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Resumé 
 
Les lipides sont des composants majeurs des membranes biologiques. La plupart d’entre 
eux sont synthétisés dans le reticulum endoplasmique (RE) à l’exception de la 
sphingomyéline (SM). En effet, la céramide molécule précurtrice, est d’abord synthétisée 
dans le RE ensuite transporté via des vésicules jusqu’à l’appareil de Golgi où la SM est 
synthétisée. Ce transport se fait par des vésicules spécialisées COP (COat Protein) I et II 
qui transportent respectivement les molécules dans le sens retrograde et antérograde entre 
le RE et le cis Golgi. Les vésicules COPI agissent activement dans les deux sens au niveau 
du Golgi. 

Récemment, Contreras et al ont décrit une interaction protéine-lipide entre la SM et la 
protéine transmembranaire de typeI p24, fortement présente dans la membrane des 
vésicules COP I. Elle interagit spécifiquement parmi les différentes espèces moléculaires 
de SM avec la SM C 18 et cette interaction semble impliquer à la fois la tête lipidique et 
les chaînes aliphatiques. Il a été montré que l’interaction est conservée lorsque la protéine 
est réduite à son domaine transmembranaire (p24TMD, 21 résidus) et les résidus impliqués 
ont été identifié par mutagénèse : VXXTLXXIY. Une telle spécificité n’avait alors été 
identifiée que dans le cas d’interaction protéine-protéine et protéine-acide nucléique 
comme impliquée dans la régulation de fonctions cellulaires. En effet, il a été suggéré que 
l’interaction p24TMD-SM C18 serait potentiellement impliquée dans la régulation du 
mécanisme de formation des vésicules COPI. L’ensemble de ces travaux ont également 
permis de proposer un modèle du complexe p24TMD-SM C18 simulé par dynamique 
moléculaire. Nous avons voulu caractériser cette interaction en apportant des données 
structurales dans le but ultime de comprendre sa fonction. 
 
Dans cet objectif, nous avons tout dabord procedé à l’obtention du peptide p24TMD, à sa 
reconstitution dans les liposomes après purification et à sa caractérisation par différentes 
méthodes spectroscopiques telles que la résonnance magnétique nucléaire (RMN), le 
dichroïsme circulaire (DC) et la fluorescence du tryptophane (Trp). Une étude de DC après 
reconstitution du peptide dans différentes membranes, nous a permis de caractériser 
l’interaction entre le p24TMD et la SM C18. Des études structurales obtenus par RMN du 
solide des écahntillons orientés, ont montré que cette interaction n’affecte pas de manière 
significative la topologie et la dynamique du peptide mais en revanche influencerait 
l’orientation de la chaîne latérale des acides aminés impliqués (leucine 23). Bien que 
l’ensemble des travaux présentés dans ce manuscrit ne permettent pas à ce jour de valider 
ou d’infirmer le modèle proposé, les résultats obtenus ont permis de comprendre 
caractériser cette interaction et ont apportés des informations structurales sur la topologie 
et la dynamique du p24TMD dans les membranes. D’autres études structurales par RMN 
du solide tel que la rotation à l’angle magique (MAS pour Magic Angle Spinning), le 
PISEMA (Polarization Inversion Spin Exchange at the Magic Angle) et le REDOR 
(Rotational Echo DOuble Resonance) sont necessaires pour compléter les résultats 
présentés dans ce manuscrit. 
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Abstract 
 
The lipids are major components of biological membranes. Most of them are synthesized 
in the endoplasmic reticulum (ER) with the exception of sphingomyelin (SM). In fact, the 
ceramide (SM precursor) is first synthesized in the ER then transported via vesicles to the 
Golgi apparatus where the SM is synthesized. This transport is done by specialized vesicles 
COP (Coat Protein) I and II, which respectively carry the molecules in the direction 
retrograde and anterograde between the cis Golgi, and ER. The COPI vesicles actively act 
in both directions in the Golgi apparatus. 

Recently, Contreras et al described a protein-lipid interaction between the SM and the type 
I transmembrane protein p24, mostly present in the membrane of the vesicles COP I. This 
protein specifically interacts among the different SM molecular species only with the SM 
C18 and this interaction seems to involve both the lipid head group and the aliphatic 
chains. It has been shown that the interaction is conserved when the protein is reduced to 
the transmembrane domain (p24TMD, 21 residues) and the residues involved were 
identified by mutagenesis: VXXTLXXIY. Such specificity was identified in the case of 
protein-protein interaction and protein-nucleic acid as involved in the regulation of cellular 
functions. Indeed, it has been suggested that the p24TMD-SM C18 interaction is 
potentially involved in the regulation of COPI vesicles biogenesis. Contreras et al proposed 
a molecular dynamics model of the p24TMD SM-C18 complex. To understanding the 
function of such specific interaction, here we proposed to investigate it by providing some 
structural data. 

With this purpose, we first obtained the p24TMD peptide and after purification and 
reconstitution in liposomes, we proceed to his characterization using various spectroscopic 
methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism 
(CD) and the fluorescence of the tryptophan (Trp). CD investigation after reconstitution of 
the peptide in various membranes, has allowed us to characterize the interaction between 
the p24TMD and SM C18. Structural studies by solid state NMR of oriented samples 
showed that this interaction does not significantly affect the topology and dynamics of the 
whole peptide but influence the orientation of the amino acids side chains the involved in 
the interaction (leucine 23). Although all the work presented in this manuscript do not 
allow that day to validate or invalidate the proposed model, the results we obtained have 
allowed us to understand and characterize this interaction and have shed light on the 
topology and dynamics of p24TMD in membranes. Other structural solod state NMR 
studies such as the Magic Angle Spinning (MAS), the PISEMA (Spin Polarization 
Inversion Exchange at the Magic Angle) and REDOR (Rotational Echo Double 
Resonance) are needed to complete the results presented in this manuscript. 
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ExPASy (http://web.expasy.org/protparam/). ..................................................................... 91 

Figure 45: Summary of the yield in the different bacteria strains and the elution profiles of 
MBP-p24TMD. The protein elution profiles of MBP-p24TMDH are represented as a 
function of the optical density at 280nm. The SDS-PAGE after expression in DH5α was 
obtained from our collaborators at the University of Heidelberg. The different 
concentrations were estimated from the measured OD 280nm values on a Nanodrop-1000 
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Figure 46: Expression and purification of MBP-p24TMDH. (A) Bacterial growth curve in 
M9 minimum medium. Bacteria were grown at 37°C until OD 600nm 0.8-0.9 and protein 
expression induced by addition of IPTG 1mM (see arrow). After induction, cells were 
grown at 18, 30 and 37 °C under shaking (230 rpm) during 24, 22 and 8 hours respectively. 
(B) SDS-PAGE analysis of the expression of MBP-TMDH during the purification steps. 
The total cell lysates were centrifugated and the supernatant corresponding to the total 
protein extract, was incubated with amylase beads 1h at 4 °C. Beads were settle down by 
centrifugation at 2000g, 5min and the supernatant (FT) recovered. Beads were thereafter 
washed to remove the excess of protein and the MBP eluted with the elution buffer (20 
mM Tris; 200 mM NaCl; 100mM EDTA, pH 7.4; 10mM maltose). 15µl of FT (equivalent 
to 500µl of culture) and 20µl the different elution fractions (En) (equivalent to 600µl of 
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1h electrophoresis migration at 150V. NI37 corresponds to the non-induced conditions at 
37 °C; I37, I30 and I18 to the induced conditions at 37, 30, and 18 °C respectively. M 
indicates the molecular weight marker ................................................................................ 96 

Figure 47: SDS-PAGE profile of the full and truncated MBP-p24TMDH after Coomassie
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Figure 48: SDS-PAGE profile of MBP-p24TMDH cleavage. (A) Kinetic of cleavage in 
solution at different protease-to-target protein ratios and different temperatures. For each 
condition, 47µg of purified protein was digested with the corresponding amount of TEV 
protease to obtain the different ratios (w:w; 1:20, 1:50, 1:100, and 1:150). The cleavage 
was then achieved at RT~25°C (red) or 4°C (blue). 1µl (1.6µg) of the different products of 
digestion and non-digest (ND) protein were sampled at different times (30min, 1h, 2h, 3h, 
4h and 24h) and separated on a 10% polyacrylamide gel for 1h at 200V. (B) Cleavage of 
the resin-bound protein. After incubation of MBP-p24TMDH 1h at 4°C with amylose 
beads, TEV protease was added and the sample incubated for 24h at 4°C under gentle 
agitation. Beads were settled-down by centrifugation and the supernatant recovered and 
incubated with cobalt resin to get-rid-off the TEV protease. Lanes 3 and 4 correspond to 
the supernatant before incubation with cobalt resin and 6 and 7 to the supernatant after 
incubation. 5µl (8.5µg) of supernatant was loaded on a 10-20% gradient gel and separated 
for 1h at 200V with the purpose of identifying the peptide. The well 5 corresponds to the 
pure His-TEV protease (0.2µg) as reference (or as control). A zoom of lanes 3 and 4 is 
shown (right) with arrows indicating the MBP-p24TMDH, MBP after cleavage of 
p24TMD (44.3 kDa) and the MBP-5 (42kDa) corresponding to the truncated MBP. The 
table summarizes the theoretical molecular weight of the expected protein and peptide ... 99 

Figure 49: p24TMDH mass spectrometry. The main butanol extraction fractions containing 
the peptide (butanol phase supernatant and pellet) were received from our collaborators. 
These fractions were resuspended in 30% acetonitrile/ 0.1% TFA/water and 1µl mixed to 
1µl α-Cyano matrix on the target. The sample was dried at air and analyzed on a MALDI-
TOF spectrometer using linear mode detection. The spectrometer was calibrated with a 
mixture of peptide ranging between 1000 and 3500 Da (peptide calibration standard, 
Bruker, Bremen, Germany). Abbreviations: PB (pellet of the butanol phase); SNB 
(supernatant of the butanol phase). .................................................................................... 101 

Figure 50: p24TMDH purification and characterization by SDS-PAGE and mass 
spectrometry. 2.5mg of MBP-p24TMDH was cleaved with 48µg of TEV protease 
achieving the ratio (50:1). (A) The peptide was thereafter purified as described on the 
butanol extraction protocol above. (B)1.5µl of each fraction and 15µl (180µg) of the 
cleavage product were loaded on a 15% polyacrylamide gel and protein separated for 1h 
under 150V, 300mA.  The Protein ladder (MXD) was separated simultaneously and the gel 
stained with Coomassie blue. The different abbreviations are defined in the butanol 
extraction protocol; D is for the digest product. (C) In parallel, 1µl of each fraction was 
mixed to 1µl α-Cyano matrix on the target, dried at air and analyzed by MALDI-TOF mass 
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Figure 51: (A) SDS-PAGE of the uncleaved (ND, 15µg) and cleaved (D, 185µg) MBP-
p24TMDH fusion protein, the butanol fractions (SNB and PB), the cleaved (SD, 30µg) and 
uncleaved (S, 30µg) p24TMD synthetic peptide. The different samples were separated in a 
4-20% polyacrylamide gel in denaturing conditions. Protein ladder (M) was separated 
simultaneously and the gel stained with Coomassie blue. (B) 1µl of the product of MBP-
p24TMDH cleavage was mixed to 1µl SA matrix on the target, dried at air and analyzed by 
MALDI-TOF mass spectrometry using linear mode detection. The spectrometer was 
calibrated with a mixture of proteins ranging between 4000 and 20000 Da (protein 
calibration standard I, Bruker). (C) Mass spectrometry spectra of the MBP-p24TMDH 
digested with trypsin (control, top) and that of the bands 1, 2 and 3 cut from the gel are 
shown (A). The MBP-p24TMDH was first digested with the trypsin and the generated 
fragments used to provide a bank of peptides. Their presence was thereafter found after the 
trypsin digestion of the bands cut on the gel by comparison of the mass spectra. (D) Mass 
spectrometry of p24TMD synthetic peptide and the bands 4, 5, 6, 8 after trypsin digestion. 
The spectra C and D were obtained by MALDI without fragmentation with a reflectron 
mode and provided by the mass spectrometry service at the molecular and cellular biology 
institute. The black arrows pinpoint the p24TMD and p24TMDH sequences with their 
expected masses. (E) Product of cleavage with 50% HFIP (v/v). 9 mg of purified MBP-
p24TMDH from M9 medium culture was cleaved in solution with TEV protease with the 
final protein/enzyme ratio 20:1. Addition of HFIP to 7.714 mg of total cleaved protein, 
(1:1, v/v), lead to different phases and a white precipitate after vortexing and centrifugation
 ........................................................................................................................................... 108 

Figure 52: Purification and characterization of p24TMDH after cleavage of the resin-
attached MBP-p24TMDH. (A) The reverse phase HPLC chromatogram of the supernatant 
that was recovered after cleavage from the amylose resin. After cleavage on resin (1:20 
protease-to-protein ratio), beads were settled down and the supernatant (equivalent of 
148µg of protein) was injected a ProntoSIL 300-3-C4 analytic column. The sample was 
purified under a 10-95% acetonitrile/water gradient on Bischoff device. (C) 0.5µl of the 
different elution fractions were mixed to the same volume of α-cyano matrix and analyzed 
using a linear mode on a MALDI-TOF spectrometer. HPLC fractions were lyophilized, 
loaded on a 10-20% gradient polyacrylamide gel and separated for 1h at 200mV. The gel 
was stained with Coomassie blue ...................................................................................... 110 

Figure 53: Influence of IPTG and arabinose on bacterial growth and TAF12-p24TMD 
expression. Kinetics of bacterial growth was achieved by monitoring of the OD 600nm 
every 30min. They were grown at 37 °C until OD = 1 (arrows) and the expression induced 
with (A) different concentrations of IPTG (0.8, 1 and 1.2 mM) and a fixed concentration of 
arabinose (0.2%) or (B) different concentrations of arabinose  (0.2, 0.5 and 1%) and a fixed 
concentration of IPTG (1mM). The different fractions during protein extraction for the 
IPTG test (C) and the elution fractions for arabinose test (D) in induced (I) or non-induced 
(NI) conditions were analysed by SDS-PAGE. Samples were separated on a 16% Tris 
glycine gel during 1h10 at 150V and the gels stained with Rotiblue. The loaded volumes 
are the following: 24µl for soluble (FS) and insoluble fractions (Mbe + CI: membrane and 
inclusion bodies) (equivalent to 120 µl of culture), 12 µl for membrane fractions (Mbe) 
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(equivalent to 1.2 ml of culture) and 25 µl for elution fractions (Elu) (equivalent to 1.2 ml 
of culture) for IPTG test and 60µl (equivalent to 6 ml of culture) for arabinose test and 
12µl of protein ladder (PM) (Precision Plus Protein Dual Color Standards ™). The red 
arrows indicate the protein of interest. The theoretical masses in the table were obtained 
through the web software ProtParam Site ExPASy........................................................... 117 

Figure 54: Influence of OD 600nm at induction and temperatures on TAF12-p24TMD 
expression. (A) Bacteria were grown until OD (600nm) ~ 1, 1.5 and 2 and the expression 
induced during 3 hours at 37 °C with 0. 8 mM IPTG and 1% arabinose. After purification 
of the fusion protein, 45µl of each elution fraction (equivalent to 4.5 ml culture) were 
analyzed by SDS-PAGE. For the temperature test, induction was performed with the same 
concentration of inducers during 4h at 28, 37°C and for longer time at 15, 20°C. (B) 25µl 
of elution fractions (equivalent to 2.5 ml culture) and (C) 12µl (equivalent to 1.2ml) were 
analyzed. Samples were separated on a 16% Tris glycine gel during 1h10 at 150V and the 
gels stained with Rotiblue. 12µl of molecular weight marker was deposit. The red arrows 
indicate the protein of interest ........................................................................................... 119 

Figure 55: Chromatogram of elution fractions after cobalt affinity and MALDI-TOF mass 
spectra of the HPLC fractions. (A) The pool of cobalt affinity elution fractions (equivalent 
of 125ml culture) were purified under a 10-95% acetonitile/water gradient during 85min on 
Bischoff HPLC using Jupiter C4 HPLC analytic column. The chromatogram shows the 
absorbance at 214nm (black), 280nm (red) and 253nm (yellow) as a function of time (min). 
The peaks correspond to the eluted proteins at different acetonitrile gradients: ~ 30, 42, 52 
and 60%. (B) 1µl of each eluted fraction was mixed with 1µl of SA matrix and analyzed 
MALDI-TOF using linear mode detection under 30% laser power. The calibration was 
performed with the protein calibration standard I (Bruker) .............................................. 122 

Figure 56: Reverse phase HPLC chromatogram of insoluble fraction and mass spectra. (A) 
The insoluble fraction of 1L and 500ml equivalent culture for the induced and non-induced 
conditions, respectively, was purified under a 10-95% isopropanol/water gradient during 
60min on Gilson HPLC using a Jupiter C4 preparative column. The chromatogram shows 
the absorbance at 214nm as a function of the time (min) for the induced (blue) and non-
induced (purple) conditions. Proteins were eluted in both conditions between 38 and 62% 
isopropanol. (B) 1µl of each eluted fraction was mixed with 1µl of SA matrix and analyzed 
by MALDI-TOF using linear mode detection under 30% laser power. The calibration was 
performed with the protein calibration standard I. Only the full spectra of the HPLC 
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represented. The region of the expected mass (frame in black) was zoomed. The red arrow 
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Figure 57: Chromatogram and mass spectrometry spectra after formic acid cleavage of 
HPLC fraction containing the fusion protein (A, B) or the insoluble fraction (C). (A) The 
TAF12-p24TMD was purified by HPLC under a 10-95% isopropanol/water gradient (red) 
during 60min from the injection of the equivalent of 2.8l and 500ml culture for the induced 
and non-induced conditions, respectively, resuspended in formic acid/water (75/25, v/v). 
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The purification was performed on Gilson HPLC using a Jupiter C4 preparative column. 
The resulting chromatogram only shows the absorbance at 214nm as function of time 
(min) for the induced (blue) and non-induced (purple) conditions. The cyan and black 
boxes indicate the fractions in which peptides with close mass to the one we expected were 
identified. The fraction frame in cyan is recovered in the injection peak (PI). (B) MALDI-
TOF spectra of the fractions frame in black for the induced (blue and cyan), non-induced 
(purple) conditions. (C) Mass spectra when cleavage was achieved directly on insoluble 
fraction after HPLC purification. 1µl of each eluted HPLC fraction was mixed with 1µl of 
SA matrix and analyzed MALDI-TOF using linear mode detection under 30% laser power. 
The calibration was performed with the protein calibration standard I. The red arrow 
pinpoints the peak with a close mass to that of p24TMD ................................................. 126 

Figure 58: HPLC chromatogram of p24TMD purification. The black line represents protein 
absorbance at 214nm, the yellow line at 254nm and the red line at 280nm. The latter is 
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identified ............................................................................................................................ 137 
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absorbance at 280nm by use of the extinction coefficient. The necessary amount for 30µM 
final concentration of peptide was transferred into different tubes and the water was 
evaporated under vacuum. Thereafter, a giving volume of HFIP was added to the peptide, 
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List of Abbreviations 
 
Lipids: 
 
PC: phosphatidylcholine 
POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 
DPPC: di-palmitoyl-phosphatidylcholine 
POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 
POPE: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 
POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine 
DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine 
SM: N-octadecanoyl-D-erythro-sphingosylphosphorylcholine (Sphingomyelin) 
CL: cardiolipin 
 

Others: 
 
NMR: Nuclear Magnetic Resonance 
ssNMR: solid state NMR 
PAF: Principal Axis Frame  
REDOR: Rotationnal Echo Double Resonnance  
MAS: Magic Angle Spinning  
PISEMA: Spin Polarization Inversion Exchange at the Magic Angle  
MLV: multilamellar vesicle 
SUV: small unilamellar vesicle  
CP: Cross-Polarization 
CD: Circular Dichroism 
Fmoc: 9-Fluorenylmethoxycarbonyl 
HPLC: High Performance Liquid Chromatography 
RP-HPLC: Reverse Phase HPLC 
CSA: Chemical Shift Anisotropy 
CS: Chemical Shift 
ppm: parts per million  
LB:  Lysogeny Broth 
IPTG: IsoPropyl β-D-1-ThioGalactopyranoside  
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GENERAL INTRODUCTION  

This chapter is meant to give a general overview on biological 

membranes, and highlights the features that distinguish them from 

each other in terms of compositions and properties. As lipids 

represent the basic element of these membranes, their synthesis and 

sorting to the cellular plasma membrane are described here as well 

as their physical chemical properties. Furthermore, this part also 

emphasis on how lipids are used in model systems when we try to 

make sensible emulations of in vivo systems because the complexity 

of natural membranes hampers their biophysical investigation. 

Moreover, the properties that trigger their interaction with proteins 

within the membrane are also presented. 



CHAPTER I – GENERAL INTRODUCTION 

 

2 

 

 General Introduction Chapter 1.

1.1. Generalities on biomembranes 

Biological membranes are essential for life as they play a central role in both the structure 
and function of all cells, prokaryotic and eukaryotic, plant and animal. They define the 
boundaries of the cell and are the point of contact between the cell and its environment. 
They also define cellular compartments, like numerous membranous organelles in 
eukaryotic cells (Figure 1) Membranes do not only define compartments, they also play an 
important role in all communication between the cell and its environment. They provide 
specialized permeability barriers for cells and cell organelles, in which the interplay of 
lipids and membranes proteins facilitates basic cellular processes as ions exchange. 
Moreover, most of the fundamental biochemical functions in cells involve membranes at 
some point, including such diverse processes as prokaryotic DNA replication, protein 
biosynthesis, protein secretion, bioenergetics, and signal transduction. 
 

The structure and organization of biomembranes have been a matter of debate until the late 
1970s. For many years, biologists thought the protein covered the outer surfaces of the 
phospholipid bilayer like a coat of paint. The initial model for membrane structure was 
proposed by Davson and Danielli in 1935. It portrayed the membrane as a phospholipid 
bilayer coated on both sides by protein. Thereafter, Michael Robertson proposed in 1960 
the Unit Membrane Hypothesis which suggests that all biological membranes have a 
similar basic structure. This was consistent with what researchers were learning about the 
structure of membrane proteins. In 1972, S. Singer and G. Nicolson revised the Davson and 
Danielli model in a simple but profound way and proposed a new model called the fluid 

mosaic model (Figure 2). It suggested that proteins are inserted into the lipid bilayer, with 
their nonpolar segments in contact with the hydrophobic interior of the bilayer and their 
polar portions protruding out from the membrane surface. The lipid bilayer supplies the 
backbone of the membrane, and proteins associated with the membrane are not fixed in 
regular positions instead they float in the fluid lipid bilayer with occasional occurrence of 
proteins in this lipid matrix. The lipids forming the bilayer are also assumed to be dynamic 
and are randomly distributed in the membrane. This model is widely accepted till this date. 
However, through several later studies this model became more complex with the 
discovery of membrane ordered domains (Presti, 1982; Somerharju, 1985; Virtanen, 1995) 
named “raft”. These domains have a specific lipids and proteins composition. They are rich 
in cholesterol and sphingomyelin and are detergent resistant (Simons and Ikonen, 1997; 
Mukherjee and Maxfield, 2000; London, 2002; McMullen T.P.W and al 2003; Dufourc 
E.J, 2008; Pike L.J, 2009). They are believed to have certain specific functions such as 
lipid composition regulation (Virtanen, 1998), protein binding and lipid protein interaction 
(Simons and Ikonen 1997), enzyme regulation (Somerharju, 1999), proteolysis (Brown and 
London, 1998), signal transduction (Simons and Toomre, 2000; Brown and London, 1998), 
and intracellular trafficking (Mukherjee and Maxfield, 2000).  
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Figure 1: Representation of eukaryotic cell with the complex organization of organelles imbibed in 

the cytoplasm. Extract from Becker W.M and al, 2003.  

 

 

 

Figure 2: The fluid mosaic model of the plasma membrane proposed by Singer and Nicolson, in 

1972. Extract from Biology of the cell, Part II chapiter 6. 
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1.2. Composition and organisation of biological membranes 

This section gives an overview on biological membranes, their composition, how lipid 
components influence their physical properties and heterogeneity. 

1.2.1. Membrane Components: 

Biological membranes are composed of lipids, proteins and carbohydrates, with lipids as 
major component. Although lipids form most of the surface area of membranes, they 
account for only about 42% in weight for a typical human cell, while proteins account for 
roughly 55 wt% as they are much denser than lipids and carbohydrates for 3 wt%. The 
carbohydrates are generally bound either to the lipid or protein. In the cell membrane they 
are components of complex molecules such as proteoglycans, glycoproteins, and 
glycolipids.  

 Membrane Proteins:  1.2.1.1.

Proteins are large polymers of natural amino acids amide bonded to each other. Early 
studies into the mechanism of protein secretion established the endoplasmic reticulum 
(ER) as the site of secretory and membrane protein synthesis (Palade and Siekevitz, 1956; 
Siekevitz and Palade, 1958). Membrane proteins form key nodes in mediating the cell's 
interaction with his envinronment, which is one of the main reasons why the majority of 
drug targets are membrane proteins. They represent an estimated 50% of the modern drugs 
targets, whereas 20-30% of all genes in most genomes encode membrane proteins (Krogh 
et al., 2001). Moreover, 15 to 39% of the human proteome is dedicated to be membrane 
proteins (Ahram et al., 2006). In January 2013, less than 0.1% of protein structures 
determined were those of membrane protein, although the deposit structures in the Protein 
Data Bank (PDB) continuously increase (http://blanco.biomol.uci.edu/mpstruc/). 
Membrane proteins are involved in many important cellular processus for instance 
molecules transport, energy provision, signal transduction and they also provide 
mechanical support to the bilayer. Accordingly, a large proportion of membrane proteins 
can be assigned a function either as receptors, transporters, or enzymes.  
The amounts and types of proteins in a membrane are highly variable. For example, in the 
myelin membrane, 25% of the membrane mass is protein while it is approximately 75% in 
mitochondrial membranes. A typical plasma membrane is somewhere in between, with 
protein accounting for about 50% of its mass. Depending on how they associate with the 
lipid bilayer, membrane proteins fall into two broad categories: integral and peripheral 
proteins. While integral membrane proteins contain transmembrane domains that interact 
with membrane lipids, peripheral membrane proteins are associated with membranes via 
GPI-anchores or non-covalent binding (Figure 3 A and B respectively). Most biological 
membranes contain both of these categories. 

Integral membrane proteins, also called intrinsic proteins, have one or more segments that 
cross the phospholipid bilayer. Although some integral proteins can anchor to one of the 
membrane leaflets, the most common type of integral membrane are those which span the 
entire membrane. They contain one or more domains that span entirely the membrane as 
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well as domains extending into the aqueous medium on each side of the bilayer. 
Membrane-spanning or transmembrane domains (TMD) are found in the so-called 
transmembrane proteins. They contain residues with hydrophobic side chains that interact 
with fatty acyl groups of the membrane lipids, thus anchoring the protein to the membrane. 
This anchoring is steered both by hydrophobic interactions between the phospholipids and 
the TMD, and likely by the polar lipid headgroups. In all the transmembrane proteins 
examined to date, two types of membrane-spanning domains are defined: either with one 
or more α helices, or less commonly with multiple β strands. Among them, proteins 
containing seven membrane-spanning α helices form a major class that includes 
bacteriorhodopsin and many cell-surface receptors. Proteins with multiple β strands are 
often found in porins present in the outer membrane of gram-negative bacteria such as E. 

coli. 

The topology of transmembrane proteins can be describe by the number of segments 
passing through the membrane, as well as the orientation in the membrane (von Heijne, 
2006) (Figure 3A) : 

-  Single pass TM proteins can be categorized as Type I or Type II, depending if their 
carboxy- terminus or their amino-terminus is positioned towards the cytosol, 
respectively  

- Multi pass membrane proteins are divided in Type III and IV in which the multiple 
TMDs are present in a single polypeptide, or consist of several different 
polypeptide chains respectively. Type V proteins are anchored to the lipid bilayer 
through covalently linked lipids and Type VI through both TMDs and lipid 
anchors. 

Peripheral membrane proteins, or extrinsic proteins, are weakly attached to the membrane 
and do not interact with the hydrophobic core of the phospholipid bilayer. Instead they are 
usually bound to the membrane either indirectly to integral membrane proteins or directly 
to the lipid bilayer. Their interactions with membranes mainly result on electrostatic forces 
with polar head groups of lipids or extending part of integral proteins. Thus, they are easily 
dissociated from membrane by changing of the pH or upon high salt concentrations. In 
contrary, integral membrane are removed from the membrane under chaotropic conditions 
such as > 6M urea or 6M guanidinium and the use of detergeant to disrupt the membrane.  
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Figure 3: The different type of membrane proteins and the ways they bind to lipid bilayers. 

Adapted from (Alberts et al., 2002) 

 Membrane lipids:  1.2.1.2.

Lipids are the main constituent of biological membranes. They are amphipathic molecules 
that are hydrophilic on one side and hydrophobic on the other side. When brought into 
contact with water, most lipids spontaneously form bilayer membranes due to the 
propensity of there hydrophobic moieties to self-associate by minimizing interaction with 
water, and their hydrophilic moieties to interact with water and with each others. The 
typical thickness of this lipid bilayer is 5 nm with a continuous surface area of hundreds of 
square microns. Lipids that are found in cellular membranes can be categorized into three 
major classes: the glycerophospholipids (GPLs), spingolipids (SLs) and sterols.  
 
GPLs are the predominant lipids in most eukaryotic and prokaryotic membranes, excluding 
archaebacteria (by). They consist of a glycerol-3-phosphate esterified with fatty acids at 
the C1 and C2 positions. The phosphoryl group at the C3 position in addition is attached to 
various group 'x' as shown in the figure 3A, leading to a number of different phosphatidyl 
lipids headgroup such as phosphatidylcholine (PC), -ethanolamine (PE), -serine (PS), -
glycerol (PG), -inositol (PI) or the unmodified phosphatidic acid (PA). PC accounts for 
more than 50% of the GPLs in most eucaryotic membranes while in PE is abundant in 
procaryotic membranes. The esterified fatty acid at position C1 and C2 contains saturated 
or cis-unsaturated acyl chains of varying lengths. Acyl chains ranging from 16 to 20 are 
commonly found in plants and animals; among them palmitate (C16, saturated), stearate 
(C18, saturated) and oleate (C18, one double bond) are predominant. The type of the 
linkage to the glycerol backbone varied also (ester or ether bonds) (Figure 4A). For 
example plasmogens are phosphoglycerides present in myelin and in cardic sarcoplasmic 
reticulum (Gross, 1985) which have hydrocarbon chains that are linked via ether bond.  
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Cardiolipids is another important class of GPLs that are significantly present in inner 
membranes of mitochondria, choraplast membranes, and some bacterial membranes, but 
rarely in other membranes.  
The second class of membrane lipids SL, is a derivative of spingosine (Figure 4B). The 
amide bounded fatty acid to spingosine results in ceramides from which most of SLs are 
formed.  
The ceramide can be further modified with phosphochloline or glycans to form 
sphingomyelin (SM) and glycosphingolipids (GSLs), respectively. GSLs can be classified 
as cerebrocides (containing a head group with a single sugar unit) and gangliocides 
(ceramides attached with oligosaccharides that contain at least one sialic acid residue). SM 
is the major sphingolipid in the plasma membrane. It represents for example 1/3 of the total 
lipids in myelin that protect and electrically isolate neurons. SLs acyl chain can be 
saturated or tans-unsaturated. Both glycerophospholipids and spingolipids thus have a 
polar head group and non-polar tails made up of acyl chains.  
Another important class of lipid in membranes are sterols. Cholesterol is by far, the most 
commonly represented sterol in PM. Sterols are compact and rigid hydrophobic entity 
made of a saturated tetracyclic nucleus, with a polar hydroxyl headgroup. It has a four-ring 
structure with 17 carbon atoms, to which two methyl groups and an iso-octyl side chain are 
attached (Figure 4C). Whereas cholesterol is the major sterol in animal plasma membranes, 
other sterols are found in plants (sitosterol, stigmasterol), in yeast and other eukaryotic 
microorganisms (ergosterol) and in bacteria (hapanoids, a sterol-like).  
 
The proportion of these lipids varies with the type of cells (Table 1). The variation in 
headgroups and aliphatic chain contribute to create the variety of lipid species; up to 
thousands different species in eukaryotic cells (Coskun and Simons, 2011; Sud et al., 
2007). Their repartition between organelles and the leaflets of the same membrane varies 
(Figure 5). To generate such a huge variety of lipid species varying in head group and fatty 
acyl chain composition, a considerable part of our genome is required in order to 
synthetize, metabolize, and regulate such a complex array of lipids. Cells invest about 5% 
of their genes to create this diversity (van Meer et al., 2008). The reason why cells build 
such a large repertoire of lipids and the role of their heterogeneous distribution between 
organelles is a continuous topic of research in membrane biochemistry. The difference in 
membrane lipid composition is the base of membrane heterogeneity in cells that plays an 
important role in cellular process such as membrane trafficking, cellular homeostasis, etc. 
For example, the gradient of cholesterol along the secretory pathway from the ER to the 
PM (van Meer et al., 2008), has been shown to regulate the sorting of proteins (Coskun and 
Simons, 2011; Kaiser et al., 2011; Nilsson et al., 2001; Sharpe et al., 2010). The membrane 
asymmetry is also due the uneven distribution of lipids but also proteins, between the 
leaflets of membrane bilayers. The parameters that are though to create and maintain this 
membrane heterogeneity will be presented later.  
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Table 1 : Common genotype traits of bacteria related to protein expression. Adapted from 
BitesizeBio web site 

 

Many cellular processes that take place at the membrane depend on its physical properties 
and these are influence by the lipid structure and the temperature. The following section 
will present some lipid properties and how they influence the characteristics of the 
membrane. 
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Figure 4: Chemical diversity of the different common classes of lipids in biological membranes. (A) 

Glycerophospholipids, (B) Sphingolipids. Possible chemical modifications of the head groups for 

these two classes are highlight in green (circle). The lists of groups that can be added to the head 

group are summed up into the green box. The type of linkage in glycerol at C1 position in 

glycerophospholipids is highlighted in red. (C) Sterols structure. Extracted and adapted from Ünal 
C and Kai S, 2011. 

 

 
 

Figure 5: Typical lipid composition in the membranes of eukaryotic cell. Extracted from Van Meer 
G et al, 2008. 

 

1.2.2. Physical properties of lipids in biological membranes: 

Biological membranes are flexible, heterogeneous and permeable. These membrane 
properties depend on thermodynamic parameters such as temperature, pressure, pH, etc 
and lipid composition. Interetingly, the chemical nature of lipids controls the physical 
features of membranes. One of the most obvious characteristics being controlled by this 
chemical nature is the melting point of membranes. This is an important property as it 
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influences two others membrane features as for exemple phase behaviour. Another 
physical property that is inluenced by lipids is the electrostatic potential.  
 
The constituent lipids forming the bilayer can be in different phases depending on the 
temperature and the lipid composition of the membrane. Most lipids possess two 
hydrocarbon chains as shown in Figure 4 except for cholesterol. These chains vary in 
length from 12 to about 24 carbons and in their degree of unsaturation. The acyl chain of 
lipids forming the bilayer can undergo transition order from a rigid (trans-configuration) 
into a liquid state (gauche-configuration) depending on the temperature. This transition 
order is the molecular basis of membrane melting that occurs at the melting temperature 
(Tm). At low temperature (below Tm), lipid chains are ordered into an all-trans 
configuration (Figure 6A, top left) while at higher temperature (above Tm), they are 
disordered due to rotations around the C-C bonds within the lipid chains (Figure 6A, top 
right). Unsaturated lipids have much lower melting temperatures than saturated lipids.   
The melting events in membranes lead to changes in the distribution of lipids within the 
membrane plane, allowing the formation of phases with quite different composition and 
state. These phases differ in their physical properties and may display different elasticities, 
auto-diffusion constants or electrostatic potential. In biological membranes, several phases 
can coexist. The most commonly found in these membranes are: the solid ordered (SO) 
phase, the liquid ordered (LO) phase and the liquid disordered (LD) phase (Figure 6). 
’Solid’ means that the lipids arrange on a (typically triangular) lattice in the membrane 
plane while ’liquid’ indicates the loss of lateral packing (Figure 6, bottom). The attributes 
’ordered’ and ’disordered’ indicate the internal order of the lipid chains (Figure 6, top). 
The transition between ordered and disordered states is linked to the uptake of significant 
amounts of enthalpy (i.e., heat). The SO phase is also often called the ‘gel phase’ and the 
trivial name of the LD phase is the ‘fluid phase’. Biological membranes often exist in a LD 
phase. However, this LD phase can be tuned by the organism depending on environmental 
conditions as for example, organisms adapt their lipid compositions to the temperature in 
order to maintain a particular physical state of their membranes. At low temperature, 
membranes are in an ordered ’gel’ phase while at high temperatures they are in a 
disordered ’fluid phase’ (Figure 6, center). Phases of microscopic or nanoscopic dimension 
are called domains. In biological membranes, these small scale domains are named ‘rafts’. 
They were first proposed in the 1990’s and described as membrane regions in a LO phase 
that are rich in cholesterol, sphingolipids and some GPI-anchored proteins (Brown and 
London, 1998; Edidin, 2003; London, 2002; Simons and Ikonen, 1997). The complex 
composition of membranes can lead to segregation of the constituent lipids into different 
phases thus, display phase coexistence that strongly influences membrane behavior. The 
presence of cholesterol and lipids having high Tm (such as spingolipids) for example in 
membranes favors the formation of an intermediate liquid ordered (lo) phase in which the 
acyl chains of the lipids are ordered as in the gel state but also have a greater lateral 
mobility. 
In addition to the phase behaviour and melting transition also affects the elasticity of 
membranes. In particular, at their Tm, the membranes are very soft and easy to bend. 
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Furthermore, membranes display both fluctuations in area and curvature and their 
spontaneous curvature mainly depends on their asymmetry. 
 
Biological membranes have an electrostatic potential, another important physical property. 
It depends on the charge density on the membrane surface and on the ionic strenght. 
Proteins and lipids provide these charges. Many soluble proteins are positively charged and 
therefore interact with negatively charged lipid membranes. For example, cytochrome c of 
the respiratory chain in mitochondria has a net positive charge of about 4 and binds to the 
highly charged mitochondrial membranes thereby reducing the overall electrostatic 
potential. 
Membranes contain zwitterionic and negatively charged lipids at physiological pH. The 
zwitterionic lipids have head groups that are an electric dipole with a net charge equal to 
zero. 
On average about 10% of all lipids are negatively charged. The relative amount of negative 
charge is very different depending on the particular organelle of a cell. Membranes of 
mitochondria contain for example up to 20% of cardiolipin that have two negative charges 
each. Further, the charges often distribute asymmetrically such that the inner membranes of 
cells and organelles are more charged (Rothman and Kennedy, 1977; Rothman and Lenard, 
1977). This asymmetric distribution of charged lipids contributes to membrane 
heterogeneity as presented below.  



CHAPTER I – GENERAL INTRODUCTION 

 

13 

 

 

Figure 6: A) melting transition of lipid acyl chains under increase of the temperature. B) The three 

most common membrane phases seen as cross sections and from top. SO, LO, LD : solid ordered, 

liquid ordered, liquid disordered phases (Heimburg, 2009) 

 

1.2.3. Membrane Heterogeneity: 

The refined model of the fluid mosaic suggests a heterogeneous distribution of membrane 
components. This distribution is not symmetric between membrane leaflets (Kiessling et 
al., 2009) . It is related to heterogeneous repartition of lipids and proteins across the bilayer 
and their lateral organistion in membrane leaflets. This asymmetry has been extensively 
study and characterized in erythrocyte membrane (ref 2-6). In eukaryotic cells, lipid 
species are distributed heterogeleously between membranes of the different cellular 
compartments and across membrane bilayer except the ER (Kiessling et al., 2009; van 
Meer et al., 2008). Indeed, this organelle is assumed to have symmetric lipid distribution 
while post-ER membranes, show a clear asymmetric lipid arrangement. For instance in 
PM, glycosphingolipids and phosphatidylcholine are present in the exoplasmic leaflet and 
the aminophos-pholipids, phosphatidylserine and phosphatidylethanolamine (PE), on the 
cytoplasmic face (Zachowski, 1993). This assymetry is inherent to lipid biosynthesis and is 
governed by membrane components (protein and lipids), lipid-lipid and lipid-protein 
interactions. Furthermore, it is maintaining and regulate by continuous inward and outward 
lipid movement across the membrane monolayers and likely their lateral diffusion. This 
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section presents the factors that govern membrane heterogeneity how it is generated and 
maintained and the consequences of unregulation in some biological process. 

 Elements that govern Membrane Heterogeneity: 1.2.3.1.

Natural membranes are heterogeneous patchworks of lipids species, membrane proteins 
and cholesterol. They are made of a huge variety of lipid species, typically hundreds 
(Coskun and Simons, 2011; Janmey and Kinnunen, 2006; van Meer et al., 2008) varying in 
head group and fatty acyl chain composition as described above. The acyl chains present 
different length and degree of unsaturation that both determine the thickness and ordering 
of the hydrophobic region of the membrane. The presence of unsaturated hydrocabon 
chains increase membrane fluidity while saturated hydrocarbon chains pack more tightly 
and lead to an ordered structure. Within the lipid bilayer, the differences in chain length 
and saturation of the hydrophobic chains in the membrane interior might introduce disorder 
(Killian, 1998). In addition to the acyl chains, lipids constituting membranes have different 
head groups with different charges and size. Charges mediate electrostatic interactions with 
membrane-associated proteins, specific lipids and lead to spatial organization of 
membranes (Janmey and Kinnunen, 2006b). On the other hand, the presence of a larger 
head group than the acyl chain causes the tails to be more loosely packed if the heads are 
placed close to each other. However, the presence of molecules like cholesterol which have 
a relatively small head group compared to its hydrophobic part might help in achieving a 
closer packing and an increase the acyl chain order. 
Cholesterol is an important structural component of membranes. Its increases the rigidity 
of the membrane fluid and augments the fluidity of the gel phase, respectively. Cholesterol 
interacts more strongly with lipids that have a saturated acyl chain than with those that 
have unsaturations. Interaction with unsaturated lipids depends on the location of the 
double bond. As spingolipids usually have a long saturated acyl chain, they interact more 
favorably with cholesterol. For example, cholesterol preferentially associates with 
sphingolipids and when protein additionally interacts with this domain, it leads to the 
formation of dynamic nanoscale ‘raft’ domains (Lingwood and Simons, 2010; Simons and 
Ikonen, 1997) which are detergeant resistant (Brown and London, 1997).  
Many proteins in membranes interact preferentially with certain lipids. Proteins in raft 
domains have been found for example to be anchored by saturated fatty acid chains 
(Simons and Vaz, 2004). As membrane proteins are amphipatic molecules, their interaction 
with the lipids can be based either on their hydrophilic (charge) or on their hydrophobic 
part. The hydrophobic part of the proteins that interacts with the lipid should match the 
membrane thickness. When this is not the case, hydrophobic mismatch occurs and lipid or 
proteins have to change their conformation in order to minimize this unfavourable energy 
contribution. The proteins can therefore stretch when the membrane thickness is smaller or 
they can fit themselves within the membrane by tilting their trans-membrane helices or by 
taking a different conformation. The lipids similarly can adapt by stretching their acyl 
chains.  

 Generation, regulation and role of Membrane Heterogeneity 1.2.3.2.
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Lipid asymmetry is inherent to de novo synthesis lipids as the enzymes responsible of their 
synthesis are distributed unevenly in membrane. This biosynthesis often occurs on the side 
of the membrane in which newly synthetized lipids will ultimately enriched in PM except 
PC and glucosylceramide (Daleke, 2003).  Indeed, major glycerophospholipids (PS, PE, 
PC, PI) are synthetized on the cytosolic side of ER and accumulated on this side in PM 
while all SLs are synthetized on the luminal surface of ER or Golgi and accumulated on 
the external leaflet in PM. In addition to lipids, several lipids-anchored membrane proteins 
are also distributed asymmetrically across PM of eukaryotic cells as for exemple the GPI-
anchored membrane proteins which are localized on the external side of PM. The 
asymmetry of these proteins is set by biosynthetic pathway. 
 
Lipids asymmetry is maintained by a set of movement and protein-lipid interactions within 
membrane. Indeed, lipids can laterally diffuse, rotate, and exchange between membrane 
leaflets (flip-flop). However, compare to the rapid lateral movements of lipids within 
membrane leafleats, trans-bilayer movements are very slow processes and are governed by 
lipid nature (Lingwood and Simons, 2010). For instance, the half time for phospholipids 
flip-flop ranges from several hours to days (McConnell and Kornberg, 1971). Thus trans-
bilayer movements are catalysed by proteins that significantly contributed to maintain or 
dissipate the trans-bilayer asymmetry. These proteins were classified according to the 
requirement of energy, the direction of transport within the membrane and the substrate 
specificity. The flippase and floppase are ATP-dependant lipid transporters which transfer 
lipid in opposite direction within the membrane. Flippase transports lipids from the outer to 
the the cytoplasmic side of PM. This enzyme is present in a variety of cells and PM. It 
selectively bind PS and was show to be essential to maintain this lipid asymmetry (Daleke, 
2003). In contrast, floppase transfers lipids from the inner to the outer leaflet. This second 
class of lipid transporter involved the ABC transporters which are group of proteins 
responsible of the ATP-dependant export of amphipathic such as cytotoxic xenobitics. 
They are widely expressed in prokaryotes and play role in multi-drug resistance. Only 
some members of this protein family are implicated in lipid efflux and most of them are 
not involved in the maintenance of lipid asymmetry. More, not all of this lipid transporters 
class are floppases and most of them are nonspecific.  However, among the well-
characterized lipid floppase, the ABCC1 was suggest to be involved in the maintenance of 
choline and sphingolipid distribution in some cells (Daleke, 2003). The third class of lipid 
transporters is ATP-independent scramblases which catalysed bidirectional trans-bilayer 
transport of lipids thus, impairs asymmetry. Scramblase activity was found in the ER but 
not in post-Golgi membranes except in PM of activated cells. This may results in a 
symmetric distribution of newly synthetized lipids or lipid precursors in the ER membrane 
(Holthuis and Levine, 2005) and asymmetric distribution in the post-Golgi membranes 
(Daleke, 2007; Devaux and Morris, 2004). However, this trans-bilayer asymmetry is not 
strictly conserved, and likely to change over time.    
 
In addition to trans-bilayer asymmetry, biological membranes are also heterogeneous with 
respect to the lateral organisation of both lipids and proteins (Mouritsen and Bloom, 1984). 
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These lateral assemblies have been put forward as evidence of rafts or other domains 
(Simons and Vaz, 2004). They are mainly modulated by cholesterol which is distribute in 
both leafleats but that seems to be more abundant in the outer leafleat. For instance, lateral 
segregation of cholesterol-induced microdomains in sphingomyelin bilayers (Coskun and 
Simons, 2010). These domains are stabilized by protein-lipid binding as to lipid–lipid 
interactions (García-Sáez and Schwille, 2010). Proteins are part of this raft domain. More, 
they also assemble in functional cluster such as the electron transfer complex in the inner 
mitochondrial membrane. In addition, acyl chain of lipids can be modify within the 
membrane by the actions of local enzymes (Hishikawa et al., 2014). Enzymes acting on 
membrane lipids can have consequences not only in causing changes in the lateral 
distribution but also in producing changes in the 3D organization of membranes. For 
example, removal of the phosphocholine headgroup of SM by sphingomyelinase (SMase) 
yields ceramide, a lipid with very different physicochemical properties that can alter 
spontaneous curvature and lateral packing. 
Lipid asymmetry is essential for normal membrane function as it plays an important role in 
many biological processes such as signal transduction, molecular recognition, vesicular 
budding in membrane tracfficking process (Janmey and Kinnunen, 2006; van Meer et al., 
2008). More, it is important for cell feature as for instance, the non-exposure of negatively 
charged lipids at the external membrane leaflet will distinguished eukaryotic from 
prokaryotic cells (Sato and Feix, 2006).Although, the loss of this asymmetry is associated 
with pathogenic conditions, it is also essential for normal cell development and 
homeostasis. For instance, exposure of PS in the external monolayer was shown to be 
induced in apoptisis early stage (Fadok et al., 1992). However, the unregulation of this loss 
is associated with cardiovascular disease such as diabetes.  In addition lateral organisation 
of both lipids and proteins in domain such as raft, may regulate some cellular processes as 
for exemple the sorting of membrane proteins (Coskun and Simons, 2011; Simons and van 
Meer, 1988; van Meer and Lisman, 2002) or vesicle budding (Pomorski and Menon, 
2006). 

1.3. Cellular synthesis and trafficking of lipids 

The biosynthetsis of many lipids in eukaryotic cells is initiated in the endoplasmic 
reticulum (ER). Thereafter, newly synthesized lipids are delivered to different cellular 
membrane compartments, each of which shows a unique lipid and protein composition. In 
their target location, lipids may be present as structural components or undergo 
modifications to generate new lipid species, contributing to the variety of membrane lipid 
composition. This section introduces de novo synthesis of the common membrane lipids as 
well as their cellular traffic.  

1.3.1. De novo biosynthesis of major membrane lipids 

In eukaryotic cells, several organelles are involved in lipid biosynthesis, including the ER, 
mitochondria and peroxisomes. The ER is the major site for biosynthesis of most 
membrane lipids whereas mitochondria and peroxisomes are responsible for cardiolipin, 
phosphatidylglycerol, and plasmalogens biosynthesis, respectively. As a rule, most of 
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membrane lipids are synthesized in the ER, except sphingolipids which are synthetized in 
the Golgi apparatus. Nevertheless, their precursors are synthetized in the ER, which 
contains multiple biosynthetic enzymes that catalyze the initial steps of de novo 
biosynthesis of the three major lipid classes in eukaryotes (Sprong et al., 2001). 

 Biosynthesis of Glycerophospholipids (GPLs) 1.3.1.1.

GPLs represent the most abundant structural lipids of biological membranes in mammalian 
cells. The synthesis of the most common GPLs: PC, PE, PS, and PI is initiated at the ER 
from the same precursor; the phosphatidic acid (PA) (Hermansson et al., 2011) (Figure 7A). 
PA is obtained from glycerol 3-phosphate by two sequential acylation reactions mediated 
by two different enzymes: the glycerol phosphate acyltransferase (GPAT) and the 
acylglycerol-phosphate acyltransferase (AGPAT). De novo biosynthesis of PC and PE 
occur via the Kennedy pathway in the ER and require diacylglycerol (DAG) derived from 
PA by PA phosphatase (PAP). This pathway involves three sequential reactions: the first 
two which take place in the ER for PC and PE and in addition in the nuclear envelope for 
PE. These two first reactions are rate-limiting enzyme and lead sequentially to CDP-
choline and CDP-ethanolamine. In the last reactions, PC and PE are obtained by the 
transfer of phosphocholine and phosphoethanolamine groups from CDP-choline and CDP-
ethanolamnine, respectively, to DAG and are catalyzed in the ER by a dual specificity 
choline/ethanolamine (CPT/EPT) phosphotransferase (Vance, 2008; Vance and 
Steenbergen, 2005). This reaction can also occur for PC in the Golgi apparatus (Blom et 
al., 2011); in this case, the reaction is mediated by a specfic choline phosphotransferase. 
PC can also be obtained by sequential reactions of PE methylation that occur in the 
mitochondria in hepatocytes (Fagone and Jackowski, 2009). In addition to the Kennedy 
pathway, PE can also be produced by the PS decarboxylation pathway. This pathway takes 
place in the inner membrane of mitochondria and is mediated by the PS decarboxylase 
(PSD). Although most of the PE produced by this pathway stays in the mitochondria, some 
are transported to the ER and other organelles. The mechanism of this transport is not well 
established. 
PS is synthetized in mammalian cells by the exchange of L-serine with either the polar 
head goup of PC (choline moiety) or PE (ethanolamine moiety). This reaction occurs in the 
“mitochondria-associated membranes” (MAM) and is catalyzed by the PS synthase 1 
(PSS1) and PSS2 (Stone and Vance, 2000). From there, the newly synthesized PS is 
translocated to the plasma membrane or the mitochondria, where it undergoes 
decarboxylation to produce PE. This translocation seems to occur by lateral diffusion via 
membrane contact sites between mitochondria and ER membranes (Jasińska et al., 1993; 
Vance, 2008).  
PI biosynthesis is initiated by the formation of CDP-DAG from PA follow by the 
production of PI from CDP-DAG. These sequential reactions are subsequently mediated by 
CDP-DAG synthase (CDS) and PI synthase (PIS) which are localized at the ER. However, 
recent studies, suggest that PI could be synthesized at the PM (Kim et al., 2011).  
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Although the biosynthesis site of GPLs in eukaryotes is the ER, various GPLs can also be 
produced in different membrane compartments by specific enzymes that modulate their 
head groups or fatty acyl chains.  

