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Abstract 

Context 

Today, several minimally invasive techniques allow surgeons to perform tumor ablation proce-
dures without opening the patient. Cryosurgery (also called cryoablation or cryotherapy) is one of 
these techniques. It has been introduced to treat prostate cancers in the early 1960s and works by 
decompressing very rapidly a gas (usually argon) through a needle-like probe. As the argon flows 
through the needle, a ball of ice crystals forms around the tip of the probe, thus immediately leading 
to cellular death of the surrounding tissues. Depending on the tumor location and size, multiple cry-
oprobes with different types can be employed. 

For the surgeons, estimating pre-operatively the final results and planning the surgery in advance 
in a complicated anatomical environment is very challenging. Over- or under-ablation may result in 
complications during the treatment. Therefore, an ablation planning system plays an important role 
in tumor ablation procedures, as it provides a dry run to guide the surgeons. In most planning appli-
cations, the ablation zones are typically described as simplified non-realistic ellipsoids around the 
cryoprobes tips and due to the presence of cooling blood vessels in the vicinity of the needles the 
necrosis volume size may be over-estimated and the tumor incompletely ablated. To overcome the-
se issues, numerical simulations based on bioheat equation are proposed to allow for an accurate 
estimation of the ablation zone to incorporate heat-sink effects of large blood vessels.  

Another big challenge is the feasibility of multiple needles placement satisfying some constraints 
like avoiding anatomical and vital organs, or the translation of some technical surgery rules like 
minimal trajectory length, tangency to organs while penetrating their surface and marginal tumor 
ablation volume. Given the lack of a planning tool addressing all these conditions and the crucial 
need for such a planner, in this thesis we focused on software-assisted cryosurgery planning aiming 
at supporting the physician by utilizing a more realistic prediction of the ablation zones, and propos-
ing a needle placement setup with a risk close to minimum for the patient and an optimal coverage 
of the tumor by the iceball in an acceptable time for a use in the operation room.  

Simulation 

Among different proposed methods for the interpretation of thermal propagation in living tissues, 
one of the most widely used methods called Modified Penne’s bio-heat transfer equation was select-
ed. In order to keep the genericity of our planning tool for combined cryosurgery and hyperthermia, 
the effective heat capacity method was used to numerically solve the phase change problem with 
multiple moving boundaries. 

Based on this solution which automatically satisfies phase change conditions, a unified equation, 
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which can be applied to frozen, partially frozen and unfrozen tissue regions, was created. In this 
equation, the tissues were treated for freezing or thawing with multiple needles over a temperature 
range, and the influence of blood perfusion and metabolic heat generation has been taken into ac-
count for the unfrozen and undamaged region. For the discretization purposes we have used an ex-
plicit backward differentiation method. 

We used several visualization methods including 2D slices, 3D meshes and volume rendering to 
overlay the ablation zone onto the anatomical images. In order to estimate the accuracy of our ap-
proximation method, the computed ablation zone was overlaid on its corresponding segmented re-
gion of intra-operative images for cases of one and two needles. To show the heat sink effect of 
large vessels on the deformation of iceballs we compared the ablation zone with simplified ellipsoid 
iceballs proposed by the manufacturers in complex vascular situations, extracted from experimental 
data sets. Hausdorff distance, Dice coefficient and Boolean volume overlap were used for compari-
son purposes. 

Our contribution for this part includes considering an estimation of large vessels heat sink effect 
in computation of ablation zone which has not previously been taken into account in cryosurgery 
planning. An interactive framework was developed to manually change several needles positions 
and orientations and visualize their computed ablation zone for surgical assistance or training pur-
poses. Finally, since it is one of the long-term goals of our planning tool, the simulation of heat 
propagation was designed to be solved for different surgical thermo-ablation routines. 

Multiple trajectory planning 

The multi-objective nature of tumor ablation planning problem can be can be classified under 
Non-deterministic Polynomial (NP) problems in terms of computation. A simplified problem of 
optimizing full tumor coverage was translated into a problem of minimal coverage by several ellip-
soids or simulated bioheat isotherms of multiple needles. 

A number of constraints were applied to this problem. These constraints could be represented as 
solution space avoiding vital structures or tangency to the liver capsule. They were satisfied in a 
preprocessing step creating an approximately safe insertion zone over the skin. Other constraints 
such as needles crossing avoidance and full tumor coverage could be computed at each iteration of 
optimization process. These constraints are highly non-linear and therefore were resolved by devel-
oping appropriate optimization methods and penalty functions.   

Next, several objective functions were introduced in our planning tool in order to minimize the 
volume of damaged healthy tissue, and maximize the distance of multiple needle trajectories to ves-
sels and vital organs. For scalarization of this multiple objective function, a weighted sum criterion 
was applied and each objective function was normalized beforehand to a value between 0 and 1. 

Different optimization methods suitable for this type of problem were experimented, from de-
terministic to stochastic and derivative free to model based. Speed, accuracy and robustness of some 
of these methods were compared in a search domain with different complexities. Other characteris-
tics of methods like sensitivity to initial parameters were also analyzed.  For validation purposes a 
comparison was done with a synthetic ground truth, and the results were compared with the results 
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obtained using a Monte-Carlo sampling method. Moreover they were compared with intra-operative 
images of a patient for the case of two needles. 

Our contribution in this part includes the development of an automatic planning tool for cryosur-
gery, optimizing multiple needles with full degree of freedom for needle placements while avoiding 
obstructive and vital organs, a generic tool which accepts new surgical and anatomical constraints 
based on the organ being operated, integrating simulation and planning steps for tackling a real cry-
osurgery planning problem and two phase optimization approach to combine simplified ellipsoids 
and bioheat simulation for obtaining fast planning results. 

Conclusion and future works 

In this PhD thesis, a planning tool for multiple needle cryosurgery was developed integrating the 
bioheat simulations for defect region computation in the optimization process. Non-linear con-
straints were resolved using a one-time preprocessing step and introducing several penalty func-
tions. A two-phase optimization process was used which shows more accurate result in acceptable 
computational time applicable in the operation room. The effect of vessels on deformation of ice-
balls demonstrated the important role of vessels in iceball formation and tumor recurrence if under-
estimated. 

Using parallel processing algorithms could be proposed in the future for faster and finer compu-
tation of bioheat equation while keeping numerical solution more stable to the input parameters. 
Introducing deformable needles to our planning tool would also increase the range of applicability 
and produce more realistic results. 

 Keywords 

Automatic surgical planning, bio-heat simulation, derivative free optimization, cryosurgery 
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Résumé 

Contexte 

Différentes techniques de chirurgie mini-invasive permettent aujourd’hui d’effectuer les procé-
dures d'ablation de tumeurs. La cryochirurgie (également appelée cryoablation ou cryothérapie) est 
une de ces techniques. Elle a été mise en place au début des années 1960 pour traiter les cancers de 
la prostate. Elle fonctionne grâce à une technique de décompression très rapide du gaz (générale-
ment de l'argon) à l’extrémité d’une sonde en forme d'aiguille. Lorsque l'argon s’écoule à travers 
l'aiguille, une boule de cristaux de glace se forme autour du bout de la sonde, ce qui conduit immé-
diatement à la mort cellulaire des tissus environnants. Selon l'emplacement de la tumeur et la taille 
de la tumeur, plusieurs aiguilles, éventuellement de types différents, peuvent être utilisées simulta-
nément afin de couvrir la totalité de la tumeur. 

La planification préopératoire de ce type d’intervention est très difficile pour le chirurgien, qui 
doit se représenter mentalement la disposition finale des aiguilles par rapport à la position des struc-
tures anatomiques environnantes, ainsi que la forme finale du glaçon formé autour des pointes des 
aiguilles, afin de choisir une stratégie de placement dans un environnement anatomique complexe. 
Une sur-ablation ou une sous-ablation peuvent entraîner des complications au cours du traitement. 
De même, un mauvais placement peut également entraîner des complications, notamment des hé-
morragies. Ainsi, le système de planification d'ablation joue un rôle important dans les procédures 
d'ablation de la tumeur car il fournit une simulation virtuelle pour guider les chirurgiens.  

Dans la plupart des applications de planification existantes les zones d'ablation sont typiquement 
décrites comme des ellipsoïdes simples non réalistes autour des aiguilles. Pourtant, en raison de la 
présence de vaisseaux sanguins dans le voisinage des aiguilles pouvant provoquer un effet de ré-
chauffement, le volume de nécrose peut être déformé, sa taille peut être diminuée, et la tumeur peut 
n’être que partiellement soumise à une ablation. Pour remédier à ces problèmes, des simulations 
numériques basées sur l'équation de transfert de chaleur ont été utilisées pour permettre une estima-
tion précise de la zone d'ablation intégrant les effets de dissipation de chaleur des gros vaisseaux 
sanguins. 

Un autre grand défi est l’automatisation du choix de placement tridimensionnel de plusieurs ai-
guilles simultanément, qui adoptent les contraintes habituelles sur des aiguilles individuelles (par 
exemple des règles de sécurité comme l’évitement des organes vitaux et les éléments anatomiques, 
des règles techniques comme la longueur maximale d’aiguille limitant la longueur de la trajectoire, 
ou encore des règles relatives à la cautérisation), ainsi que des contraintes supplémentaires liées à 
l’interaction entre les différentes aiguilles (non intersection, interaction des effets).  

Ainsi, aucun outil ne permettant à l’heure actuelle d’aborder tous ces points, et devant le besoin 
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crucial d'une telle planification, dans cette thèse nous nous sommes concentrés sur la planification 
préopératoire automatisée de la cryochirurgie, avec deux objectifs principaux : 1) assister le chirur-
gien grâce à une prédiction plus réaliste des zones d'ablation et 2) proposer automatiquement un 
placement d'aiguille avec un risque minimal pour le patient et une couverture optimale de la tumeur 
par la boule de glace, dans un délai acceptable pour une utilisation en salle d'opération. 

 
Simulation 

Afin de modéliser la propagation thermique dans les tissus vivants, l'une des méthodes les plus 
couramment utilisées, l'équation de transfert de chaleur de Pennes, a été choisie. Afin de garder la 
généricité de notre outil de planification pour la cryochirurgie combinée et l'hyperthermie, la mé-
thode efficace de la capacité thermique est utilisée pour résoudre numériquement le problème de 
changement de phase avec des frontières mobiles multiples. Sur la base de cette solution qui satis-
fait automatiquement les conditions de changement de phase, une équation unifiée, qui peut être 
appliquée aux régions de tissus gelées, partiellement gelées et non-gelées est crée. Dans cette équa-
tion les tissus sont traités pour le gel ou le dégel avec plusieurs aiguilles sur une gamme de tempéra-
ture, et les influences de la perfusion sanguine et de la production de chaleur métabolique ont été 
prises en compte pour la région non-gelée. Pour la discrétisation nous avons utilisé une méthode de 
différenciation arrière explicite. 

Nous avons utilisé plusieurs méthodes de visualisation, y compris les tranches 2D, les mailles 3D 
et le rendu volumique pour superposer la zone d'ablation sur les images anatomiques. Afin de vali-
der la méthode d'approximation, la zone d'ablation calculée a été superposée sur sa région segmen-
tée correspondante sur des images post-opératoires, dans des cas d’ablation à une et deux aiguilles. 
Afin de montrer l'effet de dissipation de chaleur des vaisseaux sur la déformation des boules de 
glace, nous avons comparé la zone d'ablation avec les boules de glace ellipsoïdales simplifiées indi-
quées par les fabricants, dans les situations vasculaires complexes extraites de 10 ensembles de 
données réelles. Distance de Hausdorff, coefficient de Dice et chevauchement de volume booléen 
ont été utilisés pour la comparaison. 

Notre contribution pour cette partie comprend l’étude de l’effet dissipateur de chaleur des gros 
vaisseaux dans le calcul de la zone d'ablation qui n'a encore jamais été pris en compte dans un con-
texte de planification de cryochirurgie dans la littérature. Un cadre interactif a été conçu pour modi-
fier manuellement les positions et les orientations de plusieurs aiguilles et pour visualiser la zone 
d'ablation calculée, à des fins d'assistance ou de formation chirurgicale. Enfin, de façon à prendre en 
compte la simulation de différents types de thermo-ablation et de conserver l’aspect générique de 
l’outil de planification, nous avons utilisé des approches gérant aussi bien les ablations par hypo- 
(cryoablation) que par hyperthermie (radiofréquence). 

 
Planification de trajectoire multiple 

Le problème de planification automatique d'ablation de tumeur est un problème multi-objectif, 
qui consiste à trouver le meilleur compromis satisfaisant au mieux les multiples contraintes qui 
s’appliquent. C’est un problème compliqué, dans lequel la nature multi-objectif du problème est 
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difficile à résoudre, mais également chaque contrainte séparément peut être complexe. En particu-
lier, le recouvrement de la totalité de la tumeur par un volume de glace minimal est mathématique-
ment proche de problèmes classiques de couverture minimale d’un objet avec plusieurs autres 
formes géométriques, ici des ellipsoïdes (version simplifiée) ou des surfaces isothermes simulées 
par l’équation de transfert de chaleur depuis les aiguilles. Ce problème de recouvrement peut être 
classé dans les problèmes polynomiaux non-déterministes en termes de calcul. 

Un certain nombre de contraintes a été appliqué à ce problème. Ces contraintes représentent : 1) 
la création d’une zone délimitant les points d’insertion possible, permettant par exemple d’éviter 
différents organes tels que les os et la moelle épinière, les gros vaisseaux, ou permettant de ne pas 
entrer de façon trop tangente par rapport à la surface du foie : ces contraintes sont satisfaites dans 
une étape de pré-traitement créant une “zone d’insertion”, projection sur la peau des trajectoires 
faisables; 2) la minimisation de valeurs numériques représentant par exemple des règles de  non 
intersection des aiguilles, ou la couverture complète de la tumeur : ces valeurs doivent être calculées 
à chaque itération d’un processus d'optimisation. Ces contraintes sont fortement non-linéaires, et 
ont donc été résolues par le développement de fonctions de pénalité appropriées. 

Plusieurs fonctions objectif ont été introduites dans notre outil de planification afin de minimiser 
le volume de nécrose des tissus sains et de maximiser la distance des trajectoires multiples des ai-
guilles aux vaisseaux et aux organes vitaux. Pour transformer cette fonction multi-objectif en une 
unique fonction mono-objectif à minimiser, une somme pondérée est utilisée et chaque fonction 
objectif est normalisée à l'avance.  

Différentes méthodes d'optimisation adaptées à ce type de problème ont été utilisées : détermi-
nistes ou stochastiques, basées gradient ou sans dérivée, heuristiques ou basées modèle. La vitesse, 
la précision et la robustesse de certains de ces procédés ont été comparées dans un domaine de re-
cherche avec les différentes complexités. D'autres caractéristiques de ces méthodes, telles que la 
sensibilité et les paramètres d'entrée, ont également été analysées. À des fins de validation, des ex-
périmentations ont été menées en définissant une configuration a priori de la zone d'ablation et les 
résultats ont été comparés avec les résultats obtenus en utilisant une méthode de recherche exhaus-
tive. En outre, ils sont comparés aux images post-opératoires des patients pour le cas d'un et de deux 
aiguilles. 

Notre contribution dans cette partie comprend l'élaboration d'un outil de planification automa-
tique pour la cryochirurgie, pour l'optimisation 3D de plusieurs aiguilles à tous degrés de liberté 
tout en évitant les organes obstructifs et vitaux, un outil générique qui accepte des nouvelles con-
traintes chirurgicales et anatomiques basées sur l'organe opéré, en tenant compte de l’intégration 
des mesures de simulation et de planification, et un approche d'optimisation en deux phases pour 
combiner ellipsoïdes simplifiés et la simulation de transfert de chaleur afin d’obtenir les résultats 
rapides. 

Conclusion et perspectives 

Dans cette thèse, un outil de planification pour la cryochirurgie avec aiguilles multiples a été 
élaboré en tenant compte de l’intégration de simulations de transfert de chaleur dans le processus 
d'optimisation. Les contraintes non-linéaires ont été résolues en utilisant une étape unique de pré-
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traitement et en introduisant plusieurs fonctions de pénalité. Un processus d'optimisation en deux 
phases a été utilisé, qui permet d’obtenir un résultat plus précis en un temps de calcul acceptable et 
applicable en salle d'opération. L’étude de l’influence des vaisseaux a démontré le rôle important 
des vaisseaux dans formation de la boule de glace, souvent surestimée par les méthodes habituelles, 
et donc dans les risques de récidive de la tumeur. 

Dans de futur travaux, l’utilisation d’algorithmes de traitement parallèle pourra être proposée 
pour le calcul rapide et plus fin de l'équation de transfert de chaleur, en gardant la solution numé-
rique plus stable pour les paramètres d'entrée. L’introduction de modèles d’aiguilles déformables 
dans notre outil de planification pourrait également augmenter l’éventail d'applications et produire 
des résultats plus réalistes. 

Mots-clés 

Planification chirurgicale automatique, simulation de chaleur de Pennes, optimisation sans déri-
vée, cryochirurgie 
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Chapter 1. Introduction 

1.1 Overview 

Cancer is one of the leading causes of death in most of the countries in the world. Among the 
predominant cancer types, liver cancer ranks fourth due to a high prevalence of hepatitis B. About 
500.000 new cases are diagnosed every year in the world. In order to treat liver cancer several kinds 
of surgical interventions have emerged while treatments based on minimally invasive interventions 
showed to have long term benefits and fast recovery time. This chapter is organized as follows: for 
readers with no medical background Section  1.2 introduces the used terminology, the liver’s anato-
my and liver treatment options. Section  1.3 covers some minimally invasive interventions related to 
this thesis. Section  1.4 presents the objectives, challenges and contributions described in this manu-
script and a short outline of this thesis will complete this chapter.  

1.2 Medical background 

The liver plays a major role in metabolism. It is responsible for detoxification, glycogen storage 
and plasma protein synthesis. It also produces bile, which is important for digestive functions.  

The liver has two lobes and is supplied by two major blood vessels: the hepatic artery and the 
portal vein. The blood leaves the liver by using the hepatic vein. The blood from the artery carries 
oxygen while the portal vein carries nutrients from the intestine (see Figure 1-1). 

 

Figure 1-1 The left image shows the liver located in the human's body and the right image shows the blood flow in the liver [1] 
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The liver is an essential organ with a complex vascular anatomy. Probably because of its filtering 
functions, this organ is one of the most frequently affected by metastases.  

In order to diagnose a liver tumor, imaging technologies for observing the patient’s body struc-
ture are required like CT and MRI (see Figure 1-2). Contrast agents are used to highlight structures 
such as blood vessels that otherwise would be difficult to delineate from their surroundings. A vio-
let fluid such as iodineis is often injected intravenously for highlighting the portal vein.  

In order to treat such tumors, surgical interventions like surgical resection (tumor removal) and 
liver transplantation were used traditionally depending on the size and position of the tumor.       

Recently, the emergence of minimally invasive surgeries has enabled treatments aiming at destroy-
ing the tumor without opening the patient’s tissue, with equally long-term benefits. Several mini-
mally invasive techniques exist, such as microwaves, laser, High-Intensity Focused Ultrasound 
(HIFU), or percutaneous hyperthermia. In this manuscript we will focus more particularly on the 
latter, which is now the most frequently chosen by surgeons. It consists in destroying the tumor by 
extreme heat or cold, using methods such as radiofrequency ablation or cryotherapy.  

1.3 Minimally invasive surgery 

Minimally invasive surgery has gained an increasing interest in the past decades. By keeping 
benefits similar to conventional surgery, minimally invasive surgery decreases patient’s discomfort 
and the recovery time due to the small size of incisions. Using pre-operative imaging, computer-
assisted ablation planning strategies are elaborated to optimize operation plans. Toolkits currently 
used by surgeons for visualization of anatomical structures and navigation of real-time images in-
clude IGSTK [2] and 3D Slicer [3]. These softwares enable surgeons to visualize the three-
dimensional structure of the tumor as well as to envision ablations and to assess the treatment by 
developing optimal treatment plans intra-operatively. Below we will briefly introduce three mini-
mally invasive techniques used in our Trajectory Planning project. We will mainly focus on cryo-
surgery of liver tumors as it is the main topic of this thesis. 

Figure 1-2: Axial view of the liver CT slice containing a tumor as a darker region indicated by red circle 
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1.3.1 Cryosurgery 

History of cryosurgery (also called cryoablation or cryotherapy) as a clinical method to treat 
prostate cancers dates back to the early 1960s. Cryoprobes are small needle-like devices with a di-
ameter of around 1.5mm (see Figure 1-3). A decompression chamber is located at their tip and they 
are inserted into the tumor during laparoscopic surgery or percutaneously under image guidance. A 
gas is rapidly decompressed resulting in tissue injury based on the Thompson-Joule principle. Two 
basic mechanisms are believed to cause cryoablation: firstly the direct injury to the cells caused by 
the freeze-thaw cycle, and secondly the damage caused by freezing the blood vessels of the tumor 
that can cause an indirect injury to the cells [4]. 

As tissue freezes, ice crystals will form in the extracellular spaces. This creates a hyperosmotic 
environment by water withdrawal from the tissue, which causes the cells to loose water by diffu-
sion. If the cooling process is sufficiently rapid, the cell will not lose water fast enough to maintain 
osmotic equilibrium between the cytoplasm and the extracellular space, and the cytoplasm will be-
come extremely cooled. A supercooled cytoplasm leads to a lethal injury to the cell [5-8] 

Clinical parameters that contribute to the result of cryotherapy include the cooling rate, tissue 
temperature, duration of freeze-thaw cycles, and the time between the cycles. This technique has 
been applied successfully to treat several kinds of tumors, including breast cancer, primary or meta-
static liver neoplasms, renal, lung, pancreas, and prostate cancer. 

In percutaneous cryoablation, the cancerous tissue is frozen using one or multiple needles. Dur-
ing this procedure, tissue temperature drops to -40°C around needle tip, which is lethal for the cells 
inside the iceball volume. The final goal of cryotherapy is the necrosis of cancerous cells while pre-
serving surrounding healthy tissue and avoiding damages to vital anatomical structures. For this 
purpose, an accurate surgical planning needs to be done by surgeons before the operation.  

Figure 1-3: Needle tip inner structure (GalilMedical Co1.) 
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Since only a limited set of active lengths and diameters are available for the manufactured cry-
oprobes (see Figure 1-4), and a fixed freezing protocol is usually used, other cryosurgical parame-
ters that affect the shape of the iceball such as the number of cryoprobes and the cryoprobe place-
ment are good candidates for optimization and planning. Usual planning is done on slice-based 
reformations of the 3D volume. In these conditions, determining optimal and safe penetration an-
gles of the instruments as well as imagining the size and shape of the resulting iceball are very diffi-
cult, especially when several cryoprobes are necessary and produce a combined effect. This is typi-

cally done in a trial-and-error task to find the best configuration.  

Finding an optimal and safe trajectory consists in: 1) solving mentally many surgical rules rela-
tive to the placement of one or several cryoprobes, these rules being sometimes contradictory, and 
2) estimate mentally the shape and size of the produced iceball.  

 Thanks to the abundant literature about cryosurgery planning and intervention procedure, we 
can establish a summary of the main rules used by the surgeons when selecting an optimal path. A 
complete set of the chosen rules in this thesis is listed below in which some of them are similar to 
other related works in the field like the work of Sietel et al. [9] 

1. Placement in the target. The tip of the needle must be located in the tumor.  

2. Position of the insertion point. The patient can not be on the side, and rarely on the stomach due 
to anesthesia equipment. We provide our solver with an initial insertion zone corresponding to 
the nearest point on the side skin. 

3. Maximal path length. This rule concerns the maximal length of the path, which obviously has to 
be shorter than the size of the cryoprobe (see Figure  1-6 (b)) . 

4. Risky structures avoidance. It is necessary to find a needle placement that avoids crossing vital, 
risky, or impassable structures. For liver cryosurgery, the identified “obstacle” structures include 
the ribs, spine, vessels (see Figure  1-5), and any other organ likely to obstruct the path depending 

Figure 1-4: Different types of needles with their respective iceball shape (GalilMedical Co.) 
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on the location of the tumor. Images acquired with contrast agent or angiography are required to 
identify vessels. 

 

Figure 1-5 Avoiding risky regions is shown for cryosurgery planning. Ribs, vessels and spine are avoided taken from [10] 

5. Needle crossing. In practice it is not recommended to have very close trajectories when multiple 
needles are used, so a minimum distance between the needles is fixed. 

6. Tangency to the liver surface. Inserting needles with angles less than 20 degrees to the surface 
of the liver will cause slippery conflicts in penetration phase. Therefore, such insertion angles are 
avoided (see Figure  1-6 (a)). 

7. Distance to risky structures. Even if we already specified a rule avoiding a needle to meet any 
risky structure, trajectories passing as far as possible from those structures are considered safer. 

8. Tumor coverage. This crucial rule states that the tumor must be fully covered by the iceball to 
avoid tumor reccurrence.  

9. Cauterization. Due to a possible displacement of cancerous cells during needle removal, a 
portion of healthy tissue along the needle path should be necrosed for security reasons during 
removal. This must be anticipated by planning that a minimal fixed amount of healthy tissue lies 
between the tumor and the border of the liver. 

 

Besides the optimization of this needle placement rules, another important challenge of the pre-
operative surgical planning is to define the real shape of iceballs for one needle or synergistic 
effect of multiple needles [11]. 

