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Introduction: A Bibliographic Review 

he very familiar flashing lights of warm summer evenings in shaggy areas produced 
by fireflies are outstanding examples of bioluminescence in living organisms. The 

phenomenon of bio-chemi-luminescence (commonly known as bioluminescence) is an 
amazing natural process by which living organisms convert chemical energy into light. 
This cold-light emission from chemically produced excited (chemi-excited) state is 
exhibited by several organisms including certain species of bacteria, beetles, squid, 
worms etc.1-4  !"#$%%$&'()'*+%"'+,'"-$'+.$/#%0'.+/%"%'/%'&$1!2-",31'%-+ '+,'13*!#$%.$#.$'
during summer sunsets. This extraordinary and fascinating natural phenomenon involves 
oxidation of photoactive substrate Luciferin catalyzed by an enzyme Luciferase in 
presence of Mg2+ and Adenosine triphosphate (ATP)5,6 forming the emitting molecule 
Oxyluciferin, (OxyLH2) in its first excited state2,10,11. Presence of molecular oxygen in 
this process is mandatory to produce bioluminescence. The reaction results in production 
of Oxyluciferin in singlet excited state5. While relaxing to its ground state, OxyLH2 emits 
visible photons. The high fluorescence quantum yield (41.0±7.4%, Ando et al.) of this 
process5 reflects not only a very efficient catalytic machinery but also, highly favorable 
micro-environment with strongly deactivated non-radiative pathways. 

 

1.1 Historical review 

Study on firefly bioluminescence began in 1885 with French physiologist Raphael 
Dubois (1849-1929), who described the reaction of Luciferin and Luciferase by 
observing its change of color in cold and hot water solutions13. He studied 
bioluminescence from Coleoptera, an Elateridae beetle, in water at different 
temperatures. He concluded that the bioluminescence reaction occurs in the presence of a 
light emitting molecule, named it as Luciferin (latin lucis-light, -ferre- bearer, -in an 
organic compound), and an enzyme, named it as Luciferase (latin lucis-ferre light 
bearer, -ase an enzyme). Following the work of Dubois, Newton Harvey explained the 
specificity among several Luciferin-Luciferase complexes by observing several 
bioluminescence systems involving Luciferin and different Luciferase13. He showed not 
only the specificity in the Luciferin-Luciferase system, but also he found that molecular 
oxygen is mandatory for all these systems to work. More advance studies on this 
bioluminescence system were initiated by an American biochemist William McElroy 
(1917-99) in 1940s. The key factor of his experiments, that improved the conclusions of 
Dubois and Harvey, were the involvement of Adenosine triphosphate (ATP) as an 
important ingredient for the reaction. In addition, he demonstrated the linear relationship 
between ATP concentration and the number of emitted photons by using North-American 
firefly Photinus pyralis

13. Although his suggestive hypothesis that hydrolysis of ATP for 
the light emission was rejected then and there13. During the same time, Aurin M. 
measured pH dependent absorption spectra of Luciferin extracted and purified from 
Cypridina organisms14. Aurin showed, for the first time, spectral changes in absorption of 
Luciferin and oxidized Luciferin (i.e. Oxyluciferin) with time in buffer at two different 

T 
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pH (5.10 and 6.80) at room temperature14. Several conditions that could influence the 
reaction mechanism of Luciferin-Luciferase (e.g. temperature, solvent pH, ATP 
concentration etc.) were studied by different researchers at that time but the interpretation 
of their results were inadequate15. At the beginning of 1950s, it was stated that the 
bioluminescence reaction is strongly dependent on four key factors: the enzyme 
Luciferase, the photo emitter Luciferin, molecular oxygen and ATP. In 1953, McElroy 
proposed a reaction mechanism which relies on the existence of two sequential steps; 
reaction of Luciferin, Luciferase and ATP, forming an intermediate compound (later on 
identified as Dioxetanone) in the first step which were then oxidized by molecular 
oxygen resulting in the emission of light (see scheme 1.1)16. 

 

Scheme 1.1: Reaction mechanism proposed by McElroy et al. (Adapted Form)
16

 

 

Afterward, 1950s and 1960s could be considered as golden era for 
characterization of firefly Luciferin-Luciferase bioluminescence system. During this time 
extensive studies on this system were conducted, mostly pioneered by McElroy. The 
proposed reaction hypothesis explained in scheme 1.2 came into light for the first time 
during this period. The production of light in firefly beetle occurs in a very dedicated 
organ called Lanterns which contains specialized photocytes, sandwiched inside a series 
of cells filled with uric acid crystals. These crystals of uric acid reflect the light produced 
by photocytes17. Luciferase could easily be obtained by grinding these firefly Lanterns 
and McElroy et al. used this technique in a very sensible way. Purification and 
crystallization of firefly Luciferase was reported by Green and McElroy in 1956 followed 
by the purification of 9 mg Luciferase obtained from grinding of 15000 firefly Lanterns 
by Bitler and McElroy in 19575,17. This helped McElroy et al. to achieve partial 
characterization of the photo-emitter. They suggested the presence of a carboxylic acid 
group (which was essential for activation of ATP) on one side of the molecule and a 
phenol group on the other side13. In the same year, a very high fluorescence quantum 
yield (88±25%) of P. pyralis in aqueous buffer was measured by Seliger and McElroy5. 
In 1961, Luciferin structure with highly reactive and easily oxydizable thiazole ring came 
into light18. I#'1/"$'45670%'8-!"$'/#&'9.:1;+)'<;+<+%$&';$<1/.$*$#"'+,'60-OH group of 
=3.!,$;!#' !"-'/*!#+'2;+3<' "+'+("/!#'60-aminoluciferin with ~10 fold higher affinity to 
Luciferase19 and a red-shifted emission spectrum11,20-22. They proposed six structural 
analogues of firefly Luciferin (see the following chart 1.1) which could be involved in the 
bioluminescence reaction13,20.  
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Chart 1.1: Analogues of Luciferin proposed by McElroy et al. (Adapted Form)

13
 

 

Afterwards various structural modifications were proposed by several groups 
resulting in an improvement in the knowledge of the optical properties of Luciferin-
Luciferase complexes19,23,24. Theoretically and experimentally different aspects of this 
system were studied extensively5,25-36, which includes reaction mechanism,26,36-41 
structural characterization of the complex,12,37,42,43 change in luminescence spectra of the 
complex due to alteration in the environment,5,30,31,37,40,43,44 effect on luminescence due to 
the structural modification of the photo-emitter,23,45-47 Excited State Proton Transfer 
(ESPT) mechanism6,31,48-51 etc. 

With time, behavior of looking in this amazing system developed stepwise. 
Structure of the Luciferase and its complex with Luciferin has been studied by different 
researchers globally. The exact structural atlas and the active site of the enzyme had 
already been predicted. The effect of structural modifications either or both of Luciferin 
and Luciferase on the bioluminescence spectra has been interpreted extensively to 
decipher the exact bioluminescence phenomenon7,52-57. Computational33,36 and 
experimental approaches have been employed in these studies and the effect of these 
structural modifications on bioluminescence and biological activity of the enzyme 
complex were explained in detail20,24,58-63.  

In the meantime, another key issue associated with this system; in-vivo bio-
imaging using Luciferin-Luciferase bioluminescence came into light. Different 
approaches have been employed to apply this system as an imaging tool either by 
conjugating Luciferin with distinct functional groups or by monitoring the in-vivo 
enzyme activity. Strategically modified different analogues of this system have been 
employed to perform in-vivo bio-imaging3,19,64-69.  

During the last decade, extensive studies on Oxyluciferin structure either free or 
bound to Luciferase were performed. Different parameters associated with Luciferin-
Luciferase system drew enormous attention in order to reveal the exact photophysical 
properties of Luciferin-Luciferase complex. Recently, Naumov et al. proposed several 
structural modifications especially with methyl derivatives of the photo-emitter and they 
studied the light color modulation as a function of polarity with different solvents ranging 
from organic to aqueous4. In 2009, Naumov et al. proposed a scheme that displays 
absorption and emission of different analogues of Oxyluciferin in different solvents 
(DMSO, MeOH, H2O etc.). This representation was based on the previous experimental 
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and theoretical studies of Oxyluciferin in different solvents (See figure 1.1). Further, the 
crystal structure, reaction mechanisms, keto-enol tautomerization between different 
chemical forms etc. have been studied mainly spectroscopically during this time12,43,70,71. 

 
Figure 1.1: Absorption and emission color of different Oxyluciferin analogues in 

different solvents (Naumov et al. Reprinted with permission)
4
 

 

1.2 The reaction chemistry 

The multi-step catalytic reaction, leading to bioluminescence7,54,55 (scheme 1.2 
and 1.3) involves formation of a ternary complex of the substrate Luciferin, enzyme 
Luciferase and ATP in the first step. In the next step, an acidic anhydride between 
carboxylic group and Adenosin monophosphate (AMP) are formed by the exclusion of 
H+ from 4C-thiazole that creates Pyrophosphate (PPi) as a side product. Later on, through 
several intermediate steps this anhydride is oxidized by molecular oxygen, producing 
cyclic peroxide and Dioxetanone. During this intermediate process, radical recombination 
and annihilation result in the cleavage of covalent bonds leading to the formation of 
Dioxetanone; a highly unstable compound72-74. Decarboxylation of peroxide results in the 
formation of Oxyluciferin in its electronically first singlet excited state7,52. The formation 
together with the decomposition of Dioxetanone lead to an efficient chemi-excitation 
resulting in the formation of Oxyluciferin in the first excited state72,73. This reaction 
requires high energy (>7kCal/mol), therefore, involvement of molecular oxygen is 
mandatory in this process. Keto-Oxyluciferin is then rapidly transformed to its enol 
tautomer by proton removal from 5C-thiazole52. De-excitation of excited Oxyluciferin 
results in the emission of visible light (yellow-green-red) commonly known as firefly 
bioluminescence. With its high fluorescence quantum yield5 and exceptionally high 
signal-to-noise ratio due to the absence of photo-excitation, the firefly bioluminescence 
stands out to be a good candidate of choice for bio-imaging applications19,39,53,64,75-78. 
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Scheme 1.2: Proposed reaction mechanism of firefly bioluminescence and thermal 

decomposition of Dioxetanone to chemi-excited firefly Oxyluciferin and possible de-

excitation pathway of the emitter
4,48,70 

 

 

Scheme 1.3: Simplified reaction mechanism of firefly bioluminescence 

 

1.3 The enzymatic regeneration of Oxyluciferin into Luciferin 

The enzymatic regeneration of Luciferin from Oxyluciferin may occur through a 
hypothetical pathway in which Oxyluciferin acts as the substrate of Luciferin for the next 
cycle6 79. This is a two-step process which involves i. transformation of Oxyluciferin into 
2-cyano-6-hydroxybenzothiazole and ii. condensation of 2-cyano-6-
hydroxybenzothiazole with d-Cysteine to produce Luciferin79,80. Gomi et al. indicated 
that the first process is catalyzed by Luciferin Regenerating Enzyme (LRE)79. Active 
involvement of LRE during the conversion of Oxyluciferin into 2-cyano-6-
hydroxybenzothiazole has been proposed by Gomi et al. During a later step, 2-cyano-6-
hydroxybenzothiazole is non-enzymatically converted into Luciferin by d-Cysteine. LRE 
catalyzes the reaction, although the conversion of Oxyluciferin into Luciferin may be 
completely a non-enzymatic process79,80. Strong inhibitory effect of Oxyluciferin on 
Luciferase over Luciferin is overcome by the involvement of LRE which results rapid 
turnover of Luciferase for the next light emission cycle80. 
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Scheme 1.4: Regeneration of Luciferin from Oxyluciferin (Adapted Form)
66,79

 

 

1.4 The photophysics of firefly bioluminescence 

The reaction chemistry and the structure of the photo emitter for all known beetle 
Luciferase are identical. There are almost 20 Luciferase complexes that can be found in 
nature, however their luminescence color can vary from yellow to red (536 to 
638 nm)1,26. One of the key factors on which this variation in the emission wavelength 
strongly depends is the pH of the solvent52. The photo-emitter (the final product) of this 
bioluminescence system is considered as a good fluorophore as it has distinct spectral 
properties and strong micro-environment and polarity dependent fluorescence emission26. 
Despite of being indispensable to the development of a new bio-analytical tool, the 
chemical origin of the color modulation of this molecule remains poorly understood, so 
far. The photophysical mechanism associated with this bioluminescent system is still a 
highly debated question. According to several highly argued photophysical processes, the 
color modulation is likely to occur as an effect of several intramolecular and/or 
intermolecular factors within the enzyme81. The spectral shift observed results from 
changes in the polarizability and structure of the photo-emitter microenvironment in the 
enzyme pocket52. The photo-emitter, Oxyluciferin, is generated by the decomposition of 
the highly unstable intermediate compound Dioxetanone with a release of CO2 (see 
scheme 1.2). Isolation of this highly unstable species has not been achieved yet. This is 
the main reason that most of the spectroscopic studies were performed by photo-exciting 
either OxyLH2 alone or its complex with the enzyme in solution82. 

A critical limitation of utilization of other chemi-luminescence reactions for 
analytical applications is their low fluorescence quantum yield, in general ranging from 3 
to 5% and very rarely up to 10%43. Firefly bioluminescence is the most well-known photo 
emitter system in biophotonics, particularly known for its extremely high fluorescence 
quantum yield5 due to better ability for efficient conversion of chemical energy into light. 
This process provides exceptionally high signal-to-noise ratio, making it the right 
candidate for sensitive bio-imaging applications32. In recent advancement, it has been 
demonstrated how strongly acidity can effect spectral properties of the natural 
Oxyluciferin. Ando et al. showed the effect of pH on the quantum yield of the firefly 
bioluminescence. They also confirmed the strong effect of pH on the reaction rate 
kinetics5,6. The observed bioluminescence was centered at 560, 620 and 670 nm 
(shoulder) which originate from different species of the photo-emitter inside the complex 
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for the pH range 6.4-8.5. According to Ando et al. the intensity of the spectra centered at 
560 nm is strongly pH dependent while other two are less sensitive to pH5,6. During our 
studies, we also performed similar experiments and our results are very close to the 
results of Ando et al. (explained in the section 4.1). 

Despite of having significant importance as a bio-analytical tool, a few key 
aspects of this amazing bioluminescent system have been a subject of disagreement and 
hypothetical assumption for a long occasion without any direct experimental evidence of 
excited state structure. One of the main unresolved issues is the molecular origin of the 
natural or point-mutated emission. The properties of the excited state structure of the 
firefly emitter is critically important for explaining the key events of firefly 
luminescence71. Considering immense importance of this compound for various bio-
analytical applications, which includes probing of the local pH in-vivo or in-vitro, it is 
essential to elucidate a set of accurate and reliable pH profile of this compound. 

Even though the complex chemistry of OxyLH2 has spurred extensive 
experimental3,5,7,37,44,46,58,82-91 and theoretical5,25-29,33-35,47,51,90,92-96 studies, the 
photophysics of this natural photo-emitter remains poorly understood so far. One of the 
obstacles to complete the understanding of the de-excitation processes is the limited 
information about the excited-state dynamics of the emitter in aqueous solutions. It can 
exist in six different chemical forms as a result of ionization of two hydroxyl groups and 
the keto-enol tautomerism of the 4-thiazolone subunit (see chart 1.2).  

 

Chart 1.2: Possible ground-state chemical forms of firefly Oxyluciferin in aqueous 

solutions
48 

The intricate triple dynamic chemical equilibrium in solution is strongly affected 
by the solvent, pH and specific interactions with bases9,42,43,70,97. Experimental98 and 
theoretical99 studies of the firefly Luciferin (the reaction precursor) have shown that the 
photoluminescence pathways of this closely related molecule are strongly dependent on 
the solution pH and the excitation wavelength. Moreover, when in complex with 
Luciferase enzyme, the spectral properties of each chemical forms can additionally be 
affected by the nature of the active site such as polarity, presence of additional ions and 
>->' %"/.?!#212,43,48,100. The variations in bioluminescence spectra results from keto-enol 
tautomerization of Oxyluciferin at different solvent pH is strongly dependent on the 
location of the alkyl group in proximity to the highly reactive thiazole group of 
Luciferin26. Interaction between enol hydroxyl group and the alkyl group at far proximity 
of thiazole ring results in formation of an enolate ion, which in turn confirmed by the blue 
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shift of the emission spectra. But with protonation of solvent, red shift in luminescence 
occurs which confirms formation of the keto form of Luciferin. In transitional pH (6.5-
7.0), both keto and enol forms can be observed, which can likely explain the non-
symmetric luminescence for a number of cases26. In this natural chemi-luminescent 
system light is obtained from several electronically excited species rather than from a 
single one26. It can be believed that different emission color at different protonation level 
(or pH) corresponds to different excited states of the Oxyluciferin molecule in the 
Luciferin-Luciferase complex6.  

Structural basis for pH sensitivity of Oxyluciferin is the presence of its basic 
residue, which assists excited Oxyluciferin to undergo tautomerization in the active site 
(scheme 1.2 and chart 1.2). This hypothesis was originally proposed to explain green 
(enol & enolate forms) and red (keto form) emission of firefly Luciferin-Luciferase 
complex22. The phenolate-keto species have been considered as the most possible form 
for the emitting state33,46,95.  pH sensitivity can be directly related to interacting residues 
forming a secured active site, enhancing green emission. Also, it can be predicted that pH 
sensitivity is related to higher active site flexibility, resulting in the production of two 
different emitters or is related to higher rigidity, allowing the production of single emitter. 
However, this phenomenon of structural origin of pH sensitivity is still not understood 
accurately37. In addition, contemporary research outcome with di-methyloxyluciferin, 
whose structure prevents it to undergo  tautomerization, indicates that the tautomerization 
hypothesis is not the only reaction mechanism for green and red bioluminescence37,46.  
Recent studies have shown that the enol tautomer should be considered as emitting 
species that is generated in the excited state43,53,71. In recent time, Excited State Proton 
Transfer (ESPT) of this system, from either or both hydroxyl groups (scheme 1.2), have 
been investigated by ultrafast spectroscopic techniques30,31,71. 

 

1.5 Color tuning mechanism of firefly Luciferin-Luciferase 

bioluminescence system 

Firefly Luciferase, a ~62 kDa protein consists of 542-552 amino acid (AA) 
residues, catalyzes the bioluminescence reaction by oxidizing the photo-substrate firefly 
Luciferin in the presence of ATP, Mg2+ and molecular oxygen. The reaction proceeds 
through the activation of Luciferin to form Diaoxetanone, followed by the formation of 
the final product Oxyluciferin56. The enzyme crystallographic studies confirmed that 
Luciferase has a large N-terminal domain (AA residue 1-436)  and a small C-terminal 
(AA residue 440-550) domain linked through a flexible peptide which creates a wide cleft 
between these two domains66,101. The C-terminal contains Serine-Leucine-Lysine (SLK) 
motif, which is responsible for peroxisome targeting. The enzyme active site is believed 
to include the amino acids on the surface of both domains. During the course of reaction 
significant conformational changes in the enzyme occurs during which both N and C 
domain come close to each other and cluster the photo-substrate in between them. 
Majority of the amino acids which play vital roles in the bioluminescence reaction are on 
the N-terminal domain while only one (Lys529)101 is on the C-terminal domain66,101. A 
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hydrophobic pocket is created in the enzyme which encapsulates the substrate Luciferin 
inside it. This hydrophobic pocket enables Luciferase to adopt a « closed form » during 
the formation of the intermediate compound i.e. Dioxetanone and an « open form » in 
complex with the photo product Oxyluciferin66. 

 

 

 

The chemistry of the reaction and structure of the substrate and the enzyme is 
identical for all known beetle Luciferase enzymes isolated from different insects, only the 
color of bioluminescence is different which is likely associated with the acidification of 
the reaction mixture i.e. in-vivo pH, properties of the enzyme and microenvironment of 
the emitter in the active site of the enzyme52. Several mechanisms have been proposed so 
far to explain this complex firefly bioluminescence system. Color of the bioluminescence 
differs in different Luciferase-Luciferin complex; e.g. firefly (Family Lampyridae) emits 
yellow-green light (540-580 nm), click-beetles (Family Elateridae) emits green to orange 
(546-560-578-593 nm)54 and railroad worms (Family Phenogodidae) emits green-red 
(536-638 nm)52,54. 

Luciferase is a pH sensitive enzyme. In basic media, pH > 7.5, the typical 
bioluminescence is yellow-green (550-570 nm) centered at 562 nm. However in acidic 
media, pH ~5-6, this bioluminescence shifts to red with a centre around 620 nm5,66 (see 
section 4.1). Ando et al. saw a shoulder around 670 nm as well in their pH dependent 
study of firefly bioluminescence5. White et al. proposed that this spectral shift (or the 
color modulation) results due change in the polarity at the binding site in Luciferase102 
together with the conformational changes which influence the active site 
microenvironment. Presence of heavy metal cation and temperature of the 
microenvironment can also be factors which affect the color of the bioluminescence66. 
Ando et al. concluded that most of the color determination models for firefly 
bioluminescence systems have two alternative chemical states of excited Oxyluciferin 
inside the Luciferase active site. The yellow-green emission at higher pH and red 
emission at low pH correspond to these two states of Oxyluciferin. The equilibrium 
between keto and enol forms, states of Oxyluciferin in the active pocket of the 
fluorophore-protein complex, the rotation of the thiazolone fragment around the C2-@A0'
single bond of Oxyluciferin and most importantly the structural basis of Luciferase are 
the controlling platform for these two states5. An amino acid residue at close proximity to 
the emitter could react as a base with C5 proton of Oxyluciferin which results in the 
yellow-green emission of the enol form. But at lower pH (5-6), protonation of this amino 

Figure 1.2: Schematic representation 

of firefly bioluminescence mechanism 

proposed by Hirano et al. (Reprinted 

with permission)
12
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acid residue and the C5 proton of Oxyluciferin become impossible which leads to red 
colored emission from the keto form. In the intermediate pH region superposition of these 
two forms can be observed54.  

Excited Oxyluciferin enclosed in the Luciferase active site can exist in two stereo 
conformations with different energy levels. These stereo conformations result from the 
rotation of benzothiazole and thiazole rings around the C2-@A0'(+#&B'C-!%'90° rotation 
likely plays an important role in the color tuning of firefly bioluminescence. As per the 
hypothesis provided by MacCapra et al. this rotation is associated with an intramolecular 
charge transfer54. The energy and color of the emission is dependent on the degree of the 
rotation. At 90°, the energy is minimum, resulting red colored emission, but the alteration 
in the microenvironment and more restricted conformation can lead to a rotation with an 
angle lower than 90°; higher energy thus leads to blue shift in the emission spectra. 
Temperature and pH also play a role in this isomerization mechanism.  Although this 
hypothesis is quite convincing, it has some drawbacks as it cannot explain green emission 
from enol-Oxyluciferin54,103. 

 

Scheme 1.5: Two principle moieties of firefly Luciferin
66

 

 

Mutation in the amino acid sequence of Luciferase can also affect the color tuning 
mechanism of firefly bioluminescence103. Analysis of bioluminescence from several 
recombinant Luciferase mutants has shown that modification of the amino acid sequence 
also results into the red shift of the spectra. Two groups of such amino acids are: 
(Arg232Glu, Leu238Val) and (Ser247Gly, Asp352Val, Ser358Thr)54,104. A review work 
by Ugarova et al. explains nicely the effect of amino acid mutation on the firefly 
bioluminescence spectra54.  

Hirano et al. predicted the mechanism of the in vivo bioluminescence color tuning 
of Luciferase from of P. pyralis, L. cruciata, and P. hirtus. In particular, it depends on the 
polarities of their active-site environments and the bonding characteristics of the 
interactions between excited singlet state of phenolate anion and protonated basic 
moieties. The potential basic moiety consists of multiple amide carbonyls in the 
luciferase active site. A stronger acidity of the protonated basic moiety, leads to 
expansion of the color range of bioluminescence. They also found that L. 

cruciata Luciferase active site has a nonpolar character and that the amide carbonyls of 
Ser316 and Gln340 play an important role as basic moieties. Hirano et al. assumed that 
the structure of excited phenolate anion for the firefly bioluminescence may have an s-
trans planar conformer (see figure 1.2). 
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1.6 Oxyluciferin as a bio-analytical probe 

Being a non-invasive technique, fluorescence emission has been considered to be 
an ideal tool for monitoring biomolecular interactions in-vivo or in-vitro. Fluorescence 
technique has been applied to visualize, measure and characterize biological process of 
interest at the molecular and/or cellular level65. Fluorescent labeling, staining and 
quenching, while combined with appropriate instrumentations, is a very sensitive and 
quantitative method that is widely used in molecular biology to understand biomolecular 
interactions. Its ability to non-invasively monitor the biological activity of the subject 
promotes it to be a powerful and widely used tool for basic and transitional biological, 
medical and clinical diagnostic and research purposes. 

Transition of the photo-product Oxyluciferin to the ground state is accompanied 
by the emission of visible light48,65,74,105. Because of its better ability to convert chemical 
energy into light and exceptionally high signal-to-noise ratio, (therefore, having very high 
fluorescence quantum yield, 41.0±7.4%, Ando et al.),44,48 Oxyluciferin is well 
appreciated for sensitive in-vivo bio-imaging applications32, overcoming a major 
limitation of conventional chemi-luminescence reaction for analytical applications; low 
fluorescence quantum yield (in general ranging between 3-5% and very rarely up to 
10%)43. 

A classical characteristic of fluorescence emission, ESPT, has attracted much 
attention in last decades due to its application as an environment sensitive probe. The 
most remarkable photophysical property that is associated with the ESPT is large Stokes 
Shift compared to the conventional fluorophores e.g. BODIPY, Fluorescein, Rhodamine 
etc. This large Stokes Shift is desirable to avoid inner-filter effect and self-absorption of 
the fluorophore51.    

Application of the Luciferin-Luciferase bioluminescence mechanism to visualize 
and characterize biological/biomolecular activities is not a new technique. Several 
evidences19,67-69,106-110 could be found where this specific mechanism has been employed 
as a fluorescence tool to understand different biomolecular interactions. 

In-vivo or in-vitro biomolecular imaging was found to be the most ideal technique 
to obtain molecular and/or cellular information of a target of interest within the host 
environment. This can provide a better understanding about the molecular basis of the 
biology. In last decades a continuous progress in the development of new molecular 
imaging probe could be observed. Large signal amplification from enzyme activities, 
optical, magnetic resonance and nuclear imaging modalities have been the prime 
attractions for in-vivo or in-vitro biological imaging110. Characterization of different in-

vivo/in-cellulo events by observing the photophysical properties of the fluorophore 
distributed within the subject of interest has great and significant advantages.  

Monitoring site specific biomolecular interactions involves either fluorescence 
quenching technique or FRET measurements. Although FRET is an outstanding 
mechanism which allows measuring of inter-molecular distances between a pair of 
fluorophores, the subject of interest needs to be doubly labeled by two adequate 
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fluorophores. Therefore, single label fluorescence monitoring technique is commonly 
preferred. In particular, environment sensitive or solvatochromic fluorophore is employed 
and change in its fluorescence properties can be used to monitor interaction between 
different biomolecules (e.g. DNA, RNA, protein, peptide etc.). Solvatochromic 
fluorophores become more promising day by day. Indeed, this property is strongly 
dependent on the micro-environment of the labeled site and the variation in the emission 
profile can be correlated with the conformational changes which occur in the complex. 
For instance, it is possible to monitor interaction between DNA and protein/peptide in 
different environmental conditions using solvatochromic dyes. One of the classic 
examples is to monitor interaction between HIV-1 NCp7 or Tat and different DNA/RNA 
sequences by labeling either one with a solvatochromic fluorophore.  Previously reported 
works and their reviews suggested that different structural properties of HIV-1 NCp7 
and/or Tat and their involvement during viral life cycle can be monitored by observing 
their in-vitro interaction with DNA/RNA105,111-120. 

Oxyluciferin is a micro-environment sensitive fluorophore. Thus the fluorescence 
emission properties of Oxyluciferin and its structural analogues can be used to understand 
biological events. However, for further applications, its optical properties need to be 
deciphered in physiologically relevant conditions.  
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An Overview of the Work 

uring the last decade, understanding of this bioluminescence process is 
experiencing a growing interest due to the increasing number of applications 

especially in the field of biological analysis including in-vivo/in-vitro imaging, 
characterization of biomolecular interaction etc. One of the obstacles to complete the 
understanding of the de-excitation processes of this molecule is limited information about 
its excited-state dynamics in aqueous solutions. Despite of extensive experimental and 
theoretical knowledge of this complex chemical reaction, the photophysics of OxyLH2 

still remains poorly understood, so far. Depending upon conditions, OxyLH2 can exist in 
six different chemical forms as a result of ionization of both hydroxyl groups and the 
keto-enol tautomerism of the thiazole subunit. This complex triple dynamic chemical 
equilibrium in aqueous solution is strongly affected by the nature of the solvent, pH and 
specific interactions with bases. Moreover, when in complex with the enzyme luciferase, 
spectral properties of each chemical form of OxyLH2 can additionally be affected by the 
nature of the active site such as polarity, presence of additional ions and >->' %"/.?!#2B'
According to the recent developments, it has been shown that not only the phenolate-

keto species generated in the excited state, but also its enol tautomer is a possible form 
contributing to the fluorescence emission. It includes possible excited-state proton 
transfer (ESPT) from either or both of the hydroxyl groups. In addition, previous studies 
of firefly Luciferin (the reaction precursor) have shown that the photoluminescence 
pathway of the molecule strongly depend on various conditions including solution pH 
and the excitation wavelength. 

This thesis work is a part of the project entitled DExcited-State Structure of the 

Emitter and Color-Tuning Mechanism of the Firefly BioluminescenceE'(RGY-0081/2011) 
financially supported by Human Frontier Science Program (HFSP). Four collaborators 
are involved in this project: i) Prof. Lukas HINTERMANN, Dept. of Chemistry, 
F#!G$;%!")' +,' 93#!.-H' I:J9KLMN' !!O' P;B' Q/#R$' LKF9STH' L$ ' M+;?' F#!G$;%!")H'
ABU DHABI; iii) Dr. Pascal DIDIER, University of Strasbourg, FRANCE and iv) Dr. 
Michel SLIWA, University of Lille, FRANCE. All collaborators play different roles. 
Briefly saying, different structural analogues of Oxyluciferin were synthesized by the 
group of Prof. HINTERMANN and their crystallographic structural studies were 
performed by the team of Dr. NAUMOV. Photophysical profile and their biological 
applications have been studied by us in Laboratory of Biophotonics and Pharmacology 
under supervision of Dr. DIDIER. In Lille, Dr. SLIWA and his team studied IR 
spectroscopic profile of those derivatives. 

The first objective of the thesis was to identify the different forms of the OxyLH2 

responsible for the color tuning of the fluorescence emission in aqueous solutions ranging 
from blue to red (445-637 nm). Also, it was important to understand the ESPT 
mechanism involved in this process to provide a model mechanism which can explain the 
de-excitation processes of OxyLH2 in aqueous solutions.  

To understand the exact emission mechanism of OxyLH2, Prof. Lukas 
HINTERMANN chemically synthesized different analogues of OxyLH2 where different 

D 
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UH atoms are replaced by UCH3, so that they can be prevented from undergoing any 
protonation/deprotonation (chemical) reactions in aqueous solutions (see the chart 
below). Different experimental procedures involving steady state and time resolved 
fluorescence spectroscopy techniques have been employed to decipher the optical 
properties of these structurally modified derivatives. Absorption, emission spectra and 
excited state fluorescence lifetime of different analogues of OxyLH2 have been recorded 
at different experimental conditions in aqueous solution at different pH.  

 

Chemical structures of OxyLH2 and its structural analogues used in this study 

The steady-state and time-resolved emission experiments, performed in aqueous 
buffered solutions within a physiologically relevant pH range, provided for the first time 
the individual absorption and emission spectra of all neutral, tautomeric and anionic 
variants of OxyLH2 as well as the ground state and excited state equilibrium constants. In 
addition, the rate constants of the fundamental photoreaction processes were also 
determined. With these pH dependent fluorescence emission and time resolved results, 
we proposed a model of photoluminescence pathway of OxyLH2 in aqueous solutions. 
These results have already been communicated to ACS Journal of Physical Chemistry B 
and the article has been accepted for publication. 

In the second step, we have produced and purified the enzyme Luciferase 
(expressed in E. coli bacteria and purified by FPLC technique) in order to study the 
photophysical properties of OxyLH2-Luciferase complex in aqueous buffer at different 
pH. Different analogues of Oxyluciferin in complex with Luciferase have been studied 
(by mimicking the natural Oxyluciferin-Luciferase complex) to unravel the 
photodynamics of the natural complex. We first determined the best suitable 
concentration ratio of Oxyluciferin to Luciferase by using fluorescence anisotropy. Next, 
we employed steady state fluorescence spectroscopy and time resolved fluorescence 
spectroscopy by selectively exciting each chemical forms of Oxyluciferin to study 
different parameters of the Oxyluciferin-Luciferase complex for different experimental 
conditions. From the spectral and time resolved results we could interpret the effect of the 
local environment on the optical properties of the Oxyluciferin within the protein pocket. 

From the observations of photophysical parameters of Oxyluciferin-Luciferase 
complex in aqueous buffers and by comparing them with unbound Oxyluciferin in 
aqueous buffer, we could decipher the spectral behaviour and photodynamics of each 
chemical from of the photo-emitter when in complex with the enzyme. ESPT mechanism 
involved in this process could also be described from these results. The exact excited 
state structure of the photo emitter in natural conditions and factors that affect the color 
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modulation mechanism of this bioluminescence mechanism can now be explained with a 
great extent with these results. 

In the last part of our work, OxyLH2 and its two structural analogues; 4-

MeOxyLH and  !"#-DMeOxyL (see above chart) were selected to demonstrate the 
potential ability of using Oxyluciferin derivatives for suitable bio-analytical experiments. 
These derivatives were further chemically modified and coupled to HIV-1 peptides 
Tat(44-61) and/or NCp7(11-55) by solid phase synthesis method. Different analytical 
approaches were employed to use the optical properties of OxyLH2 derivatives to 
monitor biomolecular interaction in cell or in vitro. These experimental approaches 
involves Fluorescence Lifetime Imaging Microscopy (FLIM) with HeLa cells incubated 
with HIV-1 Tat peptide labeled with Oxyluciferin, steady state and fluorescence time-
resolved study of fluorescence quenching of HIV-1 NCp7 labeled with 4-MeOxyLH in 
complex with different oligonucleotide sequences at different concentrations.  

Fluorescence Lifetime Imaging Microscopy (FLIM) is an imaging technique in 
which fluorescence decay of a fluorophore is measured for constructing an image which 
represents a map of fluorescence lifetime in the form of an image. From the FLIM 
experiments we have observed different distribution pattern of excited state fluorescence 
lifetime for different Oxyluciferin derivatives responding to the heterogeneous pH 
environment inside the cytoplasm of HeLa cells. OxyLH2, that displays pH dependent 
fluorescence lifetime, shows a broader lifetime distribution histogram inside the HeLa 
cell, while narrower distribution could be observed with the cells incubated with Tat 
peptide labeled with  !"#-DMeOxyL. Results obtained in these FLIM experiments 
proved that Oxyluciferin can be used as an analytical tool for bio-imaging purposes to 
recognize and to monitor small variation of the intracellular pH. 

In parallel, we labeled HIV-1 NCp-7(11-55) with 4-MeOxyLH and observed its 
fluorescence quenching in presence of different single-strand and stem-loop 
oligonucleotide sequences. We measured fluorescence anisotropy by titrating labeled 
peptide with increasing concentration of oligonucleotide in physiological pH. 
Fluorescence anisotropy and Neutral/Anionic (N*/A*) emission ratio calculated from 
dual emission of 4-MeOxyLH coupled to NCp7 for these different complexes were used 
to obtain the dissociation constant for these complexes. Our results have been further 
validated by the time resolved fluorescence spectroscopy data. These results show that 
the particular optical properties of 4-MeOxyLH can be used to monitor biomolecular 
interactions. The results obtained from these experiments are in complete agreement with 
the fact that the firefly emitter is an appropriate bio-analytical tool for studying and to 
monitor biomolecular interactions in-vivo or in-vitro.  

To stabilize a specific chemical form of the of OxyLH2 (keto form), 5,5-Cpr-

OxyLH (see above figure) was synthesized in order to perform fluorescence labeling of 
protein. This compound displays the ability to specifically react with Cysteine (Cys) 
residue in basic condition. Without any Cys residue in the solution, 5,5-Cpr-OxyLH has 
an emission spectra centered at 637 nm. But in presence of Cysteine, the emission 
maximum is significantly blue shifted (about 70 nm). We postulated that in presence of 
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thiol of Cys, the spiro-cycle ring at C5 thiazole opens and =O reacts with the thiol group 
of Cys and as a result, tautomerization likely occurs. As a result, emission originates from 
the enol form of Oxyluciferin and blue shift of the spectra is observed. Amine and thiol 
groups are widely distributed in biomolecules. Compared to other non-specific amine-
labeling techniques for large biomolecules, thiol (or Cys) labeling strategies are more 
prominent. About 88% of all proteins have at least one Cys residue. Different favorable 
strategies also encourage fluorescent label using Cys as a promising bio-analytical tool. 
5,5-Cpr-OxyLH derivative was used to label human Alpha-1 Antitrypsin VW4-AT), the 
protease inhibitor (412 amino acid long protein) where a solvent accessible Cys232 
residue is available. A significant change has been recorded in emission spectra (~75 nm) 
before and after the labeling has been done. After the completion of the labeling 
procedure and purification, fluorescence quenching of the labeled W4-AT with increasing 
concentration of Procine Pancreatic Elastase (PPE) has been studied. In presence of PPE 
fluorescence quenching of labeled W4-AT has been observed confirming the biological 
integrity of the protein in physiological buffer. 

The results obtained in these experiments are currently integrated in other 
manuscripts which will be submitted shortly. 