 Biosynthesis of sphingolipids (SLs) 1.3.1.2.

The synthesis of SLs take place in the Golgi apparatus but their biosynthesis is initiated in 
the ER (Merrill, 2002). Ceramide is first synthetized at the cytosolic face of ER after 
subsequent steps from palmitoylCoA and serine (Figure 7B). It represents the central 
component in sphingolipids metabolism as it contains a sphingosine backbone and can 
therefore be metabolized to generate other sphingolipids. Most of the newly synthetized 
ceramide is then transferred to the Golgi, where it can be converted into sphingomyelin 
(SM), glucosylceramide (GlcCer), lactosylceramide (LacCer), and more complex 
glycosphingolipids (Tafesse et al., 2006). Therefore, the efficient de novo synthesis of GLs 
from the ceramide rely on its transport from the ER to the Golgi (Halter et al., 2007; 
Hanada et al., 2003). The ER to Golgi transport of ceramide in mammalian cells is 
mediated by ceramide transport proteins (CERT) which then regulate SL synthesis (Blom 
et al., 2011). Within the Golgi, SM is produced at the luminal leaflet of the trans-Golgi by 
SM synthase (SMS) which catalyzes the transfer of phosphocholine from PC to ceramide. 
The synthesis of most GSLs starts on the cytosolic side of Golgi membranes with the 
addition of a glycosyl moiety to the ceramide. Thereafter, the glycosylceramide is 
translocated to the luminal side of the trans-Golgi membranes to be converted in more 
complex GSLs.  
The post-Golgi transport of complex SLs from the trans-Golgi to the plasma depends more 
on vesicular transport.  

 Bionsyhnthesis of cholesterol 1.3.1.3.

Cholesterol is the major sterol in mammals, and is highly enriched at the PM (Blom et al., 
2011). Mammalian cells as well as all nucleated cells are capable to produce their own 
cholesterol via de novo biosynthesis by using acetate as the sole carbon source. About 19 
subsequent reactions are catalized by about 30 enzymes to obtain cholesterol (Figure 7C). 
Among them, the limited step is the one that leads to mevalonate, the first intermediate of 
the cholesterol pathway. The synthesis of this intermadiate is mediated by the HMG-CoA 
reductase, an integral ER membrane glycoprotein that catalyzes also the rate limiting step 
for the entire pathway. The whole process is highly energy dependent and is strongly 
regulated both at posttranslational and transcriptional level (Ye and DeBose-Boyd, 2011). 
Although the ER is the main site of cholesterol synthesis, several other cholesterol 
biosynthetic enzymes are also found in other celleular compartments, such as 
peroxysomes, nucleus or nuclear envelope (Zwerger et al., 2010), Golgi complex (Cotman 
et al., 2004). Many of the newly synthetized cholesterol and their intermediates are rapidly 
transported to other cellular membranes, which explains the low cholesterol concentration 
in the ER where they are mainly synthetized.  
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Figure 7: Biosynthetic pathways of the major classes of membrane lipids. A) 

Glycerophospholipids, biosynthetic pathway that take place in mitochondria are represented in 

dashed boxes. B) Sphingolipids and C) cholesterol the most abundant sterol. Extracted from (Lev, 
2010). 

 

1.3.2. Intracellular transport of membrane lipids 
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Membrane lipids transport occurs along the secretory pathway (Figure 8) from the ER to 
their final destination. Because of the hydrophobic nature of lipids, their free diffusion 
through the cytoplasm is very slow to be physiologically relevant for lipid transport 
(Mesmin and Maxfield, 2009). For example, spontaneous exchange of glycerolipids and 
sphingolipids between membranes occurs with half-times > 40 hrs (Prinz, 2010). 
Therefore, effective transport of lipids relies on active mechanisms that facilitate 
intercompartmental transport. These mechanisms are depicted as nonvesicular and 
vesicular lipid transport. Although transport of major lipids is mediated by vesicles, 
increasing evidence suggests that nonvesicular transport is the major route for certain lipid 
types (Lev, 2010) and in the past few years, considerable progress has been made in 
characterizing this alternate transport of lipids (reviewed in (Lev, 2010; Prinz, 2010)). This 
section will introduce these differents mechanims of lipid transport as well as the general 
intracellular trafficking of major membrane lipids.    

 

 

Figure 8: Schematic representation of the secretory pathway. The anterograde transport 

corresponds to the transport of molecules from the ER to the PM while retrograde transport is in 

the inverse direction. Arrows indicate the direction of transport. Extracted from (Strating and 
Martens, 2009) and adapted. 

 

 Mechanisms of lipid transport 1.3.2.1.

From the ER, where they are synthetized, lipids transported via vesicles, or by 
nonvesicular mechanisms through membranes contact sites (MCSs) or proteins. In the 
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contrary to vesicular lipid transport, most nonvesicular transport mechanisms do not 
require metabolic energy. 

 Nonvesicular transport: 1.3.2.1.1.

The evidence that lipids are transported by independent routes than vesicular transport 
have aroused from the observation that the rate of lipid transfer does not decrease when 
vesicular trafficking is blocked (Baumann et al., 2005; Kaplan and Simoni, 1985; Sleight 
and Pagano, 1983; Warnock et al., 1994). Surprisingly, this transport is mainly mediated 
by spontaneous exchange of lipid monomers (Figure 9A) through the aqueous cytoplasm 
from one compartment to another without assiatance of proteins. Nevertheless, as this 
process is very slow, it can be markedly accelerated by lipid-transfer proteins (LTPs) 
(D’Angelo et al., 2008; Lev, 2010) and at membrane contact sites MCSs (Holthuis and 
Levine, 2005). Lipids may exchange also during the collision of two membranes after 
activation of lipids (Prinz, 2010) (Figure 9B). 
MCSs are small cytosolic gaps of 10–20 nm between the ER membranes and virtually all 
cellular organelles (Lebiedzinska et al., 2009), that allow lipids to exchange between two 
membranes when they come together in close proximity. In mammalian cells, this complex 
structure forms between the ER and the membranes of mitochondria and in plants between 
the ER and chloroplast. They are are highly enriched in proteins such as enzymes and 
LTPs, and are generally formed and/or stabilized by specialized tethering proteins 
(Lebiedzinska et al., 2009). The four mechanisms at MCSs that allow lipid transport are 
depicted in Figure 7D-G (Prinz, 2010).  Active transport of lipids at MCSs is facilitate by 
protein complexes that form tunnels to allow lipid transfer, that promote lipid desorption 
from the donnor membrane, activate lipids prior to membrane collision or finally promote 
membrane hemifusion. A significant portion of this transport does not require soluble 
LTPs. MCSs have been proposed to be involved in the transfer of PS from the ER to the 
mitochondria and may be mediated by specific proteins at the ER/mitochondria contact 
sites (Vance, 2008).  
Active nonvesicular transport of lipids is also mediated by proteins and it was postulated in 
the late 1960s that LTPs facilitate lipid exchange (Wirtz and Zilversmit, 1969). LTPs are 
cytosolic carrier proteins that facilitates lipid transport between membranes, likely by 
increasing the rate of lipid absorption from the bilayers (Lalanne and Ponsin, 2000). They 
are expressed in most cells and have been identified in all eukaryotes, plants, and bacteria. 
Many LTPs have been isolated, cloned, and crystallized. They selectively bing only one or 
closely related classes of lipids in a single hydrophobic pocket and may also have domains 
with varying functions such as peptides that target donnor and acceptor membranes (Lev, 
2010) (Figure 9B). LTPs function in two distinct conformations: an open membrane-bound 
conformation and a closed conformation in which one lipid molecule is enclosed in the 
tunnel. Based on their lipid binding specificity, they can be broadly divided into three 
classes: glycephospholipid, sphingolipid and sterol transfer proteins. For exemple, among 
the sphingolipid transfer protein, the ceramide transfer protein (CERT) transports ceramide 
from the ER to the Golgi. They are involved in the transfer of PC from the ER to the Golgi 
and of sterols from the ER to the plasma membrane (PM).  



CHAPTER I – GENERAL INTRODUCTION 

 

22 

 

 

 

 

Figure 9 : Nonvesicular mechanisms of lipid transfer between membranes. A) and B) illustrate 

spontaneous diffusion of lipid monomer either through cytoplasm or during membrane collision. C. 

Mechanism of lipid transfer by LTPs. D to G. describe the differents mechanisms of lipid transfer 

at MCSs. Extracted from (Prinz, 2010). 

 Vesicular transport 1.3.2.1.2.

It is generally assumed that the net transport of lipids occurs mainly via vesicular transport 
(Pagano, 1990; Rothman and Wieland, 1996; Trotter and Voelker, 1994). In this process, 
coated-enclosed sacks of about 50-100 nm diameter (Popoff et al., 2011) named vesicles 
form at a donor compartment, fused with and acceptor compartment with the help of 
specific adaptor proteins (eg. SNAREs). This fusion often occurs during the delivery of 
cargo molecules (proteins, lipids, signalling molecules, etc) to a specific endomembrane 
compartment and to the PM, or during the vesicles recycling. This membrane trafficking 
between organelles and the PM contributes to maintain the appropriate lipid and protein 
composition of these compartments. Vesicular lipid trafficking takes place along the 
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secretory pathway (Figure 8) and involves three classes of coated vesicles (reviewed in 
(Kirchhausen, 2000)): clathrin-coated vesicles mediate endocytic and the late secretory 
route (between the trans-Golgi and the PM) (Robinson, 2004), while the COat Protein I 
and II (COPI and COPII) vesicle trafficking routes are responsible for traffic between the 
ER and the Golgi apparatus. COPI vesicles appear to be involved in both the bidirectional 
intra-Golgi transport (Orci et al., 1997) as well as the Golgi-ER retrograde transport 
(Béthune et al., 2006a; Lee et al., 2004). There is evidence suggesting that COPI may also 
be involved in the endocytic pathway (Lowe and Kreis, 1998). COPII vesicles mediate the 
forward transport from the ER to the intermediate compartement membranes (IC or 
ERGIC) localized between the ER and the Golgi (Hughes and Stephens, 2008). Other 
vesicles that are not coated with COP or clathrin have been observed during 
macropinocytosis or phagocytosis that may occur through caveolae (Anderson, 1998). 
 
Newly synthesized lipids escape the ER via COPII vesicles and are transported to the IC. 
In the anterograde transport, COPI vesicles bud from IC and enter the Golgi apparatus by 
fusion with the cis-Golgi cisternae (CGN). These vesicles also mediate transport within the 
Golgi cisternae toward the trans-Golgi (TGN). This fusion occurs either constitutively or, 
as in the case of regulated secretion, in response to an external signal. As the Golgi 
apparatus is the major sorting compartment of the cell, lipid vesicle carriers budding at the 
TGN do not sort lipid only to the PM for constitutive and regulated secretion, but also to 
endosomes and lysosomes, or back to the ER. This retrieval transport from the Golgi to the 
ER is mediated by COPI (Cosson and Letourneur 1994; Letourneur et al. 1994). There is 
evidence that lipids are sorted during vesicles budding (Brügger et al., 2000; Popoff et al., 
2011). Moreover, proteins and lipids play an important role in the budding of these vesicles 
(McMahon and Gallop, 2005; Zimmerberg and Kozlov, 2006). For example, as a specific 
lipids serve as attachement sites for peripheral membrane proteins, modifications of the 
lipid composition can facilitate recruitment of proteins involved in membrane bending (e.g; 
ARF1 a GTPase involve in COPI biogenesis and coatomer protein complex). Recently, 
Contreras et al proposed the role of a specific sphingomyelin species in COPI biogenesis. 
In addition, as vesicular trafficking along the secretory pathway is coordinated by the 
exocytic and endocytic pathways (Figure 8), both are regulated by internal regulators and 
external signals that ensure fidelity and uninterrupted flow (Donaldson and Segev, 2000). 
For example, transport of membranes to and from the PM can be regulated by extracellular 
signaling molecules which bind membrane receptors and trigger intracellular cascade via 
intracellular signalling molecules. Phosphoinositol (PI), a second messager is one of these 
intracellular signalling molecules, has been found to regulate membrane trafficking 
(Lindmo and Stenmark, 2006; Odorizzi et al., 2000).  
 
COPI vesicles have been used widely as a model system to study the molecular mechanism 
of transport vesicle biogenesis as they play an important role in lipid sorting. The 
following section COPI are presented intracellular trafficking as well as factors involved in 
this traffic during their biogenesis. 

 COP I vesicles 1.3.2.1.2.1.
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COPI-coated vesicles mediate protein and lipid transport in the early secretory pathway 
(Brügger et al., 2000; Rothman and Wieland, 1996). Their coat consists of a small Ras-like 
GTPase protein, the ADP-ribosylation factor 1 (ARF1) (Taylor et al., 1992), and the 
coatomer, a heterooligomeric protein complex of seven subunits (α, β, β′, γ, δ, ε and ζ 
COPs); both are cytosolic factors that are recruited at the Golgi membrane (Waters et al., 
1991). Coat components are involved in multiple tasks such as cargo selection, vesicle 
budding at the donor membrane, vesicle fission and initiation of uncoating. For example, 
different binding sites exist in coatomer for the sorting of various classes of cargo such as 
membrane proteins with sorting motifs in their cytoplasmic domain (Cosson and 
Letourneur, 1994). Therefore, molecules to be transported are sorted and packed into these 
vesicles. Moreover, this sorting occured during COPI biogenesis. Interestingly, sorted 
molecules can also play a role in COPI formation as for example lipids which are also 
sorted to give a liquid-disordered phase composition during COPI vesicle budding, (Popoff 
et al., 2011).  
 

A) COPI biogenesis 
COPI vesicles budding takes place in the Golgi and the IC where components necessary 
for their biogenesis are abundant. The formation of these vesicles is achieved in several 
interdependent steps: coat recruitment, uptake of cargo, budding, membrane separation 
(scission), and uncoating (Figure 7). The minimal machinery for COPI vesicle formation 
consists of p24 family members (p23/p24), ARF-GTP and coatomer. Arf1 plays a central 
role in COPI biogenesis as its presence and activation is a pre requisite for the recrutement 
of coataomer to the membrane. Arf1 cycles between an inactive cytosolic GDP state and an 
active, membrane anchored, GTP state (Randazzo et al., 1993). These molecular states are 
regulated by Arf GTPase activating proteins (ArfGAPs) and guanine nucleotide exchange 
factors (ArfGEFs), respectively. Arf1 contains Golgi localization signals encoded in its 
sequence for his recruitement in the cis or the trans-Golgi. They are recruited in the trans-
Golgi via homo dimeric complex of p24 family members (Gommel et al., 2001) and at the 
cis-Golgi by a SNARE protein. Once both Arf1 and its exchange factor are recruited to the 
membrane, a Sec7 domain within the Arf GEF triggers the activation of the small GTPase 
by exchange of GDP to GTP. This activation drives a conformational of Arf1 leading its 
anchorage in membrane via a myristoylated helix (Antonny et al., 1997; Franco et al., 
1996). The cytosolic coatomer complex is then recruited at the membrane en bloc by Arf1 
(Hara-Kuge et al., 1994) via interactions sites involving β, β′, γ, δ subunits. The cotaomer 
complex is stabilized by specific binding of γ -COP trunk domain to dimers of p23 and p24 
proteins (Béthune et al., 2006b; Harter and Wieland, 1998) via dilysine and 
diphenylalanine motifs. Interaction with p24 members induces a conformational change in 
γ -COP (Béthune et al., 2006c; Reinhard et al., 1999) leading a spatial rearrangement that 
initiates aggregation and coatomer polymerization (Reinhard et al., 1999). This 
polymerization provides the energy to bend the membrane and generate a vesicle (Popoff 
et al., 2011), which dissociates from the donor membrane. After budding, these vesicles 
shed their coat. 
 



CHAPTER I – GENERAL INTRODUCTION 

 

25 

 

 
 

Figure 10: Schematic illustration of the different COPI biogenesis steps.  Extracted from (Popoff et 

al., 2011). 

B) Cargo sorting motifs 
 
During COPI biogenesis, different cargo is sorted via specific signals that bind to the 
coatomer. The first signals characterized were dilysine motifs K(X)KXX present at the 
extreme carboxyl terminus of membrane proteins (Nilsson et al., 1989). This motif binds 
directly to coatomer and induces the retrieval from the Golgi to the ER of the host protein 
(Cosson and Letourneur, 1994; Letourneur et al., 1994). Various subsets of dilysine motifs 
exist that are recognized differentially by the coatomer complex (Schröder-Köhne et al., 
1998) or by α or β′-COP subunits (Eugster et al., 2004). Another sorting motif consists of 
two positively charged arginine residues (usually in an RXR sequence) that can be found in 
cytoplasmic loops or tails of individual subunits of large oligomeric proteins such as ion 
channels. Diphenylalanine was also identified as a motif sorting involved in the forward 
transport. However, not all the membrane proteins transported within COPI vesicles carry 
coatomer-interacting motifs (Popoff et al., 2011). In addition, two coatomer subunits γ-
COP and ζ- COP were found to exist in two isoforms, called γ1, γ2, and ζ1, ζ2, 
(Futatsumori et al., 2000) resulting in different heptameric protein complexes (Wegmann 
et al., 2004). It was proposed that these various coatomer complexes may bind to different 
members of p24 family protein thus contribute to generate different subpopulations of 
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COPI vesicles involved in different pathways that contribute to confer specialized 
sorting/trafficking properties to membranes of the early secretory pathway (Emery et al., 
2000; Reinhard et al., 1999).  
 

C) p24 family members involved in COPI biogenesis 
An important family of transmembrane proteins that are found in COPI vesicles is the p24 
family of proteins (reviewed in (Strating and Martens, 2009). The p24 family proteins are 
type I transmembrane proteins of roughly 24 kDa. They can be subdivided into four 
subfamilies (p24 α, β, γ and δ) (Dominguez et al., 1998) with the number of members in 
each subfamily and family varying among species. In higher eukaryotes, six family 
members have been identified, whereas eight are known in yeast (Emery et al., 1999). The 
first member was identified in 1991 (Wada et al., 1991), and the existence of a family of 
related proteins reported in 1995 (Stamnes et al., 1995). The six most-studied family 
members in mammalian systems are p23, p24, p25, p26, p27 and tp24. Most p24 proteins 
are ubiquitously expressed and only few proteins had a restricted expression pattern 
(Strating et al., 2009). Moreover, many p24 proteins from the same and from different 
subfamilies are coexpressed. Despite this coexpression, proteins of the same subfamilies 
display no functional redundancy except in yeast (Marzioch et al., 1999).  
 
All p24 proteins share common structural features such as a large luminal domains (20 
kDa), a single membrane-spanning domain and a short cytoplasmic tail (13–20 residues) 

[reviewed by (Emery et al., 1999)]. The luminal domain has been proposed to function as 
cargo receptor for transport of soluble proteins in the ER-Golgi shuttle. It is made of the N-
terminal GOLD (Golgi dynamics) domain that harbours a presumed disulfide bridge 
(Anantharaman and Aravind, 2002) and the predicted coiled-coil region, which are thought 
to be involved in the oligomerization state of p24 proteins (Ciufo and Boyd, 2000). The 
cytoplasmic domains harbours several highly conserved motifs that mediate the binding to 
both the COPI and COPII coatomers namely, diphenylalanine and dilysine motif 
respectively close to the transmembrane region for all members and at the cytoplasmic 
terminus for some members. In cells, p24 proteins exist mostly as monomers and dimers of 
various composition depending on their subcellular localization (Jenne et al., 2002). 
Oligomeric state of p24 proteins is thought to be promote by the predicted coil-coil region 
and other regions such as the tail  (Weidler et al., 2000). This oligomerization is required 
for their function and for the majority of their known interactions with other proteins, e.g. 
with γ-COP, Arf 1-GDP and TC48. Moreover, interactions between the members of these 
proteins are required for their stability and are important for the shuttling of p24 proteins in 
the ER–Golgi compartment (Dominguez et al., 1998; Emery et al., 2000).  
 
The p24 proteins are localized in ER, IC and cis-Golgi membranes where they are 
abundant and they shuttle constantly between these compartments. Subsets of these 
proteins have been reported to be also localized at the post-Golgi compartement 
membranes in peroxisomes,  secretory granules and PM (Blum and Lepier, 2008). 
Members of this family were identified as major transmembrane proteins of COPI vesicles. 
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Among them, p23 and p24 proteins are abundant in COPI membranes where they are 
present in various oligomeric forms to play function in biogenis of these vesicles. The p23 
protein was identified as an ARF1-GDP receptor (Gommel et al., 2001) in the initiation 
step of COPI biogenesis and the dimeric p23 and p24 spontaneously form stable tetramers 
with bind coatomer complex via the γ subunit. It was shown that this heterodimer of p23 
and p24 has a defined secondary structure (Weidler et al., 2000) that promote 
conformational change of coatomer leading to their polymerization and thus to the 
budding. Other members of the p24 family, that bind coatomer bear a diphenylalanine and 
dilysine motif, and may interact in an oligomerized state with this protein complex 
(Reinhard et al., 1999). The fact that various members of p24 proteins can bind to the 
coatomer allow different classes of COPI vesicle to exist, specified by the different p24 
members they contain. 
 
Members of the p24 family of proteins are conserved in many species such as yeast, 
mammalians, plants, Drosophilia and fungi; thus suggesting that they might play an 
essential role in cells. A p23-knockout in mice is for example embryonically lethal at the 
earliest possible stage (Denzel et al., 2000). Moreover, many studies have suggested the 
involvement of members of the p24 family in various human diseases such as 
nasopharyngeal carcinoma metastasis (Yang et al., 2005), pancreatic acinar atrophy, a 
degenerative disease of the exocrine pancreas leading to exocrine pancreatic insufficiency 
(Clark et al., 2005). Contreras et al, 2011 also show that mutation of p24 protein affects the 
early stage of development in zebrafish. Nevertheless, these proteins may be indirectly 
linked to disease as they may interact or influence proteins that are known to be involved 
in human pathology. 
 
Despite the fact that the role of p24 proteins has been subject to much debate, many 
functions have been suggested among them, their implication in COPI vesicle biogenesis 
has been firmly established in mammalians (Béthune et al., 2006a). They are thought to act 
as cargo receptors and cargo selection via specific motifs, allowing their incorporation and 
transport into vesicles (Stamnes et al., 1995) (Figure 7). As such, p24 proteins were 
proposed to play a role for quality control proteins that need to be transported or retained in 
the ER (Wen and Greenwald, 1999). Another function proposed for p24 proteins concerns 
the organization of intracellular membranes in mammalian cell lines, as overexpression of 
p23/p24δ1 or p24/p24β1 was shown to induce expansion of ER membranes and 
fragmentation of the Golgi (Gommel et al., 1999). Recently, Strating et al also proposed a 
role of p24 proteins in supplying subsets of machinery proteins to furnish the various 
subcompartments of the early secretory pathway, allowing them to function properly 
during the biosynthesis of secretory cargo.  
 
 

 Intracellular trafficking of membranes lipids 1.3.2.2.
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From the ER where most of the membrane lipids are synthetized, they can be delivered to a 
specific compartment via nonvesicular pathways, vesicular pathways or both. As 
memtioned previously, this specific delivery can be regulated by internal regulators or 
external signals. The overview of the biosynthetic trafficking of the three classes of 
membrane lipids was proposed (Blom et al., 2011) as represented in Figure 11.   
Glycerophospholipids are transported from the ER both along exocytic membrane 
transport and by nonvesicular transport. PC is the major lipid in most cellular membrane 
and their efficient delivery to these membranes is achieved by vesicles (Blom et al., 2011). 
In addition, several other possible nonvesicular mechanisms transport including MCSs, 
lipid diffusion mediated by proteins or not, were proposed to be involved, although their 
relative contributions are not determined (Voelker, 2009). For example the steroidogenic 
acute regulatory protein (StAR) was proposed to be potentially involved in PC transfer in 

vitro (Kang et al., 2010) but not in vivo. PEs are synthetized in the ER and in the inner 
mitochondrial membrane. Most PE synthetized in mitochondria stays in this compartment 
while, their transport from the ER to mitochondria, where they play an important role, is 
not efficient. PS is transported to other organelles via MCSs and spontaneous diffusion 
(Heikinheimo and Somerharju, 2002; Vance, 2008).  
The second major class of membrane lipids is SLs. Their efficient de novo synthesis relies 
on the ER to Golgi transport of ceramide mediated by ceramide transport protein (CERT) 
(Halter et al., 2007; Hanada et al., 2003), except GSLs synthesis from sphingosine 
(D’Angelo et al., 2007) that is independent of CERT and may relie on vesicular 
tracfficking. CERTs are cytosolic proteins that transfer ceramide from the cytosolic leaflet 
of the ER to the trans-Golgi cisternae where it is converted to complex SLs species such as 
SM, and GSLs. They harbor a serine repeat motif that regulates CERT ceramide transfer 
activity depending on their phosphorylated state (Voelker, 2009). From the TG network, 
most synthelized SLs move in transport vesicles to the PM where they end up (van Meer et 
al., 2008). SLs also recyle in the late secretory pathway between PM and TGN via 
vesicular tracfficking in endosome/lysosome compartments and multivesicular bodies 
(Blom et al., 2011).  
 
Cholesterol is the most abundant sterol in the mammalian PM where they are enriched.  
They are mainly synthetized in the ER but are found there in low concentration because of 
the rapid transport of their precursors to other membranes. Most of newly synthetized 
cholesterol is transported to and from the PM via Golgi bypass routes (Baumann et al., 
2005) with the help of soluble sterol carrier proteins that facilite their cellular trafficking. 
Two protein families are important in this process: the steroidogenic acute regulatory 
protein retated lipid tranfer (STAR) and the oxysterol-binding protein related protein 
(ORP) (Blom et al., 2011). Proteins of these families are encoded by almost 0.1% of the 
entire human genome (Ngo et al., 2010) and contain a sterol-binding motif and regulatory 
membrane target motifs. StAR a prototype of the START family regulated delivery of 
cholesterol to the mitochondria membrane for steroïd hormone synthesis while ORP2 one 
of the ORP family proteins enhance bidirectionnal trafficking of sterol between the ER and 
the plasma membrane (Hynynen et al., 2005; Jansen et al., 2011). In mammalian cells, the 
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transport of sterols via these soluble proteins is regulated by oxidation of sterols that 
increase their solubility and excretion in the extracellular milieu (Blom et al., 2011). 
Moreover, while StAR synthesis is tightly correlated with the steroid synthesis (Blom et 
al., 2011), ORPs sterol transfer function may be regulated by a phenylalanine (FFAT) 
motif (Kawano et al., 2006). 
  
 
 

 
 

Figure 11 : Intracellular trafficking of the major classes of membrane lipids.  Extracted from 

(Blom et al., 2011).  

1.4. Membrane associated protein-lipid interactions in biological membranes 

Membrane proteins rely on their interaction with membrane lipids to uphold their structure 
and functions. These interactions are involved in a number of impotant cellular processes 
such as membrane traffic, signal transduction, etc. Many membrane proteins interact 
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preferentially with certain lipids. This preferential interaction can favor the formation of 
lipid domains. The first information about how lipid molecules might interact with an 
intrinsic membrane protein was provided by electron spin resonance (ESR) studies (by; 
Contreras et al., 2011; Lee, 2003). The transmembrane domains of integral proteins present 
different sites of interaction with lipids: the hydrophobic surface, the protein-protein 
interface or protein segments. The hydrophobic surface of membrane protein is surrounded 
by a selected set of lipids that constitute a shell of highly immobilized ‘annular’ 
lipids. Polar headgroups of these lipids bind to the hydrophilic part of the membrane 
proteins and their chains to the hydrophobic surface of the membrane proteins. These lipids 
are mostly stabilized by polar and nonpolar interactions. The interaction with protein 
reduces their diffusion in the membrane compared to the ‘bulk’ lipids that diffuse rapidly. 
Annular lipids act as a solvent for membrane-spanning domains and have been observed in 
some crystal structures such as in the X-ray structure of the membrane rotor ring of the 
Na+ ATPase from Enterococcus hirae (Murata et al., 2005). Moreover, they were 
proposed to play a role in the orientation the membrane-spanning domain within the 
bilayer. The composition of this lipid shell depends on the local architecture of the TMD 
and the resident time of each lipid species at the protein-lipid interface (Contreras et al., 
2011). Several parameters mediate the interaction of membrane proteins with lipids at the 
lipid-protein interface: the hydrophobic thickness of the lipids, the lateral pressure field of 
the membrane, the distribution of charges at the protein–lipid interface, and the presence of 
specific amino acid side chains. The lateral pressure field of membranes represents the 
influence of the lipid ‘solvent’ on a membrane protein. For example, its alteration was 
proposed as the molecular mechanism that provides the mechanical force to shift the 
channels from an open to a closed state (Perozo et al., 2002).  
Integral membrane also presents binding sites within protein-protein complexes or between 
their transmembrane α-helices. Lipids that reside within these oligomeric membrane 
protein assemblies are referred as non-annular lipids. The presence of non-annular sites 
was first suggested for the Ca2 +-ATPase of sarcoplasmic reticulum (Lee, 2003) and most 
of them have been characterized in crystal structures of several other proteins. Cholesterol 
was reported as non-annular structural building block within GPCRs and other proteins. 
Moreover, cholesterol and other non-annular lipids have been suggested to play important 
role in modulating the structure, conformation, localization and activity within membrane 
protein complexes. For example, the regulation of caveolin-1 expression as well as its 
oligorimezation is related to cholesterol. Interestingly, a cholesterol-binding consensus 
motif was identified in these proteins complexes including caveloni-1 (Li and 
Papadopoulos, 1998a).  
 
In addition to the role cited above, lipids involved in protein–lipid interactions were also 
proposed to act in a similar way than protein chaperones (Dowhan and Bogdanov, 2009). 
Moreover, the number of diseases related to lipids that interfere with protein folding is 
growing over the years (Kuznetsov and Nigam, 1998). For example, the formation of Aβ 
aggregates in the brain of patients with Alzheimer disease correlates with a specific 
peptide–lipid interaction (Wakabayashi et al., 2005). 
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1.5. Background & Aim of the thesis 

This dissertation deals with some multi disciplinary work bridging the field of proteomics 
and lipodomics in the context of lipid bilayers. Although this area has been little explored 
in the last years, it is now a subject of intense research as it carries the potential for the 
discovery of new so far unknown regulatory mechanisms of membrane proteins function as 
well as for lipid sorting (Contreras et al., 2012; Dufourc, 2008; Jean-François et al., 2008; 
van Meer et al., 2008). Research has been focused in this area on the structural study of 
protein-protein and protein-lipid interactions when very little was known on the 
involvement of membrane lipids in fundamental regulatory mechanisms. Likewise, the 
sorting of membrane lipids has been mainly investigated from the view of dynamics of 
membrane microdomains (Dufourc, 2008; Rajendran and Simons, 2005). Nevertheless, 
recently interest has grown to understand the cellular function of lipid diversity and in a 
context of interaction with membrane proteins (Coskun and Simons, 2011; van Meer et al., 
2008). In the continuous flow of this issue, this work has the potential to deliver new 
fundamental knowledge about the role of lipids and protein-lipid interactions in biological 
function and regulation; and could be helpful in understanding biological function in health 
and disease.  
This thesis focuses on the investigation of a specific interaction between one SM species, 
SM C18 exclusively with the transmembrane domain of the COPI machinery protein p24 
(p24TMD). The goal of this work is to have a better understanding of the role of this 
highly specific interaction. This project was initiated by the work of our collaborators at 
the Univesity of Heidelberg published in 2012 (Contreras et al., 2012a). 
In a previous work, they had developed mass spectrometric methods to quantify lipids at a 
low picomole level (Brügger et al., 1997) and had found a surprising sorting of one SM 
molecular species, SM C18 into intracellular COPI transport vesicles (Brügger et al., 
2000). In further studies, using FRET and lipid crosslinking (Haberkant et al., 2008) they 
were able to pinpoint this sorting to a single transmembrane domain (TMD) of the COPI 
machinery protein p24, with an almost exclusive specificity for SM C18:0 (Figure 12 A and 
B). When looked at the structural prerequisite for SM18 binding, they were able to define 
by mutagenesis a motif made of carboxy-terminus amino acids VxxTLxxIY of the p24 
TMD, derterminant for the specific binding of SM C18. More important, when tranfert this 
motif to the amino-terminal half of the non-sphingomyelin-binding TMD of p23 another 
COPI machinery protein, this protein became able to bind SM C18. This signature was 
proposed to form a groove in which the SM C18 acyl chain pack. 
Striking, amount all the SM species with acyl chain ranging from C14 to C22, only SM 
C18 could selectively bind this motif while steric effect between p24TMD and the others 
species avoid the binding. Moreover, the binding involves also the SM C18 headgroup. 
Based on molecular dynamic (MD) simulations a model of this interaction was proposed 
(Figure 12 C right).  
 
Interaction of such pronounced specificity between a protein and sphingolipid involving 
both fatty acyl chain and headgroup has not been described before in membranes. Rather, 
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fatty acyl chains or head group fragments of lipids are known to be involved, for example, 
in cellular signalling (e.g. arachidonic acid and inositol-phosphates). Moreover, as p24 acts 
as membrane machinery for the formation of COPI vesicles, the effect of this interaction 
on the p24 oligomerization state and the transport of biosynthetic cargo (Scales et al., 
1997) was investigated (Contreras et al., 2012a). Based on their data, it seems that the 
COPI retrograde transport depends on p24 binding to SM, and moreover, this interaction 
promotes and stabilizes the dimeric transport active state of p24. It seems therefore evident 
from such observations, that the characterization of the contact between the p24TMD and 
SM C18 at atomic level will provide insight on a specific lipid function in transport and 
sorting of other lipids. This will alson provide to a large extent first hints to understand the 
need for the complexity of membrane lipid composition at a functionnal level, and their 
importance in regulating protein function. 
With the goal to understand molecular basis of this interaction, we investigated the 
structure of p24 with its bound lipid in a bilayer environment using a number of 
biophysical approaches including NMR and other spectroscopic methods. Solid-state NMR 
spectroscopy in particular has a long standing in characterising the structure and dynamics 
in a wide range of bio-membranes that are inaccessible to crystallography or solution 
NMR, such as membrane proteins and aggregates (Andronesi et al., 2005; Bechinger and 
Sizun, 2003a; Cross, 1997a; Hong, 2006; Opella et al., 2001). The dynamics and the 
topolgy of p24TMD in bilayers were investigated in the absence and presence of SM C18 
using solid-state NMR on oriented samples. The perturbation of the peptide on membrane 
bilayers was also studied. Moreover, in order to determine the molecular distance between 
amino acids of the binding site and SM C18, we tested the REDOR approach. The whole 
structural data we recorded was used to shed light on the proposed model in order to test 
this model, and when necessary to propose a new model.  
During this work, I had a proposition to continue a part of the PhD project of Dr Omar Rifi 
on interaction of cholesterol with the cholesterol binding motif (CRAC) of the human 
immunodeficiency virus (HIV) membrane protein gp41, with the aim to get insight on the 
mechanism of binding with cellular membrane during infection. To achieve this purpose, 
we investigate the structure, the dynamics and the topology of this binding motif in 
membrane containing cholesterol. We used a set of biophysical methods such as circular 
dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy. 
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Figure 12 : p24TMD specific interaction with SM C18 (Contreras et al., 2012). A) In vitro FRET 

analysis of MBP–TMD fusion proteins and pentaenoyl-sphingomyelin (SM 18:5) in 

proteoliposomes. p24TMD (Red curve), p24TMD (greenyellow), p24TMDW4A (orange curve). B) 

Quantification of fluorence of p24TMD (black) or p23TMD (grey) in pentaenoyl-sphingomyelins 

liposomes mimicking liquid disordered phase. C) Molecular dynamic simulations: snapshot of a 

SM 18–p24TMD interaction. 
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THEORY : TECHNIQUES AND 

PRINCIPLES 

This chapter focuses on the experimental techniques we used to 

achieve our goal. These techniques range from biochemistry to 

biophysics methods. The principles and the theoretical aspect of 

their contribution are presented.   
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 Techniques and principles Chapter 2.

2.1. Strategies to obtain the peptide 

Important prerequisites for characterization by solid-state NMR spectroscopy are a high 
level of polypeptide purity and its labelling with stable isotopes such as 15N, 13C. Two 
approaches were used for the production of the p24 peptide namely solid phase peptide 
synthesis (SPPS) and the recombinant over-expression in bacteria. Although both 
techniques are used to produce peptides, the later present advantage of potential higher 
yields of uniformly labelled protein at a lower cost. However, the setup of the experimental 
protocol for expression in bacteria can be laborious and time consuming without guarantee 
of result. In the following section, the principles and advantages/disadvantages of these 
methods will be presented. 

2.1.1. Fmoc solid-phase peptide synthesis 

SPPS pioneered by Robert Bruce Merrifield (Merrifield, 1963), is a widely accepted 
method to obtain peptides in a synthetic manner. It presents the advantage to allow specific 
labelling at defined positions of the peptide sequence, and to be less time consuming for 
smaller polypeptides. However, SPPS is expensive and cannot offer all the possibility of 
labelling as some labelled amino acids are not easily available. Moreover, the yield is 
limited by peptide length and sequence. In fact, increasing peptide lengths and/or having a 
hydrophobic sequence with β branch amino acids as valine, leucine etc… will lead to chain 
aggregation, truncated peptides, difficulty of purification resulting in low peptide yield.  
SPPS consists of the sequential coupling of amino acids through peptide bonds. The 
peptides are synthesized on small porous beads made of a polymer resin usually in a 
direction opposite to that in the cell, i.e. from the carboxyl-terminus (C-ter) to the amino-
terminus (N-ter). They are covalently attached to the resin via a linker that bears reactive 
groups such as –OH that will react easily with the carboxyl group of an N-α-protected 
amino acid. The amino protecting group (Fluorenylmethyloxycarbonyl (Fmoc)) will then 
be removed (deprotection) under basic treatment, usually piperidine, allowing a second N-
α-protected amino acid to be coupled to the attached amino acid. At the end of each 
coupling step, the excess of amino acids are removed from the peptide-solid support matrix 
by washing with N,N-dimethylformamide (DMF) which is the main solvent used during all 
the different steps. In repeated steps of coupling-washing-deprotection SPPS proceeds until 
the desired peptide sequence is obtained. At the end of the synthesis, the peptide is cleaved 
from the resin under acidic conditions usually TFA (trifluoroacetic acid). As certain amino 
acids side chains contain functional groups that by reacting with the activated amino acids 
can interfere with the formation of the correct amide bound during the synthesis, these 
functional groups are protected. These protecting groups are removed during the cleavage 
of the peptide from the resin. TFA counter ions remain associated with the peptide to 
neutralize cationic side chains when the solvent is evaporated but can be exchanged by 
repeatedly resuspending the peptide in a solution of acetic acid 4% and evaporation. The 
general scheme of the Fmoc SPPS is outlined in Figure 13. 
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Figure 13: The general scheme of Fmoc SPPS. Reproduced from Sigma-Aldrich website 

2.1.2. Expression strategy of recombinant protein in E. coli 

In 1973, Stanley Cohen and Herbert Boyer pioneered the use of recombinant DNA 
technology for cloning and expression of genes in foreign organisms (Cohen et al., 1973). 
Bacterial expression systems are the method of choice for expression of many recombinant 
proteins. The reasons for this lie in the cost-effectiveness of producing proteins in bacteria, 
their easy manipulation and well-characterized genetics, the availability of many different 
bacterial expression systems, and the potentially high yield of uniformly or selectively 
labelled proteins at a cheaper cost.  
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Among the hosts available for recombinant expression, Escherichia coli is the most 
attractive strain. This strain is especially valued because of its rapid growth rate with high 
density in low costs media, its well-known genetics which offers a broad scope of 
biotechnological tools available for genetic engineering. Moreover, more than 70% of all 
proteins submitted to the protein data bank (PDB) in 2014 were expressed in E. coli. 
However, despite the advantages of this bacterial system, there is no guarantee that the 
protein will be produced in sufficient amount. This is essentially the case of membrane 
proteins or peptides whose expression is difficult and often leads to insufficient quantities 
needed for structural studies by NMR (Samuelson, 2011). In addition, the system presents 
limited ability for posttranslational modifications and occasional poor folding due to lack 
of specific molecular chaperones (Yin et al., 2007). 
 
In general, to over-express a protein in E. coli it is necessary to clone the gene that encodes 
the protein of interest into an expression vector. The vector is then introduced into the host 
cell by physical (electroporation) or chemical (CaCl2) methods. Commercial E. coli 
bacterial host cells, already in a competent state to take up foreign DNA, can be purchased. 
The expression of the protein of interest is then performed during bacterial growth in 
specific conditions of temperature and nutrients.  
Despite all the recombinant expression technology available for E. coli strain, successful 
protein expression in this organism relies heavily on carefully choosing the expression 
system and its optimization. Interestingly, expression efficiency is regulated by several 
parameters which should be tested in order to maximize the yield of the recombinant 
protein. These parameters will be presented in the following sections as well as the 
chronological steps for the preparation of a recombinant protein. 

 The expression vector  2.1.2.1.

The expression vector is designed for protein over expression and therefore contains 
several essential genetic elements to achieve this purpose:  
The origin of replication (Ori): It initiates the replication of the vector independently of 
the bacterial chromosome and ensures that the cell contains many copies of the vector 
which are distributed between the daughter cells when the cell divides. The exact number 
of copies per cell varies according to the replicon. Most of the expression vectors are 
replicated by the ColE1 replicon and are defined as multi-copy plasmids with 10-50 copies 
per cell. Thus, the presence of the replicon expression vector increases the copy number of 
interest and consequently the performance of the overexpressed protein gene. However, 
other factors also play a role on the final amount of protein.  
The gene for resistance to an antibiotic is used to select bacteria having the vector and 
allow this vector to be maintained in bacteria over generations during their growth. In fact, 
transformed bacteria will be resistant to a specific antibiotic (ampicillin, kanamycin, 
chloramphenicol, tetracycline ...). For example, a vector containing the gene for ampicillin 
resistance expresses a periplasmic enzyme called β-lactamase, which hydrolyses the β-
lactam nucleus. Thus when ampicillin is added to a bacterial culture, vector-free bacteria 
will be killed while vector-containing bacteria will produce the enzyme to hydrolyse 
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ampicillin and therefore will not be killed. However, as this antibiotic will be hydrolysed, 
it is preferable to use other selection markers such as kanamycin or chloramphenicol which 
are not degraded but rather, inactivated.  
The promoter is always positioned upstream of the coding sequence and drives its 
transcription. It contains the RNA polymerase binding site for initiation of the transcription 
and the operators (response elements). The promoter is often put under the control of a 
gene regulator (R) often localized upstream the promoter, that encodes a repressor. Its 
importance in the regulation of the production of heterologous proteins will be detailed 
later.  
Downstream of the promoter is the translation initiation site which binds the ribosome 
(RBS) by complementarity to the 16S rRNA of the small ribosomal subunit. The site of 
translation termination (codon stop) is located at the end of the coding sequence to end the 
translation. 
The site of transcription termination (TT) is located after the coding sequence and serves as 
both the termination site as well as a sequence which protects the mRNA from 
exonucleases. 
All these regulatory elements (summarized in Figure 14) allow vectors to be replicated, 
maintained and to express the protein sequence that they contain to be expressed in the 
bacteria. Some of them are not present on cloning vectors as their first purpose is for vector 
amplification. Thus, the choice of vectors is done according to a specific purpose. Table 2 

summarized the different elements of a vector and highlight differences between these two 
type of vectors. 
 

 E. coli host strains 2.1.2.2.

The easy genetic manipulation and transformability of E. coli make it a host of choice for 
the propagation, manipulation, and characterization of recombinant vectors. A wide variety 
of E. coli mutants (strains) are available and as for the vectors, should be chosen according 
to the purpose. They are generally designed for cloning or for protein expression; although 
some strains are suitable for both purposes. Their genetic modifications can be made either 
via chromosomal modifications or the addition of plasmids. Among these mutations, some 
are essential to improve the yield of the heterologous protein. Table 3 summarizes the most 
common genotypes (bacteria traits) that are important for protein expression. Briefly, for 
example lon and OmpT mutations reduce proteolysis of the heterologous protein, DE3 
allows the expression of the T7 RNA polymerase in E. coli, pLysS attenuates the protein 
basal expression and rne131 stabilizes mRNA.  

 

Figure 14: Schematic representation of the essential elements of a prokaryotic expression vector 

(Makrides, 1996). The promoter (P) is positioned upstream of the coding sequence and is often 
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under the control of a regulatory gene (R) that encodes a repressor. This gene may exist on the 

expression vector or on the chromosome of the host cell. The ribosomal binding site (RBS) 

sequence contains the Shine-Dalgarno (SD) which is complementary to the 16s RNA of the small 

subunit of ribosome. The termination sequence of transcription (TT) serves to stabilize the mRNA. 

The selectable marker (Tet) which encodes a gene for tetracycline resistance allows the selection of 

bacteria having the vector. The copy number of the vector in the cell is determined by the origin of 

replication (Ori). The arrow indicates the direction of the transcription. (Makrides, 1996) 

Table 2: Common vectors elements and their characteristics. The combination of these elements 

determines the type of vector. 
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Table 3: Common genotype traits of bacteria related to protein expression. Adapted from 
BitesizeBio web site. 

 
 
For molecular cloning, methyltransferase and endonuclease deficiency are important 
mutations that maintain the integrity and increase the stability of the vector. Thus, they 
improve the yields and maintain the quality of the manipulated DNA. 

 Molecular cloning to obtain the expression vector 2.1.2.3.

Molecular cloning is the first stage of most genetic engineering experiments that aim to 
assemble the recombinant vector and direct it within a host cell (bacteria, yeast, insect…) 
for expression or for genetic manipulation. The recombinant expression vector, is obtained 
in two important steps: The first one is the amplification and the purification of the DNA 
fragment (insert) that encodes the protein of interest and the second step is the cloning of 
the insertion into the expression vector. The amplification step can be achieved either by 
polymerase chain reaction (PCR) or in bacteria. In the later case, as DNA fragments cannot 
be maintained in the host cells, it is often inserted first in a vector, usually a plasmid. In our 
case, as our insert (nucleic sequence coding for the p24TMD protein) was designed in a 
cloning plasmid (pMA), the amplification was achieved in bacteria; specifically, in XL1 
blue an E. coli strain genetically modified for plasmid amplification. 
 
Briefly, bacteria were transformed with the pMA-p24TMD vector and selected on agar 
plate with specific antibiotic as described above. Thereafter, they were grown in a rich 
medium to amplify the vector, usually the Lysogeny Broth (LB) medium either in small or 
large scale (minprep or maxiprep, respectively). Cells were harvested at a specific optical 
density (OD) at 600 nm and the vector extracted and purified with commercial kit for DNA 
extraction (Nucleospin Plasmid, Macherey-Nagel, Germany).  
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The pMa-p24TMD and the pTIPX4 expression vector were then separately digested with 
the same specific restriction enzymes in order to generate sticky ends that are 
complementary. The products of digestions are separated by agarose gel electrophoresis 
(described above) and DNA fragments corresponding to the insert and the digest 
expression vector are cut from the agarose gels and purified using commercial kits for 
DNA gel extraction (Nucleospin extract, Macherey-Nagel, Germany). Thereafter, they are 
mixed together in the presence of DNA ligase that connect their 3’ and 5’ ends to obtain 
the recombinant vector. As the ligation is done in small volumes with a tiny quantity of 
material, the recombinant vector needs to be amplified as described above to obtain 
sufficient amount of product. A quick check is often done by sequencing the recombinant 
vector and/or digestion with the same restriction enzymes that were previously used, to 
verify that the vector was constructed correctly with the insert.   

 Regulation of the expression  2.1.2.4.

Overexpression of heterologous proteins are energy consuming for the host cell as it has to 
maintain and express the "foreign" gene. This causes a situation of stress for the bacteria 
which may results in a slower growth or proteolysis of the protein of interest. Thus, 
regulation of expression of the foreign gene is required to prevent bacterial stress and to 
produce high quality proteins in large quantities. 
To achieve this, the ideal vector should not replicate too much (low copy number) and 
must have a strong promoter that initiates the transcription with a high frequency. 
However, strong promoters should be finely controlled to avoid the permanent expression 
of proteins which can impair bacterial growth. This control is achieved via inducible 
promoters which can be turned only at a specific stage of the bacteria growth, by the 
addition of a specific metabolite called inducer or by temperature changes. One of the most 
commonly used strong and inducible promoter for the expression of heterologous proteins 
is the lac operon. It is induced with by the Isopropyl β-D-1-thiogalactopyranoside (IPTG) 
which binds the repressor and activates the transcription as it will be describe later.  
However, “leakage” of this system sometimes happens and results in basal expression 
before induction. This may lead to bacterial death in the case of toxic proteins. To restrain 
as much as possible this basal expression, specific bacterial strains such as BL21 (DE3) 
pLysS are preferentially used.  
To regulate the expression of our protein of interest, we used two different vectors. The 
pTIPX-4 (Taf12 Insoluble -mediated Peptide eXpression) plasmid (see Figure 15), that was 
designed in our laboratory by Dr. Werten (Vidovic et al., 2009a) to allow the accumulation 
of the expressed protein in insoluble fraction called inclusion bodies. The other vector, the 
pMAL-c5X-p24TMD was designed and used by our collaborator (University of 
Heidelberg) for the expression of the p24TMD fusion protein in the soluble fraction. We 
have also used different E. coli strains to regulate the toxicity of this protein as it will be 
described. In the following paragraph, I will briefly describe the mechanism of regulation 
of these two expression systems. 
The pTIPX-4 expression system 



CHAPTER II – THEORY: TECHNIQUES AND PRINCIPLES 

 

42 

 

The pTIPX-4 is a modified pET-28b (Novagen) vector of 5577 bp in which a new DNA 
fragment BglII-Bpu1102l was introduced in the multiple cloning sites (MCS) (see Figure 
16). This inserted fragment contains : 
 

- The TAF12 sequence (TATA box binding protein (TBP)- Associated Factor 12 
Histone fold Domain), a transcription factor used as a fusion protein with the 
desired sequence, where the non-soluble TAF12 directs the over-expressed protein 
into inclusion bodies to restrain their toxicity (Vidovic et al., 2009a) 
 

- A new polylinker with unique restriction site which allows the insertion the gene 
that encodes the protein of interest. For the insertion of the p24TMD gene, we used 
the BamHI-SacI restriction sites  

 

- This fragment was inserted downstream a stretch of six Histidines called His tag 
used for the purification of the fusion protein 

 

- An enzymatic (enterokinase) and a chemical (formic acid) cleavage sites that allow 
the cleavage of the peptide from the fusion protein.  

 
In addition, pTIPX4 (Figure 15) contains as all cis regulator elements of pET vectors: the 
T7 promoter (T7 promoter), a transcription terminator (T7 terminator), and the gene that 
encodes the lacI repressor (lac I r) and the lac operator (lac O). It also contains a marker for 
resistance to kanamycin (Kan) and an ori for the replication of the vector. 
 
The transcription of the gene of interest is regulated by the strong T7 promoter present on 
the expression vector pTIPX4 via the binding with of the T7 RNA polymerase. This 
transcription requires a bacterial strain which has integrated into its genome the gene that 
encodes the T7 RNA polymerase (fragment of bacteriophage λDE3). This enzyme has a 
high processivity and is five times faster than the endogenous bacteria T7 RNA 
polymerase. In general, the gene that encodes the T7 RNA polymerase is under the control 
of the lacUV5 promoter present on the bacterial chromosome. Both promoters T7 and 
lacUV5 are regulated by the lacI repressor via its binding to the lac O (inducible by IPTG). 
The lacI gene that encodes the lacI repressor is present on both the bacterial chromosome 
and the expression vector. In absence of IPTG, lacI binds to the operator and represses the 
lacUV5 promoter and the hybrid T7 / lac O promoter. Consequently, T7 RNA polymerase 
and the heterologous protein are not expressed. However, the T7 RNA polymerase can 
sometimes be produced even in the absence of IPTG, resulting in a basal protein 
expression. This basal expression can be suppressed by the presence of an inhibitor of the 
RNA polymerase T7: the T7 lysozyme. For example the BL21 (DE3) pLysS strain carries a 
plasmid encoding the T7 lysozyme (Samuelson, 2011) and was used for the expression of 
our fusion protein in order to restrain this basal expression.  
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In presence of IPTG, the repressor binds IPTG allowing the bacterial RNA polymerase to 
bind the lacUV5 promoter and express the T7 RNA polymerase which will subsequently 
bind the T7 promoter and allow the production of the heterologous protein (Baneyx, 1999; 
Chen, 2012; Hannig and Makrides, 1998; Studier et al., 1990). The T7 terminator allows 
the end of the transcription. 
 

