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Outline of the thesis 

Epigenetics is one of the crucial mechanisms that systematically control the gene 

regulation in cell fate decisions. Several studies have linked their aberrant behaviour to 

diseases including cancer. Hence, it is important to understand the molecular mechanisms 

underpinning epigenetics. In that context, ChIP-seq is widely used for studying epigenetic 

modifications, especially histone modifications. This biology and informatics blended 

thesis aims at two aspects (i) development of novel tools to evaluate the quality and correct 

the sequencing depth variations embedded in NGS driven ChIP-seq assays, and (ii) 

analysis of the epigenetic status of chromosome X inactivation (XCI) in breast cancer cells. 

Following the general introduction, first chapter of this thesis provides a brief literature 

based description on the biological background of this thesis. I begin by describing a DNA 

level epigenetic modification called DNA methylation and then proceed to explain  histone 

level modifications categorised as epigenetic �writers�, �erasers� and �readers�. Different 

enzymes involved in each type of modifications and their functional role are discussed. 

After summarizing about epigenetics, the basic mechanism of one of the exemplary 

chromosome wide X inactivation will provide the mechanism of X chromosome 

inactivation (XCI) and the role of epigenetics in it, as one of my studies focus on 

understanding the deviation of epigenetic status in breast cancer cells. A small summary of 

imprinted genes have also been discussed, as the comprehensive data is available from XCI 

study and similar analysis can be used to characterise the epigenetic and allelic status of 

imprinted genes in breast cancer cells. Imprinted genes analysis is currently ongoing and 

preliminary results are only available. 

Second chapter provides a quick outline on the rise and evolution of next generation 

sequencing, especially in the context of functional genomics. It also describes several 

challenges that exist in NGS driven analysis. Third chapter provides a brief literature and 

experience based description on the bioinformatic background of epigenetic related 

studies. Best practices to be followed in such analysis are discussed along with the 

directions and immediate priorities in bioinformatics related challenges in analysis. Fourth 

chapter provides the broad scope and specific goals of this thesis. Fifth chapter covers the 



7 
 

results and discussions involving the development of two new bioinformatics tools and 

allele-specific analysis to understand the aberrant behaviours in inactive X chromosome of 

breast cancer cells. For each manuscript, its corresponding manuscript is attached for the 

detailed materials and methods, and results, along with a brief overview. Final chapter is 

intended to provide the future perspectives with concluding remarks. A list of glossary is 

provided at the end for different NGS applications and bioinformatic 

terminologies/approaches which are often used in the thesis. I have attached the list of 

publications that I am part of, including the manuscripts which are submitted. 
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Abstract 

Over the years, various studies have shown that epigenetic modifications have a significant 

role in gene regulation. Unravelling the mechanisms and functional aspects of such 

modifications would help us understand why various cells types exhibit different 

behaviours, though the genomic DNA is same. Since the identification of its crucial role in 

gene regulation, aberrant changes in such modifications have been observed in several 

diseases including cancer. As most of these modifications are reversible, recently a large 

focus has been given on understanding these epigenetic modifications for therapy. 

With the rise of next generation sequencing technology, Chromatin ImmunoPrecipitation-

Sequencing (ChIP-Seq) has become widely used approach to profile histone modifications. 

Epigenetic studies may involve sequencing and comparison of multiple factors from 

different samples. This poses a significant bioinformatic challenges as ChIP-Seq is 

inherently prone to variabilities embedded in individual assays like antibody efficacy, 

sequencing depth variation, etc. These underlying technical variabilities and poor 

enrichment profiles can significantly bias the comparative studies. Hence, there is an 

imminent need for novel approaches and tools to address these caveats for any such 

comparative studies. In that context, we have developed NGS-QC, a robust bioinformatics-

based quality control system to infer the experimental quality and comparability of the 

data. This tool and its associated database is publicly available and aids in interpreting the 

quality of the enrichment datasets and compare them with existing overall quality trend for 

a given factor from public data. However, even high quality datasets exhibit significant 

sequencing depth variation and require normalization to correct this variation prior to 

comparison. Currently existing normalization methods either apply linear scaling 

corrections and/or are restricted to specific genomic regions. To overcome these 

limitations, we have developed Epimetheus, a genome-wide quantile-based multi-profile 

normalization tool for histone modification and related datasets. Comparison with existing 

methods proves Epimetheus to be more robust, and its outputs are scalable to a variety of 

downstream analyses. 
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We employed these newly developed tools in a bioinformatics pipeline to understand the 

epigenetic status of X chromosome inactivation (XCI) in breast cancer cells. XCI is an 

epigenetic paradigm and an excellent model to understand the epigenetic system where 

chromosome-wide repression takes place. Around 50 years ago, disappearance of Barr 

body (Xi - inactive X chromosome) in breast cancer cells was observed, which was later 

found to be de-condensation of heterochromatic Xi along with X-linked gene reactivation. 

An allele specific transcriptomic and epigenetic profiling comparison between normal and 

breast cancer cells could reveal the regions or genes that are epigenetically disrupted in X 

chromosome. We established an integrative bioinformatic pipeline to integrate genetic 

(SNP6 and Exome-seq), epigenetic (ChIP-seq) and transcriptomic (nascent RNA SNP6 

and mRNA-seq) data to understand the allelic and epigenetic status of disrupted Barr body 

in breast cancer cells. Our analysis has revealed perturbation in epigenetic landscape of X-

chromosome and aberrant gene reactivation in Xi including the one are associated with 

cancer promotion.   
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Introduction 

Epigenetics, a term coined by Conrad Waddington, defined as �the branch of biology 

which studies the causal interactions between genes and their products which bring the 

phenotype into being� (Waddington 1942). This definition was very broad and referred to 

all molecular pathways modulating the expression of a genotype into a particular 

phenotype. Rapid growth in the field and technology has resulted in a better understanding 

of this process and is currently defined as �a stably heritable phenotype resulting from 

changes in a chromosome without alterations in the DNA sequence� (Berger et al., 2009). 

As a bioinformatic student, it is worth mentioning the analogy given by Prof. Jörn Walter 

�the hard disk is like DNA, and then the programmes are like the epigenome�. 

Though all the cells in the human body carry the same genetic information in its DNA 

sequence, it is the expression of genes with spatial and temporal specificity that brings 

about their differentiation into cells and tissues with specialized biological functions. 

While a complete mammalian genome is composed of approximately 25,000 protein-

coding genes, about 30% of the DNA sequence, only a half of them are expressed in any 

given cell type and most of those expressed are dedicated to cellular homeostasis 

(Romanoski et al., 2015). The fine control of gene expression is achieved through a 

complex set of cis and trans factors both at the 2D and at the 3D level. Genetic elements 

such as promoters, enhancers, repressors/silencers, insulators, etc., act in cis providing 

binding sites to complex set of factors comprising of transcription factors, co-regulators 

(activators and repressors), mediators, which act in trans for the precise regulation of gene 

expression. Lately, there is a realization that 3D structure of the chromatin has an 

important role to play in the organization of these cis and trans elements facilitating 

proximity interaction in 3D. DNA in the nucleus is very compactly packed around proteins 

and condensed into chromatin. Despite such high level compaction, it is accessible to these 

regulatory effectors and other interactions for gene expression. Recent models have 

suggested that three-dimensional nuclear organization contributes to genome folding, 

chromosome compartmentalization and the formation of gene regulatory interactions, 

ensuring appropriate genome function (Lopes Novo and Rugg-Gunn, 2015). This gives a 

broader complexity to the regulatory mechanism where the functional activities of the 
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effectors are spatially facilitated by the chromatin organisation. Remodeling of the 

chromatin is a dynamic process of chromatin architecture modification, by a variety of 

factors, to control gene expression. Such remodeling is principally carried out by covalent 

histone modifications by specific enzymes, and ATP-dependent chromatin remodeling 

complexes which restructure nucleosomes. The dynamic remodeling of chromatin also 

imparts an epigenetic regulatory role in several key biological processes, DNA replication 

and repair; as well as development and pluripotency. 

Many of the regulatory factors, though not directly coded the genomic DNA sequence, can 

also be heritable and these are known as epigenetic factors. These comprise of methylation 

and other modifications of the DNA nucleotides, chemical modifications and variants of 

the structural histone proteins constituting the chromatin and a larger variety of non-coding 

RNAs. Recent studies have shown that many of the epigenetic modifications are 

influenced by environmental conditions/stresses such as metabolic and biochemical factors 

and even psychological stresses (Raabe and Spengler, 2013). Thus, epigenetic factors can 

be hypothesised to provide a way for the organism to pass on the information accumulated 

through the environmental factors and prepare its progeny. Therefore, it is important to 

study the epigenetic programming and different machineries involved in gene regulation to 

decipher their functional role in basic cell processes and their aberrant behavior in diseased 

cells. 

With the advancements in next generation sequencing (NGS) technology and perpetual 

bioinformatics support, epigenetic modifications can now be studied at a genomic scale. 

Applications like ChIP-seq and MBD-seq has been widely used for such studies, and 

FAIRE/ATAC-seq like approaches has been used to identify the open chromatin regions. 

However, given the influence from multiple factors, the data obtained from these assays is 

inherently prone to technical variation, which makes the subsequent bioinformatic analysis 

challenging. Hence, there is an imminent need for novel approaches to evaluate and 

address these differences to facilitate more accurate analysis. 

  



 

 

 

 

 

CHAPTER 1 

EPIGENETIC MODIFICATIONS AND ITS 

ROLE IN CELL FATE DECISIONS 
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 Chapter 1. Epigenetic modifications 
and its role in cell fate decisions 
Epigenetic modifications include DNA methylation, covalent modifications of histone 

proteins in its tails and core domains and non-coding RNA mediated regulation. In this 

chapter, each type of modifications and its role in cell fate decisions, especially cancer, are 

briefly discussed. 

1.1. DNA level epigenetic modifications for gene regulation 

DNA methylation, an evolutionarily ancient and the only covalent DNA modification 

known in mammals, occurs at the 5�C of cytosine residues resulting in 5-methylcytosine 

(5-mC). It occurs predominantly in the symmetric GC context and is estimated to occur at 

~70-80% of CG dinucleotides throughout the genome (Ehrlich et al., 1982). The rest of 

unmethylated CG dinucleotides are mostly found near gene promoters in dense clusters, 

termed CpG islands (Law and Jacobsen, 2010). The function of DNA methylation seems to 

vary with the genomic context such as transcriptional start sites with or without CpG 

islands, in gene bodies, at regulatory elements and at repeat sequences. When a CpG island 

in the promoter region of a gene is methylated, expression of the gene is typically 

repressed. Methylated residues of nucleotides serve as sites for the binding of Methyl CpG 

binding domain (MBD) proteins, which may either directly impede transcription complex 

binding or recruit histone deacetylates and other chromatin remodeling proteins to form a 

transcriptionally silent heterochromatin. In the case of cancers, tumor suppressor gene loci, 

such as retinoblastoma-associated protein 1 (RB1), MLH1, p16 and BRCA1 among others, 

are known to be frequently hypermethylated and repressed (Jones, 2012). DNA 

hypomethylating agents such as 5-Azacytidine and 5-Aza 2�-deoxycytidine are used in the 

treatment of Myelodysplastic Syndrome. They are thought to produce DNA 

hypomethylation by inhibiting DNA methyltransferases (due to irreversible binding) at low 

doses, and direct cytotoxicity at higher doses. 

The addition of methyl group to DNA backbone is carried out by a family of enzymes 

called DNA methyltransferases (DNMTs) consisting of five members: DNMT1, DNMT2, 
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DNMT3a, DNMT3b, DNMT3L (Goll and Bestor, 2005). While DNMT1 is a large protein 

with 1620 amino acid residues, DNMT2 is a relatively small enzyme and resembles 

prokaryotic DNA methyltransferases. DNMT1 appears to be responsible for the 

maintenance of established patterns of DNA methylation, while DNMT3a and 3b seem to 

mediate establishment of new or de novo DNA methylation patterns. Two additional 

enzymes (DNMT2 and DNMT3L) may also have more specialized but related functions.  

DNMT3L shares homology with DNMT3a and DNMT3b and was reported to be 

responsible for establishment of maternal genomic imprinting (Bourc�his et al., 2001). 

As opposed to DNA methylation, another important aspect is the removal of a methyl 

group, termed DNA demethylation. It can either be passive or active, or a combination of 

both. Passive DNA demethylation refers to loss of 5-mC on newly synthesized DNA 

strands during successive replication cycles when there is no functional DNA methylation 

maintenance machinery. Active DNA demethylation is the enzymatic process that removes 

or modifies methyl group from 5-mC by ten-eleven translocation (TET) enzyme-mediated 

oxidation. The TET family of 5-mC hydroxylases includes TET1, TET2 and TET3. The 

broader functions of 5-hmC in epigenetics are still unclear. However, a line of evidence 

does show that 5-hmC levels are strongly depleted in various tumors (Pfeifer et al., 2013).  

1.2. Histone level epigenetic modifications for gene regulation 

In the eukaryotic genome, DNA is tightly packed with histone proteins into a protein-DNA 

complex called chromatin. Chromatin comprises of basic repeating units called 

nucleosomes, which is an octamer with two copies each of the four core histones H2A, 

H2B, H3 and H4, and DNA (~146bp) wrapped around the histones. With the help of H1 

histone and additional proteins, nucleosomes are further packaged spirally into a 30nm 

fibre with six nucleosomes per turn (Loyola et al., 2001).  This fibre is further looped and 

coiled to give rise to higher order structures known as chromosomes. Histones have a 

central globular domain and unstructured N- and C-terminal tails protruding from the 

central globular domain (Figure 1). 
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Figure 1. Nucleosome core particle. Bio-molecular structure of octamer histone proteins main 

chains (blue: H3; green: H4; yellow: H2A; red: H2B) surrounded by 146-bp double stranded DNA 

phosphodiester backbones (brown and turquoise) with unstructured C- and N- terminal histone tails 

protruding from the complex. (Taken from Luger et al. 1997). 

The N-terminal and C-terminal histone tails along with central globular domain are 

subjected to post translational modifications (PTMs) such as acetylation, methylation, 

phosphorylation, ubiquitylation, sumoylation, ADP ribosylation, deimination, 

biotinylation, butyrylation, N-formylation, and proline isomerization (Cohen et al., 2011). 

Methylation and acetylation of histone proteins are the most studied histone modifications. 

Specific enzymes covalently modify the amino acids residues in the histone tails and such 

that many sites can be potentially modified, resulting in complex patterns of histone 

modifications (Figure 2). All of these modifications together compartmentalize the 

chromatin into two states based on their transcriptional status � active �euchromatin� and 

inactive �heterochromatin�. 
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Figure 2. Post-translational modification sites of histone proteins. An illustrative view of 

different histone modification sites along their protruding C- and N-terminal histone tails with type 

and position in the amino acid sequence. PTMs (Ac-acetylation, Me-Methylation, P-

Phosphorylation and Ub-Ubiquitination) that are associated with cancer are highlighted in yellow. 

(Taken from Rodríguez-Paredes and Esteller 2011). 

Similarly, a specific set of enzymes exist that remove these chemical marks (Kouzarides, 

2007). Such enzymatic addition and removal of chemical groups is caused by epigenetic 

modifiers, referred as epigenetic �writers� and �erasers� respectively. Interpretation of this 

epigenetic code is recognised by a set of proteins called epigenetic �readers� (Falkenberg 

and Johnstone, 2014) (Figure 3). Such reversible and dynamic epigenetic modifications 

form a kind of code for the interactions of histones with other proteins, which determines 

the local chromatin structure and thereby regulating cell specific gene expression (Wu and 

Grunstein, 2000). Such combinatorial histone modifications may work as a marking 

system that is recognized/read by regulatory proteins (Quina et al., 2006). Further, these 

epigenetic modifications have to be replicated along with the DNA during mitosis and to 

be inherited to the next subsequent cell generations to maintain cell fate (Arzate-Mejía et 



16 
 

al., 2011). The histone code hypothesis predicts that �multiple histone modifications, 

acting in a combinatorial or sequential fashion on one or multiple histone tails, specify 

unique downstream functions� (Strahl and Allis, 2000). Signal transduction pathways are 

responsible for the integration and interpretation of such codes into specific transcriptional 

states (Schreiber et al., 2002).  Such transcriptional states can be maintained through 

switch-like signalling (�on� or �off�) resulting from feedback loops and these signals 

converge on chromatin to shape the transcriptional landscape (Bonasio et al., 2010). 

 

Figure 3. Epigenetic �writers�, �erasers� and �readers� scheme. Epigenetic writers (HATs, 

HMTs and PRMTs) add chemical group on amino acid residues, which are read and interpreted by 

group of proteins (containing bromodomains, chromodomains, and Tudor domains) called 

epigenetic readers. Epigenetic erasers catalyse the removal of epigenetic marks. Together, these 

modifications form a kind of histone code that dynamically regulates gene in precise spatio-

temporal manner. (Taken from Falkenberg and Johnstone 2014). 
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1.3. Epigenetic writers and erasers 

1.3.1. Histone acetylation 

Histones are covalently modified at the epsilon-amino group of lysines on the N-terminal 

tail, especially on H3 and H4, by a class of enzymes called histone acetyltransferases 

(HATs). Acetylation of histones is associated with transcriptionally active euchromatin 

(Allegra et al., 1987). It neutralizes the positive charge of the target lysine and affects the 

DNA-histones interaction resulting in an open euchromatin (Shahbazian and Grunstein, 

2007). Acetylation of histones is controlled by the opposing action of Histone deacetylases 

(HDACs) which remove the acetyl group from lysine residues. This interplay between 

HATs and HDACs activity regulates the level of histone acetylation in the cell (Figure 4). 

There are three major families of HATs: GNATs, P300/CBP and MYST proteins. Gcn5-

related N-acetyltransferase (GNAT) is a well-studied HAT family and has been grouped 

based on its homology regions and similar acetylation-related motifs. It includes HATs 

Gcn5, its close relatives and three distantly related Hat1, Elp3, and Hpa2 (Sterner and 

Berger, 2000). The MYST family includes MOZ, Ybf2/Sas3, Sas2 and Tip60, also has an 

acetylation-related structural motif. The P300/CBP (CREB-binding protein) family 

consists of two paralogous proteins, P300 and CBP. These two proteins have 

interchangeable functions. Members of the P300/CBP family contain many functional 

domains including a structural motif which is involved in acetyl-CoA binding, three zinc 

finger regions and a bromo-domain. P300/CBP acts as a co-activators and harbor domains 

for interaction with many transcription factors (Karmodiya et al., 2014).  Similarly, there 

are four classes of HDACs that have been identified: Class I, II, III, IV. Class I HDACs 

include 1, 2, 3, and 8, and Class II HDACs includes 4, 5, 6, 7, 9, and 10. Class III includes 

enzymes called sirtuins. HDAC11 is the only member in Class IV but it has features of 

both Classes I and II. The first nuclear histone acetyltransferase, Tetrahymena p55 

provided the first link between HATs and transcriptional activation (Brownell et al., 1996). 

Since then, studies have shown that acetylation has an important role in transcription 

activation, elongation, DNA damage & repair and DNA replication (Bose et al., 2004; 

Brownell et al., 1996; Lee and Shilatifard, 2007) 
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Figure 4. Acetylation and deacetylation of histone proteins. Addition of acetyl-CoA via HATs 

and removal of acetyl-CoA via HDACs resulting in condensed heterochromatin to euchromatin and 

vis-versa respectively. (Taken from Rodd et al., 2012). 

Activation and repression of gene expression is mostly regulated through multi subunit 

complexes of co-activators and co-repressors. HATs form part of many transcriptional co-

activator complexes including SAGA (Spt/Ada/Gcn5L acetyltransferase), PCAF, ADA 

(transcriptional adaptor), TFIID (transcription factor II D), TFTC (TBP-free TAF-

containing complex), and NuA3/NuA4 (nucleosomal acetyltransferases of H3 and H4). 

Similarly, HDAC containing complexes constitute co-repressors such as SIN3, N-CoR. 

Genome wide mapping studies have, shown the presence of HDAC complexes at the 

majority of actively transcribed loci along with repressed ones. HDACs have been shown 

to prevent cryptic initiation of transcription within coding regions, thus maintaining a 

precise control of gene expression levels. As genome wide mapping studies accumulate in 

different cell fate systems, the nature of interaction and role of these co-regulator 

complexes is starting to become clearer (Perissi et al., 2010; Yang and Seto, 2007). 

1.3.2. Histone methylation 

Histone methylation occurs on the lysine or arginine residues of histones H3 and H4. 

Unlike acetylation, methylation has no effect on the charge of the histones (Bannister and 

Kouzarides, 2011). Histone methylation brings added complexity in histone code as lysine 
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except Dot1 enzyme. HKMTs tend to be relatively specific enzymes and modify 

appropriate lysine residues to a specific degree i.e., mono, di, and/or tri-methyl states. X-

ray crystallography studies showed that there is a key residue within the enzyme�s catalytic 

activity domain that determines the degree  (Bannister and Kouzarides, 2011). PRMTs are 

classified as either: type I (CARM1, PRMT1, PRMT2, PRMT3, PRMT6, and PRMT8); 

type II (PRMT5 and PRMT7) or type III. Type I and type II  enzymes catalyze the 

formation of an intermediate mono-methylarginine (MMA), which is further catalyzed into 

asymmetric di-methylarginine (ADMA) by type I and symmetric dimethylarginine 

(SDMA) by type II (Di Lorenzo and Bedford, 2011). 

In human cells, MLL proteins, SET7/9, and Ash1 are HMTs that catalyze the methylation 

of H3K4. HMTs like ESET/ SETDB1, G9a, SUV39-h1, SUV39-h2, and Eu-HMTase 

catalyze the methylation of H3K9. SMYD2 and NSD1 are associated with H3K36 

methylation. Enhancer of zeste homolog 2 (EZH2), a polycomb group enzyme is one of the 

well-studied HMT enzymes involved in oncogenesis, where it is shown to be repressing 

the expression of several tumor suppressor genes such as p16 INK4a, E-cadherin, 

 !"#$%&'()*+,&'"(-!.&'/01'234'/154045678'548492:5';# (Cohen et al., 2011). G9a and 

EZH2 are HMTs that catalyze methylation of histone H3-K27 (Kouzarides, 2007). As 

mentioned earlier, both H3K9 and H3K27 methylations mediate heterochromatin 

formation and also participate in transcriptionally repressing the genes in euchromatin 

regions. 

The discovery of histone demethylases demonstrate that histone methylation is not a 

permanent modification but rather a more dynamic process (Bannister et al., 2002). PADI4 

(Petidylarginine deiminase 4) was the first identified enzyme that functions as a histone 

deiminase that converts methyl-arginine to citrulline as opposed to directly reversing 

arginine methylation. However, since PADI4 catalyzes deimination but not demethylation, 

it cannot strictly be considered a histone demethylase. LSD1 (Lysine specific demethylase 

1) was the founding member of demethylase enzymes that directly reverse histone H3K4 

or H3K9 modifications by an oxidative demethylation reaction in which flavin is a 

cofactor. Broadly, two major families of demethylases have been discovered: LSD1 and 

Jumonji C domain containing (JmjC domain) histone demethylases (JMJD2, JMJD3/UTX 
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and JARIDs). The specific amino acid residue and degree of methylation determines the 

demethylation enzyme (Table 1). LSD1 can only remove mono- and dimethyl lysine 

modifications whereas JmjC-domain-containing histone demethylases (JHDMs) can 

remove all three histone lysine-methylation states. These demethylases have been found to 

have potential oncogenic functions and involvement in other pathological processes 

(Hoffmann et al., 2012). 
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Name Synonyms Targets 

KDM1A LSD1, AOF2 H3K4me2/me1, H3K9me2/me1 

KDM1B LSD2, AOF1 H3K4me2/me1 

KDM2A FBXL11A, JHDM1A H3K36me2/me1 

KDM2B FBXL10B, JHDM1B H3K36me2/me1, H3K4me3 

KDM3A JMJD1A, JHDM2A H3K9me2/me1 

KDM3B JMJD1B, JHDM2B H3K9me2/me1 

KDM4A JMJD2A, JHDM3A H3K9me3/me2, H3K36me3/me2 

KDM4B JMJD2B H3K9me3/me2, H3K36me3/me2 

KDM4C JMJD2C, GASC1 H3K9me3/me2, H3K36me3/me2 

KDM4D JMJD2D H3K9me3/me2/me1, H3K36me3/me2 

KDM4E JMJD2E H3K9me3/me2 

KDM5A Jarid1A, RBP2 H3K4me3/me2 

KDM5B Jarid1B, PLU1 H3K4me3/me2 

KDM5C Jarid1C, SMCX H3K4me3/me2 

KDM5D Jarid1D, SMCY H3K4me3/me2 

KDM6A UTX, MGC141941 H3K27me3/me2 

KDM6B JMJD3, KIAA0346 H3K27me3/me2 

  PHF8, KIAA1111, ZNF422 H3K9me2/me1, H4K20me1 

KDM7 KIAA1718 H3K9me2/me1, H3K27me2/me1 

KDM8 JMJD5, FLJ13798 H3K36me2 

Table 1. List of demethylases and their targets.  Detailed list of different demethylases with their 

specific modification sites at different amino acid residue in histone proteins. (Taken from 

Hoffmann et al. 2012). 

1.3.3. Other epigenetic modifications in histone tails and core domains 

Histone phosphorylation is the addition of a phosphate group to the histone proteins. 

Phosphorylation of H2A(X) is an important histone modification that plays a major role in 

DNA damage response. Phosphorylation of serine 10 in histone H3 (H3S10P) has been 

shown to correlate with gene activation in mammalian cells and with the induction of 

transcription during heat-shock response in Drosophila. H2A phosphorylation has also 

long been correlated with mitotic chromosome condensation, and again serine 10 appears 

to play a key role. Histone H3 phosphorylation is also known to occur after activation of 

DNA-damage signalling pathways (Rossetto et al., 2012). Histone dephosphorylation, is 

the removal of phosphate groups from histone proteins by enzymes called phosphatases. 

Mammalian serine/threonine-specific protein phosphatases (PPs) are represented by eight 
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distinct prototypes: PP1, PP2A, PP2B, PP2C, PP4, PP5, PP6 and PP7 (Moorhead et al., 

2007; Swingle et al., 2009). Of these, PP1, PP2A and PP4 have all been identified as 

histone phosphatases: PP1 dephosphorylates H1, which is phosphorylated in a cell-cycle-

dependent manner (Paulson et al., 1996). Phospho-<#!+' =>-H2AX) is immediately 

dephosphorylated after DNA repair by PP2A and PP4 in mammals and yeasts (Chowdhury 

et al., 2005; Keogh et al., 2006). 

Histone ubiquitination is the addition of a small ubiquitin protein (76aa) to the histone 

proteins. Histone H2A was the first protein identified to be ubiquitinated (Goldknopf et al., 

1975). The ubiquitination site has been mapped to the highly conserved residue, Lys 119 

(Nickel and Davie, 1989). Around 5-15% of total H2A has been reported to be 

ubiquitinated in a variety of higher eukaryotic organisms (Robzyk et al., 2000). The 

majority of ubH2A is in monoubiquitinated form; however, polyubiquitinated H2A has 

also been detected in many tissues and cell types (Nickel et al., 1989). Deubiquitination is 

the removal of ubiquitin group from histones by ubiquitin specific peptidases known as 

deubiquitinating enzymes (DUBs). Several DUBs, including USP16, 2A-DUB, USP21, 

and BRCA1 associated protein 1 (BAP1) were identified as H2A-specific. Ubp8 and 

Ubp10 were identified as histone H2B DUBs in yeast (Blankenberg et al., 2001; Henry et 

al., 2003). In addition to H2A or H2B specific DUBs, several DUBs display dual 

specificity toward both H2Aub and H2Bub, such as USP3, USP12, and USP46. USP3 is 

required for cell cycle progression and genome stability, while USP12 and USP46 regulate 

Xenopus development (Joo et al., 2011; Nicassio et al., 2007). The Ubp8 homolog USP22 

is a subunit of coactivator acetyltransferase hSAGA complex. It is recruited to the 

promoters by activators to deubiquitinate H2A and H2B, and is required for transcription 

activation (Zhang et al., 2008; Zhao et al., 2008). Multiple histone DUBs were identified, 

suggesting that they may have redundant functions or act in a context-dependent manner. 

Although their redundancy was not extensively investigated, current literature supports the 

notion that these DUBs have context-dependent functions in various processes. Their 

functions may also be dictated by their expression patterns in different tissues and stages 

during development. 
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Histone post-translational modifications occur, not only in the N-terminal tail domains, but 

also in the core domains (Mersfelder and Parthun, 2006). It has been proposed that the 

function of PTMs in the globular domain has a direct structural impact on nucleosome 

dynamics and chromatin regulation whereas the functional importance of PTMs in histone 

tails is context dependent. For instance, a recent study has demonstrated that the mutation 

of histone H3K27 in Drosophila melanogaster reproduces the effect on gene expression of 

abolishing H3K27me3 activity, suggesting that it is functionally important (Pengelly et al., 

2013). On the contrary, cells with mutated histone H3K4 (a hallmark of active 

transcription) were viable and still could activate transcription of developmentally 

regulated genes suggesting limited functional relevance (Hödl and Basler, 2012). However, 

a recent quantitative modeling study confirmed that the neutralization of positive charges 

(like lysine acetylation) in the lateral surface of the chromatin could weaken the 

association of the histone proteins with DNA and thus could directly affect nucleosome 

dynamics and transcription (Fenley et al., 2010). Several other studies show that the 

lateral-surface PTMs may directly regulate the nucleosomal DNA accessibility to 

regulatory factors (e.g., H3K56ac), affect the mobility and stability of nucleosomes and, as 

a result, functionally contribute to transcription (e.g., H3K122ac) and other chromatin-

dependent processes (Tropberger and Schneider, 2013). 

1.4. Epigenetic readers 

Interpretation of the information conveyed in the epigenetic language or code requires a 

third class of proteins called epigenetic "readers". Readers typically provide a docking site 

to accommodate a modified residue, and determine the modification 

(acetylation/methylation) and degree (such as mono-, di-, or tri-methylation of lysine) 

(Yun et al., 2011). Various domains such as bromo, chromo, PHD, Tudor, MBT, BRCT, 

and PWWP that recognize and bind these histone modifications have been identified. 

These domains recognize and bind to the PTMs produced by the writers and erasers and 

effect changes in transcription, often through scaffolding the formation of high order 

transcriptional complexes. Many other chromatin-linked domains are now emerging, 

including the SAND, PHD, MYND and SANT domains (Bottomley, 2004). BET 

(bromodomain and extra-terminal) proteins have been shown to regulate the expression of 
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key oncogenes and anti-apoptotic proteins. The recent discovery of highly specific 

inhibitors for the BET family has emerged as promising in diverse therapeutic areas like 

inflammation, viral infection, and especially in oncology (Filippakopoulos and Knapp, 

2014). Recent studies have suggested that BET inhibitors may specifically modulate the 

disease-promoting genes expression without affecting the housekeeping genes. It has been 

shown that a BET inhibitor (I-BET858) selectively down-regulate genes associated with 

pathogenesis of Autism spectrum disorders (ASD) (Sullivan et al., 2015). 

Bromo and tandem PHD domains target acetylated lysines and thereby regulate 

transcription, repair, replication and chromosome condensation. PHD, chromo, WD40, 

Tudor, double/tandem Tudor, MBT, Ankyrin Repeats, zf-CW and PWWP domains target 

methylated lysines on H3 resulting in either activation or silencing of gene expression. 

Reader domains of phosphorylation have not been well studied; only two readers BRCT 

domain of MDC1 and 14-3-3 family have been identified for phosphorylated serine (PhS) 

in histones (Yun et al., 2011). 

1.5. Role of non-coding RNAs in epigenetics 

In addition to covalent modifications, several classes of small and long non-coding RNAs 

(ncRNAs) from intergenic or antisense transcription without protein-coding potential have 

been identified as key regulators of chromatin remodeling (Pauli et al., 2011). These 

ncRNAs contribute mechanistically to the establishment of chromatin structure and to the 

maintenance of epigenetic memory (Malecová and Morris, 2010). The ncRNAs can be 

broadly classified into two categories: i) infrastructural and ii) regulatory ncRNAs. 

Infrastructural ncRNAs are constitutively expressed and include rRNAs, tRNAs, snRNAs 

and snoRNAs (Kaikkonen et al., 2011). Regulatory ncRNAs can be classified into small 

and long ncRNAs. Small ncRNAs, which include miRNAs, siRNAs and piRNAs, have 

significant role in RNA degradation and translational repression. Their involvement has 

been shown in modifying chromatin and target gene expression or guide methylation via 

RNA interference (RNAi) and other pathways (Collins et al., 2011; Holoch and Moazed, 

2015). Long ncRNAs (lncRNAs) are typically polyadenalated and longer than 200nt have 

been shown to coordinate the access to or dissociation of regulatory proteins from 

835:?/270&' 5485@72' 835:?/270'?:17A45BC54?:14D45B' 2:' 546@D/24' 25/0B857927:0&' /01' 4E40' ' 70'
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the modulation of the senescent phenotype (Bischof and Martínez-Zamudio, 2015). One of 

the well-described examples that involve lncRNA is XIST RNA mediated X chromosome 

inactivation which has been elaborately discussed in Chapter 1.6. Recently, a novel class of 

promoter-associated RNAs (PARs) that help keep PcG complexes tethered to silenced 

promoters and allow them to be easily released upon gene activation, and enhancer RNAs 

(eRNAs) that help bring enhancers and promoters together through chromatin looping have 

been shown (Kaikkonen et al., 2011). Another study has identified the existence of stable 

nuclear dsRNAs (ndsRNAs) that escape processing and may interact with regulatory 

engines whose subset has been shown to be interacting with mitotic complex (Portal et al., 

2014). 

