduction to the thesis, in particular
to the experimental system in question. Chapter 2 summarizes the scientific papers, and Chapter
3 highlights the main findings. Four scientific papers are included in Chapter 4.

Jon Alm Eriksen, June 2015
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Chapter 1

Introduction

A remarkable feature of many non-equilibrium systems, is their tendency to form patterns of
regularity. These systems are driven towards an intermediate state, between perfect order and
maximal disorder. Classical examples include the nucleation of supercooled droplets in clouds,
which results in the intricate symmetrical shapes of snowflakes, and constantly replicating bi-
ological matter, which by the wonders of evolution, can form regular stripes on the back of a
zebra. The patterns can manifest themselves in a multitude of different ways. Some patterns
develop at a scale which is much bigger than the size of its individual components. A Tsunami
wave can extend for thousands of kilometers, while its constituents–the water molecules–have
an approximate diameter of a couple of Ångströms (a scale ratio of 1016!). Yet, other patterns
form without any definite scale, like the dendritic shape of river networks and the self-similar
structures of lightning paths and mountain range profiles. Patterns in nature are abundant; they
are wherever you look.

The pattern geometry and dynamics can often be described by mathematics. This may be done
either by analytic means, or by numerical schemes if the equations are too intricate. By properly
accounting for the relevant underlying physical mechanisms, we can make quantitative predic-
tions about the emerging structures. Sometimes, the pattern forming process ceases to evolve,
and the intermediate pattern geometry freezes in time. The mathematical models can be used to
infer what physical mechanisms caused the frozen pattern to form, and thereby give a glimpse
of a distant past. For example, a smooth wavy texture on a rock face found in the desert, can
indicate the previous presence of flowing water.

Granular material are prone to form patterns, as exemplified by ripples on the beach and sand
dunes. A reason for this is that the grains are too large to respond to thermal agitation. Frictional
forces in a pile of grains prevent the packing configuration from reaching an energetic ground
state; the packing can remain static in a large variety of meta-stable states.

This thesis explores patterns which can form in confined systems where grains are displaced
by a fluid interface. As an immiscible fluid invades the system, the interface which separated
the phases, is able to bulldoze a layer of beads which are submerged in the defending fluid.
The interplay between the capillary forces of the interface, and the frictional forces of the com-
pacted beads will result in a number of qualitatively different patterns, some of which share a
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Figure 1.1: Schematic illustration of a rectangular Hele-Shaw cell setup. (a) Top view of the
cell, illustrating the relevant dimensions. (b) Air is injected through an injection point at the
short end of the cell at constant rate (q) by means of a syringe pump. The opposite end is open
to the atmosphere. (c) Up-close view of a cross section of the cell at the air/liquid interface.
The cell is initially filled with a layer of beads submerged in a viscous liquid. The height of the
initial layer, relative to the cell gap (h) is denoted by φ. The cell gap is fixed at h = 0.05 cm,
and the beads have an average diameter of ≃ 100 µm. The invading interface bulldozes up a
region of packed grains in the gap between the plates. This packed region is referred to as the
front and is characterized by a thickness L.

remarkable similarity with patterns found in geological settings. We seek to understand how
these patterns come about. To this end, we will model the pattern behavior and characterize its
features, in the scientific papers which compromise this thesis.

1.1 Quasi two-dimensional flow

The main scientific contribution presented in this thesis is in the form of theoretical considera-

tions and numerical simulations, and not in the form of experimental results. Nevertheless, the

common thread is patterns which do occur in a specific experimental setup. We will therefore

spend some time explaining the historical development and the details of these experiments.

The Hele-Shaw cell, named in honor of Henry Selby Hele-Shaw (1854–1941), is an experimen-
tal setup for studying quasi two-dimensional fluid flow. It consists of two parallel glass plates,
separated by a small distance (h), which confine the fluid. The transparency of the glass plates
makes the cell an ideal setup for visualizing different flow phenomena. The cell is typically
either rectangular or circular; an example of a rectangular cell with an injection point at the side
is shown in Figs. 1.1a and 1.1b. When a liquid is flowing between the plates at a given average
velocity, the Reynolds number which characterizes the flow1 scales with the plate separation.
The flow becomes creeping in the limit of small Reynolds number. In this limit, we can ne-

1The Reynolds number Re is defined to be the ratio between inertial and viscous forces in a flow system,
Re = ρV 2L2/(µV L) = ρV L/µ, where V is the characteristic velocity, L is the characteristic linear size of the
system, µ is the viscosity and ρ the density. Using these quantities, we can express the Navier-Stokes equation for
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glect the non-linear advection term, and the time derivative in the Navier-Stokes equation. The
governing simplified equation–the Stokes equation–is linear, and much simpler to handle. The
flow in the Hele-Shaw cell can therefore be made creeping by choosing a sufficiently small cell
spacing. Moreover, if we consider the height averaged velocity U of an incompressible fluid,
the governing equations take a particularly simple form,

U = −
h2

12µ
(∇p− ρg) , (1.2)

0 = ∇ · U, (1.3)

where µ is the viscosity, p is the pressure, ρ is the density and g the gravitational acceleration
vector. When the cell is placed in the horizontal plane we can neglect the ρg term in Eq. (1.2).
If we interpret U as a fluid discharge per unit area, and h2/12 as the permeability of the cell,
Eq. (1.2) is of the same form as Henry Darcy’s phenomenological equation for describing flow
in a porous media [4], and for that reason Eq. (1.2) is often referred to simply as Darcy’s
equation.

There is a long history of experiments done with this setup, following Hele-Shaw’s own seminal
work [5, 6]. A particularly interesting flow phenomena was investigated by Philip Geoffrey
Saffman and Sir Geoffrey Ingram Taylor (1958). They studied how immiscible fluids–i.e. fluids
that do not mix–behave in the cell. They identified an interfacial instability, the Saffman-Taylor
instability, which occurs when one fluid displaces the other [7], such that the displacing–or
invading–fluid has a lower viscosity than the displaced–or defending–fluid. In that case, the fluid
interface becomes unstable, and the displacing fluid develops finger structures which penetrate
into the high viscosity fluid. The fingers are often referred to as viscous fingers. The underlying
instability has fostered an extensive literature of research papers; review papers can be found in
Refs. [8, 9, 10, 11].

The Hele-Shaw cell has also proven to be an excellent setup for studying relevant aspects of
flow behavior in porous media. If the Hele-Shaw cell is packed with beads, such that the beads
are unable to move in between the plates, the cell becomes a model system of a porous medium.
We will in the following discuss systems where the defending fluid are wetting the beads and
the glass plates. Flow phenomena under these circumstances are referred to as drainage, as
opposed to imbibition where the adhesive forces act to spread out the invading fluid onto the
beads, i.e. the invading fluid is wetting the beads and the glass plates. The presence of beads
during drainage modifies the viscous fingering behavior dramatically; the interface of the fingers
turn out to have fractal properties2 [15, 16, 17]. Moreover, the modification of the setup sets

an incompressible fluid in a non-dimensional form,

Re

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+∇
2u, ∇ · u = 0, (1.1)

where the pressure p is expressed in units of µV/L. Note that the second term on the left hand side is non-linear,
and makes the equations very hard to solve in general. This term is referred to as the advection term.

2The interface of a viscous finger in a cell without beads can also develop fractal structures [12, 13, 14], but
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the stage for a new two-phase flow phenomenon of flow dominated by capillary forces. If
the invading fluid is injected slowly, the viscous forces can be neglected. The dynamics of
the invasion are determined by the wetting properties of the beads, and the surface stresses
at the air/liquid menisci in the void space between the beads. The resulting structures–the
capillary fingers–have no well defined tip nor sense of direction. The invading flow follows the
path of least resistance in terms of capillary forces and percolates through the porous matrix.
The resulting patterns consist of connected clusters of the invading fluid and trapped pockets
of the defending fluid [18, 19]. The evolving pattern can be stabilized [20] or destabilized
[21] by gravity, depending on the density difference of the different fluids and the tilting angle
of the Hele-Shaw cell. If we reduce the packing fraction of beads, and allow the beads to
rearrange during the experiment, yet new phenomena are observed, for example fracturing in
the granular matrix [1, 22, 23, 24, 25], fingers which develop as the grains are compacted [26]
or decompacted [27, 28] and destabilized viscous fingers in suspensions with density matched
beads [29, 30].

This line of research has motivated further studies of flow phenomena at low bead packing frac-
tion. This would be systems where the displaced fluid contains mobile beads. Another motiva-
tion for considering this setup is the application of flow in sheet-like confinement in geological
settings. Geological formations are often fractured; granular material and other heterogeneities
are likely to be present in the crack openings. The flows of oil, groundwater, injected CO2 and
magma tend to concentrate in these confined spaces, as they have a much higher permeability
than the surrounding host rock. The understanding of the flow in these systems have obvious
industrial applications as well as academic interests. We will see below that the presence of
heterogeneities in a Hele-Shaw cell, in the form of mobile granular particles, can have a pro-
found impact on the flow properties. An application of this system to the formation of magmatic
intrusions in fractures, is also presented later in this thesis (Paper 2).

1.2 Frictional fingers enter the stage

We will in the rest of this thesis focus on liquid mixtures containing wetting beads which are
denser than the liquid, such that the beads make up a layer of sedimented–but mobile–beads at
the bottom plate of the Hele-Shaw cell, as shown in Fig. 1.1c. This system was first studied
by Bjørnar Sandnes, Henning Knudsen, Knut Jørgen Måløy and Eirik Flekkøy [31, 32]. The
study revealed the development of granular labyrinth patterns which are shown in Figs. 1.2 and
1.3. The experimental setup they used deviates slightly from the one presented in Figs. 1.1a and
1.1b. Their cell was circular rather than rectangular, and the liquid was drained out of a central
outlet point. The emerging structures are similar regardless of these differences.

The rate at which the liquid is drained is very low (q = 0.01 ml/min), and each experiment may
last more than a day. The height of the initial layer of sedimented beads, relative to the cell
gap will in the following be denoted by φ and referred to as the (normalized) filling fraction of

to the best of the author’s knowledge, this has only been observed with carefully selected non-Newtonian fluids,
i.e. fluids where the viscosity is a varying parameter.
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Figure 1.2: Time sequence of the evolution of the frictional fingers in a circular Hele-Shaw
cell. The cell is drained from a central outlet, and air is invading from the sides. The cell is
imaged on a black background, and the black structures are identified as the invading air. The
dimensions of each picture frame are 40 × 40 cm, and the cell spacing is 0.4 mm. The figure is
taken from Ref. [31].

φ = 0.03 φ = 0.07 φ = 0.1 φ = 0.2 φ = 0.3

Figure 1.3: The fully developed labyrinth patterns of the evolution shown in Fig. 1.2, for dif-
ferent values of the initial filling fraction φ. The top row shows experimental results, which are
compared to the simulations in the bottom row. The white regions of the simulations represent
the air. The simulations reproduce the structures, in particular the reduced characteristic finger
width for increasing values of φ. All experiments were conducted with a plate spacing of 0.4
mm. The figure was originally presented in Ref. [31].
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Figure 1.4: Close up image of a branching frictional finger which grows in the experimental
setup shown in Fig. 1.1, as seen from the top of the cell. The red dashed line follows the
air/liquid interface. Along this line we can identify a curvature, κ = 1/R, where R is the radius
of curvature. The curvature (κ) takes negative values if the radius can be drawn towards the
liquid phase. We can also identify a front thickness (L) along the interface, except where the
interface is stagnant. The interface leaves a tiny layer of beads behind after each incremental
displacement. These layers are seen as dark regions in the air phase, some of which are indicated
by black dashed lines. The contrast within the air phase has been artificially enhanced to show
these structures. The frictional fingers are similar to the fingers seen in the labyrinth structures
(Fig. 1.2), but are here imaged with a white background.

the cell3. As air enters from the outer rim of the cell, the air/liquid interface bulldozes up the
sedimented beads and forms an accumulated compacted layer of beads adjacent to the interface.
This layer will in the following be referred to as the front, and it will be characterized by a
thickness (L). The cross section shown in Fig. 1.1c illustrates this front as seen from the side.
We can also characterize the air/liquid interface by an effective in-plane curvature (κ) averaged
over a number of menisci along the interface. This curvature describes the large scale geometry,
as the interface appears visually in Figs. 1.2 and 1.3. As the interface evolves, finger structures
develop. These structures are labeled frictional fingers and depend on the static frictional forces
in the front and the effective large scale surface forces, rather than the viscous forces of the
displaced liquid or the capillary forces between the beads. The nature of these mechanisms will
be described in the following paragraphs. An example of a frictional finger, as it grows in the
experimental setup of Fig. 1.1, is shown in Fig. 1.4. When a finger moves towards the interface
of a different section along the finger structures, the fronts combine into a stagnant region of
beads, as illustrated in Fig. 1.4. As the cell is drained, neighboring fingers grow closer, and a
larger fraction of the interface becomes stagnant. When the cell is fully drained, the stagnant
residual front forms a pattern of labyrinth structures in the cell.

The dynamics of the system consist of incremental stick-slip displacements which are confined
to small sections of the interface. The motion is always directed towards the liquid phase and

3Note that φ is also commonly used to denote the packing fraction of a granular material, which might cause
some confusion. We will neglect variations in the packing fraction throughout this thesis; we assume that both
the sedimented layer, and the front, have a constant packing fraction probably close to that of a poured random
packing ≃ 0.6. This is verified in [3]. We will consistently use φ as the initial normalized filling fraction. If the
cell is completely filled with beads, we have φ = 1, and if the sedimented layer fills half the cell gap, we have
φ = 0.5, while the packing fraction takes a value close to 0.6 in both cases.
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a moving section of the interface continues its motion over many consecutive stick-slip events,
before it eventually stops and the motion continues at another section. When the whole inter-
face remains static, the pressure drop over the menisci between the beads at the interface, i.e. the
capillary pressure (∆p) is increasing steadily as the liquid is drained from the cell. The increas-
ing capillary pressure is balanced by the frictional stresses in the bead packing of the front. We
can assign a yield threshold to every section of the interface, above which a local section of the
interface yields and moves an infinitesimal amount towards the liquid phase. This threshold is
the sum of the yield stress of the bead packing, σY , and the effective surface tension of the large
scale features of the interface, γκ, where γ is the effective surface tension, i.e.

∆p > γκ+ σY . (1.4)

As the interface slips, the capillary pressure decreases, and the motion stops after a tiny displace-
ment. New beads are accumulated onto the front during the displacement; the front thickness
changes by a combination of stretching of the interface and the accumulation of new beads. The
deformation of the front and the interface, alters the local yield stress which may change the
location of the next moving section.

We will elaborate on both terms on the right hand side of Eq. (1.4) in subsection 1.4. For now,
we will simply note that the right hand side varies locally along the interface, whereas the left
hand side is a global quantity. This means that we can identify the next moving section of the
interface as the section which has local properties which minimize the right hand side. This is
the basic principle that the simulations in Fig. 1.3 are based on. The frictional fingers grow with
a characteristic width, as clearly seen in Fig. 1.4, which depends on the initial filling fraction
of beads (φ), as shown in Fig. 1.3. The characteristic width can be understood by analyzing
the interplay between σY and γκ [32]. The effective surface tension acts to widen the curved
finger tip, while the static friction opposes wide fingers since they accumulate a thicker granular
front. The characteristic width represents a balance between these two opposing effects. The
presence of a characteristic width, which is independent of the system size, is distinct from the
usual behavior of viscous fingers. The Saffman-Taylor instability in a rectangular Hele-Shaw
cell develops a steady-state finger with a width which depends on the width of the cell [7]. In
a porous matrix, viscous fingers are known to be fractal, and hence without any characteristic
size [15, 16].

1.3 A plethora of flow morphologies

The surprising structures revealed in the labyrinth experiment was only the tip of an iceberg in
terms of unexpected intriguing flow morphologies. Bjørnar Sandnes continued the experimental
study of the system in the setup shown in Fig. 1.1. As already discussed, the capillary pressure
over a configuration of beads at an air/liquid interface similar to the one shown in Fig. 1.1c,
can be increased either by decreasing the water pressure or by increasing the air pressure. This
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Figure 1.5: (a) A pV -diagram showing the isothermal compression paths of a gas starting at
atmospheric pressure patm and volume Vair, and ending at a critical pressure pc. The path is
drawn for two initial values of the air volume, V 1

air in red and V 2

air in blue. The black path
shows the analogous path for an incompressible fluid, following V = constant. The free energy
(Hermholtz) stored in the process, for each example, is indicated as the area under the path.
(b) A schematic idealization of the stick-slip cycle in a pV -diagram. During the pressure build
up, the path is following an isotherm. Directly after the slip, the volume is quickly expanding
such that we can neglect the heat exchange with the environment. The path is therefore initially
approximated by an adiabatic process, i.e. taking a steeper path than the isotherm. The area
enclosed by the full cycle corresponds to the heat loss in the syringe. The area under the path,
which follows the slip event, corresponds to the energy dissipated in the bead packing and the
surface energy needed to deform the interface.

can be done by the drainage of the liquid or by air injection into the cell, respectively. The new
experiments were carried out by the latter approach.

There is a subtle difference between the two procedures. Consider the compression of air in a
syringe pump connected to the air phase in the cell as shown in Fig. 1.1b, when the interface
remains stagnant. Let the air pressure be denoted by p, and the total air volume–in the cell and
in the pump–by V . We will assume that the compression rate (q) is small, such that the air
pressure will increase along an isotherm, i.e, along lines where pV = constant, as shown in
Fig. 1.5a. The pressure will increase until it reaches the critical threshold pc, above which the
weakest section of interface yields and moves towards the liquid phase. The critical pressure
corresponds to the capillary pressure, ∆p = pc − pliquid, when Eq. (1.4) is evaluated at equality
for the weakest section of the interface. The free energy (Hermholtz), which is stored in the air
phase as it is compressed, is increasing with the initial amount of air in the syringe pump. On
the other hand, the equation of state of an incompressible fluid is essentially, V = constant. No
free energy can be stored by the expansion of the liquid phase during drainage, simply because
the liquid does not expand. The injection of air, by the compression of a connected air reservoir,
thereby allow us to control the free energy of the slip events.