 

 

Figure 15: Schematic representation of the pTIPX-4 plasmid with its different regulatory elements. 

pTIPX-4 is a plasmid of 5577 bp that contains the resistance gene to the kanamycin, a MCS with 

the SacI and BamHI restriction sites, the cis regulatory elements and the nucleic sequence coding 

for the TAF12 fusion protein. 
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Figure 16 : General features of the pET expression system. A) A schematic representation of the 

pET vector with its important regulatory elements. B) Regulation of the inducible T7 and lacUV5 

promoters. In absence of the inducer (ITPG), they are both repressed by LacI. The presence of 

IPTG allows the expression of the T7 polymerase that binds the T7 promoter and initiates the 

transcription. (Sørensen and Mortensen, 2005a) 

The pMAL-c5X expression system 
pMAL are commercial vectors designed to produce fusion proteins with the water soluble 
maltose-binding protein (MBP). This protein will direct the fusion protein either in the 
cytoplasm or the periplasm and allow their purification by amylase affinity 
chromatography. The gene of interest is inserted in the MCS downstream of 
the malE gene, which encodes MBP. The pMAL-c5X was designed with a deletion of 
the malE signal sequence, to allow a cytoplasmic expression of the fusion protein. To 
allow a correct folding of the MBP and a better access for the binding of amylose resin 
during protein purification, a spacer sequence coding for 10 asparagine residues was 
inserted between the malE sequence and the polylinker. This polylinker contains a 
sequence that allows the protein of interest to be cleaved from maltose-binding protein 
with the specific protease Factor Xa. In our construct pMAL-c5X-p24TMD, this cleavage 
site was replaced by the Tobacco Etch Virus (Tev) cleavage site.  
 
The transcription of the gene of interest is under the control of the strong hybrid Ptac 

promoter. This promoter is not naturally found in bacteria but was designed by fusing the -
35 region of the trp promoter and the -10 region of the lacUV5 promoter/operator to make 
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it more powerful than the parental promoters alone. The pMAL-c5X vector also carries the 
lacIq gene that codes the Lac repressor (Figure 17). This protein regulates the Ptac 

promoter which is inducible by IPTG. As for the T7 promoter, in presence of IPTG the 
LacI repressor will be inactivated allowing the production of the heterologous protein and 
in absence of IPTG, this production will be repressed.  
  

 

 

Figure 17: Schematic representation of the pMAL-c5X. It contains the hybrid Ptac promoter, the 

malE gene that codes the MBP fusion protein, a pBR ori and the lacI gene that codes the LacI 

repressor. Reproduced from New England Biolabs 

 Cellular localization and purification of the protein 2.1.2.5.

Although most heterologous proteins are expressed in the cytoplasm, during expression 
they can also be directed to other cellular compartment such as the membrane or the 
periplasm. Over-expression of heterologous proteins is often accompanied by protein 
misfolding and aggregation leading to insoluble dense particles in cytoplasm of about 1 
micron diameter, with an amyloid-like architecture known as inclusion bodies (García-
Fruitós et al., 2011; Lilie et al., 1998). However, in case of toxic proteins such as 
antimicrobial peptides this can be an advantage. Their assembly into aggregates protects 
the expressed proteins against proteases and prevents them being toxic against the bacterial 
host cell (Vidovic et al., 2009a). For example, the TAF12 fusion protein was developed for 
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this purpose. However, to isolate the protein of interest these inclusion bodies need to be 
treated under denaturing conditions such  
as 8M urea or 6M guanidine hydrochloride to solubilise the aggregate and recover the 
native folded protein. 
 

Table 4 : List of the most common fusion partners, with their ligands and the competitors used 

during their purification by affinity chromatography 

 
 

Table 5 : List of the commonly used enzymatic and chemical cleavage sites with the corresponding 

sequences. ((Hwang et al., 2014a); Vidovic et al., 2009). 

 
 
Fusion partners were developed to improve the solubility of over-expressed proteins and 
thereby prevent the formation of these inclusion bodies (Costa et al., 2014). They can also 
be used to direct the fusion protein in a specific cellular compartment. Most fusion partners 
facilitated the detection and/or the purification of the fusion protein and protect them from 
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intracellular proteolysis (Hwang et al., 2014a). The most common fusion partners that are 
used to facilitate the purification are listed in Table 4. However, this function cannot be 
always fulfilled by some fusion partners. When it is the case, a "tag" is often introduced to 
allow the purification of the fusion protein. One of the most commonly used is the His-tag 
(HisX6) which corresponds to a sequence of six histidines. Proteins with this tag are 
purified by metal (cobalt or nickel) affinity chromatography. Using the His-tag in 
denaturing conditions such as 8 M urea or guanidine hydrochloride 6 M make them a good 
candidate for the purification of insoluble proteins. 
However, these fusion partners usually need to be removed after purification to recover the 
peptide or the protein of interest. This is usually achieved by using cleavage sites between 
the fusion partner and the protein of interest in order to facilitate site-specific proteolysis 
(Sørensen and Mortensen, 2005a). Chemical or enzymatic cleavage can be achieved 
depending on the chosen site. Some commonly used cleavage sites are listed in Table 5.  

2.2. Purification and characterization of the peptide 

After obtaining the synthetic peptide or the peptide as a fusion protein, different sets of 
methods were used to purify and identify the products after purification. The general 
principle of these methods will be described in this section.  

2.2.1. Chromatography 

Chromatography is a technique that is widely used to separate and purify the different 
components in a sample mixture depending on their physico-chemical properties. It can be 
also used to quantify sample components. Although different forms of chromatography 
exist, they all work on the same principle, with a stationary phase which typically binds the 
components while the mobile phase flows through this stationary phase carrying the 
mixture. The components migrate through the stationary phase with a speed that depends 
on some properties for the stationary or mobile phase like affinity, molecular size etc... For 
example, components that do not have affinity for the stationary phase will not be retained 
on this stationary phase thus will migrate more rapidly, while components that have an 
affinity for the stationary phase will be retained and eluted later under specific conditions.   
Liquid chromatography (LC) separates molecules in a liquid mobile phase using a solid 
stationary phase and is often carried out in a column either under gravity or high pressure. 
High performance liquid chromatography (HPLC) is a successful column LC used to 
purify and quantify biomolecules. In contrast to other types of column chromatography 
that are carried out under gravity, HPLC used a relatively high pressure of up to 400 bars 
that makes it much faster. Molecules are often adsorb on the stationary phase which is 
composed of very small (in the order of µm) particles packed in a column and the 
interactions of the molecules with these particles appear via various actions: adsorption, 
partitioning, ion exchange, molecular exclusion and affinity. In this work, reverse phase 
HPLC (RP-HPLC) and affinity chromatography (AFC) were used as preparative or 
analytic chromatography on synthetic peptides and biological sample. Both types of 
chromatography are briefly described below. 



CHAPTER II – THEORY: TECHNIQUES AND PRINCIPLES 

 

48 

 

 Reverse-phase HPLC 2.2.1.1.

Depending on the relative polarity of the solvent and the stationary phase, there are at least 
two conceptually different variants in use of HPLC. The normal phase LC refers to a more 
polar stationary phase when compared to the mobile phase (e.g., toluene as the mobile 
phase, silica as the stationary phase) and the opposite for the reverse-phase LC. In both 
cases, the column is filled with tiny silica particles that are modified to be non-polar in the 
reverse HPLC as they bear hydrocarbon chains typically ranging from 4 to 18 carbons. 
Therefore, non-polar compounds in the mixture will tend to associate with the hydrocarbon 
groups because of van der Waals dispersion forces and will be less soluble in the polar 
mobile phase (for example a mixture of water and solvent such as acetonitrile). 
Consequently, they will spend more time on the column and will be eluted from the 
column later. The time it takes for each compound to travel through the column to the 
detector is known as its ‘retention time’. Ideally it differs significantly for each compound 
and will vary depending on the pressure, the nature of the stationary phase, the exact 
composition of solvent and the temperature of the column. When exiting the column, 
molecules are detected by for example a UV detector. The output chart recorded display 
the time-dependent change in signal intensity as a result of the separation is called 
a "chromatogram” and the recording device a "chromatograph" (Figure 17).  

 Affinity chromatography 2.2.1.2.

Affinity Chromatography (AFC) is based on reversible interactions between a target 
molecule and a specific ligand coupled to a chromatography matrix. These interactions can 
be the result of electrostatic or hydrophobic interactions, van der Waals forces and/or 
hydrogen bonding. The ligand is immobilized to the matrix via a spacer in order to 
overcome any steric effects and thus improve the binding with the target molecule. It is 
selected according to the compound to be isolated. The interaction from the affinity 
medium can be reversed to elute the target molecule, either specifically by using a 
competitive ligand, or non-specifically, by changing the pH, ionic strength or polarity.  
This method is often used in biochemistry for the purification of fusion proteins which 
harbour target molecule called tag such as His-tags, biotin, Maltose binding protein (MBP) 
etc… and that can be usually removed after purification to obtain the protein of interest. It 
is suitable for specific separations, provides high purification yields and allows simple 
elution with a single-step gradient. 
Briefly, in practice AFC media are made of a given volume of matrix in suspension that is 
prepared within a column according to the quantity of material to apply. When a biological 
sample is then applied on the column, target molecules bind specifically but reversibly to 
the ligand and unbound materials are washed through the column. The target molecules are 
then recovered by changing the conditions to favour their elution. Although AFC often 
used traditional column that allow the flow of the mobile phase by gravity, HPLC 
technique that utilises AFC properties also exist. 
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Figure 18: Schematic basic HPLC device with its components and typical RP-HPLC 

chromatograms. The different steps during the purification in the column are emphasized 

as well their corresponding chromatogram. Adapted from Tosoh Bioscience and Applied 

POROUS Technologies, Inc. 

2.2.2. Electrophoresis 

Electrophoresis is one of the most widely-used techniques in biochemistry and molecular 
biology to separate, characterize and sometimes purify macromolecules that differ in size, 
charge or conformation especially proteins and nucleic acids. Native electrophoresis relies 
on the separation of charged biomolecules within a matrix or gel, under an electric field. 
These molecules migrate toward either the positive (anode) or negative (cathode) electrode 
according to their charge. Proteins can have either a net positive or negative charge while 
nucleic acids have a consistent negative charge due to their phosphate backbone, and 
always migrate toward the anode. The gel in which these molecules migrate is composed 
of polymer either of agarose or polyacrylamide. It forms a network of meshes with sizes 
that are defined by the agarose or acrylamide concentration. The lower the concentration 
the more open will be the porous network, and adjusting the concentration helps in 
resolving biomolecules of different size, where a more open mesh is better for resolving 
high molecular weight molecules. Although both agarose and polyacrylamide can be used 
to separate proteins and nucleic acid, PolyAcrylamide Gel Electrophoresis (PAGE) is used 
extensively for separating and characterizing mixtures of proteins and agarose gels for 
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DNA. Polyacrylamide gels have a small range of separation, but very high resolving power 
compare to agarose gels. 
 

SDS-PAGE is an analytical method that separate protein mixture based only on their size. 
As the mobility of molecules in the gel depends on their charge and size, this technique 
overcomes the charge dependence by using denaturing conditions in the presence of SDS 
(Sodium Dodecyl Sulphate) an anionic detergent. In the presence of SDS proteins lose 
their native structure, and their strong association with this anionic detergent makes the 
complexes negatively charged. Therefore, when loaded onto a gel and submitted to an 
electric field, they all migrate towards the anode and are separated based predominantly on 
their size. After the migration, proteins are visualized by staining usually Coomassie Blue 
or processed further for specific detection by Western blot. Proteins of known molecular 
weight (marker) are commonly run with the sample in a separate lane of the gel and used 
as a calibration to determine the apparent molecular mass of unknown biomolecules by 
comparing the distance travelled relative to the marker. 
Agarose electrophoresis is often used to separate and purify DNA based only on their size. 
Agarose gel is typically prepared with buffer solution at concentrations ranging from 0.5 to 
2% depending on the size of the DNA to separate. DNA markers are used to calibrate the 
gel and to determine the approximate size of unknown DNA. To visualize the separated 
DNA, gels are prepared with an intercalating agent, for example the ethidium bromide 
(EtBr) which fluoresces under UV light when bound to DNA. The part of the gel that 
contains the DNA fragments of interest can be cut and the DNA extracted from the gel 
using commercial kits for DNA gel extraction. 

2.2.3. Western blot 

Western blotting is an analytical technique in cell and molecular biology to identify 
specific proteins in a cell protein extract. It uses antibodies for the specific detection of a 
particular protein. Using SDS-PAGE, proteins are first separated by size and transferred to 
a nitrocellulose membrane under electric current in order to make the proteins accessible to 
antibody detection. To prevent non-specific interactions with others proteins, the 
membrane is saturated in non-fat dry milk solution (usually made up in Tris buffer) prior to 
incubation with the ‘primary antibodies’ that specifically recognized the protein of interest. 
After washing to eliminate the non specific binding, the membrane is "probed" with a 
‘secondary antibody’ that recognized the primary antibody, and that is often conjugated 
with a reporter enzyme such as Horse Radish Peroxidase (HRP) or alkaline phosphatase 
(AP). The activities of these enzymes when exposed to suitable substrates allow 
colorimetric, chemiluminescent or fluorogenic detection. Western blot sensitivity depends 
on the enzyme substrate system used for detection. 
In this work, we used the chemiluminescence detection (Figure 19). It used the HRP 
conjugated secondary antibodies to cleave a chemiluminescent agent leading to the 
production of luminescence (light) proportionally to the amount of protein. The light is 
then detected and a digital image of the Western blot is captured. Further analysis of the 
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image can allow the quantification of the detected proteins and the analysis of their 
molecular weight when appropriate standard are used.  
 

 

Figure 19 : Schematic representation of the principle of detection by chemiluminescence. The 

primary antibody specifically recognizes the protein of interest (in purple) which is then detected 

by a modified secondary antibody covalently link to the peroxidase. This enzyme produces an 

oxygen radical which activates luminol and allows the detection of the protein of interest. 

2.2.4. Mass spectrometry 

Mass spectrometry is a powerful analytical technique that is often used to identify 
unknown compounds within a sample, and to elucidate the structure and chemical 
properties of different molecules. It becomes a crucial in proteomics experiments as it 
allows protein identification, de novo sequencing, and identification of post-translational 
modifications. It is used for precise determination of the molecular mass of peptides and 
proteins as well as their sequences.  
The complete process is schematically shown in Figure 20. It involves the conversion of the 
sample into gas phase ions, with or without fragmentation, which are separated in the mass 
spectrometer according to their mass-to-charge ratios (m/z) and are detected in proportion 
to their abundance. The resulting mass spectrum represents a plot of ion abundance versus 
the mass-to-charge ratio. Ions can be produced by different ionization techniques and 
provide information concerning the nature and the structure of their precursor molecule.  
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Figure 20: The different components of a Mass Spectrometer and the process to obtain a mass 

spectrum. Source: PREMIER Biosoft website.  

 
 

Table 6: Common matrices that are often used in Matrix-assisted laser desorption/ionization 

(MALDI) mass spectrometry. 
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Figure 21: The different modes and the resulting spectrum. A) The basic path of ions in a linear 

mode (left) and the resulting broad spectrum (right). B) Components in a reflecting mode (left) and 

the more resolved spectrum that results (right). Det: abbreviation for detector. Source: R. S. 
Annan, SmithKline Beecham Pharmaceuticals. 

Matrix-assisted laser desorption/ionization (MALDI) is the most popular analytic 
technique for peptide mass fingerprinting. It uses soft ionization technique which prevent 
sample damage after ionization. The analyte is dissolved in solution with an excess of 
matrix such as sinapinic acid that has a choromophore which absorbs at the laser 
wavelength. A drop of this solution is deposit on the laser target and irradiated. The matrix 
absorbs the energy from the laser pulse generating matrix ions. These primary ions react 
with the analyte via electron, proton or cation transfer resulting in sample ionization. This 
type of ionization presents the advantage to produce ions with little excess energy and thus 
yields spectra with less fragmentation in which the molecular species is easily recognized. 
Different matrices exist and have to be chosen according to the type of molecule to be 
studied in order to obtain mass spectra of good quality. The list of commonly used matrices 
is summarized in Table 6. The kind of ions that are generated (single or multiple charged 
ions) depends on the nature of the matrix, the laser intensity, and/or the voltage that are 
used. The desorbed ions are mainly analysed using a time-of-flight analyser (TOF-MS) 
working in a linear (LM) or reflection mode (RM) (represented in Figure 21). The TOF 
analyser uses an electric field to accelerate ions through the same potential and measures 
the time they take to reach the detector. For ions with the same charge, this time depends 
on their velocity that is related to their mass. Ions with smaller m/z value (lighter ions) and 
more highly charged ions move faster to the detector. The TOF mass spectrometry presents 
the advantage to analyse a wide mass range. Moreover, in the reflection mode the 
resolution is better than in the linear mode as the flight path of the ions is doubled.  
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2.3. Membrane model and peptide reconstitution 

This section briefly presents lipid model membranes and the protocol to prepare them in 
presence (peptide reconstitution) or absence of peptide. 

2.3.1. Lipid model membranes 

The complex composition of biological membranes and their huge diversity make them 
complicated systems to work with. Model membranes have been developed with the aim to 
simplify this complexity and to allow their study, in order to understand the key parameters 
in the protein lipid interactions, and other processes that take place in natural membranes. 
These membranes are prepared with synthetic lipids such as POPC, DOPC, etc… that can 
be purchased from different companies (e.g. Avanti). The simplest model systems contain 
only a single pure synthetic lipid (e.g. POPC) while more physiologically relevant models 
can be made with mixtures of several lipids at different ratio comparable to those in natural 
membranes. Depending on the lipid shape, their concentration and the type of lipids in the 
mixture, they will organize into model membranes with different shape and physical 
properties. Some of these model membranes systems are micelles, vesicles with different 
size and number of layers, and flat bilayers. Two parameters drive the auto assembly of 
these lipids into supramolecular systems: their amphipathic property and the geometric 
approximation of the lipid shape. The amphipathic property allows lipids to be organized 
in aqueous environments in a way that hydrophobic surfaces come together in order to 
minimize their interaction with water, while the hydrophilic parts are exposed to water. 
This organization occurs above a critical concentration of amphiphile (CMC). In addition, 
the geometrical shape of lipid also influences their organization. This geometry is defined 
by the relative size of the lipid head group compared to the fatty acid moiety. According to 
the molecular shape concept, lipids with roughly equal diameters of head group and fatty 
acid moiety, such as PC, will be considered cylindrical, whereas lipids with small head 
groups, such as PE, PA are conical and lipids with large head groups, such as PIs, are 
inverse-conical. These different lipid shapes lead respectively to the formation of lamellar, 
hexagonal and spherical or cylindrical phases (Figure 22). In a planar membrane mostly 
built from cylindrical lipids, the introduction of lipids with conical or inverse-conical 
geometries might induce curvature strain. In addition, membrane lipids with a high degree 
of unsaturation in their fatty acid moieties will accumulate in areas of high curvature. 
The following lipids were used in this thesis to model lipid membranes in presence or 
absence of peptides. There structures are represented in Figure 23. 
 

1) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) (16:0-18:1) is typically 
considered one of the model lipids for biophysical experiments as it mimics 
mammalian phospholipid structure and properties. It consists of a phosphocholine 
headgroup and two acyl chains-one consisting of 16 carbons and another of 18 carbons 
with one double bond at position 9. Its polar head group presents a strong zwitterionic 
character over the entire pH range.  
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2) L-α-phosphatidylethanolamine (PE) is the major lipid constituent of bacterial 
membranes and only occurs in small amounts in mammalian and plant cells. The 
smaller size of the ethanolamine head group gives it a conical shape that imposes 
curvature stress which is utilized by cells for budding. PEs are zwitterionic at 
physiological pH. 

 
3) L-α-phosphatidylserine (PS) is the only lipid in animal cells that contains an amino 

acid. It possesses three ionizable groups: a diester phosphoric acid, an amino group and 
a carboxyl moiety. At physiological pH, it is a negatively charged. It is typically 
located in the inner leaflet of cells membranes. The head group shape of PS is similar 
to that of PC and will also spontaneously form vesicles in an aqueous solution. 
 

4) N-octadecanoyl-D-erythro-sphingosylphosphorylcholine (Sphingomyelin, SM) (18:0) 
is the major sphingolipid constituent of cell membranes. It is found at particularly high 
concentrations in the membranes of nerve cells. It was previously thought to have a 
purely structural role, similar to the function of phosphatidylcholine. However, it is 
now appreciated that sphingomyelin has a high affinity for cholesterol and that these 
two lipids pack tightly into liquid-ordered domains among a liquid-disordered phase to 
form lipid rafts (Milhas et al., 2010). These membrane micro domains are thought to 
function as signalling platforms that regulate the localization and interactions of 
proteins.  

 

5) Cholesterol is an important component of lipid membranes as its presence changes the 
membrane characteristics. At high concentration it increases for example the rigidity of 
the membrane fluid phase or the fluidity of the gel phase. It plays a relevant role in 
membrane rafts domain. However, cholesterol cannot form a lipid bilayer by itself and 
hence its solubility in the bilayer is limited. It acts as a spacer between the phospholipid 
molecules that have a larger head group. The smaller head group of cholesterol (a 
hydroxyl group) favours the ordering of the phospholipid fatty acyl chains which are 
otherwise loosely packed below the level of the phospholipid head groups. The larger 
phospholipid head groups in turn cover the smaller cholesterol head group to protect 
the hydrophobic portion from getting exposed to water. Consequently, at higher 
concentrations of cholesterol, when there are not enough phospholipids to cover the 
cholesterol head groups, cholesterol solubility in the membrane decreases and it 
deposits as crystals. Therefore, the amount of cholesterol is critical during samples 
preparation and needs to be considered carefully.  

The pure POPC is used as an emulator of the zwitterionic mammalian membranes while 
the PS is included to reproduce the negative charge. However, these lipids were mixed at 
different ratios to achieve the physiological composition of a given membrane 
compartment. 
All these lipids were purchased from Avanti Polar Lipids (Alabama). 
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Figure 22: Geometrical models of lipid shapes. A) Inverse conical lipid, B) cylindrical lipid, and 

C) conical lipid. Bottom panels, simplified view of membrane curvature facilitated by lipids with 

different geometric shapes. 

 

 
 

Figure 23: Structural representation of common lipids that were used in this work for preparation 

of model membranes: POPC, phosphatidylethanolamine (PE), phosphatidylserine (PS), and 

Sphingomyelin (SM).  
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2.3.2. Sample preparation with membrane model  

Depending of the purpose of the experiment, different model lipid membranes can be 
prepared. Experiments in solution will be conducted with vesicles in suspension except for 
surface plasmon resonance which uses vesicles to form supported lipid bilayers. Different 
type of vesicles can be prepared but in this section we will only focus on the preparation of 
small unilamellar vesicles (SUV). Planar bilayers can be also prepared on supports (in this 
work we used glass plates). They are interesting as they are cell membrane mimetic and 
have been used for a wide variety of techniques. 

 Preparation of small unilamellar vesicles  2.3.2.1.

Prior to preparation of membranes the lipids are dissolved in an organic solvent. This is 
because most lipids are soluble in organic solvent and will not mix homogeneously when 
dissolved in an aqueous phase. Usually chloroform is used because of their low vapour 
pressure and contrary to for example methanol they do not form hydrogen bonds with the 
polar head groups making it easier to evaporate. However, other solvents can be used and 
even mix at different volume ratio depending on the sample. Thereafter, solvent is 
evaporated and upon drying a thin film of the lipids forms on the glass surface of the 
container. The film is then hydrated under agitation, and the lipid films shear off into large 
disk. The exposed hydrophobic edges reseal leading to the formation of vesicles and by 
shaking or vortexing will result in a heterogeneous solution of multi lamellar vesicles 
(MLVs) that make the suspension appear milky white. These types of vesicles are the 
starting material for some of the other vesicle types, in particular when their extended size 
and their multi-layered nature interfere with spectroscopic experiments. 
From the MLVs suspension, a homogeneous group of unilamellar vesicles with a diameter 
below 40 nm are prepared by sonication. The use of sonication for lipid sample preparation 
was reported early and is hence one of the first mechanical methods used during the 
formation of vesicles. Usually, sonication by insertion of a tip sonicator is preferred when 
compared to bath sonication, is the latter being less efficient. It results into a clear 
suspension essentially made of homogeneous small unilamellar vesicles (SUVs). These 
SUV´s are usually meta stable, the high energy curvature will by relaxed by fusing of 
vesicles into 60 to 80 nm vesicles over a period of days. Their size makes of them good 
candidates for spectroscopy experiments when compare to other vesicles as they are the 
smallest vesicles than can be produced. 
 

 Preparation of proteo-liposomes 2.3.2.2.

When studying membrane peptides, proteo-liposomes are prepared in order to investigate 
them under conditions that mimic their natural environment. These vesicles are often 
prepared at a given protein/ lipid ratio (P/L). The steps of their preparation are the same 
than the one described above except than lipids are mixed from the beginning with the 
peptide or the protein of interest.  
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 Preparation of lipid bilayers for ssNMR of uniaxially oriented 2.3.2.3.
sample 

The general protocol to prepare uniaxially oriented when at the same time reconstituting 
peptides are documented in detail and illustrated in references (Aisenbrey et al., 2010a; 
Bechinger et al., 2011). Briefly, peptide and lipid are first dissolved in solvents and the 
solutions mixed together. Then the organic solvent is removed under a gentle stream of 
nitrogen until the solution turns viscous (to about 1 mL), which allows to deposit the 
sample onto the glass plates. Equal quantities of the sample are applied as small elongated 
droplets on the surface of individual ultra-thin cover glass plates (Figure 24A). The sample 
is first dried in air until the bulk solvent has evaporated and thereafter the sample is 
exposed to high vacuum overnight. In our laboratory, we have connected a dessicator to 
the lyophilizer to allow the drying of many samples simultaneously in their horizontal 
position. Thereafter the samples are hydrated in a closed chamber at 93% relative humidity 
(rh) and left to equilibrate for typically about 2 to 3 days. This can be achieved by 
establishing a closed atmosphere in contact with a saturated solution of KNO3. Once the 
lipid films become translucent and soft, the glass plates are stacked on top of each other 
(Figure 24B). The stack is stabilized and protected from dehydration by wrapping with 
Teflon tape and the whole sample is sealed in a plastic wrapping using an impulse sealer 
(Figure 24C). Several membrane bilayers (about 104-106) are stacked on top of each other 
between two glass plates 00 (8x22mm) (Marienfeld, Germany).  
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Figure 24: The different preparation steps of an oriented sample. (A) Application of viscous 

lipid/peptide solutions on glass plates. (B) Stacking of the glass plates on top of each other after 

elimination of the organic solvent and hydration of the membranes. Zoom on the stacked glass 

plates with several membranes bilayer stacking between two glass plates. (C) The sample is sealed 

into plastic foil for NMR measurement. (Aisenbrey et al., 2010b). 

2.4. Structural characterization 

The set of optical spectroscopy methods that will be described in the following paragraph 
were used for the characterization of the secondary structure of our peptide. These 
techniques also allowed us to investigate the interaction of this peptide with membranes. 
Furthermore, NMR spectroscopy was useful for the investigation of their topology and 
dynamics within the membrane. Here we briefly present these techniques. 

2.4.1. Circular dichroism (CD) 

CD is a light absorption spectroscopy extensively used in analyzing the secondary 
structures of proteins. It is particularly used to monitor the changes of structure elements 
under a given experimental conditions for example temperature, pH… as these molecules 
are sensitive to environment changes. 
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CD relies on the property of chiral molecules to differently absorb circularly polarized 
light turning in the right (RCP) and left direction (LCP). It measures the difference of 
absorption between LCP and RCP: 
 
 ��������		��ℎ����
 = 	∆���� = ������� − ������� ( 1) 

λ corresponds to the wavelength. 
 
The measurements on polypeptides are usually done in the far UV between 260 and 190 
nm. In this range, absorption is dominated by the peptide bond and the resulting spectrum 
therefore reflects the secondary structure of proteins. Under 190 nm, data are not 
accessible by commercial CD apparatus but only by Synchrotron radiation due to light 
scattering and limitations in the light intensity. At 190 < λ < 260 nm characteristic spectra 
for each protein secondary structure are obtained (Figure 25). The contribution of each type 
of secondary structure (α helix, β turn, random coil) is estimate by deconvolution of CD 
spectra using different algorithms (CONTIN SELCON…) and data bases. Although CD 
spectra can be used to estimate the fraction of the different secondary structures, this 
estimation is not as accurate as the one obtain with Synchrotron radiation measurements. In 
addition, CD cannot give details on which part of the protein contains which structure. 
Despite this, CD is a valuable tool to investigate protein folding and conformational 
changes.  
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Figure 25: Representation of the characteristic CD spectra for the three common proteins 

secondary structures. α-helical (red), β-sheet (blue) and random coil (green). The area shaded in 

blue is not accessible by commercial CD apparatus but only by Synchrotron radiation CD´s. 

2.4.2. Fluorescence spectroscopy 

Fluorescence is a spectroscopic phenomenon in which a fluorophor molecule is excited by 
absorption of a photon and triggers the emission of a photon with a longer wavelength 
during the return to its normal state. Although specific fluorophore molecules can be added 
to the sample, natural fluorophores already exist in proteins. These are the aromatic 
residues tryptophan, tyrosin and phenylalanine (Figure 26). The fluorescence signal is 
usually a mixture of the fluorescence coming from these residues. However, most of the 
intrinsic fluorescence emissions are due to the excitation of tryptophan residues. The 
typical maximum absorbance of tryptophan (Trp) is at 280 nm and the maximum emission 
from 300 to 350 nm. Its maximum emission is sensitive to the solvent polarity of the local 
environment. Thus Trp fluorescence is used to monitor the conformational state of a 
protein. For example, Trp fluorescence was used in this work for the study of peptide and 
lipid membrane interactions for as the peptide inserts into the membrane, the polarity of 
the environment surrounding the tryptophan in the peptide change. Therefore, the shift in 
fluorescence can then be measured as a function of increasing lipid or peptide 
concentrations in order to describe the peptide binding to the membrane.  
 

 

Figure 26: Stick representation of aromatic residues: tryptophan (A), tyrosine (B) and 

phenylalanine (C) with the maximum absorption (blue arrow) and fluorescence emission (red 

arrow) at pH 7. 

2.4.3. NMR spectroscopy 

Nuclear magnetic resonance (NMR) is a spectroscopic method which was detected in the 
late 1940s and early 1950s by E.M Purcell and F. Bloch. Over the decades it was 
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developed further to uses the magnetic properties of certain nuclei for the investigation of 
molecular structure and dynamics. It relies on physical phenomenon in which certain 
nuclei in a magnetic field, absorb and re-emit electromagnetic radiation which is recorded 
and analyzed to extract information on molecules in their environment. The nucleus is thus 
the key elementary particle. 
This paragraph will introduce some NMR concepts and principles and the approaches used 
in solid state NMR. 

 Theory of the NMR phenomenon 2.4.3.1.

Nuclear spin and magnetic properties associated 

Nuclei contain an intrinsic property called spin generally associated with the angular 
momentum. Like electrons, the spin of a nucleus can be described using quantum numbers 
of I for the spin and m for the spin in a magnetic field. Nuclei which contain an odd 
number of protons and neutrons have a non-zero spin. Furthermore, all molecules with a 
non-zero spin have a magnetic moment, µ, and can be study by NMR. This magnetic 
moment, µ is correlated to the angular momentum by: 
 
 µ = γI ( 2) 

With γ is the gyromagnetic ratio, a proportionality constant between the magnetic dipole 
moment and the angular momentum, specific to each nucleus. The gyromagnetic ratios of 
some commonly studied nuclei are listed below. 
 

Table 7: Summary of gyromagnetic ratios, the nuclear spin I, the frequency at 9.4 Tesla and the 

natural abundance of some commonly studies nuclei. 

 

 
The magnetic moments are vectors and the net or bulk magnetization of a sample, called M 
is given by the sum of individual magnetic vectors:  
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 M=∑µ 
 

( 3) 

 

Energy levels of spin ½ nuclei in a magnetic field 

The most studied nuclei in biology are listed in Table 7 above, and they all possess spin 
I=1/2.  
In the absence of an external magnetic field, the states of the spins are degenerate with 
random alignment and the bulk magnetization arising from the nucleus is zero.  
During the NMR experiment, spins are placed in the presence of an external static 
magnetic field B0. The interaction between the nuclear spins and the magnetic field B0 

breaks the degeneracy and leads to the splitting of spins into different populations either 
aligned with (low energy) or against (high energy) B0. This effect is known as the Zeeman 
splitting (Figure 27) and results in a non-zero bulk magnetization.  

For spin I= ½ nuclei, there are only two energy levels, the low energy level occupied by 
the spins which aligned with B0 and the high energy level occupied by spins aligned 
against B0. The difference between the two energy levels is: 

 ∆E = γhB0 = hυ0, 
 

( 4) 

where E is the energy (in Joule), ℏ Planks constant (1.054 10-34 JS), γ the gyromagnetic 
ratio (rad. s-1. T-1), B0 the magnetic field (T) and υ0 the resonance frequency or Larmor 
frequency which corresponds to the precession frequency of each nucleus around B0 

(Hertz, Hz)  

At thermal equilibrium, the repartition of the different populations at each energy level is 
not equivalent and is given by the Boltzmann equation: 
 N

-
/N

+
 = e

-E/kT 

 
( 5) 

With k corresponding to the Boltzmann constant (1.3805 10-23 J/Kelvin) and T to the 
temperature in Kelvin (K). 
This repartition results in a slight excess of spin (N+) at the high energy level (α) when 
compared to spins (N-) at the low energy level (β) ; thus giving rise to a macroscopic net 

magnetization ����� with the same orientation than B0 (Figure 28). This net magnetization 
corresponds to the sum of all the elementary spin-moments. 
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Figure 27: Splitting of spin population in presence of a magnetic field B0 for spin ½: Zeeman 

Effect. 

 
 

 

Figure 28: Representation of the creation of the net magnetization M at the equilibrium after B0 is 

applied 

How NMR signal is generated 

The NMR signal is obtained in two main steps: the first step is the perturbation of the 
equilibrium of the magnetization and a second step in which the signal is recorded during 
the return of the magnetization to equilibrium. 

a) Perturbation of the equilibrium: 

At the equilibrium, the net magnetization is aligned along the z axis and is parallel to B0; 
no signal is detected. Applying a radiofrequency (RF) B1 pulse tilts the magnetization away 
from its equilibrium position in the transversal plane (x, y) by a specific angle θ depending 
on the applied magnetic field and the length of the pulse. The out-of-equilibrium position 
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of the net magnetization occurrs when the B1 frequency is equal to the Larmor frequency υ0 
of the spins. When this condition is fulfilled, the interaction between the electromagnetic 
field B1 and nuclei result in the switch of spins from low energy to high energy level as a 
consequence of energy absorption. After the pulse the magnetization vector precesses 
around the external magnetic field B0 at the Larmor frequency and returns to the 
equilibrium.  
 
 

 

Figure 29: The different steps to obtain the NMR signal. 

b) Relaxation: 

The return of the magnetization to equilibrium is called relaxation. During this step, the 
absorbed energy is returned to the system. Two types of relaxation can be described: 

• The spin-lattice relaxation (T1) refers to the time needed for the magnetization to 
return at equilibrium along the Z axis. It depends on the size and the tumbling 
motions of the molecule. 

• The spin-spin relaxation (T2) describes the evolution of the precession in the (x, y) 
plane. It depends on interactions between nuclei. The additional effect of B0 

inhomogeneity is described by the parameter T2*. 
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Figure 30: Representation of the different relaxation time with their respective equations. A) 

Representation of the spin-lattice relaxation. B) The spin-spin relaxation time T2*. 

c) The NMR signal: 

The entire NMR signal is recorded during the spin-spin relaxation as the signal is detected 
in the (x, y) plane. The restitution of the absorbed energy leads to an oscillating 
magnetization vector which generates a current picked-up by the nearby coil. This current 
creates an electrical signal oscillating at the Larmor frequency known as the free decay 
induction (FID) which contains the vector sum of NMR responses from all the excited 
spins. To obtain the frequency-domain NMR spectrum, the raw signal recorded in a time-
domain is Fourier transformed.  
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Figure 31: Transformation of the raw NMR signal to the observed final signal.  

 The NMR interactions 2.4.3.2.

The NMR signal results from both interactions between nuclear spins and the magnetic 
field (external interaction) and between spins (internal interaction). The latter are 
responsible for magnetic field fluctuations that are felt by the nucleus and consequently 
perturb the Zeeman interaction, which is the most common interaction. These interactions 
are all expressed in the Hamiltonian Ĥ equation: 
 Ĥ= Ĥzeeman+ ĤJ + ĤCS + ĤDD + ĤQ 

 
( 6) 

where HZeeman is the Zeeman interaction, HJ is the J coupling, HCS is the chemical shift 
coupling, HDD is the dipolar coupling, and HQ is the quadrupolar coupling. 

The other interactions are weaker than the Zeeman interactions. In liquid state, the 
molecular reorientation occurring in solution average the dipolar interactions and the 
anisotropic contributions to the chemical shift, resulting in a characteristic narrow isotropic 
peak. In addition, quadrupole interactions are eliminated by such motions. Therefore, only 
the J coupling and isotropic part of the chemical shift remains. In the solid state, as 
molecular reorientation does not occur, solids may have a variety of bond lengths and 
angles of a given chemical site that result in NMR spectrum with broad peaks. 
Chemical shift: 

Nuclei in a molecule do not experience the same magnetic field. Indeed, electrons in the 
molecular orbital rotate around the nucleus; thereby shielding the magnetic field at the 
nucleus and reducing the effective magnetic field. This effective field is expressed as: 

 Beff = B0 (1-σ) ( 7) 

with σ corresponding to the chemical shielding tensor 
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As the Larmor frequency described above is related to the magnetic field experienced by 
the observed nucleus, nuclei in different electronic environments resonate at different 
Larmor frequencies. The frequency shifts due to the interaction of the field produced by 
the electrons with the nucleus is called the chemical shift and when reported in ppm (part 
per million), is calculated as: 

 � = �	– �� !�� ! 10$	
 

( 8) 

The electron distribution around the nucleus is not spherical thus the chemical shielding is 
not the same in all directions, but rather orientation dependent with respect to the magnetic 
field. This orientation dependence of nuclear spin is called chemical shift anisotropy 
(CSA) which is described by the chemical shielding tensor σ mathematically represented 
by a 3 x 3 matrix: 

 % = &%'' %'( %')%(' %(( %()%)' %)( %))* 
( 9) 

Where X, Y, Z is an axis frame.  When this axis frame is choosing such that the interaction 
tensor σ is defined with respect to the diagonal, it is called the principal axis frame (PAF): 
 %+,- = &%.. 0 00 %// 00 0 %00* 

( 10) 

The interaction tensor can be represented as an ellipsoid in which the principal axes of the 
ellipsoid coincide with the principal axis frame of the shielding tensor (Figure 32). 
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Figure 32: Graphical representation of the chemical shift anisotropy tensor A) in the PAF and B) 

in the laboratory frame with the Euler angles (θ and Ф).   

 
The measured value of the CSA in an NMR experiment corresponds to the chemical shift 
tensor component oriented parallel in the laboratory frame (x, y, z) with respect to B0 
(σZZ). Its value can be calculated using Euler angles ф and θ: 

 %))	�ф, 3� = 	%456 + �2	�3���/3 − 1 − :��;/3���2ф� ( 11) 

Where σzz is the chemical shift, θ and Ф the Euler angles, η the asymmetry parameter, δ the 
anisotropy parameter and σiso the isotropic chemical shift according to the Haeberlen-
Mehring-Spiess convention:  

 
: = �%// − %..�%00 − %456  ( 12) 

 
� = �%00 − %456� ( 13) 

 
%456	< �%.. + %// + %00�3  

 
( 14) 

The line-shape of a powder spectrum change with the asymmetry of the CSA-interaction, 
described by the asymmetry parameter η of the chemical shift tensor. 
 For example, in a solid η is in general ≠ 0; while fast rotation of a molecule can average 

the tensor, thus η=0 corresponding to an axial symmetry (e.g; 31P spectrum of phosphor 
lipids). In liquids the chemical shift average to the isotropic chemical shift σiso (Figure 33). 
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Figure 33: Representation of the influence of the asymmetry parameter on the anisotropic chemical 

shift tensor 

 

Scalar and dipolar couplings: 

Nuclear spins within macromolecules may interact directly or indirectly with each other. 
The interaction of nuclei mediated by electrons through covalent bonds is named scalar or 
J coupling. Its strength for two nuclei x, y separated by n covalent bonds is measured by 
the scalar coupling constant nJx-y. This constant represents the principal component of the J 
coupling Hamiltonian (ĤJ). 

Moreover, nuclear spin induced a local magnetic field which is felt by its neighbours. This 
direct interaction between neighbouring spins through space is called dipolar coupling. The 
strength of this interaction depends on the internuclear distance and the orientation of the 
vector related the two nuclei relative to the direction of the magnetic field B0. If the 
interacting spins are from different species, the interaction is heteronuclear and if spins are 
from the same species, the interaction is homomonuclear. It is averaged in solution to zero 
due to the molecular tumbling. The interaction Hamiltonian is: 
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=>>	 = ?@A4CD E.E/�0 �3���/F − 1� ( 15) 

Where �3���/F − 1� describes the angular dependence of the dipolar interaction. 
 

 

Figure 34: Graphic representation of dipolar coupling between two spins I et S 

Quadrupolar coupling: 

Nuclei with spin number I > 1/2 have an electrical quadrupolar moment which interacts 
with Electric Field Gradient (EFG) generated by uneven charge distribution within the 
nucleus. The coupling of this quadrupolar moment and the EFG are known as the 
quadrupolar coupling. The electrical quadrupolar moment is the consequence of the charge 
distribution within the nucleus. For a nucleus that has a spin I =1/2, the charge is 
spherically distributed about the nucleus and consequently no quadrupolar coupling is 
observed, but for spins with I > 1/2, the charge distribution in the nucleus is no longer 
spherical and a quadrupolar coupling occurs (Figure 34). For example, the 2H isotope has a 
spin I =1 and therefore possesses an electrical quadrupolar moment (eQ). 
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Figure 35: Symmetric and asymmetric distribution of charges for nucleus with spin I =1/2 and 

quadrupolar nucleus (I>1/2) respectively 

 Solid state NMR (ssNMR) 2.4.3.3.

ssNMR is a powerful technique to study complex macromolecular systems such as 
amyloid fibrils and membrane-associated proteins. The nuclear spin interactions which 
affect solid state NMR spectra are all dependant on the molecular orientations and 
therefore anisotropic. In a solid the molecules are static with different molecular 
orientations, while in solution, with molecular tumbling, spin interactions undergo fast 
motional averaging. As a result of this, liquid sample results in sharp isotropic resonances 
while solid samples shows characteristic powder patterns and broad NMR spectra with all 
the different molecular orientations present in the sample, each giving rise to different 
spectral frequencies (illustrated for 13C in Figure 36). However, these broad spectra contain 
valuable structural information. Different techniques have been developed to improve the 
resolution and the sensitivity of these spectra in order to recover this information.  
 

 

Figure 36: Differences between 
13

C spectra recorded by solution (upper) and solid state NMR 

(down). 

 
Solid-state NMR methods    
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a) ssNMR of oriented sample 

NMR of static oriented sample is used in our and a few other laboratories to investigate the 
dynamics and the topology of peptides in membranes. It takes advantage on the fact that 
the NMR signal depends of the orientation of molecules relative to the magnetic field. An 
isotopically labelled peptide (15N and/or 2H) is often mixed with lipids and oriented 
between glass plates (Figure 24). The sample is then oriented with the membrane normal 
relative to the magnetic field B0. These two isotopes are commonly used as they give 
information on the dynamics and the topology of the peptide within the membrane. In 
addition to the 15N and 2H experiences, 31P is used to control the orientation of membrane 
relative to B0.  
 

�  15N experience for oriented sample 

 
When peptides are reconstituted in oriented phospholipids bilayers (with the normal 
parallel to B0), it is possible to determine the approximate orientation of the helix by 
measuring the chemical shift of the 15N belonging to the peptide bond. As represented on 
Figure 36A, the NH vector of the peptide bond and the chemical shift tensor σ33 form an 
angle between of about 18 °. They are both oriented almost parallel to the axis of the helix. 

The values of σ22, σ11 and σ33 are respectively 85 ppm, 65 ppm and 230 ppm (Bechinger 
and Sizun, 2003b). Thanks to these particular features, the orientation of the peptide can be 
estimated. When peptides adopt a transmembrane orientation in oriented bilayers, the 

magnetic field B0 is parallel to σ33 and assuming that the axis of the helix and σ33 
coincide, the 15N chemical shift value will be then > 200 ppm (Figure 37B). In contrast, 
when the helix adopts an in plane orientation, σ33 is perpendicular to B0 and consequently 
the value of the 15N chemical shift nucleus is < 100 ppm due to the contribution of σ11 and 
σ22 (Figure 37C).  
 

� 2H NMR experience for oriented samples 

 
The quadrupolar coupling of the 2H nucleus results in a doublet in solid-state NMR spectra 
called quadrupolar splitting (∆νQ) (Figure 37). This splitting depends on the strength of the 
interactions between the electric quadrupolar moment of the 2H nucleus and the internal 
magnetic field gradients in the 2H-C bonds. The line-shape of the 2H quadrupolar splitting 
is very sensitive to the motional freedom of the 2H-C bonds belonging to amino acid side 
chain and has been therefore used to investigate the topology and the dynamic of the 
peptide with membrane. For example, the side chain of alanine (methyl group) is directl 
yattached to the carbon α, and when deuterated used as a probe to investigate the 
interaction and the dynamics of the peptide within membranes. Moreover, the quadrupolar 
splitting has an orientational dependence: 
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 ∆GH = 32 I
/JKℎ 12 ��3���/3 − 1� + :��;/3 ��� 2ф� ( 16) 

 
Where θ and ф are angles that characterize the 2H-C bonds in the laboratory frame 
coordinates, and η the axial asymmetry parameter which determines the shape of 2H 
spectra. η is assumed to be 0 for 2H. 
 

� 31P experience for oriented sample 
 

Phospholipids are predominant components of biological membrane. The phosphorous 
atoms present in phospholipid head groups are often used to assess the quality of 
membrane alignment relative to B0. With a natural abundance of 100%, there is no need in 
isotopic labelling. Moreover, the high gyromagnetic ratio makes these nuclei a very 
sensitive probe and a spectrum can be measured within minutes whereas recording of a 15N 
NMR spectrum of a labelled peptide in an oriented membrane may take overnight or days. 
In liquid crystalline bilayers in their fluid phase, because of the fast axial rotation of the 
phospholipids, the tensor singular axis (σ||) coincides with the rotational axis. Thus, 
correctly oriented phospholipids as POPC give rise to a 31P spectrum with a peak at 
approximately 30 ppm when the normal to the bilayer is parallel to B0. 
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Figure 37: A) representation of the 
15

N chemical shift tensors in a peptide reconstituted in a lipid 

bilayer and their representation for a powder sample. And the orientation of peptide in membrane: 

B) Tansmembrane and C) in plane orientation. (Bechinger and Sizun, 2003b). 
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Figure 38: Simulated spectra of a powder and a well oriented sample. A peptide with a well 

defined orientation will give two sharp peaks corresponding to a splitting 

 

 

Figure 39: Proton decoupled 
31

P spectra of well oriented POPC membrane with the normal 

parallel to B0. Verica Vidovic Phd thesis, Univeristy of Strasbourg 2011. 

b) Magic Angle Spinning solid-state NMR 
Magic Angle Sample Spinning (MAS) averages molecular interaction anisotropies thereby 
giving rise to much better resolved NMR spectra. The averaging is achieved by mechanical 
spinning of sample that reproduces the molecular fast motion in solution in order to obtain 
spectra with resolution comparable to that of the liquid. The sample rotates about an axis 
forming an angle θ = 54.7 ° with respect to the B0, averaging dipolar interactions and 
chemical shift to their isotropic values. This angle θ is obtained from the spatial part of the 
Hamiltonian, namely (1-3cos2

θ). This factor in solution disappears by averaging but it can 
also be cancelled when cos2

θ = 1/3, this gives θ = 54.7 ° called the magic angle. Figure 40 
shows for example the comparison of the static ssNMR and MAS spectra of 13C uniformly 
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labelled glycine powder. For MAS, spectra were measured at different rotational 
frequencies of 5 kHz and 10 kHz, respectively. When the speed of rotation of the sample is 
less than the value of the chemical shift anisotropy, "spinning sidebands" are observed 
(marked with an asterisk). The more the rotational frequency increase, the more spinning 
sidebands disappear. 
Although this technique allows highly resolved spectra, this gain in resolution is done at 
the cost of losing important structural information. For example, the dipolar coupling 
which is important to determine internuclear distance is average to zero. However, this 
interaction can be reintroduced by the Rotational Echo Double Resonance (REDOR). This 
technique allows heteronuclear recoupling between two spins S and I. It then determines 
the value D of the dipolar interaction and consequently measured the internuclear distance 
between two spins S and I since it is proportional to the distance (1 / r3) (13). 
 

 

Figure 40: Static and MAS 
13

C spectra at different rotational frequencies of 
13

C uniformely labeled 

glycin powder. The stars represented the spinning side bands. (Laws et al., 2002). 

C) Cross Polarization (CP) 

 
CP is widely used in ssNMR to enhance the signals of isotopically dilute nuclear spins S 
(as 13C and 15N) by repeatedly transferring polarization from a species I of high abundance 
(typically 1H) (Abragam A, 1961). These sparse nuclei interact strongly with the abundant 
1H which are more sensitive and will dominate the interactions. The transfer of polarization 
is mediated by dipolar heteronuclear coupling and the effect is a gain of sensitivity. This 
transfer obeys the Hartmann-Hahn condition: 
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γIH1I = γSH1S 

 
And is more effective when the distances are short, the dipolar coupling is string and the 
connection is rigid between the two nuclei.  
 

D) Dipolar decoupling 
 

Considerable line-broadening of the NMR signals of sparse nuclei (13C and 15N) is due to 
their strong dipolar coupling interactions with protons. Therefore, proton decoupling is 
applied during the acquisition time.  
 
 
  



CHAPTER II – THEORY: TECHNIQUES AND PRINCIPLES 

 

79 

 

 
  



CHAPTER III – EXPERIMENTAL RESULTS: EXPRESSION OF THE RECOMBINANT p24 
TRANSMEMBRANE DOMAIN 

 

80 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Protein labeling with stable isotopes is a necessary condition for 

advanced NMR investigation. With this goal in mind, we expressed 

the p24 transmembrane domain (p24TMD) as a recombinant fusion 

protein in E.coli bacteria. As bacterial expression of membrane 

peptide/protein can be tricky, we tested two recombinant expression 

vectors (pMal c5X-p24TMDH and pTIPX4-p24TMD) to increase 

our chances to produce this peptide at high yields. Expression was 

first tested in rich medium to set up conditions and the thus defined 

experimental parameters were then used for the expression in 

minimum medium. Here we describe all the strategies we used to 

produce the p24TMD as well as the results we obtained, followed 

by a discussion. 

EXPERIMENTAL RESULTS: 

EXPRESSION OF THE RECOMBINANT 

p24 TRANSMEMBRANE DOMAIN 
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 Experimental results: expression of the recombinant p24 Chapter 3.