1.6. Role of epigenetic modifications in cancer 

As described earlier, regulation of chromatin compaction and DNA accessibility in spatio-

temporal manner through epigenetic signals ensures appropriate genomic responses across 

different developmental stages and tissue types. Given its significance in cell fate 

decisions, deregulation of epigenetic patterns can lead to propagation of diseased state, 

especially cancer. Few decades ago, it was suggested that epimutations can act as 1 of 

Knudson�s 2 hits (a hypothesis suggesting that both the copies of the tumor supressing 

genes must be affected for oncogenesis) required for tumorigenesis (Holliday, 1987). 

Similar to the frequent occurrence of DNA mutations in specific genes (e.g., TP53 or 

KRAS), high-frequency epimutations are also observed in specific genes (e.g., VHL or 

CDKNA) in several tumor types (Baylin and Jones, 2011). The interplay between genetics 

and epigenetics is also observed in cancer promotion (Choi and Lee, 2013). DNA 

methylation can generate mutational hotspots for genetic changes and cancer-specific 

mutations in genes that are directly involved in epigenome organization are observed in 

multiple tumor types (Baylin and Jones, 2011).  

Involvement of DNA methylation in cancer has been well studied. Cancer cells show 

genome-wide hypo-methylation and site-specific CpG island promoter hyper-methylation 

(Esteller, 2008). Furthermore, aberrant DNA hypo-methylation can also account for the 

activation of some proto-oncogenes and lead to loss of imprinting, as in the case of the 

IGF2 gene (encoding insulin-like growth factor-2) in Wilms's tumor (Ogawa et al., 1993). 
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However, the most recognized epigenetic disruption in human tumors is the CpG island 

promoter hypermethylation�associated silencing of tumor suppressor genes such as 

CDKN2A (cyclin-dependent kinase inhibitor 2A), MLH1 (mutL homolog-1), BRCA1 

(breast cancer�associated-1) and VHL (von Hippel-Lindau tumor suppressor), an 

observation that has been expanded through the study of the inactivation of microRNAs 

with growth-inhibitory features by epigenetic silencing (Lujambio et al., 2007; Saito et al., 

2006; Toyota et al., 2008). The disturbance of the DNA methylation landscape in 

transformed cells has been recently supported by the finding of somatic mutations in 

DNMT3A in acute myeloid leukemia (AML) (Ley et al., 2010). Tumor associated loss of 

5hmC in several cancers of lung, brain, breast, liver, kidney, prostate, intestine, uterus and 

melanoma has been observed. Loss of 5hmC in solid cancers is associated with strong 

reduction of Tet1 expression. In breast and liver cancers, significant reduction in the 

expression of Tet2 and Tet3 is also observed along with the reduction in Tet1 expression. 

Numerous loss-of-function mutations have been identified in Tet, Dnmt1 and Dnmt3a in 

several cancers (Jin et al., 2011).  

Disruption of normal patterns of covalent histone modifications is another hallmark of 

cancer and is observed during early tumorigenic process. One of the most characteristic 

examples is the overall reduction of the trimethylated H4K20 and monoacetylated H4K16, 

along with DNA hypomethylation, at repeat sequences in many primary tumors (Esteller, 

2007). Several lines of evidence implicated chromosomal translocations in HATs resulting 

in fusion proteins in malignancies, like fusions of MLL-CBP, MLL-p300 in MLL (mixed 

lineage leukemias) and similar fusions of CBP/p300 with MOZ in AML (acute myeloid 

leukemia. Further, AML1-ETO [t(8;21)(q22;q22)], the most frequent fusion protein in 

AMLs, requires p300-mediated site-specific acetylation to induce leukemogenesis (Di 

Cerbo and Schneider, 2013). 

While aberrant activity of histone modifying enzymes and histone modifications are 

implicated in tumorigenesis, the process itself may drive translocations and mutations 

adversely affecting these epigenetic factors (Sadikovic et al., 2008). Studies have shown 

selective silencing of tumor suppressor gene, p16 in a mouse model system developed 

cancer; thus indicating epigenome change alone can trigger cancer (Yu et al., 2014). Thus, 
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a complex relationship exists between epigenetic modifications and cancer; however, this 

also provides an ideal target for chemical intervention in cancers. Several inhibitors and 

modulators of histone deacetylase and methyl transferases have been successfully tested in 

cancers (Claude-Taupin et al., 2015; Falkenberg and Johnstone, 2014; Spiegel et al., 2012). 

Deeper understanding of the global patterns of epigenetic modifications and their 

corresponding changes in cancer can enable the understanding the role of different 

epigenetic factors and thus enabling the design of better treatment strategies. 

1.7. Epigenetic instability of inactive X chromosome in breast cancers 

As described earlier, there is increasing evidence to support the notion that epigenetic 

modifications accompany tumorigenesis. In theory, epigenetic changes that could lead to 

aberrant expression of oncogenes or inactivation of tumor suppressor genes can contribute 

to cancer progression (Sharma et al., 2010). The inactive X chromosome (also known as, 

Barr body) provides an outstanding example of an epigenetic nuclear landmark where 

chromosome-wide epigenetic silencing takes place. However, disappearance of the Barr 

body is frequently observed in cancer cells, particularly in the most aggressive tumors 

(Chaligné and Heard, 2014). As the X chromosome contains many potential tumour-

suppressor or cancer-promoting genes, epigenetic instability in inactive X chromosome has 

been associated with cancer (Pageau et al., 2007). 

X chromosome inactivation (XCI) is a dosage compensation method in mammalian 

genomes for a genetic imbalance coming from dimorphism between homogametic and 

heterogametic sexes where one X chromosome is inactivated (females have 2 X 

chromosomes as compared to 1 in males). In 1949, Barr and Bertram first identified a 

nuclear body within female cat neurons, but not in the corresponding male cells, 

subsequently named it as Barr body (Barr and Bertram 1949). This dense Barr body was 

later identified as X chromosome (Ohno and Hauschka 1960). Shortly thereafter, in 1961, 

Lyon first proposed �X inactivation hypothesis� that the Barr body X chromosome could be 

of paternal or maternal origin and that it was genetically inactive (Lyon 1961). This led to 

further work in the field of X chromosome inactivation research (Figure 6). 



29 
 

 

Figure 6. Major landmarks in random XCI research. (Taken from Augui et al., 2011). 

XIST, a 19-kb long ncRNA in human, transcribes from Xi (inactive X) only (Brown et al., 

1992; Hong et al., 2000). XCI proceeds through series of stages namely counting & choice, 

initiation, propagation and maintenance of silencing (Figure 7). �Counting� stage is to 

determine whether XCI is necessary for the cell where the number of X chromosomes and 

autosomes are counted. �Choice� stage is when one of the two X chromosomes (either 

imprinted or random) is chosen for inactivation while the other remains active. The process 

of counting and choice are overlapping and linked molecularly in the developmental stage 

by the X inactivation centre (Xic). The Xic contains several non-coding elements, the most 

important of which are XIST and TSIX. XIST RNA coats the selected Xi to silence but it 

alone cannot recapitulate all the roles of Xic. For example, TSIX, a XIST antisense 

transcript plays a key role in the choice of which chromosome will be inactivated and is a 

repressor of XIST gene and expressed from Xa. In addition, trans-interactions have been 

proposed to allow the cross-talk between two X chromosomes and likely to be involved in 

choice. Spreading of silencing is made sure by upregulation of TSIX in Xa but 

downregulation of TSIX and upregulation of XIST in the future Xi. Chromosome-wide 

silencing spreads from Xic to both sides of the chromosome. XIST is required for the 

maintenance of stable silencing as well, as it is required for the recruitment of other 

epigenetic factors related to silencing (Augui et al., 2011). 
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Figure 7. Schematic view of the kinetics of X-chromosome inactivation. Initiation of XCI is 

associated with expression of XIST RNA coating and loss of euchromatin marks (H3K4me2/3, 

H3K9ac and H4ac), followed by activation of the PRC proteins and the propagation of 

heterochromatin marks (H3K27me3, H3K9me2, H2Aub1 and H4K20me1). In maintenance phase, 

promoters of X-linked genes are methylated in DNA with the disappearance of PRC1 and PRC2. 

(Taken from Chaligné and Heard 2014). 

XIST is involved in triggering the inactivation by recruiting the epigenetic marks 

chromosome-wide like a regular silencing mechanism. X inactivation is an interesting and 

complex chromosome-wide silencing process which involves co-ordinated epigenetic 

regulation. Studies focussing on the early changes in chromatin states and structure during 

inactivation have been reported to assess the role of XIST and establishment of silence state 

in Xi. Loss of euchromatin associated histone modifications like H3K9ac, H3K4me2 and 

H3K4me3 is the earliest change occurring, followed by global H4 hypoacetylation and 

passive histone-loss during replication. In addition to these early chromatin changes soon 

after XIST coating, loss of transcription associated factors like RNA polymerase II and 

nascent transcripts were observed. After one or two cycles, several new histone 

modifications are recruited on the XIST-coated chromosome including H3K27me3, 

H4K20me1, H3K9me2 and H2Ak119ub1, which are well known repression marks 

(Chaligné and Heard, 2014). 
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While the majority of the X-linked genes in Xi are transcriptionally repressed during XCI, 

a few genes have been shown to escape the inactivation and express from both the 

chromosomes bi-allelically, termed as �normal escapees�. There are two types of escapees 

where one lies within the pseudo autosomal region (PAR) and the other lies outside the 

PAR. All the escapees from PAR and few from outside PAR have exact homologs on the 

Y chromosome and show equal expression in both the sexes. However, the expression of 

the other escapees which does not have any obvious Y-linked homologs can vary 

considerably depending on the tissue or species. Many of these escapees lie in the short 

arm of chromosome which gives raise to the hypothesis that the barrier effect of 

centromeric heterochromatin could be the reason for incomplete silencing. Also these 

escapees are controlled to not spread as the neighbouring regions are insulated by CTCF 

(Chaligné and Heard, 2014). 

In earlier studies, Barr and Moore described that Barr body is frequently lost in breast 

cancer which became the evidence of linkage between cancer and Xi reactivation (Barr and 

Moore 1957). This led to the hypothesis of Xi reactivation being a common event in some 

cancers. More recent studies suggested the association of Barr body disappearance and 

over expression of X-linked genes linking the potential role of XCI in tumorigenesis 

(Ohhata and Wutz, 2013). In some cases, duplication of Xa was also observed in tumors 

lacking an active chromosome (Chaligné et al., 2015). Two types of mechanisms could 

explain the loss of Barr body. Epigenetic instability leading to de-condensation of 

heterochromatin and reactivation of X-linked genes is one possible mechanism but has no 

evidence to support yet. In another scenario, XIST RNA mislocalisation and sporadic Xi 

reactivation has been observed giving support to random or specific reactivation of certain 

genes of Xi in cancer cells (Chaligné and Heard, 2014). 

There is a growing therapeutic interest in knowing whether epigenetic instability of 

inactive X chromosome can actually contribute to cancer progression. However, the 

epigenetic status of inactive X in cancer is less explored (Chaligné et al., 2015). 

Comparison of allele specific transcriptomic and epigenetic profiling between normal and 

breast cancer cells could reveal the regions or genes that are epigenetically disrupted from 

XCI. Novel methods of analyses, such as genetic (SNP6 and Exome-seq), epigenetic 



32 
 

(ChIP-seq) and transcriptomic (nascent RNA SNP6 and mRNA-seq) could be used to 

understand the allelic and epigenetic status of the disrupted Barr body in breast cancer 

cells. 

1.8. Heritable gene imprinting and disorders 

Another mechanism, similar to that of X chromosome inactivation, is known as genomic 

imprinting, where certain genes are epigenetically marked or imprinted to be silenced in 

one allele, dependent on the parent-of-origin (Joyce and Schofield, 1998). As opposed to 

chromosome-wide silencing in X chromosome, imprinted genes are selectively silenced in 

one allele and they are typically found in clusters of 3-12 genes that are spread over 20-

3,700Kb of DNA (Lee and Bartolomei, 2013). The selective silencing of imprinted genes 

is regulated with the life cycle of the organism (Murphy and Jirtle, 2003). Around ~5-10% 

of genes expression in the mammalian genome is affected together by XCI and imprinting. 

Because of parental-origin effects, genetic or epigenetic abnormalities can lead to dosage 

disequilibrium which in turn can cause human disease syndromes (Lee and Bartolomei, 

2013). This dynamic process is complex and it involves various stages namely erasure, 

establishment, maintenance and implementation of the imprint markings (Murphy and 

Jirtle, 2003). The process begins with the complete erasing of DNA methylation on starting 

with the paternal pronucleus within the zygote, while the maternal genome gets 

demethylated with the subsequent cell divisions. However, imprinted methylation marks 

present on both the genomes are maintained despite the global demethylation. After 

complete eradication of methylation, parental-specific methylation is re-established during 

gametogenesis, in the PGC (primordial germ cells) of the foetus. Remethylation occurs in 

the sperm postnatally. In the oocytes, the remethylation process is driven by DNMT3 

family of protein, DNMT3L and the methyltransferases 3a and 3b. These proteins later 

also help in recruiting histone deacteylases, altogether these complexes are involved in 

gene silencing. Parental-specific methylation has to be maintained and carried forward 

throughout many rounds of DNA replication during growth and development which is 

carried out by the actions of maintenance methyl-transferases such as DNMT1 (Murphy 

and Jirtle, 2003). 
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Imprinting and maintenance is a complex epigenetic mechanism, susceptible to 

dysregulation at multiple levels. Any dysregulation or altered dosage could result in 

diverse developmental disorders. As imprinted genes are involved in growth-related 

pathways, its role has been shown in cancers like Beckwith-Wiedemann syndrome, Wilm�s 

tumor, hepatoblastomas, rhabdomyosarcoma and adrenal carcinoma (Joyce and Schofield, 

1998). Similarly, reduced or loss of expression in apoptosis inducing gene ZAC has been 

reported in breast cancer and other primary tumors (Bilanges et al., 1999). A few hundred 

genes have been identified as imprinted genes (Figure 8).  A database 

(http://www.geneimprint.com/) is also available that provides the list of known and 

predicted imprinted genes list. Imprinted regions of the genome are associated with several 

developmental disorders and diseases including cancer due to mutations or impaired 

regulation leading to alterations in dosage. Similar to XCI, epigenetic and allelic status 

profiling of known imprinted genes could reveal the role of imprinting loss in breast cancer 

cells. 

 



34 
 

 

Figure 8. Genome-wide distribution of identified imprinted genes. Imprinted genes are 

highlighted based on their confirmation status and parent-of-origin. On the basis of confirmation 

status: Filled triangles - proved; Unfilled triangles - predicted to be imprinted with high confidence. 

On the basis of parent-of-origin: Red downward triangles -Maternally expressed; Blue upward 

triangles - Paternally expressed; Black dots - b-allelically expressed. Light blue bars highlight a 3-

Mb region centered on the linkage regions. (Taken from Luedi et al. 2007).  
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 Chapter 2. Rise of NGS driven studies 
in epigenetics   
Epigenetics is a complex and multi-layered process with potentially profound implications 

in cell fate decisions including differentiation, cancer, etc. Dissecting how different 

machineries define functionality of chromatin requires an understanding of their 

distribution across sequence features such as promoters, gene bodies, intergenic regions, 

etc. Microarray, a widely used hybridization based technology requires a priori knowledge 

of the genome or the genomic regions to be studied (Hurd and Nelson, 2009). Hence, 

robust genome-wide studies are required to understand epigenetic mechanism and its role 

in different cell processes. Next Generation Sequencing (NGS) has become the common 

medium for global analysis of epigenetic modifications. Large scale NGS based methods 

are being used to study epigenetic modifications, and changes occurring in different cell 

types and disease states. This chapter deals with the recent advances in NGS for epigenetic 

studies. 

2.1. A brief history of next generation sequencing technology 

The first major foray in DNA sequencing was the Human Genome Project, a 13-year 

project which was fully completed in 2003 (ConsortiumInternational, 2004). However, 

even before human genome several other bacterial, viral and fungal genomes were 

sequenced (Goffeau et al., 1996; Sanger et al., 1977; The Arabidopsis Genome Initiative, 

2000; The C. elegans Sequencing Consortium, 1998). Such whole genome de novo 

sequencing assembly of the genome of a particular organism may lead to a better 

understanding at the genomic level and may assist in predicting genes, protein coding 

regions, and pathways (Lee et al., 2013). This led to the sequencing of genomes from 

different organisms and their subsequent characterisation from a functional and 

evolutionary standpoint. For organisms whose reference genomes are available, 

resequencing approach is used to better understand its functional aspects. With the basic 

assumption of existing reference genome as a generic representation of an organism, 

studies were carried out to understand the changes/differences in an individual genome to 

identify the inherited deleterious mutations responsible for diseases and disorders. 1000 
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genome sequencing and several population related studies were executed to provide a 

comprehensive resource on the human genetic variation (Durbin et al., 2010). Whole 

genome/exome resequencing studies focussed on genetic level changes such as SNVs, 

translocations, copy number variations that can potentially influence the gene functionality. 

However, decades of research on the regulatory mechanisms that control the gene 

expression expanded the aim of genomic studies to understand these mechanisms as well. 

This resulted in the use of sequencing in epigenetic modifications (DNA methylation and 

histone modifications) and transcription factors analysis, thus their effects on expression 

analysis (RNA) to understand the complex mechanism of cellular processes giving rise to 

the field of functional genomics. Thus, the sequencing based studies can be differentiated 

into de novo sequencing to assemble genomes and resequencing to study functional 

genomics. However, sequencing strategies vary between de novo and resequencing. For 

instance, de novo sequencing studies require longer reads to resolve assembly related 

issues in repeat regions. On the other hand, resequencing studies require high throughput to 

increase the confidence in analysis, but can manage with shorter reads as reference genome 

is available to map the sequences. Commercial establishments involved in sequencing have 

also started to focus on developing approaches to address these two distinct requirements 

separately. One set of platforms (like PacBio and Oxford Nanopore) focus on increasing 

the length of reads to improve the genome assembly whereas another set of platforms (like 

Illumina and Ion) focus on increasing the throughput with shorter reads only. An overview 

of landmarks in NGS driven studies is summarised in Figure 9. 
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Figure 9.  Timeline of landmarks in NGS and bioinformatics. 

Advancements in NGS technology and pairing with other technologies led to the 

development of wide range of applications to target or identify specific regions of interest. 

For example, coupling microarray as capture technique with sequencing gave rise to 

exome/target sequencing; thus avoiding the need for sequencing whole genome to identify 
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mutations, translocations, copy number variations of genes. In 2007, coupling Chromatin 

ImmunoPrecipitation (ChIP) experiment with sequencing led to the development of ChIP-

seq for the identification and characterization of elements in protein-DNA interactions 

involved in gene regulation (Barski et al., 2007; Johnson et al., 2007). In ChIP-seq assays, 

specific antibodies are used to target particular DNA-associated proteins (transcription 

factors, cofactors, histone modifications, etc.) and the pulled down fragments are 

sequenced. It is followed by an enrichment analysis to identify targeted protein binding 

regions. Similarly, other approaches like BS-Seq/MeDIP-Seq and ATAC-Seq/FAIRE-Seq 

were developed to identify genome-wide methylated DNA and open/accessible chromatin 

regions respectively (Buenrostro et al., 2013; Cokus et al., 2008; Giresi et al., 2007; Jacinto 

et al., 2008). In parallel, first genome-wide transcriptome profiling using NGS was 

developed to identify the transcribed regions and its level (Lister et al., 2008; Mortazavi et 

al., 2008; Nagalakshmi et al., 2008). A list of different applications available and their 

basic overview is summarised below (Figure 10). 
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Figure 10. An overview of different NGS experiments workflow. NGS experiments consist of 

four phases: sample collection (purple), template generation (blue), sequencing reactions and 

detection (green), and data analysis (orange). Different techniques and methods have been 

developed to study the various aspects of chromatin architecture and their influence on gene 

expression. Each technique can have broad applications, depending on the source and nature of the 

input material, and are described in the glossary. (Taken from Rizzo and Buck 2012). 
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There has been constant exploration and innovation in sequencing technology to make it 

more robust and accurate. There are different sequencing platforms such as Illumina, 

SOLiD, Ion, Helicos, and PacBio are available. Each platform has its own advantages and 

this depends on the experimental setup and different parameters including but not limited 

to, need for short or long reads, throughput, error rate and cost effectiveness. Table 2 lists 

different parameters for existing platforms.  

Platform 
Illumina 

MiSeq 

Ion Torrent 

PGM 

PacBio 

RS 

Illumin

a 

GAIIx 

Illumin

a 

HiSeq 

2000 

Illumina 

HiSeq 

2500 

Ion 

Proton 

Sequence 
yield per run 

0.3-15Gb 
20-FGHIJ'=,.KL; 
0.1-0.#HGb (316); 
1Gb (318) 

.GGHIJ 30Gb 600Gb 
900Gb-
1Tb 

10Gb 

Run Time 5-55hrs 2 hrs 2 hrs .GH1/MB ..H1/MB 6 days 2-4hrs 

Reported 
Accuracy 

NHO,G Q20 < Q10 NHO,G NHO,G NHO,G Q20 

Error Rate GPQGHR .PS.HR .#PQTHR GPSTHR GP#THR NA NA 

Read length <300b ~200b 
Average 
1500b 

<150b <150b <150b ~200b 

Paired reads Yes Yes No Yes Yes Yes Yes 

Insert size 700b 250b 10Kb 700b 700b 700b NA 
Typical 
DNA 
requirements 

50-
1000ng 

100-1000ng U.HV6 
50-
.GGGH06 

50-
.GGGH06 

NA NA 

Number of 
reads 

25M 
0.6M (314); 
3M (316); 
5.5M (318) 

50K 
320-

640M 
3 
billion 

4 billion 60-80M 

Table 2. Technical specifications of different platforms. Illumina platform tends to outperform 

the rest of the platforms in terms of sequencing yield and it is widely used in most of the studies. 

Ion Torrent PGM and PacBio RS generates relatively lesser yield, however the run time is very 

short, hence it can be used for quick sequencing for finishing (filling gaps and resolving conflicts) 

genome assembly. While error rate and quality in other platforms are in lower level, PacBio RS is 

heavily affected by error rates and low sequencing quality. However, PacBio RS II is claimed to 

have lower error rate with new SMRT technology. (Compiled from the corresponding company 

website specifications and Quail et al. 2012). 
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One of the most widely used and cost-effective platforms is Illumina, given its high 

throughput with relatively low error rates (Quail et al. 2012). A brief summary of Illumina 

sequencing is described in Figure 11, as the next chapter (chapter 3) mainly focuses on 

Illumina data. Recently, Oxford technologies developed nanopore based single-molecule 

sequencing approach where read length could reach up to 30Kbs. However, it is still in the 

testing phase and has not been made commercially available yet. We have also participated 

in the testing phase and tried hands-on Oxford Nanopore MinION sequencing (Figure 12). 

We are unable to share the results due to the existing non-disclosure agreement with 

Oxford Nanopore technologies. 
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Figure 11. Illumina sequencing chemistry. (A) The DNA sample of interest is sheared to 

appropriate size (average length 200-700bp) either using sonication or enzyme based digestion 

depending on the study need. (B) The ends of the fragment are polished, and two Illumina 

sequencing adapters are ligated to the fragments. Ligated fragments are amplified using specified 

set of PCR cycles. (C) Illumina uses �bridge amplification� reaction in the flow cell for polymerase-

based extension. (D) Priming occurs as the free hanging end of a ligated fragment "bridges" to a 

complementary oligo on the surface. The enzyme incorporates nucleotides to build double-stranded 
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(Figure. 11 continued) bridges on the solid-phase substrate. (E) Repeated denaturation and 

extension results in localized amplification of single molecules in millions of unique locations 

called �clusters� across the flow cell surface. (F) The first cycle of sequencing consists first of the 

incorporation of a single fluorescent nucleotide, followed by high resolution imaging of the entire 

flow cell. These images represent the data collected for the first base. This cycle is repeated, one 

base at a time to a specified sequencing length, generating a series of images each representing a 

single base extension at a specific cluster. Base calls are derived with an algorithm that identifies 

the emission color over time (Compiled from Illumina documentation). 

Figure 12. Oxford Nanopore MinION sequencing machine during our testing phase.  

2.2. Chromatin immunoprecipitation (ChIP) sequencing for exploring 

genome function 

ChIP-seq is widely used in most of the epigenomic studies. A typical ChIP-seq and related 

sequencing approach will follow four main steps. (i) cross-linking of the cells using 

formaldehyde, (ii) shearing of the chromatin using sonication or enzyme based digestion, 

(iii) pull-down (ChIP) of the DNA fragments that are bound to the protein of interest, and 

(iv) sequencing the pulled down DNA fragments (Figure 13) (Landt and Marinov, 2012). 

Sequenced reads are aligned to a reference genome and the identified peaks are annotated 

in a genomic context. 
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Figure 13. An overview of ChIP-seq methodology. The ChIP process enriches the cross-linked 

proteins or modified nucleosomes of interest using an antibody specific to the protein or the histone 

modification. Purified DNA can be sequenced on any of the next-generation platforms. (Adapted 

from Landt and Marinov 2012). 

ChIP-seq studies can result in linear analysis of the associating protein binding regions 

with nearby genes. The distance (range from 1-20Kb in literature) that is considered for 

such annotation is very arbitrary and ambiguous. However, given the knowledge of the 

complex hierarchical organization of chromatin, increasing evidence suggests that distant 

chromatin regions interact spatially. Chromatin confirmation technologies have identified 

interactions between gene promoters and distal regulatory elements where chromatin loops 

bring them together (Göndör and Ohlsson, 2009). Hence, associating peaks in enhancer or 

promoter regions to nearby genes is not always true. In such case, long range interaction 

applications such as HiC and ChIA-PET data would help to identify the interaction 

between enhancer/promoter regions and genes. For instance, a peak in an enhancer region 
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can be compared with its interactome annotations to determine whether it is interacting 

with a nearby gene or with a distant region/gene that can potentially be regulated.  

2.3. Caveats in NGS driven studies 

Though ChIP-seq provides high resolution and sensitivity to results, it also poses 

significant challenges stemming from both the sequencing technology and the 

experimental setup. First, sequencing technology related biases are common to all 

applications. Sequencing errors, GC-bias and PCR related bias are the important biases in 

sequencing related technologies (Ramachandran et al., 2015). While there are qualities 

attributed to each sequenced base to evaluate its confidence, sequencing errors per se do 

not have much impact in enrichment analysis as long as it does not affect the alignment 

accuracy. But to increase the accuracy of the alignment, quality related trimming/filtering 

is recommended. Data from Illumina has been reported to have sequence specific errors 

following certain motif regions due to lagging strand dephasing. These sequence-specific 

errors are consistent in all reads and appear like true variations  (Nakamura et al., 2011). 

Existing variation callers provide strand bias indicator to filter out such sequence specific 

errors which are represented in reads coming from one of the strand only (DePristo et al., 

2011). GC rich regions and PCR related bias result in uneven coverage and over-

representation of sequences resulting in false enrichments. GC bias is well documented in 

Illumina sequencing and GC content normalization is recommended to avoid false 

positives (Cheung et al., 2011). Over-representation of sequences by PCR due to low 

library complexity is very crucial in enrichment analysis. For example, when there are 

accumulation of reads in particular region due GC-bias or clonal reads, a regular peak 

caller can identify it as true enrichment event. However, this accumulation of reads may 

not follow a typical peak pattern; some may appear like one resulting in false positive 

results. Most of the existing tools have a systematic option to exclude such clonal reads 

(PCR induced over-amplified reads) in ChIP-seq analysis. The rationale behind the need 

for over amplification is that current ChIP-seq method requires abundant starting material 

in the range of 1-20 million cells per IP. Studies with less number of cells available invest 

in more PCR cycles to attain the required amount. To avoid such PCR mediated 
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amplification bias, several non-PCR amplification methods have been developed like 

LinDA (Shankaranarayanan et al., 2011). 

Secondly, inherent experimental related biases in ChIP due to antibody efficacy pose 

another challenge in the accuracy of the analysis. Differences in specificity of antibody 

from different commercial suppliers and batches can bring differences in its performances. 

Teytelman et al., showed that around 238 euchromatic loci (termed as �hyper-ChIPable�) 

displays high enrichment irrespective of target in Saccharomyces cerevisiae. Such 

enrichments were not a consequence of sequencing related artifacts as confirmed by ChIP-

qPCR. This localization of unrelated proteins, including the entire silencing complex to the 

most highly transcribed genes was attributed to a technical issue with immunoprecipitation 

(Teytelman et al., 2013). Apart from these technology and experiment related biases, 

informatics related biases could also bias the results. Effects of such biases and possible 

solutions are discussed further in the next section. 
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 Chapter 3. A detailed bioinformatics 
pipeline for ChIP-seq studies 
The rise of next-generation sequencing technologies requires more robust and efficient 

bioinformatics support. There has been an exponential increase in the data obtained from 

these high-throughput sequencing technologies to provide higher read coverage in the 

analysis. Consequently, the need for sophisticated multi-sample analysis to compare 

different samples like normal vs tumor, different cell-lines has increased to understand the 

differences in system. Apart from this demand for novel approaches, there is a scope for 

improving the existing methods by introducing proper quality control and efficient 

algorithms to handle the variety of biases in the data. 

As Illumina is the most widely used sequencing platform, analyses and quality aspects 

discussed here will be specific to Illumina. The output from the next-generation 

sequencing technologies depend on the interplay of complex chemistry, optical sensors and 

hardware. Quality of the data and analysis pipeline complement each other. A robust and 

efficient pipeline is essential to bring out the best results by avoiding artifacts and biases. 

This chapter is structured in the order of ChIP-seq workflow as follows, 

  Sequencing quality control to identify bias and filter/trim artifactual reads 

  Mapping/Aligning reads to the genome to identify the genomic location of each 

read 

  Experimental quality control to evaluate the quality of experiment such as ChIP, 

capture, RNA extraction. 

  Interpretation of results using integrative and comparative analyses 

3.1. Sequencing quality control 

To identify sequencing related errors and biases, almost all of the sequencing platforms 

provide quality of confidence for each base. A Phred quality score is used to represent the 

quality of each base. Phred quality score �Q� is -10log(P) where �P� is probability value of 

the base called being wrong. P-value of 0.01 would result in quality score of 20 which 
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means that there is a 1 in 100 chance of that base being miscalled. To give simplified 

representation, quality values are encoded as ASCII values like �A� for 65, �B� for 67, etc., 

(Cock et al., 2010). A sequencing quality control and statistics check at every analysis step 

is essential to filter false-positives and bring more accurate results. 

There are multiple factors which can influence sequencing quality like library efficacy, 

fluidics, optics and assay setup (Dai et al., 2010). To avoid bias or artifacts in the analysis, 

it is important to remove the sequences that contain incorrect bases from the raw data. 

Using base quality in the aligners has shown to improve the accuracy of the resulting 

alignment. For example, in one study around 50% of false positive alignments were 

eliminated upon using base quality in generating alignments (Li and Homer, 2010; Smith 

et al., 2008). Hence, most of the aligners have incorporated quality score for matches and 

mismatches. 

3.1.1. Base quality 

Illumina�s sequencing chemistry, as described in Figure 11, is cycle based where at each 

cycle, a base of all fragments in the library is sequenced. At the first cycle, the first bases 

of all fragments are sequenced, second base on second cycle and henceforth. Hence, it is 

expected to have particular (or set of) cycle to have more low quality bases. However, it 

has been well documented that Illumina sequences tend to have fall in quality towards the 

read tails mostly due to reagents scarcity  (Yang et al., 2013). These biases can be easily 

observed in a �per base average quality� plots (Figure 14). Average quality of each read can 

show the number of reads with more possible erroneous bases (Figure 15). It is important 

to perform QC and trim or filter the low quality reads to get maximum reliable yield. There 

are several freely available tools for quality control and processing of raw data. FASTQC 

and FASTX Toolkit are widely used for quality control and processing respectively. 
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Figure 14. Boxplot illustrating quality distribution for samples with high (top) and poor 

(bottom) quality. This plot provides overall quality distribution per base from all the reads 

according to the read length. Background is categorized in three colors: Green (high quality); 

orange (medium quality); red (poor quality). Blue line in the middle represents the mean quality 

and red line in each box (yellow) represents median quality. Bottom plot shows data with poor 

quality where towards end of the reads, there is a rapid fall of quality. (Adapted from FastQC 

example reports). 
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Figure 15. Distribution of average quality per read for samples with high (top) and poor 

(bottom) quality. This plot provides overall distribution of average quality per read where average 

of base qualities from each read to illustrate the number of reads with high and poor quality. 

Bottom plot shows data with poor quality where there is an increase in the middle showing handful 

of reads with low quality bases in general. (Adapted from FastQC example reports). 
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3.1.2. Adapter contamination 

The length of Illumina sequencing ranges from 36-250bp. When sequencing DNA or RNA 

fragments that are shorter than the sequencing length, especially in small RNA sequencing, 

the machines continues to read the 3� adapter sequence. Consequently, the output reads 

will have adapter sequences at the read tails which will render them unmappable. Though 

adapter contamination has become less pronounced with recent advancements, it is still 

observed in datasets especially in smallRNA sequencing approach. It can occur due to over 

sonication or poor size selection resulting in fragments lesser than sequencing length. 

There are two possibilities for when such contamination can occur. First, when adapters 

ligate together to form an adapter dimer. Second, when the fragment length is shorter than 

sequencing length, sequencing will continue reading the adapter sequences (Patel and Jain, 

2012). Adapter dimers are insignificant as they will not be aligned to the genome. 