As shown in Figure 1-4, cryoprobe manufacturers provide several types of needles for different 
applications. In this figure, theoretical necrosis volumes are shown for the case of homogenous tis-
sues, in the usual conditions of thermal protocol: two cycles of 10 minute freezing with 5 minute 
thawing in between. However, in practice tissues are more complex and highly inhomogeneous, and 
the use of these predefined shapes is inaccurate. In particular, the presence of large vessels in the 
vicinity of the iceballs can influence the shape of the iceball due to the heat-sink effect [12].  This 
effect is illustrated for RFA in Figure 1-7. 
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Figure 1-6 (a) Schematic illustration of the tangency constraint, which ensures that the angle in which the trajectory intersects the liver surface is 
bigger than 20° (b) The needle length constraint excludes all insertion trajectories from the insertion zone that are longer than the needle length [9] 

A non-invasive, real-time monitoring of three-dimensional isotherm surface of freezing tempera-
tures within the tissue remains a big issue for the surgeons because the temperature can’t be meas-
ured or only measured at discrete points in the target region. Therefore, simulation of heat transfer 
is a useful tool to estimate the real shape of the iceball for a candidate probe placement. A number 
of models have been proposed to solve the bioheat propagation equation in two and three dimen-
sions which will be covered in the next chapter.   

 

Figure 1-7 Approximated deformation of ablation region in RFA [13] 

1.3.2 Radiofrequency ablation (RFA) 

The principle of cancer treatment by RadioFrequency Ablation (RFA) is the destruction of can-
cerous tissue by insertion of radiofrequency applicators through the skin into the target tissue and 
use of an alternating electric field with high frequency oscillations (200 - 1.200 kHz) to induce le-
sion by thermal necrosis. Cytotxic effects of high temperature (50-100 °C) from irreversible protein 
denaturation can lead to thermal necrosis and coagulative necrosis when target volume is heated for 
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at least 4-6 minutes and results in cell destruction (see Figure 1-8). 

 

Figure 1-8 Bipolar RFA needle in the vicinity of blood vessels. Temperature isosurfaces are shown [14] 

 To handle uncertainties and microscopic clusters of cancer cells around the visible tumor tissue, 
the target volume is increased by a safety margin of at least 5 mm. The type of applicator, ablation 
time, as well as the induced energy, can alter the size of the coagulation region. Moreover, similarly 
to cryosurgery, the vascular structure around the applicator can contribute to cooling of the heat 
distribution with a heat-sink effect. 

Similarly to cryosurgery, the pre-operative planning of liver RFA consists in acquiring pre-
interventional images and uses them to plan an optimal and safe trajectory for the needle that ena-
bles full ablation of the tumor. Critical anatomical structures are also similar. 

During the intervention, the RF applicator is monitored by intra-operative image guidance to 
support placement of the needle into the planned target area and to control the ablation progress (as 
well as parameters such as the induced energy). MR thermometry is sometimes applied to monitor 
the resulting heat distribution. After surgery, pre- and post-operative images are compared to assess 
the success of the treatment procedure. 

During typical planning procedures in clinical routine, the surgeon uses just visualization of slic-
es, or sometimes measurement tools on imaging workstations, to determine an optimal probe 
placement inside the target volume and mentally estimates the resulting ablation zone. In most 
planning prototypes, the ablation zones are typically expressed as ellipsoids around the RF applica-
tor probes [15-17] which are specified for homogeneous tissue by the applicator manufacturers. 
However, this estimation of the ablation zone is not accurate if patient-specific planning of the in-
tervention is desired. With the presence of cooling blood vessels in the vicinity of the RF applicator, 
the coagulation size may be decreased and the tumor incompletely ablated [18]. 

1.3.3 Deep brain stimulation 

Pre-operative planning of surgical tool placement is also necessary and has also been studied in 
other types of interventions. As an example, Deep Brain Stimulation (DBS) consists in inserting 
stimulation electrodes in deep nuclei of the brain in a way to reduce motor symptoms of various 
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diseases, such as Parkinson’s disease, dystonia or essential tumors (see Figure 1-9). Stimulation of 
the SubThalamic Nucleus (STN) or Globus Pallidus (Gpi) has proven to be successful treatment 
strategies when the treatment by other methods was unsuccessful [19]. The electrodes are inserted 
by minimally invasive methods using precise image guidance from a neuro-navigation platform. 
Prior to the intervention, the neurosurgeon examines the patient’s images to determine precisely the 
location of a target of only a few millimeters where the DBS electrodes should be inserted. Then he 
searches for a safe linear trajectory from the skin to the target to avoid hemorrhages, loss of func-
tion and other injuries. 

 

Figure 1-9 Cross section of probe placement for the DBS [19] 

The trajectory planning usually starts with the inspection of anatomical MRI datasets using visu-
alization tools proposed by commercial neuro-navigation platforms. The surgeon experimentally 
searches for a safe trajectory path to avoid critical structures like ventricles, sulci, large blood ves-
sels, and critical motor and sensory cortex. However, only few trajectories can be thoroughly ana-
lyzed in a reasonable amount of time resulting in subjective and possibly sub-optimal planning. 
Recently, the design of automatic planning algorithms has grown rapidly to allow the speedy analy-
sis of larger number of trajectories across multi-modal imaging datasets. In this kind of surgery as 
well, mimicking the decision-making process of neurosurgeons is an important challenge. 

1.4 Challenges and research contributions 

This thesis is part of the Trajectory Planning project developed at ICube laboratory, which has 
the goal of supporting radiologists and surgeons through computer-aided methods in several trajec-
tory based minimally invasive surgeries. In the past few years, works have been done to automatize 
the planning process of single needle placement planning using theoretical models of the necrosis 
volume. This thesis focuses more particularly on the automatic planning of percutaneous cryoabla-
tion for liver tumors, which involves the placement of multiple interacting needles and the computa-
tion of precise iceball formation. In the following, the main contributions of this thesis towards 
computer-aided liver cryosurgery planning will be discussed. 

Our contributions can be classified into three categories. The first category includes contribu-
tions in simulation and visualization of the iceball. The second category is dedicated to the planning 
system and optimization phase. The third category includes contributions benefiting from the com-
bination of simulation and planning phases. 
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Contributions in simulation include: 

 Considering convective large vessels heat-sink effect in computation of ablation zone 
which has not previously been taken into account in cryosurgery planning.  

 An interactive framework developed to manually change multiple needles positions and 
orientations and visualize their computed ablation zone for surgical assistance or training 
purposes. 

 A general case design of the simulation of heat propagation to be used for different surgical 
thermo-ablation routines. 

Contributions in planning part include: 

 Planning of multiple cryoprobes with full degree of freedom, allowing for any kind of 
cryoprobes rotation and translation 

 Construction of a generic tool which accepts new surgical and anatomical constraints based 
on the organ being operated thanks to its heuristic search methods 

 Introduction of new surgical rules for avoiding needle crossing and coverage of the tumor 
by the iceball besides other constraints for avoiding obstructive and vital organs 

 Definition of a specific objective function and for constraint handling of our non-linear 
optimization problem  

 Development of an automatic clinical software assistant for cryosurgery planning 

 Proposing several distinct solutions to the surgeon in order to be selected by his own skills 
and concerns 

 Contributions in the third group include: 

 Integration of simulated iceballs in the optimization phase  

 Fast two-phase optimization approach combining ellipsoids rough optimization and fine 
optimization of the simulated ablations in order to obtain short planning time applicable in 
clinical routine 

 

The flowchart of our workflow in Figure 1-10 shows the preprocessing steps required for the 
planning, followed by four different pipelines which can be used by the surgeon based on his per-
sonal requirements and the desired level of interactivity or automation. The preprocessing step con-
sists of data preparation and computation of an insertion zone. Data preparation step is subdivided 
into segmentation, registration and smoothing of the pre- and intra- operative images. In the next 
preprocessing phase, feasible zones for passing trajectories are computed, and then the surgeon 
chooses whether to plan the surgery automatically or manually. In the manual planning labeled (1) 
our software assists the surgeon by showing a realistic ablation volume computed after the simula-
tion phase, leaving the surgeon to choose only the placement of the cryoprobes. 

 If the automatic planning is selected, we offer different types of planning routines based on the 
required time or accuracy. One can perform the planning using simple multiple ellipsoids (2) which 
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is fast for realtime applications but less accurate in special conditions or choose to plan the surgery 
using the simulated ablation zones (3) which requires more time but it is more precise. Option (4) 
consists of our two-phase optimization method which can benefit from both speed and accuracy. 
Finally the results are visualized both in 3D and over the 2D slices and depending on the surgeons 
opinion it can be accepted or reconfigured. 

Several challenges existed in our work: 

 Demonstrating several solutions found for multiple needles in a simple and informative way.  

 Validation of the simulation and planning results with patient data was a hard and lengthy 
path due to administrative and practical issues in obtaining good images. 

1.5 Thesis outline 

This thesis is structured as follows: 

Chapter 2 looks into the state of the art for cryosurgery simulation and planning of different re-
lated minimally invasive surgeries and reviews fundamental methods used for this purpose. In the 

Figure 1-10: Flowchart of the proposed workflow. It supports four different surgical-assistive pipelines chosen by the surgeon based on his requirements 
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end, it states the problem pursued in this manuscript and differentiates our proposed pipeline with 
the work of others. 

Chapter 3 details the sets of data used in this thesis for experiments and explains the required da-
ta preparation and pre-processing steps for our multi-modal images. These datasets will be used 
throughout the thesis for computations, planning and validation purposes. 

Chapter 4 presents methods and parameters used in iceball computation then illustrates defor-
mation of iceballs due to the heat-sink effect of large vessels. Furthermore, it quantitatively com-
pares the ablation zone using simple ellipsoids, simulated iceballs and segmented intra-operative 
images.  

Chapter 5 covers methodological issues like definition and implementation of geometric con-
straints in our planning tool. It also describes different algorithms and numerical methods imple-
mented for the computation of proposed geometric constraints. It also includes a comparison of the 
accuracy and speed for some of the proposed methods. 

 Chapter 6 represents a specific formulation of our optimization problem then discusses several 
methods used to solve this problem. Multiple tests are considered to verify the results of these 
methods on the planning problem based on speed, accuracy and robustness. Then three methods are 
proposed for validation of the planned trajectories. 

 Chapter 7 concludes this thesis followed by a discussion on important topics and challenges and 
then proposes some ideas in continuation of this work. 
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Chapter 2. Related works 

2.1 Overview 

This chapter reports the state of the art regarding the topics closely related to this thesis. Sec-
tion  2.2 discusses recent studies in the simulation of cryosurgery. In section  2.3, different planning 
systems reported before and during the period of preparation of this thesis are discussed and sec-
tion  0 summarizes the motivation and ideas behind this thesis.  

2.2 Cryosurgery simulation 

Among the possible bio-heat transfer equations proposed for modeling of thermal data in living 
tissues, Penne’s bio-heat transfer equation is the most commonly used model. Other models include 
the ones developed by Weinbaum and Jiji [20], and Nakayama and Kuwahara [21]. 

In computer simulation, the first prediction of ice ball formation around a single cryosurgical 
probe was published by Bischof, Smith et al. in 1997 [22]. They used a one-dimensional radial cy-
lindrical model to predict the temperature profile and the interface location. In numerical mathemat-
ics, the problem of solving bioheat equation can be defined as predicting the time-evolving position 
of freezing or thawing fronts where phase change happens. This is commonly called the Stefan 
problem and requires solving the heat conduction equation for the temperature in a domain that 
consists of frozen and unfrozen parts which are separated by a moving interface (the freezing or 
thawing front). The precise location and form of the interface is critical and is determined by the 
fusion temperature at which phase change occurs and the Stefan condition is often imposed as the 
heat balance condition. Since the positions of the ice front depend on several unknown factors, such 
a problem is usually highly nonlinear and precise solution for such a complex problem is extremely 
difficult, and sometimes even impossible to compute if no substantial simplification can be intro-
duced.  

Several groups have proposed numerical models to solve the phase-change problems in biologi-
cal tissues [23-27]. Two general families of numerical techniques for the computation of free sur-
faces were studied: tracking and capturing methods. In tracking methods, the position of the fronts 
is explicitly computed making them very difficult to implement due to reconfiguration of the mesh 
to fit the precise position of moving fronts. Capturing methods do not require the exact position of 
the free surface. These methods use enthalpy formulations. The effective heat capacity method is 
included in this family and it has been shown that the Stefan condition is automatically satisfied 
[28]. Although this approach has several advantages, it still requires the mesh to be refined close to 
the interface. To date, the majority of these numerical efforts have mainly focused on one- or two-
dimensional heat transfer models. A few three-dimensional models have been developed by other 
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groups, [26] and [29]. However, these methods have not considered the effect of blood perfusion of 
tissues. 

Rabin and Shitzer [25] considered the effect of blood perfusion, but their model still did not deal 
with the case of multiple cryoprobes. Phase-change problems of biological tissues subject to the 
combined cryosurgery and hyperthermia system are much more complex than when only a single 
cryoprobe is applied, because many more phase-change interfaces will be produced during the al-
ternation of freezing and heating. Previously, Deng and Liu proposed in [30] a numerical solution 
for combined cryosurgery and hyperthermia that included multiple probes and different states of the 
tissue like frozen and unfrozen. However, the method was not validated with any biological tissue.  

In addition to the impact of blood perfusion and metabolic heat on the formation of iceball, con-
vective effect of large vessels on temperature distribution in ablation sites has been reported. A few 
studies involving blood flow were done, but most of them for hyperthermic ablation techniques [31, 
32]. 3D visualization of simulated iceball is another important aspect of computer assistive tools 
which is presented in a recent study by Talbot et al. [33] and computed Hausdorff distance between 
the simulated and segmented isosurfaces from patient data is overlaid on the iceball as seen in Fi-
gure 2-1 but still the effect of large vessels was not discussed.  

 
Figure 2-1 Hausdorff distance computed between the segmented and simulation based iso-surfaces a) one needle b) two needles [33] 

In this thesis, we studied and developed a method of simulation of temperature propagation that 
considers the effect of large vessels on iceball formation. Since major blood vessels are remarkably 
resistant to cold injury, we considered large blood vessels without vessel occlusion. It can be partic-
ularly difficult to freeze large blood vessels if the blood flow through them is continued throughout 
cryosurgery. Only the outer layers are likely to be frozen and major blood vessels remain unfrozen 
[34]. This issue will be presented and discussed in  Chapter 4. 

2.3 Surgical planning 

Let us recall that our objective is to have a multiple trajectory planning algorithm able to com-
pute an optimal solution in a reasonable time, compatible with clinical routine. To achieve this, the 
surgical planning should be formulated as an optimization problem requiring to loop over parame-
ters including a call to a function to optimize. This function also requires computing the simulation 
of the iceball in the case of cryosurgery planning. It is necessary to have both a fast evaluation of 
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the function and an optimization method converging quickly. In this section, we study the different 
optimization algorithms that have been proposed in the literature for applications related to the tra-
jectory planning. 

2.3.1 Cryosurgery 

The surgical rules used to plan preoperatively a cryosurgery intervention are not well-studied and 
most of the studies on this topic have focused on optimizing the frozen area. One of the earliest ex-
amples of optimization method for the application of cryosurgery planning was done by Keanini 
and Rubinsky who solved the heat transfer equation for a 3D domain and applied the simplex meth-
od to optimize the number of cryoprobes and their geometrical dimensions (diameter and active 
length) [35]. However the optimization of other parameters, such as cryoprobe placement in the 
anatomy and the thermal protocol is more practical. Although the simplex method was appropriate 
for the particular examples in their study [35], it is an ineffective method when dealing with the 
problem of finding the best position of the probes due to the intrinsic non-linearity of the problem . 

Their approach uses a very simplistic optimization model compared to the complexity of the 
whole problem due to the unconstrained and local nature of this optimization method, and other 
mathematically sophisticated approaches are more suitable for the problem. When applying tradi-
tional optimization techniques, the first big challenge is to build a suitable cost function to mini-
mize. In fact, in general, we do not have an explicit formula for the distribution of the temperature 
field of the region which should be optimized with given boundary and initial conditions and more-
over these conditions can also change depending on the case (e.g. where the cryoprobes are placed). 

In a few studies, the gradient descent technique is applied to minimize objective functions de-
fined by the behavior of the temperature field around the cryoprobes. [36] and [37]. Baissalov et al., 
studied simultaneous optimization of cryoprobe placement and bioheat simulation of ablation zone 
and described a 3D solution based on the cumulative 2D transverse planes, but the shown results 
were only for 2D state in a prostate model where the problem is simplified as all trajectories are 
parallel. A disadvantage of using gradient based methods for cryosurgical planning is the require-
ment of computing the heat equation several times (depending on the number of variables) in each 
iteration of the optimization. 

In a study by Butz et al., [15] a software tool is presented based on 3DSlicer for preoperative 
planning of cryosurgery which can be extended to laser and radiofrequency ablation. Moreover, 
arbitrary virtual ablation devices can be added to the 3D scene and can be visualized using surface 
models. Ablation zones are modeled using a theoretical geometry. For cryoablation, the frozen vol-
umes at the tip of each cryoprobe are approximated by ellipsoids. Geometric parameters of ellip-
soids are calculated from previous patient cryoablations. The utilized optimization algorithm is 
based on the Powell method and in order to avoid dangerous trajectory placements they used a non-
linear term inside the objective function. However, the authors do not describe how the insertion 
zone is computed and which organs are considered for this region (see Figure 2-2).  
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Figure 2-2 The virtual cryo-probes shown in red which simulate the needles and the frozen tissue, can be set into the patient’s segmented anatomy. 

The tumor and its additional 0.5cm safety margin, is shown in brown. The large vessels are in blue, the gallbladder in green and the bones in white. a) 
and b) show the radiologists setup chosen for this specific case, while they can have a better setup which would have decreased significantly the 

danger of undertreating the cancer in images c) and d) [15] 

The force field analogy method is a physically-based optimization method different from the 
previous techniques [38]. This method computes the defective areas, after the computation of the 
distribution of the temperature in the tissue at each iteration. In fact, for each pixel that did not reach 
a proper temperature (i.e. defective pixel), the method calculates a displacement vector for each 
cryoprobe and the result specifies the displacement of that particular cryoprobe at that given itera-
tion. Unlike gradient descent techniques and simplex techniques, force field analogy requires a 
large amount of internal calculations except the computation of temperature field, so the computa-
tional time required converging a good solution is far from real-time applications. In studies [[39], 
[40]] using this approach, authors also focused on the 3D planning of prostate surgery in which all 
the cryoprobes are parallel and complexity of the problem is much lower than a free rotating cry-
oprobe problem. 

One way to decrease the computation time of the optimization method in cryosurgery could be 
achieved by avoiding the computation of the temperature distribution at each iteration. For example, 
to plan placement of the cryoprobes one can focus on geometrical considerations and define meth-
ods converging to a configuration in which cryoprobes are evenly distributed in the tissue and are 
far apart from each other and distant from the boundary of the tumor. In the bubble-packing method 
described by Tanaka et al. [41], first ellipsoidal elements (or bubbles) are generated inside planning 
domain. Then, van der Waals’-like forces are simulated to move the bubbles until a minimum-force 
configuration is found (see Figure  2-3).  
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Figure  2-3 2D bubble-packing results and the corresponding simulated temperature field for three cases [42] 

The method was first applied with the force field analogy method in 2D as an initialization tool 
[40] as well as a planning algorithm used to study 2D prostate planning [42] . 

 
Figure 2-4 Schematic illustration of cryosurgery planning: (a) the prostate and urethral warmer are modeled based on ultrasound images, (b) bubble 

packing generates a recommended cryoprobe layout [41] 
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They compared planning results with experimental results and reported a small error factor in the 
location of inserted needles (see Figure  2-3). In a separate study this method was successfully used 
to optimize the insertion depth in 3D [43] (see Figure 2-4). 

In 2011, Giorgi et al. [44] reported the application of a particular method among genetic algo-
rithms called ant colony optimization (ACO) inspired by [45] to cryosurgery planning. Such an ap-
proach has the advantage to be completely general and allows for the setting of different types of 
experimental parameters without changing the optimization technique. Computation of the cost 
function is based on the numerical solution of several direct Stefan problems solved by an Euler-
Galerkin approach. However, similar to the force field analogy method, this method is not able to 
provide real-time results either and was done on a 2D standard prostate phantom (see Figure 2-5). 

 
Figure 2-5 Case of 12 cryoprobes (a) Initial position of configurations (where each small circle represents a cryoprobe, cryoprobes of different colours 

belong to different configurations, and the tumor is represented by the large black circle). (b) Final position of the configurations collapsed into one 
after ACO. (c) Temperature distribution for the optimal solution (i.e. the one characterized by the minimum value of the cost function): 0°C isotherm 

contour is red, -22°C isotherm contour is light green, and -45°C isotherm contour is blue. (d) Plot of the defected pixels (white) [44] 

2.3.2 Other types of hyperthermia 

As explained in Chapter 1, many other types of ablations by hyperthermia can also be chosen by 
surgeons, and their pre-operative planning presents similar issues. Littmann [46] introduced a soft-
ware for in-situ laser induced thermotherapy (LITT) ablations in oncologic liver surgery. LITT ap-
plicators are represented as surface models and can be visualized in 2D slice views as well as in a 
3D surface rendering. Moreover, the ablation zone can be simulated after segmenting the intrahe-
patic structures. The heat transport which incorporates heat-sink effects of the nearby vessels within 
the liver tissue is calculated using a finite difference method. In the planning step, the applicators 
are automatically arranged in the form of a regular polygon around the corresponding tumor’s    
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center of gravity and are aligned to the tumor’s longest main axis. This method is a fast but not op-
timal way of planning because it can’t guaranty the full tumor coverage and minimum damage to 
the healthy tissue. However, it is required to check whether any bone structures or main vascular 
branches lie within any applicator’s path which should be done manually and interactively using 
combination of surface rendered 3D scene with volume rendering of the original data set. Illustra-
tion of this method is shown in Figure 2-6. 

 
Figure 2-6 Synchronous 2D and 3D views enable the user to quickly check if either bony structures or important vessels lie on an applicator’s path 

[46] 

Preoperative planning of RFA treatment for the ablation of hepatic tumors was described by 
[16]. In this work, liver, blood vessels, pathologies, and the surrounding organs are segmented and 
visualized using surface rendering. Also, virtual RF applicator models with idealized ellipsoidal 
ablation zones are available. To model the heat-sink effect, the ablation zone models are deformed 
in real-time by moving their vertices according to the proximity of large surrounding liver vessels 
[47]. In a technical point of view, a morphological erosion operation is applied to mask of the vessel 
to eliminate small vessels (< 2-3 mm) in a preprocessing step. By further dilations, a deformation 
zone is computed to define the amount of vertex translation. Besides the restriction of the possible 
vertex deformation of the ellipsoid, this approach is completely heuristic; therefore it is not clear 
how an applied deformation influence the biophysical heat-sink effect of the blood vessels while 
performing RFA (see Figure 2-7). 

 
Figure 2-7 Ablation zone models are deformed in real-time by moving their vertices according to the proximity of large surrounding liver vessels [47] 

Villard and Baegert proposed a method based on geometric constraints solving for automatically 
computing insertion trajectories for single-needle [10, 48-51]. In this study, the target point and an 
insertion point on the skin are connected by an insertion trajectory. Hard constraints are formulated 
to compute insertion zones on the skin. Insertion zones represent regions in which trajectories can 
pass safely to the target and do not violate any restriction on the insertion path such as anatomical 
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structures collision or exceeding the needle length. Then the quality of the allowed trajectories is 
scored by the so-called soft constraints. These constraints represent some numerical parameters 
such as the distance to critical structures, or the volume of the ellipsoids. These soft constraints are 
combined using a weighted sum to obtain an overall rating of candidate trajectories, which are dis-
played as a color map on the insertion zone (Figure 2-8). Optimizing the weighted sum allows to 
propose an optimal trajectory. 

In another very similar work, Seitel in collaboration with Villard displayed sequentially hard and 
soft constraints as color maps (Figure 2-10) but they tried to compute the corresponding Pareto 
front instead of one optimal solution from the final weighted objective functions [9]. They still used 
only one single needle for their computations and planning. In both cases, the components of the 
workflows have been developed within the Medical Imaging Interaction Toolkit (MITK) [52]. 

In a similar way, Schumann et al. [53] used a set of constraints to determine the suitable insertion 
trajectories, but with a method independent of the mesh representation of the critical structures. 
They generated constraint maps for each surgical rule by computing a cylindrical projection from 
the center of the target. Each constraint map is rated by a constraint-specific rating function and 
merged to a weighted combination of all constraints. The maximum value in this combined map 
corresponds to the possible insertion trajectory. However the coefficient of each constraint still 
needs to be set manually and an evaluation showing the clinical applicability of this proposed plan-
ning system has not yet been performed (Figure 2-9). 

In a different way from the previous works, Kröger et al. [54] presented an approximation of the 
numerical forward simulation. In this approach, the ablation zone for each patient is parameterized 
by several reference configurations, which are pre-computed and saved in a lookup table. During 
applicator probe placement, the patient-specific ablation zone is reconstructed from the lookup table 
under consideration of the Euclidean distance metric from the probe to the blood vessels and its 
radius, allowing for interactive frame rates. The major disadvantages of this method are that the 
basic shape of the ablation zone consists of several spheres along the points of the probe and the 
important assumption of an independent cooling effect for each vessel segment. This approach is 
then integrated into a medical application, for slice-based rendering of the ablation zone in [55] 
which permitted the surgeon to plan interactively by looking into visualized ablation zone. 

Figure 2-8 Color map is overlaid on a pre-computed insertion zone using a weighted sum of soft constraints. Red represents high risk 
regions while green shows the safe ones. 
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Figure 2-9 Outline of the algorithm: Input masks (blue) are used to generate constraints maps and preprocessing results (green) (in vertical order: 

penetration depth, distances to risk structures, liver capsule penetration angle, portion of healthy liver tissue, circumference, angulation, tumor 
coverage). They are rated and combined into one image from which maxima are computed  [53]. 