For each slip event, the stored energy in the syringe pump is transformed into a combination
of heat loss in the syringe, dissipation of energy in the deforming packing of beads and the
surface energy due to the deformation of the interface, as indicated in Fig 1.5b. A larger amount
of stored energy amplifies the stick-slip behavior of the frictional fingers. When we further
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Frictional Fingers

φ = 0.23

q = 0.02 ml/min

Vair = 30 ml

∆t ≃ 2 hours

Bubbles

φ = 0.58

q = 0.02 ml/min

Vair = 30 ml

∆t ≃ 1 hour

Viscous Front

φ = 0.58

q = 1.0 ml/min

Vair = 30 ml

∆t ≃ 1 minute

Figure 1.6: Each column shows a time series for a different mode of dynamics seen in the
experimental setup shown in Fig. 1.1. The time step ∆t indicates the time interval between
each frame. The dynamical modes were originally introduced in Ref. [1].
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increase the stored energy in the syringe, by either increasing the initial packing fraction of
beads, which leads to a larger pc, or the air volume in the syringe, we observe transition between
the finger behavior to a bubble type of dynamics, where each bubble corresponds to a single slip
event. The remaining pattern consists of a series of bubbles connected by thin channels of air.
Time series of experiments showing both frictional fingers and the bubble behavior is shown
in Fig. 1.6. The phase transition between the two modes of dynamics in the φVair-plane, is
described in [1].

By increasing the compression rate (q), it is possible to prevent the whole interface from stick-
ing, such that a large but confined section of the front is mobilized and evolves at all times. In
this mode of dynamics, the moving front behaves effectively as a dense suspension with a high
viscosity, as the presence of beads increases the energy dissipation in the flowing liquid. The
high viscosity contrast between the air and the fluidised front allows for viscous fingers of air to
penetrate into the front. These structures are eventually frozen in the cell, when the front stag-
nates locally and enters a sticking state. Oscillations in the air pressure results in alternations
in the branching behavior of the fingers. The process creates beautiful structures which almost
resembles corals, or some type of under water plant organism, where each branch is a frozen
viscous finger. A time series of the dynamics is also shown in Fig. 1.6.

The phase diagram shown in Fig. 1.7, illustrates where these structures fit into a larger landscape
of dynamical modes in the φq-plane. The phase boundaries are, however, only intended to be
’guides to the eye’; further investigations may reveal more structures. As an example of other
types of structures which can emerge in a similar experimental setup, consider the time series
presented in Fig. 1.8. This pattern is made with a bead mixture of many different sizes, which
apparently prevent the front from jamming. All the fingers in the periphery of the compact
pattern are moving simultaneously, and each finger seems to undergo tip splitting at regular
intervals. A finger will only stop its motion if it stagnates towards a neighboring finger. This
experiment displays a dynamics which is somewhat similar to the behavior seen in the fluidised
front, and develops also an organic looking pattern. This intriguing behavior further motivates
the study of the dynamics of viscous fronts, which will be discussed further in Paper 4.

1.4 The focus of this thesis: Action at the front

This thesis is focused on expanding the understanding of the three flow morphologies shown
in Fig. 1.6. Namely, the frictional fingers, the bubbles and the viscous front. The physics
underlying these patterning processes is largely confined to the front; the most important effects
can be identified as:

• The effective surface tension

• The friction properties of the front, either static or viscous

• The accumulation of new beads to the front

These effects deserve some more elaboration.
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Figure 1.7: Tentative phase diagram of morphologies for varying filling fractions (φ) and in-
jection rates (q). Fracturing occurs at φ > 0.9. The bottom of the y-axis, where − log φ takes
its lowest value, corresponds to a close-packed porous medium, i.e. φ ≃ 1. The scientific con-
tribution of this thesis focuses on the upper left section of this diagram, i.e. frictional fingers,
bubbles and viscous fronts. The phase diagram is presented and further discussed in Refs. [1, 2].
The picture of the capillary fingers, and the viscous fingers in the porous medium, is taken from
previous work done at the AMCS group at UiO [19, 33].
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Figure 1.8: Time series of a previous unpublished experiment done by Bjørnar Sandnes in the
experimental setup shown in Fig. 1.1. The cell is imaged on a black background; the black
fingers correspond to air. There is a thin front along the air interface, which is hard to identify
in the frames. The cell is initially filled with a mixture of beads of various sizes. The air
injection rate is q = 0.81 ml/min. The fingers grow simultaneously, and the beads in the front
do not jam. The height of each frame is 17 cm. The whole time series lasted approximately 10
minutes.
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a b
front front

air air

Figure 1.9: Schematic close up of the interface. The red dashed circle section indicates the
average position of the interface; its radius corresponds to the reciprocal of the average curvature
(κ). The air/liquid interface consists of menisci between the wetting beads, indicated by the
black dashed circles. The capillary pressure (∆p) is proportional to the curvature of the menisci
(i.e. inversely proportional to the radii of the black dashed circles), and independent of the large
scale curvature. (a) Low capillary pressure, the radius of curvature of the menisci are relatively
large. (b) High capillary pressure, the menisci are forced into the bead packing. The contact
angle between the fluid and the beads is assumed to be negligible in both (a) and (b). The
relative length scales between the radii of curvature and the bead diameters in the figure are
enhanced for illustrative purposes.

First, the surface tension at the interface acts at two different scales. At the small scale, the
interface makes bridges between wetting beads. Each point on a meniscus can be characterized
by two principal radii of curvature. By the Young–Laplace equation, the pressure drop over a
meniscus is proportional to the mean of the principal curvatures. This means that in a static con-
figuration, each menisci has the exact same mean curvature, up to differences in the hydrostatic
liquid potential, which we can ignore in a horizontally oriented cell. In the two-dimensional
schematic illustration of the interface, as shown in Fig. 1.9, this means that each menisci has
the same radius of curvature. For a frictional finger, there is no difference between the mean
curvature of a meniscus at the finger tip, and a meniscus along the finger side.

At a larger scale, we can identify a curvature which is averaged over several neighboring beads.
For our Hele-Shaw setup, the principle directions of the average curvature are the in-plane
and the out-of-plane directions with respect to the cell plane. We will disregard the curvature
component in the out-of-plane direction of the cell, i.e. the curvature of the interface as it is
illustrated in the cross section in Fig. 1.1b. The surface stresses related to this component are
constant along the in-plane direction of the interface, and does, at our level of description, only
contribute to a constant global pressure drop.

The averaged, in-plane, curvature of the interface will be denoted by κ and appears to us as the
apparent curvature of the air interface in the top view of the cell. When we average over many
neighboring beads, we can also identify an average air/liquid surface area. This area scales with
the number of menisci, and therefore linearly with the apparent area of the interface, i.e. appar-
ent in the sense that we ignore the convoluted nature of the small scale menisci. Fluctuations
in the capillary pressure may modify the the total area, as the total geometry of the menisci
depend on the capillary pressure; compare the air/liquid interface in Fig. 1.9a and 1.9b. The
changes in the surface area induced by an increasing capillary pressure, may, however, increase
or decrease depending on the bead/liquid contact angle and the distance between neighboring
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beads. The total change in area is, therefore, likely to be a sum of many small positive and
negative contributions, and the net effect is assumed to be negligible. We will throughout this
thesis ignore these variations, and assume that an average surface energy which scales with the
apparent surface area, is an appropriate description of the interface.

The presence of an average surface energy can be characterized by an effective surface tension
γ [32]. The effective tension acts against the increase of the apparent interface area, during
the displacement process. This effect is incorporated in our model of the finger dynamics by
including the effective pressure difference, γκ, to the criteria for the yield pressure, which
explains why we included the effective surface tension in Eq. (1.4).

Second, when we described the yield capillary threshold, for a static front configuration in
Eq. (1.4), we also included the frictional properties of the front in terms of the bead stress σY .
To be precises, this is the yield treshold of the effective bead stress, acting normal to the plane
which approximate the air/liquid interface. This quantity was, in the previous work of Henning
Knudsen et al. [32], assumed to be an exponentially increasing function of the front thickness.
This was justified by considering a model for stesses in packings of grains, namely the Janssen
model which assumes a linear relationship between the principal stresses in the packing, in
conjunction with the static Coloumb frictional stresses at the plate boundaries of the cell. In the
following, we will describe this yield stress, σY , in various levels of details, taking into account
the local parameters such as L and κ, the effects of tangential stresses (Paper 3).

When a section of the front is mobilized, we will either assume that the interface moves an
infinitesimal distance, in the case of the frictional fingers, or, in the case of the viscous front,
assign an effective viscosity to the front, and thereby approximate the frictional behavior as a
Newtonian fluid.

Third, the front accumulates new beads as the air phase displace the liquid. To illustrate the
accumulation, consider a flat interface, with an initially constant front thickness, L. Let the
whole interface move a distance ∆, towards the liquid phase. Mass conservation of the beads
dictates that the front thickness changes as,

L → L+∆
φ

1− φ
, (1.5)

i.e. the accumulation rate can be described by the initial filling fraction φ. The behavior is,
however, considerably more complicated if the interface is curved and stretching as it moves.
The local front thickness of a moving interface can either increase or decrease depending on the
geometry.

The three effects, which we have discussed above, are recurrent themes of this thesis. Any
numerical scheme which aims at simulating the patterns, or theoretical model which seeks to
describe the dynamics, need to faithfully account for all three effects. We will in the following,
explore new numerical methods and make headway in the theoretical understanding of how the
patterns are formed.
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We will start off by introducing a numerical scheme for simulation of the frictional finger struc-
tures, in Paper 1. This paper will also provide new theoretical results. The numerical scheme
will be crucial for Paper 2, where we investigate how frictional fingers grow under the influence
of gravity, in particular how gravity can stabilize the finger growth. We will also use this system
as a model system for finger structures which are found on certain remaining dyke walls4 in
the Israeli desert. In Paper 3, we switch gears, and investigate the static stresses in the front in
the bubble regime, and the stability properties of the front. In Paper 4, we turn our focus to the
viscous front regime. Motivated by the Viscous Front structures in Fig. 1.6, and the patterns
in Fig. 1.8, we propose a numerical scheme for simulating the viscous front. Taken together
we aim to expand the understanding of the patterns from the top left part of the phase diagram
Fig. 1.7. By the end of this thesis, we hope to convince the reader that we have, indeed, made
progress towards this goal.

4A (magmatic) dyke is what geologist call an approximately two-dimensional sheet like body of magma, which
has penetrated a pre-existing body of rock in a direction which is perpendicular to the bedding planes (i.e. the
planes of the sediments). If the geologist happens to be American she might call it a dike instead. Dykes (or
dikes) grow with a vertical component, as opposed to intrusions which form in the horizontal plane, parallel to the
bedding planes. They are called sills.

17





Chapter 2

A Guide to the Scientific Contributions

Below follows summaries of the scientific papers which constitute this thesis. Comments on my

own involvement in the different projects are written in italics.

Paper 1: Numerical approach to frictional fingers

J.A. Eriksen, R. Toussaint, K.J. Måløy, E.G. Flekkøy, and B. Sandnes,
in review, Phys. Rev. E

This paper introduces a new strategy for simulating frictional fingers. It builds on a previ-
ous approach developed by Henning Knudsen [32], but overcomes an inherent limitation
by representing the granular front as a two dimensional density field, rather than a co-
moving quantity of the interface. The simulation strategy allows for simulating fingers
at a higher filling fraction, which is essential for the simulations presented in Paper 2.
Moreover, the paper includes a clear and detailed description of the steady state geometry
of a front of the single finger. While this argument runs parallel to the argument presented
in [32], it contains a correction to the steady state condition of the relationship between
the front thickness and the curvature at the finger tip. The paper considers static friction
behavior which scales linearly with the front thickness, rather than the more complicated
friction law based on the Janssen assumption used in [32]. The linear law can be viewed
as a linearization of a more complicated stress behavior with respect to the front thick-
ness (see e.g. [3] or Papers 3), and is validated by the comparison between the theoretical
prediction of the finger width and the experimental observations, for the ranges of param-
eters which are considered. This comparison also allows the determination of the linear
coefficient needed in the friction law.

I was the main contributor to the development and the implementation of the numerical

scheme, the theoretical arguments of the steady state finger growth and the writing of this

paper, while benefiting from comments and corrections from the co-authors.
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Paper 2: Model of finger formation at the tip of propagating dykes

J.A. Eriksen, R. Toussaint, K.J. Måløy, E.G. Flekkøy, and B. Sandnes,
submitted

In this paper we present experiments and simulations of downward frictional finger growth
in a tilted cell. We elaborate on how this system explains patterns that emerge naturally
in early stages of dyke formations, when magma displaces molten rocks and accumulates
hard mineral grains at the interface. As the air is lighter than the liquid, the gravitational
potential acts to stabilize the air-liquid boundary. The fingers tend to align and grow
in parallel, and a phase diagram of the experimentally and numerically observed flow
behavior is mapped out, as the tilting angle and the filling fraction is varied. We iden-
tify a transition from vertical to horizontal alignment of the fingers, i.e. a transition from
parallel to transverse growth with respect to the average flow. We further give a theoret-
ical argument based on the variations in the yield stress of the front, which qualitatively
explains the transition.

Note that the theoretical argument about the transition of alignment behavior relies on
a derivation of the finger width, which deviates from that used in Paper 1. While the
argument of Paper 1, is more detailed in terms of the finger geometry, the underlying
assumptions are not necessarily valid for competing fingers in a gravitational field. The
argument presented here is simpler, and serves only to give the functional finger width
dependence on the filling fraction. It is based on a minimal work assumption rather than
a steady state finger growth. Both results agree with respect to the functional form of
the filling fraction dependence to leading order (compare Eqs. 15 and 16 in Paper 1, with
Eq. 5 in Paper 2).

My main contribution to this paper is the work underlying the simulations, and the theo-

retical argument which gives the qualitative explanation for the transition. I was also the

main contributor in the writing of the paper.

Paper 3: Bubbles breaking the wall: Two-dimensional stress and stability analysis

J.A. Eriksen, B. Marks, B. Sandnes and R. Toussaint,
Physical Review E 91, 052204 (2015), selected as “Editors’ Suggestion”

This paper proposes a two-dimensional extension of the friction model of the front, intro-
duced in [32]. The extended model includes the effects of stresses directed tangentially to
the interface, which is necessary for the logical consistency of the theoretical framework,
especially when describing the stresses in curved front segments. We discuss aspects of
the friction behavior which are potentially important for the stick-slip bubble behavior
(see the phase diagram in Fig. 1.7), in particular how the Janssen coefficient–which gives
the linear relationship between stresses in the normal and tangential direction relative to
the interface–may depend on the curvature. We argue that these effects are important at
the highly curved front segments which connect the different bubbles.

We also describe the presence of undulations along the interface of the stick-slip bubbles.
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We show that the characteristic length of these undulations is consistent with the most
unstable wavelengths of a linear stability analysis of the friction model.

The extension of the theoretical model was developed by myself in close collaboration

with Renaud Toussaint. I developed the linear stability analysis, and was the main con-

tributor to the writing of the paper.

Paper 4: Working paper: Phase field approach to viscous fronts

J.A. Eriksen, L. Cueto-Felgueroso and R. Juanes,
unpublished manuscript

This paper presents a phase field model of the viscous front, which captures the effective
surface tension of the interface, the viscous behavior of the front and the front growth due
to the accumulation of new beads. The model seeks to describe elements of the behavior
seen in the coral structures shown in the phase diagram in Fig. 1.7 (viscous front), where
a fingering instability develops within the moving front. We also present a preliminary
simulation of the phase field model, which provides a proof of concept.

I have, regrettably, not found time to bring the results of this paper to a form of a pub-

lishable paper, during the course of my research. Yet, the current version of this paper

presents a complete theoretical model for the viscous fronts, and therefore a result I wish

to present in this thesis. A thorough numerical study of the model equations will be left

for future work. The model has been developed by myself in close collaboration with Luis

Cueto-Felgueroso and Ruben Juanes.
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Chapter 3

Concluding remarks

It is easy to identify Paper 2 as a highlight among the scientific contributions presented in this
thesis. Especially since the paper discusses a real world application of the experimental system
which has been the common thread of thesis, and combines theory, experiments and simulations
in a coherent description of the system. Novel scientific ideas can, however, be found in all the
papers, and we can place the main results, in two categories.

First, we have introduced two methods for studying the system numerically:

• We have constructed a new numerical strategy for simulating the incremental displace-
ments of a jammed front (Paper 1). This method couples the grain field to the interface,
and was successfully utilized to simulate the behaviour of frictional fingers stabilized by
gravity in a tilted cell (Paper 2).

• We have developed a phase field model which will allow for the simulation of the dynam-
ics of viscous fronts (Paper 4).

Second, we have presented a number of new theoretical results:

• We have presented a new derivation of the characteristic finger width of a frictional fin-
ger (Paper 1), which improves upon previous work [32]. Using this theory, we have
also shown that a linearization of the front length dependence in the yield threshold, is
sufficient to account for the frictional finger behavior.

• We have developed a minimum work argument (Paper 2), which is complimentary to the
result listed above, and agrees to first order.

• We have constructed an argument which explains the observed transition between verti-
cally and horizontally aligned fingers (Paper 2).

• We have expanded the yield stress model of the front to account for the stresses in the
tangential direction with respect to the interface (Paper 3).

• We have developed a stability analysis which predicts an unstable wave length along the
interface of an air bubble [Fig. 1.7]. The predicted wave length is consistent with the
experimental observation (Paper 3).
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A path for future research, is to continue to investigate the numerical behavior of the phase
field model, introduced in Paper 4. To what extent this model can describe the viscous front
structures in Fig. 1.6 and the similar related patterns in Fig. 1.8, remains an open question, but
the preliminary simulation presented at the end of Paper 4 is promising.

A more ambitious continuation of the results of this thesis, is to construct a model for simulating
the bubble dynamics shown in Fig. 1.6. A natural starting point would be to combine the
discretization scheme of Paper 1 and the stress model in Paper 3. A numerical approach to the
bubble dynamics would, however, also need to describe the dynamic state at a higher level of
detail. In the simulations of the frictional fingers, this is simply achieved by assuming a small
but constant displacement at the weakest section of the interface. In the case of the bubble
regime one would also need to account for the viscous dynamics during the expansion of a
bubble, and to introduce a valid criterion for going from a slipping to a sticking state.
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Experiments on confined two-phase flow systems, involving air and a dense suspension, have
revealed a diverse set of flow morphologies. As the air displaces the suspension, the beads that
make up the suspension can accumulate along the interface. The dynamics can generate “frictional
fingers” of air coated by densely packed grains. We present here a simplified model for the dynamics
together with a new numerical strategy for simulating the frictional finger behavior. The model is
based on a yield stress criterion of the interface. The discretization scheme allows for simulating
a larger range of structures than previous approaches. We further make theoretical predictions for
the characteristic width associated to the frictional fingers, based on the yield stress criterion, and
compare these to experimental results. The agreement between theory and experiments validates
our model and allows us to estimate the unknown parameter in the yield stress criterion, which we
use in the simulations.