However, adapter contamination towards the 3� end of the reads can affects the alignment 

efficacy in cases where the short sequences at 5� end side of the read matches with the 

genome. If a high percentage of adapter contamination is observed in QC reports (Figure 

16), it is recommended to trim those adapter sequences and recover the maximum usable 

reads. While alignment or string search based approaches are used for single-end reads, an 

overlap based approach between pairs have been developed to identify adapter 

contaminated reads perfectly for paired-end Illumina data (Bolger et al., 2014). 
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Figure 16. Percentage of reads with adapter contamination with its positional distribution. 

Reads can have adapter contamination at different lengths depending on the fragment lengths that 

are sequenced. This plot illustrates the percentage of reads that have adapter contamination and at 

which position it starts. (Taken from FastQC example reports). 

3.2. Mapping of sequenced reads to a reference genome 

Mapping (also called aligning) short reads to the reference genome is an essential step in 

any re-sequencing analysis. Next generation sequencing generates millions of short reads 

or pairs depending on the application and throughput required. Data generated by these 

technologies has grown exponentially but this increase has come at the cost of bottlenecks 

such as chimeric reads that arise as a result of overlapping fluorescent spots. These 

bottlenecks give rise to inaccurate mappings which in turn can increase false-positives in 

the final output. So far many algorithms have been developed and application specific 

aligners also are available for mapping NGS reads (Shang et al., 2014). Given the high 

throughput and larger genome sizes, fast alignment algorithms build auxiliary data 
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structures called indices, for the reference genome or read sequences or sometimes both (Li 

and Homer, 2010). While BWA and Bowtie are the most widely used tools, plenty of 

improvements have been made in these tools and new tools have also been developed. All 

of the existing aligners can be classified based on two features: gapped/ungapped, and 

local/global alignments. The only difference between gapped and ungapped alignment is 

on allowing gaps for insertion/deletion in alignment. It has been shown that gapped 

alignment increases the sensitivity by a small percentage but does not show a significant 

reduction in the false alignments. However, gapped alignment is necessary for identifying 

indels in data and failure to use gapped alignment may generate false positive SNP calls 

(Li and Homer, 2010). The local and global alignment approach has major algorithmic 

difference. With local alignment, when full perfect match is not found, aligners will clip 

the read�s end base by base until a match is found. This enables the tools to exclude the 

erroneous part of the reads like adapters and low quality ends. On the other hand, global 

alignment expects to map reads end-to-end with few mismatches allowed in the seed 

region. When there is a perfect match, both algorithms map them correctly. However, 

when there are a few errors or contamination in the reads, end-to-end alignment would fail 

to map them. It has been shown that the local alignment shows less false positive 

alignments without pre-processing (trim/filter) of the reads. With pre-processing, both 

approach resulted in similar amount of false positives (Yun and Yun, 2014). Choice of the 

aligner depends on its feature, capability, analysis requirement, and accuracy; not based on 

popularity or wide usage (Shang et al., 2014). For instance, read split aligner (e.g., TopHat) 

has to be used for transcriptome for reads in splicing regions. The following table 

summarizes the features available in different aligners (Table 3). 
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Alignment 

tool 
Algorithm 

Short 

or long 

reads 

Gapped 

alignment 

Paired

-end 

Quality 

scores 

used? 

Local alignment 

Bfast 
Hashing 
ref 

Short Yes Yes No Yes 

Bowtie2 FM-Index Both Yes Yes Yes Yes 

BWA FM-Index Both Yes Yes 

No (soft 
clip LQ 

read 
tails) 

Yes 
(BWA-mem) 

Mosaik 
Hashing 
ref 

Both Yes Yes No 
Partial (only to 
fix paired-end 

alignment) 

Novoalign 
Hashing 
ref 

Short Yes Yes Yes Yes (read tail) 

Shrimp2 
Hashing 
ref 

Both Yes Yes Yes 
Partial 

(only soft clip LQ 
read tails) 

SOAP2 FM-Index Both No Yes Yes 
Partial 

(only soft clip LQ 
read tails) 

 

Table 3. Comparison of different NGS reads aligners. LQ represents low quality. Most of the 

tools have adapted local alignment option given the reads can have low quality tails or adapter 

contamination. 

3.2.1. Unique reads 

As described earlier, clonal reads do not represent the biological reality, but instead an 

over-representation of same fragments multiple times leading to a bias in the signal counts 

(Meyer and Liu, 2014). As a PCR step is essential for sequencing adapters ligation, few 

percentage of clonal reads are expected. However, the percentage of clonal reads can vary 

drastically among samples and they could bias the analysis. Hence it is highly 

recommended to remove duplicate reads by keeping only one copy of the duplicate reads 

using tools like SAMTOOLS (Li et al., 2009) or PICARD (Wysoker et al., 2013) 

Existing methods for the identification of clonal reads are less efficient. Clonal reads can 

be identified by the sequence similarity among reads or post alignment based on the 
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positional similarity. A summary plot from FASTQC will give an approximate estimation 

of clonal reads in data (Figure 17). Clonal reads removal approach prior to the alignment 

depends on the sequence similarity among the reads but sequencing errors can make them 

appear as unique reads. Hence, identifying clonal reads based on the reads with same 

alignment position is recommended. Nonetheless, the current approach to identify clonal 

reads for single-end is less efficient. In single-end (most used method in ChIP-seq), only 

first few base pairs of the fragment is sequenced. It has been reported that sonication of 

fragments are biased to sequence specific breaks predominantly in CpG regions (Poptsova 

et al., 2014). Thus identifying clonal reads based on one end of the fragment could result in 

false positive results. Though a more robust and sophisticated approach is needed, use of 

paired-end sequencing where information from both the ends of fragments is available, 

could make clonal read identification more efficient.  
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Figure 17. Percentage of unique reads in comparison with total sequences. In this analysis, 

only first 100,000 sequences are considered to cut down memory requirements. Each sequence is 

backtracked in the whole file to give a representative count of the overall duplication level. The 

blue line takes the full sequence set and shows how its duplication levels are distributed. In the red 

plot the sequences are de-duplicated and the proportions shown are the proportions of the 

deduplicated set which come from different duplication levels in the original data. (Taken from 

FastQC example reports). 

3.2.2. Uniquely aligned reads 

One of the main biases seen in alignment is mapping of reads to multiple regions. As most 

of the enrichment-based analyses handle shorter reads, uniqueness of each alignment is 

necessary. A comparison by Heng Li has demonstrated that use of paired-end data has 

reduced reads aligning to multiple positions as both the reads in a pair has to align in a 

given fragment size (Figure 18) (Li, 2013). Similarly, longer reads also reduce substantial 

amount of false positive reads due to increase in the uniqueness of the reads (Derrien et al., 
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2012). Given the variable mappability and complexity of targeted genomic regions, reads 

aligned with low score or to multiple positions should be excluded from the analysis. Most 

of the existing alignment tools provide a mapping score to evaluate the accuracy of the 

alignments based on the base quality scores of the read, uniqueness of the match and 

mismatching bases in the alignment. Mapping quality is the probability value of that 

particular alignment being wrong. In that context, mapping quality can be used to filter out 

low quality or ambiguous alignments (Li et al., 2008). 
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Figure 18. Comparison of different aligners in single-end (top) and paired-end (bottom) data 

illustrating the false positive rate in both types of data. X-axis represents the ratio of reads that 

are falsely aligned under different mapping quality cut-off and Y-axis represents the percentage of 

reads mapped. Bottom panel shows the paired-end data whereas top panel shows the same data 

aligned as single-end data. It is evident that there is a significant increase in alignment rate under 

different mapping quality cut-off. (Taken from Li 2013). 
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3.3. Experimental quality control post alignment 

Experimental QC is yet another crucial process to evaluate the quality of the 

data/experiment altogether. As it is unique to different types of application, different 

approaches and tools are available to specific analysis. In ChIP-seq, due to the divergence 

in antibody selectivity/sensitivity and user-chosen sequencing depth, different samples of 

the same target can exhibit variable distribution of enrichment events (an illustration is 

shown in Figure 19). For ChIP-seq, ENCODE has recommended fraction of reads in peaks 

(FRiP) and irreproducible discovery rate (IDR) approach to evaluate the quality of ChIP-

seq (Landt and Marinov, 2012). In FRiP, fraction of reads that fall into peak regions 

identified by a peak-calling tool is calculated, and this metric is used to evaluate the quality 

of immunoprecipitation. In IDR, the consistency between significant peaks between 

replicates is used a metric to evaluate the reproducibility of results, which is in turn used to 

evaluate the quality of data. Though FRiP and IDR are useful metrics, their analysis 

depends on the annotation from peak callers. Hence, NGS-QC (detailed discussion in 

Chapter 5.1), a robust sampling based approach has been developed to evaluate the quality 

of enrichment data (Mendoza-Parra et al. 2013).  

 

Figure 19. Comparison of ERa peaks across different samples. Diagram shows the number of 

ERa peaks from three MFC7 datasets (Carroll et al. 2006; Lin et al. 2007; Welboren et al. 2009) 

and one H3996 dataset (Ceschin et al., 2011) that are common across samples. There was 

significant difference between three MCF7 samples of same target highlighting the disparities 

among datasets for the same target. (Taken from Ceschin et al. 2011). 
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To verify the RNA integrity of mRNA-seq data, �ngsplot� can be used to verify the 

enrichment in gene body of all genes. As RNA is sensitive to degradation by post-mortem 

processes and inadequate sample handling or storage, RNA integrity number (RIN > 7) has 

been suggested as a systematic RNA integrity control prior to sequencing (Pérez-Novo et 

al., 2005; Thompson et al., 2007). However, it is recommended to verify the enrichment 

pattern of the RNA to confirm that it is not degraded, as the enrichment would be skewed 

towards the 3� end (Figure 20). 

 

Figure 20. Illustration of skewed enrichment in RNA degraded transcriptome data. An 

average intensity and heatmap plots over gene-body region highlights a sample�s (green color) 

enrichment  bias towards 3� end due to RNA degradation. (Taken from ngsplot example reports). 

Most of the recent aligners report the alignments in SAM/BAM format which is widely 

accepted by many downstream tools (Li et al., 2009). While SAM format provides very 

detailed alignment information, few of those are important in identifying and filtering 

faulty or ambiguous alignments. They are, 

1. Mapping quality � 5th column, Phred score of alignment being wrong 

2. CIGAR value � 6th column, matches/mismatches and gaps/clipping details 

3. Paired-end alignment � 8th and 9th column, to identify paired-end alignments not 

falling within range of given average fragment size 

4. First best and second best alignment score tags � extra tags to identify first and 

second best alignment scores; but these scores are specific to aligner and algorithm 
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Qualimap is a resourceful tool that provides different plots and criteria to evaluate the 

quality of alignments (Garcia-Alcalde et al., 2012). BAMTOOLS can be used to filter 

alignments based on different criteria and tags provided by the aligners (Barnett et al., 

2011). 

3.4. Pipeline used in our studies 

FASTQC provides a detailed report with illustrative plots to assess the sequencing quality 

in different aspects. All of the data used in our study are subjected to sequencing quality 

control using FASTQC prior to analysis. The main focus is on base quality, clonal reads 

and contamination statistics to assess the quality of data. It helps to identify data with poor 

quality or contamination such that it can be excluded from analysis to avoid bias and can 

be resequenced. However, with the introduction of incorporating base quality in aligners 

and addition of local alignment feature, trimming/filtering of the reads are left to the 

performance of aligners. In that regard, BWA-mem aligner is used for our studies as it can 

perform local alignment with gapping feature, thus increasing the alignment rate and 

accuracy. As mentioned earlier in Figure 18, BWA has been shown to have less false 

positive alignments compared to others. BWA also provides effective mapping qualities 

for each read that are used in few following tools, especially in variation calling. Further, 

Picard �MarkDuplicates� can be used to filter clonal reads effectively than SAMTOOLS 

rmdup, as it considers clipping and gaps in the alignment.  BAMTOOLS is used to filter 

alignments with low mapping quality (alignments with MQ <10) and to generate alignment 

statistics. As different aligners use different models to report alignment score, we used our 

own custom scripts to identify first and second best alignment score tag to filter out reads 

aligning at multiple positions. If both the first and second best alignment scores are equal 

for the reads, then those reads are considered as ambiguous alignments and removed from 

the file. NGS-QC is used to evaluate the ChIP-seq data quality for the reasons discussed in 

Chapter 3.3. For multi-sample or multi-dimensional based analysis, we evaluate the quality 

prior to comparative/integrative analysis to avoid biases arising from poor quality datasets. 
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3.5. Interpretation of cumulated read profiles 

3.5.1. Peak detection to identify protein binding regions 

Peak calling is the most essential step in ChIP-seq data analysis. It can be defined as the 

identification of genomic coordinates with accumulation of reads that are indicative of 

protein binding (Wilbanks and Facciotti, 2010). There are four major steps in the peak 

calling algorithm namely (i) signal profiling, (ii) background modeling, (iii) peak 

identification, and (iv) significance analysis. 

Signal profiling can be defined as building read count intensities in a sliding window of 

fixed width across the genome, replacing the tag count at each site with the summed value 

within the window centered at the site. Consecutive windows exceeding a threshold value 

are merged. Most of the ChIP-sequencing is single end where only one end of the fragment 

is sequenced. But in general, the average fragment length after chromatin immuno-

precipitation pull down will be around 150-300bp. Most of the ChIP-seq based tools 

extend the reads to their fragment length such that their combined density will infer a 

single peak where the summit corresponds closely to the binding site. However, usage of 

paired-end data can simplify such arbitrary estimation of fragment length and extension 

thus providing relatively accurate binding sites. Also, alignment accuracy will be increased 

with paired-end information (Wilbanks and Facciotti, 2010). A new method to identify 

DNA-protein binding regions at near single nucleotide accuracy has been developed. ChIP-

exo, a combination of ChIP-seq and lambda exonuclease digestion (exo) is used to trim the 

longer DNA fragments on one strand to within a few base pair of the crosslinking point. 

Thus, it provides higher resolution to identify exact binding regions than regular ChIP-seq 

(Rhee and Pugh, 2012). 

Accurate identification of real peaks by distinguishing the enrichment events from 

background signals is still challenging. The background model consists of an assumed 

statistical noise distribution or a set of assumptions that guide the use of control data to 

filter out certain types of false positives in the treatment data. Poisson distribution based 

approach is generally to model the background noises. In Poisson distribution, total 
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number of reads aligned is assumed to be evenly spread in the genome based on which a 

threshold is set to distinguish peak from background (Pepke et al., 2009). 

With the signal profile and background modeling, enrichment events that exceed the 

predetermined threshold in the sliding window are identified as candidate peaks (Pepke et 

al., 2009). Subsequently, a control input data (WCE or IgG) is used to exclude technical 

artifactual enrichment events that are seen in input data as well (Szalkowski and Schmid 

2011). However, while control datasets used are generally optimal, a few WCE controls 

(for example, GSM788366 and GSM768313) exhibit enrichment-like artifactual patterns 

mostly due to GC or alignment related bias  leading to true negative annotation in 

enrichment sites identification. 

Most of the peak callers provide a P-value (probability value of peak identified being false) 

or FDR (false discovery rate) value to describe the quality of identified peaks. Different 

peak callers follow different statistical models to calculate P-value or FDR; hence there is 

no defined standard cut-off to filter false positive peaks. The number of tags or fold 

enrichment can also be used to rank peaks for its confidence, though not statistical 

significance (Pepke et al., 2009). 

There is no single generic and universally applicable peak caller for any ChIP-seq data. It 

has to be chosen based on the nature and pattern of the enrichment. MACS is the most 

widely used and is very efficient to identify short and sharp peaks with ~80% true positive 

peaks at ~0.1 FDR (Rye et al., 2011). But for histone modifications with broad peaks or 

island-like enrichments, HOMER or SICER are more efficient (Zhang et al., 2014). 

Recently, a pattern/shape learning peak caller has been developed called MeDiChISeq. It is 

a regression-based approach, which--by following a learning process--defines a 

representative binding pattern from the investigated ChIP-seq dataset. Using this model 

MeDiChISeq identifies significant genome-wide patterns of chromatin-bound factors or 

chromatin modification (Mendoza-Parra et al. 2013). To gain a better result, combination 

of different peak callers and select peaks based on its consistency has been recommended 

by a study (Houlès et al., 2015).  
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Peak calling is followed by association of peaks to a gene by. This is usually done by 

associating peaks with its nearby genes in a given distance ranging around 5-10Kb 

depending on the target factor. Tools like HOMER and GREAT are being used for such 

annotation analysis. But it has been shown that transcription factors can have a long range 

interaction in both cis and trans manner (Göndör and Ohlsson, 2009). This raises concern 

over previously described linear annotation approach where these dynamic non-linear 

interactions are completely ignored. There is a scope for the development of such non-

linear annotation approaches. One solution would be using interactome data like those 

obtained from HiC or ChIA-PET as a reference for long range interacting factors or 

regions. Along with transcriptome data and interactome data, a correlative analysis could 

reveal corresponding genes for enrichment events. Currently, an approach is being 

developed in Dr. Hinrich Gronemeyer�s lab to create a database of long range interacting 

regions using interactome data such as HiC and ChIA-PET. 

3.5.2. Multi-dimensional dataset integration 

3.5.2.1. Differential enrichment analysis across samples 

Differential analysis of ChIP-seq data involves multiple samples to identify differential 

regulation of genes and is crucial towards identifying cell-specific differences in 

regulation. Unfortunately, as mentioned earlier, technical differences in the samples arising 

mainly due to variation in the sequencing depth makes the data directly incomparable. 

Several methods such as ChIPnorm, ChIPDiff, MAnorm and diffBind have been proposed 

for the normalization of multiple samples for comparative studies (Anders and Huber, 

2010; Nair et al., 2012; Shao et al., 2012; Xu et al., 2008). A spike-in based experimental 

quantitative ChIP-seq method has been developed to address sequencing depth variation. 

An exogenous reference is mixed in the library and used as an internal control, followed by 

linear scaling based on total number of reads from the external reference control 

(Bonhoure et al., 2014; Orlando et al., 2014). A detailed comparison and the need for new 

bioinformatic tools to support such analyses are discussed elaborately in the results section 

and in the attached Epimetheus manuscript. 
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3.5.2.2. Genome-wide chromatin state prediction 

Recent advancements in NGS have facilitated multi-profile comparisons, in which 

different ChIP-seqs for histone modifications from one or more samples are compared to 

assess the different chromatin states within a sample or across several sample. Moreover, 

chromatin profiling of cells during differentiation and tumorigenesis could give a better 

understanding of the role of epigenetics in cell fate decisions. ChromHMM is one such tool 

that focuses on the chromatin state annotation (Ernst and Kellis, 2012). Each chromatin 

mark�s enrichment event is binarized into presence (as �1�) or absence (as �0�) across non-

overlapping windows of a genome. A hidden Markov model is applied to different 

combinations of chromatin marks to predict the chromatin state for each window. GATE is 

another tool used for chromatin annotation but in a time-course context to understand the 

dynamics of chromatin state changes over time (Yu et al. 2013). Similar to ChromHMM, 

GATE also binarizes enrichment events of each chromatin mark across   non-overlapping 

windows of a genome. Additionally, it clusters the genomic windows, such that each 

cluster shares a similar combination of epigenetic modifications as well as their temporal 

changes. While such approaches are complex per se, both these approaches binarize local 

read count intensities to annotate genomic regions as enriched (as �1�) or not (as �0�) and 

neglect the intensity differences between different local enrichment events. To further 

enhance enrichment analysis in a spatio-temporal context the development of a tool, which 

considers such intensity differences would be very useful. 

3.5.3. Integrative and systems biology analysis 

While there are several tools and approaches are available for specific analyses, there are 

only very few tools for the integrative analysis of epigenomic and other �omics� data, from 

a single sample, from multiple samples of dynamic epigenome studies or from a set of 

different epigenome samples which are compared with data sets, such as transcription 

factor cistromes or chromatin interactomes. Correlating epigenome and the corresponding 

transcriptome data is important for cross validation. Recently EPITRANS (Cho et al., 

2013), a database that integrates epigenomic and transcriptomic data from publicly 

available datasets has been developed. For transcriptomic data, expression values are 

calculated by RPKM (Reads Per Kilobase of transcript per Million mapped reads) method 
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in promoter (2.1Kb) and gene body separately. Similarly, RPKM values are calculated for 

epigenomic data as well. Both RPKM values are transformed into Z-scores, and 

subsequently correlation coefficient value is determined. This coefficient is used to identify 

genes that are differentially expressed and epigenetically modified. While this is a greatly 

useful resource for comparative analysis, it is limited to public datasets and particularly to 

large consortium datasets. Following this, an integrative analysis tool, Epigenomix was 

developed to integrate transcriptomic and epigenomic data with quantile normalization 

approach (Klein et al., 2014). This tool uses expression values obtained from transcript 

abundance estimation tools and calculates read count intensities (RCI) for the promoter 

region (3Kb) from epigenomic data. These values are transformed into Z-scores. A positive 

Z-Score corresponds to equally directed differences and a negative score to unequally 

directed differences between transcriptomic and epigenomic data. But this approach is 

limited to promoter regions only and read counts of ChIP-seq data are carried out for the 

whole promoter (3Kb) region which neglects enrichment pattern and signal-noise ratio 

differences. For large scale studies involving genomic, epigenomic and transcriptomic 

data, a robust and multilayer analysis approach is a challenging task from bioinformatics 

perspective. A pipeline has been developed for epigenetic status of inactive X chromosome 

study which involves genomic, epigenomic and transcriptomic data (Chaligné et al., 2015). 

Data from these different applications was integrated and cross-complemented in the 

analysis (Figure 21). 

A similar pipeline is being developed to perform the analysis of imprinted autosomal 

genes. While the previous study focused only on the X chromosome, imprinted genes 

analysis focuses on the allele-specificity of the genes which have been annotated as 

imprinted in literature collected from �geneimprint� database. 
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using an Input-Output hidden Markov model. DREM learns to establish a dynamic gene 

regulatory network by identifying bifurcation points; these are  time points at which a 

group of co-expressed genes diverges (Ernst et al., 2008; Schulz et al., 2012). These 

bifurcation points are annotated with the transcription factors controlling the split, thus 

leading to a dynamic model (Figure 22). While DREM provides a collection of curated TF-

gene-association database to annotate the graph, another comprehensive collection, called 

CellNet has been released recently (Cahan et al., 2014; Kim and Schöler, 2014). CellNet 

has constructed cell-specific gene regulatory networks (GRNs) from 3,419 publicly 

available gene expression profiles. This annotation base can be used as a reference to build 

the transcription regulatory database. 

 

Figure 22. Dynamic regulatory map of yeast response to amino acid starvation. DREM builds 

dynamic regulatory map from condition-specific binding experiments and time-series expression 

data. Nodes in the graph represent hidden states and the area of it is proportional to the standard 

deviation of the genes associated with that node. Significant TFs based on split score is highlighted 

in ranking order. (Adapted from Ernst et al. 2007). 
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 Chapter 4. Scope and specific goals of 
this thesis 
Currently, there is a focus on the development of new bioinformatic approaches and tools 

for different types of epigenomics and ChIP-seq analysis. There is an increase in the 

interest for multi-dimensional analysis to compare different samples. However, the absence 

of quality control system for ChIP-seq is a major weakness as the poor quality data can 

bias such comparative or multi-dimensional analysis. Hence, we wanted to focus on the 

development of novel tool to evaluate the quality of datasets. Further, we wanted to focus 

on the addressing the technical differences that are inherent in the ChIP-seq technology by 

in silico tools to normalize the data. This will allow any further downstream multi-profile 

and integrative analysis to be carried out without such biases. In that context, I aimed to 

develop novel tools to address such issues, and use those tools to analyse epigenetic status 

of X chromosome inactivation (refer chapter 1.7). 

4.1. Development of tools to evaluate the data quality and normalize 

technical differences in multi-sample analysis 

I focussed on two important technical aspects of ChIP-seq analyses. First, to develop an in 

silico based approach to assess the genome-wide quality of a given enrichment-related 

dataset. Given the divergence in antibody efficacy and user-chosen sequencing depth, 

different samples of the same target can exhibit variable distribution of enrichment events 

(refer Figure 19 for an illustration). We wanted to develop a tool to evaluate the quality of 

the ChIP-seq and enrichment related datasets. Second, we wanted to develop a 

normalization tool to correct inherent sequencing depth variation between samples to 

facilitate fair comparative analysis. As most of the researchers have limited bioinformatics 

experience and/or access to bioinformatics support, we designed these tools to be highly 

user-friendly, that also biologists with limited computer knowledge can use them 

efficiently. 
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4.2. Integrative analysis for epigenomic and transcriptomic status of the Xi 

in breast cancer 

X inactivation (refer chapter 1.7) is an outstanding example of chromosome-wide 

epigenetic regulation involving the developmental silencing of approximately one 

thousand genes. Recent studies have demonstrated the sporadic reactivation of few genes 

that escape XCI in normal cells (Chaligné and Heard, 2014). Studies have shown the 

disappearance of Barr body (inactive X)  in breast cancer cells suggesting that X 

chromosome inactivation is compromised in those breast cancer cells (Pageau et al., 2007). 

However, epigenetic status of inactive X in breast cancers and the extent to which 

epigenetic instability might account for disappearance of Barr body in some cases is less 

explored. We wanted to identify the cancer specific escapee genes and study the epigenetic 

status of chromosome X in breast cancer cell-lines. An integrative analysis of genetic, 

epigenetic and transcriptomic data is needed to identify the allele-specific expression of the 

X-linked genes and its corresponding epigenetic status. However, the integration and 

comprehension of these large scale genomic data need novel bioinformatic tools and 

approaches, which are developed as a part of my thesis.   
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 Chapter 5. Results and Discussions 
For each study in this chapter, its corresponding manuscript is attached which describes the 

methods and results elaborately. A brief summary of methodology and results in the 

manuscript are discussed for each study below. 

5.1. NGS-QC � A quality control system for ChIP sequencing profiles 

As described earlier, s comparison or an integration of different datasets requires a specific 

evaluation of the quality as there can be variability in their profile pattern and technical 

divergences like the use of different antibodies, sequencing depth and/or 

immunoprecipitation (IP) efficiency, among many other parameters. For this reason, we 

have developed NGS-QC Generator, a bioinformatics-based QC system that uses the raw 

alignment file to (i) infer a set of global QC indicators that reveal the comparability and 

quality of different NGS data sets; (ii) provide local QC indicators to evaluate the 

robustness of enrichment events in a given genomic region; (iii) provide guidelines for the 

optimal sequencing depth for a given target, and (iv) to have quantitative means of 

comparing different antibodies and antibody batches for ChIP-seq and related antibody-

driven studies. 

The main rationale behind this method is that beyond a sequencing depth threshold, a 

ChIP-seq profile changes only in amplitude but not in pattern (Mendoza-Parra et al. 2013). 

We evaluate this trend by randomly sub-sampling reads (90, 70 and 50% of reads) to see 

the fluctuations from expected change. Read count intensity (RCI) profiles for original and 

sub-sampled reads are constructed by counting overlapping reads in continuous non-

overlapping windows of the genome. By comparing recovered RCI (recRCI) with original 

(-$' =:(-$L&' (-$' 17B945B7:0' =W(-$L' 7B' 8/D8@D/241' X:5' 4/83' J70P' Y340' JM' 4E/D@/2706' 234'

X5/827:0' :X' J70B' 17B9D/M706' /' WRCI within a given interval, a quantitative assessment 

provides the quality indicators. The detailed statistical model is elaborately discussed in the 

attached manuscript. 

The NGS-QC tool is made publicly available to scientific community in a dedicated galaxy 

platform (http://galaxy.ngs-qc.org). This galaxy platform has been deployed on our own 
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powerful servers to accommodate many users simultaneously computationally and in 

storage. To provide more sophisticated user-friendly experience to users, we have 

outsourced the design of web portal to a private company called Dreamsoft technologies 

from India. Since its deployment, a dedicated team has provided automatic pipeline to 

download the newly released data and process them to keep database updated. Also, 

several other new modules have been added to the web portal by them. 

5.1.1. NGS-QC generator 

NGS-QC generator is the dedicated galaxy platform where a user can upload their data to 

assess the quality and can be compared with the public data in the database. A sample QC 

report for a public dataset (GSM811204) is shown below for reference. For each sample, 

NGS-QC Generator generates two output files, (i) a quality control report with global QC 

indicators and (ii) local QC indicators as BED or WIG files. In the current version, quality 

control report describes the following information, (i) dataset information namely total 

mapped reads, the fraction of unique reads (i.e. without the clonal sequences), average read 

length, genome assembly and target molecule name if provided (refer �datasets 

information� table in the attached report) (ii) QC parameters section provide details of 

window size, number of analysis replicates, whether background noise and clonal reads are 

removed, as these parameters can vary for each report depending on the user�s input (refer 

�QC parameters� table in the attached report) and (iii) QC results with the global quality 

indicators and global QC certification (refer �results� table and �global QC certification� 

stamp in the attached report). The result panel is complemented with a scatter-plot 

displaying the comparison of original read counts per bin to the recovered counts after 

multiple random subsampling (90%, 70% and 50% subsampled reads). Furthermore, a 

global QC certification score (from "AAA" to "DDD" for designating from high to low 

quality datasets) is provided such that the quality of the analysed dataset is expressed in a 

rather intuitive manner without the need of getting deep into the assessed quality scores 

(methodology behind assigning such global QC certification score is elaborately discussed 

in the attached manuscript). Six illustrative examples of genomic regions display the 

enrichment patterns complemented by the local QC indicators as heatmap display for the 

evaluation of robustness of enrichments. When the target molecule identity is provided, a 
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scatter-plot displays the comparison of quality assessment with other public entries 

available in the NGS-QC database. For example, in the attached report for H3K4me3 

profile, three scatter plots the position of input sample quality among all the publicly 

available H3K4me3 profiles for each dispersion levels. Such comparison is very useful to 

verify whether the given profile quality is consistent with the public data. 
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Effect of random sampling on the profile. This figure illustrates the

influence of the random sampling subsets (90%: black; 70%: blue;

50%: red) on the recovered read count Intensity (recRCI) per bin. The

dark-green vertical line represents the background threshold (11 RCI).

Data Quality Report 2015-10-05 11:46

File name: GSM811204_H3K4me3_e2_1M_rep1.bed
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Dataset informations

Total reads 24,800,042

Unique reads (URs) 18,052,251 (72.79%)

Reads's size mean (bp) 49.0

Genome assembly hg19 (H. sapiens)

Target molecule H3K4me3

QC parameters

Sampling percentages 50, 70, 90

Windows size (bp) 500

Replicate number 1/1

Referenced chromosomes 51

Background subtraction On

Clonal reads removal Off

Results

Considered reads* 24,800,042

QC values

denQC (50%) / simQC

2.5% 0.190 / 14.579

5% 0.999 / 4.789

10% 3.010 / 2.136

* Reads taken into account to compute the QC indicators.

Read count intensity profile illustrated in the context of its corresponding local QC indicators (heatmap). On the upper figure, genes are

represented by green-colored rectangles. Overlapping genes are represented by a deeper green and TSS are displayed as a small dark bar.

The lower figure is a zoom of the center of the first figure.

Copyright © 2015 ngs-qc.org Database v150310.1.21526 contact@ngs-qc.org
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Comparison of the assessed quality grade with those computed for

publicly available datasets currently hosted in the NGS-QC database that

correspond to the same antibody target.

Copyright © 2015 ngs-qc.org Database v150310.1.21526 contact@ngs-qc.org
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5.1.2. NGS-QC Database 

In order to facilitate the comparative analysis with public data and to maintain a portal of 

quality control as reference, we have developed the NGS-QC database by applying NGS-

QC approach on a large number of publicly available datasets. Users can retrieve the 

collection of quality indicators computed for a variety of publicly available datasets in the 

dedicated website and download QC reports for every dataset. The whole database is built 

on MySQL and hosted in an independent user-friendly website, which is linked to our 

laboratory servers (http://www.ngs-qc.org). Regular updates and the availability of 

additional tools for data analysis are announced on this surface. The query panel (Figure 

23A) allows the user to make specific requests through multiple options like the model 

organism, target molecule, quality grades and also a public identifier from GEO database 

(GSM or GSE) or from ENCODE consortium (wgEncode). Importantly, the panel is highly 

user-friendly and multi-modal, such that each of these query options can be used in 

combinations. The violin plot table below query panel displays the quality scores 

distributions (QC-Stamp; dRCI<10%) assessed over the whole database content (currently 

>26,000 datasets), as well as the QC-stamp intervals (from A to D) (Figure 23B). 

Furthermore, the quality scores distribution per target molecule is displayed such that the 

users might have a global overview of their associated quality scores. 
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Figure 23. Display illustrating the database page showing the search panel (top) and violin 

plots table (bottom). (A) The sophisticated query panel allows users to request through multiple 

options in a combinatorial manner to yield refined results. For example, one can search for 

H3K4me3 profiles from different organisms that have specific quality attributes. (B) The violin 

plot below query panel provides an overall view of quality distribution (QC-Database) and for each 

target factors individually (e.g., AR � Androgen receptor) that are in the database. 

On a given search, results page (Figure 24) provides the following information, 

1. Boxplot table (Figure 24A) displaying the QC scores distribution for each of the 

targets included in the request. 

2. Scatter-plot (Figure 24B) displaying the quality scores (QC-stamp) for each 

dataset in the context of their total mapped reads (TMRs). 

3. Refinement panel (Figure 24C left panel) providing further query options to be 

applied over the initial request to refine the results to specific interest. 

