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RESUME DE LA THESE 

 

 Le sujet de cette thèse est l'optimisation performances des transistors à effet de champ 

organiques (OFET) et l'intégration de fonctionnalités supplémentaires dans des OFET par 

mélange des composants moléculaires, chacun conférant une caractéristique bien distincte. 

 

Les semi-conducteurs organiques ont fait l'objet d'une activité de recherche 

approfondie au cours des dernières décennies, car ils représentent des composants clés pour 

les applications technologiques dans l'opto-électronique tels que l'électronique de grande 

échelle, les écrans et les senseurs
1-7

. Ils présentent de nombreux avantages par rapport à leurs 

homologues inorganiques (ajustement de leurs propriétés physiques par le biais 

fonctionnalisation chimique, traitement à faible coût en utilisant des conditions douces, 

intégration sur des supports flexibles, etc.)
8
. Toutefois, pour une mise sur le marché, la plupart 

des semi-conducteurs organiques déposés en solution doivent encore atteindre des mobilités à 

effet de champ comparables à ceux du silicium amorphe. Ces mobilités faibles résultent de la 

faible cristallinité des couches semi-conductrices en raison d'une taille de grain typique qui est 

normalement beaucoup plus faible que la longueur de canal du dispositif.
9
 En outre, les 

propriétés des dispositifs organiques sont fortement dépendants de leur interface étant donné 

l'importance que les interfaces métal / semi-conducteur et diélectrique / semi-conducteur 

jouent dans la détermination de la mobilité du transistor à effet de champ ainsi que la tension 

de seuil.
10-11

 Par conséquent, une ingénierie de l’interface optimale est nécessaire, car elle 

affectera la mobilité et la tension seuil. 

 

Les petites molécules semi-conductrices ont démontré des performances électriques 

intéressantes, en partie en raison de leur tendance prononcée à former des domaines cristallins 

par rapport à leurs homologues polymères.
12-18

 En particulier, les dispositifs d’oligothiophènes 

hexaméthyl-substitués, tels que le di-hexylquaterthiophene (DH4T) sont des systèmes modèles 

facilement accessibles qui ont fait leurs preuves pour afficher une grande résistance à 

l'environnement, en raison de leur assemblage dense et de chaînes hexyles agissant comme 

une couche de passivation en plus de leur performance de transport de charges dans les 

transistors. Pour des films sublimés le plus forte mobilité observée (μ) est de 0,09 cm² / Vs. En 

ce qui concerne les films déposés par solution, les valeurs les plus élevées de mobilité 
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trouvées dans la littérature sont de μ = 0,043 cm² / Vs pour les dispositifs imprimés par jet 

d'encre et de μ = 0,012 cm² / Vs pour les films déposés par enduction centrifuge, révélant une 

grande marge pour l’amélioration d’un point de vue de la fabrication des dispositifs.
19-21

 La 

morphologie et la cristallographie de films DH4T ont été plus récemment étudiées par Thierry 

et al., montrant comment DH4T peut s’auto-assembler en une structure cristalline hautement 

ordonnée. Dans leur étude, l'ordre cristallin dans les domaines produits par sublimation sous 

vide était similaire à celui trouvé dans des domaines cristallins issus d’une solution. Les 

dispositifs par solution de haute mobilité peuvent être produits donc si le processus cinétique 

régi par la croissance du film est contrôlée pour obtenir de grands domaines cristallins, 

éliminant ou  réduisant l'effet de joints de grains, qui sont préjudiciables pour le transport de 

charge.
22-24

 

 

Initialement, cette molécule prototype a été testée dans trois solvants chlorés différents 

à savoir le chloroforme (CHCl3), le 1,2-dichlorobenzène (DCB) et le chlorobenzène (CB). Le 

choix du solvant a été jugée crucial pour les performances du dispositif. En particulier, la 

caractérisation morphologique multi-échelle, de centaines d’µm jusqu’à l'échelle 

nanométrique, a été réalisée à la fois par microscopie optique (OM) et à force atomique 

(AFM). Les morphologies des films préparés par déposition de goutte de solution de 1 mg / ml 

de DH4T dans du chloroforme, du chlorobenzène (CB) et du dichlorobenzène (DCB) ont été 

comparées. La surface des films de DH4T déposés à partir de solution dans le chloroforme est 

constituée de petits cristaux rarement reliés entre eux, tandis que les films obtenus en utilisant 

le chlorobenzène ou le dichlorobenzène comme solvant affichent  des domaines cristallins 

plus grands et plus uniformes sur les images OM. Tous les films englobés dans cette étude 

présentent un haut degré de cristallinité tel que confirmé par analyse par diffraction à 

incidence rasante des rayons X. L'uniformité de film sans présence de défauts sur une plus 

grande échelle pour les films de chloro- et dichlorobenzène diminue significativement la 

présence des joints de grains. Inversement, les films déposés à partir CHCl3 présentent une 

très forte rugosité de surface à échelle méso, tandis que les films préparés à partir de CB ont 

montré une diminution de la rugosité. Les films préparés à partir de solutions DCB exposées 

une rugosité encore plus faible. 

 

La procédure qui présentait la meilleure mobilité, à savoir 70 µL de DH4T à 5 mg / ml 

dans le DCB et une vitesse d'évaporation de 0,1, sera désigné comme la «procédure 

optimisée ». Elle a été reproduite avec succès sur plus de 110 dispositifs avec 

l'hexaméthyldisilazane (HMDS) en tant que traitement de surface. Il convient de noter, en 
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dépit du fait que la déposition par goutte est une technique de dépôt qui est censé conduire à 

des performances inégales de dispositif à dispositif en raison de la variation d'épaisseur dans le 

plan xy, la présence de grands cristaux plats couvrant des centaines de micromètres a permis 

la fabrication de dispositifs dont les caratéristiques électriques dont la mobilités avec des 

écarts types qui sont absolument comparables à ceux obtenus pour des films produits par 

enduction centrifuge. De manière significative, contrairement aux dispositifs HMDS 

fonctionnalisés préparés par la procédure optimisée, les courbes de sortie n’indiquent pas la 

présence d'une résistance de contact élevée lorsque l'octadécyltrichlorosilane (OTS) est utilisé 

pour fonctionnaliser la surface du diélectrique d'oxyde de silicium. Les dispositifs ont 

démontré des mobilités allant jusqu'à 0,10 cm² / Vs et des rapports Ion / Ioff jusqu'à 5 × 10
7
. 

Lorsque la procédure optimisée est utilisé, les cristallites comblent facilement l’espace entre 

les électrodes source et drain. En outre, la morphologie des cristallites, suivant le profil des 

électrodes, semble indiquer l'absence de sites de nucléation dans la région inter-électrodique. 

Cela indique que la formation de cristallites ne commence pas dans le solvant mais seulement 

plus tard, ces structures "atterrissant" sur les électrodes et s’étendant par auto-assemblage. 

  

Afin de démontrer cette hypothèse, DH4T a été mélangé avec une molécule similaire, 

DH2T (dihexylbithiophene). 7 échantillons ont été produits, avec des quantités croissantes de 

DH2T dans le mélange, et les performances électriques ont été mesurées. Les trois scénarios 

d'assemblage extrêmes sont les suivants: (a) un film entièrement mélangé avec présence 

d'impuretés DH2T l'intérieur des grains de DH4T, conduisant à une diminution probable de 

cristallinité; (b) une séparation de phase horizontale avec les îlots de DH2T entourés par du 

DH4T et (c) la ségrégation verticale de phase avec une couche de molécule la plus légère et la 

plus soluble (DH2T) sur le dessus. De manière surprenante, les données obtenues par TOF-

SIMS indiquent que la couche de DH2T est présente à l'interface entre le diélectrique et la 

couche semi-conductrice (l'interface étant de 50:50 DH4T: DH2T sur un mélange 99: 1). Ce 

résultat tend à confirmer l'idée que la nucléation de cristallites DH4T ne se produit pas dans la 

région du canal, mais plutôt dans la partie supérieure de la goutte de solution déposée sur les 

électrodes. Les performances électriques ont été testées pour les films résultants des solutions 

mixtes. Une forte baisse de performances électriques a été constatée lors de l'addition de très 

petites quantités de DH2T au mélange (0.1%). DH2T étant une petite molécule isolante, la 

baisse des performances électriques prouve la présence de DH2T à l'interface avec le 

diélectrique. Cela montre que le test électrique peut être utilisé comme un outil non destructif 

de caractérisation de l'interface. 
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 Nous avons employé les connaissances acquises sur les (macro)molécules et l’auto-

assemblage multi-composant afin d'intégrer une nouvelle fonctionnalité dans un dispositif 

semi-conducteur par voie de mélange. Parmi les différentes classes de molécules, les systèmes 

photochromiques ont montré des résultats prometteurs en tant que commutateurs moléculaires, 

mais très peu de  caractéristiques des (semi)conductivité ainsi qu’une fatigue non négligeable. 

La commutation optique entre deux états adressables indépendamment conduit à des 

changements à la fois au niveau moléculaire et l'échelle macroscopique. Au niveau 

moléculaire, nous observons des changements structurels et électroniques, des changements 

réversibles de la géométrie,  des moments dipolaires, de la conjugaison π, de  réversibles, de la 

bande interdite, etc.
25

 La modification des propriétés macroscopiques lors de la commutation 

comprennent des changements dans la forme, le comportement de l'agrégation et de la 

conductance. La molécule que nous avons choisi est un diaryléthène (DAE-Me), synthétisé 

dans le cadre d'une collaboration à long terme, par le groupe du professeur Stefan Hecht à 

l'Université Humboldt de Berlin. Étant donné que ces diaryléthènes alkyle-substitués ne 

présentent pas de comportement semi-conducteur, ils ont été mélangés avec un polymère 

semi-conducteur bien connu, à savoir P3HT. La HOMO de P3HT se trouve entre celles du 

DAE-Me ouvert et la forme fermée. En raison de ce fait, lorsque le diaryléthène est dans la 

forme ouverte, son HOMO agit comme un centre de diffusion.
26-27

 Néanmoins, lorsque le 

diaryléthène est dans la forme fermée, les charges se retrouvent piégés réduisant ainsi le 

courant | IDS | obtenu. Etant donné que le diaryléthène est thermodynamiquement stable dans 

les deux formes, cet effet a été utilisé afin de stocker des informations et de créer des 

mémoires à plusieurs niveaux. 

 

Un montage de laser avec des temps d'éclairage de 3 ns à haute intensité a été utilisé 

afin d'enquêter sur la commutation photo-induite sur les moments pertinents dans 

l'électronique moderne par irradiation. Une impulsion laser de 3-ns (λ = 313 nm) à intensité 

modulable a irradié l'échantillon toutes les dix secondes conduisant à une diminution 

progressive du courant contrôlée par le nombre d'impulsions. Chaque impulsion générant un 

palier de diminution de courant ΔIDS en raison de l'augmentation du nombre de molécules de 

diaryléthène dans la forme ouverte, qui ont basculé vers leur forme fermée. Nous avons réussi 

à construire un dispositif de 400 niveaux d'intensité de courant, pour atteindre une capacité de 

stockage de données sur huit bits (256 niveaux). Par réduction de l'intensité lumineuse en 

utilisant des filtres, nous avons montré que la hauteur des marches est fonction de la densité de 

puissance surfacique parce que le nombre de molécules subissant une isomérisation est 

directement lié à la densité des photons frappant la zone active du dispositif. Par conséquent, 

afin d'augmenter le nombre de paliers, l'intensité lumineuse peut être modulée d’une intensité 
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faible à élevée. Le nombre de paliers serait seulement limité par le bruit dans le signal 

(conduisant à 5000 étapes pour l'expérience présentée) pour un nombre maximal théorique 

d'étapes égal au nombre de diaryléthènes dans le mélange. 

 

Dans l'intérêt de démontrer la possible mise en œuvre des mémoires dans les 

applications électroniques novatrices, toute la procédure a été transférée sur un substrat 

flexible, la abandonnant sur les couches rigides inorganiques à base de silicium pour des 

couches polymères de polyéthylène téréphtalate (PET), le poly (méthacrylate de méthyle)) 

(PMMA) et le poly (4-vinylphénol) (PVP). Les dispositifs ont été caractérisés électriquement 

et les mobilités sont comparables à celles sur oxyde de silicium (supérieures à 10
-3

 cm² / Vs). 

Les capacités de commutation ont été testées sur plusieurs cycles de commutation 

dynamiques. Nous avons constaté que les dispositifs pouvaient être basculés de la forme 

fermée à  ouverte et vice-versa. Des courbes dynamiques IDS-temps avec de petites étapes 

d'illumination à 313 nm indiquent la capacité de l'appareil à fonctionner comme une mémoire 

multi-niveaux de 4 bits (16 niveaux distincts). En outre, la caractérisation électrique a été 

réalisée sur le dispositif après les étapes successives de flexion (rayons de courbure de 29 mm, 

17,5 mm, 10 mm, 8 mm et 6 mm). Après flexion, les performances étaient encore comparables 

à celles observées avant flexion à chaque rayon de courbure pendant 60 secondes, avec des 

pertes mineures en termes de courant et un léger changement dans la tension de seuil, 

prouvant qu’avec de l'optimisation, la mémoire organique 3-terminaux étudiée peut être 

utilisée dans l'électronique flexible. 

 

Visant une enquête plus approfondie sur l’implémentation de fonctions par le biais de 

mélanges, deux polymères, IIDDT-C3 et N2200, ont été sélectionnés pour leurs fortes 

capacités de transport de charge respectivement de type p et de type n, ainsi qu’une légère 

ambipolarité. Les deux polymères contenant des squelettes de thiophène et des chaînes alkyle 

similaires à nos molécules modèles DH4T et P3HT, elles démontraient ainsi un bon potentiel 

de mélange. L'objectif de cette étude en cours est la fabrication de dispositifs ambipolaires. 

Des dispositifs avec des quantités différentes de IIDDT-C3 dans le mélange ont été produits, 

avec de bonnes performances électriques. Un dispositif ambipolaire parfaitement équilibré a 

été produit à un mélange 50/50 de IIDDT-C3 et N2200. Cette approche est très intéressante 

car elle permet l’ambipolarité à la demande et pourrait être adaptée à d'autres polymères à 

mobilités plus élevés. 
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 En résumé, notre étude comparative sur la structure par rapport à la fonction dans des 

OFETs basés sur DH4T en solution a révélé que par l’optimisation des conditions de 

formation d'un film par un choix judicieux de la méthode de traitement, de type de solvant, de 

la fonctionnalisation des interfaces et en particulier en réglant la vitesse d'évaporation du 

solvant il est possible de conduire l'auto-assemblage moléculaire vers la formation 

d'architectures hautement ordonnées présentant des caractéristiques électriques améliorées. De 

manière significative, leur utilisation comme composants électro-actifs dans des OFETs 

conduit à des performances de électriques qui sont au-delà de l'état de l’art pour les transistors 

basés sur DH4T, même lorsque comparé à ceux produits par sublimation faits avec la même 

molécule. En particulier, les mobilités de type p atteignant  0,10 cm² / Vs et des ratios Ion / Ioff 

supérieurs à 10
7
 ont été atteints. Nos résultats confirment sans ambiguïté que l'adaptation des 

interfaces est la clé de bonnes performances électriques. Notre méthode de traitement pour 

fabriquer des dispositifs à haute mobilité est compatible avec les applications de grande 

échelle offrant ainsi une voie vers l'électronique organique qui satisfait l'équilibre nécessaire 

entre la performance et la facilité de fabrication. Combiner le matériau avec DH2T a donné 

des informations supplémentaires sur le processus de cristallisation de DH4T qui se déroule 

au-dessus des électrodes. Ces résultats ont été confirmés par TOF-SIMS ainsi que la 

caractérisation électrique des films produits à partir de mélanges DHnT. 

 

En mélangeant un polymère semi-conducteur avec une petite molécule 

photochromique, nous avons montré qu'il était possible de construire des dispositifs de 

mémoire à 3 terminaux ayant des caractéristiques remarquables. Surtout, la possibilité de 

définir plusieurs niveaux de courant distincts ouvre la voie à des mémoires à haute densité, 

avec des unités de mémoire 8-bits (256+ niveaux). Le temps d'éclairage utilisé pour le 

montage laser était à l’échelle de la nanoseconde, une échelle de temps qui est nécessaire pour 

l'électronique de la vie réelle. Il a été montré que cette approche pourrait être appliquée aussi 

sur des substrats flexibles. En outre, les très bonnes capacités de conservation des données des 

dispositifs et la fiabilité après plusieurs cycles d'écriture-effacement rend cette approche idéale 

pour l'électronique de l’avenir. Etant donné que cette approche est très polyvalente et non 

limité à une paire précise de molécules, en vue d’une alternative à l'encapsulation, le P3HT 

sensible à l'air pourrait être remplacé par un semi-conducteur de type p différent avec des 

niveaux d'énergie similaires, menant à des courants potentiellement plus élevés (d'où un 

nombre accru de niveaux possibles). En outre, les électrodes peuvent être imprimées à faible 

coût, sur de grandes surfaces pour une production de masse facilitée. En mélangeant deux 

polymères, il fut possible d'obtenir l’ambipolarité à la demande avec un rapport de mobilités 
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« type p / type n » allant de 10
-2

 et 10
3
. Cette approche pourrait être adaptée à d'autres paires 

de semi-conducteurs et fait partie d'une étude en cours avec d'autres polymères. 

 

Toutes ces études ont démontré que conférer à un matériau des fonctionnalités 

supplémentaires par mélange est une approche très efficace, réduisant les coûts et les 

difficultés de traitement par rapport aux techniques reposant sur l’utilisation de couches 

distinctes de matériaux. La sélection minutieuse des conditions de traitement (solvant, 

concentration, rapport de mélange, traitement de la surface, etc.) conduisent à de bonnes 

performances électriques pour chaque matériau et mélange étudié. 
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ABSTRACT 

 

 

 The topic of this thesis is the optimization of organic field-effect transistor (OFET) 

performances and the integration in OFET of additional functionalities through blending 

molecular components each one imparting a well-distinct characteristic to the material. 

 

Organic semiconductors have been the focus of an extensive research activity during 

the past decades because they represent key active components for technological applications 

in opto-electronics such as large-area electronics, displays and sensing. They hold numerous 

advantages when compared to their inorganic counterparts (tunability of their physical 

properties via chemical functionalization, their low cost processing using mild conditions 

integration onto flexible supports, etc.). However, in order to enter the marketplace, most of 

the solution-processable organic semiconductors still need to reach field-effect mobilities 

comparable to those of amorphous silicon. These low device mobilities arise from the poor 

crystallinity of the semiconducting layers due to a typical grain size which is normally much 

smaller than the channel length of the device. Furthermore, organic devices' properties are 

strongly interface-dependent given the importance that metal/semiconductor and 

dielectric/semiconductor play in determining the field-effect transistor’s mobility as well as 

threshold voltage. Hence, optimal interface engineering is required because it will ultimately 

affect mobility and threshold voltage.  

 

Small semiconducting molecules have proven to exhibit interesting electrical 

performances, partly due to their pronounced tendency to form crystalline domains when 

compared to their polymeric counterparts. In particular, hexamethyl-substituted 

oligothiophene based devices, such as di-hexylquaterthiophene (DH4T) are easily accessible 

model systems that have proven to display a high resistance to the environment, due to their 

dense packing and hexyl chains working as a passivation layer in addition to their charge 

transport performance in transistors. For vacuum deposited films the highest observed 

mobility (µ) amounted to 0.09 cm²/Vs. As far as solution-processed films are concerned, the 

highest reported mobility values amounted to µ=0.043 cm²/Vs for ink-jet printed devices and 

of µ=0.012 cm²/Vs for spin-coated films, indicating that there is much room for improvement 
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on the processing side. Morphology and crystallographic parameters of DH4T films have been 

more recently investigated by Thierry et al. showing how DH4T can self-assemble into a 

highly ordered crystalline structure. In their study, the crystalline order within domains 

produced by vacuum sublimation was similar to that found in crystalline domains grown from 

solution. High mobility solution-processed devices can be therefore produced if the kinetically 

governed process of film growth is controlled to achieve large crystalline domains, eliminating 

or reducing the effect of grain boundaries, which are detrimental for the charge transport. 

 

Initially this prototypical molecule was tested in three different chlorinated solvents 

namely chloroform (CHCl3), 1,2-dichlorobenzene (DCB) and chlorobenzene (CB). The choice 

of the solvent was found to be crucial for the device performance. In particular, multiscale 

morphological characterization, from the hundreds-of-μm down to sub-μm scale, was carried 

out both by optical (OM) and atomic force (AFM) microscopy. The morphologies of DH4T 

films prepared by drop-casting from 1 mg/mL DH4T solution in chloroform, chlorobenzene 

(CB) and dichlorobenzene (DCB) were compared. The surface of the DH4T films deposited 

from chloroform solution consists of small crystals often not interconnected, whereas the films 

obtained using chlorobenzene or dichlorobenzene as a solvent display larger and more 

uniform crystalline domains in OM images. All films encompassed in this study exhibit high 

degree of crystallinity as confirmed by grazing incidence X-ray diffraction analysis. The film 

uniformity without presence of defects over a larger scale for chloro- and dichlorobenzene 

films does significantly decrease the occurrence of grain boundaries. Conversely, films 

deposited from CHCl3 displayed very high surface roughness on the mesoscale, while films 

prepared from CB showed a decreased roughness. Films prepared from DCB solutions 

exhibited an even smaller roughness.  

  

The procedure that exhibited the best mobility, i.e. 70 µL of DH4T at 5 mg/mL drop-

cast from DCB, evaporation rate of 0.1, will be referred to as the “optimized procedure”. It has 

been successfully reproduced on over 110 devices using hexamethyldisilazane (HMDS) as a 

surface treatment. Noteworthy, in spite of the fact that drop-casting is a deposition technique 

which is supposed to lead to uneven device-to-device performances due to thickness variation 

in the x-y plane, the presence of large flat crystals spanning over hundreds of micrometers 

allowed for the fabrication of devices whose electrical parameters featured mobilities with 

standard deviations which were absolutely comparable to those achieved in spin-coated films. 

Significantly, in contrast to HMDS-functionalized devices prepared with the optimized 

procedure, output curves do not indicate the presence of a high contact resistance when 



 

x 

 

octadecyltrichlorosilane (OTS) is used to functionalize the surface of the dielectric silicon 

oxide. The devices exhibit mobilities up to 0.10 cm²/Vs and Ion/Ioff up to 5×10
7
.  

  

 When the optimized procedure is used, the crystallites readily bridge the source and 

drain electrodes. Furthermore, the morphology of the crystallites, bridging and following the 

profile of the electrodes, seems to suggest the absence of nucleation sites in the interelectrodic 

region. This indicates that the formation of the crystallites does commence in the solvent and 

only later these structures “land” on the electrodes and expand via self-assembly.  

 

 In order to demonstrate this hypothesis, DH4T was blended with a similar molecule, 

DH2T (dihexylbithiophene). 7 samples were produced, with increasing amounts of DH2T in 

the blend, and the electrical performances were measured. The three extreme assembly 

scenarios are: (a) a fully blended film with presence of the DH2T impurities within the DH4T 

grains, leading to a likely decrease of crystallinity; (b) a horizontal phase segregation with 

islands of DH2T surrounded by DH4T and (c) vertical phase segregation with a layer of the 

lightest and most soluble molecule (DH2T) on top. Surprisingly, data from TOF-SIMS 

measurements indicate that the DH2T layer is present at the interface between dielectric and 

within the semiconducting layer (the interface being 50:50 DH4T:DH2T on a 99:1 blend). 

This result tends to corroborate the idea that the nucleation of DH4T crystallites does not 

happen within the interchannel region, but rather at the top of the solution drop deposited on 

the electrodes. The electrical performances were tested for the films resulting of blended 

solutions. A strong decrease of electrical performances was found upon addition of very small 

quantities of DH2T to the blend. Since DH2T is a insulating small molecule, the drop in 

electrical performances proves the presence of the DH2T at the interface with the dielectric. 

This shows that electrical testing can be used as a non-destructive tool of characterization of 

the interface. 

 

 We profited of the knowledge acquired on (macro)molecules and multicomponent 

self-assembly in order to to incorporate a novel functionality into a semiconducting device via 

blending. Among various classes of molecules, photochromic systems have shown promising 

results as molecular switches, but very little (semi)conducting characteristics and not 

negligible fatigue. Optical switching between two independently addressable states leads to 

changes both at the molecular and the macroscopic scale. At the molecular level, we observe 

reversible structural and electronic changes in the geometry, dipole moments, π-conjugation, 
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bandgap, etc. Modifications of macroscopic properties upon switching include changes in 

shape, aggregation behavior and conductance. The molecule we have chosen is diarylethene 

(DAE-Me), synthesized, in the frame of a long-term collaboration, by the group of Prof. 

Stefan Hecht at Humboldt University Berlin. Given that these alkyl substituted diarylethenes 

did not display any semiconducting behavior, they have been blendend with a well-known 

semiconducting polymer, i.e. P3HT. The HOMO level of P3HT sits in-between that of DAE-

Me in the open and the closed form. Because of this reason when the diarylethene is in the 

open form, its HOMO acts as a scattering center. On the other hand, when the diarylethene is 

in the closed form, charges get trapped reducing thereby resulting the |IDS| current. Since the 

diarylethene is thermodynamically stable in both forms, this effect was used in order to store 

information and build multilevel memories. 

 

A laser-setup with illumination times of 3 ns at high intensity was used in order to 

investigate the photo-induced switching upon irradiating times relevant in modern electronics. 

A 3-ns laser pulse (λ = 313 nm) at modulable intensity was shone on the sample every ten 

seconds leading to a progressive current decrease controlled by the number of pulses. Each 

pulse generated a ΔIDS step decrease owing to the increasing number of diarylethene molecules 

in the open form which are turned into their closed form. We have successfully built a 400 

current-intensity levels device, reaching a data storage capacity over 8 bit (256 levels). By 

reduction of the light intensity using filters, we have shown that the step height is dependent 

on the areal power density because the number of molecules undergoing isomerization is 

directly linked to the density of the photons hitting the active area of the device. Therefore, in 

order to increase the number of steps, the light intensity could be modulated from low to high. 

The number of steps would only be limited by the noise in the signal (leading to 5000 steps in 

the presented experiment) for a theoretical maximum number of steps equal to the number of 

diarylethenes in the blend.  

 

 In the interest of demonstrating possible implementation of the memory-devices into 

novel electronic applications, the whole procedure was transferred onto a flexible substrate, 

trading the rigid inorganic silicon based layers for polymeric sheets of polyethylene 

terephtalate (PET), Poly(methyl methacrylate)) (PMMA) and poly(4-vinylphenol) (PVP). The 

devices were electrically characterized and the measured field-effect mobilities were 

comparable to those on silicon oxide (exceeding 10
-3

 cm²/Vs). Switching capabilities were 

tested over multiple dynamic switching cycles. We have found that the devices could be 

switched closed and back open. Dynamic IDS-time curves with small illumination steps at 313 



 

xii 

 

nm indicate the ability of the device to work as a 4-bit multilevel memory (16 distinct levels). 

Furthermore, electrical characterization was performed on the device after successive bending 

steps (bending radii of 29 mm, 17.5 mm, 10 mm, 8 mm and 6 mm). Post-bending 

performances were still comparable to those observed before bending at each bending radius 

for 60 seconds, with only minor losses in terms of current and a slight shift in the threshold 

voltage, proving that with further optimization, the studied organic 3-terminal memory devices 

could be introduced into flexible electronics.  

 

 Aiming further investigation of function implementation through blending, two 

polymers, IIDDT-C3 and N2200, were selected for their strong capabilities of respectively p-

type and n-type charge transport, as well as slight ambipolarity. Both polymers contain 

thiophene backbones and alkyl chains similarly to our model molecules DH4T and P3HT, 

therefore demonstrating good blending potential. The objective of this ongoing study is the 

fabrication of ambipolar devices. Devices with different quantities of IIDDT-C3 in the blend 

were produced, with good electrical performances. A perfectly balanced ambipolar device was 

produced at a 50/50 blend of IIDDT-C3 and N2200. This approach is very interesting as it 

allows ambipolarity on demand and could be adapted to other polymers with higher 

mobilities. 

 

 

 In summary, our comparative study on the structure vs. function relationship in 

solution processed DH4T based OFETs revealed that by optimizing the conditions of film 

formation via judicious choice of processing method, solvent type, interfaces functionalization 

and in particular by tuning the rate of solvent evaporation it is possible to drive the molecular 

self-assembly towards the formation of highly ordered low-dimensional architectures 

exhibiting enhanced electrical characteristics. Significantly, their use as electroactive 

components in OFETs led to device performances that are beyond the state-of-the-art for 

DH4T-base transistors, even when compared to vacuum processed OFETs made with the 

same molecule. In particular, p-type mobilities as high as 0.10 cm²/Vs and Ion/Ioff currents 

exceeding 10
7
 were achieved. Our results unambiguously confirm that the tailoring of 

interfaces is key. Our processing method to achieve high mobility devices is compatible with 

large-area applications thus providing a pathway towards organic electronics that satisfies the 

needed balance between performance and processability. Blending the material with DH2T 

gave additional insight into the crystallization process of DH4T that takes place above the 
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electrodes. Those results were confirmed by TOF-SIMS as well as electrical characterization 

of the films produced from DHnT blends. 

 

By blending a semiconducting polymer with a photochromic small molecule, we have 

shown that it is possible to build 3-terminal memory-devices with impressive characteristics. 

Above all, the ability to define many distinct current-levels paves the way for high-density 

memories, with 8-bit memory units (256+ levels). Illumination times using the laser-setup 

were in the ns rage, a timescale that is necessary for real-life electronics. It has been shown 

that this approach could be implemented also onto flexible substrates. Furthermore, the very 

good data-retention capabilities of the devices and the reliability after many write-erase cycles 

makes this approach ideal for the electronics of the future. Since this approach is very 

versatile, as an alternative to encapsulation, the air-sensible P3HT could be replaced by an 

alternative p-type semiconductor with similar energy levels, leading to potentially higher 

currents (hence an increased possible number of steps). Additionally, the electrodes could be 

printed for facilitated low-cost, large-area mass production. By blending two polymers it was 

possible to achieve ambipolarity on demand with any kind of p/n ratio ranging from 10
-2

 to 

10
3
. This approach could be adapted to other p-type/n-type pairs and is part of an ongoing 

study with other polymers. 

 

All these studies have demonstrated conferring to a material additional functionalities 

via blending is a very efficient approach, reducing costs and processing difficulties as 

compared to techniques relying on the processing of separate layers of materials. The careful 

selection of processing conditions (solvent, concentration, blend ratio, surface treatment, etc.) 

lead to good electrical performances of each material and blend. 
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Chapter 1. Introduction 
 

 

 

 

 

1.1. Background 

 

 The blending of two materials in order to form a new one, with improved characteristics, is not 

a recent idea in human history. From artifacts produced from copper based alloys seven thousands of 

years ago 
1
 to modern polymer blends with improved thermal and mechanical properties, 

2
 blending 

has always been a go-to approach for many applications. Nevertheless, in the field of electronics, very 

pure single component materials are often privileged, due to their often superior performances, and 

addition of a secondary material is mostly limited to very small amounts, for doping purposes. 
3-5

 

These inorganic electronic devices have demonstrated tremendous calculation capabilities, shaping the 

modern world. The first field-effect transistors, at the foundation of the logic gates necessary for data 

processing, were patented by Julius Edgar Lilienfeld first (in 1926) 
6
 and later by Oskar Heil in 1934, 

7
 

but without any practical application. The first semiconducting devices were developed by the team of 

William Shockley at Bell Labs in 1947, opening the gates for an uninterrupted research in electronics, 

8,9
 with the first integrated circuit, developed by Jack Kilby, emerging in 1958. 