In summary; 

i. we deciphered different chemical forms of Oxyluciferin involved in the color 
tuning mechanism of firefly bioluminescence by studying photodynamics of 
its different analogues in aqueous buffers. 

ii. we proposed a photoluminescence pathway of Oxyluciferin in aqueous buffer. 

iii. we did an interpretation that the exact excited state structure of the photo 
emitter in natural conditions in complex with the enzyme Luciferase and 
ESPT involved in this color tuning mechanism of firefly bioluminescence. 

iv. we showed that Oxyluciferin can be used as a promising bio-analytical tool 
specially to monitor biomolecular interactions in-vivo or in-vitro. 
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Materials and Methods 

2.1 Synthesis and 1HNMR study of Oxyluciferin derivatives 

Structurally modified analogues of Oxyluciferin derivatives have been 
synthesized by the group of our project collaborator Prof. Lukas HINTERMANN at 
Department of Chemistry, Technical University of Munich, GERMANY. Synthesis 
method and 1HNMR study of most of these derivatives discussed herein have already 
been published9,48,97  and remaining of them will be reported separately in shortly coming 
communications. 

 

2.2 Sample preparation 

Stock solutions of all Oxyluciferin derivatives were prepared by dissolving them 
in spectroscopic grade DMSO (CAS No. 67-68-5 purchased from Sigma-Aldrich). To 
maintain minimum freeze-thaw cycle, stock solutions of Oxyluciferin were stored in 
several aliquots of 20 µl at -20°C temperature. For spectral measurements, they were 
further diluted about 500 folds to final concentrations of about a few micromolar in 
aqueous buffers with different pH in 10 mm path length quartz cuvette purchased from 
Hellma Analytics. Aqueous buffer solutions used in this study were prepared as follows: 
75mM NaCl/20mM KH2PO4/0.2mM MgCl2 ,+;' <X' Y' ZB7' /#&' Z[*9' L/@1\A[*9'
Tris/0.2mM MgCl2 for pH > 7.0 (unless mentioned specifically). The aqueous buffered 
solutions were prepared by diluting their 1M stock solutions in de-ionized water (18.2 
9]O' <3;!,!$&' ()' 9!11!<+;$' %)%"$*B' C-$' (3,,$;' %+13"!+#%'  $;$' %$</;/"$&' !#"+' %$G$;/1'
fractions and their pH (error ±0.02) was adjusted by 250mM HCl or by 250mM NaOH at 
A7^@'V_<X' 0.25). For all spectral measurements separate buffers at different pH were 
used. 

 

2.3 Steady-state spectroscopic measurements 

Absorption spectra were measured by using a dual beam Cary-4000 (Agilent 
Technologies) spectrometer, equipped with thermostated sample holder, at the rate of 
100 nm/min with a PMT detector. Signal was recorded after correcting their baseline 
factor (against the same buffer) and optical density was plotted as a function of 
wavelength. For fluorescence spectra, same Oxyluciferin concentration as for absorption 
spectra was used and collected at the rate of 150 nm/min by the detector, photomultiplier 
tube of Fluorolog or Fluoromax, Jobin Yvon, equipped with a Peltier thermostated 
sample holder, with 2 to 3 nm of excitation and emission slits. Fluorescence signal 
obtained has been corrected from "-$' !#%";3*$#"0%' ;$%<+#%$' .-/;/."$;!%"!.%' "+' /G+!&'
potentially misleading trace and finally have been plotted as a function of wavelength. 
Emission spectra were collected at different excitation wavelengths by eliminating 
contribution from Raman and Rayleigh scatterings. Similarly, excitation spectra have 
been recorded by observing fluorescence from different emission maxima (data not 
shown). While observing time dependent fluorescence emission, excitation and emission 
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wavelength have been fixed at the point of interest with 2-3 nm excitation and emission 
slits.   

Absolute fluorescence quantum yield of 4,6!-DMeOxyL, 4-MeOxyLH and 5,5-

Cpr-OxyLH have been measured independently in Phosphate Buffered Solution (PBS, 
pH 7.4 at 20°C purchased from Bio Whittaker, diluted 1/10 times in de-ionized water) 
with Jobin Yvon Fluorolog equipped with a integrating sphere121,122. These three 
compounds were found to be good candidate as reference for the calculation of quantum 
yield for other compounds, since they have three different and distinct emission band 
centered at 445, 560 and 637 nm respectively in PBS. Their absorption spectra are also 
comparable to that of other compounds. Measured absolute fluorescence quantum yield 
for these three reference compounds have been found to be 0.49±0.05 for 4,6!-

DMeOxyL, 0.65±0.07 for 4-MeOxyLH and 0.19±0.02 for 5,5-Cpr-OxyLH.  

J$1/"!G$',13+;$%.$#.$'`3/#"3*')!$1&'VaS) for other compounds (and also for these 
three reference compounds) in buffer with different pH were determined by comparative 
method where the ratio-metric equation $S %&$R*(IS/IR)*(ODR/ODS)*('S²/'R²)123 was 
used. Absolute area (I) under the curve for sample (S) emission and reference (R) 
emission spectra was calculated by integrating them between desired ranges. Refractive 
Index (b) was 1.333 for buffer. Optical Density (OD) was the absorbance of sample and 
reference at the excitation wavelength. 

 

2.4 Time resolved fluorescence spectroscopic measurements 

To study excited state photodynamics of different derivatives of Oxyluciferin in 
aqueous buffer, two different approaches of Time Correlated Single Photon Counting 
(TCSPC) have been employed to monitor time-resolved fluorescence decay of each 
compound at different excitation and emission wavelength.   

In the first approach, the excitation pulse at 376 nm was provided by frequency 
doubling infrared pulses delivered by a 80 MHz Ti:Sapphire femtosecond laser (Tsunami, 
Spectra Physics) pumped by a Millenia X laser (Spectra Physics). The pulsed UV 
excitation was obtained with a BBO (c-Barium Borate) crystal with its crystal axis 
properly oriented with respect to the propagation direction fixed by the incoming beam. 
The excitation beam was collimated over 10 mm path length quartz cuvette. The 
fluorescence emission was collected at 90° with respect to the excitation beam through a 
monochromator. The incident beam intensity was adjusted to ensure an intensity-linear 
dependence of the fluorescence over the whole spectral range. The emission was 
collected through a polarizer set at the magic angle (54.7°) and a 16 nm band-pass 
monochromator (Jobin-Yvon H10). The single-photon events were collected by a 
microchannel plate photomultiplier tube (Hamamatsu) coupled to a pulse pre-amplifier 
HFAC (Becker-Hickl) and recorded on a SPC-630 board (Becker-Hickl). The 
instrumental response function was recorded using a polished aluminum reflector. Its full 
width at half-maximum was  40 ps. Integrated counts of 106 were collected for all of the 
lifetime measurements124. Lifetime decay has been acquired by the Becker-Hickl Single 
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Photon Counter (SPC) software (ver. 9.55) and analyzed by Becker-Hickl SPC Image 
Data Analysis software (ver. 4.9.7)124,125  -!.-' *!#!*!d$%' "-$' e2 value (preferably to 
below 1.2) between the data and the model function of incomplete multiexponential 
fluorescence decay during the analysis. 

During initial experiments it has been observed that all compounds could be 
excited at a common wavelength (376 nm) at 80 MHz (12.5 ns repetition rate of the 
excitation pulse) and their decay could be analyzed by considering an incomplete 
multiexponential fit. But with this approach, it was difficult to determine very short 
lifetime values. Indeed, it was necessary to observe fluorescence decay with a selective 
multiple excitation wavelengths ranging about 370 to 520 nm with lower repetition rate 
of the laser. To overcome these difficulties, later on, we employed another TCSPC 
approach, where selective excitation was possible with 4 MHz crystal (250 ns repetition 
rate of the excitation pulse) and also the analysis software was able to fit the decay with 
more than 3 lifetime components. 

On the second approach, the excitation pulse was provided by a femtosecond 
Ti:Sapphire laser (Coherent Chameleon Ultra II, 80 MHz, 200 fs, 3.8 W) coupled to 
either a pulse picker (4 MHz) and a harmonic generator (SHG/THG, APE) for excitation 
from 300 to 500 nm, or an intracavity frequency doubled OPO (APE) and a pulse picker 
(4 MHz) for 500 to 700 nm excitation. The measurement of fluorescence decay were 
performed using the FT200 from Picoquant spectrophotometer and the emission was 
collected through a polarizer set at the magic angle (54.7°) and Czerny-Turner type 
computer controlled monochromator for the selection of wavelength of detection. The 
single-photon events were collected by a cooled microchannel plate photomultiplier tube 
R3809U (Hamamatsu) and were recorded by PicoHarp 300 TCSPC system (PicoQuant). 
The instrumental response function was recorded using colloidal silica (Ludox) and its 
full width at half-maximum was  50 ps. All decays were collected until the number of 
events reached 104 at the maximum. The recorded decays were analyzed by FluoFit 
software package ver. fB6B6' VQ!.+g3/#"OB' C-$' ;$&3.$&' e2 was below 1.1, weighted 
residuals and autocorrelation function were used to check the quality of the fits. In case of 
non-exponential decays the stretched exponential model was used to estimate the time 
constants48.  
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Figure 2.1: (a) Excitation of a fluorophore by laser pulse and its time resolved emission 

decay (Becker W. et al.  Adapted Form)
124

, (b) Principle of TCSPC (Becker W. et al.  

Adapted Form)
124 and (c) Instrument Response Function (1) and Multiexponential 

fluorescence decay curve with fit (2-3)( Reprinted with permission )
126

.  !"#$!%#&'()&*+,-#.&

are calculated from the multiexponential decay fit using the equation ()*+&%&,i -i.exp-*./0 
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2.5 Expression and purification of firefly Luciferase60,127,128 

The enzyme Luciferase was expressed in BL-21 (DE3*) E. coli bacteria cells 
using the plasmid extracted from Japanese firefly (Luciola cruciata) kindly provided by 
Prof. Jun-ichi HOTTA, Graduate School of Science and Engineering, Yamagata 
University, Yonezawa, JAPAN. 

The Luciferase plasmid were incubated with BL-21 (DE3*) cells overnight at 
37°C on Lysogency Broth (LB) Agar media (supplemented with Ampicillin) to grow 
bacterial colony. Then a colony was further incubated in LB media supplemented with 
477'h2\*1'+,'K*<!.!11!# for 4-6 hours at 37°C. As the colony grows, absorbance of the 
LB solution at 595 nm has been recorded periodically. When OD595 was about 0.8, 
200 µM IPTG has been added to stop further bacterial growth and kept at 18°C 
overnight. Then the palette was removed by centrifugation at 9000 rpm at 4°C for 10 min 
and washed with PBS. Protease inhibitor has been added to it followed by addition of 
Lysozyme at 1 mg/ml at room temperature. Lysozyme has been mixed properly with 
gentle rotation. Short burst sonication was used to rupture the cell wall and finally after a 
centrifugation at 10000 rpm at 4°C for 2 hours the solution was ready for purification. 

To purify Luciferase, Fast Protein Liquid Chromatography (FPLC) technique has 
been employed using Nickel affinity chromatography column in PBS with 200 mM 
Imidazole solution with a linear gradient of 0 to 100% in 60 min and monitored at 280 
nm. Purified protein has been observed in 10% SDS Electrophoresis Gel and a band 
appeared around 62 kDa which was in good agreement with theoretical molecular mass 
of the protein. Further, to remove Imidazole and any other impurities (e.g. DTT etc.) the 
protein solution was passed through two filters with cut off at 10 kDa and 30 kDa. Final 
solution was mixed with 10% (v/v) Glycerol and its N2 shock-freezed aliquots were kept 
at -80°C. Concentration of the Luciferase %+13"!+#' -/%' ($$#' ./1.31/"$&' ,;+*' i280: 
37290 M-1.cm-1 (Ref. SIB database). 

 

2.6 HIV-1 peptide synthesis & labeling 

With the development of new reagents and techniques, the classical approach of 
synthesis of biologically active peptides, by solid phase method, has been developed 
intensively in recent decades129.  

In order to couple different Oxyluciferin analogues (OxyLH2, 4-MeOxyLH & 
 !"#-DMeOxyL) with HIV-1 Tat(44-61) and NCp7(11-55) peptides, they were further 
modified at thiazole moiety with carbon chain and a carboxyl group. Their modified 
structures have been shown in Appendix-C.2 and described in the following scheme and 
table. Instead of synthesizing the full-length HIV-1 proteins, we have selected specific 
amino acid (AA) sequences of these HIV-1 proteins; for Tat the synthesis was done for 
the AA sequence Gly44 to Gly61 and for NCp7 the synthesized sequence was Lys11 to 
Asn55. The reason of synthesizing these particular amino acid sequences will be 
explained in the chapter five. OxyLH2 and  !"#-DMeOxyL were coupled to Tat(44-61) 
(separately) and 4-MeOxyLH was coupled to NCp7(11-[[OB' K' c-alanine (3-
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aminopropanoic acid) derivative was used as a spacer in between the peptide and 
Oxyluciferin130. 

 
Scheme 2.1: Schematic of Oxyluciferin coupled to HIV-1 peptides 

 
Table 2.1: Different Oxyluciferin derivatives coupled to HIV-1 peptides 

Compound R1 R2 R3 Peptide 
Molecular mass* 

(g/mol) 
OxyLH2 -OH -OH ~COOH Tat(44-61) 2680 
fH60-DMeOxyL -OCH3 ~COOH -H Tat(44-61) 2634 
4-MeOxyLH -OH ~COOH -H NCp7(11-55) 5561 

*Theoretical   (refer section C.1 for more detailed chemical structures) 
 

Peptides were synthesized by solid phase peptide synthesis method using a 433A 
synthesizer (ABI, Foster City, CA). The synthesis were performed at 0.1 mmol scale 
using standard side-chain protected fluorenylmethyloxycarbonyl (Fmoc)-amino acids and 
HBTU/HOBt coupling protocol131. Fmoc-Gly-Wang resin LL (Novabiochem, 
0.38 mmol/g reactive group concentrations) or Fmoc-Asn(trt)-Wang resin (Activotec, 
0.52 mmol/g reactive group concentration) were used as a solid support for the synthesis 
of Oxyluciferin functionalized to N-terminal of Tat(44-61) or to NCp7(11-55) peptides. 
After the completion of the synthesis, peptidylresins were isolated and washed twice with 
MeOH and CH2Cl2. Figure 2.2 represents amino acid sequences of HIV-1 peptides 
obtained from different articles published earlier105,111,132,133.  

Three to five equivalents of the label (Oxyluciferin derivatives) were dissolved in 
500 µl of DMF and mixed with six equivalents of HBTU/HOBt coupling solution (in 
DMF) and further added to Fmoc deprotected peptidyl resin swelled in 500 µl of DMF. 
After a few minutes of gentle shaking, six equivalents of DIEA solution were added and 
the reaction mixture was stirred overnight at 37°C. Afterwards the peptidylresins were 
washed with MeOH and CH2Cl2. 

Cleavage and deprotection of peptidylresins of labeled Tat(44-61) were performed 
()'/&&!"!+#''+,'47'*1'C;!j3+;+/.$"!.'K.!&'VCkKO'%+13"!+#'.+#"/!#!#2'[% (v/v) water and 
5% (v/v) TIS (iPr)3SiH. In addition to the previous protocol, 1% (w/v) phenol, 5% (v/v) 
thioanisole and 2.5% (v/v) ethanedithiol were added to the mixture for the cleavage of 
peptidylresin of labeled NCp7(11-55). The peptidylresins were then precipitated by using 
cold diethyl ether and then pelleted by centrifugation at 3000 rpm for 10 min. Then the 
pellets were dried at room temperature. The labeled peptides were then solubilized with 
aqueous TFA (0.05% v/v) and were lyophilized under vacuum. 

All labeled peptides were purified by High Performance Liquid Chromatography 
(HPLC) technique using a C18 column (Nucleosil 100A, 5 µm; 250x10, Macherey-
Nagel) in an aqueous-acetonitrile mixture containing 0.05% TFA with linear gradients 
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(15 to 70% of aqueous-acetonitrile during 90 min for Tat(44-61) or 20 to 50% aqueous-
acetonitrile during 90 min for NCp7(11-55) labeled peptides) and monitored at 220 nm or 
370 nm.  

All purified labeled peptides were analyzed by ESI Mass Spectrometry. Molecular 
mass obtained from the analysis, were in good agreement with the theoretical molecular 
mass of the labeled peptides (mentioned in table 2.1). Prior to use, lyophilized peptides 
were stored at -20°C. All HPLC quality grade chemicals used for the synthesis and 
purifications were purchased from Sigma-Aldrich or Fluka, unless mentioned otherwise.  

During experiments, the concentration of aqueous solution of labeled Tat(44-61) 
peptides were determined from the absorbance at 375 nm using, molar extinction 
coefficients i375 = 4.80 x 104 M-1.cm-1 for  !"#-DMeOxyL /#&'i375 = 2.23 x 104 M-1.cm-1 
for OxyLH2 (refer Appendix-C.4 ,+;'i'./1.31/"!+#OB'C-$'d!#.-bound form of Oxyluciferin 
labeled NCp7(11-55) were prepared by reacting the peptide with a 2.5 fold molar excess 
of zinc sulphate in aqueous buffer of 25mM Tris-HCl/30mM NaCl/0.2mM MgCl2 at pH 
7.4 at 20°C. The pH was increased only after the addition of zinc to the labeled NCp7 in 
order to avoid oxidation of zinc-free peptide. The peptide concentration were determined 
()'3%!#2'/#'i280 = 5.70 x 103 M-1.cm-1119. The solution of peptide was stored at -20°C in 
small aliquots. 

 

Figure 2.2: Amino acid sequence of HIV-1 peptides used in this study: left, Tat(44-61) 

and right, NCp7(11-55)
105,111,132,133

 

 

2.7 Two-photon excitation microscopy 

Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Lifetime Imaging 
Microscopy (FLIM) experiments were performed using an in-house constructed multi-
photon laser scanning system Olympus IX70 inverted microscope with an Olympus 60X 
1.2NA water immersion objective134. TCSPC-FLIM uses multidimensional Time-
Correlated Single Photon Counting (TCSPC) process in which the sample is scanned by a 
focused beam of 80 MHz pulsed (mode-locked Ti:Sapphire) laser (Tsunami, Spectra 
Physics). Two-photon excitation was fixed at 780 nm and the laser power was adjusted to 
give a count rates with peaks up to as small as 106 photons/sec, to avoid pile-up effect. 
Photons were collected using two-photon short pass filter with a cut-off wavelength of 
680 nm (F75-680, AHF, GERMANY). The fluorescence was directed by an optical fiber 
coupled APD (SPCM-AQR-14-FC, Perkin Elmer), which was connected to a TCSPC 
module (SPC830, Becker & Hickl, GERMANY), operates in the reversed start-stop 
mode. Typically, the samples were scanned continuously for about 180 seconds to 
achieve appropriate photon statistics to analyze the fluorescence decays. Data were 
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analyzed using commercial software package (SPCImage ver. 4.9.7, Becker & Hickl, 
GERMANY), which uses an iterative deconvolution method to recover the lifetimes from 
the fluorescence decays134. 

 
Figure 2.3: Schematic of architecture of two-photon excitation instrumentation 

 

2.8 Fluorescence Lifetime Imaging Microscopy (FLIM) 

Optical methods are considered to be finest way to study biophysical properties of 
molecules. Although direct optical examination of active biomolecules is not a very 
suitable approach, as their light-protective defense mechanism prevent themselves from 
photodamage135,192. Classical optical microscopic techniques employ chemical fixation 
and refraction index-matched technique to visualize and to analyze with improved optical 
transparency of the dehydrated biomolecules192. This complicated endeavor does not 
allow the biologist to study intracellular and intercellular dynamics as well as to study 
subcellular structure of a fixed specimen192. The histology of the living biomolecules can 
be understood in a better manner by observing them with a non-invasive approach192. 

In-vivo or in-vitro bio-imaging technique applies principle of physics, chemistry 
and biology together to non-invasively visualize and characterize biological process of 
interest at molecular as well as cellular level in the living subjects65. Fluorescent labeling 
and staining, while combined with an appropriate imaging instrument, is a sensitive and 
quantitative method that is widely used in molecular and cellular biology. 

In particular, fluorescence based microscopy techniques are one of the most 
widely used tool for imaging active biomolecules in the field of biophysical research135. It 
has undergone a renaissance in last decade by the introduction of GFP and 2-photon 
microscopy technique192 and more recently with the advent of nanoscopy193. In 1980s, the 
use of fluorescence microscopy expanded from staining biomolecules within cells to 



25 

 

study the intracellular concentration of ions and for the detection of association of 
reactions within the cell135. Although the most limiting aspect of this technique is the 
knowledge of local probe concentrations within the cell which is usually variable based 
on the affinity of the fluorophore for the various biomolecules within the cell135. This 
emphasis on intracellular physiology required different types of fluorophore, ones which 
changed their optical properties in response to the ion or in response to the binding 
reaction of interest135. 

When a molecule, specially a fluorophore, absorbs a photon it reaches its 
electronically excited state and during its return to the ground state (S0) the molecule 
releases its absorbed energy in the form of photon135. The time a molecule spends at the 
$l.!"$&' G!(;/"!+#/1' %"/"$%' Vm4H' mA' nB' m#O' !%' *3.-' 1+ $;' "-/#' "-$' "!*$' !"' "/?$%' ,+;'
transition from S1 to S0. This is determined by the sum of all kinetic constants of the 
return pathways possible (K = transitions per molecule per unit of time)135 and is known 
/%'$l.!"$&'%"/"$'1!,$"!*$'VoO'+,'"-/"',13+;+<-+;$'/#&'$l<;$%%$&'as ()*+&%&,i -i.exp-*./0 (see 
figure 2.1). Lifetime is strongly dependent on the solvent polarity as larger dipole 
moment in polar solvents enhances the efficiency of energy transfer, lowering the 
,13+;+<-+;$0%' 1!,$"!*$135. Lifetime of the fluorophore is directly proportional to 
fluorescence quantum yield (a) but it is found to be more robust as a is directly 
calculated from fluorescence emission intensity with respect to its excitation intensity.  

FLIM is an imaging technique in which fluorescence decay of a fluorophore is 
measured for constructing an image that represents a map of fluorescence lifetime within 
the sample. One of the main advantage of FLIM when used with environment sensitive 
dye relies on the fact that fluorescence lifetime of the fluorophore is dependent on its 
molecular micro-environment but not in its local concentration. Time domain FLIM is 
performed by using Time Correlated Single Photon Counting (TCSPC) devices135 124. 
Data acquisition is based on the detection of arrival time of the single photon with respect 
to the position of the excitation pulse at the time of photon detection. The result is 3-D 
data array comprising distribution of photons over spatial coordinates (x, y) and time 
delay of the photon (t) which represents the array of pixels of the 2-D scan with each 
pixel containing large number of photons of time channels (generally in the scale of 
nanoseconds)124

 (see figure 2.3). 

Iterative convolution method is used to obtain fluorescence decay parameter form 
such array of pixels. First a suitable decay model is convoluted with instrument response 
function (IRF), calculated/measured form the excitation pulse, and set as model 
parameter. Then the fit procedure optimizes the model parameter until the best fit to the 
photon numbers per time channel is achieved124. Profile of this decay model can be single 
or multiple exponential functions depending upon the environmental condition and 
structure of the fluorophore. The decay profile, described several decay time and 
amplitude coefficients, finally construct a FLIM image by assigning the intensity 
(brightness) to the total number of photons in the pixel and color to the selected decay 
parameter where color scale determines the fluorophore lifetime and its distribution over 
the image. FLIM image also build up a 2-D histogram plot of pixel intensity as a function 
+,'"!*$' -$;$'%!2#/"3;$'+,',13+;+<-+;$0%'1!,$"!*$'&!%";!(3"!+#'./#'($'+("/!#$&124. 
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2.9 Fluorescence anisotropy measurements 

Rotational diffusion causes change in the direction of the transition moment 
which is the reason for depolarization. From anisotropy, average angular displacement of 
a fluorophore that occurs between absorption and subsequent emission can be monitored. 
The angular displacement is dependent on the rate and extent of the rotational diffusion 
during the excited state lifetime. This diffusion rate depends on several factors mainly 
including the shape and the size of the fluorophore-protein complex. The fluorophore, 
free of the protein is much smaller in size and has faster rotational diffusion than the 
emission rate which leads to a almost depolarized emission and thus to a nearly zero 
anisotropy135. But when bound to a protein, the shape of the complex changes and size 
increases (as well as the molecular weight), results in slower rotation diffusion and 
therefore anisotropy increases.    

Emission intensity (I) of complexes were measured through a polarizer oriented 
</;/11$1' VpO'+;'<$;<$#&!.31/;' VqO' "+' "-$'<+1/;!d$&'$l.!"/"!+#B'K#!%+";+<)' V;O' is calculated 
from r = (I -I!)/(I +2I!)135. Anisotropy is a dimensionless quantity independent of the 
fluorophore concentration and is defined as the total intensity of the sample as difference 
in emission intensity (I -I!) is normalized to the total intensity (I +2I!) of the sample. 

 

  
Figure 2.4: Schematic of fluorescence anisotropy measurement by T-format 

spectrofluorometer (Princ. of Flr. Spetr; J.  Lakowicz, Reprinted with permission)
135

  

  

 Anisotropy measurements were done by SLM-AMINCO (Model MH-116, 
SLM Instruments Inc. USA) T-format spectrofluorometer where fluorescence 
emission was collected by two PMT placed at 90° with respect of excitation light 
(Exc. slit: 4 nm). Mechanically orienting polarizers have been used to select 
"#$$%&%'()*+,-#'.(#+')+$)/%&(#*.0)1!2).'")3+&#4+'(.0)1 2)%5*#(.(#+')0#63(78)9,#77#+')
was collected through suitable long pass filters (Kodak, USA) to minimize 
scattered lights from the excitation. In T-format method, intensities are measured 
by two PMTs and emission polarizes are kept perpendicular for one and vertical 
for the other. For vertical (V) excitation, the ratio of parallel and perpendicular 
signals (RV) is given by G .I /G!.I! (factor G is the sensitivity the channel 
measured from the individual intensity ratio). Similarly, for horizontal (H) 
excitation polarizer, the ratio (RH) is given by G /G!. The ratio, RV/RH is used to 
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calculate the anisotropy (r). Theoretically this ratio should always be less than 3 
13%'*%)&):);8<28)=&%.(%&)(3%)/.0>%)#'"#*.(%7)?&%7%'*%)+$).&(#$.*()#')(3%),%.7>&%,%'( 
system. (Average of 10 calculations have been accepted as final result)135. 

 

2.10 Cell culture 

HeLa cells (ATCC CCL-@2) A%&%) *>0(>&%") 1B@8;;9CD2) +') .) ED) ,,) 60.77) -+((+,) F-
petridish (Ibidi, GERMANY) in DMEM (Dulbecco's Modified Eagle Medium) from 
Gibco, Life Technologies, supplemented with 10% FBS (Fetal Bovine Serum, Gibco) and 
0.1% PEN-STREP (Lonza) for 24 hr. at 37°C in 5% CO2 atmosphere. After the 
incubation of 18-24 hr., the cells were washed with PBS and Opti-MEM (Gibco). 
Oxyluciferin labeled Tat, dissolved in water, was added to them with final concentration 
of 0.3-0.7 µg/ml in Opti-MEM. Then the cells were incubated further for 30-45 min. 
After incubation, cells were again washed with PBS and Opti-MEM and further 
incubated in Opti-MEM, next observed under the microscope placed in a thermally 
incubated chamber at 37°C. Later to quantify fluorescence lifetime differently, 30 µM 
(~20 µg/ml) Monensin Sodium salt was added  directly over the cells, three minutes prior 
to observe, to neutralize the intracellular acidic media (concentration of H+)136 inside the 
cell.  

 

2.11 Oligonucleotide sequences 

Double HPLC grade purified custom-made oligonucleotide sequences were purchased 
from IBA GmbH, GERMANY and their stock solution was prepared in de-ionized water 
and concentration was calculated from their molar absorption coefficient provided by 
IBA GmbH. 

 

2.12 Software used 

For different analytical purposes Origin software (ver. 8.6) academic license to LBP-
UMR7213 has been used. Chemical structures, schemes and charts have been prepared 
with ChemBioDraw software (ver. 12.0) valid with personal academic license. Other 
software mentioned otherwise wherever required. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Chapter 03  

Results & Discussions 
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pH Dependent Spectra of Oxyluciferin in Aqueous Buffer 

n this work, we investigated the color tuning mechanism of firefly bioluminescence, by 
performing the first systematic steady-state and time-resolved fluorescence study of 

firefly Oxyluciferin and its analogues in aqueous buffered solutions to provide the 
individual absorption and emission spectra of all possible chemical forms of the photo-
emitter and to unravel the exact factors that affect the emission of Oxyluciferin 
(OxyLH2). In particular, the steady-state and time-resolved fluorescence emission 
experiments performed in aqueous solutions within a physiologically relevant pH range, 
provided the individual emission spectra of all tautomeric and anionic OxyLH2 variants 
as well as their ground and excited states equilibrium constants48. In addition, the rate 
constants of the fundamental photoreaction processes were also determined. New 
synthetic strategies have been applied to access large variety of non-natural structurally 
modified Oxyluciferin analogues (see chart 3.2). The excited-state structure of these 
structurally modified derivatives and their equilibrium constants in strongly polar 
environment with strong hydrogen bonding potential has been studied in/ex situ with 
conventional spectroscopic method. Different mathematical and chemometric approaches 
allow us to decipher the chemical equilibrium and kinetic profile among six 
hypothetically possible chemical forms (see chart 3.1) that govern this complex 
phenomenon associated with changes in emission wavelength. Spectral study of different 
chemical forms of Oxyluciferin (e.g. phenol-enol, phenolate-enol, phenol-keto, 
phenolate-keto etc.) in aqueous solutions confirms that the proton transfer from the enol 
group (thiazole subunit) is more favorable than that from benzothiazole group48. It has 
been observed that in aqueous solutions, the phenol-keto form is the strongest photoacid 
among all other isomers of Oxyluciferin and phenolate-keto has the lowest emission 
energy. From the pH-dependent absorption and emission spectra and the respective 
fluorescence lifetimes we concluded that the keto-enol tautomerism reaction is not 
favored in aqueous solutions unlike in non-polar solvents. Although these results do not 
directly apply to the Luciferase-Oxyluciferin complex where the active site is considered 
to be of low polarity, they provide support to the hypothesis that the excited state 
potential energy surface and the related dynamics are affected by the environment of the 
active site48. 

 

Chart 3.1: Possible ground-state chemical forms of Oxyluciferin in aqueous solution 

We investigated the absorption, emission spectra and the excited state equilibrium 
constants for all chemical forms of OxyLH2 presented in chart 3.1. These parameters 

I 



29 

 

have not been determined previously, even though they are essential for the 
understanding of the photophysical properties of the molecule. Our project collaborator 
Prof. Lukas HINTERMANN from Dept. of Chemistry at University of Munich, 
chemically synthesized different analogues of OxyLH2 where different GH atoms are 
replaced by GCH3. This site specific methylation prevents the analogue to undergo any 
protonation/deprotonation (chemical) reactions. Spectroscopic studies for five prime 
structural analogues of firefly Oxyluciferin (see chart 3.2) have been studied in aqueous 
buffers48.  

Chart 3.2 represents correlation between different chemical forms of firefly 
Oxyluciferin (shown in blue) in aqueous buffer and different structural analogues or 
model compounds (shown in black) studied in this work. Model compounds 4,6 -

DMeOxyL and 6 -Me-5,5-Cpr-OxyL can represent phenol-enol-OxyLH2 and phenol-

keto-OxyLH2 respectively in deprotonated (basic) aqueous buffer. On the other hand, 4-

MeOxyLH can mimic phenol-enolate-OxyLH" form of Oxyluciferin in completely 
deprotonated aqueous buffer. In similar condition, 6 -MeOxyLH can mimic phenolate-

enol-OxyLH" form and phenolate-keto-OxyLH" form can be represented by keto 
variant 5,5-Cpr-OxyLH. Depending upon solution pH, OxyLH2 can represent all these 
six chemical forms of firefly oxyluciferin including phenolate-enolate-OxyL2-.  

 
Chart 3.2: Chemical structure and corresponding molecular weight of firefly emitter 

OxyLH2 and its five analogues used in this study 

Spectral properties of several structural analogues of Oxyluciferin have been 
studied in aqueous buffers at pH ranging 5 to 11. Their pH dependent steady state 
absorption, emission spectra and time resolved fluorescence decay has been studied to 
decipher the exact color tuning mechanism of firefly bioluminescence. Six different 
chemical forms of firefly Luciferin that are actively involved in this process have been 
used. Their spectral properties, excited state dynamics (ESPT), ground state and excited 
state equilibrium etc. have been characterized and reported in  !"#$$#%&'()%*+),#+$' %-'
Oxyluciferin and its Derivatives in Water: Revealing the Nature of the Emissive Species 

#&' .#)+-/0' 1#%/2"#&+$3+&3+4' Ghose et al. J. Phys. Chem. B, 119, 2015 
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(doi: 10.1021/jp508905m). In this chapter we explain those results in a more detailed way 
(all data reprinted with permission).  

 

3.1 Selection of model compounds 

To simulate a micro-environment close enough to the physiological conditions 
used in the bioluminescence reaction involving Luciferin-Luciferase complex and to 
decipher the effect of pH on Oxyluciferin emission and its equilibrium, aqueous buffers 
at different pH have been used in this study. To facilitate comparative assignments, the 
absorption, emission spectra and fluorescence decays of all structurally modified 
derivatives were recorded under identical conditions for pH ranging 5 to 11 that spans 
over all pKa values so far reported for Oxyluciferin137. Indeed, bioluminescence reaction 
of Luciferin-Luciferase is strongly dependent in pH region 6-106,44,137,138. Monopotassium 
di-hydrogen phosphate (KH2PO4) buffer has been used for pH between 5 to 7 as this is 
well known to be an ideal buffer in the 5.8-8.0 range. While to prepare buffer pH > 7.0, 
Tris has been used as it has a pKa that lies at 7.4 and is well known for buffers ranging 
from 6.8 to 8.2. It has been expected that at pH 5.0, Oxyluciferin will be in completely 
protonated form while at pH 11.0 it will be in completely deprotonated form. 
Concentrations of theses derivatives used for absorption and emission spectra are 
mentioned in the following table: 

Compound 
Mol. Wt. 
(g/mol) 

Conc. 
(µM) 

Compound 
Mol. Wt. 
(g/mol) 

Conc. 
(µM) 

<HIJ-DMeOxyL 278.35 0.9 IJ-Me-5,5-Cpr-OxyL 290.36 1.0 
4-MeOxyLH 264.32 6.0 5,5-Cpr-OxyLH 276.33 1.1 
IJ-MeOxyLH 264.32 4.0 OxyLH2 250.30 3.0 

 

Ionization of both hydroxyl groups and keto-enol tautomerization of the thiazole 
moiety (triple equilibrium of Oxyluciferin) make photochemistry of Oxyluciferin more 
complex. A strategy of selective blocking of both or either one hydroxyl group has been 
used in this study. We mainly target five structural analogues (see chart 3.2) which can 
model different tautomeric and anionic variants of Oxyluciferin. 4,6 -DMeOxyL is a 
model for phenol-enol-OxyLH2 form (neutral form) while 4-MeOxyLH and 6 -

MeOxyLH are analogous of phenolate-enol-OxyLH" and phenol-enolate-OxyLH" 
forms that can normally be generated in basic conditions. In 4,6 -DMeOxyL both 
hydroxyl groups (benzothiazole and thiazole) are blocked by GCH3 and in 4-MeOxyLH 
and 6 -MeOxyLH 4C-thiazole and 6C-benzothiazole are blocked respectively (see chart 
3.2). Apart from this, we also included keto-variant of Oxyluciferin 5,5-Cpr-OxyLH 
where due to very specific 5,5 thiazole distribution pattern it is restricted to keto 
tautomeric form (see chart 3.2) and benzothiazole group can undergo deprotonatation in 
basic media. This can mimic phenolate-keto-OxyLH" form of Oxyluciferin. Also, we 
considered another keto variant 6 -Me-5,5-Cpr-OxyL which is model for neutral phenol-
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keto-OxyLH2 form similar to neutral enol form i.e. 4,6 -DMeOxyL (benzothiazole is 
restricted by GCH3). 

 

3.2 Optical properties of Oxyluciferin in organic solvent 

Prior to understand the photophysics of Oxyluciferin and its analogues in aqueous 
buffers, their spectral properties have been observed in pure and 50% (v/v) DMSO. 
Investigation of Oxyluciferin and d-Luciferin in organic solvents is not a new idea. 
Understanding the proton transfer mechanism of different analogues of Oxyluciferin in 
pure organic solvent or in a mixture is a well-established approach reported in earlier 
times. In recent years photophysical study of Oxyluciferin in non-aqueous solvents, 
especially in binary mixtures, has been investigated widely4,12,31,139,140. To understand the 
ESPT mechanism of newly synthesized structural analogues of Oxyluciferin, primarily, 
we also used the same approach and characterized the steady state properties in DMSO-
H2O mixture. Absorption and fluorescence emission spectra of Oxyluciferin (OxyLH2) 

and its four structural analogues (4-MeOxyLH, #$-MeOxyLH, %&#$-DMeOxyL and 5,5-

Cpr-OxyLH) were measured in DMSO-H2O system. In particular, we recorded their 
spectra in pure (100%) DMSO and 50% (v/v) DMSO-H2O binary mixture. DMSO-H2O 
solution is more polar than pure DMSO. Water is polar-protic solvent while DMSO is 
polar-aprotic solvent. However, the change in pH of the system was unknown. This 
polarity variation plays a significant role in the ESPT mechanism involved in the process. 
Their steady state optical properties are summarized and represented in the figure. 3.1.  

The absorption spectra of Oxyluciferin and its analogues are dominated by single 
band centered about 371-376 nm (except for keto form i.e. 391 nm) and almost not 
sensitive to the change in solvent polarity. OxyLH2 .'")#(7)IJK),%(3L0.(%").'.0+6>%)1#$-
MeOxyLH) absorbs at 376 nm while its neutral and 4C methylated analogue (4-

MeOxyLH) absorbs at 371 nm. Naumov et al. reported the absorption maxima of 
OxyLH2 in pure DMSO as 377 nm4 similar to the value we obtained. Effect of 
methylation can be clearly visible; a small blue shift of the absorption maxima with 4C-
thiazole methylation could be recorded. Keto-Oxyluciferin (5,5-Cpr-OxyLH) has a red-
shifted absorption maxima centered at 391 nm likely due to a different electronic 
structure. 