Trovato et al., [56] also used an approximation of combined multiple ablation zones alongside 
their semi-automatic RFA planning system. Their planning suffers from the lack of a visualization 
method and consideration of heat-sink effects.  

Rieder  et al., [13] modeled an approximation of the ablation zone. They sampled the applica-
tor’s probes and a weighted distance field was calculated, then the ablation zone was fitted to the 
resulting necrosis mask of a complex numerical simulation. Heat-sink effects are estimated by solv-
ing the thermal equilibrium of the vasculature and the combination with the weighted distance field 
(see Figure 2-11). 

However, the drawback of this method is that only the minimal distance from a sample to the 
nearest vessel is encoded. That is, combined cooling effects of two nearby vessels cannot be de-
scribed by this method. If multiple vessels are located close together, the coagulation zone suffers 
from spurious sharp edges, as can be seen in Figure  2-12. 

In a recent study, Ren et al. [57] presented a planning system for tumor ablation to achieve full 
tumor coverage and also to minimize the number of ablations, number of needle trajectories and 
over-ablation of healthy tissue. These objectives are taken into account using a genetic algorithm 
mechanism. A concept of sphere covering was used in this study and an exponential weight-
criterion fitness function has been designed incorporating constraints that were reflective of differ-
ent objectives. In this study, authors did not consider rotation of the trajectories, they did not search 
all possible solutions on the skin, and one region satisfying anatomical obstacles was preselected 
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(see Figure  2-13). 

 

 
Figure 2-10 Trajectory planning workflow and resulting surfaces. For the hard constraints, the insertion zone is shown transparently green. The result 

of the soft constraints is visualized with a color gradient ranging from red (poor rating) to green (good rating) [9] 
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Figure 2-11 Both probes of an internally cooled bipolar RF applicator are sampled. The corresponding weighted distance field is illustrated by isoline 

contours. The thermal fields of the blood vessels and the cooled applicator shaft decrease the ablation zone (blue regions) [13] 

2.3.3 Deep brain stimulation DBS 

Computer assisting tools for deep brain stimulation procedures are classified into automatic lo-
calization of target, placement of surgical tools and simulating the effect of treatment. Automatic 
placement of surgical tools will be discussed in this section as opposed to traditional trial and error 
searches performed by surgeons.  In a first work for automatic DBS trajectory placement by 
Brunenberg et al. [58] a number of insertion points on the skull is randomly selected from the pre-
defined frontal lobe gyri. A straight line from the insertion point to the target is drawn and multiple 
cost functions based on the Euclidian distance to vital regions like vessels and ventricles are com-
puted. For this purpose the distance of each point on the trajectory to the vessels and ventricles is 
computed using a trilinear interpolation which makes the computations heavy. As the authors re-
stricted search domain to a set of entry points, there would be good solutions which are not possibly 
discovered (see Figure 2-14).  

 
Figure  2-12  In (a), The vessel A presence leads to a deformation of the ablation zone in accordance with the heat-sink effect. A similar situation is 
illustrated in (b). If an independent cooling effect is assumed, the final ablation zone is achieved by the intersection of both ablation zones (c). In 

contrast, if both vessels jointly cool the heat field, the heat-sink appears more smoothly (cf. blue peak), similar to the results of numerical simulations 
(d) [13] 
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Figure  2-13 An example of ablation spheres and trajectories; blue spheres indicate the ablation spheres and green lines indicate possible needle trajec-

tories [57] 

In another survey, Essert et al. [59] tried to test all possible solutions by letting the software to 
decide which points to choose as long as they satisfy the intervention rules. This work was based on 
resolution of some geometric constraints which was inspired by their previous works on RFA [50]. 
Not feasible regions which pass through cortical sulci and ventricles were removed within a short 
time in a preliminary stage. Then, multiple colored maps are generated by translating surgical rules 
called soft constraints into the quantitative scores. The color maps represent the risk due to distance 
to sulci, length of the path and orientation of the trajectory.  

 

 
Figure 2-14 An automatic planning tool for DBS presenting approved trajectory to the neurosurgeon [58] 

 

Finally the surgeon can decide the best solution based on each of the mentioned maps or an ag-
gregated color map generated from these maps with pre-defined weights (see Figure 2-15). 
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2.4 Problem statement 

The overall objective of this thesis is to provide the surgeon an automatic pre-operative path 
planning tool able to propose a setup for placement of multiple needles in 3D, taking into account 
several surgical constraints as mentioned in section 1.3.1, as well as a precise computation of the 
frozen area. This package provides all required tools for the visualization and interaction of stand-
ard medical imaging data plus a generic framework for a fast extension of new applications or sur-
gical rules. 

As discussed in this chapter there exist several tools for different minimally invasive surgical 
planning procedures in the literature but each one with its own advantages and drawbacks. The fol-
lowing list states the main differences and goals in current work comparing to others: 

All previously mentioned studies in cryosurgery planning were mostly done for prostate in which 
needles are placed in parallel to each other. This approach is too restrictive for liver cryosurgery 
because it is possible to locate the needles with different directions and origins to obtain an optimal 
ablation. So in order to apply our method to liver tumors, we considered needles to have 5 degrees 
of freedom: 3 translations for position and 2 rotations for orientation. 

 An automatic planning is introduced considering surrounding obstructive or vital organs like 
ribs and vessels. This is done only once for each patient and pre-operatively then results will be 
used for the real-time intra-operative planning purposes. This is different with some of the dis-
cussed methods which let the operator to consider these obstacles manually and interactively or 
with a high computational cost in their planning phase. Moreover, adding new constraints to our 
tool is easy with no requirement to modify the code or make a lot of configurations, thanks to its 
generic structure and XML parsing system for the constraints definition. 

The effect of large vessels is not considered in any of other cryosurgical planning tools besides 
an accurate simulation of the heat propagation. This effect was studied by several works in RFA 
planning like [47] [13] which is inspiring to consider an estimation of the large vessels effect in the 
computations.  

This work proposes several solutions to the surgeon based on his needs and requirements. It can 
be as simple as visualizing the simulated ablation zone generated by multiple needles and interac-
tively modifying their placements or automatically plan the surgery using simplified ellipsoids or 
simulated iceballs. Due to high computational cost of the last option a two-phase fast converging 
solution is also designed for intra-operative planning.  

Finally, in each part the results are discussed and validated using different methods to demon-
strate the accuracy and amount of expected improvement for each solution. 
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a) Length of path b) Distance to sulci 

  
c) Orientation d) Aggregative 

  
Figure 2-15 Color maps of the soft constraints obtained after phase 2 of the solving process: best zones are in green and worst are in red. The best 

trajectory is shown as a red line [59] 
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Chapter 3. Data preparation and prepro-
cessing 

3.1 Overview 

As briefly discussed in chapter 1, several steps are required to compute the optimal trajectories. 
This chapter covers the primary steps in our proposed workflow, including the description of re-
quired dataset characteristics and their preprocessing that consists of data preparation and computa-
tion of the insertion zone. The simulation and optimization approaches we describe in Chapters 4, 5 
and 6 receive as input data structures computed from pre-operative patient images and then, in order 
to evaluate accuracy of the obtained results, intra- operative patient images are used as a reference 
for comparisons. This input data should be carefully prepared according to several factors like soft-
ware requirements, design of the experiments for problem complexity, and comparisons and valida-
tion purposes. Section  3.2 describes dataset properties and the data preparation steps which includes 
image registration between pre- and intra- operative images, segmentation of structures of interest, 
tumor dilation and generation of 3D meshes. The next phase in preprocessing is to compute a safe 
insertion zone on the skin usable for path planning, as described in Section  3.3.  

3.2 Data preparation 

Our planning tool requires as an input several anatomical structures. These input images are used 
for internal computations and also for evaluating the methods. We have used two sets of data 
throughout this manuscript. The first dataset is a retrospective dataset from a patient who underwent 
liver tumor cryosurgery, and includes pre- and intra- operative images. According to visibility of the 
iceballs and vessels in this dataset, it has been used for validation purposes in the following chap-
ters. The second dataset provides us with a sample of preoperative images of the liver with several 
tumors. They were used for experimenting the algorithms of our workflow. Different experiments 
were designed based on the tumor size and location in relation to the other structures in order to test 
speed and accuracy of the proposed methods. 

3.2.1 Retrospective dataset 

The retrospective dataset used in this thesis was obtained thanks to collaboration with the Memo-
rial Sloan Kettering Cancer Center1. It consists of multiple MRI scans of one patient with two    

                                                                        

1
 http://www.mskcc.org/ 
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tumors undertaking liver cryosurgery. One of the tumors was treated with one needle while the se-
cond one was ablated using two needles. Images were in the raw DICOM format. They were used 
to extract regions of interest. Due to the tissue displacements in different scans, an alignment was 
required as explained in the next sections. 

3.2.1.1 Image characteristics 
Pre-operative:  

DWI images with contrast agent and 5mm of slice thickness were used for localization of the 
tumor. Non-isotropic T1 images with dimensions 1.6*0.5*0.5mm were used for segmenting all ana-
tomical structures except the tumors because of low contrast. These images were also with contrast 
agent, which enabled segmentation of the portal vein.  

Intra-operative:  

During the intervention and after inserting the needles an image was taken showing location of 
the needles before starting the freezing step. Then progressively several images were taken while 
freezing for each tumor. Five slices were available in each step with 8mm of slice thickness in the 
location of the iceballs. These samples were very sparse and needed to be treated carefully while 
registering and segmenting the iceballs. 

These scans were available during the iceball formation for both tumors in the tenth minute, after 
five minute of thawing and eighth minute in the second phase of freezing.  

3.2.1.2 Registration 
Due to the nature of our dataset, ribs and spine were not visible so a solution for this problem 

was moving and aligning CT images of another patient to the coordinates of our patient. This was 

Figure 3-1: Ribs in yellow and skin in white registered on MRI image of the patient. A segmented part of the liver also can be seen in red. 
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done with a rigid registration method using MITK2 registration plugin. This step was further vali-
dated visually with the few available CT scans of the same patient sent from the MSKCC (see Fi-
gure 3-1). 

Due to the small field of view of the captured images, the skin was truncated in both sides close 
to the liver where the needles are most likely to be inserted, which was a problem for our planning 
approach. Therefore a similar method was used to align pre-segmented skin to our patient (See Fi-
gure 3-1). 

Intra-operative images were also registered to preoperative T1 space using rigid and similarity 
registration methods in MITK (see Figure 3-2). 

3.2.1.3 Segmentation 
Liver and vessels segmentation was done semi-automatically based on a region growing method 

to reduce interaction time which helps segmenting the liver and vessels in 3D Slicer. Portal vein and 
arteries were segmented separately for future use. 

Tumor, iceball and needle tip segmentation was done manually with Regions Of Interest (ROI) 
drawing in 3D Slicer. These 2D slices will be used in  Chapter 4 for slice-based validation of abla-
tion region. They were also used to generate surface meshes. 

3.2.1.4 Mesh generation 
Surface meshes of segmented ROIs were created using marching cubes algorithm included in 

MITK or 3D Slicer.  

3.2.1.5 Tumor dilation 
Segmented tumor was dilated with a 2mm dilation filter in 3D Slicer to satisfy safe margin con-

dition (see Figure 3-3). 
                                                                        

2
 Medical Imaging Toolkit 

Figure 3-2: Intra-operative images are aligned to T1. Red contour shows liver from T1 high-resolution images, green represents tumor location while 
background image demonstrates intra-operative image 
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In the end we obtained all 3D meshes required by our planning workflow in the same coordinate 
system: tumor, portal vein, liver, ribs and skin. Iceballs were also generated for validation purposes 
(see Figure 3-4). 

3.2.2 Test dataset 

Due to the difficulty to gather exploitable datasets of both pre- and intra- / post-operative images 
of patients who underwent cryoablation, as suggested in the previous section, we performed most of 
the experiments of our algorithms on six pre-segmented liver datasets from IRCAD3 online data-
base. They were used in this thesis for test and demonstration purposes. These were pre-operative 
images that only represented the anatomy and lesions, and no treatment had been performed. All 

                                                                        

3
 http://www.ircad.fr/research/3d-ircadb-01/ 

Figure 3-4: Left: 2D segmented organs; Right: surface meshes of the segmented organs 

Figure 3-3: Tumor dilation to create the safe margin. Green patch represents 2mm dilated version of the tumor in red  



Computation of insertion zone 

51 

organs required for the preprocessing step of our software were available by default in the format of 
3D masks and meshes. As the complexity of the planning problem depends on the size of the tumor 
and its position in relation to the other structures, some of the tumors in these datasets were manual-
ly moved to produce problems with increasing complexity. These ordered cases were used to test 
our proposed workflow in different pre-defined complexity levels.  

3.3 Computation of insertion zone 

As listed in section  1.3.1 several constraints are considered in our planning tool. Some of them 
are Boolean and the trajectories violating these constraints are not feasible in the cryoablation pro-
cedure. These so-called hard constraints try to avoid trajectories which do not satisfy all of the fea-
sibility criteria we used: 1) not passing through anatomical structures like ribs or vessels, 2) have a 
length lower than 120 mm, and 3) reach the liver with an angle higher than 20 degrees to its surface 
in order to avoid slipping on the capsule. In this section our planning tool delineates on the skin a 
feasible insertion zone (set of feasible insertion points) based on the hard constraints discussed 
above. Our planning tool needs to receive as an input several 3D triangular surface meshes of ana-
tomical organs and lesions. The hard constraints are evaluated in a pipeline considering candidate 
trajectories as lines from a point on the skin (entry point) to the tumor. This entry point should be 
removed from the insertion zone if its corresponding trajectory does not fulfill the hard constraints.  

Constraint 1) mentioned above can be seen as a visibility constraint. Therefore, to handle this 
specific constraint in a short computation time, a line of sight problem is solved by placing a virtual 
camera in the tumor position looking towards the skin, and removing from the set of insertion 
points the ones that are occluded by the anatomical structures (see Figure 1-5). For needle length 
constraint 2), all entry points which have a distance to the tumor higher than 120 mm are removed 
from the insertion zone (see Figure 1-6). For tangency constraint 3), candidate entry points are elim-
inated if their associated trajectory has an insertion angle of less than 20 degrees with the triangle of 
the liver mesh where it arrives. All this approach relies on previous works of our research group [9] 
for single needle placement, including a fast GPU based algorithm for constraint 1). This approach 
is independent from the number of needles and for multiple needle placements the results can be 
used for each needle separately, as each needle needs to be inserted in a feasible location. Fi-
gure 3-5 demonstrates a sample input for the algorithm and the computed insertion zone as an out-
put. Using this pre-computed insertion zone highly reduces the amount of computations required in 
the planning phase. 

 In all the computations above trajectories are considered as a straight line from the barycenter of 
the tumor towards the skin. The boundaries of this insertion zone should be modified if one decides 
to place the needle tip in a position other than the barycenter but still inside the tumor. This change 
directly depends on the amount of displacement to the tumor barycenter and thus to the size of the 
tumor. In order to solve this issue, a compensating term added to the objective function which com-
putes the distance to the ribs and vessels. Its formulation is described in Section  6.3.1 so the opti-
mizer tries to avoid not feasible trajectories even on the boundary of the insertion zone. 
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Figure 3-5 Constraint concept of the automatic trajectory planning. Surfaces of the skin, the liver, the tumor and other critical structures are created 

from corresponding segmentations. The insertion zone on the skin is determined after applying a combination of hard constraints 
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Chapter 4. Simulation of cryosurgery 

4.1 Overview 

In this chapter a typical multi-probe cryosurgery is simulated based on a heat capacity model and 
a finite difference method. Section 4.2 explains in detail the method we used, then in section 4.3 
numerical values and conditions are discussed. The remaining sections show and discuss the results. 

4.2 Numerical method of the heat propagation 

In this section, we explain the approach we used to simulate multiple probe thermal propagation 
to predict the outcome of the cryosurgical procedure. The results of the simulations are quantified in 
terms of isotherm locations at any given time with respect to the anatomy. This provides a means 
for analyzing the effectiveness of the treatment. Our method consists of a time-dependent model of 
iceball formation based on Pennes bioheat transfer equation [60] around the needle tip, which in-
cludes the influence of blood perfusion and the metabolic heat on the temperature distribution of the 
tissue.                                                                        ( 4-1)  

Where   ,    are, the heat capacity of unfrozen tissue and blood, respectively;   contains the 
Cartesian coordinates x,y and z;       is the temperature of unfrozen tissue;    is the thermal 
conductivity of unfrozen tissue;     indicates the unfrozen domain at time t;    is the blood per-
fusion;    is the metabolic heat generation; and    is the arterial temperature;. 

Since the frozen area lacks blood perfusion and metabolism, the heat balance can be expressed 
by:                  [     ]                                                                                             ( 4-2) 

where   ,    are the heat capacity and the thermal conductivity of the frozen tissue, respectively;     denotes the frozen domain at time t; and       is the temperature of the frozen tissue. 

Assuming that the density of tissue is the same and constant for both frozen and unfrozen phases, 
the temperature continuum and energy balance conditions on internal boundary of the moving inter-
face for biological tissues, are as shown below:                                                                                                              ( 4-3)                                                                                                                               ( 4-4) 
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where   ,    are the latent heat and freezing point of tissue, respectively ;   denotes the unit 
outward normal ;       is the moving boundary resulting from freezing or thawing and    is the 
normal velocity of the moving interface. Equations (4-3) , (4-4) are called the Stefan condition [61] 
and shows the discontinuity of the temperature gradient across the moving interface. The external 
boundary is divided into three sub-regions as shown in Figure 4-1 with different characteristics in 
which the temperature field is applied, i.e.                                        ( 4-5)                                       ( 4-6)                         on    Cauchy type     ( 4-7) 

where    is thermal conductivity of the   th phase, assuming      for the frozen and     for 
the unfrozen phase. 

 

Figure 4-1 bioheat moving boundary and three different temperature fields generated [28] 

Since Equations (4-1)-(4-4) are highly non-linear, the effective heat capacity method is applied 
to avoid complex iterations at discretizing the governing equations as proposed by [36]. The basics 
of this method lie in approximation of the latent heat over a small temperature range close to the 
freezing point. Using this strategy, the numerical solution can be carried out on a fixed grid 
throughout the calculation process, which is easy to implement. 

Based on the above energy conservation model for a multicomponent phase-change system, a 
universal equation which can be applied to the frozen, partially frozen or unfrozen tissues can be 
derived [23]. So, the final uniform heat equation for biological tissue during freezing/thawing can 
be written as: 
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  ̃          ̃    ̃      ̃    ̃                                          ( 4-8) 

where   ̃   is the effective heat capacity;  ̃   is the effective thermal conductivity;  ̃  is the 
effective metabolic heat generation;  ̃   is the effective blood perfusion and they are formulated 
in different temperature bounds as follows: 

  ̃    {                                                                                                                                                                                     ( 4-9) 

  ̃    {                                                                                                                                                                                                    ( 4-10) 

 ̃    {                                                                                                                                                                                                             ( 4-11) 

 ̃    {                                                                                                                                                                                                                          ( 4-12) 

The value assigned to blood perfusion of tissue follows one of four possiblities described by [27] 
with the assumption that the frozen blood vessels can recover their functions immediately after 
thawing. Applying the explicit finite-difference formulation to Equation (4-8) and using Equation 
(4-13) to express the linear term      can discretize Equation (4-8) as presented in Equation (4-
14).                           ( 4-13) 

where   is a relaxation factor and      .                                 ∑                        ∑                         ̃    ̃                       ( 4-14) 

where    is the time increment, Fo =  ̃      ̃    is the Fourier number and W is defined as 

W= ̃      ̃. Finally m can accept values 2, 4, or 6 corresponding to the cases of one, two and three 
dimensions respectively and    is defined like this:                                              
4.3 Numerical values and discretization parameters 

All the computations are done inside a large cube centered on the tumor as a pre-defined space 
for numeric computations in a 3D domain. This domain is prescribed in a cubic geometry with 
7×7×7 cm in the x, y and z directions respectively, in which x denotes the anterior-posterior direc-
tion while y is along the lateral-medial direction and z is along the superior-inferior direction (see 
Figure 4-2). Only corresponding regions of organs located inside this cube are considered for heat 
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computation. Boundary conditions for this setup are described as follows:           [    ]  at                      at           ( 4-15)           at                         at           ( 4-16)           at                         at           ( 4-17)    is the convective heat transfer coefficient between the environment and the skin and   ,    are 

respectively the temperatures of the body core and the surrounding air. Positions on the boundary 
directions y, z are not almost affected by the center domain as they are still inside the body but far 
from the needle tip and can be viewed as infinity for the heat or cold source.  

In order to avoid any numerical instability, the space and time steps were limited by 1-W(1- )   -m.Fo ≥ 0. In this thesis, the grid resolution is ∆x = ∆y = ∆z = 1 mm and ∆t = 0.1 s. Applying 
the boundary conditions at time t+∆t and substituting the calculated results at the previous time t, 
the unknown T at time t+Δt can be solved from Equation (4-14).  

 
Figure 4-2 Schematic of 3D geometry for one probe case [30] 

The boundary conditions at the probe surface are prescribed respectively according to probe tip 
and probe shank as: T=−196 °C at probe tip; ∂T/∂n=0 at probe shank. The initial temperature in 
tissue is simplified as T0=37. Other values for the numerical computation were found in the litera-
ture and are shown in Table 1 [30]. 

In the first place a mask of all the structures involved in the heat propagation like tumor, liver, 
needle tip and vessels is required with a similar coordinate system and resolution. This is due to the 
nature of finite difference formation by browsing all pixels of large cube surrounding the tumor 
center of gravity to compute heat propagation. The mask of some of these structures is already 
available in the dataset like tumor, liver and vessels but voxelizing needle tip cylinder cause quanti-
fication error depending on the voxel size. This process is shown for the needle tip in Figure 4-3 (a). 
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A similar phenomenon will happen while converting voxels to meshes for other organs. This will 
cause an error by smoothing the edges of surface made by marching cubes method and illustrated in 
Figure 4-3 (b). This error does not affect the computations but leads to an imperfect visualization of 
the iceballs and organs. 

 
 

 
a)Needle shaft and needle tip are visible on the left then 3D and cross sectional view of the quantified version of the needle tip is shown on the 

right (Deng and Liu 2004) 

           
b)Left image shows an axial tumor mask and its reconstructed mesh. On the right a 3D image of the tumor mesh and a sagittal slice of its mask 

is visible 
  

Figure 4-3 quantification error shown for the needle tip on the top and for the tumor mesh reconstruction on the bottom 

Other parameters for our simulation setup are described below: 

1. In order to consider the convective effect of vessels, they are considered as fixed sources of 
heat at 37°C. 

2. The shape of needle tip has been designed to fit IceSeed cryoprobe from Galil Medical4. The 
length of the needle tip is modeled with precisely 20 mm, but for the diameter 2 mm is used instead 
of 1.5 mm in order to fit the resolution of our simulation cube which is 1 mm. 

3. The simulation procedure imitates a standard cryoablation pattern that consists of two 10 
minutes freezing intervals and one 5 minutes thawing step in between, which is used in clinical rou-

                                                                        

4
 www.galilmedical.com/cryoablation-products/needles/ 
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tine and congruent with the needle manufacturer calibration data in a tissue-like gel. 

Table 1 Typical thermophysical properties of soft biological tissues [30] 

 

4.4 Results 

In this section we demonstrate the results of our simulations in different contexts and conditions 
of surrounding structures. We compared the similarity between two kinds of meshes: the computed 
3D isotherm surfaces and the segmented iceball as a reference mesh. For mesh comparison purpos-
es we used two geometric methods called Hausdorff distance and Dice coefficient. Moreover, 3D 
meshes and their corresponding 2D axial, sagittal and coronal slices are shown for a better compari-
son.  

The Hausdorff distance [62] is a method of geometric difference computation between two 3D 
models which is quite common in mesh processing and is defined as below:          {                                 }    ( 4-18) 

In this equation     represent two meshes and      is the distance between two correspond-
ing points. Starting by a point from mesh  , the algorithm searches the closest point to mesh   and 
continues this process for all points on mesh   then it returns the maximum distance computed so 
far. As this is not a symmetric operation, so Equation (4-18) considers both sides.  

Another common criterion for comparing two meshes is the Dice coefficient [63]. It can be 
viewed as a similarity measure over two meshes which defined as:     |   || | | |        ( 4-19) 

In order to obtain this coefficient, one needs to pre-compute several Boolean operations between 
the two meshes. Thus |   | is the volume overlapping and | |  | | represents sum of the vol-
umes for the two meshes. Dice coefficient is 1 if two meshes are fitting each other completely and it 
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is 0 when there is no intersection. 

We first simulated a standard cryoablation procedure with a single cryoprobe without any large 
vessels in the vicinity. The different simulated isotherm surfaces were compared with their corre-
sponding theoretical ellipsoids proposed by the manufacturer Galil Medical as illustrated in Fi-
gure 1-4. Figure 4-4 shows different simulated isotherm surfaces:.0°C, -20°C and -40°C in blue, red 
and green respectively, along with the theoretical shape of the 0°C surface in yellow. Dice coeffi-
cient for the comparison of the 0°C isosurface is 0.96, which represents a high similarity. The simi-
larity is 0.91 for -20°C isosurface and 0.81 for -40°C isosurface. Lower numbers in smaller isosur-
faces are due to their smaller volume: a slight difference has a bigger influence on the similarity. 
Another source of discrepancy comes from the resolution of the finite difference network which in 
our case was 1 mm.  