I. INTRODUCTION

Petroleum reservoirs, aquifers and geological forma-
tions are often highly fractured. Flow of gas, oil, ground-
water and magma tend to concentrate in the confined
spaces of these fractures as they have much larger per-
meability than the porous matrix they are embedded in
[1]. The permeable pathways can be of benefit to en-
gineered processes; artificial stimulation of reservoirs by
hydraulic fracturing is increasingly common as a means of
increasing the production rate of low permeability hydro-
carbon reservoirs [2, 3]. In other cases, high permeability
fractures pose a problem as they contribute to increased
groundwater contamination transport, leakage of buried
radioactive wastes [1, 4, 5], and the escape of sequestered
carbon dioxide from geologic storage sites [6, 7].

Flows in fractures and fractured media are difficult
to characterize and predict, and this is especially so for
multiphase flows where interactions at interfaces between
gas, liquid or granular phases contribute to the fluid dy-
namics. Typically, when one fluid displaces another in
a confined space, fluid instabilities and inherent disorder
in the confining geometry result in an emerging pattern-
ing of the flow and a non-trivial mixing of the two flu-
ids. Many of these flow phenomena, with applications
to flow in fracture planes, have been studied in the ide-
alized geometry of a Hele-Shaw cell. Examples includes
viscous fingering in porous media [8–10] arising from the
Saffman-Taylor instability [11, 12], destabilized viscous
fingers in suspensions [13], capillary fingering in a porous
matrix [14–17] and the transition to fracturing [18, 19].
Similar phenomena have also been observed with a sin-
gle fluid displacing deformable porous media media in
Hele-Shaw cells [20–24].

We investigate here a two-phase flow phenomenon in
a Hele-Shaw cell, where granular particles are suspended
in the receding liquid phase. This system is known to
display a rich set of flow morphologies as an immiscible

fluid displaces the liquid granular mixture [25], for ex-
ample labyrinth patterns [26, 27] and bubble structures
[19, 28]. In particular, we study the frictional finger for-
mation, which develops as a layer of granular material
accumulates at the fluid interface.

These finger structures are distinct from viscous fingers
in several ways. First, the fingers are a result of static
frictional forces in a local accumulated region of grains
adjacent to the interface, rather than the global viscous
pressure properties of the fluid phases. The frictional
fingers develop in the quasi static limit, where we can
neglect the viscous forces. Second, unlike viscous fingers
in porous media which is known to display a fractal inter-
face geometry [8, 9, 29, 30], we can for frictional fingers
identify a characteristic length, the finger width. While
crossover behavior from frictional to viscous fingers have
been observed as the driving rate is increased [19], we
will focus here on the quasi static limit where the static
frictional forces dominate.

We present a new numerical scheme to simulate the
frictional finger structures. This scheme builds on
the strategy for simulating the labyrinth structures in
[26, 27], and contains crucial improvements for simulat-
ing fingers when the width of the accumulated layer of
beads is comparable to the radius of curvature of the in-
terface. We also present experimental results together
with a theoretical model for the dynamics, and predic-
tions for how the characteristic finger width varies with
the parameters. The theoretical comparison to experi-
mental results validates our understanding, and fixes a
parameter used in the simulation.

In order to set the stage for the numerical scheme, we
will in Section II first describe the details of the experi-
mental system that we want to simulate. We present our
theoretical model in Section III, and we describe the nu-
merical scheme in detail in Section IV. In section V, we
present a derivation for the characteristic finger width,
and compare this both to the experimental and the nu-
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merical results. We finally sum up our findings in Section
VI.

II. THE EXPERIMENT

A. Setup

Consider a Hele-Shaw cell, constructed as a rectan-
gular channel, 20 cm wide, 30 cm long and with a gap
of h = 0.5 mm (Fig. 1 a and b), filled with a suspen-
sion composed of a fluid mixture of glycerol and water,
and glass beads (Fig. 1 c). The Hele-Shaw cell is fixed
horizontally. The viscous fluid is a water-glycerol solu-
tion, 50% by volume. The viscosity of the liquid en-
sures that the beads are suspended during the filling of
the cell, such that the beads are almost uniformly dis-
tributed in the cell plane. The beads are polydisperse
with a mean diameter of 75 µm (Fig. 2 a), and are char-
acterized by low granular friction (Fig. 2 b) due to the
almost spherical shape of the grains (Fig. 2 c). The den-
sity of the glass beads and the liquid, are respectively
ρg = 2.4 g/cm3 and ρl = 1.13 g/cm3. The density con-
trast, ∆ρ = ρb − ρl = 1.27 g/cm3, makes the beads sedi-
ment out of the liquid mixture and form a layer of gran-
ular material on the bottom plate of the Hele-Shaw cell,
with a packing fraction which corresponds to a random
loose packing fraction of spheres. The average thickness
of this layer, relative to the gap of the cell, will be referred
to as the normalized filling fraction φ. The Hele-Shaw
cell is sealed along the long sides, and one of the short
sides. The other short side is open to air at the ambient
pressure.
The system is driven in one of two different ways, which

leads to the same dynamics in the range of parameters
we consider. Either, air is injected into the cell through
an inlet nozzle located at the sealed short side, or liquid
is sucked out from the same nozzle, and the air is enter-
ing the cell from the open short side. A syringe pump
(Aladdin WPI) is used in both cases. The driving rate
is varying in the range 0.01–0.03 ml/min. In the case
of air injection, the syringe pump contains an air reser-
voir of 15 ml at atmospheric pressure, at the start of the
experiment.

B. Experimental Results

As the air phase displaces the mixture, the interface
bulldozes up the beads from the sedimented region, such
that the beads accumulate along the air-liquid interface,
and fill the whole cell gap in a region adjacent to the in-
terface. We will refer to the region of accumulated beads
as the front (see Fig. 1 c). After a short transient initial
period, the entire interface develops a well defined front.
In the subsequent evolution, only a small section of the
interface moves at any given time. The motion consists
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FIG. 1. (Color online) Experimental setup. a) Hele-Shaw cell
dimensions. b) The system is fixed horizontally, and is filled
with a fluid and sedimented beads, and driven either by air
injection, or withdrawal of the liquid, through a syringe pump
connected at nozzle at the sealed short side channel. c) The
advancing gas phase accumulates a front of grains.

FIG. 2. (Color online) a) Bead size distribution. b) Cone of
granular material poured through a funnel, angle of repose
≈ 27◦, c) Microscopy images of beads (Malvern, Morphology
G3) shows the approximate spherical shape of the beads.

of stick-slip like increments as the air phase fills an ever-
increasing volume of the cell. The motion is always di-
rected towards the liquid phase. A moving section of the
interface tends to continue its motion over many consec-
utive stick-slip events, before it eventually stops and the
motion continues at another section of the interface.

The friction from the accumulating front renders the
advancing interface unstable, and the air phase develops
finger-like structures. The fingers have a characteristic
width which emerges as a result of a balance between in-
terfacial tension and the friction of the front [19, 26, 27].
We refer to the pattern forming process as “frictional
fingering”, to highlight the frictional component which
distinguish the patterning from viscous fingers resulting
from the Saffman-Taylor instability [11]. Fig. 3 shows a
series of images taken at 2 hour time intervals illustrat-
ing the pattern formation. The fingers branch out and
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FIG. 3. The pattern formation process is documented over a
10 hour period, with 2 hour intervals between the individual
images. Air is injected through the inlet at the bottom side.
The cell is 20 by 30 cm.

L

R

FIG. 4. (Color online) Close up of frictional finger pattern
where the compacted front is visible as a dark band surround-
ing the air fingers. The inset shows the front thickness L, and
the radius of curvature R, which are local parameters along
the interface. The scale bar is 20 mm long.

grow in an isotropic, random fashion. Where two fingers
meet or grow side by side, their fronts combine, and the
motion of the interfaces stagnates. The fingers are pre-
vented from merging by the beads in the front, and the
gas phase thus constitutes a loop-less, simply-connected
cluster, as does the residual granular-fluid phase. In the
case of air injection, the evolution continues until a finger
breaks through the outer boundary. In the case of liq-
uid drainage, the evolution continues until the air phase
reaches the inlet of the syringe pump. The final pattern
of branching fingers is open with pockets of undisturbed
settled granular suspension of varying sizes left behind.
Fig. 4 shows a close up showing the air fingers surrounded
by a dark front of accumulated grains.

As we increase φ, we observe a gradual decrease in the

φ = 0.12 φ = 0.2 φ = 0.43 φ = 0.59

FIG. 5. Finger formation for increasing values of the filling
fraction φ. Liquid is drained from the bottom side. The cell
is 20 by 30 cm.

characteristic finger width, as shown in Fig. 5.

III. THEORETICAL MODEL

A. Stresses at the Interface

It is instructive to make an order of magnitude esti-
mate of the capillary number for the system, Ca = µV/γ,
where µ is the viscosity, V is the typical velocity and γ
is the surface tension. The typical velocity of the fin-
ger growth, when averaged over many stick-slip cycles,
can be estimated from the compression rate, q = 0.01–
0.03 ml/min. Assuming that the width, w, of a moving
section is w ≃ 1 cm, we have V = q/(hw) ≃ 10−4 m/s.
For the water-glycerol mixture we have that µ ≃ 6mPa s,
and γ = 60 mN/m, which makes Ca ≃ 10−5. The small
capillary number, tells us that we can neglect the vis-
cous pressure drop in the fluids, the relevant physics is
confined at the interface.

The front can be characterized by a thickness, L, at
any point along the mobile parts of the interface, i.e. the
parts of interface which have not yet stagnated due to
the presence of a neighboring finger. This thickness is
defined as the shortest distance from the air-liquid inter-
face, through the accumulated beads, to a point where
the beads no longer fill the whole cell gap (Fig. 1 c).

The beads are wetting and the interface consists of con-
cave menisci between the layer of beads closest to the air
phase at the length scale of a bead diameter, as sketched
in Fig. 6. The large scale interface along the air side of the
front region appears, however, smooth and we can assign
a signed, in-plane curvature (κ) to every point along the
interface, averaged over a number of neighboring beads.
We define the curvature to be positive when the radius
of curvature, R = 1/|κ|, can be drawn into the air phase
(Fig. 4). The out-of-plane curvature component of the
smoothed interface (κ⊥) is constant along the interface.

We neglect the hydrostatic pressure difference over the
height of the cell gap, and we approximate both the air
pressure, pa, and the liquid pressure, pl, as uniform in
their respective phases. The capillary pressure over the
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FIG. 6. (Color online) Sketch of the menisci around the beads
at the air-liquid interface. The beads are wetting, resulting
in concave menisci in the interspace between the beads.

menisci between the beads is,

∆p = pa − pl. (1)

In the sticking state, the capillary pressure is steadily
growing. In the case of air injection, the air pressure
increases due to the compression. In the case of fluid
withdrawal, the liquid pressure decreases. We assign a
capillary pressure threshold to every point along the in-
terface, above which the nearby front gets mobilized and
advances a small step towards the liquid, i.e. a slip event
occurs.
This threshold depends on two different effects. First,

as the capillary pressure increases, the air-liquid menisci
advances a small distance into the interspace between the
beads, and the pull on the beads in the direction perpen-
dicular to the smooth, large scale interface is increased.
This induces an effective stress, σe, on the bead pack-
ing normal to the averaged interface. Once this solid
stress grows above the yield threshold of the bead pack-
ing, σe > σY , the static packing breaks and the corre-
sponding section of the front slides. This yield threshold
is a local property of the mobile parts of the front, and
we will in the subsequent discussion approximate it by a
linearly increasing function of the front thickness, L.
Second, when the front slips and moves a small step

towards the fluid phase, the interface deforms and the
surface energy changes. We assume that the changes
in the total air-liquid surface, as the menisci advances
into the interspace between the beads during the stick-
ing state, is negligible. The total surface energy of the
air-liquid interface is, under this assumption, insensitive
to the fluctuations in the capillary pressure during the in-
termittent dynamics of the interface. The surface energy
scales with the number of menisci along the interface,
and therefore with the apparent area of the smoothed in-
terface. We assign an effective surface tension, γ, to the
smoothed interface, and the effective force which opposes
an increase of surface area can be expressed according to
Young’s law as γ(κ+κ⊥). Note that the effective surface
tension may deviate from the value of the surface ten-
sion of the liquid mixture. We will, however, not need its
numerical value in the simulations described in the next
Section.
The threshold criterion for a slip of a section of the

interface, is given by,

∆p > γ(κ+ κ⊥) + σY (L). (2)

The next moving section of the interface is identified by
having local parameters κ and L, which minimize the
right hand side of Eq. (2). Note that κ⊥ is constant along
the interface, and plays no role in the identification.
During a slip, new beads from the sedimented region

accumulate at the front. The interface deforms, which
alters the curvature κ. The interface may increase or de-
crease depending on the curvature, and the combined ef-
fect of deformation of the interface and the accumulation
of new beads will change the local value of L. The menisci
between the beads will retract, and the solid stress re-
laxes. A new static configuration of beads is formed and
the motion stops. The interface evolves in a series of such
stick-slip events.
Note that the capillary pressure over the menisci, ∆p,

at mobile regions of the interface remains well below the
capillary pressure threshold for the interface to penetrate
into the bead packing. The interface drags the beads
along.

B. Approximating the Yield Stress

The effective stress, σe, is carried from frictional con-
tacts along the Hele-Shaw cell boundaries to the inter-
face, predominantly via force chains in the bead packing.
The exact yield threshold, σY , of a section of the interface
depends on the bead configuration in the front region as-
sociated with the interface section. We approximate the
yield stress as the sum of a discrete set of consecutive
force bearing arc chains, in the direction perpendicular
to the interface, each contributing with an average tan-
gential stress along each boundary plate, σξ/2. The total
force per unit area opposing the motion and transmitted
from the two boundaries is therefore σξ. These chains
have an associated length, ξ, in the direction through
the front, and the number of them corresponds to L/ξ.
We have,

σY = σξL/ξ. (3)

The yield stress is thereby approximated as an increasing
function of the front thickness.
Note that the linear L-dependence of the yield stress,

can also be viewed as a linear approximation of a more
complicated σY (L). Previous papers [26, 27, 31, 32], have
modeled σY (L) by use of the Janssen effect [33], i.e. that
the shear stress at the plate boundaries is proportional to
the normal stress in the direction perpendicular to the in-
terface, which results in a yield stress which grows expo-
nentially with L. Ref. [31] also discuss how the curvature
of the interface affects the bead stress. These models do,
however, include extra unknown parameters which are
hard to measure experimentally. We will estimate the
only unknown parameter for the simulations, i.e. γξ/σξ,
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by experimental comparison to theoretical predictions in
Section V. We will further show that the linear approx-
imation is in agreement with the experiments for the
ranges of parameters considered here.
By combining Eqs. (2) and (3), we can write the slip

criterion as,

∆p > γκ+ σξL/ξ, (4)

where we ignore the constant contribution of κ⊥.

IV. SIMULATION

A. Numerical Representation

We reproduce the behavior observed in the exper-
iments by numerical simulations. The numerical ap-
proach is to represent the interface by a chain of nodes.
Each node, i, contains information about its coordinates
(xi, yi), and its nearest neighbors, i ± 1. The beads
are represented by a two-dimensional bead concentration
field, f , discretized into grid cells, fn,m. The front is
identified as all the grid cells of the bead concentration
field with unit value, fm,n = 1. The grid cells in the
region which represents the sedimented layer of beads,
take the value of the initial filling fraction, fn,m = φ. All
the grid cells in the interior regions of the chain, i.e. the
region corresponding to the air phase, are ignored. The
discretization is illustrated in Fig. 7.

We need to identify a front thickness, Li, to every mo-
bile node. We do this by identifying a link to a cell in the
bead concentration field with cell value less than one, i.e.
the cells which represent the sedimented region. This link
is defined by the cell which has the minimum distance
from the cell center to the node coordinates. The link
thereby establishes a connection between the node index
i, and the field indices m and n, at the outer boundary of
the front, and the length between the node and the cell
center of the link cell, defines Li. Note that the direction
towards the link cell which defines the front thickness
may deviate from the direction perpendicular to the in-
terface.
We also need to define a reasonable criterion for decid-

ing when a node is stagnant. We do this by identifying
a set of candidate cells to every node. These candidate
cells are limited by a circle sector centered around the
node position, spanned symmetrically by an angle of β,
around the direction perpendicular to the interface (see
the green region in Fig. 7 b). The radius of the circle sec-
tor, Lmax, serves as a cutoff length, and needs to be set
to a value much greater than the expected front thickness
of a moving segment, but less than the finger width. We
will in the following use the experimentally observed fin-
ger half width, Lmax = Λ (see Fig. 11), and β = 90◦. If
a link cannot be established within these candidate cells,
i.e. all the candidate cells take unit values or are in the
interior of the chain, the node is considered stagnant.