Effect of solvent polarity on Oxyluciferin and its analogues are much visible in 
their emission spectra due to more pronounced fluorophore-solvent interactions in the 
excited state than the ground state4. Except the keto analogue, all other analogues display 
a single emission band centered in between 434-443 nm in pure DMSO (polar-aprotic 
solvent). OxyLH2 has an emission band centered at 443 nm in pure DMSO resulting from 
the excited neutral form (OxyLH2

*28)M(7)IJ,%(3L0.(%").'.0+6>% shares the same emission 
maxima with OxyLH2

*, while its 4-thiazole and neutral analogues have blue shifted 
emission band. The single band in the emission spectra obtained in pure DMSO confirms 
presence of single specie in the excited state due to the absence of ESPT in pure DMSO 
(see figure. 3.1).  
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 Figure 3.1: Absorption, emission spectra of (a)  !"#-DMeOxyL, (b) 4-MeOxyLH, (c) 

5,5-Cpr-OxyLH (d) "#-MeOxyLH and (e) OxyLH2 in DMSO-H2O. In the table we have 

reported the absorption and emission maxima (while excited at absorption maxima) of 

those analogues (a: shoulder/tail). 

Increased solvent polarity due to addition of water has a strong effect on the 
emission spectra. Due to specific interactions and enhanced hydrogen bonding capability 
in the comparatively deprotonated solvent, a strongly red shifted and more intense 
secondary emission band (centered around 547-558 nm) could be observed in 50% (v/v) 
DMSO-H2O binary mixture (more polar in nature than pure DMSO). This dual emission 
band evidences existence of more than one species in the excited state and can likely b e 
associated to an efficient ESPT involved in the emission mechanism. The hypothesis 
relying on the presence of both neutral and anionic species in the excited state is 
supported by the single emission spectra of neutral compound 4,6'-DMeOxyL in both 

Compound Abs. Max/nm Em. Max/nm 

Volm. of 
DMSO   

100% 50%  100% 50%  

4,6'-DMeOxyL 370 434 440 

4-MeOxyLH 371 440 446, 547 

5,5-Cpr-OxyLH 391 518, 628 536a, 635  

6'-MeOxyLH 376 443 443, 558 

OxyLH2 376 443 443, 553 
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solvents (100% and 50% DMSO). Due to dual methylation at both benzothiazole and 
thiazole groups, this compound cannot undergo ESPT. So the emission even in 50% 
DMSO is originating from the neutral state. To confirm that there is no effect of solvent 
polarity which can lead to generation of another ionic specie in the excited state in the 
emission of this compound, figure 3.1a is supplemented with additional Abs/Em spectra 
of 4,6'-DMeOxyL in 100% water. No secondary emission band could be observed even 
in highly polar (protic) solvent like water. Although, a very small red shift in the emission 
maxima has been noticed. 

The keto-Oxyluciferin, 5,5-Cpr-OxyLH, is unique in terms of its photophysics. 
This compound is a strong photoacid (we will discuss about the photoacidity of 5,5-Cpr-

OxyLH later in section 3.5) and the presence of neutral and anionic species can be 
observed in pure DMSO. Absence of GOH in the thiazole subunit is the reason that the 
compound is already in the deprotonated state even in pure organic solvent. Its red-
shifted absorption spectra support this hypothesis. Fluorescence emission occurs from 
both phenol-keto-OxyLH2 (~518 nm) and phenolate-keto-OxyLH" (~635 nm) form. In 
addition, with increasing solvent polarity, the contribution of phenolate-keto OxyLH" in 
the emission dominates the phenol-keto-OxyLH2 emission which finally appears as a 
shoulder. Therefore it can be postulated that solvent polarity plays a significant role in the 
emission and ESPT mechanism of Oxyluciferin and its derivatives. Time resolved 
fluorescence decay of %&#$-DMeoxyL, 4-MeOxyLH and OxyLH2 in DMSO-H2O has 
been reported in Appendix-A.2. 

 

3.3 pH dependent absorption spectra 

To understand the ground state equilibrium of Oxyluciferin in aqueous buffer, we 
first measured the absorption spectra of each analogue at different pH in the range 5 to 
11. The interpretation of the color tuning luminescence mechanism of firefly Luciferin 
required intense characterization of composition, concentration and absorbance of 
OxyLH2 and its analogues. The pH-dependent steady-state absorption spectra of 
Oxyluciferin analogues are presented in figure 3.2. 4-MeOxyLH and 5,5-Cpr-OxyLH 
display clear isosbestic points that can be unambiguously associated with the presence of 
two chemical forms. The absorption spectra of these two analogues evidenced that the 
phenol-phenolate equilibrium occurs in the pH range 5 to 11. Phenol/phenolate species 
has their absorption maxima at 367/406 nm and 388/482 nm for 4-MeOxyLH and 5,5-

Cpr-OxyLH respectively. Absorption spectrum of 5,5-Cpr-OxyLH indicates that the 
spectral maximum of the phenolate ion of the keto form is strongly red shifted (482 nm) 
rel.(#/%)(+)#(7)'%>(&.0)$+&,)1ENN)',28))M')(3#7)*.7%H)(3%).-7+&?(#+')#7),.#'0L)">%)(+).)O-OP)
transition of the keto group and n-OP) (&.'7#(#+') $&+,)GOH at benzothiazole group. The 
hypothesis is supported by the spectra of 4-MeOxyLH (only n-OP) (&.'7#(#+') +$) K<-
methoxy is relevant in this case) where absorption from phenolate ion 
(anionic/deprotonated form) also has a red-shift to 406 nm compared to its neutral form 
(367 nm). The relative ground state pKa of 7.8 and 8.7 has been calculated for 5,5-Cpr-

OxyLH and 4-MeOxyLH respectively (see table 3.2 and figure 3.2).  
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Figure 3.2: Dependence of the absorption spectra of firefly Oxyluciferin (OxyLH2) and 

its derivatives on solvent pH and their corresponding pKa values. The chemical 

structures are shown in chart 3.2. The spectra were recorded in aqueous buffers at 

different pH at 20
o
C. The concentration was 0.9, 6.0, 4.0, 1.0, 1.1 and 3.0 µM for 4,6 -

DMeOxyL, 4-MeOxyLH, 6 -MeOxyLH, 6 -Me-5,5-Cpr-OxyL, 5,5-Cpr-OxyLH and 

OxyLH2, respectively. 

Deciphering pure spectral signature of the species that evolve from 6 -MeOxyLH 
and OxyLH2 was complicated and required a multi-set data analysis approach of the pH-
dependent absorption spectra. In the case of 6 -MeOxyLH, the complexity is introduced 
by the presence of three coexisting species due to keto-enol and enol-enolate equilibrium 
in the studied pH range. For 6 -MeOxyLH a strong absorption band centered at 371 nm 
and a shoulder at ~440 nm has been observed at pH 6. By comparing this spectrum with 
the one obtained with %&#$-DMeOxyL in the same conditions (where the phenol-enol 
species absorbs at 367 nm without any shoulder) we conclude that this band is likely 
assigned to the enol form. At pH 11, the maximum absorption shifts to 414 nm without 
any shoulder and can be assigned to the enolate form (neutral keto form cannot exists in 
such a strong basic media).  

The absorption spectra of OxyLH2 display two pH dependent absorption bands in the 
range of 371-425 nm and 309-313 nm. At pH 9 the stronger band is red shifted to 417 nm 
but the weaker band remains at the same position above pH 7.7. The more intense band 
shows an additional red shit to 425 nm in between pH 9-11 and remain at same position 
at pH >10 (see figure 3.2). In figure 3.3, absorption maxima of OxyLH2 and its two 
model compounds 6 -MeOxyLH and 4-MeOxyLH have been plotted as a function of pH 



35 

 

 

 

 

To determine the accurate ground-state equilibrium constants of OxyLH2, 
recently our project-collaborators Rebarz M. et al. applied a chemometric approach 
(Multivariate Curve ResolutionGAlternating Least Squares / MCR-ALS) to decipher the 
pH-dependent spectra of model compounds where some ESPT processes or the enol-keto 
equilibrium are blocked9. The analysis provided the absorption spectra of individual 
chemical forms of the emitter devoid from the other species and their pH-dependent 
concentration profiles. 

MCR method is a powerful approach to study complex tautomerization 
equilibrium from spectral data with an assumption that the data follow a bilinear model. 
The spectroscopic data can be completely resolved and the concentration profile C and 
spectra S of the components can be calculated from a spectroscopic mixture represented 
by a matrix D according to the equation D = CST + E9. 

In this equation, matrix D contains m number of pH-dependent spectra (rows) 
recorded at n wavelength (columns). The matrices C(m x N) and ST(N x n) contain pH 
dependent concentration profiles and the characteristic spectra of N absorbing species in 
the mixture, respectively9. The matrix E(m x n) contains the residual signal, caused 
mostly by the experimental noise. The most outstanding advantage of this MCR approach 
is the possibility to perform a multiple dataset analysis. The studied datasets correspond 
to the experimental data that observe the same chemical system, while the focus is on the 

Figure 3.3:  Absorption profile of (a) 

6'-MeOxyLH, (b) OxyLH2 and (c) 4-

MeOxyLH in aqueous buffer. Their 

absorption maxima have been plotted 

as a function of pH. Blue (also black in 

figure b) line represents Boltzmann fit 

of data. 
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processes that is being developed under different experimental conditions and, 
consequently, exhibits complementary behaviors9.  

 

In their work Rebarz M. et al. employed MCR-ALS to perform a simultaneous 
analysis of the pH-dependent spectroscopic data of OxyLH2 and its derivatives. Briefly, 
individual series of pH-dependent absorption spectra are arranged in data matrices Di (I = 
Oxyluciferin derivatives) where each row corresponds to the absorption spectrum 
measured at a given pH. Multi-set data arrangement can also be built corresponding to 
augmented matrices where the single data matrices are appended column-wise. The 
augmented data matrices built for multi-set spectral data analysis correspond to 
experiments performed for several Oxyluciferin derivatives having some common 
chemical forms in aqueous buffers9. 

To interpret the data, they assumed a bilinear model in the single-set analysis 
and/or in multi-set analysis. In multi-set analysis, the matrix ST contains the pure spectra 
of the species present in the different mixtures of chemical forms and the concentration 
matrix C is the augmented data matrix describing the pH-dependent profile of each 
species in each individual data set (see figure 3.4). However, it is to be noted that multi-
set data configuration neither involve all species that are present in all experiments nor all 
experiments share the same pH evolutions. Multi-set analysis also contributes to reduce 
significantly the amount of improbability in the results9. 

To understand the absorption behavior of Oxyluciferin in aqueous buffer and to 
identify exact chemical forms that are contributing to absorption spectra, it was necessary 
to analyze them in a different and unique way. Multivariate deconvolution technique was 
required to overcome possible inaccuracies associated with conventional univariate 
analytical approach. Application of such analytical technique allowed us to decipher the 
pH-dependent concentration profiles and the absorption spectra of each individual 
chemical forms of Oxyluciferin (see figure. 3.5) at different pH extracted from their pH 
dependent absorption spectra. Encouraged by the results of Rebarz M. et al., we thus 
applied Multivariate Curve Resolution-Alternate Least Squares (MCR-ALS) technique to 
identify the absorption spectra of each species in the ground state. 

Figure 3.4: Multi-set data 

arrangement for MCR-ALS analysis of 

Oxyluciferin (Rebarz et al. Reprinted 

with permission)
9 
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Figure 3.5: Absorption spectra and corresponding concentration profiles for OxyLH2 

and three model compounds (4-MeOxyLH, 5,5-Cpr-OxyLH and "#-MeOxyLH) obtained 

by multi-set MCR-ALS analysis. 

 

In line with the earlier results obtained by our project collaborators,137 the ground 
state spectral maxima of all the chemical forms can be arranged in the following order: 
phenol-enol-OxyLH2 (367 nm) < phenol-keto-OxyLH2 (388 nm) < phenolate-enol-

OxyLH
5 

(406 nm) <
 
phenol-enolate-OxyLH

5
 (412 nm) < phenolate-enolate-OxyL

25
 (425 

nm) < phenolate-keto-OxyLH
5
 (482 nm). The distribution diagram (see figure 3.6) shows 

that the contribution of the phenolate-enol-OxyLH" form is negligible due to the 
significantly higher pKa value of the phenol group relative to the enol group. In practice 
the presence of this species in the case of OxyLH2 can be ignored.  

pKa values for each derivatives has been calculated from the concentration profile 
presented in the figure 3.6. pKa was calculated by fitting the concentration profile (solid 
line/figure 3.6) with Henderson-Hasselbach equation (pKa = pH + log([HA]/[AG]).137 By 
fitting these data with MCR-ALS, pKa value for each chemical form of Oxyluciferin 
could be calculated. The pKa values for few derivatives determined in Tris buffer are 
slightly lower than those in phosphate buffers as shown earlier by Rebarz M. et al.137 In 
particular, the phenol-phenolate equilibrium for 4-MeOxyLH was found at 8.7 which is 
lower by 0.2 pK units. Whereas the pKa value for OxyLH2 are lowered by 0.3 units for 
the phenol-enol/phenol-enolate (pKa 7.1) and 0.1 units for the phenol-enolate/phenolate-
enolate (pKa 9.0) equilibrium respectively. Lowering of the pKa constants is another 
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proof of Oxyluciferin sensitivity towards ionic strength of the buffer. The combination of 
concentration profile and absorption spectra of each chemical forms determined by using 
MCR-ALS can be used to evaluate the contribution of each species at a given pH value 
(see figure 3.5 and 3.6). It also facilitates us to determine precisely the excitation 
wavelength that can be employed to preferentially excite a particular chemical form of 
Oxyluciferin at a given pH value. For example, at pH 8G9 it is possible to excite the 
phenolate-keto-OxyLH" selectively or phenol-enolate-OxyLH" forms and to 
characterize its optical properties without any significant contribution from the other 
chemical forms. 

 

Figure 3.6: Absorption spectra and concentration profiles of five forms of firefly 

Oxyluciferin obtained from MCR-ALS analysis. (The concentration of the phenolate-

enol-OxyLH
$
 form under these conditions is negligible) 
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3.4 pH dependent emission spectra and their time-resolved fluorescence 

decay 

Understanding of ground state equilibrium and absorption spectra of the 
conjugated acids and bases set the foundation for the interpretation of fluorescence 
emission mechanism and estimation of the corresponding equilibrium constants in the 
excited state (pKa*) by evaluating excited state proton transfer (ESPT) mechanism by 
means of the Förster Cycle123,140. 

 

3.4.1 Emission spectra of the non-ionizable model compounds 

The fluorescence emission spectra of non-ionizable model compounds %&#'-
DMeOxyL and #'-Me-5,5-Cpr-OxyL recorded in aqueous solutions in pH region 5-11 
are presented in figure 3.8. Their concentration was kept exactly similar to their 
absorption spectra and their corresponding time-resolved fluorescence decays are shown 
in figure 3.7. The position and the shape of their emission spectra as well as their relative 
fluorescence quantum yield and excited state lifetimes do not evolve with pH in the 
studied range (see figure 3.8 and table 3.1). This is because of the absence of acidic 
groups on the compound (both benzothiazole and thazole are blocked). %&#'-DMeOxyL 
exhibits a single broad emission band centered at 445 nm while excited at 370 nm which 
is in very good agreement with the fluorescence emission associated to the neutral 
phenol-enol-OxyLH2 form (450G455 nm)141,142. Relative fluorescence quantum yield 
1QR) of %&#'-DMeOxyL was found to be 0.49 throughout the pH region and its 
fluorescence emission decayed monoexponentially with an excited state lifetime of 3.1 ns 
in this pH region. On the other hand, the emission maximum of other model compound 
#'-Me-5,5-Cpr-OxyL, the phenol-keto-OxyLH2 analogue, was significantly red shifted 
by 80 nm from that of the phenol-enol-OxyLH2 counterpart i.e. %&#'-DMeOxyL, with 
maximum at 525 nm. The shape and position of the emission spectra while excited at 
370 nm does not evolve with pH. Fluorescence decays monoexponentially with an 
excited state time constant of 0.9 ns. Shortening of this lifetime can be attributed to the 
increased contribution of non-radiative pathways associated with the relatively smaller 
energy band gap which is also supported by the five-fold decrease in relative fluorescence 
quantum yield calculated for this compound.  

 

Figure 3.7: Fluorescence decays of two 

model compounds ( !"#-DMeOxyL and 

"#-Me 5,5-Cpr-OxyL) recorded in 

aqueous solutions. 
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Figure 3.8: Emission spectra of firefly Oxyluciferin (OxyLH2) and its derivatives 

recorded in aqueous solutions at different pH. The chemical structures are shown in 

chart 3.2. Measurements were performed at room temperature (20°C) in aqueous buffers 

at different pH and the concentration was 0.9, 6.0, 4.0, 1.0, 1.1 and 3.0 µM for 4,6 -

DMeOxyL, 4-MeOxyLH, "%-MeOxyLH, 6 -Me-5,5-Cpr-OxyL, 5,5-Cpr-OxyLH and 

OxyLH2, respectively.  

 

3.4.2 Emission spectra of the ionizable model compounds  

The fluorescence emission spectra of other model compounds 4-MeOxyLH, 5,5-

Cpr-OxyLH and 6 -MeOxyLH were recorded in aqueous solutions within the pH range 
5G11 in the similar way as before and are presented in figure 3.8. The emission spectra of 
4-MeOxyLH and 5,5-Cpr-OxyLH were recorded at excitation wavelengths that 
correspond to their isosbestic points at 383 nm and 422 nm respectively (see figure 3.2). 
5,5-Cpr-OxyLH was always irradiated in the visible region; excitation to higher excited 
states leads to formation of a new photo-product which has a characteristic specific 
emission at 530 nm, which was particularly pronounced in basic conditions (see 
Appendix-A.3). 6 -MeOxyLH was excited at 370 nm where the absorption was least 
sensitive to solvent pH (see figure 3.2).  
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The emission spectra of 4-MeOxyLH in acidic solutions are composed of two 
distinct bands. At pH 5.0 the strong band is centered at 560 nm from the ionic form and is 
accompanied by a weaker band centered at ~450 nm originating from the neutral form 
which is in accordance with the spectrum of 4,6 -DMeOxyL (see figure 3.8). This 
assignment is fully supported by the time-resolved fluorescence decay of this compound 
recorded at both emission maxima in acidic solution (pH 5.0). By exciting the neutral 
form at 370 nm the emission band at 450 nm is strongly quenched and decays non-
exponentially with a very short lifetime component of 0.24 ns. Simultaneously the time 
resolved fluorescence decay observed at 560 nm at pH 5.0 rises with an average time 
constant corresponding to ESPT rate and disappears biexponentially with excited state 
lifetimes of 1.6 and 4.9 ns (see figure 3.9 and table 3.1). The first component corresponds 
to the geminate proton quenching. In agreement with a pKa* value of about 3.4 the 
emission band at 450 nm disappears completely in highly basic solution (pH > 9) where 
only the deprotonated excited state contributes to the fluorescence emission (see figure 
3.8). At high pH (>10) the deprotonation occurs already in the ground state and 
expectedly, geminate recombination143-149 of proton was not observed with the growing 
part of the time resolved fluorescence decay. Hence, the fluorescence emission of 4-

MeOxyLH at 560 nm at pH 10 was characterized by a monoexponential decay with time 
constant of 4.88 ns, identical to that of the longer component measured at pH 5 (see table 
3.1). Therefore, the spectrum recorded at high pH establishes a model for the 
photophysical properties of the phenolate-enol-OxyLH" form. To obtain the spectral 
signature of the phenolate-keto-OxyLH" form, the emission spectra of 5,5-Cpr-OxyLH 
were recorded by exciting at 422 nm. The shape and the position of the emission spectra 
did not evolve with pH and only one emission band centered at 637 nm was observed in 
contrast to 4-MeOxyLH. This can be explained by the higher photo acidity of 5,5-Cpr-

OxyLH, which experiences highly efficient ESPT throughout the whole pH range. The 
time-resolved fluorescence decay recorded at 520 nm with an excitation at 390 nm in 
acidic solution, corresponds to the neutral form of keto-OxyLH2 and reveals a bimodal 
process (see figure 3.9 and table 3.1) with a very short lifetime component corresponds to 
the instrumental response function (IRF) of the setup (<50 ps). Therefore it can be 
postulated that, ESPT from the phenol group is a very fast, thus only emission from the 
deprotonated form of 5,5-Cpr-OxyLH can be observed with steady-state spectroscopy. 
The emission maximum at 637 nm is in very good agreement with the data reported 
previously for the phenolate-keto emission from 5,5-DMeOxyLH derivative12,150. It is 
noteworthy that de-excitation of the phenolate-keto anionic emission exhibits time 
constant of 0.6 ns, while recorded at 640 nm and is several times faster than the one 
corresponding to the phenolate-enol form (4.9 ns) (see figure 3.9 and table 3.1). The 
weak emission and the long tail observed at 530 nm at basic pH are likely caused by 
photo-degradation of the molecule and should not be taken into account while 
considering emission spectra of the phenolate-keto form.  
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Figure 3.9: Fluorescence decays of derivatives of firefly Oxyluciferin measured in acidic 

and basic buffered aqueous solutions. The chemical structures are shown in chart 3.2. 

 

To understand the emission mechanism of phenol-enolate-OxyLH", we focused 
on the other ionizable model compound 6 -MeOxyLH, where the dissociation of the 
phenol group is purposefully blocked. This derivative exhibits a broad intense emission 
spectra centered at ~550 nm while excited at 370 nm. Because of the strong photoacidity 
the fluorescence emission of 6 -MeOxyLH originates mainly from the enolate ion. The 
time-resolved fluorescence decay of 6 -MeOxyLH recorded at 450 nm in acidic pH has a 
non-exponential character with a very short component (< 50ps) which is quite similar to 
IRF. This is the result of very fast and efficient ESPT from the enol group at lower pH. It 
is already known from the absorption spectra137 that this compound can exist with ~30% 
keto form at pH 5. The contribution of this tautomer (exclusively in the neutral form due 
to blocked phenol deprotonation) in the fluorescence emission of 6 -MeOxyLH cannot 
be excluded especially at acidic pH. A detailed analysis of pH dependent emission 
spectra of 6 -MeOxyLH (see figure 3.8) reveals a very small blue shift from 555 nm at 
pH 11 to 550 nm at pH 5. This blue shift may be explained by the superposition of two 
strongly overlapped components in the emission spectra in acidic media: a major 
component originates from enolate anion with a maxima at 555 nm associated with a 
minor one that corresponds to the emission from neutral keto tautomer that centered 
around 525 nm (compared with 6 -Me-5,5-Cpr-OxyL). At basic pH, the minor 
component was depleted and only emission from pure enolate species could be observed 
1Rmax 555 nm). To support this interpretation, the emission spectra of 6 -MeOxyLH in pH 
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5 has been recorded by exciting at 430 nm (see figure 3.10). For this condition, excitation 
of the keto tautomer is highly increased because of its superior absorption coefficient 
relative to the other species137. Apparently, the contribution of the keto tautomer into the 
resultant emission spectrum of 6 -MeOxyLH was stronger and a maximum blue shift to 
535 nm could be observed. The presence of the keto tautomer in acidic media was also 
noticeable in the time-resolved fluorescence decay. The decay recorded in acidic solution 
.()DD;)',)1RExc 370 nm) was multiexponential with time constants of 0.17, 0.8 and 7.9 ns 
(see figure 3.9 and table 3.1). The shortest lifetime (0.17 ns) is attributed to the geminate 
quenching while the second component corresponds to the excited state lifetime of 6 -

Me-5,5-Cpr-OxyL (0.9 ns). On the contrary, in basic solution (pH 10) the decay 
recorded at 550 nm was monoexponential with a time constant of 8 ns. This result 
strongly support that the keto tautomer is not present in basic solution and the spectra 
recorded under such conditions correspond to emission from the phenol-enolate-

OxyLH" form. 

 

 

 

3.4.3 Emission spectra of Oxyluciferin (OxyLH2) 

The presence of five chemical forms provides an accurate spectral 
characterization of the most intricate part of the analysis; the pH-dependent fluorescence 
emission of the real emitter OxyLH2. The phenolate-enol-OxyLH" form can be 
excluded from the analysis of emission spectra because of its higher pKa of the phenol 
group with respect to enol group. To decipher the individual contributions of each 
chemical form, the fluorescence emission spectra of OxyLH2 were recorded at two 
different excitation wavelengths: 370 and 510 nm (see figure 3.11). The interpretation of 
the emission spectra was greatly facilitated by this selective photo-excitation of OxyLH2. 
The relative absorbance of all six chemical forms of OxyLH2 at a specific pH are listed 
in figure 3.2 and 3.6.  
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Table 3.16' 7#"+' )+$%/8+9' :&9' -/2%)+$3+&3+' ;2:&,2"' 0#+/9' <=R) data for firefly 

Oxyluciferin and its derivatives (see chart 3.2) in aqueous solutions (the constants for 

OxyLH2 obtained by using the global analysis method for all the decays are highlighted 

in boldface font) 

Compound 
Neutral emission Anionic emission >R 

pH 
?ex / 
nm 

?em / 
nm 

@ / ns pH 
?ex / 
nm 

?em / 
nm 

@ / ns (%) 
 

4,6 -
DMeOxyL 

5G
11 

370 450 3.10 - 
0.49 

 

4-MeOxyLH 5 370 450 0.24a 5 370 560 
0.21b 

1.60 (11) 
4.86 (89) 

0.32 

10 
 

430 
 

560 
 

4.88 0.47 
 6 -Me-5,5-

Cpr-OxyL 
 

5G9 
 

390 
 

525 
 

0.93 
 

- 
0.11 

 

5,5-Cpr-
OxyLH 

5 390 520 < 0.05a 
5 390 640 

0.16 (25) 
0.61 (75) 

0.18 

10 520 640 0.63 0.26 

6 -MeOxyLH 5 370 450 < 0.05a 
5 370 550 

0.17 (42) 
0.78 (32) 
7.88 (26) 

0.18 

10 430 550 7.97 0.35 

OxyLH2 5 370 450 < 0.05a 

5 
 

370 550 
0.16 (52) 
1.04 (8) 

7.63 (40) 

0.17 (50) 
0.48 (7) 

7.82 (43) 
0.15 

370 640 
0.16 (12) 
0.56 (80) 
7.28 (8) 

0.17 (41) 
0.48 (49) 
7.82 (10)  

7.6 
430 550 

0.17 (32) 
0.53 (19) 
3.95 (6) 

7.68 (43) 

0.17 (17) 
0.48 (7) 

5.80 (19) 
7.82 (55)  0.35 

510 640 0.41 
0.17 (2) 
0.48 (98) 

 
10 430 540 5.91 5.80 0.50 

aShort component of non-exponential decay, bAverage time constant of the growing part. 
 

Excitation at 370 nm.  

In acidic conditions (pH < 8), the dominant species that can be excited at 370 nm 
are phenol-enol-OxyLH2 and phenol-keto-OxyLH2 (see figure 3.6). Assuming a strong 
photo-acidity in the excited state for both phenol and enol groups, it can be predicted that 
the first species should be deprotonated to phenol-enolate-OxyLH" followed by the 
second one to phenolate-keto-OxyLH". The time-resolved fluorescence decay is a strong 
evidence of efficient ESPT from the enol group recorded at emission wavelength that 
corresponds to the emission from phenol-enol-OxyLH2 $+&,)1Rmax 450 nm) (see figure 
3.8). The decay recorded indicates that the emission from the neutral phenol-enol-

OxyLH2 form is strongly quenched and the proton transfer time constant is <50 ps (see 
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figure 3.11 and table 3.1). In comparison, the value estimated by Erez et al. is 45 ps73. 
Considering the possible deprotonation of the phenol group, the fluorescence spectrum 
contains contributions from both species. Because of higher abundance and higher 
fluorescence quantum yield relative to phenolate-keto-OxyLH" (637 nm) form, the 
dominant contribution comes from the phenol-enolate-OxyLH" form (555 nm). The 
recorded emission spectra have maxima at 555 nm and possess long tail that extends 
beyond 600 nm.  

Time resolved fluorescence decay recorded at 640 nm in pH 5.0 clearly shows 
two populations with exited state lifetime of ~0.56 ns and ~7.3 ns (see table 3.1) together 
with the geminate recombination143-149 associated with a time constant of 0.16 ns. The 
value of first component (0.56 ns) is fully in line with the lifetime of phenolate-keto-

OxyLH" form determined by considering 5,5-Cpr-OxyLH exited state lifetime whereas 
the lifetime of second component (7.3 ns) is in a very good agreement with the 
fluorescence lifetime of phenol-enolate-OxyLH" (7.9 ns; table 3.1) determined for 6 -

MeOxyLH. 

With increasing pH, in basic condition, the contribution from keto-tautomer 
becomes negligible, and the most abundant species are phenol-enolate-OxyLH" and 
phenolate-enolate-OxyL2" (see figure 3.6). This results in a slight blue shift of the 
emission spectra that are attributed to a mixture of monoanionic and dianionic form. Due 
to negligible concentration of other species in the ground state (see figure 3.6), the 
fluorescence emission from the dianionic form becomes more dominant at pH > 9 and the 
emission spectra recorded at pH 11 displays a maximum at 539 nm which can be 
attributed to the phenolate-enolate-OxyL2" form. The blue-shifted emission from mono-
deprotonated phenol-enolate-OxyLH" form had a shorter exited state lifetime of ~5.9 ns 
(see table 3.1). 
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Figure 3.11: Normalized emission spectra of firefly Oxyluciferin in aqueous solution at 

different pH and excitation wavelengths 

 

Excitation with visible light at 510 nm. 

Photo-excitation at lower energy leads to different de-excitation pathways of 
OxyLH2. In acidic solutions (pH 6-7) the major absorbing species is the phenolate-keto-

OxyLH" form. Also, minor contributions from phenol-keto-OxyLH2 and phenol-

enolate-OxyLH" could be observed. Therefore, phenolate-keto-OxyLH" form 
dominates the fluorescence emission at this pH and features a band centered at 634 nm, 
slightly blue shifted (3 nm) compared to the emission from 5,5-Cpr-OxyLH. Nearly 
monoexponential fluorescence decay could be observed at 640 nm (see figure 3.11) with 
a time constant of 0.4 ns (see table 3.1) which indicates that the phenolate-keto-OxyLH" 
is the dominant species in this condition.  

At higher pH 8-9, a shoulder around 540 nm appears due to phenolate-enolate-
OxyL2" contribution. This is because of the increased abundance of phenolate-enolate-
OxyL2" resulting from deprotonation of phenol-enolate-OxyLH" in the ground state. At 
highly basic solution (pH >10), the intensity of the red band decreases considerably at 
~634 nm in favor of the green emission intensity from phenolate-enolate-OxyL2" at 
~540 nm which becomes more dominant at pH 11 with an exited state lifetime of 5.91 ns 
(see table 3.1). Time resolved fluorescence emission decay at pH 7.6 has a strong 
importance to characterize the spectral properties of OxyLH2. With an excitation at 430 
nm and by monitoring the emission decay at 550 nm, a mixture of phenolate-keto 
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(0.53 ns), phenolate-enolate-OxyL2" (3.95 ns) and phenol-enolate-OxyLH" (7.68 ns) 
could be observed (see table 3.1).  

 

 

Figure 3.12: Absorption (top panel) and emission (bottom panel) spectra of individual 

chemical forms of firefly Oxyluciferin based on the Multivariate Curve Resolution5

Alternating Least Squares (MCR-ALS) procedure. 

 

The spectral data recorded for different analogues at different pH with selective 
excitation (thus exciting the particular chemical form of Oxyluciferin) and their analysis 
provides the fluorescence emission spectra of each individual chemical forms associated 
with the color tuning mechanism of firefly Luciferin (see figure 3.12). The order of 
emission energies does not match exactly the same order of the absorption energies. The 
order of emission energies is phenol-enol-OxyLH2 (445 nm) > phenol-keto-OxyLH2 (525 

nm) > phenolate-enolate-OxyL
25

 (540 nm) > phenol-enolate-OxyLH
5
 (555 nm) > 

phenolate-enol-OxyLH
5 

(560 nm) >
 
phenolate-keto-OxyLH

5
 (634 nm). In the excited 

state, we could observe in the emission decay only the contribution from three species: 
phenol-enolate, phenolate-keto and phenolate-enolate that are associated with one 
geminate recombination with decay of 0.17 ns without any ESPT growing signal. Such 
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observation can be explained by the fact that the enol group in the phenol-enol form and 
the phenol group in the phenol-keto form are strong photoacids. In addition to this single 
wavelength lifetime analysis, a global decay analysis with four time constants was 
performed, one for each species and one for geminate recombination (see table 3.2) to 
obtain more reliable values for phenol-enolate (7.82 ns), phenolate-keto (0.48 ns) and 
phenolate-enolate (5.80 ns) forms. 

 

3.5 Equilibrium and photodynamics in the excited state  

Five chemical equilibriums could be considered in the case of OxyLH2*: phenol-
enol/phenol-enolate, phenol-enolate/phenolate-enolate, phenol-enol/phenolate-enol, 
phenolate-enol/phenolate-enolate and phenol-keto/phenolate-keto. In the ground state, 
where the enol group is more acidic than the phenol group, the pathway including phenol-
enol/phenolate-enol deprotonation and subsequent phenolate-enol/phenolate-enolate 
deprotonation can be excluded from the consideration. The equilibrium between phenol-
enolate/phenolate-enolate is accompanied with a minor difference between their 
respective absorption spectra. This excludes calculation based on the Förster cycle theory 
and implies absence of ESPT. The deprotonation of the enol group was estimated at pKa* 

= 1.5 for the phenol-enol/phenol-enolate equilibrium. This value is higher than the 
previously reported values (G0.5 to 0.5)73,142. For the phenol-keto/phenolate-keto 
equilibrium, the constant calculated is identical with that obtained for 5,5-Cpr-OxyLH 
(pKa* = G2.6), indicating that only anionic species can be observed after photoexcitation.  

5,5-Cpr-OxyLH  was estimated to be the most photo-acidic compound (pKa* = G
2.6) and this analogue of Oxyluciferin can be placed in the group of  « super-photoacids » 
(pK* < 0) which can undergo deprotonation even in alcohols and some other organic 
solvents151. On the contrary, 4-MeOxyLH has a much higher estimated pKa* = 3.4. This 
comparison shows that the keto-enol tautomerism on the opposite terminus of the emitter 
strongly affect the photoacidity of the phenol group. A similar effect could be observed 
for the acidity in the ground state also. For the enol-enolate equilibrium in #'-MeOxyLH, 
pKa* of 1.7 was estimated.  

So far, phenol-keto-OxyLH2 has been regularly reported as blue emitter4,142,150. 
The hypothesis was mainly based on results obtained for another model compound 5,5-

DMeOxyLH in organic solvents. Due to extremely high photoacidity of this compound 
(pK* = -3.91)150 the fluorescence emission of its neutral form could not be recorded in 
water, not even in very acidic aqueous buffered solution. The spectrum of the phenolate 
anion could be observed. Hirano et al. showed that the emission of 5,5-DMeOxyLH 
depends on solvent polarity12. The results obtained in organic solvents (deprotonation is 
inhibited in many organic solvents, such as benzene, chloroform, acetonitrile etc.) cannot 
be extrapolated to very polar solution (water). Although Hirano et al. provided an insight 
into the emission mechanism of the keto-OxyLH2 in water by inhibiting the ionization of 
(3%)IS-OH group by methylation of 5,5-DMeOxyLH. The product #'-Me-5,5-DMeOxyL 
was photo-unstable in aqueous solvent and the emission could only be estimated as green 
0#63()1Rmax~535 nm). On the contrary, the derivative #'-Me-5,5-Cpr-OxyL is quite stable 
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in aqueous buffer within the pH range 5G9, and its green emission could be recorded 
without any difficulties. The results indicate that the phenol-keto-OxyLH2 form, which 
is normally identified as blue emitter in non-aqueous solutions could emit green light in a 
very polar and strong hydrogen acceptor/donor solvent such as water. However, similar 
to the case of #'-Me-5,5-DMeOxyL, the electronic effects should not be excluded as a 
possible reason for the observed spectral shift. Thus position of the emission maximum of 
phenol-keto-OxyLH2 in aqueous buffer becomes noteworthy. 

To determine the exact excited state equilibrium (pKa*) of all chemical forms of 
Oxyluciferin, further interpretation of their emission spectra were required. From the 
interpretation of emission energies of all model compounds (in their neutral and anionic 
forms, wherever possible) the values for the estimated excited-state equilibrium constants 
could be corrected and refined. The pKa* values of all analogues were recalculated by 
using the Förster cycle theory and the intersection points of the mutually normalized 
absorption and emission spectra of the conjugated acid-base pairs presented in table 3.2. 
Information about the excited-state equilibrium constants can also be derived by fitting 
nonexponential fluorescence time-resolved decays of a conjugated acid to the numerical 
solution of the Debye-Smoluchowski equation152,153. This method, known as spherically 
symmetric diffusion problem (SSDP) approach, was recently successfully applied to 
decipher excited state equilibrium constants for various photoacids.154 The time resolved 
fluorescence decay recorded at wavelength corresponds to neutral emission displays a 
typical bimodal character. The neutral emission quenched by ESPT (with rate constant 
kPT) is observed as a short decay component while the long emission tail is attributed to 
reversible geminate recombination process (kr). In the case of emission from 4-

MeOxyLH recorded at 450 nm (see figure 3.9), such nonexponential decay is clearly 
visible. The SSDP fitting procedure employed software of Krissnel and Agmon154 
calculates the rate constants of the excited state proton transfer, kPT = 4.1 x109 sG1, and 
geminate recombination in the excited state, kr = 17 x109 Å sG1. The ratio kPT/kr

151 gives 
pKa* = 2.0. This is in reasonable agreement with the value obtained by Förster cycle 
analysis. Unfortunately, the emission decays of the non-dissociated forms of the other 
compounds are nearly as short as our instrumental response function (~50 ps) and the 
SSDP approach could not be applied.  