4. Results table (Figure 24C right panel) displaying a variety of information for each 

dataset retrieved. 
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Figure 24. Display illustrating the results obtained after performing a query in the NGS-QC 

database. A query of H3K27ac profiles from Homo sapiens was made. (A) Scatter-plot displaying 

the QC-indicators relative to the total mapped reads. (B) Violin plots displaying the different target 

molecule retrieved on the query. (C) Results table provide several additional information for each 

dataset (right panel) and the refinement panel (left panel). 
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5.1.3. Discussion 

Over time, there has been a significant evolution in sequencing quality and throughput of 

data from sequencing machines. However, the experimental quality and throughput is 

specific to samples and targets. For example, there are around 15 NR2C2 transcription 

factor profiles in NGS-QC database and all of them exhibit DDD (except two with CCD 

and CDD) suggesting that either N2C2 enrichments require higher sequencing depth or the 

antibody specificity for that protein is very poor. Despite the growth in sequencing 

technology, low quality datasets are still being generated mostly due to multiplexing, 

sample scarcity, antibody performance, etc. For example, there are 16 H3K4me3 profiles 

with more than 25 million reads that have CCC quality. This suggests that data with high 

throughput could also have low quality. We even observed that the input data (control 

DNA; no antibody use) which exhibits enrichment like patterns could heavily bias the 

analysis. Hence, assessment to evaluate the quality of the enrichment prior to analysis is 

imperative to avoid any such biases. NGS-QC tool serves as a robust tool to evaluate the 

experimental/enrichment quality of datasets. 

A large collection of quality assessment for publicly available datasets serves as an 

excellent repository to compare ones data quality to that of public data. This would help 

the users to evaluate the performance of a particular antibody by comparing with public 

data for the same antibody. It also provides a guideline to choose an optimal sequencing 

depth based on public data. An informative violin plot in the database page provides a 

detailed summary of quality trend of different targets. NGS-QC database provides an easy 

way to quickly reuse the vastly available public data. For instance, a comparison of local 

QC regions (robust enrichments) of a target, across different samples or systems, could 

reveal samples or systems that exhibit similar enrichment events. More importantly, 

several studies have reutilised the public data to avoid repeating experiments and further 

bioinformatic studies to use public data for their application. Hence, NGS-QC database can 

act as a reference for publicly available enrichment related datasets to select or compare 

the public data, improving the quality of analyses, reducing bias and to avoid duplication 

of experiments, thus saving the resources for other goals.   
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ABSTRACT

The absence of a quality control (QC) system is a

major weakness for the comparative analysis of

genome-wide profiles generated by next-generation

sequencing (NGS). This concerns particularly

genome binding/occupancy profiling assays like

chromatin immunoprecipitation (ChIP-seq) but also

related enrichment-based studies like methylated

DNA immunoprecipitation/methylated DNA binding

domain sequencing, global run on sequencing or

RNA-seq. Importantly, QC assessment may signifi-

cantly improve multidimensional comparisons that

have great promise for extracting information from

combinatorial analyses of the global profiles estab-

lished for chromatin modifications, the bindings

of epigenetic and chromatin-modifying enzymes/

machineries, RNA polymerases and transcription

factors and total, nascent or ribosome-bound

RNAs. Here we present an approach that associates

global and local QC indicators to ChIP-seq data sets

as well as to a variety of enrichment-based studies

by NGS. This QC system was used to certify >5600

publicly available data sets, hosted in a database for

data mining and comparative QC analyses.

INTRODUCTION

The recent development of high-throughput sequencing
technologies has led to a rapid expansion of studies
analyzing the genome-wide patterns of gene regulatory
events and features, such as epigenetic DNA and histone
modification, and the binding patterns of transcription
factors and their co-regulatory complexes, (posttransla-
tionally) modified chromatin-associated factors and
chromatin- or transcription-modulatory multi-subunit
machineries (1–9). Moreover, the mapping of transcrip-
tomes by RNA-seq (10–13), global nascent RNA

sequencing or global run on sequencing (GRO-seq) (14)
or ribosome-associated (‘ribosome footprinting’) RNAs
(15), and technologies revealing chromatin conformation
are also based on massive parallel sequencing (16–18).
A particular challenge is the comparison of multidimen-
sional profiles for several factors, their posttranslational
modifications and/or chromatin marks. Indeed, such
studies are not easily comparable, as they are performed
in different settings by different individuals using differ-
ent cells and antibodies. Moreover, profiles are estab-
lished at different platforms with highly variable
sequencing depths. As a result, studies performed even
with the same cells in different laboratories can differ
extensively (3). This presents serious limitations for the
interpretation of such global comparative studies and
reveals the need for a quantifiable system for assessing
the quality and comparability of next-generation
sequencing (NGS)-derived profiles and moreover the ro-
bustness of local features, such as peaks at particular loci,
which are derived from the mapping of read-count
intensities (RCIs).
A large number of factors can influence the quality

of NGS-based profilings. Particularly in the case of
immunoprecipitation-based approaches [e.g. chromatin
immunoprecipitation (ChIP-seq), methylated DNA
immunoprecipitation (19,20), GRO-seq (21)], experimental
parameters like cross-linking efficiencies in different cell
types or tissues, shearing or digestion of chromatin or the
selectivity and affinity of an antibody (batch) can vary sub-
stantially between experiments and different experimenters
and will ultimately impact on the overall quality of the final
readout. Currently, quality assessment is performed by
visual profile inspection of defined chromatin regions and
complemented by peak caller predictions. In addition, a
number of analytical methods have been described [for
a recent summary of the methodologies used by the
ENCODE consortium see (22)]. However, none of them
has been shown to be applicable to the large variety of
ChIP-seq and enrichment-related NGS profiling assays.
For instance, methods like fraction of mapped reads
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retrieved into peak regions (FRiP) (23) or irreproducibility
discovery rate (IDR) (24) require prior use of peak calling
algorithms for evaluation and are therefore dependent on
peak-calling performance of a given tool with the user-
defined parameters. Consequently, they cannot be easily
used for multi-profile comparisons when different peak
callers are required (e.g. transcription factors (TFs) and
histone modifications with ‘broad’ profiles).
In addition to the performance of the immunopre-

cipitation/enrichment assays, the rapid technological
progress provided NGS platforms with largely different
sequencing capacities ranging from tens of millions (e.g.
Illumina Genome analyzer v1, hereafter referred to as
‘GA1’) to >3 billion (HiSeq2000) reads per flow cell.
As a consequence, the public databases hosting NGS-
generated data sets are populated with ChIP-seq profiles
presenting a large variety in sequencing depth.
Importantly, previous studies have demonstrated that by
increasing the sequencing depth, the number of discovered
binding sites increases accordingly. Intuitively, it is
expected that the number of sequenced reads required to
discover all binding events is directly related to their total
number and to their binding pattern (i.e. ‘broad’ regions
covering large parts of a genome will require more reads
to be properly identified than ‘sharp’ patterns with few
target sites). When evaluating the quality of NGS-based
profiling, it is therefore important to assess if a given
ChIP-seq profile is performed under optimal sequencing
conditions, including the minimal sequencing depth
required to discover most of the relevant binding events
of a given factor.
For all the above reasons, we have developed a bio-

informatics-based quality control (QC) system that uses
raw NGS data sets to (i) infer a set of global QC indicators
(QCis), which reveal the comparability of different
enriched-NGS data sets, (ii) provide local QCis to judge
the robustness of cumulative read counts (‘peaks or
islands’) in a particular region, (iii) provide guidelines
for the choice of the optimal sequencing depth for a
given target and, finally, (iv) to have quantitative means
of comparing different antibodies and antibody batches
for ChIP-seq and related antibody-driven studies. In
addition, we have established a QC indicator database
that will be expanded to cover virtually all publicly avail-
able enrichment-related NGS profiling assays. Thus, users
can compare the quality indicators computed by the
NGS-QCi Generator for a given ChIP-seq experiment
with the quality indicators for published data sets
present in the QC indicator database. This information
will guide users toward optimization of the ChIP-seq
process, if the QC is lower than that achieved previously
by others and/or with other antibodies. Moreover, this QC
system will be useful for antibody development and certi-
fication. We discuss the simplicity and versatility of the
present QC method and database in view of currently
existing QC assessment procedures and guidelines. The
NGS-QC Database of QC indicators for publicly available
profiles and the NGS-QC Generator tool are freely
accessible through a customized Galaxy instance at
http://igbmc.fr/Gronemeyer_NGS_QC.

MATERIALS AND METHODS

Data sets

Publicly available data sets were downloaded from GEO
(25). When available, aligned files (either in BED or BAM
format) were used; otherwise sequence data sets, available
through the short read archive database, were first aligned
to the corresponding reference genome using Bowtie2
under standard alignment options (26).

Assessment of the inherent robustness of ChIP-seq profiles

Based on the rationale that beyond a sequencing depth
threshold a ChIP-seq profile changes only in amplitude
but not in pattern, we evaluated this property by monitor-
ing the changes of its RCIs after read-subsampling.
For this, aligned reads were randomly sampled at three
distinct densities (90, 70 and 50%; referred to as s90, s70
and s50 subsets, respectively). To avoid bias, random
sampling was performed without replacement; each separ-
ately sampled density subset was generated from the
original read data set. RCI profiles were constructed by
counting the overlaps within a defined window (‘bin’).
With the aim of having no more than one binding event
per bin, it is currently fixed to 500 bp. An empirical evalu-
ation of the influence of this parameter on the assessment
of the quality indicators confirmed our initial choice
(Supplementary Figure S1d).

Reconstructed profiles from randomly sampled subsets
are then compared with that constructed from the initial
total mapped reads (TMRs) by computing the recovered
RCI (recRCI) per bin after sampling as follows:

recRCI ¼ ð
samRCI

oRCI
Þ � 100

Where samRCI is the RCI/bin retrieved after sampling
and oRCI is that found in the original profile. Under the
working hypothesis that, as a consequence of random
sampling, recRCI is directly proportional to the
sampling density, the divergence from the expected RCI
behavior is measured as follows:

@RCI ¼ samd� recRCI

where samd corresponds to the random sampling density;
i.e. 90, 70 and 50% for s90, s70 and s50, respectively.
Importantly, the RCI dispersion or dRCI is inversely pro-
portional to the original RCI (Supplementary Figure S1C)
and it has been empirically observed to present a direct
correlation with the quality of ChIP-seq profiles
(Supplementary Figure S2). Thus, for providing a quanti-
tative assessment of the changes of RCI dispersion in a
given data set, we have evaluated the fraction of bins dis-
playing a dRCI within in a given interval, which has been
defined as the global density QC indicator ‘denQCi’. This
global indicator—evaluated in conditions where only a
half of the initial sequenced reads are available (s50)—is
systematically used in this study to measure the degree
of robustness of the evaluated profile to the read-
subsampling treatment (i.e. high denQCi corresponds to
low RCI dispersion). In addition, the changes in robust-
ness on subsequent read subsampling has been evaluated
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by comparing the denQCi for the sampling closest to the
original profile (s90) with that sampling only half of the
sequenced reads (s50). This is defined as the similarity
QC (simQCi) indicator, computed as ratio between
denQCis for the s90 and s50 sampling subsets. The
current version of NGS-QCi Generator provides both
global quality indicators (denQCi and simQCi) for disper-
sion intervals of 2.5, 5 and 10%. Further details concern-
ing the assessment of these indicators are provided in the
QC report (see Supplementary File S1 and Supplementary
Figure S4).

Local QCis

Given that the above analyses were computed for 500-bp
bins, the dRCI/bin data can be used as local QCis. The
NGS-QCi Generator provides such information in either
wiggle or BED formats; the default condition identifies
bins with dRCI� 10%. Local QCis in wiggle file format
can be uploaded in the Integrated Genome Browser (IGB)
and displayed as a heat-map together with standard RCI
wiggle files (as illustrated in Figure 3B). In a similar
manner, the corresponding BED file can be uploaded in
the UCSC Genome Browser. This display option is useful
to visualize predicted dRCIs associated to a given chro-
matin region of interest. Furthermore, 500-bp chromatin
regions with dRCIs thresholds of 2.5, 5 or 10% can be
downloaded as a table in BED format. The data sets fa-
cilitate comparative analyses of multiple profiles in the
context of defined dRCI thresholds.

QC-STAMP and NGS-QCi database

The contribution of the two QCis to the single descriptor
QC-STAMP was defined by following equation:

QC-STAMP ¼
denQCiðs50Þ

simQCi

To evaluate the divergence of this global descriptor over
all enrichment-related NGS profiles currently compiled in
the NGS-QC database, the QC-STAMP distributions
assessed for three different RCI dispersion intervals were
subdivided in four quantiles to which the following grades
have been attributed: ‘D’, lower quartile (<25%); ‘C’, in-
terquartile 25–50%; ‘B’, interquartile 50–75% and ‘A’
upper quartile (>75%). The NGS-QCi Generator
database associates these grades for 2.5, 5 and 10%
dRCI to each profile as a three-letter symbol, such that,
for example AAA (‘triple A’) reveals an A grade for all
three dRCIs. All available profiles are displayed as a
dynamic QC-STAMP versus TMR scatterplot, which
allows judging of their QCi similarities in the context of
the sequencing depth. Note that the global QC-STAMP
descriptor will be dynamically reevaluated when novel
entries are provided to the database.

Peak detection approach

In addition to the well-described peak caller MACS (27),
peak calling has been performed with MeDiChI, a model-
based deconvolution approach originally developed for
ChIP-chip assays (28), which we have adapted to

ChIP-seq analyses. MeDiChI computes a model from a
randomly selected subset of the multiple binding events
present in a genome-wide profile. This model is then
used as a deconvolution kernel for genome-wide predic-
tion of likely binding events, which are further validated
by nonparametric bootstrapping. As we compared ChIP-
seq profiles generated at different sequencing depths, we
have included a P-value/peak intensity product ranking-
based approach for defining a common false discovery
rate (FDR) during comparison. For this, a ranking coef-
ficient (RC) for the ith peak identified by MeDiChI was
calculated by the following equation:

RCi ¼ IntPeak i � ð�10 � log10ðp� valueiÞÞ

This RC was sorted from the highest to the lowest
value, and the FDR was assessed as follows:

FDRi ¼ �10 � log10ð
i�

N
p� valueiÞ

Where i* is the ranking position based on the RC, and N
is the total number of peaks. Thus, all ERa ChIP-seq
profiles have been compared at a FDR threshold �45 or
FDR adjusted P-value threshold 10�4.5.

RESULTS

Previous studies described the concept of a ‘saturation
point’ as the sequencing depth after which no new
binding sites are identified by a given peak caller with
additional sequenced reads (5,29). This concept has been
initially evaluated in a retrospective manner by assessing
the number of significant binding sites retrieved when only
a subset of the original sequenced reads was used for
profile reconstruction (random subsampling approach).
Intuitively the ‘saturation point’ concept predicts that
beyond such threshold no further binding sites would be
discovered and by consequence, the increased sequencing
depth should only influence the overall read-count inten-
sity of the corresponding profile.
Following the same concept, the QC system presented

here evaluates the stability of the pattern of a given profile
beyond the saturation point by measuring the reproduci-
bility of ChIP-seq and enrichment-related NGS profiles
under conditions where only a subset of the TMRs are
used for reconstruction. In the ideal ‘saturation’ condition,
such a reconstruction will generate a profile with the same
read distribution pattern across the genome but with a
decrease of the RCIs according to the percentage of
TMRs used (Figure 1A). The extent to which this reprodu-
cibility is attained is defined as ‘robustness’ of the original
profile and is assessed by the resampling of a given data set
at the level of half of the original TMRs (referred to as
‘s50’). Whereas none of the currently available profiles
displays ideal robustness at s50, the evaluation of the de-
viation from such ideal behavior reflects the degree of ro-
bustness and represents a quantitative method for
assigning a set of quality descriptors to anyNGS-generated
profile.
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ChIP-seq profile’s robustness dispersion provides quality
descriptors

This QC system evaluates the robustness of RCI disper-
sion for any given ChIP-seq and enrichment-related NGS
profiles by comparing distinct randomly sampled popula-
tions derived from the primary data set (Figure 1B).
Specifically, TMRs are first resampled at 90, 70 and
50% (referred to as s90, s70 and s50, respectively) of the
original data set. The genome-wide read-count distribu-
tion within 500 bp bins is then evaluated for the sampled
subsets and compared with that observed for the original
profile (s100) (for the effect of bin size on measuring
profile robustness see Supplementary Figure S1). Under
the assumption of a proportional RCI decrease on read
subsampling (saturation concept), the bin RCI divergence
from expectation is calculated (dRCI or local divergence;
defined as the difference between the theoretically
expected RCI and that observed after resampling).
Furthermore, a global quantitative assessment of the

changes in bin RCI dispersion is given by the evaluation
of the total bins presenting a defined RCI dispersion. This
global indicator, defined as density Quality indicator
(denQCi), evaluated in conditions where only a half of
the initial sequenced reads are available (s50), is systemat-
ically used in this study to illustrate the degree of robust-
ness of the evaluated profile to the reads-subsampling
treatment (i.e. ds50� 5% makes reference to the fraction
of bins with dRCI� 5% when half of the TMRs are used
for profile reconstruction).

Furthermore, the changes in robustness on successive
read subsampling has been evaluated by comparing the
denQCi obtained for the subset closest to the original
profile (s90) relative to that assessed from half of all
sequenced reads (s50). This second global indicator has
been defined as the ‘similarity QC indicator’ (simQCi)
because it reveals the similarity between the robustnesses
assessed at s90 and s50. Overall, the higher the denQCi and
the lower the simQCi, the more ‘robust’ is the evaluated
profile.

Figure 1. Assessing quality descriptors for ChIP-seq profiles. (A) Based on the rationale that a robust profile displays a proportional decrease of its
RCIs along the genome when a randomly sampled population of its TMRs is used for profile reconstruction, the present quality assessment method
quantifies the deviation from the expected RCI decrease within defined thresholds. (B) TMRs are randomly sampled into three distinct populations
(90, 70 and 50%), which are used for profile reconstruction by computing the RCIs in 500-bp bins. The RCI divergence from expectation (dRCI) is
measured relative to the original profile (s100). This information generates local QCis and is displayed together with the original RCI profile to
identify robust chromatin regions (dRCI heat-map below the bottom profile). In addition, two global QCis are calculated, comprising the density
QCi [denQCi, defined as the fraction of bins displaying <5% dRCI after 50% TMRs sampling (‘ds50/5’)] and the similarity QCi (simQCi), defined as
ratio of denQCi after 90% sampling over that after 50% sampling (‘ds90/s50/5’). (C) Genome-browser screenshots of three different H3K4me3 ChIP-
seq profiles. In addition, the RCI dispersion per 500-bp bins (local QCi) is illustrated as color-coded heat-map below the corresponding ChIP-seq
profiles. Note that while all three profiles present �19 million TMRs, they differ significantly in their global RCI amplitudes. Furthermore, their
corresponding global QCis assessed from 5 random sampling assays are displayed (average±standard deviation).
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ChIP-seq profiles established from similar TMRs can
lead to variable quality patterns as revealed by visual
inspection of three ChIP-seq profiles of the tri-methylation
of lysine 4 of histone 3 (H3K4me3) generated with
antibodies obtained from the same supplier and with
similar (�19 millions) TMR levels (Figure 1C). Yet, they
present major differences of global RCIs and background
levels (note the different scales). Indeed, the computing of
the QCis provides quantitative descriptors (denQCi,
ds50� 5% and simQCi, ds90/s50� 5%) for the relative
quality of the three profiles, which fully comply with the
visual quality assessment, thus illustrating the usefulness
of this approach in providing quantitative QC values
for comparing different ChIP-seq data sets. Note that
multiple random TMR samplings performed for each of
the illustrated profiles revealed a coefficient of variation of
<2% for the computed QCis. This demonstrates a high
stability of the measurement of global QCis even when
derived from a single random drawing (Figure 1C and
Supplementary Figure S2).

Sequencing-depth influences the quality of ChIP-seq
profiles

ChIP-seq and related assays are in most cases based on
reads obtained from a single flow cell channel.
Importantly, read densities of flow cells have largely
increased over the past few years, ranging from <40
million for the first Genome Analyzer from Illumina
(GA1) to >3 billion reads (300Gb) for the Hiseq2000
platform. Consequently, the TMRs used for profile recon-
struction can vary dramatically, inducing questions con-
cerning the comparability of profiles that were constructed
with different amounts of TMRs.

To evaluate the direct influence of sequencing depth on
NGS-profiling robustness, we performed an analysis of
biological replicates for ERa binding in H3396 breast
cancer cells (3), which was performed by using one
channel of the GA1, GA2X or HiSeq2000 platforms.
We also included a comparison with half of a HiSeq
channel by using multiplex technology. As expected, the
sequencing depth provided by the different sequencing
platforms, correlates well with the overall RCIs
(Figure 2A). Importantly, TMR sampling analysis
revealed a 16.2-fold increase of denQCi and, thus, global
profile ‘robustness’, with increased sequencing depth
(‘ds50� 5%’ in Figure 2A).

As expected, the number of TMRs used for ERa profile
construction strongly influenced the total number of pre-
dicted statistically significant binding sites. In fact, with
>50 million reads for the Hiseq2000 profile, 22 150 ERa

sites were predicted (FDR adjusted P-value threshold
10�4.5; for peak detection algorithm, see ‘Materials and
Methods’ section). In contrast, only 2038 sites were pre-
dicted from �5 million reads obtained with one GA1
channel (Figure 2B). Albeit the total number of predicted
peaks increased strongly with increasing sequencing
depths, the number of sites that complied with ds50� 5%
shows a much slower increase and entered a plateau phase
above 24 million TMRs. This indicates that the ‘robust’
ERa binding sites approach saturation as defined in

previous studies on sequencing depth and de novo discovery
of transcription factor binding sites (5,29,30).
As we have profiled ERa binding under identical treat-

ment conditions, it was reasonable to assume that the
sites identified at low sequencing depth constitute a
subpopulation of those identified in the high TMR
profiles. In fact, when comparing the ERa binding sites
predicted at highest sequencing depth with those derived
from the other profiles, not only the number but also the
robustness of peaks in the overlapping population
increased with increasing sequencing depth. From 1321
ERa sites in the overlap between GA1 and the full
channel HiSeq2000 profile, >80% of them (1096 sites)
comply with ds50� 5% (Figure 2C). Similarly, the
number of ERa binding sites overlapping with the GA2X
or half channel HiSeq2000 data sets increased strongly over
that obtained withGA1, as did the number of robust peaks.
The above comparison revealed also a significant

number of nonoverlapping sites (Figure 2C). While it is
reasonable to assume that the outliers of the HiSeq2000
profile (red) result mainly from the incomplete binding site
recovery from the other profiles, those outliers that are
seen in the low TMR profiles but not in the HiSeq2000
are more likely ‘false positives’. Indeed, the number of
such sites is variable and does not follow a common
trend as the increase of the overlap population with
increasing sequencing depth; in this respect, the GA2X
data set is suboptimal with 4- to 5-times more outliers
(green) than the GA1 (gray) and 1/2Hiseq (blue) ones.
Importantly, when considering only the robust peak popu-
lation, the GA2X outliers were significantly reduced
to about the level seen with GA1 and 1/2Hiseq ones. In
addition, the nonoverlapping sites, including those of the
full channel HiSeq2000, showed consistently lower peak
intensities and weaker confidence P-values relative to
overlapping population (Figure 2D).
Considering the full channel HiSeq data set as ‘gold

standard’, the number of recovered ‘true’ ERa binding
sites increased from <5% for the GA1 data set to
�60% for the half channel HiSeq2000 profile
(Figure 2E). Importantly, 80% ‘true positive’ binding
sites were recovered when only robust ERa sites are con-
sidered, indicating that the denQCi criterion identifies the
highly reliable sites when comparing ChIP-seqs with
largely differing sequencing depths.

The QCis are universally applicable to all ChIP-seq and
enrichment-related NGS profiling assays

While in previous studies profile saturation has been
defined after peak calling (5,29,30), the present QC evalu-
ation system evaluates robustness directly from the raw
pattern of genome-aligned reads. Therefore, QCis can
be established for any type of enrichment-related NGS
profiles, including ChIP-seq, RNA-seq, GRO-seq and
others, making this methodology a universal tool for multi-
dimensional quality profile comparison. Indeed, we have
computed QCis for several types of publicly available
NGS-generated profiles and observed a high variability
between the corresponding QCis even when data sets
with similar TMRs were compared (Figure 3A and
Supplementary Figure S3). RNA-seq, which does
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Figure 2. ERa binding sites detection assessed for different sequencing depths. (A) ERa RCI profiles obtained from different sequencing platforms
[i.e. Genome Analyser 1 (GA1); GA2X and Hiseq2000] are illustrated. Each of the displayed ChIP-seq profiles was obtained by sequencing a single
channel of the corresponding platform except for Hiseq2000, where half a channel or a full one was used. The corresponding mapped reads and their
associated denQCi (ds50� 5%) are displayed. (B) Total ERa binding sites identified in ChIP-seq profiles generated at different sequencing depths
compared with those that complied with the ds50� 5% criterion. ERa binding sites were predicted with MeDiChI (FDR adjusted P-values threshold
10�4.5; see methods for details). (C) Venn diagrams illustrating overlap and outlier populations for ERa binding sites retrieved from sequencing a full
HiSeq2000 channel compared with those identified at lower sequencing depths. This analysis was performed for total ERa sites (top panel) and those
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not involve manipulations like cross-linking and
immunoselection, generated the most robust profiles,
while a nonenriched input profile (whole-cell extract,
WCE) constructed from �19 million TMRs displayed the
worst quality indicators. For nearly identical TMRs, the
ChIP-seq profile of H4K20me1 revealed significantly

improved QCis, as expected for the immunoselection of
specific chromatin regions. Importantly, other histone
modification profiles constructed from similar or even
lower TMRs displayed better QCis than either
H4K20me1 or WCE, thereby revealing that the robustness
of a profile depends not only on the sample preparation

Figure 3. QCis for several types of ChIP-seq and enrichment-related NGS profiles. (A) Scatterplots illustrating the RCI dispersion (dRCI%) after
sampling for different types of NGS profiles (overlays of s90, black; s70, blue; s50, red). TMR, density (denQCi, ds50� 5%) and similarity (simQCi,
ds90/s50� 5%) QCis are indicated. Note that the input profile has the lowest denQCi and highest simQCi (WCE; top left), whereas the highest
denQCi and lowest simQCi were measured for an RNA-seq profile (bottom right). (B) RCI dispersion per 500-bp bins is illustrated as color-coded
heat-map (indicated at left) below the corresponding ChIP-seq profiles. (C) Density and similarity QCis for different profiles of the indicated histone
modifications are compared with input WCE profiles. Note the different characteristics of the target profiles on increasing TMRs, which reveals that
for H4K20me1 and H3K36me3 profiles presenting TMRs <15 million present QCis similar to the input. (D) Density and similarity QCis are
displayed at stringent (ds50� 2.5%), intermediate (ds50� 5%) and relaxed (ds50� 10%) dispersion intervals.

Figure 2. Continued
complying with ds50� 5% (bottom panels). (D) Boxplots displaying peak intensity and FDR adjusted P-value associated to overlap and outlier
populations displayed in (C). Note that the ERa sites in the overlaps show systematically higher intensities and confidence than the outliers and that
this difference is decreased for the ds50� 5% populations. (E) Considering the sites identified with the full HiSeq2000 channel as ‘true’ sites, the
fraction of true sites recovered in the compared profiles (top panel), as well as the false calls, estimated from the outlier population (bottom panel)
are illustrated. Note the increase of true sites and a concomitant decrease of false calls in the population that complies with ds50� 5%.
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and sequencing depth but also on the nature of the
immunoprecipitated target. Note that H4K20me1 and
H3K36me3 generate rather broad enrichment profiles
revealing a spread of the mark over a large chromatin
region, while those established for H3K27ac or
H3K4me3 exhibit more discrete patterns of locally
confined marks (Figure 3B). Our observation that the
500-bp RCI dispersion is generally higher in the
H4K20me1 or H3K36me3 profiles compared with those
of H3K27ac or H3K4me3 (see heat-map dRCI dispersion
in Figure 3B) is likely to originate from the combination of
several effects, including (i) the spread, local density and
accessibility of the marks and (ii) the quality (i.e. affinity
and selectivity) of the antibodies.
In addition to revealing quality differences between data

sets for different targets at similar TMRs, the QCi com-
putation also provides important quality information
about data sets for the same target at different sequencing
depths. Indeed, comparing the QCis for several
H4K20me1 data sets generated from largely different
TMRs reveals that below 15 million TMRs the QCis
become indistinguishable from the WCE profiles,
strongly arguing that significantly higher sequencing
depths are essential to establish accurate profiles for
such targets (Figure 3C). In contrast, H3K4me3 or
H3K27ac ChIP-seq profiles have good QCis even for
TMRs below 15 million reads.
That we observe major QCi differences between the

various data sets reported for similar TMRs indicates
that—in addition to the inherent pattern of the evaluated
target—other factors, involving most likely all the experi-
mental steps that generate the ultimate DNA library for
sequencing, influence the quality of the profile (Figure 3C
and Supplementary Figure S3).
Whereas most of the above described QCis have been

established for a dispersion interval of 5% (ds50� 5%),
different dispersion thresholds (e.g. ds50� 2.5% or
ds50� 10%) may reveal additional characteristics of the
studied profiles. Indeed Figure 3D illustrates that the QCis
determined for different dispersion intervals do not neces-
sarily show a linear relationship. This information has
been used as an additional source for quality evaluation
(see below QC-STAMP) and represents a potential
method for defining common QCi conditions in the case
of multi-profile comparisons by allowing variable robust-
ness dispersion cutoffs (Supplementary File S1).

NGS-QCi Generator: a stand-alone in silico platform
for computing QCis

The above methodology infers local and global quality
indicators for any available NSG-generated profile follow-
ing a stand-alone approach, as it does not require
additional wet-lab efforts. It has been implemented in
the NGS-QCi Generator, a computational tool that is
accessible at a customized cloud of the web-based
platform Galaxy (31–33) (Supplementary File S1). The
NGS-QCi Generator provides a comprehensive report
summarizing the global QCis (Supplementary Figure S4)
and provides access to the computed RCI dispersion per
500-bp bins (wiggle or BED format) defined as local QCis,
which can be used to identify the robustness of specific

regions of interest (Figure 3B and Supplementary
Figure S5). Using the NGS-QCi Generator we have
created a QCis database, which comprises at present the
QC analysis of >5600 NGS data sets, including ChIP-seq
profiles of histone modifications and variants, transcrip-
tion factors, as well as GRO-seq and RNA-seq profiles
(Figure 4A). This QCi database will be expanded to
cover virtually all of the publicly available NGS profiles.

To facilitate and simplify the recognition of QCi diver-
gence between profiles we have defined QC-STAMP, a
global descriptor that combines the information provided
by denQCi and simQCi. The QC-STAMP corresponds to a
three-letter code composed of A, B, C and D that is derived
from the position of a given profile QCi within the distri-
bution of compiled QCis in the database. The first letter
reveals this position for a dRCI dispersion threshold of
2.5%, the second and third letter for 5% and 10% dRCI,
respectively. A to D grading was done to specify the fol-
lowing intervals: D, lower quartile (<25%); C, interquar-
tile (25–50%); B, interquartile (50–75%); A, upper quartile
(>75%) (Figure 4B). As an example, the H3K4me3 profile
derived from 10 007 440 TMRs [arrow (3) in Figure 4A]
classified as ‘triple A’ profile, while nonenriched WCE
profiles were, as expected, of the lowest possible quality,
‘triple D’ (Figure 4C). Similarly expected was the high QC
performance of RNA-seq, which does not involve the
complex experimentation and immunoprecipitation pro-
cedures as ChIP-seq, and consequently received ‘triple A’
rating [arrow (1) in Figure 4A]. Note that these ratings are
meant to provide a simplified view of the evaluated profile’s
robustness but not to replace the QCis, which provide more
specific information.

As the quality of a ChIP-seq profile is the direct conse-
quence of a rather large number of factors (e.g. cross-
linking efficiency, chromatin shearing, antibody affinity
and selectivity, variability between experiments, experi-
menters and platforms), the QCis cannot per se identify
the source for the bad quality of a given profile. However,
it does allow identifying data sets of divergent quality,
which cannot be compared with each other, even though
they might have been generated under similar conditions.
Importantly, in contrast to current practice, the sequencing
depth applied for generating NGS profiles is a tunable par-
ameter to generate profiles of similar quality. As illustrated
in Figures 3 and 5 for similar TMR levels, H4K20me1 or
H3K36me3 profiles display in general poorer quality than
those of H3K27ac or H3K4me3. However, increasing the
sequencing depth will improve their quality descriptors to
attain comparable levels, such that, for example, only
‘triple A’ data sets can be compared (Figure 5). In this
respect, we believe that the QCi database will become an
important reference to perform a priori predictions of the
minimal sequencing depth required for a given target to
reach a predefined quality.

The NGS-QCis in the context of previously described
working standards and guidelines for ChIP-seq assays

Multidimensional comparative analyses of ChIP-seq
profiles require prior quality assessment. Currently, this
is done by visual inspection of profiles in a genome
browser (for instance by evaluating the pattern in
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regions previously described as containing a chromatin
enrichment) and complemented peak caller predictions
based on (some) user-defined parameters.