 
Figure 4-4 Simulated 0 °C  iceball in blue is compared to its corresponding iso-therm in yellow reported by the manufacturer 

The computation time for a standard cryoablation procedure is 50 seconds for the used resolution 
and dimensions. It is computed on a Core-i7 machine with 16 GB of memory. It is important to un-
derline that this computational time is not changed when simulating several needles or considering 
the vessels and is only affected by the resolution and dimension of the discretized space around the 
tip, in our case 7x7x7 cm.  

A similar procedure is done for two needles in order to show synergic effect of combined nee-
dles on the shape of ablation zone [11]. The resulting iceball is larger while having smoother edges 
comparing to separate ellipsoids. This effect is already investigated in the work of Talbot et al. [33] 
for cryoablation needles and  Figure 4-5 shows this effect in 3D and 2D images for two needles in 
our software. 
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In a second step, we simulated the iceball produced by a single cryoprobe close to a large vessel, 
to visualize the influence of its heat-sink effect on the formation of the iceball. The right part of 
Figure  4-6 (a) shows a 3D model of the three isotherm surfaces not approaching vessels. On the left 
part of the figure, the same isosurfaces show deformations caused by the proximity of a vessel.  

In Figure 4-6 (b) the percentages of volume changes are shown for three different values of the 
distance from the cryoprobe tip to the vessel. As expected, we can see that the closer the tip gets to 
the vessel, the more the three iceballs are deformed. The 0°C isosurface, which is the larger and the 
more external one, is experiencing the largest deformation. This graph highlights the importance of 
the effect of vessels on the formation of iceballs, which has a direct impact on the chance of recur-
rence due to a possible over-estimation of the expected iceball.  

This phenomenon is also illustrated in our patient data. On the high resolution MRI images, we 
superimposed a 3D model of cryoprobe in an arbitrary position close to the vessel in order to show 
2D views of this effect for an easier visualization of deformations on slices. We computed and dis-
played the three simulated isotherm surfaces and the theoretical reference ellipsoids proposed by the 
needle manufacturer, and compared them. Figure 4-7 shows sequential axial slices and the shapes. 

Figure 4-5 Synergic effect of two needles on the simulated iceball comparing to separate ellipsoids 
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In order to compare the simulation rigorously and verify the situation of several interacting nee-
dles, we compared both the theoretical ellipsoids and our simulations with ground truth which in 
our case was the segmented iceballs from intra-operative images. 

 

Figure 4-6 iceball deformation due to the vicinity vessels 

a) Iceball deformation due to the vicinity vessel vs no deformation 

b) Percentage of volume change for 3 different iceballs vs distance to the vessel 
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Figure 4-7 Sequential axial slices of iceballs encountering vessels. Simplified ellipsoid refers is shown in yellow and 0, -20 and -40 °C iceballs from 

blue to green. Vessels are in pink. 

4.5 Validation 

In this part simulated isotherm surfaces for one and two needles are compared with their corre-
sponding iceballs segmented from the patient intra-operative images. In order to perform this task, 
the needles tips were also extracted from intra-operative images and the simulation was done based 
on similar needle placements (see Figure  4-8).  

Figure  4-9 shows a snapshot of our TrajectoryPlanning tool illustrating the simulation results 
based on a single segmented needle and its iceball. The 2D slices shows a good fit between simulat-
ed and segmented iceballs while preserving large vessels and showing the correct estimation of de-
formation due to the vessels. In all slices ellipsoid has an overlap with vessels and gives a bigger 
estimation of the necrosis zone. In the case of 2 needles in Figure  4-11 one can see the superiority 
of simulated iceball over the theoretical ellipsoids. It shows a better fit to the segmented iceball as it 
counts for the interaction between the two probes, a more homogeneous shape, stays far from ves-
sels, and does not over-estimate the necrosis compared to the two theoretical ellipsoids.  
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In order to analyze more quantitatively the amount of improvement by the simulation we have 
used the Hausdorff distance metric as defined in section 4.3, which can be visualized in 
ure  4-10. Part (a) shows the comparison between the theoretical ellipsoid and the segmented iceball 
and part (b) shows the comparison between the simulated iceball and the segmented iceball.  

 

Figure 4-8 In this image segmented iceball-2 is shown in white besides segmented cryoprobes in light yellow. The simulation cry-
oprobes are shown as red trajectories within segmented cryoprobes. 

Figure 4-9 Simulated iceball in blue versus segmented iceball-1 in white for a 10 minute freezing cycle. Theoretical ellipsoid is shown in yellow. 
Vessels are in pink. 
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A boxplot comparison including statistical information like average, maximum, minimum, 25th 
and 75th percentile of values for all vertices of these meshes is represented in Figure  4-12 which 
shows an improvement in average distance of correspondent vertices for the case of simulation ice-
ball. 

Figure 4-11 Simulated iceball in blue versus segmented iceball-2 in white for a 10 minute freezing cycle. Theoretical ellipsoids are shown in 
yellow and vessels in pink. 

Figure 4-10 Hausdorff distance computed for each vertex of the segmented iceball-1 mesh. Blue color indicates a low distance 
while large distances are in red 

  
a) Ellipsoid vs segmented iceball b) Simulation vs segmented iceball 
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A similar comparison was done for the two-needle case that also shows an improvement of the 
Hausdorff distance for the simulation iceball but less prominent (see Figure  4-13 and Figure 4-14). 
We can also describe these improvements descriptively using Figure  4-10 and Figure  4-13. As it is 
visible in the images, the Hausdorff distance is reduced for simulated iceballs on the sides of the 
mesh (blue color represents lower distances between two meshes) which shows they could better fit 
into the shape of segmented iceball while theoretical ellipsoids have better results on top and bot-
tom planes which is due to their bigger sizes. In the presence of vessels, output of simulated iceball 
is smaller than theoretical ellipsoids. Due to low number of slices for segmenting the intra-operative 
iceball, its shape is more accurate in axial plane while in sagittal and coronal axis it is a rough ap-
proximation. 

While the Hausdorff distance metric compares more or less the shape of two meshes, we are also 
interested in the overlapping or difference of volumes which analyze the problem from another 
point of view. In order to do this we performed Boolean operations like intersection, difference and 
union which are shown for the case 1 in Figure 4-15. Using these volume comparison values we 
have computed the similarity coefficients as discussed in Section  4.4 for case 1 and 2 and it is pre-
sented in Table 2. For example in case 1 the value of similarity (Dice coefficient) while comparing 
theoretical ellipsoids and segmented iceball is 0.723 and this value when comparing simulated ice-
ball with segmented iceball is 0.764. This shows an increase of intersected volume and improves 
the similarity of simulation iceball in contrast to the case of using simple ellipsoids. As Dice coeffi-
cient focuses on the similarities, by looking into Figure 4-15 on the second row, it is visible that the 
volume of difference between two meshes is also reduced which represents a better fit of two  
meshes. 

Figure 4-12 Hausdorff distance for total vertices is improved by the simulation. This is visible due to statistical parame-
ters of the boxplot 
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 Table 2 Similarity coefficient for cases 1 and 2 for ellipsoids and simulated iceballs due to the segmented iceballs 

Similarity 

coefficient 

Ellipsoid vs 

segmented iceball 

Simulated vs 

segmented iceball 

Case 1 0.723 0.764 

Case 2 0.814 0.831 

 

Figure 4-13 Hausdorff distance computed for each vertex of the segmented iceball-2 mesh. Blue represents low distances while red is used for 
large distances 

  
a) Ellipsoid vs segmented iceball b) Simulation vs segmented iceball 

 

Figure 4-14 Hausdorff distance improvement for total vertices in iceball-2 is less visible and only the average of 
boxplot is reduced. 
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Figure 4-15 Boolean operations for comparing ellipsoid in left and simulation in right. For both of them the segmented iceball was used as reference 

mesh. First row is computed for intersection, second row is difference and last row is the union of each mesh with the reference mesh. 
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4.6 Conclusion and discussion 

In this chapter we have simulated the heat propagation in the tissue while considering convective 
effect of large vessels. The results were compared to the proposed ellipsoids from the needle manu-
facturers which has a high correlation with our simulated iceballs in a tissue without vicinity ves-
sels. They also showed the important role of the vessels on the deformation of final iceballs.  

The computational time required by the solver depends only on solution space dimensions. This 
is interesting for us, as the ultimate purpose of this thesis is to integrate the simulations in the plan-
ning phase while studying different number of cryoprobes. Therefore the computational time for 
processing the bioheat simulations inside the automatic planner is independent from the number of 
cryoprobes. 

In order to assess the results we have compared the simulated isotherm surfaces with segmented 
iceballs using different methods. However visualization of 2D slices mainly illustrated the im-
provement by a better fit of simulated iceball into the segmented iceball, some quantitative metrics 
like Hausdorff distance, Dice coefficient for similarity measurement and volume differences were 
also utilized. Each of these methods highlights the improvement over using simple ellipsoids based 
on its own perspective.  

However, let us note that obtaining exploitable intra-operative images for this validation was 
challenging due to the number of required features. A dataset with pre- and intraoperative images 
was needed, pre-operative images should have been taken with contrast agent to have visible ves-
sels, and intra-operative images should show completely the iceballs and cryoprobe location. We 
needed to know the type of the cryoprobe and the procedure of cryosurgery which was performed. 
In the data we could obtain, intra-operative images had very low number of slices, between 3-5, 
with large slice thickness which caused some false positive or false negative, introduced errors and 
thus affected the results in two ways. Firstly, it was hard to have a good alignment between pre- and 
intraoperative images, and secondly due to the few number of available slices it was not possible to 
have a precise segmented iceball, which had sharp edges and augmented sizes contrasting with our 
simulated homogenous and smooth iceballs. This can potentially decreases the amount of improve-
ment in our simulation results. Quantifying this error while there is no interaction with the vessel 
only depends on the interpolation error of the iceball with 5mm slice thickness but it is more com-
plex when the shape of the iceball is deformed due to the proximity vessels. 

 However some degree of improvement was seen in the validation part but it will be essential to 
perform more comparisons on intra-operative images with different conditions of proximity to ves-
sels or different tumor sizes in further works. In order to have fair comparisons, it will be necessary 
to have more slices with thinner slice thickness for a better segmentation of the iceballs. 
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Chapter 5. Geometric constraints 

5.1 Overview  

In this chapter we describe the methods and algorithms we used to translate the planning prob-
lem into geometrical and numerical expressions to solve. In section 5.2 the structure of our frame-
work is explained, and a descriptive implementation of the constraints is presented. Then one of the 
rules mentioned in section 1.3.1 is translated as an example. Besides our lexical formulation of the 
rules, we also describe some geometric algorithms to compute the operations required in different 
stages of the planning process. These algorithms and their variations are discussed in section 5.3 
and a short conclusion follows. 

5.2 Constraints structure 

Over the past decade, our research group has developed an automatic preoperative trajectory 
planning tool under the form of a geometric constraints solver in C++, based on the MITK software 
platform, and using ITK and VTK libraries. An implementation of the planning tool in a generic 
way was very important as our group, convinced that many surgical planning problems involving 
the placement of straight surgical tools in the body were having similar issues, wanted to build a 
solver able to plan different kinds of interventions without writing specific code for each.  

The solver receives images and segmented anatomical structures along with the intervention 
rules as input data. The rules are written in a specifically defined meta-language, and saved in a 
separate XML file which is loaded when the software is run. An XML file contains rules specific to 
a particular type of intervention. If an extra constraint is needed, it just has to be written in this file.  

For cryoablation, a solution is defined by the position of several needles in the 3D space. The 
placement of one needle can be represented indifferently either by a point (i.e. the tip of the needle) 
and direction or by two points (tip and insertion point). The rules written in the XML file constrain 
the placement of the needles or express preferences of placements.  

Using the existing meta-language structure, the rules mentioned in section  1.3.1 and their corre-
sponding cost function are translated as geometric constraints. For such a translation we write con-
straints into terms (see Table 3), that can also be represented as trees of nodes (see Figure  5-1). 
Each node contains either an operator, known data, constant, or variable, based on an already de-
fined geometric universe. Constants and known data in this universe can be selected among the usu-
al types (e.g. integers, real numbers, Booleans) or composed types such as point, shape, tool, or 
solution. Among the available operators, we have: usual basic operators such as plus, minus, multi-

ply, divide, and, or, as well as complex operators as for instance distmin (minimal distance between 
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two entities), angle (angle between two entities) or volume (volume of a shape). Lastly, the varia-
bles represent either the candidate trajectory itself (toolTrajectory) or some entities linked to the 
candidate trajectory such as toolAblation (the estimated ablated shape corresponding to the candi-
date trajectory) or toolInsertionPoint (the insertion point of the candidate trajectory). In order to add 
an extra constraint in the XML file, the necessary operators must have already been defined in the 
software. They are linked with data which need to be loaded in the software (such as organs 
shapes), variables and constants to form a new term. These terms are solved using a depth-first ap-
proach.  

One of the goals of this PhD was to extend the existing solver to handle multiple needles simul-
taneously. Therefore, some structural modifications were required in the classes and their members, 
new operators and variables needed to be added in the geometric universe and also certain classes 
with new methods needed to be developed. 

As an example, let us analyze Rule risk_organX. This rule aims at minimizing the risk of inter-
secting any of simultaneously used needles with the organ “organX” (for instance vessels) we 
would like to avoid. It is translated into a soft geometric constraint expressing that the minimal dis-
tance between the trajectory of each needle and the organ has to be maximized. It is computed by 
minimizing a numerical cost function              :          in which   represents number of 

needles applied, and each needle having 5 degrees of freedom. The cost function is normalized in a 
way that the resulting values are between 0 and 1, in order to obtain comparable magnitudes to the 
cost functions of the other rules before combining them. Without this normalization, a rough com-
bination of these functions would be meaningless. 

When dealing with only one needle, the cost function simply tended to zero if the minimal dis-
tance from the needle to the organ was above 5mm, and to 1 if it was close to zero. With multiple 
needles, this function had to be modified to account for the distance between each needle and the 
organ: if the minimal distance for all needles is above 5mm then this cost function returns 0, which 
means there is no risk to that organ, and if there is at least one needle close to the organ it tends to 1. 
This leaded us to define a new operator vectordistmin, which consists in computing the distance 
between each needle of the set and a given organ and returning the minimum distance among them. 
A new variable also needed to be introduced, named multipleNeedles, expressing a set of new can-
didate trajectories having 5*N degrees of freedom. 

 Equation (5-1) specializes the rule by defining the avoidance of vessels. The associated mathe-
matical cost function to minimize is                in which X represents the set of needles. In 

order to express this function as a recognizable constraint for our solver, we used our meta-language 
and wrote a term describing this function. This term uses existing operators (divide, max, minus) 
and constant data (organ mesh coming from the images, integers 5 and 0) defined in the solver. It 
also uses the new operator vectordistmin and variable multipleNeedles. The term in XML syntax is 
shown in Table 3. The corresponding tree is developed in Figure  5-1. In the solver, we use this tree 
structure to represent the constraints. If a data or variable node is used in more than one constraint, 
it exists only once and doesn’t have to be re-evaluated several times.                                                   ( 5-1) 



Constraints structure 

71 

 

Table 3 XML formulation of the rule risk_vessel 

<soft_constraint name="risk_vessels" label="sc_risk" minValue="0" maxValue="1"> 

  max( divide( minus( 5 ,  vectordistmin (multipleNeedles, vessels) ), 5 ), 0 ) 

</soft_constraint>  

 

Another important constraint is to minimize the damage to the healthy tissue around the targeted 
tumor. Its cost function called         is shown in Equation (5-2) and described as XML format in 
Table 4. In this constraint, the volume operator is used to compute the volume of the ablated region. 
This operator can take different types of input data in order to compute the volume of different 
types of shapes, such as masks (like the tumor), meshes (like the simulated iceball), and one or mul-
tiple ellipsoids.  In order to discriminate these shapes, except existing variables like toolAblation, 
two other variables called ellipsoidSet and iceballVolume are also defined. These new variables 
determine type of the ablation region used in the planning step and toolAblation is used for compu-
ting tumor volum. All these names obey our naming conventions in the plugin.                                                          ( 5-2) 

ellipsoidSet is a simplified geometric interpretation of the ablation zone based on multiple inde-
pendent ellipsoids and iceballVolume refers to an ablation zone computed using simulation of heat 

Figure 5-1 Tree representation of the constraint risk_vessels expressing the maximization of distance to vessels: operators are in red, given 
constant data are in orange, and the variable is in blue. 
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propagation for several needles. Constraint         is normalized between zero and one based on 
the tumor volume as showed in Equation (5-2). In this normalization it is supposed that the ablated 
volume would never be more than 5 times the tumor volume. 

Table 4 XML formulation of the volume constraint 

<soft_constraint name="volume" label="sc_vol" minValue="0" maxValue="1"> 

  divide( minus( volume( toolAblation), volume( tumor ) ), mult( 5, volume( tumor ) ) ) 
     </soft_constraint> 

 

In similar ways, all the constraints we detailed in Section  1.3.1 were written in XML syntax us-
ing our operators, variables and data. One last soft constraint is added, representing the aggregative 
constraint which combines the previously defined constraints with some chosen weighting factors, 
and corresponds to the aggregative cost function       . As presented in Equation (5-3) each inner 

cost function    is multiplied by a weighting factor    that can be controlled while the program is 
running. This way, based on the surgeon’s needs or preferences, these values can be changed and 
the result is updated on the fly, without the need to modify and recompile the code. 

In the rest of the manuscript describing our experiments, we will consider only 3 soft constraints: 
the volume of damaged healthy tissue to minimize, and the distance to ribs and vessels to maximize. 
Then the final cost function is:                                                                                      (5-3) 

5.3 Required algorithms 

5.3.1 Volume optimization  

Ellipsoids 

Among all surgical rules that our solver aims at optimizing, full tumor coverage is a crucial rule 
for a successful operation. It is then essential to check this condition and withdraw placement com-
binations that do not fulfill it. The computation of tumor coverage by the expected iceball is per-
formed using different methods for the cases of ellipsoids and simulated isotherm surfaces. In the 
following paragraphs, we will explain ellipsoids case and then describe the algorithm we used for 
isotherm surfaces.  

One naïve way to check tumor coverage by an ellipsoid is to test whether each of the tumor ver-
tices is located inside the ellipsoid or not. This is a fast method and works well for small tumors that 
can be covered by a single ellipsoid. But for large tumors requiring several ellipsoids (several nee-
dle insertions) to cover the mesh, we cannot simplify by working on mesh's vertices, because in 
some cases a consequential portion of the inner part of the mesh volume can be forgotten, as illus-
trated in Figure 5-2 (a). Therefore we used a method inspired by [16] that used the voxel representa-
tion of the tumor and verified if each voxel was inside at least one of the ellipsoids. This requires 
more computational time but will not miss any portion of the tumor as illustrated in Figure 5-2 (b).  
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Algorithm  5-1 represents the pseudocode for such an approach. We improved the algorithm by 
computing the amount of the defect volume to guide our optimizer for subsequent iterations.  

While the tumor coverage condition is met, the volume of ablated healthy tissue is another im-
portant value which should be computed for each combination of the needles in order to be mini-
mized. The centers of the ellipsoids are supposed to be located inside the tumor or ultimately cen-
tered on border of the tumor. Since some portions of the ellipsoids can exceed the tumor mesh, the 
voxels located in these portions are not taken into account while browsing the tumor. A simple solu-
tion to count these voxels is to create a large cube encompassing the tumor and candidate ellipsoids, 
and start browsing its elements. A 2D illustration of this solution is shown in Figure 5-3 (a) and as 
demonstrated in this figure, the dimensions of this cube are relative to the tumor edges plus the 
largest axis of the ellipsoid. The pseudocode of this method is also presented in Algorithm 5-3. 

In this approach the number of voxels located inside the ellipsoids is computed. Depending on 
the location of needles, some voxels of the cube are shared among several ellipsoids, which should 
be deducted from the total count. This method requires a lot of computations especially for large 
tumors. In order to be more efficient in such a case, another approach is introduced which browses 
only the voxels inside the ellipsoid as shown in Figure 5-3 (b). In this method we first voxelize all 
ellipsoids and count the number of voxels inside each one, and deduce voxels shared by at least two 
ellipsoids (see Algorithm 5-2).  

The performance of these two algorithms is compared with the same voxel and tumor size. In 
this comparison a tumor with the dimensions of 20 mm is selected, the ellipsoid’s largest axis is 
chosen as 10 mm and the voxel size is 1 mm. Computation time for the first method with encom-
passing cube is 4.20 s while it takes 0.05 s for the second method to compute this volume. Using the 
second method we can compute the same volume 84 times faster than the large cube while not re-
stricting the ellipsoids to be centered inside the tumor. 

Simulated iceballs 

For the case of iceball isotherm surfaces the ablated volume is represented by only one surface 
mesh, unlike the previous case. So in order to check whether the tumor is completely covered by the 
iceball or not, a first simple method consists in verifying only if the vertices on the surface of the 
tumor mesh are located within the iceball space which makes computations faster. This is illustrated 
in Figure 5-4 (a), where tumor vertices are marked with green squares.  

However, in case the tumor is not completely covered, the minimization method needs to modify 
the configuration of needles to make it converge towards good tumor coverage. In order to super-
vise the minimization method, it is interesting to know the volume of uncovered tumor. So a second 
method is to voxelize the tumor and counts its inner voxels that are not covered by the iceball to 
compute their total volume, as shown in Figure 5-4 (a). Algorithm  5-4 shows this modification by 
defining a variable called uncovered_volume as a class member. This value is updated each time the 
tumor coverage function is called. This modification is beneficial for small tumors because of its 
low cost when browsing their voxels, while it has the advantage to compute the volume of uncov-
ered tumor simultaneously. 



Required algorithms 

74 

 

 When the tumor coverage condition is satisfied, it is essential to compute and minimize the vol-
ume of ablated healthy tissue. In this stage since the tumor is already completely covered by the 

iceball, we simply deduce the total points of the tumor from the iceball total number of points. It is 
trivial that in the proposed pipeline it is not necessary to compute volume of the ablated healthy 
tissue if the tumor is not fully covered and it will force the optimizer to move the needle tips (see 
Figure 5-4 (b)). 

 
Figure 5-2 Check tumor coverage a) vertices extracted from the tumor mesh are used for the test while in b) tumor is voxelized and the inclusion of 

each voxel is verified [16] 

  
a) Using mesh representation b) Using voxel representation 

 

Algorithm 5-1 check tumor coverage algorithm for multiple ellipsoid 
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Inputs:    

   tumor_mask:  binary mask of the tumor  

   ellipsoid_set: 3D surfaces of multiple ellipsoids 

Result:  

   healthy_ablated_volume: volume of ellipsoid_set which is outside tumor_mask 

  

tumor_center ← Get tumor_mask center 

voxel_size ← Get tumor_mask voxel size 

total_tumor_points ← Get tumor_mask total number of points 

Create large_cube_mask centered in tumor_center 

total_count ← 0, shared_count ← 0,  shared_ellispoid_number ← 0 

for each large_cube_point in large_cube_mask do 

 for each ellipsoid_mesh in ellipsoid_set do 

if (large_cube_point is inside ellipsoid_mesh) then 

total_count ← total_count+1 

shared_ellispoid_number ←  shared_ellispoid_number +1 

if  ( shared_ellispoid_number  > 1) 

shared_count ← shared_count+1 

end if 

end if 

end for 

                shared_ellispoid_number ← 0 

end for 

healthy_ablated_volume ← (tolal_count – shared_count – total_tumor_points) * voxel_size 

Algorithm 5-3 Compute ablated healthy tissue volume for multiple ellipsoids. 

Algorithm 5-2 Modified algorithm to compute ablated healthy tissue volume for multiple ellipsoids. 
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5.3.2 Crossing needles condition 

When dealing with multiple needles, a new condition needs to be fulfilled by the needles: their 
trajectories should not cross each other or get closer than a defined threshold based on practical 
considerations. In order to satisfy this condition we developed an algorithm which takes into ac-
count the distance of each pair of trajectories. A combination of these distances is returned to our 

Figure 5-3 Two proposed methods for computing the volume of the ablated healthy tissue while using multiple ellipsoids. 

Algorithm 5-4 tumor coverage algorithm for iceball 
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solver for its subsequent decisions. In Algorithm  5-5 a minimum permissive distance between tra-
jectories is represented by constant thresh. Each time this condition is violated we penalize the dis-
tance by multiplying it by a weighted value.   

 

5.3.3 Insertion zone 

In order to keep all trajectories inside the already computed insertion zone (as defined in Sec-
tion  3.3), we have implemented an algorithm based on the minimal distance of each trajectory to the 
mesh of the insertion zone to supervise the minimizer while any of the trajectories are located out-
side the insertion zone. This algorithm is shown in Algorithm  5-6. 

  
a) Tumor vertices shown as dotted are used to check tumor 

coverage. In order to compute uncovered volume, it is 
necessary to voxelize the tumor 

b) Computation of ablated healthy volume shown in yellow is 
straightforward when the tumor is fully covered 

 

Figure 5-4 Computing uncovered tumor volume and ablated healthy volume while dealing with iceball isotherm surface. 

Algorithm 5-5 check needle crossing condition 

 

Input:    

   ellipsoid_set:  set of ellipsoids available for planning,  

   trajectory_set: set corresponding trajectories 

   thresh: chosen minimal distance between needles 

Result:  

   dist: cumulative weighted pairwise distances between needles 

 

dist  ← 0, weight ← 100 

ellipsoid_num ← Get number of ellipsoid_set elements 

for i=1 to ( ellipsoid_num  - 1 ) do 

for j = i+1 to ( ellipsoid_num ) do 

pairwise_dist ← distance(trajectory_set(i), trajectory_set(j)) 

if ( pairwise_dist < thresh) then 

dist = dist + weight*(thresh -  pairwise_dist ) 

end if 

end for 

end for 
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5.4 Conclusion 

This chapter described the method in which surgical rules were converted into the lexical con-
straints and showed how new operators and operands defined while presenting examples. This lexi-
cal framework enables us to add new surgical rules or modify the existing ones using operators, 
variables and constants already available in the geometric universe. This will extend the software 
for its use in new applications or experiments without manipulation of the compiled binary file.  