10
 Starting from less 

than ten transistors integrated in the early sixties, hundreds of millions of transistors now compose our 

processors, the central data processing units of our computers. As their power increased and their 

fabrication cost decreased, their potential for applications exploded, and microchips are now integrated 

in countless devices. From phones to tombstones, cars and pet-collars, everyday objects are 

transformed into controllable, connected, “smart” devices, which can collect and process data.  
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 Unfortunately, electronics are still facing multiple limitations for future implementation. 

Silicon-based technologies tend to be very expensive and power consuming to produce, since 

microchips are fabricated on wafers grown from liquid silicon. Also, silicon-based chips are non-

flexible and show no transparency. All these drawbacks have lead to parallel research on organic 

semiconductors as a replacement for inorganic technologies. The first field-effect transistor fabricated 

using an organic material as active semiconductor (polythiophene) was reported in 1987 by Koezuka 

and co-workers. 
11

 Since then, numerous polymers and small molecules based on thiophene units 

featuring semiconducting properties were synthetized, and viable organic field-effect transistors were 

fabricated. Novel materials integrating long conjugated systems with a wide variety of chemical 

functions were produced. Among them, some displayed all the characteristics lacking in their 

inorganic counterparts: flexibility, transparency, easily processing from the solution. 

 Regrettably, the “perfect” material has not emerged yet, each molecular material featuring very 

few strongly positive aspects, and a large variety of drawbacks such poor electrical performances, 

opacity, weak mechanical properties, air sensitivity or low solubility in the preferred solvents. While 

most of the research effort is still focused on the synthesis of novel materials, other approaches can 

lead to high-performing organic field-effect transistors. Two in particular stand out. First, the 

fabrication of the devices can be optimized, by careful selection of the processing techniques and 

consideration of the interfaces that determine the interplay between materials for improved electrical 

characteristics. Second, one particular strength of organic materials, the possibility to blend it in the 

solution, can be exploited. Two or more well established materials can be combined in the solution for 

the fabrication of devices with improved performances, and even completely new functions. 

 

1.2. Aims of the thesis 

 

 While device optimization through developments of advanced processing techniques and 

tuning of injection barriers has always followed the study of organic materials, 
12-14

 blending organic 

materials for improved and new properties in electronics has only started to be thoroughly investigated 

since the mid-1990s. This approach yielded good results for augmentation of the electroluminescence 

of organic light emitting diodes and photovoltaics. 
15-17

 The concept was further extended to organic 

field-effect transistors with aims of improvement of electrical performances and implementation of 

novel features in organic devices. 
18,19

  

 In the work presented in this thesis, we will try to reach further in these directions and produce 

devices with the highest possible performances, using mostly small molecules and polymers available 

commercially. We will not limit ourselves to a single pair of molecules to be blended, but consider 

blends with sets of molecules that share similarities, in order to obtain a wider study that can be 

applied in multiple cases. We will consider blends composed of a family of small molecules 
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(oligothiophenes) in order to explore the consequences of the presence of similar molecules on the 

crystallinity and electrical performances of a semiconductor film. Films produced from polymer 

blends with radically different electrical characteristics and molecular structures for potential 

ambipolar transistors will be investigated. The presented work will be linked to real-world applications 

by the fabrication of a photoswitchable multilevel memory device based on a blend of a 

semiconducting polymer and a photochromic small molecule. We will aim to demonstrate the viability 

of such a technology by implementation onto a flexible substrate and measurement of long-term 

volatility.  

 In order to increase the performances of field-effect transistors produced from the solution, a 

large diversity of processing techniques have been developed, often by means of complex 

experimental setups (such as Langmuir Schaefer) that could not realistically be implemented into 

industrial applications. The works presented in this thesis will avoid such techniques and rely on 

simple processing of semiconducting materials that mimic industry-viable processes, such as ink-jet 

printing. Nevertheless, all transistors presented in this thesis will be fabricated upon careful 

investigation of the ideal interface tuning for optimal charge transport. 

 

1.3. Structure of the Thesis 

 

The thesis is composed of nine chapters. The work is arranged in the following order: 

 

● Chapter 1 aimed to introduce the topic of the thesis and placed it in the  scientific context. 

● Chapter 2 will focus on charge transport in solid materials. It will try to provide a glimpse on 

 some theoretical aspects of charge transport in organic materials and charge injection across 

 interfaces.  

● Chapter 3 will present the materials employed in the thesis, their properties and characteristics. 

● Chapter 4 will discuss organic field-effect transistors, their particular features and the their 

 electrical characterization.  

● Chapter 5 will present the experimental techniques for device fabrication and the instruments 

 used for sample characterization. 

● Chapter 6 will focus on the optimization of films of dixehylquaterthiophene for improved 

 electrical performances. It will focus on the control of the rate of evaporation and the 

 functionalization of surfaces. It will explore the effect of blending of small semiconducting 

 molecules for increased charge transport. 

● Chapter 7 will center on a wide range of polymers with different electrical characteristics, 

 blended for the fabrication of ambipolar transistors. It will demonstrate exceptional 
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 performances for multiple polymer combinations. It will center on both electrical and 

 morphological characterization in order to provide convincing explanations for the observed 

 performances. 

● Chapter 8 will spotlight field-effect transistors based on a polymer and a small photochromic 

 molecule for photoswitchable memory applications. It will explore the fabrication and 

 characterization of non-volatile multilevel memories with hundreds of discernible current 

 levels. It will demonstrate the implementation of these devices on a transparent flexible 

 polyethylene terephtalate substrate, and prove the ability to perform properly upon multiple 

 bendings.  

 ● Chapter 9, the conclusion, will summarize the work presented in the thesis, and give short 

 term and long term outlooks. 
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Chapter 2. Charge transport in organic materials 
 

 

 

 

 

2.1. Introduction 

  

 This chapter will attempt to give a general overview on charge carriers and charge transport in 

on organic materials. It will discuss the presence of electrons in solids, and review the different types 

of materials depending on their energetic levels. It will consider the various interfaces between 

materials and how they affect charge carrier transport. In this chapter, we will also focus on the effect 

of impurities at the surface and within the materials. Finally, we will point out the optimal conditions 

for charge transport in organic materials.  

 

2.2. Charges in materials 

 

2.2.1. Energetic levels 

 

 In the case of an electron not bound to an atom, such as a free electron in the gas phase, its 

energy is not limited to a strict value. 
1
  In an isolated atom, the energy of the electrons can only equal 

well defined discrete values, 
2
 which correspond to atomic orbitals. Any atom joining to form a 

molecule combines its atomic orbitals to form molecular orbitals, each of which equals a discrete 

energy level. 
3
 As more atoms are brought together, the molecular orbitals widen and their energetic 

levels form quasi-continuums instead of taking discrete values. These specific intervals where the 

energy of an electron can equal any value are represented as bands, and separated by band-gaps 

(Figure 2.1). 
4
 While the higher occupied energetic levels broaden into large energy-bands, the inner 



 

7 

 

atomic electrons do not interact significantly with neighboring atoms, and their energy levels stay very 

close to their original values. 

 

 

Figure 2.1: Representation of the possible energetic levels of an electron in different states at 0 

K. 

 

 The Fermi-Dirac distribution f(ϵ) describes the distribution of particles (electrons in our case) 

over the possible energy states of the system. 
5
 It describes the probability of an electron to occupy a 

state with the energy ϵ. It allows determination of the average number of electrons occupying the state: 

 

      
 

               
 Eq. 2.1 

 

with T the temperature in K and kB the Boltzmann constant. The Fermi level, ϵ = EF, is defined as the 

level with 50% chance of occupancy as determined from the Fermi-Dirac distribution. The Fermi level 

is represented alongside the bands in energy diagrams, as to determine the occupancy of the bands. All 

bands with energies below the Fermi level are filled, while those above are unoccupied. The highest 

occupied band (immediately below EF) is named the valence band (Ev), while the lowest unoccupied 

band (immediately above EF) is referred to as the conduction band (Ec), as represented in Figure 2.2. 

If the Fermi level is located within a band, valence and conduction band are overlapping. The vacuum 

level is the energy of a free stationary electron that is outside of any material. The energy required to 

extract an electron from the valence band maximum to the vacuum level is the ionization energy (IE). 

6
  If the valence band and conduction band are overlapping, the IE corresponds to the energy required 

to extract an electron from the Fermi level to the vacuum level and is called the work function (Wf). 
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Figure 2.2: Representation of the valence and conduction bands for a Fermi level within a band 

gap.  

 

2.2.2. Charges and charge transport 

 

 The absence of one electron in the valence band is commonly referred to as an electron hole, 

and will be will be mentioned as a “hole” during the whole thesis. Holes are generated when an 

electron leaves the valence band for the conduction band (electron-hole pair generation). 
7
 Holes differ 

greatly from electrons as electrons (e
-
) are negatively charged and holes (h

+
) positively charged. In 

order to be potentially mobile, electrons at the highest occupied energy level, EF, have to be able to 

access a slightly higher energy level to provide net motion in a particular direction. Conversely, holes 

are potentially mobile if they are able to access a lower energy level. In the case of a valence and 

conduction band overlap (absence of band gap Eg at the Fermi level), both electron and hole transport 

are easily achieved since the Fermi level is present inside the continuum of allowed energy levels. 

Materials offering this characteristic are conductive. If the Fermi level is within a broad band gap far 

from the valence and conduction bands, charges cannot move within the material that is an insulator. If 

the Fermi level is within a band gap, but close to either the valence or the conduction band, charge 

mobility is potentially reachable under specific conditions, and the material is a semiconductor 

(Figure 2.3). If the Fermi level is close to the conduction band, electrons are potentially mobile and 

the solid is an n-type semiconductor. Conversely, potential hole movement due to proximity of the 

Fermi level to the valence band is characteristic of a p-type semiconductor. 
8
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Figure 2.3: Energy diagrams for insulators, semiconductors and metals. 

 

2.2.3. Static and mobile charge carriers 

 

 Charge carriers (holes or electrons) are mobile within the solid in the case of a metal. If a 

strong electric field is applied on a metal, the electron density that responds to the applied field is so 

important that the electric field cannot penetrate far into the solid. 
9
 In the case of insulators, the 

electric field is widespread into the solid and can lead to the polarization of the material (called a 

dielectric). 
10

 This is due to the charges that, unable to flow within the material, are only displaced 

towards or opposite of the field, creating an internal electric field reducing the overall field within the 

dielectric itself. The resistance of the dielectric to convey the electrical field is the permittivity (Ɛ), that 

is often given in terms of relative permittivity (Ɛr) according to the equation: 

 

       Eq. 2.2 

 

with Ɛ0 the vacuum permittivity, in F/cm. The capacitance is directly related to the permittivity, and is 

function of the thickness and shape of the dielectric solid. In the case of a flat layer, the capacitance Ci 

is calculated following the equation: 

 

       
 

 
 Eq. 2.3 
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with A in cm² the area of the dielectric where the potential is applied and d the thickness of the 

dielectric, in cm. 

 Semiconductors behave as insulators where charges cannot move freely in the solid. 

Nevertheless, under application of an electric field, the energy levels available to electrons are altered 

and electrons and holes become mobile in respectively n-type and p-type semiconductors. This effect 

is named the field-effect and will be exploited for field-effect transistors as will be discussed in 

chapter 4. Unlike in the case of metals, the electric field is propagated into the semiconductor, but not 

as well as in the case of insulators. Therefore, two regions are defined, the bulk region and the 

interface region, where the electric field is the strongest and charge transport is possible. 

  Charge movement within the metal or semiconductor solid can be conditioned by application 

of an electric potential. Electrons will move towards positive potential while holes will do the 

opposite. 

 

2.2.4. Charge transport in organic semiconductors 

 

 Organic molecules are defined as compounds that contain a skeleton of carbon atoms on 

which are attached hydrogen, oxygen or nitrogen atoms. 
11

 Carbon can form different type of bonds 

according to the hybridization theory of atomic orbitals. Its 6 electrons are split between inner and 

outer shells. In the most inner shell 1s
2
 there are two electrons, other four are placed two in the second 

s orbital (2s
2
) and two more in the p orbital. These four external orbitals can undergo hybridization 

forming an excited orbital state generated by a linear combination of s and p orbital wave functions. 

 This hybrid orbital called sp has a lower energy with respect to un-hybridized p orbital 

because electrons can be disposed in it with parallel spins. Of particular interest is when hybridization 

occurs between 2p orbital, px and py, with the s orbital. This allows a bond formation where a 

conjugated π- electron system is formed by un-hybridized pz orbitals of sp
2
 carbon atoms in a molecule 

as shown in Figure 2.4. In this configuration, two carbons each share one electron from their sp hybrid 

shell resulting in σ bond, and a free pz electron perpendicular to the plane of the C and H atoms, 

forming a π bond. Hence, there is a double bond between the carbons, the addition of a strong σ bond 

and a weaker π bond. The electron conduction can occur due to the change in weak π orbital overlap. 

In conjugated systems, electrons can delocalize within the molecule, leading to molecular orbitals that 

can spread through large areas of the molecule. Conjugated systems may also include other atoms, 

such as sulfur. 
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Figure 2.4: Cartoon representing 4 carbon atoms in a conjugated system, with their outer-shell 

molecular orbitals. 

 

 In organic molecules, the highest occupied and lowest unoccupied energy levels are the 

HOMO (Highest Occupied Molecular Orbital) and the LUMO (Lowest Unoccupied Molecular 

Orbital). The σ bond is very strong and is formed by low energy orbitals, while the π bond is more 

fragile due to weaker pz orbital overlap. Therefore, the HOMO of organic semiconductors stems from 

electrons in π bonds. Organic semiconductors are divided into two categories: small molecules and 

polymers. While in a single small molecule, the energetic levels of the HOMO and LUMO are single 

states, band-like energy levels separated by a band gap (Eg) are observed for small molecules in 

crystalline domains and polymers, as were described previously in Figures 2.2 and 2.3. In the case of 

small molecules in crystalline domains, this is due to intermolecular interactions. Polymers are very 

long molecules with a high number of atomic orbitals that interact, resulting in broad energy bands. 

 

 While inorganic materials such as silicon form a very tight crystalline lattice due to the 

covalent bonding between atoms, molecular crystals are structures held together by relatively weak 

forces: van der Waals interactions and hydrogen bonds, resulting result from the attraction between 

dipoles on different molecules. 
12

 Consequently, organic molecules are separated by a greater distance 

than atoms within an inorganic crystal. Furthermore, organic molecules do not have a perfect 

symmetry like atoms in inorganic lattices. Therefore, within a molecular crystal, charge transport is 

affected by the directionality of molecules in regards to the applied electric field. An example is given 

in Figure 2.5, where the observed mobility of charges was dependant on the orientation of the crystal. 

The largest observed mobility was along the b-axis. While for a perfect mono-crystal, the orientation 

would always be the same in the whole crystal, a polycrystalline solid consists of multiple crystalline 

domains with different molecular orientations, with different charge transport characteristics. 
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Figure 2.5: Packing of molecules in rubrene crystals. The crystal facets used for the FET 

fabrication correspond to the a–bcrystallographic plane. Reproduced from Sundar et al. 
13

 

 

 Therefore, 3 types of charge transport are present in polycrystalline organic semiconductors: 

intra-molecular, inter-molecular and inter-grain transport (Figure 2.6). Charges travel through the 

molecule, by delocalization of an electron within a conjugated system. In that case, charge transport is 

highly related to the orientation of the molecule compared to the electric field. 
14

 In order to move 

from one molecule to the next, charges need to cross a gap in the material. This effect is called 

hopping. In the case or inter-molecular transport within a crystalline domain, the covered distances are 

relatively small (below 1 nm). Nevertheless, the hopping aptitude is variable and not only depends 

greatly on the distance but also on the alignment and interactions between the molecules. 
15

 The third 

type of charge transport, inter-grain transport, is the hopping of charges between crystalline domains. 

It is dependent on the general crystallinity of the material. In general for charges to be mobile, 

crystalline “islands” should not be separated by wide gaps without (semi)conducting material. Ideally, 

the whole solid should be a single crystal for optimal charge transport, without defects or amorphous 

regions. 
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Figure 2.6. Intra-molecular, inter-molecular and inter-grain charge transport. Example for 

pentacene. 

 

2.2.5. p-type and n-type organic semiconductors 

 

 Organic semiconductors can in principle transport both holes and electrons within their 

conjugated system. Their ability to transport either holes or electrons is dependent on their specific 

molecular structure, the different chemical groups attached on their conjugated backbone. A molecule 

such as pentacene, substituted with multiple electron donor hydrogen atoms, will have a highly 

electronegative conjugated system, leaving much affinity for holes, leading to p-type transport ability. 

Conversely, the same molecule substituted with strongly electron-withdrawing fluorine groups instead 

of hydrogen atoms (perfluoropentacene), will be favorable for electron transport. 
16

 

 Nevertheless, most of the semiconducting organic materials operate in the p-type mode, and 

examples of n-type operation with good charge transport characteristics are relatively rare. 
17

 This 

“asymmetry” between n- and p-type carriers is due to several reasons: the HOMO bandwidth being 

typically larger than the LUMO bandwidth, 
18

 a stronger trapping of n-type polarons, 
19

 and a larger 

Schottky barrier for electron injection into organic semiconductors from the most commonly used high 

work function metals, which will be discussed in section 2.3. 

 

2.2.6. The polaron model 

 

 While the polaron model was introduced first for inorganic semiconductors, 
20-22

 it was later 

extended by Holstein and by Fesser et al. to molecular crystals and conjugated polymers. 
23,24

 Charge 

transport in organic semiconductors can be described by the concept of small polarons, the electronic 

states resulting from interaction of charge with lattice polarization at a length scale comparable to the 

lattice constant. 
25-27

 A charge carrier residing on a molecular site tends to polarize its neighboring 
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region. As the resulting formed polarization cloud moves with the charge, the traveling entity is no 

longer a naked charge, but a polaron: a charge carrier together with the induced polarization, 

considered as one entity. In organic conjugated solids, they result from the deformation of the 

conjugated chain under the action of the charge.  

 The stability of the polaron is dependent on two factors: the average residence time of a charge 

on a molecule and the time necessary for the polarization cloud to form around the charge. The 

residence time is dependent on the width of the allowed energetic band where the charge resides, while 

polarization time is correlated with the energy of an electron transistion (the energy of the band gap). 

While the polarization time is similar for inorganic and organic structures (estimated in the order of 

10
-15

 s), the residence time in molecular systems is estimated to be greater by two orders of magnitude 

compared to their inorganic counterparts (10
-14

 s v. 10
-16

 s), due to the much narrower bands of organic 

molecules. As a consequence, in inorganic systems, charge carriers move so fast that the polarization 

cloud does not have enough time to form. Conversely, in molecular solids, the electronic polaron has 

enough time to form, and the energy levels of a charged molecule are significantly shifted with respect 

to that of a neutral molecule. 

 

2.2.7. Defects in the semiconductor crystal: the multiple trap-and-release model 

 

 Defects present in organic crystals create localized electronic states in the HOMO–LUMO 

gap, that can act as traps for charges. The effect of these states on charge transport depends on their 

energy. Two cases are considered. First, if the energy of a localized state is close to the energetic level 

of the HOMO or LUMO band (within a few kBT, kB being the Boltzmann constant), respectively for p-

type and n-type transport, these states act as shallow traps. A polaron trapped in a shallow trap, which 

is characterized with a finite trapping time, τ, can be thermally activated and released into the band. 

Conversely a localized state further away from the HOMO or LUMO act as a deep trap, and a polaron 

that is trapped in this state cannot be release by thermal excitations. Shallow and deep traps are 

illustrated in Figure 2.7. 
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Figure 2.7: Schematic diagram of the energy distribution of localized electronic states, in the 

energy gap between the HOMO and LUMO bands in the rubrene single-crystal OFETs. Reproduced 

from Podzorov et al. 
28

 

 

 The effect of shallow traps on the channel conductivity can be described by the Multiple Trap 

and Release (MTR) model. 
29 The Multiple Trapping and Release model was first developed by Shur 

and Hack 
30

 to describe charge transport in hydrogenated amorphous silicon, and later extended to 

organic semiconductors by Horowitz et al. 
31,32

 In this model, mobile charges can be momentary 

trapped by shallow traps, the number being correlated with the density of traps and the temperature. 

The description of the effect of trapping can be described using two approaches. First, it can be 

considered that all carriers that were field induced contribute to the current flow at any time, but their 

effective mobility (µeff) is reduced compared to a trap-free system (µ0): 

 

          
    

           
 Eq. 2.4 

 

with τtr(T) the average trapping time on shallow traps and τ(T) the average time that a polaron spends 

diffusively traveling between the consecutive trapping events. The other approach assumes that only a 

fraction of the field induced charge carriers (neff) are moving at any given moment, but these carriers 

are moving with a trap-free mobility: 

 

      
    

           
 Eq. 2.5 
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 These two approaches are equivalent for describing the conductivity σ in a material, which 

depends on a product of n and μ, and the distinction between these approaches can only becomes clear 

in the Hall effect measurements, in which the density and the intrinsic mobility of truly mobile carriers 

can be determined independently. From the first approach we can conclude that the intrinsic regime of 

conduction is only realized when τ >> τtr, where µeff ≈ µ0. In this case, the dependence σ(T) reflects the 

temperature dependence of the intrinsic mobility μ0(T). Conversely, when τ << τtr, the transport is 

dominated by shallow trapping processes. It is to be underlined that in the MTR, all the trapping 

processes are temperature dependant, as shown in equations 2.4. and 2.5.  

 

2.2.8. Marcus theory 

 

 The MRT model is an accurate depiction of charge transport in organic crystals, it applies to 

well-ordered materials, prototypes of which are vapor deposited small molecules like pentacene or 

oligothiophenes, where thermally activated charge transport is often observed. It is yet not reliable for 

disordered films. Hopping is a thermally activated tunneling of carriers between localized states. This 

means that charge carriers occupy one state at time and hop from a state to another one with a 

frequency depending on temperature. The rate limiting step is the intermolecular hopping between two 

adjacent molecules. In the absence of external forces, the rate, k, of electron or hole hopping between 

adjacent sites a and b (with respectrive energies ϵa and ϵb) can be described by the Marcus theory: 
33

  

 

      
     

 

 
  

 

    
      

          

     
  

 

Eq. 2.6 

In Eq. 2.6, Vab is the charge-transfer integral, λ is the reorganization energy, kB is the Boltzmann’s 

constant, T is the absolute temperature, and h is the Planck’s constant. For a fixed T, the charge 

hopping rate k depends critically on two material parameters, namely, Vab and λ.  

 The transfer integral Vab is the electronic coupling factor. In organic semiconductors Vab is 

strictly dependent on the overlapping of electronic states. Therefore, it is related to the supra-

molecular interactions occurring between conjugated chains. Distance between stacked chains is a 

major factor governing the transfer integral and stronger interactions lead to an increased hopping rate. 

On the other hand, the reorganization energy λ is an intra-molecular property that is specific to every 

molecule. When a charge moves, reorganization occurs in the polymer, compensating the novel 
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electronic structure of the molecule. From the equation, we notice that the transfer rate does not 

increase indefinitely with more favorable energy differences, the exponential term being maximal at 

Δϵ = - λ. In other words, the energy difference between sites should compensate the reorganization 

energy. 

 

2.2.9. Variable range hopping transport in organic semiconductors 

 

 The Variable Range Hopping (VRH) model, as described by Vissenberg et al, 
34

 accounts for 

hopping in positionally and energetically disordered systems of localized states. 

 In a highly disordered organic solid, percolation theory developed by Hammersley in 1957 

applies: within the material, several paths of molecules with the adequate intermolecular distance and 

orientation are present. Nevertheless, a large portion of the material is not perfectly connected in all 

directions. Hopping only accounts for charge transport governed by the thermally activated tunneling 

of carriers between localized states. Variable range hopping, on the other hand states that a carrier may 

either hop over a small distance with high activation energy or hop over a long distance with a low 

activation energy. 

 In Vissenbergs VRH model, the conductivity σ is dependent not only on the effective 

temperature (T0), number of states per unit volume (Nt), fraction of the localized state occupied by a 

carrier (δ) and molecular overlap governing the thermally actived tunneling process between two 

localized states (α), but also the critical number of bonds per site in the percolation network (Bc):  

 

          
             

 

                           
 

    

 Eq. 2.7 

 

2.2.10. Charge transport in polymers 

 

 Conjugated polymers are organic macromolecules that consist of tens to hundreds of 

covalently bound molecular building blocks that are arranged in a chainlike structure. Evidently, 

conjugated polymeric semiconductors differ greatly from small molecules, as their length is orders of 

magnitude larger. The elastic arrangement of molecules in their backbone supports collective vibration 

modes, phonons. The electronic structure of polymers is a consequence of the interplay between π-
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electron delocalization along the polymer backbone and strong electron-phonon coupling. The 

electron-phonon coupling corresponds to the induced electron-lattice induced vibrations. 

 In a perfectly straight polymer chain, the HOMO and LUMO states of the neutral polymer 

would be fully delocalized along the polymer chain and exhibit significant broadening with estimated 

bandwidths of several electron volts. 
35

 However, as a result of the strong electron-phonon coupling 

and the disorder-induced finite conjugation length, charges introduced into the polymer interact 

strongly with certain molecular vibrations and are able to lower their energy with respect to the 

extended HOMO/LUMO states by forming localized polaron states surrounded by a region of 

molecular distortion. 
36

 

 Polymer chains are semi-flexible: rigid at length scales comparable to their persistence length 

and flexible at larger length scales. Conjugated polymer chains have many degrees of conformational 

freedom and interact weakly with each other, resulting in complex microstructures in the solid state. If 

the spacing between neighboring crystallites is only a few persistence lengths, a chain that exits one 

ordered region and enters another does not suffer large bends in its backbone and retains significant 

conjugation. In the polymeric solids heterogeneous microstructures, the ordered regions are largely 

responsible for charge transport, since charges must overcome an energy barrier to move from ordered 

to amorphous regions 
37

 as represented in Figure 2.8. Owing to its reduced conjugation length, the 

amorphous fractions of polymers have a larger bandgap compared to the crystalline aggregates. This 

energetic offset hinders carrier migration into the amorphous regions, and it is energetically and 

statistically favorable for charges at the order/disorder interface to migrate back into the ordered 

regions. Considering that charge transfer is favored in the crystalline domains, and charge transport is 

mostly realized within the chains of the polymer, two important factors are to be considered: the 

crystallinity and the nature of the chain (length, rigidity). 
38

 

 

Figure 2.8: Schematics of the microstructure of the polymer P3HT (a) semi crystalline polymer 

film, (b) disordered aggregates, and (c) a completely amorphous film. Figure reproduced from Noriega 

et al. 
37
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2.3. Interfaces 

 

2.3.1. Metal-semiconductor junctions 

 

 Charge carriers may travel through a junction, from one material to another. It is for instance 

possible to inject charges from a metal (the source) into a semiconductor, and back into a metal again 

(the drain), by applying an electrical potential between source and drain. The interface energy barrier 

is given by the energy offset between the molecular orbital of the semiconductor and the Fermi-level 

of the metal. Before contact, both the metal and semiconductor are in their normal state and their 

Fermi-levels are misaligned. Upon contact, the work function of the metal and the ionization energy of 

the semiconductor align. 
39,40

 In the case of the work function of the metal higher than the IE of the 

semiconductor, electrons will flow from the semiconductor into the metal, lowering the semiconductor 

Fermi-level (depletion). Conversely, a lower Wf will result in the decrease of the Fermi-level of the 

metal (accumulation), by electron-flow from the metal to the semiconductor. 
41

 The difference 

between the vacuum level of the semiconductor and conduction band is the electron affinity χ (Figure 

2.9). 

 

Figure 2.9: Metal/semiconductor junction, example for Wf > IE. (a) Energy diagram of a metal and 

a semiconductor, not joined. (b) Energy diagram of the same metal and semiconductors after junction. 

 

 If a gap is present between the surface of the metal and the surface of the semiconductor, the 

exchanged charges will create an electric field within the gap. Upon closing the gap, the vacuum levels 

of both sides mismatch. The energy barrier Φb (Shottky barrier) is the energy a charge carrier needs to 

move from the EF of the metal into the conduction band of the semiconductor: 

 

(a)             (b) 
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Φ         Eq. 2.8 

 

 Three possible configurations are conceivable depending on the energy levels of the metal and 

semiconductor: Wf > IE, Wf = IE and Wf < IE. In the first case, due to electron depletion, the contact 

region is unable to supply enough charge carriers to the bulk of the semiconductor, and the contact is 

injection-limited for electrons. On the other hand, there is a hole surplus in the contact region so the 

metal is able to provide any charge flow required by the bulk of the semiconductor (ohmic contact for 

holes). If Wf and IE are equal, the Fermi levels are already aligned and no charge redistribution is 

needed (neutral contact). In the third case, the electrons are accumulated in the semiconductor (Ohmic 

contact for electrons). As a result, in order to facilitate injection of electrons from a metal into a 

semiconductor, a metal with a work function lower than the IE of the semiconductor is recommended. 

In the case of hole injection into the semiconductor, a metal Wf higher than the IE of the 

semiconductor is preferred. 

 

2.3.2. Tuning the energy levels of a metal surface with self-assembled monolayers 

 

 As described above, depending on the work function of the metal and the IE of the 

semiconductor, hole or electron transport can be favored or hindered. We have seen that in order to 

increase the n-type conduction, a metal with a low work function is preferable; while a high work 

function is better for p-type conduction. This can be arranged by the choice of the right metal. For 

example, a metal with a high work function such as gold (Wf ≈ 4.7-5 eV) is often selected to be used 

with p-type semiconductors. Nevertheless, the selected metal should be easily processable and inert, 

leaving often few possibilities, and the IE of the semiconductor could still be superior to the work 

function of the metal. In order to face these injection problems, the metal can be functionalized by 

chemisorption of Self-Assembled Monolayers (SAMs) on the surface. Among SAMs, thiolated 

molecules are widely used for the functionalization of a gold surface. 
42,43

 The growth of the 

monolayer can be produced by immersion of the metal layer into a solution containing the thiol-

substituted molecules to be chemisorbed. As the thiol groups approach the surface, the sulfur forms a 

chemical bond with the gold, and the chemisorbed molecules lie down on the surface of the gold layer. 

Once the substrate is fully covered, a “nucleation” phase starts where molecules tilt-up, creating 

islands with a dense phase of upright molecules. Other thioated molecules of the solution bond with 

the metal, leading to a dense monolayer. 
44,45

 While the coverage can be homogeneous upon the whole 

surface, the formation of areas with different orientations can be observed, especially if the SAM 

covered metal is defect-rich. 
46
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 The formation of a self-assembled monolayer has great impact on the surface of the metal, and 

varies depending on the chemisorbed molecule. Depending on the interaction of the SAM with a 

solution deposited on it, the wettability can be tuned. 
47,48

 Furthermore, the ability to stack molecules 

in crystals over the metal can be affected by the SAM. 
49

 In terms of injection, two major effects 

derive from the formation of a monolayer on the metal. First, the SAM represents a layer of often non-

conductive molecules that act as a gap between the source and the semiconductor, as illustrated in 

Figure 2.10. An additional potential due to the gap between metal and semiconductor that need to be 

overcome by the electrons emerges from the dipole moment between metal and SAM. The second 

effect is a modification of the work function of the metal due to the formation of the metal-SAM bond. 

The bond dipole is strongly dependent on the chosen metal so for a given fixed metal, the work 

function shift is mostly defined by molecular dipole. 
50

 Therefore, by careful selection of the chemical 

function on the SAM it is possible to increase or decrease the work function of the metal. 
51

  

   

 

Figure 2.10: Cartoon illustrating a metal-semiconductor junction. Illustration for gold 

functionalized with a self-assembled monolayer of fluorinated alkanethiols. 