In addition to visual inspection, analytical methods have
been developed with the aim of providing quantitative
quality assessments of NGS-generated profiles [for a
recent summary of the methodologies used by the
ENCODE consortium see (22)]. Methods like FRiP (23)
or IDR (24) require prior use of peak calling algorithms for
evaluation and are therefore dependent on peak-calling
performance of a given tool with the user-defined param-
eters. Consequently, they cannot be easily used for multi-
profile comparisons when different peak callers are
required. This is for example the case when transcription
factor profiles are compared with epigenetic profiles that
display broad RCI patterns. Note that the IDR approach

can only be used when replicate profiles are available,
which is strongly suggested but not a routine procedure
(see GEO entries). Furthermore, the criteria used for repro-
ducibility by the IDR analysis can be misleading in cases
where compared profiles present broad enrichment
patterns (Supplementary Figure S6; see also below).
Two other methods; signal distribution skewness (34)

and strand cross-correlation analysis (SCC) (22) operate
in a peak caller-independent manner. Signal distribution
skewness evaluates the asymmetry of genome-wide tag-
count distribution, while SCC measures the quality of
evaluated ChIP-seq profiles from the sequence tag
density on forward and reverse strand reads at target
sites. SCC is thus applicable mainly, if not exclusively,
to ‘sharp’ patterns like those observed for transcription
factor ChIP-seq data sets. It is rather evident that SCC

Figure 4. A universal NGS-QCi database for comparative analysis. (A) Cloud of NGS-QCis for multiple profiles present in the NGS-QCi database
(http://igbmc.fr/Gronemeyer_NGS_QC). Density (left) and similarity (right) QCis are displayed relative to the TMRs; color codes are indicated at
the right. QCis of input (WCE) profiles are displayed as black circles; the dashed line is the corresponding fitted curve. Arrows indicate the location
of the data sets specified in (C). (B) QCis of the evaluated NGS profiles displayed in (A) are expressed in a single term, QC-STAMP, and represented
as boxplots for different RCI dispersion intervals (2.5, 5 and 10%). Discrete quality grades ‘A’ to ‘D’ were associated with different quantiles
(QC-STAMP dist> 75%; >75% QC-STAMP dist> 50%; >50% QC-STAMP dist> 25%; QC-STAMP dist< 25% associated to A, B, C and D
qualitative indicators, respectively). (C) Examples of NGS profiles associated to different QC-STAMPs.
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Figure 6. Comparison of QCi-STAMP performance with other analytical methodologies. (A) A set of four biological duplicates was selected from
publicly available CTCF ChIP-seq profiles (pairs are enhanced by color code) and their corresponding QCi-STAMP descriptors were inferred (‘A’ for
highest and ‘D’ for lowest quality). (B) The skewness of the read-count signal distribution of the biological replicates compared with the predicted
QCi-STAMP (dRCI� 5%). Note that the QCi-STAMP descriptors discriminate between data set (3) and (4), while their skewness evaluation does
not. (C) Significant binding sites were predicted by MACS (default P-value threshold: 1� 10�5) and classified based on their overlap between CTCF
replicates (common and unique sites). Common sites were assessed by accepting up to 40-nt distance between MACS-predicted summits. (D) ‘IDR’
among CTCF replicates assessed by sorting significant binding sites according to the corresponding P-value. Note that in agreement with the QCi-
STAMP descriptors, but differing with the skewness analysis (see panel C), data sets (3) and (4) present the worst IDR, while data sets (5) and (6)
present the best IDR pattern.

Figure 5. Meta-analysis illustrating the influence of the sequencing depth on the density and similarity QCis. Meta-analysis performed by compiling
several profiles and subsequently sampled at defined TMRs ranging from 20 to 180 million. For each resampled subset the corresponding QCis were
computed and displayed in spider-web charts, in which denQCi and simQCi are displayed for different dRCI thresholds (color-coded as indicated
at the top left). QC-STAMPs have been associated to the evaluated profiles as illustrated. Note that for H4K20me1 sequencing depths of up to
60 million reads are required to obtain a ‘triple A’ grade, while H3K27ac and H3K4me3 receive this grade with 20 million TMRs.
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cannot be used for quality assessment of broad patterns,
as significantly enriched reads of such profiles cover large
areas. Thus, from the conceptual point of view in addition
to the present QCi system, signal distribution skewness
appears to constitute the only other universal quality
measurement method. To compare signal distribution
skewness and our NGS-QC we have evaluated the
degree of skewness in four publicly available CTCF
ChIP-seq data sets (each of them represented by two
biological replicates) and compared it with QCi-STAMP
(Figure 6A and B). Both methods provide similar quality
predictions, with the important exception that the
difference in quality of one pair of the evaluated
replicates (GSM646372 and GSM646373 data sets) was
predicted by the QCi-STAMP but not by the skewness
analysis (Figure 6B). To understand the origin of this
discrepancy, we assessed the number of common and
unique sites for each pair of replicate data sets [peak
caller MACS (27); default P-value threshold conditions:
1� 10�5), followed by IDR analysis for the predicted
binding sites (Figure 6C and D, respectively).
Interestingly, this complementary analysis revealed a
lower number of significant common sites for replicate
GSM646372 (‘triple C’) and GSM646373 (‘triple B’)
than for the other replicate data sets. This IDR-defined
differential quality of the two pairs of replicates was
equally well detected by the QCi-STAMP (but not the
skewness) approach. Overall, these comparisons show
that QCi-STAMP provides a more versatile and reliable
quality discrimination of NGS-generated profile than the
skewness approach. Moreover, in contrast to IDR, QCi-
STAMP reveals which of the replicates should be repeated
to increase the overall quality without the necessity of
using peak caller approaches.

An additional limitation of the IDR analysis, namely
the dependence on peak caller performance, becomes
apparent from analysing CTCF (Figure 6; sharp peaks)
and H3K4me3 data sets (Supplementary Figure S6;
broad peaks). While IDR analysis of CTCF can be done
with 40 nt summit distance overlaps (i.e. the maximal
distance between predicted summits to consider two
binding events as reproduced), such conditions are nonin-
formative for the H3K4me3 data set. To overcome this
limitation, larger summit distance thresholds (e.g. 500 nt)
have to be used to get informative results (Supplementary
Figure S6). It is thus unlikely that comparisons between
ChIP-seq profiles presenting different enrichment patterns
can be done with IDR. In contrast, the QCi-STAMP
reliably predicts the different qualities for the ‘triple A’
and ‘triple B’ pair of replicates and the common quality
for the two ‘triple B’ replicates in the case of the evaluated
H3K4me3 data sets (Supplementary Figure S6A), as
illustrated for the CTCF profiles (Figure 6A).

DISCUSSION

The assessment of the quality of ChIP-seq data sets has
been mostly performed by visual inspection in a genome
browser and/or by the capacity of peak/island/pattern
caller algorithms to predict locally enriched sequence
counts. In both cases, it is a rather subjective analysis

relying on user-defined criteria, such as the choice of ‘rep-
resentative’ regions or thresholds for peak detection, and
the statistical models and/or parameters used for assess-
ment of enriched patterns. Only recently, methods are
being developed that aim at providing a quantitative
measure for the quality of ChIP-seq assays but so far
there is no tool that provides a universal quality assess-
ment for past and present NGS-generated profiles.
The present NGS-QC approach provides quantitative

QCis generated from the evaluation of a feature
common to all NGS-generated profiles, namely the
profile construction from sequenced read overlaps.
Conceptually, the QC Generator interrogates the robust-
ness of such a profile when fewer sequenced reads
are available, irrespective of the underlying experimen-
tal approach; simplistically this can be described as a
numerical analysis similar to the visual inspection of
Figure 2A, which displays RCIs at different TMRs but
for the entire genome-aligned profile and not only for a
selected region.
This concept has an inherent universal dimension,

which is essential for comparative purposes and consider-
ing that the public GEO repository represents a powerful
source for performing in silico data set comparisons, we
have established a database of QCis for >5600 profiles.
Our ultimate goal is to cover all publicly available ChIP-
seq and enrichment-related NGS data sets to provide a
comprehensive QCi library to the scientific community.
Moreover, we invite all our colleagues to use the QC
Generator for evaluation of their own profiles and
suggest that all newly reported IP-based NGS profiles
(which show the largest variability) are provided with
the corresponding global QCis. We also invite the com-
munity to import all newly defined QCis into the global
QCi database. Collectively, this database will be a highly
valuable source of information about the quality that can
be achieved, for example, for ChIP-seq of a certain target
with a given (batch of) antibodies.
We believe that the universality, together with its sim-

plicity and broad accessibility, makes the present system
an attractive tool for QC analysis of profiles before
engaging peak detection algorithms. Once a profile has
been QCed, the QC descriptors provide objective numer-
ical criteria to any NGS-generated profile that is provided
to the community. Thus, existing profiles can be compared
with others in multidimensional studies and meta-
analyses.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Supplementary Figure 1. (a) Scatterplot illustrating the read-count intensity( RCI) per 

evaluated bins observed after total mapped read�s (TMRs) random sampling (y axis) in 

comparison to the original RCI (s100; x axis). Each data point corresponds to the RCI 

within a 500 bp bin. (b) To further enhance the influence of random sampling on the read 

count intensity of a given profile, the RCI per evaluated bin after sampling is represented 

in percentage relative to the original RCI. Note that for each of the three randomly 

sampled subsets the recRCI/bin approaches the theoretically expected value with  the 

increase of the RCI/bin in the original profile. (c) Scatter plot illustrating the recovered 

read count intensity dispersion of a given profile. This transformed scatter plot 

superimposes the three scatter plots obtained after sampling for the same original 

dataset. The scatter of bins after sampling at s50, s70 or s90 having RCI values that 

deviate  5% from the expected RCI/bin are highlighted (defined as denQCi). (d) 
Influence of the window size on the assessment of QC indicators. Similarity QC indicator 

(defined as the ratio between the denQCi for s90 relative to that of s50) at different 

window sizes have been computed for ER ! ChIP-seq profile. As highlighted by the 

vertical gray line, the highest difference for the simQC indicators assessed at three 

different dispersion intervals (2.5%, 5%, 10%) is retrieved for bins of windows sizes 

between 250 and 500bp. Note that this value corresponds to the expected chromatin 

fragmentation size. The ER  ChIP-seq profile used in this study was originally published 

in (Ceschin et al. Genes Dev 25, 1132, 2011).  
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TMRS ds50 !"#$ ds50 #$ ds50 %&$ ds90/s50 !"#$ ds90/s50 #$ ds90/s50 %&$

GSM521901 19677564 0.85±0.007 2.086±0.011 3.712±0.004 3.84±0.03 2.48±0.01 1.75±0.0

CV (%) 0.83 0.54 0.12 0.70 0.40 0

GSM910579 19897316 0.18±0.0 0.834±0.005 3.964±0.009 32.39±0.22 14.39±0.04 4.184±0.009

CV (%) 0 0.66 0.22 0.68 0.28 0.21

GSM752985 19896191 0.1±0.0 0.542±0.004 3.544±0.011 53.3±0.6 22.08±0.09 4.74±0.01

CV (%) 0 0.82 0.32 1.09 0.45 0.27
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Supplementary Figure 2. QC indicators reproducibility over TMRs random sampling replicates. (a) Three different publicly available

H3K4me3 ChIP-seq datasets displayed a similar number of TMRs (~19 million reads), nevertheless their associated profiles present important

differences in their read-count intensities as well as in their background levels. To assess such differences from a quantitative point of view, their

TMRs have been randomly sampled in five replicates at three different sampled subsets (90%, 70% and 50%). RCI dispersion per 500bp bins (local

QCi) for each of the sampling replicates are illustrated as color-coded heat map below the corresponding profile. (b) Scatter plot illustrating the

influence of random sampling on the read count intensity of the evaluated profiles. Note that the dataset displaying the best enrichment pattern

(GSM521901) presents a denser scatterplot at higher intensity values than the other compared datasets and that with increasing number of reads

the recRCI/bin increasingly approaches the theoretically expected values. As previously indicated, global QCis are assessed by evaluating the

fraction of bins presenting a RCI dispersion under a given threshold (i.e. ±2.5%; ±5% and ±10% dispersion from expectation). (c) Their

corresponding global QCis assessed from all 5 random samplings are displayed (average ±standard deviation) for different denQCi and simQCi

threshold conditions. In addition their related coefficient of variation (CV%) has been assessed. Importantly, all global QCis present CVs lower than

2% demonstrating that these global quality descriptors are quite stable even for a single TMRs random sampling assay. Finally, it is worth to mention

that the infered QC indicators do correlate with the variable quality of enrichment observed for the compared profiles.
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Supplementary Figure 3. QCis assessed for a diversity of NGS-generated profiles. All ChIP-seq and wce displayed 

datasets were originally published by Ernst J. et al (Nature, 473, 43-9, 2011). Furthermore, all displayed RNA-seq 

datasets were originally published by Trapnell et al. (Nat. Biotechnol, 28, 511-5, 2010). 



Supplementary Figure 4. Example of the QCi report generated automatically for each 
processed NGS-profile by the NGS-QC Generator. 



Supplementary Figure 5. Local QC indicators inferred from TMR random sampling. 
a) Random sampling of total mapped reads (TMRs) at different densities (90%, 70% and 50% described herein 

as s90, s70 and s50 respectively) followed by read count intensity (RCI) computation per 500bps bins provides 

local QC indicators. The Local QCi unit correspond to the RCI dispersion assessed per 500bps bin. (b) local 

QCi displayed for an RNA-seq profile  generated from 25 million TMRs. RCI dispersion for a 50% sampling 

density ( RCIS50) is displayed in a heatmap format and together with the corresponding RCI associated to the 

profile of interest. 

a 

b 

chrom start end s100 s90 s70 s50 recRCI s90(%) recRCI s70(%) recRCI s50(%)  RCI s90  RCI s70  RCI s50
chr1 724001 724500 7 6 5 4 85.71 71.43 57.14 4.29 -1.43 -7.14

chr1 851001 851500 9 8 6 5 88.89 66.67 55.56 1.11 3.33 -5.56

chr1 856501 857000 11 10 8 6 90.91 72.73 54.55 -0.91 -2.73 -4.55

chr1 932501 933000 7 6 5 4 85.71 71.43 57.14 4.29 -1.43 -7.14

chr1 1008501 1009000 17 15 13 8 88.24 76.47 47.06 1.76 -6.47 2.94

chr1 1009001 1009500 268 241 190 137 89.93 70.90 51.12 0.07 -0.90 -1.12

chr1 1014501 1015000 48 42 36 27 87.50 75.00 56.25 2.50 -5.00 -6.25

chr1 1015001 1015500 52 45 41 28 86.54 78.85 53.85 3.46 -8.85 -3.85

chr1 1015501 1016000 33 31 23 19 93.94 69.70 57.58 -3.94 0.30 -7.58

chr1 1121501 1122000 6 5 4 3 83.33 66.67 50.00 6.67 3.33 0.00

chr1 1139501 1140000 7 6 5 3 85.71 71.43 42.86 4.29 -1.43 7.14

chr1 1829501 1830000 12 10 8 6 83.33 66.67 50.00 6.67 3.33 0.00
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Supplementary Figure 6. QCi-STAMP provides the same quality information as skewness and is independent of problems 
introduced by the use of peak callers. (a) A set of two biological duplicates was selected from publicly available H3K4me3 ChIP-seq 

profiles and their corresponding QCi-STAMP descriptors were determined. (�A� highest; �D� lowest quality). (b) Skewness of the read-counts 

signal distribution of the biological replicates compared with the predicted QCi-STAMP ( RCI 5%). (c) Irreproducibility Discovery Rate (IDR) 

among H3K4me3 replicates was assessed by sorting significant binding sites by their p-value and comparing the population of common and 

unique sites per replicate. Common sites were assessed for different MACS-predicted summit location variability (red: 40nts, orange: 100nts, 

green: 200nts and blue, 500nts maximal summit location variability). (d) Comparison in IDR�s performance  (500nts summit variability) 

between H3K4me3 biological replicates. Note that in contrast to �sharp� binding patterns (e.g. CTCF in Fig. 6), IDR analysis requires more 

relaxed conditions to determine overlapping binding sites. 
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1. Introduction 

Comparative analyses between Next generation sequencing (NGS) generated profiles, such as 
ChIP-seq, RNA-seq, Gro-seq, or MeDIP-seq require prior characterization of the degree of 
technical similarity of the various data sets, as individual profiles can vary significantly even 
between biological replicates, the use of different antibodies and batch-to-batch variations of 
the same antibody, sequencing depth and immunoprecipitation (IP) quality are only a few of 
the parameters that impact on the quality of a ChIP-seq profile. The present NGS-QC 
Generator infers global and local quality indicators based on a stand-alone approach, as it 
does not require additional wet-lab efforts. This computational approach generates read count 
intensity profiles from randomly selected subsets of the total originally mapped reads (TMRs) 
associated to the NGS-profile under study and defines the divergence from the theoretically 
expected read count intensities (RCIs) recovery after sampling relative to the original profile. 
For this, TMRs are first randomly sampled at three different densities (90%, 70% and 50%; 
referred to hereafter as s90, s70 and s50 subsets, respectively); then the genomic RCI profile 
is recorded for successive 500bp bins and compared to that of the original profile. This 
comparison is performed to evaluate the divergence from the ideal condition in which the 
RCI/bin for a s50 subset correspond to 50% of the original RCI/bin value. Importantly, NGS-
sampled generated profiles diverge always to different degrees from the hypothesized �ideal 

behaviour�, thereby generating a quantifiable denominator (referred to as profile 
�robustness�), which is linked to the quality of any NGS-generate profile (Mendoza-Parra et 
al.; manuscript in preparation). 

Below we describe the different steps involved in the NGS-QC Generator�s accessibility 

through the web-based platform GALAXY, the required input parameters and the information 
provided in the NGS-QC Generator Report. In addition, we provide an interpretation of the 
different quality control indicators, give examples and discuss additional applications of this 
methodology. 

2. Running NGS-QC Generator 

The NGS-QC Generator requires as input a single file containing the genome positions of the 
uniquely aligned reads (BAM or BED format). Depending on the user-defined analysis, the 
following additional parameters may be required: 
 

  Genome: Currently the following model organism genomes are supported: Homo 
sapiens (hg19, hg18); Mus musculus (mm9, mm8); Ratus norvegicus (rn4, rn3); 
Drosophila melanogaster (dm3, dm2); Caenorhabditis elegans (ce6, ce4); Dario 
rerio (dr6, dr4). 

 
  Strand specificity: For ChIPs and related applications the reads/bin are cumulated 

from both complementary strands during data processing.  

! NOTE   The user can define strand-selective analysis for specific applications. 
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  Windows size (�bin�) for read counts enrichment assessment: Currently the 
�default� parameter is set to 500 bp.  

! NOTE   For comparative analyses of several profiles, the QC indicators should be calculated 
using identical bin sizes, thus 500 bp windows should be used to compare QC indicators of a 
user profile with those displayed in the NGS-QC database available in our website: 
http://igbmc.fr/Gronemeyer_NGS_QC 

 We have studied the effects of bin size variation on the NGS-QC generator-calculated 

indicators and found the highest sensitivity (i.e., highest difference for the QC indicators 

assessed at different dispersion intervals) at a bin size of 500 bp. 

Figure I. Influence of the window size on the assessment of QC indicators for two different ChIP-seq 

profiles. Similarity QC indicator at different window sizes have been computed for Era and CARM1 ChIP-seq 
profiles. As highlighted by the vertical gray line, the highest difference for the simQC indicators assessed at 
three different dispersion intervals (2.5, 5, 10%) is retrieved for bins presenting a windows size between 250 and 
500bp. Note that this value is in concordance with the expected chromatin fragmentation size.      

  Number of random sampling replicates: We have obtained highly reproducible 
Global QC indicators (less than 2% coefficient of variation among five sampling 
replicates) when using several sampling replicates; however, users can choose the 
number of replicate samplings. 

! NOTE This option is supported up to 3 replicates. 
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Figure II. QC indicators reproducibility over TMRs random sampling replicates. a) TMRs associated to 
given ChIP-seq profile have been randomly sampled three times to a 50% density (s50). The read count intensity 
(RCI) recorded per 500bps bins in all three replicated are compared. Note that for RCI higher than 16 (4 in log2) 
the RCI correlation is quite high. b) In order to quantify replicates sampling robustness, four different ChIP-seq 
samples were sampled 5 times. After that, the similarity QC indicator (!s90/s50) was compiled for three 
dispersion intervals (2.5, 5.0 and 10.0%). Chart tables show the different values obtained for each replicate. 
Average and coefficient of variation (CV%) from all replicates were also computed. Note that in all the cases the 
CV% is less than 2%. 
 
Several other optional parameters concerning the generation of local QC indicators in wiggle 
file format, or other complementary data files (see below for details) are implemented. All 
these parameters can be defined by the predefined entries displayed in the Galaxy platform-
based version.  
The NGS-QC Generator produces a certain number of output files which are summarized in a 
report available in PDF format (see Supplementary Figure 3). This report is subdivided in 3 
sections as described below. 
 

1) Input Dataset: Information associated with the processed dataset. The filename should 
contain information specifying target and assay type (targeted factor, epitope, and 
antibody source and batch specification for ChIP-seq, origin and type of RNA in 
RNA-seq, GRO-seq, etc), treatment (if any) before ChIP, the model system used and 
any other information that is considered useful for future meta analyses. 

2) Random sampling QC parameters: Specification of the different parameters for data 
processing, including the percent of sampled reads, the bin window size and the 
number of replicate samplings. In addition, the genome assembly and strand-specific 
or global mode of operation are documented. 

3) QC indicators: This section presents a compendium of the computed indicators in 
visual format and provides the quantitative QC indicators. As is explained below we 
distinguish as global QC indicators two parameters, the �density QC (denQC)� and 

�similarity QC (simQC)�, and offer the possibility to attach a �local QC� to a given 

profile. The six panels (a) to (f) specify the following generated outputs: 
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a) Influence of random sampling on the intensity of the evaluated profile. This scatter 
plot illustrates the original Read Count Intensity per bin (oRCI) in the studied 
profile (x-axis) relative to the recovered Read Count Intensity (recRCI) after 
sampling (y-axis). This relationship is displayed as following: 

100)( "#

oRCI

samRCI
recRCI  

 
Where samRCI corresponds to the RCI/bin retrieved after random sampling. As 
illustrated in Figure III, the theoretically expected recRCI is directly proportional 
to the random sampling density, i.e. 90% for s90, 70% for s70 and 50% for s50 
respectively. 
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Figure III: Scatter plot illustrating the influence of random sampling on the read count 

intensity of a given profile. Each data point corresponds to the RCI within a 500 bp bin (x-axis) 
relative to the fraction of this intensity that is recovered after random sampling (y-axis). Note that 
for each of the three randomly sampled subsets, a different fraction of bins shows a proportional 
intensity recovery relative to the original read count measurements, and that with increasing 
number of reads the recRCI/bin increasingly approaches the theoretically expected value. 
  
This initial analysis provides intuitive information about the quality of the 
generated profile1. In fact, profiles of good quality show high number of bins that 
display a proportional decrease of RCI/bin in the sampled subsets compared to the 
original dataset. Thus, the less dispersed the recRCI pattern is, the better is the 
quality of the associated profile. Note that towards low signal intensities (<24 read 
counts/bin) the sampling process inevitably results in increased dispersion. 
 

b) Read count dispersion. To compare the dispersion effect relative to the expected 
proportional decrease in the RCI/bin values induced by random sampling, the 

                                                 
1
 « Quality » is defined here as the degree of dispersion from the theoretically expected recRCI scatter after 

sampling, which corresponds to a proportional decrease of all RCI/bin values relative to the sampling. With this 

definition a maximum of the quality indicator is reached when the recRCI/bin values are equal to the oRCI 

multiplied by the sampling percentage (i.e. 50% for s50). Any deviation � for whatever reason - from the 

expected RCI/bin scatter provides a quantitative indicator of the quality of a given NGS-profile.  
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scatter plot displayed in Figure 1 has been first centered by the following 
expression: 

recRCIsamdRCI $#%   
 

where �!RCI� corresponds to the read count intensity dispersion and �samd� to 
the random sampling density (i.e. 90%, 70% and 50% for s90, s70 and s50 
respectively). This transformation facilitates to identify the subset of bins that 
display a !RCI within in a given interval, such as !RCI 5 (illustrated in Figure 

IV). This information represents per se a quantifiable indicator for the quality of 
the studied profile. The current version of NGS-QCi Generator provides global 
quality indicators for dispersion intervals of 2.5%, 5% and 10%. In addition, the 
quality indicators for each 500bp bin are also generated in a wiggle format 
(described below as �local QC indicators�). 
 
  Convention:  The measurement of the fraction of bins displaying a !RCI within 
in a given interval constitutes the global density QC indicator denQCi. The 
denQCi is described by the term �!s50/5� in which �s50� specifies the sampling in 

percentage and �5� the !RCI threshold. 
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Figure IV: Scatter plot illustrating the recovered read count intensity dispersion of a given 

profile. This transformed scatter plot superimposes the three scatter plots obtained after sampling 
for the same original dataset. The scatter of bins after sampling at s50, s70 or s90 having RCI 
values that deviate  5% from the expected RCI/bin are highlighted.
 

c)   RCI at different Intensity thresholds. As is apparent from Figure IV the 
dispersion of the read counts/bin after sampling and thus, the quality of the profile 

is inversely proportional to the RCI. In Figure V this dispersion ( RCI) is 
calculated for both the s90 and s50 randomly sampled and reconstructed profiles 
relative to the original s100 dataset. Note that in the illustrated example, bins with 
RCIs greater than 16 (4 in log2) present a median  RCI lower than 5% for both the 
re-sampled data sets. Importantly, for high quality profiles such a 5% threshold 
extends to lower RCI/bin values than for low quality profiles. Moreover, a similar 
dispersion pattern in s50 and s90 data sets is a sign for a high quality and 
�sampling robustness� of the evaluated profile; thus, the degree of similarity of the 

 RCIs of s90 and s50 data sets is a second quantifiable indicator that is evaluated 
by the NGS-QCi Generator. 
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 Convention:  RCI(s90/s50) constitutes the global similarity QC indicator 
simQCi. The simQCI is described as � s90/s50/5�, in which � s90/s50� 

corresponds the ratio between the denQCi for s90 and the denQCi for s50 and �5� 

specifies the  RCI threshold.  
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Read counts dispersion at different intensity thresholds

read counts (log2) read counts (log2)
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I
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)

Read counts dispersion at different intensity thresholds

read counts (log2) read counts (log2)  
Figure V:  RCI evaluated at different intensity thresholds for both s90 and s50 random 

sampling subsets. The 5%  RCI threshold is indicated as a green line. 
 

d) Number of bins at different  RCI intervals. This analysis computes the fraction of 
bins in the sampled subset (i.e. s90 or s50) that exhibits a proportional decrease of 
their RCI for a given RCI threshold. A  RCI of 2.5% defines a very stringent 
condition, as nearly 50% of bins with RCI values above 256 (28) - corresponding 
to strong signals - are outside this interval (Figure VI, left panel). In contrast, 
more than 80% of such strong signals are within the interval defined by a  RCI 
threshold of 5% (middle panel); for more relaxed conditions, such as dRCI 10%, 

all these signals in within the selected interval (right panel). 

 
Figure Figure VI: Fraction of bins at different  RCI intervals. For a given RCI threshold the 
fraction of bins presenting a  RCI equal or lower than the indicated threshold (2.5%, 5% or 10%) is 
evaluated for s90 and s50 subsets. 
 

e) Global QC indicators. All previous Panels (a) to (d) illustrate several 
characteristics associated to TMR distribution at different random sampling 
densities. Such characteristics represent a read-out for the quality of the evaluated 
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profile, which is the consequence of several factors implicated in its genesis. 
Below the global QC indicators , which represent �fingerprints� of an evaluated 

profile, and the corresponding acronyms are summarized: 

! N° of reads: TMRs used for the profile reconstruction.  

! Total bins: Number of bins (500bp window size) presenting with at least 
one read in the original profile. 

! Density QC (denQCi):  The fraction of bins in the s90 or in s50 subsets 

with a  RCI lower than the default dispersion thresholds (2,5%; 5% and 
10%). Note that the higher the density QCi is, the better is the quality of 
the associated profile. 

! Similarity QC [simQCi(s90/s50)]: Ratio between the density QCis for 
s90 and s50 subsets at the different dispersion thresholds. The simQCi 
reveals the similarity of the s90 and the s50 profiles. As a rule of thumb, 
the closer this value is to 1, the better is the quality of the studied profile. 

Both the density and similarity QCis represent quantifiable NGS-profiles quality 
indicators, thus they can be used for comparative purposes as described below. 
Note that QC indicators associated to several publicly available NGS-generated 
profiles can be retrieved in our website: 

http://igbmc.fr/Gronemeyer_NGS_QC 
 

f) Further supplementary information. Taken in consideration that the above 

analyses were computed for 500bp bins, the  RCI/bin data can be used to provide 

local QC indicators. Such information is provided by the NGS-QC Generator 

either in a wiggle or in a BED format; the default condition identifies bins with 

 RCI  10%
2
. Figure VII illustrates how the local QCis can be displayed in a heat-

map format linked to the original read count intensity profile. This display option 

is useful to visualize the predicted  RCIs associated to a given chromatin region of 

interest. 

Optionally, 500bp chromatin regions with  RCIs thresholds of 2.5%; 5% or 10% 

can be downloaded as a table in BED format. All the items in panel (f) are user-

defined; note that the corresponding files may reach Gb size. 

                                                 
2
 Local QC indicators in wiggle file format can be uploaded in the Integrated Genome Browser (IGB) and 

displayed in heat-map format; the corresponding BED file can be uploaded in the UCSC browser. 
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Figure VII: H3K27ac ChIP-seq profile displayed together with the corresponding local QC indicators. 

Bellow the ChIP-seq profile the corresponding  RCI for each 500bp bin are displayed for a 10% threshold 

using the heat map illustration indicated on the left. Only bins with  RCI  10% are shown. 

3. Interpretation of NGS-QC indicators 

The quality indicators described by the NGS-QC Generator are derived from the question of 
how different a given NGS profile would be if only a subset of the total mapped reads were 
used? The underlying concept is that in the ideal case, the read counts intensities will decrease 
proportionally to the fraction of sampled reads. From this two quality indicators are derived. 
  
The density QC indicator (denQCi) makes reference to the fraction of the evaluated 
chromatin regions (sectioned into 500bp bins) that comply with this proportional within a 
defined dispersion margin, such as 5% at a sampling ration of 50% (i.e.  s50/5). The maximal 
theoretical value for denQCi is 100. 
  
The similarity QC indicator (simQCi) refers to the fraction of chromatin regions which reveal 
a proportional decrease of RCIs in the subset sampled at 90% relative to that sampled at 50% 
and is given for a specified dRCI threshold (e.g., ds90/s50/5). The minimal theoretical value 
for simQCi is 1. 

3.1 denQCi and simQCi guide ChIP-seq experiments 

Figure VIII illustrates that QC indicators can vary dramatically between experiments; indeed, 
publicly available ChIP-seq data provide useful information about the range of denQCi and 
simQCi that have been achieved in previous experiments for a given target and  (batch of) 
antibody, such that a user can judge the QC performance of a ChIP-seq relative to past data 
sets. Moreover, the library of QC indicators (available at 
http://igbmc.fr/Gronemeyer_NGS_QC) provides a guide to users about the possible effect of 
the sequencing depth on ChIP-seq quality. Indeed, the comparison of several H4K20me1 
profiles3 demonstrates that at least 15 million total mapped reads are required to obtain QCis 
that differentiate between the ChIP-derived and the non-enriched (�input�) datasets. In 

contrast, H3K4me3 ChIP-seq profiles present fairly good QCis even for TMRs lower than 15 
million reads. 

                                                 
3
  The compared ChIP-seq profiles were taken from an study performed in nine human cell types following a 

production pipeline for chromatin immunoprecipitation (Ernst J. et al. 2011 Nature 473; 43-49)  
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! NOTE Importantly, in both profiles individual ChIP-seq profiles can be observed which 
have been performed at similar sequencing depths but data analysis reveals nevertheless 
greatly varying global QCi indicators. This underscores the notion that in addition to the 
sequencing depth (multiple) other factors, whose effects cumulate along the experimental 
pathwtowards to final data set, influence the quality of the profile. 
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Figure VIII: Density and Similarity QCis for several ChIP-seq profiles in the context of their total 

mapped reads. Top and bottom panels illustrate QCis for H4K20me1 and H3K4me3 ChIP-seq profiles, 
respectively. In addition, QCis for the non-enriched input datasets are illustrated for comparative purpose. 
Notice that in contrast to the H3K4me3 datasets, H4K20me1 profiles reconstructed from up to 15 million 
reads present QCis similar to those observed for the input datasets. Importantly for such histone 
modification profiles, increase in the sequencing depth beyond this 15 million reads threshold allows to 
retrieve QC indicators diverging from the Input datasets behavior. 

4. A dynamic publicly available database of global and local QC indicators 

With the aim of establishing a dynamic guide for NGS users we have created a QC indicator 
database comprising a collection of global QCis for multiple NGS profiles. This database, 
which is available online to the scientific community through our website 
http://igbmc.fr/Gronemeyer_NGS_QC, will be expanded to include most, if not all, global and 
local QCis of the NGS profiles currently available from GEO.  In addition, future profiles will 
be integrated and users may evaluate their NGS profiles and compare them with stored QCi.  
To facilitate and simplify the recognition of QCi divergence between profiles we have defined 
QC-STAMP, a global descriptor that combines the information provided by denQCi and 
simQCi as following: 

simQCi

denQCi
STAMPQC !_  

 
In order to evaluate de divergence of this global descriptor over all enrichment-related NGS 
profiles currently compiled in the NGS-QC database, the QC-STAMP distributions assessed 
for three different RCI dispersion intervals was subdivided in four quantiles to which the 
following grades have been attributed: �D�, lower quartile (<25%); �C�, inter-quartile 25-
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50%: �B�, inter-quartile 50-75% and �A� upper quartile (>75%). The NGS-QC Generator 
database associates these grades for 2.5, 5 and 10%  RCI to each profile as a three letter 
symbol, such that, for example AAA (�triple A�) reveals an A grade for all three  RCIs. All 
available profiles are displayed as a dynamic QC-STAMP vs. TMR scatterplot, which allows 
judging of their QCi similarities in the context of the sequencing depth. Note that the global 
QC-STAMP descriptor will be dynamically re-evaluated when novel entries are provided to 
the database. 
 