Then several algorithms required in the next chapter for optimization processes were discussed. 
These algorithms concern the computation of different volumes, and constraints like distance to the 
insertion zone or distance to other needles. Volume computations were done using multiple ellip-
soids or simulated iceball and in each case the volume of covered tumor or volume of ablated 
healthy tissue was calculated.  

As these algorithms are integrated in the optimization process and should be computed in each 
iteration, it was essential to implement these computations as fast as possible. For this reason, dif-
ferent algorithms were implemented and faster ones were proposed. For computing the simulated 
iceball  volume, considering edges of the tumor instead of all the tumor points completed faster and 
for the ellipsoids volume computation, sweeping ellipsoids voxels in contrast to a large encompass-
ing cube was more beneficial.  

 

 In the last part, two new constraints are introduced which are essential while working with mul-
tiple needles. The first one computes a cumulative weighted distance of all pairs of needles in order 
to make sure that none of the needles will cross each other in the placement phase. A weighting 
factor is used to penalize the violation of this constraint. For the purpose of keeping all trajectories 
inside the insertion zone in the second constraint, a cumulative weighted distance of each trajectory 
to the insertion zone is computed. In each case the corresponding algorithm was also presented for 
the reader to follow the required steps. 

 

  

 

 

 

Input:             

   insertion_zone: pre-computed insertion zone created after applying hard constraints, 

   trajectory_set:  set of corresponding trajectories 

Result:          

   dist: cumulative weighted distance of needles to the insertion_zone 

 

dist  ← 0, pairwise_dist ← 0, weight ← 100 

traj_num ← Get number of trajectory_set elements 

for i=1 to ( traj_num ) do 

                   pairwise_dist ← distance(trajectory_set(i), insertion_zone) 

                   dist = dist + weight * pairwise_dist 

end for 

Algorithm 5-6 Proposed method for verifying placement of the needles regarding to the insertion zone 
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Chapter 6. Planning and optimization 

6.1 Overview 

Now that we introduced in Section 4.2 the numerical method to simulate accurately an iceball in 
the presence of vessels, and in Section 5.2 the geometrical constraints that apply on the positioning 
of multiple needles, this new chapter covers the core of the planning system. In Section 6.2 basic 
concepts of optimization are shortly described. Then, using these concepts, in Section 6.3.1 a spe-
cific formulation of the planning problem is presented in addition to the constraints. Section 6.3.2 
summarize the experimented optimization approaches with their most suitable parameters to the 
planning problem and the final results based on these methods are shown in Section 6.4. This part 
describes the characteristics of experimental data and introduces several possibilities for solving the 
planning problem. In the following section the best method is validated in three different ways, and 
this chapter is concluded in the last section. 

6.2 Introduction 

The problem of multiple needle placement for tumor ablation can be formulated as an optimiza-
tion problem with several parameters as input variables like needle’s location and orientation, num-
ber of needles, needle’s type and simulation time. Moreover, all the surgical rules discussed in Sec-
tion 1.3.1 can be translated into the formula as non-linear constraints. Thus the best available plan-
ning is equivalent to the optimal solution of its corresponding optimization problem. For this reason 
Sections 6.2.1 and 6.2.2 review the logic and basic concepts of the optimization methods we exper-
imented. 

6.2.1 Optimization problem 

By definition an optimization method aims at finding a desired solution among all possible solu-
tions in an optimization problem by minimizing or maximizing a pre-defined objective function. 
The first step in any optimization problem is to formulate the physical problem into a mathematical 
model. This model should precisely describe the actual problem and any discrepancy between these 
two leads to final unexpected results. A non-linear single-objective optimization problem with ine-
quality constraints is generally formulated as:                      subject to             ( 6-1) 

Where    is the objective function,      is a vector of input variables,    represents non-
linear constraints in the problem and   is the acceptable space for the problem.  

After the mathematical formulation of the problem as an objective function   is achieved, an ef-
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ficient numerical approach for optimizing it needed to be found, since any selected optimizer tries 
to evaluate the objective function for thousands of times [64, 65]. As most of the engineering appli-
cations need to use extensive computational methods like finite difference or finite element solvers 
in their objective function, which is the case of our bio-heat propagation computations, finding a 
tradeoff between accuracy and speed was essential.  

The selection of the appropriate optimizer for a specific type of optimization problem is another 
important step that increases the chances of converging to the desired optimal results. Many optimi-
zation algorithms exist in the literature and no specific algorithm is widely applicable to all prob-
lems, as explained by Wolpert et al. [66]. Optimization methods can be classified in several ways 
based on the problem type or the solver characteristics including gradient-based (or derivative-
based methods) and gradient-free (or derivative-free methods). Optimizers in the first group use the 
derivative information in their computations like steepest descent and Gauss-Newton methods. The-
se optimizers are not suitable for an optimization problem where the objective is discontinuous. 
Conversely, optimizers in the second group like the Nelder-Mead downhill simplex method [67] 
only utilize the values of the objective functions and can be used when the objective is discontinu-
ous and no derivative can be computed. 

In another approach, methods can be classified into trajectory-based or population-based. A tra-
jectory-based algorithm starts with a single initial point and makes a path towards a minimum as the 
iterations and optimization process continue. A popular example is the well-known simulated an-
nealing method [68]. Population-based algorithms such as genetic algorithm [69] or particle swarms 
method [70, 71] use several solutions and proceed in multiple paths. 

Algorithms can also be classified as deterministic or stochastic. Deterministic methods have no 
random nature and behave in a pre-defined way. Such algorithms will always reach the same final 
point when starting with similar initial point. Hill-climbing and downhill simplex are good exam-
ples of deterministic algorithms. If the objective function of an optimization problem is highly non-
linear and multimodal, these algorithms are not suitable due to its local nature. On the other hand, if 
there is some randomness in the algorithm, the algorithm usually obtains different results in each 
run of the algorithm, even though the initial point remains the same. However, using a sufficiently 
large number of random drawings, these algorithms are supposed to converge statistically towards 
the same minimum. Genetic algorithm is an example of such stochastic algorithms. 

Several types of randomness exist in the stochastic algorithms. For example, a simple and effi-
cient method is to add a random starting point to a deterministic algorithm. The hill-climbing meth-
od with random restart is an example. This simple technique is easy to implement and also efficient 
in most cases. A more sophisticated way to create randomness in an algorithm is to use randomness 
inside particular components of an algorithm, which in such a case is called a heuristic algorithm 
[72, 73]. The genetic algorithm uses randomness for crossover and mutation components in terms of 
a crossover probability and a mutation rate. 

From another point of view, algorithms can be classified into global and local methods. Local 
search optimizers, like simplex method, typically converge to a local solution, not necessarily the 
best solution. Such algorithms are often deterministic. They have the drawback of getting often 
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stuck in local optima, while it is usually desired to find the global optimum for any given problem. 
In most cases, modern heuristic algorithms are designed for global optimization, though not always 
successful or efficient.  

For computationally expensive, noisy or non-differentiable problems, using the actual objective 
function is not necessarily the best practice. In such cases, the surrogate-based optimization algo-
rithms may be useful. In such approaches, the direct optimization of the objective function is substi-
tuted by iterative updates and optimizations of a low fidelity model of its values over the space 
called surrogate [74]. The surrogate model is constructed from the sampled evaluations of the origi-
nal objective function: it is assumed to be a cheap, smooth, and easy to optimize substitute of the 
objective function, while being reasonably accurate to generate a good prediction of the function’s 
optimum.  

After choosing a suitable solver among these above mentioned categories, one should set the in-
ternal parameters of the solver in order to fit the problem characteristics at best and increase the 
robustness of the algorithm for this type of problem. The different methods provide many simple or 
sophisticated parameters to set beforehand. They should be considered while selecting the optimizer 
for a specific problem. In practice, even with the best possible algorithms, the optimal solutions 
might still not be achieved, as most of the non-linear global optimization problems are NP-hard and 
no efficient solution (in the polynomial sense) exist for them. So the main challenge is to find an 
optimization algorithm to obtain the best possible solutions in all cases, in a reasonable time (with a 
minimum number of iterations), while being able to define good parameters that work for any pos-
sible experimental case without the need of adjusting them for each case. This is the aim of Section 
6.4. 

6.2.2 Constraint handling 

Constraint handling methods can be classified into generic methods that do not use the mathe-
matical structure of the constraint, and specific methods that are only applicable to a specific con-
straint type. Generic methods, like the Lagrange multiplier method mostly applied to equality con-
straints and the penalty function method [75] can be simply used in different problems with no 
change to the algorithm. But as generic methods, their performance can be suboptimal. However, 
methods like the cutting plane, the gradient projection and the reduced gradient [76] have more ac-
curate results, but they are applicable to specific problems with convex functions and to problems 
having few variables, due to their computational burden with large number of variables. 

 Because of the above restrictions in constraint handling methods, in this thesis a nonlinear con-
straint handling technique based on the penalty function method is used. The penalty terms are 
combined with the actual objective function in such a way that while comparing two feasible solu-
tions, the one with better objective function value is chosen, when one feasible and one infeasible 
solution are compared, the feasible solution is chosen, and in a case with two infeasible solutions, 
the one with smaller constraint violation is chosen. 

 The penalty function method [77] for general optimization constraints needs to modify the ob-
jective function with a penalty term which depends on the amount of constraint violation       
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 . The original optimization problem in (6-1) is thus modified as below, where     is a penalty 
parameter:                      ( 6-2) 

If the penalty parameter is iteratively increased (tending to infinity), the solution of (6-2) can 
converge to the original problem in (6-1). However, in certain cases, a finite (and fixed) value of the 
penalty parameter   results in the correct solution and is called the exact penalty [77]. By adding the 
penalty terms to the objective function, the modified cost function around the solution is not smooth 
[77], and thus the amount of non-linearity for the corresponding optimization problem increases. In 
such a case, the derivative-free optimization methods can be appealing.  

The general definition of constraint term   , where   and   are the indices that refer to inequal-
ity and equality constraints is:     ∑    (     )  ∑ |   |           ( 6-3) 

It should be noted that in our problem we have only inequality constraints. In the formula men-
tioned above the search includes both feasible and infeasible points. Such optimization methodolo-
gies in which the optimum can be approached from outside the feasible region are called exterior 
methods [78].   

6.3 Surgical planning formulation   

6.3.1 Problem formulation 

The optimization process allows to refine the number and placement of the needles (3 transla-
tions and 2 rotations for each) to minimize a defect function. It is based on an iterative procedure 
including the bioheat equation resolution or computation of specific volumes for multiple ellipsoids 
at each step. In the case of simulated iceballs, every resolution begins with the assumption that an 
initial placement of the cryoprobes is given. Then, the bioheat equation can be solved. The resulting 
temperature field is processed to evaluate the defect function providing a quantitative estimate of 
the mismatch between the frozen tissue and the target tissue. Equations (6-4) – (6-8) show defini-
tion of the cost function and its related functions.     volume                vessel        vessel         ribs        ribs                       ( 6-4)         ∫  healthy                          ( 6-5)  healthy(   )  {     if      ̃  and   is in the healthy region       if      ̃  and   is in the healthy region

            ( 6-6) 

      vessel                     vessel                        ( 6-7)       ribs                     ribs                         ( 6-8) 

Where   represents a set of simultaneous trajectories with   elements which   is the number of 
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needles used in the operation. Each element of this set is taken from   which is a complete set of 
possible parameters for needle placement (3 parameters for translation and 2 for orientations). Fi-
nally        presents an arbitarary point inside the tissue.        |                          ( 6-9) 

This objective function is subjected to several non-linear hard constraints which have been stud-
ied in details in previous chapters. Computation of several hard constraints in each iteration is un-
necessary once there is one constraint which is already violated. Thus a sequential resolution of the 
hard constraints is reasonable. For this reason in the first place we prioritize all the constraints and 
then added a regularization factor (bias value) to each constraint in order to keep its output value in 
a pre-defined range. In this way the consequent constraints are computed only if all their previous 
constraints were satisfied. In Equations (6-10) – (6-14) an aggregative sum of three hard constraints 
and its related functions as well as their weighting and regularization factors are presented.     Constraint    Constraint                                                        ( 6-10) 

Constraint    ∑     |        |                             ( 6-11) 

Constraint       ∑ ∑           ( ̃      (     )  )                                         ( 6-12) 

Constraint                   ∫            bias                      ( 6-13)  tumor(   )  {     if      ̃  and   is in the tumor       if      ̃  and   is in the tumor
                                    ( 6-14) 

Where    is a cumulative sum of all hard constraints in our problem;              will en-
force the trajectories to locate in a pre-computed insertion zone;                 is the condition 

which avoids solutions with too close or crossing trajectories. In this constraint  ̃ is the minimum 
distance between two trajectories. The last term in Equation (6-10) checks whether the tumor is 
fully ablated or not,                  express the penalty weights and       ,          ,              are regularization biases for each hard constraint. Finally similar to the Equation (6-2), 

this optimization problem including all its non-linear hard constraints can be formulated as follows:                     ( 6-15) 

This modified formula will be used as the optimization cost function afterwards. In order to 
normalize the values of this cost function, all the weights and biases are chosen in such a way to 
restrict the cost function value between 0 and 100. This range is divided into several bounds which 
are regulated for each constraint depending on how all weights and biases are chosen. For the com-
parisons in following Sections 6.4 and 6.5 we have chosen the bound [55, 100] for possible objec-
tive function values obtained by violating the insertion zone and crossing needles constraints. The 
bound [25, 55] is selected for possible values of objective function while the tumor coverage con-
straint is violated and finally the least bound [0, 25] will refer to the possible values for the soft con-
straints in Equation (6-4). Inner terms in this equation are already normalized as discussed in Sec-
tion 5.2 and here are scaled using their weights to fit this bound. 
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6.3.2 Optimization methods 

Methods used in this chapter are selected based on the special properties of the objective func-
tion and hard constraints. The objective function of the planning problem is multi-modal and non-
linear while the hard constraints are discontinuous, non-smooth and there is no explicit formula 
available for them. Therefore, all of the optimizers are selected among derivative free methods with 
local and global characteristics in accordance to a classification by Rios et al. [79]. Specific proper-
ties of each selected method are shown in Table 5. Five optimizers are selected among SCOLIB6 
optimization library and one method for surrogate-based optimization is taken from the DAKOTA5 
optimization library.  

SCOLIB6 (known also as COLINY) is a collection of non gradient-based optimizers. These op-
timizers include coliny_cobyla, coliny_direct, coliny_ea, coliny_pattern_search and coliny_solis-
wets which will be shortly introduced in this section. Each method uses a specific stopping criterion 
based on its optimization logic, which can be a maximum number of iterations or a threshold based 
on a relative change in the objective function value between successive iterations. For our experi-
ments, the maximum number of iterations was set to 10,000 and for the stochastic methods each 
solution was repeated five times and the most frequent or the average solution was selected.  

Each optimizer requires to set several variables or to select options among the available parame-
ters. There is no unique configuration suiting all optimization problems and one should set them 
according to the problem in hand. So, in a preliminary step several test problems have been solved 
by each optimizer and continuously changed the parameters. The goal was to find the parameters 
that produced the best solution while keeping their efficiency in all the tests. All methods and pa-
rameter specification names used in the following tables are directly taken according to their source 
naming conventions. 

Table 5 Classification of selected methods based on their properties 

Method 
 local deterministic unconstrained direct gradient based 
 global stochastic constrained model based derivative free 

coliny_cobyla      
coliny_direct      
coliny_pattern_search      
coliny_solis-wets      
coliny_ea      
SBO_trust      

 

In the following section a short description of each method we chose to experiment is presented 
briefly along with the selected parameters. 

coliny_pattern_search 

In each iterate of this method a pattern is generated from a set of points and the location of im-
                                                                        

5
 https://dakota.sandia.gov/ 

6
 https://software.sandia.gov/trac/acro/wiki/Packages 
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proved points in the design space is determined. Traditional pattern search methods use a fixed pat-
tern to find improvements of the current iterate but the SCOLIB pattern search method implemented 
a more general strategy. It controls how the search pattern is generated, as well as how it should be 
evaluated. The form of the pattern search is controlled by the pattern_basis parameter. Coordinate 
basis is selected for the pattern_basis in which the pattern search uses the forward or backward 
points in each coordinate direction. The initial_delta and threshold_delta parameters provide the 
initial pattern size and the minimum size of the pattern to terminate the algorithm and they are re-
spectively set to 1 and 1e-8. This distance is paved with different step lengths which can be expand-
ed or contracted. The value of contraction_factor is set 0.9 which prevents this method to converge 
very fast. It can also expand the step length by the value 1/contraction_factor. exploratory_moves 
controls how a new pattern is adapted which is set to adaptive_pattern in our tests and will change 
the pattern each time an improvement point is found. 

coliny_solis-wets  

This algorithm is a simple greedy local heuristic method for variables in the continuous domains. 
Trial points are generated using a multivariate normal distribution, and then failed trial points are 
reflected to different directions of the current point in order to find a descent direction. In many of 
the optimization problems, a greedy method can’t produce an optimal solution, but it can converge 
to the solutions approximating the global optimum. This method accepts the parameters like dynam-
ic rescaling of the step length, initial_delta, threshold_delta and contraction_factor which are set 
similar to the pattern-search method. 

coliny_cobyla 

COBYLA is the abbreviation of Constrained Optimization BY Linear Approximations which is 
an extension to the Downhill simplex method in order to handle linear or nonlinear constraints. The 
COBYLA method applies linear approximations to the objective function and approximations are 
computed using the linear interpolation at N+1 points among the input variables with N equals to 
the number of variables. The vertices of a simplex is generated from these interpolated points. The 
step length modifies the size of the simplex which is automatically reduced from an initial_delta = 
0.5 to the threshold_delta = 1e-8. 

coliny_direct 

The DIviding RECTangles (DIRECT) optimization algorithm is a non gradient-based global op-
timization method which tries to merge local and global search characteristics. Local search is done 
in dominant regions of the search space while global search is used for unexplored regions. DI-
RECT method adaptively subdivides the feasible space in the proximity of a good solution. A sub-
region is subdivided if its size relative to the largest subregion is less than glob-
al_balance_parameter which is set to 0.7 in the tests. Intuitively, this makes large subregions to be 
subdivided prior to the small subregions. The local_balance_parameter checks whether the smallest 
subregion should be subdivided or not and a small value like 1e-8 is set in order to have a good 
convergence. 
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coliny_ea 

Evolutionary algorithms are inspired from natural selection and reproduction processes and try to 
modify the parameters in order to ensure the survival of the specific samples in large populations. 
These algorithms are constructed as below: 

1. In the first place an initial population should be randomly selected then function evalua-
tions are computed for these individuals 

2. Parents selection is done based on a relative fitness metric 

3. Perform crossover and mutation to generate new individuals among those parents 

4. For two selected parents a crossover should be applied with a fixed probability  

5. If using crossover, mutation also should be applied to the newly generated individuals in 
previous step with a fixed probability 

6. If no crossover is applied, then a mutation with a fixed probability is used for a single se-
lected parent 

7. In this stage, function evaluations are computed on the new individuals 

8. Then replacement is done to create the new population. 

Finally one should return to the parent selection step and continue the algorithm until the con-
vergence criterion is met. The specification of used parameters in the experiments is shown in Table 
6. 

Table 6 Specification of input parameters used for the coliny_ea method 

initialization_type unique_random 
population_size number of variables 
fitness_type merit_function 
crossover_rate 0 
mutation_type replace_uniform 
mutation_rate 1 
replacement_type elitist 

 

SBO_trust 

Surrogate based optimization uses different types of approximation to build a low fidelity surro-
gate model of the objective function. It is regularly updated using data from a "truth" model. This 
surrogate model is the interpolation or regression of the truth model which is a high-fidelity simula-
tion model. The surrogate-based methods aim at reducing the total number of truth model simula-
tions and to smooth noisy data with simple analytical functions. Some existing global and local sur-
rogate methods were tested on our planning problem. In global methods the surrogate model is up-
dated with each true function evaluation so the required time for building the surrogates is an over-
head to our computational time and it is annoying while working with more than 20 variables. As an 
example for 42 variables it takes 60 seconds to build the global surrogate in each iteration. We also 
conclude that the results of minimization in different tests were comparable to a less extensive sur-
rogate method called surrogate local trust region method. Surrogate local trust region method re-
stricts the range of variables to a trusted region in each iteration and builds a local surrogate of the 
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objective function using samples drawn from that region. Afterwards a minimization method is used 
to find the optimal point of the surrogate and based on the success of that point comparing to truth 
model, the trust region changes its center, shrink or expand and repeats this process till the size of 
trust region is less than a threshold. Finally, specification of our used parameters in the experiments 
is presented in Table 7. 

Table 7 Specification of input parameters used in SBO_trust method 

trust_region   
 initial_size 1 
 minimum_size 1 e-10 
 contract_threshold 0.2 
 expand_threshold 1 
 contraction_factor 0.8 
 expansion_factor 3 

FRCG conjugate gradient optimiza-
tion method 

  

 max_function_evaluations 200 
 convergence_tolerance 1e-8 

surrogate_type   
 Interpolation_method gaussian_process or kriging 
 correction_method additive zeroth_order 

sampling   
 number of samples number of variables 
 sample_type latin hypercube sampling 

6.4 Experimental study 

In this section different tests are done to compare the speed and convergence of the selected 
methods. The tests are presented by order of increasing complexity. The problem complexity de-
pends firstly on the optimization parameters, which are the number of variables (variable space). In 
our case, the number of variables depends on the number of needles and the degrees of freedom of 
each needle. The effect of these parameters has been investigated by increasing the tumor size 
which impacts the minimum number of required needles to completely cover the tumor, thus the 
number of variables of the optimization. Therefore, in a first study the goal is to cover the tumor 
regardless of surrounding organs in order to observe the effect of the search domain on optimization 
results.  

The second parameter which increases the complexity of the problem is the objective function 
characteristics, like the degree of nonlinearity or non-smoothness. In our problem, adding obstacles 
constraints or avoiding needles crossing constraint changes the shape of the objective function. 
Moreover, the observance of hard constraints by using penalty functions to ensure needles inclusion 
in the insertion zone or a minimum pairwise distance between needles increases the nonlinearity 
and discontinuity of the objective function and consequently makes the problem harder to solve. 
Thus a second study investigates the effect of the mentioned constraints on the optimizer’s behav-
ior. In order to perform these ordered tests, we have used different cases with specific properties as 
described in Table 8 for our tests. 
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Table 8 Specification of properties for different cases used in the tests 

Case number 
Tumor 

size 

Insertion 
zone com-

plexity 

Distance to 
vessels 

case#1 small simple far 
case#2 medium simple far 
case#3 medium intermediate close 
case#4 medium intermediate far 
case#5 large simple far 
case#6 large complex far 

6.4.1 Tumor coverage problem 

We have used three cases among our six sets of prepared data (case#1, case#4 and case#6) with 
an increasing complexity to investigate the speed and convergence of optimizers in this section. For 
each case, planning started with a low number of needles and it was increased if no method was 
able to converge to a good minimum. No other hard constraint except full tumor coverage was con-
sidered in this experiment and all the volume computations were done using simplified ellipsoids as 
discussed in Section 5.3.1. In case#1 the tumor volume is the smallest with 1.050    . In order to 
ablate this tumor the needle model providing the smallest iceballs was selected among the different 
available needle types: IceSeed from Galil Medical. With this model, the volume of the -40°C ellip-
soid is 1.473    . While the volume of the ellipsoid is larger than the volume of the tumor, it was 
not sufficient to cover the tumor due to the tumor shape as illustrated in Figure 6-1.  

Figure 6-1 One needle ellipsoid can’t cover the tumor with a smaller volume due to the non-homogeneity of tumor shape 
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In order to fully cover the tumor, the planning was experimented with two and three needles for 
comparing the methods behavior. It is visible in Figure  6-2 (a) that SBO-trust and Pattern-search 
could cover the tumor in less than 300 iterations while EA needed more than 1000 iterations for this 
task. Direct method rapidly started to reduce the objective function value but it got stuck in a local 
minimum for the rest of its iterations. The same situation happened for the Solis-wets which is a 
greedy method. Cobyla had the worst behavior, its speed was lower than other local search methods 

Figure 6-2 Profile of the objective function values while covering the tumor with two different needle numbers. Speed and accuracy of the 
methods are compared using this profile. 

 
a) Six optimizers for Case#1 with two needles 

 
b) Six optimizers for Case#1 with three needles 
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and it converged into a local minimum close to its initial point. In Figure  6-2 (b) a similar trend is 
shown for the case of three needles but this time the Solis-wets was able to cover fully the tumor. 
Minimum damage to the healthy tissue is one of the main goals in the planning procedure so after 
covering the tumor, the minimum amount should be found. Table 9 represents a comparison among 
the four most successful methods based on the objective function value in the bound [0, 25]. The 
structure of the objective function value bounds is already described in the end of Section 6.3.1. 
However adding the third needle helped Solis-wets method to completely cover the tumor but in 
average tended to increase the volume of damage to the healthy tissue.  