 

 The chemisorption of a SAM on a metal adds an insulating barrier that charges must overcome 

to be injected in the semiconductor. The physical process that allows charges to overcome the barrier 

is tunneling, and a longer distance to cover is synonym of a larger tunneling resistance Rt. Naturally, 

the tunneling resistance is also dependent on the chemical nature of the backbone of the chemisorbed 

molecule. Consequently, the tunneling resistance is defined by:  
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    Eq. 2.9 

  

with R0 the effective contact resistance, L the thickness of the SAM and β the exponential factor 

associated with the nature of the molecular backbone of the molecule chemisorbed on the metal. In 

summary, the optimal SAM for charge injection should be as short and tightly packed as possible, with 

the appropriate functions to shift the work function of the metal. 

 

2.3.3. Charge transport at the semiconductor-dielectric interface 

 

 When an electric field is applied on a semiconductor through a dielectric, charge carriers 

present in the semiconductor will travel towards the dielectric. The affected charges will depend on the 

potential that is applied, with holes moving towards negative potential and electrons towards positive 

potential. Charge carriers will therefore accumulate at the interface between dielectric and 

semiconductor, and this region will be the location of most of the charge transport. In order to 

optimize electrical performances, it is of capital importance to create a dielectric surface that is 

adapted to charge transport. While the obvious approach is to decrease surface roughness and remove 

adsorbed impurities that could interfere with charge transport, the use of SAMs on the dielectric 

surface can also provide improvements in the mobility of charges. The formation of a SAM on a 

dielectric is similar to the process described for metal functionalization. The adequate SAM on a 

dielectric can impact the crystallization process of the semiconductor through modification of the 

wettability and modification of the surface energy. In the case of the commonly used dielectric silicon 

dioxide (SiO2), molecules are chemisorbed on the surface using silane or silazane groups. 
52

  

  

2.4. Effect on impurities in the semiconductor: Doping and trapping 

 

 If the semiconductor is in direct proximity of a second material, charges present in the 

semiconductor might interact with it. Charge carrier trapping is the transfer of a charge carrier from 

the delocalized states of the semiconductor to a localized state in the second material. 
53

 The trap states 

can be localized within the semiconductor, on an unsaturated bond of an atom at the semiconductor-

dielectric interface, or within the surrounding environment. In order for a charge carrier to be trapped 

into a molecule, the process has to be energetically favorable. For electrons, charges will only flow in 

the trap if the LUMO of the trap is lower than the LUMO of the semiconductor. Conversely, holes will 

be trapped if the HOMO of the trap is higher than the HOMO of the semiconductor. 
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 Doping refers to the introduction of small quantities of impurities into a material in order to 

tune its electrical properties. Doping is commonly used for inorganic semiconductors. In the case of 

silicon, small quantities of electron acceptors (such as boron) can be used for p-type doping, while 

small quantities of electron donors (such as phosphorus) can be introduced for n-type doping. 
54

 Upon 

addition of these impurities, some energy states within the band gap can be allowed: donor impurities 

create states near the conduction band while acceptor impurities add states close to the valence band. 
55

 

These additional states lead to better conduction in the material for the target type of transport. In 

organic semiconductors, doping is performed by oxidation or reduction of the semiconductor by 

addition of chemical reactants in order to favor the generation of charge carriers. Compared to 

inorganics, doping in molecular materials occurs by addition of much larger quantity of dopants. The 

presence of oxygen can lead to oxidative doping of an organic semiconductor, resulting in increased 

charge carrier concentration and reduced charge transport characteristics. 
56

 In order to avoid oxygen 

doping, organic materials are usually tested in an oxygen-free environment. 

  

2.5. Conclusions 

 

 In this chapter, charge carrier transport in solid materials was discussed. Energy levels of 

materials were considered for the classification of solids into categories depending on their electrical 

features. We have determined the ideal conditions for charge transport within organic semiconductors 

and concluded that organic small molecules should be tightly packed in large crystalline domains, 

while polymers benefit greatly from smaller domains where charge carriers hop from one chain to the 

next. Upon discussion regarding charge injection from one material to another, we have determined 

that the HOMO and LUMO levels should be carefully considered, and that it is possible to tune the 

energetic levels of surfaces through functionalization with self-assembled monolayers. The impact of 

the presence of impurities in or at the interface of a semiconductor was reviewed. It was determined 

that while charge trapping and doping were often detrimental effects, those effects can be controlled.  
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Chapter 3. Molecules and materials 
 

 

 

 

 

3.1. Introduction: small molecules, oligomers, polymers 

 

 Two categories of molecules are used for organic electronics: small molecules and polymers. 

The former are monodispersed whereas the latter are polydispersed. As a result the former can more 

easily undergo aggregation forming crystalline architectures whereas the latter can also crystallize but 

only to a certain degree and are therefore often called semicrystalline. Upon solvent evaporation, 

crystalline lamellas of polymers are surrounded by amorphous regions. Polymers are characterized by 

a molecular weight (distribution). The processing methods of small molecules and polymers are 

different. Methods such as thermal evaporation are mostly reserved to small molecules, and in general, 

mono-crystals are specific to small molecules. Whether small molecule or polymer, the conjugated 

system is of paramount importance for charge transport, and is often based on a conjugated monomer, 

such as aromatic thiophene units. Since the synthesis of polythiophene was described in 1982, 

oligomers and polymers of thiophene derivatives have been extensively investigated. 
1
 Oligomers are 

molecules consisting of a few monomer units, while polymers usually contain from a few dozen to a 

few hundreds of monomers, leading to a very high molecular weight of tens of kDa. 

 This chapter will focus on the description of the small molecules and polymers used in the 

thesis. It will review p-type and n-type semiconductors, as well as photochromic molecules. 

Furthermore, processing from the solution will be discussed in terms of blending and solubility, and 

phase segregation will be considered. 
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3.2. Studied semiconductors  

 

3.2.1. Oligothiophenes 

 

 Oligothiophenes (OTs) represent one of the most promising classes of semiconductive 

materials for field-effect transistor fabrication owing to their charge transport characteristics and 

environmental stability. 
2-4

 However, unsubstituted OTs are insoluble in the usual solvents and can be 

deposited only by vacuum evaporation, which is slow, expensive and hardly applicable for large scale 

production. The high charge mobility and poor solubility of oligothiophenes is linked to the great 

molecular ordering and side-by-side stacking of aromatic molecules. It was demonstrated that the 

introduction of hexyl groups in the α- and ω-positions (see Figure 3.1) leads to an increase of 

solubility (good solubility for α-,ω-dihexylbithiophene, DH2T, and α-,ω-dihexylquaterthiophene, 

DH4T, but less than 1 mg/mL for α-,ω-dihexylsexithiophene, DH6T). 
5
 Solubility of sexithiophene 

could be further improved by functionalization via hexyl groups in the β-position, but films based on 

β-,β‘-DH6T were completely amorphous and the charge transport ability was greatly reduced. 
6
 

Thefore, the studied molecules in this theses were DH2T, DH4T and DH6T, in their α-,ω-hexyl 

substituted form. 

 

 

 

Figure 3.1: Thiophene oligomers and hexyl-terminated thiophene oligomers. (a) Thiophene 

monomer. (b) Bithiophene with α-, β-, ω- and β‘- substitution sites. (c) α-,ω-dihexylbithiophene 

(DH2T). (d) α-,ω-dihexyl-quaterthiophene (DH4T). (e) α-,ω-dihexylsexithiophene (DH6T). 

 

(a)         (b) 

(c) 

           

(d) 

 

(e) 
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3.2.2. Polymers 

 

3.2.2.1. P3HT, a p-type semiconducting polymer 

 

 Small molecules, due to their high inclination to form crystalline lattices, have been widely 

investigated for organic field-effect transistors, and still yet retain the highest reported electrical 

characteristics to date. 
7
 But these materials are seriously challenged by longer polymeric chains that 

exhibit interesting mechanical characteristics that could find many potential applications. Polymers 

with ability to transport holes are the most common semiconducting polymers. They include polymers 

based on long conjugated thiophene chains, alkyl-substituted for increased solubility (for example 

PQT-12 
8
), often with intercalated groups between thiophene units, such as thienothiophene in 

polymers like PBTTT-C14 
9
. Other intercalated groups include fluorine (in F8T2 

10
), carbazole (in 

PCB-R 
11

) and cyclopentadithiophene (in PCPDT 
12

), among many others. 

 Poly(3-Hexylthiophene) (P3HT, Figure 3.2) is a simple polymer based on the thiophene 

monomer substituted with a hexyl chain. It is a much studied and well established p-type 

semiconducting polymer. It is highly soluble and forms polycrystalline architectures consisting of 

crystalline domains surrounded by amorphous matrixes. The intermolecular distance is largely reduced 

in the crystalline domains, and hopping is therefore favored as compared to the amorphous areas of the 

film. Two major aspects of improvement of electrical performances of P3HT are the increase of the 

size of crystalline domains for facilitated inter-molecular transport and the increase of the length of the 

polymeric chains for improved intra-molecular transport. The ideal scenario would be a single P3HT 

crystal bridging the interelectrodic gap. In the case of a highly regioregular material, the interdigitated 

stacking of P3HT in crystalline domains is favored, and chain bending is inhibited. Therefore, highly 

regioregular P3HT with high molecular weight (50 kDa) has been used in the works presented in this 

thesis. The structure of P3HT films is very interesting for blending, as upon solvent evaporation, the 

other molecules tend to be expelled from the crystalline domains (where most hopping occurs) into the 

amorphous regions of the film. P3HT is a polymer with a very wide range of use in different 

applications, ranging from organic field-effect transistors to solar cells when blended with an n-type 

material such as PCBM. 
13
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Figure 3.2: Chemical formula of Poly(3-Hexylthiophene). 

 

3.2.2.2. Other p-type semiconducting polymers 

 

 While P3HT remains one of the most used p-type semiconductors for organic electronics and 

one of the more established building blocks for these applications, in the last few years several 

materials have successfully challenged it, by displaying greater electrical performances and air-

stability. Among those, three are studied in this thesis: IIDDT-C3 (Poly[1,1'-bis(4-decyltetradecyl)-6-

methyl-6'-(5'-methyl-[2,2'-bithiophen]-5-yl)-[3,3'-biindolinylidene]-2,2'-dione]), 
14

 PDVT-8 (poly[2,5-

bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H, 5H)-dione-alt 5,5′-di(thiophen-2-yl)-2,2′-(E)-2-(2-

(thiophen-2-yl)vinyl)thiophene]) 
15

 and PCD-TPT (Poly[[1,2,5]thiadiazolo[3,4-c]pyridine-4,7-

diyl(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)[1,2,5]thiadiazolo[3,4-

c]pyridine -7,4-diyl(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4- b']dithiophene-2,6-diyl)]) 
16

 (Figure 

3.3). These polymers share some characteristics with P3HT, as they all contain thiophene groups in 

their conjugated systems and alkyl chains are present for improved solubility. IIDDT-C3 is based on 

an isoindigo core coupled to two thiophene groups. The combination of the electron-rich and electron-

poor blocks is effective for increase π-π stacking between polymer chains, for an improved 

crystallinity in the solid phase. 
17

 Furthermore, the presence of the electron-rich thiophene groups 

compensates the isoindigo core and helps to increase the HOMO level of the polymer. A similar 

design is adopted in the polymer PDVT-8, pyrrolopyrroledione blocks separated by thiophene-based 

chains. PCD-TPT was designed for great rigidity with dihexadecylcyclopentadithiophene groups 

around the thiadiazolopyridine units. Interestingly, not only all these polymers proved better p-type 

semiconducting performances, they also exhibit some electron-transport properties, making them 

slightly ambipolar. 
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Figure 3.3: Chemical formulae of the studied p-type polymers. (a) IIDDT-C3. (b) PDVT-8. (c) 

PCDTPT. 

 

3.2.2.3. P(NDI2OD-T2), an n-type semiconducting polymer:  

 

 The first discovered organic materials with semiconducting properties were all materials with 

hole transport capabilities. The main strategy followed by synthetic chemists for developing n-type 

organic semiconductors is to reduce the electron density along the π-conjugation in the neutral state. 

Functional groups such as fluorides, nitriles, amides and imides, are attached onto the π-conjugated 

backbone. Using this approach, low-lying LUMO and HOMO energy levels to efficiently inject 

electrons  are obtained and, at the same time, molecules with low reorganization energy are stabilized. 

Nevertheless, n-type materials are still lacking behind their p-type counterparts, and most of the 

organic n-type semiconductors are small molecules. Well performing n-type polymers are still 

relatively rare. The best performing n-type polymers to date are based either on benzothiadiazole 

groups (for example F8BT 
18

) and perylene diimides (for example PDIC8-EB 
19

). 

 P(NDI2OD-T2) (poly[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-

diyl]-alt-5,5'-(2,2'-bithiophene) (Figure 3.4) was selected as n-type semiconductor to be used in 

combination of the aforementioned p-type semiconductors for the work presented in chapter 7.  The 

conjugated system is comprised of a naphthalene diimide core and two thiophene units. The aliphatic 

chains are tailored for optimal solubility and stacking, leading to one of the best performing n-type 

semiconductors. 
20

  While it is predominantly an n-type semiconductor, it has some very minor p-type 

charge transport capabilities. 

(a)                    (b) 

 

 

 

 

           (c) 
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Figure 3.4: Chemical formulae of the studied n-type polymer P(NDI2OD-T2).  

 

3.3.  Photochromic molecules 

 

 Organic molecules differ greatly from inorganic systems. The wide variety of organic 

molecules exhibit specific characteristics, such as flexibility, transparency and solubility in various 

solvents. Among all features, their chemical reactivity is one of their most obvious yet remarkable, as 

it leaves much room for tunability of various physical and chemical properties including the electrical 

performances, as it was described previously with SAMs. A photochromic organic molecule is a 

chemical system that can change its state when subjected to illumination. 
21

 After irradiation at a 

specific wavelength, a reversible transformation occurs in the molecule affecting its geometry and/or 

conjugation. 
22-24

 As an example of these molecules, we can cite azobenzenes, which switch from the 

more linear trans isomer to the more bulky cis form when illuminated, leading to possible energetic 

changes. 
25

  

 Diarylethenes are molecules composed of two aromatic substituents, bridged by an olefinic 

bond. More specifically, the typically used diarylethenes are bisthienylethenes. They are composed of 

two thiophene groups at each side of the olefinic bond, is rigidified by a cyclopentane unit, as 

illustrated in Figure 3.5. Upon irradiation with UV light, a bond is created by delocalization in the 

conjugated system, resulting in a modification of the energetic levels of its HOMO and LUMO. 
22

 The 

new form is stable but the photochromic molecule will return to its original state upon irradiation with 

visible light. Noteworthy, it is a bi-stable system: both forms are stable and the molecule can be 

synthesized in either one of the two forms. Furthermore, the molecules occupy a similar space in both 

forms; therefore, switching of the diarylethenes can be performed in a tightly packed solid. 
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Figure 3.5: Chemical formula of the diarylethene’s switchable core in its two stable forms.  

 

 If a semiconductor is in contact with the switchable molecules electronic or electrostatic 

interactions between the two systems can take place. In particular, charge carriers might get trapped 

into the switchable molecule, if it is energetically favorable. In the case of a switchable molecule with 

two HOMO levels for each form that are higher and lower than the HOMO level of the semiconductor, 

the switchable molecule might act as a trap for holes in one form and not the other, as described in 

Figure 3.6. Conversely, tunable LUMO levels can make a molecule switch from scattering center to 

charge trap for electrons. This effect can be exploited to tune the charge transport characteristics of a 

semiconductor upon irradiation at the adequate wavelengths. 

 

Figure 3.6: Diagram representing charge transfer from a semiconductor into a photoswitchable 

molecule. 

  

3.4.  Mixing components 
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 While inorganic semiconductors for electronic applications are produced by growth from the 

pure molten material (with added dopant impurities), organic electronics are fabricated using 

evaporation techniques (only possible for small molecules) or deposited from the solution with 

techniques such as drop-casting, spin-coating, ink-jet printing, dip-coating and spray-coating, among 

others. When solution processed materials are considered, solubility and ability to blend should be 

examined. The basic thermodynamic relationship governing mixtures established by Gibbs is: 
26

 

 

             Eq. 3.1 

 

with ΔGm the Gibbs free energy of mixing, ΔHm the enthalpy of mixing ΔSm the entropy of mixing and 

T the temperature. In order for spontaneous mixing to occur, ΔGm should be negative. The enthalpy of 

mixing is always positive; therefore, in ideal solutions the components are always miscible in any 

proportions. An ideal solution is defined by mixing of small molecules where the cohesive interactions 

and the adhesive interactions are equal in strength: there is no enthalpy of mixing (ΔHm= 0). A regular 

solution is a solution that diverges very little from an ideal solution. The entropy of mixing is 

considered equal to that of the ideal solution with the same composition, due to the lack of strong 

specific interactions. The enthalpy of mixing is nevertheless non-zero, and mixing will be favored only 

if ΔHm < TΔSm. The miscibility of different components is dependent on the mixing ratio and 

intermolecular interaction and can be represented in phase diagrams, an example being given in 

Figure 3.7. 

 

 

Figure 3.7: Phase diagram of a two-component blend as described by the regular solution model. 

Reproduced from Jones et al. 
27
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In order to adequately describe solutions of small molecules with specific intermolecular interaction, 

group contribution theory can be applied. The different chemical functions of the molecules present in 

the blend will interact, and the sum of all interactions approximately corresponds to the global 

interactions, and the enthalpy can be evaluated. Considering mixing in terms of chemical functions is a 

very practical approach, since it opens the way for the design of molecules with particular chemical 

functions, that will favor or prevent blending or solubility in certain solvents. Organic semiconductors 

are often designed with intermolecular and molecule/solvent consideration, in order to favor solubility 

in organic solvents and packing. 

Nevertheless, considering only the intermolecular interactions stemming from the functional groups of 

the molecules is insufficient for large molecules, such as polymers. The basic theory for estimating the 

miscibility of blends including polymers was developed by Flory and Huggins and is thus referred to 

as the Flory-Huggins theory. 
28,29

 The equation describing the Gibbs free energy of mixing resulting 

from their analysis is the Flory-Huggins equation: 

 

          
  

  
     

  

  
                     Eq. 3.2 

 

with V the total volume, Vi the molecular volume of component i, φi the volume fraction of 

component i, kB Boltzmann’s constant, χ12 the Flory-Huggins interaction parameter and υr the 

interacting segment volume. In this equation, the first term accounts for the combinatorial entropy of 

mixing and the second for the enthalpy of mixing. The Flory-Huggins Equation was successfully 

applied to demonstrate the basic reason for decreased miscibility of solvent-polymer mixtures 

compared to solvent-solvent mixtures as the combinatorial entropy of mixing is decreased. In 

polymer-polymer mixtures, the combinatorial entropy of mixing approaches insignificant values in the 

limit of high molecular weight polymer mixtures. Therefore, to achieve miscibility, a negative heat of 

mixing (χ12 < 0), and consequently negative enthalpy must be obtained. In order to increase the 

miscibility if the condition ΔGm < 0 is reached, the temperature can be increased. 

 

3.5. Phase segregation 

 

 In most cases solutions with mixed molecules in the original volume are used. Nevertheless, a 

perfectly mixed initial solution with more than one component does not necessarily result in a 

homogeneous solid material once the solvent is evaporated. The final solid resulting from the blended 
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solution can have different domains composed of the different molecules initially present in the blend, 

an effect called phase segregation (or phase separation). Phase segregation can occur on either the 

vertical scale (z-scale), the horizontal scale (xy-scale) or both. An illustration of vertical and horizontal 

phase segregation is presented in Figure 3.8. There are many consequences of phase segregation on 

charge transport in organic materials. While in a perfectly homogeneously blended solid, the charge 

transport is similar over a long distance compared to the size of the molecules in the film, the transport 

properties vary greatly when the films is composed of islands of single components. If charge 

transport is favored in one material compared to the others, charges travelling in the film might follow 

a path composed only of that material. Furthermore, in the case of vertical phase segregation, if the 

charge transport is performed at the interface between the solid and the layer below, the other material 

might have no influence at all on the charge transport. Controlled phase segregation can be employed 

for applications that require two separate layers of materials with different charge transport properties, 

for example semiconductor and dielectric for organic thin-film transistors or p-type and n-type 

semiconductors for organic solar cells. Furthermore, fabrication of phase segregated solids is an 

interesting approach for fabrication of ultra-thin films and encapsulating layers. 

 

  

Figure 3.8: Cartoon representing examples of phase segregated solids. (a) Horizontal phase 

segregation. (b) Vertical phase segregation. 

 

 In the case of small molecules, phase segregation is often provoked by the difference in 

solubility of the initially mixed molecules. If one of the molecules aggregates first and deposits at the 

bottom of the solution, a layer of that molecule could form. This would result in both vertical and 

horizontal phase segregation. Another source of phase segregation in small molecules is the formation 

of small pure crystalline domains that assemble upon increase of the concentration by solvent removal. 

This can produce horizontally segregated films, and is favored when the solvent removal process is 

very slow for optimized crystal growth (formation of the thermodynamic product over the kinetic 

(a)     (b) 
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product). The interfaces should also be carefully considered. If one of the molecules has a higher 

affinity of the surface where the solution is deposited, a film of one molecule can form at that surface, 

leading to vertical phase segregation. Additionally, a layer of one phase often forms at the 

film/atmosphere surface due to the growth of a wetting layer. 

 In solution, the solvent molecules dilute the polymer/polymer interactions and the system 

forms a single phase. Upon film deposition, the solvent evaporates and as the solvent concentration 

decreases the interactions between polymer chains increase, increasing the driving force for phase 

separation. As the solvent concentration decreases, however, the polymer chains become less mobile 

and once a glass transition is encountered the morphology is frozen. Nevertheless, these frozen 

morphologies may be unstable to further phase separation, if additional processing steps are applied. 

Solvent vapor in the atmosphere or heating above the glass transition (annealing) are commonly 

employed techniques to favor additional phase segregation of the frozen morphology. It is noteworthy 

to mention that since phase segregation is often to be avoided, solvent vapor treatment and annealing 

should be employed with care in multi-component films. 

 Two distinctly different phase separation processes can be observed with initially miscible 

polymer mixtures subjected to solvent removal (evaporation or non-solvent addition): Nucleation and 

Growth 
30

 and Spinodal Decomposition. 
31

 The concept of nucleation refers to the first step of the 

creation of a new phase, and growth to the expansion of said phase. In the case of nucleation and 

growth, the system is in the meta-stable region of the phase-separation diagram (see Figure 3.7), it is 

therefore stable to small fluctuations in concentration. Phase separation then relies upon on the 

formation of a single component droplet of a certain minimum radius before further phase separation 

resulting in an overall lowering of the free energy of the system. This droplet may theoretically be 

formed through thermal fluctuation or through a reduction in the nucleation barrier by the presence of 

impurity particles that can be present in the original solution. Therefore, in order to avoid phase 

segregation, the purity of the initial compounds should be carefully considered. Spinodal 

decomposition, on the other hand, occurs when the system is in the unstable region of the phase 

diagram, after a greater amount of solvent is evaporated. In the unstable region, small fluctuations in 

composition lower the free energy, and phase separation proceeds immediately by the random 

composition fluctuations. 

 

3.6. Conclusions 

 

 Organic materials offer a great variety of options for the fabrication of electronics. From small 

molecules to large molecular weight polymers, many interesting properties are can be taken advantage 
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of such as p- or n-type charge transport, photo-switching and solubility in organic solvents. When the 

materials are processed from the solution, parameters such as solubility and surface affinity should be 

carefully considered. Furthermore, in the case of blends of materials, the phase segregation is a very 

important factor that depends on multiple parameters such as temperature, solubility and nature of 

interfaces. 
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Chapter 4. Organic electronics 
 

 

 

 

 

 

4.1.  Semiconductors in electronics 

 

 Semiconductors are at the core of electronics. They are widely used for the fabrication of a 

wide variety diodes (point-contact diodes, junction diodes, light-emitting diodes), photonic devices 

(solar cells, photo-detectors) and transistors (switches, amplifiers). Transistors are of particular interest 

since they are the basis of logic gates, and therefore data processing circuits. Organic semiconductors 

have been the focus of an extensive research activity during the past decades because they represent 

key active components for now market mature technological applications (displays, sensors).
1-6

 

Numerous are the advantages they hold when compared to their inorganic counterparts including the 

tunability of their physical properties via chemical functionalization,
7-9

 their low cost processing
10,11

 

using mild conditions (low temperature and ambient pressure) and up-scalable approaches even on 

flexible supports.
12

 While transistors are very interesting for all their (potential) applications, they are 

also widely used in research as a tool of testing of the electrical properties of (organic) 

semiconductors. 
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4.2.  Field-effect transistors 

 

4.2.1. Basic operation of an organic field-effect transistor 

 

 A Field-Effect Transistor (FET) is a device based on three electrodes (source, drain and gate), 

a dielectric and a semiconductor. If the transistor is based on an organic semiconductor, it is called an 

organic Field-Effect Transistors (OFET). The electrodes source and drain are in contact with the 

semiconductor: upon application of a drain-source potential (VDS), charges potentially flow through 

the semiconductor (IDS current).  The inter-electrode area where charges are transported within the 

semiconductor is called channel. The gate electrode is separated from the other electrodes and the 

semiconductor by the dielectric (Figure 4.1), in order to avoid charge transport between source and 

drain electrodes through the gate. The potential applied between source and gate is the VGS potential 

and the current flowing through the dielectric is the leakage current IGS, that is to be avoided in field-

effect transistors. Upon application of a positive (or negative) VGS potential, negative (or positive) 

charges are attracted to the semiconductor/dielectric interface, into the channel. 

 

Figure 4.1: Field-effect transistor, example for the bottom-contact, bottom-gate geometry. 

 

4.2.2.  Field-effect transistor geometries 

 

 The elements of the FET described above can be staked in different ways (geometries). The 

major difference between devices operating at different geometries is the contribution of charge 

transport and injection to the overall device performance. In the case of the bottom-contact, bottom-

gate geometry (Figure 4.2, a), source and drain electrodes are placed directly on the dielectric surface, 

and the charges are flowing only in the very first few layers of semiconductor that is adjacent to the 

dielectric surface. The dielectric being present directly on the flat gate, it can be very thin for optimal 

capacitance. It can be functionalized easily before deposition of the semiconductor. Furthermore, since 
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the semiconductor is the last deposited layer, a device with electrodes and dielectric can be mass-

produced or purchased in advance, leading to a facile and very reproducible device fabrication. In 

order to improve the injection from the source and drain electrodes into the semiconductor, the top-

contact, bottom-gate geometry can be adopted (Figure 4.2, b). In that configuration, the source and 

drain electrodes are deposited over the semiconductor, while retaining the dielectric and gate at the 

bottom. In the staggered geometry, the injection is facilitated due to (i) the large contact area between 

the source electrode and the semiconductor and (ii) the formation a more intimate  

semiconductor/electrode interface due to the diffusion of metal atoms within the soft active layer 

following thermal evaporation. One major drawback is the impossibility to functionalize the source 

and drain electrodes. The third possible geometry is the bottom-contact, top-gate configuration 

(Figure 4.2, c). In that geometry, transistors are usually fabricated over a substrate. Source and Drain 

electrodes are deposited first, and may be functionalized for improved charge injection. The 

semiconductor is deposited afterwards. The dielectric is present over the semiconductor, and needs to 

be of a greater thickness to avoid gate leakage, since the semiconductor and electrodes beneath do not 

represent a perfectly flat film. The gate is finally present over the dielectric. While this geometry leads 

to particularly good transport at the semiconductor/dielectric interface it is the one that requires the 

highest number of production steps, and possible failure due to source/gate short circuit. Furthermore, 

the dielectric surface cannot be functionalized. The fourth possible geometry is the top-contact, top-

gate configuration (Figure 4.2, d). In this geometry, the source and drain electrodes are over the 

semiconductor. Since charges are attracted to the gate on top, this configuration is not recommended in 

most cases as compared to the bottom-contact, top-gate geometry. 

 

Figure 4.2: Field-effect transistor geometries. (a) Bottom-contact, bottom-gate geometry. (b) Top-

contact, bottom-gate geometry. (c) Bottom-contact, top-gate geometry. (d) Top-contact, top-gate 

geometry.  

 

(a)             (b) 

 

 

  

          

(c)             (d) 
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4.2.3. Measurement of electrical characteristics 

 

 In order to determine the electrical characteristic of a semiconductor, two plots are traced: the 

transfer curve and the output curves. An output curve (IDSVDS) designates the plot of the source-drain 

current as a function of the drain-source potential. Commonly, multiple output curves for different 

gate-source potentials are drawn. In the output curves, two regions are defined, corresponding to two 

operation regimes of the FET. At low VDS, the linear region, where IDS increases linearly with VDS and 

at higher VDS, the saturation region, where IDS is constant. From the different output curves at different 

VGS, the Ion-Ioff ratio (Ion/Ioff) can be determined. The Ion/Ioff corresponds to the ratio between the highest 

and lowest observed current at fixed VDS. A higher Ion/Ioff is synonym of a good ability to switch on 

and off the device, while a poor Ion/Ioff is associated with a badly switching transistor. A transfer curve 

(IDSVGS) designates the plot of the source-drain current as a function of the gate-source potential. 

Usually, two transfer curves are represented: one in linear regime, and one in saturation regime. In the 

case of n-type semiconductor, negative charge carriers will start to travel in the semiconductor starting 

from a certain gate-source voltage, the threshold voltage (VTh).  

The presence of a threshold voltage has multiple reasons. First, the presence of shallow traps in the 

semiconductor that need to be filled before mobile charge can be induced in the channel. 
13

 Second, 

charged states or dipoles are present at the dielectric surface, and an additional gate voltage might be 

necessary to induce the formation of the channel. 
14

 An increase of the VGS over the VTh will result in 

an increase of the IDS current. In p-type semiconductors, the IDS current is negative and charge transfer 

will increase with higher negative VGS. Once the threshold voltage is reached, the IDS current increases 

linearly with the VGS at lower VDS (linear regime), while at higher VDS (saturation regime), the IDS 

current increases quadratically with VGS. The Ion/Ioff may be extracted from the transfer curves, and 

corresponds to the IDS measured at the highest (Ion) divided by the lowest IDS value (Ioff). 

 

 In order to fabricate powerful data processing units, transistors with fast charge-transporting 

capabilities are required. The speed at which charges move in the semiconductor upon application of a 

gate voltage is the field-effect mobility µFET (that will be noted µ for convenience in the rest of this 

thesis). It can be extracted from the transfer curves. In a transistor, the IDS is dependent on the 

capacitance of the dielectric (Ci), the threshold voltage, the field-effect mobility, the length (L) and the 

width (W) of the channel and the operating regime (linear or saturation), giving the two equations for 

n-type semiconductors (in the case of p-type semiconductors, the currents are negative since hole 

currents are conventionally negative): 

 

     
   

  
 

 
               Eq. 4.1 
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           Eq. 4.2 

 

 From these equations, we can conclude that the width-to-length ratio (W/L) plays a major role 

in the value of the IDS. Since higher IDS currents are easier to measure and process in output and 

transfer curves, the W/L is usually maximized by an interdigitated geometry of the source and drain. 