FIG. 7. (Color online) Discretization procedure. (a) The
Hele-Shaw cell seen from above. The air phase on the left
hand side. Adjacent to the air interface is the front, which
is an accumulated region of beads. We can assign a front
thickness, L, every mobile point along the interface. (b) The
interface is discretized as a chain of nodes. The beads are
discretized into a two-dimensional concentration field, which
takes the value 1 in the front, and the initial filling fraction
φ in the regions of not yet accumulated/sedimented beads.
The size of the grid cells, and the node spacing is exaggerated
for the purpose of the illustration. Li is the shortest distance
from node i through the accumulated regions, to a point in
the bead field below 1. The grid cell candidates are limited to
the shaded circle section of 90◦, centered around the direction
perpendicular to the interface.
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It is convenient to define a ideal node separation length
δ, and we can use this length scale as a basis unit
for the other length scales in the simulation. We will
set this length to δ = 0.4 mm (i.e. a chain corre-
sponding to an interface which spans the width of the
Hele-Shaw cell is composed of approximately 500 nodes).
Note that this length scale is slightly smaller than the
Hele-Shaw cell gap, which is 0.5 mm. The grid cell
spacing of the bead concentration field, δgrid, is set to
δgrid = 2/3 × δ ≃ 0.27 mm. Note that these lengths (δ
and δgrid) are both larger than the size of an individual
grain (Fig. 2). The grid spacing of the bead concentra-
tion field will naturally limit the resolution of the front
thickness. To mask the direction of the underlying grid
structure, we need to modify the front thickness by an
additional random number uniformly distributed in the
interval (−δgrid, δgrid), which corresponding to the res-
olution of the grid. The front thickness is, however, ill-
defined on this length scale; the random modification will
not alter the large scale behavior.
The curvature, κi, is estimated by calculating deriva-

tives of a spline approximation of the interface. We use
a two dimensional B-spline [34], which is parameterized
by the piece wise linear approximation to the arc-length
parameter. The first derivative of the spline at the po-
sition of the central node, gives the unit tangent vec-
tor. The second derivative gives the curvature vector
which points in the direction perpendicular to the inter-
face. The FITPACK library [34], is used to efficiently
calculate the spline, and its derivatives.
The curvature and the front thickness of the theoret-

ical model relevant for the simulation, are local to the
interface, and we can assign a threshold value, ∆piT , to
every node. By discretizing Eq. (4), we have that this
threshold value is given by,

∆piT = γκi + Li
σξ

ξ
= B

(

ξγ

σξ
κi + Li

)

, (5)

where B is a multiplicative constant. The node corre-
sponding to the minimal value of the right hand side
will be insensitive to B. We use the numerical value of
ξγ/σξ = 0.0361 cm2. This value comes from the esti-
mated by experimental observations of the characteris-
tic length Λ, which we will discuss in the next Section
(Fig. 11).
Before we go on describing the dynamics in the next

subsection, we will spend a couple of paragraphs justify-
ing the discretization scheme we have described. Using a
chain of nodes, i.e. Lagrangian tracer particles to repre-
sent a moving interface, rather than e.g. countors of an
indicator field, has certain problematic aspects [35]. The
accuracy, and the stability of this chain representation
are dependent on the node spacing, which will vary as
some nodes moves together, while others separate. Re-
distribution and interpolation of nodes is therefore nec-
essary to faithfully represent the interface, and we will
describe this in detail in the following subsection. We
also have to make sure that the topology of the interface

remains simple, in the sense that a node is not allowed to
move in-between others and thereby move into the inte-
rior of the interface. These are issues which are absent if
the interface is represented as a contour. For our specific
problem, however, the chain representation has a num-
ber of advantages, which outweighs the above-mentioned
problems.
Only a small section of the total interface will move

at any given time. Computation is therefore limited to
a subset of easily identifiable active nodes. The chain
representation permits us also to sort nodes by a lower
bound for the threshold, which enables an efficient iden-
tification of the next moving node. The stress threshold
of an inactive node, j, may change. This can happen
if the displacement of active nodes adds mass to the re-
gion near the inactive node, such that Lj increases, or by
the displacement of neighbouring nodes which alters the
curvature κj . The stress threshold of an inactive node,
separated from the active nodes by at least the number
of neighbors used to estimate the curvature, can, how-
ever, never decrease. We can, therefore, store a lower
threshold bound for these nodes.
The chain representation of the nodes is also conve-

nient for calculating the area enclosed by the chain, as
we can easily triangulate the enclosed domain.

B. Dynamics

We model the motion of the interface, by iteratively
moving a small segment of the chain. Moving multiple
nodes, rather than a single one, is necessary to keep the
interface, and its curvature, smooth. A time-step con-
stitutes the motion of a set of neighboring nodes, in the
direction towards the suspension. As the air flux is con-
stant, we can infer the true time from the displaced area.
In the following, we need to make some arbitrary

choices regarding the number of moving nodes, etc. The
numerical results seems to be insensitive to the specific
rules, as long as the size of the displacement of the nodes
at every time-step is sufficiently small, and that the cur-
vature at the boundary nodes and its neighbours (see
Fig. 8) varies sufficiently smooth.
The moving segment is limited to three neighbors on

each side (7 nodes in total), and all of them need to
be mobile. The center node, i, of the moving segment
is, at every time-step, identified by the minimum of the
pressure threshold, Eq. (5),

i = argminj∆pjT . (6)

The new positions of the interface is approximated by cal-
culating a spline function, as shown in Fig. 8. This spline
is calculated on the basis of the two non-moving next
neighboring nodes on each side of the 7 moving nodes,
and the point lying a distance δmove = 0.1δ from the
previous coordinates of the central node, in the perpen-
dicular direction outwards from the chain. To calculate
the spline, we also need the arc-length parameter for the
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center node

boundary nodes

updated nodes

FIG. 8. (Color online) Schematic of the moving segment. 7
nodes are moving. Old configuration is marked by circles on a
stapled line, new configureation is marked by pentagons on a
solid line. The spline which determines the updated positions
are based on the two neighboring nodes on each side of the
interval (hexagons), and the center node moved a distance
δmove in the direction normal to the chain. The positions
of the new nodes, are distributed along the spline function.
Dimensions in the figure are exaggerated.

interface after the movement. To estimate this, we use
the arc-length of segment before it moves, and modify
it with a factor, s, corresponding to the stretch, or con-
traction, in accordance with the mean curvature along
the moving segment. If a circle, with radius R expands,
such that R → R+ δmove, the circumference, C, is mod-
ified by a factor, C → C(1 + δmove/R). By analogy, we
approximate the expansion by,

s = 1 + κ̄δ, (7)

where κ̄ is the average curvature of the all the mov-
ing nodes. The positions of the new nodes are set by
equidistantly distributing the moving node coordinates
along this new spline. Note that the width of the moving
section is fixed: 7 nodes moves at each time step. This
width is smaller than the typical width of a slipping sec-
tion event in the experiments, which can correspond to
the finger width. When we iterate many time-steps, we
recover behavior of the experiments.

At every time-step, we also need to accumulate beads
in the concentration field, to ensure mass conservation.
We can easily triangulate the displaced area, by consid-
ering the coordinates of the moving nodes, before and
after the displacement. By calculating the area of the
triangulation, we can associate an amount of displaced
beads to every moving node. The beads corresponding
to this area, will be added to its link grid cell. If the to-
tal of the new beads, and the existing bead mass at the
closest grid cell exceeds 1, the grid cell value is set to 1
and the residual mass is added to the next link grid cell.
This is repeated until either all the mass is displaced, or
no link is found among the node’s candidate grid cells, in
which case the node is considered stagnant for the rest of
the simulation. When two front segments merge together
their nodes will naturally turn stagnant. It is therefore
not necessary to control for overlapping segments.

Before we start a new time-step, we use the spline to
interpolate the chain. We calculate the total arc-length,

S, of the moving segment in between the first non-moving
boundary nodes on both sides of the moving interval. We
get the ideal number of nodes, Nnodes, to fill in between
the boundary nodes, by Nnodes = round(S/δ)− 1. If this
number differs from 7 (the original number of moving
nodes), we equidistantly redistribute Nnodes nodes along
the spline, between the boundary nodes.
We can sum up the algorithm, by the following proce-

dure. At each time-step we:

1. Identify the next moving node by Eq. (6), and its
neighbors.

2. Estimate the spline function for the new configura-
tion.

3. Iteratively move each node, accumulate to the bead
concentration field according to the displaced area
for every moved node.

4. Add or subtract and redistribute nodes if necessary.

To induce some random behavior which results in the
fingering pattern, we add a random perturbation to the
bead concentration field. This random perturbation is
limited by ±5%, and is correlated over ≃ 50 grid point,
corresponding to the width of ≃ 1 cm. We generate this
distribution by a bicubic interpolation of a field of un-
correlated variables, with 50 interpolated points between
each uncorrelated value. This noise is needed to trigger
the branching of the fingers.
A series of frames for the evolution of the finger struc-

tures generated by this numerical scheme is shown in
Fig. 9.
This numerical scheme differs from the one used in

[27], to simulate labyrinth patterns in a similar system,
in two important ways. First, a set of neighboring nodes,
rather than a single one, is moved at every time-step.
This is done to assure that the curvature remains rea-
sonably smooth, and allows us to use several neighboring
nodes (more than 3) to approximate the derivatives of
the path of the interface, which in turn is used to define
the curvature and the perpendicular direction.
Second, the granular field is numerically represented

as a two-dimensional field, rather than a local quantity
which moves with the nodes of the interface. In the
scheme presented in [27], each node contains a thick-
ness vector in the direction perpendicular to the inter-
face, which length equals the front thickness. Each pair
of neighboring nodes span out a trapezoid, such that the
corners correspond to the nodes’ positions, and the posi-
tions of the thickness vectors. The front is thereby effec-
tively represented as a chain of trapezoids (see Fig. 7 in
[27]). This scheme works fine as long as the node separa-
tion, i.e. the resolution, needed to simulate the structures
is approximately equal to the front thickness. If the node
separation is small compared to the length of the thick-
ness vectors, small deformations of the chain could lead to
large displacements of the thickness vectors, which again
leads to large errors in the mass conservation of the front.
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FIG. 9. Examples of the evolution of the numerical scheme with a central, circular injection point. The size of the geometry
is 10 × 10 cm. Each row represents a time series of the evolution. Top row is φ = 0.1, middle row φ = 0.3 and bottom row
φ = 0.5. There is an additional noise field in the initial bead configuration, limited to φ → φ± 0.05.

Moreover, neighboring thickness vectors could cross, and
the front representation would be completely unphysical.
A small node separation compared to the front thickness
is indeed needed in order to faithfully discretize the sys-
tem at φ > 0.35, i.e. beyond the results for labyrinth
structures presented in Ref. [27]. This is needed for the
application of simulation aligned fingers in a tilted Hele-
Shaw cell [36].

V. THE CHARACTERISTIC LENGTH

Consider a steadily growing finger as shown in Fig. 10.
The curvature at the sides of the finger is 0, and 1/R
at the finger tip. Let Lt and Ls be the front thickness
at the tip and at the side of the finger respectively. In
the quasi static approximation, we have that the pressure
threshold over front at the side of the fingers equals that
of the finger tip. By Eq. (4), we have,

σξ

ξ
Ls =

γ

R
+

σξ

ξ
Lt. (8)

The frictional fingers can be characterized by a width,
and we will let Λ denote half this finger width as shown
in Fig. 10. As the cell gap, h, is constant, we have that
the air volume in the Hele-Shaw scell, scales with the ap-
parent area of the air phase as seen from above, Aair, and
that the surface area of the interface scales with the ap-
parent circumference, C, of the air-liquid interface. The
ratio between the enclosed area and the circumference of
the air phase, Λ = Aair/C, will on average correspond to
half of the finger width and serves as a natural definition
of a characteristic length.
Consider now a single finger which moves into the sus-

pension. An increment of the displacing air volume,
hδAair, where δAair is the increased area of the air phase,
will be accompanied by an increased volume of the front

hδAfront, due to the accumulation of new beads. Mass
conservation gives that,

δAfront =
φ

1− φ
δAair. (9)

The curvature (κ) varies smoothly along the interface,
and will take its maximum value at the fingertip. We
can approximate a small section around the fingertip by
a circular shape, with a radius, R, equal to the recip-
rocal of the maximum curvature. We assume that the
finger moves in a steady state, such that the fingertip
retains its shape during the evolution. The area element
of the front of the fingertip, can be approximated by a
section of an annulus (Fig. 10). The area of this section
is Afront = θ((R + Lt)

2 − R2) where θ is a small angle
which bounds the section on both sides of the fingertip.
A small variation of this element, with respect to θ and
Lt, is given by,

δAfront = 2θ(R+ Lt)δLt + (2RLt + L2
t )δθ. (10)

When the tip of the finger moves forward by an infinitesi-
mal distance, δx, the air volume associated with the front
element increases by δAair = 2θRδx+O(δx2). Note that
the interface at θ, moves a distance δx cos θ in the direc-
tion normal to the interface (along the longest cathetus of
the white triangle in Fig. 10), to retain the circular shape.
This perpendicular displacement stretches the original
section of the interface. The projection of the displace-
ment onto the circular interface gives Rδθ = δx sin θ ≃
δxθ (along the shortest cathetus of the white triangle
in Fig. 10), where the last approximation is valid when
θ ≪ 1. When we combine this with Eq. (9) and Eq. (10),
we get,

(

1 +
Lt

R

)

δLt

δx
=

φ

1− φ
−

Lt

R

(

1 +
Lt

2R

)

, (11)
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Λ

Ls

LtLt

R

θ

air

front

liquid / sedimented beads

fingertip

FIG. 10. (Color online) Schematic snapshot of a steadily
growing finger. Λ is half the finger width, Ls is the front
thickness at the sides of the finger, and Lt is the front thick-
ness of the fingertip. The annulus section at the finger tip
identifies a small region of the front at the fingertip, bounded
by an angle θ. The maximum curvature of the fingertip is
κ = 1/R.

In a steady state, we have δLt/δx = 0, which leads to
the following condition at the fingertip,

Lt

R
=

√

1 + φ

1− φ
− 1. (12)

Note that this expression provides a correction to
Eq. (22) in Ref. [27]. We can rewrite the right hand
side of the above equation as (1 + 2φ/(1 − φ))1/2 − 1.
In the limit where φ/(1 − φ) is small, we get that
Lt/R ≃ φ/(1−φ) to first order in φ/(1−φ), which agrees
with the expression in Ref. [27].
We assume that a steadily growing finger will grow in

a way which minimizes the threshold pressure. When
we use Eq. (12), to eliminate κ = 1/R in the pressure
threshold for the fingertip (Eq. (4) evaluated at equality),
we get

∆p =
γ

Lt

(
√

1 + φ

1− φ
− 1

)

+
σξ

ξ
Lt. (13)

Minimizing the right hand side with respect to Lt gives,

Lt =

√

√

√

√

γξ

σξ

(
√

1 + φ

1− φ
− 1

)

(14)

Mass conservation dictates that Ls/Λ = φ/(1 − φ).
Using this with Eqs. (8), (12) and (14), gives

Λ = 2

√

γξ

σξ
χ (15)

where we have introduced,

χ =
1− φ

φ

√

√

√

√

√

1 + φ

1− φ
− 1, (16)

1 2 3 4 5 6

0.5

1.0

1.5

2.0

experiment

simulation

Λ
[c

m
]

χ

slope: 0.38

FIG. 11. (Color online) The characteristic length Λ is the
ratio between the area of the finger structures and the fin-
ger structure circumference. Error bars correspond to one
standard deviation, data points without error bars corre-
spond to single observations. The stapled line corresponds
to the best fit of the theoretical prediction in Eq. (15). The
slope of 0.38 cm corresponds to the numerical value prefactor
2
√

γ ξ/σξ, which is used to infer the numerical value of ξγ/σξ.

to simplify the notation.
This relationship is clearly seen when we plot the ex-

perimentally observed Λ versus χ (Fig. 11). We use
the linear coefficient to estimate γξ/σξ = (0.38/2)2 =
0.0361 cm2, in the simulation, which again gives con-
sistent results for Λ calculated for the resulting pat-
terns of the simulations (Fig. 11), although the results
of the simulations overpredicts Λ slightly for low values
of χ, i.e. high values of φ. Note that if we expand χ in
φ/(1−φ), we have that χ ≃

√

(1− φ)/φ to leading order.
A similar prediction for Λ can be made when a yield

stress of the bead packing (σY (L)) grows exponentially
with L [27]. The good agreement between experiments,
simulations and theory (Fig. 11), validates the linear ap-
proximation (Eq. (3)) for the ranges of parameters we
consider here.

VI. CONCLUSION

In conclusion, we have presented a new numerical
scheme for simulating frictional fingers. The scheme dis-
cretizes the interface as a chain of nodes, which is coupled
to a two-dimensional mass field, needed to calculate the
accumulated layer of beads along the interface. This nu-
merical representation improves an earlier scheme [27],
and enables us to simulate structures where the front
thickness is large compared to the length scale at the
details of the interface.
The dynamics is generated by a simplified threshold

model, based on the effective surface tension of the inter-
face and the bead stress in the front (Eq. (4)). The only
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free parameters in the model is inferred from the compar-
ison of the experimentally observed finger width, to the
theoretically predicted value (Fig. 11). We successfully
reproduce experimentally observed patterns (Figs. 9, 11).
The branching behavior of the finger growth is trig-

gered by noise in the system. In the experimental setup
there are multiple sources of noise, e.g. fluctuations in
the force chains through the front which results in the
static friction, variations in the static friction properties
between the beads and the bounding glass plates, and
variations in the height between the glass plates. The
dominating source of noise in the simulation is the im-
posed fluctuations in the bead field. In addition, noise in
the simulation arises from the discretization of the chain
and the noise imposed on Li, which is needed to mask
the underlying grid. While the noise in the simulation
is sufficient to generate patterns which share the same
qualitative structures as the experimental result (com-
pare Figs. 3, 5 and 9), exactly how the correlation in the
different sources of noises affect the branching behavior
remains an open question. This question lies outside the
scope of this article, but we note that this might be stud-
ied by considering how the branching geometry is affected
by the imposed correlation structure in the initial bead
field.
Another line of future research is to use the discretiza-

tion procedure to simulate bubble structures seen in the
same experimental setup [19, 28]. As discussed in Sub-
section IV B, the discretization scheme does not rely on
a small front thickness relative to the radius of curva-
ture, as previous approaches did [27]. The numerical
representation described here can in principle represent
the highly curved front segments along the interface of a
bubble. Such a simulation would, however, need a more
sophisticated dynamical rule than Eq. 4 to account for
the bubble expansion.
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Sheet intrusions are the main conduits for
magma in the Earth’s crust. The intrusive mech-
anisms underlying the formation of these struc-
tures, in particular the small-scale flow properties
at the tip of the intrusion, where the magma in-
teracts with the host rock, is largely unknown [1].
Remaining patterns of aligned finger structures,
found in the erosion resistant walls of the host
rock in the Ramon Area in Israel [2, 3], provide
evidence for a hitherto unexplored flow behaviour
of magma displacing a fluidized sandstone con-
taining quartz grains. We report here on a model
system for the patterning properties of the flow,
which generates aligned frictional fingers [4, 5] as
an invading fluid displaces a granular mixture in
a gravitational potential. We identify the charac-
teristic features of remaining structures, in par-
ticular how the direction of the alignment changes
as we vary the effect of gravity and the filling frac-
tion of the grains. We can predict these features
by the interplay between granular friction, sur-
face tension and the accumulation of grains. Our
results demonstrate the importance of friction
forces acting at the interface where the solid gran-
ular material accumulates, and that observable
residual morphologies in the host rock walls are
manifestations of these local interactions rather
than viscous forces as previously thought [3].