Table 9 Comparison of four most successful methods after convergence based on the optimizer’s objective function value 

method Two needles Three needles 

Pattern-search 7.80 7.75 

SBO-trust 8.39 11.37 

EA 8.07 8.42 

Solis-wets - 9.08 

 

In a similar way, experiments were performed on case#4, which has a medium tumor of 2.052    . As for the previous case, planning was done using different numbers of needles in order to 
compare the convergence. In this case, four IceSeed needles were required by the optimizers to ful-
ly cover the tumor. Experiments were also performed on case#6 with a big tumor of 3.645     us-
ing seven needles. Figure 6-3 (a) and (b) illustrates the profile of all six optimizers for these cases 
with a trend similar to the previous experiment in which EA converges after a lag. 

The interesting point in these tests highlights the effect of the increase in the input variables as 
the tumor size increase and the number of required needles increase, each optimizer needs more 
number of iterations to cover the tumor see Table 10. 

 

Table 10 Minimum number of iterations for the tumor coverage problem is increased in cases with higher complexity  

Method 
Min iterations in 

case#1 
Min iterations in 

case#4 
Min iterations in 

case#6 
Pattern-search 173 539 815 
SBO-trust 145 553 1472 
Solis-wets 126 937 1930 
EA 1048 3464 - 
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a) Result of six optimizers on the case#4 with four needles 

 
b) Result of six optimizers on the case#6 with seven needles 

 

Figure 6-3 Comparing the profile of optimizer’s objective function value in the tumor coverage problem for two cases 
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More experiments on covering larger tumors using IceSeed needles convinced us to use needle 
types providing larger -40°C iceballs as IceSeed is the model of needle with the smallest iceball. An 
example of using larger needles will be discussed in the next section.    

6.4.2 Planning in presence of all constraints 

In this section we are interested in ablating the tumor in presence of all the constraints discussed 
in the previous chapters like obstacles and crossing needles. The selected optimization methods in 
this part were applied on Equation (6-15) that solves the objective function while checking hard 
constraints satisfaction at the same time. The experimental data used in this section were again 
case#1, case#4 and case#6 in order of increasing complexity and with the same number of needles 
of the previous section. The insertion zone for each case was already computed.  

As shown in Figure 6-4 (a) for case#1 only Pattern-search and Solis-wets were able to cover the 
tumor while satisfying the hard constraints and other methods were trapped in local minima. In this 
case the optimizers started with a low objective function due to a large insertion zone and low num-
ber of needles (this is important because the penalty terms are defined as accumulative distance 
error).  

Table 11 Comparison of speed and convergence for successful search methods with and without the constraints 

method 
no constraints 

min value /min iterations for 
tumor coverage 

with constraints 
min value /min iterations for 

tumor coverage 
Pattern-search 7.75/173 11.88/237 
Solis-wets 9.08/126 9.32/517 

 

When comparing these results with the experiment of Section 6.4.2, we can see that optimizers 
needed more iterations to converge (lower speed) and the convergence was reached with a higher 
objective function value (see Table 11). This trend is similar for case#4 (see Figure 6-4 (b)), for 
which only one method was successful, and for case#6 (see Figure 6-5) for which it was not possi-
ble to cover the tumor while keeping the trajectories within the insertion zone. For case#6, planning 
with eight needles has also been investigated for this case with no success to fully cover the tumor. 

This situation is caused by a tight and discontinuous insertion zone in case#6 as shown in Fi-
gure 6-9 (a) while it was possible to cover the same tumor with a wider insertion zone as in Fi-
gure 6-9  (b). But in order to ablate such a tumor, the surgeon should use a needle with a bigger 
iceball. So in Figure 6-5 (b) four IceSphere type needles were chosen to cover the tumor with a very 
good convergence 4.81% and a minimum number of iterations of 280 which seems fast and accu-
rate. 
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Figure 6-4 Profile of the optimizer’s objective function value in presence of all constraints. Similar needle numbers and optimization methods 
are used in contrast to the cases with only tumor coverage constraint, but they are named and sketched differently for comparison purposes. 

 
a) Six optimizers for the Case#1 with 3 needles 

 
b) Six optimizers for the Case#4 with 4 needles 
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Another interesting point is the effect of the weighting terms in Equation (6-4). As discussed in Sec-
tion 3.3, the insertion zone is defined as the subset of the skin containing all insertion points allow-

 
a) Six optimizers for the Case#6  with 7 needles 

 
b) Six optimizers for the Case#6  with 4 larger needles 

 

Figure 6-5 Effect of needle size on the solution of the hard problem. Profile of the objective functions shows that in a 
complex problem with all constraints and large tumor increasing the ablation zone can lead to a solution. 
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ing for feasible trajectories, i.e. satisfying the hard constraints. Among the hard constraints, the ob-
stacles avoidance is treated by keeping only portions of the skin from which any straight line to-
wards the barycenter of the tumor does not cross any obstacle. This hypothesis is not precise as the 
needles tips can be placed in tumor points other than the barycenter. The amount of error depends 
on the displacement from the barycenter and the geometry of the obstacles. In order to fix this prob-
lem as already mentioned in section  3.3 a term is added to the objective function value that counts 
the distance to the obstacles like ribs and vessels.  

Figure 6-6 illustrates two successful solutions for the planning of case#4. In both cases, full tu-
mor coverage is achieved and all trajectories are inside the insertion zone. For the right image, 
weight  vessel in the term       vessel in Equation (6-4) was set to 0.0, resulting in a foremost needle 
closer to the vessel, while it was set to 0.2 for the left image where we can see that the foremost 
needle is farther from the vessel. 

6.4.3 Influence of the initial point on optimization 

Many optimizers require a good guess for the initial point to converge accurately or for a fast 
convergence. We evaluated the effect of the initial point on different optimizers. Several points 
were selected to initiate each optimization process and finally the results of an initial point in mid-
dle of the variable bounds were compared to the worst initial point located outside the tumor’s 
bounding box. Case#2 is used in this experiment which has a medium tumor size to provide enough 
space for changing initial points inside the tumor and a simple insertion zone in order not to be af-
fected by the insertion zone shape.  

Cobyla, Pattern-search and Solis-wets were the most sensitive to the choice of initial point and 
trapped into local minima. They could not converge to the same minimum when using different 
initial points. These final objective function values are presented in Table 12 and illustrated in Fi-
gure 6-8. Direct method does not use a user defined initial point so, it is computed once in order to 
show its behavior in this new case. SBO-trust and EA were the most interesting, converging differ-
ently but towards a similar minimum. The convergence was obtained with more iterations, as shown 
in Figure 6-8. This image is zoomed and the horizontal axis is not logarithmic in order to intuitively 
show the lag of convergence between two conditions for EA and SBO-trust. Based on these obser-
vations SBO-trust, EA and Direct can be considered as more robust to the initial point variances 
than the other three methods. 

Figure 6-6 Changing the soft weights in the objective function results in crossing the obstacles while trajectories in both cases are inside the 
insertion zone. 

  
a) Weight of distance to vessel set to 0.2 b) Weight of distance to vessels set to 0.0 
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Figure 6-8 The profile of optimizers with two different starting points. Dashed lines illustrate the objective function profiles when using the 
worst starting point and they are labeled with Optimizer_name2 in contrast to solid lines which were initialized in the middle of their variable 

bounds. 

Figure 6-7 The effect of insertion zone complexity on the behavior of different optimizers is investigated. In this image solid lines demonstrate the 
trends of optimizer’s objective function for simpler case#5 while dashed lines refer to the case #6 
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Table 12 The effect of initial point variation on the optimizer’s final objective function value 

Method Initial point in  
the middle of the bounds  

Initial point out of the tumor 
bounding box 

Cobyla 32.76 50 
Pattern-search 4.44 50 
Direct 29.45 29.45 
Solis-wets 3.77 49.95 
EA 5.27 6.84 
SBO-trust 4.93 5.58 

6.4.4 Influence of the insertion zone on the optimization 

In order to demonstrate the effect of the insertion zone on the optimization results, we compared 
the planning output for case#6 with two different placements of the same tumor shape and size. We 
created a synthetic case called case#5 by displacing the tumor to a posterior region of the liver 
which has a lower vessels density and a lower number of blocking ribs. In Figure 6-9 (b) the com-
puted insertion zone is illustrated for these two conditions with a larger insertion zone and fewer 
numbers of discontinuities for the second one. After computing the insertion zone for both cases, 
different optimizers are used to compute the best planning solutions in presence of all the con-
straints. In Figure 6-7, the trend of each optimizer is drawn for both cases #5 and #6. None of the 
optimizers could cover the tumor in case #6 as it was discussed before in Section  6.4.2 for seven 
needles and small needle size. Then by repeating the experiment for the case#5 with similar tumor 
and needles but different insertion zone the Pattern-search method was able to successfully reach a 
good minimum which is due to the smoother insertion zone in this case. Figure 6-7 is zoomed into 
the first 3000 iterations and sketched on a non-logarithmic scale to have a better view on the chang-
es between two conditions while the rest is more or less stable. In this figure, Pattern-search, Direct, 
EA and Solis-wets are the methods which have changed their convergence due to the insertion zone. 
For the SBO-trust the convergence did not changed between these two conditions. Table 13 pre-
sents the minimum values found by different optimizers after their convergence reached in two 
conditions of insertion zone. 

Figure 6-9 Computed insertion zone for two cases. Insertion zone in (a) shows a more complex and discontinuous solution space comparing 
to (b) 

  
a) Case #6 insertion zone b) Case #5 insertion zone 
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Table 13 Final objective function values for five optimizers found in two different conditions of the insertion zone 

Method Insertion zone case#5  Insertion zone case#6  
Pattern-search 6.93 27.25 
Direct 32.12 38.34 
Solis-wets 27.29 50.52 
EA 27.31 27.91 
SBO-trust 36.45 36.45 

6.4.5 Hybrid opimization and multiple output 

The goal of planning tools such as ours is to assist the surgeon to find a good solution but still 
customizable for his experience and skills. In order to fulfill this target, it is essential to propose 
several optimal or near-optimal solutions to the surgeon. In order to produce such distinct proposi-
tions, we have defined a hybrid optimization method, using firstly a global method like genetic al-
gorithm, building separate clusters among the best solutions Figure 6-10 (a), and then using a local 
optimization method in each cluster. For this purpose, an Euclidean distance metric was used to 
check the distance between computed best solutions by the global method. The centers of these 
clusters were chosen from the best answers of the global search. They were rejected if they are clos-
er than a threshold to other centers. After clustering the solutions, a local optimization method is 
applied to find the local minima in each distinct cluster. Pattern search method was used, as it has 
shown to be our best global method so far, for the planning of case#4 in presence of all the con-
straints. 

The distances between the optimal solutions of the distinct clusters are shown in the upper trian-
gle of  

Table 15. These values are normalized for each direction and also for the number of needles, for 
example if distance between solution one and two is 2 mm, it means that on average there is 2 mm 
distance in each direction x,y and z for any corresponding needle. The angular distance is presented 
in the lower triangle of  

Table 15 and it is also normalized for each needle and each direction of          .  

Among these solutions, six could converge to a good local minimum which covers completely 
the tumor as shown in Figure 6-10 (b). Finally the planning using this hybrid method could con-
verge to a better solution compared to the results of the best optimizer for case#4 shown in Fi-
gure 6-4. The value of objective function was lower as presented in Table 14.  

Table 14 Optimal value of the objective function improved while using the hybrid method 

Method Pattern-search Hybrid 
Optimal value 5.65 4.23 
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Table 15 Angular and translational distances of 8 distinct solutions computed after the global optimization. All distances are normalized for each 
needle and each direction 

Needle 

lable 

Distance to needles (mm) 

#1 #2 #3 #4 #5 #6 #7 #8 

A
n

g
lu

la
r 

d
is

ta
n

ce
 

(d
e

g
re

e
) 

#1  1.5 1.6 2.5 1.1 2.1 1.1 1.6 

#2 21.5  2.3 1.8 1.9 2.1 2.3 2.4 

#3 16.3 23.9  2.7 1.5 1.8 1.7 2 

#4 30.7 29 34.3  2.6 2 3.1 3.1 

#5 21.5 16.4 20.7 27.3  2 1.7 1.9 

#6 22.3 10.9 28.4 31.3 22.7  2.3 2 

#7 6.6 20.2 16.2 32.9 20.5 21.6  1.1 

#8 11.9 17.4 20 31.7 18.3 19 8.6  
  

Figure 6-10 Complete trend of the hybrid optimization method is illustrated in the upper image. Eight distinct solutions selected from the first 
global method is shown along with their following local optimization trends. In the lower image six succesful solutions are compared. 
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6.4.6 Two-phase optimization 

Estimating the ablated tissue using pre-defined theoretical ellipsoids is very fast, and enables to 
afford the use of optimizers with high numbers of iterations, or use hybrid methods, or optimizating 
with multiple starting points as presented in previous sections. But as discussed in Chapter 4, ellip-
soids do not precisely estimate the ablation zone when using multiple needles or interfacing with 
other sources of heat in their neighborhood. Post-operative complications are directly related to the 
failure of a good ablation zone estimation. As explained in Chapter 4, the simulation of the heat 
propagation proposes more accurate results, so we wanted to use these more realistic simulations of 
the iceballs in our optimization process. However, the simulations are much longer to compute, so a 
fast optimization would be required. 

In order to have an intuitive estimation of the time that would be needed by the optimization pro-
cess using only iceballs simulations, we showed on top of Figure 6-11 the profile of a Pattern-
search optimizer as a dashed line. This optimizer uses the same objective function formula as in 
section 6.3.1 but uses the simulated iceball as explained in Chapter 4. Each iteration takes about 50 
seconds on a core i7-3.4 PC to compute the simulations, and as shown in this figure it needs more 
than 700 iterations to converge. In total this optimization takes more than 9 hours and 43 minutes 
which is not efficient enough for a use in clinical routine. It would be worse if one needs to change 
some parameters and observe the difference.  

Two-phase optimization in cryosurgery was used by [40] for bubble packing and force field 
analogy. As the optimization of the ellipsoids is fast (about a few seconds), it can restrict the search 
area to a smaller bound and then performing a new search with simulated iceballs in this restricted 
region which can lead into a more accurate results. Pattern-search method was chosen for 
optimizing the ellipsoids as it was successful in all the tests above. Then as shown in previous 
section for the hybrid methods, different optimizers can continue the search process from the best 
location found by the Pattern-search method.   

Figure 6-11 illustrates in solid lines, trends of the second phase of optimization since the first 
phase using ellipsoids is fast. Direct and EA methods could converge to an objective function value 
of 8.3 in less than 30 iterations (25 min) while 120 iterations (100 min) were needed for SBO-trust 
and Solis-wets. These experiments were performed on case#4 with the vascular structure relatively 
far from the tumor location as shown in Figure 6-12 which has a small influence on iceball defor-
mation. It can be predicted that the optimized ellipsoids will more or less fit the simulated iceball 
and a fast convergence in the second phase supports this prediction in Figure 6-11.  

In contrast to case#4, a similar experiment was performed on case#3 which was chosen specifi-
cally to evaluate the effect of vessels on the number of required iterations for a similar convergence. 
case#3 and case#4 are taken from two different patients but in order to compare the effect of vessels 
on the optimization process we have chosen case#3 to have a tumor shape and size approximately 
similar to case#4 but located closer to the large vessels. The profile of the optimization in Fi-
gure 6-13 shows a slower performance of the same optimizers for case#3 compared to case#4, for 
both one-phase and two-phase algorithms: more than 2000 iterations are required by Pattern-search 
method in order to completely cover the tumor while only 80 iterations are needed for a two-phase 
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optimization to reach a good minimum. Figure 6-14 demonstrates the final solution of case#3, along 
with the wrong estimation of the produced ablation zone if using ellipsoids in such a case. Note that 
the real effect of cryoablation, represented by the blue iceball, is larger than the union of all ellip-
soids, which is a known effect: the cumulated production of cold by several simultaneous sources 
produces a larger frozen volume than sources of cold considered separately. We can also note that 
in Figure 6-14 the iceball does not intersect the vessels whereas the ellipsoids do. 

 

 

 

 

 

 

Figure 6-11 Comparison of single-phase optimization using simulated ablation zone in dashed line and several two-phase optimization methods 
sketched as solid lines. 
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Figure 6-12 Result of planning for case#4 with a simple vascular structure close to the tumor. Ellipsoids are in yellow while simulated 
iceball is in semi-transparent blue. 

Figure 6-13 Comparison of one phase and two phase planning with a complex vascular structure close to the tumor 
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6.5 Validation 

Six optimizers were experimented in this chapter to minimize an objective function and some 
constraints in equation (6-15). In order to verify the accuracy of the final solutions, we propose 
three methods in the following. 

6.5.1 Ground truth 

In this planning problem, the objective function value is zero if several hard and soft constraints 
are met. For the hard constraints, all the trajectories should be inside the insertion zone (this covers 
the constraints for avoiding obstacles and tangency to the liver), needles are very close to each   
other, the tumor is fully covered and for the soft constraints, no region is ablated outside the tumor 

and all trajectories are far enough from the ribs or vessels. When choosing a tumor with a random 
shape, there is no guarantee that such a combination exists. Therefore, a synthetic tumor was de-
signed using four needles placed manually in a place satisfying all these constraints and then the 

  
a) Synthetic tumor b) Covered parts in yellow 

 

Figure 6-15 Synthetic tumor is specifically defined in order to validate the convergence of Pattern-search method 

Figure 6-14 Result of  planning for case#3 with a complex vascular structure close to the tumor. Iceball is in blue, tumor in gray, 
vessels in pink and ellipsoids in yellow. 



Validation 

104 

aggregative mesh of their four corresponding ellipsoids was saved as a ground truth. Applying the 
Pattern-search method on this data converged to the value of 2.59 for the objective function and the 
covered tumor is illustrated in Figure 6-15. In this validation step using the ellipsoids we observed 
that our best method could not converge to zero for a synthetic case with a feasible best solution but 
still we had a good approximation of it. 

6.5.2 Monte-Carlo optimization 

Another way of validating the approach is to compare it to an exhaustive method. However, 
searching whole problem space is in order of exponential-time. As an example, when optimizing 
four needles each needle has 5 parameters: three translations that can be discretized at best into 20 
different values, and two rotations that can be discretized into 360 different states for each direction. 
So in total there would be                       possibilities which 4 is number of the nee-
dles. In contrast to an exhaustive method, a randomized method can be used with a polynomial-time 
[80]. In this part a Monte-Carlo sampling over the variable space was used to validate the conver-
gence of case#1 with 3 needles. Case#1 is selected due to its simpler condition and less number of 
required samples for a good convergence. We have used two million samples for this comparison 
and volume computations were done using ellipsoids. The minimum objective function value found 
equals to 11.93 while this value for its correspondent case in Pattern-search is 11.88 and 9.32 for 
Solis-wets as mentioned in Table 11. This type of validation is not feasible for the planning using 
the simulation due to the large number of required iterations. However this method can’t present a 
ground truth for the comparisons but extensive sampling of the variable space can override the local 
minimums and search into the whole domain evenly and finally presents an estimation of the best 
solution. 

6.5.3 Surgeon planning 

The goal of this part was to compare the planning chosen by the surgeon with the planning pro-
posed by our optimization tool. This test was performed on the MSKCC dataset, where the tumor 

Figure 6-16 The comparison between the 0 °C iceballs in the planning tool in blue and the intra-operative images in white. Tumor in gray is 
completely covered by -40 °C iceball which is presented as a green surface. 
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was treated using two needles, and the iceball could be segmented as explained in  Chapter 3. In the 
first place we have tried to plan the operation using only one needle but it was not successful to 
cover the tumor. Then, the planning was repeated with two needles as done by the surgeon. As ex-
plained in  Chapter 3, only the 0°C iceball was visible in the intra-operative images so in order to 
make a fair comparison of the ablation zone, 0°C iceballs were compared between the planning tool 
and its equivalence in the intra-operative images. However, for the optimization phase the -40°C 
iceball was used to ensure a complete tumor necrosis. Our planning tool computes and displays 
three different iceballs with 0, -20 and -40°C thresholds for comparison purposes as shown in Sec-
tion  4.3. Figure 6-16 shows the intra-operative iceball in white, and the simulated iceballs after a 
complete freezing cycle, with consideration of the vessels. In order to assess the efficiency of the 
planning, we computed the difference between the volumes of segmented and computed iceballs. 
This is a reasonable comparison since the proposed trajectories are far enough from the vessels and 
ribs. A smaller iceball is much safer for the patient to keep his normal tissue untouched. In this ex-
periment, the objective was to see if our automatic planning tool was able to find a better set of tra-
jectories, allowing for a smaller ablation while still covering the tumor entirely. This objective was 
reached as the iceball produced by the placement of needles we found was smaller, with a percent-
age of volume improvement of 31.58%. 

6.6 Conclusion 

In this chapter, the cryosurgical planning problem was formulated into an optimization problem. 
As the defined objective function and constraints were highly non-linear, discontinuous and no ex-
plicit formula was available, then several gradient-free methods were selected and experimented for 
the solution of this problem. The optimization problem was firstly solved only for the tumor cover-
age with a smoother objective function on several test functions in order of complexity. Among 
these selected methods, SBO-trust, Pattern-search, Solis-wets and EA could completely cover the 
tumor with a low number of iterations while the required number of iterations was increased by the 
complexity of the problem. 

In another attempt, the planning problem was solved in the presence of all mentioned constraints 
in this thesis. By applying successive methods in a preliminary stage, only Pattern-search and in one 
case Solis-wets were able to satisfy the constraints, cover the tumor completely and finally decrease 
volume of damage to the healthy tissue. It was also shown that for the large tumor case, we need to 
use needles with larger iceball.  

A comparison was made to show the influence of other factors like insertion zone or initial con-
dition to the optimizer’s results. If the insertion zone was more discontinuous and narrower, three 
different trends were observed for the optimizer’s performance. In the worst case, the Solis-wets 
and Pattern-search methods lost their convergence found in their previous condition (but still a good 
convergence comparing to others) while Direct and EA could reach the same convergence as before 
with an increased number of iterations. SBO-trust was not affected with this change. In the initial 
position test, Cobyla, Solis-wets and Pattern search are completely affected when initializing needle 
tips outside the tumor’s bounding box but the results are more robust for other methods. 
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Considering the results mentioned in tumor coverage and planning with all constraints, as far as 
keeping the needle tips inside the tumor’s bounding box, we conclude that Pattern_search method 
was the most successful method for different tumor sizes and different shapes of the insertion zone. 

In the hybrid optimization section, the idea of mixing global and local optimization methods was 
used to find several distinct insertion solutions and more accurate results, as shown in Section  6.4.5. 
The idea of proposing several solutions to the surgeon is very interesting due to different priorities 
and skills of each surgeon. 

All the experiments mentioned above were performed using the simplified ellipsoids as the abla-
tion zone. In the next section, the simulated iceballs discussed in chapter 4 were integrated in the 
optimization process instead of the ellipsoids. It was shown in Figure 6-11 that generally the num-
ber of iterations required for covering the tumor in presence of all constraints is lower due to the 
smoother and synergic shape of the iceballs comparing to ellipsoids but the time needed for a com-
plete planning in this way is not feasible in practice for planning in the operating room. Therefore, a 
two-phase optimization method was proposed which accelerates the planning using a cheap optimi-
zation phase with ellipsoids and then by restricting the search domain continuing the optimization 
with simulated iceballs. Then the effect of vascularized structure on the results was shown in anoth-
er test which slows down the convergence process.  

Finally 3 types of validation were examined for the best solutions. First, a synthetic tumor was 
created using ellipsoids which constitutes a ground truth for the optimization, and the Pattern-search 
method could fit into the synthesized tumor with a good approximation. Another validation using 
Monte-Carlo sampling method was performed and showed that optimizers could have the same 
accuracy as a Monte-Carlo method with more than two million samples. The last experiments 
showed an improvement of 31.58% in preserving patient’s healthy tissue compared with intra-
operative images done by a skillful surgeon. 
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Chapter 7. Conclusion and discussion 

7.1 Overview 

In this chapter, first we summarize and discuss the advantages and weak points of the methods 
used for the cryosurgical planning throughout this manuscript and then shed light to the future paths 
which can be followed using the tools proposed in this work. 

7.2 Conclusion and discussion 

In this thesis, we combined visualization, interaction, simulation and automatic optimization in a 
complete approach for the assistance to preoperative planning of image-guided percutaneous cryo-
surgery, which has shown to improve the quality of surgical planning outcome while sparing a lot 
of time to the surgeon. Thanks to a generic design, the software has the possibility to be extended to 
a wider range of surgical rules or even other trajectory based interventions, in addition to its already 
existing applications like cryosurgery, RFA and DBS.  

The main goal was to find a fast and accurate solution to apply in the operation room. For the sa-
ke of accuracy, bio-heat propagation was carefully solved considering most of the heat sink effects 
in its surroundings. Metabolic heat, blood perfusion and large vessel’s convective effect were inves-
tigated and the amount of deformations relative to distance to the vessels have been studied. Then 
validations using manufacturer’s available data for a standard cryosurgery procedure and intra-
operative images for one and two needles were performed. 

For the planning phase, and with a surgeon’s consultation, several constraints were adapted to 
mimic the surgeon’s concerns during the operation. Some of the constraints were applied in a pre-
processing step while others were handled by penalty functions. After the formulation of the plan-
ning problem, several optimization methods were experimented to find the best solutions and to 
find a good minimum. In order to compare the optimizers in practice, six patient cases were used 
and the performances of the different optimizers were evaluated, regarding initial points and com-
plexity of the objective function.  