Considering the inherent relationship between the current NGS repositories and our QC 
database, we aim to integrate in a long term a direct connection between the Galaxy version of 
the NGS-QCi Generator and the QCi database in order to simplify the repository of this 
information and to establish links with GEO in order to coordinate the generation of such 
indicators in a systematic manner4. 
 
5. Additional applications 

The presented bioinformatics-based QC system uses the total mapped reads associated to any 
NGS data sets to infer a set of global QC indicators. In fact, profile�s quality evaluation does 

not rely in a given Peak calling algorithm, thus it can be directly applied to any type of NGS-
generated profile, including RNA-seq, GRO-seq, etc, in addition to the wide variety of ChIP-
seq assays (transcription factors, insulators, histone modifications, RNA Polymerase II, etc). 
For the same reason, the inferred QC indicators are fully comparable, making of this approach 
a universal tool for multidimensional quality profiles comparison.  
We believe that the global QC indicators will be useful for the development, characterization 
and comparison of antibodies directed towards a particular target. There are considerable 
variations between different antibodies and different batches of polyclonal antibodies. The 
certification of antibodies for ChIP-seq using the present QC systems should improve ChIP-
seq reproducibility and comparability. 
 
The quality of any NGS profile is the direct consequence of a complex number of factors, 
including aspects like crosslinking efficiency, chromatin shearing, antibody affinity and 
selectivity, as well as the variability between experiments and experimenters. While the QC 
indicators described here cannot per se identify the source for quality differences between 
profiles, they reveal the comparability and non-comparability of different NGS-generated 
profiles. 

! NOTE The sequencing depth used to generating NGS-profiles can now be used as a 
tuneable parameter to identify profiles of similar quality. For this, correlative analyses 
between the inferred QC indicators and the performed sequencing depth will be very useful. 

 

 

                                                 
4
  The QCis generated in the current NGS-QCi Generator Galaxy version are not transferred into the QCi 

database, but in a further version we may establish such link; thus users will be invited to allow such a transfer. 

In addition, the identity of the sample will not be required, but certain information like the nature of the NGS 

profile, the antibody source, etc may be requested (without a mandatory condition) in order to associate a 

comprehensive description of the evaluated samples to the QCi data set. 
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6. Annexes 

6.1 NGS-QC Generator availability 

For providing a simple way to access to the community, NGS-QC Generator has been made 
available through a customized Galaxy cloud instance dedicate to this application (access 
provided in our website: http://igbmc.fr/Gronemeyer_NGS_QC). 

Furthermore, an executable version of the NGS-QC Generator can be downloaded from our 
above indicated website. Importantly, such stand-alone version requires BEDtools to be 
installed on the hosting system. It can be retrieved at:  
 Stable releases: http://code.google.com/p/bedtools 

Repository:       https://github.com/arq5x/bedtools 
 
A detailed description for the execution of such stand-alone version is available as part of the 
downloadable file. 
 

6.2 Command line summary 

To document and assure accurate reproducibility of the computational treatment we have 
included in each report the complete command line used for its generation. This information 
makes reference to the computation core implemented in the heart of the NGS-QC Generator 
tool:  

python NGS-QC.pl �i ERa_e2_1h_H3396_sc-543 -o ERa_e2_sampled -s both -g hg19 -w 500 -p 8 -r 
1 �-sampleList 90,70,50 �-pcList 2.5,5,10 
 

Where: 
" �python NGS-QC.py� calls the NGS-QC Generator script 

" �i ERa_e2_1h_H3396_sc-543 indicates the dataset to be processed 

" -o ERa_e2_sampled refers to the name of the output directory to which all output files 

will be saved 

" -s both can be used to sample both strands. To sample only the forward (reverse) 

strand, use -s fw (-s rev). 

" -z hg19 refers to the processed genome. It requires to be followed by the genome 

assembly used for TMRs alignment (i.e. mm8, mm9, hg18, hg19, etc). 

" -w 500 corresponds to the applied windows size. 

" -p 8 corresponds to the number of CPUs used in the parallel processing. 

" -r 1 refers to the performed sampling replicas. 

" --sampleList 90, 70, 50 corresponds to the random sampled fractions; i.e. 90%, 

70%,50% respectively 

" �-pcList 2.5,5,10 corresponds to the dispersion percentage thresholds to be used 
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6.3 Practical aspects concerning the use of the NGS-QC Generator and database 

The NGS-QC Generator and the corresponding QC indicator database are accessible from our 
website (http://igbmc.fr/Gronemeyer_NGS_QC). For assessing the quality of a dataset, users 
can access the NGS-QC Generator through our customised web-based GALAXY platform. 
For it users can register by providing an e-mail address as login and a password. This step is 
mainly required for the use of an FTP server to facilitate the uploading large size data files.  

In case a user prefers to remain anonymous five guest accounts are available: 

      Login account  password 

guest1@galaxy.igbmc.fr   NTYyM2RiND 
guest2@galaxy.igbmc.fr   ZjY4NGFjMz 
guest3@galaxy.igbmc.fr   MDBhZTMzM2 
guest4@galaxy.igbmc.fr   OTllZWI0Mj 
guest5@galaxy.igbmc.fr    YWQ2NDRkM2 

 

Furthermore, due to storage space constraints, uploaded datasets into the Galaxy instance may 
not be available for more than 24hours, thus we strongly suggest users to download their 
processed files as early as possible.    

When required, some example datasets are available on the �shared_Data� access as part of 
the Data libraries, thus users may upload them for having a trial run on the NGS-QC generator 
tool. 
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5.2. Epimetheus - A multi-profile normalizer for epigenome sequencing data 

The preferred technique for epigenetic analysis Chromatin ImmunoPrecipitation-

Sequencing (ChIP-Seq) is inherently prone to significant variabilities embedded in 

individual assays. Multiple factors like antibody efficacy, sequencing library efficiency and 

depth have a direct impact on data quality and thus on any downstream analysis. But even 

high quality datasets generally exhibit significant sequencing depth variation, which 

requires normalization. Currently, existing normalization tools are limited in different 

aspects, namely (i) annotation dependency, (ii) restriction to specific regions, (iii) less 

user-friendly and (iv) scalability to a variety of downstream analyses. Moreover, the 

existing approaches are mostly intended for particular analysis, thus their normalization 

outputs are not readily exportable to downstream analysis such as chromatin state 

prediction involving multiple samples; also most of these tools require specialized 

programming skills. To overcome these restrictions we have developed Epimetheus, a 

quantile-based multi-profile normalization tool for histone modification data. Epimetheus 

is written in combination of Perl, C & R and will be freely available to the academic 

community. 

5.2.1. Methodology 

There are four main steps involved in Epimetheus pipeline: (i) processing raw alignment 

data, (ii) building read count intensity (RCI) matrices, (iii) quantile normalization followed 

by Z-score normalization and (iv) generating normalized BED file and other outputs 

including plots (Figure 25). As quantile normalization is an absolute read count based 

approach, any region or technical specific bias will over/under-represent the read counts 

and lead to bias in downstream analyses. Hence, clonal reads are systematically removed 

from the analysis unless otherwise specified by the user, and reads are extended to given 

average fragment size. 

A read counts matrix is built by dividing reference genome �G� into small non-overlapping 

sequential bins and the RCI for each bin is calculated. Size (�S�) of the bin can be from 100 

 !"!#!$%%&' depending on the enrichment pattern (sharp/broad) of histone mark. Let us 

denote a target histone mark as �X�, and �Xa� & �Xb� will represent two samples of same 

target. Genomic bins for �Xa� can be represented as Xa1, Xa2, Xa3�Xan whereas Xb1, 
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Xb2, Xb3�Xbn will represent �Xb�, where �n� depends on the sizes of �S� and �G� (G/S). 

Reads, which overlap with each bin, are counted to calculate reads per bin (RpB) 

distribution for each sample. As a result, �Xa� and �Xb� will form two libraries as follows. 

 ! = {  !" | 1 # $ % & } 

 ' = {  '" | 1 # $ % & } 

Similarly �Ya� and �Yb� will form two different libraries of another target histone mark. 

Using RCI calculation from each sample, a B×N matrix is built for each target mark 

individually, where B is the total number of bins (for a given �G� and �S�) and N is the 

number of samples. In case of multiple histone marks in the analysis, similarly B×N1, 

B×N2, etc., will be generated. 

Quantile normalization is a rank based normalization, thus different level of intensities are 

normalized together giving Quantile normalization corrects the coverage differences by (i) 

sorting each sample�s RpB in ascending order individually, (ii) ranking the values for each 

sample individually and (iii) calculating the average of corresponding rank values from 

different samples and re-sort to its original position. This results in a normalized matrix 

norm(B×N), where each sample will have normalized-RpB (nRpB). Subsequently, Z-score 

scaling is applied over the normalized matrix to generate znorm(B×N) which is calculated 

by the distance of each nRpB from a mean value of total nRpB in the sample, divided by 

the standard deviation as follows. 

(" =
 " )  

*
 

Where,  " is RCI of a given window from population  , (" is Z-score normalized RCI of 

 ",   and * is mean and standard deviation of the population. Quantile normalized results 

are only meant to be considered for further analysis whereas Z-score normalization is 

meant for overall inter-target comparison (as plots) only. 

5.2.2. Output 

Epimetheus generates three types of outputs: (a) visualization files, (b) plots and (c) 

normalized BED files. Visualization files are text files (in bedgraph format) generated for 

raw and normalized RCI which can be used in visualization browsers, and can be used for 
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other downstream analyses as well. To assess the overall difference among samples 

distribution and the normalization effect, a MA transformation plot is generated to 

compare samples pairwise before and after normalization. The tool is also capable of 

extracting target specific (promoter/gene-body/custom regions) matrix of raw and 

normalized read counts, and produce average RCI plots for the same (refer Figure 25 for 

example plots). 

One of the salient features in Epimetheus as compared to existing methods is that it can 

produce normalized BED files, representing the changes (normalization effect) in 

alignment BED file; thus it can be directly used for further downstream analysis. With 

respect to the change in read counts after normalization for a given bin, increasing counts 

post normalization is done by adding new reads aligned randomly to a new position within 

the bin; similarly, existing reads are removed to decrease read counts. As BED format is 

the most preferred input format in most of the ChIP-seq analysis, Epimetheus enables the 

direct use of normalized data for downstream ChIP-seq analysis.  
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Figure 25. A scheme of the Epimetheus workflow with illustrative plots (refer chapter 5.2.1 for 

detailed explanation). Apart from normalization, Epimetheus provides illustrative plots to 

understand the enrichment over promoter region (TSS plot), gene body (gene body plot for RNA 

PolII) and MA plot to compare the samples before and after normalization. Additionally, it 

provides BEDGRAPH files which can be loaded into genome browsers to visualize the data. 
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5.2.3. Evaluation of Epimetheus on multiple datasets 

Epimetheus performance has been validated by using biological replicates of H3K4me3 

profiles in HepG2 cells (Ernst et al., 2011). Prior to normalization, these replicates 

exhibited highly similar numbers of promoter-enriched sites as expected. However, most 

likely due to technical variability they exhibited significant differences in the enrichment 

level and signal-noise ratios. Epimetheus adjusted such amplitude differences considering 

the signal-noise ratio disparity among samples. To verify the consequence of normalization 

on peak calling approach, MACS was used for the HepG2 raw and normalized data sets. 

Though few differences in peaks counts (due to fluctuation in less enriched sites) were 

observed, the overall the amplitude differences were corrected (Figure 26A). Using 

ChromHMM, we compared chromatin state attributions before and after normalization 

using the previously reported profiles of nine different histone marks in nine cell lines 

(Ernst et al., 2011). The comparison revealed small but significant changes in chromatin 

state annotation (2-7%) of genomic bins. Importantly, chromatin state annotations of 

several genes changed from active to poised and vice versa, which generally coincided 

with their expression levels (Example gene locus: MYO7A Figure 26B. 

Epimetheus has been applied to evaluate the relative enrichment levels of H3K27me3, 

H3K4me3 and RNA polymerase II (hereafter termed as PolII) recruitment in temporal 

analyses of F9 cell differentiation (Mendoza-Parra et al., manuscript submitted). The raw 

RCIs of �repressive� H3K27me3 marks showed an unexpected, apparently variable 

enrichment in the Hoxa cluster region over time. However, after normalization, the 

previously described collinear gene activation pattern (Kashyap et al., 2011; Montavon and 

Duboule, 2013) with progressive loss of �repressive� and gain of �active� histone marks, 

and PolII recruitment was observed and confirmed by qPCR (Figure 26C). 
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Figure 26. Effects of data normalization. (A) Left panel; Pie charts illustrating common and 

replicate-specific promoter-associated enrichment events derived from a published dataset before 

and after normalization. Right panel; Enrichment plots over annotated promoters shows that 

normalization results in more similar RCI profiles for common peaks and more distinctive profiles 

for replicate-specific enrichments. (B)  Illustration of change in chromatin state annotation for the 

MYO7A locus using the same dataset processed with ChromHMM; note that the MYO7A promoter 

was annotated �active� from the raw data and changed to �poised� post normalization, which 

correlated with the absence of gene expression [Encode data: ENCSR962TBJ]. (C) Signal intensity 

profile of H3K27me3 enrichment over the Hoxa cluster during retinoic acid-induced differentiation 

of F9 mouse embryo carcinoma cells. Note that in contrast to the raw data normalization results in 

a gradual decrease of the H3K27me3 profile over time, which correlates with the qPCR data 

displayed at the bottom. 
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5.2.4. Discussion 

Inherent sequencing depth variation in NGS has made normalization imperative when 

performing NGS-profiles comparison in the context of their relative signal amplitude 

levels. Correction by total number of reads (linear normalization) has been widely used in 

earlier days, especially in RNA-seq. However, one of the main differences between ChIP-

seq and other technologies is that specificity and efficacy of the pull-down methods which 

gives rise to inevitable varying background noise. Such background noise and alignment 

related bias makes the peak callers unable to differentiate accurately less enriched peaks 

(small bumps) from background. For the same reason linear normalization cannot be 

applied to ChIP-seq data. When different antibodies yield different level backgrounds in 

samples, the normalization by total number of reads would create bias. Hence, to correct 

different level of intensities among samples, we employed quantile normalization in 

Epimetheus as it is based on a ranking approach. More importantly, quantile normalization 

can handle multiple samples as opposed to LOWESS which can perform only pair-wise 

normalization. 

Importantly, as Epimetheus is a genome-wide approach, it is annotation free, thus avoiding 

bias from external factors. Currently existing tools depend on peak callers' enrichment 

predictions and/or WCE (whole cell extract, also known as input). Such dependency could 

lead to potential sources for artifactual normalizations given that diversity in available peak 

callers� results and the bias introduced by an external dataset like WCE. While most of the 

control datasets used are generally enrichment-less, few WCE controls can exhibit 

enrichment-like artifactual patterns (for example, GSM788366 and GSM768313) leading 

to false negative annotation in enrichment sites identification. This will not only affect the 

peak calling but will also significantly influence the normalization outcomes given the 

importance of population/distribution in normalization methods. In that context, we have 

demonstrated that a selection of population (genome or targeted regions) can influence the 

normalization (refer Supplementary Figure 3 in the attached manuscript). Hence, a prior 

quality assessment over control datasets, as for IP assays, is strongly suggested to identify 

and exclude poor quality datasets from the analysis. 
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While most of the tools focus on normalization only for differential analysis, the above 

studies on biological replicates and chromatin state analysis illustrates the need for 

normalization in any comparative or integrative analysis as well. Though normalization 

may seem irrelevant in position level comparison of peaks/enrichments, we have observed 

that amplitude changes influence identification of enrichments. Similarly, changes in 

amplitude are significant in analyses where enrichment is binarized like that performed by 

ChromHMM where identification of different patterns and level of enrichments is crucial. 

Compared to existing tools, the more robust and sophisticated options in Epimetheus are 

that it (i) can be customised to variety of requirements, (ii) can be applied genome-wide, or 

to specific regions (when justified), and (iii) can exclude specific regions, which could be 

considered to bias the global normalization (e.g. repetitive elements). More importantly, 

Epimetheus provides analytical outputs which are exportable to variety of downstream 

analyses.   
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ABSTRACT 

Exponentially increasing numbers of epigenomic datasets in public repositories like GEO, which 

harbors presently several thousands, constitutes an enormous source of dramatically expanding 

information. This fosters and supports a growing interest in integrative and comparative studies to 

explore the gene regulatory mechanisms to its core. Today�s challenge is to define functionally 

informative local and global patterns of chromatin states for different (patho-) physiological systems in 

a multi-dimensional perspective. Critically, the most preferred Chromatin ImmunoPrecipitation-

Sequencing (ChIP-Seq) is inherently prone to significant variabilities embedded in individual assays, 

which pose several types of bioinformatic challenges for comparative studies, such as normalization 

to adjust sequencing depth variation. Currently existing normalization methods either apply linear 

scaling corrections and/or are restricted to specific genomic regions. To overcome these restrictions 

we developed Epimetheus, a genome-wide quantile-based multi-profile normalization tool for histone 

modification data and related datasets. 

INTRODUCTION 

Epigenetics is a crucial stratum of the complex multi-layered gene regulatory mechanism. With the 

advancements and cost-reduction in high-throughput sequencing, next generation sequencing (NGS) 

technology has become a quick and comprehensive medium to explore epigenome and related 

studies. Studying the epigenome status (and its reorganisation) involves sequencing of several 

histone modifications with the aim of characterising the state of chromatin in different genomic regions 

and between different samples. However, its assessment via chromatin immunoprecipitation is 

inherently prone to significant variabilities embedded in individual assays, posing different 

bioinformatic challenges for comparative studies - a general caveat in Big Data integrative analysis. 



Multiple factors like antibody efficacy, sequencing library accuracy and depth have a direct impact on 

data quality and thus on any downstream analysis. Therefore, it is imperative to evaluate the quality of 

data prior to comparative studies (see for example, www.ngs-qc.org)(1). But even high quality 

datasets generally exhibit significant technology/user-derived signal amplitude differences, which 

require normalization prior to comparative analysis. Initially linear normalization, where the counts will 

be represented relative to total number of reads, was widely used. However, inherent differences in 

signal-noise ratio among samples (for instance generated with different antibodies) proved linear 

normalization to be unsuitable for ChIP-seq. 

While significant computational efforts have been made in the past for single ChIP-seq data analysis, 

sophisticated computational and experimental methods to correct technical variabilities among multi-

sample ChIP-seq analyses is acquiring importance. For example, Taslim et al.,(2) proposed a two-

step non-linear approach, based on a locally weighted regression (LOESS) method to correct such 

differences among ChIP-seq data. LOESS�s restriction to pairwise normalization led us to develop 

Polyphemus(3), a multi-profile normalization approach for RNA polymerase II (RNA PolII) datasets 

based on quantile correction, a widely used method in microarray studies(4). Since then, other 

quantile based normalization tools have been developed like ChIPnorm(5) and Epigenomix(6) for 

histone modification data. 

Apart from previously described ChIP-seq specific tools, few popular RNA-seq based tools like 

DESeq(7) and EdgeR(8) are also used for ChIP-seq data. But these tools are limited to linear scaling, 

unlike RNA-seq, it is problematic considering inherent technical variation (signal-noise ratio) in ChIP-

seq. More importantly, all the above-mentioned tools are limited in different aspects, namely (i) 

annotation dependency, (ii) restriction to specific regions, (iii) less user-friendly and (iv) scalability to a 

variety of downstream analyses. Moreover, the existing approaches are mostly intended for particular 

analysis, thus their normalization outputs are not readily exportable to several other basic ChIP-seq 

analyses involving multiple samples; also most of these tools require some programming skills. To 

overcome these restrictions we developed Epimetheus, a quantile-based multi-profile normalization 

tool. The genome-wide normalization procedure applied by Epimetheus enables optimal processing of 

different enrichment pattern datasets such as broad/sharp histone modification or PolII-seq profiles, 

chromatin accessibility profiles generated by FAIRE-seq(9) or ATAC-seq(10), or DNase-seq(11), as 

well as MeDIP-seq  (12). Furthermore, users have the possibility to exclude specific genomic regions 

like, for example, repetitive elements or any other genomic locations for which artifactual enrichments 

might be expected.   

MATERIAL AND METHODS 

The basic assumption in quantile normalization is a common read-count distribution of compared 

datasets. In cases where the enrichment events under comparison comprise factors that are 

implicated in house-keeping events, it is reasonable to assume that the distribution of the read counts 

for a given target will be similar across different cell types(5). As for gene expression analysis (RNA-

seq and microarrays) or RNA polymerase II enrichment (Polyphemus(3)), where quantile has been 

widely used, histone modifications are expected to occur at house-keeping as well as at cell/tissue-



specifically expressed/repressed genes. With this assumption, genome-wide quantile normalization is 

applied separately for each target. Subsequently Z-score scaling is used such that each dataset is 

represented relative to its mean of distribution, which renders different target histone data comparable. 

The Epimetheus pipeline involves four main steps: (i) processing raw alignment data, (ii) building read 

count intensity (RCI) matrices, (iii) two subsequent levels of normalization (quantile and Z-score) and 

(iv) generating the outputs and plots (detailed scheme - Supplementary Figure 1). 

Processing of data 

As quantile normalization is an absolute read count based approach, any region or technical specific 

bias will over/under-represent the read counts and lead to bias in downstream analyses. Clonal reads 

(i.e., PCR duplicates) constitute such a technical bias. Unfortunately, some level of clonal read 

contamination is unavoidable in sequencing datasets involving PCR. Epimetheus will remove such 

clonal reads from the raw alignment data, unless otherwise specified by the user. There are few 

alignment and platform-specific biases that should be addressed prior to analysis as these are 

specific to each data and pipeline. Particularly recommended is to remove reads with more than one 

perfect alignment and those aligned to repeat and centromere regions. Reads are elongated to a 

specified length to represent the average fragment length (150-300bp) as typically only the first 50-

100 base pairs are sequenced in ChIP-seq. 

Read count intensities 

For quantile normalization, an approach similar to that of Xu et al. 2008(13) and Mendoza-Parra et al., 

2011(3) is followed, where the reference genome �G� (or custom regions for target-specific 

normalization) is divided into small non-overlapping sequential bins and the RCI for each bin is 

calculated. Size (�S�) of the bin can be from 100   S ! 500bp depending on the enrichment pattern 

(sharp/broad) of histone mark. We choose an optimal 100-500bp bin size to preserve the shape of 

enrichment pattern(1). 

Let X be a target histone mark and Xa & Xb be two samples of same target. Genomic bins for Xa will 

be xa1, xa2, xa3�xan whereas for Xb will be xb1, xb2, xb3�xbn, where �n� depends on the sizes of �S� and 

�G� (G/S). Reads, which overlap with each bin, are counted to calculate reads per bin (RpB) 

distribution for each sample. As a result, Xa = {xai | 1  i ! n} and Xb = {xbi | 1  i ! n} will be two libraries. 

Similarly Ya and Yb will be two different libraries of another target histone mark. 

Normalization 

Using RCI calculation results, a B×N matrix is built, where B is the total number of bins (for a given �G� 

and �S�) and N is the number of samples. In case of multiple histone marks in the analysis, similarly 

B×N1, B×N2, etc., will be generated.  A quantile based approach cannot be applied to normalize 

different histone marks with different enrichment patterns as the distribution and amplitude will be 

highly dissimilar which would nullify the initial assumption. The differences in coverage among 

samples are adjusted to same level by (i) sorting each sample�s RpB in ascending order individually, 



(ii) ranking the values for each sample individually and (iii) calculating the average of corresponding 

rank values and re-sort to its original position. 

This results in a normalized matrix norm(B×N), where each sample will have normalized-RpB (nRpB). 

Subsequently, Z-score scaling is applied over the normalized matrix to generate znorm(B×N) which is 

calculated by the distance of each nRpB from a mean value of total nRpB in the sample, divided by 

the standard deviation. 

Output 

In contrast to previously described methods, Epimetheus produces normalized BED files by 

adding/removing reads with respect to normalized per-bin RCIs using raw alignment BED files as 

reference. With respect to the change in read counts after normalization for a given bin, increasing 

counts post normalization is done by adding new reads aligned randomly to a new position within the 

bin; similarly, existing reads are removed to decrease read counts. As BED format is the most 

preferred input format in most of the ChIP-seq analysis, Epimetheus enables the direct use of 

normalized data for downstream ChIP-seq analysis.  

Along with normalized BED output, Epimetheus produces three types of outputs: (a) visualization files, 

(b) plots and (c) normalized BED files. Visualization files are text files (in bedgraph format) generated 

for raw and normalized RCI, which can be used for other downstream analyses as well. To assess the 

difference among samples and the effect of normalization, a MA transformation plot(14) is generated 

to compare samples pairwise before and after normalization. The tool is also capable of generating 

target specific (promoter/gene-body/custom regions) matrix with RpB along with corresponding 

average RCI plots is generated. 

RESULTS 

Datasets used for the evaluation purpose are subjected to quality control using NGS-QC (www.ngs-

qc.org). To avoid biases, clonal reads were excluded from the analysis in all datasets. 

Biological replicates 

Epimetheus performance has been validated by using biological replicates of H3K4me3 from nine 

different cell lines (GEO file GSE26320)(15). Biological replicates are a standard procedure to reveal 

the effect of normalization, as the datasets are expected to be highly similar but may differ in 

enrichment amplitudes. However, possibly due to technical variability some of these replicates 

exhibited significant disparities in signal-noise ratios and some differences in the number of 

enrichment sites. As illustrated in Supplementary Figure 2, GM12878 data exhibit varying signal-noise 

ratio, whereas HMEC data exhibit similar background and less enriched sites amplitude level but 

significant differences for the highly enriched sites. In such a situation, linear normalization fails to 

correct and instead generates artifacts (Supplementary Figure 2A). Epimetheus adjusted such 

amplitude differences considering the signal-to-noise ratio disparity among samples given its ranking-

based approach (Supplementary Figure 2B). To highlight its effect, an average RCI TSS plot displays 

amplitude differences among different level of enrichment within sample (background, less, medium 



and high) before and after normalization (Supplementary Figure 2C). To verify the consequence of 

normalization on basic ChIP-seq pipeline, peak calling was performed for the HepG2 raw and 

normalized data sets. Though few differences in peaks count (due to fluctuation in less enriched sites) 

were observed (Figure 1A), the overall amplitude differences were corrected (Figure 1B). Interestingly, 

the peaks size was also different between replicates with one being broader than the other. An overall 

shift in amplitude is evident with LOWESS fit line in MA transformation plot(14) for the raw and 

normalized data between replicates (Figure 1C). 

Chromatin state analysis and Peak calling with normalization 

To illustrate performance and scalability of Epimetheus in multi-profile analysis, chromatin state 

analysis was performed using ChromHMM(16) on nine cell-lines with nine histone marks datasets 

(previously mentioned GSE26320). ChromHMM identifies enriched regions based on Poisson 

background distribution, which does not account for differences in background locally. To avoid that, 

peak calling was carried out on raw and normalized data and peak regions were provided as input to 

annotate enriched regions for chromatin state analysis. Consistency of peaks before and after 

normalization for some samples suffered depending on the quality and coverage of the data (Figure 

2A).  Interestingly, datasets that shows significant disparity between peaks from raw and normalized 

data are of low quality (using the NGS QC Generator; www.ngs-qc.org) or coverage. For example, the 

H3K27ac profile of the H1 cell line exhibits higher disparity between peaks from raw and normalized 

data; as only one replicate data is available, this data set resulted in low coverage and quality of the 

data - CCD (where AAA is highest and DDD is lowest).  Similarly, few other datasets which show high 

disparity is influenced by either quality or coverage. 

Epimetheus normalization had less effect in chromatin states prediction except few enrichment level 

differences (Figure 2B and 2C). But significant differences were observed in chromatin state 

annotation of individual genomic bins (2-7%) after normalization (Figure 2E). GM12878, NHEK and 

NHLF cell lines shows fewer changes in chromatin state annotation but rest of the cell lines show 

more than 5% change with few of them occurring in promoter regions. Importantly some genes 

presented their promoter chromatin status changed between active and poised state. For example, 

chromatin state annotations of MYO7A gene changed from active to poised state due to prominent 

enrichment of H3K27me3 mark post normalization (Figure 2D). On comparison with transcriptome 

data downloaded from ENCODE(17), no expression signal was found, which correlates well with the 

chromatin state annotation assessed after, but not with the one before normalization. 

Temporal epigenetics dynamics during retinoic acid-induced F9 cell differentiation 

We then evaluated Epimetheus performance on time-series data where distinct gradual gain or loss of 

amplitude is expected. In this perspective, we used the well-characterized F9 mouse embryonal 

carcinoma (EC) cell model differentiated under retinoic acid treatment(18). In this study, cells after 

treatment of all-trans retinoic acid (RA) were collected over the first 48 hours (0h, 2h, 6h, 24 and 48h). 

Each of the collected samples was used for assessing the epigenetic status by profiling the repressive 

histone modification mark H3K27me3, the transcriptionally active modification mark H3K4me3 and 



recruitment of RNA polymerase II (data unpublished). It has been reported that Hoxa cluster exhibits 

collinear gene activation pattern during differentiation where gradual gain of H3K4me3 mark and PolII 

recruitment but loss of H3K27me3 mark over the time(19)(20). But significant and non-uniform 

disparity in overall coverage among samples was observed. On inspection over Hoxa cluster, all three 

targets present variable enrichment levels on the Hoxa cluster over the assessed time points. 

Epimetheus corrected those differences as illustrated in Figure 3. After normalization, H3K27me3 

mark displays a gradual decrease whereas active mark H3K4me3 and PolII recruitment shows a 

gradual gain over time presenting the previously described collinear gene activation pattern. 

To further support the normalization results, we validated the H3K27me3 enrichment levels on various 

regions of the Hoxa cluster using a quantitative PCR (qPCR) assay. As illustrated in Figure 3, qPCR 

results are correlating with the same pattern as in normalization results and collinear gene activation 

pattern. 

DISCUSSION 

Demonstration of normalization effect on variety of datasets and analyses clearly implicates that 

normalization is imperative when performing NGS-profiles comparison in the context of their relative 

signal amplitude levels. Though normalization may seem irrelevant in position level comparison of 

peaks/enrichments, we have shown in this study (Figure 2 and 3) that amplitude changes influence 

identification of enrichments. Similarly, changes in amplitude are significant in analyses where 

enrichment is binarized like that performed by ChromHMM (Figure 2) where identification of different 

patterns and level of enrichments is crucial. 

In contrast to existing normalization tools, Epimetheus provides analytical outputs compatible with 

variety of downstream analyses. More importantly, the previously described tools depend on peak 

callers' enrichment predictions and/or control datasets (WCE or input). Given the diversity in available 

peak callers (and their associated multiple parameters) and the bias introduced by an external dataset 

like WCE could lead to a potential sources for artifactual normalizations. Specifically, while control 

datasets used are generally optimal, a few WCE controls exhibits enrichment-like artifactual patterns 

(for example, GSM788366 and GSM768313) leading to true negative annotation in enrichment sites 

identification which will significantly influence the normalization outcomes produced by tools like ChIP-

norm. For this reason, a prior quality assessment over control datasets, as for IP assays, is strongly 

suggested (www.ngs-qc.org). Like any other analysis, performance of Epimetheus also depends on 

quality of the data. 

Similarly, we have also demonstrated that selection of population (genome or targeted regions) can 

influence the normalization. In fact, comparison of different target regions (approach similar to 

ChIPnorm but different fold values of Input Vs IP were used to identify enriched regions) revealed 

population related biases in normalization results (Supplementary Figure 3). Compared to existing 

tools, the more robust and sophisticated options in Epimetheus are that it (i) can be customised to 

variety of requirements, (ii) can be applied genome-wide, or to specific regions (when justified), and 

(iii) can exclude specific regions, which could be considered to bias the global normalization (e.g. 

repetitive elements). 



Based on the above results, it is evident that normalization should be made pre-requisite for any 

comparative analysis on epigenome data. While most of the tools focus on normalization only for 

differential analysis, above studies on biological replicates and chromatin state analysis are 

supporting the need of normalization on any comparative, integrative and differential analysis. While 

linear scaling and RNA-seq based tools alone are to an extent incapable to address the dynamic 

variations embedded in ChIP-seq. Similarly, quantile and LOWESS based ChIP-seq specific 

normalization tools are intended for specific analysis and not scalable to other type of analysis. In 

respect to above issues, Epimetheus is developed to have non-linear normalization with scalability to 

variety of downstream analysis. 

AVAILABILITY 

EPIMETHEUS has been written in combination of R, C and Perl and is made freely available at 

https://github.com/modash/Epimetheus 
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FIGURES LEGENDS 

Figure 1. Effects of data normalization. (A) Pie charts illustrating common and replicate-specific 

promoter-associated enrichment events derived from a published dataset2 before and after 

normalization. (B) Enrichment plots over annotated promoters show that normalization results in more 

similar RCI profiles for common peaks and more distinctive profiles for replicate-specific enrichments. 

(C) MA transformation plot before and after normalization showing the overall effect of normalization 

between replicates. (D) An example region of signal profile displaying the amplitude difference 

between replicates before and after normalization (note the difference in amplitude range for each 

track). 