From the equations 4.1 and 4.2, the mobility in linear and saturation regime is extracted: 

 

       
    
    

 
          

 
 

 

 

  

 

     
 Eq. 4.3 

        
       

    
 

          

 

 

 
 

 

 

  
 Eq. 4.4 

 

 These equations allow the easy determination of the mobility of the charge carriers in a 

transistor. Nevertheless, they are not an accurate representation of the mobility solely within the 

semiconductor, but they consider the total resistance Rtotal: both the resistance of the channel region 

and the resistance of the electrode-semiconductor contact: 

  

                         Eq. 4.5 

 

 The contact resistance (Rcontact) is independent on the channel length, whereas the channel 

resistance (Rchannel) increases linearly with the channel length. Therefore, multiple transistors can be 

fabricated with varying channel lengths, and their total resistance can be plotted as a function of L. An 

example is given in Figure 4.3. Rcontact can be extrapolated from the plot, at L = 0. The value of the 

contact resistance can then be deducted from the total resistance for each channel length, allowing the 

calculation of the mobility within the channel. This method is referred to as the Transfer Length 

Method (TLM). 
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Figure 4.3: Example of a total resistance versus channel length plot with extrapolation used to 

determine the contact resistance. Reproduced from Sirringhaus et al. 
15

 

 

 

4.2.4. Ambipolar field-effect transistors 

 

 Ambipolar field-effect transistors are transistors capable of both p- and n-type transport. 

Ambipolar materials are strongly researched, due to their potential for the development of next-

generation light-emitting devices, integrating the ability of both photogeneration and current 

modulation (device switching) in a single-device architecture. 
16

 In ambipolar transistors, both holes 

and electrons can contribute to the net electrical current, leading to a modification of the current 

equations Eq. 4.1 and Eq. 4.2. In saturation regime, the IDS current is: 

 

    
 

 
 
     

  
 

 
               

 

 
 
     

  
 

 
             Eq. 4.6 

 

 The threshold voltage being extracted similarly to how it was described for unipolar 

semiconductors, separately for p-type and n-type transport. A significant contribution of both holes and 

electrons is only present close to the region between VTh,p and VTh,n. The p-type mobility and n-type 

mobilities are therefore extracted in the VGS regions of the transfer curves where the contribution of 

the other charge transport is negligible, and Eq. 4.1 and Eq. 4.2 are valid. 

  

4.2.5. Bias stress and current decay 

 

 Upon creation of a carrier channel in a field-effect transistor by application of VGS, the VTh of 

the transistor changes over time, a phenomenon known as bias stress effect. In the case of a p-type 

semiconductor, a negative gate-source voltage is applied, causing the threshold voltage to shift 

towards more negative values, while a positive gate-source voltage is applied to n-type semiconductor 
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based transistors, inducing a positive threshold voltage shift. 
14

 The bias stress effect is attributed to the 

trapping of carriers from the gate bias-induced conduction channel into localized electronic states. 

These trap states may be located either within the semiconductor, at the semiconductor/dielectric 

interface, or within the gate dielectric. The longer the gate bias is applied, the more carriers are 

trapped, and a larger shift in threshold voltage is observed. Trapped carriers still contribute to the 

charge balance in the transistor, but not to the IDS, resulting in a shift in threshold voltage. Depending 

on the physical characteristics of the trap states, trapped carriers either return to mobile states once VGS 

is removed, or they remain trapped until physically eliminated, for example, by thermal annealing. 

 

 While the shift in VTh, and consequently IDS at fixed VGS is often minimal during the standard 

plotting of output and transfer curves, devices that endure several minutes of constant VGS and VDS 

biasing show signs of a decay of the |IDS| current. This is the case of the devices described in chapter 8, 

that underwent over one hour of constant VDS and VGS biasing. In order to separate the interesting 

signal ΔIDS, switch, i.e. the decrease in current due to the switching of diarylethene, and ΔIDS, decay, i.e. the 

decrease in current due to bias-induced decay, the decay was fitted for each IDS-time plot. The decay 

was fitted from the curve itself before the first irradiation, from 200 s to the first irradiation. The decay 

was fitted using the following equation: 

 

Δ                                Eq. 4.7 

 

with t being the time expressed in seconds. The average time constant t1, average was found to be 432 ± 

20 s. The values of fitting parameters extracted from a blank P3HT IDS-time curve and the most 

important IDS-time graphs presented in chapter 8 are reported in Table T4.1. An example of curve 

taken from chapter 8 before and after fitting is given in Figure 4.4. 

 

Table T4.1: Fitting parameters 

 A1 / A A2 / A t1  R² (exp) R² (lin) 

Blank P3HT -3.338 × 10
-4 6.051× 10

-8 433.16 0.99895 0.99983 
Figure 8.11* -5.373 × 10

-5 6.943 × 10
-9 418.57 0.99994 0.99842 

Figure 8.12* -4.619 × 10
-7 4.037 × 10

-11 443.28 0.99991 0.99818 
Figure 8.23 (a)* -5.713 × 10

-6 4.400 × 10
-10 457.69 0.95111 0.76410 

Figure 8.23 (b)* -1.354 × 10
-6 1.912 × 10

-10 407.63 0.97637 0.91260 
*figure numbers from chapter 8. 
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Figure 4.4: Experimental dynamic IDS-time curves recorded in devices assembled on a 

polyethylene terephthalate substrate (Figure 8.23, b). (a) Uncorrected graph. (b) Graph corrected 

from the bias-stress induced decay. 

 

4.2.6. Signal-to-noise ratio 

 

 Noise, as the random fluctuations in electrical current, is a characteristic of all electronic 

circuits. While in the case of transfer and output curves, the difference in IDS between each point is 

very large compared to the noise induced by the circuit or testing device, the value of IDS varies 

slightly (in the range of tens to hundreds of pA) between measurement points at constant VDS and VGS. 

In order to determine the “readability” of an electrical information, the value of the signal is compared 

to the root mean squared value of the noise amplitude. This section aims to give details of how the 

signal-to-noise ratio was calculated for the values reported in chapter 8. 

 The SNR (Signal-to-Noise Ratio) was extracted from the 400-step IDS-time measurement 

curve. The ratio is calculated using the following equation: 

 

     
       

          

 Eq. 4.8 

 

with Asignal the step height and RMS Anoise the root mean square of Anoise the noise amplitude. In order 

to determine ½ Anoise the noise half-amplitude, 3 times 80 consecutive current points between two 

illuminations were taken from the IDS-time measurements: once at the beginning of the experiment 

(Figure 4.5, a), once in the middle of the experiment (Figure 4.5, b) and one at the end (Figure 4.5, 

c). 

(a)                  (b)  
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Figure 4.5: IDS-time curves for Signal-to-noise calculations. IDS-time curve (a) before illumination; 

(b) after 150 illumination steps, and (c) after full experiment (400 illumination steps). 

 

The value of the current was subtracted from the average current over the 80 current points, leading to 

3 × 80 values of ½ Anoise: 

 

                                Eq. 4.9 

 

Anoise was calculated as 2 times the absolute value of ½ Anoise. RMS Anoise the root mean square of Anoise 

was calculated: 

 

            
 

  
           

 
           

 
              

 
   Eq. 4.10 

 

Finally, the 3 calculated RMS Anoise values over 80 points were averaged. 

 

4.2.7. Flexibility 

 

 Among the advantages of organic electronics, flexibility is always listed as an important 

feature. While the tangible need for flexible or purposely curved everyday electronics remains 

debatable, those devices are often suffering from involuntary mechanical constraints, such as a person 

accidentally sitting down on a phone or letting it fall on the ground. Furthermore, multiple applications 

could arise in the health industry such as biocompatible flexible sensors. In the never-ending back-

and-forth competition for marketing exposure, cheap electronics integrated into flexible substrates 

(a)                (b)           (c) 
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could easily find their way onto everyday commodities, from video-games on cereal boxes to 

electronic-augmented clothing. 

 While measuring the resistance to bending of transistors on a flexible substrate should revolve 

around thousands of bending and unbending processes performed on a specific robotized setup, a more 

convenient approach was adopted in the bending experiments of chapter 8. In order to determine the 

effect of successive bends on the electrical performances, the flexible devices were first tested prior to 

any bending. Once the electrical characterization performed, the sample was bent a first large bending 

radius of 29 mm for one minute, made flat again and tested a second time. These steps were replicated 

four times with the bending radius decreased each time, down to 6 mm (Figure 4.6). The bending was 

performed by attaching the sample on a round cylinder, making sure that it was well strapped in order 

to ensure the actual bending of the whole sample, and not only the substrate around the device. It is 

noteworthy to mention that while this study does not account for resistance over thousands of bends, it 

serves as a good proof of concept for flexible electronics. 

 

 

 

Figure 4.6: Integration of the memory unit onto a flexible PET substrate. Cartoon depicting the 

bending radii (1: 29.0 mm, 2: 17.5 mm, 3: 10.0 mm, 4: 8.0 mm, and 5: 6.0 mm).  

 

4.3. Organic memories 

 

Memories are a very important aspect of modern computers, and are usually split into two 

categories: volatile and non-volatile. The first type, often based on capacitors (such as dynamic 

random access memory), is used for short-term storage of data, and needs to be electrically refreshed 

by rewriting of the same data multiple times every second. While these kinds of memory find great 

many applications such as cache memory in processors, the second type, non-volatile memory is 

widely used for permanent data storage (hard drives, memory sticks…). The current trend tends to 

leave behind all forms of disk-based analogic memories for more reliable, easier to downscale and less 

power-consuming digital memories, that rely mostly on field-effect transistors. Unlike in fields such as 
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LEDs and solar cells, organic based technologies for digital data-storage has not yet entered the mass 

fabrication stage, and flash memories produced today are all based on inorganic MOSFETs (Metal-

Oxide-Semiconductor Field-Effect Transistors). While standard memories may only store a single 

value out of two possibilities (either a “0” or a “1”, 1-bit storage), multilevel memories are devices 

where the addressable states are more numerous (such as a 3-bit storage memory with 8 distinct 

levels). Multilevel memories are believed to be the key for further miniaturization in electronics. 

 

The important characteristics that a memory should exhibit are the following: long retention 

times, high switching ratio and easy programming. The switching ratio is the ratio between the 

measured current of the memory in the “on” state and the memory in the “off” state. If the two states 

are too close, misreading of the information could happen due to a slight unintentional change in 

current. The memory should be also easy to program: in the case of electrical programming, the 

necessary applied voltage should be acceptable for integration into everyday electronics. To date, 

numerous successful attempts to organic storage units are reported in literature, relying on a wide 

variety of different approaches, and the two following sections will give a summary of the 

performances of the memories reported in these research articles. 

 

4.3.1. Electrical programming  

 

2-Terminal and 3-terminal resistive switching memories based on polymers, organic small 

molecules and ferroelectric materials have shown impressive switching ratios up to 10
8
 and low 

programming voltages. 
17-19

 Unfortunately, this approach relies on two stable states of polarization 

therefore it is ill suited for multilevel memories. 
20

 On the other hand, memories designed around 

electrets, i.e. dielectric materials (usually polymers) exhibiting quasi-permanent electric charge or 

dipole polarization, have displayed ability to perform as multilevel memories with different applied 

programming voltages. Although the observed switching ratios over 10
8
 push them at the forefront of 

research on organic memories, 
21,22

 their unacceptably high programming voltages (up to ± 200 V) and 

most importantly their low retention times (<10
4
 s) represent still major obstacles towards their 

integration into everyday electronics. 
23,24

 Storing charges in a metal or semiconductor layer exploiting 

the principle of the floating gate located within the dielectric can be achieved with metallic 

nanoparticles, with each particle counting as a charge-storage site independent and isolated from other 

sites. While not extensively explored, this approach is relevant for the fabrication of multilevel 

memories exhibiting acceptable programming voltages (up to ± 40 V) but thus far is accompanied by 

disappointing retention times for long-term multilevel storage (10
4
 s). 

25
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4.3.2. Photoprogramming 

 

As compared to electrical programming of organic memories, photoprogramming offers the 

fundamental advantage of having the photo-writing being orthogonal to the electrical readout. 

Photochromic molecules have shown promising results as molecular switches, but rather mediocre 

(semi)conducting behavior and not negligible fatigue. 
26-28

 Most studies on organic memories based on 

photochromic molecules have focused on three types of photochromic systems: azobenzenes, 

spiropyrans, and diarylethenes (DAEs). 
29-32

 Optical switching between two independently addressable 

states leads to changes both at the molecular and at the macroscopic scale. At the molecular level, one 

observes reversible modifications of the geometrical and electronic structure, including changes in 

dipole moment, π-conjugation, band-gap, etc.,
33

 which can be translated into respective adaptations of 

macroscopic properties upon switching, including changes in shape, aggregation behavior and 

conductance. While conductance changes are often a sought-after property, concomitant 

morphological changes at the meso-scale could lead to stability issues, in particular since maintaining 

high order in the film is crucial for device performance. Therefore, the optimal solution consists of a 

photochromic molecule in which the two switching states exhibit simultaneously (i) the lowest 

possible change in supramolecular organization, (ii) the largest modulation of the electronic properties, 

(iii) sufficient stability of both interconverting isomers, (iv) a fast switching induced by the light 

stimulus, and (v) an efficient switching in the solid state. All of these characteristics can be met by 

DAEs. 
34

 In earlier studies, organic memories based on layered device architectures composed of DAE 

and triarylamine derivatives proved to be a valuable approach for the production of organic multilevel 

memories with 30 reported current-levels. 
35,36

 However, the fabrication of multi-layers clearly 

requires multi-step processing, and the devices need several minutes of irradiation at high intensity in 

order to obtain a sufficient switching yield, making them unsuitable for applications in the electronic 

industry. Furthermore, electrical switching exhibited a limited reversibility. 

 

4.4. Conclusions  

 

While the applications for organic semiconductors are seemingly unlimited, transistors are 

among the most extensively used. In this chapter we have reviewed how transistors can be used as a 

testing device for organic semiconductor performances, in particular mobility, Ion/Ioff, threshold 

voltage and contact resistance values from output and transfer curves. The current decay emerging 

from prolonged biasing and the noise in electrical current measurement were discussed. Furthermore, 

we explored device flexibility and multiple approaches for organic memory fabrication. 
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Chapter 5. Experimental techniques 
 

 

 

 

 

 

 

5.1. Device fabrication 

 

5.1.1. Substrate preparation 

 

5.1.1.1. Fraunhofer substrates 

 

 Bottom-contact bottom-gate configuration transistors purchased from IPMS Fraunhofer 

Institute were used. They consisted of n
++

-Si substrates covered by 230 nm of thermally grown SiO2 as 

the gate dielectric (15 nF capacitance). Basic substrates and pre-patterned substrates with pairs 

of gold electrodes with interdigitated geometry as the source and drain were used. In both cases they 

were hexamethyldisilazane (HMDS) treated and protected with a layer of dicing resist. The first step 

consisted in the removing of the dicing resist through washing of the sample. It was a multiple-step 

procedure, with first a rough rinsing of the dicing resist using acetone, followed by immersion into an 

acetone bath. The immersed sample was placed for 20 minutes in an ultra-sonic cleaner, removed, 

dried under nitrogen flow, and re-immersed in an isopropanol bath placed for 20 minutes in an ultra-

sonic cleaner. The sample was finally removed and dried under nitrogen flow. After this procedure, 
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the sample was dicing resist-free but still functionalized with HMDS, that can be removed by UV-

Ozone cleaning.  

 

5.1.1.2. UV-Ozone cleaning 

 

 If undesired molecules were adsorbed on the surface of the substrate, the sample was placed in 

a Novascan PSD ozone cleaner and irradiated with intense short ultraviolet wavelengths using a 

mercury vapor lamp (184.7 and 253.7 nm) in the presence of oxygen. The ozone cleaning consists of 

multiple steps (Figure 5.1). First, the irradiated at 184.7 nm dioxygen is dissociated into oxygen 

radicals and ozone molecules. Under 253.7 nm irradiation, oxygen radicals interact with the adsorbed 

layer on the substrate, and produce volatile molecules, mostly CO2 and H2O, that leave the surface. 

Each substrate was irradiated for 5 minutes followed by 25 minutes of resting time before the substrate 

was removed from the UV-Ozone cleaner. 

 

Figure 5.1. Schematic of a UV-Ozone cleaner 

 

5.1.1.3. Polyethylene terephtalate substrates 

 

 Polyethylene terephtalate (PET) substrates were used for flexible applications. Large square 

sheets of PET commercialized under the name Melinex (thickness 175 µm) were purchased from 

Teijin DuPont. They were cut into square 2.25 cm² sheets and attached to glass substrates to mimic the 
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rigid silicon-based substrates from Fraunhofer for device fabrication. They were cleaned using ethanol 

and dried under nitrogen flow. 

 

5.1.1.4. Metal evaporation 

 

 In order to deposit metal films (Au, Ag, Cr), a physical vapor deposition setup was used 

(Plassis ME300B and Plassis ME400B, Figure 5.2). The source material (a metal in our case) is 

vaporized and re-condensates on the sample. The chamber is first pumped using a rotary pump, then 

jointly combined with a turbo pump in order to be put the chamber in ultra-high vacuum (P < 10
-9

 bar). 

The low pressure ensures that the adsorption of residual gases on the surface during film formation is 

minimal, in order to obtain pure films. The metal is then heated by applying a strong electric current 

(typically between 130 A and 200 A) until the melting point is reached. When the metal is in a liquid 

phase, an equilibrium between the molar Gibbs free energy of the liquid (ΔGl) and the vapor (ΔGv) is 

formed (ΔGl = ΔGv), meaning that the metal is evaporated until the equilibrium is reached. The Gibbs 

free energy of evaporation (ΔGevap), is defined by: 

                   Eq. 5.1 

 

When the temperature of the liquid is increased (upon increasing the current), ΔGevap < 0 : the vapor 

state is favored and the thermally activated vapor pressure is increased, leading to an increased 

deposition rate. The vapor pressure of the evaporated metal PM can be calculated : log(PM) is linearly 

correlated with the temperature T, following the equation: 

                 
 

 
 Eq. 5.2 

 

with B and C being empirical parameters that are tabulated for most metals.  

 In order to produce a very homogeneous film of pure material, the evaporation is first 

stabilized at the desired rate before the shutter is opened and the covering of the film can start. The 

crystal detector, a quartz microbalance evaluates the mass variation by measuring the change in 

frequency of a quartz crystal resonator. Thus, the evaporation rate can be evaluated and adjusted in 

real time for optimal depositions. 
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Figure 5.2: Schematic of the physical vapor deposition setup. 

 

 In the case of the deposition of source and drain electrodes on a silicon oxide substrate, a thin 

layer (3 nm) of chromium was evaporated first on the substrate. This intermediate layer was deposited 

to ensure optimal adherence of the electrodes on the substrate. Interdigitated gold source and drain 

electrodes were evaporated using a shadow mask covering the substrate, with channel lengths of 60, 

80, 100 and 120 µm and W = 10 mm. For top-gate transistors, an aluminum gate electrode was 

evaporated, using a shadow mask. Table T5.1. lists the most common experimental conditions and 

parameters used for electrode evaporation. The evaporation was performed inside a glovebox when the 

organic material was deposited beforehand. In order to avoid short-circuit in top-gate transistors, the 

source/drain electrodes are evaporated thinner than in other geometries. 

 

Table T5.1. Experimental conditions of metal evaporation for different transistor geometries. 

Electrodes Geometry Metal Thickness / nm Rate / nm/s Glovebox 

Source/Drain Bottom-contact Au 60 0.02-0.1 No 

Source/Drain Top-contact Au 60 0.02-0.1 Yes 

Source/Drain Top-gate Au 40 0.02-0.1 No 

Gate Bottom-contact Au 60 0.02-0.1 No 

Gate Top-gate Al 200 1-3 Yes 
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5.1.1.5. Self-assembled monolayer treatments 

 

 Self-Assembled Monolayer (SAM) treatment relies on the adsorption of a single layer of the 

molecule on the treated surface. Depending on the target surface, used SAMs were either thiol- 

terminated (for interaction with gold electrodes) or silane terminated (for interaction with SiO2 

surfaces). Depending on the used SAMs, the effect on the surface varies. In particular, the work 

function and the wetting of the surface can be tuned. Also, the surface can be passivated, and the 

formation of larger crystallic domains can be favored. 

 Two self-assembled monolayers, hexamethyldisilazane (HMDS) and octadecyltrichlorosilane 

(OTS), were used for dielectric treatment. OTS treatment consisted of a 12-hours immersion of the 

ozone-treated wafer into a 10 mM solution of OTS in toluene including 30 min of heating at 60 °C at 

the beginning of the immersion. The samples were afterwards rinsed multiple times with toluene and 

heated for 60 min at 60 °C. HMDS was spin coated at 1500 RPM on the substrate and annealed for 1 

hour at 100 °C. 

 Two self-assembled monolayers, 1-decanethiol (C10) and 1H,1H,2H,2H-perfluorodecanethiol 

(FC10), were used for electrode treatment. The procedure was similar for both SAMs: the ozone-treated 

wafer was immersed 12 hours into a 1mM solution of the SAM in absolute ethanol. The wafer was 

afterwards washed with clean ethanol and annealed 1 hour at 60°C. 

 

5.1.2. Organic materials 

 

5.1.2.1. Semiconductor and diarylethene solution preparation 

 

 Organic semiconductors were moved directly after reception to a nitrogen-filled glovebox, 

where they were kept at all times. Diarylethenes were kept protected from light in a fridge outside of 

the glovebox. Anhydrous solvents were purchased and kept in the glovebox. Vials, caps, spatulas and 

magnetic stirrers used for solution preparation were introduced in the glovebox after removal of the 

possible dust and water by nitrogen flow. 

 Solution preparation consisted of addition of the selected material into the previously weighted 

vial in nitrogen atmosphere. The vial was then weighted again and the mass of the introduced material 

was calculated. The adequate volume of solvent was added using an Eppendorf micropipette. The 

solution was stirred, and if described in the manuscript, heated on a hotplate. In the case of 

diarylethenes, the material was weighted in air before being introduced in the glovebox. For the 
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preparation of blends of solutions, separate solutions were prepared at the same concentration and 

blended into a new vial at the adapted ratio, then stirred for several minutes. 

 

5.1.2.2. Dielectric solution preparation 

 

 All the organic dielectrics used were kept in air atmosphere. Dielectric preparation varied 

between polymers. In the case of poly(methyl methacrylate) (PMMA, purchased from Sigma-Aldrich, 

Mw = 120 kDa), 70 mg of material and 1 mL of ethyl acetate were introduced into a vial in nitrogen 

atmosphere, and stirred for 30 minutes at 55°C . The hot solution was filtered using 0.2 µm filters 

(Acrodisc LC 13). Poly(4-vinylphenol) (PVP, purchased from Sigma-Aldrich, Mw = 25 kDa) 

solutions were fabricated using 100 mg of PVP for 1 mL of 1-Methoxy-2-propanol, and stirred for 1 

hour at 100°C. The solution was used unfiltered. Cytop CTL 809M and its fluorinated solvent were 

purchased from Ashai Glass Japan. A 9/1 Cytop/solvent solution was prepared and shaken vigorously. 

The solution was kept overnight in the fridge before being moved to the glovebox.  

 

5.1.2.3. Solution deposition 

 

 Drop casting is the simplest among the deposition methods, yet very interesting as it shares 

similarities with ink-jet printing, making it a good approach for experiments that could be integrated 

into industrial procedures. It consists of the application of a drop of the solution or dispersion directly 

onto the substrate. The volume of deposited material is depending on the size and wetting of the 

substrate. For a standard 2.25 cm² substrate, the volume was ranging from 50 µL to 200 µL. After 

evaporation of the solvent, a film is formed. Drop casting has the drawback of creating films that are 

often very thick and can be very inhomogeneous. 

 Spin-coating was used in order to form thinner and more homogeneous films. It consists in the 

high-speed rotation of the sample (from 1000 to 4000 RPM with acceleration up to 4000 RPM·s
-1

) 

after deposition of a drop of the solution or dispersion onto the substrate. The substrate is maintained 

to the spin-coater through vacuum, and therefore this approach is only viable for rigid substrate. In the 

case of a flexible substrate such as polyethylene terephthalate (PET), the substrate has to be first 

attached to a rigid surface.  The rotation speed and acceleration have to be adapted depending on the 

solvent, since a small drop of low boiling point solvent could evaporate soon after deposition. Also, 

the target thickness of the film has to be considered in the choice of rotation speed, with thinner films 

produced from higher rotation speeds. 
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5.2. Characterization techniques 

 

5.2.1. Surface characterization 

 

5.2.1.1. Atomic Force Microscopy  

 

 In order to represent the surface of the sample at the nanometer scale, an Atomic Force 

Microscopy (AFM) setup was used (Figure 5.3).  

 

 

Figure 5.3: Atomic force microscopy setup. 

 

 The AFM consists of a tip, mounted on an oscillating cantilever, scanning the surface. A laser 

beam hits the rear side of the cantilever, causing a reflection, recorded by a photo-diode system. The 

AFM measurement can be performed in two modes: contact or tapping. Since the contact mode 

scratches the surface, our experiments were always performed in the tapping mode. In order to 

increase the quality of the results obtained during AFM experiments, each spot is being recorded and 

analyzed twice (trace, retrace). In constant-height mode, each time the amplitude is increased or 

reduced the tip is automatically respectively lowered or raised, to avoid either loss of contact or 

damaging of the tip and sample. The topography of the surface induces changes in the amplitude of the 

oscillations. Such a change is measured point by point. Upon integrating measurements carried out on 

N × N points forming a square array, an image can be drawn providing a direct map of the topography 

of the surface of the studied sample.  
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 The setting of the height of the sample relative to the tip is performed by the optical focusing 

of the surface, using a camera. The tip is then carefully moved towards the surface, until focused. 

Once the tip is fully focused, it is considered close enough to the surface. This step precedes the 

adjustment of the laser reflection, which should hit the photo-diode in its center. Exterior noises have 

to be avoided. Exterior noise can have three major sources: acoustic, mechanic and electrostatic. In 

order to prevent low data-quality from each noise source, the AFM setup is fixed on a vibration 

isolation table within an acoustic isolation enclosure acting as a Faraday cage as well.  

 The obtained image corresponds to the height of the surface at each of the coordinates. The 

arbitrary color system shows high surfaces in light brown, whereas a darker brown is used for low 

surfaces (Figure 5.4.). If the tip interacts with the surface, there can be a delay in the oscillations. This 

delay is plotted as a function of the x and y position, giving the phase image. Depending on the 

material, the delay varies (as an example we can cite the important difference between hydrophobic 

and hydrophilic surfaces). Therefore, there is useful data that can be extracted even from a flat surface 

using an AFM technique. Mechanical proprieties can also be measured by AFM: data on the adhesion 

of the tip to the surface can be collected from the delay of the oscillation rate.  

 

Figure 5.4. Example of a AFM image before and after plane-fitting. (a) Raw AFM measurement, 

z-scale: 2µm, xy-scale: 40 µm. (b) The same measurement, after plane-fitting, z-scale: 80 nm, xy-

scale: 40 µm. 

 

 The starting image obtained from the AFM experiment is usually very rough, and needs 

treatment before conclusions can be reached. One major attribute of most surfaces explored with AFM 

is the 3 orders of magnitude size difference between the xy-scale (µm) and the z-scale (nm). Therefore, 

a very slight tilt or curvature of the tested sample has a major impact on the z-scale. In order to adjust 

for that problem, the plane is first fitted to get exploitable data. The second parameter to be taken into 

account is the size of the samples (several cm²) compared to the size of the tested area (several µm²). 

  (a)                            (b) 
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Thus, multiple images have to be taken at different points of the sample to ensure that the observed 

topography is representative of the sample. Furthermore, in the case of transistors, it is crucial to probe 

the surface within the channel between source and drain, as this is where the charge transport takes 

place and it could differ from the surface around the device. Contrarily to some microscopy techniques 

such as optical microscopy that are only effective for data-collection at the xy-scale, atomic force 

microscopy allows quantitative measurement of the surface topography. Consequently, the height of 

nano-sized objects (fibers, nano-crystals) can be easily determined. Additionally, the root mean square 

surface roughness (Rrms) can be calculated, using the formula: 

 

        
 

 
     

      
        

    Eq. 5.3 

 

with R the height of each of the n probed coordinates.  The values of the roughness obtained by these 

means can be directly compared to the roughness of other samples, if the surface area it was calculated 

from is identical in each case. 

 

5.2.1.2. Mechanical contact profilometer 

 

 In order to determine the thickness of deposited films, a thin line of material was removed 

from the film. The profile perpendicular to the line was probed using a mechanical contact 

profilometer (KLA-Tencor Alpha-Step IQ). The Alpha-Step IQ is a stylus-based scanning instrument 

with a maximum scan length of 10 mm (Figure 5.5). It has a transductive sensor that registers the 

vertical motion of the stylus. Since the sensor is very precise and sensible, the setup is placed on an 

isolation table. The sample is placed on the rotary sample stage, and moved under the stylus. An 

optical camera is used to correct the placement of the sample, and the stylus is lowered until it touches 

the surface of the film. The surface is probed at a speed of 10-100µm/s across the gap in the material, 

while the vertical motion sensor measures the height of the sample.  

 Once the profile is measured, the two sides of the pristine film around the gap are set at the 

same height (h0), and the height of the gap (hG) is obtained. The difference between h0 and hG accounts 

for the depth of gap and equals the thickness of the probed film. Multiple measurements of the 

thickness are taken across the whole sample to ensure that the film’s thickness is uniform, and the 

average value of the thickness is calculated. This method is very reliable as it is not dependant on the 

z-axis tilt of the film. 



 

62 

 

 

Figure 5.5: Schematic of a mechanical contact profilometer. 

 

5.2.1.3. Contact angle 

 

 The contact angle was measured by means of a drop shape analyzer instrument (Krüss DSA 

100, Figure 5.6). This setup is very powerful for the determination of the wetting of various films for 

multiple solvents, and was used as a tool of comparison between uncoated and self-assembled 

monolayer treated surfaces.  

 First, the sample to be tested is placed on the mobile sample stage, and the syringe is washed 

and filled with the desired solvent, in order to reproduce the same conditions as during the preparation 

of the sample for other experiments. A 5 µL drop of solvent is deposited onto the sample, and the 

optical camera is aligned and focused on the drop. The camera takes a picture of the deposited drop 

and the instrument software determines the position of the base of the sample and the shape of the 

drop of solvent. The angle between the surface and the tangent of the drop at the contact with the 

surface is measured and corresponds to the contact angle. The experiment is reproduced multiple times 

and an average value of the contact angle is calculated. 
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Figure 5.6: Schematic of a drop-shape analyzer setup 

 

5.2.2. Ambient photoelectron spectroscopy 

 

 The determination of the Ionization Energy (IE) of the studied semiconductors and the work 

function of the electrodes was performed using a photoelectron spectrometer setup (RIKEN AC-2, 

Figure 5.7), which operates under ambient conditions. The spectrometer consists of a UV light source 

(deuterium arc lamp), coupled with a spectrometer, emitting light at a progressive selected wavelength 

(200-300 nm). The beam is focused on the surface of the sample. If the energy of the photons is 

sufficient to ionize the molecule, an electron is emitted from the surface towards the detector, which 

counts the number of emitted electrons.  

 The number of emitted electrons is plotted as a function of the energy of the photons in the 

UV-beam. The plot shows two distinct sections: a flat section at low energies, where very little emitted 

electrons are counted and a linear section, with increasing electron yields. The IE corresponds to the 

intersection between flat and linear areas of the plot. 
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Figure 5.7: Schematic of an ambient photoelectron spectrometer. 

 

5.2.3. Electrical characterization 

 

5.2.3.1. Probe-station 

 

 The electrical characterization of all devices was performed using a Keithley 2636A Dual-

channel System Source Meter (for testing of devices illuminated under short-pulse laser, a Keithley 

2400 was used). The electrical characterization took place under nitrogen atmosphere in a glovebox, 

and unless specified otherwise, in the dark. The sample was placed on the sample stage of a Cascade 

Microtech M150 probestation (Figure 5.8) and electrically connected to the Keithley though sample 

stage and up to 3 tungsten probes. Connection was ensured using the mobile sample stage, micro-

positioners and a camera integrated to the probe-station. The source meter was controlled using the 

softwares Labtracer and Labview (for hysteresis measurements). 
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Figure 5.8: Electrical characterization setup for bottom-gate bottom-contact transistors. 