Introduction:  
In order to have more insights on the structure of p24TMD in a lipid membrane bound 
state, we decided to fully label the peptide with stable isotopes. Recombinant expression in 
bacteria is the method of choice to produce fully labelled protein/peptide because it is a 
much more economical way when compared to the peptide synthesis. Indeed, the amino 
acids and the solvents needed for the peptide synthesis are expensive thus the synthesis of 
a fully labelled peptide can be very expensive. Moreover, this method presents some 
limitations due to the fact that all labelled amino acids are not commercially available, and 
that the yield and efficiency depends on the size and the sequence of the peptide.  
With regard to the bacterial expression system, among the available hosts, Escherichia coli 
(E. coli) is the most attractive strain because of its easy manipulation, it’s well known 
genetics and low costs.  However, the expression of foreign genes in E. coli often fails due 
to their toxicity for the host cells thus; there is no guarantee of the production of the protein 
of interest. The use of fusion partners was developed to avoid this problem and thus, 
improve and optimize the production of many recombinant peptides. Indeed, these fusion 
partners can be used to improve the solubility of the peptide of interest, enhance its 
stability, to direct the fusion protein in a specific cellular compartment and sometimes to 
facilitate its detection and/or the purification (Hwang et al., 2014b; Sørensen and 
Mortensen, 2005b). Interestingly, the peptide/protein of interest can be recovered by the 
cleavage of these fusion partners followed by a purification step.  
As the expression of membrane proteins is tricky, here we tested two different constructs 
with a different strategy for the expression of our peptide in order to optimize its 
production. The first expression system was designed by our collaborator in Heidelberg. It 
used the pMal-c5X vector in which the gene that encodes the p24TMDH (H for 
Heidelberg) was cloned downstream the malE gene that encodes maltose-binding protein 
(MBP), resulting in the expression of a MBP fusion protein. MBP is a common fusion 
partner which significantly enhances the solubility of many recombinant proteins thus, 
allowing their secretion into the periplasm or their production in the cytoplasm. The 
recombinant vector pMal-c5X-p24TMDH allows for the expression of the MBP-
p24TMDH fusion protein as a soluble protein that accumulates into the cytoplasm. 
Moreover, the MBP sequence in these vectors has been engineered for tighter binding to 
amylose thus, optimizing its purification. In addition, a cleavage site for the Tobacco Etch 
Virus (TEV) protease was added between the MBP and p24TMD as shown on Figure 41 
(top) in order to remove the fusion partner and recover the peptide of interest.  

In addition, another recombinant vector pTIPX4-p24TMD was designed in our laboratory 
to express p24TMD as a fusion to the histone fold domain of the human transcription 
factor TAF12 protein (TATA box binding protein (TBP) Associated Factor 12 Histone fold 
Domain). This fusion partner drives high-level expression of peptides and leads to their 
accumulation in an entirely insoluble form, thereby eliminating toxicity to the host and 
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optimizing consequently the stability and the yield of the expressed fusion protein. It has 
been shown for example to allow efficient expression of a wide range of antimicrobial 
peptides as for example LAH4 (Vidovic et al., 2009b). In contrast to the previous fusion 
partner, the TAF12 does not allow the purification of the fusion protein but it was designed 
to direct its accumulation in inclusion bodies. However, as shown on figure 68 (bottom), 
the TAF12 is followed by a tag of six histidines (HisTag) which allows for the purification 
of protein by Immobilized Metal Affinity Chromatography (IMAC) using divalent metal 
ion column affinity such as cobalt (Co2+), nickel (Ni2+). These histidines are followed by 
a formic acid cleavage site (DP) that allows the TAF12 cleavage and the purification of 
p24TMD peptide.  

This chapter, we will then be organized in two parts. The first one will present the results 
we obtained with the pMalc5X-p24TMDH and the second with the pTIPX4-p24TMD 
expression vectors. 
 

 

Figure 41 : Representation of MBP-p24TMDH and TAF12-p24TMD fusion proteins that were 

expressed and the respective p24TMDH and p24TMD peptide sequences. 

 
 

3.1. Expression of p24TMDH as a MBP fusion protein. 
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3.1.1. Experimental  

 Amplification of the recombinant expression vector pMal-c5X-3.1.1.1.
p24TMDH 

The pMal-c5X-p24TMDH plasmid was designed by our collaborator and sent to us for 
protein expression. This vector carries the gene that encodes the β-lactamase enzyme 
which confers the resistance to the ampicillin antibiotic thus, allowing the selection of 
bacteria which carry this plasmid. To have enough amount of this vector, it was amplified 
by cloning in competent bacteria, the XL1 Blue (Competent Cells, 200249, Stratagene). 
0.6µl of this vector (103ng) was used to transform 100µl of XL1 Blue suspension. After 
20min kept in ice and 10min more at room temperature, the bacteria were grown in Luria 
Bertani (LB) medium for 1h at 37 °C under shaking (250rpm). The transformed bacteria 
were thereafter spread on agar plates containing ampicillin 100µg/ml in order to be 
selected and the plates incubated in an oven at 37 °C overnight. To amplify the vector 3ml 
of LB with ampicillin 100µg/ml was seeded with one colony of transformed bacteria and 
grown overnight at 37 °C under agitation (250rpm) until an OD 600nm of ~ 3-4 was 
reached. Cells were lysed and the plasmid DNA purified using a commercial kit for DNA 
extraction (Nucleospin Plasmid, Macherey-Nagel, Germany). The plasmid concentration 
was estimated by measuring the OD at 260nm on a nanodrop device (Nanodrop ND-1000 
Spectrophotometer, Thermo Scientific, USA). The compliance of the expression vector 
was checked by nucleotide sequencing (Eurofins MWG Operon sending, Germany) and 
the product was stored at -20 ° C. 

 Overexpression of MBP-p24TMDH in rich medium 3.1.1.2.

In order to express the protein of interest, E.coli bacteria strains specifically designed for 
protein over expression were transformed with 1µl of pMal-c5X-p24TMDH vector 
(122.7ng). To optimize the overexpression, different strains were transformed and tested: 
the competent bacteria BL21 (DE3) pLysS One Shot® (C6020-03, Invitrogen) and the 
BL21 (DE3) One Shot® (C6000-03, Invitrogen). The first strain harbours a pLysS plasmid 
that expresses T7 lysozyme to reduce basal level expression and confers resistance to 
chloramphenicol. Transformed bacteria were spread on agar plates containing ampicillin 
100µg/ml and chloramphenicol 60µg/ml for the selection of the expression plasmid and the 
pLysS bacteria respectively. A preculture was obtained by inoculating a colony of 
transformed bacteria in 50ml LB medium and allowing for bacterial growth overnight at 37 
° C under shaking (200 rpm). 500 ml of culture media (LB: Luria Bertani, Yeast Extract, 
20% glucose, chloramphenicol 34 µg/ml and/or ampicillin 100 µg/ml), was inoculated 
with the pre-culture at a volume ratio 1/100. The kinetics of bacteria growth were 
monitored each 30 min by measuring the optical density (OD) at 600 nm (Uvikon 
Spectrophotometer, New York, USA) and the protein expression induced between 0.8 < 
OD600nm <1 for 4 hours by adding IPTG at the final concentration of 1mM. Bacteria were 
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harvested by centrifugation at 5000 g for 15 min at 4°C, and the bacterial pellets frozen at -
20 °C or directly treated for protein extraction.  
Although LB is extensively used for bacteria culture, cells grown in this medium have 
substantial amounts of amylase that impair the protein purification. It likely interferes in 
the case of the MBP fusion protein with the binding allowing its flow through the column. 
The expression of these enzymes can be preventing by the addition of glucose in the 
medium.   
 

 Overexpression of MBP-p24TMDH in M9 minimal medium 3.1.1.3.

BL21 (DE3) pLysS One Shot® (C6020-03, Invitrogen) harbouring the recombinant 
expression vector were first grown at 37 ° C under shaking (230 rpm) for 7 to 8 hours in 2 
ml of LB medium supplemented with ampicillin 100µg/ml and chloramphenicol 34µl/ml. 
The bacteria were diluted to 1/100 in 50 ml M9 minimal medium (85.5 g/L 
Na2HPO4·12H2O, 15 g/L KH2PO4, 3 g/L NaCl, 5g/L 15NH4Cl, 0.4 % glucose, 2 mM 
MgSO4 and 0.1 mM CaCl2). Ampicillin (100 µg/ml), kanamycin (50 µg/ml) or 
chloramphenicol (25 µg/ml) was added to the medium for bacterial selection and plasmid 
maintenance. Cells were incubated at 37 °C under shaking (230 rpm) until 
0.8<OD260nm<1 and protein expression was then induced by addition of IPTG (1mM). 
After induction, cells were grown at different temperatures during several hours in order to 
test the optimal temperature. Bacteria growth was monitored every 30 min by measuring 
the optical density (OD) at 600 nm (Uvikon Spectrophotometer) and cells harvested by 
centrifugation at 5000 g for 15 min at 4°C. The bacterial pellets were frozen at -20 ° C or 
directly treated for the protein extraction.  

 Protein extraction and purification of the fusion protein 3.1.1.4.

Bacteria pellets of a 1L culture were resuspended into 30ml column buffer (20 mM Tris; 
200 mM NaCl; 100mM EDTA, pH 7.4) and 1 Tablet of Protease Inhibitor cocktail (Roche, 
Meylan, France) to reduce proteolysis. The suspension was sonicated twice for 5 min at 
50% of the cycle time using a sonicator tip (Bandelin Sonopuls HD 200, probe MS70, 
Berlin, Germany). An aliquot of the cells lysate was collected for analysis by SDS-PAGE 
migration (Sodium Dodecyl Sodium-polyacrylamide gel electrophoresis). The lysate was 
spun down at 11000 g, 1 hour, 4 ° C and the soluble fraction (supernatant) incubated with 
5ml of amylose beads in suspension (Amylose Resin, NEB, Ref.E8021L) for 1 hour at 4 
°C on a rotary-wheel to allow the absorption of the fusion protein on the beads. The beads 
were spun down 5 min at 2000rpm, 4 °C and the supernatant (flow-through) kept. Beads 
were washed twice with 50ml column buffer and loaded on a column (Biorad Econo-
Column Chromatography Columns, 0.7 x 10 cm, 4 ml, 4, Ref.737-4711). The fusion 
protein was then eluted with elution buffer (20 mM Tris; 200 mM NaCl; 100mM EDTA, 
pH 7.4; 10mM maltose) in 10 fractions of 2ml. Aliquots were prepared with Coomassie 
dye and analyzed on a 12% polyacrylamide gel by SDS-PAGE. Fractions containing the 
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fusion protein were collected and concentrated using centricon (Amicon Ultra 50.000 MW, 
Millipore, Molsheim, France). 

 Enzymatic cleavage with TEV-protease 3.1.1.5.

The MBP was cleaved using a commercial TEV-protease (T4455 Sigma-Aldrich, Saint-
Quentin, France). The cleavage was tested on the fusion protein in solution or attached to 
amylose beads. We first tested the different experimental conditions of cleavage of the 
fusion protein in solution and thereafter, the defined conditions were used for the cleavage 
of the attached fusion protein on amylose beads. The kinetic of cleavage was tested (30, 
120, 180, 240 minutes and 24 hours) for different enzyme: fusion protein (E/P) ratios 
(1:20, 1:50, 1:100 and 1:150) at RT and 4 °C. The sample was spun down after the 
cleavage at 11000g for 15 min and the supernatant removed. 1µl (~ 47µg) aliquots of each 
cleavage product was prepared in Coomassie blue 1X final concentration and analyzed on 
10% polyacrylamide gels (Biorad, Marne-la-coquette, France) by SDS-PAGE gel 
electrophoresis.  
For the cleavage of MBP-p24TMDH on amylose beads, the fusion protein was incubated 
for 1 hour on amylose beads at 4 °C and the TEV-protease added to obtain the desired 
protein/enzyme ratio.  
 

 Purification of the peptide by reversed phase HPLC 3.1.1.6.

The product of MBP-p24TMDH cleavage with the TEV protease was injected onto a 
ProntoSIL 300-3-C4 analytic reverse-phase HPLC column (Bischoff, Leonberg, Germany) 
equilibrated with the solvent A (acetonitrile/water/TFA, 10/90/0.1, v/v/v). This column is 
composed of silica beads grafted with chains of 4 carbons (C4). The choice of a short-
chain is driven by the highly hydrophobic character of the peptide of interest as longer 
carbon chains lead to strong interactions with hydrophobic proteins/peptides and do not 
allow the dissociation and therefore their elution by the solvent. Adsorbed proteins and 
peptides were gradually eluted at different percentages of increasing solvent B 
(acetonitrile/TFA, 100/0.1, v/v) at 45, 50 and 53%. This was achieved on a semi-
preparative reversed phase HPLC (Bischoff Chromatography, Leonberg, Germany) to 
develop the conditions for elution. Eluted fractions were thereafter analyzed by 
electrophoresis and MALDI-TOF mass spectrometry.  
 

 Purification of the peptide by butanol extraction 3.1.1.7.

The butanol extraction was developed by our collaborator at the University of Heidelberg 
for the purification of p24TMDH peptide after cleavage. The different steps are presented 
below. Briefly, the sample was first spun-down at 11000g, 45 minutes after TEV protease 
cleavage. The supernatant (SN) was transferred into a new tube and butanol (B) added to 
the supernatant and the pellet. Both fractions were vortexed and spun-down at 11000g for 
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7minutes. The butanol fractions were transferred into a new tube and the liquid fractions 
spun-down for 20 minutes at 11000g and the SN and the pellet kept.  
 

 

Figure 42:Protocol butanol extraction 

 
 
 

 Electrophoresis:  3.1.1.8.

 
Proteins were separated by electrophoresis under denaturing conditions according to the 
"SDS-PAGE" technique. They were sequentially separated through two gels under electric 
current. The stacking gel with a low concentration of acrylamide (4%) was used to 
concentrated proteins at the limit of the second gel while the separating gel with a higher 
acrylamide concentration (10, 12, 15 or 16%) separate proteins. These gels were often 
prepared by us. For the peptide detection, we used commercial 10-20% or 4-20% precast 
polyacrylamide gradient gel (Biorad). Two Protein markers (Precision Plus Protein Dual 
Color Standards ™ Ref.161-0374 and/or Precision Plus Protein Dual Xtra Standards ™ 
Ref.161-0377) were used to estimate the apparent molecular weight of the proteins. The 
migration was in general achieved for 1 h to 1 h30 at 150V. Gels are stained with 
Coomassie blue (ROTI®-Blue 5X, A15.1, Carl Roth, Karlsruhe, Germany) or Brillant 
Blue R-250 (Carl Roth, Karlsruhe, Germany) and then destained with a solution of 25% 
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water and 75% Methanol. Gel pictures were taken with a gel reader (E-box VX2, Vilber, 
Eberhardzell, Germany). 
 

 Mass Spectrometry 3.1.1.9.

 
The sinapinic acid (SA) or α-cyano-4-hydroxycinnamic acid (α-cyano) matrix was 
prepared at 10 mg/ml final concentration in acetonirile 30% and TFA 0.1%. They were 
used to analyze protein and peptide, respectively.  1µl of sample was mixed to 1µl matrix 
on the sample target (05 174, Bruker, Leipzig, Germany) and analyzed in the MALDI-TOF 
(Matrix Assisted Laser Desorption-/ Ionization -Time-Of-Flight; Bruker Daltonics 
Autoflex modelm Leipzig, Germany) spectrometer. Samples were analyzed under linear 
mode detection. 
A part of MALDI-TOF spectrometry with or without fragmentation was achieved by the 
mass spectrometry service of the Molecular and Cellular Biology Institute (IBMC).  
The expected theoretical masses for the fusion protein MBP-p24TMDH, the cleaved MBP-
TEV and the peptide p24TMDH are respectively 48176.62, 44262.04, 3932.60 Da. 
 

 Protein quantification:  3.1.1.10.

The Thermo Scientific NanoDrop™ 1000 spectrophotometer (Wilmington, USA) was used 
to quantify the purified protein. Absorbance at 280nm was measured using 1µl of diluted 
or concentrated sample and the protein concentration determined with the p24TMD 
extinction coefficient ξ= 8250 cm-1M-1. Beer Lambert equation: A=ξ x l x C (with l 
corresponding to the cuvette length, 1cm) 
 
 

3.1.2. Results and discussion: 

 Bacterial over expression of MBP-p24TMDH 3.1.2.1.

 Expression in rich medium  3.1.2.1.1.

The recombinant vector pMal-c5X-p24TMDH was obtained from our collaborator with a 
protocol of expression of the protein of interest. Therefore, we did not test the 
concentration of the inducer, the temperature of induction but rather, only the bacterial 
strains as their initial protocol was set up with the E.coli DH5α strain. The tests were 
performed in rich medium and thereafter the best conditions were used for the expression 
in M9 minimum medium for the protein labelling. The tests in rich medium were 
performed on a small scale (10 ml) and a large scale (500 ml) to obtain unlabelled fusion 
protein for testing purification, cleavage and protein characterization.  
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The expression was first tested in different bacteria strains, BL21 DE3 and BL21 DE3 
pLysS. They were transformed with the recombinant vector pMal-c5X-p24TMDH and a 
pre-culture of each strain was prepared by inoculating separately 50 ml LB with one 
transformed colony.  Bacteria precultures were first grown at 37°C and seed in 500ml LB 
for the main culture. Expression of MBP-p24TMDH was induced with 1 mM IPTG at OD 
1 and 1.3 for BL21 DE3 and BL21 DE3 pLysS respectively. The bacteria growth was 
followed each 30 min and cells were harvested by centrifugation after 4 hours of induction.  
The kinetic curves of bacterial growth are shown on figure 69. For both bacteria strains, 
the expression of the fusion protein MBP-p24TMDH at 37 °C slows down the bacterial 
growth after induction compared to the uninduced cells. However, bacterial growth seems 
to increase for the induced BL21 DE3 compared to the uninduced cells after 2h30 (Figure 

43A). This result suggests that the uninduced bacteria reached their stationary phase earlier 
while the induced were still growing.  In contrast, induced and uninduced BL21 DE3 pLys 
S seem to reach a plateau simultaneously (Figure 43B).  
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Figure 43: Kinetics of bacterial growth (A) BL21 DE3 and (B) BL21 DE3 pLysS in LB medium 

before and during expression of MBP-p24TMDH at 37°C. Bacterial growth is monitored by 

measuring the OD 600 nm versus time. The arrow indicates the induction by the addition of IPTG 

(final concentration 1 mM) at OD = 1 and 1.4 respectively. The red curve corresponds to the 

induced and the black one to the uninduced condition 

In order to characterize the MBP-p24TMDH fusion protein, after lysis of the bacteria 
proteins were extracted and purified by affinity chromatography on amylose resin. Briefly, 
the insoluble fraction was pelleted by centrifugation and the supernatant corresponding to 
the total soluble protein extract was incubated with amylose resin in order to allow the 
adsorption of MBP-p24TMDH. Beads were washed prior to the elution in order to remove 
weakly attached proteins. Aliquots of the different purification steps were sampled and 
proteins separated on polyacrylamide gel under denaturing conditions (SDS-PAGE) to 
identify and follow the presence MBP-p24TMDH during the purification.  
Figure 44A and B correspond to the SDS-PAGE profile of protein expression in BL21 DE3 
pLysS and BL21 DE3, respectively. In both cases, we clearly identify a band around the 
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expected apparent molecular weight (48.2 kDa) which is present in the total protein extract 
(SN) and during the different steps of purification. As the band presents a high intensity in 
the induced conditions compared to the uninduced, we thus conclude that it corresponds to 
MBP-p24TMDH which is overexpressed in induced bacteria and presents a basal 
expression in uninduced bacteria. Interestingly, the elution fractions (En) indicated that we 
recovered pure fractions of MBP-p24TMDH fusion protein (Figure 44A and B middle and 
bottom). However, we noticed the presence of two bands with the upper corresponding to 
the full length protein. The lower band likely corresponds to protein degradation thus 
indicating that the fusion protein is instable. In elution fractions which present low amount 
of protein, we still identify the two bands on the SDS-PAGE expression profile of BL21 
DE3 but not on that of BL21 DE3 pLysS suggesting that the protein is more stable or 
submit to less degradation in the later strain. In addition, as expected with this strain, we do 
not observe any basal expression. Moreover, we yield more protein after purification 
compared to BL21 DE3 (Figure 45). Although expression in DH5α that was achieved by 
our collaborator yield more protein compared BL21 DE3 pLysS, it presents important 
protein degradation. Based on these observations, we choose to express MBP-p24TMDH 
in BL21 DE3 pLysS.  
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Figure 44: SDS PAGE gel electrophoresis of the different fractions of protein extraction for MBP-

p24TMD after expression in (A) BL21 DE3 pLysS and (B) BL21 DE3. The different fractions from 

the protein extraction induced conditions (I) and non-induced (NI) were deposited on 12% 

polyacrylamide gel SDS-PAGE. Deposits volumes are: 15µL for the different fractions (equivalent 
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to 500µl of culture). After electrophoresis migration for 1h at 150V, gels were stained with 

Coomassie blue. The different bands are defined as follow: SN: supernatant after cells lysis and 

centrifugation, FT: flowthrough after incubation of the SN with amylose beads, Wn:  correspond 

the wash of the beads in order to remove weakly or unbound proteins with n corresponding to the 

number of washing step, En for elution fraction with n corresponding to the fraction, M: molecular 

weight marker. The table below contain the theoretical masses of different forms of MBP-

p24TMDH. They were obtained from the sequence through the Software ProtParam Site ExPASy 

(http://web.expasy.org/protparam/). 

 

 

Figure 45: Summary of the yield in the different bacteria strains and the elution profiles of MBP-

p24TMD. The protein elution profiles of MBP-p24TMDH are represented as a function of the 

optical density at 280nm. The SDS-PAGE after expression in DH5α was obtained from our 

collaborators at the University of Heidelberg. The different concentrations were estimated from the 

measured OD 280nm values on a Nanodrop-1000 spectrophotometer 

 Expression in minimum medium  3.1.2.1.2.

When grown in minimal medium, bacteria culture was started in LB and used to seed a M9 
minimal medium. After overnight growth at 37°C this pre culture was used for the main 
culture. Bacteria were induced at OD 600nm > 0.8 with 1mM IPTG during longer 
incubation time (between 8 to 16 h) which is required to achieve comparable protein yield 
than in LB medium. In addition, as lower bacterial growth temperature is frequently found 
to be helpful to increase the yield of soluble protein (Ouzzine et al., 1996; Sørensen and 
Mortensen, 2005b), we therefore tested different temperatures including lower temperature 
(37, 30, and 18 °C).  
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At 37 °C, as shown on the bacterial curve (Figure 46A), cells growth is significantly slowed 
down after protein induction when compared to the uninduced cells. This result indicates 
that the expressed protein might be toxic for the cells. At low temperatures (30 and 18 °C), 
bacteria were grown during a longer time (22 and 24 h respectively) after induction. We 
did not achieve bacterial growth at these two temperatures under non-induced conditions. 
However, when the induced bacteria are grown at lowered tmeperatures a higher cell 
density is obtained (Figure 46A).  
The analysis of the protein expression by electrophoresis revealed the presence of a band 
with an apparent molecular weight around 50 kDa which is only present in induced and not 
in non-induced conditions (Figure 46B). We therefore concluded that it should correspond 
to the MBP-p24TMDH. Interestingly, the fusion protein is expressed for all the different 
temperatures that we tested. When comparing the protein expression levels of the different 
incubation times after induction, it seems that the maximal expression was achieved at 
18 °C as shown on the SDS-PAGE gel (Figure 46B, elution fractions (E1)). Moreover, 
when elution fractions of the different conditions were pooled, concentrated and the 
protein concentration estimated, for one liter of culture we obtained 0.29, 0.44 and 0.57mg 
of protein respectively for the induction at 37, 30 and 18 °C. Unfortunately, more than 30% 
of the expressed protein is loss in the flow-through (Figure 46B, FT). This could come from 
a low accessibility of the MBP to the amylose beads. 
When the protein was expressed on a larger scale (6 times 500ml in M9 minimal medium 
culture in 2L flask) with the same experimental conditions (18 °C, 24 h, 230rpm in BL21 
DE3 pLysS), we obtained around 3mg of protein per liter of culture. However, the SDS-
PAGE gel analysis revealed the presence of two bands as we previously observed for the 
expression of the protein in BL21 DE3 and DH5α (see Figure 44). Moreover, even for the 
expression on a small scale, for which we obtained only one band at the expected 
molecular weight, we noticed that after one or a few days, we started to detect a second 
band on the electrophoresis gels (Figure 47). This observation indicates that the protein 
undergoes proteolysis during and after the purification, although protease inhibitor (Roche) 
was used during the extraction and purification steps. Unfortunately, the lower band which 
corresponds to the truncated protein seems to be ~3/4 of the total protein (Figure 47) thus, 
reducing the yield of the full length protein. As it will be shown later from the tandem 
mass spectrometry MS/MS results, this band contains truncated protein at the C terminus. 
 
In conclusion, we were able to set up the expression of MPB-p24TMDH in M9 minimal 
medium. Using amylose affinity chromatography, we obtained about 3mg of pure protein 
per litre. But we noticed important protein degradation that reduced the total yield of the 
full length protein. However, BL21 DE3 and BL21 (DE3) pLys S we used are E. coli 
strains that are deficient in Lon and the outer membrane OmpT protease to reduce 
degradation of the expressed heterologous protein. Moreover, an important part of the 
protein was lost during the affinity chromatography and flow through the column. This 
problem could be the consequence of the presence of factors in the crude protein extract or 
cellular components that interfered with the binding. The presence of other proteins in the 
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washing fraction (Figure 46A & B, lines W1) suggests that these proteins can indeed 
compete with the binding of MBP-p24TMDH. Finally, interaction between the peptide of 
interest and MBP can reduced the affinity to amylose beads.  
 



CHAPTER III – EXPERIMENTAL RESULTS: EXPRESSION OF THE RECOMBINANT p24 
TRANSMEMBRANE DOMAIN 

 

95 

 

 



CHAPTER III – EXPERIMENTAL RESULTS: EXPRESSION OF THE RECOMBINANT p24 
TRANSMEMBRANE DOMAIN 

 

96 

 

Figure 46: Expression and purification of MBP-p24TMDH. (A) Bacterial growth curve in M9 

minimum medium. Bacteria were grown at 37°C until OD 600nm 0.8-0.9 and protein expression 

induced by addition of IPTG 1mM (see arrow). After induction, cells were grown at 18, 30 and 

37 °C under shaking (230 rpm) during 24, 22 and 8 hours respectively. (B) SDS-PAGE analysis of 

the expression of MBP-TMDH during the purification steps. The total cell lysates were 

centrifugated and the supernatant corresponding to the total protein extract, was incubated with 

amylase beads 1h at 4 °C. Beads were settle down by centrifugation at 2000g, 5min and the 

supernatant (FT) recovered. Beads were thereafter washed to remove the excess of protein and the 

MBP eluted with the elution buffer (20 mM Tris; 200 mM NaCl; 100mM EDTA, pH 7.4; 10mM 

maltose). 15µl of FT (equivalent to 500µl of culture) and 20µl the different elution fractions (En) 

(equivalent to 600µl of culture) were loaded on 12% SDS-PAGE gel. Gels were stained with 

Coomassie blue after 1h electrophoresis migration at 150V. NI37 corresponds to the non-induced 

conditions at 37 °C; I37, I30 and I18 to the induced conditions at 37, 30, and 18 °C respectively. M 

indicates the molecular weight marker 

 
 
 
 
 
 
 
 

 

Figure 47: SDS-PAGE profile of the full and truncated MBP-p24TMDH after Coomassie 
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 MBP-p24TMDH cleavage and purification of p24TMDH peptide 3.1.2.2.

 

 Setting of MBP-p24TMDH cleavage 3.1.2.2.1.

In order to obtain the p24TMDH peptide, MBP-p24TMDH was cleaved using a 52 kDa 
commercial Tobacco Etch Virus (TEV) protease that contains a histidine and a Glutathione 
S-transferase (GST) tag to facilitate its removal after the cleavage. To set up the best 
conditions of cleavage, we tested the kinetics of cleavage at different temperatures 
(RT~25 °C, 4 °C) and protease-to-target protein ratio (w/w) ranging from 1:20 to 1:150. 
47µg of purified MBP-p24TMDH in solution was digested with the corresponding amount 
of enzyme to have the different enzyme to protein ratios at RT or 4 °C during several 
hours. The products of digestion were sampled at different times and analysed on a 10% 
polyacrylamide gel by SDS-PAGE (Figure 48A). At T=0, the purified protein contains two 
bands with the upper one corresponding to the full length protein and the lower one to the 
truncated protein (MBP5) as shown on Figure 48A (Lane 2). After 30 minutes of digestion, 
we observed a reduction in the intensity of the full length protein for the ratio 1:20 at RT 
compared to the other conditions suggesting that the cleavage has started in this condition 
but is not yet complete. After 4 hours, the digestion is almost total compared to the other 
ratios. At 4 °C the digestion is nearly total after 24 hours for the same ratio. Based on these 
results, we therefore deduced that the MBP-p24TMDH digestion is efficient for the ratio 
1:20 RT during 4h at or 24h or 4 °C, respectively. However, as our protein is not stable, we 
choose to achieve the cleavage at 4 °C during 24 h to restrict unwanted proteolysis.  
 
In order to optimize the purification of the peptide and reduce the loss of the fusion protein 
during the purification steps, we also tested the cleavage on the resin-attached protein thus, 
reducing the number of steps. This test was performed at 4 °C during 24h for the ratio 1:20 
and 1:15 as the later was tested by our collaborator with an expressed TEV-protease. To 
achieve these ratios, the protein was first purified to estimate its concentration and 
incubated 1h at 4 °C with amylose resin under gentle agitation. Thereafter, TEV-protease 
was added for the cleavage. Beads were settled down by centrifugation 5 min at 700g after 
the cleavage and the supernatant recovered. An aliquot was sampled for electrophoresis 
analysis and separated on a 10-20% gradient gel to detect the peptide. As shown in Figure 

48B, we did not observe low molecular weight band suggesting that the quantity of peptide 
is likely not detectable. However, we detected bands with high molecular weights 
indicating that not all proteins that were attached to the amylose resin (Figure 48B, lanes 3 
and 4). The two lower bands likely correspond to the truncated and the cleaved MBP as 
indicated (Figure 48B, lanes 3 and 4 zoom). Even if we did not achieve the control of the 
supernatant before the cleavage, these observations suggest that a part of the fusion protein 
is not attached to the resin and the presence of the intermediate band (between the 
degradation product and the full length protein) indicate that the protein was cleaved and 
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could correspond to the cleaved MBP. Moreover, the intensity of the bands obtained with 
ratio 1: 15 and 1:20 are not different.  
As the molecular weight of the TEV-protease is 52 kDa, we checked also if the upper band 
does correspond to this enzyme. With this purpose, the recovered supernatant was 
incubated for 1h at 4 °C with cobalt resin to get-rid-off TEV-protease as this enzyme 
contains a His-tag. Beads were settled down by centrifugation and the supernatant 
recovered. When analysed on SDS-PAGE gel, no difference of intensity was observed for 
the upper band before and after the incubation with the cobalt resin confirming that this 
band corresponds to the full length protein MBP-p24TMDH (Figure 48B, lanes 6 and 7).  
In conclusion, we set up the conditions of MBP-p24TMDH cleavage in solution and tested 
these conditions for cleavage on resin in order to optimize the purification of the peptide. 
Although we showed that the cleavage works in both cases, it was not total. Cleavage on 
resin did not bring considerable advantages compared to that in solution. It first required a 
quantification of the protein before a new incubation with amylose thus, a supplementary 
step of binding to amylose resin which increases the loss of the protein. Therefore, we 
choose to cleave the protein in directly solution and to follow by the peptide purification. 
For this purpose, we tested two different methods of purification: the butanol extraction 
and reverse phase HPLC as it will be presented in the section below. 
Notably, although proteins were detected on the gel, we did not detect the peptide even on 
gradient polyacrylamide gel (Figure 48B), as the total fusion protein (48.2 kDa) is 12 times 
bigger than the peptide (3.9 kDa). Therefore, for a given molar quantity after the cleavage, 
only a comparatively small amount of the peptide is produced (by wt).  
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Figure 48: SDS-PAGE profile of MBP-p24TMDH cleavage. (A) Kinetic of cleavage in solution at 

different protease-to-target protein ratios and different temperatures. For each condition, 47µg of 
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purified protein was digested with the corresponding amount of TEV protease to obtain the 

different ratios (w:w; 1:20, 1:50, 1:100, and 1:150). The cleavage was then achieved at RT~25°C 

(red) or 4°C (blue). 1µl (1.6µg) of the different products of digestion and non-digest (ND) protein 

were sampled at different times (30min, 1h, 2h, 3h, 4h and 24h) and separated on a 10% 

polyacrylamide gel for 1h at 200V. (B) Cleavage of the resin-bound protein. After incubation of 

MBP-p24TMDH 1h at 4°C with amylose beads, TEV protease was added and the sample incubated 

for 24h at 4°C under gentle agitation. Beads were settled-down by centrifugation and the 

supernatant recovered and incubated with cobalt resin to get-rid-off the TEV protease. Lanes 3 and 

4 correspond to the supernatant before incubation with cobalt resin and 6 and 7 to the supernatant 

after incubation. 5µl (8.5µg) of supernatant was loaded on a 10-20% gradient gel and separated 

for 1h at 200V with the purpose of identifying the peptide. The well 5 corresponds to the pure His-

TEV protease (0.2µg) as reference (or as control). A zoom of lanes 3 and 4 is shown (right) with 

arrows indicating the MBP-p24TMDH, MBP after cleavage of p24TMD (44.3 kDa) and the MBP-5 

(42kDa) corresponding to the truncated MBP. The table summarizes the theoretical molecular 

weight of the expected protein and peptide 

 Purification and characterization of p24TMDH 3.1.2.2.2.

The purification of p24TMDH was tested using analytical reverse phase HPLC or butanol 
extraction as mentioned above. The later method relies on the separation of molecules 
based on their physico-chemical properties during solvent phase partitioning. Butanol is 
often added to samples in solution and molecules separate between two phases after vortex 
and centrifugation. Hydrophobic molecules will concentrate in the butanol phase while the 
hydrophilic molecules will stay in the polar solvent.  
After purification, the characterization of the peptide was achieved by electrophoresis 
and/or MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight) 
spectrometry. For the later, the best conditions to detect the peptide were first set up using 
the two main butanol extraction fractions named SNB (butanol supernatant) and PB 
(butanol pellet) that were received from our collaborator in which they identified 
p24TMDH by mass spectrometry. These fractions were obtained as described in the 
experimental butanol extraction protocol (Figure 42). When prepared with α-cyano-4-
hydroxycinnamic (α-cyano) matrix and analyzed by MALDI-TOF using linear mode 
detection, the resulting spectra displayed peaks corresponding to the expected mass of the 
peptide with and without Na+ ions adduct (Figure 49). These results confirmed the presence 
of p24TMDH in these fractions. We therefore used these conditions for further detection of 
the peptide.  
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Figure 49: p24TMDH mass spectrometry. The main butanol extraction fractions containing the 

peptide (butanol phase supernatant and pellet) were received from our collaborators. These 

fractions were resuspended in 30% acetonitrile/ 0.1% TFA/water and 1µl mixed to 1µl α-Cyano 

matrix on the target. The sample was dried at air and analyzed on a MALDI-TOF spectrometer 

using linear mode detection. The spectrometer was calibrated with a mixture of peptide ranging 

between 1000 and 3500 Da (peptide calibration standard, Bruker, Bremen, Germany). 

Abbreviations: PB (pellet of the butanol phase); SNB (supernatant of the butanol phase). 

 Characterization of p24TMDH after butanol 3.1.2.2.2.1.
extraction 

Butanol extraction purification was developed by our collaborators and the protocol sent to 
us. Our first test was achieved from a small scale protein expression in LB after TEV 
protease cleavage at ratio 1:50 24 h at 4 °C as this new condition of cleavage as described 
above was not yet tested. Butanol was added to the product of cleavage to achieve the final 
volume ratio 2:3 (aqueous solution: butanol, v/v) and the different fractions were obtained 
after subsequent steps of vortex, centrifugation as described below (Figure 50A). These 
fractions were loaded on a 15% polyacrylamide gel and the proteins separated in 
denaturing conditions by SDS-PAGE. As shown on the gel electrophoresis Figure 50B, the 
product of cleavage (lane 2) presents two bands with the lower one of more important 
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intensity indicating that the protein was cleaved. However, the cleavage was not total as an 
important part of full length protein remains in the upper band. Among the butanol 
extraction fractions that were deposited, the peptide was not observed in any of them but 
some of the non cleaved protein (lanes 7) and the truncated protein (lanes 6 and 7) were 
detected in the aqueous phases. When all the fractions were analyzed by mass spectrometry 
for the presence of the peptide, as our collaborator, the peptide was identified only into the 
SNB and SP fractions and not in the others (Figure 50C). Indeed, the mass spectra present 
peaks with the expected mass of peptide and closely related masses of peptide with Na+ 
ions adduct, thereby confirming that the peptide accumulated in SNB and SP fractions. 
Although we did not detect the peptide on SDS-PAGE gel, MALDI-TOF allowed us to 
characterize its presence. 
However, these set conditions did not allow the detection of the peptide in a reproducible 
way which is an important prerequisite for further expression studies.  
Indeed, when the fusion protein was expressed later in large quantities, after purification 
and cleavage, we did not detect the presence of the peptide neither by electrophoresis 
(Figure 51A) nor by MALDI MS (not shown). However, when compared the 
electrophoresis profile of the product of cleavage to the one of the uncleaved protein 
(Figure 51A lane 3 and 1 respectively), the presence of a much more intense lower band for 
the first indicated that the protein was cleaved. Moreover, the mass spectrum of the 
cleavage product revealed the presence of a peak with a mass close to the one expected for 
the cleaved MBP with an addition of ~ 186 Da. Unfortunately, we could not explain this 
difference (Figure 51B). Together with gel electrophoresis analysis, this result is consistent 
with the fact that the cleavage worked.  
Thereafter, the peptide was purified by butanol extraction and the main fractions in which 
the peptide was expected (SNB, PB) separated on SDS-PAGE gel. In order to have an idea 
of the apparent molecular weight of the peptide on the gel, synthetic p24TMD (with a 
sequence slightly different from the one of p24TMDH peptide) was separated on the same 
gel as we did not succeed to purify the later as mentioned earlier. 
 
Given that the theoretical molecular weight of the two peptides p24TMD and p24TMDH 
differ by about 0.3 kDa, we expected that they migrate at the same size. As shown on the 
gel, a band corresponding to the synthetic p24TMD was identified around 5kDa (Figure 

51A, lane 7). A negative control of the peptide stability during the TEV protease cleavage 
was achieved during 24h at 4 °C and loaded on the same gel (Figure 51A, lane 8). As it 
separated at the same apparent molecular weight than the previous, we therefore concluded 
that this enzyme does not cleave the peptide. We did not observe any lower band for the 
two butanol fractions suggesting that the peptide is not present. However, as the theoretical 
total amount of peptide expected in these fractions was 0.34mg, which is more than the 
protein detection limit from a polyacrylamide gel using the coomassie-R250 staining 
(100ng), we cannot really explain why the peptide was not detected. Therefore, we can 
only speculate that the peptide could aggregate as we previously suggested due to its 
hydrophobicity. Its presence was not characterized by MALDI-TOF using the previous 
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conditions of detection (data not shown).  This complication with detection could also be 
related to the difficulty of the peptide to be ionized. 
Therefore, we decided to use in addition another mass spectrometry technique, the tandem 
mass spectrometry with a MALDI source to analyse the different bands observed on the 
gel to detect the peptide. In addition, to characterize the difference in sequence between the 
truncated and the full length protein, the uncleaved protein was also analyzed. The 
different bands highlighted on the gel shown Figure 51A with arrows (numbered from 1 to 
8) were cut and sent for analyses by the mass spectrometry service of the molecular and 
cellular biology institute (IBMC).  
In order to analyse the sequences of the bands 1 to 3 (Figure 51A, lane 1) which correspond 
to the uncleaved fusion protein, they first performed a trypsin digestion of the protein in 
solution in order to generate a bank of fragments that wash used for comparison with the 
fragments obtained from the trypsin digestion of the cut-out bands. Here, we only focused 
our analysis on the C terminus of the MBP-p24TMDH fusion protein. The mass spectra of 
the different C-terminal fragments that were generated from trypsin digestion of MBP-
p24TMDH are shown Figure 51C (spectra on top). When compared to the mass spectra of 
trypsin digestion of the bands 1, 2 and 3, we noticed that they all shared the presence of the 
peptides with the following molecular weight: 3459.546, 975.462 and 184.859 Da. These 
peptides correspond to the cleaved fragments of the MBP protein between residues 368 to 
413. The peptide at 2959.663 Da is a part of the p24TMDH peptide as present on Figure 

51C. This later fragment was not identified in bands 2 and 3 but only in band 1, thus, 
indicating that the truncated version of the fusion protein lacks the C-terminus of our 
peptide of interest. Interestingly, as this fragment is common to p24TMD and p24TMDH 
peptides, its presence could have be found in bands 4, 5, 6 and 8. As shown in Figure 51D, 
this fragment was not identified in any of these bands but only for p24TMD synthetic 
peptide digested with trypsin suggesting that the peptide is not present or is hardly 
detectable even in butanol extraction fractions in which they were previously identified. 
Interestingly, the presence of the other expected fragments were also characterized as 
shown on the full MALDI spectra confirming that the trypsin digestion of the synthetic 
peptide was efficient (Figure 51D).  However, we only looked for the presence of the 
monomeric peptide and it would have been interesting to search in the range of the dimeric 
peptide. The band 7 was identified as the TEV protease.  
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Figure 50: p24TMDH purification and characterization by SDS-PAGE and mass spectrometry. 

2.5mg of MBP-p24TMDH was cleaved with 48µg of TEV protease achieving the ratio (50:1). (A) 

The peptide was thereafter purified as described on the butanol extraction protocol above. (B)1.5µl 

of each fraction and 15µl (180µg) of the cleavage product were loaded on a 15% polyacrylamide 

gel and protein separated for 1h under 150V, 300mA.  The Protein ladder (MXD) was separated 

simultaneously and the gel stained with Coomassie blue. The different abbreviations are defined in 

the butanol extraction protocol; D is for the digest product. (C) In parallel, 1µl of each fraction 

was mixed to 1µl α-Cyano matrix on the target, dried at air and analyzed by MALDI-TOF mass 

spectrometry using linear mode detection. The spectrometer was calibrated with a mixture of 

peptide ranging between 1000 and 3500 Da (peptide calibration standard, Bruker) 

These results show that butanol extraction allows in some cases the purification of the 
peptide.  However, its detection seems to be difficult due to the peptide’s hydrophobic 
character. Indeed, when the cleavage product was mixed with HFIP to achieve a 50% 
HFIP/water ratio, that was shown as we will see in the next chapter to promote the helical 
conformation of the peptide, it results in aggregation as shown Figure 51E. We observed 
two phases with a white film in between and a precipitate. When the different phases 
including the white pellet were analyzed by SDS-PAGE and MALDI, we did not detect the 
peptide but rather the cleaved and uncleaved MBP (not shown). This observation is 
consistent with the synthetic p24TMDH peptide aggregation we encountered and which 
impaired its purification after solid phase peptide synthesis. However, as we did not 
analyse the presence of oligomeric peptide, we cannot really say if the peptide aggregates 
by forming oligomers during the purification. In addition, we also considered that the 
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peptide could also stick on the wall of the Eppendorf tubes due to its hydrophobic 
properties. For this reason, special tubes that prevent this adhesion on the wall were used to 
avoid this problem.  
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Figure 51: (A) SDS-PAGE of the uncleaved (ND, 15µg) and cleaved (D, 185µg) MBP-p24TMDH 

fusion protein, the butanol fractions (SNB and PB), the cleaved (SD, 30µg) and uncleaved (S, 

30µg) p24TMD synthetic peptide. The different samples were separated in a 4-20% polyacrylamide 

gel in denaturing conditions. Protein ladder (M) was separated simultaneously and the gel stained 

with Coomassie blue. (B) 1µl of the product of MBP-p24TMDH cleavage was mixed to 1µl SA 

matrix on the target, dried at air and analyzed by MALDI-TOF mass spectrometry using linear 

mode detection. The spectrometer was calibrated with a mixture of proteins ranging between 4000 

and 20000 Da (protein calibration standard I, Bruker). (C) Mass spectrometry spectra of the MBP-

p24TMDH digested with trypsin (control, top) and that of the bands 1, 2 and 3 cut from the gel are 

shown (A). The MBP-p24TMDH was first digested with the trypsin and the generated fragments 
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used to provide a bank of peptides. Their presence was thereafter found after the trypsin digestion 

of the bands cut on the gel by comparison of the mass spectra. (D) Mass spectrometry of p24TMD 

synthetic peptide and the bands 4, 5, 6, 8 after trypsin digestion. The spectra C and D were 

obtained by MALDI without fragmentation with a reflectron mode and provided by the mass 

spectrometry service at the molecular and cellular biology institute. The black arrows pinpoint the 

p24TMD and p24TMDH sequences with their expected masses. (E) Product of cleavage with 50% 

HFIP (v/v). 9 mg of purified MBP-p24TMDH from M9 medium culture was cleaved in solution 

with TEV protease with the final protein/enzyme ratio 20:1. Addition of HFIP to 7.714 mg of total 

cleaved protein, (1:1, v/v), lead to different phases and a white precipitate after vortexing and 

centrifugation 

 Characterization of p24TMDH after reverse phase 3.1.2.2.2.2.
HPLC 

As for the butanol extraction, the first test of peptide purification by reverse phase HPLC 
was achieved starting from a small scale LB protein expression. After cleavage on resin, 
amylose beads were settled down by centrifugation at 700g for 5min and the supernatant 
injected on an analytic column (ProntoSIL 300-3-C4). HPLC was performed using an 
acetonitrile/water gradient during 30min. The resulting chromatogram is shown in Figure 

52A.  The different fractions 1, 2 and 3 were eluted at 45, 50 and 53% of solvent B (100% 
acetonitrile + 0.1% TFA) respectively. Intriguingly, although they were eluted at different 
percentage of solvent B, the mass spectra revealed the presence of peptides with quite 
close mass (Figure 76B). However, these masses do not correspond to the expected one but 
could correspond to p24TMDH lacking three residues at the N-terminus (3648.28 Da). 
However, we can only speculate as we showed above that the peptide is stable during TEV 
cleavage (Figure 51A) and the possible trypsin cleavage sites in p24TMDH do not predict 
the detected masses. Therefore, these peptides could also result from the digestion of the 
MBP of the protein. Again, these peptides were not detected on an SDS-PAGE gel but 
rather a high molecular weight protein was observed in fraction 1 and likely corresponds to 
the cleaved MBP (Figure 50B).  
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Figure 52: Purification and characterization of p24TMDH after cleavage of the resin-attached 

MBP-p24TMDH. (A) The reverse phase HPLC chromatogram of the supernatant that was 

recovered after cleavage from the amylose resin. After cleavage on resin (1:20 protease-to-protein 
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ratio), beads were settled down and the supernatant (equivalent of 148µg of protein) was injected a 

ProntoSIL 300-3-C4 analytic column. The sample was purified under a 10-95% acetonitrile/water 

gradient on Bischoff device. (C) 0.5µl of the different elution fractions were mixed to the same 

volume of α-cyano matrix and analyzed using a linear mode on a MALDI-TOF spectrometer. 

HPLC fractions were lyophilized, loaded on a 10-20% gradient polyacrylamide gel and separated 

for 1h at 200mV. The gel was stained with Coomassie blue 

3.1.3. Conclusion  

In summary, we set up the conditions of expression of MBP-p24TMDH in rich and 
minimum medium with the purpose of protein labelling in the later. Although the 
electrophoresis profile revealed that the protein was overexpressed, we noticed the 
presence of a truncated version of the protein. Unfortunately, this protein was more 
abundant (2/3) than the full length protein. In addition, a considerable part of proteins was 
lost in the flow through due to the weak interaction with amylose resin thus, reducing the 
final yield of proteins and peptides. However, although we set up the conditions of 
cleavage; we could hardly detect the peptide after purification by butanol extraction or 
reverse phase HPLC. The first explanation to that is the important molecular weight ratio 
between the full length protein and the peptide that contributes to reduce the final amount 
of peptide. In addition, as the truncated protein was shown by MALDI to lack a part of the 
peptide (C-terminus); it thus also affects the final yield of the peptide. Furthermore, the 
peptide likely also aggregates due to its hydrophobic character as we shown. All these 
problems emphasize our difficulty to detect the peptide in a reproducible manner.  
With the purpose to optimize our chance to produce the peptide, another expression vector 
system commonly used in our laboratory, the pTIPX4 was also tested. It allows the 
expression of peptides with fusion protein partner TAF12 which drives proteins into 
inclusion bodies. The results we obtained are presented in the following section.  
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3.2. Expression of p24TMD as a TAF12 fusion protein 

3.2.1. Experimental  

 Construction of the recombinant expression vector pTIPX4-3.2.1.1.
p24TMD* 

The pTIPX4-p24TMD* (5632 pb) vector was obtained from the pTIPX4-fpTM (5713 pb) 
expression vector which is used in our laboratory to express the fusion peptide (fp) of the 
HIV gp41. The pMA-p24TMD (2480 pb) cloning vector was purchased from GeneArt® 
harboring the nucleotide sequence encoding for p24TMD. 3µg of pTIPX4-fpTM and 10µg 
of pMA-p24TMD were first double digested separately for 2h at 37 °C by BamHI (1U/µg) 
and SacI (5U/µg) (New England Biolabs) restriction enzymes generating incompatible 
ends that prevent the recircularization of the vector. After the digestion, enzymes were 
inactivated for 20 min at 65 °C. The digest pTIPX4 was dephosphorylated with antartic 
phosphatase (5U/3µg) (New England Biolabs) for 1h at 37 °C and the enzyme was 
inactivated for 10 min at 65 °C. The pTIPX4-fpTM and pMA-p24TMD products of 
digestion were separated on a 1 and 2% agarose (Agarose high resolution 1000bp, Carl 
Roth) gel for 30 min at 100V. The pTIPX4 (5522 pb) and p24TMD (110pb) fragments of 
interest were purified and ligated in the presence of the T4 DNA ligase (New England 
Biolabs) at 16 °C overnight. The compliance of the vector was confirmed by BamHI and 
SacI double digestion and nucleotide sequencing.  

 Agarose electrophoresis 3.2.1.2.

This method was used to separate nucleotide fragments after digestion with restriction 
enzymes. Product of digestion was mixed with the Orange G xylenecyanolblue 6X HP05.1 
(Carl Roth, Karlsruhe, Germany) a loading buffer which contains a dye that helps to follow 
the migration. Samples were loaded on a 1 or 2% agarose gel, respectively, and separated 
in TAE 1X (40 mM Tris acetate, 1 mM EDTA, pH 8.2) for 35 min at 100V. 5µl of 50pb 
and 1kb DNA ladders were separated simultaneously to determine the apparent molecular 
weight of the nucleotide fragment. Agarose gels were prepared with ethydium bromide 
(EtBr) which is a commonly used for DNA detection. Indeed, this dye is more fluorescent 
under UV excitation when it intercalates between DNA base pairs. A picture of the gel was 
performed with the reader (E-box VX2, Vilber, Eberhardzell). 

 TAF12-p24TMD expression 3.2.1.3.

A pre culture of 8 ml LB medium (0.1% glucose, kanamycin 50µg/ml) was inoculated with 
a colony of BL21 AI transformed with pTIPX4-p24TMD*. After overnight incubation at 
37 ° C, this pre culture was used to seed 50 ml LB medium (0.1% glucose, kan 50 µg/ml) 
at a 1/25 dilution. The kinetics of bacterial growth at 37 °C was monitored each 30 min by 
measurement of the optical density (OD) at 600nm (Uvikon spectrometer). Protein 
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expression was induced by addition of IPTG and arabinose when the bacteria are in the 
exponential phase of growth (OD 600nm ~ 1). Induction was achieved with the final 
concentrations of 0.8mM IPTG and 1% arabinose during 3 hours at 37 °C. Before the 
induction, a part of the bacterial suspension was collected for the negative control of 
expression. Bacteria were thereafter harvested by centrifugation for 15 min 5000 g at 4 °C 
at the pellet kept at -20 °C for protein extraction.  
 

 Protein extraction 3.2.1.4.