 

Figure 2. Chromatin state analysis using ChromHMM. (A) Illustration of peaks� overlap between raw 

and normalized data for nine different marks on nine different cell-lines distinguished in shape and 

colour respectively. (B) Emission parameters of ChromHMM describing chromatin state differences 

between raw and normalized peaks. (C) An example region illustrating the change after normalization 

corresponding to the change in chromatin state 14. (D) Illustration of change in chromatin state 

annotation for the MYO7A locus using the same dataset processed with ChromHMM; note that the 

MYO7A promoter was annotated �active� from the raw data and changed to �poised� post 

normalization, which correlated with the absence of gene expression [Encode data: ENCSR962TBJ]. 

(E) Stacked bar chart showing the percentage of chromatin state annotation/bin changed after 

normalization. 

 

Figure 3. Signal intensity profile of H3K4me3, H3K27me3 and RNAPolII enrichment over the Hoxa 

cluster during retinoic acid-induced differentiation of F9 mouse embryo carcinoma cells. Note that in 

contrast to the raw data normalization results in a gradual decrease of the H3K27me3 profile and 



gradual increase of H3K4me3 & RNAPolII profiles over time, which correlates with the qPCR 

validation of H3K27me3 data displayed at the bottom. 
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Supplementary Figure 1 A scheme of the workflow of Epimetheus with 

illustrative plots. 

Supplementary Figure 2 Epimetheus-based normalization of biological replicates 

using GSE26320 

Supplementary Note A detailed summary on methodology of Epimetheus, 

datasets used and steps followed for different 

comparisons 

 

  



 

 

Supplementary Figure 1. A scheme of the workflow of Epimetheus with illustrative plots. 

 



 

Supplementary Figure 2. Epimetheus-based normalization of biological replicates using GSE26320. 

(A) Signal intensity display of H3K4me3 profiles illustrating the effect of quantile normalization 

compared to linear normalization between replicates exhibiting different background-to-signal 

enrichment levels. (B) Scatter plot of all raw RCIs (red) versus normalized RCI (green). (C) 

Comparison of TSS plots of replicates before and after normalization stratified into four intensity levels; 

color code is given below plot. Note the normalization effect on high intensity (red) enrichments. (D) 

MA plot of raw versus normalized RCIs. 

  



Comparison with ChIPnorm-like approach 

To illustrate the preference of choosing genome-wide normalization over target specific normalization, 

we compared both methods using Epimetheus for genome-wide and ChIPnorm(5) like approach for 

target specific approaches (methodology explained in Supplementary Note). We compared both the 

approaches on datasets with different enrichment patterns like H3K4me3, H3K27me3 and FAIRE-seq. 

ChIPnorm uses input vs IP fold change >1 as a criterion to identify enrichment sites. To verify the 

effects on extreme cases, we considered fold change of input vs IP difference range from 0 to 4. We 

observed significant difference from genome-wide approach and also within different fold change 

datasets in normalization results. Specifically, when fold change criteria of input vs IP is gradually 

increased for identifying enriched regions, it resulted in gradual increase of discrepancy in differential 

enrichment (fold change) between samples (Supplementary Figure 3B). Though the more discrepancy 

is observed on very stringent fold change criteria, it is also evident that it depends on enrichment 

pattern and its population similarity/diversity between samples. As it is illustrated in Supplementary 

Figure 3B, sharp enrichment H3K4me3 is relatively less affected than highly diverse FAIRE-seq data 

and broad enrichment like H3K27me3 where signal intensities are less pronounced. 



 

Supplementary Figure 3. Comparison of genome-wide and enriched regions (ER) only normalization 

using GSE68291 (unpublished). (A) An illustration of change in normalization results with respect to 

difference in selection of enriched regions on comparison of individual sample�s normalization result 

from genome-wide and ER only normalization approach. Different fold change criteria (Input vs IP) is 

used to identify enriched regions while its corresponding bins are used from genome-wide 



normalization approach (B) Effect of selection in target specific normalization in differential analysis; 

fold change comparison between T0 and T48 sample from H3K4me3, FAIRE-seq and H3K27me3 

illustrates different selection in identifying enriched regions has bias differential fold changes between 

samples. (C) MA plot illustration to display the normalization effect on enriched regions (IP vs input 

fold >1) where LOWESS fit is better in genome-wide normalization. 

 

Supplementary Note 

Datasets 

Datasets for the comparative and validation analysis on nine cell lines (GSE26320(1)) were 

downloaded from GEO. Data for F9 cell line data (GSE68291 - unpublished) for temporal analysis was 

generated in-house. 

Processing and alignment of NGS data 

For chromatin state analysis on nine cell lines, aligned BED files were directly downloaded and used 

for the analysis. For F9 cell line data, reads were aligned against mm9 genome using Bowtie (v 

1.1.1)(2). Clonal reads were removed before analysis and reads were elongated to 200bp for both the 

analyses. 

Peak Calling 

For peak calling, MACS(3) was used with 1e-9 p-value and no-model option. SICER(4) was used to 

identify broad histone marks islands (H3K27me3, H3K36me3 and H4K20me1) in the nine cell line 

chromatin state analysis. 

ChromHMM 

We performed ChromHMM with peaks BED co-ordinate as input. Peaks from both raw and normalized 

BED files were provided as input separately and ChromHMM was performed with 400 iterations to 

predict 15 states and annotated with custom scripts for annotation. 

Identification of enriched regions (ER) for ER specific normalization 

As ChIPnorm is written in MATLAB (commercial software), we couldn�t verify it in first hand; instead 

we wrote scripts following the outline of ChIPnorm workflow. Samples from F9 cell line data were 

considered for the comparison where T0 and T48 samples are used from three different marks 

H3K4me3, H3K27me3 and FAIRE-seq. Three main steps in this approach is 1) exclusion of 

background regions 2) Input and IP are normalized together using quantile and 3) identifying enriched 

regions based on fold change of Input vs IP. First steps are similar as in Epimetheus and Xu et al 

where genome is binned into small windows and read counts intensity (RCI) matrix is built for each 

sample. We then used Poisson distribution to identify number of reads that can be randomly filled in 



bins by using total number of reads, effective genome size (with P-value of 0.995). It is followed by 

applying quantile normalization between input and IP to bring them to same scale to perform fold 

change analysis to identify enriched bins. In general, fold change >1 is used to identify ER whereas 

we altered this criterion to different ranges to see the influence of population selection in quantile 

normalization. We selected fold change greater than 0, 1, 2, 3 and 4. Fold change 0 would include 

bins in IP which has even one read count more than input where other fold changes consider 

enrichment based on the ratio. To compare geome-wide and ER only normalization, for each fold 

change normalization data we considered only its corresponding bins from genome-wide not the whole 

genome bins. Also, to compare the effect of population selection on differential analysis result 

between samples, we selected input vs IP fold change >3 range bins as the reference as fold change 

>4 has very few bins. 

Plots 

All the plots were generated using custom R scripts; ChromHMM chromatin states heatmap was 

generated using MeV (Multiple Experiment Viewer) suite and intensity profiles display was generated 

using UCSC genome browser(6) and IGV(7). 

qPCR analysis for F9 data 

Details of oligos used for the qPCR validation of the data on Hoxa cluster region confirming the 

normalized results. 

Oligo Name Sequence 5' to 3' Scale 

( mole) 

Purification 

HoxA_Rctrl_F GCTGCAGGGGATAAACACAT 0.05 DST 

HoxA_Rctrl_R GCTGGAACATTAAGGCCAAA 0.05 DST 

HoxA10_F ATGAGCGAGTCGACCAAAAA 0.05 DST 

HoxA10_R ATGTCAGCCAGAAAGGGCTA 0.05 DST 

HoxaA4_F TCCTCGAAAGGAGGGAACTT 0.05 DST 

HoxaA4_R CGACACCGCGAGAAAAATTA 0.05 DST 

HoxA3_F GTCTGGAGTTGGGGGATTTT 0.05 DST 

HoxA3_R ACCTAGCCTCCAGACCCTGT 0.05 DST 
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5.3. The inactive X chromosome is epigenetically unstable and 

transcriptionally labile in breast cancer 

The tools I have developed during my thesis - NGS QC, the QC indicator database and 

Epimetheus - both enable and simplify the comparative analysis of large numbers of 

sequencing datasets. These tools were essential in a study, where we addressed an 

important biological question, namely the aberrations of X chromosome inactivation in 

breast cancer cells. 

X chromosome inactivation is best-studied example of chromosome-wide epigenetic 

regulation, which involves the silencing of approximately one thousand genes during early 

embryonic development. The disappearance of the Barr body, the microscopically visible 

manifestation of the inactivated X chromosome, is considered a hallmark of breast cancer, 

although it has remained unclear whether this phenomenon corresponds to genetic loss or 

to epigenetic instability and transcriptional reactivation. X chromosome-wide allele-

specific analysis could reveal the genes that are escaping inactivation, and their chromatin 

status, especially in breast cancer cells. In a collaborative study between the teams of 

Hinrich Gronemeyer and those of Edith Heard, Marc-Henri Stern and Anne Vincent-

Salomon of the Curie Institute, we examined the epigenetic status of inactive X 

chromosome in normal (HMEC) and breast cancer (ZR-75-1, SK-BR-3 and MDA-MB-

436) cells. The main focus of the study was on the integrated analysis of gene expression, 

chromatin status and nuclear organization of the inactivate X chromosome in breast cancer, 

using allele-specific and single-cell approaches. My contribution to the study was in the 

specialized bioinformatic aspects of allele-specific chromatin status and integrated gene 

expression analyses. Allele-specific regulation and expression analysis is a challenging 

integrative effect, as three different datasets intersect - Exome-seq/SNP6, RNA-seq and 

ChIP-seq. Below I will briefly summarize the methodology that has been used to identify 

allelic and epigenetic status of X-linked genes and X chromosome respectively.  

5.3.1. Allele-specific expression and chromatin state analysis of X chromosome 

Cell line specific heterozygous variations are the key factors in the identification of allele-

specific expression or regulation. A heterozygous locus contains two different alleles, thus 
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two different bases will be observed. These heterozygous loci can help us to understand the 

transcriptomic and epigenomic status of each allele. In order to identify cell line-specific 

heterozygous variations, we have used SNP6 Affymetrix microarrays, which cover 

906,600 SNPs and additional 424,000 SNPs in sex and mitochondrial chromosomes. First, 

to identify the cell line-specific heterozygous variations, SNP6 experiment was performed 

using genomic DNA (termed hereafter �gDNA SNP6�). Second, to identify the allelic 

status in RNA expression, SNP6 experiment was performed using nascent RNA (termed 

hereafter �cDNA SNP6�). Using gDNA and cDNA SNP6 information, allelic expression 

score was calculated for each SNP. Based on allelic expression score, each SNP was 

classified into five categories (i) bi-allelic expression, (ii) mono-allelic expression, (iii) 

marginal call (in-between mono and bi-allelic expression), (iv) contradictory call 

(disagreement between gDNA and cDNA SNP6 data), and (v) no expression or non-

informative locus. Such SNP classification was summarized at the gene level to provide 

gene-based allelic status (refer Supplementary material of attached manuscript for the 

detailed discussion). 

In order to identify epigenetic status of chromosome X, and allelic status of genes for 

which SNP6 has less SNP coverage, we performed transcriptome and epigenome 

sequencing. For epigenetic profiling, we performed ChIP-seq targeting histone 

modifications H3K4me3 (active) and H3K27me3 (repressive). Further, to trace the 

transcriptional activity, we performed ChIP-seq targeting RNA PolII and we performed 

mRNA sequencing for transcriptome profiling. As SNP6 can identify the known SNPs 

only and that it is mostly focussed on exonic regions, we performed variation calling on 

three different types of datasets - exome, ChIP-seq and transcriptome data - to collect more 

informative variations that are wide spread in the chromosome including regulatory 

regions. For ChIP-seq, to increase the coverage and confidence of variation calling, we 

merged different ChIP-seq datasets (input + all IPs) for each sample. Combining variations 

from each type of datasets provided a comprehensive collection of variations to verify the 

allelic status of epigenome and transcriptome. With the help of these comprehensive 

variations, we calculated allelic expression ratio (refer glossary) for each X-linked genes 

and analysed chromatin status of cancer-specific escapees (refer Figure 21 for the 

workflow scheme). We then calculated allelic imbalance based on number of heterozygous 
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variations and their read count share between alleles for both epigenome and transcriptome 

data. Genes that have bi-allelic expression ratio in SNP6, and RNA-seq analysis are 

identified as �escapees�. A comparison of normal and breast cancer cells revealed list of 

genes which are specific to each cancer cell-line, termed as cancer-specific �escapees�. 

In general, perturbation (divergence from normal cells) of H3K27me3 was observed in Xi 

in breast cancer cells (Figure 27A). Other than overall perturbation in H3K27me3 in breast 

cancer cells, an abnormal presence of RNA PolII and H3K4me3 was observed at cancer-

specific escapees, thus complementing the transcriptome results (Figure 27B). Most of the 

cancer-specific escapees displayed bivalent chromatin which was characterized by both 

active (H3K4me3 and RNA PolII) and repressive (H3K27me3) marks. Several cancer-

specific escapees identified haven previously been shown to be involved in cancer, such as 

HDAC8 which is shown to be involved in neuroblastoma pathogenesis (Oehme et al., 

2009). Similarly, several known normal escapees from XCI such as RAB9A, BCOR, 

RPL39 and PNPLA4 were repressed in cancer cells due to aberrant epimutations. BCOR 

gene has been shown to have recurrent mutations that resulted in truncation of encoded 

proteins in retinoblastoma (Zhang et al. 2012). 
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Figure 27. Allele specific analysis led to the identification of genes escaping XCI specific to 

cancer cell-lines. (A) A scheme of H3K27me3 enrichment across the entire X chromosome shows 

a regional loss of inactive X. Regional loss of inactive X is highlighted �active X only� and the two 

main H3K27me3 enrichment loss in ZR-75-1 and MDA-MB-436 is highlighted in red box. Red 

and green domains represent H3K27me3 and H3K9me3 enriched regions, respectively, as 

identified in normal human cells (Chadwick, 2007) (B) Increased abundance of H3K4me3 marks 

and RNAPolII recruitment are displayed as heatmap plots, as escapee genes are active in both 

alleles unlike what is observed in a normal cell-line (HMEC). 
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5.3.2. Discussion 

X chromosome inactivation study is a paradigm for epigenetics study experimentally and 

very challenging bioinformatically. With the currently available technologies, 

heterozygous variations are the only means to differentiate mono and bi-allelic gene 

expression globally. Hence, the whole analysis is restricted to the genes with handful 

number of informative heterozygous variations, where even homozygous variations are not 

useful. Even more so both gDNA and cDNA SNP6 technologies contain SNP regions 

widespread with mean spacing between probes around 3Kb, concentrated mostly on coding 

regions. To collect more informative variations, we have used ChIP-seq data to call 

variations by merging all different marks as they come from same cell-line. Epimetheus 

have been used to normalize the profiles among samples to identify the difference in 

enrichment overall in H3K27me3 and for comparing normal and cancer specific escapees. 

In general, the study concluded that a frequent cause of Barr body disappearance is due to 

the global perturbation of its nuclear organization and disruption of its heterochromatic 

structure. Though the enrichment level of H3K27me3 is lower and perturbed in Xi of 

breast cancer cells, it is relatively higher than average enrichment over rest of the genome. 

Several aberrantly reactivated genes identified have been associated with cancer 

previously.  Hence, such aberrant reactivation of X-linked genes in Xi might contribute to 

a selective advantage of cancer cells.  In conclusion, the perturbed transcriptional and 

chromatin status of the inactive X chromosome that we have identified in the context of 

breast cancer, opens up several important clinical perspectives. 

Similarly, imprinted genes have also been associated with breast cancer. When dosage 

disequilibrium of imprinted genes occurs due to aberrant genetic or epigenetic mutation, it 

can lead to severe disorders including cancer. While the XCI study focused only on X 

chromosome, a genome wide allele-specific analysis could reveal any aberrant changes of 

imprinted genes in breast cancer cells. A detailed collection of imprinted genes have been 

made available would be helpful to contain the analysis to these imprinted genes. Our 

initial genome-wide analysis has shown aberrant b-allelic expression and epigenome status 

on few imprinted genes. Among them, three genes namely ZFP36L2, CYP1B1 and TIGD1 

have been observed in two of the cancer cell-lines. CYP1B1 has been shown to have 
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important role in tumor development as they can metabolize many potential carcinogens 

and mutagens. It has been shown that CY1PB1 mRNA is the most frequently expressed in 

breast cancer (Murray et al., 1997). Further investigation with support from experimental 

data could give more insights on those aberrant imprinted genes and their association with 

breast cancer. 
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Disappearance of the Barr body is considered a hallmark of cancer, although whether this corresponds to genetic loss or to

epigenetic instability and transcriptional reactivation is unclear. Here we show that breast tumors and cell lines frequently

display major epigenetic instability of the inactive X chromosome, with highly abnormal 3D nuclear organization and global

perturbations of heterochromatin, including gain of euchromatic marks and aberrant distributions of repressive marks such

as H3K27me3 and promoter DNA methylation. Genome-wide profiling of chromatin and transcription reveal modified

epigenomic landscapes in cancer cells and a significant degree of aberrant gene activity from the inactive X chromosome,

including several genes involved in cancer promotion. We demonstrate that many of these genes are aberrantly reactivated

in primary breast tumors, and we further demonstrate that epigenetic instability of the inactive X can lead to perturbed

dosage of X-linked factors. Taken together, our study provides the first integrated analysis of the inactive X chromosome

in the context of breast cancer and establishes that epigenetic erosion of the inactive X can lead to the disappearance of the

Barr body in breast cancer cells. This work offers new insights and opens up the possibility of exploiting the inactive X chro-

mosome as an epigenetic biomarker at the molecular and cytological levels in cancer.

[Supplemental material is available for this article.]

There is increasing evidence that epigeneticmodifications, such as

changes in DNA methylation, chromatin structure, noncoding

RNAs, and nuclear organization, accompany tumorigenesis (De

Carvalho et al. 2012; for review, see Shen and Laird 2013). Even tu-

morswith relatively normal karyotypes can showdramatically per-

turbed nuclear structures (Huang et al. 1997; for review, see Zink

et al. 2004). In theory, epigenetic changes could lead to inactiva-

tion of tumor suppressor genes, aberrant expression or function

of oncogenes, ormore global gene expression changes that perturb

genome function, thereby contributing to cancer progression.

However, despite the possible use of epigenetic changes as prog-

nostic markers (Elsheikh et al. 2009) or even as therapeutic targets

(e.g., Schenk et al. 2012; Zhang et al. 2012), the full extent of epi-

genetic changes in cancer remains poorly explored.

The inactive X chromosome (Xi), also known as the Barr

body, provides an outstanding example of an epigenetic nuclear

landmark that is disrupted in cancer. The disappearance of the

Barr body in breast tumors was noted many decades ago (Barr

and Moore 1957; Perry 1972; Smethurst et al. 1981). To date,

only genetic instability had been clearly demonstrated as a cause

for Barr body loss (Ganesan et al. 2002; Sirchia et al. 2005;

Vincent-Salomon et al. 2007; Xiao et al. 2007; and for review,

see Pageau et al. 2007). Past work had implicated BRCA1, a major

hereditary factor predisposing to breast and ovarian cancer devel-

opment and a key player in the maintenance of genome integrity

(for review, see O’Donovan and Livingston 2010), in promoting

XIST RNA coating of the Xi and its epigenetic stability (Ganesan

et al. 2002; Silver et al. 2007). However, subsequent work in

BRCA1-deficient tumors indicated that Barr body loss was usually

due to genetic loss of the Xi and duplication of the Xa rather than

to Xi reactivation and epigenetic instability (Sirchia et al. 2005;

Vincent-Salomon et al. 2007; Xiao et al. 2007). BRCA1-deficient

cancers are usually of the basal-like carcinoma (BLC) subtype, a

high-grade, genetically unstable, invasive ductal carcinoma.

Indeed, when the genetic status of the X chromosome was ex-

plored in BLCs (Richardson et al. 2006), genetic instability/loss

of the Xi was found to be a frequent event in both sporadic and

BRCA1−/− associated BLCs. Luminal (A and B, expressing
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hormonal receptors) andHER2 (encoded by ERBB2) amplifiedmo-

lecular subtypes of invasive ductal carcinoma are more genetically

stable and show less frequent loss of the inactive X chromosome

(Perou et al. 2000; Turner and Reis-Filho 2006). However, little is

known about the epigenetic status of the inactive X in breast can-

cers and the extent to which epigenetic instability might account

for Barr body disappearance in some cases.

X-chromosome inactivation (XCI) ensures dosage compensa-

tion for X-linked gene products between XX females and XYmales

(Lyon 1961). It is a developmentally regulated process that de-

pends on the action of a noncoding RNA, Xist (X-inactive-specif-

ic-transcript), which becomes up-regulated on one of the two X

chromosomes, coating it in cis and inducing gene silencing. Xist

RNA accumulation on the future inactive X rapidly creates a silent

nuclear compartment that is depleted of RNA Polymerase II (RNA

Pol II), transcription factors, and transcription (as detected by

Cot-1 RNA). X-linked genes become repressed during the early

stages of XCI (Chaumeil et al. 2006; Clemson et al. 2006; Chow

et al. 2010).Xist RNA also induces a cascade of chromatin changes,

involving Polycomb group proteins and other complexes, and

results in various histone modifications, such as the hypoacetyla-

tion of histones 3 and 4, trimethylation of histone 3 lysine 27

(H3K27me3), and the loss of di- and trimethylation at histone 3

lysine 4 (H3K4me2/3) (Csankovszki et al. 1999; Heard et al.

2001; Boggs et al. 2002). Promoter DNA methylation of X-linked

genes occurs downstream fromXistRNAcoating,with gene-specif-

ic timing of promoter methylation (Gendrel et al. 2013). The Xi

adopts a unique three-dimensional (3D) chromosome organiza-

tion that is dependent onXist RNA (Splinter et al. 2011; for review,

see Chow andHeard 2010). Furthermore, the chromatin landscape

of the inactive X has been investigated in adult human cells and

seems to be divided into large blocks of H3K9me3 or H3K27me3

(Chadwick 2007; Chadwick and Willard 2004). In somatic cells,

the majority of X-linked genes are stably repressed on the Xi,

with spontaneous reactivation of single genes being observed at a

frequency of <10−8, presumably due to synergistic epigenetic

mechanisms (Csankovszki et al. 2001). However, a subset of genes

can escape XCI in somatic cells (Carrel and Willard 2005; Kucera

et al. 2011; Cotton et al. 2013). In cancer, aberrant escape from

XCI has previously been speculated to occur (Pageau et al. 2007;

Agrelo and Wutz 2010; Carone and Lawrence 2013; Yildirim et al.

2013).However, the extent towhich thenormally stable epigenetic

state of the Xi is perturbed in cancer has never been systematically

explored.

The X chromosome is of interest from a cancer perspective.

First, several of the approximately 1000 genes located on the X

have been implicated in cancer, including the cancer/testis (C/T)

genes (Grigoriadis et al. 2009); tumor suppressors such as AMER1

(also known as WTX), FOXP3 (Bennett et al. 2001; Rivera et al.

2007); chromatin remodelers related todisease, e.g.,ATRX; or chro-

matinmodifying factors, e.g., KDM6A (also known asUTX ), PHF8,

HDAC8 (Nakagawa et al. 2007; for reviews, see Agrelo and Wutz

2010; Portela and Esteller 2010). A few of these genes are known

to escape X inactivation in normal cells (e.g., KDM6A), but most

are normally stably repressed on the inactive X. In the cases of

AMER1 and FOXP3, tumorigenesis has been linked to clonal expan-

sion of cells in which the wild-type copy is on the inactive X in fe-

male patients heterozygous for a mutation (Bennett et al. 2001;

Rivera et al. 2007).

Although reactivation of X-linked genes has been previously

hypothesized to occur in a cancer context (Spatz et al. 2004), few

actual examples have been reported, presumably due to the tech-

nical challenges in specifically detecting the Xi. For example, dele-

tion of Xist was reported to lead to hematological dysplasia and

leukemia inmice; however, the allele-specific transcriptional activ-

ity of the inactive X chromosome and its heterochromatin struc-

ture were not examined (Yildirim et al. 2013). In another study,

reactivation of the X-linkedMPP1 gene and disruptedXIST expres-

sion were reported in an ovarian cancer cell line (Kawakami et al.

2004). In breast tumors, DNA hypomethylation and abnormal ex-

pression of a single X-linked gene analyzed,VBP1,was detected on

the Xi (Richardson et al. 2006). A systematic analysis of the tran-

scriptional and epigenetic status of the Xi in breast tumors has

been lacking however. Here we perform an integrated analysis of

gene expression, chromatin status, and nuclear organization of

the inactive X chromosome in breast cancer, using allele-specific

and single-cell approaches.

Results

Aberrant nuclear organization of the inactive X chromosome

in breast cancer cells

To evaluate the status of the inactive X chromosome in different

types of breast cancer, we selected three cell lines that represent

the main breast cancer molecular subtypes: ZR-75-1 (luminal),

SK-BR-3 (HER2+), and MDA-MB-436 (Basal-Like Carcinoma

[BLC], BRCA1 null). WI-38 (embryonic lung fibroblasts) and

HumanMammary Epithelial Cells (HMECs) were analyzed in par-

allel as nonmalignant (“normal”) female primary cells. Using RNA

FISH, we found that ZR-75-1 and MDA-MB-436 cell lines possess

one XIST RNA domain, whereas SK-BR-3 cells have two domains.

X-chromosome paint DNA FISH combined with XIST RNA FISH,

and 3D microscopy revealed that XIST RNA signals overlapped

to a great extent with the X chromosome DNA in both normal

and tumor cell lines. However, punctate XIST RNA signals beyond

the X-chromosome territory could be detected in the tumor

cell lines, particularly in ZR-75-1 and MDA-MB-436 (Fig. 1A;

Supplemental Fig. S1A). RT-qPCR revealed thatXISTwas expressed

at slightly lower levels in the tumor cell lines, and the associated

RNA FISH signal was slightly weaker and was more dispersed in

the breast cancer cell lines (Supplemental Fig. S1B,C,E). Important-

ly, all of the tumor cell lines revealed a markedly weaker DNA en-

richment of the Barr body (Supplemental Fig. S1D,E).

Given the complex genomes of breast cancer cells, we inves-

tigated the precise genetic constitution of the active and inactive

X chromosomes using single nucleotide polymorphism array

(Human SNP Array 6.0) analysis and DNA FISH (Fig. 1B; Supple-

mental Fig. S1F). ZR-75-1 contains three X-chromosome seg-

ments, each carrying an XIC/XIST locus, but XIST RNA coated

only one of them, suggesting the presence of two Xa chromo-

somes and one Xi (in agreement with allelic imbalance of the

XIC locus). SK-BR-3 possesses four X-chromosome fragments,

each with an XIC locus, but only two are associated with XIST

RNA. MDA-MB-436 displayed the most complex situation, with

six X-chromosome fragments visible by DNA FISH on metaphase

spreads, but with only two XIC loci and one XIST RNA domain

(Fig. 1A,B; Supplemental Fig. S1F). We also evaluated X-chromo-

some constitution in these cell lines through the expression of

two X-linked genes: KDM5C, known to escape from XCI, and

HUWE1, subject to XCI (Cotton et al. 2013). Our observations

concur with the expected expression profiles in the two normal

and three cancer cell lines, i.e., KDM5C is expressed from all X

chromosome fragments that carried the gene, and HUWE1 is
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expressed only from the non-XIST RNA-coated X fragments that

carried it (Supplemental Fig. S1G). Thus, all three tumor cell lines

contain at least one fragment of an Xi chromosome.

We then investigated whether XIST RNA-coated Xi frag-

ments were depleted for RNA Pol II and Cot-1 RNA as previously

described for the Xi in female somatic cells (Chaumeil et al.

2006; Clemson et al. 2006; Chow et al. 2010). In WI-38 and

HMEC cells, both Cot-1 RNA and RNA Pol II were excluded

from the XIST domain, which was associated with a DAPI-dense,

heterochromatic Barr body. However, all tumor cells showed a

Figure 1. The XIST-coated X-chromosome silent compartment is severely disrupted in breast cancer cell lines. (A) Z-projections of sequential 3D RNA/
DNA FISH show examples of XIST RNA coating (red) and X-chromosome territories (white or outlined) in normal (WI-38 and HMEC) and breast cancer
cell lines (ZR-75-1, SK-BR-3, and MDA-MB-436). Scale bar, 5 µm. (B) Human SNP Array 6.0 (Affymetrix) genomic analysis (Popova et al. 2009) shows the
copy number and allelic imbalance of X-chromosome fragments in breast cancer cell lines. The XIC locus is indicated with a green dotted line. (C)
Immuno-RNA FISH using anti-RNA Pol II antibody, XIST/Cot-1 RNA FISH, and DAPI staining show the level of exclusion of RNA Pol II and Cot-1
RNA, as well as the level of chromatin compaction (i.e., Barr body) on XIST RNA domains (arrowheads) in normal and breast cancer cell lines. On
the right, line scans (white arrows) show the relative levels of Cot-1 RNA (green), RNA Pol II (black), and DNA density (blue) at the XIST domain (black
bar). Scale bar, 5 µm.
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frequent absence of a DAPI-dense Barr body and a defective

depletion of Cot-1 RNA and RNA Pol II within the XIST domain

(Fig. 1C; Supplemental Figs. S1H–K, S2A,C). Together, these re-

sults reveal major aberrations of nuclear organization and chro-

mosome condensation of the XIST RNA-coated X chromosome

in breast cancer cells.

Aberrant chromatin hallmarks of the inactive X chromosome

in breast cancer cell lines

We next investigated whether heterochromatic hallmarks of the

Xi were preserved. Detection of H3K27me3 by IF combined with

XIST RNA FISH revealed a marked lack of H3K27me3 enrichment

at the XIST-coated chromosome in all three tumor cell lines (Fig.

2A). In HMECs, H3K27me3 is about twofold more enriched

on the Xi than on the non-XIST-coated genome (Fig. 2B;

Supplemental Fig. S2A,B). In tumor cells, the lowest enrichment

was found in ZR-75-1 and MDA-MB-436 with a median of 1.25

and 1.37-fold, respectively, whereas for SK-BR-3 it is 1.68 (Fig.

2A,B; Supplemental Fig. S2I). Decreased H3K27me3 enrichment

at the XIST domain was further supported by super resolution

structured illumination microscopy (SIM) (Fig. 2C). Indeed, ZR-

75-1 and MDA-MB-436 showed the lowest degree of XIST and

H3K27me3 colocalization with a Pearson colocalization coeffi-

cient of 0.15, whereas SK-BR-3 had a coefficient at 0.35. HMEC

and WI-38 displayed colocalization coefficients of 0.44 and 0.45,

respectively (Supplemental Fig. S2D).

Depletion of euchromatic histone modifications is another

hallmark of the Xi. Using IF combined with XIST RNA FISH, we

found that H3K9 and H4 acetylation were present within the

XIST RNA domain in tumor cells in contrast to normal cells (Fig.

2D,E; Supplemental Fig. S2E,F,I). The H3K4me2mark was less per-

turbed, being globally absent from the Xi, except in ZR-75-1 cells

(Supplemental Fig. S2G–I). Similar results were obtained for

H3K4me3 staining (with, for example,median at 0.69 and 0.71, re-

spectively, for HMEC andMDA-MB-436) (data not shown). Closer

examination by SIM revealed that H3K9ac and XIST RNA signals

were intermingled in the majority of breast cancer nuclei (Fig.

2F), whereas H3K4me2 was largely but not completely depleted

within the XIST RNA compartment (Supplemental Fig. S2J). SIM

of RNA Pol II also revealed substantial intermingled overlap with

XIST RNA domains (Supplemental Fig. S2K). Thus, there is a major

disruption of chromatin hallmarks over the XIST RNA-coated

chromosome, most strikingly in ZR-75-1 and MDA-MB-436 cell

lines. We confirmed that XIST is always expressed from only one

allele, excluding the possibility of aberrant XIST expression and

coating of the Xa instead of the Xi (Supplemental Fig. S3A). In

summary, the heterochromatic structure of the Xi is disrupted in

the three tumor cell lines to variable extents. The variability in

Xi perturbation between cells was not found to be linked to a spe-

cific stage of the cell cycle (Supplemental Fig. S3B–D). Furthermore

the global levels of histonemodifications in the different cell lines

did not correlate with the aberrant chromatin status of the Xi

(Supplemental Fig. S3E).

To specifically compare the chromatin status of the Xi and Xa

in the tumor cell lines, we used metaphase spreads to monitor

chromatin marks by IF followed by X-chromosome paint DNA

FISH as described (Fig. 3; Keohane et al. 1996; Chaumeil et al.

2002). In all tumor cell lines, we could readily distinguish Xa

from Xi fragments using H3K27me3, H4ac, and H3K4me2 (Fig.

3A–C). The only exception was MDA-MB-436, where from the

two main Xi fragments, only the XIC-linked (and XIST-coated)

fragment is enriched for H3K27me3 (Fig. 3C,D; Supplemental

Fig. S3F), whereas the other (non-XIC-linked) X fragment lacked

H3K27me3 enrichment, although it was still depleted for H4ac

and H3K4me2. Thus, the XIC is required for H3K27me3 enrich-

ment but is dispensable for depletion of euchromatin marks on

the Xi in these cancer cells (Fig. 3A,B). We also noted from the

analysis of metaphase spreads that in MDA-MB-436 and SK-BR-3

cells, where the Xi is translocated to an autosomal region,

H3K27me3 enrichmentwas seen beyond theX chromosomepaint

signal, implying that it can spread aberrantly into autosomal re-

gions (Fig. 3C).