Multiphase flows in confined spaces are difficult to
characterize. Typically, when one phase displaces
another, fluid instabilities or inherent disorder result
in emerging patterning and non-trivial mixing of the
phases [4, 6–16]. The mechanism underlying the pat-
tern formation is often hard to identify, especially for
magmatic flow at the tip of dykes, i.e. vertically oriented
intrusions. This dynamics is invisible to us; the remain-
ing small-scale structures are only available for examina-
tion after erosion. Most existing models for propagating
magmatic intrusions make a number of simplifications
to obtain analytic predictions, like linearizing the be-
haviour of the associated deformations and ignoring the
two-phase flow nature of the magma and the fluidized
host rock [1, 17–23]. While simple models may be valu-
able for understanding large scale features of the dyke
propagation [24–26], they fail to capture the two-phase
flow properties at the boundary between the magma and
the potentially fluidized host rock, in particular close to
the propagating tip [1].

A peculiar example of dykes is found in the Inmar
formation, of the Ramon area in Israel (N30◦37’14”
E34◦56’57”). There, the igneous rock has eroded away,
and the erosion resistant dyke walls, made by quartzitic
sandstone, are exposed. These walls display a rich net-
work of mould-like finger structures [2, 3]. The fingers are
identified as grooves in the sandstone; outward bulging
ridges separate the fingers from its neighbours. A finger
is approximately 1-10 cm wide and 10-100 cm long, and
the wall shows intermittent patches of finger alignment
(Fig. 1 a and c). The walls are separated ≃ 1 m apart,
but mirror images of the structures remain on both walls,
which suggests that the structures were made during the
initial stages of the dyke formation.

The ridges contain a closely packed concentration of
quartz grains (100-500 µm diameter) cemented by iron
oxides and kaolinite, in contrast to the relatively low con-
centration of quartz grains in the rock near the grooves [3,
Fig. 12]. Kaolinite obscures the original composition of
the dyke [3], but the finger structures indicate that the
sandstone was fluidized, and that the grains were accu-
mulated onto stagnant regions adjacent to the interface
of the invading magma, which filled the grooves. These
structures have previously been attributed to viscous fin-
gers, due to the Saffman-Taylor instability [6], between
the fluidized host rock and a less viscous dyke-related
fluid in front of the invading magma [3]. We hypothesize
here, that intergranular frictional forces in these closely
packed regions govern the formation of the patterns.

In order to understand these structures, we study a
model system of a confined two-phase flow involving
granular particles. Our experiments generate frictional
fingers [4, 5, 15] of air coated by densely packed grains,
which align under the influence of gravity in a tilted Hele-
Shaw cell (Fig. 2). The dynamics is quasi-static; it de-
pends on granular friction rather than viscosity. The
finger formation mechanism is therefore independent of
whether the invading fluid is magma, or a dyke-related
fluid, as previously suggested [3], as long as the invading
phase is immiscible with the fluidized rock. The rele-
vance of this system to the structure in the Inmar forma-
tion is substantiated by the similarity in the features of
the resulting pattern, in particular tip-splitting and ter-
mination (Fig. 1 a and b), and interception of fingers by
a finger which grows perpendicular to the average flow
direction (Fig. 1 c and d).

Consider a rectangular Hele-Shaw cell (Fig. 3), filled
with a liquid. A layer of glass beads–which constitutes
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FIG. 1. Feature comparison
between the remaining struc-
tures in dyke walls found in
the Inmar formation (a, c)
and the experimentally ob-
served patterns (b, d). (a,
b) Aligned finger structures
with tip-splitting and termi-
nation, respectively marked
by blue and red triangles. (c,
d) Fingers (red arrows) are
being intercepted by a finger
(green arrows) which grows
perpendicular to the average
flow direction. Experimental
parameters: (a) φ = 0.025
and α = 4◦, (d) φ = 0.4 and
α = 4◦. The gravitational
pull is indicated by g. The
scale bar in (a) applies to all
panels.

FIG. 2. Pairwise comparison of the final configuration of experiments (black/left frames) to simulations (blue/right frames),
for different values of the filling fraction (φ), and the tilting angle (α). The gravitational pull is pointing downwards in every
frame. The red lines indicate contours of constant η (Eq. (2)). As η increases, the vertical alignment turns into horizontal
alignment, and then into no alignment. The value of η doubles for every contour.
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FIG. 3. Experimental setup. The cell is 20 by 30 cm. (a)
Top view of the Hele-Shaw cell. The coordinate y is running
from the outlet towards the upper edge of the cell, κ is the
curvature (inverse of the in-plane radius of curvature R) along
the interface (orange dashed line). The front is a region of
accumulated grains along the air-liquid interface; L is the
thickness of this front. (b) Side view close up. The cell is
tilted by an angle α. The cell gap is h = 0.5 mm. The filling
fraction φ is the height of the initial sedimented granular layer
relative to h.

the granular material–is deposited on the bottom plate;
the height of this layer, relative to the cell gap, is de-
noted φ. The long side of the cell is tilted by an angle α,
to the horizontal plane. The channel is sealed along the
sides and base; the upper end is open. The cell is slowly
drained from an outlet at the base (Fig. 3), at constant
rate. As the air displaces the liquid, grains accumulate
along the air-liquid interface and fill the cell gap in a re-
gion adjacent to the interface, which we refer to as the
front (Fig. 3). Only a small section of the interface moves
at any given time, and the motion consists of incremen-
tal displacements, as the air fills an ever-increasing vol-
ume. A moving section tends to continue its motion over
many consecutive increments before it stops and the mo-
tion continues at another section. The interface develops
frictional fingers of air surrounded by a front [4, 5, 15],
with a characteristic finger width. When different fingers
move towards each other, their fronts combine, and their
interfaces stagnate. The evolution continues until either
the whole cell is filled with air and stagnant fronts, or
the air reaches the outlet. When the cell is fixed hori-
zontally (α = 0), the finger directions are disordered and
isotropic, and the resulting patterns are labyrinth struc-

tures of stagnant fronts [4, 5].
When the cell is tilted, the frictional fingers tend to

align [27]. The direction of alignment changes as we vary
α or φ. A phase diagram of the different patterning be-
haviour is shown in Fig. 2. In the low φ/high α range,
hydrostatic height stabilization of the receding interface
dominates the dynamics, the fingers advance side-by-side
downwards, parallel to the gravitational field along the
cell (Supplementary Video 1). Lateral growth is inhib-
ited by the presence of neighbouring fingers on both sides;
each finger is confined to downwards growth. Finger ter-
mination and tip-splitting occur at equal frequency.
As we increase φ and reduce α, we observe a gradual

transition in the alignment; the fingers tend to grow with
a directional component transverse to the hydrostatic
pressure gradient. In the intermediate range of φ and
α, hydrostatic stabilization of the front occurs, but local
pressure fluctuations enables some fingers to get ahead.
Sideways growth is preferred for a finger that extends
beyond its neighbours due to the hydrostatic pressure
gradient. The finger which manages to get ahead fills a
larger fraction of the horizontal direction, and advances
layer by layer, creating a pattern of horizontal lines (Sup-
plementary Video 2). In the high φ/low α range the
local pressure fluctuations dominate over the stabilizing
effects, and alignment is lost.
The effect of tilting introduces a stabilizing potential

in the experimenets. The finger directions varies between
vertically downwards and horizontal; the average flow
is always downwards. The fingers direction in the In-
mar formation varies locally between vertically upwards
and downwards, but are consistently pointing north [2].
Steps in the dyke structures indicate that the intrusion
was following a propagating crack [3]. Variations in the
crack opening will induce a stabilizing potential in the
capillary pressure as the out-of-plane component of the
magma interface curvature increases towards the crack
tip. A combination of hydrostatic and capillary pressure
variations, is therefore likely to act as the stabilizing po-
tential in the dyke finger formation. Variations in the
crack spacing also explain the local variations in the fin-
ger directions, and the presence of features from different
parts of the phase diagram (Figs. 1, 2).
We can understand the dynamics by assigning a

threshold pressure to every point along the interface. Let
∆p be the difference between the air pressure, which is
considered constant, and the liquid pressure at the outlet
of the cell. We assume that a section of the interface is
mobilized if,

∆p ≥ γκ+ σξ
L

ξ
− yρg sinα. (1)

The first term on the right hand side is the surface stress
due to the locally averaged in-plane curvature of the in-
terface, κ, and the effective surface tension, γ. The sec-
ond term is the yield stress of the granular packing which
constitutes the front, σY = σξL/ξ, approximated as the
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sum of a set of consecutive force bearing chains, of length
ξ < L, each contributing with a frictional stress σξ. This
term can alternatively be understood as a linearization
of a more complicated σY (L) [5]. The last term is the
hydrostatic pressure relative to the base of the cell, y is
a coordinate running along the cell from the outlet, g
is the gravitational acceleration and ρ is the liquid den-
sity; κ, L and y are illustrated in Fig. 3. The pressure
difference, ∆p, will increase when the whole interface re-
mains static and liquid is drained from the system. The
next moving section, at any given time, is identified by
local parameters κ, L and y, which minimizes the right
hand side of Eq. (1). As the section yields and moves a
small step towards the liquid, the local parameters are
changed due to the deformation and the accumulation of
new grains. In the experiments, it is sufficient to consider
the in-plane component of the curvature; the out-of-plane
component is constant along the interface and does not
alter the identification of the moving section.

We reproduce the experimental behaviour by discretiz-
ing Eq. (1) in a numerical simulation. The similarity
between the simulated and experimentally observed pat-
terns validates our theoretical understanding. A notice-
able difference is that liquid pathways in the front may
break, resulting in isolated pockets of liquids in the ex-
periments at high φ/low α. These effects are not included
in the simulation.

We understand the transition from horizontal to ver-
tical alignment by fluctuations in the yield stress. Let η
be the ratio between the standard deviation of the gran-
ular stress, and the hydrostatic pressure corresponding
to a finger width, 2Λgρ sinα, where Λ is half the char-
acteristic finger width. The granular yield stress, σY , is
approximated as the sum of a series of force bearing arc
chains. We assume that these chains are uncorrelated,
such that the variation in σY = σξL/ξ scales with the

number of chains, std(σY ) ∼
√
L. We have,

η ∼
√
L

Λ sinα
∼

1

sinα

(

φ

1− φ

)3/4

. (2)

The last step gives η as a function of φ and α (see the
appendix for a derivation). The ratio indicates the be-
haviour of the alignment. When η is low, the fluctua-
tions fail to disrupt the side-by-side finger growth. When
the contribution of noise is comparable to the stabilizing
pressure, i.e. η close to unity, a finger can get ahead of
its neighbours and grow sideways, orthogonal to the di-
rection of gravity. For large η, the fluctuations dominate
over the stabilizing effect, and the alignment is lost. We
can only estimate η up to a multiplicative constant, as
the stress variations of σY is hard to identify. Contours
of constant η correspond to equal qualitative alignment
behaviour (Fig. 2).
Our findings point to a rich dynamical behaviour where

grains are accumulated by a moving interface between
two fluids, and highlights the importance of static friction
in the finger formation seen on dyke walls.
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1. Experimental Setup

The rectangular Hele-Shaw cell is 20 × 30 cm2, with
a gap spacing h = 0.5 mm (Fig. 3). The glass beads are
polydisperse with mean diameter of 80 µm. The den-
sity of the glass beads and the water-glycerol mixture, is
respectively ρg = 2.4 g/cm3 and ρ = 1.13 g/cm3. The
cell was drained using a syringe pump set to a constant
withdrawal rate of 0.07 ml/min. The system was imaged
from underneath using PL-B742U, Pixelink camera, and
illuminated by a white screen placed above.

2. Numerical simulations

The interface is represented by a one-dimensional chain
of position nodes. The grains are represented by a two-
dimensional mass field, and the front is identified as a
region of the mass field above a threshold value. The
front thickness, L, at a node is approximated as the
shortest distance from the node to a cell in the mass
field below the threshold. The curvature is calculated
by a spline interpolation of neighbouring nodes. The dy-
namics are generated by iteratively moving the node ac-
cording to the minimum value of the right hand side of
Eq. (1). The chain is interpolated with new nodes as the
interface grows. The dynamics is deterministic, and the
random behaviour is a result of perturbed initial condi-
tions, and imposed fluctuations in the mass field. We use
σξ/ξ = 16 kPa/m, which is an estimate based on com-
parison between experimental results and the theoretical
expression for finger width. For the effective surface ten-
sion we use γ = 60 mN/m [5]. Details of the numerical
scheme is presented in another paper (J.A.E. et al. under
revision).
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3. Derivation of η

We need to express L and Λ as functions of φ. Let
A and C be respectively the area and the circumference
of the air phase, as seen from above, and let h be the
cell gap. The pattern is dominated by finger structures,
such that A = CΛ. The work of a typical displacement,
δw, has two contributions when we set α = 0 for sim-
plicity. First, the stretching of the interface contributes
with γh δC, where δC = δA/Λ, which follows from the
assumption of constant Λ. Second, the work done against
the granular stresses, σ, in the front, is hs δx σ, where s
is the typical width of a moving segment and δx is the
distance the interface advances such that sδx = δA. We
can approximate σ, by the yield stress, σY , i.e. the second
term on the right hand side of Eq. (1). Putting the terms
together, and dividing by the time of the displacement,
gives the work rate,

δw

δt
=

(

γ

Λ
+ L

σξ

ξ

)

h
δA

δt
, (3)

where hδA/δt equals the constant compression rate,
when averaged over many stick-slip events. We assume

that L is approximately constant along the interface, such
that CL is the total area of the front. Mass conservation
gives that h(CL+A)φ = hCL, which implies that

L = Λ
φ

1− φ
, (4)

where we have used Λ = A/C. Minimizing Eq. (3) with
respect to Λ, under the condition of Eq. (4), which cor-
responds to the assumption that the pattern evolves in a
way that minimizes the work, gives,

Λ ∼

√

1− φ

φ
. (5)

Using Eqs. (4) and (5) in the second step in Eq. (2) in
the manuscript, gives,

η ∼
1

sinα

(

φ

1− φ

)3/4

. (6)
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Additional material: Model of finger formation at the tip of propagating dykes

The following figures did not fit into the manuscript due to length limitations. Discussions of the
figures are provided in the captions.

φ = 0.025, α = 5
◦

φ = 0.2, α = 3
◦

a

s
im
u
la
ti
o
n

e
x
p
e
ri
m
e
n
t

time

b

s
im
u
la
ti
o
n

e
x
p
e
ri
m
e
n
t

FIG. 1. Snapshots of the time evolution, experiments ver-
sus simulations. (a) The pattern is dominated by vertically
aligned fingers at φ = 0.025 and α = 5◦. (b) The pattern
is dominated by horizontally aligned fingers at φ = 0.2 and
α = 3◦.
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FIG. 2. The characteristic finger width Λ, i.e. the area of the
air phase divided by the circumference of the interface, versus
the tilting angle α, for the patterns presented in Fig. 2 in the
manuscript. In the case of tilting, the characteristic width,
Λ, has to be understood as an averaged quantity; the finger
width depends on the growth direction of the fingers. Λ will
be dominated by vertically growing fingers in the upper left
corner of the phase diagram, and by the horizontally growing
fingers at η ≃ 1 (Fig. 2 in the manuscript). Note that the
stabilizing effect induced by gravity tends to decrease Λ at
low φ. At φ > 0.1, there is no significant α dependence on Λ.
We have not been able to make an analytical prediction for Λ
taking α into account, and we have ignored the α dependence
in the derivation of η. However, the figure shows a good
agreement between simulation and experimental results for
Λ. The error bars correspond to one standard deviation of
the uncertainty in the estimation.
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Submerged granular material exhibits a wide range of behavior when the saturating fluid is slowly displaced by

a gas phase. In confined systems, the moving interface between the invading gas and the fluid/grain mixture can

cause beads to jam, and induce intermittency in the dynamics. Here, we study the stability of layers of saturated

jammed beads around stuck air bubbles, and the deformation mechanism leading to air channel formations in

these layers. We describe a two-dimensional extension of a previous model of the effective stress in the jammed

packing. The effect of the tangential stress component on the yield stress is discussed, in particular how arching

effects may impact the yield threshold. We further develop a linear stability analysis, to study undulations which

develop under certain experimental conditions at the air-liquid interface. The linear analysis gives estimates for

the most unstable wavelengths for the initial growth of the perturbations. The estimates correspond well with

peak to peak length measurements of the experimentally observed undulations.
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I. INTRODUCTION

Multiphase flow involving unconsolidated granular me-
dia and granular-fluid mixtures occur in a wide range of
environmental and engineered processes. Examples include
gas venting in sediments, volcanic eruptions, soil wetting
and drying, oil and gas recovery, hydraulic fracturing, and
carbon geosequestration [1–6]. Similar flow systems are
also attracting an increasing scientific interest. A range of
flow behaviors have been observed, including destabilized
viscous fingers [7], granular decompaction fingers [8–10],
channeling [1,11], gas expulsion of imbibated nanoparticle
aggregates [12], aerofractures [13,14], and fractures involving
immiscible fluids [15–19]. In particular, when a layer of
granular material accumulates at the fluid interface, a rich
set of flow morphologies have been observed [20], such
as labyrinth patterns of frictional fingers [21,22], frictional
fingers aligned by gravity [23], and bubble structures [15,24].
Examples of frictional fingers and bubble patterns are shown in
Fig. 1.
Consider a horizontal Hele-Shaw cell, filled with a liquid

mixture containing beads which sediment out of the liquid.
Air is compressed into the cell. The compression rate is so
slow (0.01–0.03 ml/min) that the process can be considered
quasistatic. The air displaces the liquid mixture in small
intermittent incremental steps. The invading air-liquid inter-

*Corresponding author: jonaerik@fys.uio.no

face bulldozes up the beads from the sedimented region, and
accumulates the beads into a compacted region adjacent to
the air-liquid interface. This accumulated region will in the
following be referred to as the front.
An important control parameter for the experiment is the

normalized filling fraction, φ, i.e., the height of the sedimented
region relative to the cell height. This parameter determines
the rate of accumulation of new beads onto the front, as the
air-liquid interface advances. As the pattern develops, most of
the front is jammed, and only a small section of the interface
evolves in intermittent, stick-slip-like increments. Forφ < 0.4,
the system generates treelike structures of frictional fingers
[see Fig. 1(a)], with a characteristic finger width [21,22].
When the filling fraction φ increases, the displaced volume
per increment also increases, and the increment frequency
decreases. The increments start to form bubbles, rather than
small deformations at a finger tip, and the remaining pattern
consists of a series of bubbles connected by thin channels of
air [24] [see Figs. 1(b) and 1(c)]. After a bubble is formed, the
front around the bubble settles down in a static configuration.
As the pressure increases beyond a certain level, the front
slowly deforms and undulations along the air-liquid interface
develop. One of the peaks of these undulations gets ahead of
the others and forms a narrow channel through the front. Once
the channel approaches the sedimented region, it accelerates,
and bursts into a new bubble. A closeup picture of the structure
of the bubbles is shown in Fig. 2; videos of the dynamics are
provided as Supplemental Material [25].