Before cells were harvested, 10 ml of induced and uninduced bacteria culture were 
sampled and protein extracted as described here for this given volume of culture.  The 
thawed bacterial pellets were taken up in 2 ml of lysis buffer (50 mM Tris; 300 mM NaCl; 
0.5% Triton, pH 8) and then sonicated twice for 5 min at 50% of the time cycle (Tip 
sonicator, Bandelin Sonopuls HD 200, Berlin, Germany). 10 µl (equivalent of 50 µl 
culture) of obtained lysate are collected and constitute the total sample lysate (ET). After 
centrifugation at 11000 g, for 30 min at 4 °C, 24 µl (equivalent of 120 µl culture) of the 
supernatant named soluble fraction (FS) was sampled. The bacterial pellet which 
corresponds to the insoluble fraction (membrane + inclusion body) was washed twice with 
washing buffer (50 mM Tris; 300 mM NaCl, pH 8) to remove Triton. In order to separate 
membrane (Mbe) from inclusion bodies (CI), the pellet was finally resuspended in 
denaturing buffer (50 mM Tris; 300 mM NaCl, 6 M Guanidine at pH 8) and the suspension 
incubated on the wheel (20 rpm) at RT overnight. After centrifugation at 12,900 g for 20 
min at 20 °C, the supernatant (inclusion bodies) was collected and 12 µl (equivalent of 60 
µl culture) sampled. The pellet (membrane fraction) was resuspended with the loading 
buffer 1X and 12µl (equivalent of 1.2 ml culture) was loaded on the gel for SDS-PAGE. 
All the other aliquots were also prepared with the loading buffer 5X (0.25 M tris-HCl pH 
6.8; 0.5% bromophenol blue; 0.5 M DTT; 50% glycerol; 10% SDS) for SDS-PAGE 
analysis. 

 Protein purification by cobalt affinity chromatography 3.2.1.5.

After solubilisation of the insoluble fraction (bacteria pellet made of membrane and 
inclusion bodies) in Guanidine 6M, inclusion bodies fraction (from 10 ml culture) was 
incubated with 100 µl cobalt resin (in suspension) for 1h at room temperature on the wheel 
(rotation 250 rpm) to fix our protein of interest which harbours a Histidine tag (His tag). 
Thereafter, resin was settled by centrifugation at 750 g for 5 min at RT and the supernatant 
(Flow Through, FT) recovered and 15µl (equivalent of 75µl culture) sampled for SDS-
PAGE analysis. The resin pellet was washed to remove proteins weakly attached to resin 
and then successive elution of 2ml were achieved with the elution buffer (330 mM 
imidazole, 50 mM Tris, 300 mM NaCl, pH 7) to recover the proteins of interest. 
Ethylenediamine tetraacetic acid (EDTA) 100mM pH 8 was used in the last elution to get 
everything that is retained on the resin. 
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 Protein purification by reverse phase HPLC 3.2.1.6.

The TAF12-p24TMD fusion protein was purified from the cobalt affinity chromatography 
elution fractions or directly from the insoluble fraction. When starting from elution 
fraction, the solvent was first evaporated under vacuum and proteins resuspended in 
acetonitrile/water (80/20, v/v) while the insoluble pellet was solubilised in formic 
acid/water (75/25, v/v). Samples were spun-down for 10 min at 12857 g (Eppendorf 
centrifuge 5804R, Hamburg, Germany) at 4 °C prior to purification. The purification tests 
were performed on a semi-preparative HPLC (Bischoff) using an analytical column 
(Phenomenex Jupiter C4 Particule 300Å, 5µm, Column 4.60mm x 150mm) under a 
continuous 10-95% acetonitrile/water or sloped 10-95% isopropanol/water gradient (see 
appendix) to develop the conditions of purification. Proteins were purified thereafter on a 
preparative HPLC (Gilson, Villiers-le-bel, France) using a preparative column 
(Phenomenex Jupiter Particle C4 300 Å, 5 µm, Column 30mm x 150mm, Le Pecq, France) 
under slope 10-95% isopropanol/water gradient (see appendix). Acetonitrile/water gradient 
was prepared by mixing solvents A (acetonitrile/water/TFA, 10/90/0.1, v/v/v) and B 
(acetonitrile/water/TFA, 90/10/0.1, v/v/v) and for the isopropanol/water gradient with 
solvents A’ (water/TFA, 90/0.1, v/v) and B’ (isopropanol/water/TFA, 90/10/0.1, v/v/v). 
Proteins eluted with increased percentage of solvents B and B’, respectively. 
 
 

 Characterization by electrophoresis 3.2.1.7.
 

Proteins were separated by electrophoresis under denaturing conditions. Liquid samples 
were mixed to the loading buffer 5X (0.25 M Tris-HCl pH 6.8; 0.5% bromophenol blue; 
0.5 M DTT; 50% glycerol; 10% SDS) prior to the loading on the gel in order to weigh 
down the sample and denature proteins.  Samples were loaded on a 4% stacking gel and 
proteins separated in a 16% polyacrylamide tris-glycine gels. The migration was performed 
for 1 h10 at 150V successively through these two gels. They were stained with Coomassie 
blue (Blue ROTI® 5X, A15.1, Karlsruhe) and then destained with a solution of methanol 
25% and water 75%. Photos gels are made with the E-box VX2 gel reader (Vilber, 
Eberhardzell, Germany). 
 

3.2.2. Characterization by mass Spectrometry 

 

The matrix (sinapinic acid, SA, or α-cyano-4-hydroxycinnamic acid, α-cyano, Sigma-
Aldrich, Saint-Quentin, France) was prepared at a final concentration of 10 mg / mL in 
acetonirile 30% and TFA 0.1%. These matrices were used to analyze protein and peptide 
samples, respectively. 1µl of sample was mixed to 1µl matrix on the sample target (05 174, 
Bruker, Leipzig, Germany) and analyzed in the spectrometer MALDI-TOF (Matrix 
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Assisted Laser Desorption-/ Ionization - Time Of Flight; Bruker Daltonics Autoflex 
model). Samples were most often ionized with 20-30% laser and analyzed under linear 
mode detection. 
 

 Cleavage of the TAF12-p24TMD fusion protein 3.2.2.1.

The TAF12-p24TMD was designed with a formic acid cleavage site (DP, Asp-Pro site) 
between the fusion protein partner and the p24TMD peptide. The cleavage was tested 
directly on the insoluble fraction or on HPLC fraction obtained after a preliminary step of 
purification. In the later, the solvents were first removed under vacuum and proteins 
resuspended in formic acid/water (75/25, v/v) while insoluble fraction was directly 
solubilized in this solvent mixture. Samples were thereafter incubated for 24 hours at 

50 °C in a water bath to perform the cleavage. The product of cleavage was spun-down for 
10 min 12857 g (Eppendorf centrifuge 5804R, Hamburg, Germany) at 4 °C prior to the 
purification by reverse HPLC and the eluted fractions analyzed by MALDI-TOF for the 
presence of the peptide.  

3.2.3. Results and discussion: 

The expression of TAF12-p24TMD was first performed with the pTIPX4-p24TMD 
recombinant vector that was obtained by molecular cloning from the pTIPX4 vector from 
our laboratory. However, as we encountered some major difficulties for the expression, a 
new vector the pTIPX4-p24TMD* was obtained from the pTIPX4-fpTM acceptor vector 
for which we already knew that the expression works. Indeed, this vector is used in our 
laboratory to express the fusion peptide of the HIV gp41 (fpTM) as a TAF12 fusion 
protein. The fpTM insert was replaced by the p24TMD nucleotide sequence as described in 
the experimental section. Here we will only present results that were obtained with this 
new vector. 

 Expression of the fusion protein TAF12-p24TMD 3.2.3.1.

Different bacterial strains (BL21 DE3, BL21 DE3 pLys S, BL21 AI) were first tested (data 
not shown) and TAF12-p24TMD expression seems to work better in BL21AI. Thereafter, 
different parameters (inducer, OD of induction and temperature) were tested in order to set 
up the conditions of expression.  
An overnight pre culture of BL21 AI transformed with pTIPX4-p24TMD* was used to 
seed 50 ml LB supplemented with 0.1% glucose and 50 µg/ml kanamycin and bacteria 
were grown at 37 °C under agitation. The optical density of bacteria was monitored 
at 600 nm each 30 min and at OD ~ 1, protein expression was induced by the addition of 
IPTG and arabinose (see Figure 53A & B respectively). Different IPTG concentrations 
were tested in parallel at 0.2% arabinose (see Figure 53A) and arabinose at 1mM IPTG 
(Figure 53B). Uninduced bacteria were collected before induction for the negative control 
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of expression. Induction was performed for 3 hours at 37 °C and bacteria harvested by 
centrifugation. As shown in Figure 53A & B, bacterial growth significantly slows down 30 
min after of induction compared to the non-induced bacteria and all reached the stationary 
phase. This result suggests an important expression activity that requires important 
metabolic resources and thus, slows the bacteria growth. Bacterial growth was not 
significantly different between the tested IPTG and arabinose concentrations. 
Cells were lysed and proteins extracted during different steps of separation/purification.  
As p24TMD was expressed as a TAF12 fusion protein, it was expected in inclusion body. 
Thus the insoluble fraction (pellet after cell lysis named Mbe+CI) was solubilised with 6M 
guanidine and the inclusion bodies (supernatant, CI) separated from the membranes (pellet, 
Mbe) by centrifugation. As the fusion protein contains the His-tag, inclusion bodies were 
first incubated with cobalt resin and the protein was eluted with 330mM imidazole. 
Aliquots of each purification step were analyzed on a 16% SDS-PAGE to identify the 
protein of interest. The different fractions that were analyzed for increasing concentration 
of IPTG are shown in Figure 53C. When comparing the electrophoresis profile of these 
fractions, we could hardly observe any differences between the induced and the non-
induced conditions except for the elution fractions. Indeed, for the different IPTG 
concentrations and not for the non-induced, a band between 15 and 20 kDa was identified. 
As the expected molecular weight is 15.624 kDa, we deduced that it corresponds to the 
TAF12-p24TMD. In addition, as the intensities of the bands increased from 0.8 to 1.2mM 
IPTG and seems to be important at 1% arabinose (Figure 53D), we deduced that the 
expression works better at 0.8 mM IPTG and 1% arabinose. These results confirmed that 
our protein indeed accumulated in inclusion bodies as expected and not in membranes 
(data not shown). However, the presence of other proteins in the elution fraction was an 
obstacle for its quantification after cobalt affinity chromatography. These proteins could 
come from the interaction with our protein or directly with the resin. Moreover, a part of 
the protein is lost in the flow through (data not shown). In addition, we also noticed some 
protein degradation (Figure 53C & D) despite the use of BL21 AI which is a protease 
deficient strain and dedicated for the expression of toxic proteins.  
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Figure 53: Influence of IPTG and arabinose on bacterial growth and TAF12-p24TMD expression. 

Kinetics of bacterial growth was achieved by monitoring of the OD 600nm every 30min. They were 

grown at 37 °C until OD = 1 (arrows) and the expression induced with (A) different concentrations 

of IPTG (0.8, 1 and 1.2 mM) and a fixed concentration of arabinose (0.2%) or (B) different 

concentrations of arabinose (0.2, 0.5 and 1%) and a fixed concentration of IPTG (1mM). The 

different fractions during protein extraction for the IPTG test (C) and the elution fractions for 

arabinose test (D) in induced (I) or non-induced (NI) conditions were analysed by SDS-PAGE. 

Samples were separated on a 16% Tris glycine gel during 1h10 at 150V and the gels stained with 

Rotiblue. The loaded volumes are the following: 24µl for soluble (FS) and insoluble fractions (Mbe 

+ CI: membrane and inclusion bodies) (equivalent to 120 µl of culture), 12 µl for membrane 

fractions (Mbe) (equivalent to 1.2 ml of culture) and 25 µl for elution fractions (Elu) (equivalent to 

1.2 ml of culture) for IPTG test and 60µl (equivalent to 6 ml of culture) for arabinose test and 12µl 

of protein ladder (PM) (Precision Plus Protein Dual Color Standards ™). The red arrows indicate 

the protein of interest. The theoretical masses in the table were obtained through the web software 

ProtParam Site ExPASy. 

Protein expression was also induced at different OD 600 nm values ~1, 1.5 and 2 during 3h 
at 37 °C with final concentration of 0.8mM IPTG and 1% arabinose. As shown on the 
elution fractions electrophoresis profile in Figure 54A, the intensities of the bands seems to 
decrease while the ODs of induction increase suggesting that the expression is less 
efficient at higher OD induction. We thus decided to perform the induction of expression at 
OD~1.  
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In addition, as temperature is an important parameter to take in account for the expression, 
different temperatures (15, 20, 28 and 37 °C) were tested. Protein expression was induced 
during 4h at 28 and 37 °C, and for 24h at 15 and 20 °C with the previously defined 
conditions (OD 600nm ~1, 0.8mM IPTG, 1% arabinose). In order to follow the kinetics of 
protein expression and to determine the best induction time, 10ml of bacterial culture was 
sampled every hour during the first 4 hours of induction and every 2 hours or more at 
higher (37, 28 °C) and lower (15, 20 °C) temperatures, respectively. The SDS-PAGE 
profile of cobalt affinity elution fractions is shown in Figure 54B. At temperature 28 and 
37 °C, the expression starts after 1 hour of induction and seems to be effective during 3 
hours before it decreases (Figure 54B, left). As protein expression is slowed down at low 
temperatures, the presence of our protein of interest is detected only after 4 hours of 
induction (Figure 54B, right). Surprisingly, while at high temperatures (28, 37 °C) the 
expressed protein accumulates only in inclusion bodies, its presence is detected in both 
inclusion bodies and membrane fraction at low temperatures (15, 20 °C) (Figure 54C). This 
result suggests an affinity of the protein for the membranes at low temperature. Indeed, in 
this case as the expression is lower, it appears to be less toxic for bacteria and thus, protein 
may fix to the membrane and with its accumulation drive into inclusion bodies. While at 
high temperature, the fast expression of proteins allows their accumulation which appears 
to be likely toxic for bacteria and thus, may drive them directly into inclusion bodies to 
overcome this toxicity. However, it is difficult to say if the accumulation in both fractions 
at low temperature occurred simultaneously or at different moments.  
When the electrophoresis profiles are compared, the expression seems to work better at 
37 °C thus, this temperature was maintained for TAF12-p24TMD expression. 
In summary, we were able to define the best conditions of expression for TAF12-p24TMD. 
We show that the protein is addressed to inclusion bodies at 37 °C and 28 °C and at lower 
temperature (15, 20°C) additionally into membranes. However, its quantification was not 
possible after cobalt affinity chromatography as the eluted fractions were not pure thus, 
requiring a supplement step of purification. For this purpose, reverse phase HPLC was 
used. 
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Figure 54: Influence of OD 600nm at induction and temperatures on TAF12-p24TMD expression. 

(A) Bacteria were grown until OD (600nm) ~ 1, 1.5 and 2 and the expression induced during 3 

hours at 37 °C with 0. 8 mM IPTG and 1% arabinose. After purification of the fusion protein, 45µl 
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of each elution fraction (equivalent to 4.5 ml culture) were analyzed by SDS-PAGE. For the 

temperature test, induction was performed with the same concentration of inducers during 4h at 

28, 37°C and for longer time at 15, 20°C. (B) 25µl of elution fractions (equivalent to 2.5 ml 

culture) and (C) 12µl (equivalent to 1.2ml) were analyzed. Samples were separated on a 16% Tris 

glycine gel during 1h10 at 150V and the gels stained with Rotiblue. 12µl of molecular weight 

marker was deposit. The red arrows indicate the protein of interest 

 Purification by reverse phase HPLC:  3.2.3.2.

TAF12-p24TMD was purified starting from the cobalt affinity chromatography elution 
fractions under a 10-95% acetonitrile/water gradient. The chromatogram shown Figure 55A 
was obtained for the injection of an equivalent of 125ml culture. Proteins were eluted at 
different percentage of solvent B (acetonitrile/TFA, 100/0.1, v/v) ~ 30, 42, 52 and 60% of 
B (Figure 55A). These elution peaks were analyzed by MALDI-TOF. Different mode of 
detection (reflectron and linear) and matrices (SA and α-cyano) were tested. The mass 
spectrometry spectra shown in Figure 55B were obtained when samples were prepared with 
SA matrix and analyzed in a linear mode. As shown, we did not detect any peak with the 
expected mass of our protein in these elution fractions. Nevertheless, as the protein was 
identified in these fractions on the SDS-PAGE, we deduced that it may hardly ionize. In 
addition, the presence of other proteins as well as peptides that were detected in the 
different HPLC fractions indicates that they are not pure (Figure 55B). Thus, this could 
impair the detection of our protein. Based on this result and as we did not succeed to purify 
our protein by performing subsequent purification of inclusion bodies by cobalt affinity 
chromatography and elution fractions by reverse phase HPLC, we decided to purify our 
protein directly from the insoluble fraction.  
This fraction was solubilised in formic acid/water (75/25, v/v), and TAF12-p24TMD 
purified under a 10-95% isopropanol/water gradient. The chromatograms shown in Figure 

56A were obtained for 1 L and 500 ml of induced and uninduced culture respectively. 
Proteins eluted in the same range of isopropanol percentage starting from 38 to 62%. 
However, although both chromatograms follow the same profile, they present some 
differences suggesting the presence of different proteins that eluted from the column at 
different percentage of solvent. When these elution fractions were analysed by MALDI-
TOF, we could clearly identify peaks with a close mass to that we expected for the fusion 
protein (15623.85 Da). Interestingly, these peaks were identified as shown in the induced 
and not in the uninduced sample (Figure 56B). The zoom of this region indeed revealed the 
presence of a peak with the expected mass (Figure 56B, arrow) as well as peaks than could 
correspond to the protein lacking some residues at the C terminus. 
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Figure 55: Chromatogram of elution fractions after cobalt affinity and MALDI-TOF mass spectra 

of the HPLC fractions. (A) The pool of cobalt affinity elution fractions (equivalent of 125ml 

culture) were purified under a 10-95% acetonitile/water gradient during 85min on Bischoff HPLC 

using Jupiter C4 HPLC analytic column. The chromatogram shows the absorbance at 214nm 

(black), 280nm (red) and 253nm (yellow) as a function of time (min). The peaks correspond to the 

eluted proteins at different acetonitrile gradients: ~ 30, 42, 52 and 60%. (B) 1µl of each eluted 

fraction was mixed with 1µl of SA matrix and analyzed MALDI-TOF using linear mode detection 

under 30% laser power. The calibration was performed with the protein calibration standard I 

(Bruker) 
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Figure 56: Reverse phase HPLC chromatogram of insoluble fraction and mass spectra. (A) The 

insoluble fraction of 1L and 500ml equivalent culture for the induced and non-induced conditions, 

respectively, was purified under a 10-95% isopropanol/water gradient during 60min on Gilson 
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HPLC using a Jupiter C4 preparative column. The chromatogram shows the absorbance at 214nm 

as a function of the time (min) for the induced (blue) and non-induced (purple) conditions. Proteins 

were eluted in both conditions between 38 and 62% isopropanol. (B) 1µl of each eluted fraction 

was mixed with 1µl of SA matrix and analyzed by MALDI-TOF using linear mode detection under 

30% laser power. The calibration was performed with the protein calibration standard I. Only the 

full spectra of the HPLC fraction 9 (highlight in the black frame) in which our protein of interest 

was identified is represented. The region of the expected mass (frame in black) was zoomed. The 

red arrow pinpoints the peak that could correspond to the TAF12-p24TMD. The –KR or –R 

indicate that the peak could correspond to the peptide lacking the KR (Lysine and Arginine) 

residues or R (Arginine) residue 

In fact, because of the presence of arginine and lysine residues, our protein is likely 
sensitive to enzymatic digestion. However, we observed some differences in mass which 
can be explained by the broadening of peaks that impaired the precision of mass 
determination. Although we were able to identify our protein of interest, we did not 
quantify it because of the presence of other proteins in this fraction. 
In summary, we tried to purify TAF12-p24TMD starting from the elution fraction after 
cobalt affinity chromatography or from insoluble bacterial pellets. In both cases, we did 
not recover a pure fraction of our protein. Nevertheless, as we are more interested by the 
peptide, we decided to go forward with the cleavage of the protein follow by the 
purification of the peptide. 

 TAF12-p24TMD cleavage and purification of p24TMD:  3.2.3.3.

The TAF12-p24TMD fusion protein was designed with a chemical formic acid cleavage 
site. As we could not obtain the pure protein, the cleavage was first tested on the HPLC 
fraction that contains the protein and later directly on the insoluble fraction. Starting from 
the HPLC fraction, the solvent was first evaporated under vacuum and the sample 
resuspended in formic acid/water (75/25, v/v). The cleavage was performed for 24 hours at 
50 °C and the product of cleavage purified by reverse phase HPLC to recover the peptide. 
The chromatograms for the induced and non-induced conditions are shown in Figure 57A. 
Although proteins are eluted in both conditions between 30 and 68% isopropanol and they 
followed the same profile, there are some differences that suggest that different peptides 
may elute from the column. When HPLC fractions were analyzed, peaks around 3547.26 
Da which correspond to the peptide lacking two residues (PK)  at the N terminus were 
identified only in the induced sample (Figure 57B) with additional posttranslational 
modifications (methylation and hydroxylation). Interestingly, these peaks were identified 
in a reproducible manner even when the cleavage was performed in the same conditions 
directly on the insoluble fraction and purified by reverse phase HPLC (Figure 57C). In 
addition, as the injection peaks present an absorbance at 280nm during elution, we decided 
to analyse these peaks. As shown in Figure 57B (cyan), it contains different peptides 
including some with masses that could correspond to our peptide lacking an arginine at the 
C terminus with or without some post translational modifications. However, we can only 
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speculate about this hypothesis. Surprisingly, a peak with the expected mass of the peptide 
was identified in the non induced sample (Figure 57B).  
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Figure 57: Chromatogram and mass spectrometry spectra after formic acid cleavage of HPLC 

fraction containing the fusion protein (A, B) or the insoluble fraction (C). (A) The TAF12-p24TMD 

was purified by HPLC under a 10-95% isopropanol/water gradient (red) during 60min from the 

injection of the equivalent of 2.8l and 500ml culture for the induced and non-induced conditions, 

respectively, resuspended in formic acid/water (75/25, v/v). The purification was performed on 

Gilson HPLC using a Jupiter C4 preparative column. The resulting chromatogram only shows the 

absorbance at 214nm as function of time (min) for the induced (blue) and non-induced (purple) 

conditions. The cyan and black boxes indicate the fractions in which peptides with close mass to 

the one we expected were identified. The fraction frame in cyan is recovered in the injection peak 

(PI). (B) MALDI-TOF spectra of the fractions frame in black for the induced (blue and cyan), non-

induced (purple) conditions. (C) Mass spectra when cleavage was achieved directly on insoluble 

fraction after HPLC purification. 1µl of each eluted HPLC fraction was mixed with 1µl of SA 

matrix and analyzed MALDI-TOF using linear mode detection under 30% laser power. The 

calibration was performed with the protein calibration standard I. The red arrow pinpoints the 

peak with a close mass to that of p24TMD 
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However, as we did not identify the fusion protein in the purified fraction (Figure 56B), we 
deduced that this peptide results from the cleavage of a protein that is repressed in induced 
conditions. Moreover, this peptide is only presents in the non-induced and not in the 
induced condition. For all these peaks, a difference of few Dalton compared to the 
expected mass was observed. This difference could be explained by the low resolution of 
the peaks and the difficulty to get a good calibration for proteins. Indeed, among the three 
calibrants we used, the one with the highest molecular weight (16,952.30 Da) is already in 
the expected range of our protein and the two others are below (8,476.65 and 8,565.61Da). 
Based on these results, we could only speculate about the fact that the detected peptides 
can correspond to the p24TMD with some residues lacking as we should confirm by 
sequencing. In addition, as the cleavage was performed not on a pure fraction of the fusion 
protein (HPLC elution fraction or insoluble fraction), it is likely that these peptides come 
also from other proteins. Moreover, the detection of p24TMD is somehow tricky and the 
presence of others peptide did probably not help.  

3.2.4. Conclusions 

To summarize, here we set up the expression of the TAF12-p24TMD* fusion protein in 
BL AI bacteria strain. After solubilisation of the insoluble fraction in Guanidine 6M, this 
protein was localized as expected in inclusion bodies. Its purification by cobalt affinity 
chromatography and reverse phase HPLC did not yield pure fraction indicating that other 
proteins bind on cobalt resin either directly or indirectly via interaction with the TAF12-
TMD*. The presence of these proteins make the quantification of the protein of interest 
difficult to achieve. Moreover, it impairs the purification and the detection of the peptide 
after cleavage of the fusion protein. This can be explained by the fact that the p24TMD* 
could interact with these proteins via hydrophobic interaction and thus, elute in the same 
fraction or it can also elute with peptides coming from other proteins that share the same 
hydrophobic feature. The later argument was confirmed by mass spectrometry spectra (not 
shown).  Therefore, effort has to be put first on the best way to purify the fusion protein in 
order to improve peptide purification and detection after cleavage. In addition, mass 
spectrometry detection methods have to be also specifically adapted to the peptide.  
 

General conclusion 
In summary, to optimize our chance to obtain the p24TMD peptide we used two 
expression systems that allow its expression as a MBP (pMal c5X) and TAF12 (pTIPX4) 
fusion protein. Different bacteria strains and expression parameters (IPTG concentration, 
OD 600nm, temperatures) were tested in rich medium. In both cases, we set up the 
conditions of expression of these proteins. However, we encounter different problems with 
each system. Although we succeed to obtain pure MBP-p24TMDH, we have a lot of 
degradation and a considerable part of protein flowing through the column thus, 
significantly reduced the yield. After cleavage, compare to the total yield of protein, we 
have 12 times less amount of peptide due to the important proportion in size between the 
fusion partner and the peptide. In addition, as the truncated protein lacks residues in the C-
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terminus, we then yield a short and full length peptide after the cleavage. These contribute 
to reduce the amount of the full peptide. Therefore, with the purpose to obtain enough 
among of peptide to perform for several NMR investigations, this system is limiting. 
Indeed, as shown we yield 3mg of total protein in minimum medium thus, 0.25mg of 
peptide (short and full length). 
 In contrast to MBP-p24TMDH, the purification of TAF12-p24TD was difficult as it 
always eluted with other proteins thus impairing its quantification and the purification of 
the peptide. In addition, a part of the protein also flows through the column (data not 
shown). In both cases, we hardly detect the peptide in a reproducible manner. Based on 
these observation, effort have to be put first to improve the purification of the fusion 
protein. This can be done by playing quantity of resin, the different concentrations of 
imidazole that are used to wash the column before the elution. However, the expression 
and optimisation in minimum medium still have to be achieved 
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Protein-lipid interactions play a key role in many cellular 

functions. With the goal to get insights in these functions, here we 

investigated two interactions: the p24TMD interaction with 

sphingomyelin and the CRAC motif with cholesterol. As the first 

one was proposed to be specific, biophysical investigations were 

performed to understand the mechanism of this specificity and thus, 

a better understanding of its function. In addition, membrane 

topology of CRAC in presence of cholesterol was investigated with 

the purpose to understand the role of the cholesterol in this 

interaction. This chapter will present and discussed the different 

results we obtained. 

EXPERIMENTAL RESULTS: 

BIOPHYSICAL INVESTIGATION 

OF PROTEIN-LIPID 

INTERACTIONS 
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 Experimental results: Biophysical investigation of protein-Chapter 4.
lipid interactions 

4.1. Biophysical and structural characterization of p24TMD-SM C18 interaction 

4.1.1. Introduction 

Cellular traffic of proteins and lipids is mostly ensured by vesicles along the secretory 
pathway. The COat Protein I and II (COPI and II) vesicles  mediate this transport  in the 
early secretory pathway between the ER and the Golgi apparatus (Brügger et al., 2000; 
Rothman and Wieland, 1996). A specific enrichment of one sphingomyelin species, SM 
C18, was found in the COPI transport vesicles (Brügger et al., 2000). In studies using 
Förster resonance energy transfer (FRET) and immunoprecipitation, Contreras et al were 
able to attribute this specific sorting to the p24 protein which is abundant in the COPI 
membrane (Contreras et al., 2012b). They showed that this interaction is achieved with an 
almost exclusive specificity for the SM C18. They identified a molecular recognition motif 
(VXXTLXXIY) within the p24 transmembrane domain (p24-TMD) which binds this lipid 
using mutagenisis studies. Strikingly, whereas many protein-lipid interactions involve 
either the lipid head group or acyl chain, this interaction seems to involve both the head 
group and the backbone of this sphingolipid. Interestingly, the p24-TMD seems to be 
sufficient for the interaction and a molecular dynamic (MD) model was proposed (Figure 
12C). In addition, they suggest a role of SM C18 in regulating the equilibrium between an 
inactive monomeric and an active oligomeric state of the p24 protein, which in turn 
regulates COPI-dependent transport (Contreras et al., 2012; Popoff et al., 2011). In order to 
understand the mechanism of this specificity, we performed structural investigations to get 
more insights into this model.  
 
With this purpose, we first carried out some preliminary CD and fluorescence spectroscopy 
experiments to define the best conditions to investigate this interaction, as these techniques 
require less peptide compared to NMR spectroscopy. In further studies, we investigated the 
p24TMD topology and dynamics in model membranes made of POPC or of a lipid 
composition similar to the one found in the Golgi apparatus in order to characterize its 
interaction with SM C18. In addition, side chains of residues that occur in the binding 
motif were specifically labelled with 2H and investigated by solid-state NMR to 
characterize the effect of SM C18 on their dynamics. POPC is widely used as simplified 
biological membrane model as its structure and properties mimic that of the natural 
phospholipids. Thus, the peptide was first reconstituted into POPC and   POPC/SM (95/5) 
and investigated by static solid-state NMR approaches. Deuterium and 15N solid-state 
NMR spectroscopy of static oriented samples have been used to characterize membrane 
interactions of many polypeptides and provide valuable structural information (Bechinger 
et al., 2004, 2011; Weingarth and Baldus, 2013). The fundamental concept of this approach 
for the structure determination is based on the inherent anisotropy of NMR interactions. 
Typically, a 2H and/or 15N labelled peptide is reconstituted in oriented (with respect to the 
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magnetic field) phospholipid membranes. For such oriented samples, the alignment of 
helical peptides can be deduced from the measured 15N chemical shift in a straightforward 
manner (Bechinger and Sizun, 2003). In addition, the dynamics of the labelled site and the 
angular restraints can be deduced from the 2H NMR spectra line-shape and the measured 
deuterium quadrupolar splitting, respectively.  
In combination this information allows for an accurate determination of the tilt and pitch 
angles of peptides reconstituted into oriented membranes and has already provided 
valuable information on a variety of synthetic membrane polypeptides (Aisenbrey and 
Bechinger, 2004; Aisenbrey et al., 2006; Michalek et al., 2013).  
As lipids contribute to the final structural features of membrane-associated peptides, we 
investigated the conformation and the dynamics of the lipid bilayer in presence of the 
peptide using 31P and 2H solid-state NMR. With 100% natural abundance in phospholipids 
forming membranes and its high sensitivity, the 31P nucleus is a good candidate to probe 
the structure and the dynamic of the phospholipid head groups. In contrast, with a very low 
natural abundance and low sensitivity, 2H nuclei have to be enriched in lipids. Many 
deuterated lipids are commercially available thus allowing investigation of the fatty acyl 
chain packing and membrane dynamic (Bechinger and Salnikov, 2012; Henzler-Wildman 
et al., 2004; Kim et al., 2009).  
In addition, as p24TMD proteins are enriched in the Golgi-derived COPI vesicles; we 
performed preliminary investigation of p24TMD peptide topology and dynamics in 
membranes with a complex Golgi-like lipid composition using the same solid-state NMR 
methods. The dynamics of the valine-19 side chain involved in the interaction with SM 
C18 was also investigated to understand the effect of SM C18 on the side chain.  
This chapter will thus describe the physico-chemical approaches we used to establish a 
suitable protocol of p24TMD reconstitution in artificial membranes as well as the results of 
the investigation of p24TMD-SM C18 interaction. These results will be discussed with 
regard to the proposed model in order to shed light on this interaction and understand its 
function. 

4.1.2. Preliminary biophysical studies of p24TMD in membrane 

 Experimental 4.1.2.1.

Materials: 
Organic solvents were purchased from Sigma Aldrich (Saint. Louis, MO) with a purity of 
99%; and lipids from Avanti Polar Lipids (Birmingham AL, USA); F-moc amino acids 
from Bachem (Heidelberg, Germany) or Applied Biosystems (Weiterstadt, Germany); 
Isotope labeled amino acids from Cortecnet (Voisins les Bretonneux, France) or Aldrich 
(Saint Louis, MI, USA); TentaGel-R-RAM resin from Rapp Polymer (GmbH, Tubingen, 
Germany). 

 Peptides synthesis 4.1.2.1.1.
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Peptides were prepared by solid phase peptide synthesis SPPS using an automatic 
synthesizer (Millipore 9050) and Fmoc chemistry. They were synthetized on TentaGel-R-
RAM resin (Rapp Polymer GmbH, Tubingen, Germany) using an excess of Fmoc 
protected amino acid (Merck, Darmstadt, Germany). Isotope labeled peptides were 
prepared using 15N and 2H amino acids (Cortecnet, Voisins les Bretonneux, France, or 
Aldrich, Saint Louis, MI, USA) incorporated at a chosen position. After synthesis, the resin 
was placed on a glass filter and washed with ethanol, acetic acid and ether. The cleavage of 
the peptide from resin and deprotection of amino acids side chains were performed in a 
solution containing 28 ml of tri-fluoro-acetic acid (TFA), 1.5 ml of water and 300 µl of 
triethylsilane under stirring for 4 hours at room temperature (RT). The peptide in solution 
is taken-up in toluene (50/50) (v / v) and the solvent evaporated using a rotary evaporator 
(Buchi R-200). The peptide was then precipitated and washed in cold ether to remove 
protecting groups by repeated cycles (3 times) of vortexing and centrifugation at 11000 g 
for 30 minutes at 4 ° C. The pellet containing the peptide was finally air dried to remove 
ether, solubilized in 4% acetic acid to exchange the counter ions, frozen in liquid nitrogen 
and lyophilized. The cleavage product was analyzed by MALDI-TOF to check the 
presence of the full peptide. 

 Purification by reverse phase HPLC 4.1.2.1.2.

The peptides were dissolved in 90% of solvent A (acetonitrile/water/TFA, 10/90/0.1, v/v), 
10% solvent B (acetonitrile/TFA, 100/ 0.1, v/v) at a final concentration of 10mg/ml or 
1mg/ml for preparative and analytic HPLC respectively. They were then purified by 
reversed phase HPLC either with a semi-preparative HPLC (Bischoff Chromatography, 
Leonberg, Germany) or a preparative HPLC (Gilson Chromatography, Villiers-Le-Bel, 
France) on Prontosil 300-6-C4 5.0-µm (Bischoff, Leonberg, Germany) or Luna 100-C18 
5.0-µm columns (Phenomenex, France) using an acetonitrile/water gradient. The gradient 
was established by increasing the percentage in volume of solvent B over solvent A and 
the peptides eluted at a given concentration of the solvent B. When using the Bischoff 
system, the flow rates were 1 ml/min or 10 ml/min for the analytic or preparative HPLC, 
respectively, and 20ml/min on the Gilson apparatus. The protein absorbance was 
monitored at 214, 254 and 280 nm using an UV detector. The purity of p24TMD was 
tested by analytical HPLC.  

 Identification of the peptide by MALDI 4.1.2.1.3.

The identity of the peptides was verified by matrix-assisted laser desorption ionization 
mass (MALDI) spectrometry. The matrix α-cyano-4-hydroxycinnamic acid (α-cyano) was 
prepared at a final concentration of 10 mg / ml in acetonirile/H2O/TFA (30/70/0.1, v/v). 
The samples were prepared as a drop in on the target plate surface (05 174, Bruker) in a 
final volume of 1µl by mixing the peptide and the matrix (peptide/matrix, 50/50, v/v). 
Samples were dried at the ambient air, and analysed with the MALDI-TOF spectrometer 
(Bruker Daltonics Autoflex model). The mass axis was calibrated externally using 
polypeptides mixture with defined mass ranging from ~700 to 3200 Da (peptide standard 



CHAPTER IV – EXPERIMENTAL RESULTS: BIOPHYSICAL INVESTIGATION OF PROTEIN-LIPID 
INTERACTIONS 

 

133 

 

calibration II, Bruker Daltonics, Bremen, Germany). Mass spectra were analyzed by the 
FlexAnalysis software provided by Bruker Daltonics.  

 Reconstitution in liposomes 4.1.2.1.4.

We first tested the solubility of the peptide in different solvents (water, dichloromethane 
(DCM), 2, 2, 2-tri-fluoro-ethanol (TFE), 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP)) at 
the concentration of 1mg/ml at room temperature (RT). The test of solubility/reconstitution 
was achieved by adding POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) or 
POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-glycerol) (75/25 molar ratio) 
liposomes at different concentrations to 30 µM of peptide in phosphate buffer 10mM, pH7. 
The general protocol of liposome preparation is described in chapter 2. Briefly, lipids were 
dissolved in dichloromethane and the solvent evaporated under a nitrogen stream. Final 
traces of solvent were removed by lyophilization overnight and the resulting film hydrated 
in 10 mM phosphate buffer pH 7. The solution was tip sonicated to form unilamellar 
vesicles (SUV). The sonication was performed at 4°C on ice to prevent heating of the 
sample concomitant with hydrolysis. Aggregates and pieces of titanium coming from the 
tip sonicator (soniprep 150, MSE (SANYO), Tokyo, Japan) were removed by 
centrifugation for 30 min, 11 000 g at room temperature.  
We also prepared proteoliposomes to test the reconstitution of the peptides in a membrane. 
Aliquots of 30µM peptide in water were prepared from 1 mg/ml stock solution, and the 
water removed by lyophilization. A stock solution of lipids was prepared at 10mM by 
dissolving the POPC either in TFE or HFIP. 100µl (1mM) of this stock solution were 
added to the lyophilized peptide and completed with the corresponding solvent to a final 
volume of 1 ml. After vortexing, the solvents were evaporated under a stream of nitrogen 
gas. The remaining traces of solvent were removed by vaccum overnight using the pump 
and cold trap of a lyophilizer and the resulting proteo-lipids hydrated in 10mM phosphate 
buffer pH7. As described above, from this solution, SUVs were obtained by sonication and 
centrifugation in the same conditions. The interaction of the peptide with the membrane 
and its structure was monitored by CD and fluorescence spectroscopy. 

 Reconstitution in detergent 4.1.2.1.5.

A stock solution of peptide was prepared in water, samples diluted to a final concentration 
of 30µM, and the water removed by lyophylization overnight. The peptide was dissolved 
again in HFIP and the solvent was evaporated under a stream of nitrogen gas and under 
vacuum overnight. It was thereafter resuspended in 10mM phosphate buffer pH7. The 
detergent stock solutions of n-dodecylphosphocholine (DPC) and SDS were prepared at 
final concentrations of 10 mM and 100 mM, respectively and diluted to different 
concentrations ranging from 0.1mM to 16 mM to titrate the peptide. CD and fluorescence 
spectroscopy were used to follow physical property changes of the peptide adsorption to 
membrane lipids and to estimate its secondary structures content. 

 Circular Dichroism 4.1.2.1.6.
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CD spectra were recorded on a Jasco J-510 spectropolarimeter (Tokyo, Japan) with a 50 
nm/min scan speed, a bandwidth of 3 nm, 5 scans were collected covering the range 250 to 
190 nm using a quartz cell of 1mm path length, at 25 °C. The recorded spectra processed 
using the spectra manager software of the instrument, and the baseline corrected for the 
used solvent contribution by subtraction. Secondary structure analyses were performed 
with CDpro Web server using the CONTINLL algorithm (Sreerama and Woody, 2000).  
Samples were all prepared with a final concentration of peptide and lipids at 30µM and 
1mM, respectively, in a final volume of 300µl within the CD cuvette. A peptide stock 
solution at 1mg/ml was prepared in water and the OD 280nm measured to determine the 
concentration. The POPC lipid stock was prepared at 10 or 100mM. For the titration of the 
peptide with liposomes or detergents, the needed volume of the peptide stock solution to 
achieve 30µM final concentration was transferred into the cell and increasing volume of 
lipids stock solution was added to titrate the peptide. Lipid stocks were prepared at high 
concentration to allow the test of large range of concentrations by adding tiny volumes in 
order to prevent variation in the final peptide concentration.  
 

 Tryptophan fluorescence 4.1.2.1.7.

The intrinsic fluorescence of p24TMD due to the presence of a tryptophan was measured 
using a FluoroLog spectrophotometer (HORIBA, Ltd., 522 Kyoto, Japan) with the 
polarization filters always at the magic angle. Fluorescence emission spectra were recorded 
from 295nm to 455 nm at an excitation wavelength of 280 nm. The excitation slit width 
was 1 nm; the emission slit width 4 nm. The peptide was prepared in 10mM phosphate 
buffer, pH 7.2 at a final concentration of 30µM and either reconstituted in liposomes 
(proteo-liposomes) or titrated in a step-wise manner using an increased amount of SUV 
phospholipids vesicles or increased detergent concentrations. When proteo-liposomes were 
used, the concentration of peptide was the same for the different lipids concentrations and 
their preparation as described above. A series of emission spectra was recorded at 25°C 
while stirring.  

 Preparation of oriented samples for ssNMR 4.1.2.1.8.

Several conditions of sample preparation were tested to obtain the following final protocol 
as will be described later. Selectively labeled 15N and/or 2H p24TMD was first dissolved in 
HFIP, and the solvent was removed under a stream of nitrogen. The peptide was then 
dissolved in HFIP/water 50/50 (v/v) and added in a step-wise manner to POPC in HFIP. 
The solvent was evaporated between each step in such a manner that the water content 
remained low in order to avoid peptide aggregation. The peptide was mixed to lipid to 
achieve a final peptide-to-lipid (P/L) molar ratio of 1 %. Thereafter, the solvent was 
partially evaporated under a stream of nitrogen to reduce its total volume to about 0.5ml. 
We then obtained a clear and viscous sample that was deposited onto roughly 20 ultrathin 
(thickness 00, i.e. about 80 µm) glass plates (6 × 11mm or 8 x 22 mm, Paul Marienfeld, 
Lauda-Königshofen, Germany), slowly dried in air and the residual solvent evaporated 
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under high vacuum. Sample hydration was achieved at 93% humidity for 2 - 3 days at 
room temperature and the glass plates were stacked on top of each other. The stack was 
stabilized by wrapping with Teflon tape and the whole sample sealed in plastic to avoid 
dehydration.   

 Solid state NMR experiments: 
31

P, 
15

N, 
2
H 4.1.2.1.9.

Spectra were recorded on a Bruker Avance NMR spectrometer operating at 9.4 Tesla and 
equipped with a double resonance E-free flat coil probe (Bruker, Rheinstetten, Germany). 
The samples were prepared and inserted into the coil with the normal parallel to the 
magnetic field. All spectra were recorded at 295 K. 
In addition, 31P and 2H ssNMR spectra of lipids in non-oriented samples provided 
information on the macroscopic order of the lipids. 
 
The proton-decoupled 31P solid-state NMR spectra were recorded at 161.937 MHz on a 
Bruker Avance 400 MHz NMR spectrometer using a Hahn echo pulse sequence (Rance 
and Byrd, 1983). The recording was carried out at room temperature with an echo time of 
40 µs, a repetition time of 3 s, a 31P B1 field of 60-80 kHz and a spectral width of 40-120 
kHz. The spectra were referenced relative to 85% phosphoric acid (H3PO4) at 0 ppm. An 
exponential line broadening (LB) of 150 Hz was applied prior to Fourier transformation.  
 
The proton-decoupled 15N solid-state NMR spectra were recorded at 40.54 MHz on a 
Bruker Avance NMR 400 MHz spectrometer using a cross polarization (CP) pulse 
sequence (Pines et al., 1973). The recording was carried out with a CP contact time of 800 
µs, a repetition time of 3 s, 1H B1 field of 31 kHz, a spectral with of 38 kHz and acquisition 
times ranging from 6 to 20 ms. The spectra were calibrated relative to external ammonium 
chloride (15NH4Cl) at 40 ppm (Bertani et al., 2014). An exponential apodization function 
with a line broadening of 100Hz was applied prior to Fourier transformation.  
 
Deuterium solid-state NMR spectra of 2H3–alanine labelled peptide reconstituted in lipid 
bilayers were recorded at 61.4 MHz on a Bruker Avance 400 MHz NMR spectrometer 
using a quadrupole echo sequence (Davis et al., 1976). The recording was done using a 
spectral window of 500 kHz, with a B1 field of 40.3 kHz, an acquisition time of 8 ms and a 
recycling time of 1.5 s, respectively. After the acquisition, the FID was left-shifted to allow 
its transformed part to begin at the exact top of the echo. The spectra were calibrated on 
2H2O at 0 ppm. Before Fourier transformation, an exponential multiplication with a LB of 
500 Hz was applied.  
 
To investigate also the effect of the peptide on membrane, deuterium solid-state NMR 
spectra of samples made of POPC labelled with 31 deuterium nuclei along the palmitoyl 
chain were measured on a Bruker Avance 400 MHz NMR spectrometer using a 
quadrupolar echo sequence (Davis et al., 1976). The spectra were recorded with a 
repetition delay of 0.3 s, an echo time of 100 µs, a B1 field of 40 kHz. The FID was 
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measured in a spectral with of 100 kHz to allow a precise adjustment of the echo by a left-
shift of the FID after the acquisition. The processing included an exponential apodization 
with line broadening of 200 Hz for the lipid and 500 Hz for the peptide spectra, 
respectively. The spectra were referenced relative to D2O. 
 

 Results and Discussion 4.1.2.2.

 Preparation of the synthetic peptides 4.1.2.2.1.

With the goal to investigate the p24 SM C18 structure and interaction, we designed two 
peptides starting from the membrane spanning residues of the natural p24 protein (21 aa, 
underlined in Table 8). Their sequences and the characteristics are listed in Table 8. The 
first peptide named p24TMD, has 31 amino acids, where the p24 transmembrane residues 
are flanked by additional amino acids (green) of the full length p24 protein including the 
proposed SM binding motif (red). In order to improve the solubility of this peptide, 
charged amino acids (brown) were added at the N-terminus (Nter) and C-terminus (Cter). 
The second peptide p24TMDH, has the same sequence than the one published by 
Contreras et al. It is made of 34 residues and has the same sequence than p24TMD except 
its Nter which encompasses more amino acids from the full length p24 protein.  
 
The selectively labelled [15N-A20]-p24TMD peptide was first synthesized using Fmoc 
SPPS. The crude synthetic peptide was purified by reverse phase HPLC using an 
acetonitrile/water gradient ranging from 30 to 95% solvent B during 30min. The peptide 
was eluted at 44% solvent B as indicated on the HPLC chromatogram (red star, Figure 58). 
Table 9 summarizes yields that were obtained before and after purification of the peptide. 
Based on these data, we obtained 39 mg (10%) of peptide after the synthesis and 
purification with a loss of about 83% during the last step. Indeed, we encountered 
difficulties during the purification as the peptide sticks to the column and sometimes elutes 
only with difficulty. Its purity was estimated at 96% by analytic HPLC and the identity 
verified by MALDI spectrometry. The MALDI spectrum of the purified fraction (Figure 

59) displays a single peak with mass (m/z 3671.684) that is close to the expected mass of 
the single label peptide (m/z 3675.44). This is indicative that the peptide is quite pure, with 
clear improvements when compared to the crude peptide (not shown). The slight mass 
difference could be explained by error during the calibration.  
In contrast, p24TMDH synthesis was trickier than for p24TMD. Although it yields more 
crude peptide compared to p24TMD (Table 9), resuspension of the crude peptide prior to 
HPLC purification results in peptide aggregation. This is likely related to the absence of 
charged amino acids at the amino terminus of the peptide. 
 
Table 8 : List of synthetic peptides with their amino acids sequences and biophysical properties. 

The transmembrane residues are highlight and contain the SM binding motif (red). It is flanked by 

the natural amino acids sequence (green) and added charged amino acids (brown) 
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Figure 58: HPLC chromatogram of p24TMD purification. The black line represents protein 

absorbance at 214nm, the yellow line at 254nm and the red line at 280nm. The latter is essentially 

due to Trp. The star indicates the elution fraction in which the peptide was identified 
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Figure 59: Identification of p24TMD after purification by MALDI spectrometry. 0.5µl of p24TMD 

HPLC fraction 44% solvent B (100% acetonitrile 0.1% TFA) was mixed with α-cyano matrix, dried 

at air and analyzed by MALDI-TOF mass spectrometry with a reflectron mode 

 

Table 9: Summary of the different yields after peptide synthesis and purification. The synthesis of 

both peptides is difficult but was improved by using double coupling. From a p24TMD synthesis of 

5.9 10-2 mmol about 39mg of peptide were obtained after the purification step while we didn’t 

succeed the complete purification of p24TMDH because of aggregation 

 

 Investigation of p24TMD reconstitution in membranes 4.1.2.2.2.
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Membrane-associated peptides are difficult to study experimentally because they tend to 
aggregate during sample preparation. Thus, a large number of membrane mimetic systems 
have been developed to allow their biophysical investigation (Warschawski et al., 2011). 
With this purpose, we performed p24TMD reconstitution assays in liposomes and the 
success of these assays was checked using CD and fluorescence spectroscopy as these 
techniques are useful to investigate or follow changes in peptide secondary structure (Lees 
et al., 2006; Musse et al., 2006; Sreerama and Woody, 1993). Moreover, they are relatively 
fast and less material consuming thus, allowing the test of wide range of experimental 
conditions. We therefore took advantage of these techniques to set suitable experimental 
conditions for solid state NMR which required more time and material.  

 Investigation of p24TMD reconstitution using CD 4.1.2.2.2.1.
and fluorescence spectrometry 

The solubility of the synthetic peptide alone was first tested in different solvents including 
dichloromethane (DCM), TFE, aqueous solutions (water or buffer) and water/HFIP 
mixtures. CD and fluorescence spectroscopy were performed only for the solvent that did 
not form visible aggregates. As shown of Figure 60A, for most of the solvents we tested, 
the peptide gives characteristic CD spectra of helical conformation except for the 
phosphate buffer. When dissolved initially in HFIP and in water after HFIP evaporation 
(water# in caption), the CD spectra are characterized by low intensities compared to 
water/HFIP (50/50, v/v) which displays the most pronounced intensities with a maximum 
at 193nm and minima at 208 and 222nm. These results suggest that the peptide adopts a 
helical conformation in water, water#, and water/HFIP (50/50, v/v) with a well-defined 
helical structure in the later. In contrast, the peptide is less helical in phosphate buffer and 
likely precipitate.  
The natural occurrence of Trp within many proteins and peptides in combination with its 
fluorescence signal being dependent on its close environment makes fluorescence 
spectroscopy a good probe to follow conformation changes in proteins or peptides that 
harbour it in their sequences. (Lakey et al., 1993). In an apolar environment, Trp gives high 
blue-shifted (the maximum at the left corner) fluorescence intensities, whereas in a polar 
environment, a low (reduced or quenched) spectral intensities and a red shift are observed 
(Sun et al., 2010). 
In good agreement with CD data, p24TMD in phosphate buffer gives no fluorescence 
signal as shown in Figure 60B; indicating that the peptide may form large aggregates which 
quench hide Trp that thus cannot emit. Trp fluorescence is increased and blue-shifted for 
p24TMD in water/HFIP (50/50, v/v) when compared to p24TMD in water; whereas it 
increased and red-shifted in water#. These results suggest that in water/HFIP; the peptide 
becomes more structured, as already observed by CD spectroscopy, thereby promoting a 
hydrophobic environment around the Trp. It had been shown that HFIP forms strong 
hydrogen bonds and structures at the same time some polypeptides by its hydrophobic 
properties (Bégué et al., 2004). In water and water#, the peptide may form large oligomers 
and small oligomers respectively.  



CHAPTER IV – EXPERIMENTAL RESULTS: BIOPHYSICAL INVESTIGATION OF PROTEIN-LIPID 
INTERACTIONS 

 

140 

 

 

 

Figure 60: Characterization of p24TMD in different solvents to test its solubility. The peptide was 

prepared in different solvents at the final concentration of 30µM and its secondary structure and 

the Trp fluorescence were followed by CD (A) and fluorescence (B) respectively. In addition, the 

peptide secondary structure change was followed upon increasing volume of HFIP in a 

water/HFIP (v/v) mixture (C). A 1mg/ml stock solution of p24TMD was prepared in water and the 

concentration of peptide determined by absorbance at 280nm by use of the extinction coefficient. 