The irreversible process that takes the molecule to the ground state can be 
characterized by the presence of a very short component in the fluorescence decay of 
anionic species in acidic conditions. But this component is absent in basic solutions 
because the molecule is already deprotonated before the excitation (see figure 3.2 & 3.5 
and table 3.1). The functional group of the photoacid decides the relative contribution of 
this short component throughout the decay. The time constant for 4-MeOxyLH and 6 -

MeOxyLH are ~1.6 and 0.17 ns with relative amplitude of 11% and 42% respectively. 
This result shows that for the enol group, the irreversible geminate proton quenching is 
significantly more effective. In OxyLH2 the quenching takes place at both deprotonation 
sites, thus has the highest contribution from the short decay component (46%).  
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In scheme 3.1 ESPT mechanism involved in between enol tautomers of 
Oxyluciferin has been explained. Equillibrum between different chemical forms and 
associated quenching pathways among them have been have been explained with the help 
of this model rrepresentation.  

 
Table 3.2: Spectroscopic parameters and equilibrium constants for firefly Oxyluciferin 

and its analogues in aqueous solutions 

Compound 
?Abs / nm 

pKa 
?Em / nm 

pKa* 
neutral anion neutral anion 

4,6 -DMeOxyL 367 - - 445 - - 
4-MeOxyLH 367 406 8.7 ~450 560 0.9 ± 0.3 
6 -MeOxyLH 371 414 7.3 ~450 555 G0.3± 0.3 

6 -Me-5,5-Cpr-OxyL 388 - - 525 - - 
5,5-Cpr-OxyLH 388 482 7.8 n.d. 637 G1.0 ± 0.5 

OxyLH2 371 
414a 

425b 
7.1d 

9.0e ~450 
539b 

555g 

634c 

G0.9 ± 0.5f 

G0.5 ± 0.3d 

bOxyL2G, cPhenolate-keto-OxyLHG, dPhenol-enol/phenol-enolate, ePhenol-enolate/phenolate-enolate, 
fPhenol-keto/phenolate-keto, gPhenol-enolate-OxyLHG (n.d. G not detectable). 

 
 
The following table briefly represents Oxyluciferin analogue that corresponds to 
particular chemical form of the photo emitter with designated excitation wavelength in 
basic aqueous buffer. 

Chemical form of Oxyluciferin Compound (Exc (Em 

Phenol-enol-OxyLH2 <HIJ-DMeOxyL 370 445 
Phenol-keto-OxyLH2 IJ-Me-5,5-Cpr-OxyL 390 525 
Phenolate-enolate-OxyL2G OxyLH2 370 540 
Phenol-enolate-OxyLHG IJ-MeOxyLH 370 555 
Phenolate-enol-OxyLHG 4-MeOxyLH 383 560 
Phenolate-keto-OxyLHG 5,5-Cpr-OxyLH 422 637 

 
 

 

 



 

 

 

 

 

 

 

 

Scheme 3.1: ESPT mechanism for enol tautomer of Oxyluciferin 
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3.6 Photoluminescence pathways of Oxyluciferin in aqueous solution 

The absorption, emission spectra and fluorescence lifetimes of all model compounds of 
firefly Oxyluciferin in buffered aqueous solutions were studied thoroughly and their 
tautomeric forms and protonation states were revealed. Their excited state equilibrium 
constants were calculated by using Förster cycle approach. 

i. we found that contrary to the previous conclusions for the blue emission from the 
neutral phenol-keto isomer in non-aqueous solutions, a keto-Oxyluciferin 
analogue (a cyclopropyl derivative) of this species is a green emitter (525 nm) in 
aqueous solutions; 

ii. we confirmed the earlier conclusions155 that ESPT from the enol group of the 
phenol-enol form is more favorable event in the excited state relative to ESPT 
from the phenol group; 

iii. the phenol-keto form is the strongest photoacid among the isomers; 

iv. the phenolate-keto ion has the lowest emission energy (634 nm); 

v. the order of emission energies of the chemical forms of Oxyluciferin and global 
analysis of the fluorescence decay indicates that some processes in the first 
excited state are not likely to take place in very polar and strong hydrogen-
accepting solvent, such as water. In particular, a second deprotonation at the 
phenol group after the enol deprotonation (i.e. deprotonation of the phenol-
enolate) is not likely to occur in the excited state. Moreover, the keto-enol 
tautomerism reaction, observed previously in toluene in presence of a strong 
base,155 is not favorable in aqueous solutions.  

Finally by combining these data with previous results6,31,43,44,49,70,137 as well as with 
the equilibrium constants determined in this work48, we could propose the reactions in 
scheme 3.2 for the complete photoluminescence cycle of OxyLH2 in a wide pH range in 
buffered aqueous solution. These results could be useful to gain better insight into the 
firefly bioluminescence.  
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Scheme 3.2: Photoluminescence pathway of Oxyluciferin in aqueous solution 
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Appendix-A 

A.1 Geminate Recombination (GR) Process143-149  

One of the most important factor on which the excited state lifetime of 
photogenerated ions depends is the forward and backward proton transfer parameter. 
Geminate Recombination of photogenerated electron-hole pairs is an unique aspect of 
chemical reactivity governing the efficiency of the photophysical process. The ability of 
the solvent molecules to confine the photofragments, created by the photo-excitation, 
results in a back proton transfer reaction of the photoproducts trapped inside the solvent 
T*.6%U8) V3%) (#,%) A#'"+A) $+&) (3#7) ?&+*%77) #7) W'+A') .7) =%,#'.(%) X%*+,-#'.(#+'8)
Photoinduced proton transfer from a neutral donor to a neutral acceptor in a randomly 
distributed system gives birth to radical pairs that are in close proximity. 

The organic compounds which become more acidic upon excitation are known as 
« Photo-acids ». The sudden increase in acidity causes the photo-acids to dissociate in the 
aqueous solutions within its excited-state lifetime. A recombination anion results from 
this dissociation reaction. Although a less reactive weaker base in the excited state can 
still react with this protons. Many photoacids exhibit acid-base equilibrium in their 
excited state, where both proton dissociation and recombination reactions occur 
reversibly in the excited-state. Therefore, similar to the ground state, the acidic strength 
of the photoacids can be characterized by assigning an excited-state equilibrium constant 
(Ka*) to the proton dissociation reaction. To achieve the equilibrium in such conditions, 
both the proton dissociation and recombination reactions must be fast enough compared 
to the excited-state lifetime of the molecule. 

 

A.2 Time resolved fluorescence decay of Oxyluciferin and its two 

derivatives in DMSO-H2O system 

Furthermore, to confirm ESPT involved in the emission mechanism of 
Oxyluciferin in DMSO/H2O system (see section 3.2 and figure 3.1), time resolved 
fluorescence emission decays of 4,6'-DMeOxyL, 4-MeOxyLH and OxyLH2 were 
recorded with an excitation at 376 nm in pure DMSO and 50%(v/v) DMSO at their 
emission maxima. Effect of solvent polarity, and presence of efficient ESPT (except for 
4,6'-DMeOxyL where ESPT is not feasible) due to polarity change is clearly visible in 
the decays presented in the following figure. 
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A.3 Relative stability and photo-stability of keto-Oxyluciferin48 

 

 

Figure A.2: Time resolved 

fluorescence decay of (a) 4,6'-

DMeOxyL, (b) 4-MeOxyLH and (c) 

OxyLH2 DMSO-H2O system (Exc. WL 

376 nm) 
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Figure A.3: Relative stability and photo-stability of 5,5-Cpr-OxyLH and 5,5-

DMeOxyLH. Row 1 and 2: absorption and emission changes measured at t=0 min and 

t=60 min at pH 5 and 10. Row 3 and 4: time dependent emission under continuous 

illumination at 390 and 450 nm measured at pH 10. All experiments were performed at 

T=20°C
48

. 

 

In our study we have included two derivatives which represent keto form of 
Oxyluciferin; 5,5-Cpr-OxyLH and #)-Me-5,5-Cpr-OxyL. 5,5-disubstitution group in 
these two derivatives restricts the thiazole section to the keto tautomeric form. 5,5-Cpr-

OxyLH, whose phenol group is deprotonated in basic media, mimics the phenolate-

keto-OxyLH" form and #)-Me-5,5-Cpr-OxyL is a model for the neutral phenol-keto-

OxyLH2 form as we have already discussed before. 

 

 

In earlier studies doubly methylated analogue 5,5-DMeOxyLH has been 
considered as the model keto form21,97,156. However, it has been observed in our 
experiments that 5,5-DMeOxyLH is poorly photostable in aqueous solutions, especially 
in basic conditions and under UV excitation (see figure A.3/right panel). From the pH 
dependent absorption and emission spectra of 5,5-Cpr-OxyLH it could be concluded that 
they show better stability and photostability in aqueous buffer (see figure A.3/left panel). 
Therefore, these two cyclopropyl derivatives (5,5-Cpr-OxyLH and #)-Me-5,5-Cpr-

OxyL) have been included in our study.  
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For 5,5-DMeOxyLH and 5,5-Cpr-OxyLH in basic conditions and under UV 
excitation, a new photoproduct with emission band centered at 530 nm is formed, which 
is likely to be assigned to dianionic species that evolves after isomerization and 
hydrolysis. The cyclopropyl group minimized such photoreaction and increased the 
global stability in the ground state and in the excited state. A minor influence of 
cyclopropyl group can be observed on the absorption spectrum (see figure 3.2): the 
existence of a shoulder about 370 nm that does not exist for 5,5-DMeOxyLH. This 
shoulder can be assigned to a certain geometry constrained by the cyclopropyl group on 
the thiazole ring. Indeed theoretical calculations predict that the lowest excitation for 5,5-

DMeOxyLH as well as phenol-keto-OxyLH2 is a charge transfer transition (HOMOG
LUMO) from phenol part to thiazole ring and that the geometry of the thiazole ring is 
nearly planar29,97 without a cyclopropyl group. 
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ABSTRACT: The first systematic steady-state and time-resolved emission study of firefly
oxyluciferin (emitter in firefly bioluminescence) and its analogues in aqueous buffers
provided the individual emission spectra of all chemical forms of the emitter and the
excited-state equilibrium constants in strongly polar environment with strong hydrogen
bonding potential. The results confirmed the earlier hypothesis that excited-state proton
transfer from the enol group is favored over proton transfer from the phenol group. In
water, the phenol-keto form is the strongest photoacid among the isomers and its conjugate
base (phenolate-keto) has the lowest emission energy (634 nm). Furthermore, for the first
time we observed green emission (525 nm) from a neutral phenol-keto isomer constrained
to the keto form by cyclopropyl substitution. The order of emission energies indicates that
in aqueous solution a second deprotonation at the phenol group after the enol group had
dissociated (that is, deprotonation of the phenol-enolate) does not occur in the first excited
state. The pH-dependent emission spectra and the time-resolved fluorescence parameters revealed that the keto-enol
tautomerism reaction, which can occur in a nonpolar environment (toluene) in the presence of a base, is not favored in water.

1. INTRODUCTION

1.1. Background. The phenomenon of biochemilumines-
cence (commonly known as bioluminescence) is a fascinating
natural process by which living organisms convert chemical
energy into light. Such cold-light emission from a chemically
produced excited (chemiexcited) state is known for several
organisms, including certain species of bacteria, beetles, squid,
and worms.1−3 In the case of fireflies, the light-generating
reaction involves an enzyme (luciferase) that catalyzes
oxidation of the substrate (luciferin) by molecular oxygen, in
the presence of adenosine-5′-triphosphate (ATP) and Mg2+,
leading to formation of the emitting molecule (oxyluciferin,
OxyLH2) in its first excited state.2,4,5 While relaxing to its
ground state, OxyLH2 emits a photon in the visible part of the
electromagnetic spectrum. The high luminescence quantum
yield of this process6 reflects not only a very efficient catalytic
machinery, but also a highly favorable microenvironment with
strongly deactivated nonradiative pathways. With its high
quantum yield6 and the exceptionally high signal-to-noise ratio
due to the absence of photoexcitation, the firefly bio-

luminescence stands out as the best candidate of choice for
bioimaging applications.7−12

The reaction chemistry and structure of the emitter are
identical for all known beetle luciferases;1,13 however, the
emission wavelength depends on the conditions and can vary
between 536 and 638 nm.14 Despite being essential to the
development of new bioanalytical tools, the chemical origin of
the color modulation remains poorly understood. According to
several debated photophysical mechanisms, the color modu-
lation likely occurs as a result of intramolecular and/or
intermolecular factors within the enzyme.15 The emitter is
generated by decomposition of the dioxetanone and release of
CO2 (Scheme 1). Because isolation of this highly unstable
species has not been achieved yet, most spectroscopic studies
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were performed by photoexcitation of either OxyLH2 alone or
its complex with the enzyme in solution.16

Even though the complex chemistry of OxyLH2 has spurred
extensive experimental3,6,16−27 and theoretical28−40 studies, the
photophysics of this “phantom molecule” remains poorly
characterized. It can exist in six different forms as a result of
ionization of two hydroxyl groups and the keto-enol
tautomerism of the 4-thiazolone subunit (Chart 1). The

intricate triple dynamic chemical equilibrium in solution is
strongly affected by the solvent, pH, and specific interactions
with bases.41−44 Moreover, the spectral properties of each
chemical form could be additionally affected in the enzyme by
the nature of the active site such as polarity, presence of
additional ions, and π−π stacking.42,45,46 Historically, the
phenolate-keto species has been considered the most viable
form for the emitting state.17,35,40 However, recent studies have
shown that the enol tautomer should not be excluded as
emitting species that is generated in the excited state.42,47,48

Moreover, ultrafast spectroscopic results have indicated
possible excited-state proton transfer (ESPT) from either of
the two hydroxyl groups (Scheme 1).47,49 Experimental50 and
theoretical51 studies of the firefly luciferin (the reaction
precursor) have shown that the photoluminescence pathways
of this closely related molecule also depend strongly on pH and
excitation wavelength.
One of the obstacles to complete understanding of the

deexcitation processes is the limited information on the excited-
state dynamics of the emitter in aqueous solutions. To
determine the accurate ground-state equilibrium constants of
OxyLH2, we have recently applied the multivariate curve
resolution−alternating least-squares (MCR-ALS) procedure

and deciphered the pH-dependent spectra of model com-
pounds where some ESPT processes or the enol-keto
equilibrium are blocked.43 The analysis provided for the first
time the absorption spectra and the pH-dependent concen-
tration profiles of the individual chemical forms of the emitter
devoid from the other species. Encouraged by this result, here
we apply a similar approach to investigate the emission spectra
and equilibrium constants in the excited state for all chemical
forms of OxyLH2. These parameters have not been determined,
even though they are essential for clarification of the related
photophysics. We prepared five analogues of firefly oxyluciferin,
including two new structural variants, 5,5-Cpr-OxyLH (Cpr =
(spiro)cyclopropyl) and 6′-Me-5,5-Cpr-OxyL (Chart 2).52 The

latter two compounds were used instead of the 5,5-dimethyl
analogue (5,5-DMeOxyLH), which in our hands proved to be
unstable under photoexcitation. The steady-state and time-
resolved emission experiments, performed in aqueous buffered
solutions within a physiologically relevant pH range, provided
for the first time the individual emission spectra of all
tautomeric and anionic variants of OxyLH2 as well as the
equilibrium constants in the excited state. In addition, the rate
constants of the fundamental photoreaction processes were also
determined.

2. EXPERIMENTAL SECTION

2.1. Sample Preparation. The synthesis of OxyLH2 was
performed by our improved procedure.44 The model analogues
4-MeOxyLH, 6′-MeOxyLH, and 4,6′-DMeOxyL were synthe-
sized as previously reported.43 The synthesis and character-
ization of the new spirocyclic analogues 5,5-Cpr-OxyLH and
6′-Me-5,5-Cpr-OxyL will be reported elsewhere. Stock

Scheme 1. Thermal Decomposition of Dioxetanone (Unstable Intermediate) to Chemiexcited Firefly Oxyluciferin and Possible
Deexcitation Pathways of the Emitter

Chart 1. Possible Ground-State Chemical Forms of Firefly
Oxyluciferin in Solution

Chart 2. Derivatives of Firefly Oxyluciferin Studied in This
Work
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solutions of all compounds were prepared in spectroscopic
grade DMSO (Sigma-Aldrich) and stored in several aliquots at
−20 °C to minimize the freeze−thaw cycle. They were further
diluted 1000-fold to a final concentration of about a few μM in
aqueous buffer with different pH. The buffers were prepared by
diluting a 1 M stock solution in deionized, Millipore-purified
water (18.2 MΩ). Buffered stock solutions were prepared as
follows: 75 mM NaCl/20 mM KH2PO4/0.2 mM MgCl2 for pH
≤ 7.0 and 75 mM NaCl/25 mM Tris(hydroxymethyl)-
aminomethane (TRIS)/0.2 mM MgCl2 for pH > 7.0. The
buffer was separated into several fractions, and their pH (error
±0.02) was adjusted by 250 mM HCl or by 250 mM NaOH
separately at 20 °C (ΔpH ≈ 0.25). Separate buffers at different
pH were used in all spectral measurements.
2.2. Spectroscopy. Absorption spectra were recorded with

a Cary-4000 spectrometer (Agilent Technologies). Steady-state
fluorescence spectra were recorded with Fluorolog 3 spectro-
fluorometer (Horiba Jobin Yvon) with 3 nm excitation/
emission slit and corrected for the instrumental response
characteristics. The absolute quantum yield determined for
three selected compounds in phosphate buffered solution (Bio
Whittaker) at pH 7.4 and 20 °C was 0.49 ± 0.05 for 4,6′-
DMeOxyL, 0.65 ± 0.07 for 4-MeOxyLH, and 0.19 ± 0.02 for
5,5-Cpr-OxyLH. These compounds were selected as references
because they exhibit distinct emission band centered at 445,
560, and 637 nm, respectively. The fluorescence quantum
yields of the other compounds were determined by the
comparative method, using the equation ΦS = ΦR·(IS/IR)·
(ODR/ODS)·(nS

2/nR
2).53

The fluorescence decays of all compounds were measured by
the time-correlated single photon counting (TCSPC) techni-
que. Excitation pulse was provided by a femtosecond
Ti:sapphire laser (Coherent Chameleon Ultra II, 80 MHz,
200 fs, 3.8 W) coupled to either a pulse picker (4 MHz) and a
harmonic generator (SHG/THG, APE) for excitation from 300
to 500 nm, or an intracavity frequency doubled OPO (APE)
and a pulse picker (4 MHz) for 500 to 700 nm excitation. The

measurements of fluorescence lifetimes were performed using
the FT200 Picoquant spectrometer. The emission was collected
through a polarizer set at the magic angle and a Czerny-Turner
type monochromator, computer-controlled for the selection of
wavelength detection. The single-photon events were collected
by a cooled microchannel plate photomultiplier tube R3809U
(Hamamatsu) and recorded by a PicoHarp 300 TCSPC system
(PicoQuant). The instrumental response function was recorded
using colloidal silica (Ludox), and its full width at half-
maximum was ∼50 ps. All decays were collected until the
number of events reached 104 at the maximum. The recorded
decays were analyzed by the FluoFit software package version
4.6.6 (PicoQuant). The reduced χ2 was below 1.1. Weighted
residuals and autocorrelation function were used to check the
quality of the fits. In the case of nonexponential decays, the
stretched exponential model was used to estimate the time
constants.

3. RESULTS AND DISCUSSION

3.1. Selection of Model Compounds and Their pH-
Dependent Absorption Spectra. The photochemistry of
OxyLH2 in aqueous solution is quite complex because of its
triple equilibrium (ionization of both hydroxyl groups and keto-
enol tautomerization of the thiazole moiety). Similar to the
strategy of selective blocking of either hydroxyl group
employed earlier,42,43,54 we chose to study five compounds
that model different tautomeric and anionic variants of OxyLH2

(Chart 2). Specifically, 4,6′-DMeOxyL is a model for the
phenol-enol-OxyLH2 form, whereas 4-MeOxyLH and 6′-
MeOxyLH are analogous to the phenolate-enol-OxyLH− and
phenol-enolate-OxyLH− forms that are normally generated in
basic conditions. We also included in the analysis two
derivatives in which the 5,5-disubstitution pattern restricts the
thiazole portion to the keto tautomeric form; 5,5-Cpr-OxyLH,
whose phenol group is deprotonated in basic media, mimics the
phenolate-keto-OxyLH− form, while 6′-Me-5,5-Cpr-OxyLH is
a model for the neutral phenol-keto-OxyLH2 form. Notably,

Figure 1. Dependence of the absorption spectra of firefly oxyluciferin (OxyLH2) and its derivatives in aqueous solutions at different pH and
determination of the corresponding pKa values. The structural formulas are given in Chart 2. The spectra were recorded in aqueous buffers at
different pH (see section 2.1) at 20 °C. The concentration was 0.9, 6.0, 4.0, 1.0, 1.1, and 3.0 μM for 4,6′-DMeOxyL, 4-MeOxyLH, 6′-MeOxyLH, 6′-
Me-5,5-Cpr-OxyL, 5,5-Cpr-OxyLH, and OxyLH2, respectively.
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previous studies have relied on the doubly methylated analogue,
5,5-DMeOxyLH, to model the keto form.45,54,55 However, our
experiments indicated that this compound is not stable and in
fact, it is very photounstable (an important parameter for our
studies) in aqueous solutions, especially in basic conditions and
under UV excitation. Instead, we used cyclopropyl derivatives,
5,5-Cpr-OxyLH and 6′-Me-5,5-Cpr-OxyL (Chart 2), which
exhibit significantly better stability and photostability, as it was
concluded from the comparison of pH-dependent absorption
and emission spectra between 5,5-Cpr-OxyLH and 5,5-
DMeOxyLH (see Figure S1 in the Supporting Information,
SI). For 5,5-DMeOxyLH and 5,5-Cpr-OxyLH in basic
conditions and under UV excitation, a new photoproduct
with emission band at 530 nm is formed, which is assigned to
dianionic species (see section 3.4) that evolves after isomer-
ization and hydrolysis. The cyclopropyl group minimized such
photoreaction and increased the global stability in the ground
state and in the excited state. A minor influence of cyclopropyl
group can be observed on the absorption spectrum (Figure
1b,d, and SI Figure S1): the existence of a shoulder about 370
nm that does not exist for 5,5-DMeOxyLH. This shoulder is
assigned to a certain geometry constrained by the cyclopropyl
group on the thiazole ring. Indeed theoretical calculations
predict that the lowest excitation for 5,5-DMeOxyLH as well as
phenol-keto-OxyLH2 is a charge transfer transition (HOMO−
LUMO) from phenol part to thiazole ring and that the
geometry of the thiazole ring is nearly planar37,45 without a
cyclopropyl group.
The interpretation of the emission spectra required

characterization of the composition, concentration, and
absorbance spectra of OxyLH2 and its derivatives in the pH
range 5−11. The pH-dependent steady-state absorption spectra
are presented in Figure 1. The molecules that are constrained
to only two chemical forms (5,5-Cpr-OxyLH and 4-
MeOxyLH) present clear isosbestic points. The spectrum of
5,5-Cpr-OxyLH (Figure, 1d) indicates that the spectral
maximum of the phenolate ion of the keto form is strongly
red-shifted (482 nm) relative to the neutral form (388 nm).
The pKa = 7.8 is identical to and confirms the value previously
determined for 5,5-DMeOxyLH.43

However, extraction of the pure spectra of the species that
evolve from 6′-MeOxyLH and OxyLH2 was not straightfor-
ward and required a multiset-data analysis of the pH-dependent
absorption spectra of OxyLH2 and its derivatives. Following the
previously described approach,43 we used here different buffers
(see the Experimental Section) together with the new
cyclopropyl derivatives to evaluate eventual effects of the buffer
on the spectra. Application of such analysis (SI Figure S2)
afforded the pH-dependent concentration profiles and the
absorption spectra of the individual chemical forms at various
pH (Figure 2). In line with earlier results,43 the spectral maxima
of the chemical forms are aligned in the following order (Figure
6 and Figure S2, SI): phenol-enol-OxyLH2 (367 nm) < phenol-
keto-OxyLH2 (388 nm) < phenolate-enol-OxyLH− (406 nm)
< phenol-enolate-OxyLH− (414 nm) < OxyL2− (425 nm) <
phenolate-keto-OxyLH− (482 nm). The distribution diagram
(Figure 2) shows that the contribution of the phenolate-enol-
OxyLH− form is negligible due to the significantly higher pKa

value of the phenol (pKa = 9.0) relative to the enol (pKa = 7.1)
group. In practice, the presence of this species in solutions of
OxyLH2 can be ignored.
The pKa values determined in TRIS buffer are slightly lower

than those in phosphate buffer.43 In particular, the phenol-

phenolate equilibrium for 4-MeOxyLH is lower by 0.2 pK
units, whereas the pKa constants for OxyLH2 are lowered by
0.3 units for the phenol-enol/phenol-enolate and 0.1 units for
the phenol-enolate/phenolate-enolate equilibrium, respectively.
Apparently, the chemical equilibria of OxyLH2 and its
derivatives are slightly sensitive to the ionic strength of the
buffer. Finally, the combination of the concentration profiles
and absorption spectra allows us to determine the absorption
contribution of each individual component at a given pH value
(Figure 2a). In turn, it is possible to precisely select the
excitation wavelength to preferentially excite a particular
chemical form of the emitter. For instance, at pH 8−9 (Figure,
2d and 2e) it is possible to selectively excite the phenolate-keto-
OxyLH− form (SI Figure S7) and to study its photodynamics
without significant contribution from the other forms.
The ground-state equilibria and the absorption spectra of the

conjugated acids and bases set the basis for the estimation of
the corresponding equilibrium constants in the excited state
(pKa*) by means of the Förster cycle.53,56 Although this
method can only provide a qualitative estimate, it can be used
for assignment of the emissive species in the excited state (vide
infra). With an estimated pKa* = −2.6, the most photoacidic of
the studied compounds is 5,5-Cpr-OxyLH. This value places
this derivative in the group of “super-photoacids” (pK* < 0)
which undergo deprotonation even in alcohols and some other
organic solvents.57 On the other hand, 4-MeOxyLH has a
much higher pKa* value, estimated to 3.4. The comparison of
these values shows that the photoacidity of the phenol group is
strongly affected by the keto-enol tautomerism on the opposite

Figure 2. Absorption spectra and pH-concentration profiles of five
forms of firefly oxyluciferin obtained by MCR-ALS analysis. The
concentration of the phenolate-enol-OxyLH− form under these
conditions is negligible.
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terminus of the emitter. A similar effect was observed for the
acidity in the ground state. For the enol-enolate equilibrium in
6′-MeOxyLH, we estimate a pKa* value of 1.7.

In the case of OxyLH2*, five equilibria should be considered:
phenol-enol/phenol-enolate, phenol-enolate/phenolate-eno-
late, phenol-enol/phenolate-enol, phenolate-enol/phenolate-

Figure 3. Emission spectra of firefly oxyluciferin (OxyLH2) and its derivatives recorded in aqueous solutions at different pH. The chemical formulas
are given in Chart 2. Measurements were performed at room temperature (20 °C) in aqueous buffers at different pH (see section 2.1) and the
concentration was 0.9, 6, 4, 1, 1.1, and 3 μM for 4,6′-DMeOxyL, 4-MeOxyLH, 6′-MeOxyLH, 6′-Me-5,5-Cpr-OxyL, 5,5-Cpr-OxyLH, and OxyLH2,
respectively.

Table 1. Time-Resolved and Fluorescence Quantum Yield Fluorescence Data for Firefly Oxyluciferin and Its Derivatives (Chart
2) in Aqueous Solutionsa

neutral emission anionic emission

compound pH λex/nm λem/nm τ/ns pH λex/nm λem/nm τ/ns (%) ΦFl

4,6′-DMeOxyL 5−11 370 450 3.10 - 0.49

4-MeOxyLH 5 370 450 0.24b 5 370 560 0.21c 0.32

1.47 (11)

4.86 (89)

10 430 560 4.88 0.47

6′-Me-5,5-Cpr-OxyL 5−9 390 525 0.93 - 0.11

5,5-Cpr-OxyLH 5 390 525 <0.05b 5 390 640 0.16 (25) 0.18

0.61 (75)

10 520 640 0.63 0.26

6′-MeOxyLH 5 370 450 <0.05b 5 370 550 0.17 (42) 0.18

0.78 (32)

7.88 (26)

10 430 550 7.97 0.35

OxyLH2 5 370 450 <0.05b 5 370 550 0.16 (52) 0.17 (50) 0.15

1.04 (8) 0.48 (7)

7.63 (40) 7.82 (43)

370 640 0.16 (12) 0.17 (41)

0.56 (80) 0.48 (49)

7.28 (8) 7.82 (10)

7.6 430 550 0.17 (32) 0.17 (17) 0.35

0.53 (19) 0.48 (7)

3.95 (6) 5.80 (19)

7.68 (43) 7.82 (55)

510 640 0.41 0.17 (2)

0.48 (98)

10 430 540 5.91 5.80 0.50
aThe constants for OxyLH2 obtained by using the global analysis method for all the decay are highlighted in boldface font. bShort component of
nonexponential decay. cTime constant of the growing part.
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enolate and phenol-keto/phenolate-keto. In the ground state,
where the enol group is more acidic than the phenol group
(pKa = 7.1 versus pKa = 9.0), the pathway including phenol-
enol/phenolate-enol deprotonation (this is confirmed in
section 3.4, where the phenol group has a lower photoacidity
than the enol one in phenol-enol form, Table 2) and
subsequent phenolate-enol/phenolate-enolate deprotonation
can be excluded from consideration. Moreover, the equilibrium
phenol-enolate/phenolate-enolate is accompanied by a minor
difference between the respective absorption spectra, which
gives a pKa* of 7.5 and implies absence of ESPT in acidic and
neutral conditions. The deprotonation of the enol group gives
an estimated pKa* of 1.5 for the phenol-enol/phenol-enolate
equilibrium (note that this value is higher than the previously
reported values, between −0.5 and 0.5,49,58 and should be
corrected with the emission spectra; see section 3.4). For the
phenol-keto/phenolate-keto equilibrium, the calculated con-
stant is identical to that obtained for 5,5-Cpr-OxyLH (pKa* =
−2.6), indicating that only anionic species will be observed after
photoexcitation.
3.2. Emission Spectra of the Nonionizable Model

Compounds. The fluorescence spectra of 4,6′-DMeOxyL and
6′-Me-5,5-Cpr-OxyL recorded in buffered aqueous solutions
are presented in Figure 3a and 3b, and the corresponding
fluorescence decays are deposited as SI Figure S3. As expected
from the absence of acidic groups, the position and shape of
their spectra as well as the total fluorescence quantum yield and
fluorescence lifetimes do not evolve with pH in the studied
range (Figure 3, Table 1). 4,6′-DMeOxyL exhibits a single
broad band with a maximum at 445 nm, in good agreement
with the emission assigned to the neutral phenol-enol-OxyLH2

form (450−455 nm).54,58 The fluorescence quantum yield of
this compound was 49%, and the emission decayed
monoexponentially with a lifetime of 3.1 ns. On the other
hand, the emission maximum of 6′-Me-5,5-Cpr-OxyL, an
analogue of the phenol-keto-OxyLH2 form, was significantly
red-shifted from that of the phenol-enol-OxyLH2 model (4,6′-
DMeOxyL) counterpart, with a maximum at 525 nm and
monoexponential decay with a time constant of 0.9 ns. This

lifetime shortening could be attributed to increased contribu-
tion from nonradiative pathways due to the smaller energy gap.
The position of the emission maximum of 6′-Me-5,5-Cpr-

OxyL is noteworthy because phenol-keto-OxyLH2 has so far
been regularly reported as a blue emitter.42,55,58 That
assignment was based mainly on results obtained for the
model compound 5,5-DMeOxyLH in organic solvents. Due to
the very high photoacidity of this compound (pK* = −3.91),55

the emission of its neutral form cannot be recorded in water,
even in quite acidic solution, and only the spectrum of the
phenolate anion is observed. The deprotonation is inhibited in
many organic solvents, such as benzene, chloroform, and
acetonitrile. However, Hirano et al. showed that the emission of
5,5-DMeOxyLH depends on polarity.45 Hence, the results
obtained in organic solvents cannot be merely extrapolated to
very polar solution (water). The same authors provided insight
into the emission of the keto-OxyLH2 form in water by
blocking the ionization of the 6′-OH group by methylation of
5,5-DMeOxyLH. However, the product (6′-Me-5,5-DMeOx-
yL) was unstable, and the emission could only be estimated as
green light (∼535 nm). By contrast, the derivative studied here
6′-Me-5,5-Cpr-OxyL is stable in water within the pH range 5−
9, and its green emission could be recorded without difficulties.
This result indicates that the phenol-keto-OxyLH2 form,
normally identified in nonaqueous solutions as a blue emitter,
could emit green light in very polar and strong hydrogen
acceptor solvent such as water. However, similar to the case of
6′-Me-5,5-DMeOxyL,45 the electronic effects could not be
excluded42 as a possible reason for the observed shift.

3.3. Emission Spectra of the Ionizable Model
Compounds. The fluorescence spectra of 4-MeOxyLH, 5,5-
Cpr-OxyLH, and 6′-MeOxyLH recorded in aqueous solutions
within the pH range 5−11 are presented in Figure 3. The
spectra of 4-MeOxyLH and 5,5-Cpr-OxyLH were recorded at
an excitation wavelength that corresponds to the isosbestic
points of 383 and 422 nm (Figure 1a and 1b). 5,5-Cpr-OxyLH
was always irradiated in the visible region. Excitation to higher
excited states leads to the formation of a new photoproduct
that has a characteristic specific emission at 530 nm, which was

Figure 4. Fluorescence decays of derivatives of firefly oxyluciferin measured in acidic and basic buffered aqueous solutions. The chemical formulas
are given in Chart 2.
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particularly pronounced in basic conditions for UV excitation
(SI Figure S1). 6′-MeOxyLH was excited at 370 nm where the
absorption was least sensitive to pH.
The spectra of 4-MeOxyLH in acidic solutions are composed

of two bands (Figure 3c). At the lowest studied pH (5) the
strong band centered at 560 nm from the ion is accompanied
by a weaker band at ∼450 nm from the neutral form, in
accordance with the spectrum of 4,6′-DMeOxyL. This
assignment is supported by the time-resolved fluorescence
decays recorded in acidic solution (pH 5). As shown in Figure
4a, by excitation of the neutral form (absorption at 370 nm),
the emission band at 450 nm is strongly quenched and decays
nonexponentially. Simultaneously, the fluorescence band at 560
nm rises (Figure 4a) with a time constant corresponding to
proton transfer rate and disappears biexponentially with
lifetimes 1.5 and 4.9 ns (Figure 4, Table 1), where the first
component corresponds to geminate proton quenching (SI
Figure S6). In agreement with a pKa* value of about 3.4 (see
section 3.1), the 450 nm band completely vanishes in basic
solution where only the deprotonated excited state contributes
to the emission (Figure 3c). At pH 10, the deprotonation
occurs already in the ground state so that growing of the
luminescence and, expectedly, geminate recombination was not
observed. The emission at 560 nm was thus characterized by a
monoexponential decay with a time constant identical to that of
the longer component (4.9 ns) measured at pH 5 (Table 1).
Thus, the spectrum recorded at high pH establishes a viable
model for the fluorescence signature of the phenolate-enol-
OxyLH− form.
To obtain the spectral signature of the phenolate-keto-

OxyLH− form, we examined the spectra of 5,5-Cpr-OxyLH. In
contrast to 4-MeOxyLH, the shape and position of the spectra
did not evolve with pH, and only one band with a maximum at
637 nm was observed (Figure 3d). This result can be explained
by the much higher photoacidity of this compound, which

undergoes very efficient ESPT throughout the whole pH range
studied here. The fluorescence decay recorded at 520 nm,
corresponding to the neutral form keto-OxyLH2, reveals a
bimodal process (Figure 4d) with the short component
corresponding to the instrumental response function (IRF) of
the setup (<50 ps). Thus, ESPT from the phenol group is a
very fast process, and only emission from the deprotonated
form of the molecule could be observed with steady-state
spectroscopy. The maximum at 637 nm is in very good
agreement with the data reported previously for the phenolate-
keto emission based on the 5,5-DMeOxyLH derivative.45,55 It
is worthy of note that deexcitation of the phenolate-keto anion
exhibits a time constant τ = 0.6 ns and is several times faster
than the corresponding phenolate-enol form (τ = 4.9 ns;
compare with the data in Figure 4a and Table 1). As mentioned
above, the weak emission and the long tail at 530 nm at basic
pH are due to photodegradation and should not be taken into
account when the spectra of the phenolate-keto form are
considered.
To obtain insight into the emission properties of phenol-

enolate-OxyLH−, we turned to 6′-MeOxyLH, where the
dissociation of the phenol group is blocked. This derivative
exhibits a broad intense emission at ∼550 nm (Figure 3e). The
strong photoacidity that was qualitatively evaluated above
indicates that in the studied pH range, the emission of 6′-
MeOxyLH originates mainly from the enolate ion. Indeed, the
fluorescence decay recorded at 450 nm has a nonexponential
character with IRF signature at short time scale (Figure 4c),
confirming the very fast and efficient ESPT from the enol
group. However, it is already known from the absorption
spectra43 that this compound can exist as a mixture with ∼30%
keto form at pH = 5. As a consequence, the contribution of this
tautomer (exclusively in the neutral form due to blocked
phenol deprotonation) to the emission spectra of 6′-MeOxyLH
cannot be excluded, especially at acidic pHs. Indeed, thorough

Figure 5. Normalized emission spectra of firefly oxyluciferin in aqueous solution at different pH and excitation wavelengths.
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analysis of the pH-dependent spectra (Figure 3e) reveals a
small blue shift of the spectrum from 555 nm at pH 11 to 550
nm at pH 5. This energy change could be explained by
superposition of two broad and strongly overlapping
components in the spectrum recorded in acidic medium: a
minor component that corresponds to the neutral keto
tautomer that emits at ∼525 nm (compare with 6′-Me-5,5-
Cpr-OxyL) and a major component that originates from the
enolate anion, with a maximum at 555 nm. At higher pH, the
first species is depleted, and at basic pH only emission from the
pure enolate form could be observed.
To support this interpretation, we recorded the emission

spectrum of 6′-MeOxyLH at pH 5 after excitation at 430 nm
(SI Figure S4). Under these conditions, the excitation of the
keto tautomer is strongly favored because of the superior
absorption coefficient relative to the other species.43 Its
contribution to the emission in the resultant spectrum was
more pronounced, and the blue shift of the maximum toward
535 nm became more apparent. Moreover, the presence of the
keto tautomer was also manifested in the time-resolved
fluorescence. The decay recorded in acidic solution at 550
nm was multiexponential with time constants of 0.17, 0.8, and
7.9 ns (Figure 4 and Table 1). The first value is attributed to
geminate quenching. The second component corresponds well
to the lifetime of 6′-Me-5,5-Cpr-OxyL (0.9 ns, compare with
the data in Table 1). At pH 10 the decay recorded at 550 nm
was monoexponential with time constant ∼8 ns. This result
shows that the keto tautomer is not present in basic solution,
and the spectra recorded under such conditions correspond to
emission from the phenol-enolate-OxyLH−.
3.4. Emission Spectra of Oxyluciferin (OxyLH2). The

presence of five chemical forms strongly complicates the
accurate spectral characterization of the pH-dependent
emission of the real emitter (OxyLH2), which also is the
most intricate part of the analysis. To decipher the individual
contributions, the fluorescence spectra of OxyLH2 were
recorded at three different excitation wavelengths, UV
excitation at 370 nm, and visible excitation at 430 and 510
nm (Figure 5). The selective photoexcitation greatly facilitated
the interpretation of the spectra. The relative absorption
intensities of the six chemical forms of OxyLH2 at selected pH
are listed in Figure 2.
Excitation at 370 nm. In acidic conditions (pH < 8), the

dominant species excited at 370 nm are phenol-enol-OxyLH2

and phenol-keto-OxyLH2 (Figure 2b,c). Assuming strong
photoacidity in the excited state for enol group for phenol-
enol form (pKa* is higher for enol than for phenol comparing
results obtained for 6′-MeOxyLH and 4-MeOxyLH, Table 2)
and for phenol group for phenol-keto form, we can conclude
that the first species should be deprotonated to phenol-enolate-
OxyLH−, whereas the second should be deprotonated to
phenolate-keto-OxyLH−. The efficient ESPT from the enol
group is clearly visible in the time-resolved curve recorded at
wavelength corresponding to the phenol-enol-OxyLH2 form
(450 nm). The recorded decay indicates that the emission from
the neutral form is strongly quenched and the proton transfer
time constant is <50 ps (instrument response function) (Figure
5b, Table 1). Erez et al. evaluated this value to 45 ps.49 Taking
into account the possible deprotonation of the phenol group,
the fluorescence spectrum measured under such conditions
should contain contributions from both species. In line with our
expectations, a dominant contribution comes from the phenol-
enolate-OxyLH− form (555 nm) because of its higher

abundance and higher fluorescence quantum yield relative to
phenolate-keto-OxyLH− (637 nm). Moreover, the contribution
of this last species is clearly seen from the long wavelength tail
of the recorded spectrum that extends beyond 600 nm
(compare with the emission of 6′-MeOxyLH in Figure 3e).
In addition to geminate recombination, at pH 5 the

fluorescence decay recorded at 640 nm clearly shows two
species with fluorescence time constants ∼0.5 ns and ∼7.3 ns.
The former value is fully in line with the lifetime of the
phenolate-keto-OxyLH− form determined by consideration of
5,5-Cpr-OxyLH (see section 3.3), whereas the latter is in good
agreement with the fluorescence lifetime of phenol-enolate-
OxyLH− (7.9 ns; Table 1) determined for 6′-MeOxyLH. By
increase of pH, the contribution from the keto tautomer
becomes marginal and the most abundant species are phenol-
enolate-OxyLH− and OxyL2− (Figure 2d and 2e). As a result,
the observed emission spectra are slightly blue-shifted and are
attributed to a mixture of monoanionic and dianionic form. The
emission of the dianion becomes dominant for pH > 9 due to
negligible concentration of other species in the ground state
(Figure 2f,g). Therefore, the spectrum recorded at pH = 11
with maximum at 539 nm can be assigned to OxyL2−. This
emission is blue-shifted compared to that of the monodeproto-
nated form (phenol-enolate-OxyLH−) and also has a shorter
lifetime, ∼5.9 ns (Table 1).