 

5.2.3.2. Light irradiation set-ups 

 

 For electrical characterization during illumination, the probestation previously described was 

complemented by a monochromator (Polychrome V, Till Photonics). The wavelength and intensity of 

the irradiation was controlled using the software Polycon. The range of possible wavelengths was 300 

– 700 nm, and the intensity could be tuned up to 74 µJcm
-
² per second of irradiation at 313 nm, with 

the optical fiber located at 1cm of the target device. Illumination times could be programmed with 

microsecond precision. Short-pulse laser irradiation consisted of 3 ns pulses at controllable 

wavelength, using an Ekspla NT342. The intensity was 85±17 µJcm
-
² for each 3 ns pulse at 313 nm. A 

schematic of the different illumination setups for the different applications is given in chapter 8. 
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Chapter 6. Solution processed field-effect transistors 

based on oligothiophene films with performances 

exceeding those of vacuum sublimed films 
 

 

 

 

6.1. Introduction 

 

 Small semiconducting molecules have been the target of a wide research endeavor in the last 

decades, and have proven to exhibit interesting electrical performances, partly due to their more 

pronounced tendency to form crystalline domains when compared to their polymeric counterparts.
1-7

 

Among all organic small molecules, pentacene, rubrene and C8-BTBT have so far exhibited the largest 

carrier mobilities, up to µ=43 cm²/Vs in off-center spin-coated C8-BTBT film
8-10

 In addition to the 

above-mentioned families of small molecules, a substantial activity has been devoted since over two 

decades to oligothiophenes as promising candidates for charge transport.
11-14

 Initially they were 

deposited by means of thermal evaporation,
15,16

 until substituted moieties were synthesized making it 

possible to process them from solution.
17,18

 In particular, hexamethyl-substituted oligothiophene 

(DHnT) based devices, such as di-hexylquaterthiophene (DH4T) are easily accessible model systems 

that have proven to display a high resistance to the environment, due to their dense packing and hexyl 

chains working as a passivation layer
19-21

 in addition to their charge transport performance in 

transistors.
22

 Indeed, a previous work reported mobilities up to 0.23 cm
2
/Vs for thermally evaporated 

DH4T.
23

 However, these performances have only been achieved for a particular channel’s width-to-

length ratio of 1.5 and by using vacuum deposition as a preparation technique. Clearly such a low W/L 

is not optimal for low-power devices given that very high operating voltages must be applied in order 

to achieve the same output currents one can measure in devices featuring high W/L ratio. On the other 

hand, for vacuum deposited films the highest observed mobility amounted to 0.09 cm
2
/Vs even when a 
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higher width-to-length ratio was used.
24

 As far as solution-processed films are concerned, the highest 

reported mobilty values amounted to µ = 0.043 cm
2
/Vs for ink-jet printed devices

25
 and of µ = 0.012 

cm
2
/Vs for spin-coated films,

26
 indicating that there is much room for improvement on the processing 

side. Further, the statistical deviation of the average mobilities as well as the number of measured 

samples are seldom reported thereby lessening the reliability of the estimated materials properties. The 

Ion/Ioff ratio reported in the literature for this material usually ranges between 10
5
 and 10

7
 

23-25
 

providing evidence for the good switching ability of the devices. Morphology and crystallographic 

parameters of DH4T films have been more recently investigated by Thierry et al. showing how DH4T 

can self-assemble into a highly ordered crystalline structure.
27

 In their study, the crystalline order 

within domains produced by vacuum sublimation was similar to that found in crystalline domains 

grown from solution. High mobility solution-processed devices can be therefore produced if the 

kinetically governed process of film growth is controlled to achieve large crystalline domains,
28

 

eliminating or reducing the effect of grain boundaries, which are detrimental for the charge 

transport.
29-31

 

 In this chapter, we will focus on two routes for device performance improvement of solution 

processed DH4T transistors. The first part of the study will highlight performance boost by attaining a 

control over the kinetics of the self-assembly process via the optimization of the solvent evaporation 

rate combined with a careful choice of the source/drain and gate dielectric surface functionalization. 

The second part of the study will exploit the opposite of the “ideal” conditions, using DHnT molecules 

processed using the worst performing solution (chloroform), and demonstrate how dramatic 

improvements in electrical characteristics can be achieved through blending.  

 

6.2. Methods 

 

6.2.1. Device fabrication 

 

 The tested DH4T molecule was purchased from Polyera under the name ActivInk P0400. 

DH2T was purchased from Sigma Aldrich. DH6T was synthesized by Melucci’s group (ISOF- CNR, 

Bologna). All molecules were used as received, without further purification. Solvents were purchased 

from Sigma Aldrich and used as provided. Bottom-contact bottom-gate configuration transistors 

purchased from Fraunhofer Institute were used. They consist of on n
++

-Si substrates with 230 nm of 

thermally grown SiO2 as the gate dielectric and pre-patterned pairs of gold electrodes with 

interdigitated geometry as the source and drain, as illustrated in Figure 6.1. All samples were prepared 

and measured in a N2 filled glovebox to avoid oxidative doping of the materials and ensure 

reproducibility of the experiments. Solution preparation, HMDS treatment and electrode 

functionalization were performed under nitrogen atmosphere. Electrode functionalization was 

http://www.chemspider.com/4574465
http://www.chemspider.com/22421
javascript:popupOBO('CMO:0002344','c1cc15477j')
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performed by immersion a 4 mM solution of either 1-decanethiol (C10) or 1H,1H,2H,2H-

perfluorodecanethiol (FC10) (Figure 6.2) in ethanol for 12 hours. C10 has been selected to increase the 

wetting abilities of the wafer. Substrates were thoroughly rinsed by squirting 100 µL of absolute 

ethanol for 5 times. HMDS and OTS, were both purchased from Sigma-Aldrich (Figure 6.3). HMDS 

was spin coated at 1500 RPM on the substrate and annealed for 1 hour at 100 °C. OTS treatment 

consisted of a 12-hours immersion of the ozone-treated wafer into a 10 mM solution of OTS in toluene 

with 30 min of heating at 60 °C at the beginning of the immersion. The samples were afterwards 

rinsed with toluene and heated for 60 min at 60 °C. The solution was prepared by dissolving DHnT in 

1,2-dichlorobenzene. The solution was afterwards stirred and heated at 100 °C for 1 hour. 70 µL of the 

cold solution were drop-cast on the substrate. Drop-casting was chosen as the deposition technique 

since, compared to spin-coating, it is more similar to the ink-jet printing process used in real device 

fabrication.  

 

 

 

Figure 6.1: Bottom-gate devices on silicon oxide. Schematic representation of the pre-patterned 

bottom-contact bottom-gate wafer used for all the devices in this chapter. 

 

          

SH

      

F

F F

F F

FF

F F

FF

F F

FF

F F

SH

 

Figure 6.2: Molecular structures for electrode functionalization. Chemical formulae of (a) 1-

decanethiol (C10) and (b) 1H,1H,2H,2H-perfluorodecanethiol (FC10) used for electrode 

functionalization. 

 

 

Si

N

Si
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Si

ClCl
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Figure 6.3: Molecular structures of SAMs for dielectric treatment. Chemical formulae of (a) 

hexamethyldisilazane (HMDS) and (b) Octadecyltrichlorosilane (OTS) used for dielectric treatment. 
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6.2.2. Device characterization 

 

OFET properties were evaluated under positive or negative gate bias to explore the majority charge 

carrier type and device performance. Experimental data were analyzed using standard field-effect 

transistor equations (for p-type semiconductors): 

 

 
2)(

2
ThGSTOTDS VVµC

L

W
I   Eq. 6.1 

 

where IDS is the source-drain current, VGS is the gate voltage, C0 is the capacitance per unit area of the 

dielectric layer, VTh is the threshold voltage, and μ is the field-effect mobility in the saturation region. 

The mobilities were determined in the saturation regime, i.e. at VDS = −60 V from the slope of plots of 

(IGS)
1/2

 versus VGS. In all the characterized sets, the voltage range was kept constant for both IDS –

VDS and IDS –VGS to ensure full comparison among different samples.  

In order to evaluate the contact resistance (Rcontact), the conductivity as a function of the channel length 

has been measured for >110 devices. By subtracting the parasitic contribution of the contact resistance 

from the total measured resistance (Rmeasured = Rtotal = Rchannel + Rcontact) the field-effect mobility values 

could be adjusted. 

For each device (2.5 µm, 5 µm, 10 µm and 20 µm channels) the inverse of the transconductance (gm) 

which takes into account the whole resistive contribution coming from both material and contacts has 

been extracted from the IDS-VGS graphs in the linear regime.  
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Eq. 6.2 

 

Rtotal values have been plotted as a function of the channel length for 4 samples at each VDS = -20 V 

and VDS = -25 V. The resistance calculated at channel length (L)  = 0 µm is the contact resistance 

contribution to the total resistance.  

  

 An ambient photoelectron spectrometer working at ambient conditions was employed to 

determine the ionization energy (IE) of the DHnT films and the work function of the different SAM-

functionalized gold electrodes.  

 

javascript:popupOBO('CMO:0000783','c1cc15477j')
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6.2.3. Atomic Force microscopy (AFM) 

 

 The morphology of the large crystallites has been mapped by performing topographical AFM 

imaging in tapping mode in air environment using a Veeco Dimension 3100 operating on a Nanoscope 

IV control unit. When multiple layers form one on top of the other, we can evaluate the height of each 

step by performing a high amount of step-height measurements. Once the size of the layer in known, 

we can evaluate the tilt angle (α) of the molecule towards the surface: 

 

             
 

 
  Eq. 6.3 

 

with  h the height of the layer, l the length of the molecule  (estimated value via energy minimization) 

and θ the angle difference between the straight up position and the surface (90°).  

 

6.2.4. Ultraviolet photoelectron spectroscopy 

 

 The ionization energy value of the different SAMs and of DHnT were measured by a 

Photoelectron Spectrometer, AC-2, by RKI Instruments working at ambient conditions. The analyzed 

films were realized following the same experimental procedures as those employed in the realization 

of FET devices in order to ensure full consistency with the films that were electrically characterized. 

Ionization energy values of gold without treatment and treated with different thiols are reported in the 

Table T6.1. 

 

Table T6.1: Ionization energy measured by ambient photoelectron spectrometer. 

Procedure IE (eV) 

Bare Au 4.80 

Au FC10 treated 5.43 

Au C10 treated 4.32 

FC10: 1H,1H,2H,2H-perfluorodecanethiol ;   C10: undecanethiol. 

 

6.3. DH4T transistors 

 

 Initially this prototypical molecule (DH4T) was tested in three different chlorinated solvents 

namely chloroform (CHCl3), 1,2-dichlorobenzene (DCB) and chlorobenzene (CB) (Figure 6.4). The 

choice of the solvent was found to be crucial for the device performance. In particular, multi-scale 

morphological characterization, from the hundreds-of-μm down to sub-μm scale, was carried out both 

by optical (OM) and atomic force (AFM) microscopy, therefore supporting the electrical and structural 

characterization presented later in the manuscript.  
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Figure 6.4: Molecular structures of DH4T and the 3 tested solvents. Chemical formulae of (a) 

dihexylquaterthiophene (DH4T), (b) chloroform, (c) dichlorobenzene and (d) chlorobenzene. 

 

Figure 6.5 compares the morphologies of DH4T films prepared by drop-casting a 100 µL drop on a 

SiO2/Si-n
++

 substrate from 1 mg/mL concentrated solution in chloroform, chlorobenzene (CB) and 

dichlorobenzene (DCB). The surface of the DH4T films deposited from chloroform solution (Figure 

6.5, a and 6.5, d) consists of small crystals often not interconnected, whereas the films obtained using 

chlorobenzene or dichlorobenzene as a solvent (Figure 6.5, b and 6.5, e, 6.5, c and 6.5, f) display 

larger and more uniform crystalline domains in OM images. The film uniformity without presence of 

defects over a larger scale for chloro- and dichlorobenzene films does significantly decrease the 

occurrence of grain boundaries. Conversely, films deposited from CHCl3 displayed very high surface 

roughness on the mesoscale (RRMS - of 165 nm), while films prepared from CB showed a decreased 

roughness (RRMS = 22 nm). Films prepared from DCB solutions exhibited an even smaller roughness 

(with RRMS = 7 nm).  

 

 

Figure 6.5: Optical microscopy and atomic force microscopy. Top panel: Optical microscope 

images of DH4T films produced by drop-casting solutions in (a) CHCl3, (b) CB, (c) DCB. Bottom 

panel: Tapping Mode AFM topography images of DH4T films produced by drop-casting solutions in 

(d) CHCl3, (e) CB, and (f) DCB. Z-scales: (d) 2 µm, (e) 500 nm, (f) 120 nm. 

(a) 

 

 

 

 

(b)                  (c)            (d) 
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 Optical microscope images confirm that when the optimized procedure (described below) is 

used, the crystallites processed from DCB solvent are large enough to easily bridge the source-drain 

electrodes for channel lengths up to 20 µm (Figure 6.6). For longer channel lengths such as 60 µm, 

the crystallites are only slightly larger than the channel, leading to the presence of more grain 

boundaries within the channel. The flat crystalline samples prepared from CB exhibit a greater 

roughness and more grain boundaries are present whilst those from chloroform tend to form extremely 

rough aggregates (Figure 6.5).  

 

 
Figure 6.6: Optical microscope images of DH4T thin film organic field-effect transistors based 

on the optimized procedure. (a) DH4T drop-casted on 20-µm-channel electrodes. (b) DH4T drop-

casted on 60-µm-channel electrodes. 

 

 When employed as the active layer in a bottom-contact bottom-gate FET with Au source and 

drain electrodes, drop-cast films from solution in CHCl3 exhibited two orders of magnitude lower 

mobility and Ion/Ioff when compared to those obtained by using DCB and CB as a solvent, as 

highlighted in the graphs of Figure 6.7 . A careful concentration-dependent study was carried out in 

order to find out the concentration giving the highest mobility (Table T6.2). The best mobility was 

recorded when a 5 mg/mL solution was drop-cast from DCB (0.038 cm²/Vs). Furthermore, the 

evaporation rate of the solvent was found being a critical parameter when producing DH4T-based 

OFETs by solution processing. A three-fold improvement of the charge carrier mobility in drop-cast 

films was achieved when the evaporation rate was slightly reduced (by a factor of 2) by means of a top 

cover with a controlled aperture surface. However, when the evaporation rate was more extensively 

reduced (tightly sealed cover) a drop in mobility appeared up to a factor of ten. As can be seen on the 

OM images (Figure 6.8), the evaporation rate of 0.1 produced the film with the least amount of 

defects. This is due to the solvent-vapor annealing
32

 caused by the tightly sealed cover.  
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Figure 6.7: Comparative IDSVGS graphs of drop-casted DH4T films in saturation regime, for 

chloroform, chlorobenzene and dichlorobenzene. 

 

Table T6.2: Detailed correlation between DH4T processing conditions, solvent employed, and 

electrical performances. All films were drop-cast on HMDS-treated silicon oxide and untreated gold 

electrodes. 

Solvent Self-

assembled 

monolayer 

Volume of DH4T 

casted, Concentration 

Evaporation 

rate [Butyl 

acetate = 1] 

Average
f) 

mobility 

[cm²/Vs] 

Ion/Ioff Average
f)
 

threshold 

voltage [V] 

CHCl3 HMDS 100 µL, 1 mg/mL 11.6 6.85×10
-5

 10
1
-10

4
 -12 

CB
a)

 HMDS 100 µL, 1 mg/mL 0.2
c)
 1.09×10

-3
 10

1
-10

4
   -7 

DCB
b)

 HMDS 100 µL, 1 mg/mL 0.2
c)
 6.63×10

-3
 10

4
-10

6
   -8 

DCB
b)

 HMDS 70 µL, 5 mg/mL 0.2
c)
 8.80×10

-3
 10

4
-10

5
 -37 

DCB
b)

 HMDS 100 µL, 3.5 mg/mL 0.2
c)
 1.11×10

-2
 10

4
-10

5
 -36 

DCB
b)

 HMDS 70 µL, 10 mg/mL 0.2
c)
 4.34×10

-4
 10

1
-10

3
 -14 

DCB
a)

 HMDS 70 µL, 2 mg/mL 0.02
e)
 7.70×10

-4
 10

2
-10

3
 -45 

DCB
b)

 HMDS 70 µL, 5 mg/mL 0.02
e)
 3.33×10

-3
 10

4
-10

5
 -39 

DCB
b)

 HMDS 100 µL, 3.5 mg/mL 0.02
e)
 2.00×10

-3
 10

3
-10

5
 -43 

DCB
b)

 HMDS 70 µL, 5 mg/mL 0.1
d)

 2.58×10
-2

 10
4
-10

5
 -39 

DCB
b)

 OTS 70 µL, 5 mg/mL 0.1
d)

 6.14×10
-2

 10
7
 -10 

a)
 Chlorobenzene; 

b)
 dichlorobenzene; 

c)
 solvent left to evaporate at normal rate (evaporation taking 

between 12 h and 18 h); 
d) 

solvent left to evaporate at slow rate (evaporation taking between one and 

two days); 
e)
 solvent left to evaporate at very slow rate (evaporation taking between one and 5 and 7 

days); 
f)
 average over at least 16 devices. 

 

 
Figure 6.8: Optical microscope images of DH4T drop-cast from dichlorobenzene. (a) normal 

evaporation rate of 0.2, uncovered (b) evaporation rate reduced to 0.1 using a glass cover (c) 

evaporation rate reduced to 0.02 using a tightly sealed glass cover. Butyl acetate = 1.  
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 The procedure that exhibited the best mobility, i.e. 70 µL of DH4T at 5 mg/mL drop-cast from 

DCB, evaporation rate of 0.1, will be referred to as the “optimized procedure”. It has been successfully 

reproduced on > 110 devices using hexamethyldisilazane (HMDS) as a surface treatment. Noteworthy, 

in spite of the fact that drop-casting is a deposition technique which is supposed to lead to uneven 

device-to-device performances due to thickness variation in the x-y plane, the presence of large flat 

crystals spanning over hundreds of micrometers allowed for the fabrication of devices whose electrical 

parameters featured mobilities with standard deviations which were absolutely comparable to those 

achieved in spin-coated films (Table T6.3). In very few instances (less than 3% of the cases), the 

presence of non-functioning devices could be ascribed to the insufficient coverage of the device upon 

deposition of the material.  As highlighted by AFM and OM, the major differences in mobility 

between the above-mentioned cases would all stem from the occurrence of grain boundaries in the 

crystalline films which exhibited a highly crystalline nature of the film as confirmed by GIXD analysis 

(Figures 6.9 and 6.10).   

  

Table T6.3: Optimized procedure using HMDS, for channel lengths comprised between 2.5 µm and 

20 µm. 

Sample Functioning 

devices
a) 

Average
b)

 mobility 

[cm²/Vs] 

Average
b)

 

Ion/Ioff 

Average
b) 

threshold 

voltage [V] 

DCB08 16 2.58 ± 1.52 × 10
-2

 2 × 10
5
 -39 ± 5 

DCB11 16 2.68 ± 0.97 × 10
-2

 5 × 10
5
 -34 ± 4 

DCB12 16 2.73 ± 1.40 × 10
-2

 5 × 10
6
 -19 ± 9 

DCB13 14 4.10 ± 1.50 × 10
-2

 6 × 10
6
 -29 ± 9 

DCB14 16 2.80 ± 1.25 × 10
-2

 2 × 10
6
 -28 ± 7 

DCB15 16 3.05 ± 1.19 × 10
-2

 6 × 10
5
 -29 ± 8 

DCB16 15 3.29 ± 1.99 × 10
-2

 1 × 10
6
 -32 ± 6 

a)
number of functioning devices (out of 16 devices per sample for small channels, out of 8 devices for 

large channels); 
b)

average over all functioning transistors. 
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Figure 6.9: 2D GIXD patterns of DH4T drop-casted on bare Si. (a) chloroform used as a solvent ; 

(b) dichlorobenzene used as a solvent ; (c) using the optimized procedure (HMDS). 

 

 

Figure 6.10: GIXD measurements. (a) Diffraction pattern of DH4T drop-casted on bare Si along the 

qz direction showing a high number of (00L) peaks up to fairly large q values. (b) Analysis of a 

specific region shows an overlap of several (001) peaks, which is indicative of the polycrystalline 

nature of the drop-casted films. 

 

 

Figure 6.11: Tapping Mode topography AFM images of DH4T crystallites in a 20 µm channel. (a) 

Unmodified image; (b) linear height flattening introduced in the image to show differences between 

channel and electrodes. a,b) Z-scales=70 nm. 
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 When the optimized procedure is used (Figure 6.11), the crystallites readily bridge the source 

and drain electrodes. Furthermore, the morphology of the crystallites, bridging and following the 

profile of the electrodes, seems to suggest the absence of nucleation sites in the interelectrodic region. 

This indicates that the formation of the crystallites does commence in the solvent and only later these 

structures “land” on the electrodes and expand via self-assembly.  

In addition to the effects of the solvent and its evaporation rate on the electrical performances, a 

thorough physico-chemical analysis of the metal/semiconductor interface was performed. In particular, 

the gold electrodes were functionalized with either 1-decanethiol (CH3(CH2)9-SH) or 1H,1H,2H,2H-

perfluorodecanethiol (CF3(CF2)7CH2CH2-SH) forming chemisorbed self-assembled monolayers 

(SAM).  By means of an ambient photoelectron spectroscopy, we measured an ionization energy of 

5.20 ± 0.02 eV for DH4T films, whilst the work function of uncoated gold, 1-decanethiol-

functionalized gold and perfluorodecanethiol-functionalized gold resulted 4.80 ± 0.20 eV, 4.32 ± 0.02 

eV and 5.43 ± 0.02 eV, respectively. Interestingly, the best energy match for injecting holes in the 

HOMO of DH4T should be attained when perfluorodecanethiol SAMs are employed, followed by 

uncoated gold and 1-decanethiol-functionalized electrodes. However, both mobility and currents were 

found being slightly higher when functionalized electrodes were utilized, revealing that the affinity of 

the semiconductor for the surface and the physical interface metal/electrode play a key role (Table 

T6.4). Investigating the shape of the output curves (Figure 6.12), no notable difference in injection 

capacity was found between the untreated electrodes and the two used SAMs. The surface energy of 

SAM-functionalized electrodes is lower than in uncoated gold as revealed through contact angle 

measurements using DCB as liquid. Among the three difference cases, the best performing devices 

were ultimately those bearing SAM-functionalized source and drain electrodes, owing to a lower 

surface energy and higher surface affinity of the DH4T molecules. To verify the latter statement we 

performed contact angle measurements by using solutions of DH4T in DCB (5 mg/mL) as performed 

in the case of the corresponding devices. The experiment did not reveal appreciable differences with 

respect to the former contact angle measurements performed with pure DCB (Figure 6.13).   

 

Table T6.4: Comparison of different 5mg/mL DH4T films drop-casted from dichlorobenzene 

using HMDS. FC10: 1H,1H,2H,2H-perfluorodecanethiol ;   C10: 1-decanethiol. 

Treatment Channel length / 

µm 

Average  mobility / 

cm²/Vs 

Ion/Ioff Average threshold 

voltage / V 

none 2.5-20 8.80×10
-3

 10
4
-10

5
 -37 

C10 2.5-20 1.08×10
-2

 10
5
-10

6
 -16 

FC10 2.5-20 1.04×10
-2

 10
3
-10

6
 -10 

 



 

77 

 

 

Figure 6.12: IDSVDS plots of DH4T films on untreated (a), 1-decanethiol treated (b) and 

1H,1H,2H,2H-perfluorodecanethiol treated (c) electrodes. 

 

 

Figure 6.13: Dichlorobenzene contact angle measurements, with contact angle values:  (a): 

uncoated gold (19.2°); (b) 1-decanethiol (57.8°); (c): 1H,1H,2H,2H-Perfluorodecanethiol (76.8°). 

Dichlorobenzene with DH4T at 5mg/mL contact angle measurements: (d) uncoated gold (18.4°); (e) 1-

decanthiol (45.3°); (f) 1H,1H,2H,2H-Perfluorodecanethiol (72.6°). 

 

(a)      (b) 

 

 

 

 

 

 

 

(c)      
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 In addition, all films encompassed in this study exhibit high degree of crystallinity as 

confirmed by GIXD analysis (Figure 6.9 and 6.10); interestingly, the structural order within thin films 

does not differ significantly between samples fabricated under different preparation conditions. We 

want to point out here that, in general, OFETs probe only the dielectric-semiconductor interface
33

 

while GIXD probes the bulk crystalline structure, which may differ from that of the interfacial layer.
34

 

Because DH4T tends to crystallize into relatively flat platelets, here we assume that the interface 

exhibits the same crystalline structure as that of the bulk crystal. Most probably, the difference in 

mobility does not stem from the crystalline order of the film but rather from the difference in the 

crystallite size as a result of each specific preparation condition. In other words, a high number of 

small crystals translates into a high number of grain boundaries, which strongly limit charge transport.  

 

 

 

Figure 6.14: DH4T OFET based on the optimized procedure using HMDS and 1-decanethiol 

treated electrodes. (a) Output characteristics. (b) Transfer characteristics of the same device in the 

linear and saturation region (log scale). (c) IDS vs. VGS and Sqrt(IDS) vs. VGS in saturation regime  (VDS 

= - 60V, L = 20 µm, W = 10 mm).  
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Furthermore, even the devices prepared with the optimized procedure based on the use of HMDS and 

1-decanethiols to functionalize the interface of the organic semiconducting material with the 

dielectrics and electrodes, respectively, show an unfavorable charge injection, as evidenced from the 

non-linearity of the output curve at low source-drain voltage (Figure 6.14). For channel length 

comprised between 2.5 µm and 20 µm, hole mobility of about 0.06 cm²/Vs is observed on > 110 

devices, with an average Ion-Ioff ratio of ~10
5
 (Table T6.3). The highest hole mobility observed 

amounts to 0.08 cm²/Vs and the highest Ion-Ioff ratio is of ~5×10
7
. It is worth pointing out that we did 

not observe any electron (n-type) transport in any device. 

 

 Further, when the size of the channel reaches 60 µm and over, we observed a 4- and 10-fold 

decrease in mobility and Ion/Ioff, respectively (see SI). The amount of devices with observable 

semiconducting characteristics is considerably lower as well (37% compared to 97%). The threshold 

voltage is not affected by the change of the channel length. 

The average contact resistance value extracted from IDS-VGS graphs in the linear regime is reported in 

Table T6.5 and amounted to ~100 kΩ (103 kΩ) (See SI). By using the Rcontact value of 103 kΩ, the 

mobility was adjusted using Rchannel instead of Rtotal provided that Rchannel = Rtotal – Rcontact (Tables T6.6 

and T6.7). The obtained values are plotted as a function of the channel length. We notice that values 

of the mobility adjusted for Rcontact ~ 100 kΩ are uniform over all the channel lengths revealing that 

mobility is an intrinsic parameter of the material and its value should not depend on a specific channel 

length. When mobilities are corrected for the contact resistance, we observe an average mobility 

topping 0.05 cm²/Vs for the small channels (2.5 µm and 5 µm) (Figure 6.15).  

 

Table T6.5: Contact resistance. Values for each sample at VDS = -20V and VDS = -25V. 

Sample  Rcontact (VDS = - 20 V) / kΩ Rcontact (VDS = - 25 V) / kΩ Average Rcontact / kΩ 

DCB11 99  71  85  

DCB12 90  76  83  

DCB13 110  103  106  

DCB15 160  114  137  

Average (σ) 115  91  103  

 

Table T6.6: Correction factors. (contact resistance). 

L / µm  µuncorrected  / cm²/Vs µcorrected  cm²/Vs µcorrected/µuncorrected (R = 103kΩ)  

2.5  5.31 × 10
-3

  1.34 × 10
-2

  2.61 

5  7.40 × 10
-3

 1.33 × 10
-2

  1.80 

10  9.31 × 10
-3

 1.29 × 10
-2

  1.39 

20  1.14 × 10
-2

 1.38 × 10
-2

  1.21 
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Table T6.7: Mobility values corrected for contact resistance. 

L / µm Uncorrected mobility / cm²/Vs Mobility corrected for Rcontact = 103 kΩ 

2,5 1.95 × 10
-2

 5.00 × 10
-2

 

5 2.84 × 10
-2

 5.01 × 10
-2

 

10 3.13 × 10
-2

 4.38 × 10
-2

 

20 3.72 × 10
-2

 4.49 × 10
-2

 

 

 

 

Figure 6.15: Average field-effect mobility in the saturation regime as a function of the channel 

length. The devices were prepared according to the optimized procedure on 1-decanethiol treated gold 

electrodes.   

 

Significantly, in contrast to HMDS-functionalized devices prepared with the optimized procedure, 

output curves do not indicate the presence of a high contact resistance when octadecyltrichlorosilane 

(OTS) is used to functionalize the surface of the dielectric silicon oxide (Figure 6.16). The devices 

exhibit mobilities up to 0.10 cm²/Vs and Ion/Ioff up to 5×10
7
 (Table T6.8). The average threshold 

voltage was found to be -12 V in the saturation regime and -9 V in the linear regime, which is 2- to 3-

fold smaller in absolute value if compared to HMDS-treated devices. Figure 5c shows that the transfer 

curve is bent at high gate voltages. This would indicate that the device is prone to bias stress. Notably, 

HMDS-treated devices were found to exhibit a more pronounced bias stress when measured at the 

same VGS-VTh (Figure 6.17). These findings were confirmed by IDS-time curves (Figure 6.18). 

However, the gate voltage was swept up to -60 V also in OTS-treated FETs for the sake of consistency 

with the HMDS case. Given that OTS-treated devices showed lower (in absolute value) threshold 

voltage, the above-mentioned bias stress can be ascribed to the higher VGS-VTh value employed when 

testing OTS-treated samples.  
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Figure 6.16: DH4T OFET based on the optimized procedure using OTS and 1-decanethiol treated 

electrodes. (a) Output characteristics. (b) Transfer characteristics of the same device in the linear and 

saturation region, plotted in logarithmic scale. (c) IDS vs. VGS and Sqrt(IDS) vs. VGS in saturation regime  

(VDS =  - 60 V, W = 10 mm,  L = 20 µm).  

 

 

 

Table T6.8: Optimized procedure using OTS. 

Sample Average
a)

 mobility 

[cm²/Vs] 

Average
a)

 

Ion/Ioff 

Average
a)

 threshold 

voltage [V] 

DCB22 6.12
 
± 2.65×10

-2
 1×10

7
 -10 ± 5 

DCB23 6.14
 
± 0.85×10

-2
 1×10

7
 -13 ± 3 

a)
average over all functioning transistors. 
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Figure 6.17: IDSVGS graphs of DH4T films produced by following the optimized procedure in 

linear and saturation regime, for (a) HMDS, and (b) OTS treated silicon oxide test patterns. (c): 

IDSVGS graph of DH4T films produced by following the optimized procedure in saturation regime, for 

HMDS- and OTS- treated silicon oxide test patterns.  

 

 

 

 

Figure 6.18: Normalized IDS vs. time curves for OTS- vs. HMDS-treated FETs biased at VGS –VTh = - 

20 V, VDS = - 60V, prepared with the optimized procedure. I0 is the current value at t = 0 sec. (L = 20 

μm and W = 10mm; VDS = - 60V).   