The necessary amount for 30µM final concentration of peptide was transferred into different tubes 

and the water was evaporated under vacuum. Thereafter, a giving volume of HFIP was added to 

the peptide, and completed with water to obtain the desired volume ratio of water/HFIP in 1ml and 

300µl used for the CD measurement. The secondary structure composition of p24TMD was 

estimated from the raw CD data using the CDPro software (Sreerama and Woody, 2004). For the 

caption in (A) and (B): water# correspond to the peptide in water but that was dissolved first in 

HFIP and the solvent evaporated. 

As the peptide seems to be most helical in water/HFIP (50/50, v/v), we then decided to 
follow the conformational changes in p24TMD relative to the increase volume of HFIP in 
order to determine the best water/HFIP ratio. With this purpose, a 1mg/ml p24TMD 
solution stock was prepared in water, its absorbance measured at 280nm and used to 
determine the peptide concentration. This stock solution was diluted into several tubes in 
order to obtain final concentrations of 30µM in 1ml and the solvent removed under 
vacuum.  The lyophilised peptide was dissolved in different water/HFIP volume ratio in a 
final volume of 300µl with increase HFIP ranging from 0 to 100%.  
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As shown in figure 42C, the peptide adopts an α-helical secondary structure even in 
presence of small amounts of HFIP with more than 80% helix content in water/HFIP 
(50/50, v/v) (Figure 60D). This result also suggests that this helical conformation can be 
maintained during the reconstitution.  
In order to define the reconstituted-competent state of the peptide, we first tested its 
interaction with POPC liposome using Trp fluorescence. POPC has properties that are 
quite close to the phospholipids found in biological membranes and was therefore a good 
candidate to start the experiments. We also tested POPC: POPG (2:1) liposomes in order to 
study the effect of the charge on p24TMD-lipid interaction as POPG carries a negatively 
charged head group. 
The peptide was dissolved in 10 mM phosphate buffer pH7 at a final concentration of 
30µM, titrated with different concentrations of POPC or POPC: POPG (2:1) liposomes 
ranging from 0 to 2mM prepared in the same buffer and the Trp fluorescence measured. As 
shown in Figure 61A, the changes in the fluorescence signal of p24TMD are significantly 
more pronounced in the presence of POPC liposomes when compared to the addition of 
POPC: POPG liposomes (Figure 61B). This indicates that the peptide interacted more with 
POPC, where alterations are observed even at low lipid concentrations, than with POPC: 
POPG liposomes. We further decided to check whether this interaction changes the 
structure of the peptide using CD spectroscopy. The CD data indicate that the peptide is in 
β-sheet/random coil conformation and that its structure is not affected upon increasing the 
concentration of POPC liposomes (Figure 61C and D). These results suggest that the 
peptide is not inserted as a transmembrane helix instead it interacts with the surface of 
POPC liposome and might form aggregates. 
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Figure 61: Characterization of p24TMD interactions with lipids using fluorescence spectrosocpy. 

The Trp fluorescence of 30 mM peptide in 10 mM phosphate buffer, pH7 is shown upon titration 

with POPC (A) or POPC: POPG (2:1) (B) at different lipid concentrations ranging from 0 to 2 

mM, (C) CD spectra of p24TMD in presence of POPC liposomes and (D) the estimation of the 

secondary structure at different lipid concentration ranging from 0 to 3 mM 

In order to force the insertion of p24TMD in liposome membranes, we prepared proteo-
liposomes as described above. Briefly, p24TMD and POPC were both dissolved either in 
HFIP (p24/POPC# in caption) or TFE (p24/POPC* in caption), the solvents evaporated 
and the sample hydrated in 10 mM phosphate buffer, pH7. The final peptide-to-lipid (P/L) 
molar ratio is 3%. CD data (Figure 62A) indicated that the peptide adopts α-helical 
conformation when reconstituted into liposomes with a well-defined structure when first 
dissolved in HFIP. This result is in good agreement with Trp fluorescence (Figure 62B) and 
therefore suggests that p24TMD is inserted in POPC membranes as a transmembrane 
helix.  
These results confirm that HFIP maintained the peptide in a reconstitution-competent state.  
 



CHAPTER IV – EXPERIMENTAL RESULTS: BIOPHYSICAL INVESTIGATION OF PROTEIN-LIPID 
INTERACTIONS 

 

143 

 

 

Figure 62: Test of p24TMD reconstitution-competent state in POPC. Circular dichroism (A) and 

Trp fluorescence (B). The table explains the captions 

 

 
To define the best conditions for p24TMD reconstitution, we tested the peptide 
concentration, the buffer, and finally lipids with different head group and thickness as 
these parameters influence the insertion of the peptide into the membrane. 
The effect of peptide concentration was tested by preparing proteo-liposomes in 10 mM 
phosphate buffer, pH7 with a fixed POPC concentration of 1 mM and peptide 
concentrations ranging from 10 to 60 µM. The CD data (Figure 63A) indicate that at 30 
µM, the peptide adopts a well-defined α-helical structure whereas fluorescence 
spectroscopy (Figure 63B) shows that Trp is in a more hydrophobic environment. 
In addition to phosphate buffer, we also tested the reconstitution of the peptide when lipids 
are hydrated in Hepes buffer pH 7, a zwitterionic buffer. The CD data (Figure 64A) show 
that the structure of the peptide doesn’t change with buffer and this is confirmed with the 
estimation of the quantitative analysis of the secondary structure (Figure 64B). This is in 
good agreement with the fluorescence spectra which indicate that the Trp environment 
doesn’t change. Based on these data, we decided to keep phosphate buffer for further 
reconstitution.  
Finally, as the lipid’s acyl chain and head group can both important determinants of the 
membrane properties and the interactions with transmembrane protein segment, we 
investigated the effect of these parameters on p24TMD reconstitution in different lipids.  
Their structures are summarized in Figure 65. Briefly, taking POPC as our reference, we 
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tested the effect of lipid’s head group size and acyl chain length (membrane hydrophobic 
thickness) by using POPE and DMPC, respectively, with POPE having a small head group 
and DMPC a shorter acyl length when compared to POPC. Furthermore, DMPC carries 
two saturated fatty acyl chains whereas the oleoyl of POPC is monounsaturated. The 
interaction of p24TMD with SM was also investigated by preparing proteo-liposome with 
lipids mixture of POPC/SM (95/5) and POPC/POPE/SM (85/10/5).  
CD spectra (Figure 66A) show that p24TMD adopts α-helical conformation when 
reconstituted with the different lipids except for POPE. Compared to POPC, in POPE 
proteo-liposome, the peptide is in β-sheet/random conformation indicating that the size of 
lipid head group affects the structure of the peptide. The conformation doesn’t change 
significantly with the lipid thickness (DMPC) and in POPC/POPE/SM proteo-liposome. 
Interestingly, in POPC/SM proteo-liposomes, p24TMD is more structured when compared 
to POPC proteo-liposomes suggesting that there is an interaction with SM and this 
interaction affect its structure. The estimation of secondary structure shows indeed that 
POPC/SM proteo-liposomes have the highest helix content whereas POPE proteo-
liposomes displayed the highest the β-sheet/random percentage (Figure 66B). 
Fluorescence data (Figure 66C) are also in good agreement with CD as the fluorescence 
intensity recorded for POPC/SM proteo-liposome is highest while it decreases and left 
shifted with the other lipids. However, compared to CD spectra, the fluorescence signal 
show significant differences when the thickness (DMPC), the lipid head group (POPE), or 
the lipid composition change indicating that the Trp environment changes when compared 
to POPC bilayers. In addition to CD data, these results suggest a change of the 
oligomerization of the peptide.   
 

 

Figure 63: Test of p24TMD concentration for the reconstitution in POPC. (A) Circular dichroism 

of p24TMD reconstituted in POPC 1mM at different concentration ranging from 10 to 60µM and 

(B) the Trp fluorescence 
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Figure 64: Test of the influence of buffer for p24TMD reconstitution in POPC. (A) Circular 

dichroism spectra of p24-POPC proteo-liposomes (P/L molar ratio, 3/100) prepared in phosphate 

or Hepes buffer and (B) the estimation of secondary structure. (C) Trp fluorescence of the same 

samples. All was measured at T=25°C 
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Figure 65: Structure of lipids with their different properties. The differences for the head group 

(size) are highlight by red and purple circles for large and small head group respectively; while for 

the acyl chain differences are highlight by lipid’s names that are written in green and blue for the 

long and short acyl chain respectively. SM was used to investigate its interaction with p24TMD as 

it interacts with membrane and modified its properties 
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Figure 66: Effect of lipid’s physical parameters and SM interaction with p24TMD. (A) Circular 

dichroism spectra of p24 in proteo-liposomes (P/L molar ratio, 3/100) prepared in phosphate 

buffer and with different lipids: DMPC, POPC, POPE, POPC/SM (95/5), POPC/PE/SM (85/10/5) 

and (B) estimation of secondary structure composition. (C) Trp fluorescence of the same samples. 

All was measured at T25°C except for DMPC (37°C) 

Based on these results, we can conclude that the structure of the peptide is likely 
modulated by the lipid head group, the membrane thickness and the presence of SM. They 
also indicate that there is an interaction between p24TMDs and that the peptide is probably 
inserted in the POPC/SM (95/5) membrane.  
In summary, we show that the lipid head group and the thickness affect p24TMD affinity 
for the membrane. Except for POPE, the peptide adopts a helical conformation with more 
helix content in POPC/SM (95/5) membranes suggesting an interaction with SM when 
compared to POPC membranes. We therefore kept this lipid mixture as well as the defined 
experimental conditions for the preliminary solid state NMR assays described in the next 
section.   
 
 

 Investigation of p24TMD reconstitution using 4.1.2.2.2.2.
solid-state NMR spectroscopy 
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Solid-state NMR spectroscopy is a well-established approach for the investigation of the 
topology of membrane-associated polypeptides (Aisenbrey and Bechinger, 2004a, 2004b; 
Bechinger and Sizun, 2003c; Bechinger et al., 1999, 2004; Cross, 1997b) in particular 15N 
NMR spectroscopy of uniaxially oriented sample has proven to provide direct information 
on the membrane alignment of helical peptides (Bechinger and Sizun, 2003c; Salnikov and 
Bechinger, 2011). The sample preparation is very important in this technique and should 
therefore be performed carefully as it affects the quality of the resulting spectrum. Here we 
describe how we improved our protocol and thus yield good NMR spectra using 15N NMR 
spectroscopy by varying different parameters (ratio of peptide/lipid, solvent...) during 
NMR sample preparation. 
Our first sample test was achieved under conditions similar to the first CD experiments. 
Shortly, selectively labelled [15N-A20]-p24TMD peptide and POPC were both dissolved in 
HFIP at a final molar ratio P/L of 1.9% and the solvent removed under a nitrogen stream. 
The mixture was applied on glass plates, dried to remove the solvent, hydrated at 98% 
humidity and sealed as described in the experimental protocol above. The sample was then 
oriented with the normal parallel to the magnetic field B0 in a double resonance probe (e-
free probe) and the 1H-15N decoupled NMR spectrum recorded on a 400 MHz spectrometer 
at room temperature (RT). In this condition, we obtained a broad peak (Figure 67A, left) 
indicating that the NH bond of the peptide does not adopt one but a wide range of 
orientations. As phosphates (31P) are naturally abundant in the lipid head groups, they are 
used as a probe to check the lipid alignment relative to the magnetic field B0. We therefore 
also recorded the 1H decoupled 31P NMR spectrum of this sample. The spectra indicate that 
membranes are not well aligned with respect to B0 (Figure 67A, right). From these results, 
we hypothesize that the peptide aggregates at the surface of membrane bilayers.  
We therefore took advantage of the CD results and first dissolved the peptide in HFIP, 
removed the solvent and then dissolved it in HFIP/water (50/50, v/v) which gives a high 
helix percentage (> 80%) as shown in Figure 60D. Thereafter, the peptide was mixed with 
POPC in HFIP not at a P/L molar ratio of 1.9% but at 1% final molar ratio and the solvent 
evaporated. The next steps of the sample preparation were done as described above and the 
NMR spectra recorded under the same conditions on a 300 MHz spectrometer. The 1H 
decoupled 15N NMR spectrum of this sample shows two peaks: a sharp peak at 224.8 ±5 
ppm and a broad peak around 100 ppm (Figure 67B, left). This result indicates that one 
population of the p24TMD peptide adopts a well-defined transmembrane orientation 
whereas another fraction adopts an approximately in-plane orientation. Quite interesting, 
when compared to the previous NMR spectrum (Figure 67A, left), it seems that one part of 
the broad peak shifts and gives rise to this resolved peak. The integral of the area under 
these signals indicate that the transmembrane population represents 1/4 and the in-plane 
population 3/4. Under these conditions, we have thus converted a population of peptide in 
a transmembrane orientation. The 1H decoupled 31P NMR spectrum shows that membranes 
are better-aligned than previously. These results suggest that the broad peak might come 
indeed from peptide aggregation at the membrane. Considering that the peptide is not well 
structured in water as CD spectroscopy shows, we then decided to keep the water content 
as low as possible during solvent evaporation in order to avoid peptide aggregation. 
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With this purpose, the peptide was prepared in HFIP/water (50/50, v/v) as described above 
and added not directly but in a step-wise manner to POPC (P/L 1%). The solvent 
evaporation was also achieved in a step-wise manner avoiding high water content when 
compared to HFIP during each step. The next steps of the sample preparation were done as 
previously described and the spectra recorded in the same conditions on a 300 MHz 
spectrometer. The 1H-15N decoupled NMR spectrum gives rise to a sharp peak at 224±3 
ppm (Figure 69C, left) indicating the presence of a single population of peptide with a well-
defined transmembrane orientation.  Interestingly, we obtained the same chemical shift 
value as in the previous experiment. This indicates that when prepared under the last 
conditions tested, the peptide is reconstituted in a stable manner into the membrane bilayer. 
This observation is supported by the results we obtained when the peptide is dissolved in 
HFIP/water (80/20, v/v) which also gave a high helix percentage (> 80%) Figure 60D) and 
added in a step-wise manner to POPC (P/L, 1%). Indeed, as shown on Figure 67D, a sharp 
peak is observed and the measured chemical shift (222 ±3ppm) is not significantly 
different from the previous results (considering the error from the calibration of the NMR 
scale). However, although the chemical shift has not changed significantly, CD and Trp 
fluorescence spectra indicate that p24TMD is more helical and might be inserted in the 
membrane when dissolved in HFIP/water (50/50, v/v) and added in a step-wise manner to 
POPC in order to form proteoliposomes (data not shown). The 1H-31P decoupled NMR 
spectrum shows that membranes are also well-aligned.  
In order to set up and optimize the protocol of p24TMD reconstitution in membrane 
bilayers, we used ssNMR of a uniaxially oriented sample to investigate its topology in 
POPC. Here we defined the experimental conditions to prepare the peptide in oriented 
membranes and reconstitute it in a stable manner in membrane bilayer. All ssNMR 
samples were prepared with these conditions.  
A part of the CD results were reported in an article published on june 2014 (Kemayo 
Koumkoua et al., 2014). 
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Figure 67: Proton-decoupled 
15

N cross polarization ssNMR spectra (left) of [
15

N-A20]-p24TMD 

reconstituted into oriented POPC membranes prepared in different conditions: A) when the peptide 

and lipids are both dissolved in HFIP (P/L, 1.9%), (B) the peptide is first dissolved in HFIP/water 

(50/50, v/v) before being mixed with lipids (P/L, 1%), (C) the peptide is first dissolved in 

HFIP/water (50/50, v/v) or (D) (80/20, v/v) and added to the lipids in a step-wise manner (P/L, 

1%). The proton-decoupled 
31

P ssNMR spectra of the POPC head group in membrane for each 

described conditions (right). The first spectrum (A) was recorded at 9.4 Tesla and the others on the 

7.1 Tesla at RT 

 Investigation of p24TMD reconstitution in micelles 4.1.2.2.3.

Bilayers membranes study by liquid state NMR pose difficulties as this technique is 
limited by the size of molecules or their complexes. Because of their relatively small size, 
micelles are commonly used for liquid state NMR as a minimalist system of a membrane 
to investigate membrane peptides in solution (Beswick et al., 1999; Campagna et al., 2007; 
Lauterwein et al., 1979). In order to set up a protocol of p24TMD reconstitution in 
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micelles, we performed some tests using DPC (n-dodecylphosphocholine) and SDS 
(sodium dodecyl sulfate), zwitterionic and anionic detergents, respectively. DPC micelles 
simulate eukaryotic cell membranes, which are generally rich in zwitterionic phospholipids 
while SDS has been chosen to mimic the negatively charged phospholipids found in 
membranes. Their structures are shown in Figure 68. Taking advantage of the previous 
results, we first dissolved the peptide in HFIP/H20 (50/50, v/v), evaporated the solvents 
and resuspended it in 10 mM phosphate buffer, pH 7 at the final concentration of 30 µM. 
We then titrated the peptide with variable concentrations of DPC and SDS ranging from 0 
to 5 mM and 16 mM, respectively, more or less two times the critical micellar 
concentration (CMC) and the conformational changes were followed by CD and 
fluorescence spectroscopy. 

 

Figure 68: Molecular structure of SDS (anionic) and DPC (zwitterionic) detergents. Their 

respective CMC are 8 mM and 1.5 mM in water (Manzo et al., 2013) 

As shown on Figure 69A and C, at low SDS concentration (< 2mM), the conformation of 
the peptide is not significantly affected with the increasing concentration of detergent. 
Above 2 mM, the p24TMD become more helical. This conformation change is 
proportional to the increased concentration of SDS below the CMC (6-8 mM) but slightly 
reduced α-helicity above. In contrast, the peptide adopts well-defined α-helix 
conformations with increased concentrations of DPC above the CMC (1.5 mM) (Figure 69 
B and D). In addition, fluorescence signals give significant changes in DPC compared to 
SDS indicating an important interaction between the first detergent and the p24TMD 
(Figure 69 E and F). The intensities also increased (higher than SDS) proportionally with 
higher concentrations of DPC and stabilized above the CMC suggesting that the Trp 
became more deeply inserted in the hydrophobic core of the DPC micelle. These results 
suggest that DPC may promote stable helix formation. We therefore decided to investigate 
the structure of the peptide by liquid state NMR in DPC. 
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Figure 69: CD and fluorescence of p24TMD in detergents (SDS and DPC). 30µM of peptide was 

prepared in 10 mM phosphate buffer, pH7 and titrated with SDS and DPC at variable 

concentration ranging from 0 to 16 mM and 0 to 5mM respectively. The CD spectra of the peptide 

in SDS (A) and DPC (B) were recorded at 25°C. The secondary structure was extracted from raw 

CD data for the peptide in SDS (C) and in DPC (D) using CDPro software. Fluorescence 

experiences were achieved in the same conditions in SDS (E) and in DPC (F). 

 Conclusions 4.1.2.3.
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In summary, here we defined experimental conditions of p24TMD reconstitution in 
liposomes. We first tested the solubility of the peptide in different solvents and show that 
p24TMD in water is not well structured whereas it adopts a well-defined α-helix 
conformation in HFIP/water (50/50, v/v). We show that when the peptide is titrating with 
POPC liposomes, it does not insert in membrane but probably aggregates at the surface of 
liposome. We therefore decided to force them into membrane by preparing proteo-
liposomes. We show that reconstitution is affected by the lipid head group and the 
thickness as they change the peptide affinity for the membrane. Indeed, when reconstituted 
in POPC/SM (95/5) membranes compared to POPC, it seems that SM interacts with 
p24TMD and that this interaction improved the peptide structure into a better-defined 
helical conformation. Therefore, we kept this lipid mixture and conditions in further NMR 
experiences. By playing on low water content during the preparation of solid state NMR, 
we were able to prevent peptide aggregation that thus results in well resolved spectra. In 
addition, as we plan to perform liquid state NMR, we also investigate p24TMD feature in 
presence of detergent. Our results suggest that DPC promote stable helix formation 
compare to SDS detergent. 
 

4.1.3. Investigation of p24TMD-SMC18 interaction by solid-state NMR  

 Experimental 4.1.3.1.

Static solid-state NMR spectroscopy was performed on oriented and non-oriented samples 
in order to provide structural information of p24TMD and macroscopic order of lipids in 
presence of the peptide respectively. All lipids, including deuterated POPC-d31 were 
purchased from Avanti Polar Lipids (Birmingham AL, USA). 

 Preparation of oriented samples 4.1.3.1.1.

Peptides (Table 10) were obtained by solid phase peptide synthesis as described in the 
previous experimental section (4.1.2.1). The solid-state NMR samples were prepared by 
dissolving first separately 150mg lipids in total and 7mg of peptide. Pure POPC was 
dissolved in 1ml HFIP and for the lipid mixture sphingomyelin (SM), POPE, POPS, 
cholesterol (chol) and POPC were separately dissolved in HFIP and mixed to satisfy the 
desired mass ratio. Binary and more complex lipid compositions were prepared by mixing 
SM/POPC, POPC/POPE/POPS/chol/SM, and POPC/POPE/POPS/chol in the respective 
final mass ratios 95/5, 52/19/5/16/8 and 60/19/5/16. In parallel, selectively labeled peptide 
was first dissolved in HFIP, and the solvent removed under a stream of nitrogen. 
Thereafter, it was resuspended in HFIP/water 50/50 (v/v) and added in a step-wise manner 
to lipids in HFIP with a final peptide-to-lipid (P/L) molar ratio of 1 %. This was performed 
in such a manner that the water content remained low in order to avoid peptide 
aggregation. The solvent was gently evaporated under a stream of nitrogen gas until the 
samples became viscous. The mixtures were spread on 15 to 20 ultra-thin cover glasses 
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(thickness 00 = 80µm; 6 × 11mm or 8 x 22 mm, Paul Marienfeld, Lauda-Königshofen, 
Germany), dried first in air and thereafter under high vacuum over night to remove residual 
traces of organic solvent. The samples were hydrated for 2-3 days at 93% relative humidity 
achieved by a saturated salt solution of KNO3 in 2H-depleted water at room temperature 
(~25°C). Thereafter, the glass plates were stacked on top of each other, physically 
stabilized by wrapping with Teflon tape and the whole sample sealed in plastic to avoid 
dehydration.  The solid-state NMR experiments were then carried out at room temperature. 
When different temperatures were applied for example for the investigation of the 
dynamics this is specifically indicated. 

 Preparation of non-oriented samples 4.1.3.1.2.

Non-oriented samples were prepared by dissolving 0.13 mg of p24TMD and 2mg of 
deuterated POPC (POPC-d31) in HFIP. The solvent was evaporated under a stream of 
nitrogen thus a film forms on the walls of the glass tube. The sample was then resuspended 
in 200µl of 10mM phosphate buffer by vortexing and sonication in a water bath followed 
by 10 freeze/thaw cycles. The resulting suspension was transferred into a plastic tube for 
micro centrifuges (VVR Radnor, PA, USA) and the vesicles were pelleted using a bench-
top centrifuge (Biofuge Pico, Hearaeus Instruments, Hanau, Germany) at 13 000 rpm for 
1min. The NMR measurements were directly performed on this sample. 
 

 31
P, 

15
N, 

2
H solid-state NMR measurements 4.1.3.1.3.

Solid-state NMR spectra were acquired on a Bruker Avance wide-bore NMR spectrometer 
operating at 9.4 or 7.05 Tesla. Both using commercial triple-resonance probes equipped 
with a flat coil (Bruker Biospin Rheinstetten, Germany). The spectra of oriented samples 
were recorded with the membrane normal in a parallel or perpendicular (turned by 90°) 
orientation relative to the magnetic field direction, respectively. 
 
Proton-decoupled 31P solid-state NMR spectra of oriented samples were recorded at 
161.937 MHz using a Hahn echo pulse sequence (Rance and Byrd, 1983) with the 
following parameters: 31P B1 field ~50 kHz, echo time 40 µs, spectral width 40-120 kHz, 
typically 30-128 scans, and repetition time 3 s. The spectra were referenced relative to 85% 
phosphoric acid (0 ppm). An exponential apodization function corresponding to a line 
broadening of 100 Hz was applied before Fourier transformation. 
 
Proton-decoupled 15N solid-state NMR spectra were recorded at 40.54 MHz using a cross 
polarization (CP) pulse sequence (Pines et al., 1973). The recording was carried out with 
the following parameters: 1H B1 field of 31 kHz, CP contact time of 800 µs, acquisition 
times ranging from 6 to 20 ms, spectral with 38 kHz, and repetition time of 3 s. The spectra 
were calibrated relative to external ammonium chloride (15NH4Cl) at 40 ppm (Bertani et 
al., 2014). An exponential apodization function with a line broadening of 200Hz was 
applied prior to Fourier transformation.  
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Deuterium solid-state NMR spectra of 2H3–alanine labelled peptide reconstituted in 
oriented lipid bilayers were recorded at 61.4 MHz using a quadrupolar echo pulse sequence 
(Davis et al., 1976) and the following parameters: 2H B1 field 40.3 kHz, acquisition time 8 
ms, spectral window 500 kHz and recycling time 1.5 s. After the acquisition, the FID was 
left-shifted to start the FID with the top of the echo. The spectra were calibrated with 2H2O 
at 0 ppm. Before Fourier transformation, an exponential multiplication with a LB of 500 
Hz was applied.  
 
Deuterium solid-state NMR spectra of liposomes made of 2H31–POPC or of 2H31–POPC / 
SM C18 in presence or in the absence of p24TMD were recorded on a Bruker Avance 300 
MHz NMR spectrometer using a quadrupolar echo sequence. The recording was done 
using the following parameters: 2H B1 field 40 kHz, echo time 100 µs, repetition delay 0.3 
s. The FID was measured in a spectral with of 100 kHz to allow a precise adjustment of the 
echo by a left-shift of the FID after the acquisition. The processing included an exponential 
apodization with line broadening of 200 Hz for the lipid and 500 Hz for the peptide 
spectra, respectively. The spectra were referenced relative to D2O. 
 
 

 Calculation of angular restraints from experimental solid-4.1.3.1.4.
state NMR spectra 

 

To determine the peptide orientation that agrees with the experimental spectra, a 
coordinate system was defined where the α-helical tilt and pitch angle are the angle 
between the long axis of the helix and the membrane normal, and between the membrane 
normal and the line within an arbitrary plane of the peptide helical wheel projection, 
respectively. Assuming an ideal α-helix conformation, the Protein Data Bank (PDB) file of 
the oriented helix was generated in MOLMOL. The coordinates of the labelled 15N atom, 
the corresponding amide proton and the C atom of the previous residue were extracted 
from this file and used to calculate the 15N chemical shift tensor in the same reference 
frame using the main 15N chemical shift tensors (55.8, 81.4, 228.6 ppm) as reported by 
(Salnikov et al., 2009). By successively rotating the peptide molecule around the pitch and 
the  tilt angle the three-dimensional orientational space was systematically screened in 50 × 
50 steps using a program (Aisenbrey and Bechinger, 2004a; Aisenbrey et al., 2006) written 
in MATHEMATICA 3.0 (Wolfram Research, Champaign, IL). Contour plots mark the 
angular pairs that agree with the experimental results. The simulation of the 2H solid-state 
NMR spectra was performed using its atomic coordinates. Both contour plots (15N and 2H) 
were superimposed and the tilt and pitch angles were read at the cross line section 
respectively on the Z and the X axis. 
 
 



CHAPTER IV – EXPERIMENTAL RESULTS: BIOPHYSICAL INVESTIGATION OF PROTEIN-LIPID 
INTERACTIONS 

 

156 

 

 Results 4.1.3.2.

 

 Investigation of p24TMD in simple membranes 4.1.3.2.1.

This section presents the results that were obtained in simple POPC and binary POPC/SM 
C18 (95/5) membranes. Here we investigated the effect of SM C18 on the p24TMD 
topology and the dynamics of the Leu23 side chain. 
 

a) Effect of SM C18 on p24TMD topology and dynamics 

To analyse the topology of p24TMD in presence of SM C18, selectively 15N labelled 
p24TMDs was prepared by solid phase peptide synthesis (Table 10) and purified by reverse 
phase HPLC (~96% purity). Each peptide was reconstituted in POPC and POPC/SM (95/5) 
membranes and the whole sample oriented with the normal parallel to the magnetic field 
B0 as described above.  The topology of the helix within the membranes and the alignment 
of the lipid bilayers relative to the magnetic field was investigated by 15N and 31P solid-
state NMR spectroscopy respectively. 
 
When the 15N ssNMR spectrum of p24TMD labelled at position 19 ([15N V19-2H L23]-
p24TMD) was recorded, a peak was obtained at 217.3 ± 6ppm (Figure 70A, black) 
indicating that the peptide spans the membrane in a transmembrane fashion. The 1H-
decoupled 31P spectrum of the hydrated POPC membrane bilayers (93% humidity) (Figure 

70A, black, right) give a main intensity around 25-30ppm indicating that membranes are in 
a liquid crystalline phase and aligned with their normal predominantly parallel to the to the 
magnetic field B0 (Harzer and Bechinger, 2000). Interestingly when we test the 
reproducibility with the same peptide reconstituted in POPC in the same conditions, we 
obtained a chemical shift at 220.6±5ppm which is identical within the experimental error. 
In further investigation, several others positions were labelled (16, 18, 20 and 23) and 
reconstituted in POPC bilayers. The resulting 15N spectra gave quite well-defined peak 
with chemical shift > 200ppm as summarized in Table 10 confirming that p24TMD adopts 
a transmembrane orientation (Figure 70B, black and Figure 71A, B, C black). They all gave 
quite similar chemical shifts within the experimental error except for position 18 (Table 11) 
suggesting that this residue (Leucine) is in a different environment. The 1H-decoupled 31P 
spectra indicate that POPC membrane are aligned with the normal parallel to B0. These 
results confirm the reproducibility of the experiences and thus the orientation of the 
peptide in POPC bilayers.  
When the different peptides were reconstituted in POPC/SM (95/5), the values of the 
chemical shift indicate that the peptide adopts a transmembrane orientation as for all the 
positions they were > 200ppm (Table 11). These values are quite similar except for position 
18, again confirming that this residue is in a different environment. When these values 
were compared to those obtained in POPC membranes, we did not observe a significant 
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difference. The width of peaks is similar as shown Figure 54. These results indicate that 
the SM C18 does not affect the topology of p24TMD. The 1H-decoupled 31P spectra 
indicate that POPC membranes are aligned parallel with respect to B0 (Figure 70,B and 
Figure 71A, B, C, grey) . 
 

Table 10: Summary of synthetic 
15

N and/or 
2
H isotope labelled p24TMD peptides. The 

transmembrane amino acids are in bold with the residues involved in the binding with SM C18 

highlight. The labelled amino acids are highlight in red for 
2
H, in green for 

15
N and their position 

indicates. 
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Figure 70: Proton-decoupled 
15

N cross polarization ssNMR spectra of 7mg of A) [
15

NV19-
2
HL23]-

p24TMD and (B) [
15

N-A20]-p24TMD reconstituted in oriented 150mg POPC (black) or POPC/SM 

(95/5) (grey) membranes. The spectra were recorded on the 400MHz at RT. Their respective 

superimposition is presented on the bottom. The p24TMD sequence is represented with the TMD in 

bold, the 
15

N labelled position are indicated by residue numbers and the amino acids involved in 

the binding with SM C18 are underlined. All the spectra were acquired with 42000 scans except for 

the spectra of [
15

N V19-
2
H L23]-p24TMD in POPC/ SM (95/5) membranes (panel A, grey) which 

was acquired during 5 days (153000 scans) 
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This result could explain the low signal-to-noise of the peptide 15N spectrum in POPC 
(Figure 72A, black) as the non-aligned lipids could contribute the small but broad signal 
around 100 ppm.  
 

 

Figure 71: Proton-decoupled 
15

N ssNMR spectra of A) [
15

N L23-
2
H A20]-p24TMD, B) [

15
N L18-

2
H 

A15]-p24TMD and C) [
15

N L16-
2
H A15]-p24TMD in oriented POPC (black) or POPC/SM (95/5) 

(grey) membranes. All the spectra were recorded on the 400MHz at RT except for (C) that was 

recorded on the 300MHz spectrometer. The corresponding 
31

P spectra are represented on the top 

left and were all calibrated to 0ppm. The 
15

N labeled position are indicated on the p24TMD 

sequence. 
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Figure 72: Superimposition of the 
15

N ssNMR spectra (left) of A) [
15

N L23-
2
H A20]-p24TMD, B) 

[
15

N L18-
2
H A15]-p24TMD, C) [

15
N L16-

2
H A15]-p24TMD), [

15
NV19-

2
HL23]-p24TMD and [

15
N-

A20]-p24TMD in oriented POPC (black) or POPC/SM (95/5) (grey) membranes. The 
15

N chemical 

shift values of the different label residues are summarized in the table below 
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Table 11: Summary of chemical shift values of p24TMD labelled at different position reconstituted 

in POPC and POPC/SM (95/5) membranes 

 
 
 
In order to further challenge this observation, the p24-TMD was incorporated into 
membranes where the content of SM C18 was increased to 10 mole%. With this purpose, 
[15N L18-2H A20]-p24TMD was first dissolved in 80%HFIP, and reconstituted at a peptide 
to lipid ratio of 1/100 into oriented membranes of POPC, POPC/ SM (95/5) or POPC/ SM 
(90/10). The chemical shift values were, respectively 203.5±5 ppm, 201.5±5 ppm and 
207.8±6 ppm confirming the previous results (Table 11). However, increased concentration 
of SM C18 led to line-broadening (Figure 73A, blue) suggesting a small change in 
topology. This line-broadening could also arise from less membrane fluidity but this 
should correlate with the 31P spectrum; which is not the case as it did not appear broader 
(Figure 73B, blue). Thus, this result supports the change in the peptide topology. 
Interestingly when we test the reproducibility, we obtained a quite similar chemical shift 
value (205.9 ±7ppm) with a similarly broad peak (data not shown), thus confirming this 
result.  
The 31P spectra of the different membranes show that lipid head groups are aligned with 
the magnetic field (Figure 73B). However, the 31P spectrum of the POPC membrane shows 
a broader line-shape compare to the other membranes. This could come from the sample 
preparation or hydration. 
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Figure 73: Effect of the increased proportion of SM C18. (A) The 
15

N ssNMR spectra of [
15

N L18-
2
H A20]-p24TMD in oriented POPC (black), POPC/SM (95/5) (grey) and POPC/SM (90/10) 

(purple) membranes and B) the 
31

P spectra of each membrane calibrated to 0ppm. All spectra were 

recorded 9.4 Tesla RT. The 
15

N label residue within p24TMD sequence above is highlight in green 

and the 
2
H residue in red 

In addition, we also investigated p24TMD orientation and dynamics in membranes using 
2H quadrupolar splitting of the alanine 2H-methyl group. Indeed, the alanine methyl group 
is directly attached to the peptide backbone thus, the Cα–Cβ bond exhibits a well-defined 
alignment relative to the helix long axis (Vostrikov et al., 2010). Furthermore, due to the 
fast exchange around this Cα–Cβ bond, the deuterons are equivalent resulting in identical 
NMR spectra. Thus the spectrum of 2H3-labelled alanine in oriented samples relative to the 
magnetic field exhibits a characteristic quadrupolar splitting spectrum with the value and 
the shape depending on the dynamics of the 2H site (see simulated 2H3-labelled alanine 
spectrum Figure 74A). Moreover, the quadrupolar splitting is correlated to the relative 
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alignment of the Cα–Cβ bond thus, the relative alignment of the helix axis (see Equation 
17).  
With this purpose, several single 2H3- alanine labeled p24TMDs were synthetized (see 

Table 10) and 2H spectra of the oriented samples were recorded at 9.4 Tesla spectrometer 
different temperatures. When reconstituted in POPC membranes, the 2H spectrum of the 
p24TMD sequence labelled at position Ala-15 shows a broad quadrupolar lineshape (Figure 

74B) indicating that the Cα-Cβ bond does not have a well-defined orientation but rather 
displays a mosaic spread. In POPC/SM (95/5) the 2H quadrupolar lineshape was also 
broader (Figure 74C, right) with no significant difference compared to POPC (Figure 74C, 
left). However, as the quadrupolar splitting maxima obtained in POPC/SM (95/5) look 
well-defined, we can therefore determine the quadrupolar splitting value by measuring 
directly the frequency difference between the two maxima. While for POPC, it was 
estimated by measuring the left half frequency (ν) multiplied by 2 as shown on Figure 74C 
(left). We respectively obtained ± (21.6 ±2.6) kHz and ± (20.1 ±1.5) kHz for the peptide in 
POPC and POPC/SM (95/5). In good agreement with the 15N NMR spectroscopy, these 
results confirm that SM C18 does not affect the peptide orientation. Angles between the 
Cα-Cβ bond and the magnetic field B0 were estimated to 43.4° or 68.1° and 44.2° or 67.0° 
for the peptide in POPC and POPC/SM (95/5) respectively. 
In order to investigate p24TMD dynamic in POPC and POPC/SM (95/5), 2H spectra of the 
reconstituted peptide labelled at position 15 were recorded at -20°C. The resulting spectra 
display characteristic quadrupolar powder pattern spectra for both membranes (Figure 

75A). However, when the 15N solid-state NMR spectrum is recorded at -20°C for the same 
peptide labelled at position 16 ([2H3 Ala15- 15N Leu16]-p24TMD) and reconstituted in 
POPC, the resulting spectrum exhibits a predominant peak at 220 ppm and a broad 
distribution of intensities between 100 and 40ppm indicating that the majority of peptide 
adopts a transmembrane orientation (Figure 75A, Top). Notably, the 15N nucleus is more 
robust compared to 2H in the sense that its line-shape is less sensitive to tiny movement. 
This suggests that at room temperature the peptide scans a distribution of orientations fast 
enough to partially average the anisotropy on the time scale of the 2H quadrupolar splitting. 
In addition, the 

2H spectrum of [2H3Ala15- 15NVal19]-p24TMD in POPC/SM (95/5) at 4°C 
resulted in larger more broad quadrupolar splittings with low intensity compared to that at  
room temperature (Figure 75B) indicating that the peptide is in an intermediate exchange in 
membrane.  
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Figure 74: (A) Simulated spectrum of 
2
H3-alanine with an angle of 48°±1° between the Cα-Cβ 

bond and the magnetic field when a static quadrupolar coupling constant of 72 kHz is assumed. (B) 

Experimental 
2
H solid-state NMR spectra of [

2
H3Ala15- 

15
N Leu18]-p24TMD reconstituted into 

oriented POPC (black) and POPC/SM (95/5) (gray) bilayers. Spectra were recorded on a 400MHz 

spectrometer at RT and LB of 500Hz applied for each spectrum. The DHO peak in the middle of 

each spectrum was calibrated to zero. (C) The zoom of the experimental spectra superimposition. 

For the spectrum obtained in POPC, ∆ν was determined by 2-fold multiplication of the measured ν 

as indicated. 
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Figure 75: (A) 
2
H solid-state NMR spectra of [

2
H3 Ala15- 

15
N Leu16]-p24TMD and [

2
H3Ala15- 

15
N 

Val19]-p24TMD reconstituted respectively into oriented POPC (black) and POPC/SM (95/5) 

(grey) bilayers, at -20°C. 
15

N spectrum of [
2
H3 Ala15- 

15
N Leu16]-p24TMD in POPC (black) at -

20°C is shown on top of the 
2
H spectrum. (B) 

2
H solid-state NMR spectrum of [

2
H3Ala15- 

15
NVal19]-p24TMD into oriented POPC/SM (95/5) (purple) at 4°C. The spectra below represent 

the superimposition of this spectrum with the one recorded in POPC/SM (95/5) bilayers at room 

temperature (grey). All spectra were recorded on a 400MHz Advance Bruker NMR spectrometer 

and a line-broadening of 500Hz was applied. 
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We also investigated the effect of increased concentration of SM C18 on p24TMD 
dynamics. The peptide labelled at position 20 (Ala-20) was reconstituted into oriented 
POPC, POPC/SM (95/5), or POPC/SM (90/10) and measured on the 400MHz 
spectrometer at RT. 
As shown on Figure 76, the recorded 2H spectra display broad line-shape with high D2O 
peak that thus reduced the signal intensities. The observed differences of HDO intensities 
suggests that the samples were not hydrated to the same degree. However, we emphasized 
the region with the signal of the peptide in order to see if there is any difference. None of 
the spectra display a well-defined splitting but rather a mosaic spread pattern indicating 
that there might be several orientations of the Ala20 side chain within the different 
membranes. Although there is no difference in width, the maxima of 2H spectra obtained 
for the peptide in POPC/SM (95/5) is more defined (Figure 76B, superimposition, see 
arrows) as compared to those in POPC/SM (90/10) (Figure 76B, superimposition, bottom) 
which is consistent with what we previously observed with the position A-15 (Figure 76C, 
right). Thus, increasing concentration of SM C18 may slightly affect the orientation of the 
peptide (Figure 58B, blue). Thus suggesting less mosaicity in presence of SM C18 (5%). 
However, we could not determine the quadrupolar splitting at the maxima which are less 
well resolved.  
In addition, by tilting the coil as shown Figure 76A (middle), the sample became aligned 
perpendicular relative to the magnetic field and provided information on the rotational 
diffusion of the peptide within the membrane. When the 2H spectrum of p24TMD was 
recorded in POPC oriented perpendicular to B0, the resulting spectrum was not different 
from the one recorded with the coil oriented parallel (Figure 76A pink and spectra 
superimposition). Thus indicating that the deuterium atoms of the alanine methyl group are 
not aligned with the lipids. We did not do the same with POPC/SM (95/5). 
In summary, to characterize p24TMD-SM C18 interaction we investigated the effect of 
SM C18 on the alignment and dynamics of p24TM helix using 15N and 2H ssNMR 
spectroscopy. Although the 15N chemical shift shows that the peptide adopts quite well-
defined transmembrane alignment in POPC and POPC/ SM C18 (95/5) membranes, 2H 
spectra which are more sensitive to motion, indicated that the peptide adopts several 
orientations. In POPC/ SM C18 (95/5) membranes, we did not observe any significant 
change in peptide topology when compared to POPC suggesting that SM C18 does not 
change the orientation of the peptide. However, we show that it affects the peptide 
orientation in a concentration dependant manner (increase concentration).  2H spectra of 
the Alanine 20 methyl group and Alanine 15 respectively indicate that this residue does not 
aligne with the lipids, and the peptides are in intermediate exchange in membrane.   
As the orientation of the peptide does not change in POPC/SM (95/5), the contour plot 
show in Figure 77A was generated in Mathematica using the experimental 15N chemical 
shift and 2H quadrupolar splitting (Table 12) we obtained in these membranes. The contour 
plot of all residues cross at one point except for the alanine-20. This residue was shown to 
not be aligned with lipids thus probably not aligned with the other residues.  Therefore, the 
topology of the peptide represented in Figure 77B was obtained with angles that agree with 
both the 2H quadrupolar splitting of Ala-15 and the 15N chemical shift of the other labeled 
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residues (circle zone on the contour plot). The tilt and pitch angles were respectively 
estimated to 19 and 235°. 
 

 

Figure 76: (A) 
2
H solid-state NMR spectra of [

2
H3 Ala20- 

15
N Leu18]-p24TMD and [

2
H3 Ala20- 

15
N 

Leu23]-p24TMD reconstituted into POPC bilayers with the lipids oriented parallel (black) and 

perpendicular (pink) to the magnetic field respectively. (B) 
2
H solid-state NMR spectrum of [

2
H3 

Ala20- 
15

N Leu18]-p24TMD into POPC/SM (95/5) (gray) and POPC/SM (90/10) (blue) bilayers, 
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with the normal oriented parallel to B0. The spectra below represent the superimposition of the 

different spectra. Spectra were recorded at 9.4 Tesla on the Advance Bruker NMR spectrometer 

except the one POPC/SM (95/5) (gray) which was recorded at 11.7 RT. A LB of 500Hz was applied 

to all spectra. 

 

Table 12: Summary of 
15

N chemical shift and 
2
H quadrupolar splitting values in POPC and 

POPC/SM (95/5) membranes. The values that were used for calculation of the peptide orientation 

are highlight in light grey 

 
 
 

POPC POPC/SM (95/5) POPC POPC/SM (95/5)

A15  -  - 21.6±2.6 20.1±1.5

L16 215.5±4.5 216±3.8  -  -

L18 206.13±9.32 205.15±8.45  -  -

202.50±6.26 201.35±6.65  -  -

V19 216.64±4.04 218.05±6.65  -  -

220.25±5.24 219±6  -  -

A20 223.55±4.15 224.1±3.7  -  -

L23 217.50±4 220.83±4  -  -

15
N chemical shift (ppm)

2
H quadrupolar splitting (kHz)Labelled 

positions
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Figure 77: (A) The contour plot that results from experimental measurements of the 
2
H 

quadrupolar splitting of Ala-15 (20±3) kHz in black, the  
15

N chemical shift are represented for 

Leu-16 (216±4) ppm in blue, Leu-18 (205.15±8.45) ppm in red, Val-19 (218.05±6.65) ppm in 

green, Ala-20 (224±4) ppm in pink, Leu-23 (220±4) ppm in turquoise. These restraints were all 

obtained for thr p24TMD into POPC/SM (95/5). The angular pairs that agree with both the 
2
H 

quadrupolar splitting of Ala-15 and the 
15

N chemical shift are circled and (B) the corresponding 

topology relative to the membrane illustrated. 

 
 

b) Effect of SM C18 on the Leucine-23 side-chain 

The leucine-23 was identified as one of the residues involved in interaction with SM C18 
(Contreras et al., 2012). In order to characterize this interaction, we investigated the effect 
of SM C18 on the dynamics of this side chain residue. With this purpose, the synthetic 
peptide with 2H3-leucine-d10 at position 23 was synthesized, reconstituted into oriented 
POPC or POPC/SM (95/5). The 2H quadrupolar spectra were recorded at RT (~ 25°C) and 
-20°C with the membrane normal parallel or perpendicular to the magnetic field 
(respectively Figure 78 and Figure 79).  
When [2H3-leucine-d10]-p24 in POPC and POPC/SM (95/5) membrane bilayers were 
aligned with the normal parallel to the magnetic field, the resulting 2H spectra look quite 
similar and did not give much signal at room temperature (see Figure 78A and B, left) 
suggesting that the leucine-23 side chains explored intermediate exchange in both 
membranes. This results also indicate that SM C18 doesn’t affect the dynamics of these 
side chains. At -20°C, the movements are reduced enough to be neglected as the membrane 
is in a gel phase thus, the resulting 2H spectra displayed broad line widths corresponding to 
all the orientations. Consequently, the recorded 2H spectra at -20°C are broader and give 
more signal confirming in membranes (Figure 78A and B, right) at RT. The 
superimposition of these spectra at -20°C (see Figure 78C, right) show a tiny increase of the 
line width in presence of SM C18 when compared to spectra at RT (see Figure 78C, left). 
Thus, suggesting that it may induce small changes in the leucine-23 side chain order which 
are not detectable at RT. Unfortunately, the spectra did not give resolved deuterium signals 
from the different labelled segments for order parameters analysis.  
The 2H spectra were also recorded in both membranes with the lipid bilayers normal 
aligned perpendicular to the magnetic field at RT and -20°C and superimposed onto the 
previous ones, as shown on Figure 79 (pink). At RT, 2H spectra again did not give much 
signal and no significant difference when compared to the previous ones, suggesting that 
the side chain of leucine-23 is not aligned with the lipid bilayer. At -20°C, the signal 
intensity is also increased and the spectrum became broad thus confirming that leucine-23 
side chains are in intermediate exchange at RT. However, the superimposition with the 
spectra we obtained at -20°C with the lipids normal parallel to B0, show no difference and 
half intensity signal in presence and absence of SM C18 respectively (see Figure 79B). This 
difference in the spectra for the two sample alignments (Figure 79right) indicates that the 
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side chains of this residue are characterized by some degree of alignment in absence of SM 
C18 but not in presence thus, that it may affect the alignment these side chains. However, 
we could not characterize this alignment in more detail because of the broad quadrupolar 
splitting of the labelled segments.  
 
In conclusion, SM C18 may induce small changes in the leucine-23 sidechainalignment. 
Although we did not observe much signal at RT, we can only speculate about the fact that 
the results at -20°C may reflect those at RT as the faster dynamics at RT make it more 
difficult to detect. 
 

 

Figure 78:
 2

H quadrupolar spectra of the 
2
H3-leucine-23 (d10) side chain at RT (left) and -20°C 

(right) in POPC (A) and POPC/ SM (95/5) (B) membranes when the lipid bilayers are oriented 

with the lipids normal parallel to the magnetic field. All the spectra were recorded on the 400MHz 

ssNMR spectrometer. (C) Superimposition of spectra. 
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Figure 79:
 2

H quadrupolar spectra of the 
2
H3-leucine-23 (d10) side chain at RT (left) and -20°C 

(right) in POPC (A) and POPC/ SM (95/5) (B) membranes when the lipid bilayers are oriented 

with the lipids normal parallel ( black and gray) or perpendicular to the magnetic field.  All the 

spectra were recorded on the 400MHz ssNMR spectrometer 

 

 Investigation of p24TMD in Golgi like membrane 4.1.3.2.2.

As the sorting of SM C18 in the COPI vesicles transport which are active in the Golgi cell 
compartment was exclusively pinpointed to the p24TMD protein (Brügger et al., 2000), we 
therefore decided to investigate the peptide interaction in a lipid composition close to their 
natural environment. With this purpose, the [2H3 Val19- 15N Leu23]-p24TMD was 
reconstituted in a complex lipid mixture mimicking that of the Golgi membrane and 
investigated by 2H and 15N ssNMR spectroscopy. The results we obtained and reported 
here are those of the first test we achieved in such complex lipid system. These 
experiments should therefore be repeated.  
When the 15N ssNMR spectra of the peptide labelled at position 23 and reconstituted into 
POPC/POPE/POPS/Chol/SM (52/19/5/16/8) bilayer were recorded at different 
temperatures ranging from -3 to 37°C, we obtained broad spectra with low signal (see 
Figure 80A). However, for all the spectra, we observe a peak with a chemical shift 
>200ppm, but also a peak between 50 and 100ppm that became broad at low temperature. 
These results indicate that there are two populations of peptide: one that adopts a 
transmembrane orientation and the other in an in plane orientation. We integrated the 
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surface under each peak and the ratio was plotted versus the temperature as represented on 
the graph Figure 80A (bottom). The ratio is mostly > 1 for the different temperatures except 
at 17°C, indicating that the peptide mostly adopts a transmembrane orientation. 
We also investigated the effect of SM C18 on deuterated valine-19, a residue of the 
binding motif. As shown on Figure 62B, in oriented POPC/POPE/POPS/Chol/SM 
(52/19/5/16/8) and POPC/POPE/POPS/Chol (60/19/5/16) membranes at 20°C, 2H 
quadrupolar spectra give low signal intensity compared to other temperatures (-20, 0 and 
40°C). Thus, indicating that these side chains are in intermediate exchange. At 40°C as the 
dynamics are more important, we observed small change in 2H quadrupolar line width 
which slightly increases in presence of SM C18 thus, indicating that valine-19 side chains 
order is affected. Again the 2H quadrupolar splitting of the deuterated segments gave a 
broader peak, therefore we could not distinguish the different deuterium labels and analyse 
how the SM C18 affect them. However, in order to estimate the quadrupolar splitting 
changes, we measured the quadrupolar splitting at half of the signal without the water peak 
(see Figure 62B) and plot versus the temperature as shown Figure 80B (see bottom). At -
20°C and 40°C we noticed small change in presence of SM C18 indicating that this lipid 
affects Valine-19 side chain.  
 
In conclusion, we investigated p24TMD-SM C18 interactions in Golgi-like membranes 
and have shown that the peptide is mostly reconstituted in a transmembrane manner. We 
did not investigate the dynamics of the whole peptide and this should be done in our 
perspective in order to understand if it is affected by SM C18. However, we showed that 
SM C18 induces a small change in the order of the valine-19 side chain. 
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Figure 80: (A) 
1
H-

15
N ssNMR spectra of [

2
H3 Val19- 

15
N Leu23]-p24TMD in 

POPC/POPE/POPS/Chol/SM (52/19/5/16/8) membrane bilayer, recorded at different temperatures 

on the 400MHz. The air under each peak was integrated and plot with temperature.  A ratio of 1 

corresponds to half of transmembrane and half in plane peptide orientation. (B) 
2
H quadrupolar 
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spectra were recorded at different temperature in POPC/POPE/POPS/Chol/SM (52/19/5/16/8) and 

POPC/POPE/POPS/Chol (60/19/5/16) membranes and the quadrupolar splitting was estimated at 

the half maximum without the water peak (define as shown) and plot with the temperature 

 

 Investigation of p24TMD effect on membranes 4.1.3.2.3.