Excitation with Visible Light. Photoexcitation at lower
energy leads to different photoluminescence pathways. In acidic
solutions (pH 6 and 7) after 510 nm excitation, the major
absorbing species is the phenolate-keto-OxyLH− form (SI
Figure S7). Thus, the emission spectrum after 510 nm
excitation is dominated by the phenolate-keto-OxyLH− form
and features a band at 634 nm, which is slightly blue-shifted
when compared to the 637 nm band of 5,5-Cpr-OxyLH in
basic solution. The fluorescence decay at 640 nm is nearly
monoexponential with a lifetime of 0.4 ns (Figure 5b, Table 1),
indicating that the phenolate-keto-OxyLH− is the dominant
species. At pH 8 and 9, a shoulder around 540 nm appears from
OxyL2−, in line with a pH-dependent increasing abundance of
this species due to deprotonation of phenol-enolate-OxyLH− in
the ground state. The emission decay at pH 7.6 after excitation
at 430 nm detected at 550 nm shows a mixture of all species
(Figure 5d, Table 1) and by comparison with excitation at 510
nm, phenolate-keto (0.53 ns), OxyL2− (3.95 ns) and phenol-
enolate-OxyLH− (7.68 ns). At pH 10, the intensity of the red
band decreases considerably in favor of the green emission
from OxyL2− (∼540 nm), which becomes dominant at pH 11
with a lifetime of 5.91 ns.
The above analysis provides arguments for assigning the

emission spectra of the individual chemical forms of firefly
OxyLH2, plotted in Figure 6. Interestingly, the order of
emission energies does not exactly reflect the order of the
absorption energies (Table 2). The order of emission energies
is phenol-enol-OxyLH2 (445 nm) > phenol-keto-OxyLH2 (525
nm) > phenolate-enolate-OxyL2− (539 nm) > phenol-enolate-
OxyLH− (555 nm) > phenolate-enol-OxyLH− (560 nm) >
phenolate-keto-OxyLH− (634 nm). Furthermore, for OxyLH2

the decay luminescence analysis shows that in excited state only
three species (phenol-enolate, phenolate-keto, and phenolate-
enolate) are observed with one decay for geminate recombi-
nation (0.17 ns) without any ESPT growing signal. This is in
line with the results that the enol group in the phenol-enol
form (phenol group has higher pKa*, Table 2) and the phenol
group in the phenol-keto form are strong photoacids.
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Accordingly, in addition to single wavelength lifetime analysis, a
global decay analysis with four time constants was performed,
one for each species and one for geminate recombination
(Table 1) to arrive at more precise values for the phenol-
enolate (7.82 ns), phenolate-keto (0.48 ns) and phenolate-
enolate (5.80 ns) forms. At different excitation wavelengths and
pH range, no growing signals were found in water contrary to
time-resolved spectra in toluene,47 which were indicative of
isomerization or ionization from the phenolate-keto form or the
phenol-enolate form to the phenolate-enolate form. This is in
agreement with the order of emission energies of the
phenolate-keto and phenol-enolate forms (adding to that,
monoionic species were reported to be more stable in the
ground state than dianionic species37), which seem to prevent
conversion in the first excited state to phenolate-enolate form
because they are at lower energy.
3.5. Equilibria and Photodynamics in the Excited

State. Having determined the emission energies of all model
compounds in their neutral and (wherever possible) anionic
forms, the values for the estimated excited-state equilibrium
constants (see section 3.1) can be corrected and refined. The
pKa* values recalculated by using the Förster cycle theory and
the intersection points of the mutually normalized absorption
and emission spectra of the conjugated acid−base pairs are
presented in Table 2. Information about the excited-state
equilibrium constants can also be derived from fitting
nonexponential fluorescence decays of a conjugated acid to
the numerical solution of the Debye−Smoluchowski equation.
This method, known as the spherically symmetric diffusion
problem (SSDP) approach, was recently successfully applied to
various photoacids.59

The fluorescence decay at the wavelength corresponding to
the neutral emitter band typically displays a bimodal character.
The short decay component corresponds to emission from the
neutral emitter quenched by ESPT (with rate constant kPT),
whereas the long tail is attributed to the reversible geminate
recombination process (kr) (SI Figure S6). Such nonexponen-
tial decay is clearly visible in the emission from 4-MeOxyLH
recorded at 450 nm (Figure 4a). The fitting procedure

employed by using the SSDP software of Krissnel and
Agmon59 provided the rate constants of the proton transfer,
kPT = 4.1 × 109 s−1, and geminate recombination in the excited
state, kr = 17 × 109 Å s−1. The ratio kPT/kr

57 gives pKa* = 2.0, in
reasonable agreement with the value obtained by Förster cycle
analysis. Unfortunately, the emission decays of the non-
dissociated forms of the other compounds are nearly as short
as our instrumental response (∼50 ps), and the SSDP approach
could not be applied.
In contrast to the reversible recombination, the irreversible

process takes the molecule to the ground state with rate
constant kq (SI Figure S6). This process is characterized by the
presence of a short component in the fluorescence decay of
anionic species in acidic conditions. This component is absent
in basic solutions because the molecule is deprotonated before
excitation (Figure 4b, Table 1). Interestingly, the relative
contribution of this short component throughout the decay
depends on the functional group of the photoacid. 4-
MeOxyLH exhibits a time constant ∼1.5 ns with relative
amplitude of 11%, whereas 6′-MeOxyLH has a component of
0.17 ns with an amplitude of 42%. This result indicates that the
irreversible geminate proton quenching is significantly more
effective for the enol group. OxyLH2 has the highest
contribution from the short decay component (52%) because
the quenching takes place at both deprotonation sites.

5. CONCLUSIONS

A combination of model compounds with thorough study of
the pH-dependent steady-state and time-resolved fluorescence
spectra revealed, for the first time, the emission spectra and
luminescence lifetimes for all tautomeric forms and protonation
states of firefly oxyluciferin in TRIS-buffered aqueous solutions.
Using the Förster cycle approach, the excited-state equilibrium
constants were also calculated. The most important conclusions
from this study are as follows:

(1) Unlike some previous observations42 with blue emission
from the neutral phenol-keto isomer in nonaqueous
solutions, we found a keto-oxyluciferin analogue (a
cyclopropyl derivative) which is a green emitter (525
nm) in aqueous solution.

Figure 6. Absorption (top panel) and emission (bottom panel) spectra
of individual chemical forms of firefly oxyluciferin based on the MCR-
ALS procedure.

Table 2. Spectroscopic Parameters and Equilibrium
Constants for Firefly Oxyluciferin and Its Analogues in
Aqueous Solutions

λabs/nm λem/nm

compound neutral anion pKa neutral anion pKa*

4,6′-
DMeOxyL

367 - - 445 - -

4-MeOxyLH 367 406 8.7 ∼450 560 0.9 ± 0.3

6′-MeOxyLH 371 414 7.3 ∼450 555 −0.3 ± 0.3

6′-Me-5,5-
Cpr-OxyL

388 - - 525 - -

5,5-Cpr-
OxyLH

388 482 7.8 n.d.a 637 −1.0 ± 0.5

OxyLH2 371 414b 7.1e ∼450 539c −0.9 ± 0.5g

−0.5 ± 0.3e555b

425c 9.0f 1.2 ± 0.3h

634d 7.5 ± 0.3f

an.d. = not detectable. bPhenol-enolate-OxyLH−. cOxyL2−. dPheno-
late-keto-OxyLH−. ePhenol-enol/phenol-enolate. fPhenol-enolate/
phenolate-enolate. gPhenol-keto/phenolate-keto. hPhenol-enol/phe-
nolate-enol.
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(2) We confirmed earlier conclusions47 that ESPT from the
enol group of the phenol-enol form is more favorable in
the excited state than ESPT from the phenol group.

(3) The phenol-keto form is the strongest photoacid among
the isomers.

(4) The phenolate-keto ion has the lowest emission energy
(634 nm).

(5) The order of emission energies of the chemical forms of
oxyluciferin and global analysis of the fluorescence decay
indicates that some processes in the first excited state are
not likely to take place in strongly polar environment
with strong hydrogen bonding potential, such as water.
In particular, a second deprotonation at the phenol group
after the enol deprotonation (i.e., deprotonation of the
phenol-enolate) is not likely to occur in the excited state.
Moreover, the keto-enol tautomerism reaction, observed
previously in toluene in the presence of a strong base,47 is
not favorable in water.

Finally by combining these data with our previous results as
well as with the equilibrium constants determined in this work,
we can propose Scheme 2 for the complete photoluminescence
cycle of OxyLH2 in a wide pH range in buffered aqueous
solution. These results could be useful to gain better insight
into the firefly bioluminescence. Indeed although these results
do not directly apply to the luciferase where the active site is
considered to be of low polarity, they provide support to the
hypothesis that the excited-state potential energy surface and
the related dynamics are affected by the environment of the
active site.
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Figure S1. Relative stability and photo-stability of 5,5-Cpr-OxyLH and 5,5-DMeOxyLH. 

Row 1 and 2: Absorption and emission changes measured at t=0 min and t=60 min at pH 5 

and 10 (irradiation was stopped between the two measured spectra). Row 3 and 4: time 

dependent emission under continuous illumination at 390 and 450 nm measured at pH 10. All 

experiments were performed at T=20°C. 
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Figure S2. Absorption spectra and corresponding concentration profiles for OxyLH2 and 

three model compounds (4-MeOxyLH, 5,5-Cpr-OxyLH and 6 -MeOxyLH) obtained by 

multi-set MCR-ALS analysis. 
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Figure S3. Fluorescence decays of two model compounds (4,6 -DMeOxyL and 6 -Me 5,5-

Cpr-OxyL) recorded in aqueous solutions. 
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Figure S4. Emission spectra of 6 -MeOxyLH recorded in aqueous solutions at pH 5 and 

excitation at 370 nm (red line) and 430 nm (blue line). 
 

 

 

 

Figure S5. Fluorescence decay of neutral form of 4-MeOxyLH recorded in aqueous solutions 

at pH 5 and excitation at 370 nm (black line) with fitting by SSDP model (red line). 
 

 

 

 

Figure S6. Mechanism of ESPT for enol tautomer of oxyluciferin. 
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Figure S7. Absorption spectra and pH-concentration profiles of five forms of firefly 

oxyluciferin obtained by MCR-ALS analysis. The concentration of the phenolate-enol-

OxyLH
!
 form under these conditions is negligible. 
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Luciferase and Oxyluciferin Luminescence Mechanism 

e have so far discussed about photophysical properties of the firefly Oxyluciferin 
in aqueous buffer and identified its different chemical forms responsible for its 

luminescence color tuning mechanism. In addition, we have discussed about the role of 
different chemical forms of Oxyluciferin on the de-excitation or emission mechanism, 
ESPT involved in the process, excited state lifetime and most importantly the role of 
solvent pH in the emission mechanism. All these experiments were performed in the 
absence of the enzyme. However, Oxyluciferin is formed as a product of the chemical 
reaction between Luciferin and Luciferase in presence of ATP. The photo product is 
formed within the pocket of the enzyme. The local properties of the microenvironment of 
the enzyme pocket (hydrophobicity, polarity etc.), the bond strength between the emitter 
and the surrounding amino acids affect the emission mechanism of Oxyluciferin. Indeed, 
as already described in the previous chapter, variations in the microenvironment (solvent 
pH, solvent composition etc.) of the dye has a strong impact on the emission properties of 
Oxyluciferin. To understand the photodynamics of the bioluminescence process in a more 
real context, it is necessary to decipher the optical properties of the Oxyluciferin-
Luciferase complex in physiological conditions. By mimicking the exact physiological 
condition, we were able to draw the exact color tuning mechanism of the firefly 
bioluminescence. In this chapter, we will discuss about the structure of Japanese firefly 
Luciola cruciata Luciferase followed by a discussion about the photophysical properties 
of selective chemical forms the Oxyluciferin-Luciferase complex in aqueous buffer. 
Results presented in this chapter will be communicated soon for publication in a peer 
reviewed journal. 

 

4.1 pH dependent bioluminescence spectra of Luciferase/d-

Luciferin/ATP complex 

Prior to observe pH dependent emission properties of firefly Oxyluciferin in 
complex with Luciferase, it was necessary to characterize the firefly bioluminescence in 
its natural environment. With this aim, we mimic the exact physiological condition 
where, bioluminescence from the natural photo-emitter, d-Luciferin/Luciferase/ATP at 
different pH has been observed as a function of time and solvent pH. Also their emission 
spectra have been recorded when a steady luminescence could be observed from the 
system (after ~25 minute).  

Commercially available partially premix of d-Luciferin, Luciferase and ATP were 
purchased from Sigma Aldrich (Ref: FL-AA) and prepared according to the provided 
protocol. The assay was performed in aqueous buffers at pH ranging from 5 to 11 at 
20°C. Composition of buffers has been described in chapter 2. The bioluminescence 
spectra were recorded on spectrofluorometer by manually blocking the excitation light (as 
described in the following section 4.3 and figure 4.5. In addition, the corresponding 
emission spectra were recorded by exciting at 360 nm after ~25 min of the beginning of 
the reaction. 

W 
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The results are completely in line with the data obtained by Ando et al. as 
explained earlier5. In basic solutions (pH > 7.0) the spectral maxima has been observed at 
557 nm from the enol form. The spectral maxima gradually red-shifts to 612 nm in acidic 
solutions (pH < 7.0) confirming formation of the keto form. We have observed the 
similar spectral behavior as reported earlier5.  

Spectra depicted in figure 4.1a represent bioluminescence of firefly Luciferase 
and d-Luciferin/ATP in aqueous buffer at different pH arises due to chemi-excitation of 
different chemical forms of Oxyluciferin. Due to chemi-excitation, emission from 
different chemical forms (enol and/or keto) of Oxyluciferin with different emission 
maxima could be observed. While, the fluorescence emission due to photo-excitation (at 
360 nm) of only the enol-Oxyluciferin(-luciferase complex) in aqueous buffer at different 
pH has been measured in the figure 4.1c. The emission spectra recorded upon photo-
excitation of this system is in complete agreement with the emission spectra of OxyLH2 
reported in the previous chapter, figure 3.8f. 

 

 

 

4.2 Structure of Luciola cruciata Luciferase 

All known Luciferase (obtained from 17 insects) consists of one common 
polypeptide chain (with 542-552 amino acid residues) without any co-factor and display 
identical amino acid alignments. More than half of the amino acids are non-polar while 
number of charged amino acids is identical in all Luciferase. The main difference lies in 
the number of Cysteine and Tryptophan residues52. 

Figure 4.1: (a) Bioluminescence assay of 

d-Luciferin/Luciferase/ATP complex in 

aqueous buffer, (b) Intensity (at 555 nm) 

of the complex in buffer pH 7.8 at 20°C 

and (c) Photo-excited pH dependent  

emission spectra of the complex recorded 

after 30 min. 
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Firefly Luciferase is a member of giant superfamily of adenylating enzymes 
known as ANL superfamily. (ANL refers to the group of subfamilies acyl-CoA 
synthetase, the adenylation domains of the modular non-ribosomal peptide synthetase and 
luciferase). ANL plays a very important role in both primary and secondary metabolism. 
These three subfamilies catalyze the chemi-luminescence reaction sharing an initial 
adenylating step to produce Luciferyl-AMP intermediate. CoA ligase links  COOH of 
Adenylate to the phosphoryl moiety of AMP in the following steps7,56. Adenylate is 
further being used by the acyl-CoA synthatase and non ribosomal peptide synthatase 
adenylation domain, for thioester forming reaction. ANL enzymes contain 400-500 
amino acid residues as a N terminal domain and a comparatively smaller C-terminal 
domain consisting 110-130 amino acids. The enzyme active site is located at the interface 
of these two domains. There are ten conserved regions termed as A1-A10 motifs which 
play critical role in either or both partial reactions7,53,56. Domain alteration catalytic 
strategy has been adapted by ANL enzyme where after formation of adenylate and release 
of pyrophosphate, a rotation (about 140°) of C terminal domain allows the enzyme to 
adopt a further conformation that can be used for second partial reaction7,53. For firefly 
Luciferase, two Lysine (Lys) residues on each face of the C-terminal domain are required 
for each partial reaction which suggests that a similar domain rotation is required for the 
catalysis of the full reaction. The two targeted residues are 37Å apart in Luciola 

cruciata Luciferase and can be susceptible to cross-linking while the enzyme adopts the 
second conformation. Indeed, this trapped enzyme was competent for catalysis of the 
oxidative reaction when in complex with the Luciferyl-AMP intermediate, and the 
activity is dependent on the side chain of the A8 motif residue, Lys44353. The primary 
sequence of firefly Luciferase shares extensive sequence similarity with acyl-CoA 
ligases7,56. 

The firefly Luciferase folds into two distinct domains: the major portion of the 
structure, containing amino acid residues 4 436, consist in a compact domain with a 
distorted anti-!"#"$$%$&'-("##%$&")*&+,-&'-sheets, which are in sequence on both ./*%&-0&1-
helices. The C terminus of the protein (440 2334&.%!"#"+%$5&0-#6.&"&.6"$$&17'&*-6"/)

56. 
The crystal structure of Luciola cruciata has been explained by Nakatsu et al. (Nature 
Letter, 440; 2006)7 in a very well fashioned manner. They resolved crystal structure of 
wild type Luciola cruciata (LcrLucWT) in complex with Luciferyl-AMP. The structure 
has been determined with 1.3Å resolution by the molecular replacement method and 
compared with the same of Luciferase form American firefly (Photinus pyralis). In their 
study, Luciferyl-89:& ;".& (%%)& #%!$"<%*& (5& ")& /)+%#6%*/"+%& ")"$-=>%& 2?-O-{N-
(dehydroluciferyl)-sulfamoy}adenosine (DLSA). According to Nakatsu et al., 
LcrLuc(WT) in complex with DLSA consists of a large amino-terminal domain and a 
small carboxy +%#6/)"$&*-6"/)&<-))%<+%*&(5&"&@%A/($%&$/)B%#&$--!&C"6/)-&"</*&#%./*>%.&

438 442). This spatial arrangement of both domains in the LcrLuc(WT)+DLSA complex 
is different from that in the Photinus pyralis structure, but similar to those in non 
ribosomal peptide synthetases structures7.  

The dehydroluciferin moiety in the active site of LcrLuc(WT)+DLSA complex 
adopts a trans conformation with a rotational angle of ~7° with respect to the C2 DE?&
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(-)*F&")*&/.&(->)*&/)&"&;5*#-!;-(/<&!-<B%+&<-)./.+/)=&-0&1G&(amino acid residues 248 
EHI4F&'JE& CEGH EGK4F&'JL& CLJL LJH4F&'J3& CLLK L3E4F&'J2& CL2J 353) and a loop (343 
350), while the entrance of the pocket is blocked by the adenosine moiety. The 
benzothiazole ring of DLSA is in Van-der Waals contact with the side chains of Phe249, 
M;#E2LF&N$%EGG&")*&8$"L2IF&")*&,/+;&+;%&6"/)&<;"/).&-0&+;%&'JL&")*&'J3 strands. A water 
molecule, Wat1, is hydrogen-(-)*%*& +-&OL?& -0& P></0%#5$-AMP (2.83Å4& ")*& Q%#L3KRS&

(2.70Å)7. Figure 4.2 and 4.3 show structure of Luciola cruciata bound with DLSA; its 
ribbon structure and DLSA binding site.  

 

 

 

Nakatsu et al. also studied structure of LcrLucWT in complex with Mg-ATP 
(reactant) and with AMP-Oxyluciferin (product) at 2.3Å and 1.6Å resolutions, 
respectively and compared them with LcrLuc(WT)+DLSA complex. These structures 
shown in figure 4.4 (in complex with Mg-ATP and AMP-Oxyluciferin) are found to be 
/*%)+/<"$&(>+&+;%5&-(.%#T%*&./=)/0/<")+&.+#><+>#"$&*/00%#%)<%&,/+;&UPQ8&<-6!$%AV&M;%&'JE&

Figure 4.2: Ribbon diagram of 

LcrLuc(WT)+DLSA, large N terminal 

(grey) and small C terminal (blue) 

accompanied by the active site loop 

(yellow) are shown here (Nakatsu et 

al. Reprinted with corresponding 

 !"#$%&'( )*+$,-./0.1.+")
7
 

 

Figure 4.3: A schematic drawing of 

DLSA (green) binding site (Nakatsu 

et al. Reprinted with corresponding 

 !"#$%&'( )*+$,-./0.1.+")
7
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strand in DLSA complex is much closer to the luciferin binding site than in the other 
structure. Particularly, D1&-0 Ile288 is 1.5Å closer in the DLSA complex while also side 
chain of Ile288 is closer to the complex and rotated by 131°. Nakatsu et al. considered 
this structural movement to be linked to the switching of a hydrogen bonding network 
involving Ser286 side chain which is hydrogen-bonded to Glu313 in LcrLucWT in 
complex with AMP-Oxyluciferin, but is no longer hydrogen-bonded to Glu313 in the 
structure of the DLSA complex. Instead, Ser286 in the DLSA complex forms new 
hydrogen bonds with Tyr257 and Asn231 via a water molecule Wat2. This 
conformational change is also accompanied by 68° rotation of the side chain of Phe249 
towards DLSA. As a consequence of these movements all together a « closed form » of 
the active site is formed, creating a structure in which the benzothiazole ring of DLSA is 
tightly sandwiched inside a hydrophobic pocket, with the side chains of Ile288 and 
Phe249 on one side and the side chain of Ala350 and the main chain of Gly341 on the 
other side. Therefore, the LcrLucWT changes its conformation during catalysis process to 
make an extremely hydrophobic microenvironment by transient movement of the side 
chains of Ile2887. 

 

 

 

4.2.1 Amino acid sequence of Luciola cruciata (Japanese Firefly Luciferase, used 
in this study) 

Sequence chain: Length: 548 AA, Mol. Weight: 60017 Da (Checksum: 

2052D6189E79109F) PDB Reference: P13129- LUCI_LUCCR 
 
MENMENDENI VVGPKPFYPI EEGSAGTQLR KYMERYAKLG AIAFTNAVTG 50 
VDYSYAEYLE KSCCLGKALQ NYGLVVDGRI ALCSENCEEF FIPVIAGLFI 100 
GVGVAPTNEI YTLRELVHSL GISKPTIVFS SKKGLDKVIT VQKTVTTIKT 150 
IVILDSKVDY RGYQCLDTFI KRNTPPGFQA SSFKTVEVDR KEQVALIMNS 200 
SGSTGLPKGV QLTHENTVTR FSHARDPIYG NQVSPGTAVL TVVPFHHGFG 250 
MFTTLGYLIC GFRVVMLTKF DEETFLKTLQ DYKCTSVILV PTLFAILNKS 300 
ELLNKYDLSN LVEIASGGAP LSKEVGEAVA RRFNLPGVRQ GYGLTETTSA 350 
IIITPEGDDK PGASGKVVPL FKAKVIDLDT KKSLGPNRRG EVCVKGPMLM 400 
KGYVNNPEAT KELIDEEGWL HTGDIGYYDE EKHFFIVDRL KSLIKYKGYQ 450 
VPPAELESVL LQHPSIFDAG VAGVPDPVAG ELPGAVVVLE SGKNMTEKEV 500 
MDYVASQVSN AKRLRGGVRF VDEVPKGLTG KIDGRAIREI LKKPVAKM 548 

Figure 4.4: Superposition of the 

structures of LcrLuc(WT)+MgATP 

(light blue) and LcrLucWT+ AMP-

Oxyluciferin (white) complex (Nakatsu 

et al. Reprinted with corresponding 

 !"#$%&'( )*+$,-./0.1.+")
7
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4.3 Activity test of Luciferase  

The enzyme, Luciferase has been expresses and purified as described in the 
section « Materials and Methods » and its biological activity was verified by monitoring 
its bioluminescence, by addition of d-Luciferin (CAS No. 2591-17-5) in presence of ATP 
in Tris/NaCl buffer containing Mg2+at pH 8.0 at 20°C. The reaction mixture was kept in 
complete darkness from the beginning. The bioluminescence from the mixture was 
measured by classical steady state fluorescence method using Fluorolog (Jobin Yvon) 
spectrofluorometer where incoming excitation light was manually blocked but the 
emission slit and the PMT were active to detect the emitted photons (see figure 4.5). Due 
to the manual blockage in the path, no excitation light could reach to the sample and the 
emission spectra recorded was due to chemi-excitation only. The bioluminescence 
emission from the reaction mixture were measured with the PMT every minute during 
~30 min. Bioluminescence emission centered at ~560 nm has been observed and 
displayed an intensity decreases with time (see figure 4.6 and 4.7) due to the 
decomposition of Luciferin. As a negative control, the same experiment was repeated 
,/+;->+& 8M:V& N)& +;/.& <".%F& )-& %6/../-)& ,".& -(.%#T%*& C-)$5& N).+#>6%)+?.& #%.!-).%&

characteristics could be recorded). Therefore it can be postulated that the spectra recorded 
was a result of pure bioluminescence of Luciferin and Luciferase reaction and the protein 
expressed by us is chemically active.  

 

  

Figure 4.5: Manual blocking (marked as X) of the incoming excitation light of the 

spetrofluorometer (left) and bioluminescence reaction of Luciferin and Luciferase (right, 

©Thermo Scientific, Adapted Form).  
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Figure 4.6: Bioluminescence spectra of Luciferase-Luciferin in presence ATP in buffer 

pH 8.0 at 20°C 

 

  

 

4.4 Oxyluciferin-Luciferase assay protocol  

To understand the photophysical properties of Oxyluciferin inside the active 
pocket of Luciferase, we performed several steady state and time resolved fluorescence 
spectroscopic studies with different analogues of Oxyluciferin bound with Luciferase in 
the presence of Adenosin monophosphate (AMP) in aqueous buffer at three different pH; 
5.0, 7.4 and 10.0 at room temperature (20°C). Such experimental conditions were used to 
mimic the exact physiological conditions required to observe bioluminescence. Based on 
the results presented in the previous chapter, steady state and time resolved fluorescence 
emission were recorded by using selective excitation, allowing us to specifically visualize 
the contribution from the different chemical forms of Oxyluciferin.  

We have mainly studied Oxyluciferin (OxyLH2) and three model compounds 4-

MeOxyLH,  !"#-DMeOxyL and 5,5-Cpr-OxyLH (see chart 4.1) in complex with 
Luciferase in presence of AMP. The reaction mixture has been prepared in aqueous 
buffer at desired pH consist of ~1.0 µM Luciferase, ~0.1 µM Oxyluciferin and 320 µM 
AMP. To be sure that all Oxyluciferin molecules were inside the active pocket of 
Luciferase, a ten-fold higher concentration of protein was used. Doing so, there was a 
high probability that no free Oxyluciferin was available in the solution. From the initial 
steady state anisotropy experiments, explained in the following section (see figure 4.8), 

Figure 4.7: Relative luminescence 

intensity of Luciola cruciata 

(expressed by us) with d-Luciferin 

and ATP at 560 nm in buffer pH 8.0 

has an identical profile as reported in 

review by Marques et al.
66
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we have determined that the appropriate concentration ratio can be 1:10. For pH 5.0 and 
10.0 same buffer as for our previous experiments have been used and for pH 7.4, 
commercially available Phosphate Buffered Saline (PBS 1x) has been used.  

 

Chart 4.1: Oxyluciferin and its derivatives used in this study 

 

4.5 Steady state anisotropy titration of OxyLH2 and 4-MeOxyLH with 

Luciferase 

Fluorescent anisotropy measurement of Oxyluciferin-Luciferase complex can be a 
powerful tool to determine the binding affinity of the fluorophore to the protein. When 
exposed to the polarized light, the Oxyluciferin molecules in perfectly homogeneous 
solvent, which are having absorption transition moment aligned with the electric vector of 
the incident light, are preferentially excited. Hence the excited state population is 
partially oriented135. Therefore, fluorescence anisotropy measurement was found to be the 
most suitable technique to characterize the complex formation and to measure the binding 
affinity between Luciferase and Oxyluciferin. Indeed the measured anisotropy will be 
strongly modified when the fluorophore is bound to the protein. It can be assumed that 
the molecular weight of the complex (fluorophore bound to the protein) must be much 
higher than the free fluorophore. When the molecule is free, it has less anisotropy value 
as compared to the bound one. Thus, gradual change in the anisotropy with increasing 
concentration of Luciferase, gives a confirmation that the molecule is properly bound 
with Luciferase.  

To determine the binding affinity of Oxyluciferin to Luciferase, we have 
performed anisotropy titration experiments with of OxyLH2 and 4-MeOxyLH with 
increasing concentration of Luciferase in PBS (at physiological pH). The titrations were 
performed with 0.2 µM OxyLH2 or 4-MeOxyLH in PBS with increasing concentration 
of Luciferase from 0 to ~3.0 µM with an increment of 100 nM. Fluorescence anisotropy 
at each concentration has been calculated from the polarized emission (See « Materials 
and Methods » for more detail) collected through long pass filters to eliminate scattered 
light from the excitation. The anisotropy curves were plotted in figure 4.8. By analyzing 
the increase of anisotropy of both compounds with a Scatchard model157 the dissociation 
constant (KD) could be calculated (see Appendix-B.1 for a brief discussion about 
Scatchard function). Almost identical dissociation constants (KD) have been observed for 
both compounds (0.29 µM). From the anisotropy plateau we determined that a 1:7.5 
concentration ratio between the fluorophore and the protein is sufficient to neglect the 
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contribution from the free fluorophore. So, we decided to use 1:10 for 
Oxyluciferin:Luciferase concentration for our further experiments. Despite the change in 
lifetime of the compounds in the presence of Luciferase (see table 4.2a), we decided to 
work with this ratio because of the limited amount of Luciferase. 

Because of limited amount of produced protein, we avoid this titration experiment 
with the neutral compound  !"#-DMeOxyL. In addition, dissociation constant for 5,5-

Cpr-OxyLH  could not be calculated even in complex with >  3 µM of protein due to the 
absence of a plateau. Indeed, in the case of 5,5-Cpr-OxyLH, the quantum yield of the 
compound was modified by the binding process avoiding accurate determination of the 
anisotropy value.  

 

 

4.6 pH dependent emission mechanism of Oxyluciferin in complex with 

Luciferase  

Emission spectra of all model compounds and Oxyluciferin were measured in 
aqueous buffers at three different pH, considering that at lowest pH 5.0, compounds are 
in their neutral form and at pH 10, compounds are already at their deprotonated form in 
the ground state. To mimic the exact physiological condition, we also characterized their 
photophysical properties in PBS (pH 7.4). Emission spectra of Oxyluciferin (OxyLH2) 
and model compounds (4-MeOxyLH,  !"#-DMeOxyL and 5,5-Cpr-OxyLH) were 
recorded by exciting at 395 nm, 385 nm, 370 nm and 425 nm respectively. 4-MeOxyLH 
and 5,5-Cpr-OxyLH were excited at their isosbestic point while  !"#-DMeOxyL was 
excited at its absorption maxima. OxyLH2 was excited at 395 nm (see figure 3.2). In 
addition, to observe emission particularly from phenol-keto-OxyLH2 and phenol-

enolate-OxyLH$, spectra of the neutral-keto Oxyluciferin ("#-Me-5,5-Cpr-OxyL) and 
"#-MeOxyLH in complex with Luciferase were also recorded respectively. Emission 
spectra of free Oxyluciferin and in complex with a 10 fold molar excess of Luciferase 
have been recorded and represented in figure 4.9. Their anisotropy values (free and 
bound) have been presented in the table 4.1. In most of the conditions (except boldface 
fonts in table 4.1) blue shift in the emission maxima was observed when Oxyluciferin is 
bound with Luciferase. In addition, a significant increase in their anisotropy was also 
observed. All these measured parameters are presented in table 4.1. 

Figure 4.8: Anisotropy titration of 

OxyLH2 (KD 0.29 µM) and 4-MeOxyLH 

(KD 0.28 µM) with Luciferase in PBS. 

(Dissociation constant, KD calculated by 

using Scatchard model) 
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Table 4.1: Photophysical parameters of the complex in different buffers 

 

 

 
Figure 4.9: Emission spectra of different Oxyluciferin-Luciferase complexes at different 

pH. Spectra represents emission of different compounds in buffer pH 5.0 (Black), 7.4 

(Red) and 10.0 (Blue) without (solid line) and with 10x Luciferase (dashed line). Their 

excitation wavelength, emission maxima and anisotropy values at different conditions are 

mentioned in the table 4.1. (due to weak emission intensity, contribution from the Raman 

scattering could not be avoided and are visible in the spectra as a very small peak)  

 

Compound %Exc pH Oxyluciferin (Free) Oxyluciferin+Luciferase 
  

 
(nm) 

 
Anisotropy, 

r 
Em. 

Max./nm 
Anisotropy, 

r 
Em. 

Max./nm 
&-

Anisotropy 
Blue 

Shift/nm 

4-
MeOxyLH 

385 

5.0 0.02528 558 0.2465 537 0.22122 21 

7.4 0.0271 558 0.3233 528 0.2962 30 

10.0 0.01099 558 0.2146 521 0.20361 37 

4,6'-
DMeOxyL 

370 

5.0 0.01469 444 0.1624 437 0.14771 7 

7.4 0.01465 444 0.3226 437 0.30795 7 

10.0 0.01544 444 0.1916 437 0.17616 7 

OxyLH2 395 

5.0 0.02116 552 0.2873 515 0.26614 37 

7.4 0.007624 548 0.3019 509 0.294276 39 

10.0 0.0108 536 0.01754 536 0.00674 0 

5,5-Cpr-
OxyLH 425 

5.0 0.08384 637 0.1145 626 0.03066 11 

7.4 0.07125 637 0.2754 612 0.20415 25 

10.0 0.06124 637 0.0712 637 0.00996 0 
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From the analysis of the results discussed in the previous chapter, we can identify 
the exact contribution that corresponds to a particular chemical form of Oxyluciferin 
« see figure 3.2 ». In addition, for specific pH and excitation energy, our model 
compound can have an emission that can unambiguously be associated with a particular 
chemical form of Oxyluciferin. With the help of those results, we were able to selectively 
excite our model compounds and OxyLH2 to observe an emission dominated by single 
specie.  