Let us note the well-known global method of Simulated annealing was absent from our experi-
ments related in this thesis. In a preliminary study that we did not include in this manuscript, we 
implemented in MATLAB7 a comparison of several optimization methods like Pattern search, Sur-
rogate modeling, EA, Multi-level Coordinate Search (MCS) and Simulated annealing, only applied 
to the tumor coverage problem, in order to have a first idea of their convergence on this specific 

                                                                        

7
 https://www.mathworks.com/products/matlab/ 
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problem, before testing them on larger datasets and more complicated conditions. Among these 
methods Pattern_search, Surrogate modeling, EA and Simulated annealing demonstrated fast and 
accurate results. However Simulated annealing method was later substituted with Solis-wets method 
due to the difficulty of setting appropriate parameters, which has to be specific to each case. We 
estimated that it would not be convenient in practice to use this method in further developments if it 
requires a long process of parameters adjustments by the surgeon for each new patient. Our prelimi-
nary study was published in [81], to which we refer the reader for more details. This paper is also 
included as Appendix 1. 

We found that methods like Direct and Cobyla were not suitable for problems with highly non-
linear objective function and got easily stuck in local minima. Stochastic methods like Solis-wets, 
EA and adaptive Pattern-search method can overcome these issues and reach a good minimum. The 
dimensionality of the problem and non-smoothness of the objective function due to the shape of the 
insertion zone were found to rapidly increase the complexity of the search domain and decrease the 
performances of all optimizers.  

As discussed in Section  6.6 as far as the needle tips are placed inside the tumor, Pattern_search 
proved to have better results and was able to find a good minimum for most of the tested tumor siz-
es and insertion zone shapes. It was shown in Sections 6.4.1 and 6.4.2 that the surrogate optimiza-
tion method had interesting results for the tumor coverage. Comparing to other successful methods 
it was fast, accurate and robust due to initial point changes while it failed after introducing the rest 
of the constraints or by adding non-linear constraints. 

The response of the surrogate modeling method to the complexity of the objective function de-
pends on its interpolation method. Some methods like low order polynomials and radial basis are 
only accurate in a small region when the objective function is highly nonlinear [82] and it was 
shown in the literature that Kriging interpolation method was more appropriate for such an objec-
tive function and could lead to a better convergence [83, 84]. We also tried different interpolation 
methods in our preliminary tests and finally chosen Kriging interpolator as the most accurate while 
it is the main reason for computational cost of the surrogate modeling optimization.  

The internal computations for all the optimization methods are negligible except for the surro-
gate based optimization method. With this method, at each iteration a low-fidelity model should be 
generated using a specific interpolation. The time required for the interpolation is related to the 
number of variables. An average computational time for internal operations is presented in Table 
16. As opposed to local surrogate method used in the previous chapter, global surrogate optimiza-
tion updates its low fidelity model each time a true function is evaluated. In a preliminary study the 
performance of global and local surrogate methods were compared which convinced us to omit the 
global method due to its similar performance and long computational time.  

In order to deal with computation time related considerations, three different modes of automatic 
planning were introduced. In the fastest way, simplified ellipsoids are used to completely cover the 
tumor while avoiding the hard constraints like the obstacles, needle crossing and tangency. If such a 
solution exists, the optimizer starts to minimize the volume of damaged healthy tissue and make 
sure that trajectories are far enough from the ribs and vessels. This method is fast, but the accuracy 



Future works 

109 

of the tumor coverage with a complex vascular system in its proximity is not ensured but it is too 
beneficial when the tumor is located far from the vessels. Integrating simulated iceballs in the opti-
mization process solved this problem at the cost of huge computational time. Therefore in a third 
approach, we introduced a two-phase method benefiting from fast ellipsoids and accurate simulated 
iceballs methods, able to be used in complex vascularized environments.  

Table 16 Average time required for the computation of interpolations in each iteration of local surrogate modeling depending on the number of 
variables 

# of variables 3 needles/ 18 var 4 needles/ 24 var 7 needles/ 42 var 
Average time (s) 5.31 7.48 13.35 

 

The hybrid optimization we propose to combine the benefits of global and local optimization in a 
reasonable time could converge to a lower minimum and also permitted us to present up to 6 differ-
ent possible strategies to the surgeon, all 6 having an interesting quality. We think that the possibil-
ity for the surgeon to have not only one proposed solution but a set of alternatives is particularly 
important, as surgeons can have different skills and concerns, or some other factors might not have 
been taken into account in the solver yet, and could prevent the surgeon from executing one specific 
strategy. 

The last experiment in Section  6.4.1 demonstrated that the selection of the type of cryoprobe de-
pended on the tumor size and its position related to the other organs. In all of the experiments the 
smallest type of cryoprobe was selected in order to compare the performance of optimizers in a par-
ticularly difficult situation. Moreover, comparing to cryoprobes with larger ablation effects, the 
smaller ones are associated with a lower risk of bleeding and other complications [85]. When 
choosing small cryoprobes, multiple needles are required to ablate the tumor completely, which 
increases the efficiency of freezing by enlarging the surface of the coldest isotherm [86]. 

Finally based on the observation of the results, we estimate that it would be very difficult to treat 
tumors larger than 5     due to the growing number of needles which is compatible with other 
clinical studies in this field [85, 87]. Practical feasibility of operations and increasing complexity of 
the planning for a large number of needles are among these reasons. Moreover, using very large 
needles are not recommended and can cause post-operative complications [87]. 

7.3 Future works 

There exists several short term and long term perspectives in this work. As mentioned before, for 
a planning problem if we propose several distinct solutions, then visualizing all these possible sets 
of needles at once remains a challenge. A simple way would be to show them sequentially. Another 
idea could be to navigate within solutions guided by a user interaction. In this method all needles 
would be labeled and one of them chosen as the pivot needle. In the visualization step only pivot 
needles would be shown and the other needles appear only if their corresponding pivot is selected. 
Another visualization technique can be proposed for a semi-automatic planning of multiple needles. 
In this method after a first automatic proposition of needle placements, trajectories are displaced or 
rotated one by one in an interactive manner. In this step a color map would be sketched around the 
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selected needle to show the value of objective function for its neighborhood points on the skin. 

In this manuscript the results of the automatic trajectory planning was compared with the intra-
operative images of one patient but it would be very interesting to continue this retrospective vali-
dation in order to compare the results in different conditions and validate the robustness of the 
method more thoroughly. It would also be interesting to compare the outcome of surgeries from 
surgeons with different levels of expertise or clinical sites. This would result in a better assessment 
of automatic planning improvement compared to manual planning, and reveal how beneficial it 
would be in practice. 

In this thesis, we used an aggregative approach based on several objective functions combined 
with a weighting criterion that allow producing simplified results. A different problem formulation 
based on a multiple-objective optimization and the computation of the whole set of Pareto-optimal 
solutions would be interesting in the future, as it could propose at once all solutions that can be con-
sidered as optimal regardless of the weighting. Therefore it would not be required to choose pre-
defined weights for risk functions in Equation (6-4). However, the possibly large number of sets of 
trajectories that would have to be visualized would induce some visual overload issues and a study 
of an ergonomic presentation of the possible solutions would have to be carried out. 

During the intervention, patients are positioned on their back or stomach which leads to an extra 
constraint on the placement of multiple needles that has not been taken into account so far. Solu-
tions including trajectories that should be inserted through the back while others should be inserted 
from the front would have to be rejected. This constraint was not considered yet in our solver but a 
solution for this problem would be to constrain all needles to be in within a maximum angle under a 
threshold. This angle could be quite large, like 90 degrees for instance in the case of a manual inser-
tion of the needles, for which we can imagine that some needles could be inserted through the side 
of the patient while others are inserted through the front or back. However we can also have in sight 
a coupling of our planning software with a robotic system in the future, which would probably be 
more constrained in the positioning of multiple needles and require a smaller angle. 

Next, for improving the performance of surrogate based algorithm in presence of all constraints, 
a method proposed by Villanueva et al. can be implemented in our solver. They utilized multi-agent 
surrogates to handle nonlinear constraints as described in [88].  

Apart from the coupling with a robotic system as we already mentioned, some other long term 
perspectives of our work can be proposed: coupling with an AR system for needle guidance; using 
intra-operative ultrasound images for a realtime registration of the liver to pre-operative high reso-
lution MRI images and planning based on new deformed organs; integration of deformable needles 
for the multiple trajectory planning. 
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Abstract

Pre-operative planning of percutaneous thermal ablations is a difficult but decisive
task for a safe and successful intervention. The purpose of our research is to assist
surgeons in preparing cryoablations with an automatic pre-operative path planning
algorithm able to propose a placement for multiple needles in 3D. The aim is to optimize
several surgical constraints while taking into account a precise computation of the frozen
area. Using an implementation of the precise estimation of the iceballs, this study
focuses on the optimization in an acceptable time of multiple probes positions with 6
degrees of freedom, regarding the constraint of optimal volumetric coverage of the tumor
by the combined necrosis. Pennes equation was used to solve the propagation of cold
within the tissues, and included in an objective function of the optimization process.
The propagation computation being time-consuming, six optimization algorithms from
the literature were experimented under different conditions and compared, in order
to reduce overall computation time while preserving precision. Some of them were
found suitable for the conditions of our cryosurgery planning. We conclude that this
combination of bioheat simulation and optimization can be appropriate for a use by
practitionners in acceptable conditions of time and precision.

Key words: Surgery planning, Derivative free optimization, Bioheat simulation

1 Introduction

Minimally invasive surgery has known an increasing interest in the past decades. The small
size of incisions is beneficial to patients by decreasing the discomfort as well as the time
required for recovery compared to conventional surgery, all with the same benefits. Percu-
taneous cryoablation is a good example, in which the cancerous tissue is frozen using one or
multiple needles. During this procedure, tissue temperature drops to -40❽ around needle
tip, which is lethal for cells included in the iceball volume. The final goal of cryotherapy
is the necrosis of cancerous cells while preserving surrounding healthy tissue and avoiding
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damages to vital anatomical structures. For this purpose, an accurate surgical planning
needs to be done beforehand by surgeons.

However, the non-invasive, real-time monitoring of three-dimensional isotherm surface
of this critical temperature within the tissue during cryosurgical procedures has remained a
challenge. Since temperature can be measured only at discrete points in the target region,
simulation of heat transfer is an extremely useful tool to estimate the real coverage for a
candidate probe placement. A number of models has been proposed to solve the bioheat
propagation equation in two and three dimensions.

An important parameter in cryosurgery planning is the optimal choice of cryoprobes
locations with specific shapes and dimensions. It is typically done in a trial-and-error task
to find the best configuration. Since the manufactured cryoprobes have been produced with
a limited set of active lengths and diameters, and freezing protocol is commonly fixed, other
cryosurgical parameters such as number of cryoprobes and cryoprobe placement are good
candidates for optimization and planning during the procedure.

The overall objective of our research is to provide the surgeon with an automatic pre-
operative path planning algorithm able to propose a placement for multiple needles in 3D,
taking into account several surgical constraints as well as a precise computation of the
frozen area. In this paper, we focus on the optimization of the tridimensionnal placement of
multiple iceballs around the tumor to cover it at best. We first explain the implementation
of the accurate simulation of the propagation of cold within the tissues. This simulation
being a time-consuming process, we compare several optimization approaches under different
conditions, to find the most suitable in terms of compromise between speed and accuracy,
to be able to propose to the surgeon a good positionning strategy in a reasonable time.

2 Context

2.1 Related works

The problem of cryosurgery optimization was first addressed by Keanini and Rubinsky [1]
using simplex method. The heat transfer equation was solved for a 3D domain with finite-
difference method. Authors optimized only the number of cryoprobes and their geometrical
dimensions (diameter and active length), but optimization of other parameters, such as
cryoprobe placement in the target tissue and their thermal protocol, seems to be more
practical. They used an idealized model and geometry for urethral warmer, prostate, blad-
der and rectum. In 2001 Baissalov et al. [2] studied simultaneous optimization of cryoprobe
placement and thermal simulation using a gradient descent algorithm called L-BFGS-B
method. They described a 3D solution based on the cumulative 2D transverse planes, but
the shown results were only for 2D state in a prostate model.

Tanaka and Rubin [3] used a mechanical based method to solve the problem of cryoprobe
optimization in two phases. Phase I called bubble-packing starts with generating ellipsoidal
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elements (or bubbles) inside planning domain, then van der Waals’-like forces are simulated
to move these bubbles until a minimum-force configuration is found. A single bioheat
simulation is executed at the end of Phase I. The simulation is terminated at the point at
which a minimum defect region is found for that particular layout. In phase II, a bioheat
equation is solved and a new set of forces on the cryoprobes are computed based on the
defect region and one or more cryoprobes are moved accordingly. This survey was done in
2D for the prostate while in 2008, the same team extended their work to 3D [4] but just for
bubble packing method.

Giovanni et al. [5] used Ants Colony (ACO) to choose the optimal parameter config-
urations. Computation of the cost function is based on the numerical solution of several
direct Stefan problems solved by a Euler-Galerkin approach. This method combines a finite
difference approximation of the time-derivative and a finite element approach solving the
space-dependent part of the differential problem. This study was done on a 2D standard
prostate phantom.

2.2 Problem statement

As mentioned above all previous studies were done for prostate cryosurgery in which needles
are placed in the same direction and consequently number of optimization variables is
reduced. In this paper the first goal is to deal with a general case in which planning
domain could be 3D and needles have 6 degrees of freedom: 3 translations for position and
3 rotations for orientation.

Previous studies have computed bioheat propagation in order to have a more realistic
simulation of cryosurgery procedure. Bioheat propagation in the tissue is affected by needle
parameters, time and surrounding tissues. An interesting source of bioheat is the flowing
blood within large adjacent vessels which can cause a ”heat sink” effect and may prevent
temperature from decreasing to lethal levels. This may result in inadequate ablation, thus
increasing the risk of tumor recurrence in this region. Our second objective is to consider
surrounding tissues which have an important role in forming the final frozen region inside
the bioheat equation computation.

Our problem of simultaneous optimization of thermal protocol and cryoprobe placement
requires handling a large number of bound constrained optimization variables and ability
to minimize an objective function that cannot be expressed analytically in terms of the
optimization variables.

High computational cost of bioheat equation in each iteration requires a fast converging
optimization method for real time purposes. Optimization algorithms have been studied in
the literature to find the most suitable ones in terms of convergence and computational time
while avoiding local minima. Among the optimization techniques, we experimented various
techniques in order to compare them in the conditions of our problem: local optimization
methods such as Generating Set Search(GSS), and global optimization methods such as
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Genetic Algorithm(GA), Simulated Annealing(SA), Multilevel Coordinate Search (MCS),
Surrogate Modeling (SM) and evolutionary strategy (ES) were tested. Our final goal is to
optimize trajectories positions quickly and precisely, while taking into account a realistic
simulation of the formation of iceballs.

3 Material and Method

3.1 Numerical computation of the bioheat transfer within the tissues

The thermal distribution outcome of the cryosurgical procedure is predicted using multi-
probe thermal simulations. Results of the simulations are quantified in terms of isotherm
locations at any given time with respect to anatomy and the value of the objective func-
tion in the optimization scheme. These tools provide a means of assessing effectiveness
of the treatment. Our method consists of a time-dependent model of iceball formation
based on bioheat transfer equation around the needle tip, taking into account major vessels
surrounding the frozen area that influence the freezing process. Most of the theoretical
analysis on heat transfer in living tissue are originated from the Pennes equation [6], which
describes the influence of blood flow on the temperature distribution in the tissue in terms
of volumetrically distributed heat sinks or sources.

This uniform energy equation for biological tissue which can be applied to frozen, par-
tially frozen and unfrozen tissue regions, can be written as:

C̃
∂T (X, t)

∂t
= ∇.k̃∇[T (X, t)]− ω̃bCbT (X, t) + Q̃m + Cbω̃bTa X ∈ Ω(t) (1)

where C̃ is the effective heat capacity; k̃(T ) is the effective thermal conductivity; Q̃m is the
effective metabolic heat generation; w̃b(T ) is the effective blood perfusion; Ta is the arterial
temperature; Cb is the heat capacity of blood; X contains the Cartesian coordinates x,
y , and z; T (X, t) is the temperature of tissue; Ω(t) denotes the domain at time t. The
description and derivation of this coefficients in different states are omitted here for brevity.
A finite difference algorithm is applied to solve this complex problem with phase change
heat transfer in biological tissues. Applying this formulation to Eq 1 and using the following
relation to express the linear term T (X, t) on the right side of Eq 1,

T (X, t) = βT (X, t+∆t) + (1− β)T (X, t) (2)

where β is a relaxation factor, and 0 ≤ β ≤ 1, Eq 1 can be discretized as follows:

T (X, t+∆t) =
1−W (1− β)∆t−m.Fo

1 +Wβ∆t
T (X, t) +Σ

m

2

i=1

Fo

1 +Wβ∆t
T (X +∆xi, t)

+Σ
m

2

i=1

Fo

1 +Wβ∆t
T (X −∆xi, t) +

(Q̃m + ω̃bCbTa)∆t

1 +Wβ∆t

(3)
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where ∆t is the time increment; W = ω̃bCb/C̃, and Fo = k̃.∆t/C̃.∆x2 is the Fourier
number; m = 2, 4, 6 correspond to the cases of one, two and three dimensions respectively,
and in order to avoid numerical instability, the space and time steps are limited by 1 −
W (1−β)∆t−m.Fo > 0. Applying the boundary conditions at time t+∆t and substituting
the calculated results at the previous time t, the unknown T at time t+∆t can be solved
from the above equation.

The tissue domain is prescribed in a rectangular geometry with 7× 7× 7 cm in the x,
y and z directions respectively, in which x denotes the tissue depth from the skin surface
while y and z are along the surface. The boundary conditions at the probe surface are
prescribed respectively according to probe tip and probe shank as: T = −196❽ at probe
tip; ∂T/∂n = 0 at probe shank. The initial temperature in tissue is simplified as T0 = 37❽.
In calculations, the grid resolution is ∆x = ∆y = ∆z = 1mm and ∆t = 0.1s. Q̃m = 0 in a
highly vascularized tissue like liver and w̃b = 0.005.

Our routine is described as below:

1. The location of liver, tumor, skin and vessels are determined thanks to a segmentation
process performed on the images. In this step, a 3D mesh for each anatomical structure
are reconstructed. All vessels are considered as fixed sources of heat at 37❽

2. The shape of needle tip has been designed to fit real cryoprobes

3. Needle tip is placed at an initial position and orientation inside the tumor manually
or by the optimization method

4. The simulation procedure imitates a standard cryoablation pattern that consists of
two 10 minutes freezing intervals and one 5 minutes thawing step in between, which is
congruent with needle manufacturer calibration data in a tissue-like gel, which from
now on we call reference data

5. The iceballs are obtained by a 3D reconstruction of the −40❽ isotherm surfaces. The
selected value was chosen according to surgeons needs, as this temperature is used as
a threshold to determine the resulting necrosis volume

3.2 Optimization of the probes placement in 3D

The optimization process allows to refine the number and placement of the needles (3
translations and 3 rotations for each) to minimize a defect function. It is based on an
iterative procedure including the bioheat equation resolution at each step. Every resolution
begins with the assumption that the placement of cryoprobes is given with a fixed tip
temperature of −196❽ while the initial temperature of tumor and background tissue is
37❽. Then, the bioheat equation can be solved. The resulting temperature field is processed
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to evaluate the defect function providing a quantitative estimate of the mismatch between
the frozen tissue and the target tissue. Eq.4 shows the definition of the cost function.

More formally, a specific configuration of the cryosurgery design is represented by a
state variable U , which is a list of N operating parameters (position of cryoprobes) whose
admissible values are contained in S ⊂ RN . The cost function is the defect weighting
function F : S → N such that:

F (θU ) =

∫

V

µ(θU (x))dx, (4)

where θU is the temperature distribution associated to U and

µ(θ(x)) =























0 if θ(x) < θ̃ and x is diseased,

1 if θ(x) < θ̃ and x is healthy,

1 if θ(x) ≥ θ̃ and x is diseased,

0 if θ(x) ≥ θ̃ and x is healthy,

(5)

Figure 1: Schematic representation of the defect region. Tumor is in dark grey, and inter-
acting iceballs is in light grey. Not damaged tumor parts are striped and damaged healthy
tissue is in very light grey.

A schematic view of this function is demonstrated in Fig.1. Optimization algorithms
use this objective function and yield the new positions of cryoprobes in order that the next
step can begin. The procedure stops when further correction of the position of cryoprobes
becomes negligible or the predefined maximum number of iterations is reached.

Conventional optimization techniques typically require multiple evaluations of the cost
function for each iteration. For example, gradient based algorithms would require multiple
function evaluations to compute the gradients [7]. Keanini and Rubinsky [1] stated that
methods which compute explicit derivatives are likely to be inefficient. Our work employs
techniques that avoid calculating derivatives so as to minimize the number of simulations.
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As mentioned above our optimization algorithm should be capable of handling a large
number of bound constrained optimization variables and be able to minimize an objective
function that cannot be expressed analytically in terms of the optimization variables. Keep-
ing these parameters in mind, a bound constrained derivative free optimization method
which do not stuck in local minima (global optimization) with low number of iterations
would be suitable. Our problem is a convex optimization problem because of cubic search
domain surrounding the target region.

Derivative free optimization methods are classified to local and global optimization
methods as well as as deterministic, model based and stochastic methods[8]. Six optimiza-
tion methods were selected based on the parameters just mentioned in order to compare
their strengths and weaknesses to our problem.

❼ Local methods:

– Deterministic:

Pattern search: Generating Set Search (GSS) method was selected between
different pattern search methods. Each iteration of GSS method consists of two
basic steps. The search step is performed first over a finite set of search direc-
tions HK generated by some, possibly heuristic, strategy that aims to improve
the current iterate but may not guarantee convergence. If the search step fails
to produce a better point, GSS method continues with the poll step, which is
associated with a generating set that spans positively Rn Generating sets are
usually positive bases, with a cardinality between n+1 to 2n [9].

❼ Global methods:

– Deterministic:

Multilevel coordinate search (MCS): It partitions the search space into
boxes and in each iteration a label is assigned to each box based on the number
of times it has been splitted. MCS selects boxes with the lowest objective value
for each level value and marks them as candidates for splitting and will converge
when the maximum number of s is reached [10].

– Model based:

Surrogate Modelling (SM): Building a model of objective functions in our
search domain allows us to optimize a function with less number of iterations. In
order to build such a model, one should starts with sampling the search domain
and construct an initial surrogate model. Then optimizers are used to converge
the model, evaluate the best point and update the surrogate model. For this
purpose we have employed a mixture of radial basis functions [11] and kriging
[12] interpolations for our surrogate model. Radial basis functions approximate



Multi probe optimization for liver cryosurgery

f by considering an interpolating model based on radial functions and kriging
models a deterministic response as the realization of a stochastic process by
means of a kriging basis function.

– Stochastic:

Simulated Annealing (SA): At iteration k, simulated annealing generates a
new trial point x̂ that is compared to the incumbent xk and accepted with a
probability function [13].

P (x̂|xk) =

{

exp[f(x̂)−f(xk)
Tk

] if f(x̂) < f(xk)

1 if f(x̂) < f(xk)
(6)

Genetic algorithms (GA): This method introduced by Holland [14] resembles
natural selection and reproduction processes governed by rules that assure the
survival of the fittest in large populations. Individuals (points) are associated
with identity genes that define a fitness measure (objective function value). A
set of individuals form a population, which adapts and mutates following prob-
abilistic rules that utilize the fitness function.

Evolution Strategies (ES): This method belongs to the class of Evolutionary
Algorithms (EAs) which use mutation, recombination, and selection applied to
a population of individuals containing candidate solutions in order to evolve
iteratively better and better solutions.

3.3 Experiment design

Our experiments were done on two patient models from the 3D-IRCADb database. They
are reconstructed images of liver tumors surrounded by vessels and normal liver tissue. To
test different conditions, we chose a case with a small tumor and another with a large one.

For the tests we experimented several parameters, each time changing one parameter
while others were fixed. Optimization methods, number of needles and size of the tumors
were selected as different experimental designs. Six optimization methods were considered
as mentioned in the previous section. In order to compute defect volume, the bioheat
equation was solved in each iteration and then objective function value was computed by
comparing temperature of each point in the tissue domain.

Comparisons for speed and convergence of the optimization methods are based on the
solution profile of each optimizer for few iterations to large ones. We tried to check the
sensitivity of each optimizer to other parameters like tumor size and number of electrodes.
Tumor size will affect complexity of the problem by extending or shrinking the search domain
and number of needles will modify the optimization input variables. In order to have a fair
comparison, four different experimental designs are selected, two for small tumor and two
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for large ones. In each state there are two possibilities of choosing 3 or 5 needles. All solvers
had a maximum of 500 iterations.

The type of croyprobe we modeled was a PERC-24 from Endocare. The theoretical
volume of iceball (-40❽ isotherm surface) of this cryoprobe type, given by the manufacturer,
is 2.4x2.4x4cm. Ratio between theoretical single iceball volume and tumor volume allows
to select the right initial number of needles. We experimented our optimizations on two
tumor sizes, small and large. This ratio is 0.7 for small and 0.2 for large tumor, with the
chosen cryoprobe type. In order to destroy tumors, it is intuitive to start with a number of
needles providing a total iceballs volume at least equal to the tumor volume.

4 Results and discussion

An example of the computation of an iceball produced by 3 needles around the small tumor
is shown on Fig.2. Fig.3 shows the trends of defect volume versus iteration number in
different conditions: small / large tumors and 3 / 5 needles. Optimization time lapse is
directly related to the number of iterations for all optimizers except surrogate modeling.
The most time consuming part of optimization process is the solution of bioheat equation
which is computed once per iteration. It takes 5 seconds with spatial dimensions mentioned
above on a machine using Intel core i7 3.4 to simulate a 10 minutes cryoablation treatment.