The lipid fatty acyl chains packing can be analysed by 2H solid-state NMR spectroscopy on 
non-oriented samples. To this end, liposomes are prepared with deuterated lipids 
(throughout their acyl chain). Deuterium is a spin 1 nucleus thus characterized by three 
energy levels among which two allowed transitions. When 2H solid-state NMR spectrum 
of a single oriented deuterated site is measured, a characteristic well-defined doublet is 
observed from which the quadrupolar splitting (∆νQ) can be determined by measuring the 
frequency separation of the maxima forming the doublet (Figure 81A, left). In contrast, a 
single non-oriented deuterated site results in a characteristic quadrupolar powder pattern 
(Figure 81A, right). When many sites are labelled, the different quadrupolar splittings 
overlap as shown on the simulated 2H solid-state NMR spectrum of POPC-d31 (Figure 81B, 
left). The quadrupolar splitting of each deuterated CD2 and CD3 segment is then measured 
from the 2H NMR spectra and the deuterium order parameters (SCD) of each C-D bond 
extracted according to the formula: 
  
 

∆4ν �
3

4
�
I/JK



�LMNO

4  

 

( 17) 

where (e2qQ/h) is the static quadrupole coupling constant (167 kHz) for a C–D bond 
(Davis, 1983). The representation of these order parameters in a position-dependant 
manner (Figure 81B, right) gives information on the alignment and dynamics of the lipid 
acyl chains (Gottler and Ramamoorthy, 2009; Salnikov et al., 2009b; Sathiah Thennarasu, 
2010; Seelig, 1977). The highest degree of order is giving by the segment close to the 
phospholipid headgroup due to the low degree of freedom, while it decrease towards the 
ends of the lipid acyl chains that would be located in the hydrophobic core of the 
membranes (Figure 81B, right).  
To investigate the effect of p24TMD on the lipid fatty acyl chains packing, deuterated 
POPC (POPC-d31) and POPC-d31/SM (95/5) liposomes were prepared in presence or 
absence of peptide at 1/15 P/L molar ratio and measured by 2H solid-state NMR 
spectroscopy at 7.04 Tesla RT.  
The 2H spectra of POPC-d31 and POPC-d31/SM (95/5) lipid vesicles in absence of 
peptides are shown on Figure 81C (left). POPC-d31/SM (95/5) 2H spectrum exhibit many 
well resolved splitting duplets when compared to POPC-d31 indicating that POPC acyl 
chains exhibit less motion. In addition, the largest quadrupolar splitting which is assigned 
to the relatively rigid CD2 groups closest to the glycerol backbone increase from 24.8 kHz 
to 26.4 kHz in presence of SM while the smallest quadrupolar splitting assigned to the 
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methyl group at the end of the acyl chains within the bilayer core slightly change from 2.2 
to 2.7 kHz. The order parameters were obtained as described above and the profiles 
represented assuming that the segmental order follows a plateau from segment 2 to 8 and 
thereafter varies along the acyl chain as shown on Figure 81C (right). The POPC SCD 
profiles slightly increase in the presence of 5% SM along the acyl chain starting from C9 to 
the C15 with the highest value at 0.21 indicating the SM induce a slight order of acyl 
chain. 
 

 

Figure 81: (A) Simulated 
2
H solid-state NMR spectrum of oriented (left) and non-oriented (right) 

sample carrying a single deuterated site. The frequency separation between the two main 

intensities gives the deuterium quadrupolar splitting (∆νQ). (B) Simulated 
2
H solid-state NMR 
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spectrum of non-oriented POPC-d31 with the different quadrupolar powder pattern of 
2
H labelled 

CD2 and CD3 segments add up (left). The comparison of the measured quadrupolar splitting with 

that of static sample allows the determination of the different order parameters (SCD) which is 

plotted in a position-dependant manner (right). The structure of POPC-d31 with the corresponding 

deuterated CH2 and CH3 segments are represented. SCD increases with the packing (rigidity) of the 

lipid acyl chain. (C) The experimental quadrupolar echo spectra of POPC-d31 (black) and POPC-

d31/SM C18 (kaki) recorded at RT, on a Bruker Advance 300MHz spectrometer (left). The order 

parameters were obtained from the ∆νQ extracted from 
2
H echo spectra (left) divided by a constant 

(167 kHz) and plot in a position dependent-manner 

When 1 mol% of p24TMD was added to POPC-d31 membranes, it causes a slight increase 
of the 2H quadrupolar splittings with better resolved peaks compared to that of POPC 
(Figure 82A, left). The largest and the smallest quadrupolar splitting are 25.6 and 2.6 kHz, 
which corresponds to an order parameter of 0.20 and 0.02 respectively. The analysis of the 
spectrum yields an increase of the order parameters of 0.01 units for the CH2/CH3 groups 
which are located most deeply in the core of the membrane bilayer (positions > 9) (Figure 

82 A, right). In contrast the addition of p24TMD to POPC-d31/SM (95/5) membranes at 
1mol% has hardly any influence on the 2H quadrupolar splittings compared to POPC-
d31/SM (95/5) membranes (Figure 82B, left). Analysis of the spectra yielded similar order 
parameters for the entire lipid chain length in presence or absence of the peptide (Figure 

82B, right). These results suggest that the SM C18 neutralize the effect of the peptide on 
POPC. 
The respective effect of the peptide and SM C18 on the POPC acyl chain can be easily 
identify with the superimposition of all these results (Figure 82C). They indicate that the 
peptide affects the order of POPC acyl chain in absence but not in presence of SM thus, 
SM C18 decrease their flexibility. The POPC phase diagram shown that at low SM 
percentage (5%) and up to the melting temperature (Tm= -2.9±1.3°C), POPC membrane 
are in liquid disorder phase (ld) (de Almeida et al., 2003; Curatolo et al., 1985). We can 
therefore conclude that the peptide and SM C18 affect the POPC acyl chain flexibility but 
not the phase.  
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Figure 82: Comparison of 
2
H echo spectra acquired for lipid vesicles of (A) POPC-d31, (B) 

POPC-d31 /SM (95:5) either alone (full line) or in the presence of 1 mol% peptide (dash line) at 

37°C, (C) The superimposition of all the spectra. The respective smoothed order parameter (SCD) 

profiles are shown to the right of the spectra 
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 Conclusion: 4.1.3.3.

We showed here that SM C18 at 5% does not affect the whole p24TMD orientation but 
change the order of leucine-23 side chain which was identified in the binding motif. 
Consistently when the peptide is reconstituted in Golgi-like membrane, we show that the 
side chain order of another residue of this motif, the valine-19 is also affect bilayer. 
However, we could not determine how these order parameters change. These results 
indicate that the peptide interacts with the SM C18 via the residue side chains of the 
binding motif. Therefore, we tried REDOR ssNMR experiment to determine the distance 
between the side chain of the Tyrosine 27 ([13CTyr27]-p24TMD) and SM C18 at the 
atomic level. Indeed in the simulate model proposed by Contreras and al, the polar head 
group of sphingomyelin ‘wraps around’ this residue side chain (Contreras et al., 2012a). 
Unfortunately, we did not yield workable spectra as we only obtained lipid signal. When 
dynamics was investigated, we showed that the whole peptide and the side chains are in 
intermediate exchange. SM C18 does not affect this dynamic. The peptide and SM C18 
perturb the POPC fatty acyl chain order but not the phase.  
In perspective, effort have to focus on REDOR experiment in order to obtain atomic 
distances and refine the proposed model.  
 

4.2. Biophysical study of the CRAC motif and cholesterol interaction 

4.2.1. Introduction 

Cholesterol is the major sterol of membrane eukaryotic cells. Here we investigated its 
interaction with a consensus amino acid sequence -L / V-X1-5 X1-5-Y-R / K- called 
CRAC (Cholesterol Recognition/interaction Amino acid Consensus). This motif was first 
identified by Li and Papadopoulos in the peripheral-type benzodiazepine receptor 
(PBR)(Li and Papadopoulos, 1998b), an outer mitochondrial membrane protein involved in 
the regulation of cholesterol transport in this organelle membrane. The CRAC motif was 
shown to interact with cholesterol and was identified in various proteins that bind this 
sterol such as some members of the G-proteins coupled receptors (serotonine) or some 
viral membrane proteins (Jafurulla et al., 2011; Schroeder, 2010; Vincent et al., 2002).  
This motif was identified in the pre transmembrane or membrane proximal region (MPR) 
of the HIV membrane fusion protein gp41(Vincent et al., 2002). This protein derived from 
proteolysis cleavage of a precursor, the envelope glycol-protein 160. It forms 
heterotrimeric complex or “spike” with the gp120 which derived also from gp160 
cleavage. The gp41 and gp120 proteins are both involved in the early stage of HIV 
infection and respectively acts in the fusion of cellular/viral membranes and presents the 
receptor binding sites for the CD4. The gp41 is a type I trans- membrane protein composed 
of three domains as represent on Figure 83: the extracellular domain or ectodomain 
involved in membranes fusion, the transmembrane domain (TM) and the cytoplasmic 
domain (CT). The pre-transmembrane region or external MPER (membrane proximal 
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external area) is a tryptophan-rich region. Although the three dimensional structure of 
native gp41 is not yet known, some structures have been solved for the truncated gp41. 
These structures are highly conserved particularly the MPER (Coutant et al., 2008; Merk 
and Subramaniam, 2013). This region of the gp41 ectodomain was shown to play a crucial 
role in the fusion of viral and cellular membranes (Muñoz-Barroso et al., 1999). The 
LWIYK motif was identified at the C-terminus of this region and modulate membranes 
fusion (Abad et al., 2009; Chen et al., 2009). 
Although the gp41 LWIKY interaction with cholesterol have been extensively investigated 
for instance by mutagenesis, many questions remain on the mechanism of this interaction. 
In order to understand this mechanism, Dr Omar Rifi investigated the interaction of this 
motif with cholesterol by solid state NMR during his thesis work in our laboratory (Rifi, 
2014). With this purpose, he designed several peptides of 33 amino acids with the CRAC 
motif including the CRAC_1. This peptide contains the L-W-Y-I-K sequence flanked at 
the N-terminus with few amino acids of the gp41 and at C-terminus with repetition of Ala-
Leu residues (alanine-leucine) which replace the natural transmembrane sequence 
(KKNITNWLWYIKLFIMIALALALALALALALKK). Two lysines were added at both 
ends (N and C-terminus) to enhance the solubility. When the orientation of the CRAC_1 
15N labelled within the LWYIK motif (Leu 8) reconstituted in oriented POPC and 
POPC/Chol (70/30) was investigated by 15N solid state NMR spectroscopy, the giving 
chemical shift indicated a transmembrane orientation  and that cholesterol (30%) affects 
this orientation (Rifi, 2014). Based on these results together with CD and FITR data which 
suggested that the CRAC_1 is mostly structure in helix, he proposed two membrane 
models of this peptide in which the NH vector of the Leu8 within the CRAC motif is 
aligned with that of the transmembrane domain or not as shown Figure 84A. However, 
membrane topology model of the gp41 that was proposed shows the MPER with the 
CRAC motif lying on membrane surface as represents on Figure 84B (Abad et al., 2009) 
thus, promoting the interaction with cholesterol. Therefore, we proposed here to investigate 
the topology of the transmembrane segment in order to determine the alignment of its axis 
relative to the membrane bilayer normal aligned parallel to the magnetic field.  
 

 

Figure 83: Schematic representation of the domains of gp41 (Montero et al., 2008). Abbreviations: 

fusion peptide (FP), Nt Heptades Repeat (NHR), Ct Heptades Repeats (CHR), Membrane Proximal 

External Region (MPER), Transmembrane (TM) and Cytoplasmic (CT) 
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Figure 84: Membrane topology model of (A) CRAC_1 and (B) HIV-1 gp41 MPER with the CRAC 

motif (Abad et al., 2009). The CRAC motif and the TM of the CRAC_1 peptide are highlight in 

green and blue respectively 

 Experimental 4.2.1.1.

The materials are the same than previously (see experimental section in 4.1.2.1). The solid 
phase peptide synthesis was achieved as described in the experimental section above (see 
experimental section in 4.1.2.1). 

 Purification by reverse phase HPLC 4.2.1.1.1.

The peptide was dissolved in 90% of solvent A (acetonitrile/water/TFA, 10/90/0.1, v/v), 
10% solvent B (acetonitrile/TFA, 100/ 0.1, v/v) at a final concentration of 10mg/ml and 
purified by RP-HPLC under acetonitrile/water/TFA using a C18 column (Luna 100-C18 
5.0-µm columns, Phenomenex, France). The purification was performed on a preparative 
HPLC (Gilson Chromatography, Villiers-Le-Bel, France). The identity of the peptides was 
verified by MALDI-TOF spectrometry using matrix α-cyano-4-hydroxycinnamic acid (α-
cyano).  
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 Preparation of oriented samples 4.2.1.1.2.

The CRAC_1 and the lipids (POPC and POPC/Chol 70/30) were first separately dissolved 
in chloroform / methanol (v / v, 2/1). Thereafter, they were mixed in other to achieve the 
molar ratio peptide / lipids of 2%. The solvents were evaporated under nitrogen stream 
until the solution turns viscous (to about 200µl). Equal quantities of the sample were 
applied as small elongated droplets on the surface of individual ultra-thin cover glass plates 
(thickness 00 = 80µm; 6 × 11mm or 8 x 22 mm, Paul Marienfeld, Lauda-Königshofen, 
Germany). The trace of solvents was evaporated at air and under vacuum. The sample was 
thereafter hydrated in a closed chamber at 93% relative humidity and left to equilibrate for 
typically about 2 to 3 days at room temperature. The glasses were stacked on top of each 
other and wrapped in Teflon tape and a plastic film to prevent dehydration of the sample. 

 31
P, 

15
N, 

2
H solid-state NMR acquisition 4.2.1.1.3.

Solid-state NMR spectra were acquired on a Bruker Avance wide-bore NMR spectrometer 
operating at 9.4 or 7.05 Tesla. Both using commercial triple-resonance probes equipped 
with flat coil (Bruker Biospin Rheinstetten, Germany). The spectra of oriented samples 
were recorded with the membrane normal parallel or perpendicular (turned by 90°) 
orientation relative to the magnetic field direction, respectively. 
Proton-decoupled 31P solid-state NMR spectra of oriented samples were recorded at 
161.937 MHz using a Hahn echo pulse sequence (Rance and Byrd, 1983) with the 
following parameters: 31P B1 field ~50 kHz, echo time 40 µs, spectral width 40-120 kHz, 
typically 30-128 scans, and repetition time 3 s. The spectra were referenced relative to 85% 
phosphoric acid (0 ppm). An exponential apodization function corresponding to a line 
broadening of 100 Hz was applied before Fourier transformation. 
Proton-decoupled 15N solid-state NMR spectra were recorded at 40.54 MHz using a cross 
polarization (CP) pulse sequence (Pines et al., 1973). The recording was achieved with the 
following parameters: 1H B1 field of 31 kHz, CP contact time of 800 µs, acquisition times 
ranging from 6 to 20 ms, spectral with 38 kHz, and repetition time of 3 s. The spectra were 
calibrated relative to external ammonium chloride (15NH4Cl) at 41.5 ppm (Bertani et al., 
2014). An exponential apodization function with a line broadening of 200Hz was applied 
prior to Fourier transformation.  
 

 Results: Influence of the cholesterol on the topology of CRAC_1 4.2.1.2.
transmembrane domain: 

In order to investigate the topology of CRAC_1 transmembrane domain, this peptide was 
15N single labelled at different positions (18 and 24) and reconstituted in POPC and 
POPC/Chol (70/30) at the final ratio peptide/lipid 2%. The whole samples were oriented 
with the membrane normal parallel to B0 and investigated by 15N solid-state NMR. When 
[15NAla18]–CRAC_1 was reconstituted in POPC/Chol (70/30), the 1H-31P decoupled 
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spectrum recorded indicates that lipids are quite well aligned (Figure 85A, left). All 1H 
decoupled 31P spectra show a good alignment of lipids for the other samples (data not 
shown). The 15N spectra of this peptide in POPC membrane gives a quite broad peak with 
a chemical shift value of 205.7±8.5ppm (Figure 85A, left, red). In presence of Chol 30%, 
the peak became broader with an increased chemical shift at 220.3±16.2ppm (Figure 85A, 
left, black). This result indicates that the peptide does not adopts a well-defined 
transmembrane orientation but shows a mosaic spread and confirmed that cholesterol 
affects the topology of this peptide (Rifi, 2014). Interestingly, the difference of the 15N 
chemical shift obtained in both membranes for this position was quite similar to the one we 
obtained for the peptide labelled at position 24 (Figure 85A). Indeed, in POPC and 
POPC/Chol (70/30) membranes, the 15N spectra respectively give peaks at 176.4 ±4.2and 
189.5±6.5 ppm (Figure 85A, right, red and black respectively). However, peaks are well-
defined compared to those we obtained for the position 18 and give values <200ppm 
indicating that the NH of Ala 24 amide bond display a defined orientation approximately 
parallel to the membrane normal in both membranes. These results suggest that the NH 
vector of Ala 18 which is close to the membrane surface is likely not aligned perfectly with 
the NH of Ala 24 deeply insert in the membrane. As the chemical shifts that were obtained 
for the CRAC motif were >200ppm (Rifi, 2014), together with these results we deduced 
that the NH of the CRAC motif (15N Leu8) may likely aligned with that of the 
transmembrane part close to the membrane surface (15N Ala18) and with that of the deep 
transmembrane segment (15N Ala24). We therefore propose the model represented Figure 

85B.  
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Figure 85: Proposed model of the potential orientation of NH bond within the CRAC_1. The CRAC 

motif and the TM of the CRAC_1 peptide are highlight in green and blue respectively, the 

membrane in black and the cholesterol in yellow 

4.2.2. Conclusion 

In summary, our result confirm that the cholesterol induced other orientation of the 
CRAC_1. In the previous model, Dr Rifi proposed two membrane models of this peptide 
as represented Figure 84A. Our investigation of the CRAC_1 transmembrane topology 
propose an alternative model to the previous ones. Indeed, this model suggest that the HN 
vector of the Leu8 is likely not well-aligned with all the HN of the transmembrane segment 
except the one of the segment close to the membrane (Ala18). However, this model does 
not help to explain the interaction of the CRAC motif with the cholesterol as this region 
should be close to the membrane surface. Thus we have undertaken other investigations 
particularly with the CRAC motif and truncated version of the CRAC_1 lacking the 
transmembrane part or the MPER with the CRAC motif. We started to investigate the 
interaction of the LWYIK motif with cholesterol using CD spectrometry (data not shown 
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here). In perspective, the topology and the dynamics of these peptides have to be study in 
order to refine the proposed model. 
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GENERAL CONCLUSION AND 

PERSPECTIVES  

This chapter gives an overview on the concluding remarks on the 

work presented in this thesis and some future perspectives.  
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 General conclusion and perspectives Chapter 5.

Here we investigate interaction of p24TMD with SM C18 and CRAC with cholesterol 
which are respectively involved in cellular traffic and mechanism of HIV infection. With 
this purpose, we proposed to use a number of biophysical approaches, including solid-state 
NMR spectroscopy, to study these interaction details. The different conclusions are 
summarize in the following sections. 

5.1. Expression of p24TMD and structural characterization of p24TMD-SM C18 

interaction  

Brügger et al found the sorting of a specific sphingolipid specie, the SM C18 in the COPI 
vesicles. Further investigation pinpoints this sorting to the p24 protein suggesting an 
interaction between these molecules. More this interaction was proposed to regulate the 
COPI biogenesis and thus its role in the cellular traffic. A simulated model of this 
interaction was proposed. Therefore, to shed light on this model in order to establish the 
structure the protein-lipid complex in membrane bilayer, we proposed to study p24TMD 
topology and dynamics in membrane using solid-state NMR spectroscopy. With this 
purpose in mind, we undertake the bacterial expression of the peptide which ensure a low 
cost production of relatively large amounts of labelled material required for NMR 
spectrometry. Here we presented the conclusions on p24TMD expression and the structural 
investigation that were achieved to characterize its interaction with SM C18. 

5.1.1. Conclusions on p24TMD bacterial expression 

As the expression of membrane protein can be difficult, we strategically used two 
recombinant vectors (pMal c5X-p24TMDH and pTIPX4-p24TMD) in order to optimize 
our chances to obtain the peptide. 
We set up the conditions of expression for both constructions but encountered some 
difficulties with the purification. The MBP-p24TMDH and TAF12-p24TMD fusion 
proteins were respectively identified as expected in the soluble protein fraction and the 
insoluble fraction particularly in inclusion bodies. However, in both case, important part of 
proteins was lost through the column suggesting that the peptide likely induced 
conformational changes of the fusion protein partner thus reducing it affinity with the resin 
during affinity chromatography. In addition, in the case of TAF12-p24TMD as it co-eluted 
with other proteins, we suggest that the peptide may interact with other protein likely 
through hydrophobic interactions. 
We set the conditions of cleavage for both protein using TEV-protease for MBP-
p24TMDH and formic acid 75% for TAF12-p24TMD fusion protein. We hardly identified 
the peptide in a reproducible manner in both cases after cleavage. In the case of MBP-
p24TMDH we suspected that the difficulty to detect the peptide is related to the important 
proteolysis and the bigger difference in size between the fusion protein partner and the 
peptide. When came to TAF12-p24TMD, this problem was mainly related to the presence 
of additional proteins that co-eluted with our protein. Indeed, the presence of other proteins 
probably interfere with the peptide since it is hydrophobic thus, may interact with these 
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proteins or other peptides. However, despite these difficulties to detect the peptide, mass 
spectrometry on a relatively pure peptide sample send by our collaborator in Heidelberg 
also indicated that the method of detection does not systematically work. Thus effort has to 
focus on both the purification step but suitable method that allow reproducible detection of 
the peptide have also to be developed.  
In conclusion, considering that we expected at the end to recover few milligrams of the 
peptide for NMR investigation, the PTIPX4-p24TMD seems to be more suitable to achieve 
this goal as we did not observe important proteolysis. This recombinant vector also 
presents the advantage that the fusion partner is not very big in size compare to the peptide. 
However, the purification step need to be improve in other to recover the pure fusion 
protein and facilitate the purification and characterization of the peptide. In addition, as 
these results were obtained in rich medium, the expression in minimum medium have to be 
achieve for the protein isotope labelling. 

5.1.2. Conclusions on biophysical and structural characterization of 

p24TMD-SM C18 interaction 

In parallel to the bacterial expression, the peptide was obtained by solid phase peptide 
synthesis and characterized by MALDI-TOF spectrometry. It secondary structure was 
investigated by CD and Trp fluorescence spectrometry in presence of liposomes or when 
prepared into proteo-liposomes in order to set suitable conditions to investigate p24TMD-
SM C18 interaction. The peptide is almost structured with 20% helix in water. When 
prepared in proteo-liposomes, its structure does not change but became more helical in 
presence of SM C18 compared POPC confirming the peptide interact with membrane. We 
showed that this interaction is modulate by the lipid head group and acyl chain. The best 
p24TMD reconstitution-competent state among the conditions we tested was obtained in 
HFIP/Water (50/50, v/v) with more that 80% helix.  
In further studies to characterize p24TMD-SM C18 interaction we investigate the effect of 
SM C18 on the alignment and dynamic of p24TM helix using 15N and 2H solid-state NMR 
spectroscopy. When reconstituted in POPC membrane bilayers, 15N spectra indicates that 
the peptide adopts transmembrane orientation that does not change in presence of 5% SM 
C18. 2H spectra indicate that the peptide may adopts more than one transmembrane 
orientations and does not significantly change in POPC/SM C18 (95/5). When compared to 
the SM C18 concentration that was used by Contreras et al, it is already five times more. 
However, our data indicate that SM C18 (10%) promote mosaicity.  
Although SM C18 does not affect the whole p24TMD orientation, we showed that it 
changes the side chain order of residues that were previously defined as involved in this 
interaction. Interestingly, this result was confirmed in complex membrane with Golgi-like 
lipid composition. Despite the fact we could not measure these changes, this result suggest 
that SM C18 interact with side chain. As the simulated model of the complex proposed that 
polar head group of sphingomyelin ‘wraps around’ the Tyrosine 27 side chain (Contreras 
et al., 2012a), we performed REDOR to determine the molecular distance of this 
interaction. Unfortunately, we did not yield workable spectra as we only obtained lipid 
signal. However, based on the angular restraints (19 and 235° for the tilt and pitch angles 
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respectively) we obtained from our experimental NMR spectra, we proposed a model of 
the peptide within POPC/SM C18 (95/5) as the orientation in these membranes is the same 
than in POPC membranes. In order to refine this experimental model, further studies have 
to focus on REDOR experiences to define the distances between the different interaction 
sites.  
In addition, we investigate the dynamics of the peptide and side chains residues in POPC 
and POPC/SM C18 (95/5). Our data indicate that the whole peptide and the side chains are 
in intermediate exchange and SM C18 does not affect this dynamic.  
In order to investigate the effect of the peptide on membrane, it was reconstituted in POPC 
membrane with deuterated acyl chain (POPC-d31) and 2H spectra recorded.  We showed 
that when 1 mol% of p24TMD was added to POPC-d31 membranes, it causes a slight 
increase of the acyl chain order whereas in POPC-d31/SM (95/5) membranes it hardly 
affects the order. As we observed that the peptide and SM C18 individually perturb the 
POPC fatty acyl chain, these results suggest that the SM C18 likely neutralized the effect 
of p24TMD on POPC.  
 

5.2. Biophysical study of the CRAC motif and cholesterol interaction 

With the purpose to get more insights on the mechanism of interaction between the CRAC 
motif and the cholesterol, Dr Omar Rifi investigated the topology of a peptide model 
CRAC_1 that was designed with the consensus LWYIK motif. When the 15N-2H labelled 
peptide (within this motif and the transmembrane segment respectively) was reconstituted 
in oriented POPC and POPC/Chol (70/30) and investigated by 15N solid state NMR 
spectroscopy, he observed that it adopts a well-defined transmembrane orientation in 
POPC that is affects in presence of cholesterol (30%) (Rifi, 2014). Based on these results 
and those obtained with CD and FITR, he proposed two membrane models of this peptide 
in which the NH vector of the Leu8 within the CRAC motif is aligned with that of the 
transmembrane domain or not. We proposed to investigate the topology of the 
transmembrane segment in order to refine this model.  
With this purpose, 15N CRAC_1 peptides labelled within the transmembrane domain at 
positon 18 (close to membrane surface) and 24 (deep in the membrane) were synthetized. 
These peptides were reconstituted in POPC and POPC/cholesterol (70/30) at 2% 
peptide/lipid molar ratio and investigated with 15N NMR spectroscopy. 15N spectra 
indicated that the NH vector of Ala18 is oriented in a transmembrane fashion in oriented 
POPC and cholesterol (30%) induced other transmembrane population of CRAC_1 thus, 
suggesting that this vector is aligned with that of the Leu8 within the CRAC motif. The 15N 
spectra of the peptide labelled at position 24 indicated that the NH vector is not aligned 
parallel with the POPC membrane normal suggesting that this vector is not perfectly 
transmembrane. Thus based on these results, we proposed a model in which the HN vector 
of the Leu8 is aligned with that of the Ala 18 but likely not with HN of Ala 24 that is 
deeply inserted in the membrane. However, other investigations particularly of the CRAC 
motif and truncated version of the CRAC_1 lacking the transmembrane part or the MPER 
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with the CRAC motif have to be done. In perspective, the topology and the dynamics of 
these peptides have to be study in order to refine the proposed model. 
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On the design of supramolecular assemblies
made of peptides and lipid bilayers‡

Patricia Kemayo Koumkoua, Christopher Aisenbrey, Evgeniy Salnikov,
Omar Rifi and Burkhard Bechinger*

Peptides confer interesting properties to materials, supramolecular assemblies and to lipid membranes and are used in ana-
lytical devices or within delivery vehicles. Their relative ease of production combined with a high degree of versatility make
them attractive candidates to design new such products. Here, we review and demonstrate how CD- and solid-state NMR
spectroscopic approaches can be used to follow the reconstitution of peptides into membranes and to describe some of their
fundamental characteristics. Whereas CD spectroscopy is used to monitor secondary structure in different solvent systems and
thereby aggregation properties of the highly hydrophobic domain of p24, a protein involved in vesicle trafficking, solid-state
NMR spectroscopy was used to deduce structural information and the membrane topology of a variety of peptide sequences
found in nature or designed. 15N chemical shift solid-state NMR spectroscopy indicates that the hydrophobic domain of p24 as
well as a designed sequence of 19 hydrophobic amino acid residues adopt transmembrane alignments in phosphatidylcholine
membranes. In contrast, the amphipathic antimicrobial peptide magainin 2 and the designed sequence LK15 align parallel to
the bilayer surface. Additional angular information is obtained from deuterium solid-state NMR spectra of peptide sites
labelled with 2H3-alanine, whereas

31P and 2H solid-state NMR spectra of the lipids furnish valuable information on the
macroscopic order and phase properties of the lipid matrix. Using these approaches, peptides and reconstitution protocols can
be elaborated in a rational manner, and the analysis of a great number of peptide sequences is reviewed. Finally, a number of
polypeptides withmembrane topologies that are sensitive to a variety of environmental conditions such as pH, lipid composition
and peptide-to-lipid ratio will be presented. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

Keywords: oriented solid-state NMR spectroscopy; circular dichroism (CD) spectroscopy; p24; magainin; LAH4; CRAC domain; designed
model peptide; supported lipid bilayers; membrane topology; peptide-membrane interactions; transmembrane domain

Introduction

Peptides are used to design new materials, drug delivery systems

and analytical devices [1–4]. They can be prepared in quantitative

amounts in a reproducible manner and under stringent condi-

tions of quality control. With the advent and development of

solid-phase peptide synthesis as well as methods for bacterial

over expression, it has become feasible to prepare peptide librar-

ies where the characteristics of the resulting sequences can be

easily modulated by amino acid exchange using not only the

20 common amino acids but also non-natural, chiral and even

non-peptidic building blocks almost at will [5–7]. Furthermore,

labels can be included or added for fluorescence, EPR or NMR

spectroscopic measurements, which provide a convenient means

to investigate and modulate the design features, or to be used as

sensors for practical applications. Consequently, as can be seen

by the diverse contributions to this Special Issue, the practical

applications of peptides are wide spread, and in this paper, we

will focus on their use in lipid membrane environments.

Apart from their relative ease in preparation and their versatility,

peptides have the added advantage that when designed in the

appropriatemanner, they formor can be included into self-associating

systems [1–4,8]. Biological or model membranes are such supramo-

lecular complexes that self-assemble into bimolecular layers of high

Ohmic resistance, and these can be doped with sensors, linked to

solid supports, and connected to electrodes just to mention a few

examples [9–11]. In particular, lipid vesicles or supported lipid bilay-

ers have found their way into a number of applications such as

drug delivery or sensor devices [12,13]. A virus or a vesicle for drug

delivery that at the same time carries a receptor-recognition se-

quence represents a setting where the barrier forming properties

of lipid membranes and the selective recognition of targets have

successfully been combined with each other [13,14].

During the design and assembly of such supramolecular

assemblies, a number of methods are required that allows one

to monitor and control if the desired structural elements fold

and behave as anticipated. Therefore, in this paper, we will present
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a few examples how biophysical approaches have helped us to fol-

low the membrane reconstitution process and which information

can be obtained from such measurements from the final

assembly. In particular, we will demonstrate how the reconstitution

process was optimized for a highly hydrophobicmembrane anchor

using CD spectroscopy and how solid-state NMR spectroscopy can

be used to determine the topology and alignment of the

membrane constituents.

Materials and Methods

Materials

Organic solvents were from Sigma Aldrich (Saint Louis, MO, USA).

The lipids were from Avanti Polar Lipids (Alabaster, AL, USA).

Fmoc-amino acids were from NovaBiochem Merck-Millipore

(Darmstadt Germany).

Peptide Synthesis

The peptides were prepared by solid-phase peptide synthesis using a

Millipore 9050 automatic synthesizer and the Fmoc-chemistry. The

[15N-Leu23, 2H3-Ala20]-p24TMD peptide has the sequence KKTNS

RVVLW SFFEA LVLVA MTLGQ IYYLK R-CONH2 where a 15N-labelled

leucine and 2H3-alanine (Cortecnet, Voisins les Bretonneux, France,

or Aldrich, Saint Louis, MI, USA) were incorporated at the positions

shown in bold. Another transmembrane model sequence, which

was extended by a CRAC motif was designed carrying a 2H3-alanine

at position 24 (KKNITNWLWYLKLFIMIALA LALAL ALALA LKK-CONH2).

The magainin 2 (GIGKF LHSAK KFGKA FVGEI MNS-CONH2), hФ19W

(KKKAL LALLA LAWAL ALLAL LAKKK) and KL15 (KKLLK ALKKL LKKLK)

sequences have been presented previously [15,16]. Table 1 provides

an overview of the peptide sequences discussed in this paper.

The peptides were purified by reversed phase high-performance

liquid chromatography (HPLC) (Bischoff Chromatography, Leonberg,

Germany) or (Gilson Chromatography, Villiers-Le-Bel, France) on

Prontosil 300-6-C4 5.0-μm (Bischoff, Leonberg, Germany) or

Luna 100-C18 5.0-μm columns (Phenomenex, France) using an

acetonitrile/water gradient. The gradient was established with

solvent A (acetonitrile/water/TFA, 10/90/0.1, v/v) and B (acetonitrile/

TFA, 100/0.1, v/v), and the peptides eluted at the solvent B

concentration as indicated in the succeeding text. When tested

by analytical HPLC, the purity of p24TMD was 96%. This being

the most difficult to dissolve and resolve, it can be safely

estimated that all peptides are> 90% pure. The identity of the

peptides was verified by matrix-assisted laser desorption ioniza-

tion mass spectrometry. For the peptides used here, the theore-

tical masses and the elution (in % B) from the HPLC columns are

the following: CRAC-TM (MW 3769.8, 65% B), hΦ19W (2673.5,

40%), KL15 (1793.4, 19%), magainin 2 (2465.9, 26%) and p24TM

(3674.4, 44%). The measured experimental masses are in general

within 1–2 units of the expected values when taking into consid-

eration that 15N and 2H3 labels increase the mass by +1 and +3

units, respectively.

Circular Dichroism Spectroscopy

A 1mg/mL stock solution of the p24TMD sequence was prepared

in water. The concentration of peptide was determined by absor-

bance at 280 nm by use of an extinction coefficient calculated

from the content of tryptophan, tyrosine and cysteine residues

[17] (cf. http://www.basic.northwestern.edu/biotools/proteincalc.

html). This stock solution was dried and dissolved in 300μL of

the respective solvents to give a 30μM concentration.

In another set of experiments, the p24TMD peptide was

reconstituted into membranes by dissolving the peptide and POPC

in HFIP/water 50/50 (v/v). The solvent was removed first under a

stream of nitrogen to form a thin film and then by exposure to high

vacuum. Thereafter, the sample was hydrated with 10mM phos-

phate buffer and tip sonicated to form small unilamellar vesicles.

The CD spectra were recorded on a Jasco J-510 spectropolarimeter

(Tokyo, Japan) with a 50nm/min scan speed, and data points were

collected from 250 to 190nm at 25°C using a quartz cell of 1mmpath

length. The spectra were processed using the spectra manager

software of the instrument, and the baseline corrected for solvent

contributions (H2O) by subtraction. Secondary structure analyses

were performed with the CDpro Web server using the CONTINLL

algorithm [18].

Sample Preparation for Solid-State NMR Spectroscopy

The preparation steps for the reconstitution of peptides into

uniaxially oriented samples are documented in detail and

illustrated in references [19,20]. In short, selectively labelled

[15N-Leu23, 2H3-Ala20]-p24TMD was first dissolved in HFIP, and

the solvent was removed under a stream of nitrogen. The

Table 1. Amino acid sequences of the peptides discussed in this paper

Alamethicina Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-
Aib-Aib-Gln-Gln-Phl

CRAC-TM KKNIT NWLWY LKLFI MIALA LALAL ALALA LKK-CONH2

hΦ19W KKKAL LALLA LAWAL ALLAL LAKKK

Htt17b MATLE KLMKA FESLK SF

ICP47c SWALE MADTF LDNMR VGPRT YADVR DEINK RGR

KL15 KKLLK ALKKL LKKLK

LAH4 KKALL ALALH HLAHL ALHLA LALKK A-CONH2

Magainin 2 GIGKF LHSAK KFGKA FVGEI MNS-CONH2

PGLa GMASK AGAIA GKIAK VALKA L-CONH2

p24TMD KKTNS RVVLW SFFEA LVLVA MTLGQ IYYLK R-CONH2

The one-letter code is used except for the peptaibol alamethicin, which caries a
considerable number of unusual amino acids.

aThe F50/7 isomorph is shown.
,
Aib: α-aminoisobutyric acid, Phl: L-phenylalaninol.

bHtt17 represents the most amino-terminal residues of the huntingtin protein.
cResidues 2-34 of this 88 residue early gene product of Herpes simplex virus.

MEMBRANE TOPOLOGY OF PEPTIDES
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peptide was then dissolved in HFIP/water 50/50 (v/v), which had

been shown to result in stable helix formation (Figure 1B).

Thereafter, the peptide was added in a step-wise manner to

POPC in HFIP. This was performed in such a manner that the water

content remained low, and peptide aggregation was avoided.

Thereafter, the solvent was partially evaporated under a stream of

nitrogen to reduce its total volume to about 0.5mL. At this point, the

clear and viscous sample was deposited onto 20 ultrathin glass

plates (thickness 00 (about 80μm), 6×11mm or 8 x 22 mm for

some of the other peptides, Paul Marienfeld, Lauda-Königshofen,

Germany), slowly dried in air and the residual of solvent evaporated

under high vacuum. Sample hydration was achieved at 98% humid-

ity and the glass plates stacked on top of each other. The sample

was stabilized by Teflon tape and sealed in plastic wrapping to avoid

dehydration. The final peptide-to-lipid (P/L) molar ratio is 1%.

The oriented samples made of 5mole% [15NLeu17]-hФ19W in

POPC, 2mole% [15N-Ala15]-magainin2 in di-C12:0-PC, 2 mole%

[15N-Leu7]-KL15 in di-C20:1-PC and 2mole% [2H3-Ala24]-CRAC-TM in

POPCwere prepared in an analogousmanner by initially co-dissolving

the peptide and lipid in TFE (hФ19W, KL15), methanol/chloroform 2:1

(v/v, CRAC-TM) or methanol/chloroform 1:1 (v/v; magainin 2).

Non-oriented samples were prepared in an analogous

manner except that a film of 0.13mg peptide and 2mg of

deuterated lipid was formed in a glass tube, which was then

resuspended in 200 μL of 10mM phosphate buffer by vortexing

and sonication in a water bath followed by 10 of freeze/thaw

cycles. The resulting vesicle suspension was pelleted in a bench-

top centrifuge (Biofuge Pico, Hearaeus Instruments, Hanau,

Germany) at 13 000 rpm for 1min directly into a tube for

microcentrifuges (VWR Radnor, PA, USA), which was directly

used for the NMR measurements.

Solid-State NMR Spectroscopy

The samples were inserted with the normal parallel to the mag-

netic field of a Bruker Avance NMR spectrometer operating at

9.4 Tesla (Rheinstetten, Germany) and the NMR spectral acquisi-

tions calibrated as described in detail in reference [19]. All spectra

were recorded at 295 K.

Proton-decoupled 31P solid-state NMR spectra were recorded

using a Hahn echo pulse sequence [21] with an echo time of

40μs, a repetition time of 3 s, a 31P B1 field of 80 kHz and a

spectral width of 40 kHz. An exponential line broadening of

150Hz was applied prior to Fourier transformation. The spectra

were referenced relative to 85% H3PO4.

Proton-decoupled 15N solid-state NMR spectra were recorded

using a CP pulse sequence [22] with a CP time of 800μs, a repe-

tition time of 3 s, a B1 field of 31 kHz (15N and 1H channel) and a

spectral with of 38 kHz. The FIDs were subject to an exponential

apodization with line broadening of 100Hz prior to Fourier

transformation. The spectra were calibrated relative to external

ammonium chloride (40 ppm), which places NH3 at 0 ppm [23].

Deuterium solid-state NMR spectra of samples made of POPC

labelled with d31 along the palmitoyl chain were measured using

a quadrupolar echo sequence [24] with a repetition delay of 0.3 s

for the lipid and 0.6 s for the peptide spectra, an echo time of

100μs, a B1 field of 40 or 62 kHz for the lipid and peptide spectra,

respectively. The FID was oversampled with a spectral with of

100 kHz enabling the precise adjustment of the echo by left-shifts

after the acquisition. The processing included an exponential

apodization with line broadening of 200Hz for the lipid and

500Hz for the peptide spectra, respectively. The spectra were

referenced relative to D2O.

Figure 1. Circular dichroism data to optimize p24TMD reconstitution. (A) p24TMD folding in solvents of different HFIP/water composition. (B) The
secondary structure preferences of p24TMD as a function of HFIP concentration. (C) CD spectra of p24TMD in POPC liposomes (dashed line) or in
aqueous buffer (solid line). The spectra were recorded in 10mM phosphate buffer, pH 7 at 25°C. (D) The secondary structure composition of
p24TMD in the presence or absence of POPC as obtained from the CD spectra using the CDPro software.
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Results and Discussion

Developing a Membrane Reconstitution Protocol for Hydro-

phobic Peptides

Cellular membranes consist of a wide variety of lipid species

varying in head group and fatty acyl chain composition. The lipid

composition not only varies between organelles, but they are

also distributed unevenly between the inner and outer leaflets

of the cellular or organelle membranes [25,26].

Whereas many membrane lipids and/or their precursors are

synthesized in the endoplasmic reticulum of eukaryotic cells,

they are then transported either monomolecularily by lipid

transport proteins, or with the membrane in intracellular trans-

port vesicles [27]. There is a continuous flow of lipids between

the endoplasmic reticulum the Golgi, the plasma membrane

and the endomembrane system, and during the transport the

lipids are processed and sorted to assure the differing lipid

compositions of individual subcellular membranes. In this

context, a highly specific interaction of a SM lipid carrying a

C18 fatty acyl chain with the (predicted) transmembrane domain

of p24, a protein of the COPI transport vesicles has been

described [28–30]. Such observations are strongly suggestive

that the lipids provide more than merely the ‘solvent’ for the

proteins and the ‘bricks’ of the membrane barrier; however,

when compared to protein or nucleic acid interactions, little is

known about specific protein–lipid interactions [31].

In order to analyse this interaction of p24 with membranes of

different composition, a 31 amino acid polypeptide, which in-

cludes the hydrophobic domain of the p24 protein, was

designed. The sequence of the peptide is KKTNS RVVLW SFFEA

LVLVA MTLGQ IYYLK R-CONH2 , where the underlined residues

make up a domain of high hydrophobicity. The doubly underlined

positions have been identified as being of high relevance for the

specificity of interactions with SM C18 [30], and charged amino

acids were added at the N-terminus and C-terminus to act as

anchor sequences and to improve peptide solubility and handling.

Alanine-20 and leucine-23 (in bold) were labelled with stable 2H

and 15N isotopes, respectively, for NMR spectroscopic investiga-

tions. It should be noted that the study of membrane-associated

peptides can be a difficult task as they tend to aggregate, and their

preparation and purification are often difficult.

In order to investigate the interaction of different lipids with

p24TMD (Table 1), a reconstitution assay was performed where,

in a first step, the synthetic peptide was dissolved in a variety

of solvents including TFE, dichloromethane, HFIP and aqueous

solutions as well as in the presence of detergents and investi-

gated by CD spectroscopy.

Interestingly, for most of the solvents used to initially dissolve

the peptides and lipids, the CD spectra are either characterized

by low intensities and/or characteristic of high β-sheet/random

coil conformations (not shown) suggesting aggregated structures

during the reconstitution process [32,33]. Depending on the

peptide finding a good solvent where both the lipids and the

peptides are dissolved can be difficult, but in our and others

hands, but HFIP has proven a versatile solvent for this purpose

[20,34–36]. HFIP exhibits a combination of strong hydrogen

bonding and at the same time hydrophobic properties with

structurating capabilities on some polypeptides [37]. As a conse-

quence, it has been shown to dissolve hydrogen bond acceptors

such as organic polyamides, polyacrylonitriles, polyesters and

even β-sheet aggregated polypeptides [38,39].

Indeed, when the secondary structure was tested upon

exposure to HFIP/water mixtures, for which the composition

was varied in a systematic manner, the peptide adopts a largely

α-helical secondary structure in the presence of even small

amounts of HFIP suggesting that, under these conditions, it can

be maintained in a reconstitution-competent state (Figure 1A).

A more detailed analysis indicates that p24TMD is ≥80% helical

in HFIP/water 50/50 (v/v) (Figure 1B).

Therefore, the peptide was reconstituted into liposomes

starting from such an HFIP/water mixture, which is also suitable

to dissolve many phospholipids. After co-dissolving peptides

and POPC, the solvents were evaporated in such a manner to

form a film along the glass walls of the test tube, resuspended

in buffer, vortexted, sonicated, and the thus prepared sample

analysed by CD spectroscopy (Figure 1C). The CD spectrum of

3mole% p24TMD reconstituted in POPC SUV is shown in

Figure 1C and compared with the spectrum of 30 μM p24TMD

in aqueous buffer. Whereas the high helix-forming propensity is

maintained in the membrane environment, much of the spectral

intensity is lost in the absence of lipids (Figure 1D).

This example illustrates how optical spectroscopy can help to

scan a large number of solvents and experimental conditions

with the goal to develop a protocol for efficient membrane

reconstitution. Optical techniques such as CD- and fluorescence

spectroscopy require orders of magnitude less peptide than, for

example, NMR spectroscopy. The semi-quantitative information

that they provide about the global secondary structure of the

peptide in a wide variety of conditions provides a good screening

opportunity to test a large number of sample conditions in a

single or a few days. Similar approaches can be used in order to

find a suitable detergent for concentration for multidimensional

solution NMR investigations [40–42].

Investigating the Membrane Interactions of Polypeptides by

Solid-State NMR

In a next step, the p24TMD was investigated by solid-state NMR

spectroscopy, a technique which can provide quite detailed

information about the structure, topology and interactions of

membrane-associated peptides [43,44]. The method requires

several milligrammes of isotopically labelled peptides per sample

and many hours of spectrometer time. It is therefore advanta-

geous that essential steps of the membrane reconstitution proto-

col were already established using CD spectroscopy (Figure 1). In

solid or semi solid samples, the NMR parameters are anisotropic,

that is, the chemical shifts and dipolar and quadrupolar couplings

all depend on the molecular alignment relative to the magnetic

field of the spectrometer [44]. In samples where all spatial orien-

tations are present, this results in very broad spectral line shapes

with little or no spectral resolution [45]. In order to re-introduce

high-resolution into these spectra either very fast sample

spinning around the MAS can be applied and results in spectral

averaging and narrow lines [43], or static oriented samples are

investigated that reveal the NMR parameters of just one molecular

orientation in space [44]. The latter approach has been applied to

membrane-associated peptides, which have been labelled with
13C, 15N and/or 2H [44,46].

Whereas MAS solid-state NMR follows similar concept as

multidimensional NMR in solution by providing isotropic chemi-

cal shift spectra and correlations representative of distance or

intra-molecular angles [43], uniaxially oriented samples reveal

valuable highly complementary information about the alignment
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of bonds and consequently whole molecules relative to the mag-

netic field direction [44]. These data can be used to reconstruct

the structure of biomacromolecules and/or the relative alignment

of molecules within supramolecular complexes [41,47]. A

successful approach consists in labelling a peptide bond with
15N and reconstituting the peptide into lipid bilayers that are

oriented with the normal parallel to the magnetic field direction.

From such samples, alignment information of the 15N-H vector

and thus the helical domain are obtained in a straightforward

manner [44,45]. Notably, the natural abundance of 15N is only

0.4% of all nitrogen atoms, therefore, in general, only the signal

from the isotopically enriched sites (typically >95%) is observed.

For helical domains labelled with 15N at their backbone chemical

shifts around 200 ppm correlate with transmembrane helices,

whereas values <100 ppm are indicative of domains oriented

parallel to the bilayer surface [45]. The tilt and azimuthal angles

of the helices can be determined quite accurately when it is pos-

sible to combine the 15N chemical shift information with angular

restraints that are obtained from 2H3-labelled alanines, where the

resulting deuterium quadrupolar splitting is correlated to the

relative alignment of the Cα–Cβ bond, and this combination has

provided valuable information on a variety of polypeptides that

were prepared by solid-phase peptide synthesis [15,48–50].

When the 15N solid-state NMR spectrum of p24TMD labelled at

the leucine-23 position was investigated, a chemical shift of

217 ppm was recorded (Figure 2A). This measurement, together

with the high helical content measured by CD spectroscopy, is

indicative that the peptide spans the membrane in a transmem-

brane helical fashion.

Whereas natural transmembrane helical sequences are of

complex compositions, they all share a high hydrophobicity and

a length of typically 16–20 residues. Several of these have been

investigated by 15N solid-state NMR spectroscopy and a trans-

membrane alignment confirmed (e.g. [34,51–54]). These general

features can be used to design much simpler domains such as

sequences made solely of leucines or of mixtures of alanines

and leucines [55–61]. One such reductionist peptide, hФ19W

(Table 1), has been designed in our laboratory, with an additional

tryptophan for fluorescence studies [15,16]. For [15N-Leu17]-

hФ19W, a 15N chemical shift is observed at 202 ± 2.5 ppm when

reconstituted into oriented POPC bilayers thereby confirming

the transmembrane helical design of the sequence (Figure 2B).

Notably, dimerisation or higher order oligomerisation of such

transmembrane sequences can be controlled by small modifica-

tions of their primary sequences [62–64].

The solid-state NMR spectrum of another designed transmem-

brane helical domain is shown in Figure 3A. Here, the peptide

was prepared with an alanine carrying a deuterated methyl

group, reconstituted into oriented phospholipid membranes

and investigated by 2H solid-state NMR spectroscopy. Due to fast

rotation around the Cα–Cβ bond, all three deuterons are equiva-

lent and exhibit identical NMR spectra. The deuterium nucleus is

quadropolar (spin 1), characterized by three energy levels with

two allowed transitions. Therefore, the spectrum of the deuter-

ated alanine methyl group is characterized by two lines, which

can be separated by up to 72 kHz, its exact value depending on

the dynamics of the deuterated site and its alignment relative

to the magnetic field of the NMR spectrometer (for additional de-

tails cf. reference [44]). For the transmembrane model sequence

labelled at position Ala-24, the frequency difference between

the two peaks is 12 ± 1 kHz and represents the quadrupolar

splitting, which is directly correlated to the average angle of the

Cα–Cβ bond relative to the magnetic field direction/membrane

normal (Figure 3B).

In contrast, many amphipathic sequences exhibit a high hydro-

phobic moment and consequently they align at the membrane

interface parallel to the surface. One of the early examples inves-

tigated by the 15N solid-state NMR technique is magainin 2,

which orients parallel to the membrane surface under many

different conditions so far investigated [65]. This observation is

confirmed by the experiment shown in Figure 2C, where the

peptide was reconstituted into a very thin membrane made of

di-C12:0-PC and a chemical shift of 82 ± 4 ppm is measured.

Notably, membranes of small hydrophobic thickness have been

shown to promote a transmembrane alignment of other peptide

sequences [55,66,67], and this experiment thereby provides a

stringent test for the propensity of a sequence to traverse the

bilayer. In-plane alignments have also been observed for many

other sequences found in nature including antimicrobial pep-

tides [40,49,68–76], signal sequences [52], surfactant peptides

[77], the amino-terminal membrane anchor of huntingtin [41] or

a domain of the Herpes virus protein ICP47 [48] (Table 1). Further-

more, peptide sequences have been designed to orient along the

membrane surface [78–81], and this design has been confirmed by

solid-state NMR spectroscopy, for example, for [15N-Leu7]-KL15

[15] (Table 1), which exhibits a chemical shift of 71± 5ppm in

di-20:1-PC lipid bilayers (Figure 2D).