1539-3755/2015/91(5)/052204(10) 052204-1 ©2015 American Physical Society
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FIG. 1. The Hele-Shaw cell as seen from above (20× 30 cm).

Air (white region) is injected into a liquid mixture with a layer of

sedimented beads on the bottom plate (gray region). The front is

the accumulated region of beads along the air interface (the dark

rim around the white regions). The different images correspond

to different normalized filling fractions φ, i.e., the height of the

sedimented layer relative to the cell gap. (a) φ = 0.35, (b) φ = 0.49,

and (c) φ = 0.53. We see a gradual transition from frictional fingers

(a) to bubble dynamics (c) as φ increases.

The frictional finger behavior gradually transitions into the
bubble behavior, either by increasing φ or the volume of the air
in the syringe pump used to compress the air. The transition,
and the experimental conditions, are described in detail in
Ref. [15].
The dynamics of the finger behavior is understood, at least

to the extent that the patterns can be reproduced by simulations.
The patterns are simulated both for a horizontal cell [21,22],
and for a tilted cell [23], where gravitational effects also are

FIG. 2. (Color online) A closeup view of connected bubbles of

air, which displace a liquid containing glass beads. The front is the

accumulated region of beads adjacent to the air interface, and is

identified as the dark region. The white dashed line indicates parts

of the separation path between the front and the sedimented region.

This path can develop cusps, as front segments from different bubbles

merge. The front thickness (L) is only defined where this separation

path runs parallel to the air-front interface. Grids of 1mm spacing, are

superposed on the image to reveal the scales. The front thickness (L) is

≃3 mm thick. The channels that connect the bubbles are≃1 mm. The

cell gap is 0.5 mm, and the bead diameter is 0.1 mm. The numbers

refer to the order in which the bubbles are formed. The air-front

interface of the bubble develops undulations. The arrows in bubble 4

points to peaks of these undulations.

air

front

sedimented beads

interface

(0, 0)
~eu

u = L

~ev

~κ

FIG. 3. (Color online) Schematics of a section of the interface,

with the adjacent front, seen from above. At every point along the

interface we introduce a coordinate system (u,v), such that the point

is placed in the origin. The unit vectors Eeu and Eev point respectively

perpendicular and parallel to the interface.

present. Central to the theoretical understanding is a model of
the effective stress in the front. In particular, the description
of how the stress component normal to the air-liquid interface
gives rise to frictional stresses along the plate boundaries.
This model accounts for neither the curvature of the front
in the expression for the effective stress nor the tangential
stress component. It is, however, reasonable to assume that
the tangential stress becomes important for highly curved
interfaces, which indeed are present in the experimental
observations of the bubble behavior, in particular around the
channels which connect the bubbles (see Fig. 2).
The aim of this paper is twofold. First, we present a natural

extension of the stress model, which also accounts for the
curvature of the interface and the tangential stress component
inside the packing. We will assume that the tangential and the
normal stresses are linearly related. This assumption implies
that the tangential stress can have a large impact on the yield
stress of the interface.Wewill also discuss how arching effects
are captured by the model, and how they may be important for
describing the dynamics of the interface as it moves through
the front of a bubble.
Second, we present a linear stability analysis of the

deformations at the interface. This analysis gives predictions
for themost unstable wavelength of the interface, which agrees
well with the experimentally observed peak to peak distance
of the undulations.

II. THEORETICAL CONSIDERATIONS

There are two local variables along the interface which are
of special interest. One is the in-plane signed curvature of
the air-liquid interface, κ = ±|Eκ|, where Eκ is the curvature
vector, shown in Fig. 3. Note that, while the air-liquid
interfacemay be convoluted at the scale of a single bead,we are
here interested in the curvature of the averaged interface, at the
scale of several neighboring beads. The absolute value of the
curvature is reciprocal to the radius of curvature, |Eκ| = R−1,
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air convex pt. concave pt. concave pt.

front

sed.
beads

κL < −1κ < 0
κ > 0

(a) (b) (c)

FIG. 4. (Color online) Schematic examples of different config-

urations. (a) Convex interface, positive curvature. (b) Concave

interface, negative curvature. (c) Negative curvature with radius of

curvature which is smaller than the front thickness.

and its sign is defined to be positive if the radius of curvature
can be drawn into the air phase, and negative otherwise.
Examples of different configurations are shown in Fig. 4.
The other variable of interest is the thickness of the front
in the direction perpendicular to the interface, L, indicated in
Figs. 2 and 3. This variable is, however, not applicable to every
point along the interface. For example, if two front segments
from different sections of the interface merge together, the
corresponding sections of the interface stagnate, and remain
inactive in the subsequent evolution of the interface (see for
example the front enclosed between the bubbles labeled 3 and
4 in Fig. 2). Note also that the separation path between the front
and the sedimented region (see the white dashed line in Fig. 2)
may develop singular points (cusps), as it evolves, in contrast
to the air-front interface which appears smooth everywhere
due to the effective surface tension. The front thickness L is
only defined where the separation path between the front and
the sedimented region runs parallel to the air interface. We
will, in the subsequent discussion, only consider points along
the interface where L can be defined.
It is convenient to introduce a set of coordinates relative

to the points along the interface. Let (u,v) be an orthog-
onal coordinate system, such that u runs in the direction
perpendicular to the interface, and v runs parallel, as shown
in Fig. 3. The interface in a small neighborhood around a
given point is therefore approximated by (0,v). The separation
between the front and the sedimented region, if it exists at that
point, is approximated by (L,v). The (u,v) coordinates will be
Cartesian around straight segments and inflection points, i.e.,
points which correspond to R → ±∞, or κ → 0. For straight
segments we have that u = x, and v = y in the notation used
in Ref. [22]. We can identify a polar coordinate system (r,θ ),
at curved segments, with origin at the center of the circle
corresponding to the radius of curvature, such the interface, is
located at r = R. The separation path between the front and
the sedimented region is located at r = R + L for positively
curved segments, and at r = R − L for negatively curved
segments. We have the following transformations:

r = sgn(κ) u + R,
(1)

θ =
sgn(κ) v

R
,

where sgn is the sign function. Front lengths which are longer
than the radius of curvature, L > R, when the interface curves
negatively, are not properly accounted for [see Fig. 4(c)]. These

air
front liquid

sedimented beads

z
u

h

L

σuu(u0) σuu(u0 + δu)

σb
zz−σb

uz

σt
zz

σt
uz

FIG. 5. (Color online) Schematic cross section of the cell at the

front. The front thickness (L) is defined to be the length of the region

of beads which fills the whole cell gap.

points are rare, and we assume that they are immobile. We will
also use z as the coordinate of the height direction, such that
the bottom boundary is located at z = 0, and the top boundary
at z = h; see Fig. 5.

A. Yield pressure at the interface without tangential stresses

We will in the following first review a simplified version
of the stress model used in Refs. [21,22]. This derivation
will naturally motivate the inclusion of the tangential stress,
presented in the next subsection.
The yield pressure associated with a deformation of a

section of the interface, i.e., the air pressure at which a section
of the front transitions from a sticking to a slipping state,
arises from two different effects. First, the air-liquid surface
tension of the menisci between the beads will generate an
effective surface energy at the scale of several neighboring
beads. This surface energy generates a surface stress which
acts to minimize the curvature, κ . The pressure difference
which corresponds to the effective surface tension γ is given
by γ κ .
Second, force chains in the front transmit stresses from the

boundary of the cell to the beads at the interface, resulting
in an effective normal stress at the interface of the bead
packing. Let σ be the effective stress tensor field in the bead
packing, which we assume to be smooth and continuous at
the scale of several bead diameters. We employ a positive
sign convention for compressive stresses, and we ignore the z

dependence in the stress field, i.e., we consider height averaged
stresses.We further assume that variations in the v dependence
are negligible, such that σ = σ (u). The normal stress at the
interface is denoted σuu(u = 0).
Previous papers [15,21,22] have, in the context of frictional

fingers, successfullymodeled the yield pressure at the interface
by assigning an L-dependent yield threshold, σY (L), to the
effective bead stress, such that a local section of the interface
evolves if σuu(u = 0) > σY (L). The slip criterion for a section
of the interface is

p > γκ + σY (L), (2)

where p is the air pressure. Note that we have ignored the
pressure drop associated with the curvature in the out-of-plane
direction on the right hand side of the inequality. This pressure
drop is, however, constant along the interface, and does not
change the location of the weakest section. In order to describe
how the threshold σY (L) depends on the front thickness L we
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first describe how the effective stress field varies through the
front.
Consider a straight segment of the front (κ = 0) such that

the (u,v) coordinates are Cartesian. Imagine a representative
elementary volume in the front which is bounded by u0 < u <

u0 + δu and 0 < v < δv. The volume fills the height of the cell
such that 0 < z < h. A cross section of this volume is shown
by the black square region in Fig. 5. The force balance of the u

component of the force on this volume gives us a differential
equation for σuu(u),

hδv [σuu(u0)− σuu(u0 + δu)]

= δuδv
[

−σ b
uz(u0)+ σ t

uz(u0)
]

⇒
∂

∂u
σuu(u) = −

1

h

[

−σ b
uz(u)+ σ t

uz(u)
]

= −F, (3)

where σ b
uz and σ t

uz are the u components of the shear stresses
acting on the bottom and the top cell boundaries respectively,
as shown in Fig. 5. In the last equation we also introduce the
force density F for later convenience.
To close the system, we need to approximate how these

shear stresses change with u. We will, as [21,22], follow
Janssen’s analysis for stresses in a silo [26], which rests on the
following two assumptions. First, we assume that the stresses
in the z and the u directions are proportional,

σ b
zz = K1σuu and σ t

zz = K1σuu, (4)

where K1 is the Janssen parameter [27]. We ignore the
contribution of the weight of the beads on the bottom plate,
which induces an asymmetry in the comparison of the top
and bottom boundaries. This contribution was accounted for
in the expression developed in Ref. [22], but gives only
a minor correction to the exponential L dependence of
σY (L), described below. Second, we assume that the frictional
stresses are proportional to the normal stresses acting on the
plates (see Fig. 5), i.e., we assume Coulomb friction. The
maximum frictional stresses at the plate boundaries are given
by σ t

uz = µσ t
zz and σ b

uz = −µσ b
zz, where µ is the static friction

coefficient. The result of the above assumptions is that

F =
2µK1

h
σuu. (5)

Limitations of Janssen’s assumtions [Eq. (4)] is discussed in
[28,29]. The result of using a relation like Eq. (5) is, however,
in accordance with experimental evidence in the context of
frictional fingers [22], for aerofractures [8,13,14] and for the
original application of the stresses in silo geometries [26,30].
We also assume that the maximum stress the beads at the

end of the front (i.e., at u = L) can withstand before the front
segment slips is a constant σT , i.e., the front slides if σuu(u =
L) > σT . Note that this constant is assumed to be independent
of the local parameters, κ and L, of the interface. Using σT

as a boundary condition at u = L, we can integrate equation
Eq. (3) and get

σuu(u) = σT e−2µK1(u−L)/h, (6)

which corresponds to the normal stress profile through the
front at the yield transition. It is convenient to introduce a

TABLE I. Approximate values of the parameters of the model.

Parameter Value Units

Effective surface tension γ 60 mN/ma

Characteristic length ξ 0.06 cmb

Threshold at end of front (u = L) σT 10 Pac

aThis is lower than the table value of glycerol-water mixture (65–70

mN/m). Note that the complex geometry of the air-liquid interface,

due to the menisci between the beads, may change the effective

surface tension from that of a pure liquid value. This value has,

however, been used to reproduce the finger structures in simulations

[22,23].
bξ = h/(2µK1). Assuming friction constant for glass beads,µ = 0.5

and the Janssen parameterK1 = 0.8 [22]. The cell height is h = 0.05

mm.
cOrder of magnitude estimate based on the average over-pressure

presented in [15].

characteristic length,

ξ =
h

2µK1

. (7)

If we evaluate Eq. (6) at the interface (u = 0), we get the final
expression for the yield stress,

σY (L) = σT eL/ξ . (8)

Inserting this into Eq. (2), gives

p > γκ + σT eL/ξ . (9)

The weakest section along the interface is identified by having
κ andL such that γ κ + σT exp(L/ξ ) is minimal. This criterion
is used to simulate fingering behavior in Refs. [21,22], with the
exception of the correction term for the weight of the grains
mentioned above. σT can be estimated from the friction of the
weight of the grains at the transition between the front and the
sedimented beads, assuming a wedgelike bead profile [22].
Note also that the numerical value of K1 is hard to determine,
as it only appears multiplied with the friction coefficient µ

in Eq. (7). Approximate values for the different parameters
are listed in Table I. In the context of fingers in a tilted cell
[23], it was adequate for the level of detail in the simulation-
experiment comparison, to linearize the exponential behavior,
i.e., using the first order term from the L expansion of σY (L)
in Eq. (2).

B. Including the tangential stress component

Equation (8) is a reasonable approximation as long as the
curvature is small relative to the front thickness κL ≪ 1. We
therefore do not expect it to hold in the context of bubble
formation, as the geometry of the front curves significantly,
especially near the channels between the bubbles. A closer
inspection will reveal that σY in Eq. (8) also depends on the
curvature, σY = σY (L,κ).
We can write the mechanical equilibrium in Eq. (3) in a

more general form,

div σ = ∇ · σ
T = −F Eeu, (10)

052204-4



BUBBLES BREAKING THE WALL: TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 91, 052204 (2015)

where F is defined in Eq. (3) and Eeu is the unit vector in
the u direction. We have that the r component of Eq. (10),
in the cylindrical coordinates introduced in Eq. (1) is (see for
example Chap. 2 in Ref. [31])

1

r
∂r (rσrr )−

σθθ

r
= −F, (11)

⇒ ∂rσrr = −
σuu

ξ
−

σrr − σθθ

r
, (12)

where we use Eqs. (5) and (7) to substitute for F in the last
line. Since we already assume a Janssen approximation for
the normal stress in the z direction, it is reasonable to also
assume a similar linear relationship for the normal stress in
the θ direction. Note that r and θ are the principal directions
of the stress tensor, due to the symmetry of the annulus (see
Fig. 3). Analogous to Eq. (4), we assume that

σθθ = K2σrr . (13)

The principal stresses are thereby assumed to be linearly
dependent on each other, but note that the K1 parameter is
used in a height averaged setting in Eq. (4), whereasK2 relates
σrr to σθθ everywhere in the (r,θ ) plane. The assumption of a
local linear relation between the principal stresses is also used
to describe stress distributions in piles of granular material
[32–34].
Using the linear dependence assumption in Eq. (13), we

can rewrite Eq. (12) as

∂r ln σuu(r) = −
1

ξ
−
1− K2

r
. (14)

Assume that the interface is positively curved, such that the
interface is located at r = R, and the end of the front at
r = R + L. Integrating this, with similar boundary conditions
as before, σuu(R + L) = σT , and evaluating σrr (r) at r = R,
gives the yield stress, σY (L,κ). We have that

σY (L,κ) = σT eL/ξ (1+ κL)1−K2 , (15)

where we use κ = 1/R. One can verify that we obtain the
same result if we instead consider a negatively curved section
of the interface.
If we use the expression for the effective yield stress which

incorporates the radial stress contribution [Eq. (15)] in the
previous yield criterion [Eq. (2)], we finally have the new
yield criterion,

p > γκ + σT eL/ξ (1+ κL)1−K2 . (16)

Note that if we only consider the correction to Eq. (8) in
the radial direction, i.e., we disregard the σθθ contribution by
setting K2 = 0 in Eq. (15), the correction will always give a
higher yield stress for positive curvature. If we setK2 = 1, i.e.,
we consider isotropic stress in the (u,v) plane, we get the same
stress law as in the one-dimensional model approximation in
Eq. (8).
It is hard to estimate the value of K2 in our experiments.

Its local value may be very sensitive to how the beads are
compacted, and may also vary along the interface. In the
context of a silo geometry, Janssen coefficient less than 1
and greater than 1 have been reported, depending on the
packing procedure [30]. Note that the yield stress changes
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FIG. 6. (Color online) Effective yield stress, σY (κ,L), defined in

Eq. (15), for values of K2, less than and greater than 1. (a) K2 =

0.6. (b) K2 = 1.4. The contour lines are logarithmically spaced. The

threshold increases as Eq. (8), along the dashed line (κ = 0). The

white region in the top left corner corresponds to κL < −1, and is

not accounted for by the theory. The numerical values of the other

parameters are presented in Table I.

qualitatively as K2 grows beyond 1, as illustrated in Fig. 6,
and thatK2 > 1 naturally describes archingmechanisms in the
front for negatively curved segments. We will in the following
assume that K2 < 1 for straight segments (κ ≃ 0); this is in
agreement with numerical estimates from discrete element
method simulations, K2 ≃ 0.8± 0.1 [35]. We will further
discuss K2 in light of the subsequent stability analysis and
how it may change with the curvature in Sec. III.