We have observed that fluorescence emission of Oxyluciferin in aqueous buffer is 
red shifted with respect to the spectra obtained in any apolar solvent e.g. DMSO, 
although their absorption spectra were quite similar (see previous chapter section 3.2). 
Because of the change in the dipole moment of the molecule in the excited state, the 
molecule always has a higher dipole moment than that in the ground state, when in 
complex with Luciferase. Also the ionic strength of the solvent is to be considered. In the 
excited state, Oxyluciferin is caged inside the protein pocket, which likely induces 
electrostatic interaction of dipole with its microenvironment. Electrostatic interaction 
depends inversely on the dielectric constant of the solvent. So, in a polar environment 
Coulombic contribution will decrease with respect to a less polar environment. This 
interpretation can be used to explain the blue shift in emission spectra of Oxyluciferin 
when bound with Luciferase. In addition, the amplitude of the blue shift differs with the 
solvent pH and structure of Oxyluciferin analogue. For instance, if Oxyluciferin is bound 
on the surface of the protein, it is exposed to the solvent, and fluorescence emission will 
be identical to the emission spectra of the free Oxyluciferin12,43,48,100. In a hydrophobic 
cavity, where non-polar side chain of amino acid residue is predominant, blue shift in 
emission spectra can be observed. For a higher hydrophobicity, a larger blue shift can be 
observed. Not only the environment can have an effect, but also the rigidity of the 
complex affects the emission spectra. This can be studied by comparing anisotropy of the 
complex with free Oxyluciferin in buffers at different pH. To understand this mechanism 
in a much better way time resolved anisotropy experiments can be employed which can 
have a major impact in this concern. 

While observing excitation spectra (recorded at emission maxima, data not 
shown) for all free and Luciferase bounded compounds, no spectral shift has been 
observed from which we can conclude that the excited specie is the one associated with 
the ground state of the dye. 

 

4.6.1 Fluorescence emission of nonionizable model compound  !"#-DMeOxyL in 

complex with Luciferase 

We have already observed that because of the absence of acidic group (where 
deprotonation is inhibited), the position and shape of the emission spectra as well as the 
fluorescence lifetime do not evolve with buffer pH (see table 3.1)48.  !"#-DMeOxyL 
exhibits a single emission band from neutral phenol-enol-OxyLH2 centered at 444 nm. 
Also the time resolved fluorescence emission decays monoexponentially with a lifetime 
of 3.1 ns for the studied buffer pH (5-7.4-10).  !"#-DMeOxyL presents, when in complex 
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with Luciferase in presence of AMP, a 7 nm blue shift in the emission maxima together 
with a 1.25 fold increase in the fluorescence intensity for the entire pH range without 
modification of its spectral shape. Fluorescence emission decays monoexponentially with 
a lifetime of 3.7 ns (see figure 4.10 and table 4.2a). On the basis of the results obtained in 
the previous chapter, we can attribute this emission to the neutral phenol-enol-OxyLH2. 
A fluorescence anisotropy close to zero (of about 0.015) was recorded for free  !"#-
DMeOxyL for all pH while exciting with a polarized light at 370 nm. By adding 
Luciferase and AMP, a increase in the fluorescence anisotropy was observed. These data 
confirms probability of formation of a pH independent complex of  !"#-DMeOxyL with 
Luciferase and AMP.  

In addition, to observe emission from phenol-keto-OxyLH2, emission spectra of 
"#-Me-5,5-Cpr-OxyL in complex with Luciferase has been recorded in buffer pH 10 
with an excitation at its absorption maxima i.e. 390 nm. Like  !"#-MeOxyL, this neutral-
keto form can have a pH independent emission spectra and as expected emission centered 
at 523 nm with a negligible blue shift (2 nm) has been observed for the complex. This can 
be postulated that the fluorophore was not properly bounded with the protein. This 
observation has to be confirmed further by measuring anisotropy of the complex. 

 

Figure 4.10: Time resolved fluorescence emission of  !"#-DMeOxyL 23Em 440 nm) bound 

to Luciferase in aqueous buffer. Red line represents emission decay of free compound 

,#4-.( 5-!.( -4+.( %.6%.'.+"'( 7-!$%.').+).( /.) 8( $7( "#.( )$16-.9( 24+'"%!1.+"&'( %.'6$+'.(

function has been represented by black line). Time resolved data reported in table 4.2a. 

 

4.6.2 Fluorescence emission of ionizable model compounds 4-MeOxyLH and 5,5-

Cpr-OxyLH in complex with Luciferase 

Fluorescence spectra of 4-MeOxyLH was recorded in aqueous buffer at different pH at 
an excitation wavelength that corresponds to its isosbestic point of 383 nm (see figure 
3.2)48. The spectra of 4-MeOxyLH in pH 5 and 7.4 are characterized by two emission 
bands; a strong band centered at 560 nm from the anion is accompanied by a weaker band 
centered at 445 nm associated the neutral form, both decay with different fluorescence 
lifetime values as mentioned in the table 4.2a. At higher pH (10.0), where deprotonation 
occurs already in the ground state, the emission from the neutral f-#6&CWmax: 445 nm) is 
quenched and disappears. The generation of both emission bands of 4-MeOxyLH has 
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already been described before. While compared with 4-MeOxyLH-Luciferase complex, 
blue shift in emission maxima has been observed which linearly increases with solution 
pH.  

The emission of 4-MeOxyLH-Luciferase at pH 5.0 centered at 440 nm is 
attributed to its neutral form. Excitation of this neutral form (Abs/Em: 370/440 nm) lead 
to a fluorescence decay characterized by a short component of 380 ps together with a 
biexponential decay with lifetimes of 1.7 and 3.96 ns, similar to the phenol-enol-

OxyLH2 (see figure 4.11a). At pH 7.4, because of solvent deprotonation, a small increase 
of these parameters was observed. In all three pH, anionic form of this compound decays 
monoexponentially with a lifetime of ~5.5 ns which is attributed from the phenolate-

enol-OxyLH$ form (see figure 4.11b). A strong blue shift of 37 nm and a 20 fold 
increased in the fluorescence anisotropy have been observed for buffer at pH 10.0 (see 
table 4.2a) which is likely associated with the presence of a more hydrophobic 
environment in this conditions.  

  

  

Figure 4.11: Time resolved fluorescence emission of 4-MeOxyLH (a & b) and 5,5-Cpr-

OxyLH (c & d) in complex with Luciferase in aqueous buffer. Red line represents 

emission decay of free compound while blue line represents fluorescence decay of the 

)$16-.9(24+'"%!1.+"&'(%.'6$+'.(7!+)"4$+(# '(5..+(%.6%.'.+"./(58(5- )*(-4+.: 

Fluorescence decay of the other ionizable model compound 5,5-Cpr-OxyLH (see 
figure 4.11c & 4.11d) recorded at 520 nm (the neutral form) corresponds to the phenol-

keto-OxyLH2. Because of much higher photoacidity and very efficient ESPT, the neutral 
form of this compound (Abs/Em: 390/520 nm) is rapidly quenched with a lifetime shorter 
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than the instrumental response function (IRF) of the set up (<0.05 ns). Indeed, the decay 
measured at 630 nm characterized by an additional component of 5.5 ns, apart from other 
component similar to its unbound form. At pH 10.0, no spectral shift and no change in 
anisotropy could be observed likely meaning that for this condition, the derivative is not 
bound to luciferase. This hypothesis is supported by the monoexponential fluorescence 
decay observed at 640 nm with a lifetime of 600 ps (similar to the value of free 
Oxyluciferin). In addition, to observe emission from the phenol-enolate-OxyLH$ the 

emission spectra of "#-MeOxyLH in complex with Luciferase in buffer pH 10.0 has been 
recorded with an excitation at 430 nm, where negligible blue shift of 3 nm could be 
observed. 

Table 4.2a: Time-resolved fluorescence parameters of non-ionizable and ionizable model 

compounds in aqueous buffers. 

Compound 
 

Neutral Emission Anionic Emission 

  
pH %Ex/nm %Em/nm '()*+,-. pH %Ex/nm %Em/nm '()*+,-. 

3FH?-DMeOxyL 
w/Luc 

5-11 370 
450 3.1 

 
+Luc 440 3.7 

 

4-MeOxyLH 

w/Luc 

5 370 

450 0.24a 

5 370 

560 
0.21b 

1.47 (11) 
4.86 (89) 

+Luc 440 
0.38 (86.7) 
1.7 (8.6) 
3.96 (4.7) 

540 5.50 

w/Luc 

7.4 370 

450 0.41a 

7.4 370 

560 0.19b 
4.88 

+Luc 430 
0.405 (95.8) 

2.18 (4.8) 
6.17 (3.3) 

525 5.6 

w/Luc 
 10 430 

560 4.88 

+Luc 
 

520 5.20 

5,5-Cpr-OxyLH 

w/Luc 
5 390 

525 <0.05a 
5 390 

640 
0.16 (25) 
0.61 (75) 

+Luc 520 <0.05a 630 
0.65 (97) 
5.53 (3) 

w/Luc 
 7.4 390 

640 
<0.06a 
0.64 

+Luc 
 

615 
0.73 (62.5) 
5.5 (37.5) 

w/Luc 
 10 520 

640 0.63 

+Luc 
 

640 0.60 
w/Luc: Without Luciferase/Free compound, +Luc: Bound with Luciferase, a: Short component for 
nonexponential decay, b: Time constant for the growing part 

 

4.6.3 Fluorescence emission of OxyLH2 in complex with Luciferase 

A mixture of all chemical forms could be visible in the emission of the real 
emitter OxyLH2. Thus accurate spectral characterization of OxyLH2 bound to Luciferase 
was a complex task. Depending upon the excitation wavelength and solution pH, 
emission from different chemical forms could be observed. To decipher emission from 
different chemical forms, time resolved fluorescence decay of OxyLH2 in complex with 
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Luciferase has been recorded with excitation at UV (370 nm) as well as at visible light 
(430, 510 nm). The results have been compared with the same for unbound OxyLH2. 

Excitation at 370 nm 

In acidic condition (pH 5), emission decay from unbound phenol-enol-OxyLH2 
recorded at 450 nm indicates that the neutral form is strongly quenched with time < 50 
ps. On the contrary when in complex with Luciferase neutral phenol-enol-OxyLH2 
decays biexponentially (see figure 4.12a) with lifetime of 2 ns and 9.5 ns as mentioned in 
the table 4.2b. Compared to our previous experiments with unbound OxyLH2, 
fluorescence emission measured for bound phenol-enolate-OxyLH$ (Em. max. 515 nm) 
as well as for bound phenolate-keto-OxyLH$ (Em. max. 630 nm), decay 
multiexponentially (see figure 4.12b and 4.12c). In addition to the contribution of the 
geminate recombination (~0.18 ns), the bound phenolate-keto-OxyLH$ decays with a 
lifetime of ~10 ns, much higher to the same measured for unbound OxyLH2. Bound 
phenol-enolate-OxyLH$ decays with a lifetime of 11.3 ns that is higher too as compared 
to the unbound one. With little increase in pH emission from both phenol-enolate-

OxyLH$ and phenolate-enolate-OxyL2$ can be expected. 

   

 

 

Excitation with visible light (430 and 510 nm) 

 A different photoluminescence pathway has been observed for unbound OxyLH2. 
At pH 7.4 with an excitation at 510 nm, emission occurs from phenolate-keto-OxyLH$ 
(Em. max. 634 nm). This emission decays monoexponentially with a lifetime of 0.4 ns. 
OxyLH2 when in complex with Luciferase has an identical lifetime measured at 630 nm 

Figure 4.12: Time resolved fluorescence 

emission of OxyLH2 in complex with 

Luciferase in aqueous buffer. Red line 

represents emission decay of free 

compound while blue line represents 

fluorescence decay of the complex 

24+'"%!1.+"&'(%.'6$+'.(7!+)"4$+(# '(5..+(

represented by black line) 
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for this condition (see figure 4.13a). The phenolate-keto-OxyLH$ emission was further 
characterized with its emission spectra in buffer pH 7.4 with an excitation at 510 nm (see 
figure 4.13a) and compared with figure 3.11. OxyLH2 in buffer pH 7.4 when in complex 
with Luciferase readily undergo tautomerization and presence of both forms was visible 
in the emission spectra. Emission of unbound Oxyluciferin has a single band emission 
centered about 625 nm while the bound form has a dual emission from both enol and keto 
form. A decrease in emission energy could also be observed. This observation is likely 
showing that the emission property of phenolate-keto-OxyLH$ is affected by the protein 
environment but not the lifetime. At pH 7.4, with an excitation at 430 nm, mixture of 
phenolate-keto-OxyLH$, phenolate-enolate-OxyL2$ and phenol-enolate-OxyLH$ have 
been observed for unbound OxyLH2. However, when bound to Luciferase, we observed 
redistribution in the amplitude of the different contributions. When bound with 
Luciferase, OxyLH2 decays multiexponentially (see figure 4.13b) with lifetime of 
0.13 ns, 2.2 ns and 9.7 ns. 

   

 

Figure 4.13 b-c: Time resolved fluorescence emission of OxyLH2 complex with 

Luciferase in aqueous buffer; Red line represents emission decay of free compound while 

5-!.( -4+.( %.6%.'.+"'( 7-!$%.').+).( /.) 8( $7( "#.( )$16-.9( 24+'"%!1.+"&'( %.'6$+'.( 7!+)"4$+(

has been represented by black line) 

 

 

 

 

 

 

 

Figure 4.13: (a) Emission spectra of 
OxyLH2 in buffer pH 7.4 with excitation 
at 510 nm. Red represents emission of 
unbound Oxyluciferin while emission of 
bound Oxyluciferin is presented in blue 
(because of very low intensity, 
contribution of the Raman scattering 
could not be neglected, which appears 
after 618 nm). 
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Table 4.2b: Time-resolved fluorescence parameters of OxyLH2-Luciferase complexes in 

aqueous buffers. 

Compound 
 

Neutral Emission Anionic Emission 

  
pH WEx/nm WEm/nm XY).&CZ4 pH WEx/nm WEm/nm XY).&CZ4 

OxyLH2 

w/Luc 
5 370 

450 <0.05a 

5 

370 
550 

0.16 (52) 
1.04 (8) 
7.63 (40) 

+Luc 445 
2.04 (39) 
9.5 (61) 

515 11.28 

w/Luc 
 

370 

640 
0.16 (12) 
0.56 (80) 
7.28 (8) 

+Luc 
 

630 
0.18 (62.8) 
9.8 (27.5) 
20.5 (9.7) 

w/Luc 
 

7.4 

430 

550 

0.17 (32) 
0.53 (19) 
3.95 (6) 
7.68 (43) 

+Luc 
 

540 
0.13 (71.8) 
2.2 (16.7) 
9.66 (11.4) 

w/Luc 
 510 

640 0.41 

+Luc 
 

630 0.41 

w/Luc 
 10 430 

540 5.91 

+Luc 
 

535 6.11 
w/Luc: Without Luciferase/Free compound, +Luc: Bounded with Luciferase, a: Short component for 
nonexponential decay 

 

4.7 Conclusion 

In the previous chapter, we have already discussed about the proposed model of the 
photoluminescence pathway of different chemical forms of Oxyluciferin in aqueous 
buffer. We have compared those results with the ones obtained in the presence of 
Luciferase. By using selective photo-excitation of particular chemical form of 
Oxyluciferin in complex with Luciferase in aqueous buffer and with the help of these 
preliminary results, we could decipher the photophysical properties of those chemical 
forms inside the Luciferase pocket. From the analysis of the fluorescence anisotropy and 
blue shift in the emission maxima, we could interpret the effect of the microenvironment 
(that is induced by the binding to the protein) on the optical properties of the dye. In 
addition we could re-draw and propose the photoluminescence pathway of the emitter in 
aqueous buffer (scheme 4.1) when in complex with the enzyme i.e. the 
photoluminescence pathway in the exact natural condition. We have observed that the 
ground state properties (absorption) are not modified by the binding process of 
Oxyluciferin (or its analogues). Based on this observation, the emission mechanism of the 
Oxyluciferin-Luciferase complex can be interpreted in these terms: 

i. increase in emission intensity has been observed for the spectra when it is in 
complex with Luciferase. Rigidity of the microenvironment is responsible for 
the increase in the emission intensity. In a rigid microenvironment blue shift 
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in the emission maxima can be expected. In a rigid structure, Oxyluciferin 
can be tightly linked with Luciferase active site (inside the pocket) via 
hydrogen bonds. The rigidity of the active site pocket restricts any structural 
adjustment which can result into insufficient time delay for structural 
relaxation of Oxyluciferin before de-excitation (emission) starts. Therefore 
average fluorescence intensity increases and along with blue shift in the 
spectra. Although spectral shape remains identical. Binding site 
polarity/hydrophobicity and rigidity are to be considered for this argument.  

ii. as proposed in earlier studies12,43,48,100 and as discussed in the above section, the 
increase in the emission blue shift and the anisotropy can be associated with the 
change in the local environment of the dye. More the hydrophobicity, larger the 
blue shift is. In addition, the amplitude of the blue shift is also related to the 
accessibility of the solvent to water inside the protein. Small blue shift is associated 
with a fluorophore close to the surface of the protein (e.g. phenol-enol-OxyLH2) 
because of an increase in the water accessibility. A high blue shift in the emission 
refers to the deeper access of the fluorophore inside the active site pocket of the 
protein (e.g. phenolate-enol-OxyLH$). Fluorescence anisotropy is directly 
correlated with the strength of the encapsulation of the fluorophore inside the 
pocket. Also, it is noteworthy to mention that when bound to the protein molecular 
weight of the fluorophore (complex) increases. Therefore its anisotropy increases.  

iii. this parameter of the protein-fluorophore complex can be studied further by time 
resolved fluorescence anisotropy. We have observed increase in excited state 
lifetime parameters of Oxyluciferin due to binding to protein. Depending on the 
rigidity and packing inside the active pocket, the fluorophore may rotate faster and 
shows short rotational correlation time components. But when the fluorophore is 
properly encapsulated inside the pocket, because of higher molecular weight of the 
complex and less water accessibility, longer rotational correlation time can be 
expected120,158. 

iv. The strongest modification in the optical properties has been observed for the 
phenolate-enol-OxyLH$. We can conclude that, in this condition, the complex 
experience the highest hydrophobic environment. Phenolate-enol-OxyLH$ when 
free of Luciferase has negligible contribution in the absorption spectra (see figure 
3.6) but when bounded to Luciferase it can have a large blue shift with a 
monoexponential fluorescence decay of ~5.5 ns. 

v. except in physiological pH, keto-Oxyluciferin (5,5-Cpr-OxyLH) could not bind to 
the protein properly. Changes in the fluorescent anisotropy values are negligible in 
these conditions. Similarly, at pH 10 (phenolate-enolate-OxyL2$), OxyLH2 was 
also unable to bind with the protein. Indeed, neither any blue shift in the emission 
maxima nor any changes in the fluorescence anisotropy were observed except for 
5,5-Cpr-OxyLH in pH 5 where a blue shift of 11 nm was recorded. This blue shift 
can likely be associated with the change in its litetime values (see figure 4.11c). For 
rest of the conditions, negligible changes in the lifetime values could be observed. 



76 

 

These conditions are not in the favor of the complex formation (see boldface fonts 
in table 4.1). 

vi. the order of emission energies is almost identical to the same reported by us in the 
previous chapter, except the shift of phenolate-enol OxyLH  form. The emission 
energies of the complex is: phenol-enol-OxyLH2 (437 nm) > phenolate-enol-

OxyLH
;
 (521 nm) > phenol-keto-OxyLH2 (523 nm) > phenolate-enolate-OxyL

2;
 

(536 nm) > phenol-enolate-OxyLH
;
 (552 nm) > phenolate-keto-OxyLH

;
 (637 nm). 

 

 

Figure 4.14: Emission spectra of different chemical forms of Oxyluciferin-Luciferase 

complexes in aqueous buffer. 

 

 

 



 

Scheme 4.1: Proposed Photoluminescence pathway of Oxyluciferin-Luciferase complex in aqueous solution.
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Appendix-B 

B.1 Scatchard Function157 

Scatchard model function is a method of linearisation of data from a saturation 
binding experiment in order to determine binding constants (k). The model can be 
expressed as r/c = (nka-rka), where r is the ratio of the concentration of bounded ligand 
to total available binding sites, c is the concentration of free ligand, and n is the number 
of binding sites per protein molecule. The plot yields a linear function with a slope 
corresponding to the binding affinity. Dissociation constant KD is equal to inverse of ka.  

 

For calculating dissociation constant (KD) of the binding of the protein (P) with 
the ligand (L), modified Scatchard function was used. Modified Scatchard function can 
be represented as: 
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Where, 

[PT] : Concentration of protein  
[LT] : Concentration of ligand 
rL : Anisotropy of the ligand free of protein (unbound ligand) 
rT : Anisotropy of the protein-ligand complex 

 

 

 

 

 

 

Figure B.1: Determination of kD value 

from fluorescence anisotropy of 

labeled DNA by using Scatchard 

function (Leo B. et al. Adapted Form)
8
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B.2 Fluorescence time resolved parameters of other Oxyluciferin-

Luciferase complexes 

The following figure represents remaining (other than reported in figure 4.10-
4.13) fluorescence time resolved decay (also compared with free Oxyluciferin) of studied 
Oxyluciferin-Luciferase complexes in aqueous buffer at different experimental 
conditions. 

  

  

  

 

 

 

 

 

Figure B.2: Time resolved emission of 

Oxyluciferin-Luciferase complexes in 

aqueous buffer. Their photophysical 

properties has been mentioned in the 

table 4.2a & 4.2b. Red line represents 

emission decay of free compound while 

blue line represents fluorescence decay of 

"#.()$16-.9<( 24+'"%!1.+"&'( %.'6$+'.(# =.(

been represented in black) 
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Application of Oxyluciferin as a Bio-Analytical Probe 

luorescence based techniques have become an invaluable tool for investigating 
biomolecular interactions105. For potential biological applications of fluorescence 

emission from firefly Oxyluciferin, a better knowledge of photophysical properties of this 
natural fluorophore in biological context is essential. Triple acid/base and keto/enol 
equilibrium (pKa, pKa*)48 of natural and five closely related analogues of Oxyluciferin 
have been elucidated by analyzing their steady state and time resolved characteristics in 
aqueous buffers at physiologically relevant pH range24 9,42,97.  

Firefly Luciferin and Oxyluciferin are highly specific to the substrate. 
9%+;5$"+/-)& "+& H?D-benzothiazole and/or 4C-thiazole inhibit the interaction between 
Oxyluciferin and its microenvironment48. Because of its better ability to convert chemical 
energy into light and exceptionally high signal-to-noise ratio, (therefore, very high 
fluorescence quantum yield),5,48 Oxyluciferin can be used for sensitive bio-imaging 
applications32 overcoming the major limitation of chemi-luminescence reaction which has 
much lower fluorescence quantum yield. 

From the steady state and time resolved data interpretations48, it has been 
understood that Oxyluciferin and its prime analogues can be good candidates to be 
employed for studying in-vivo or in-vitro biomolecular interactions. In particular, the 
environment sensitive properties of Oxyluciferin can be used to evidence biomolecular 
interaction. Fluorescence lifetime imaging and fluorescence quenching mechanism have 
been the key parameters to promote Oxyluciferin as a bio-analytical tool. 

Herein, we will present the results obtained by using Oxyluciferin and its classic 
polarity dependent fluorescence mechanism as a tool to monitor biomolecular 
interactions. Oxyluciferin (OxyLH2) and its two prime analogues 4-MeOxyLH and  !"#-
DMeOxyL have been coupled to proteins of Human Immunodeficiency Virus type-1 
(HIV-1) and their photophysical properties have been studied in-cellulo and in complex 
with different oligonucleotide sequences. By monitoring distinct fluorescence emission 
properties of these derivatives, for the first time, we were able to study in-vitro 

biomolecular interactions using Oxyluciferin as a sensor. Also, it could be possible to use 
high affinity to thiol reactive group of keto-Oxyluciferin as a site specific fluorescent 
label for human protein Alpha-1 Antitrypsin C1J-AT). Results presented in this chapter 
will be communicated soon for publication in a peer reviewed journal.   

 

5.1 In-cellulo Fluorescence Lifetime Imaging Microscopy with 

Oxyluciferin 

It has been observed that OxyLH2 has different excited state lifetime within the 
physiological pH region. Its excited state lifetime decay is prominently sensitive to the 
change in environmental pH. Significant variation at different pH ranging 5-11 has been 
observed from its time resolved spectroscopic parameters (see table 3.1). In particular, 
OxyLH2 can be used to map the intracellular pH profile. To this aim, we used the very 

F 
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specialized cell penetrating characteristics of HIV-1 Tat peptide labeled with OxyLH2, 
and its neutral analogue  !"#-DMeOxyL. Next, Fluorescence Lifetime Imaging 
Microscopy (FLIM) allowed us to observe distribution pattern of excited state lifetime 
within the cytoplasm. Structurally modified OxyLH2 and  !"#-DMeOxyL have been 
attached to the N terminal of Tat(44-61) peptide acting as a cargo protein and cellular 
internalization imaging experiments were performed. The neutral Oxyluciferin analogue, 
 !"#-DMeOxyL, is not responsive to ESPT mechanism and has only one excited state 
lifetime invariable throughout the entire pH range (5-11)48. This neutral analogue of 
Oxyluciferin served as a negative control where changes in fluorophore lifetime 
correlated with pH variation cannot be expected. 

Human Immunodeficiency Virus type-1 (HIV-1), the causative agent of AIDS 
(Acquired immunodeficiency syndrome), has two essential core proteins that can bind 
RNA sites and contain basic domains i.e. trans activator (Tat) protein and nucleocapsid 
protein (NCp7)112,114. Tat is a very crucial protein involved in HIV-1 life-cycle during 
viral transcription. Importantly, this protein is the most ideal target for drugs intervening 
with lentiviral growth159. Tat is a very small protein with 86-101 amino acids constituted 
with a highly cationic cluster which includes six Arginine and two Lysine residue in the 
6/**$%&-0&+;%&!%!+/*%&.%[>%)<%&"$-)=&,/+;&")&1-helical structure at the N terminal132,160. 
A number of studies showed that this unique structure has a very strong cell translocation 
property160,161 where covalent conjugate bond between the cell penetrating peptide (CPP) 
and various types of cargo molecule allows easy intracellular cytoplasmic cargo 
delivery161. This N terminal part of Tat is used to introduce foreign molecules inside the 
cell161. The 1-helical conformation and cationic cluster is also ready to adopt the extended 
structure132,160 i.e. CPP-cargo molecule conjugate. Due to its highly cationic nature, 
several anionic cellular entrants can be accessible to control the cell penetration 
mechanism of this peptide. It has already been shown that delivery of protein and other 
biomolecules into cells is possible by cationic peptides like Tat160 which can facilitate 
cytoplasmic delivery of its cargo. The most remarkable fact about this CPP is its ability to 
carry diverse range of cargo as a vector system. Very small molecules (~100 Da) to 
massive biomolecule with a diameter of ~200 nm can be transduced inside the cell using 
this CPP132,160. Several articles reported already that this ATP and temperature 
independent cellular uptake technique allows safe delivery of wide range of cargo 
molecules including low molecular weight drugs, small oligonucleotide, peptides, full 
length proteins etc. with expected functional activity in-vivo or in-vitro

160. 

 

Figure 5.1: Amino acid sequence of HIV-1 Tat(44-61) used in this study
112
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5.1.1 Two-Photon Excitation microscopy of OxyLH2 labeled HeLa cells 

Cellular internalization, uptake and cytoplasmic distribution of OxyLH2 were the 
main concerns before monitoring in-cellulo fluorescence lifetime distribution pattern of 
the fluorophore. Indeed, two significant properties have to be satisfied i. cellular 
internalization and distribution of Tat peptide labeled with Oxyluciferin has to be like the 
staining of non-labeled Tat and ii. possibility of using 2-photon excitation with 
Oxyluciferin. Prior to proceed for FLIM experiments, HeLa cells were incubated with 
0.3-0.7 µg/ml OxyLH2 labeled Tat(44-61) peptide for 30-45 min. Then cytoplasmic 
distribution of labeled peptide was visualized with two-photon excitation at 780 nm. In 
the figure 5.2, HeLa cells incubated with OxyLH2 can be observed with two-photon 
excitation. As depicted in figure 5.2, Tat peptide labeled with Oxyluciferin can be 
efficiently internalized within the living cell. In addition, the observed fluorescence 
staining of the cells are in line with the usual localization of free Tat peptide reported 
earlier with the help of other fluorophores162-164 and most importantly, the fluorophore 
can easily be excited by two-photon excitation. 

 

Figure 5.2: Two photon excitation microscopy of HeLa cells incubated with Tat peptide 

labeled with OxyLH2  !Exc 780 nm, avg. laser power < 0.5 mW, 50x50 µm) 

 

5.1.2 Fluorescence Lifetime Imaging Microscopy (FLIM) 

HeLa cells were incubated with Tat peptide whose N terminal has been coupled to 
either Oxyluciferin (OxyLH2) or to its neutral analogue  !"#-DMeOxyL. Their excited 
state lifetime distribution pattern within the cytoplasm has been observed with 
fluorescence lifetime imaging microscopy with pulsed two-photon excitation at 780 nm 
with an average laser power lower than 0.5 mW in the sample plane. The labeled peptide 
concentration was 0.3-0.7 µg/ml and the incubation time was set to 30-45 min, next cells 
were washed with the media as described in « Materials and Methods » and further 
incubated with same media. To monitor the distribution pattern of excited state lifetime 
generally a single cell or two fused cells have been observed and fluorescence decays 
were recorded for 120-180 seconds. 

As presented in the third chapter, OxyLH2 displays optical properties that are 
very sensitive to pH. In particular, the excited state lifetime of OxyLH2 varies 
significantly within a pH range that is perfectly comparable to the cytosolic pH of HeLa 
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cells. Intracellular pH can vary from as low as 4.5 (Lysosomal pH) to as high as 8.0 
(Mitochondrial pH)165. Hence different excited state lifetime values of OxyLH2 can be 
expected when it is scattered within the heterogeneous pH environment of the cytoplasm. 
The fluorophore lifetime is completely dependent on the microenvironment surrounding 
the molecule. On the other hand, doubly methylated analogue ( !"#-DMeOxyL) is neutral 
in nature and does not respond to pH modifications in the microenvironment. Its 
absorption, emission and excited state lifetime values cannot be modified through pH 
changes as both  !"# $%&'(# (&)*+*&,)# -./0-benzothiazole and 4C-thiazole) are 
methylated to prevent this molecule to undergo any protonation or deprotonation 
reaction.  !"#-DMeOxyL is not responsive to ESPT mechanism and has only one excited 
state lifetime value throughout the entire physiological pH region (5-11)48. Therefore, this 
analogue has been preferred as a negative control to the FLIM experiment of HeLa cells 
stained with Tat(44-61) labeled with OxyLH2. OxyLH2 and  !"#-DMeOxyL have  
absorption spectra which are ideal for the excitation at 390 nm. Absorption maxima for 
 !"#-DMeOxyL is 367 nm and isosbestic point for OxyLH2 is 385 nm in aqueous 
buffer48 (see figure 3.2). 

To monitor the photodynamic response of OxyLH2 within the cytoplasm, another 
control mechanism has been used. Influence of Monensin Sodium Salt (CAS No. 22373-
78-0) on living cells ought to be a good means to further prove that the distribution of 
fluorophore lifetime within living cells166-168 can be associated with spatial pH changes. 
Monensin is an ionophore capable of breaking down Na+ and H+ gradients within the 
living cell168. Monensin, with an affinity to form a complex with monovalent cations, has 
an ability to diffuse through the cellular and sub-cellular lipid membranes by ion 
exchange method. It can block intracellular protein transport and other biological 
activities by causing lysosomal acidification that results in an increased H+ concentration 
inside cells and homogenize cytosolic pH168,169. The effect of Monensin could be 
followed by monitoring Oxyluciferin fluorescence lifetime distribution pattern further 
evidencing the ability to use Oxyluciferin as a bio-analytical fluorophore. 

Due to the acidification of the cytoplasm, nearly homogeneous cytoplasmic pH 
can be expected. So, different lifetime distribution pattern can be expected for OxyLH2 

as at certain pH it must have a particular excited state lifetime value. The presence of 
Monensin should not alter the excited state fluorescence lifetime for  !"#-DMeOxyL 
because the photophysical properties of this derivative is not pH dependent. HeLa cells 
were incubated with 0.3-0.7 µg/ml Tat(44-61) peptide labeled with either OxyLH2 or 

 !"#-DMeOxyL. Their lifetime distribution within the cell has been recorded. Further the 
cells were treated with Monensin salt and again their lifetime distribution was recorded. 
The lifetime distributions for both derivatives at two different conditions 
(normal/heterogeneous pH and Monensin treated/homogeneous pH) are represented in 
figure 5.3. 

 

 



84 

 

 
Figure 5.3: FLIM images (left panel) and lifetime distribution (right panel) of HeLa cell 

incubated with Tat labeled with different Oxyluciferin; (a)  !"#-DMeOxyL, (b) OxyLH2; 

with (row 2 & 4) and without (row 1 & 3"#$%&'&()&#(*+,# !Exc 780 nm, avg. laser power 

< 0.5 mW) 
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In figure 5.3, left panel displays the lifetime distribution images obtained within 
living cells with: (a)  !"#-DMeOxyL, (b) OxyLH2 in normal condition (row 1 & 3) and 
with Monensin treated conditions (row 2 & 4). Their corresponding lifetime distribution 
histograms are reported in right panel respectively. Cells incubated with Tat(44-61) 
labeled with  !"#-DMeOxyL shows a very narrow lifetime distribution (centered around 
2.1 ns) which is not significantly affected when the cells are further treated with 20 µg/ml 
Monensin salt and are having a homogeneous cytosolic pH. For both conditions 
(homogeneous and heterogeneous cytosolic pH) the lifetime distribution pattern is 
identical (see figure 5.3a) and centered at 2.1 ns. Such observation is in full line with the 
results presented in chapter 3. 

Significant changes in the lifetime distribution were observed with cells incubated 
with Tat(44-61) labeled with OxyLH2. Cells incubated with OxyLH2 at normal condition 
shows a broad distribution of lifetime (see figure 5.3b1) ranging between 2.75-4.0 ns. 
Such observation can be associated with the heterogeneous pH pattern within the cell, 
which is possible because the excited state lifetime of OxyLH2 is pH dependent. While 
incubated with 20µg/ml Monensin salt (at homogeneous cytosolic pH) a significant 
change in lifetime distribution could be noticed (see figure 5.3b2). In a homogenous pH 
environment, the lifetime distribution remains very narrow and centered about 2.80 ns. 
Due to the Lysosomal acidification, cytosolic pH become homogeneous and at a certain 
pH and thus a specific excited state lifetime is expected from OxyLH2. The presence of 
orange particles in figure 5.3b2 can correspond to the undamaged endosomes. Lowering 
in the lifetime value are perfectly in accordance with its steady state data. In aqueous 
solutions at lower pH, OxyLH2 has low excited state lifetime value which increases with 
pH due to change in proton transfer mechanism. It is also noteworthy to mention that no 
damages were observed on cells during data acquisition. Although, cells treated with 
Monensin lost their morphology within 30-45 min after Monensin injection. 

From the in-vitro analysis, existence of multi component in the excited state 
lifetime of OxyLH2 was observed48. Due to the higher signal to noise ratio in 
measurements performed in living cells, the FLIM images were re-analyzed by using a 
two population model with an iterative deconvolution algorithm. Apart from the mean 
lifetime distribution, contributions of individual components have been analyzed and the 
12(3*+'45)#-67#4*)+%*8'+*&,)#have been plotted (see figure 5.4). A significant change in the 
distribution (represented in figure 5.4) is observed with cells displaying homogeneous 
and heterogeneous cytosolic pH. This multi-component analysis further strengthens the 
possible use of OxyLH2 as pH sensitive probe that can be useful for in-cellulo pH 
monitoring. 

The results presented above demonstrate that Oxyluciferin can be used to probe 
pH within living cells. We were indeed able to sense the in-cellulo pH and shown that the 
fluorophore was not toxic for the cells. In addition, the staining procedure was quite 
simple. To determine intracellular pH in an absolute manner, further experiments have to 
be performed to correlate the fluorescence lifetime of the dye with a specific pH value. 
To this aim, calibration FLIM measurements will be done with prepared solution 
displaying a certain pH. 
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5.1.3 Most of the commercially available fluorophores are insensitive to in-cellulo 

pH 

The most common commercial fluorophores (applicable for biological event 
monitoring) which are sensitive to pH are Cy-5, Cy-7, Texas Red, Dylight-649, TMR-
Dextran, Alexa-647 Alexa-750, Atto-647, Carboxyfluoresceine based fluorophores, 
Napthofluoresceine, FITC-Dextran etc.165 Although, the pH range, within which their 
photophysical profile varies, differs broadly. For example, Alexa-647 and Alexa-750 
shows ~18% fluorescence quenching at pH 3-4 while Atto-647 shows increased emission 
at pH < 4.0 and so on. It has been established that the intracellular pH varies from 4.5 to 
8.0. So, it can be argued that to monitor intracellular pH, the fluorophore must be 
sensitive in terms of its photophysical properties within this range. Most of the 
commercially available fluorophores, except Carboxyfluoresceine based fluorophores and 
FITC-Dextran, are insensitive in this physiological pH range (4.5-8.0). In additions, these 
fluorophores are excitable either in the green or NIR region and their Stokes Shift is also 
very less (most of the cases < 30 nm). On the contrary, Oxyluciferin is excitable at UV 
region and has much larger Stokes Shift.  

Analysis of FLIM results obtained with OxyLH2 can be compared with 
commercially available lysosome tracking fluorophores. These commercially available 
fluorophores exhibit pH dependent increase in fluorescence intensity upon acidification. 
Their photophysical properties change according to the solvent pH. Lysosome tracking 
probes are used to investigate acidification of lysosomes and alterations of its function or 
other intracellular activities that can be associated, e.g. lysosomes in some tumor cells 
have a lower pH than usual while other tumor cells can have higher pH. In addition, 
cystic fibrosis and other diseases result in decrease in intracellular pH of some 
intracellular organelles and the lysosome tracking fluorophores are useful to study these 
aberrations170-172. OxyLH2 also exhibits exactly similar photophysical properties and 
possibility of its application for the above said methodology cannot be neglected. 

 

 

Figure 5.4:  Contribution of individual 

lifetime components of Tat peptide 

labeled with OxyLH2 inside HeLa cells. 