Furthermore, some polypeptides exhibit a more dynamic

behaviour where transitions from the in-planar configuration to

more inserted and even transmembrane alignments can be

triggered by environmental changes such as pH [61,82–85], lipid

fatty acyl [67,72,86,87] or head group composition [72,88,89],

hydration [34,90], buffer [89], peptide concentration [87,91] or

the presence of other peptides. Notably, domain realignment

in the presence of other polypeptides could be of importance

for the regulation of membrane proteins [67,86]. Even

alamethicin (Table 1), a long-standing paradigm for the formation

of pores by transmembrane helical bundles [92] has been found

Figure 2. Proton-decoupled
15
N cross polarization NMR spectra of pep-

tides labelled with
15
N at a specific position and reconstituted into

oriented phosphatidylcholine membranes: (A) 1 mole % [
15
N-Leu23]-

p24TMD in POPC, (B) 5 mole% [
15
N-Leu17]-hФ19W in POPC, (C) 2 mole

% [
15
N-Ala15]-Magainin2 in di-C12:0-PC and (D) 2 mole % [

15
N-Leu7]-

KL15 in di-C20:1-PC. The corresponding helix orientation for each row is
sketched in the inserts.
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to switch between transmembrane and in-planar alignments under

certain conditions [87,88]. In a similar manner, magainin 2 and PGLa

(Table 1) have been considered to exhibit stable in-planar alignment.

Interestingly, whereas magainin 2 has shown in-planar orientations

under all conditions so far investigated [65], this is not the case for

PGLa. The latter has been found to be able to adopt a multitude of

topologies in a manner that depends on environmental factors such

as lipid composition, peptide-to-lipid-ratio and the presence of

magainin 2 [67,86].

The question remains which structural features cause the

different physico-chemical behaviour of PGLa and magainin 2,

both being linear cationic amphipathic peptides found in the skin

of the African clawed frog. At the present time, we can only

speculate, as to our knowledge, no experimental data have been

accumulated to answer this question. However, the structures of

a number of amphipathic helical peptides have been determined

in DPC micelles, and their alignments tested in oriented lipid

bilayers. On the one hand, these include magainin 2 [93,94] and

the 17-residue N-terminal membrane anchor of huntingtin,

Htt17 [41,50], both exhibiting stable orientations along the

membrane surface. On the other hand, PGLa [95,96] and LAH4

[84,89,97] undergo transitions in more tilted and even transmem-

brane alignments more easily (Table 1). When the Edmundson

wheels are constructed of the domains that are found to be heli-

cal in micellar environments, the following differences become

apparent (Figure 4). First, the helical domain of LAH4 PGLa ends

with a lysine, and including this residue in the analysis enlarges

considerably the hydrophilic face of the α-helices. It seems well

possible that this residue at the very end of the helical structure

is in dynamic exchange between helical and non-helical confor-

mations, while in the latter conformation, it can interact more

easily with the aqueous phase. Whereas the occurrence of lysine

in the helical domain may be stabilized by its possibility to

snorkel to the membrane surface, it should also be mentioned

that, in a highly curved micelle, the energetic penalty of keeping

a lysine at the C-terminus of the helix is less pronounced than in a

planar lipid bilayer. Second, when the helical wheel is analysed by

assuming that this C-terminal lysine is in a non-helical conforma-

tion and exposed to the water face the hydrophobic angles of

LAH4 and PGLa are much increased and considerably larger

Figure 3. (A)
2
H spectrum of the [

2
H3-Ala24] CRAC-TM model sequence reconstituted into oriented POPC bilayers. The central doublet corresponds to

water molecules interacting with the oriented membrane. (B) Simulated spectrum of
2
H3-alanine with an angle of 48° ± 1° between the Cα–Cβ bond and

the magnetic field when a static quadrupolar coupling constant of 72 kHz is taken into a consideration. (C) Simulated spectrum of a
2
H solid-state NMR

spectrum obtained from a non-oriented sample carrying a single site labelled with
2
H (powder pattern of a quadrupolar nucleus). (D) Simulated

2
H solid-

state NMR spectrum of POPC-d31 where the signals from many sites with different quadrupolar splitting add up. (E) Experimental
2
H solid-state NMR

spectra of POPC-d31 in the presence (grey) or absence (black) of [
15
N-Leu23]-p24TMD. (F) Deconvolution of the spectra shown in E provides position-

dependent quadrupolar splittings and the corresponding deuterium order parameters SCD. The p24TMD peptide causes a small increase in several of
the POPC-d31 order parameters. The estimated error bar is <0.004 for SCD, which fits within the outline of the symbols used in panel E.
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when compared with Htt17 or magainin 2 (Figure 4). Third, the

hydrophobic moments of the helical domains with less stable

topologies are considerably smaller than those of magainin 2 or

Htt17 (Table 1). Whereas a strong hydrophobic moment combined

with a large hydrophobic angle suggest that the helices that pene-

trate more deeply into the membrane hydrophobic core exhibit less

stable alignments, the resulting topological changes may be coupled

to conformational rearrangements. In this context, it is noteworthy

that small energetic differences can tip the balance between diffe-

rent topologies, and the exchange of a single amino acid can cause

a shift from an in-planar to a transmembrane propensity [56,57].

Peptide domains that monitor specific environmental condi-

tions, including, for example, a different membrane composition

or pH in cancerous tissues, or that accumulate in the presence of

specific receptor molecules have a high potential to be useful in

materials developed for biomedical applications [8,98,99]. Other

environmental factors that have been suggested or experimentally

proven to influence the membrane topology of polypeptides are

transmembrane electric fields [92,100], peptide-peptide interac-

tions [67,101] and/or membrane hydration [34,67,87].

Figure 2 shows the NMR spectra of two sequences isolated first

from natural sources and two peptides designed to adopt a

particular topology. Clearly, with our present knowledge, it is

possible to design peptides that interact with a lipid matrix in a

defined manner [84,102] and to use oriented solid-state NMR

spectroscopy (Figure 2), ATR FTIR [103,104] or oriented CD

spectroscopy [105,106] to validate such design features. Whereas

the latter two techniques can follow the topology in a semi-

quantitative manner, the analysis by solid-state NMR spectros-

copy in combination with isotopic labelling can be applied in a

residue-specific and/or domain-specific manner. When required,

the NMR approach has the potential for a full structure determi-

nation using larger sets of isotopic labels and/or more elaborate

NMR experiments [107–109]. Importantly, the aforementioned

examples and the published data also illustrate that the

technique can be applied to membranes of very different fatty

acyl chain (Figure 2) or lipid head group composition [65] and

to a wide variety of peptides and proteins [107–111]. Therefore,

when a material or a devise is to be developed, the NMR methods

described are by far not limited to systems that closely resemble

the aforementioned examples. Notably, more recent develop-

ments in the field of solid-state NMR even allow a topological

analysis for peptides in non-oriented membrane systems [112],

and the characterization of the dynamics and thereby the

oligomerization of membrane-associated peptides using the

same samples that helped in the topological analysis [41,113].

Such experiments provide additional useful information to fine-tune

the design and preparation of peptide-based materials and devices.

So far, the discussion of the design features of the peptide-lipid

supramolecular assemblies focused on particular characteristics

and functionalities of the peptides as well as methods to analyse

their structure, topology and dynamics in membranes. However,

the lipid membranes are soft and adapt to the environment,

therefore, the lipids can much contribute to the properties of

the final result and need to be taken into consideration. As the
31P nucleus is one of the more sensitive NMR nuclei and the only

isotope of the phosphorous atom, no isotopic enrichment is

necessary to record quite sensitive 31P solid-state spectra of the

phospholipids, which in addition are typically present in tenfold

to 1000-fold molar excess when compared with peptides. The
31P solid-state NMR spectra of the oriented phosphatidylcholine

sample containing 2mole% KL15 is shown in Figure 5A. This is

the same sample for which the 15N solid-state NMR spectra are

shown in Figure 2D. The spectrum exhibits a broad spectral line

shape between 30 and �15 ppm with its major intensity around

30 ppm. Thereby, the 31P chemical shift of the phosphatidylcho-

line headgroup in the liquid crystalline bilayer shows an

anisotropy of 45 ppm in a related manner as outlined for the
15N chemical shift of the peptide bond (cf. above). Whereas the

phospholipids that are aligned with their long axis parallel to

the magnetic field direction resonate at 30 ppm (Figure 5B), those

perpendicular exhibit a chemical shift at �15 ppm. A spectrum

with all lipid alignments present at random is shown in Figure 5C.

In Figure 5A, the sample has been aligned in such a manner that

the glass plate normal coincides with the magnetic field of the

spectrometer, and the spectrum is therefore indicative that a

large proportion of the lipids are aligned parallel to the

membrane normal. The spectrum shown in Figure 5A can be

explained by the addition of contributions such as the ones

represented in Figure 5B andC,where the smaller intensities<30ppm

are due to misaligned sample. However, phospholipids where the

molecular orientation is rearranged in the vicinity of the p24 domain

or a range of head group conformations, which may, for example,

be a result of electrostatic interactions [114] should also be considered.

Notably, macroscopic alignment of pure POPC lipid bilayers

has been achieved in the past where only a 30 ppm signal inten-

sity becomes visible suggesting that a high degree of sample

alignment can be obtained by orienting pure phospholipid

bilayers between glass plates [19,40,115]. In contrast, the 31P line

shapes observed in the presence of antimicrobial peptides are

Figure 4. Helical wheel representations of PGLa, LAH4 at acidic pH, magainin 2 and Htt17. The outlines of the helices are taken from NMR structures
that have been determined in DPC micelles [41,93,95,97]. The charged residues are shown in red (negative), dark and light blue (positive), the polar ones
in magenta, hydrophobic residues in yellow and the glycines and alanines which exhibit little preference for the interface or the hydrophobic interior in grey
[82]. The very N-terminal and C-terminal residues of the helix domains are marked by red letters. The black lines indicate the separation of predominantly
charged/polar face from the hydrophobic side, where the dotted lines include the most C-terminal lysine of LAH4 whereas the continuous lines exclude this
residue. The arrows represent the calculated hydrophobic moments. The helices were created using http://heliquest.ipmc.cnrs.fr [131].
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suggestive for membrane thinning or regions of high local

curvature [116]. Such membrane deformations may ultimately

result in membrane pore formation and lysis [117]. Therefore,

the 31P-NMR spectra provide additional valuable information

with regard to the interactions and/or mechanisms of action of

the polypeptides. Importantly, antimicrobial peptides or pep-

tide-derived mimetics have been included into the design of ma-

terials, for example, to confer antibacterial resistance to implants

and surfaces [118–120]. Notably, for the design of novel, more

efficient or cheaper to produce compounds or for the correct

insertion into a new material, knowing the peptides’ membrane

insertion properties and their mechanism of action makes a con-

siderable difference. For example, in the case of antimicrobial

peptides, realizing that they interact in an interfacial fashion

has resulted in the design of short peptides, alkylated tripeptides

or amphipathic polymers that are unsuitable to span the mem-

brane [121–123]. Their properties would be difficult to explain

without the knowledge that the antimicrobial action of a num-

ber of peptides is better when aligned parallel to the membrane

surface, rather than in the configuration of a transmembrane

helical bundle as was initially suggested (reviewed in [100]).

Whereas the 31P solid-state NMR spectra monitor the conforma-

tional and dynamic properties at the level of the headgroup of the

phospholipids including local conformational rearrangements

[114] and macroscopic phase transitions [124,125], the packing of

the lipid fatty acyl chains can be analysed by 2H solid-state NMR

spectroscopy of liposomes prepared with deuterated lipids [126].

Many of those are available commercially and have been used to

follow the effects of the peptides on the lipid fatty acyl chain order

parameters [73,116,127].

The 2H solid-state NMR spectrum of a single non-oriented deu-

terated site is represented in Figure 3C and the corresponding

quadrupolar splitting ΔνQ indicated. When many sites with differ-

ent quadrupolar splittings overlap, spectra as the ones simulated

in Figure 3D are obtained. Finally, Figure 3E compares the 2H

solid-state NMR spectra of pure POPC (deuterated throughout

the palmitoyl chain) with that in the presence of p24TMD. Each

deuterated CH2 and CH3 segment results in a deuterium

quadrupolar powder pattern from which the frequency separa-

tion of the two main intensities, that is, the deuterium

quadrupolar splitting ΔνQ, can be extracted (Figure 3C). The

comparison of the measured segment-specific deuterium

quadropolar splitting with that of a static sample can be directly

represented by the deuterium order parameters, and these are

shown in Figure 3F in a position-dependent manner. Whereas

the intercalation of in-plane aligned helices has in many cases

resulted in a significant decrease of the order parameter

[128–130], the transmembrane p24 has only a small effect on

the palmitoyl chain packing (Figure 3E and F). Whereas here the

modifications of the membrane packing occur on a more local

level changes in the overall morphology, macroscopic phase

properties, membrane thickness and curvature are also reflected

in the 2H NMR line shapes [116] and in combination with the

corresponding 31P spectra provide a valuable global view on

the lipid system. Together with the spectra recorded from the

peptides, a comprehensive analysis of the supramolecular assem-

bly is thereby obtained (Figures 1, 2 and 3A).

In conclusion, here, CD spectroscopy has been used to test sol-

ubility, secondary structure preferences and to refine the mem-

brane reconstitution protocol for peptides into membranes.

Solid-state NMR spectroscopy provides a valuable tool to analyse

the topology of membrane-associated peptides, the packing and

morphology of the lipid membranes and thereby control of the

design of the peptide sequences. A considerable number of

peptides have been analysed using these techniques and some

exhibit interesting features for applications in materials in parti-

cular those that ‘sense’ the environmental conditions.
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A) Introduction et Objectif de la thèse : 

 
Les membranes biologiques sont des systèmes organisés très complexes et dynamiques (Figure1) 

qui délimitent et maintiennent l’intégrité des cellules. Bien que son organisation ait été pendant 
longtemps été un sujet a débat, aujourd’hui le modèle le plus communément accepté est celui de 
« mosaïque fluide ». Il a été proposé en 1972 par Singer & Nicolson et décrit la membrane comme 
étant majoritairement constituée de lipides organisés en bicouches dans lesquelles sont insérées des 
protéines (Singer and Nicolson, 1972). Elle est composée de trois classes de lipides non 
uniformément repartis entre les feuillets d’une même membrane : les phospholipides, les 
sphingolipides et les stérols principalement le cholestérol. Ils diffèrent en fonction de la nature de 
leurs têtes polaires et de leurs chaines carbonées hydrophobes. Leurs répartitions diffèrent 
également entre les organelles d’une même cellule (Figure2) et suivant les types cellulaires créant 
ainsi une grande diversité membranaire (Coskun and Simons, 2011; Sud et al., 2007., 2003; van 
Meer et al., 2008) . C’est par exemple le cas de la sphingomyéline (SM) qui est spécifiquement 
présente dans la membrane plasmique (MP), l’appareil de Golgi et les endosomes et sa répartition 
dans les feuillets de ces différentes organelles varie. Cette diversité est également générée par les 
mouvements des lipides qui peuvent se déplacer d’un feuillet membranaire à un autre (flip-flop) ou 
par diffusion latérale et souvent s’organiser en micro domaine membranaire, connu sous le nom de 
domaine raft (Coskun and Simons, 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure1 : Architecture moléculaire d’une membrane biologique selon le modèle mosaïque fluide (adaptée 
de Singer et Nicolson, 1972). 

 
 
La plupart des lipides membranaires et leurs précurseurs sont synthétisés dans le réticulum 
endoplasmique (RE). La sphingomyéline à l’exception est synthétisée dans l’appareil de Golgi à 
partir de la céramide provenant du RE. Après synthèse, les lipides sont transportés vers les différents 
compartiments cellulaires au travers de la voie de sécrétion principalement via les vésicules 
spécialisées COP I et II (COat Protein complex I et II) mais également via des protéines au travers 
d’interaction protéine-lipide. La vésicule COP I assure le transport rétrograde du compartiment 
golgien au RE et dans les deux entre citernes golgiennes, tandis que la COP II assure le transport 
antérograde. Elles sont responsables du transport des protéines et des lipides dans la cellule et leur 
formation semble dépendre de l’organisation des lipides dans les membranes (Brügger et al., 2000; 
Popoff et al., 2011).  
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Figure 2: Compositions membranaires en lipide type d’une cellule eucaryote. Extrait de Van Meer G et al, 
2008. 

 
Ces vésicules sont recouvertes d’un complexe protéique formé de 7 sous-unités appelé Cotaomer 
et leurs membranes enrichis en protéines de la famille p24. Ce sont des protéines transmembranaires 
de type I avec une masse moléculaire de 24 kDa dont font partie les protéines p25, p23, p24, etc.  
Les protéines de cette famille partagent la même structure avec un grand domaine luminal appelé 
« Gold domain » formé de pont disulfure et servant de récepteur pour les molécules cargo, une 
région coil-coil, une partie transmembranaire et une petite partie cytoplasmique qui contient en 
général des motifs très conservés qui vont jouer un rôle dans le control de qualité des molécules 
transportées. Elles sont conservées dans différentes espèces à savoir, les plantes, les champignons, 
les mammifères ; suggérant qu’elles jouent un rôle très important. Bien que leurs fonctions ne soient 
pas clairement définit, plusieurs études ont montré l’implication de la protéine p24 dans la formation 
des vésicules COPI ainsi que dans le transport des molécules cargo (Kamińska et al., 2010). 
Les travaux de Brügger et al ont mis en évidence la ségrégation de la sphingomyèline et du 
cholestérol durant la formation des vésicules COPI (Brügger et al., 2000). L’étude poussée de cette 
ségrégation a révélé la protéine p24 comme principal acteur. En effet, il a été montré par FRET et 
immuno-précipitation, que cette protéine interagit parmi les différentes espèces de SM 
spécifiquement avec la SM C18 (Contreras et al., 2012). L’interaction entre le p24 et la SM C18 est 
très spécifique et unique car elle est basée sur une affinité entre protéine-lipide impliquant à la fois 
la tête lipidique et leurs chaînes aliphatiques ce qui est assez rare. De plus, parmi les différentes 
espèces moléculaires de SM, il a été montré que seule la courbure de la tête polaire de la SM C 18 
s’adapte et s’imbrique dans la structure de p24 (Contreras et al., 2012). Les travaux de Contreras 

et al ont également montré que cette interaction est conservée même lorsque la protéine est réduite 
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à son domaine transmembranaire (21 résidus). Ils ont également identifié dans ce domaine, le motif 
VXXTLXXIY responsable de l’interaction avec la SM. Leurs travaux ont permis de proposer un 
modèle moléculaire simulé (Figure 3). 
Cette interaction est potentiellement impliquée dans la régulation du mécanisme de formation des 
vésicules COP I. En effet, il a été suggéré que la protéine p24 est normalement dans un état 
monomérique mais dimèrise lorsqu’elle fixe la SM C18. Cette dimèrisation va provoquer un 
changement de conformation des protéines coatomèriques déclenchant ainsi leur polymérisation. 
Cette polymérisation va entrainer la courbure de la membrane du RE et donc la formation des 
vésicules COP I (Béthune et al., 2006; Contreras et al., 2012; Reinhard et al., 1999).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 : Modèle d’interaction simulé de l’interaction entre p24TMD et la SM C18 (Contreras et al, 2012). 
 
 
 
L’objectif durant ma thèse a été de caractériser la structure du site d’interaction entre le domaine 
transmembranaire de la protéine p24 (p24TMD) et la SM C18 dans un environnement membranaire, 
afin de valider ou non le modèle proposé. Mon travail s’est articulé sur deux volets principaux à 
savoir : l’obtention dans un premier temps du domaine transmembranaire de la protéine p24 appelé 
p24TMD par synthèse chimique et par expression en système bactérien. Ces deux techniques 
complémentaires ont permis d’obtenir le peptide spécifiquement marqué à une position ou 
uniformément marqué respectivement. En effet, l’un des prérequis pour l’étude des protéines par 
Résonnance Magnétique Nucléaire (RMN) c’est d’avoir une protéiné enrichit en isotope marqué. 
Nous avons dans un deuxième temps caractérisé le peptide dans des membranes artificielles en 
présence ou non de SM C18 utilisant des techniques de spectroscopie optique tels que le dichroïsme 
circulaire (CD), la fluorescence et la RMN. Les deux premières techniques ont permis d’étudier le 
repliement du peptide dans les membranes ; tandis que sa caractérisation structurale a 
principalement été réalisée par spectroscopie RMN.  
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B) Obtention du peptide p24TMD 

 
Les travaux de Contreras et al ont montré que l’interaction du p24 avec la SM C18 était conservée 
même lorsque la protéine est réduite à sa partie transmembranaire. Partant de cette observation, 
nous avons conçu un peptide de 31 acides aminés (aa) appelé p24TMD composé du domaine 
transmembranaire de la protéine p24 (21 acides aminés, en gras), entouré de part et d’autre de 
quelques acides aminés de la séquence naturelle du p24, et de deux lysines (K) ajoutées en N 
terminal (Nter) de la séquence peptidique (Table1, en bleu) pour améliorer la solubilité du peptide. 
Un deuxième peptide de 36 acides aminés appelé p24TMDH (H pour Heidelberg) conçu par nos 
collaborateurs de l’université de Heidelberg a également été utilisé pour l’étude de cette interaction. 
Ce peptide a la même séquence que le p24TMD excepté son extrémité Nter qui comporte quelques 
acides aminés de la séquence naturelle du p24 (Table 1, en bleu).  
 
 
Table1 : Séquences peptidique des peptides p24TMD et p24TMDH et représentation des protéines 

recombinantes MBP-p24TMDH et TAF12-p24TMD. 

 
 

Noms Séquences Poids 
moléculaire 

p24TMD KKTNSRVVLWSFFEALVLVAMTLGQIYYLKR 3,675 kDa 
p24TMDH GINDNTNSRVVLWSFFEALVLVAMTLGQIYYLKR 3,932 kDa 

 
 
 
 

 
 
 
 
 
 
 



 6 

 
 

1) Expression en système bactérien  
 

Dans l’objectif d’étudier cette interaction par spectroscopie de RMN afin d’obtenir des détails 
structuraux, il a été nécessaire de produire des peptides uniformément marqués. Pour cela, nous 
avons eu recours à l’expression en système bactérien qui est une technique communément utilisée 
à cet effet et qui comparée à la synthèse peptidique présente l’avantage de permettre un marquage 
uniforme des protéines à moindre coup.   
 
1.1 Expression de la MBP-p24TMDH : 

 
Nous avons dans un premier temps utilisé le vecteur d’expression pMal c 5X-p24TMDH conçu par 
nos collaborateurs pour permettre l’expression du peptide p24TMD fusionné à la Maltose Binding 
Protein (MBP). La protéine de fusion MBP permet l’expression de la protéine recombinante MBP-
p24TMDH sous forme soluble et facilite également sa purification. En effet, elle possède une 
affinité pour l’amylose et peut de ce fait être isolée par chromatographie d’affinité à l’amylose. Un 
site de clivage enzymatique à la TEV protéase (protéase du virus de la gravure du tabac) permettant 
de séparer le peptide de la MBP après purification a également été introduit dans ce vecteur 
(Table1). 
Afin de mettre en place un protocole, des tests d’expression en milieu riche ont été réalisés dans 
deux souches de E.coli : BL21 DE3 and BL21 DE3 pLysS.  Ces souches ont tout d’abord été 
séparément transformées avec le vecteur pMal c 5X-p24TMDH. Une colonie de chaque souche 
bactérienne transformée a ensuite été ensemencé dans 50ml de milieu puis incubé toute la nuit a 
37°C. Les différentes pré cultures ont ensuite été diluées dans un volume plus important de milieu 
riche afin de favorise de nouveau leur croissance. L’expression protéique a été induite lorsque la 
densité optique à 600nm (DO) des bactéries était autour de 1 avec 1mM d’IPTG. Après 4 heures 
d’induction, la culture bactérienne est arrêtée et les bactéries centrifugées. Les différents culots 
bactériens resuspendus et les cellules lysées par sonication. Après purification de notre protéine 
d’intérêt par chromatographie d’affinité et séparation en condition dénaturante par électrophorèse 
(SDS-PAGE), nous avons montré que le taux d’expression de la protéine MBP-p24TMDH était 
plus important avec la souche BL21 DE3 pLysS (Figure4A et B). La quantité effective de protéine 
obtenue a été estimée à 15mg/litre de culture.  
 
Par ailleurs afin de marquer uniformément notre protéine d’intérêt, nous avons exprimé la protéine 
MBP-p24TMDH en milieu minimum (M9) en utilisant la souche BL21 DE3 pLysS et les mêmes 
conditions expérimentales décrites ci-dessus. La croissance bactérienne étant plus lente en milieu 
minimum qu’en milieu riche, nous avons testé différentes températures d’expression après 
induction (37, 30, 18°C). Parmi les différentes températures, nous avons observé que l’expression 
était plus importante à basse température (18°C) compare aux autres températures. Après 
purification, la quantité effective de protéine obtenue a été estimée à 3mg/litre de culture. 
 
En résumé, nous avons pu mettre en place le protocole d’expression de notre protéine d’intérêt. 
Cependant, nous avons rencontré quelques problèmes à savoir que nous avons observé une perte 
importante de protéine durant l’étape de purification. De plus, le profil électrophorétique révèle 
également deux bandes : l’une migrant à la taille attendue (48 kDa) et une autre migrant en-dessous 
(42 kDa) (Figure4C). Cette dernière correspond vraisemblablement à la protéine tronquée. Cette 
forme dégradée étant plus importante en proportion par rapport à la forme entière (environ 3 fois 
plus), ne permet pas une quantification réelle de la protéine entière.  
 
Afin d’obtenir le peptide p24TMD, nous avons réalisé le clivage de la MBP-p24TMD avec la TEV 
protéase à différents ratios enzyme/protéine (1/20 à 1/150) et températures (température ambiante 
(RT) et 4°C). Une cinétique de clivage a été également réalisée afin de déterminer les meilleures 
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conditions de clivage. Les résultats obtenus montrent qu’à 4°C pendant 24h, la Tev protéase semble 
être plus efficace que les autres conditions (Figure 5).  
 
Cependant, après purification par HPLC ou par extraction au butanol, nous n’avons pas pu identifier 
le peptide d’intérêt par SDS-PAGE ou par spectrométrie de masse MALDI (Matrix-Assisted Laser 
Desorption/Ionisation). 
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C) 
 

 
 
 

Figure 4 : Gels SDS PAGE obtenus après expression de la protéine dans les bactérie (A) BL21 DE3 pLysS 

et (B) BL21 DE3. Les fractions aliquotées durant les différentes étapes d’extraction pour les cultures induites 
(I) et non-induites (NI) ont été séparées sur gel 12% polyacrylamide en condition dénaturante (equivalent 

500µl de culture). Après 1h de migration à 150V, les gels ont été colorés au bleu de Coomassie. Les 

différentes abréviations sont en anglais et se décrivent de façon suivante : SN: supernageant après la lyse 

cellulaire , FT: flowthrough, Surnageant après incubation de l’extrait cellulaire avec les billes d’amylose, 

Wn: étapes de lavage des billes d’amylose avec le n correspondant aux différentes étapes, En correspond aux 

étapes d’élutions avec les n correspondant aux différentes étapes, M: Marqueur de poids moléculaire. La 

table en dessous des gels contient les masses théoriques des différentes formes de la MBP-p24TMDH 

obtenues en utilisant leurs séquences en utilisant le logiciel ProtParam via le  site ExPASy 

(http://web.expasy.org/protparam/). (C) Identification des formes tronquées et entières de la  MBP-

p24TMDH. 

 
 

http://web.expasy.org/protparam/
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Figure 5 : Cinétique de clivage de la MBP-p24TMD à température ambiante (RT) et à 4°C. 

 
1.2 Expression du TAF12-p24TMD : 

 
Nous avons par la suite conçu un autre vecteur dans notre laboratoire appelé pTIXP4-p24TMD* et 
qui permet d’exprimer le peptide p24TMD fusionné au TAF12 (TATA box binding protein (TBP)- 
Associated Factor 12 Histone fold Domain), un facteur de transcription utilisé ici comme protéine 
de fusion. Il favorise l’accumulation de la protéine de fusion dans les corps d’inclusion limitant 
ainsi sa toxicité pour les bactéries (Vidovic et al., 2009). Afin de faciliter la purification de la 
protéine recombinante TAF12-p24TMD, une série de six histidines (His tag) a été introduite à la 
suite du TAF12 suivi d’un site Aspartate-Proline (DP) de clivage à l’acide formique afin de 
permettre le clivage de TAF12 et la purification du p24TMD (Table1).  

Afin de mettre en place le protocole d’expression de ce nouveau vecteur, différentes souches 
bactériennes (BL21 DE3, BL21 DE3 pLys S, BL21 AI) ont d'abord été testés. Les résultats obtenus 
ont montré que l'expression du TAF12-p24TMD est plus importante dans BL21AI (données non 
présentées). Cette souche par rapport aux autres, a spécifiquement été conçue pour permettre 
l’expression de protéine toxique. Elle contient une copie chromosomique du gène de l'ARN 
polymerase de T7 sous le contrôle étroit de la araBAD promoteur permettant l’induction de 
l’expression protéique par l'arabinose en plus de l’IPTG pour les vecteurs pETs comme le pTIXP4. 
Par la suite, différents paramètres (inducteur, OD de l'induction et de la température) ont été testés 
suivant les étapes d’expression décrites précédemment. Les différents tes ont montrés que la 
meilleure expression se fait lorsque l’induction est faite à la DO (600nm) ≈ 1, par ajout de 0,8mM 
d’IPTG et 1% d’arabinose à 37°C durant 3h (Figure 6). Après l’expression, les cellules sont lysées 
par sonication et centrifugées à l11000 g, pendant 30 min à 4 °C. Le culot correspondant à la partie 
insoluble (Mbe+CI) est ensuite récupéré et solubilisé avec de la guinidine 6M afin de séparer la 
fraction membranaire (Mbe) des corps d’inclusion (CI). Cette séparation est réalisée par 
centrifugation à 12900 g pendant 20 min à 20 °C et le surnageant correspondant aux corps 
d’inclusion est incubé pendant 1h avec de la résine de cobalt afin de purifier notre protéine d’intérêt. 
Après incubation la résine de cobalt est lavée et la protéine TAF12-p24TMD purifié. Afin 
d’identifier cette protéine, un aliquot de chaque fraction des différentes étapes de purification a été 
préparé et séparé par électrophorèse sur un gel de polyacrylamide 16% en condition dénaturante 
(Figure 6).  
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Figure 6 : SDS-PAGE des différentes fractions durant l’étape de purification du TAF12-p24TMD.  

Des aliquotes différentes fractions obtenues durant l’étape de purification pour les cultures induites (I) à 

différentes concentrations d’IPTG (0,8 ; 1, 1,2 mM) et constante arabinose (1%) ou non-induites (NI) ont 

été préparés et séparés par électrophorèse sur gel 16% en conditions dénaturantes durant 1h à 150V. Les 

quantités déposées pour chaque fraction ainsi que leurs abréviations sont les suivantes : 24µl (équivalent 

120µl de culture) de fractions soluble (FS) et insoluble (Mbe+CI), 12µl (équivalent 1,2ml de culture) e 

fraction membranaire (Mbe), 25µl (équivalent 1,2ml de culture) d’élution et 12µl de marqueur de poids 
moléculaire (PM). La flèche rouge indique la protéine d’intérêt et le tableau les masses théoriques attendues.  
 
Les résultats obtenus montrent notre protéine d’intérêt est présente dans les élutions confirmant 
qu’elle accumule bien dans les corps d’inclusions (Figure 6). Cependant, il a été difficile de la 
quantifier à cause de la présence d’autres protéines qui sont éluées en même temps. Ces protéines 
peuvent soient avoir une affinité pour la résine de cobalt ou se liées à au TAF12-p24TMD via des 
interactions hydrophobes ; ce qui explique leur présence dans les élutions.  
De plus, en purifiant par chromatographie liquide en phase inverse ces élutions ou directement la 
fraction insoluble solubilisé préalablement par la guanidine 6M (Mbe+CI), nous nous n’avons pas 
pu obtenir une fraction pure de notre protéine d’intérêt. En effet, après purification de la fraction 
(Mbe+CI) par chromatographie inverse et analyse par spectrométrie de masse MALDI des fractions 
élutions, les spectres obtenus montrent qu’elles ne sont pas pures y compris la fraction dans laquelle 
nous avons identifié un pic de masse proche de celle attendu pour le TAF12-p24TMD (Figure 7).  
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Figure 7 : Spectre de masse MALDI après purification de la fraction insoluble solubilisée dans le guanidine 

6M et purification par chromatographie en phase inverse. 1µl de chaque elution a été mélangée à 1µl de 

matrice SA (Sinapinic Acid) puis analysé par spectrométrie de masse MALDI-TOF en mode linéaire avec 

30% de laser. La calibration a été réalisée au préalable avec un mélange de protéine de masse connues 

(protein calibration standard I). Nous avons montré ici la superposition des spectres entiers (à gauche) des 

fractions d’élution obtenues en condition induite (bleu) et non-induite (violet) dans laquelle nous avons 

identifié le pic avec une masse proche de celle attendue (zone encadrée). A droite, un agrandissement de 

cette region. La flèche rouge indique le pic correspondant potentiellement au TAF12-p24TMD. Les 

abréviations –KR et –R indiquent les pics correspondant potentiellement à la protéine d’intérêt sans les 

résidus KR (Lysine et Arginine) et R (Arginine)situés en C-terminal de sa séquence.  

 

Nous avons ensuite mélangé cette fraction à 75% d’acide formique et incubé à 50°C pendant 24h afin de 
cliver le peptide p24TMD du TAF12. Ce clivage se fait avec ajout d’une proline (P) en Nter du peptide (voir 
séquence Table1). Après purification par chromatographie en phase inverse et analyse des fractions d’élution 
par spectrométrie de masse MALDI, nous avons identifié dans une des fractions un pic pouvant 
potentiellement correspondre au peptide p24TMD mais tronqué en Nter (Figure 8). Nous ne pouvons 
néanmoins que spéculer sur ce résultat car ce peptide pourrait bien être le résultat de la protéolyse d’autres 
protéines présentent dans l’élution de départ. Une façon de s’en assurer aurait été de faire un séquençage 
peptidique pour en connaître la séquence.  
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Figure 8 : Spectre de masse MALDI après clivage du p24TMD et purification en phase inverse.  

Les spectres des fractions obtenues en condition induite (violet) et non induite (turquoise) sont présentés ici. 

La calibration a été réalisée avec un mélange de protéine de masse connues (protein calibration standard 

I). La flèche bleue indique potentiellement le p24TMD tronqué.  

 

En résumé, dans le but d’obtenir le peptide p24TMD uniformément marqué, nous avons mis au 
point les protocoles d’expression des protéines de fusion MBP-p24TMDH et TAF12-p24TMD en 
milieu riche. Dans les deux cas, nous avons pu identifier les protéines de fusion respectivement 
dans la fraction soluble et les corps d’inclusion comme attendu. Cependant, après l’étape de 
purification nous n’avons pas pu quantifier la protéine TAF12-p24TMD à cause de la présence 
d’autres protéines éluées simultanément. Nous n’avons pas pu obtenir de fraction pure de cette 
protéine même en la séparant d’autres protéines par chromatographie en phase inverse. En revanche, 
bien que nous avons pu quantifier la MBP-p24TMDH, la présence d’une forme tronquée présente 
en proportion plus importante constitue un problème majeur avec ce système d’expression parceque 
cette observation affecte le rendement final du peptide. Dans les deux cas, nous avons pu mettre en 
place un protocol de clivage dans le cas de MBP-p24TMDH après purification par chromatographie 
d’affinité à l’amylose et directement à partir de la fraction insoluble pour le TAF12-p24TMD. Afin 
de purifier les peptides, nous avons utilisé l’extraction au butanol et la chromatographie en phase 
inverse. Dans les deux cas nous n’avons pas pu identifier le peptide entier. En effet, après clivage 
du TAF12-p24TMD, nous avons caractériser par spectrométrie de masse un peptide qui pourrait 
potentiellement correspondre au p24TMD tronqué de 2 acides aminé en Nter. Dans le cas de la 
MBP-p24TMDH, nous n’avons pas pu caractériser le peptide ni par électrophorèse ou par 
spectrométrie de masse. La difficulté à identifier le peptide p24TMDH peut s’expliquer par la 
différence de taille importante entre la protéine de fusion MBP (42.5 kDa) et le peptide (3.9 kDa). 
De plus, ce peptide est très hydrophobe et agrège probablement avec d’autres peptides ou protéines 
en solution. En considérant les difficultés majeures rencontrées avec les deux systèmes 
d’expression, nous avons proposé de continuer à travailler avec le pTIXP4-p24TMD (TAF12-
p24TMD). En effet ce système présent moins de dégradation et comparé au pMal c 5X-p24TMDH. 
De plus, la protéine de fusion TAF12 (11,8 kDa) ne représente que 4 fois la taille du peptide 



 13 

p24TMD (3,7 kDa). Cependant, des efforts considérables sont à mettre en place en ce qui concerne 
l’étape de purification de la protéine de fusion TAF12-p24TMD car elle est importante pour le 
rendement final et la caractérisation du peptide. Des méthodes adéquates de détection du peptide 
par spectrométrie de masse doivent également être développé plus spécifiquement. La Table 2 ci-
dessous récapitule tous les résultats obtenus en ce qui concerne l’expression des deux peptides. 
 
 
Table2 : Résumé des résultats obtenus avec les différents vecteurs d’expression. 
 

 
 
 
N’ayant pas pu obtenir le peptide entier par expression en système bactérien, nous avons utilisé la 
synthèse chimique qui présente l’avantage de permettre l’obtention de rendement important de 
peptide pure dans un temps relativement court comparé à l’expression en système bactérien. 
Cependant, le marquage homogène d’un peptide revient extrêmement plus cher en terme de coût. 
Cette technique est néanmoins adaptée au marquage spécifique d’une position dans une séquence 
peptidique. De plus, le rendement dépend de la taille et de la séquence du peptide. Une autre limite 
majeure concerne le fait que tous les acides aminés marqués ne sont pas toujours disponibles sur le 
marché. 
Nous avons testé la synthèse chimique en phase solide (Fmoc) des deux peptides. La synthèse du 
p24TMDH était beaucoup plus difficile et les rendements obtenus très faible voir sans peptide. Nous 
avons utilisé le double couplage pour améliorer ce rendement. Après synthèse, celui-ci était 
respectivement de 59,4 et 68,4% pour le p24TMD et le p24TMDH par rapport à la masse théorique 
attendue. Cependant, nous n’avons pas pu purifier le p24TMDH parce qu’il agrégeait même en le 
solubilisant dans différents solvants (eau/isopropanol ou eau/HFIP). En revanche nous avons pu 
purifier le p24TMD par chromatographie en phase reverse en utilisant un gradient d'acétonitrile / 
eau allant de 30 à 95% de solvant B (acétonitrile/TFA 100/0.1, v/v). Bien que le rendement après 
purification était seulement de 10%, les quantités de peptide obtenues étaient néanmoins suffisante 
pour faire 2 à trois échantillons pour la RMN (entre 20 et 30mg). En plus, la pureté des échantillons 
obtenus a été estimée à 96%, ce qui montre qu’ils sont relativement purs et ce critère est 
indispensable à l’analyse par RMN. Nous avons par la suite caractérisé le peptide par spectrométrie 
de masse MALDI (Figure 9).  
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Figure 9 : Spectre de masse MALDI du p24TMD après synthèse et purification en phase inverse. 
 
 
Par la suite nous avons utilisé ce peptide synthétique pour mener nos études sur l’interaction entre 
le p24TMD et la sphingomyéline. Les résultats obtenus sont présentés ci-dessous.  
 
 

C) Caractérisation biophysique de l’interaction entre le peptide p24TMD et la SM C18 
 
Le peptide p24TMD étant naturellement transmembranaire, il semblait donc primordial de 
reproduire un environnement proche des conditions biologiques afin de rendre sa caractérisation 
possible. Cette partie de mon travail a consisté à établir dans un premier temps les conditions 
expérimentales favorables à la reconstitution du peptide dans des membranes artificielles. Pour cela, 
des tests de solubilité du p24TMD ont été réalisés dans des conditions mimant les propriétés 
hydrophobes des membranes : solvants organiques (dichlorométhane, TFE, HFIP), différents 
détergents (SDS, DPC) et avec différents types de lipides (POPC, POPE, POPS) dans des liposomes 
ou des liposomes mixtes (mélange de différents lipides). Ces différentes conditions ont été étudiées 
par dichroïsme circulaire (CD) et par fluorescence du tryptophane (Trp). En effet, ces techniques 
permettent d’étudier le repliement des protéines dans leurs environnements. Nous avons montré que 
le peptide p24TMD en solution n’adopte pas une structure en hélice dans l’eau mais dans le mélange 
de solvants eau/HFIP (50/50, v/v) avec un pourcentage en hélice estimé à plus de 80%. La 
reconstitution du peptide préalablement préparé dans eau/HFIP (50/50, v/v) a ensuite été testée dans 
différentes membranes artificielles. Ces membranes ont été préparées à partir de lipides de taille 
et/ou groupes fonctionnels différents (POPC, POPE et DMPC) afin de tester l’effet sur l’insertion 
du peptide durant la reconstitution. Nous avons également des membranes préparées avec un 
mélange de lipides avec la sphingomyèline (POPC/SM (95/5) et POPC/POPE/SM (85/10/5) pour 
tester l’effet de cette dernière sur le p24TMD. Le spectre de dichroïsme circulaire obtenue montre 
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un spectre caractéristique prononcé d’une structure en hélice lors que le peptide est reconstitué dans 
le POPC/SM (95/5) comparé aux autres membranes (Figure 10). Ce résultat comparé à celui obtenu 
pour la membrane de POPC montre que la sphingomyèline influence la structure du peptide et donc 
interagit avec ce dernier. En revanche, le POPE semble favoriser l’agrégation du peptide. Ces 
résultats ont également été confirmés par les données expérimentales obtenues par fluorescence du 
Trp (non présenté) 
 

 
 
 
Figure 10 : Spectre de dichroïsme circulaire du p24TMD reconstitué dans différentes membranes. 
 
 
Les résultats obtenus nous ont permis de mettre au point le protocole de reconstitution du p24TMD 
dans les membranes, et par la suite plus spécifiquement la préparation des échantillons orientés pour 
des études par RMN du solide (Kemayo Koumkoua et al., 2014). 
 
La topologie et la dynamique des peptides membranaires peuvent être étudiées grâce à la 
spectroscopie RMN du solide de 15N et du 2H (Bechinger, 2001; Bechinger and Salnikov, 2012; 
Bechinger and Sizun, 2003; Bechinger et al., 2011). Cependant, comparé à la RMN du liquide qui 
donne un signal moyen avec des pics fins et bien définis dû aux mouvements rapides des molécules 
en solution, le signal en RMN du solide est large parce que les molécules sont quasi statiques voir 
immobiles. Afin d’obtenir des spectres mieux définis et exploitables, des approches ont été 
développées : la rotation à l’angle magique (MAS pour Magic Angle Spinning) et la RMN des 
échantillons statiques orientés entre lamelles de verre. Nous avons principalement utilisé la dernière 
méthode. Elle prend avantage du fait que le signal en RMN du solide dépend de l’orientation par 
rapport au champ magnétique B0. En effet, l’échantillon est déposé sur des lamelles de verres et 
orienté avec la normale de la membrane parallèle par rapport au champ B0. Dans cette condition, 
lorsque le déplacement chimique de l’azote 15 (15N) est supérieur à 200ppm, le peptide est 
transmembranaire et en dessous de 100ppm le peptide a une orientation plane (sur la membrane) 
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(Bechinger and Sizun, 2003). L’orientation des membranes est contrôlée par RMN du phosphore 
(31P) (Bechinger and Sizun, 2003). 
 
Dans le cas du peptide p24TMD, ce dernier a été préparé dans le mélange eau/HFIP (50/50, v/v) et 
ajouté séquentiellement au POPC, POPC/SM (95/5) ou au POPC/SM (90/10) préalablement dissout 
dans du HFIP afin d’éviter de se retrouver uniquement en présence d’eau pour prévenir l’agrégation 
du peptide. L’échantillon a été préparé avec un ratio molaire final protéine/lipide (P/L) de 1%, 
déposé sur des lamelles de verre et orienté par rapport au champ B0. Les spectres de 31P ont donné 
un pic important autour de 25-30ppm et un autre moins important autour de -15ppm indiquant que 
les membranes sont bien orientées (Figure 11, à gauche). Les spectres de 15N du peptide marqué à 
différentes positions (ici Leu 18) ont tous donné des pics avec déplacement chimique supérieur à 
200ppm (Figure 11, à droite) indiquant que le peptide adopte une orientation transmembranaire 
dans les différentes membranes et donc que la SM C18 ne change pas la topologie de l’axe 
principale du peptide.  
 

 
 
Figure 11 : Spectres RMN de 31P des différentes membranes dans lesquelles le 15NLeu18-p24TMD a été 

reconstitué ainsi que les spectres 15N obtenus. 
 
 
En plus de la RMN de 15N, le peptide a également été marqué en 2H afin d’étudier la dynamique 
du peptide. En effet, la forme des spectres 2H est un bon indicateur de la dynamique des peptides 
car elle est beaucoup plus sensible aux petites variations de mouvements du peptide dans les 
membranes. Les spectres 2H expérimentaux obtenues lorsque le p24TMD est reconstitué dans les 
membranes de POPC et POPC/SM (95/5) sont larges (données non présentées) indiquant qu’il n’y 
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a pas une orientation mais une distribution autour de l’orientation principale. De plus, en présence 
de le SM C18, nous n’avons pas observé une différence significative, ce qui indique que la SM C18 
n’affecte probablement pas de façon significative la dynamique du squelette peptidique.  
 
Afin de proposer un modèle de la topologie du p24TMD dans les membranes, un diagramme a été 
généré à partir des valeurs de déplacement chimiques et de couplage quadripolaire obtenues pour 
différentes positions respectivement à partir des spectres 15N et 2H. Une seule courbe est générée 
pour chaque position donnée lorsque la valeur correspondante est introduite dans le programme 
MATHEMATICA avec les valeurs des coordonnées atomiques du résidu correspondant. Cette 
opération est réalisée pour chaque position et toutes les courbes générées sont superposées. Le point 
d’intercession par lequel toutes les courbes se touchent permet de lire les différents angles 
permettant de décrire la topologie du peptide dans les membranes. L’angle que fait l’axe principal 
du peptide par rapport à la normale de la bicouche a été estimé à 19° (Figure 12).  
 

 
 
Figure 12 : Topologie du p24TMD dans des membranes de POPC/SM (95/5). 
 
En résumé, nous avons montré par spectrométrie CD et fluorescence que la SM C18 interagit avec 
le peptide p24TMD probablement en affectant son repliement. Cependant, les études structurales 
réalisées par RMN du solide indiquent que cette interaction n’affecte vraisemblablement pas la 
topologie et la dynamique du squelette peptidique.  
 
Nous avons également étudié l’effet de la SM C18 sur la dynamique de la chaîne latérale de la 
Leucine 23 (Leu 23) qui fait partie du motif responsable de l’interaction ce lipide. Nous avons pour 
cela utilisé la RMN du 2H. Le peptide 2HLeu23-p24TMD a été reconstitué dans les membranes de 
POPC et POPC/SM (95/5) avec un ratio molaire finale P/L de 1% et orienté avec la normale de la 
bicouche parallèle ou perpendiculaire au champ B0. Dans les deux cas, à température ambiante 
(25°C) nous n’avons pas obtenu de signal (non présenté). En revanche à -20°C lorsque tous les 
mouvements sont figés, nous avons obtenus du signal ce qui indique qu’à température ambiante ce 
signal ne peut probablement pas être mesuré dans l’échelle de temps dans laquelle nous travaillons. 
La Figure 13 montre la superposition des spectres 2H obtenus lorsque l’échantillon est orienté 
parallèlement (en noir) ou perpendiculairement (en fushia) par rapport au champ B0. Lorsque le 
peptide est reconstitué dans les membranes de POPC, on note une différence entre les spectres 
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superposés tandis que dans les membranes de POPC/SM (95/5) cette différence diminue 
considérablement. Ce résultat indique que les chaînes latérales de la Leu 23 présentent un certain 
degré d’alignement en l’absence et pas en présence de la SM C18. Ce qui suggère que la SM C18 
affecte probablement la dynamique des chaînes latérales de la leucine 23.  
 

 
 
 
Figure 13 : Spectres 2H du 2HLeu23-p24TMD reconstitués dans des membranes de POPC et POPC/SM 

(95/5) mesurés à T -20°C lors que l’échantillon est orienté parallèlement (noir) ou perpendiculairement 
(fushia) par rapport au champ B0. 
 
 
Conclusions et perspectives 

 
Ce travail de thèse avait pour objectif de caractériser l’interaction entre le domaine 
transmembranaire de la protéine p24 et la SM C14. Nous avons dans ce but voulut tout d’abord 
obtenir ce peptide. Et pour cela nous avons utilisé dans un premier temps l’expression en système 
bactérien puis la synthèse chimique. Concernant la première technique, nous avons utilisé deux 
systèmes d’expression (pMal c 5X-p24TMDH et pTIXP4-p24TMD) et avons pu mettre au point un 
protocol pour exprimer le peptide d’intérêt. Dans les deux cas, nous n’avons pas pu caractériser de 
peptide entier. Néanmoins en prenant en compte les différents problèmes rencontrés, nous avons 
proposé des deux systèmes de continuer à travailler avec le pTIXP4-p24TMD en améliorant la 
purification de la protéine de fusion TAF12-p24TMD ainsi que les techniques de détection du 
p24TMD. Nous avons néanmoins pu obtenir ce peptide par synthèse chimique.  
Ensuite en utilisant la CD et la fluorescence du Trp nous avons pu mettre au point un protocole de 
reconstitution du pp24TMD dans les membranes. Nous avons également montré que la SM C18 
interagit avec ce peptide en affectant sa structure. Cependant des études structurales poussées de la 
topologie et la dynamique dans les membranes par RMN du solide ont montré que la SM C18 
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n’affecte pas le squelette peptidique mais probablement la chaîne latérale de la Leu23 impliqué dans 
le motif d’interaction.   
 
Ce travail a permis d’obtenir des informations structurales permettant de caractériser le peptide 
p24TMD dans un environnement membranaire. Cependant d’autres données structurales 
complémentaires doivent être obtenus. Particulièrement des expériences de PISEMA (Polarization 
Inversion Spin Exchange at the Magic Angle) qui permettrait d’avoir une topologie plus précise du 
peptide dans les membranes ainsi que le REDOR (Rotational Echo DOuble Resonance) qui 
permettrait de mesurer la distance inter atomique par exemple entre les chaines latérales de la Leu23 
et la SM C18. La RMN du liquide dans les micelles est également complémentaire car elle   permet 
d’obtenir comme pour la MAS des spectres mieux résolus. Toutes ces données sont indispensables 
pour pouvoir proposer un modèle pouvant être comparé au modèle proposé par Contreras et al et 
afin d’en tirer des conclusions.  
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Résumé 

Les membranes cellulaires sont des systèmes complexes composés de lipides variés 
qui interagissent avec les protéines pour accomplir une fonction. Leur adressage 
spécifique dans la cellule est crucial pour le fonctionnement cellulaire. Les vésicules 
COP (coat protein) sont impliquées dans leur transport dans les premières étapes de la 
voie de sécrétion. Récemment, une interaction très spécifique a été identifiée entre le 
domaine transmembranaire de la protéine p24 (p24TMD) abondante dans la membrane 
des vésicules COP et la sphingomyéline C18:0. Cette spécificité a été identifiée dans le 
cas d’interaction protéine-protéine et protéine-acide nucléique comme impliquée dans 
la régulation de fonctions cellulaires, C’est pourquoi nous avons décidé d'étudier sur 
cette interaction. A cet effet, le p24TMD a été obtenu par synthèse chimique et sa 
structure étudiée par RMN du solide en présence de la sphingomyèline avec pour but 
ultime de comprendre la fonction. 
Mots clés : interaction spécifique protéine-lipide, lipides, RMN, Protéine membranaire, 
CD. 

 
 

Résumé en anglais 

Cell membranes are complex systems composed of variety of lipids that interacts with 
proteins to trigger cellular function. The delivery of these lipids to the right 
compartment is crucial for cells to work efficiently. The coat protein (COP) complex 
vesicles are involved in lipids traffic in the early stages of the secretory pathway. 
Recently, a highly specific interaction has been found between the transmembrane 
domain of p24 protein (p24TMD) abundant in COPI membrane and sphingomyelin 
C18:0. As such highly specific interaction have been reported for protein-protein and 
protein-nucleic acid interactions to be involved in regulation of cell functions, we 
decide to investigate this specific interaction. The p24TMD was obtained chemically 
and investigated by solid state NMR in presence of sphingomyelin with the ultimately 
goal to understand the function behind. 
Key words: specific protein-lipid interaction, lipid traffic, NMR, membrane protein, 
CD. 

 

 