C. Linear stability analysis of a straight front segment

We will in the following present a stability analysis
by considering perturbations of a straight interface, with a
constant front thickness L. Consider an infinitesimal perturba-
tion fq(x), with wave number q, such that

fq(x) = ǫ[1+ cos(qx)]. (17)

This perturbation is shown in Fig. 7. The perturbation ampli-
tude ǫ is infinitesimal. Note thatwe only consider displacement
towards the front, in the positive y direction, fq(x) > 0.
A reasonable condition for growth of a perturbation can

be based on the static properties of the front. We assume that
the perturbation grows if the threshold at the peaks of the
perturbations, i.e., at cos(qx) = 1, is lower than the threshold

air

front

sed. beads

x

y 2ǫ
fq(x)

gq(x)

L

λ = 2π/q

peak

trough

FIG. 7. (Color online) Illustration of the perturbation. The front

is originally enclosed between the dashed lines. After the pertur-

bation, it is enclosed between gq (x) and fq (x). A perturbation

is considered unstable if the yield threshold at the peaks of the

perturbations is lower than the threshold at the troughs, and otherwise

stable.
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at the troughs of the perturbation, i.e., at cos(qx) = −1.
Otherwise, the interface at the troughs will move before the
peaks, and the perturbation will flatten out.
Let pp and pt be the pressure threshold of Eq. (16) (eval-

uated at equality), for the peaks and the troughs respectively.
We introduce the stability criterion function

Ŵ(q) =
pp − pt

C
, (18)

where C is a positive constant independent of q, which will be
determined later. Ŵ is analogous to the negative of the growth
rate of the perturbation, as used in linear stability analysis on
systems where the dynamics are defined. The condition for
the growth of the perturbation is now given by Ŵ(q) < 0, and
the most unstable perturbation wave vector q∗ is given by the
minimum of Ŵ(q), such that Ŵ(q∗) 6 Ŵ(q).
We assume that the infinitesimal displacement results in

infinitesimal pressure threshold variations, pp = p0 + δpp

and pt = p0 + δpt , where δpp and δpt are the changes of
the threshold pressure induced by the perturbation at the peak
and trough respectively, and p0 is the threshold of the initial
flat interface. We can therefore rewrite Eq. (18) as

Ŵ(q) =
δpp − δpt

C
. (19)

The pressure variations can be written in terms of changes in
the curvature δκ and in the front length δL. We can expand
Eq. (16), again evaluated at equality, to first order in δκ , and
δL,

δp =
∂p

∂κ
δκ +

∂p

∂L
δL

=

(

γ + σT eL/ξL
1− K2

(1+ κL)K2

)

δκ

+ σT eL/ξ (1+ κL)1−K2

(

1

ξ
+ κ

1− K2

1+ κL

)

δL. (20)

Note that σT , which is the stress threshold at the separation
between the front and the sedimented region, is assumed to be
constant and independent of L and κ . Using this we have that
Eq. (19) can be written as

Ŵ(q) =
1

C

(

γ + σT eL/ξL
1− K2

(1+ κL)K2

)

(δκp − δκt )

+ σT eL/ξ (1+ κL)1−K2

(

1

ξ
+ κ

1− K2

1+ κL

)

× (δLp − δLt ), (21)

where δLp and δLt are the changes in the front length at the
peak and the trough respectively, and similarly for the changes
in the curvature δκp and δκt .
The curvature of the perturbation is given by the negative of

the second derivative of fq(x), to first order in ǫ. The curvature
is 0 for the straight segment, and after the perturbation,

δκ = −f ′′
q (x)+ O(ǫ2) = ǫq2 cos(qx)+ O(ǫ2). (22)

The difference between the changes of the curvature at the
peak δκp and the changes at the trough δκt is therefore

δκp − δκt = 2ǫq2. (23)

δu δu′

L

L+ δL

h
hφair front sedimented beads

liquid

FIG. 8. Schematic representation of the cross section of the cell.

The front is assumed to be incompressible. A volume associated to

a displacement of a straight air-front interface (κ = 0), shown by

the white striped pattern, is therefore coupled to an equal volume

associated to the displacement of the front-liquid boundary (the

outer boundary in Fig. 7). The regions which are marked as “liquid”

and “sedimented beads” corresponds to the “sed. beads” in Fig. 7.

The accumulation of the sedimented beads results in the increased

displacement of the front-suspension boundary; δu′ = δu/(1− φ)

and δL = δuφ/(1− φ).

We now need to express the difference of front length
changes, between the peak and the trough, δLp − δLt . Let
gq(x) be the pathwhich separates the front from the sedimented
layer of beads, as shown in Fig. 7, such that the front
length after the perturbation is given by gq(x)− fq(x). The
perturbation gives rise to a displacement field of the front,
Ed(x,y); we will use this displacement field to find gq(x). We
assume for simplicity that the displacement field is irrotational,

∇ × Ed = 0, and incompressible, ∇ · Ed = 0. We can therefore
write the displacement as the negative of the gradient of
a harmonic field ψq(x,y), i.e., we have ∇2ψq = 0, and
Ed = −∇ψq . We are only interested in displacements in the
first order of ǫ, and we can limit ourselves to the y component
of the deformation.
One can verify that the following field is harmonic:

ψq(x,y) = −ǫy +
ǫ

q
e−qy cos xq. (24)

Note also that the y component of the displacement corre-
sponds to the perturbation when evaluated at y = 0,

−
∂

∂y
ψq

∣

∣

∣

∣

y=0

= fq(x). (25)

The separation path gq(x) between the front and the sed-

imented region, is given by the displacement field Ed(x,y)
at y = L. As the separation path moves outwards it also
accumulates new beads to the front. We can simply increase
the displacement of the separation path between the front
and the sedimented beads by a factor 1/(1− φ) to account
for the bead accumulation, as shown in Fig. 8. The separation
path gq(x), given the perturbation at the air-front interface, is
therefore

gq(y) = L −
1

1− φ

∂ψq

∂y

∣

∣

∣

∣

y=L

+ O(ǫ2)

= L +
ǫ

1− φ
[1+ e−Lq cos(qx)]+ O(ǫ2). (26)
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FIG. 9. (Color online) Stability criterion function Ŵ [Eq. (29)]

versus the product of the wave number and the front length qL for

various values of α. The normalized filling fraction is set to φ = 0.5.

The gray shaded region corresponds to qL < − ln(1− φ), which is

a stable region, independent of α [see Eq. (31)].

The change in front length along the perturbation is given by

δL = gq(x)− fq(x)− L + O(ǫ2)

= ǫ

[

φ

1− φ
+

(

e−Lq

1− φ
− 1

)

cos(qx)

]

+ O(ǫ2). (27)

The difference between the change of the front length at the
peak δLp and the changes at the trough δLt is

δLp − δLt = 2ǫ

(

e−Lq

1− φ
− 1

)

. (28)

We can now rewrite Eq. (21). We choose C = 2ǫσT eL/ξ/ξ ,
to make Ŵ(q) dimensionless. By using Eqs. (23) and (28), we
get

Ŵ(q) = α(Lq)2 +
e−Lq

1− φ
− 1, (29)

where,

α =
ξ

L

(

γ /L

σT eL/ξ
+ 1− K2

)

. (30)

The first term in the parentheses in Eq. (30), is of order∼10−2,
when we use the approximate value of L = 3 mm (see Fig. 2),
and the values in Table I. This means that high values of
qL are unconditionally unstable for K2 > 1+ 10−2 ≃ 1, as
α is negative. We will assume that K2 < 1 for straight front
segments, and therefore α > 0, in the subsequent discussion.
Plots of Ŵ versus qL, for different values of α, and φ = 0.5,
are shown in Fig. 9. Note that Ŵ(q = 0) = φ/(1− φ), and that
variations of φ change the behavior in the range of low qL.
Variations of φ are unimportant for larger qL, as e−qL → 0.
Note also that the stability criterion function is always stable
for low wave numbers; Ŵ is positive when

e−Lq

1− φ
> 1 ⇒ − ln(1− φ) > qL. (31)

This stable region is identified as the gray shaded region in
Fig. 9. The stability in the low range of qL is imposed by the
filling fraction φ, whereas the stability for high qL is imposed
by the effective surface tension γ , through α [Eq. (30)].
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FIG. 10. (Color online) (a) Stability criterion function Ŵ, as

defined in Eq. (29), vs the wavelength λ = 2π/q. A wavelength

is unstable if Ŵ(λ) < 0. Ŵ(λ) is drawn 15 times, to visualize the

sensitivity to the parameters σT , ξ , γ , and L. For each realization,

the parameters are drawn from uncorrelated uniform distributions

on the interval defined by ±15% of the mean value, L = 0.3 cm,

γ = 60 mN/m, ξ = 0.06 cm, and σT = 10 Pa in accordance with

Table I. The filling fraction is fixed atφ = 0.5, andK2 = 1.0, 0.9, and

0.8, for the green dashed, red dotted, and blue solid lines respectively.

The thick black dashed/dotted/solid lines correspond to the mean

values of the parameters, for each value of K2. (b) Histograms of the

theoretically estimated wavelengths λ∗, which minimize Ŵ (i.e., the

most unstable wavelength), based on 105 realizations similar to the

one plotted in (a), and for the three values of K2. (c) Experimental

observations of the wavelength λe of the undulations. Estimated

by measuring the linear peak to peak distance in the experimental

pictures (see arrows in Fig. 2). This histogram is based on 214

measurements.

The wave number q∗, which minimizes Ŵ, can be written
in terms of Lambert’s W function [36], which is implicitly
defined by y = W (y)eW (y). We have that

Ŵ′(q∗) = 2αL2q∗ − L
e−Lq∗

1− φ
= 0

⇒ q∗ =
1

L
W

[

1

2α(1− φ)

]

. (32)

This wave number corresponds to the most unstable wave-
length, defined by λ∗ = 2π/q∗. Lambert’s W (y) function is
monotonically increasing for growing positive arguments [36].
As the argument ofW in Eq. (32) is increasing with increasing
φ, higher φ generally corresponds to a smaller wavelength λ∗.
Different realizations of Ŵ [Eq. (29)] versus the wavelength

λ = 2π/q are plotted in Fig. 10(a), for different values of
K2. The plot illustrates also how Ŵ is sensitive to variations
in the parameters, by superposing realizations with varying
parameters ξ , L, σT , and γ . A histogram of the corresponding
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most unstable wavelengths λ∗ is shown in Fig. 10(b). These
results are compared to a histogram of experimental estimates
of the wavelengths of the undulations along the bubble
interfaces λe in Fig. 10(c). The experimental estimate is based
on the measured linear peak to peak distance; examples of
these peaks are shown by the arrows in Fig. 2.

III. DISCUSSION

The linear stability analysis above has omitted a number of
complicating factors.We have for example left out the effect of
the initial curvature of the interface, by considering a straight
segment. We have also ignored the complications of the
intermittency, and the locality of the deformation, by assuming
harmonic perturbations. Moreover, we have assumed that the
parameters in Table I, the front lengthL, andK2 all are constant
along the interface, although they may very well be subject to
systematic variations. For these reasons, the linear stability
analysis is only expected to give a first order approximation.
In light of the expected accuracy of the prediction, we conclude
that the prediction of the linear analysis agrees well with the
experimental results, for 0.8 < K2 < 1.0 (Fig. 10). We note
that the most unstable wavelength increases with a decreasing
K2. An additional averaging over the range ofK2 will make the
histograms of the theoretically estimated λ∗ [Fig. 10(a)], closer
to the histogramof the experimentally observedλe [Fig. 10(c)].
The range of plausibleK2 parameters, in agreementwith the

linear stability analysis (Fig. 10), is consistent with numerical
estimates from discrete element method simulations [35],
which estimated K2 = 0.8± 0.1 for a straight moving inter-
face with a similar geometry. The values of K2 may, however,
change with the curvature of the front. This is analogous to
variation of the Janssen parameter in silo experiments; the
Janssen parameter is highly sensitive to the packing procedure
[30]. The packing geometry of the beads in the front in our
experiments may be a result of the curvature of the interface
as it moves into the cell.
We conjecture thatK2 increase with decreasing curvatures,

i.e., fronts adjacent to a convex interface [see Fig. 4(a)] develop
aK2 which is smaller than fronts adjacent to concave interface
[see Fig. 4(b)]. This qualitative relation is suggested by the
following two-dimensional simulation of the compaction of
initially uniformly displaced discs inside an annulus shown
in Fig. 11. The beads are either slowly compacted by the
outward motion of the inner boundary [Fig. 11(a)], or by
the inward motion of the outer boundary [Fig. 11(b)]. The
simulation is made using the soft sphere discrete element
method code MercuryDPM [37], assuming a damped linear
spring interaction between particles in the normal direction,
and damped linear spring sliders in the tangential direction.
The walls are modelled as rough, i.e., particles cannot rotate
while in contact with the boundary. Shaded connections in
Fig. 11 indicate contacts with more than double the average
contact force. The figure suggests that the force chains,
indicated by consecutive black connections, tend to align with
the radial direction when the inner boundary moves outwards,
and orthoradially (tangentially to the circle), if the beads are
compacted by the inward motion of the outer boundary. This
suggests that the average effective normal stress is higher in the
tangential direction (compared to the radial stress) when the

FIG. 11. (Color online) Compaction of beads in two dimensions.

Black connections indicate contacts with more than double the

average contact force. Contacts are overlaid for 50 consecutive time

steps of the simulation. The beads are compacted as (a) the inner

boundary moves outwards or as (b) the outer boundary slowly moves

inwards. Note how the chains of contacts tend to orient radially in

(a), which suggests that the average stress in the radial direction σrr is

bigger than the stress in the orthoradial direction σθθ , i.e.,K2 < 1. In

contrast, the chains tend to orient orthoradially in (b), which suggests

that σθθ > σrr and K2 > 1.

outer boundary moves inwards (K2 > 1), and that the radial
average effective stress is higher when the inner boundary
move outwards (K2 < 1), if we assume that the bulk part of
the stress is mediated by force chains. The simulations are not
meant to be a faithful representation of the compaction of the
front, as the front is three dimensional. In addition, gravity is
likely to affect how the beads in our experiments settle down,
so we cannot use estimated values from the two-dimensional
simulations directly. We assume, however, that the general
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air

front

sed. beads

A

B B

FIG. 12. (Color online) Schematic of the channeling of air

through the front. Consider two regions of the front. A: The front

adjacent to the tip of the channel is compacted as an interface segment

of high curvature κ moves outwards (towards the sedimented beads).

B: The front at the shoulders of the channel are compacted as the

negatively curved interface moves outwards. Undulations along the

interface are not shown in the figure.

direction of the force chains in the front, in the (r , θ ) plane,
is similar to that of the two-dimensional simulations (Fig. 11).
We will therefore assume thatK2 is a decreasing function of κ .
This curvature dependence of K2 may be of importance

when the yield threshold [Eq. (16)] is applied to the interface
of the channels which make their way through the front of a
bubble, shown in Fig. 12. The channel configurations contain
regions of high positive curvatures, regionmarkedA in Fig. 12,
and with low negative curvatures, region marked B in Fig. 12.
If we assume thatK2 grows beyond 1 in the B region, and that
K2 takes a value below 1 in the A region, the yield stress of
the front will behave qualitatively differently in the different
regions, as shown in Fig. 6. The growing yield threshold for
decreasing curvatures in region B [Fig. 6(b)] may therefore
result in arching effects, and prevent the front from further
deformation. Note that the channel growth is well beyond the
presented linear stability analysis. It is hard to determine the
experimental values of κ at interfaces which correspond to
region B; it is possible that these configurations are mobile,
and correspond to κL < −1 (see Fig. 4). In that case, we may
need to modify the theoretical framework further. We leave the
details of these mechanisms for future work.
In summary, we have derived a natural extension to the

yield stress model of bead fronts, used to simulate frictional

finger structures [15,22]. The new expression for the yield
pressure threshold [Eq. (16)] incorporates the tangential stress
component, and the geometrical modifications due to the
curvature of the front, by assuming a linear relationship
between the radial and the tangential stress, σvv = K2σuu (or
σθθ = K2σrr in cylindrical coordinates). These modifications
are important for the bubble dynamics shown in Fig. 1, as κL

takes values which cannot be neglected, in particular at the
channels between the bubbles.
We have also presented a linear stability analysis for a

straight front segment, based on the threshold criterion in
Eq. (16). This linear stability analysis gives a closed form
expression for the most unstable wave numbers in Eq. (32).
The numerical values of the wavelengths agree with the
wavelengths of the undulations seen along the interface of
bubbles in experiments, for reasonable choices of parameters.
In particular, the results are consistent with 0.8 < K2 < 1
(Fig. 10).
The theoretical results we have presented will be of impor-

tance for future attempts to simulate the bubble formation. The
discretization scheme presented in Ref. [38] provides a natural
framework for such a simulation. Such simulations may also
need to take into account the K2 dependence of the curvature,
to faithfully represent the channeling through the front around
the bubbles (Fig. 12). We suggest that this dependence can be
determined from a three-dimensional bead simulation based on
the discrete element method, similar to the two-dimensional
example in Fig. 11.
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cussions. J.A.E. acknowledges support from the Research
Council of Norway (NFR) through the NFR Project No.
200041/S60, and from Campus France through the Eiffel
Grant. B.M. acknowledges support from NFR Grant No.
213462/F20. B.S. acknowledges support from EPSRC Grant
No. EP/L013177/1. R.T. acknowledges support from The Eu-
ropeanUnionSEVENTHFRAMEWORKPROGRAMMEfor
research, technological development, and demonstration under
Grant Agreement No. 316889 FlowTrans. R.T. acknowledges
additional support from the University of Oslo and Université
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K. Måløy, E. Flekkøy, and J. Schmittbuhl, Phys. Rev. E 78,

051302 (2008).

[10] X. Cheng, L. Xu, A. Patterson, H. M. Jaeger, and S. R. Nagel,

Nat. Phys. 4, 234 (2008).

[11] X.-Z. Kong, W. Kinzelbach, and F. Stauffer, Chem. Eng. Sci.

65, 4652 (2010).

[12] A. Debacker, S. Makarchuk, D. Lootens, and
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Rev. Cub. Fis. 29, 1E23 (2012).

[21] B. Sandnes, H. A. Knudsen, K. J. Måløy, and E. G. Flekkøy,
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Abstract

When air displaces a suspension with a high solid fraction of suffi-
ciently large particles, the particles tend to form a compacted but fluid
region along the air/suspension interface: A viscous front. Moreover, the
front grows as the air moves further into the suspension. As the effective
viscosity of the suspension increases with the particle density, the viscous
damping in the front dominates the energy dissipation in the system.
What sets this system apart from conventional two-phase flow dynamics,
in the context of the Saffman-Taylor instability, is that the viscous region
(the front) is confined to a layer at the interface. The dynamics of this
system are governed by the interplay between effective viscosity of the
front, the growth of the front due to the accumulation of beads and the
surface tension of the air/front interface. We propose here a simplified
phase field model which allows for simulating the dynamics of the system.