(Solid line represents normal condition 

while dotted line represents distributions 

within Monensin treated cells. Blue lines 

represent occurance of first component 

while red lines represent occurance of 

the second component). 
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5.2 Monitoring interactions between HIV-1 NCp7 and oligonucleotides 

Another protein, HIV-1 NCp7 plays essential multiple roles in viral replication. Antiviral 
drugs can target various steps during this virus replication115. Although, several attempts 
failed because of emergence of resistant strain in the target part of HIV-1 and needs a 
wider exploration of these molecular targets to resolve this disappointment115. One of 
these possible targets is the HIV-1 nucleocapsid-7 protein (NCp7), a 72 amino acids long 
basic protein with two highly conserved zinc-finger (ZF) motifs115,173 which binds to the 
viral genomic RNA173

9#:#;*$;3<#81)*=#3*,>5%#)5?'5,=5#@A:BACCDE#=&,,5=+)#+;5)5#+F&#

ZFs111. NC can bind specifically or non-specifically, to any oligonucleotide (NT) 
sequence such as stem-loop structured cTAR (complementary Transactivation Response 
Region) or single-stranded sequences with a binding affinity in micro/nanomolar range. 
This binding affinity strongly depends on several parameters including amino acid 
sequence of the peptide, concentration, nature and folding of the NT sequence etc. Ionic 
strength plays an vital role for the affinity of binding105,111,114,115,133,174,175. NCp7 shows 
strong salt dependent affinity to bind any small NT sequence (5-8 in length) mostly 
unspecifically through electrostatic interactions, as well as it shows specific binding to 
some long single-stranded and stem-loop sequences. This specific binding is strongly 
promoted by the hydrophobic platform formed on the top of ZFs by several amino acid 
residues e.g. Val13, Thr24, Trp37, Met46 etc. which allows a non-electrostatic interaction 
between the oligonucleotide and NCp7111. 

Several previous studies105,111,114,115,133,173,175 show, how NCp7 can bind with 
different stem-loop and single-stranded oligonucleotide sequences. Solvatochromic 
fluorophores are ideal to understand molecular interaction between NCp7 and different 
NT sequences. Short peptides labeled with these fluorophores have been used for 
studying protein-protein interactions and/or protein-NT interactions. These interactions 
are commonly studied by monitoring change in polarity of the microenvironment at the 
active site, readily detected from the change in fluorescence emission105. However 
studying interaction of labeled peptide and NT becomes more challenging as 
oligonucleotide environment is relatively polar and may not be dramatically affected by 
the polarity change. Polarity sensitive fluorophore like Oxyluciferin48 can be very much 
useful in this concern. At pH 7.4 (physiologically relevant pH) Oxyluciferin analogue 4-

MeOxyLH has dual emission band; one centered at ~450 nm and other centered around 
560 nm. Change in intensity at these two emission energies can be very useful for 
monitoring environmental modifications induced by the interaction between NCp7 and 
NT. 

 

Figure 5.5: Amino acid sequence of HIV-1 NCp7(11-55) used in this study
112
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5.2.1 Site-specific interaction between NCp7 and oligonucleotides (NT) sequences 

NCp7 can non-specifically bind small NT sequence or specifically bind to some 
long single-stranded and stem-loop sequences such as TAR sequence with a binding 
affinity in nanomolar to a few micromolar range. The binding affinity strongly depends 
on the ionic strength of the system, structure of the protein, concentration, nature and 
folding of the NT sequence etc.105,111,114,115,133,174,175 The site specific binding of NCp7 
and stem-loop oligonucleotide is strongly promoted by the hydrophobic platform formed 
on the top of ZFs. Amino acid residues which are actively involved in the non-
electrostatic interaction between NCp7 and NT are Val13, Phe16, Asn17, Thr24, Arg32, 
Ala35, Trp37, Gln45 and Met46111,113. The hydrophobic platform created by Val13, 
Phe16, Thr24, Trp37 and Gln45 specifically supports interaction of GGAG or GGCG 
sequence. The stabilization of the complex is provided by the Trp37 residue through its 
stacking with the central G residue111. For very short specific NT sequences (5 or 6 
nucleotides) specific binding is possible with an affinity of 330-400 nM. Trp37 can bind 
to C and/or G residue present in the middle of the sequence105,111. 

Interaction of NCp7 with stem-loop structures is more site specific111. NMR study 
by Bourbigot et al. confirmed how NCp7 can bind and destabilize (-)Primary Binding 
Site (-PBS) sequences during reverse transcription phase116. The 
adjacent figure116 represents nucleotide sequence of GB--)PBS. Two 
independent binding sites, one with a high affinity of protein (80nM) 
and other with ~10 times lower affinity (910 µM), have been identified 
by NMR studies. Study of Bourbigot et al. on (-)PBS and GB--)PBS 
interaction with different mutant of NCp7, confirmed site specific 
binding of NCp7 with this NT sequence. Almost two NCp7 pe%#GB--) 
PBS is required for the binding. An insertion of Trp37 and Phe16 in 
between T6 and G7 in the loop is reported by the NMR studies116,176. 
The first residues of the loop T6 and G7 force NCp7 to interact with C5 which is in 
paired with G11 on the stem. Identified binding sites of NCp7 for GB--)PBS are 5-CTG-7 
(higher affinity) and 10-CGG-12 (lower affinity).  

Role of fluorescence quenching of solvatochromic fluorophore in monitoring 
interaction between NCp7 and NT has been explained nicely by Godet et al.120, 
Shvadchak et al.105 and  Beltz et al.133. They have monitored NCp7 induced structural and 

dynamical perturbations in the cTAR structure. The adjacent figure represent nucleotide 
sequence of cTAR120 and sequence outlined by dotted box represent mini-cTAR119. 
cTAR is highly dynamic in nature specially at the lower stem. Its terminal loop is found 
to be highly flexible while its internal loop is highly constrained. At a ratio of 1:1 
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NCp7/cTAR, the peptide shows a preferential binding to cTAR. The major NCp7 
induced structural conformation can be observed at the lower stem (notably at the 
position 9/10 and 49/50) where direct interaction of Trp37 with G residue has been 
identified,120 resulting to destabilization of cTAR stem. This NC induced restriction on 
the flexibility of cTAR prevents very fast transition of the complex (generally in 
picoseconds timescale) and form a locally destabilized domain with longer lifetime. 
Moreover they suggested that cTAR destabilization is result of progressive coating of 
cTAR by NCp7. The preferential binding of NCp7 at G9 or G50 residues confirms that 
NCp7 can specifically discriminate these two positions and can bind preferentially. Mini-
cTAR shares same DNA-nucleotide sequence with cTAR. Upper hairpin part of cTAR 
(C14 to G26) has been proposed to be named as mini-cTAR.119 NCp7 binding site for 
mini-cTAR have been identified at its lower stem 24-TGG-26 with an dissociation 
constant of 1.6 µM118,119. Identification of binding site of mini-cTAR proposes the other 
binding site for cTAR. Dissociation constants reported for different NT sequences at 
different experimental conditions are briefly summarized in the following table: 

Sequence KD/µM 
Buffer 

Soln/pH 
[NaCl] 
/mM 

NCp7 Method Reference 

DNA-5nt 0.33 Hepes/6.5 ---- 12-53  TFQ Morellet et al.113 
DNA-6nt 0.41 Tris/7.5 30 11-55 TMR/2f-FCS Didier et al.28 
DNA-12nt 0.71 Hepes/7.5 100 1-55 2ApF Avilov et al.177 
SL-20nt 1.0 Hepes/7.5 100 12-53 TFQ Vuilleumier  et al.178  
cTAR 0.06 Tris/7.5 30 11-55 TFQ  Beltz et al.133 
mini-cTAR  1.6 Tris/7.5 30 11-55 ITC Bazi et al.119 
GB--) PBS 0.5 Tris/7.5 30 12-55 TFQ Bourbigot et al.116 
TFQ: Tryptophan Fluorescence Quenching, 2ApF: 2-Aminopurine Fluorescence, 2f-FCS: 2-focus FCS, 
ITC: Isothermal Calorimetry 

 

5.2.2 Labeling of NCp7(11-55) with 4-MeOxyLH  and selection of NT sequences 

In a next step, 4-MeOxyLH was used to monitor the interaction of the NCp7 
protein from HIV-1 with oligonucleotides. As reported in chapter 3, this Oxyluciferin 
derivative displays optical properties that can be explained by the coexistence of two 
spectral forms: the neutral (N*) and anionic (A*) forms. The ratio between these two 
forms (N*/A*) is strongly dependent on the local environment. In particular, both 
polarity and pH can tune the ratio. It has an isosbestic point at 383 nm with pKa of 8.7. 
At pH 7.4 (Abs Max 367 nm) with excitation at 385 nm, a dual emission band can be 
observed (see figure 5.6). A strong emission band centered at ~560 nm is the contribution 
from anionic Oxyluciferin which is accompanied by a weaker band centered at ~450 nm 
originating from neutral form of Oxyluciferin (see figure 5.6a). At pH 5.0 time resolved 
fluorescence decay of the neutral form (~450 nm) is strongly quenched and decays non-
exponentially with a very short component of ~0.24 ns and the fluorescence emission at 
~560 nm rises with an average time constant (~0.21 ns) that corresponds to the proton 
transfer rate and disappears biexponentially with ~l.5 and ~4.9 ns48 time constants. Figure 
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5.6b shows time resolved fluorescence decay of NCp7(11-55) labeled with 4-MeOxyLH 
recorded at both emission energies in buffer pH 7.4. 

 

 
Figure 5.6: Photophysical properties of 4-MeOxyLH coupled to NCp7(11-55) in buffer 

pH 7.4 at 20°C; (a) absorption and emission spectra, (b) time resolved fluorescence 

decay. 

(c) absorption and emission spectra and (d) time resolved fluorescence decay 4-

MeOxyLH in buffer pH 7.3 at 20°C. 

 

Absorption, emission and time resolved data obtained for 4-MeOxyLH coupled 
to NCp7 in aqueous buffer pH 7.4 are similar to that of free 4-MeOxyLH48. Time 
resolved fluorescence decay of the neutral form (~450 nm) is quenched with a very short 
component of ~0.3 ns and decays biexponentially with time constants of ~0.7 and 2.6 ns. 
While the fluorescence emission at ~560 nm rises with an average time constant (~0.5 ns) 
that corresponds to the proton transfer rate and disappears with ~5.5 ns time constants. 
Figure 5.6b shows time resolved fluorescence decay of 4-MeOxyLH coupled to 
NCp7(11-55) recorded at both emission energies in buffer pH 7.4. Thus, coupling of 
NCp7 with the fluorophore does not affect the photophysical properties of the dye.  

When NCp7 is in complex with some other biomolecules (e.g. DNA/RNA) the 
emission properties of the dye can be affected. The conformational changes in the 
complex endorse fluorescence quenching on the either way. Fluorescence emission 
properties of 4-MeOxyLH, when coupled to NCp7, can be affected when the protein is in 
complex with other biomolecules (see figure 5.8). The interaction affects the ratio 
between two emission energies. Ratio of these two emission intensities can then be used 
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to monitor the interaction between NCp7(11-55) and different oligonucleotide sequences. 
It has already been discussed that NCp7 can bind, specifically and non-specifically, to 
oligonucleotide sequences of different length and structure. To monitor this binding 
mechanism by using 4-MeOxyLH as a reporter fluorophore, an experimental model has 
been developed where interaction between different single strand and stem-loop NT 
sequences has been observed through fluorescence quenching of 4-MeOxyLH coupled to 
NCp7(11-55) with increasing NT concentration. Steady state fluorescence anisotropy and 
time resolved fluorescence decays were also used in the experiments. C and/or G rich 
different NT sequences ranging from small single-stranded (ss) to stem-loop (sl) 
structures used in this study were selected from the bibliographic studies and presented in 
the next table. The boldface underlined nucleotides correspond to the identified binding 
sites with maximum affinity for NCp7. 

Name Nucleotide sequences 
No. of 

binding 
sites 

Single-(,-*&.#('/0'&1'# 23-43"  

DNA-5nt113 ACG CC 1 
DNA-6nt28,111 AAT GCC 1 
DNA-12nt111,177 TGA CCG TGA CCG 2 

Stem-+%%5#('/0'&1'# 23-43"  
SL-20nt111,178 GGA CTA GCG GAG GCT AGT CC 1 

cTAR120,133 
GGT TCC TTG CTA GCC AGA GAG CTC CCG 
GGC TCG ACC TGG TCT AAC AAG AGA GAC C 

8 

mini-cTAR119  CCA GAG AGC TCC CGG GCT CGA CCT GG 2 
GB--) PBS116 GTC CCT GTT CGG GC 2 

These particular NT sequences have been obtained from earlier studies where 
NCp7 labeled with other fluorophores have been employed to monitor the interaction by 
means of fluorescence quenching mechanism. To decipher the exact structural 
conformation where NCp7 can bind to the NT sequence we include mini-cTAR and GB--) 
PBS in our study (e.g. NCp7(11-55) can bind to the TGG sequence in the lower stem of 
mini-cTAR119.  

With the aim to monitor binding mechanism of NCp7 and DNA by using 4-

MeOxyLH as an indicator, N terminal of NCp7(11-55) has been coupled with 4-

MeOxyLH by solid phase synthesis method « see Materials & Methods ». 

 

5.3 Activity test of NCp7(11-55) labeled with 4-MeOxyLH  

In order to verify that NCp7(11-55) labeled with 4-MeOxyLH is still biologically 
active,  we used the classical cTAR destabilization experiment179, where NC is known to 
promote changes in the fluorescence emission during unwinding of doubly-labeled 
cTAR133. Emission of cTAR labeled with TMR (Rh6-D7#1+#H/#5,4#1,4#I18=<3#1+#J/#5,4#
has been recorded by exciting Rh6-G at 520 nm with and without NCp7 labeled with 4-
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MeOxyLH. In presence of NCp7, it is expected that the stem-loop of cTAR will unwind 
which can be determined by increased fluorescence emission of the donor (Rh6-G)179. In 
principle, the emission of Rh6-G is quenched by its structurally close neighbor Dabcyl. In 
presence of NCp7, bond between base pairs break and the stem starts to destabilize or 
unwind itself. The quenching efficiency of Dabcyl decreases as the distance between both 
fluorophores increases. A 4-fold increase in the intensity of Rh6-G emission (centered at 
558 nm) has been observed due to unwinding of cTAR (see figure 5.7) in presence of 10x 
concentration of NCp7. Wild type NCp7 was used as a positive control and the obtained 
results were very similar. This test hence proved that the labeled peptide is biologically 
active. 

 

Figure 5.7: In left, activity test of NCp7(11-55) labeled with 4-MeOxyLH: Emission 

spectra of Rh6-G, attached to cTAR, in absence and presence of NCp7 labeled with 4-

MeOxyLH (Exc. WL 520 nm) and its comparison with wild type/non-labeled NCp(11-

55). In right, schematic representation of dynamics of lower stem of labeled cTAR in 

presence of NCp7 (red circle represents Rh6-G and blue circle represents Dabcyl). 

 

5.4 Fluorescence quenching of NCp7(11-55) labeled with 4-MeOxyLH in 

complex with oligonucleotide 

Fluorescence quenching of NCp7(11-55) labeled with 4-MeOxyLH (NC) was 
monitored by increasing the concentration of different DNA (NT) in 25mM Tris/30 mM 
NaCl/0.2 mM MgCl2 aqueous buffer at pH 7.4 (at 20°C). Their emission spectra have 
been recorded by exciting at 383 nm. In order to present results that are not dependent on 
the dye concentration, intensities of both emission bands were plotted in the form of a 
ratio (N*/A*) as a function of NT concentration. In parallel, fluorescence anisotropy of 
0.25-0.5 µM NCp7(11-55) labeled with 4-MeOxyLH has also been recorded with 
increasing concentration of NT (0 to > 3 µM). Fluorescence quenching of labeled NC has 
been observed when in complex with seven selective111 NT sequences. By analyzing 
fluorescence anisotropy and N*/A* separately, using  Scatchard function157 (see 
Appendix-B.1), dissociation constants (kD) for all DNA-NCp7 complexes could be 
calculated (see table 5.1).  
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Figure 5.8: Fluorescence quenching of NCp7(11-55) labeled with 4-MeOxyLH with 

increasing concentration of (a) DNA-12nt and (b) mini-cTAR. 

With the increase of the NT concentration, the NC starts to form a complex 
leading to an increase in the anisotropy. In parallel, the local electrostatic properties of 
the dye are modified by the binding event leading also to an increase of the N*/A* ratio. 
As reported in table 5.1, the changes in anisotropy and N*/A* ratio strongly depends on 
the NT sequence used. 

Next, the interaction was monitored by measuring time resolved fluorescence 
decays.  Both emission bands of 4-MeOxyLH coupled to NCp7have their distinct excited 
state lifetime parameters. Emission at 445 nm is strongly quenched and decays 
multiexponentially while band at 560 nm grows with an average time constant 
corresponding to rate of proton transfer and disappear biexponentially. 

Excited state lifetimes of NCp7(11-55) labeled with 4-MeOxyLH have been 
recorded without and saturated concentration of NT. Change in the rate of ESPT could be 
observed when NC is in complex with a saturated (> 3 µM) NT concentration in the 
solution. As reported in table 5.1, additional components were observed both at 445 and 
560 nm. In particular, a significant increase in lifetime can be observed (boldface fonts, 
table 5.1) which is likely due to a less efficient proton transfer associated with a change in 
the local environment of the dye. (although for very small ssDNA sequence of 5nt and 
6nt change in lifetime could not be observed due to their unspecific binding with NC). 

NC can bind specifically or non-specifically to NT. However the binding constant 
is strongly dependent on the nature and folding mechanism of the interacting NT 
sequence. Different NT sequences and their active binding sites that are interacting with 
the NC affect the strong variation in the binding constants. The NC-NT binding is 
strongly dependent on the ionic strength of the complex. In addition, buffer composition, 
pH and amino acid sequence of NC plays vital role for determination of the binding 
constant. NC can bind non-specifically to 5-8 NT sequences through low affinity 
electrostatic mode. NC shows sequence specific binding properties to selective single 
strand and stem-loop structures. In the NC-NT complex condensing and chaperon activity 
of NC sequences is dependent on the degree of sequence occupancy by NC. Different 
factors that are associated with the NC-NT complex formation, depends on this degree of 
occupancy that varies from low (1 NC per 100 NT) to high (1 NC per 2-5 NT) values. At 
very low degree of occupancy (1:100) NC binds with specific NT with a very high 
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affinity (e.g. cTAR in our case) without promoting any aggregation or chaperone activity. 
NC can bind to stem-loop NT structure with nanomolar affinity. But at very high degree 
of occupancy (1:10), NC-NT interaction can lead to aggregation with macromolecular 
crowding effect which in turn constrains remodeling of interacting molecules. At a very 
high degree of occupancy, NC can cover NT extensively. 

 

 
Figure 5.9: (a) Fluorescence anisotropy (b) N*/A* ratio (I445/I560) of NCp7(11-55) 

labeled with 4-MeOxyLH in complex with different oligonucleotide sequences as 

mentioned in the above table.  

From the steady state and time resolved data of NCp7 labeled with 4-MeOxyLH, 
different binding affinity could be observed which is comparable with earlier theoretical 
and experimental values. Ratiomatric analysis (N*/A*) of the complex recorded as a 
function of NT concentration is in very good agreement with corresponding anisotropy 
data. When NCp7 is in complex with NT, for small NT sequences (DNA-5nt and DNA-
6nt), no change could be observed in the time resolve parameters of the anionic emission. 
However, significant changes, as expected, could be observed in the time resolved 
parameters of the NCp7 complexes with stem-loop and long DNA structures (see table 
5.1).  From this point of view it can be postulated that 4-MeOxyLH with its dual 
emission can be used as a tool to monitor interaction between DNA and peptide. Distinct 
variations in ratiometric and excited state parameters are capable to find out 
conformational changes into peptide-DNA complex at different conditions. The analogue 
can thus be used as a ratiometric fluorescence probe to monitor such kind of biomolecular 
interactions.   
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Table 5.1: Dissociation constant (KD) and time resolved parameters of NCp7 and DNA 

complexes. 

  
Labeled NCp7 Labeled NCp7+Oligonucleotide 

NCp7+DNA 
complex KD, µMol Tau, ns (%) 

  
KEm 445 nm KEm 560 nm KEm 445 nm KEm 560 nm 

NCp7+ 
DNA-5nt 

1.09 

0.3 (68) 
0.7 (25) 
2.6 (7) 

0.5a 
5.5 

0.3 (65) 
1.5 (25) 
3.3 (10) 

0.8a 
5.5 

NCp7+ 
DNA-6nt  

0.60 
0.3 (62) 
1.4 (30) 
3.4 (8) 

0.5a 
5.7 

NCp7+ 
DNA-12nt  

2.75 
0.3 (61) 
1.4 (31) 
4.0 (8) 

2.4a 
5.1 

NCp7+ SL-
20nt 

1.26 
0.3 (53) 
1.2 (37) 
4.3 (10) 

3.0a 
5.1 

NCp7+ 
cTAR 0.04 

0.3 (52) 
1.6 (37) 
3.0 (11) 

3.0a 
5.4 

NCp7+ 
mini-cTAR 

3.14 
0.3 (59) 
1.4 (29) 
3.5 (12) 

2.7a 
5.3 

NCp7+ GB 
(-)PBS 

3.04 
0.25 (64) 
1.6 (27) 
4.0 (9) 

2.3a 
5.1 

a : growing time for decay 
 

5.5 Fluorescence labeling of protein by 5,5-Cpr-OxyLH 

Environment-sensitive (or solvatochromic) fluorescent dyes are efficient to 
monitor biomolecular interactions by sensing the changes in their microenvironment at 
the labeled site105. Different phenomenon associated with the biomolecular complex, can 
be monitored by observing the changes in the photophysical properties of a 
solvatochromic fluorophores attached to the structure of interest. To study protein-protein 
interaction or protein-foreign vector interactions, fluorescence is found to be one of the 
best techniques that can be applied to understand the complex formation mechanisms, 
conformational/structural changes in the complex, environmental effect on the complex 
etc. The proteins or peptides labeled by solvatochromic fluorophores, such as Prodan 
derivatives180,181, dimethylaminophtalimide182, dimethylaminonaphtamides183-185 have 
been centre of interest so far. Biomolecular interactions commonly decrease the polarity 
at the labeled site by the binding of the protein partner. This variation in the polarity can 
be readily detected by solvatochromic fluorophores either through their spectral shift or 
by their fluorescence quenching105. An example of application of fluorescence quenching 
to monitor peptide-oligonucleotide interaction have been presented in the previous 
section. 

Most of the protein or large biomolecules have at least one Cysteine residue.  
Keeping this in mind we proposed a model mechanism of protein labeling where a 
solvent accessible Cysteine residue is available for site-specific labeling with keto 



96 

 

analogue of Oxyluciferin (5,5-Cpr-OxyLH). In this way the protein could be labeled by 
Oxyluciferin analogue. The labeling efficiency can be monitored by using the emission 
properties of the dye. 

 

5.5.1 Spectral behavior of 5,5-Cpr-OxyLH in aqueous buffer in presence of 

Cysteine 

The 5,5-Cpr-OxyLH was initially designed to mimic the keto form of 
Oxyluciferin. In addition, this compound is able to specifically react with Cysteine 
residues through the ring opening on the spiro moiety of the compound. This reaction 
occurs only in basic conditions (pH > 9) and can be monitored both with absorption and 
emission spectra. In figure 5.10, we have reported the time dependent absorption and 
emission properties in the presence of Cysteine. The absorption spectrum of 5,5-Cpr-

OxyLH shows a significant spectral change in the presence of 1000x Cysteine with time, 
as reported in the figure 5.10a. 5,5-Cpr-OxyLH has an absorption maximum of the 
phenolate-keto form centered at 482 nm in buffer at pH 9.5. By adding Cysteine, the 
absorption maxima blue shifted to 432 nm. In a similar way, the fluorescence emission of 
the dye is strongly modified by the presence of Cysteine. As reported in figure 5.10b, in 
presence of 1000 fold excess Cysteine in solution, a growing emission band centered 
about 567 nm was observed. The emission intensity at 567 starts increasing as the 
reaction proceeds (figure 5.10c). In absence of Cysteine in the solution, this spectral blue 
shift has not been observed. L;*)#52*))*&,#-K21M#H.7 nm) can be attributed to its enol 
tautomer. 

In 5,5-Cpr-OxyLH thiazole subunit is restricted to keto tautomeric form of 
Oxyluciferin via 5,5 distribution pattern (see chart 5.1). At the ground state its phenol 
group is already deprotonated in basic media where absorption of phenolate ion of the 
keto form can be observed with a maxima at 482 nm. This mimics phenolate-keto-

OxyLH$ form. This absorption is due to N-N* transition from the keto group and to n-N* 
+%1,)*+*&,#O%&2#+;5#./0#;<4%&M<3#$%&'(

9. Emission spectrum of 5,5-Cpr-OxyLH has only 
one band maximum at 637 nm that does not evolve with pH. Much higher photoacidity 
and very efficient ESPT could be observed for this molecule at this deprotonated form 
while exciting at its isosbestic point (423 nm). Although a weak contribution in emission 
at this basic condition, appears as a tail, which likely corresponds to photo-degradation of 
neutral keto-OxyLH2 emission (530 nm) can be observed. ESPT from the phenol group is 
much faster (< 50 ps) than the responding time of the instrument and thus emission from 
deprotonated form (maxima at 637 nm) could only be observed with classical steady state 
spectroscopy48. 
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The formation of sulfhydryl group is very crucial phenomenon as the hydrogen 

can be easily replaced by some other radicals or groups and can form a covalent bond 
with other molecules (such as Cystine formation). The disulfide bridge formed may be a 
weaker bond than a peptide bond and can be split easily but is quite stronger than other 
interactions like salt bridge or hydrogen bonding. The formation of this covalent bond is 
strongly dependent on the pH of the solution and redox potential of the micro-
environment. Under basic conditions,  SH tends to be more oxidized and replaced by  
PA#-A#Q#"<4%&$5,7

186.  

 

Chart 5.1: Concept of cysteine (thiol) labeling of keto-Oxyluciferin 

When a covalent disulfide bridge has been established in between Oxyluciferin 
and Cystine, significant blue shift in both absorption (~48 nm) and emission spectra (~71 

Figure 5.10: Spectral properties of 

5,5-Cpr-OxyLH with 1000x 

Cysteine with time; (a) absorption 

spectra, (b) emission spectra (Exc. 

WL 425 nm), (c) emission intensity 

observed at 565 nm monitored for 

360 minute. 
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nm) could be observed. Absorption maxima shifts to 432 nm which can be due to n-N* 
transition of phenol-phenolate species. Whereas emission maxima shifts to 567 nm 
confirming keto-enol tautomerization of phenolate-keto-OxyLH$ to phenolate-enol 

OxyLH$48. This spectral blue shift of 5,5-Cpr-OxyLH emission can be used to follow 
the specific binding of the dye Cysteine residue in basic conditions and therefore protein 
containing Cysteine residue.  

 

5.5.2 Human Alpha1-6&,7,-75()&# 89-AT) and its Cysteine residue 

Human Alpha1-:,+<+%<()*,# -6R-AT), a single chain glycoprotein, commonly 
found among several eukaryotic organisms and plants as well as in viruses, is a protease 
inhibitor, F;*=;# 853&,$)# +&# @)5%(*,E# -P5%*,5# B%&+5*,1)5# S,;*8*+&%)7# O12*3<9# L;*)#

~46 kDa/412 amino acid (Ref: UniprotKB code Q00896) protease inhibitor shares a very 
high structural homology consis+*,$# 5*$;+# 6-;53*=5)# 1,4# +;%55# T-sheets. A multi step 
%51=+*&,# 25=;1,*)2# *)# *,U&3U54# *,# *%%5U5%)*835# 8*,4*,$# &O# 6R-AT to its associated 
enzyme117,187

9#L;5#5,V<25#%5=&$,*+*&,#)*+5#&O#6R-AT is composed of eight amino acids 
(P5-B/J7#F*+;*,#*+)#%51=+*U5#=5,+%5#3&&(#-A0W7X#1,#5M(&)54#1,4#O35M*835#)5?'5,=5#&O#YRZ#
amino acids117. A unique free Cysteine residue, sufficiently exposed to the solvent, at 
(&)*+*&,#[J[#&O#+;5#0#+5%2*,')#5,4#&O#T-)+%1,4#R\#*,#6R-AT can easily be labeled by  SH 
reactive fluorescent probes117

9#L;*)# )(5=*O*=#(1%+#&O#6R-AT (Cysteine-232) has no direct 
involvement in +;5#5,V<25#*,+5%1=+*&,#F*+;*,#A0W#&%#+;5#T-sheet A or in the proteinase 
translocation mechanism117. To investigate potential rearrangement of 6R-AT in presence 
of enzyme, Cysteine-232 was labeled with solvent polarity sensitive fluorescent probe 
like 5,5-Cpr-OxyLH. The advantage of presence of only one Cysteine residue is to avail 
an opportunity to easily perform a site specific fluorescence labeling of this protein. 

Cysteine (abbreviated as Cys or C) is an 6-amino acid, which can be synthesized 
biologically in human. This sulfur group biogenic amino acid is one of the 20 
biologically essential amino acids required for cell-metabolism. This can be genetically 
encoded by two mRNA codons UGU and UGC. Cysteine &%# 6-Amino-T-mercapto-
propanoic acid (C3H7NO2S, Mol. Wt. 121.15 gm/mol) structurally belongs to sulfur 
amino acid groups with a sulfur atom appears on its side chain (see chart 5.2)186. 

 

Chart 5.2: Chemical structure of Cysteine (CAS No. 52-90-4) 

The sulfur on its side chain creates a highly reactive sulfydryl group that make 
this amino acid less hydrophobic and more reactive than its methyl counterpart 
Metheonine (Met). Cysteine can easily be oxidized and form a dimer (or known as 
Cystine) with a covalent disulfide bridge between two Cysteine molecules. This dimer or 
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Cystine is very crucial for analysing the structure and dynamics of the protein at different 
stages. Sulfhydral bond formed in Cystine is considered to be very strong reducing factor 
that can control various activities of several proteins188-190.  

Cysteine can be found (at least one) in 88% of proteins and peptides (according to 
Swiss-Port database). To investigate structure and dynamics of biomolecules by using 
fluorescence methods, Cysteine is the most popular target especially because of its unique 
nature which helps to study protein folding mechanism188-190.  

 

Figure 5.11: 3-:#;%.'+# -'5-'('&,*,)%&#%<#=0;*&#89-AT in its (a) free state and (b) in 

complex with Procine Pancreatic Elastase (PPE) (grey surface). The C-terminus side (in 

-'."# %<# ,='# >?@# A'1%;'(# 5*-,# %<# B-sheet A (in green) in the complexed state of the 

protein. Yellow sphere represents the unique Cys-C4C#-'().0'D#E='#F9#*&.#FG9#-'().0'(#%<#

RCL are represented by blue and purple spheres, respectively. The figures were prepared 

with the pdb files 1hp7 and 2d26 (Boudier et al. Reprinted with permission)
117

.  

 

5.5.3 Fluorescence labeling of Alpha1-6&,7,-75()&#  89-AT) by 5,5-Cpr-OxyLH 

and its purification 

To further evidence the ability to use Oxyluciferin derivatives to probe 
biomolecular interactions, in the next step, we labeled 6R-AT by 5,5-Cpr-OxyLH. To 
31853#6R-AT at Cystein-232 position by 5,5-Cpr-OxyLH]#6R-AT was dissolved in 25mM 
Tris/75 mM NaCl/0.2mM MgCl2 buffer at pH 9.5 at 20°C. In order to work with an 
excess of dye to ensure an efficient labeling &O#6R-AT, five-fold more concentrated 5,5-

Cpr-OxyLH was added to the solution and kept at +4°C for 24 hours in dark. 
0&,=5,+%1+*&,)#&O#6R-:L#-^280 19060 M-1.cm-1)117 and 5,5-Cpr-OxyLH -^375 62700 M-

1.cm-1) were calculated from their absorption spectra.  In parallel, spectral signature of 
5,5-Cpr-OxyLH F*+;&'+#6R-AT in the same solution has been observed continuously as 
a negative control.  

At the end of the labeling procedure, emission spectra of the solution were 
recorded. Emission from both, keto (637 nm) and enol (562 nm) Oxyluciferin could be 
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observed when excited at 423 nm (see figure 5.12-red). The band centered at 562 nm 
arises due to emission from the enol form which is already bound to Cysteine-232 residue 
&O#6R-AT while the emission centered at 631 nm is due unbound/free 5,5-Cpr-OxyLH 
(excess Oxyluciferin molecule available in the solution). Then entire solution was passed 
through PD-10 desalting column, purchased from GE healthcare UK, equilibrated with 
same buffer, and only labeled protein was collected as filtrate. High molecular weight 
labeled proteins can be separated by the gravitational force from the mixture of both 
labeled protein and free Oxyluciferin. 

Emission spectra of filtrate has been recorded again by exciting at 423 nm and as 
depicted in the figure 5.12 only emission from enol Oxyluciferin bound to Cysteine was 
observed. This confirms complete removal of free 5,5-Cpr-OxyLH from the mixture. 
The filtrate was lyophilized under vacuum and re-dissolved in PBS at pH 7.4 at 20°C. 
0&,=5,+%1+*&,#F1)#=13='31+54#O%&2#18)&%(+*&,#1+#[_`#,2X#^280 19060 M-1.cm-1. 

  

 

5.5.4 Activity test of Alpha1-6&,7,-75()&# 89-AT) labeled with 5,5-Cpr-OxyLH 

To verify the activity of the labeled protein and to monitor the interaction between 
labeled 6R-AT and another biomolecule, we adopted the similar model as proposed by 
Boudier et al.191 A0W#&O#6R-AT can easily inhibit Porcine Pancreatic Elastase (PPE), a 
member of subfamily of Serine, by catalyzing hydrolysis of ester substrate of certain 
(5(+*45# 8&,4)# &O# 6R-AT191. The interaction between PPE and labeled 6R-AT can be 
studied through the fluorescence quenching of Oxyluciferin derivative that is associated 
with =&,O&%21+*&,13#=;1,$5)#%5)'3+*,$#O%&2#%51=+*&,#85+F55,#6R-AT and PPE. Boudier et 
al. shows how fluorescence quenching of labeled 6R-AT in presence of PPE can be 
monitored by studying steady state (time dependent) fluorescence emission117. The 
reaction of PPE with oxyluciferin labeled 6R-AT has been studied in similar way. In ~700 
nM solution of labeled 6R-AT, PPE was added with increasing concentration up to 1µM 
-GR``#,M). Fluorescence spectra were recorded at each concentration by exciting at 425 
nm. Significant fluorescence quenching has been observed between 0 and 1µM of PPE 
confirming the structural changes of the labeled 6R-AT in complex with PPE (see figure 
5.13). Boudier et al. has reported the similar fluorescence quenching properties of labeled 
6R-AT  with increasing PPE concentration in their work117. 

Figure 5.12: Normalized emission 

spectra (Exc. WL 425 nm) of 5,5-Cpr-

OxyLH during labeling process. 

(Blue: at beginning; Red: before 

filtration; Black: after filtration) 
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Figure 5.13: Fluorescence quenching of 89-AT labeled with 5,5-Cpr-OxyLH (a) with 

increasing conc. of PPE,( b) Emission int. at 515 nm with increasing conc. of PPE  

 

5.6 Conclusion 

Fluorescence emission properties of oxyluciferin and its structural analogues can 
be used to monitor different biological processes. Upon two-photon excitation, in-cellulo 
local/cyosolic pH can be visualized and the change in cytosolic pH can be monitored. 
Moreover oxyluciferin appeared to be a non toxic solvatochromic fluorophore. Next we 
demonstrated that peptide-DNA interactions can be monitored by observing dual 
emission spectrum of 4-MeOxyLH labeled peptide. 4-MeOxyLH can thus be a good 
candidate to study structural dynamics of protein-DNA complexes involved in viral life 
cycle of HIV-1. Labeling of Cysteine-[J[# &O# 6R-AT by 5,5-Cpr-OxyLH is a classic 
example of application of keto-enol tautomerization of oxyluciferin as a site specific 
fluorescent labeling probe for studying structural dynamics and protein folding 
mechanism. 
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Appendix-C 

C.1 Schematic of Oxyluciferin analogues used for peptide conjugation 

 

 

 

 

 

C.2 Amino Acid sequence of Alpha-1-antitrypsin, used in this study 

(PDB Q00896- A1AT3_MOUSE) 

Sequence chain: Length: 412 AA, Mol. Weight: 45823 Da (Checksum: 

FFA3BF10ABC1B8AE) 
 
MTPSISWGLL LLAGLCCLVP SFLAEDVQET DTSQKDQSPA SHEIATNLGD 50 
FAISLYRELV HQSNTSNIFF SPVSIATAFA MLSLGSKGDT HTQILEGLQF  100 
NLTQTSEADI HKSFQHLLQT LNRPDSELQL STGNGLFVNN DLKLVEKFLE 150 
EAKNHYQAEV FSVNFAESEE AKKVINDFVE KGTQGKIVEA VKKLDQDTVF 200 
ALANYILFKG KWKKPFDPEN TEEAEFHVDE STTVKVPMMT LSGMLDVHHC 250 
STLSSWVLLM DYAGNATAVF LLPDDGKMQH LEQTLSKELI SKFLLNRRRR 300 
LAQIHFPRLS ISGEYNLKTL MSPLGITRIF NNGADLSGIT EENAPLKLSQ  350 
AVHKAVLTID ETGTEAAAVT VLLAVPYSMP PILRFDHPFL FIIFEEHTQS 400 
PLFVGKVVDP TH         412 

 

C.3 Molar Extinction coefficient of Oxyluciferin and its analogues 

L&# =13='31+5# +;5# 2&31%# 5M+*,=+*&,# =&5OO*=*5,+# -^7# &O# &M<3'=*O5%*,# 1,4# *+)# O5F#

analogues, Fluorescence Correlation Spectroscopy (FCS) has been used. Diffusion of 
Oxyluciferin derivatives (diluted in PBS) within an open volume created by a focused 
laser beam were monitored with FCS123. Absolute local concentration of oxyluciferin 
within this open volume can be calculated from a reference volume (V = 0.45 fl) and 
number of flurophore (N) observed in this volume, by using the equation N/(V*Va), 

Compound 
Mol. Wt. 
(g/mol) 

OxyLH2 368.45 
a]./-DMeOxyL 322.36 
4-MeOxyLH 308.33 
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where Va is Avogadro No. 6.022 x1023123. Number of fluorophore inside the volume was 
calculated by Igor pro (from WaveMetrices) run under MATLAB (MathWorks) platform. 
50nM of Tetramethylrhodamine (TMR) solution in water was used as reference. From 
this calculated concentration (C), taking into consideration of dilution factor (~1/50x), 
and measured absorbance (A) at 375 nm, ^ values for each compound were calculated by 
applying simplified Beer-Lamberts equation C = A/(^*l).  