 

(a)      (b) 

 

 

 

 

 

 

(c)      
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 The reason for these improved electrical performances cannot stem from chemical difference in 

the oxide treatment given that both OTS and HMDS are methyl-terminated. However, the performances 

on organic transistors are in general improved in terms of threshold voltage and mobility when OTS is 

utilized.
35

 Surprisingly, the dielectric substrate treatment seems to affect the charge injection as can be 

observed in the output curves. Several points could be brought up in order to explain this unexpected 

trend: (i) the DH4T film thickness of OTS-treated devices is thinner than that measured over HMDS 

ones (tens vs. hundreds of nm) as confirmed by the AFM and profilometer (also, the roughness is lower, 

as shown in Table T6.9). (ii) This difference in thickness could lead to higher OFF current in HMDS-

treated devices. In addition, the average OFF current increase of ca. two orders of magnitude can be 

ascribed to the more favored and unavoidable presence of water molecules on the surface of HMDS vs. 

OTS-treated silicon oxide which stems from the larger surface energy of the former. (iii) AFM imaging 

of films recorded on HMDS-treated substrates showed to exhibit thinner crystalline planes, lying on top 

of each other, which are formed during the evaporation of the residual solvent (Figure 6.19). During the 

solvent evaporation the crystals will have a certain affinity for the surface. The better interaction of the 

DH4T crystals for OTS- vs. HMDS-treated surface promotes formation of thickest multi-layered 

crystals in the latter case. As a result, the thinner crystalline layers adapt more easily to the pre-

patterned electrode geometry, therefore improving the semiconductor/electrode interface quality when 

OTS is used. The presence of more interfacial defects can be further verified by looking at the sub-

threshold slope and the resulting amount of interfacial traps which is ca. 10 times lower in OTS-

functionalized devices (see Table T6.10).  

 

 

 

Table T6.9: RMS roughness of various DH4T films. Values obtained from AFM measurements. 

Averages were acquired over 10 spots, each of them of 100 µm² area. 

Solvent Functionalization Evaporation rate 

(butyl acetate = 1) 

Average Rrms 

(nm) 

Standard 

deviation (nm) 

CHCl3 HMDS 11.6 165.2 41.6 

CB HMDS 0.2 21.6 7.3 

DCB HMDS 0.2 7.1 1.9 

DCB HMDS 0.1 2.8 0.9 

DCB OTS 0.1 1.5 0.3 

 

Table T6.10. Subthreshold slope calculated in the case of OTS- vs. HMDS-treated transistors. In 

addition, the corresponding number of interfacial traps is shown.  

L [µm]  S (V dec
-1

) OTS Ntraps (cm
-2

) OTS S (V dec
-1

) HMDS Ntraps (cm
-2

) HMDS 

20 6,5 1,12×10
13

 109 1,89×10
14

 

10 7,5 1,30×10
13

 110 1,91×10
14

 

5 7,2 1,24×10
13

 85 1,48×10
14

 

2.5 9,0 1,56×10
13

 101 1,75×10
14

 

 



  

84 

 

 

Figure 6.19. Atomic force microscopy of DH4T films on OTS, using the optimized procedure. (a) 

Topography AFM images of a DH4T optimized procedure OTS film. (b) Step height measurements. 

This graph shows the result of measurements of 25 steps (average over 3 measurements each). Higher 

steps have been left out (3 or more layers). The calculated average layer size is of 1.54 nm. The tilt 

angle (α) of the molecule towards the surface was calculated using equation Eq. 4.3, (using as 

parameters  h = 1.54 nm; l = 3.05 nm and θ = 90°). A tilt angle value of 30° was found, consistently 

with a similar value (24.2°) reported in literature. 
36

 

 

 

6.4. Blends including DH4T 

 

 In section 6.3. we have demonstrated that a careful selection of solvent and evaporation rate 

lead to major improvements of the electrical performances of the tested semiconductor. In order to 

further improve the electrical characteristics of the material, we introduced other materials within the 

same family of semiconductors, DHnT 
22

. The additional molecules were DH2T and DH6T (Figure 

6.20). Unfortunately, the purchased DH6T that was used at first did feature very low purity, and some 

experiments could not be performed again in time, explaining the lack of data for some films containing 

DH6T. It is noteworthy to mention that even though the DHnT oligomers differ greatly in terms of 

electrical characteristics 
37-39

, these small molecules share many similarities, being based on thiophene 

groups with two hexyl chains for improved solubility in organic solvent. Two are the effects we aimed 

at unraveling via blending DH4T with similar oligothiophenes with different lengths. On the one hand, 

smaller oligomers like DH2T could be expected to fill the intercrystal regions. On the other hand the 

variation of the oligothiophene length could be accompanied with a vertical phase segregation which 

could affect drastically the OFET performance in bottom-gate bottom-contact devices. 

 

(a)      (b) 

 

 

 

 

     

 

(a)              

 

 

(b)  

     

(c)              
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Figure 6.20: Molecular structures of DHnT molecules and P3HT. Chemical formulae of (a) the 

general DHnT structure, (b) dihexylbithiophene (DH2T), (c) dihexylquaterthiophene (DH4T), (d) 

dihexylsexithiophene (DH6T) and (e) poly(3-hexylhexylthiophene) (P3HT). 

 

 First we fabricated transistors using the optimized procedure on HMDS given in the previous 

section. We introduced small amounts of DH2T, a molecule that exhibited no charge transport 

properties when tested in a transistor. Not surprisingly, even small amounts of DH2T added to the 

DH4T resulted in a strong decrease of the mobility (Figure 6.21). This can explained by (i) DH2T 

acting as an inhibitor for DH4T crystal formation (ii) DH2T acting as a trap for charges in the channel, 

and/or (iii) the DH2T forming a thin layer at the interface with the dielectric, where most of the charge 

transport is performed by the transistor. 

 

Figure 6.21: Electrical characteristics as a function of the amount of DH2T added to DH4T 

(optimized procedure using HMDS). Both the values of (a) the Ion/Ioff and (b) the mobility as a 

function of wt% DH2T were obtained from transfer curves (average over 8 transistors with L = 2.5 µm; 

5 µm; 10 µm; 20 µm). 

 

 Experimental data from GXRD performed by Salleo’s group at Stanford University showed that 

addition of small amounts of DH2T into the DH4T solution does not result in films with decreased 

(a)                       (b)  
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DH4T crystallinity (Figure 6.22). These findings contradict the proposition that DH2T is responsible 

for a lower crystallinity in the formed film. Therefore, the position on the z-scale of the DH2T was 

investigated by means of Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) measurements, 

performed at University of Catania by Prof. Licciardello’s group. From the ToF-SIMS analysis, we can 

conclude the on the top of the sample, only DH4T is present (Figure 6.23, first 100 seconds). Once we 

reach the interface between semiconductor and dielectric, there is progressively more DH2T to be found 

with the DH4T, while at no point a pure DH2T film is observed. This can be due to the very small 

quantities of DH2T that were introduced. Nevertheless, it is clear that DH2T is present at the 

semiconductor-dielectric interface, where most charges move from the source to the drain electrode, 

confirming proposition (iii). The very slow evaporation of the solvent in the optimized procedure is 

providing enough time for the DH2T and DH4T to phase segregate. Therefore, the same blend was 

produced, using either dichlorobenzene at normal evaporation rate or chloroform as solvents. 

  

Figure 6.22: 2D GIXD patterns of films drop-casted on bare Si. (a) Pure DH4T dropcasted from 

dichlorobenzene ; (b) DH2T/DH4T blend containing 2% DH2T and 98% DH4T. 
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Figure 6.23: ToF-SIMS on bare Si, of a film resulting from a drop-cast of a DH4T/DH2T blend in 

dichlorobenzene. (2% wt DH2T) 

(a)                       (b)  
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 The electrical performances of samples produced from DH4T/DH2T blends in chloroform and 

DCB (without reduction of the evaporation rate) were tested. The mobilities as function of the amount 

of DH2T are reported in Figure 6.24. A small increase of the mobilities at low quantities of DH4T was 

observed in both cases. Consistently with results obtained in the previous section, mobilities of devices 

produced from DCB were higher than the mobilities of the devices produced from CHCl3. 

Unfortunately, the increases in electrical performances were rather modest, which can easily be 

explained by the absent charge-transport characteristics of DH2T, due to a very wide band gap of 3.6 

eV, as reported by Facchetti et al. 
40
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Figure 6.24: Mobilities as a function of the amount of DH2T added to DH4T. Mobilities of films 

deposited from (a) dichlorobenzene and (b) chloroform. The mobility as a function of wt% DH2T were 

obtained from transfer curves (average over 8 transistors with L = 2.5 µm; 5 µm; 10 µm; 20 µm). 

 

 In order to further improve electrical characteristics of DH4T in chloroform, various amounts of 

DH6T were added, to form a new blend. Electrical characteristics are reported in Figure 6.25. While 

mobilities of DH4T and DH6T are only one order of magnitude apart (µDH4T = 3.4 × 10
-5

 cm²/Vs; µDH6T 

= 4.6 × 10
-6

 cm²/Vs), the Ion/Ioff ratio is different by 4 orders of magnitude, DH6T being a very poor 

semiconductor with an Ion/Ioff of 20. An impressive improvement of charge-transport capabilities has 

been observed upon addition of 10% of DH4T to the DH6T solution. A 50-fold and 300-fold increase in 

mobility compared to respectively DH4T and DH6T was found. In terms of Ion/Ioff, the most favorable 

blend was with even amounts of each component (Ion/Ioff = 5 × 10
5
), a 4 order of magnitude increase 

compared to DH6T, with values rather close to DH4T both in terms of mobility and on/off ratio. IDSVGS 

curves are presented in linear and logarithmic scale in Figure 6.26. We observe that both in terms of 

currents and curve-shape, samples ranging from 100% DH4T to 50% DH4T have very similar transfer 

curves, demonstrating a very minor effect of the DH6T on the charge transport mechanism in the 

device. On the other hand, even small amounts of DH4T (5-10%) added to the blend result in major 

changes in mobility, Ion/Ioff and threshold voltage. These results are very intriguing since the highest 

(a)                       (b)  
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observed mobilities would be expected to be at best equal to the mobilities of DH4T or DH6T, if the 

materials were completely phase-segregated. While the high Ion/Ioff could be explained by DH6T 

aggregates surrounded by DH4T areas, the observed mobility is probably due to a complete change in 

crystallinity of either DH4T, DH6T or both upon blending. 
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Figure 6.25: Electrical characteristics as a function of the amount of DH6T added to DH4T.  Both 

the values of (a) the Ion/Ioff and (b) the mobility as a function of wt% DH2T were obtained from transfer 

curves (average over 8 transistors  with L = 2.5 µm; 5 µm; 10 µm; 20 µm). 
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Figure 6.26: Transfer curves and threshold voltages as a function of the amount of DH6T added 

to DH4T.  All the transfer curves are take from devices at the same channel length (L = 10 µm). 

 

 Noteworthy, while very small amounts of DH4T added to the larger molecule DH6T is very 

beneficiary to the charge transport (just as it was observed for the DH2T/DH4T pair), addition of small 

quantities of DH6T into the DH4T solution (2%, 10%) reduced the mobility of devices. This can be 

explained either by reduced crystallinity of the DH4T due to DH6T implementation, or by DH6T acting 

as a charge trap. The first proposition tested using a Grazing Incident X-Ray Diffraction setup. These 

(a)                       (b)  
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experiments were performed at Stanford University and are reported in. GIXD confirms that just as it 

was seen about DH4T/DH2T blends, various amounts of either component do not affect the crystallinity 

of the other. In order to determine the structural characteristics of blended films, UPS measurements 

were carried out. It was found that the Ionization Energy (IE) of DH4T was largely different from the 

IE of DH6T, with respective values of 5.2 eV and 4.85 eV. The values of the Ionization Energy as a 

function of the amount of each material in the blend are reported in Figure 6.27. The IE was found to 

be constant between 100% DH4T and the 50:50 blend, indicating that at such ratio DH4T forms a film 

over the DH6T. This can be explained by the lower solubility of DH6T than DH4T, leading to the 

formation of DH6T aggregates first, that sink to the bottom of the film. Furthermore, it was 

demonstrated via AFM in section 6.3. that DH4T forms films over the electrodes, and does not grow 

within the channel. Unfortunately, due high roughness in DH6T films deposited from a chloroform 

solution, the TOF-SIMS analysis could not be performed. The fact that the DH6T is at the interface 

between dielectric and the semiconductor explains the observed drop in mobility for small percentages 

of DH6T reported in Figure 6.25. The IE of DH6T being lower than that of DH4T, charges are trapped 

in the DH6T at the interface. At small quantities of DH4T, the large error bars are due to the disparity 

on the x/y-scale of the layer within each tested sample. Nevertheless, the DH4T seem to affect the 

observed IE even when present in small quantities, due to its position over the DH6T. The observed 

improvement in electrical characteristics is attributed to the effect of DH4T binding the DH6T 

crystallites leading to better paths between source and drain electrodes. Furthermore, these areas of 

DH4T separating DH6T are sufficient to inhibit charge transport when IDS is below VTh,DH4T. These 

observations reveal crucial as this method of blending two materials with different electrical properties 

for combination of a positive aspect of each material could be transposed to a series of other materials 

and other properties, as will be demonstrated in chapters 7 and 8.  
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Figure 6.27: Ionization energy as a function of the amount of DH6T added to DH4T.   
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6.5. Conclusions 

 

 In summary, our comparative study on the structure vs. function relationship in solution 

processed DH4T based OFETs revealed that by optimizing the conditions of film formation via 

judicious choice of processing method, solvent type, interfaces functionalization and in particular by 

tuning the rate of evaporation of the solvent it is possible to drive the molecular self-assembly towards 

the formation of highly ordered low-dimensional architectures exhibiting enhanced electrical 

characteristics. Significantly, their use as electroactive components in OFETs led to device 

performances that are beyond the state-of-the-art for DH4T-base transistors, even when compared to 

vacuum processed OFETs made with the same molecule. In particular, p-type mobilities as high as 0.10 

cm²/Vs and Ion/Ioff currents exceeding 10
7
 were achieved. Our results unambiguously confirm that the 

tailoring of interfaces is key. Counter intuitively, the functionalization of the injecting electrodes to 

render them more hydrophobic thus optimize the surface energies via optimal interaction of the alkyl 

chains of the DH4T for the SAM is found being more important than adjusting the energy match with 

the HOMO of the semiconductor. In addition, we showed how the different silicon oxide treatment can 

impact directly the assembly of the semiconductor in highly boiling point solvents leading to interfaces 

with a lower number of interfacial traps which result in enhanced electrical performances.  

 We have demonstrated that when a low-boiling point solvent was used (chloroform), the 

mobility of DH4T could be improved by two orders of magnitude through simple blending with another 

similar-performing small molecule from the same family (DH6T). By careful analysis of the electrical 

characteristics of transistors based on bi-component blends, the structure of the blend could be 

determined, as was controlled through IE measurement with a UPS setup. Addition of very small 

quantities of a non-semiconducting molecule (DH2T) was proven to be an effective way of increasing 

the electrical performances of the tested transistors. While most methods relying on multiple 

semiconducting materials in the same devices focus on separate layers, with multiple processing 

difficulties, our approach of blending proved to be simple and effective. Our processing method, based 

on drop-casting, a technique similar to ink-jet printing, as a means to achieve high mobility devices is 

compatible with large-area applications thus providing a pathway towards organic electronics that 

satisfies the needed balance between performance and processability. 
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Chapter 7. Ambipolarity on demand: polymer blends 
 

 

 

 

 

 

7.1. Introduction 

 

 Ambipolar transistors are field-effect transistor (FET) devices in which the charge carriers 

can be both electrons and holes.
1,2

 The key merit of ambipolar transistors emerging from the capability 

to operate with both types of carriers is that they can operate in three different states: the hole current on 

state, the off state, and the electron current on state, which can be beneficial for the construction of C-

MOS logic circuits with a lower number of device components.
3
 While inorganic semiconductors are 

unipolar (with selection of polarity by doping), organic semiconductors should fundamentally allow 

transport of both holes and electrons.
4
 However, this only happens in ideal cases, or at low temperature 

5,6
 While most organic semiconductors for OFET feature p-type or n-type mobility, ambipolarity is still 

a rare and most sought-after propriety of organic materials. 

 In order to obtain ambipolar performances, the go-to approach usually is the use of two 

separate layers of the p- and n-type semiconductor, leading to ambipolar films. Regrettably, this 

approach requires complex processing methods (such as vacuum evaporation of the separate films) 

since the choice of solvent would be tricky if one was to process the films from the solution. Another 

approach is the use of ambipolar molecules. In most cases of ambipolar molecules, the Ion/Ioff was found 

to be much weaker than in the case of hole or electron conducting molecules, due to high off current. 

Furthermore, there is very little control over the ratio between p-type and n-type mobilities, leading to 

often very unbalanced ambipolarity. 
7
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 The possibility to obtain ambipolar behavior in organic field-effect transistors by combining 

two different semiconductors (n-type and p-type materials) in the active layer was first demonstrated in 

systems in which both layers were deposited by co-sublimation. Dodabalapur and co-workers combined 

layers of two small molecules, the hole-conducting α-sexithiophene and the electron-conducting C60, 

and observed both hole and electron transport in these devices, although with lower mobility values 

than those of the single-component. 
8
 More recently, Dinelli et al. demonstrated a device based on 

separate layers of DH4T and and N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide, reaching 

ambipolar balanced mobilities of 0.03 cm²/Vs. While this result is impressive, among the highest 

mobilities reported for bilayer transistors, the procedure based on the evaporation of the small 

molecules is inapplicable for the real-world application, and the Ion/Ioff was found to be very low, i.e. 

below 10. 
9
 

 In order to circumvent the processability issue, several attempts to layered semiconductors 

from the solution have been tried. They include using an intermediate layer (TiOx) that is inserted 

between the semiconductor materials, thus electronically separating the p- from the n-channel. 
10

 

Another alternative is to use the contact-film-transfer method, 
11

 in which two different polymer films 

are deposited on two different substrates and one of them is transferred afterwards on top of the other. 

The sequential spin-coating from orthogonal solvents has been investigated as well; 
12

 in this way, it is 

possible to deposit one layer directly on top of the other without affecting the performance of the first 

layer. 

 To date, the best ambipolar blends using polymers and small molecules have been obtained 

by Shkunov et al., with a mixture of thieno[2,3-b]thiophene terthiophene polymer and phenyl C61 

butyric acid methyl ester on OTS-treated SiO2 substrates. These devices displayed electron mobility of 

9×10
-3

 cm²/Vs and hole mobility of 4×10
-3

 cm²/Vs. 
3,13

 Regrettably, while the processing technique is 

simple and adapted to the industry, the unbalanced mobilities, relatively low Ion/Ioff (below 10
3
) and 

shifted threshold voltage (IDS,min at VGS over 20V), disqualify these devices for future applications. 

 Ambipolar polymer/polymer blends have been produced, with balanced mobilities up to 

3x10
-3

. 
14,15

 While these results point to the great potential of this approach, the relatively low mobilities 

and Ion/Ioff (10
3
) show that the full potential of these blends have not yet been reached. Furthermore, 

almost all these studies rely on a single blend at fixed ratio, making it difficult to establish the 

correlation between ambipolar performances, film structure, molecular structure and blending ratio. The 

ambition of our study is therefore double. We aim at the fabrication of very high performance balanced 

ambipolar transistors, with a large threshold voltage window (VTh,n – VTh,p) and Ion/Ioff, while trying to 

establish which p-type polymer shows the best compatibility with P(NDI2OD-T2). We will explore the 

correlation between blending ratio and ambipolar behavior, and compare the structure at the surface of 

blended materials with pure films. These studies will be accompanied by careful investigation of the p-
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type and n-type electrical performance dependence on the OFET geometry as a tool of determination of 

the structure of the film and enhancement of the performances. 

 

7.2. Methods 

 

7.2.1. Semiconductors  

 

 P(NDI2OD-T2) and the four p-type semiconductor candidates for blending; P3HT, IIDDT-

C3, PDVT-8 and PCD-TPT (Figure 7.1) have been described in chapter 3. All the semiconductor 

solutions were prepared using chloroform as solvent. The semiconductors were purchased from Polyera 

(P(NDI2OD-T2)), BASF-Rieke Metals Inc. (P3HT) and 1-material (PCD-TPT, PDVT-8 and IIDDT-

C3). Molecular weights, polysdispersity and monomer weights are reported in Table T7.1. 

 

 

Figure 7.1: Molecular structures of the n-type semiconductor P(NDI2OD-T2) and the p-type 

semiconductors P3HT, PCD-TPT, PDVT-8 and IIDDT-C3. 
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Table T7.1: Average molecular weights and polydispersity of the studied polymers.  

Polymer Molecular weight 

/ kDa 

Polydispersity Monomer weight / 

Da 

Estimated 

average number 

of monomers 

P(NDI2OD-

T2) 

28 2.3 989.5 28 

P3HT  50 2.4 166.3 300 

PCD-TPT  79 2.5 1520.5 52 

PDVT-8  51 2.4 1049.7 49 

IIDDT-C3  58 2.4 1097.8 53 

All values are extracted from the certificate of analysis provided by the supplier of the molecules. 

 

7.2.2. Fabrication of the devices 

 

Bottom-contact bottom-gate configuration transistors purchased from IPMS Fraunhofer 

Institute were used. They consisted of on n
++

-Si substrates with 230 nm of thermally grown SiO2 as the 

gate dielectric (15 nF capacitance) and pre-patterned pairs of gold electrodes with interdigitated 

geometry as the source and drain. All solutions, samples and devices were prepared and measured in a 

N2 filled glovebox to avoid oxidative doping of the materials and ensure reproducibility of the 

experiments. All wafers were treated with OTS before use. All samples were fabricated by spin-coating 

of the semiconductor solution at a total concentration of 5 mg/mL, at 2500 RPM (acceleration 4000 

RPM/s). Bi-component blends were produced by mixing 5 mg/mL solutions of P(NDI2OD-T2) and the 

other semiconductors, at the desired ratio. The final sample is illustrated in Figure 7.2.  

 

 

Figure 7.2: Bottom-gate devices on silicon oxide. Schematic representation of the bottom-gate 

bottom-contact polymer-blend devices on a silicon oxide substrate. 

 

For top-gate transistor fabrication, interdigitated gold source and drain electrodes were 

evaporated (40 nm thickness) on top a silicon dioxide substrate, using a shadow mask. The 5 mg/mL 

semiconductor solution was subsequently spin-coated over the electrodes at 2500 RPM (acceleration 

4000 RPM/s). A layer of Cyop was spin-coated over the sample at 2300 RPM (acceleration 1150 

RPM/s), and annealed 4 hours at 70 °C. The Al gate electrode was vacuum-deposited on the dielectric 

through shadow mask (layer thickness = 150 nm).  The final sample is illustrated in Figure 7.3.  
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Figure 7.3: Top-gate devices. Schematic representation of the top-gate polymer-blend devices on a 

silicon oxide substrate.  

 

7.2.3. Device characterization 

 

 OFET properties were evaluated under positive or negative gate bias to explore the majority 

charge carrier type and device performance. Experimental data were analyzed using standard field-

effect transistor equations described in chapter 4. Unless specified otherwise, the mobilities were 

determined in the saturation regime, i.e. at VDS = ±60 V from the slope of plots of (IGS)
1/2

 versus VGS. 

The reported p-type and n-type mobilities (µp and µn) in the bottom-contact bottom-gate geometry were 

an average of 8 devices, two for each channel length L (L = 2.5, 5, 10 and 20 µm). The reported 

mobilities for top-gate devices were an average of up to 8 devices, two for each channel length (L = 60, 

80, 100 and 120 µm). 

 

7.3. Single-component films 

 

7.3.1. Energetic levels and electrical performances of the single polymers 

 

 Before any blending was performed, transistors based on single-component semiconductors 

were fabricated and characterized. The HOMO and LUMO levels of the polymers used in this study 

have been reported in the literature and are compiled in Table T7.2. From the values of the energetic 

levels we notice that P3HT has a large band gap of almost 2 eV, and very high HOMO and LUMO 

levels compared to the other polymers, making it optimal for hole injection from gold (the work 

function of Au, as measured in chapter 6, is around 4.8 eV). Conversely, the HOMO levels of the other 

p-type semiconductors (IIDDT-C3 in particular) are detrimental for hole injection, and a higher contact 

resistance is to be expected. Since P(NDI2OD-T2) has the lowest HOMO and LUMO levels, both 

hopping of electrons from P(NDI2OD-T2) towards one of the p-type semiconductors and hopping of 

holes from one semiconductor to P(NDI2OD-T2) are never energetically favored. The large gap 
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between the work function of the gold electrodes and the LUMO level of P(NDI2OD-T2) could lead to 

a high injection barrier for electron injection. 

 

Table T7.2: HOMO and LUMO levels of the polymers P(NDI2OD-T2), P3HT, PCD-TPT, PDVT-

8 and IIDDT-C3. 

Polymer HOMO / eV LUMO / eV Band gap / eV 

P(NDI2OD-T2) 
16,17

  -5.60 -3.94 1.66 

P3HT 
18,19

  -4.96 -3.04 1.92 

PCD-TPT 
20

 -5.16 -3.70 1.46 

PDVT-8 
21

 -5.30 -3.78 1.52 

IIDDT-C3 
22

 -5.52 -3.74 1.78 

 All values obtained from cyclic voltammetry. 

 

  In order to confirm the presence of injection barriers in the polymers, single-component 

bottom-contact bottom-gate transistors were fabricated for each polymer and the output curves were 

plotted at positive VDS range for P(NDI2OD-T2) (Figure 7.4) and negative VDS range for the other 

semiconductors (Figure 7.5). The shape of the output curve is a strong indicator of the injection barrier. 

In the case of P3HT, as expected from the energy levels, the curves were ideal for p-type charge carrier 

transport, with a linear increase of the IDS with VDS in the linear regime. While the output curves of 

PDVT-8 and PCD-TPT seem to indicate the presence of a minor injection barrier, the greatest injection 

problems are observed for P(NDI2OD-T2) and particularly IIDDT-C3. 
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Figure 7.4: Output curves of a P(NDI2OD-T2) based transistor. Measurements performed on a 

transistor with L = 20 µm. 
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Figure 7.5: Output curves of devices produced with p-type semiconductors (a) P3HT (b) PCD-TPT 

(c) PDVT-8 (d) IIDDT-C3. In all cases, the drain voltage was swept from 0V to -30V, and the channel 

length was 20 µm. 

 

 Transfer curves were plotted for a bottom-contact bottom-gate transistor based on each 

semiconductor in order to determine their electrical characteristics. In the case of P(NDI2OD-T2) 

(Figure 7.6), the transfer curve revealed a large Ion/Ioff exceeding 10
6
 both in linear and saturation 

regime. The n-type mobility was extracted and amounted to an average of 0.016 cm²/Vs in saturation 

regime, and very low p-type mobility was observed (< 10
-6

 cm²/Vs). P3HT behaved as a typical p-type 

semiconductor with high Ion/Ioff (>10
6
 in linear and saturation regime) and good p-type mobilities, but 

without n-type charge transport ability (<10
-7

) (Figure 7.7, a). Interestingly, the other 3 polymers, PCD-

TPT, PDVT-8 and IIDDT-C3 all featured high p-type mobilities (respectively 0.066, 0.60 and 0.080 

cm²/Vs), but also decent n-type mobilities (Figure 7.7, b-d). PDVT-8 and IIDDT-C3 featured n-type 

mobilities around 10
-4

 cm²/Vs, making them very unbalanced yet ambipolar semiconductors with 

respective mobility ratios (µp/µn) of 10
4
 and 10

3
. PCD-TPT was the p-type polymer with the highest n-

type mobility (5.4 × 10
-3

 cm²/Vs) leading to a mobility ratio around 10. While all these polymers 

exhibited good Ion/Ioff over 10
6
 in linear regime, the Ion/Ioff of PCD-TPT was found to somewhat lower in 

(a)                          (b)  

 

 

 

 

 

 

 

(c)          (d) 
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saturation regime (10
4
). The mobility was plotted as a function of the channel length in linear regime 

(Figure 7.8), in order to determine the contribution of the contact resistance to the total resistance. In 

the case of P(NDI2OD-T2) and IIDDT-C3, the contact resistance was determined to greatly impact the 

measured mobility in linear regime, with 3 orders of magnitude improvements of mobilities with wider 

channel lengths (20 µm). In general, mobilities extracted from transfer curves in the linear regime were 

lower than in saturation regime. 

 In summary, we have characterized P(NDI2OD-T2) and different p-type semiconductors. 

Among them, P3HT was found to be the only exhibiting pure p-type transport whereas PDVT-8 and 

IIDDT-C3 mostly p-type and PCD-TPT ambipolar with a p-type mobility only one order of magnitude 

above n-type mobility. All polymers performed properly as semiconductors, with high Ion/Ioff ratios. 
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Figure 7.6: Transfer curves of a P(NDI2OD-T2) based transistor. Measurements performed on a 

transistor with L = 20 µm. 
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Figure 7.7: Transfer curves of devices produced with p-type semiconductors (a) P3HT, (b) PCD-

TPT, (c) PDVT-8 and (d) IIDDT-C3. The x and y axis were kept the same in all graphs for easier 

comparison. In all cases, the gate voltage was swept from +60V to -60V, and all the plots represent 

measurements performed on devices with L = 20 µm. 
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Figure 7.8: Mobility in linear regime as a function of the channel length L of devices produced with 

P(NDI2OD-T2) and the p-type semiconductors P3HT, PCD-TPT, PDVT-8, and IIDDT-C3. The n-type 

mobility is given for P(NDI2OD-T2), and the p-type mobility is given for the other polymers. 

 

7.3.2. Film morphology 

 

 The existence of a strong correlection between structure/morphology and electrical 

characteristics in organic material is notorious. The morphology of the surface of transistors based on 

single-component films was investigated by means of atomic force microscopy imaging. Figure 7.9 

displays the topographical AFM images of the thin-films of the organic/polymeric semiconductor 

placed in the channel, i.e. between source and drain electrodes. The root-mean-squared roughness 

(RRMS) extracted from each plot using the formula presented in chapter 5 is summarized in Table T7.3. 

Each semiconductor film, prepared by spin-coating, exhibited a different morphology. P(NDI2OD-T2) 

(c)                        (d)  
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shows a very smooth film. The film consisted of stacks of rigid elongated domains, hundreds of nm 

long, with a RRMS of 0.64 nm, consistently with morphologies observed in literature. 
23

 P3HT films were 

very smooth (RRMS = 0.51 nm) and consisted of small bridged aggregates.  PDVT-8 films revealed 

similar morphological structure at the surface, albeit rougher and with smaller and less connected 

aggregates. The surfaces of PCD-TPT and IIDDT-C3 were characterized by elongated domains, but not 

as tightly stacked as in the case of P(NDI2OD-T2). IIDDT-C3 films in particular were very rough 

(RRMS = 1.78 nm). 

 

Figure 7.9: Tapping Mode AFM topography images of polymer films.  z-scales: P(NDI2OD-T2) 4.4 

nm, P3HT 3.5 nm, PCD-TPT 5.5 nm, PDVT-8 6.4 nm and IIDDT-C3 12.1 nm.  

 

Table T7.3: Roughness of the polymer films, extracted from the AFM height plots reported in Figure 

7.8. 

Polymer RRMS / nm 

P(NDI2OD-T2) 0.637 

P3HT  0.512 

PCD-TPT  0.795 

PDVT-8  0.910 

IIDDT-C3  1.783 

The RRMS were in all cases determined from images of 10µm × 10µm. 
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7.4. Bi-component blends 

 

7.4.1. Electrical performances of blends with different polymer-ratios 

 

 All the p-type semiconductors were individually blended with P(NDI2OD-T2), and bottom-

contact bottom-gate transistors were fabricated using these blended solutions. In addition to the single-

component devices (blending ratios of 100:0 and 0:100), 3 additional transistors were fabricated for 

each P(NDI2OD-T2):p-type polymer combination. The blending ratios were in each case: 20:80, 50:50 

and 80:20. The p-type and n-type mobilities of each polymer blend as a function of the quantity of 

P(NDI2OD-T2) in the blend are reported in Figure 7.10. 