Covering the whole tumor with a minimum number of needles demands a lot of iterations
for the optimizer to reach a global minimum. Moreover, adding extra needles will increase
the number of optimization variables and consequently the risks of increasing healthy tissue
region which is damaged, but an optimum number of needles for any size of tumor should
be found. This trend is visible in the results shown in Fig.3 top for a small tumor in which
the total percentage of defect volume increased by growing the number of needles. Also in
Fig.3 bottom, total defect volume for a large tumor decreased by an increase in number

Figure 2: Example of aggregated iceball (left) after a heat propagation simulation for the
small tumor (right) and 3 needles. This configuration is not completely optimal as a part
of the tumor is outside the iceball.
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Figure 3: Trend of 6 optimizers for the case of small (top) and large (bottom) tumor are
shown above for 3 and 5 needles. Vertical axis shows percentage of defect volume while
horizontal axis shows number of iteration for a maximum of 500 iterations

of cryoprobes. Due to the low ratio of iceball volume to tumor volume and large size of
the tumor, even with 5 needles we did not find a global minimum within 500 iterations.
Increasing number of iterations or number of needles seems to be the first intuitive solutions
but due to the computational time for bioheat equation we did not consider them, pursuing
our goal to integrate selected methods in our existing planning tool which should converge
in the order of minutes for real-time applications.

In speed comparison of each experimental design we are interested to see which method
had the minimum of defect volume in its first one hundred iterations. By choosing this
criteria and looking into Fig.3 top left graph, GSS local method is prior to others. In this
design, thanks to large ratio of iceball volume to tumor volume and less low number of
needles, we are facing a simple problem which can be solved easily by a local deterministic
solver. Other solvers had more or less the same speed in this scenario. On the right graph,
by increasing tumor size both deterministic methods decrease their performance especially
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for the GSS method but for other solvers speed of optimization was not affected by changing
the search domain. The same characteristic is shown in Fig.3 bottom for large tumor.

For the accuracy comparison we looked for the method which finds the lowest defect
volume regardless of number of iterations. In general evolutionary methods had better
flexibility than heuristic methods like MCS and GSS. Simulated annealing did rapid con-
vergence among global methods but it is dependent on its initial point therefore the results
are not always good with different initial point and tumor shapes. MCS had more or less
good results in long iterations regardless of problem complexity due to its global design.
SM had the same performance of speed and accuracy comparing to simulated annealing but
it was more robust due to changing conditions and tumor shapes. Surrogate modeling also
demonstrated better results for complex problems as Fig.3 on the right which is the most
complicated among our designs. The strength of this approach lies in the generality of its
formulation since SM is independent of the physical interpretation and from the number of
the parameters subjected to optimization. In other words, through SM, one is able to set
different kinds of free planning parameters without changing the optimization technique.

5 Conclusion and future works

In this study, we compared six derivative free optimization methods. The speed and accu-
racy of each method was investigated due to number of needles and tumor size. Generating
Set Search was selected as fastest for simple problems and Surrogate Modeling as the most
robust in complex ones. We have demonstrated our tests by solving bioheat equation inside
the optimization process for a 3D cryosurgical planning of two tumor sets of small and
large size. Objective function was defined based on the defect volume value and did not
consider its shape. We believe that taking into account the shape of objective function will
lead to higher precision and lower number of iterations in future works. In order to solve
the mentioned convergence problem for large tumors in an acceptable time we are thinking
about experimenting smarter routines like supervised methods or multi stage optimization.
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Résumé 

 

Introduction 

Le cancer est une des causes principales de la mort dans la majorité des pays du monde. Parmi 
les types de cancer prédominants, cancer du foie se situe au quatrième rang due à la prévalence 
élevée de l'hépatite B. Près de 500,000 personnes sont diagnostiquées chaque année dans le monde. 
Afin de traiter cancer du foie plusieurs types des interventions chirurgicales sont émergées. 
Les traitements fondés sur chirurgie mini-invasive ont montré d`avoir des avantages à long terme et 
temps de repos rapide. Différentes techniques de chirurgie mini-invasive permettent aujourd’hui 
d’effectuer les procédures d'ablation de tumeurs. Dans le manuscrit présent  nous nous concentrons sur 
l'hyperthermie percutanée, qui est la plus fréquemment choisie par des chirurgiens. Il s'agit de la 
destruction de la tumeur par la chaleur ou le froid extrême.  

La cryochirurgie (également appelée cryoablation ou cryothérapie) est une de ces techniques. 
Elle a été mise en place au début des années 1960 pour traiter les cancers de la prostate. Elle fonctionne 
grâce à une technique de décompression très rapide du gaz (généralement de l'argon) à l’extrémité 
d’une sonde en forme d'aiguille. Lorsque l'argon s’écoule à travers l'aiguille, une boule de cristaux de 
glace se forme autour du bout de la sonde, ce qui conduit immédiatement à la mort cellulaire des tissus 
environnants. Selon l'emplacement de la tumeur et la taille de la tumeur, plusieurs aiguilles, 
éventuellement de types différents, peuvent être utilisées simultanément afin de couvrir la totalité de la 
tumeur. 

La planification pré-opératoire de ce type d’intervention est très difficile pour le chirurgien, qui 
doit se représenter mentalement la disposition finale des aiguilles par rapport à la position des 
structures anatomiques environnantes, ainsi que la forme finale du glaçon formé autour des pointes des 
aiguilles, afin de choisir une stratégie de placement dans un environnement anatomique complexe. Une 
sur-ablation ou une sous-ablation peuvent entraîner des complications au cours du traitement. De 
même, un mauvais placement peut également entraîner des complications, notamment des hémorragies. 
Ainsi, le système de planification d'ablation joue un rôle important dans les procédures d'ablation de la 
tumeur car il fournit une simulation virtuelle pour guider les chirurgiens. 
 

Une bonne planification inclut une estimation réaliste de la zone d’ablation et une détermination 
d'emplacement optimal des plusieurs aiguilles afin de couvrir la tumeur complètement  en conservant 
des tissus sains intacte. Dans la plupart des applications de planification existantes les zones d'ablation 
sont typiquement décrites comme des ellipsoïdes simples non-réalistes autour des cryosondes. Pourtant, 
en raison de la présence de vaisseaux sanguins dans le voisinage des aiguilles pouvant provoquer un 
effet de réchauffement, le volume de nécrose peut être déformé, sa taille peut être diminuée, et la 
tumeur peut n’être que partiellement soumise à une ablation. Pour remédier à ces problèmes, des 
simulations numériques basées sur l'équation de transfert de chaleur ont été utilisées pour permettre une 
estimation précise de la zone d'ablation intégrant les effets de dissipation de chaleur des gros vaisseaux 
sanguins. 

 



Un autre grand défi est l’automatisation du choix de placement tridimensionnel de plusieurs 
aiguilles simultanément, qui adoptent les contraintes habituelles sur des aiguilles individuelles (par 
exemple des règles de sécurité comme l’évitement des organes vitaux et les éléments anatomiques, des 
règles techniques comme la longueur maximale d’aiguille limitant la longueur de la trajectoire, ou 
encore des règles relatives à la cautérisation), ainsi que des contraintes supplémentaires liées à 
l’interaction entre les différentes aiguilles (non intersection, interaction des effets). 

Ainsi, aucun outil ne permettant à l’heure actuelle d’aborder tous ces points, et devant le besoin 
crucial d'une telle planification, dans cette thèse nous nous sommes concentrés sur la planification pré-

opératoire automatisée de la cryo-chirurgie, avec deux objectifs principaux : 1) assister le chirurgien 
grâce à une prédiction plus réaliste des zones d'ablation et 2) proposer automatiquement un placement 
d'aiguille avec un risque minimal pour le patient et une couverture optimale de la tumeur par la boule 
de glace, dans un délai acceptable pour une utilisation en salle d'opération. 

 

Développement - Plan type 

 

• Simulation de la boule de glace 

Afin de rapprocher la formation de boule de glace, il est essentiel de calculer propagation de la chaleur 
à l'intérieur de tissu. Pour atteindre cet objectif une ou plusieurs aiguilles sont situées à l'intérieur de la 
tumeur et tous les calculs sont effectués dans un grand cube environnant qui centre l’emplacement de la 
tumeur comme on le voit sur la Figure 1.  

 

Afin de modéliser la propagation thermique dans les tissus vivants, l'une des méthodes les plus 
couramment utilisées, l'équation de transfert de chaleur de Pennes, a été choisie.  � �� , =  . � [� �, ] − � � � �, + � + � � �           � Ω        (1) 

Figure 1: Schématique de la géométrie 3D pour une probe 



      Les autres modèles incluent ceux qui sont développés par Weinbaum et Nakayama. En 
mathématiques numériques, le problème de la résolution d’équation de biochaleur peut être défini 
comme la prédiction de la position évoluant dans le temps de congélation ou de décongélation des 
fronts où le changement de phase se produit. Ce qu’on appelle communément le problème de Stefan et 
qui nécessite la résolution de l'équation de conduction de chaleur pour la température dans un domaine 
qui se compose de parties gelées et non gelées qui se sont séparées par une interface mobile (le front 
de congélation ou de décongélation). 

L’endroit et la forme précises sont critiques et sont déterminés par la température de fusion à 
laquelle le changement de phase se produit et la condition de Stefan est souvent imposée comme la 

condition d'équilibre thermique. Dès que les positions du front de gel dépendent de plusieurs facteurs 

inconnus, un tel problème est généralement fortement non linéaire et la solution précise de ce problème 

complexe est extrêmement difficile, et parfois il est même impossible de calculer si aucune 

simplification substantielle pourrait être introduite. 

 

Pour résoudre les problèmes de changement de phase dans les tissus biologiques plusieurs 
groupes ont proposé des modèles numériques. Afin de garder la généricité de notre outil de 
planification pour la cryo-chirurgie combinée et l'hyperthermie, la méthode efficace de la capacité 
thermique est utilisée pour résoudre numériquement le problème de changement de phase avec des 
frontières mobiles multiples. Bien que cette approche présente plusieurs avantages, il nécessite encore 
que le maillage soit raffiné à proximité de l'interface. Sur la base de cette solution qui satisfait 
automatiquement les conditions de changement de phase, une équation unifiée, qui peut être appliquée 
aux régions de tissus gelées, partiellement gelées et non-gelées est crée. Dans cette équation les tissus 
sont traités pour le gel ou le dégel avec plusieurs aiguilles sur une gamme de température, et les 
influences de la perfusion sanguine et de la production de chaleur métabolique ont été prises en compte 
pour la région non-gelée. Pour la discrétisation nous avons utilisé une méthode de différenciation 
arrière explicite. Donc, la solution finale de l'équation de propagation de la chaleur de Pennes, après 
avoir résolu le problème de changement de phase numérique et discrétisation, ressemble à ci-dessous.  � �, + ∆ = − −� ∆ − .��+ �∆ � �, + ∑ ��+ �∆ � � + ∆� ,/= + ∑ ��+ �∆ � � − ∆� ,/= +̃ + ̃ � � ∆+ �∆           (2) 

Où � est un facteur de relaxation avec ≤ � ≤  et ∆  est l'incrément de temps, Fo =� ̃. ∆ /� ̃∆  
est le nombre de Fourier et W est défini comme W =�̃ � /� ̃. Enfin, m peut recevoir les valeurs 2, 4 
ou 6 correspondant respectivement aux cas de l’une, deux et trois dimensions et ∆� est défini comme 
ceci:  ∆� = ∆ , ,      ∆� = , ∆ ,      ∆� = , , ∆  � ̃ �  est la capacité de chaleur efficace; �̃ �  est la conductivité thermique efficace; �̃  est la 
production de chaleur métabolique efficace; �̃ �  est la perfusion sanguine efficace et elles sont 
formulées dans les différentes limites de température comme suit:  

 



� ̃ � =  {�                                                                � < �
� �−� + ��+��           � ≤ � ≤ ��                                                             � > �                       (3) 

� ̃ � =  {�                                                                � < ��+ �                                        � ≤ � ≤ ��                                                             � > �      (4) 

�̃ � =  {                                                                � < �                                                  � ≤ � ≤ ��                                                             � > �          (5) 

�̃ � =  {                                                                � < �                                                  � ≤ � ≤ ��                                                             � > �                       (6) 

Nous avons utilisé plusieurs méthodes de visualisation, y compris les tranches 2D, les mailles 
3D et le rendu volumique pour superposer la zone d'ablation sur les images anatomiques. Afin de 
valider la méthode d'approximation, la zone d'ablation calculée a été superposée sur sa région 
segmentée correspondante sur des images post-opératoires, dans des cas d’ablation à une et deux 
aiguilles. Pour le cas de deux aiguilles comme représente à la Figure 2, la boule de glace simulée est 
mieux adaptée à la boule de glace segmentée qu’aux ellipsoïdes simplifiés. Afin de montrer l'effet de 
dissipation de chaleur des vaisseaux sur la déformation des boules de glace, nous avons comparé la 
zone d'ablation avec les boules de glace ellipsoïdales simplifiées indiquées par les fabricants, dans les 
situations vasculaires complexes extraites de données réelles (voir la Figure 3).  

Figure 2 : La boule de glace simulée en bleu contre la boule de glace segmentée en blanche pour dix minutes de congélation. Les 

ellipsoïdes simplifiés sont en jaune et les vaisseaux en rose. 



Distance de Hausdorff, coefficient de Dice et chevauchement de volume booléen ont été utilisés 
pour la comparaison. La distance de Hausdorff est calculée pour les ellipsoïdes simplifiés et les boules 
de glace simulées par rapport aux boules de glace segmentées des images post-opératoires et a montré 
une amélioration de 15%. Entre les opérateurs booléens, l’opérateur de différence de volume démontre 
mieux l'amélioration réalisée grâce à l'utilisation de la simulation. La différence de volume de boule de 
glace simulée par rapport à la boule de glace segmentée est six fois inférieure que la différence de 
volume provenant des ellipsoïdes simplifiés qui correspond mieux aux véritables boules de glace. 

Notre contribution pour cette partie comprend l’étude de l’effet dissipateur de chaleur des gros 
vaisseaux dans le calcul de la zone d'ablation qui n'a encore jamais été pris en compte dans un contexte 
de planification de cryo-chirurgie dans la littérature. Un cadre interactif a été conçu pour modifier 
manuellement les positions et les orientations de plusieurs aiguilles et pour visualiser la zone d'ablation 
calculée, à des fins d'assistance ou de formation chirurgicale. Enfin, de façon à prendre en compte la 
simulation de différents types de thermo-ablation et de conserver l’aspect générique de l’outil de 
planification, nous avons utilisé des approches gérant aussi bien les ablations par hypo- (cryoablation) 
que par hyper-thermie (radiofréquence). 

 

• Planification de trajectoire multiple 

 

Le problème de planification automatique d'ablation de tumeur est un problème multi-objectif, 
qui consiste à trouver le meilleur compromis satisfaisant au mieux les multiples contraintes qui 
s’appliquent. C’est un problème compliqué, dans lequel la nature multi-objectif du problème est 

difficile à résoudre, mais également chaque contrainte séparément peut être complexe. En particulier, le 
recouvrement de la totalité de la tumeur par un volume de glace minimal est mathématiquement proche 
de problèmes classiques de couverture minimale d’un objet avec plusieurs autres formes géométriques, 
ici des ellipsoïdes (version simplifiée) ou des surfaces isothermes simulées par l’équation de transfert 
de chaleur depuis les aiguilles. Ce problème de recouvrement peut être classé dans les problèmes 
polynomiaux non-déterministes en termes de calcul. 

Figure 3 : La boule de glace déformation dû à le vaisseau proximité contre a sans déformation. 



Un certain nombre de contraintes a été appliqué à ce problème. Ces contraintes représentent : 1) 
la création d’une zone délimitant les points d’insertion possible, permettant par exemple d’éviter 
différents organes tels que les os et la moelle épinière, les gros vaisseaux, ou permettant de ne pas 
entrer de façon trop tangente par rapport à la surface du foie : ces contraintes sont satisfaites dans une 
étape de pré-traitement créant une “zone d’insertion”, projection sur la peau des trajectoires faisables; 

 2) la minimisation de valeurs numériques représentant par exemple des règles de  non 
intersection des aiguilles, ou la couverture complète de la tumeur : ces valeurs doivent être calculées à 
chaque itération d’un processus d'optimisation. Ces contraintes sont fortement non-linéaires, et ont 
donc été résolues par le développement de fonctions de pénalité appropriées. Equation 7 montre la 
fonction de pénalisation de solutions qui sont situées à l'extérieur de la zone d’insertion relatives à ses 
distances. De façon similaire, l’équation 8 est définie pour restreindre le solveur de placer les 
aiguilles  très près l'une de l'autre. Les équations 9, 10 vérifient le volume de la tumeur non couvert et 
finalement la fonction de pénalité cumulative  ℎ �  est la somme de toutes les fonctions précédentes 
(l’équation 11). 

 Constraint� � = ∑ � ∗ |�� � | + bias��=                  (7) Constraint� � � = ∑ ∑ � � ∗ � (�̃ − �� ( , ), ) + bias� ��= +�−=                   (8) Constraint � = �� ∗ ∫ � � (�� )� + bias �              (9) � (�� ) = {     if �� ≤ �̃  et x est dans la tumeur      if �� > �̃  et x est dans la tumeur                                     (10) ℎ � = Constraint� � + Constraint� � � + Constraint�� �                               (11) 

 

où ∗ et � ∗ sont la pondération et valeur du biais pour chaque contrainte. Elles 
peuvent être contrôlées par l'opérateur sur la base de l’importance de cette contrainte. ��  est 
le champ de température de chaque voxel dans l’espace de et �̃ est le seuil de température de la mort 
cellulaire. 

Plusieurs fonctions objectif ont été introduites dans notre outil de planification afin de 
minimiser le volume de nécrose des tissus sains et de maximiser la distance des trajectoires multiples 
des aiguilles aux vaisseaux et aux organes vitaux. Les équations 12 et 13 calculent le volume de 
nécrose des tissus sains où ��  est l'indice de température  au point x et �̃ est le seuil de température 
de la mort cellulaire. Puis la distance des trajectoires multiples des aiguilles aux vaisseaux et aux 
organes vitaux est présentée dans les équations 14 et 15. Pour transformer cette fonction multi-objectif 
en une unique fonction mono-objectif à minimiser, une somme pondérée est utilisée et formulée par 
l’équation 16. Chaque fonction objectif est normalisée à l'avance à une valeur comprise entre 0 et 1. 
En définitive, la somme des fonctions objectives ensemble et des fonctions de pénalité sont utilisées 
pour minimisation comme on le montre dans l’équation 17. � � = ∫ � e y(�� ) �                    (12) 



� e y(�� ) = {     if �� ≤ �̃  et  est dans les tissus sains      if �� > �̃  et  est dans les tissus sains            (13) 

� _ e e � = max 5−�=1:� ve el �5 ,                   (14) � _ � = max 5−�=1:� ib �5 ,                    (15) � � = e ∗ � � + _ e e ∗ � _ e e � + _ ∗ � _ �            (16) 

 min� 5∗� � � + ℎ �    (17) 

Puisque ce problème d'optimisation est extrêmement non linéaire et il est impossible de calculer 
son dérivative direct, différentes méthodes d'optimisation sans dérivée ont été utilisées: déterministes 
ou stochastiques, heuristiques ou basées modèle et locale ou global. Ces méthodes avec ses propriétés 
sont présentées dans Table 1. La vitesse, la précision et la robustesse de certains de ces procédés ont été 
comparés dans un domaine de recherche avec les différentes complexités. Six cas ont été choisis 
avec  différents tailles de tumeurs et complexité de la zone d’insertion. Les expériences sont répétés 
pour plusieurs nombres et types des aiguilles fondé sur taille de tumeur. Elles sont également répétées 5 
fois pour les méthodes stochastiques et ensuite la valeur moyenne est utilisée. La première étude est 
effectuée pour tester la possibilité de couverture de la tumeur au minimum nombre des aiguilles sans 
tenir compte d'autres contraintes.  

Dans cette première étude,  toutes les méthodes stochastiques sont capables de couvrir la tumeur 
cependant la modélisation porteuse et modèle de recherche étaient plus rapides. Dans 
la deuxième étude y compris toutes les contraintes, modèle de recherche, solis wets et  d'algorithme 
évolutionnaire sont capables de couvrir dans le cas de la zone d’insertion simple. Pour une zone 
d’insertion complexe et discontinue, seulement la modèle de recherche est capable de converger vers 
une bonne précision en évitant toutes les contraintes. 

À toutes les expériences précédemment, le solveur comporte plus de mille itérations pour 
obtenir un minimum. Puisque le placement des aiguilles est modifié à chaque itération d’optimisation, 
l'équation de propagation de la chaleur devrait être calculée séparément. Cette procédure 
est  longue durée et elle a besoin de plusieurs heures des calculs. Pour résoudre ce problème, la 
planification est effectuée en deux phases. Dans la première phase l’ellipsoïde simplifié est utilisé à sa 
place de la boule de glace simulée pour une planification rapide. Dans un deuxième temps, la position 
et de l'orientation des aiguilles sont légèrement modifié dans une nouvelle phase d’optimalisation. 
Cette fois la boule de glace simulée est utilisée à chaque itération d’optimisation. Le résultat de cette 
perspective est illustré dans Figure 4 démontrant la boule de glace simulée, l’ellipsoïde simplifié, les 
aiguilles et les autres organes. L'effet de vaisseau dans la déformation d'une boule de glace est 
visible  la zone zoomée à proximité d'un vaisseau.  

La Figure 5 illustre la tendance de l’optimisation pour planification automatique pour la cryo-

chirurgie y compris toutes les contraintes pour une phase et deux phases méthodes. Chaque itération 
prend 50 secondes sur une machine avec cœur i7-3.4 de bien calculer les simulations. Dans l’une phase 

http://fr.wikipedia.org/wiki/Optimisation_non_lin%C3%A9aire
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http://www.linguee.com/french-english/translation/mod%C3%A8le+de+recherche.html


planification, il a besoin de 700 itérations pour converger a la minimum ou 9 heures et 43 minutes. 
Planification avec l’ellipsoïde simplifié prend quelques secondes pour les calculs et ce temps est 
négligeable  en comparaison avec  la simulation de transfert de chaleur. Donc pour l’optimisation deux 
phases en Figure 5, la tendance de deuxième phase est seulement illustrée. Dans cette figure, 
la tendance de plusieurs optimiseurs a été comparée et les solveurs comme la modèle de recherche, la 
modélisation porteuse et l'algorithme évolutionnaire sont supérieurs aux autres. Cette fois l’algorithme 
a besoin de 30 itérations à trouver le minimum et la planification a été terminée en 25 minutes qui est 
faible à faire en salle d'opération.  

À des fins de validation, des expérimentations ont été menées en définissant une configuration a 
priori de la zone d'ablation et les résultats ont été comparés avec les résultats obtenus en utilisant une 
méthode de recherche exhaustive. En outre, ils sont comparés aux images post-opératoires des patients 
pour le cas d'un et de deux aiguilles. 

 

Methode 
 locale déterministe sans contraintes direct différentiable 

 global stochastique  sous contraintes basées modèle sans dérivée 

Simplexe      

Recherche direct      

Modèle de recherche      

Solis wets      

Algorithme 
évolutionnaire 

     

Modélisation porteuse      

 

Notre contribution dans cette partie comprend l'élaboration d'un outil de planification 
automatique pour la cryo-chirurgie, pour l'optimisation 3D de plusieurs aiguilles à tous degrés de 
liberté tout en évitant les organes obstructifs et vitaux, un outil générique qui accepte des nouvelles 
contraintes chirurgicales et anatomiques basées sur l'organe opéré, en tenant compte de l’intégration 
des mesures de simulation et de planification, et un approche d'optimisation en deux phases pour 
combiner ellipsoïdes simplifiés et la simulation de transfert de chaleur afin d’obtenir les résultats 
rapides. 

 

Conclusion et perspectives 

 

Dans cette thèse, un outil de planification pour la cryo-chirurgie avec aiguilles multiples a été 
élaboré en tenant compte de l’intégration de simulations de transfert de chaleur dans le processus 
d'optimisation. Les contraintes non-linéaires ont été résolues en utilisant une étape unique de pré-

traitement et en introduisant plusieurs fonctions de pénalité. Un processus d'optimisation en deux 
phases a été utilisé, qui permet d’obtenir un résultat plus précis en un temps de calcul acceptable et 
applicable en salle d'opération. L’étude de l’influence des vaisseaux a démontré le rôle important des 
vaisseaux dans formation de la boule de glace, souvent surestimée par les méthodes habituelles, et donc 
dans les risques de récidive de la tumeur. 

Table 1 : Classification des méthodes choisis fondé sur ses propriétés 

http://www.linguee.com/french-english/translation/mod%C3%A8le+de+recherche.html
http://www.linguee.com/french-english/translation/mod%C3%A8le+de+recherche.html
http://www.linguee.com/french-english/translation/propri%C3%A9t%C3%A9s.html


 

Figure 4 : Le résultat de planification. Les ellipsoïdes sont en jaune, la boule de glace simulée en bleu. 

Figure 5 : Une comparaison d’optimisation monophasé par la ligne tiretée et plusieurs  méthodes d’optimisation 
deux phases par les lignes solides. 



Dans de futur travaux, l’utilisation d’algorithmes de traitement parallèle pourra être proposée 
pour le calcul rapide et plus fin de l'équation de transfert de chaleur, en gardant la solution numérique 
plus stable pour les paramètres d'entrée. L’introduction de modèles d’aiguilles déformables dans notre 
outil de planification pourrait également augmenter l’éventail d'applications et produire des résultats 
plus réalistes. 
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