L;5#=13='31+54#^#&O#+;5)5#=&2(&',4)#;1U5#855,#25,+*&,54#*,#+;5#O&33&F*,$#+1835b 
Compound Molar Extinction 

coefficient (^) at 375 nm 
(M-1.cm-1) 

./-MeOxyLH 1,30 x 104 
4-MeOxyLH 6,31 x 104 
a]./-DMeOxyL 4,82 x 104 
OxyLH2 2,23 x 104 
5,5-Cpr-OxyLH 6,27 x 104 

 

 

Figure C.2:  Schematic representation of a fluorophore inside the focal volume 

illuminated by FCS (left) and calculation of correlation time from the observed decay 

(Princ. of Flr. Spetr; J. Lakowich, Adapted Form)
135
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C.4 Molecular brightness of Oxyluciferin analogue 4-MeOxyLH 

Another interesting feature of 4-MeOxyLH is its high molecular brightness. 
About 47% of relative fluorescence quantum yield could be observed in pH 10.048. 
Molecular brightness of 4-MeOxyLH was found to be 1500 photon/sec per fluorophore. 

 

Figure C.3: The molecular brightness of 4-MeOxyLH in buffer pH 10 is 1500 ph.s-1 per 

fluorophore (P=15 mW). 
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General Conclusions and Prospective 

General conclusion of the work 

To obtain a better insight of firefly bioluminescence color tuning mechanism and 
the phenomenon governing the excited state photodynamics of this natural fluorophore, 
the absorption, emission and fluorescence lifetime of structural analogues of Oxyluciferin 
have been studied in aqueous buffer. Photodynamic study of different chemical forms of 
Oxyluciferin reveals that the emission mechanism is strongly dependent on the solvent 
pH. With the help of different chemometric approaches it was possible to decipher the 
exact chemical form that is responsible for a particular color of the emission. In addition, 
it was possible to establish a pH dependent photophysical profile of the firefly 
Oxyluciferin. Also, we were able to provide a strong evidence of ESPT mechanism 
involved in the de-excitation process as well as we provided a photoluminescence 
pathway of different chemical forms of the emitter along with their ground and excited 
state equilibrium constants.  

By mimicking the exact physiological conditions of the natural bioluminescence 
system, we identified the photophysical properties of the emitter inside the pocket of the 
enzyme, firefly Luciferase at a preliminary stage. The emission mechanism of 
Oxyluciferin inside the pocket of Japanese firefly Luciola cruciata in the presence of 
AMP have been studied. The binding affinity of the fluorophore to the protein was 
calculated. The effect of microenviroenment of the protein on the emission mechanism of 
the fluorophore have been studied and with these preliminary results an enhanced 
photophysical profile has been established by combining results obtained from the 
analysis of free Oxyluciferin. 

In addition, keeping in mind the extraordinary photophysical mechanism of the 
fluorophore, its application as a bio-analytical tool to monitor different biological events 
have been proposed in this study. Proven models have been presented in this study where 
this environment sensitive fluorophores have been applied for in-cellulo pH monitoring 
and to monitor interaction between HIV-1 NCp7 & different oligonucleotide sequences. 
A classical example has been presented where the very strong thiol affinity of the 
fluorophore have been applied for fluorescence labeling of another human protein Alpha-
1 Antitrypsin.  

All together, 
i. we deciphered different chemical forms of Oxyluciferin (individually and when 

in complex with Luciferase) involved in color tuning mechanism of firefly 
bioluminescence by studying its different structural analogues in aqueous buffer. 

ii. we established the photoluminescence pathway of the Oxyluciferin and 
Oxyluciferin-Luciferase complex in aqueous buffer. 

iii. we did an interpretation the exact excited state structure of the photo emitter in 
natural conditions and in complex with the enzyme Luciferase and also interpret 
ESPT mechanism involved in color tuning mechanism of firefly 
bioluminescence. 
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iv. we could propose Oxyluciferin as a promising bio-analytical tool specially to 
monitor different biomolecular interactions in-vivo or in-vitro. 

v. the results we obtained have a potential contribution to put light on the study of 
bioluminescence mechanism of firefly Luciferin-Luciferase. 

 
Prospective of the work 

Combing these results, advancement of the study of Oxyluciferin as a bio-analytical 
probe may be opted. Although a detail photophysical profile of the color tuning 
mechanism for the firefly bioluminescence has been proposed, further analysis of this 
phenomenon is required,, especially when the photo-emitter is bound with the enzyme. 
To understand the structure, fluorescence time-resolved anisotropy parameters of the 
protein-fluorophore complex at different experimental conditions need to be studied. For 
better understanding of the excited state structure of the protein-fluorophore complex, it 
will be excellent to combine their crystallographic structural analysis with these 
photophysical parameters. The result can further be validated by applying different 
theoretical model functions for constructing a more reliable excited-state structure of the 
photo-emitter and its color-tuning mechanism in the natural context. Also the effect of 
buffer composition (ionic strength etc.) should be studied theoretically as well as 
experimentally. Effect of ionic strength on pka has briefly been discussed in the chapter 3 
but not when bound to Luciferase. To draw a more realistic excited-state structure of the 
photo-emitter, contribution of different buffers compounds and effect of different salts 
and their concentrations on the emission spectra of the protein-fluorophore complex must 
be considered. In particular, the chemometric approach can be used to characterize these 
properties.   

  From the application point of view of the dye, further more detailed in-cellulo 
and/or in-vivo investigations are required for better understanding about cellular pH 
monitoring. Time dependent cellular imaging, effect of other extracellular factors etc. 
needs to be included in the study. Also it would be a good idea to quantify the exact in-

cellulo pH dependent excited state lifetime profile of the fluorophore, so that the exact pH 
variation for specific cellular organelle/location can be monitored. The fluorophore can 
be opted as an alternative for lysosome tracking mechanism. Experimental data of this 
approach can be excellently supported by the theoretical model. To elucidate other 
possibilities of protein labeling, different additional proteins can be studied, e.g full 
length NCp7 or any other protein can be labeled with the fluorophore and its interaction 
with oligonucleotides at different conditions may be studied. Ionic strength, buffer 
composition, pH of the solution affects binding of the fluorophore to the protein. These 
parameters can also be studied to tune the photophysical parameters required for 
monitoring biomolecular interactions. Time resolved fluorescence anisotropy and 
crystallographic structural measurements of labeled protein must be included in the 
analysis to have a better knowledge about the complex formation, which can be further 
validated with their theoretical models. In addition, application of ultrafast time resolved 
fluorescence techniques to understand the photodynamics of the dye free as well as in 
complex with the protein will be having an added value to the analysis. 



 

 

 

 

 

Résumé en Français  

 

 

 

 

 

 



107 

 

Résumé en Français 

u cours de la dernière décennie, la compréhension du processus de bioluminescence 
a connu un intérêt croissant en raison du très grand nombre d'applications en 

particulier dans le domaine de l'analyse biologique (in vivo/in vitro, imagerie, 
caractérisation des interactions biomoléculaires etc.). Malgré de vastes connaissances 
expérimentales et théoriques de cette réaction chimique complexe, la photophysique de 
3/OxyLH2 reste encore mal comprise. En fonction des conditions expérimentales, la 
partie optiquement active peut exister sous la forme de six espèces chimiques différentes 
en raison de l'ionisation des groupements hydroxyle et 45#3/c?'*3*8%5#=c+&-énolique de la 
sous-unité thiazole. Cet équilibre chimique complexe en solution aqueuse est fortement 
influencé par la nature du solvant, le pH et les interactions spécifiques avec des bases. En 
&'+%5]# 3&%)?'5# 3/OxyLH2 forme un complexe avec l'enzyme luciférase, les propriétés 
spectrales de chaque forme chimique peuvent être affectées par la nature du site actif, tel 
?'5#31#(&31%*+c]#31#(%c)5,=5#4d*&,)#)'((3c25,+1*%5)#5+#3/52(*31$5##45#+<(5#N-N. Les études 
récentes ont montrés que non seulement les espèces phénolate-céto générées à l'état 
excité, mais aussi le tautomère de la forme énol sont des formes contribuant à l'émission 
45# O3'&%5)=5,=59# 05#2c=1,*)25# *2(3*?'5# ',# +%1,)O5%+# 45# (%&+&,)# e# 3/c+1+# 5M=*+c# -fPBL#

excited state proton transfer) à partir de l'un ou l'autre des groupes hydroxyles. En outre, 
des études antérieures menées sur la luciférine provenant de la luciole (le précurseur de 
réaction) ont montré que le mécanisme de photoluminescence dépend fortement de 
diverses conditions, y compris le pH de la solution et la longueur d'onde d'excitation. 

 

Mécanisme réactionnel de la bioluminescence de la luciole 

05# +%1U1*3#45# +;g)5# O1*+# (1%+*#4/',#(%&h5+# *,+*+'3c# i#Excited-State Structure of the 

Emitter and Color-Tuning Mechanism of the Firefly Bioluminescence » (RGY-
``_Rj[`RR7# )&'+5,'# O*,1,=*g%525,+# (1%# 3/"'21,# k%&,+*5%# P=*5,=5# B%&$%12# -"kPB79#

Quatre collaborateurs sont impliqués dans ce projet: i) Prof. Lukas HINTERMANN, 
Département de chimie, Université de Munich, Allemagne; ii) Dr Pance NAUMOV, 
Université de New York, Abu Dhabi; iii) le Dr Pascal DIDIER, Université de Strasbourg, 
FRANCE et iv) le Dr Michel SLIWA, Université de Lille, FRANCE. Les différents 

A 



108 

 

1,13&$'5)# )+%'=+'%1'M# 45# 3/&M<3'=*Oc%*,5# &,+# c+c# )ynthétisés par le groupe du Prof. 
HINTERMANN et leurs études structurales cristallographiques ont été effectuées par 
3dc?'*(5#4'#I%#l:mn!o9#W/c+'45#45)#(%&(%*c+c)#(;&+&(;<)*?'5)#1*,)*#?'5#35)#(&))*835)#

applications biologiques ont été réalisées au Laboratoire de Biophotonique et de 
Pharmacologie sous la supervision du Dr DIDIER. A Lille, le Dr SLIWA et son équipe 
ont étudié les propriétés optiques dans le domaine infra-rouge de ces dérivés. 

Le premier objectif de la thèse était d'identifier les différentes formes de 
l'OxyLH2 %5)(&,)1835)#45#3/1==&%418*3*+c#45#3dc2*))*&,#45#O3'&%5)=5,=5#-aaH-637 nm) en 
solution aqueuse. Aussi, il était important de comprendre le mécanisme ESPT impliqué 
41,)# =5# (%&=5))')# 5+# 45# O&'%,*%# ',#2&4g35# (5%25++1,+# 4/5M(3*?'5%# 35)# processus de de-
5M=*+1+*&,#45#3/OxyLH2 en solution aqueuse. 

B&'%#=&2(%5,4%5#35#2c=1,*)25#4dc2*))*&,#45#3/OxyLH2]#3/c?'*(5#4'#B%&O9#W'>1)#

HINTERMANN a synthétisé chimiquement différents analogues de OxyLH2 pour 
lesquels, les groupements -OH sont remplacés par un groupe -OCH3, de manière à 
bloquer la déprotonation de la molécule en en solution aqueuse (voir le tableau ci-
dessous). Différentes procédures expérimentales impliquant des techniques de 
)(5=+%&)=&(*5#45# O3'&%5)=5,=5#e# 3/c+1+# )+1+*&,,1*%5#5+# %c)&3'5)# en temps ont été utilisées 
pour étudier les propriétés optiques de ces dérivés structurellement modifiés. Les spectres 
4/18)&%(+*&,]#4dc2*))*&,#5+#35)#4'%c5)#45#U*5#45#O3'&%5)=5,=5#45)#4*OOc%5,+)#1,13&$'5)#45#

OxyLH2 ont été mesurés en solution aqueuse à différent pH. 

 

Structures chimiques de +3OxyLH2 et de ses dérivés, utilisés dans cette étude comme 

*&*+%H0'(#.'(#.)<<I-'&,'(#<%-;'(#.'#+3%J7+01)<I-)&' 

La thèse est divisée en cinq chapitres. Le premier chapitre traite de l'introduction 
générale du système suivi par la description des différentes techniques qui ont été 
utilisées pour étudier le système. Les résultats qui ont été obtenus pour comprendre le 
mécanisme de bioluminescence ainsi que les différentes applications sont présentés dans 
les trois chapitres suivants puis le manuscrit se termine par une conclusion générale et 
une présentation succincte des perspectives envisageables dans le domaine. 
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Le chapitre 1 fait le point sur les travaux existants qui ont été menés sur la 
bioluminescence de la luciole. Ce chapitre comprend une description détaillée du 
mécanisme de réaction, du rôle de l'enzyme de la luciole etc. Dans le chapitre 2, une 
description détaillée des différentes techniques employées au cours de l'étude est 
présentée b#25)'%5)#e# 3/c+1+# )+1+*&,,1*%5]# )(5=+%&)=&(*5# %c)&3'5#5,# +52()# -,1,&)5=&,457]#

microscopie à deux photons, anisotropie de fluorescence, préparation des différents 
échantillons (émetteur de lumière et les échantillons biologiques), expression et la 
purification de l'enzyme luciférase, synthèse et étiquetage des peptides du VIH-1.  

Les résultats présentés dans le chapitre 3 ont été valorisés à travers un article paru 
dans J. Phys. Chem. B "Emission properties of oxyluciferin and its derivatives in water: 
revealing the nature of the emissive species in firefly bioluminescence". Les mesures à 
3/c+1+# )+1+*&,,1*%5# 5+# %c)&3'5)# 5,# +52()]# 5OO5=+'c5)# 41,)# 45)# )&3'+*&,)# 1?'5uses 
tamponnées dans une gamme de pH physiologiquement pertinent, ont permis pour la 
(%52*g%5# O&*)# 4/&8+5,*%# 35)# )(5=+%5)# 4/18)&%(+*&,# 5+# 4/c2*))*&,# 1))&=*c)# e chacune des 
O&%25)# -)*M7# 45# 3/OxyLH2 *2(3*?'c5)# 41,)# 35# 2c=1,*)25)# 4/c2*))*&,9# f,# &'+%5]# ,&')#

av&,)#25)'%c#35)#=&,)+1,+5)#=*,c+*?'5)#e#3/c+1+#5M=*+c#5+#(%&(&)5%#',#)=;c21#%c1=+*&,,53#

45#31#(;&+&3'2*,5)=5,=5#45#3/OxyLH2 en solution aqueuse. 

 
K5'1,-'(# .3*A(%-5,)%&#  '&# =*0,"# ', d3émission (en bas) des espèces chimiques 

)&.)L).0'++'(# .'# +3%J7+01)<I-)&'# obtenus par une approche analytique basée sur une 

méthode d3analyse multidimensionnelle. 
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Dans le chapitre 4, nous avons produit et purifié l'enzyme luciférase (exprimée en 
bactéries E. coli et purifiée par la technique FPLC) afin d'étudier les propriétés 
photophysiques de complexes OxyLH2-luciférase en tampon aqueux à différent pH. Les 
1,13&$'5)#45#3/&M<3'=*Oc%*,5#5,#=&2(35M5#1U5=#31#3'=*Oc%1)5#&,+#c+c#c+'4*c)#-45#21,*g%5#e#

mimer le complexe oxyluciférine-luciférase) pour obtenir des informations sur la  
photophysique du complexe naturel. Nous avons d'abord déterminé le meilleur ratio 
(%&+c*,5j&M<3'=*Oc%*,5#5,#'+*3*)1,+#3/1,*)&+%&(*5#45#O3'&%5)=5,=5#45#21,*g%5#e#,/1U&*%#?'5#

des molécules liées en solution. Ensuite, nous avons utilisé la spectroscopie de 
fluorescence à 3/c+1+# )+1+*&,,1*%5# 5+# %c)&3'5# 5,# +52()# 5,# 5M=*+1,+# 45# 21,*g%5# )c35=+*U5#

chacune des formes chimiques de oxyluciférine pour étudier les différents paramètres du 
complexe oxyluciférine-luciférase. Les résultats préliminaires obtenus nous ont permis de 
mett%5# 5,# cU*45,=5# 35# %p35# =3c# h&'c# (1%# 3/5,U*%&,,525,+# protéique sur les propriétés 
optiques de l'oxyluciférine à l'intérieur de la poche protéique. 

En comparant les résultats obtenus avec ceux présentés dans le chapitre 3, nous 
avons pu mettre en évidence les modifica+*&,)#4'5)#e#3/5,U*%&,,525,+#(%&+c*?'59#I5#(3')#

=5)# %c)'3+1+)# ,&')# &,+# (5%2*)# 45# (%&(&)5%# ',#2&4g35# (&'%# 4c=%*%5# 3/c?'*3*8%5# =;*2*?'5#

entre les différentes espèces. 

 
Les spectres d'émission de différentes formes chimiques des complexes oxyluciférine-

luciférase dans un tampon aqueux. 

I1,)# 31# 45%,*g%5# (1%+*5# 45# ,&+%5# +%1U1*3]# 3/OxyLH2 et ses deux analogues 
structuraux; 4-MeOxyLH et 4,6'-DMeOxyL (voir graphique ci-dessus) ont été choisis 
pour démontrer la capacité potentielle d'utilisation de dérivés de l/oxyluciférine pour des 
applications biologiques. En particulier, ces dérivés ont été modifiés chimiquement et 
couplés à des peptides du VIH-1[Tat (44-61) et/ou NCp7(11-55)] par synthèse peptidique 
en phase solide. Différentes approches analytiques ont été employées pour utiliser les 
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(%&(%*c+c)#&(+*?'5)#45)#4c%*Uc)#45#3/OxyLH2 pour suivre l'interaction biomoléculaire en 
milieu cellulaire ou in vitro9#05)#1((%&=;5)#5M(c%*25,+135)#*2(3*?'5#3/*21$5%*5#(1%#4'%c5#

de vie de fluorescence (Fluorescence Lifetime Imaging Microscopy FLIM) avec des 
cellules HeLa incubées avec le peptide Tat du  VIH-R#21%?'c#1U5=#3/&M<3'=*Oc%*,5]#1*,)*#

que des mesures à l'état st1+*&,,1*%5#5+# %c)&3'5)#5,#+52()#(&'%#)'*U%5#3/*,+5%1=+*&,#45#31#

NCp7 marqué avec par le 4-MeOxyLH avec des séquences oligonucléotidiques. 

Le FLIM est une technique d'imagerie, dans laquelle le contraste en chaque pixel 
est donné par la durée de vie de fluorescence du fluorophore. Ces expériences nous ont 
(5%2*)#45#2&,+%5%#?'5#3/&M<3'=*Oc%*,5#(&'U1*+#q+%5#'+*3*)c5#=&225#)&,45#45#("#5,#2*3*5'#

=533'31*%59#f,# 5OO5+]# =&225#,&')# 3/1U&,)#4c=%*+# 41,)# 35# chapitre 3]# 3/OxyLH2 présente 
45)#(%&(%*c+c)#4/c2*))*&,#?'*#4c(5,45,+#4'#("9#f,#2*3*5'#=533'31*%5]#,&')#&8+5,&,)#',5#

distribution des durées de vie fluorescence qui dépend de la localisation cellulaire du 
(*M53#=&,)*4c%c9#05)#&8)5%U1+*&,)#&,+#c+c#=&,O*%2c5)#(1%#3/'+*3*)1+*&,#4/',#4c%*Uc#?'*#,5#

présente pas de dépendance par rapport au pH (Tat marqué avec 4,6'-DMeOxyL). Les 
%c)'3+1+)#&8+5,')#41,)#=5)#5M(c%*5,=5)#&,+#4c2&,+%c#?'5#3/&M<3'=*Oc%*,5#(5'+#q+%e utilisé 
avec le FLIM comme outil d'analyse pour cartographier les variations de pH 
intracellulaire. 

 
Images obtenues par excitation à deux photons de cellules HeLa incubées avec le peptide 

E*,#;*-/0I#*L'1#+3OxyLH2 (exc 780 nm, puissance du laser <0,5 mW, 50x50 µm) 

En parallèle, nous avons marqué la protéine de la nucléocapside avec le dérivé 4-

MeOxyLH 5+# &8)5%Uc]# e# +%1U5%)# )&,# 5M+*,=+*&,# 45# O3'&%5)=5,=5]# 3/*,+5%1=+*&,# 45# 31#
(%&+c*,5#1U5=#45)#)c?'5,=5)#4d&3*$&,'=3c&+*45)9#05#4c%*Uc#45#3/&M<3'=*Oc%*,e présente un 
)(5=+%5#4/c2*))*&,#4&'835#1))&=*c#e#45'M#c+1+)#45#(%&+&,1+*&,#4'#O3'&%&(;&%59#W5#%1((&%+#

4/*,+5,)*+c# 5,+%5# =5)# 45'M# 81,45)# 4/c2*))*&,# (5'+# 13&%)# q+%5# '+*3*)c# (&'%# )'*U%5# 35)#

2&4*O*=1+*&,)#45#3/5,U*%&,,525,+#(%&=;5#4'#21%?'5'%9#l&')#1U&,)#+*+%é en ajoutant une 
concentration croissante d'oligonucléotide, de manière à suivre l/interaction 
simultanèment par anisotropie de fluorescence et par mesure ratiométrique. Les résultats 
&8+5,')# e# (1%+*%# 45# =5)# 5M(c%*5,=5)# 2&,+%5# ?'5# 35# %1((&%+# 4/c2*))*&,# 5,+%5# 35) deux 
O&%25)# 4'# O3'&%&(;&%5)# (5%25+# 45# )'*U%5# 3/*,+5%1=+*&,# 5,+%5# 31# (%&+c*,5# 5+#

3/&3*$&,'=3c&+*45# 1U5=# ',5# 4<,12*?'5# (3')# *2(&%+1,+5# ?'5# =5335# &8+5,'5# 1U5=#

3/1,*)&+%&(*5#45#O3'&%5)=5,=59 
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Suivi de l'interaction entre la NCp7 et l'oligonucléotide 

Dans le 8'+#45#)+18*3*)5%#31#O&%25#=c+&,5#45#3/OxyLH2, le dérivé 5,5-Cpr-OxyLH 
(voir figure ci-dessus) a été synthétisé par nos collègues allemands. Ce composé offre 
également la possibilité de marquer sélectivement les résidus cystéine permettant ainsi 
4/c+*?'5+5%#45)#(%&+c*,5)#?'*#(%c)5,+5,+#',5#=<)+c*,5#5M(&)c5#1'#)&3U1,+9#I5#(3's lors de 
la liaison à la cystéine, le dérivé 5,5-Cpr-OxyLH voit ses propriétés optiques changer. 
En absence de cystéine, le composé a un spectre d'émission centrée à 637 nm alors que 
lié à la cystéine, le maximum d'émission est fortement décalé vers le bleu (environ 70 
,279#W/;ypothèse est que, en présence du thiol de la cystéine, le cycle spiro du thiazole 
5,# (&)*+*&,# H# )/&'U%5# 5+# %c1$*+# 1U5=# 35# $%&'(5# +;*&3# 45# 31# =<)+c*,5# =&,4'*)1,+# e# 31#

O&%21+*&,# 45# 31# O&%25# c,&3# 45# 3/&M<3'=*Oc%*,59# f,U*%&,# __r# 45# +&'+es les protéines 
présentent au moins un résidu cystéine. Cette approche offre donc la possibilité de 
marquer sélectivement les résidus cystéine. De plus, lors de la liaison le spectre 
4/c2*))*&,#=;1,$5#5+#(5%25+#45#('%*O*5%#O1=*3525,+#3/5M=g)#45#)&,45)#3*8res.  

 
Propriétés spectrales de 5,5-Cpr-OxyLH avec un excès de cystéine (1000x) en fonction 

du temps; (a) spectres d'absorption, (b) spectres d'émission (Exc. WL 425 nm) 

Ce dérivé 5,5-Cpr-OxyLH a été utilisé pour marquer  la protéine humaine alpha-
1 antitrypsine (61-AT) qui est un inhibiteur de protéase (protéine longue de 412 acides 
aminés) et qui possède un résidu Cys232 accessible. Un changement significatif a été 
enregistré dans les spectres d'émission (~ 75 nm) avant et après étiquetage. Après 
l'achèvement de la procédure de marquage et de purification, l'extinction de fluorescence 
de l'61-:L#21%?'c5# 1U5=# ',5# =&,=5,+%1+*&,# =%&*))1,+5# 4/c31)+1)5# (1,=%c1+*?'5# -BBf7# 1#
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c+c#c+'4*c59#f,#(%c)5,=5#45#BBf#3/5M+*,=+*&,#45#31#O3'&%5)=5,=5#1#c+c#&8)5%Uc5#=&nfirmant 
l'intégrité biologique de la protéine dans un tampon physiologique. 

Les résultats présentés dans les chapitre 4 et chapitre 5 U&,+# O1*%5# 3/&8h5+ de  
publications dans des journaux à comite de lecture. 

Dans le but obtenir une meilleure description du mécanisme de bioluminescence 
de la luciole et de la dynamique à l'état excité, nous avons étudié les propriétés optiques 
4/1,13&$'5)#)+%'=+'%1'M#45# 3/&M<3'=*Oc%*,5#41,)#',# +12(&,#1?'5'M9#f,#(1%+*='3*5%]#,&')#

avons pu montrer que le mécanisme d'émission est fortement dépendant du pH. A l'aide 
de différentes méthodes chimiométriques il a été possible de déterminer les formes 
)(5=+%135)# 1))&=*c5)# e# =;1=',5#45)# 5)(g=5)# =;*2*?'5)#45# 3/&M<3'=*Oc%*,59#I5#(3')]# ,&')#

avons mesurés les constantes cinétiques qui ré$*))5,+# 3/c?'*3*8%5# 5,+%5# =5)# 4*OOc%5,+5)#
5)(g=5)#e#3/c+1+#O&,4125,+13#5+#e#3/c+1+#5M=*+c)9 

En mimant les conditions physiologiques requises par la bioluminescence 
naturelle, nous avons caractérisé les propriétés photophysiques de l'émetteur à l'intérieur 
de la poche de l'enzyme : la luciférase. Dans un premier temps, nous avons déterminé les 
paramètres de la liaison du fluorophore à la protéine. L'effet du microenvironnement à 
3/*,+c%*5'%# 45# 31# (%&+c*,5# )'%# 35# 2c=1,*)25# 4dc2*))*&,# 4'# O3'&%&(;&%5# 1# c+c# c+udié et 
=&2(1%c# 1'M# (%&(%*c+c)# (;&+&(;<)*?'5)# 25)'%c5)# 5,# )&3'+*&,# 1U5=# 45# 3/&M<3'=*Oc%*,5#

libre. 

k*,13525,+# 41,)# ',5# 45%,*g%5# )c%*5# 4/5M(c%*5,=5)]# ,&')# 1U&,)# ('# 2&,+%5%# ?'5#

cette famille de fluorophore pouvait être utilisée pour caractériser des interaction entre 
biomolécules. En effet, les propriétés optiques de ces marqueurs sont très sensibles aux 
2&4*O*=1+*&,)# 45# 3/5,U*%&,,525,+# (%&=;5# 4'# O3'&%&(;&%5]# =5# ?'*# (5%25+# 45# 35)# '+*3*)5%#

=&225#)&,45)9#f,#(1%+*='3*5%]#,&)#5M(c%*5,=5)#&,+#2*)#5,#cU*45,=5#?'5# 3/oxyluciférine 
pouvait être utiliser pour suivre les variations de pH intracellulaires ; le dérivé 4-

MeOxyLH 1# ?'1,+# e# 3'*# c+c# '+*3*)c# (&'%# )'*U%5# 3/*,+5%1=+*&,# 4/',5# (%&+c*,5# 4'#oS"-1 
avec des oligonucléotides. Finalement, nous avons également montré que le dérivé 5,5-

Cpr-OxyLH pouvait marquer de manière spécifiques les résidus cystéine et que la 
liaison peut être suivie à travers les modifications des propriétes spectrales du 
fluorophore. 

En résumé, 

i. nous avons identifié les différentes formes chimiques de l'oxyluciférine 
(individuellement et lorsque dans un complexe avec la luciférase) impliqués dans le 
mécanisme de la bioluminescence de la luciole par l'étude de ses analogues structuraux 
en solution aqueuse. 

ii. nous avons proposé un mécanisme permettant de décrire la photoluminescence de 
3/&M<3'=*Oc%*,59 

***9# ,&')# 1U&,)# &8+5,'# 45)# %c)'3+1+)# (%c3*2*,1*%5)# )'%# 35# 2c=1,*)25# 4/c2*))*&,# 4'#

complexe dans des conditions naturelles. 
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*U9# ,&')# 1U&,)# 2&,+%c# ?'5# 3/&M<3'=*Oc%*,5# 5+# )5)# 4c%*Uc)# (5'U5,+# q+%5# '+*3*)c)# comme 
outils permettant de caractériser des interactions biomoléculaires in vivo ou in vitro. 

U9#35)#%c)'3+1+)#?'5#,&')#1U&,)#&8+5,')#=&,+%*8'5,+#45#21,*g%5#O&%+5#e#3/1U1,=525,+#45#31#

compréhension de la photophysique de la bioluminescence. 

Bien que les études en solutions aqueuses nous aient permis de proposer un 
)=;c21# %c1=+*&,,53# 4'# 2c=1,*)25# 45# 8*&3'2*,5)=5,=5]# *3# %5)+5# ,c=5))1*%5# 4/c3'=*45%#

(%c=*)c25,+# 35# 2c=1,*)25# 4/c2*))*&,# 1'# )5*,# 45# 31# (%&+c*,59# B&'%# &8+5,*%# 45)#

informations sur la structure, des eM(c%*5,=5)# 4/1,*)&+%&(*5# %c)&3'5)# 5,# +52()# )5%&,+#

menées avec le complexe protéine-O3'&%&(;&%59# f,# &'+%5]# 1O*,# 4/&8+5,*%# ',5#25*335'%5#

compréhension de la structure du complexe protéine-O3'&%&(;&%5# e# 3/c+1+# 5M=*+c]# *3# )5%1#
utile de combiner nos résultats avec ceux obtenus par analyse cristallographique. Ces 
résultats pourront être interprétés par des modèles théoriques reposant sur des méthodes 
de chimie quantique. En outre l'effet de la composition du tampon (force ionique etc.) 
doit être étudié théoriquement et expérimentalement. L/effet de la force ionique sur le 
pka a brièvement été discuté dans le chapitre 3, mais pas lorsqu'il est lié à la luciférase. 
B&'%#&8+5,*%#',5#)+%'=+'%5#4'#(;&+&c25++5'%#e#3/c+1+#5M=*+c#(3')#%c13*)+5]#31#=&,+%*8'+*&,#45#

différen+)#=&2(&)c)#4'#+12(&,#1*,)*#?'5#3/5OO5+#45#4*OOc%5,+)#)53)#5+#35'%)#=&,=5,+%1+*&,)#

sur les spectres d'émission du complexe protéine-fluorophore doivent être considérés. En 
particulier, l'approche chimiométrique pourra être utilisée pour caractériser ces 
propriétés. 

De manière à accroitre le champ des applications de ces dérivées, il est également 
,c=5))1*%5#4/1((%&O&,4*%# 35)#c+'45)#1'#,*U51'#=533'31*%59#f,#(1%+*='3*5%]# 3/5OO5+#4'# +52()#

1*,)*#?'5#=53'*#45)#O1=+5'%)#5M+%1=533'31*%5)#5+#4/1'+%5)#(1%12g+%5)#4&*U5,+ être étudiés. En 
ce qui concerne les expériences de mesure de pH intracellulaire, des expériences de 
calibration doivent être réalisées de manière à pouvoir déterminer de manière absolue le 
("# e# (1%+*%# 45# 31# 4'%c5# 45# U*59# B&'%# =531]# ,&')# (%cU&<&,)# 4/'+*3*ser des solutions de 
%cOc%5,=5#-("#=&,,'7#1U5=#35)?'5335)#,&')#=13*8%5%&,)#31#2c+;&459#W/&M<3'=*Oc%*,5#(&'%%1#

alors être par exemple utilisée pour suivre spécifiquement certain compartiment cellulaire 
-3<)&)&2579# B&'%# 4c2&,+%5%# 4d1'+%5)# (&))*8*3*+c)# 4/c+*?uetage de protéines, nous 
21%?'5%&,)# 4/1'+%5)# (%&+c*,5)# =&,,'5)# (&'%# *,+5%1$*%# 1U5=# 45)# &3*$&,'=3c&+*45)#

(transcriptase inverse du VIH-R79#f,#(1%+*='3*5%]#3/5OO5+#45#(1%12g+%5)#(;<)*=&-chimiques 
(force ionique, la composition du tampon, pH) seront caractériser à partir des 
modifications des propriétés spectrales du fluorophore. Ces études permettront également 
de mettre en évidence les paramètres capables de modifier la photophysique de la sonde. 
Dans le cas du complexe oxyluciférine-luciférase, des mesures 4/1,*)&+%&(*5# %c)&3'5#5,#
temps ainsi que des mesures cristallographiques de la protéine marquée devront être 
incluses dans l'analyse pour avoir une meilleure connaissance de la formation du 
complexe. Finalement, l'utilisation de techniques de fluorescence résolues en temps 
'3+%1%1(*45)#-O52+&)5=&,457#(5%25++%1#45#4/c+'4*5%#O*,525,+#31#4<,12*?'5#4'#)<)+g25#e#

3/c+1+#5M=*+c#4'#=&3&%1,+#3*8%5#1*,)*#?'5#41,)#',#=&2(35M5#1U5=#31#(%&+c*,59 
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Etude des propriétés photophysiques de dérivés 
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Résumé: Dans ce travail, nous avons étudié le mécanisme d'émission de la partie optiquement active du 
complexe luciférine-luciférase. Ce système bioluminescent est largement utilisé dans un très grand nombre 
d'approches bioanalytiques. Ce phénomène naturel résulte en l'émission de lumière visible (vert-jaune-rouge) à 
partir du photoproduit : 3Xoxyluciférine. Une des hypothèses couramment admise pour expliquer le mécanisme 
+X^(#,,#*)&+%&3X*D;36!#4^0%#)%&4>#"&#)"%0$%)#0&6)&^V6#3#O0%&!*(13%D%&%)"0%&six espèces chimiques, mais le détail 
exact du mécanisme reste à élucider. Les principales conclusions présentées ici repose sur l'identification des 
six formes chimiques de 3Xoxyluciférine impliquées dans le mécanisme d'émission de fluorescence et la 
caractéri,>"#*)&+X6)&1*#)"&+%&$6&+;)>(#V6%&+6&"0>),4%0"&+%&10*"*)&_&3X^">"&%D!#"^. Ces résultats ont été obtenus 
par l'étude des propriétés optiques de différents analogues structuraux de 3X*D;36!#4^0#)%& dans un tampon 
aqueux. Différent techniques de spectroscopie (état stable et résolue en temps) et des approches 
chimiométriques ont été appliquées pour étudier ce mécanisme d'émission. En outre, les propriétés 
photophysiques de 3Xoxyluciférine en complexe avec l'enzyme luciférase (Luciola cruciata) ont été étudiées 
également en milieu aqueux. En parallèle, les dérivés présentant +%,& 10*10#^"^,& +X^(#,,#*) sensibles à 
3Xenvironnement ont été utilisés pour visualiser l'interaction entre biomolécules. En particulier, nous avons 
démontré que 3Xoxyluciférine peut être utilisée pour cartographier le pH intracellulaire à l'aide de la 
microscopie de fluorescence dans des cellules vivantes. Avec l'aide d'un autre dérivé de l'oxyluciférine nous 
avons été en mesure de caractériser l'interaction entre une protéine du VIH-1 et des séquences 
d'oligonucléotide au moyen de mesures ratiométriques. Enfin, nous avons développé une approche basée sur le 
marquage de résidus cystéine pour suivre, in vitro, l'interaction protéine-protéine. 

Mots clés : oxyluciférine, fluorescence résolue en temps, spectroscopie, ESPT, sonde sensible à 
l'environnement, technique bio-analytique 

 

 

Abstract: In this work, we investigated the emission mechanism of the optically active part of the firefly 
luciferin-luciferase complex. This bioluminescent system is widely used in bioanalytical assay. This amazing 
natural phenomenon results in the emission of visible light (yellow-green-red) from the photoproduct 
Oxyluciferin. This color tuning mechanism involves six chemical species, but their active involvement in the 
excited state proton transfer (ESPT) mechanism was poorly understood so far. One of the main finding 
presented here relies on the identification of six chemical forms of Oxyluciferin involved in the color tuning 
fluorescence emission mechanism. This result was obtained by studying the optical properties of different 
structural analogues of firefly Oxyluciferin in aqueous buffer. Different spectroscopic (steady state and time-
resolved) and chemometric approaches have been applied to reveal the emission mechanism. In addition, the 
photophysical properties of Oxyluciferin in complex with the Luciferase enzyme Luciola cruciata have been 
studied in aqueous buffer as well. In parallel, derivatives displaying environment sensitive emission were used 
to monitor biomolecular interactions. In particular, we demonstrated that Oxyluciferin can be employed to map 
intracellular pH by using fluorescence microscopy within living cells. With the help of another Oxyluciferin 
derivative we were able to monitor the interaction between a HIV-1 protein and different oligonucleotide 
sequences by means of ratiometric measurements. Finally we develop an approach based on cysteine labeling 
to monitor in vitro protein-protein interaction. 

Keywords: Oxyluciferin, time resolved fluorescence, spectroscopy, ESPT, environment sensitive dye, bio-
analytical assay 
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