 

0 20 40 60 80 100
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 

 

 p-type mobility

 n type mobility

m
o
b
ili

ty
 /
 c

m
²/

V
s

wt% N2200

0 20 40 60 80 100
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
o

b
ili

ty
 /

 c
m

²/
V

s

wt% N2200

 p-type mobility

 n-type mobility

 

0 20 40 60 80 100
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 
m

o
b
ili

ty
 /
 c

m
²/

V
s

 

 

 p-type mobility

 n-type mobility

wt% 2200

0 20 40 60 80 100
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 

 

 p-type mobility

 n-type mobility

m
o

b
ili

ty
 /

 c
m

²/
V

s

wt% N2200
 

Figure 7.10: Average saturation regime mobility as a function of the percentage in weight of 

P(NDI2OD-T2) in the semiconductor solution deposited over the electrodes. Blends of P(NDI2OD-

T2) with (a) P3HT, (b) PCD-TPT, (c) PDVT-8 and (d) IIDDT-C3.  

 In every case, the p-type mobility decreased with each addition of P(NDI2OD-T2) to the 

blend. This is easily explained by the poor hole-transport properties of P(NDI2OD-T2). The n-type 

(a)                          (b)  
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mobility, on the other hand, a minor increase was observed upon addition of 20 wt% of P3HT or PCD-

TPT to the P(NDI2OD-T2) solution. These very minor increases are attributed to the slightly different 

characteristics that can be observed in different samples. In all graphs, a stable decrease of p-type 

mobility and increase of n-type mobility was observed and absolutely no strong “break” after addition 

of small quantities of one material to the solution. Exploiting this feature, it was possible to fabricate 

transistors with balanced mobilities for each blend. While these balanced mobilities were observed at 20 

wt% of P(NDI2OD-T2) when blended with P3HT and PCD-TPT, the “ideal ratio” for PDVT-8 and 

IIDDT-C3 based transistors was found to be around 50 wt% of P(NDI2OD-T2) in the deposited 

semiconductor solution. These observed trends are truly remarkable as they pave the way for devices 

with full control on the ratio between electron and hole transport capabilities. Furthermore, this strategy 

is most likely applicable to a wide range of p-type semiconductors blended with P(NDI2OD-T2), as it 

was fruitful on all those that were tested here that are structurally and energetically very different. 

 The largest flaw of ambipolar organic semiconductors is their poor ability to switch off 

(especially in saturation regime), as the threshold voltage difference between the p-type current and n-

type current tends to be very close. In order to determine the Ion/Ioff of the balanced ambipolar devices 

based on blends, transfer curves were plotted (Figure 7.11). While it was possible to fabricate balanced 

ambipolar devices using a blend composed of 20 wt% of P3HT, the mobilities below 10
-3

 cm²/Vs and 

Ion/Ioff below 10
3
 were disappointing. The low mobilities are partially explained by the poor electrical 

characteristics of the single-component film in comparison to the other tested polymers. Nevertheless, a 

very high drop in p-type mobility (almost two orders of magnitude) is observed upon addition of 20 

wt% of P(NDI2OD-T2), combined with a steep increase in n-type charge transport. This can be 

explained by the strong contribution of P(NDI2OD-T2) to the electrical performances and possibly the 

loss of crystallinity of P3HT upon addition of the second polymer.  

 Similarly to P3HT, PCD-TPT featured balanced mobilities when blended with 20 wt% 

P(NDI2OD-T2), but unlike P3HT, the electrical performances were impressive: ambipolar transistors 

with perfectly balanced mobilities over 10
-2

 cm²/Vs (µp = 0.015 cm²/Vs ≈ µn = 0.017 cm²/Vs) and Ion/Ioff 

exceeding 10
4
 both in linear and saturation regime were fabricated. These remarkable performances are 

attributed to the strong mobilities of PCD-TPT, and demonstrate that our approach can be used to 

“correct” ambipolar polymers featuring unbalanced mobilities. While these characteristics are notable, 

the threshold voltage is strongly shifted towards positive VGS (IDS,min at VGS = 34V when the voltage is 

swept from -60V to +60V). This effect tends to further prove that PCD-TPT has a higher impact on the 

electrical characteristics of the blended film in the bottom-contact, bottom-gate configuration.  

 IIDDT-C3 and PDVT-8 devices were ambipolar with balanced mobilities when blended in 

equivalent weight quantities with P(NDI2OD-T2). The extracted mobilities were slightly below 10
-2

 

cm²/Vs, and the minimal IDS current was found to be close to 0V. Transfer curves plotted from PDVT-8 
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devices exhibited a high Ion/Ioff in linear regime (>10
5
), but lower in saturation regime (10

3
). Transfer 

curves 50:50 IIDDT-C3:P(NDI2OD-T2) devices displayed an outstanding feature: Ion-Ioff ratios were 

over 10
5
 in saturation regime and up to 10

7
 in linear regime, the highest reported values to date for 

ambipolar organic field-effect transistors. These very high Ion/Ioff stem from a threshold voltage 

“window” (ΔVTh = VTh,n - VTh,p) over 40V, leaving a large area were the devices are off (the threshold 

voltage values are reported in Table T7.4). The energy levels of P(NDI2OD-T2) and IIDDT-C3 are 

very close, with respective HOMO levels of -5.60 and -5.52 eV, and respective LUMO levels of  -3.94 

and -3.74 eV. The injection from one molecules into the other could therefore be possible, leading to 

possible trapping at low VGS, decreasing the off current, explaining the impressive Ion/Ioff. 
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Figure 7.11: Transfer curves of devices produced from blends of P(NDI2OD-T2) and p-type 

semiconductors: (a) 80:20 P3HT:P(NDI2OD-T2), (b) 80:20 PCD-TPT:P(NDI2OD-T2), (c) 50:50 

PDVT-8:P(NDI2OD-T2) and (d) 50:50 IIDDT-C3:P(NDI2OD-T2). The x and y axis were kept the 

same in all graphs for easier comparison. In all cases, the gate voltage was swept from +60V to -60V, 

and all the plots represent measurements performed on devices with L = 20 µm. 

 

Table T7.4: Threshold voltages of the devices based on blended polymers, extracted from the 

transfer curves reported in Figure 7.10. 

(a)                          (b)  

 

 

 

 

 

 

 

(c)          (d) 

 



  

106 

 

Polymer blend VTh,p VTh,n ΔVTh,p 

P3HT:P(NDI2OD-T2) 80:20 8 35 27 

PCD-TPT:P(NDI2OD-T2) 80:20 24 46 22 

PDVT-8:P(NDI2OD-T2) 50:50 0 25 25 

IIDDT-C3:P(NDI2OD-T2) 50:50 -15 26 41 

All threshold voltage values extracted from the curves in the linear regime. 

 

7.4.2. Correlation between molecular structure and electrical performances 

 

 The molecular structures of the polymers were given in Figure 7.1 and the molecular weights 

of each polymer are presented in Table T7.1. The molecular structure of P3HT is markedly different 

from the other polymers. It simply consists of a long flexible chain of thiophene units with hexyl chains, 

and is very different from P(NDI2OD-T2), a smaller chain consisting of large naphatalene diimide 

cores separated by non-functionalized thiophene units. The big difference in molecular structure and 

chemical functions could lead to phase segregation in the formed film, explaining the major impact on 

electrical characteristics of the presence of 20 wt% of P(NDI2OD-T2) in the blend.  

 PCD-TPT was the studied polymer possessing the highest molecular weight. The polymer 

consists of an alternation of dihexadecylcyclopentadithiophene groups and thiadiazolopyridine units, 

forming a thin and rigid conjugated system with two long and non-branched alkyl chains (C16H33) for 

each thiadiazolopyridine group. The p- and n-type mobilities are only slightly affected by addition of 

P(NDI2OD-T2) up to 50%, which could be either due to phase segregation with mostly PCD-TPT at the 

semiconductor-dielectric interface, or the ambipolar nature of PCD-TPT, leaving little room for 

improvement of the n-type mobility upon blending.  

 IIDDT-C3 and PDVT-8 share many similarities: they have a similar molecular weight and 

monomer weight, and their structure includes bithiophene units and branched alkyl chains. Their main 

differences are the pyrrolopyrroledione unit of PDVT-8 that is replaced by an isoindigo core in IIDDT-

C3, and the length of the polymer that is increased in the case of PDVT-8 by one additional bithophene 

unit and carbon-carbon double-bond. They share more similarities with P(NDI2OD-T2) than the other 

polymers (unsubstituted thiophene groups, ketone functions, branched alkyl chains) and are thus less 

likely to phase segregate upon solvent evaportation. This could explain why balanced ambipolarity was 

found at a 50:50 blending ratio. 
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7.4.3. Correlation between film morphology and electrical performances 

 

7.4.3.1. Surface morphology 

 

 AFM analysis was performed on the polymer blends at a 50:50 blending ratio in order to 

investigate the effect of blending on the surface of the films. The obtained images are displayed in 

Figure 7.12 and the corresponding roughness measurements are reported in Table T7.5. In section 

7.3.2., we observed that all single-component films formed smooth surfaces with RRMS < 1 nm, except 

IIDDT-C3 with a roughness of 1.78 nm.  

 Films produced from P3HT and P(NDI2OD-T2) blends did not display any of the tight piles 

of elongated domains observed in the P(NDI2OD-T2) single-component film, but instead large domains 

with increased roughness compared to both of the single-component blends. This could be due to P3HT 

aggregating into larger domains and mostly covering P(NDI2OD-T2), P(NDI2OD-T2) losing its 

structure once blended with P3HT, or both. The measured electrical performances at the bottom of the 

film (with µn two orders of magnitude over µp, and very low µp of 10
-4

 cm²/Vs) seem to confirm the first 

explanation.  

 Concerning PCD:TPT 50:50 blends, the morphology of the surface of the film is similar to 

that of PCD-TPT, with a roughness value of 0.8 nm in both cases. Nevertheless, due to the close 

resemblance of P(NDI2OD-T2) and PCD-TPT single-component films, it is difficult to determine if the 

observed surface is composed of PCD-TPT, P(NDI2OD-T2) with slightly larger domains, or a blend of 

the two.  

 Regarding PDVT-8:P(NDI2OD-T2) 50:50 blends, the resulting surface was a bit rougher 

than in the case of PDVT-8, but the structure of the surface was very similar to PDVT-8. Therefore, it is 

very likely that the surface is almost only made of PDVT-8. The semiconductor-dielectric interface, 

however, should not consist of only P(NDI2OD-T2), since blended films at that ratio exhibit balanced 

mobilities. Furthermore, the presence of 20 wt% P(NDI2OD-T2) in the blend did not modify much the 

electrical performances of the device, definitively ruling out the presence of a pure P(NDI2OD-T2) 

layer at the interface.  

 Finally, films produced from 50:50 IIDDT-C3:P(NDI2OD-T2) blended solutions featured the 

most interesting surface. Unlike the other p-type polymers that displayed higher or similar roughness 

upon blending, the surface of the films had a reduced roughness when IIDDT-C3 was blended with 

P(NDI2OD-T2) (from 1.78 to 0.85 nm). This structure could be due to aggregates consisting of both 

polymers, with a similar blend at the interface, explaining the strong effect of the presence of 20% of 

one polymer with the other. 
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Figure 7.12: Tapping Mode AFM topography images of 50:50 blended polymer films. z-scales: 

P(NDI2OD-T2) 4.4 nm, P3HT 3.5 nm, PCD-TPT 5.5 nm, PDVT-8 6.4 nm, IIDDT-C3 12.1 nm, 50:50 

P3HT:P(NDI2OD-T2) 5.7 nm, 50:50 PCD-TPT:P(NDI2OD-T2) 5.8 nm, 50:50 PDVT-8:P(NDI2OD-

T2) 5.4 nm and 50:50 IIDDT-C3:P(NDI2OD-T2) 5.8 nm.  

 

Table T7.5: Roughness of the polymer films, extracted from the AFM height plots reported in Figure 

7.11. 

Polymer RRMS / nm RRMS (50% blend with P(NDI2OD-T2)) / nm 

P(NDI2OD-T2) 0.637 / 

P3HT  0.512 0.839 

PCD-TPT  0.795 0.809 

PDVT-8  0.910 1.192 

IIDDT-C3  1.783 0.854 

All measurements over 10µm × 10µm surfaces. 
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7.4.3.2.  Top-gate transistors 

 

 In order to further investigate the surface of the blended films, top-gate transistors were 

fabricated for two polymer blends that exhibited completely different surfaces when probed with the 

AFM: PDVT-8 and IIDDT-C3 blended each time with P(NDI2OD-T2). It is noteworthy to mention that 

while top-gate transistors based on single-component IIDDT-C3 performed similarly to their bottom-

contact bottom-gate counterparts, top-gate P(NDI2OD-T2) transistors featured mobilities one order of 

magnitude higher, while PDVT-8s p-type mobility was decreased by one order of magnitude compared 

to the performances observed in the bottom-gate configuration. These changes in mobilities are 

explained by the different electrode-semiconductor and dielectric-semiconductor interfaces. 

P(NDI2OD-T2) and IIDDT-C3 seemed to have benefitted the most from the increased injection area, 

while the OTS-treated dielectric allowed higher mobilities for PDVT-8, that did not display much 

injection difficulties from the output curves reported previously in section 7.3.1.. Unlike the single-

component bottom-gate devices described before, their top-gate counterparts did not display any 

observable ambipolar behavior. In both cases, the blending of polymers made it possible to fabricate 

ambipolar transistors. Nevertheless, the electrical characterization revealed large differences in 

mobilities (Figure 7.13). Films produced from blends of PDVT-8 and P(NDI2OD-T2) lead to a sharp 

decrease in n-type mobility, while maintaining very high p-type mobility. Therefore, both the electrical 

measurements and the AFM analysis seem to conclude that the surface of that film is mostly composed 

of PDVT-8. Transistors fabricated using blends of IIDDT-C3 and P(NDI2OD-T2), on the other hand, 

performed very well at the 50:50 ratio, with very balanced mobilities over 10
-2

 cm²/Vs in both cases 

(µp/µn ≈ 2). These results can be explained by the well blended nature of the film, and the good 

performances of each separate polymer in the top-gate configuration. However, transfer curves in the 

saturation regime reported in Figure 7.14 did not indicate the same ability to switch off as in the 

bottom-gate geometry, with Ion-Ioff ratios of 10
3
 for IIDDT-C3:P(NDI2OD-T2) 50:50 blends. Since a 

large ΔVTh was observed in that case, the most likely reason for that decreased Ion/Ioff is the dielectric 

leakage. 
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Figure 7.13: Average saturation regime mobility of devices in the top-gate geometry as a function 

of the percentage in weight of P(NDI2OD-T2) in the semiconductor solution deposited over the 

electrodes. Blends of P(NDI2OD-T2) with (a) PDVT-8 and (b) IIDDT-C3.  
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Figure 7.14: Transfer curves of devices produced from blends of P(NDI2OD-T2) and p-type 

semiconductors: (a) 50:50 PDVT-8:P(NDI2OD-T2) and (b) 50:50 IIDDT-C3:P(NDI2OD-T2).  

 

7.4.3.3. Crystallinity 

 

 X-Ray diffraction and reflectivity experiments were performed with Rigaku Smartlab at 

IMM-CNR in Bologna in order to investigate the crystallinity of the single-component and bi-

component films (Figure 7.15). They found that P(NDI2OD-T2) and PCD-TPT did not demonstrate 

any particular stacking features, while P3HT aggregated in edge-on configurations. Once blended with 

P(NDI2OD-T2), no significant features could still be observed, validating the assumption that 

P(NDI2OD-T2) is detrimental to the crystallinity of P3HT. Regarding PDVT-8, lamellar stacking peaks 

are observed in the single-component film. When blended with P(NDI2OD-T2), a new peak appears 

indicating a modified crystalline structure. Finally IIDDT-C3 is highly crystalline and both lamellar and 

(a)                          (b)  

 

 

(a)                          (b)  
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π–π stacking peaks are observable. Films produced from the 50:50 IIDDT-C3:P(NDI2OD-T2) blend 

maintains a structural order only along the lamellar stacking. 
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Figure 7.15: X-ray reflectivity (XRR) plots of single-component films and blends. (a) P(NDI2OD-

T2), P3HT and 50:50 P(NDI2OD-T2):P3HT blend. (b) P(NDI2OD-T2), PCD-TPT and 50:50 

P(NDI2OD-T2):PCD-TPT blend. (c) P(NDI2OD-T2), PDVT-8 and 50:50 P(NDI2OD-T2):PDVT-8 

blend. (d) P(NDI2OD-T2), IIDDT-C3 and 50:50 P(NDI2OD-T2):IIDDT-C3 blend. 

 

7.5. Conclusions 

 

 We have demonstrated that ambipolar transistors could be fabricated using blends of n-type 

and p-type polymers. P(NDI2OD-T2) was blended with 4 different p-type polymers, and each time it 

was possible to fabricate devices with balanced p- and n-type mobilities. In particular, devices with 

mobilities over 10
-2

 cm²/Vs and linear regime Ion/Ioff over 10
5
 were produced with a blend of 

P(NDI2OD-T2) and PCD-TPT. Impressive electrical performances obtained with PDC-TPT 
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demonstrate that our approach can be used to adjust the electrical performances of ambipolar polymers 

featuring unbalanced mobilities. Furthermore, devices produced from P(NDI2OD-T2) blended with 

IIDDT-C3 featured mobilities up to 10
-2

 cm²/Vs and Ion/Ioff of 10
7
, unprecedented values for ambipolar 

organic transistors. While the mobilities of 0.01 cm²/Vs were not superior to some performances 

reported in literature for single component films, the fine control of the ratio between p- and n-type 

mobility and state-of-the-art Ion/Ioff would be particularly suited for logic applications that rely on 

transistors with different polarities with good capacities to switch off. The morphology and structure of 

the films were investigated by means of AFM and X-ray diffraction, respectively. AFM was used as a 

tool to explore the in-plane phase-segregation while XRD data was used to probe the crystallinity of the 

bi-component films. It was found that P(NDI2OD-T2) and PCD-TPT films were amorphous both as 

single-component and blended films, yet still resulted in impressive results. These findings demonstrate 

that long-range order is not required for good charge transport in polymer films, in accordance to recent 

findings reported in literature. 
24

 The electrical performances were investigated in function of the 

geometry of the transistors (top-gate vs. bottom-gate), and it was found that the phase segregation can 

be probed by electrical testing. In particular, it was demonstrated that IIDDT-C3 and P(NDI2OD-T2) 

did not phase-segregate upon solvent evaporation, and high-performance balanced ambipolar top-gate 

devices could be produced from that blend. 
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Chapter 8. Optical memory TFT device based on an 

organic bi-component blend 
  

 

 

 

 

 

 

 

 

8.1. Introduction 

 

 While silicon-based technology is still effectively leading today’s electronic industry, the 

development of high-performance organic semiconducting materials has been the topic of important 

research efforts in the past two decades. 
1-3

 Such materials unambiguously represent an interesting 

alternative since their properties can readily be tuned via ad-hoc chemical synthesis and they allow for 

mild processing from solution using approaches which can be up-scaled and applied to “soft” 

substrates, thereby making them ideal candidates for the low-cost fabrication of large-area electronic 

devices. These materials have shown exceptional versatility, enabling integration on flexible and/or 

transparent substrates for a new generation of electronics. 
4-7

 Among the plethora of applications of 

semiconducting organic materials and more generally of π-conjugated (macro)molecules, memories 

have attracted a special interest because they combine high switching ratios, 
8-10

 and long retention 

times 
11

 as well as low operating voltages 
12-14

 and the possibility to be integrated onto flexible 

substrates. 
15-18

  

 

 In order to increase data storage capabilities in electronic devices (i.e. hard drives, random 

access memories, etc.), the most popular approaches thus far rely on the continuous scaling down to 

enable integration of an increasing number of memory cells per area unit. These strategies have shown 
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their limits, as scaling down is hampered by photolithography while fabrication complexity has 

increased dramatically over the years.
19,20

 An alternative method is based on the development of 

memory cells with increased storage capabilities for multilevel memories. In the case of 1-bit storage 

devices, a finite yet limited degree of volatility is not detrimental to the overall storage capacity as long 

as the two states, typically represented by a current maximum and minimum, are still distinguishable. 

The main challenge is to obtain the highest possible difference in current between an “on-state” and an 

“off-state”. When multilevel memories are considered, the conundrum shifts dramatically to the 

stability of states, as each state will necessarily be close to others. In the example of a 4-bit memory cell 

(16 current levels), one order of magnitude difference between each level is unachievable, since this 

would mean a switching ratio as high as 10
15

. Importantly, all those methods where a high switching 

ratio is simply based on a threshold voltage shift (i.e. not characterized by a change in charge carrier 

mobility or current) with the "read voltage" within the threshold voltage window are prone to data loss 

and incorrect reading of the levels in multilevel storage. 
21,22

  

 

 Previously in this thesis work, it was demonstrated that bi-component blends could prove an 

effective approach to electrical properties tuning, for improved performances and new functionalities. 

Among polymers, P3HT was chosen because it is easy to process and able to form homogenous blends 

efficiently integrated into field-effect transistors. While the previous chapters focused on the 

improvement of charge-transport performances, this last chapter will step into the realm of practical 

applications, with the fabrication of a fully functional photo-switchable memory. As canvas for this 

study, a previous work, reported by Orgiu et al. in 2012, will be exploited. Through this research article, 

the authors highlighted how a photochromic diarylethene unit, DAE-Me, blended into a P3HT polymer 

matrix, could be exploited for the fabrication of photo-tunable devices for a fine control of the IDS 

current. 
23

 In this chapter we will first demonstrate how this feature can be exploited for the production 

of non-volatile multilevel memories. Secondly, we will investigate the integration of these memory-

units onto a flexible PET substrate, focusing on the structural design of the device and the adequate 

choice of dielectric for the highest quality of flexible TFT-memories. 

 

8.2. Methods 

 

8.2.1. Transistors on SiO2 

 

Bottom-contact bottom-gate configuration transistors purchased from IPMS Fraunhofer 

Institute were used. They consisted of on n
++

-Si substrates with 230 nm of thermally grown SiO2 as the 

gate dielectric (15 nF capacitance) and pre-patterned pairs of gold electrodes with interdigitated 

geometry as the source and drain. All solutions, samples and devices were prepared and measured in a 

N2 filled glovebox to avoid oxidative doping of the materials and ensure reproducibility of the 

http://www.chemspider.com/4574465
http://www.chemspider.com/22421
javascript:popupOBO('CMO:0002344','c1cc15477j')
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experiments. OTS was purchased from Sigma-Aldrich. OTS treatment consisted of a 12-hours 

immersion of the ozone-treated wafer into a 10 mM solution of OTS in toluene with 30 min of heating 

at 60 °C at the beginning of the immersion. The samples were afterwards rinsed with toluene and heated 

for 60 min at 60 °C. Subsequently, 100 µL of the P3HT-DAE-Me_o solution was spin-coated onto the 

OTS treated wafer at 1500 RPM (acceleration: 4000 RPM.s
-1

). The DAE-Me/P3HT solution consisted 

of a blend of 0.4 mg of DAE-Me_o and 1.6 mg of P3HT in 1mL of chloroform. The final sample is 

illustrated in Figure 8.1.  

 

 

Figure 8.1: Bottom-gate devices on silicon oxide. Schematic representation of the bottom-gate 

bottom-contact P3HT/DAE-Me devices on a silicon oxide substrate. 

 

8.2.2. Transistors on PET 

 

 Independent on the configuration, a square PET film (thickness = 175 µm) was attached to a 

glass substrate using thermal tape, in order to ensure ease of process for the future steps (especially 

spin-coating). Unless specified, the DAE-Me_o/P3HT solution consisted of a blend of 0.4 mg of DAE-

Me_o and 1.6 mg of P3HT in 1 mL of chloroform (20 wt% DAE-Me solution), and a volume of 150µL 

was spin-coated at 1500 RPM (acceleration: 4000 RPM.s
-1

). 

  

8.2.2.1. Top-gate transistors on PET 

 

 Interdigitated gold source and drain electrodes were evaporated (60 nm thickness) on top of the 

PET film, using a shadow mask. The P3HT/DAE-Me blend was subsequently spin-coated over the 

electrodes. A layer of PMMA (at 70mg/mL, filtered using 0.2 µm filters) was spin-coated on the 

sample, and annealed 4 hours at 70 °C. The low annealing temperature was chosen for protection of the 

photochromic molecules. This step was repeated to form a second layer. The Al gate electrode was 

vacuum-deposited on the dielectric through shadow mask (layer thickness = 60 nm).  The final sample 

is illustrated in Figure 8.2.  
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Figure 8.2: Top-gate devices on flexible PET substrate. Schematic representation of the top-gate 

P3HT/DAE-Me devices on a PET substrate.  

 

8.2.2.2. Bottom-gate transistors on PET, Cytop dielectric 

 

 Using a shadow mask, 60 nm of Al were evaporated on top of the PET in order to form the gate 

electrode. A layer of Cytop was spin-coated onto the gate electrode, and annealed 2 hours at 120 °C. 

The interdigitated gold source and drain electrodes were vacuum-deposited on the dielectric through 

shadow masks (layer thickness = 60 nm). The semiconducting P3HT/DAE-Me blend was spin-coated 

as the final layer of the sample. The final sample is illustrated in Figure 8.3.  

 

 

 
 

Figure 8.3: Bottom-gate devices on flexible PET substrate. Schematic representation of the bottom-

gate P3HT/DAE-Me devices on a PET substrate, using Cytop as dielectric. 

 

 

8.2.2.3. Bottom-gate transistors on PET, PMMA-PVP dielectric 

 

 60 nm of Au were evaporated over the PET layer in order to form the gate electrode. A whole 

layer was used in order to provide a contactable area outside of the dielectric for future testing of the 

device, as the hardened PVP was impermeable to piercing with the needle of the probe station.  One 

side of the sample was protected from the next steps of the procedure with a small strap of thermal tape. 

A layer of the dielectric poly(methyl methacrylate) (PMMA) was spin-coated onto the gate electrode, 

and annealed one hour at 120 °C. An additional dielectric, poly(4-vinylphenol) (PVP) was spin-coated 

on the PMMA and annealed two hours at 150 °C. The interdigitated gold source and drain electrodes 
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were vacuum-deposited on the dielectric through shadow masks (layer thickness = 60 nm). Finally, the 

semiconducting P3HT/DAE-Me blend was spin-coated as the final layer of the sample. The final 

sample is illustrated in Figure 8.4.  

 

 

Figure 8.4: Bottom-gate memory unit onto a flexible PET substrate, using a hybrid PMMA/PVP 

dielectric.  

 

8.2.3. Device characterization 

 

 The device characteristics were measured by contacting the source, drain and gate electrodes 

and applying different voltages in order to get IDS-VGS graphs. In the case of IDS-VGS graphs (transfer 

curves) each was made by sweeping the gate voltages from +40 V to -60 V, with one measurement 

every 2 V. The drain voltage was either -10V (linear regime) or -60 V (saturation regime). The IDS 

current was measured each time. Experimental data were analyzed using standard field-effect transistor 

equations (for p-type semiconductors) for the saturation regime (see chapter 4): 

 

 
2)(

2
ThGSTOTDS VVµC

L

W
I   Eq. 8.1 

 

with CTOT the total capacitance of the dielectric. The total capacitance in a bilayer PMMA/PVP 

dielectric is given by: 

 

        
            
            

 Eq. 8.2 

 

The thickness of each layer was measured using a profilometer. The values of the relative permittivity 

used for mobility are presented in Table T8.1.  

 

 

 Dynamic switching was observed by tracing of IDS-time curves at constant Gate-Source 

voltage and constant Drain-Source voltage. The samples were illuminated while being biased and IDS-

current was measured. 
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Table T8.1: Relative permittivities of the dielectrics used in chapter 8.  

Dielectric Relative permittivity (Ɛr) 

SiO2 3.9 
24

 

PVP 3.5 
25

 

Cytop 2.1 
26

 

PMMA 4.9 
27

 

 

8.2.4. Illumination setups 

 

 Depending on the configuration of the devices, different illumination setups were designed. 

In the case of bottom-gate geometry, the device is directly illuminated from the top, using either a 

monochromator or a short-pulse laser setup, as illustrated on Figure 8.5a. In the case of top-gate 

geometry, the sample cannot be illuminated from the top, as the gate electrode is not transparent. 

Therefore, the illumination has to be performed from underneath the device. This can be achieved either 

through direct illumination which requires the light source to be moved to underneath the device 

(Figure 8.5b) or with a setup relying on two mirrors pointing the light beam underneath the device, 

starting from a light source on top of the sample (Figure 8.5c). 

 

 

 
 

Figure 8.5: Illumination setups. (a) Direct illumination, from the top for bottom-gate devices. (b) 

Direct illumination, from the bottom for top-gate devices. (c) Double mirror setup for illumination from 

the bottom. On both setups, the light beam is represented in green. 

 

 

 Illumination was performed using either a laser setup (incident power: 85±17 µJcm
-
² for each 

3 ns pulse at full transmittance, memories on SiO2 and PET) or a monochromator setup (incident power: 

74 µJcm
-
² per second of irradiation at 313 nm, memories on PET). All the experiments using a 

monochromatic light source were performed in Strasbourg, while experiments using the short-pulse 

laser setup were performed at the University of Nova Gorica, with the help of Profs. Egon Pavlica and 

Gvido Bratina. 

(a) (c) 

 

 

 

(b)  
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8.3. Three-terminal memory devices on SiO2.  

 

We first explored bottom-gate bottom-contact field-effect transistors using a SiO2 layer as the 

gate dielectric. The bi-component active layer comprising the photochromic moiety DAE-Me in a 

P3HT polymer matrix (Figure 8.6, a,b) was spin-coated from a solution in chloroform and then 

electrically characterized in a nitrogen-saturated atmosphere of a glove box. In order to confer a high 

starting crystallinity to the polymer active layer and enhance its electrical performances, 

octadecyltrichlorosilane (OTS, Figure 8.6, c) chemisorbed self-assembled monolayers were formed on 

the SiO2 dielectric surface. 
28

 Optical microscope images of the channel between source and drain 

electrodes are presented in Figure 8.7, underlying a homogenous coating of the surface within the 

electrodes. Furthermore, AFM height plots were recorded as a means of investigation of the surface 

roughness (Figure 8.8). It was found that substrate treatment with OTS reduced the roughness (RRMS = 

0.54 as compared to 0.74 for an untreated substrate, Table T8.2).  

            

Figure 8.6: Molecular structures. (a) Chemical formulae of the employed diarylethene in its open and 

closed form, (b) Chemical formula of the p-type semiconductor P3HT, (c) Chemical formula of the self-

assembled monolayer octadecyltrichlorosilane (OTS). 

 

         

Figure 8.7: Optical microscopy images. Images of P3HT/DAE-Me layer on SiO2 (channel length = 20 

µm). 

(a)                 (b)  

 

 

 

        (c) 
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Figure 8.8: Atomic Force Microscopy height plots. Images of (a) a P3HT/DAE-Me layer on SiO2 

without surface treatment (z-scale: 5 nm) and (b) a P3HT/DAE-Me layer on OTS SiOx treated surface 

(z-scale: 4 nm). 

 

Table T8.2: Root mean squared values of the roughness (RRMS) as calculated from the AFM 

height plots presented in Figure 4. Data is presented in nm. The roughness was estimated from 100 

nm² surfaces. 