This working paper introduces a phase field model which allows for numerical
simulations of a growing viscous front. The current form of the paper does
not contain a complete numerical study. A preliminary numerical simulation
is, however, presented at the end. This simulation illustrates the feasibility of
the model. We will introduce the system in Section 1 and gradually construct
the numerical scheme in Section 2. The final phase field model equations are
presented Section 2.3.

∗jonaerik@fys.uio.no
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Figure 1: Side view of the Hele-Shaw cell. Air is forced in on the left, and beads
accumulate along the air-liquid interface, forming a layer of beads adjacent to
the interface referred to as the front. The front behaves effectively as a viscous
suspension when the driving pressure is sufficiently high. The thickness of the
front is denoted by L. The cell gap is h and φ is the initial fraction of sedimented
beads relative to the cell gap.

1 Introduction

The Saffman-Taylor instability at the interface between immiscible fluids in a
Hele-Shaw cell, and the formation of viscous fingers [1], have been studied ex-
tensively [2, 3, 4]. However, there is a growing interest in studying Hele-Shaw
flow in settings where the fluids also interact with mobile particles. These sys-
tems have both industrial applications, as well as academical interests. A range
of new flow morphologies have been observed, including destabilized viscous
fingers [5], granular compaction and decompaction fingers [6, 7, 8], channel-
ing [9, 10], irreversible poromechanical deformation [11] and various types of
fracturing behavior [12, 13, 14, 15].

In particular, when air displaces a liquid phase which contains a layer of sedi-
mented beads, a diverse set of dynamical modes have been identified [16]. This
system is known to display labyrinth patterns of frictional fingers [17, 18] and
intermittent bubble formations [16, 19, 20]. A common feature of these patterns
is that the moving interface of the invading air bulldozes up the beads and forms
a compacted layer of beads adjacent to the interface, which fills the whole cell
gap (see Fig 1). This layer will in the following be referred to as the front. In the
case of frictional fingers, and the intermittent bubbles, the beads in the front
jam between the cell plates and the dynamics depend on static friction stresses
[18, 20]. However, when the system is driven fast enough to prevent the beads
from relaxing into a static configuration, a large but confined section of the front
is fluidized and continuously evolving. During the evolution, the moving front
behaves effectively as a viscous dense suspension. The high viscosity contrast
between the air and the fluidized front allows for viscous fingers of air to pene-
trate the front. These structures are eventually frozen in the cell, when sections
of the front settle down in a static configuration. This behavior is shown in the
phase diagram presented in Fig. 5a in Ref. [16], under the label “viscous fronts”.
The dynamics of these structures motivate the study of viscous fingers into a
confined layer which grows due to the accumulation of new beads.
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Figure 2: Schematic of the front as seen from above (compare to the side view
in Fig. 1). The front moves upwards into the region of sedimented beads. It
accumulates beads as it moves, i.e. the thickness of the front is growing in time.
Surface forces act at the air/front interface, while there are no surface forces at
the separation between the front and the sedimented region.

This paper aims to develop a numerical model for simulating the dynamics of a
viscous front, i.e. the viscous layer in Fig. 1, as it is displaced by an air phase. A
top view of the system in question is illustrated in Fig. 2. We will assume that
the viscous dissipation is confined to the front, and ignore the pressure drop in
the air phase, and in the liquid phase outside the front. We also assume that
the interface stresses can be described by an effective surface tension parameter
γ. This assumption is discussed in detail and validated elsewhere [18, 21]. The
presence of an effective surface tension implies a surface stress which scales with
the mean curvature of the interface. We will ignore the out-of-plane component
of this mean curvature; the out-of-plane curvature is assumed to be constant
along the in-plane direction of the interface, such that the associated surface
stress is constant and unimportant for the dynamics. This assumption will
leave out effects induced by variations in the wetting properties of the cell plates
[2, 22]. We will here focus on the effects induced by the geometry of the front,
and choose to keep the boundary conditions of the interface simple, in line with
the original stability analysis of the Saffman-Taylor instability [1, 23].

The air/front interface is unstable as air is forced into the cell. The instability is
similar to the original Saffman-Taylor instability [1] for a single interface, where
the phases extend infinitely on both sides of the interface. The difference here
is that the front is confined in a layer which grows due to the accumulation
of new beads, as shown in Fig. 2. The growth rate of the front is dependent
on the amount of beads in the sedimented layer. We will neglect variations in
the packing fraction, and assume that the sedimented beads, and the suspension
have roughly the same density of beads. We can therefore characterize the initial
conditions of the cell by an effective normalized filling fraction of beads, φ, which
is defined as the height of the sedimented beads relative to the height of the
cell h, as show in Fig. 1. We will approximate the transition region between the
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1
φair front sedimented beads

liquid

Figure 3: Schematic side view of the cell, compare this to Fig. 1. Mass conser-
vation, for a flat interface, implies that the rectangles marked in red are equal in
size. The initial fraction of sedimented beads relative to the cell gap is denoted
by φ.

front and the sedimented region as a sharp boundary, as indicated with a white
dashed line in Fig. 3. Note that if a flat interface moves a distance Uδt towards
the suspension, the separation between the front and the region of sedimented
beads moves Uδt/(1− φ), as shown in Fig. 3. The rate of displacement of this
outer boundary line is captured by a multiplicative factor 1/(1− φ).

2 Towards a numerical method

Representing interfaces numerically is a common problem when dealing with
multiple phases. One approach is to describe the different phases by indicator
fields. That is, scalar fields c(x), where x is a position vector, such that c(x) = 1
far from the interface where the phase is present, c(x) = 0 far from the interface
where the phase is absent, and such that c(x) transits smoothly between 0 and 1
at the interface. The interface can be identified as the transition region around
the c(x) = 0.5 contour. This approach is therefore also referred to as a diffusive-
interface method. An advantage of this method is that complex interfaces can
be described by simulating a scalar field on a simple regular grid. This strategy
is the starting point of a class of models–the phase field models–which proves to
be especially suitable for describing two-phase Darcy flow, as described below.

We will in the following construct a simplified phase field model which builds
on Refs. [24] and [25]; the approach taken here will, however, be considerably
simpler. A detailed discussion of general phase field models can be found in
Ref. [26]. An overview of the relevant literature for the application of phase
field models in the context of Hele-Shaw flow, can be found in the introduction
of Ref. [25].

The approach taken here, is to modify the Cahn-Hilliard equation [27], such that
it also accounts for driving of the fluid due to a pressure field. It is therefore
instructive to first review the Cahn-Hilliard equation and some of its properties.
The material in the following subsection builds heavily on [26].
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Figure 4: (a) The potential V (c) defined in Eq. (2). (b) A schematic illustration
of the steady state configuration c = c(y). The configuration obeys Eq. (8).

2.1 Cahn-Hilliard equation

Let c be an indicator field for one of the phases and consider the following free
energy functional1,

F [c] = ǫ

∫

dΩ

(

d2

2
|∇c|2 + V (c)

)

, (1)

where the integral runs over the whole spacial domain, ǫ is a characteristic
energy density and d is a length scale parameter. The function, V (c), is here
a non-dimensional double well potential taking its minima at c = 0, 1. We will
consider a potential with the form,

V (c) = 18c2(c− 1)2. (2)

The shape of this potential is shown in Fig. 6a. The reason for the numerical
value in the prefactor becomes apparent when we identify the surface tension
bellow. Note that the uniform fields c(x) = 1 and c(x) = 0 are fields which
minimize Eq. (1). When we look for a field configuration which is constrained
by having a finite volume of c(x) and minimize the free energy functional, we
have to balance the gradient term, which penalizes sharp phase variations, to
the potential energy term which penalizes the transition region at the interface.
The free energy serves to construct a chemical potential, µ, by the functional
derivative of the free energy,

µ = −
δF

δc
= ∇2c−

∂V

∂c
. (3)

In deriving the Cahn-Hilliard equation, one assumes that this chemical potential
drives a gradient flux,

J = −M∇µ, (4)

1We will in the following assume that the reader is familiar with functionals and functional
derivatives; an introduction to those concepts can be found in any textbook dealing with
Lagrangian mechanics, or in Ref. [28].
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Figure 5: Time frames showing the qualitative behavior of a two-dimensional
phase field, c, under the evolution of Cahn-Hilliard equation [Eq. (5)]. Time
increases from left to right. The minimization of the free energy, which is
confined to the transition region between the phases, is causing the coarsening
of the domains, while conserving the total volume of the phases. The simulation
is done on a 512× 512 grid using the FiPy finite volume solver [29].

where M is a mobility. We will assume here that this mobility is constant in
space. This will simplify the governing equations considerably, and will make
them easier to solve numerically. Plugging the flux into the conservation equa-
tion for c, i.e. ∂tc+∇ · J = 0, yields the Cahn-Hilliard equation,

∂c

∂t
= M∇ ·

[

∇
δF

δc

]

= Mǫ
(

∇ · [g(c)∇c]− d2∇4c
)

, (5)

where the last equality follows from our particular choice of double well potential
[Eq. (2)], and,

g(c) = 36(1− 6c(1− c)). (6)

The evolution of this equation is illustrated in Fig. 5.

We can show, using Eq. (5) and integration by parts, that the free energy
functional is decreasing during the evolution,

dF

dt
=

∫

dΩ
δF

δc

∂c

∂t
=

∫

dΩ
δF

δc
∇ ·

[

M∇
δF

δc

]

= −

∫

dΩM

∣

∣

∣

∣

∇
δF

δc

∣

∣

∣

∣

2

≤ 0, (7)

where we assume that the chemical potential is zero along the boundary of
the domain. The dynamics are driving the field configuration towards a lower
free energy. Analogous to the concept of free energies in thermodynamics, this
motivates why we called F a “free energy” in the first place.

We can also identify the surface tension, γ, in the model. Consider a steady
state of a planar separation between the phases. Let y be a coordinate which
runs perpendicular to this interface, such that the interface is located at y = 0,
as shown in Fig. 6b. Let also c → 1 as y → ∞, and similarly c → 0 as y → −∞.
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We have that the steady state condition is δF/δc = 0 or d2∂2
yc = V ′(c), which

upon integration yields,

V (c) =
d2

2

(

∂c

∂y

)2

. (8)

We can use this to derive an expression for the free energy per unit interface,
i.e. the surface tension,

γ = ǫ

∫

∞

−∞

dy

[

d2

2

(

∂c

∂y

)2

+ V (c)

]

∗

= ǫd2
∫

∞

−∞

(

∂c

∂y

)2

dy

= ǫd2
∫ 1

0

∂c

∂y
dc

∗

= ǫd

∫ 1

0

√

2V (c) dc = ǫd

∫ 1

0

6c(1− c) dc = ǫd. (9)

Eq. (8) is used after both equality signs marked with an asterix (
∗

=). The last
integral yields 1, which is why we introduced the factor of 18 in Eq. (2). The
derivation above tells us two things. First, the surface tension of an interface is
simply γ = ǫd. This result is consistent with respect to units for two dimensional
fluids, as the energy density takes the dimensions energy/length2. Second, it
also tells us that the characteristic width of the transition is of length d, which
is useful to know when we want to discretize the system.

2.2 A phase field model for two-phase flow

The flow of a viscous incompressible fluid in a horizontally oriented Hele-Shaw
cell is well described by Darcy’s law,

U = −λ∇p, (10)

together with the incompressibility condition,

0 = ∇ · U, (11)

where U is the height averaged fluid velocity, λ is the mobility and p is the
pressure field. One can show that the mobility of the Hele-Shaw flow is given
by λ = h2/(12η), where h is the gap of the Hele-Shaw cell and η is the viscosity
(µ is reserved for the chemical potential). The two-phase flow we consider here
has a viscosity contrast between the phases. The viscosity η, and the mobility
λ, is therefore varying in space λ = λ(x).

Equation (10) takes the same form as Eq. (4), i.e. they are both describing
gradient flows. In the case of Eq. (4) the chemical potential is driving the flux
which leads to the separation of the phases, whereas in the case of Eq. (10), the
pressure acts as a potential which drives the flow.

This observation invites us to treat the pressure and the chemical potential on
equal footing. Assume that the flux J of the indicator field c can be described
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by the sum of two terms: an advective part cU given by the Darcy velocity U ,
and a diffusive part M∇µ, which is driven by the chemical potential in Eq. (3)
and regulates the interface. Using this in the conservation equation, yields,

∂tc = ∇ · [cλ∇p] +M∇2µ. (12)

Note that, due to symmetry, the inverse field should evolve as,

∂t(1− c) = ∇ · [(1− c)λ∇p]−M∇2µ, (13)

where the gradient of the chemical potential comes here with an opposite sign in
comparison to Eq. (12). This can we verified by substituting c → 1−c in Eq. (3).
Adding Eqs. (12) and (13) together gives the incompressibility condition,

0 = ∇ · [λ∇p] . (14)

Note also that the mobility λ should be a function of the indicator field λ = λ(c).
We will for now assume that c is the phase of low viscosity. The mobility is
proportional to the reciprocal of the viscosity, λ ∼ 1/η, i.e. c has the maximal
mobility λmax. We will take the mobility to be given by

λ(c) = λmine
ln(K)c, (15)

where K is the mobility ratio λmax/λmin. This function will be easy to handle
numerically and agrees in the limiting values η(1) = λmax and η(0) = λmin.

Taken together, we can write out the model for the two-phase flow of immiscible
fluids, in a non-dimensional form,

∂tc = ∇ · [cλ(c)∇p] +
1

Ca
(∇ · [g(c)∇c]− d2∇4c), (16)

0 = ∇ · [λ(c)∇p] , (17)

where g(c) = 36(1− 6c(1− c)), (18)

and λ(c) = eln(K)c. (19)

We have implicitly here introduced the modified capillary number Ca. The two
dimensionless numbers are given by,

Ca =
UW 2(η−1

min − η−1
max)

γM
, (20)

K =
ηmax

ηmin
, (21)

where W is the characteristic width of the system, and U the characteristic
speed. It is not obvious how to compare the modified capillary number to an
experimental setup, as we do not know the mobility M . A way to overcome
this problem is to calibrate the system, for the specific experimental setup in
question.

8



2.3 A model for the viscous front

We need only to slightly modify the model described in the previous section, to
account for dynamics of the viscous front. The front is confined between two
interfaces, the air/suspension interface and the approximate interface between
the front and the sedimented beads. We will represent the front by combining
two indicator fields c1 and c2, as shown in Fig. 6. The phase indicated by c1
corresponds to the air phase, while c2 corresponds to air and the front. We can
therefore identify the front as ∆ = c2(1−c1). Both fields are driven by a pressure
gradient. The separation between the front and the sedimented region moves
at an increased rate due to the accumulation of new beads. This increased rate
is captured by a multiplicative factor 1/(1−φ) in the flux of the c2 field, where
φ is the height of the sedimented layer relative to the cell gap. The air/front
interface is subject to surface tension, which is described by a surface flux, as
described in the previous subsections. There is no such surface tension at the
separation between the front and the sedimented beads, and consequently no
such flux in the conservation equation for c2.

We can finally write the governing equations which couples the evolution of c1,
c2 and p, as

∂tc1 = ∇ · [c1λ(∆)∇p] +
1

Ca
(∇ · [g(c1)∇c1]− d2∇4c1), (22)

∂tc2 =
1

1− φ
∇ · [c2λ(∆)∇p] (23)

0 = ∇ · [λ(∆)∇p] , (24)

where,

g(c) = 36(1− 6c(1− c)), (25)

λ(∆) = exp[ln(K)(1−∆)], (26)

and ∆ = c2(1− c1). (27)

A preliminary numerical simulation of these equations is shown in Fig. 7. The
figure demonstrates the feasibility of the model. The fields c1, c1 and p, are
discretized on a regular grid (256× 768). A subset of the grid points along the
x coordinates are shown in Fig. 7. A mirror image of the phases are included
in the simulation (not shown in Fig. 7), in order to construct periodic bound-
ary conditions. We can therefore utilize the discrete Fourier transformation to
effectively calculate the spacial derivatives. The pressure field is solved by a
finite volume scheme with a two-point flux, and the time integration is done by
a third-order explicit Runge-Kutta scheme. A thorough numerical study, which
investigates this numerical scheme for the range of relevant parameters, will be
left for future work.
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J1 = −c1λ(∆)∇p− Ca−1
∇µ J2 = −

c2λ(∆)
1−φ

∇p

c1 = 1 c2 = 1 c1 = 0 c2 = 1 c1 = 0 c2 = 0

the viscous frontair sedimented beads

and liquid∆ = c2(1− c1) = 1

Figure 6: Schematic illustration of how the difference between the indicator
fields, c2 and c1, represent the viscous region in a cross section of the front. We
neglect the viscosity in the air phase, and in the region of the sedimented beads
and the liquid. The front, which acts as a dense suspension, is dominating in
terms of viscosity, i.e. this region has the lowest mobility, ηmin. Both the air
phase and the region of liquid/sedimented beads are approximated by λmax.
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Figure 7: Time frames of a simulation of Eqs. (22)–(27). The red and blue
lines correspond to 1/2 contour of c1 and c2 respectively. The black region
corresponds to the viscous front, ∆ = (1 − c1)c2 (compare with Fig. 6). The
frames correspond to initial configurations (a), intermediate time after 1000
time steps (b), and final time after 2100 time steps (c); each step lasts for
δt = 2.5 × 10−3 time units. The height of each frame (in the y direction)
takes 10 units of length. The thin gray lines correspond to contours of the
pressure field and are decreasing from left to right. The white region on the left
and the right correspond to air and fluid/sedimented beads respectively. Other
parameters are d = 0.36, Ca = 300, K = 400 and φ = 0.25.
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[7] Ø. Johnsen, R. Toussaint, K. J. Måløy, and E. G. Flekkøy, “Pattern for-
mation during air injection into granular materials confined in a circular
hele-shaw cell,” Phys. Rev. E, vol. 74, p. 011301, Jul 2006.

[8] Ø. Johnsen, C. Chevalier, A. Lindner, R. Toussaint, E. Clément, K. Måløy,
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“Model of finger formation at the tip of propagating dykes,” in preparation,
vol. 0, p. 0, 2015.

[21] J. A. Eriksen, R. Toussaint, E. G. Flekkøy, K. J. Måløy, and B. Sandnes,
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