Surface Root mean squared roughness (RRMS) / nm 

SiOx / no OTS
1 0.74 

SiOx / OTS
1 0.54 

1 
OTS treatment 

 

 Transfer curves (IDS-VGS) were used to quantify the devices’ field-effect mobility (µFET), 

threshold voltage (VTh), and Ion/Ioff ratio (Figure 8.9, a-c). The electrical characterization revealed 

devices featuring classical p-type transfer characteristics and high field-effect mobilities for P3HT (10
-3

 

cm
2
V

-1
s

-1
 for an untreated device and 10

-2
 cm

2
V

-1
s

-1
 for an OTS treated device). OTS treatment was 

found to generally improve electrical characteristics. The current ratio between the on and off state of 

the transistor (Ion/Ioff) was found to be over 10
5
 in both open and closed form, indicating excellent ability 

to perform as a field effect-transistor. The current ratio measured in the active layer comprising the 

photochromic unit either in the open or the closed form (“switching ratio”) was extracted from the IDS-

VGS curves. In particular, the IDS was measured in the dark once the diarylethene isomer in the bi-

component film is turned into its open (DAE-Me_o) or in majority into its closed (DAE-Me_c) isomer 

upon irradiation with monochromatic light at λ = 546 nm (erase) or 313 nm (write), respectively. To 

better compare our results with the scientific literature, we employed the ratio IDS,DAE-Me_o /IDS,DAE-Me_c 

(measured at the same VDS and VGS) as a figure of merit (Figure 8.9d). As evident from Figure 8.9b,c a 

threshold voltage shifts towards negative bias (ΔVTh amounting to ca. to -15 V) was observed when the 

DAE-Me molecules were converted from their open to their closed isomer, while OTS was used as a 

(a)           (b) 
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silicon oxide (SiO2) surface treatment. The resulting difference in threshold voltage between the open 

and closed forms enables a switching ratio over 10
5
 for VTh (open form) < VGS < VTh (closed form). 

Nevertheless and contrary to single level memories, their multilevel counterparts require fine-tuning of 

each current-level. Therefore, in order to increase the reliability of the device, the “dynamic range” 

between the extreme off and on levels (IDS,DAE-Me_o - IDS,DAE-Me_c at a fixed VDS and VGS) should be 

maximized. Hence, further measurements have been performed at VGS = - 60 V. 

 

 

 

Figure 8.9: Electrical characterization of the bottom-gate/bottom-contact P3HT/DAE-Me devices. 
(a) IDS-VGS of an untreated device in the open and the closed form (after 10 minutes of irradiation at λ = 

313 nm), at VDS = - 60 V. (b) IDS-VGS of an OTS-treated device in the open and the closed form (after 

10 minutes of irradiation at λ = 313 nm), at VDS = - 60 V. (c) The same curve as (b) is represented in 

logarithmic scale. (d) Switching ratio (IDS,DAE-Me_o/IDS,DAE-Me_c) and switching difference (IDS,DAE-Me_o - 

IDS,DAE-Me_c) as a function of the gate voltage. [All graphs from devices with L = 20 µm, W = 10 mm, C 

= 1.5 nF cm
-2

] 

 

 Different amounts of DAE-Me added to P3HT (wt%) were tested in order to explore the effect 

of the mutual ratio on the electrical performances and switching capabilities (Figure 8.10). We have 

found that mobilities decreased when the amount of DAE-Me in the blend was increased (both in open 

(a)                     (b)  

 

 

(c)                     (d)  
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and closed form). On the other hand, the amplitude of the light-induced switching process (in terms of 

µFET) of the devices was improved when a superior amount of DAE-Me was introduced in the blend 

spin-coated onto the device. The threshold voltage difference remained constant up to 20% DAE-Me 

similarly to the Ion/Ioff. A good compromise between mobility and switching ratio was found with 20 

wt% DAE-Me in the blend. It is noteworthy to mention that our blending approach is versatile as it 

allows for tailoring to any desired DAE-Me/polymer pair depending on the application at hand and the 

materials in use, 
23,29-31

 contrary to the separate layer approach that is typically used in the context of 

organic two- and three-terminal memories. 
32,33

 

 

 

Figure 8.10: Impact of the amount of DAE-Me in the DAE-Me/P3HT blend on the electrical 

performances. (a) Average µFET of the devices as a function of the weight percentage of diarylethenes 

in the blend. (b) Threshold voltages of OTS treated SiO2 transistors in the open and closed form for 

different amounts of diarylethene in the blend. (c) Ion/Ioff ratio of the same devices in the open and 

closed form at VDS = - 60 V. [All graphs from OTS-treated devices with L = 20 µm, W = 10 mm, C = 

1.5 nF cm
-2

] 

 

 The endurance of the semiconductor-DAE-Me blend was tested by dynamic write-erase cycles 

at constant bias. On this occurrence and throughout the entire chapter, continuous measurement of the 

IDS current as a function of time will be referred to as dynamic characterization. In order to determine 

(a)                     (b)  

 

 

(c)                 
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the sole contribution of the DAE-Me to the IDS current change, the decay observed due to bias stress on 

P3HT was estimated from the curve before illumination, and deduced from the IDS-time plot. On over 

70 write-erase cycles (10 s cycles after 20 min of measurement without illumination), the switching 

fatigue was found to be negligible. This is a good indication for the stability of the devices as they can 

undergo a large number of write-erase cycles with minor impact on their switching ability (Figure 

8.11a). The retention capabilities of the devices have been tested by measuring the IDS current at a fixed 

VDS of - 10 V and VGS of - 60 V in the open and the closed form after different storage times in the 

dark. No modification of the currents was found after 64 days in the dark, providing clear evidence for 

excellent retention capabilities reaching 100 days (10
7
 s, Figure 8.11b). 

 

                      

 

 

Figure 8.11: Data Retention of the memory device. (a) Experimental dynamic IDS-time curves, 

corrected for bias stress, at VDS = -10 V and VGS = -60 V: writing for 1 second at 313 nm and erasing 

for 5 seconds at 546 nm. 70 cycles are shown in the main figure while only 5 of them are to be seen in 

the inset. ΔIDS is defined by ΔIDS = IDS - IDS,t(initial); (b) Measurement of the IDS current after different 

times of storage of the device in the dark at fixed VDS = -10 V and VGS = -60 V to illustrate the retention 

capability of the devices in the open and the closed form. 

 

 

8.4. Switching with ultrafast light irradiation.  

 

 A laser-setup with ultra short time pulses was used in order to investigate the photo-induced 

switching upon illumination times associated with modern optics and electronics. The device was 

exposed to a 3 ns laser pulse (λ = 313 nm) at tunable intensity in intervals of ten seconds leading to a 

(a)              (b) 
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progressive current decrease controlled by the number of pulses. Each pulse generated a ΔIDS step 

decrease owing to the increasing amount of photogenerated hole traps, i.e. DAE-Me_c. Each current 

step has a certain height and this allowed us to estimate the signal-to-noise ratio (SNR) calculated from 

the RMS amplitude of the noise over 3×80 consecutive points. Within the first current levels SNR 

exceeds 50, and decreases to 2.8 in the final steps. The decrease results from the graduate reduction of 

the step height with a noise value that remains constant. We have successfully built a 400 current-

intensity level device (Figure 8.12), reaching a data storage capacity over 8 bit (256 levels). By 

reduction of the light intensity using filters, we have shown that the step in height is dependent on the 

areal power density: the pulsed light was attenuated to transmittance of 33%, 11.5% and 1.3% in order 

to determine the minimum number of photons, which can close/open enough DAE-Me molecules to 

modulate the drain-source current. The step height dependency on the areal power density is explained 

by the number of molecules undergoing photoisomerization being proportional to the density of the 

photons hitting the device area (Figure 8.13). In particular, our device can already operate at incident 

power < 1 µJ cm
-
²s

-1
. The number of steps and hence the storage density is therefore only limited by the 

noise in the signal (leading to a maximum of 5000 steps in the presented experiment) with a theoretical 

maximum given by the number of steps equal to the number of DAE-Me molecules in the channel.  

 

 

Figure 8.12: IDS-time curves (corrected for bias stress) under irradiation of the device with 3 ns 

laser pulses (313 nm) every 10 s, underlining the ability to behave as a multilevel memory.  Curves 

were plotted at VGS = -60V and VDS = -10V. Current-spikes in the curve are attributed to photo-

generated carriers during irradiation. Given their short duration (3 ns) illumination steps are not 

represented to scale. 
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Figure 8.13: Devices illuminated with a laser light-source with filters of different transmittance 

values. All measurements were performed at VDS = -10 V and VGS = -60 V. (a) IDS-time curves of the 

tested device. Switching ability was evaluated by dynamic IDS-time curve for unfiltered laser-pulses and 

laser-pulses with 33%, 11.5% and 1.3% transmittance (100% transmittance corresponds to 85±17 µJcm
-

² for each 3 ns pulse). All curves were corrected for bias stress and aligned at IDS = 0 A for better 

appreciation of the effect of the filters on the IDS current. (b) Plot representing the IDS current as a 

function of the incident power, after twenty 3 ns pulses (Time = 600 s) at 313 nm. 

 

8.5. Three-terminal device memories on a flexible PET substrate.  

 

 In view of the ultimate goal of demonstrating the possible implementation of the memory-

devices into novel electronic applications, the whole procedure was adapted to a flexible substrate, 

trading the rigid inorganic silicon based dielectric layer for a polymeric sheet, with a flexible 

polyethylene terephthalate (PET, Figure 8.14, a) substrate. PET was selected for its flexibility, 

transparency and presence in the industry, underlying ease of use and affordable prices for future large-

scale applications. 

 The three candidates as dielectrics were Poly(methyl methacrylate) (PMMA), Cytop and 

Poly(4-vinylphenol) (PVP), each with advantages and setbacks (Figure 8.14, b-d). PMMA is a widely 

used polymer and has shown very good performances as dielectric. Being highly soluble in chloroform, 

it could only be used for top-gate devices, spin-coated on top of the DAE-Me/P3HT blend. This setup 

has the advantage of encapsulating the blend, enhancing the air-stability of the device. The major 

setback is that the illumination has to be performed from underneath the device and through the PET 

film. Cytop has also demonstrated very high dielectric performances (with an excellent dielectric 

constant between 2.0 and 2.1), and lower solubility in chloroform. Therefore, it can be used in both top- 

and bottom-gate geometries, bottom-gate devices having the advantage of top illumination directly on 

the DAE-Me/P3HT blend. Unfortunately, the surface of the cytop layer is very hydrophobic due to its 

fluorinated moieties, and solutions in chloroform spin-coated on the surface did not produce films of the 

highest quality in terms of surface coverage, with results displaying low reproducibility. PVP was found 

(a)                     (b)  

 

 



  

127 

 

to be a poorly performing polymer, in terms of current leakage. Once crosslinked, it did not dissolve in 

chloroform and could be used for bottom-gate devices. Furthermore, the surface was not hydrophobic 

as observed with Cytop: a uniform P3HT/DAE-Me film could be spin-coated onto a cross-linked PVP 

layer. 
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Figure 8.14: Molecular structures. Chemical formulaes of  (a) the PET used as a flexible substrate, 

(b) the dielectric Cytop, (c) the dielectric Polyvinylpyrrolidone (PVP) and (d) the dielectric Poly(methyl 

methacrylate) (PMMA). 

 

 

8.5.1. Top-gate geometry 

 

 The top-gate geometry was investigated at first, due to its promising semiconductor 

encapsulation feature, and potential for electrical performances, as OTS is not suitable for growth on a 

polymeric dielectric. A top-gate field effect transistor using PMMA as a gate dielectric was deisgned.  

A double layer of PMMA was deposited on the DAE-Me/P3HT blend in order to ensure good dielectric 

performance after gate deposition and bending tests. As a result, a working flexible transistor was 

produced, as illustrated in the photograph in Figure 8.15, a. The thickness of the PMMA was measured 

via profilometer and amounted to 860 nm, implying good electrical insulation (Figure 8.15, b). The 

devices were tested for electrical performances through IDSVDS and IDSVGS plots (Figure 8.16). The 

transistors performed very well, with no signs of charge-injection issues. A mobility value of 8x10
-3

 

cm²/Vs was found both in linear and saturation regime, the expected value for the top-gate transistor, 

due to the absence of OTS or HMDS treatment. The Ion/Ioff was of 2x10
3
. The devices were bent at a 

bending radius of 6 mm for one minute, and were found to operate properly afterwards, without impact 

on electrical performances. 

 

(a)            (b)         (c)                (d) 
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Figure 8.15: Top-gate devices on flexible PET substrate. (a) Photograph of a PET substrate with 8 

devices (2 of each of the following channel lengths: 60 µm, 80 µm, 100 µm and 120 µm). (b) Thickness 

profile of the PMMA dielectric double layer. The height is given in meters, while the scan path is 

presented in centimeters. 

 

              

Figure 8.16: Electrical characterization of the top-gate devices on flexible PET substrate. (a) 

Output characteristics of the PMMA based transistor. (b) Transfer characteristics of the PMMA based 

transistor. 

 

 In order to measure the switching capabilities of the devices, a mirror setup was designed, 

with the help of Thomas Mosciatti. The available monochromator in the glovebox was designed for 

illumination from the top. Unfortunately, due to the presence of an opaque Al Gate over the 

photochromic DAEs in the channel, the illumination needed to be performed from “underneath” the 

sample (through the PET). No significant switching behavior was observed upon illumination both at 

313 nm and 546 nm (Figure 8.17, a). This could be explained by the long light-path in the case of the 

mirror setup. Therefore, the setup was adapted with a direct illumination from under the sample. A 

slight change of the IDS was observed upon illumination (Figure 8.17, b). These low switching 

capabilities are explained by the PET substrate that cuts most of the UV irradiation. We decided to 

produce bottom-gate devices in order to circumvent this issue. 

 

(a)            (b)              

 

 

 

 

 

 

(c)         (d) 

            (a)               (b)
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Figure 8.17: Transfer curves before and after illumination. IDSVGS curves of devices illuminated 

through (a) the double mirror setup and (b) the direct illumination setup. 

 

8.5.2. Bottom-gate geometry 

 

 Devices in the bottom-gate geometry were fabricated, using Cytop as a dielectric. The 

devices were tested and a mobility of 7.9x10
-3

 cm²/Vs was found in the open form, a value comparable 

to those obtained on an untreated SiO2 dielectric. In the closed form, the mobility was found to be 

5.6x10
-3

 cm²/Vs. This amounts to a low switching ratio of 1.4 (Figure 8.18, a). This is explained by 

observed wetting issues due to the use of Cytop as a dielectric. Dynamic switching curves were traced 

in order to determine if multi-level devices could be obtained on a flexible substrate. A device with six 

current steps was obtained at constant reading (Figure 8.18, b).  

 

 

                
Figure 8.18: Bottom-gate memory unit onto a flexible PET substrate, using Cytop as dielectric. (a) 

IDSVGS curves of devices illuminated at 313 nm. (b) Experimental dynamic IDS-time curves, corrected 

for bias stress, showing small irradiation steps at 313 nm underlining the ability to behave as a 

multilevel memory (5 to 30 seconds incremental irradiation steps). 

 

(a)             (b) 

(a)              (b) 
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 PVP was used as a dielectric, in order to achieve smooth films in bottom-gate configuration, 

and to avoid wettability issues as compared to Cytop-based bottom-gate devices. Very thick dielectric 

films were fabricated, leading to low currents (comparable to those reported above with cytop) (Figure 

8.19, a). PVP proved to be a bad dielectric with leakage currents of 10% of the IDS current, even at a 

thickness of 1.5µm (as observed on the transfer curves). Nevertheless, dynamic IDS-time curves have 

shown good ability to produce multilevel memories (Figure 8.19, b). 

 

 

 
Figure 8.19: Bottom-gate memory unit onto a flexible PET substrate, using PVP as dielectric. (a) 

IDSVGS curves of devices illuminated at 546 nm. (b) Experimental dynamic IDS-time curves, corrected 

for bias stress, showing small irradiation steps at 313 nm underlining the ability to behave as a 

multilevel memory (1 to 20 seconds incremental irradiation steps). 

 

 In order to produce well-performing devices, one layer of both poly(methyl methacrylate) 

(PMMA) and poly(4-vinylphenol) (PVP) were used simultaneously. The objective was to combine the 

good insulating properties of PMMA with the solvent-robustness and adequate wettability of the PVP. 

The procedure was found to be successful, even as the gate modulation was highly reduced due to the 

very thick dielectric layers (540 nm PVP and 400 nm PMMA). The devices were electrically 

characterized and the field-effect mobilities were comparable to those on SiO2 without OTS (over 10
-3

 

cm²V
-1

s
-1

, Figure 8.20). Optical microscope images of the channel between source and drain electrodes 

are presented in Figure 8.21, highlighting smooth films at the scale of the electrodes. Furthermore, 

AFM height plots were recorded as a means of investigation of the surface roughness (Figure 8.22). 

While the roughness increased by a factor of five as compared to films on silicon oxide, it was found 

that bending of the device at at bending radius of 6 mm for 1 minute did not dramatically change the 

roughness at the surface (RRMS = 5.09 as compared to 3.22  before bending, Table T8.3).  

(a)               (b) 
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Figure 8.20: Bottom-gate memory unit onto a flexible PET substrate, using a hybrid PMMA/PVP 

dielectric. IDSVGS curves of a device with a non-treated PVP/PMMA dielectric surface at VDS = - 10 V 

and - 40 V, with DAE-Me in the open and the closed form. 

 

     

Figure 8.21: Optical microscopy images. Images of P3HT/DAE-Me layer on SiO2 (channel length = 

60 µm). 

 

 
Figure 8.22: Atomic Force Microscopy height plots. Images of (a) a P3HT/DAE-Me layer on PET 

before bending (z-scale: 25 nm); (b) a P3HT/DAE-Me layer on PET after bending 1 min at a bending 

radius of 6 mm (z-scale: 35 nm). 

 

(a)               (b) 
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Table T8.3: Root mean squared (RRMS) values of the roughness as calculated from the AFM 

height plots presented in Figure 4 and Figure 20. Data is presented in nm. The roughness was 

estimated from 100 nm² surfaces. 

Surface Root mean squared roughness (RRMS) 

SiOx / no OTS
1 0.74 

SiOx / OTS
1 0.54 

PVP 3.22 
PVP bent

2 5.09 
1 
OTS treatment 

2 
bending for 1 minute at a bending radius of 6 mm 

 

Switching capabilities were tested over multiple dynamic switching cycles. We have found that 

the devices could be switched between closed and open states, albeit at slower pace when compared to 

devices on SiO2 (Figure 8.23, a). The small increases of drain current during switching are attributed to 

photogenerated carriers. Dynamic IDS-time curves with small illumination steps at 313 nm indicate the 

ability of the device to work as a 4-bit multilevel memory (16 distinct levels, Figure 8.23, b). 

Furthermore, electrical characterization was performed on the device after successive bending steps 

(bending radii amounting to 29.0 mm, 17.5 mm, 10.0 mm, 8.0 mm, and 6.0 mm, Figure 8.24, a). Post-

bending performances were still comparable to those observed before bending at each bending radius 

for 60 seconds (Figure 8.24, b), with only minor losses in terms of charge carrier mobility and a slight 

shift in the threshold voltage, proving that with further optimization, the studied organic 3-terminal 

memory devices could be introduced into flexible electronics.  

 

Figure 8.23: Dynamic characterization of the devices. (a) Experimental dynamic IDS-time curves, 

corrected for bias stress, with write-erase cycles (313 nm for 20 s /546 nm for 140 s) at VGS = - 60 V 

and VDS = - 10 V; (b) IDS-time curve corrected for bias stress showing small irradiation steps at 313 nm 

underlining the ability to behave as a multilevel memory (5 to 20 seconds incremental irradiation steps); 

(a)               (b) 

 

 

 

 

 

 

(c)               (d) 

 

 

 

 

 

 

(e) 
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Figure 8.24: Integration of the memory unit onto a flexible PET substrate. (a) Cartoon depicting 

the bending radii (1: 29.0 mm, 2: 17.5 mm, 3: 10.0 mm, 4: 8.0 mm, and 5: 6.0 mm). (e) Field-effect 

mobility and threshold voltage after each bending step on a device with diarylethenes in the closed form 

(after 5 min irradiation at 313 nm).  

 

8.6. Conclusions 

 

We have shown that it is possible to build 3-terminal memory-devices with unprecedented 

features. Above all, the ability to define many distinct current levels paves the way for high-density 

memories with 8-bit memory units (256 levels). Illumination times using a laser setup are on the 

nanosecond time scale, giving rise to a fast response that is necessary for real-life electronics. 

Transistors were successfully produced in the top-gate configuration on a flexible PET substrate, using 

PMMA as a dielectric, demonstrating strong electrical performances but no convincing memory 

behavior. Memories were successfully transferred onto a flexible PET substrate in the bottom-gate 

configuration, using cytop and PVP as dielectrics. Cytop proved to be a superior dielectric but did not 

allow for smooth films with strong memory behavior, while films produced on PVP were homogenous 

but PVP-based devices showed high current-leakage. Therefore, hybrid PMMA/PVP dielectric-based 

devices were produced and featured good electrical performances, as well as satisfying switching 

capabilities, demonstrating that this approach can be successfully applied also on flexible substrates. 

Furthermore, the excellent data retention capabilities of the devices (retention times of 10
7
 s) and the 

reliability after many write-erase cycles make this method ideal for the future applications in (flexible) 

electronics. Due to the versatile nature of our blending approach, the air-sensitive P3HT could be 

replaced by an alternative air-stable p-type semiconductor with similar energy levels, leading to 

potentially higher currents (hence an increased possible number of steps) without the need for 

encapsulation. Our findings are of paramount importance for the realization of a light-controlled 

cognitive devices where the irradiation history represents the learning process and the non-volatile state 

retention ensures that the data are preserved over time in a given memory state.  
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Chapter 9. Conclusions 
 

 

 

 

9.1. Conclusions 

 

 In this thesis we have mastered the controlled self-assembly of well-known semiconducting 

small molecules and polymers such as oligothiophenes and P3HT in order to achieve high electrical 

performances in organic field-effect transistors, and we have shown that new functions could arise in 

solution processed thin-films by combining multiple materials each one conferring a well-distinct 

function to the ensemble. 

 First, we focused on dihexylquaterthiophene, a well-established small molecule known to 

possess good field-effect mobility in vacuum sublimed thin-films. By using drop-casting from the 

solution as deposition method, we were able to fabricate devices with a field-effect mobility exceeding 

state-of-the-art of 0.10 cm²/Vs and Ion/Ioff currents over 10
7
. These remarkable performances were 

achieved through optimization of the conditions of film formation via judicious choice of processing 

method, solvent type, interfaces functionalization and in particular by tuning the rate of evaporation of 

the solvent. We proved that it is possible to drive the molecular self-assembly towards the formation of 

highly ordered low-dimensional architectures exhibiting enhanced electrical characteristics. In 

particular, we demonstrated the particular importance of interface tailoring by careful analysis of the 

semiconductor-electrode and semiconductor-dielectric interfaces. It was found that different SiO2 

treatments can affect directly the assembly of the semiconductor in high boiling-point solvents leading 

to interfaces with a lower number of interfacial traps which result in enhanced electrical performances. 

The same oligomer was blended with similar molecules, dihexylbithiophene and dihexylsexithiophene 

with respectively two and six thiophene units in the main chain instead of four. While none of the three 
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molecules performed well when deposited from chloroform on their own, we have demonstrated that it 

is possible to obtain semiconducting films with enhanced electrical characteristics when blended 

solutions are used instead of single components. The morphology of the resulting film was investigated 

and it was found that tuning phase segregation by solvent selection can lead to dramatic changes in 

electrical performances. 

 The blending strategy was pushed further with blends of semiconducting polymers. The study 

was conducted using a high-performing n-type polymer, P(NDI2OD-T2), which was blended with four 

different p-type polymers: P3HT, PDV-TPT, PDVT-8 and IIDDT-C3. The five polymers were radically 

different in terms of molecular structure, electrical characteristics and energy levels. Nevertheless, we 

demonstrated that it was possible to fabricate ambipolar field-effect transistors using P(NDI2OD-T2) 

blended with any of the four p-type semiconductors, with balanced p-type and n-type mobilities. In 

particular, bottom-contact, bottom-gate transistors with mobilities over 10
-2

 cm²/Vs and linear regime 

Ion/Ioff over 10
5
 were produced from a solution consisting of a blend of P(NDI2OD-T2) and PCD-TPT. 

Devices fabricated using a solution of P(NDI2OD-T2) and IIDDT-C3 featured mobilities up to 10
-2

 

cm²/Vs and Ion/Ioff of 10
7
, unprecedented values for ambipolar organic transistors. The ability to produce 

ambipolar transistors using a unipolar semiconductor (P3HT) demonstrated that this approach could 

potentially be applied to a wide variety of semiconductors. The ability to “balance out” an unbalanced 

ambipolar semiconductor (PCD-TPT) proved that the blending strategy could also be applied as 

mobility correction in unbalanced materials. Individual experimental results obtained for each polymer 

blend was explained by morphological characterization of each blended film (AFM, XRD). It was 

demonstrated that while some films were prone to undergo high phase-segregation, such as PDVT-8 

blended with P(NDI2OD-T2), the films involving IIDDT-C3 and P(NDI2OD-T2) were well blended 

allowing good p- and n-type mobilities in both top-gate and bottom-gate geometry. 

 Finally, P3HT was blended with a photochromic small molecule (DAE-Me) for the fabrication 

of a three-terminal multilevel memory. The devices proved to switch between levels at nanosecond rate, 

giving rise to a fast response that is necessary for real-life electronics. Above all, the ability to define 

many distinct current levels was demonstrated, paving the way for high-density memories with 8-bit 

memory units (256 levels). Furthermore, excellent data retention capabilities of the devices (retention 

times of 10
7
 s) and excellent reliability after many write-erase cycles were established. The procedure 

was successfully transferred onto a flexible transparent PET substrate, and was proved to operate 

properly after bending. The strategy relying on a pair of organic semiconductor and photochromic small 

molecule is generally applicable and could be extended to a wide range other systems featuring the 

desired properties. For example, P3HT could be replaced by a better performing polymer, in terms of 

electrical characteristics, air stability or mechanical resistance, leading to further improved multilevel 

memories. 
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 In summary, we demonstrated that the combination of different (macro)molecular system via 

blending is a very promising approach as it allows to realize new materials with increased performances 

and new characteristics, such as data storage and ambipolarity.   

 Vacuum deposition is often used as standard procedure for small molecule film fabrication, but 

it is unpractical for industrial applications, due to the high costs and low fabrication speeds that are 

incompatible with production lines. We proved that focusing on solution processing can be a winning 

strategy for fabrication of high performance transistors based on organic small molecule 

semiconductors. This approach is highly applicable for future low-cost applications depending on ink-

jet or roll-to-roll (R2R) printed devices. The study of the electrical performances of blended oligomer 

films are of particular interest as they were produced from a solvent that yielded disappointing results 

on single component films. In most cases, the best performing solvent is not a viable option in the 

industry due to high costs and ecological issues. 
1
 Therefore, relying on blends of semiconducting small 

molecules for improved performances can lead to new possibilities in terms of device fabrication.  

 Among all the synthesized organic semiconducting polymers to date, only a fraction of them 

displayed the ability to transport holes and electrons, 
2
 and so far, none of them featured absolutely 

balanced p- and n-type mobilities. Furthermore, the Ion/Ioff was very poor in most cases, underlining a 

weak capacity of the device to properly turn off. 
3
 Unfortunately, ambipolar organic materials are of 

paramount importance for the fabrication of organic light-emitting transistors and complementary 

circuits. Our approach demonstrated that semiconducting films could be produced with the desired ratio 

between hole and electron transport. The general nature of the study validates this approach for future 

applications involving simple fabrication of ambipolar films, with high capability to switch off and 

ambipolarity on demand.  The control of the ratio between p- and n-type mobility would be particularly 

suited for logic applications that rely on transistors with different polarities with good capacities to 

switch off.  

 The fabricated multilevel memories displayed exceptional features, such as multilevel operation 

and non-volatile state retention, making them particularly well suited for reliable miniaturized data 

drives. 
4
 An 8-bit memory cell was produced, only revealing the surface of the results that could be 

reached through this approach. Upon selection of the optimal polymer-photochromic molecule blend, 

devices with many more current-levels could be produced, with a theoretical limit equal to the number 

of photochromic molecules in the blend. Furthermore, these light-controlled devices performed well as 

field-effect transistors indicating the possibility to introduce them into logic applications, providing 

multiple functions in a single device, leading to new possibilities in terms of circuit architecture. 

Combined with their easy processing and ability to perform in flexible devices, the memories could 

easily be integrated into everyday objects, such as flexible data drives and RFID tags. 
5
  

 In conclusion, organic electronics have already proved to be superior to its inorganic 

counterparts for multiple applications due to its impressive features and versatility, but there is still a lot 
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of research and optimization to be performed in many areas to supersede silicon based technologies. 

While the constant appearance of novel synthesized molecules have paved the way for major milestones 

in terms of electrical characteristics, these materials can only reveal their full potential upon careful 

optimization. The blending approach seems particularly interesting as it proves to be universal: features 

present in different materials are combined to form new materials with multiple functions and 

tremendous potential for future applications. The implementation of multiple functions within the same 

device opens the door for new circuit architecture and miniaturization. 
6
 Furthermore, the blending 

approach could be extended beyond organic molecules. Blends of organic materials with carbon-based 

materials and metal nano-particles are already studied 
7-9

 and the combination of the peculiar 

characteristics of these soluble materials with the wide variety of properties of organic materials could 

lead to very interesting developments in the field of electronics. 
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Résumé 

Cette thèse a exploré comment, en mélangeant des matériaux avec des propriétés 
électriques différentes, il est possible de fabriquer des transistors avec des 
performances accrues. Des transistors organiques à effet de champ basés sur un 
oligothiophène (DH4T) ont été fabriqués et optimisés jusqu’à ce que les mobilités 
mesurées fussent supérieures à celles observées dans des films évaporés. Ces 
résultats ont été obtenus par le contrôle précis des interfaces et de la vitesse 
d’évaporation. Des polymères de type p ont été mélangés à des polymères de type 
n. Chaque solution obtenue a été utilisée pour la fabrication de transistors 
ambipolaires. Les transistors ont été caractérisés et il a été possible de fabriquer des 
transistors avec des mobilités équilibrées pour chaque paire de polymères. Des 
transistors à effet de champ basés sur un mélange de P3HT et d’une molécule 
photochromique (DAE-Me) ont été fabriqués. Le courrant a été mesuré pendant et 
entre les irradiations et il a été démontré qu’une mémoire non-volatile à multiple 
niveaux peut être fabriquée. 

Mots-clés: Transistors organiques à effet de champ, Interfaces, transistors 
ambipolaires, molécules photochromiques. 

 

Résumé en anglais 

This thesis explored how, by blending of materials with different electrical 
characteristics, it is possible to fabricate transistors with new or improved 
performances. First, organic field-effect transistors based on a single oligothiophene, 
DH4T, were fabricated and optimized until the measured mobility was superior to that 
observed in vacuum deposited films. This was achieved through careful tuning of the 
interfaces using self-assembled monolayers and by strong control of the solvent-
evaporation rate. P-type polymers were blended with an n-type polymer. Each 
resulting solution was used for the fabrication of ambipolar field-effect transistors. 
These devices were characterized and it was found that for each pair of p- and n-type 
polymers, a transistor with balanced mobilities and high Ion/Ioff could be fabricated. 
Finally field-effect transistors based on a blend of P3HT and a photoswitchable 
diarylethene (DAE-Me) were fabricated. The current was measured during and 
between irradiations and it was demonstrated that a non-volatile multilevel memory 
could be fabricated. 

Keywords: Organic field-effect transistors, Interfaces, ambipolar transistors, 
Photochromic molecules. 