Reactivation of X-linked genes on the inactive X chromosome

in breast cancer cell lines

We next assessed whether the heterochromatic disruption of the

Xi observed in breast tumor cell lines corresponded to aberrant ab-

normal transcriptional activity from the Xi. To take advantage of

SNPs that lie within introns of genes, we used an allele-specific

transcriptional analysis based on nascent RNA hybridization to

Human SNP Array 6.0 (henceforth called RNA SNP6) (Fig. 4A,B;

Supplemental Fig. S4A; Gimelbrant et al. 2007). Due to the ran-

domness of the XCI, clonal populations of cells are required to

investigate Xi status. This was the case for all three tumor cell lines

and for subclones derived fromprimaryWI-38 cells (Supplemental

Fig. S4B–E). In both WI-38 clones and the tumor cell lines, we

saw the expected overall biallelic expression from autosomal

regions (Chromosome 2 is shown as an example in Fig. 4A;

Supplemental Fig. S4F). On the other hand, the X chromosome

showed a globallymonoallelic expression pattern inWI-38 clones,

with the exception of genes in the pseudoautosomal regions that

are known to behave as autosomes and to escape fully from XCI

(Fig. 4B; Supplemental Fig. S4G). In tumor cells, we observed a gen-

erally monoallelic expression pattern from the X chromosome,

although several regions showed biallelic expression, particularly

inMDA-MB-436 cells (Fig. 4B). A gene-based analysis detected sev-

eral previously described X-linked escapees (including DHRSX,

TRAPPC2, CD99, or KDM6A) (Carrel and Willard 2005; Kucera

et al. 2011; Cotton et al. 2013), confirming the efficiency of this

approach. We used known escapees and genes subject to XCI

(Carrel andWillard 2005; Cotton et al. 2013) to define a threshold

to consider that a given X-linked gene is expressed from inactive

and active alleles. Thus, we defined “cancer-specific” escapees as

genes reactivated in at least one of the three cancer cell lines, but

strictly expressed from the Xa in WI-38 clones and/or identified

previously as subject to XCI (Fig. 4C).With these stringent criteria,

we identified five, five, and nine “cancer-specific” escapees in the

ZR-75-1, SK-BR-3, andMDA-MB-436 cells, respectively. To increase

the number of informative X-linked genes evaluated, we also per-

formed an RNA-seq analysis on mRNA from two additional WI-38

clones and the three tumor cell lines. We identified six, one, and

15 “cancer-specific” escapees in the ZR-75-1, SK-BR-3, and MDA-

MB-436 lines, respectively (Fig. 4D). We validated Xi-linked reacti-

vation for several of these genes (Supplemental Figs. S4H–J, S5A).

In conclusion, although RNA SNP6 and RNA-seq analyses do not

necessarily reveal exactly the same “cancer-specific” escapees

(15%–23% overlap was found, depending on cell line) due to the

different SNPs assessed by the two methods (mainly intronic and

mainly exonic, respectively), the combination of both techniques

allowed us to identify 10 (9% of informative X-linked genes), five
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(8%), and 20 (13%) Xi-linked genes as being abnormally reactivat-

ed in ZR-75-1, SK-BR-3, and MDA-MB-436 cell lines, respectively

(Fig. 4E; Supplemental Table S1).

The preceding allele-specific analysis could not identify genes

that are fully silenced in somatic cells and reactivated from only

one allele in cancer cells, such as members of the C/T antigen

Figure 2. H3K27me3 and H3K9ac profiles associated with XIST-coated X chromosomes are impaired in breast cancer cell lines. (A) Z-projections of 3D
immuno-RNA FISH show representative examples of the level of H3K27me3 enrichment (green) on XIST RNA domains (red) in normal (WI-38 and HMEC)
and breast cancer cell lines (ZR-75-1, SK-BR-3, andMDA-MB-436). NB: In MDA-MB-436, the highly H3K27me3 enriched bodies visible in each nucleus do
not belong to the X chromosome (nor in metaphase [Fig. 3C] or in interphase [Supplemental Fig. S3F]). (B) Boxplot shows the levels of H3K27me3 en-
richment on XIST domains relative to the rest of the nucleus. Numbers of analyzed nuclei are shown above the x-axis. For details on quantification method
see Supplemental Figure S2A,B. (C ) High-resolution immuno-RNA FISH shows representative examples of H3K27me3 enrichment (green) on XIST RNA
domains (red) in normal and breast cancer cell lines. Insets for H3K27me3, XIST RNA, and merge are shown below each cell line. (D) Single section of
3D immuno-RNA FISH shows representative examples of the level of H3K9ac depletion (green) on XIST RNA domains (red) in normal and breast cancer
cell lines. (E) Boxplot shows the levels of H3K9ac depletion on XIST domains relative to the rest of the nucleus. The numbers of analyzed nuclei are shown
above the x-axis. For details on the quantification method, see Supplemental Figure S2A,C. (F ) High-resolution immuno-RNA FISH shows representative
examples of H3K9ac depletion (green) on XIST RNAdomains (red) in normal and breast cancer cell lines. Insets for H3K9ac, XIST RNA, andmerge are shown
below each cell line. (Boxplots) Upper whisker represents 90%, upper quartile 75%, median 50%, lower quartile 25%, and lower whisker 10% of the data
set for each cell line. (∗∗∗) P < 0.001; (∗∗) P < 0.01; (∗) P < 0.05 using the Student’s t-test. All data sets are compared with HMEC data set. Scale bar, 5 µm.
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Figure 3. The inactive X chromosome is still epigenetically distinguishable from its active counterpart. (A) Representative examples of immunofluores-
cence show the status of H4ac (white) depletion/enrichment on X chromosomes (X-paint DNA FISH, red) onmetaphase spreads from normal (WI-38) and
breast cancer cell lines (ZR-75-1, SK-BR-3, and MDA-MB-436). On the right, MDA-MB-436 cells carry six X-chromosome fragments with a “2-by-2” ho-
mology, as assessed by the presence or absence of the NXT2 (white) or XIC loci (green), and line scans show H4ac enrichment variation between these
X-fragments and the neighboring autosomal regions. As expected, one X chromosome (Xi) lacks H4ac staining in normal WI-38 cells (and HMEC, not
shown). ZR-75-1 and SK-BR-3 cell lines harbor a reduced H4ac staining on one and two X chromosomes, respectively, in agreement with the number
of XIST-coated X chromosomes shown in Figure 1A. In MDA-MB-436 cells, homologous X-chromosome fragments (two containing the XIC locus, two
containing the NXT2 locus, and two with none of them) display opposite H4ac staining, suggesting that there is still one inactive and one active X chro-
mosome linked to those loci, although fragmented. (B) Representative examples of immunofluorescence show the status of H3K4me2 (white) depletion/
enrichment on X chromosomes (X-paint DNA FISH, red) on metaphase spreads from normal and breast cancer cell lines. On the right, line scans show
H3K4me2 enrichment variation between the six X-fragments (for details, see A) and the neighboring autosomal regions in MDA-MB-436 cells. In each
tumoral cell line, H3K4me2 depletion patterns follow the H4ac profiles found in A. (C) Representative examples of immunofluorescence show the status
of H3K27me3 (white) enrichment on X chromosomes (X-paint DNA FISH, red) inmetaphase spreads from breast cancer cell lines. ZR-75-1 and SK-BR-3 cell
lines harbor an accumulation of H3K27me3 on one and two X chromosomes, respectively, in agreement with the number of XIST-coated X chromosomes
shown in A. In MDA-MB-436 cells, H3K27me3 staining was only enriched on the X-chromosome fragment, where the XIC region lies. Indeed, RNA/DNA
FISH analysis showed that this X fragment corresponds to the one coated by XIST RNA in interphase cells, which is not the case for the other fragments
(Supplemental Fig. S3F). In SK-BR-3 and MDA-MB-436 cell lines, H3K27me3 spreads into the autosomal fragments translocated to the XIC-containing
fragment. (D) Schematic view of H4ac, H3K4me2, and H3K27me3 patterns on X-chromosomes in the three tumor cell lines.
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family that show aberrant expression in cancer cells (Grigoriadis

et al. 2009). By assessing the overall expression of C/T members,

we found increased expression of several C/T antigens in the

cancer cell lines but not in normal cells (Supplemental Fig. S5B).

For one C/T antigen gene (MAGEA6), we used RNA FISH to

show that this aberrant expression usually originated from the

Figure 4. Abnormal reactivation of the inactive X chromosome in breast cancer cell lines. (A,B) RNA SNP6 analysis shows the expression status of an au-
tosomal chromosome, as example Chromosome 2 (A), and the X chromosome (B) in normal (WI-38) and breast cancer cell lines (ZR-75-1, SK-BR-3, and
MDA-MB-436). Red bars indicate biallelic expression, and blue bars indicate monoallelic expression. The bar length represents the number of expressed
informative SNPs on a 50-SNP sliding window. Gray rectangles correspond to noninformative regions due to loss of heterozygosity (LOH). TwoWI-38 sub-
clones (#1 and #28), carrying an inactive X chromosome of opposite parental origin, show clearmonoallelic expression fromeither thematernal or paternal
X chromosome confirming the clonality of the subclones (see Supplemental Fig. S4B). Allele-specific PCR analysis also confirmed the clonality of the three
breast tumor cell lines (see Supplemental Fig. S4C–E). (C) RNA SNP6 analysis shows levels of X-linked gene allelic expression. X-linked genes known as sub-
ject to XCI (Carrel and Willard 2005; Cotton et al. 2013) and/or considered as monoallelically expressed in WI-38 clones (i.e., for each informative gene,
<2/3 of the SNPs were observed as biallelically expressed) are shown on the boxplots. (D) RNA-seq analysis shows levels of X-linked gene allelic expression.
X-linked shown on the boxplots are known to be subject to XCI (Carrel and Willard 2005; Cotton et al. 2013) and/or are considered as monoallelically
expressed in WI-38 clones (i.e., for each informative gene, the allelic expression ratio is <40, i.e., expressed <20% on one of the two alleles). (E)
Summary of the informative genes identified by the RNA SNP6 and RNA-seq approaches. Genes “known as subject to XCI” or “known to escape from
XCI” refer to previous studies (Carrel and Willard 2005; Cotton et al. 2013). WI-38 data correspond to the two clones.
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active rather than the inactive X in tumor cells (Supplemental Fig.

S5C).

In order to assess allelic expression of specific genes at the sin-

gle-cell level, we developed RNA FISH probes for several X-linked

escapee genes, bypassing the issue of uninformative SNPs.We con-

firmed that HDAC8 is expressed from the XIST RNA-associated Xi

chromosome only inMDA-MB-436 and SK-BR-3 cells (Supplemen-

tal Fig. S5D), whereas TBL1Xwas expressed fromXi only in ZR-75-

1 (Fig. 5A). We also confirmed that APOOL and SYTL4 are only es-

caping from XCI in MDA-MB-436 by RNA FISH (data not shown).

ATRXwas used as a control gene that is subject toXCI in all five cell

lines (Supplemental Fig. S5E).

We then investigated the degree to which reactivation could

impact on gene dosage for TBL1X, one of the “cancer-specific” es-

capees in ZR-75-1 cells. Using IF against TBL1X combined with

RNA FISH, we correlated the protein levels of TBL1X to its expres-

sion from the Xi (Fig. 5B). On average, in ZR-75-1, the IF signals

appear highly heterogeneous but also stronger than the four other

cell lines (in agreementwith the RNA level) (Fig. 5C; Supplemental

Fig. S5F).Wenoted thatMDA-MB-436 cells also showed slightly in-

creased protein levels, consistent with overall TBL1X expression

levels in this cell line, which must be due to higher expression of

the single active allele (on the Xa) in this cell line. To determine

whether thehigher protein levels in ZR-75-1 are due to reactivation

of TBL1X on the Xi or to overexpression of the active alleles on the

Xa (as in MDA-MB-436), we quantitated the IF signal in cells that

do, or do not, show TBL1X transcriptional reactivation on the Xi

(Fig. 5D). Significantly more TBL1X staining was seen in ZR-75-1

nuclei that displayed TBL1X reactivation (Fig. 5E). We also sorted

ZR-75-1 cells by FACS based on TBL1X staining intensity (Fig. 5F)

and observed significantly more biallelic expression of TBL1X in

cells with the highest levels of TBL1X protein staining (Fig. 5G).

Local epigenetic erosion affects genes that escape

XCI in cancer

To investigate further the underlying causes of Xi gene reactiva-

tion in cancer cells, we investigated the chromatin status of “can-

cer-specific” escapees at the molecular level. First, the DNA

methylation status ofmultiple X-linked gene promoters was inves-

tigated using EpiTYPER analysis (Sequenom) (Supplemental Fig.

S6A). All escapees (normal or “cancer-specific”) showed low levels

of DNA methylation at their promoters (e.g., KDM5C, HDAC8).

However, we noted that some genes subject to XCI (i.e., only ex-

pressed from the Xa) in cancer cell lines, nevertheless showed

low promoter methylation (e.g., TBL1X in SK-BR-3 cells or

HDAC8 in ZR-75-1). This suggests that they might be more prone

to reactivation in a cancer context, with outright reexpression

from the Xi in only some cell lines.

We also performed chromatin immunoprecipitation and se-

quencing (ChIP-seq) on normal and cancer cell lines to assess

Xi chromatin status. We investigated H3K27me3 (associated

with the inactive state of the Xi), H3K4me3 (enriched at transcrip-

tional start sites [TSSs] of active genes), andRNAPol II. The compar-

ison of quantile-normalized H3K27me3 profiles revealed major

changes for the X chromosomes between normal and tumor cells

(Fig. 6A). In HMECs, low-resolution chromosome-wide profiles

exhibited apatternof domains that is highly reminiscent of thedis-

tinct nonoverlapping regions of the humanXi previously reported

for H3K9me3 and H3K27me3 (Chadwick 2007; Chadwick and

Willard 2004). Indeed, comparing the H3K9me3 and H3K27me3

data from the ENCODE Project Consortium (2012) with our

H3K27me3 ChIP-seq data sets, these different types of heterochro-

matin domains are readily detectable in normal HMEC andWI-38

cells (Supplemental Fig. S6C; data not shown). In contrast, the or-

ganization of these H3K27me3-enriched domains was found to

be heavily perturbed in ZR-75-1 and MDA-MB-436. In ZR-75-1

cells, the X chromosome displays a global, nearly uniform pattern

ofH3K27me3,withnodiscernable enricheddomains (Fig. 6A). The

analyzable parts of the X in SK-BR-3 cells (where an Xi is retained)

are much less perturbed, apparently respecting the H3K27me3 do-

mains. These results are in linewith the reorganization of the Xi in

interphase cells by IF/FISH (Fig. 2A–C). The X chromosome in

MDA-MB-436 shows aheavily segmentedH3K27methylation pro-

file, as (1) the beginning of the short arm shows no H3K27me3

marks (evident consequence of the loss of the Xi fragment); (2)

the rest of the short arm displays significant H3K27me3 enrich-

ment, although the profile is rather different from that seen for

HMEC; (3) the region surrounding the XIC shows a profile similar

to that seen innormal cells; and (4) the regionspanningXq21.33 to

the end of the long arm, which is no longer linked to the XIC (see

Fig. 3), does not display discernable H3K27me3 domains; in partic-

ular, the two highly enriched domains visible in normal cells are

lacking (Fig. 6A, reddotted rectangles). To further consolidate these

observations, we compared the variation of H3K27me3 signals

along the X chromosome between HMEC and the other four cell

lines (WI-38 and the three tumor cell lines). Highly variable

H3K27me3 patterns across the X chromosome were observed in

the tumor cell lines, and several regions for which an Xi copy was

still present showed a drastic decrease in H3K27me3 levels (e.g.,

the Xq21.33-Xq24 region in ZR-75-1 and MDA-MB-436) (Fig.

6C). On the other hand, much less pronounced variation in

H3K27me3 distributions on the Xi was observed when HMEC

and WI-38 cells were compared, despite their divergent tissue ori-

gins (lung fibroblasts versus mammary epithelial cells) (Fig. 6C).

Importantly, in the breast cancer lines, the perturbations were

not unique to the Xi, as we also noted aberrant H3K27me3 land-

scapes across autosomal regions of cancer cells (e.g., Chromosome

17onSupplemental Fig. S6B), indicating that this is a genome-wide

characteristic of tumor cells. Thus, we conclude that both genome-

wide and Xi-specific distributions of H3K27me3 are severely dis-

rupted in breast tumor cell lines. Although this is partly due to ge-

netic changes (Xi translocations and regional losses), the Xi

epigenomic landscape is clearly disorganized, consistent with our

aforementioned observations using IF.

Next, we assessed patterns of H3K4me3 and RNA Pol II

around the TSS of X-linked genes, and noted that the escapees

identified in each cell line displayed a generally higher enrichment

of RNA Pol II and H3K4me3 than X-linked genes that were ex-

pressed only from the Xa (Supplemental Fig. S6D,E). Similarly,

“cancer-specific” escapees generally exhibited higher enrichment

at their TSS in the cell lines where they escaped compared to

HMECs (Fig. 6D; Supplemental Fig. S7A) with a few exceptions

(e.g., CFP, FLNA, and MOSPD1 in MDA-MB-436 cells displayed

no obvious differences in TSS profiles) (Supplemental Fig. S7B).

We also noted that “cancer-specific” escapees, such as HDAC8 or

NXT2, exhibit additional and/or enlargedH3K4me3 sites in tumor

cells when compared to HMEC (Supplemental Fig. S7B).

As H3K27me3 is normally rather broadly distributed on the

Xi, rather than being TSS centered (Marks et al. 2009; Simon

et al. 2013), we examined the local environment of genes that

normally escape XCI (e.g., KDM5C and SMC1A) or are silenced

on the Xi (e.g., HUWE1) and found them to display the expected

low and high enrichments, respectively (Fig. 6B, center panel).
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For “cancer-specific” escapees (TBL1X in ZR-75-1, HDAC8 in

MDA-MB-436 and SK-BR-3), no obvious systematic correlation

between local H3K27me3 levels and escape/silencing could be

seen (Fig. 6B, left and right panels). Although the global disorga-

nization of H3K27me3 domains in tumor cell lines is not neces-

sarily reflected locally at the level of genes, H3K27me3

Figure 5. Reactivation of X-linked genes in breast cancer cell lines can lead to an increase of protein amount. (A) Z-projections of 3D RNA FISH show
representative examples of TBL1X expression (red) at XIST domains (white) in normal (WI-38 and HMEC) and breast cancer cell lines (ZR-75-1, SK-BR-3,
and MDA-MB-436). In ZR-75-1 cells, arrowheads indicate active X chromosomes and the arrow the XIST-coated chromosome. On the right, bar graph
shows levels of TBL1X expression from XIST domains, with reactivation in ZR-75-1 cells. (B) Immunostaining shows TBL1X protein (green). The dynamic
range (DR) of the brightness and contrast of each image (ImageJ) is indicated below. (C ) Boxplot shows the intensity of TBL1X immunostaining for each cell
line. The upper whisker represents themaximum value, upper quartile 75%,median 50%, lower quartile 25%, and lower whisker theminimum value of the
data set. The number of nuclei analyzed is indicated above the x-axis. (∗∗∗) P < 0.001 using the Student’s t-test. WI-38, ZR-75-1, SK-BR-3, andMDA-MB-436
are compared with HMEC. (D) The inset of two ZR-75-1 nuclei from C shows a combination of TBL1X protein immunofluorescence staining (green) and
RNA FISH for TBL1X (red) and XIST (gray). In the left nucleus, where TBL1X is expressed only from the active X chromosome, the IF signal intensity is
1140 a.u., whereas in the right nucleus, where both Xa and Xi TBL1X alleles are expressed, the intensity is as high as 1560 a.u. (E) Boxplot shows the levels
of TBL1X signal intensity either in the whole cell population (bulk; left box) or in cells in which TBL1X is expressed only from the active X chromosome
(middle box) or when TBL1X is expressed from all X chromosomes (right box). The upper whisker represents the maximum value, upper quartile 75%, me-
dian 50%, lower quartile 25%, and lower whisker theminimum value of the data set. Nuclei number analyzed is indicated above the x-axis. (F ) Cell sorting of
ZR-75-1 cells based on TBL1X signal intensity. An IgG antibody has been used as negative control. (G) Bar graph shows the level of TBL1X expression from
the XIST-coated X chromosome by pyrosequencing at SNP rs16985675. Left bar represents the gDNA control, which is in agreement with the allelic im-
balance (i.e., one Xi allele and two Xa alleles). Data represent the mean values ±SEM. (∗∗∗) P < 0.001; (∗∗) P < 0.01; (∗) P < 0.05 using the Student’s t-test.

Chaligné et al.

496 Genome Research
www.genome.org

Cold Spring Harbor Laboratory Press on October 30, 2015 - Published by genome.cshlp.orgDownloaded from 



disorganization may nevertheless affect long-range regulatory

landscapes, creating a context favoring escape in concert with ad-

ditional events.

Finally, we monitored allele-specific enrichment of

H3K4me3, RNA Pol II peaks, and H3K27me3 enrichment across

genes with informative SNPs. HUWE1 revealed exclusively mono-

allelic enrichment for all threemarks, consistentwith its silence on

the Xi in all lines (Supplemental Fig. S7C), whereas escapees

SMC1A and DDX3X and several “cancer-specific” escapees dis-

played biallelic H3K4me3 and RNA Pol II, with monoallelic

H3K27me3 (Supplemental Fig. S7C,D). Thus, for informative es-

capees in the three cancer cell lines, H3K27me3 is observed on

one allele, whereas both alleles show signs of active transcription

(H3K4me3 and RNA Pol II occupancy).

Figure 6. Chromatin landscape of the inactive X chromosome is disrupted in breast cancer cell lines. (A) Scheme of H3K27me3 enrichment (ChIP-seq)
across the whole X chromosome. Red and green domains represent H3K27me3 and H3K9me3 enriched regions, respectively, as identified in normal
human cells (Chadwick 2007). Regional loss of inactive X is indicated (and depicted by gray region). The two main enriched H3K27me3 domains’
loss in ZR-75-1 and MDA-MB-436 are depicted by the two red dotted rectangles. (B) H3K27me3 enrichment is detailed for three regions of the X chro-
mosome carrying genes subjected (S) or escaping XCI (E). (C) Dot plots show variation of H3K27me3 enrichment along the X chromosome (1-Mb bins)
of the three tumoral cell lines and WI-38 relative to HMEC. (D) TSS-centered plots (±1.5 kb) show RNA Pol II and H3K4me3 enrichment for the “cancer-
specific” escapees (cf. Supplemental Table S1) of each tumoral cell line (red line) and HMEC (green line). The number of genes analyzed is indicated
below each plot.
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Perturbation of the inactive X chromosome is also found

in primary breast tumors

We next assessed whether epigenetic disruption of the Xi also oc-

curs in primary breast tumors. Due to the cellular heterogeneity in

such samples, as well as the variable presence of normal stromal

cells, we focused on single-cell techniques (IF and RNA FISH) to

investigate the Xi. We analyzed seven tumors using a tumor

stamp technique with fresh samples (see Methods) to evaluate

the degree of enrichment of H3K27me3 at sites of XIST RNA accu-

mulation (Fig. 7A; Supplemental Fig. S8). H3K27me3 enrichment

on the Xi in tumors was highly variable, showing almost no en-

richment in four of the seven tumors analyzed: T1, T2, T4, and

T4meta. This confirmed our observations from cell lines that Xi

chromatin status is frequently disrupted in breast cancer. We

also noted that H3K27me3 enrichment within a XIST RNA

domain was not necessarily accompanied by a depletion of RNA

Pol II (e.g., tumors T1 and T2) (Fig. 7A; Supplemental Fig. S8A).

We also noted a significant decrease in DNA enrichment at the

level of the XIST RNA domain in primary tumors (Supplemental

Fig. S8E,F). Taken together, these results demonstrate that the

Xi shows significant chromosome disorganization and chromatin

disruption in primary breast tumors, similarly to the tumor cell

lines described above and that suggesting that disappearance of

the Barr body in certain breast cancers is indeed due to epigenetic

instability.

We next assessed whether the aberrant chromatin status of

the Xi also translated into X-linked gene reactivation by assessing

Figure 7. The inactive X chromosome is reactivated in primary breast tumors. (A) Z-projections of 3D RNA FISH show representative examples of expres-
sion of HDAC8 (red) and ATRX (green) (left) or TBL1X (red) andMAGEA6 (green) (middle) at XIST domains (gray) in healthy breast tissue and invasive ductal
carcinoma (IDC; Luminal A Grade III tumor). On the right, Z-projections of super-resolutive 3D immuno-RNA FISH show representative examples of the level
of H3K27me3 enrichment (green) and RNA Pol II depletion (red) on XIST RNA domains (gray) in healthy and tumoral breast tissues. Arrowheads indicate
the XIST domains. Quantification of RNA Pol II exclusion and H3K27me3 enrichment at XIST domains have been carried out on images acquired with a
confocal spinning-disk microscope. Scale bar, 10 µm. (B) Summary of the XIST domain positive (domains in >10% of the nuclei) and negative tumors
among the 41 primary breast tumors studied. (C) Summary of the number of tumors harboring HDAC8, ATRX, or TBL1X expression at XIST domain (as-
sessed by RNA FISH). A gene showing expression within the XIST domain in >5% of the nuclei is considered as reactivated in this tumor. (D) The table
recapitulates the number of XIST positive tumors with Xi-linked gene reactivation according to their molecular subtypes: Luminal, HER2 amplified, or
Basal-like (BCL).
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XIST together with HDAC8, ATRX, MAGEA6, and TBL1X expres-

sion on fresh tumor stamps (including those analyzed above) or tu-

mor-tissue cryosections. These genes were chosen because (1) they

are robustly detected by RNA FISH; (2) they are “cancer-specific”

escapees in some tumor cell lines (except ATRX and MAGEA6);

and (3) HDAC8 and ATRX lie in proximity to each other and to

XIST (within a few megabases), thus minimizing their chances of

being separated by translocations and facilitating RNA FISH analy-

sis in tumors. We analyzed 41 primary breast tumors with corre-

sponding normal tissue for 15 of them (examples shown in Fig.

7A; Supplemental Fig. S8). Thirty-five tumors were XIST-positive,

with at least one XIST RNA domain in ≥10% of nuclei (Fig. 7B).

The number, organization, and intensity of XIST RNA domains

varied substantially between tumors and even among cells of the

same tumor (Supplemental Fig. S8). For X-linked genes, aberrant

reactivation from the Xi was considered to occur if ≥5% of nuclei

harbored a nascent RNA FISH signal at or within a XIST RNA

domain of a given sample. With these criteria, we found 28%,

20%, and 29% of tumors displayed aberrant HDAC8, ATRX, and

TBL1X expression from the inactive X, respectively (Fig. 7C).

Note that in healthy breast tissue, we never observed >1% of nu-

clei showing X-linked gene RNA FISH signal within the XIST

RNA domain. Furthermore, we did not observe higher degrees of

reactivation for any of these three X-linked genes in particular can-

cer subtypes, although only a limited number of HER2+ and basal-

like tumors were analyzed (Fig. 7D). We also analyzed the cancer/

testis antigen family 1, member 6MAGEA6 gene, which is normal-

ly silent on both Xa and Xi. None of the primary tumors showed

reactivation from the Xi, although in some tumors, MAGEA6

expression was detected from the presumed Xa (Fig. 7A;

Supplemental Fig. S8B–D), similarly to our data in breast cancer

cell lines. In summary, RNA FISH analysis of 35 XIST-positive pri-

mary breast tumors of the luminal, HER2+, and basal-like sub-

types, revealed that all three X-linked genes tested, HDAC8,

TBL1X, and even ATRX, show Xi reactivation in a significant pro-

portion of tumor cells in stark contrast to the situation in healthy

breast tissue from the same patient.

To extend our findings, we analyzed publicly available data

for biallelic expression of X-linked genes, using a data set for

which both RNA-seq and DNA SNP6 data were available (Shah

et al. 2012). After we filtered out tumors of “poor” quality (see

Supplemental Methods) and those contaminated by normal cells

(Popova et al. 2009), we identified 25 BLC tumor samples with a

heterozygous X chromosome, suggesting they likely retained an

inactive X or at least some region of the Xi (Supplemental Fig.

S9A; Supplemental Table S2). Among these tumors, we identified

183 informative genes, of which 78 were expressed biallelically

and 105 monoallelically. Almost half of these biallelically ex-

pressed genes are subject to XCI in healthy human cells (Supple-

mental Fig. S9B; Cotton et al. 2013). Furthermore, in agreement

with our findings in the three tumor cell lines, TBL1X, NXT2,

and DOCK11 were among the 14 genes that were biallelically

expressed in at least two primary breast tumors (Supplemental

Fig. S9C). We identified no obvious correlation between the de-

gree of “cancer-specific” escape from XCI and the BRCAness

of the tumor (as defined in Popova et al. 2012; Supplemental

Table S2).

In summary, our analysis of Xi transcriptional status in a total

of about 140 primary breast tumors of the luminal, HER2+, and

basal-like subtypes, using both RNA FISH and RNA-seq analyses,

revealed that multiple X-linked genes are reactivated on the inac-

tive X chromosome.

Discussion

We have conducted an in-depth investigation of the nuclear orga-

nization, chromatin status, and chromosome-wide transcriptional

activity of the inactive X chromosome in breast cancer cell lines

and primary tumor samples. We can conclude that a frequent

cause of Barr body loss in breast cancer is due to the global pertur-

bation of its nuclear organization and disruption of its heterochro-

matic structure. Furthermore, the aberrant epigenomic landscapes

we have uncovered for the Xi in breast cancer cells are accompa-

nied by a significant degree of sporadic gene reactivation, which

in some cases can lead to aberrant dosage at the protein level

(Supplemental Fig. S10A).

Epigenetic erosion of the Barr body in breast cancer

Epigenetic perturbations of the inactive X chromosome were

found at multiple levels in breast cancer. Based on microscopy,

XIST RNA coating was often found to be highly dispersed, with

variable H3K27me3 enrichment, and a marked absence of an

RNA Pol II-depleted nuclear compartment. Based on ChIP-seq, ab-

normal presence of both RNA Pol II and H3K4me3was observed at

“cancer-specific” escapees, reminiscent of the chromatin organiza-

tion of the normally escapees fromXCI in noncancer cells (Kucera

et al. 2011; Cotton et al. 2013). Importantly, however, virtually all

informative “cancer-specific” escapees displayed simultaneously

repressive (H3K27me3) and active (H3K4me3, RNA Pol II recruit-

ment) chromatin marks (see Supplemental Fig. S7D), suggestive

of bivalent chromatin, as observed in ES cells (Bernstein et al.

2006), which may reflect, or even underlie, metastable states of

gene expression from the Xi in a cancer context. The Xi was also

severely perturbed at a more global chromatin level, with aberrant

distributions of H3K27me3 and acetylation of H3 and H4 present

in interphase breast cancer cells. The disruption of H3K27me3 do-

mains that we observed based on ChIP-seq in breast cancer cell

lines may reflect the nuclear disorganization of the Xi, as it has

been shown that H3K27me3 enriched domains in normal cells

tend to be clustered together in interphase and most likely partic-

ipate in the specific chromosomal and nuclear organization of the

Barr body (Chadwick and Willard 2004). Nevertheless, despite

these global and local epigenetic perturbations in all the breast

cancer cell types examined, the Xi could still be distinguished

from the Xa. For example, although the degree of enrichment

for H3K27me3 on the Xi is lower in cancer cells when compared

to HMEC and WI-38 cells, it is still higher than the mean enrich-

ment found over the rest of the genome (Fig. 2B; Supplemental

Fig. S10B). Similarly, although exclusion of Cot-1 RNA, RNA Pol

II, and euchromaticmarks is not complete on theXi in cancer sam-

ples, somedegree of exclusion is nevertheless detectable in a subset

of cells. Furthermore, “cancer-specific” escapees (like normal es-

capees) were never expressed to the same levels as their counter-

parts on the active X.

Possible causes of the epigenetic instability of the inactive

X chromosome in breast cancer

Epigenetic instability of theXi appears to occur across a broad spec-

trum of breast cancer types with no obvious specificities for partic-

ular molecular subclasses. For example, elevated genetic

instability, such as in BRCA1 null and basal-like breast tumors

(Richardson et al. 2006; Vincent-Salomon et al. 2007) cannot ex-

plain the marked epigenetic instability that we found in all sub-

types. We believe that the underlying causes of the structural

Barr body epigenetic erosion in breast cancer
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and transcriptional lability of the Xi in cancer are probably a result

of both genetic and epigenetic defects. For example, the slightly

lower levels of XIST expression that we observed in most cases

might lead to less efficient chromosome coating and contribute

to the disruptionof the silent nuclear compartment normally pres-

ent in somatic cells (Chaumeil et al. 2006; Clemson et al. 2006), as

well as to the aberrant distribution of H3K27me3 and other chro-

matin marks. Furthermore, the precise combination of epigenetic

factors that ensure the inactive state of different genes on the inac-

tive X chromosome in somatic cells is still very much an open

question. Indeed, our study revealed that the rather global epige-

netic misregulation in tumor cells results in rather sporadic X-

linked gene reactivation, and escape from silencingmay be depen-

dent on a gene’s local environment, as neighboring genes can

behave very differently in a cancer context. For example, the

NXT2 gene was found to show aberrant transcription, whereas

its close neighbor, NUP62CL, remained silent in MDA-MB-436

cells, although both lie in a non-XIST-coated/H3K27me3 depleted

region of the Xi (Supplemental Table S1).

Consequences of Xi erosion in breast cancer cells

The epigenetic instability of the Xi in breast cancer, which can re-

sult in aberrant X-linked gene expression, might in some cases

contribute to a selective advantage for cancer cells. Indeed, several

“cancer-specific” escapees identified here have previously been

shown to be involved in cancer, such asHDAC8, which is implicat-

ed in cellular transformation (Oehme et al. 2009) and metastasis

formation (Park et al. 2011). TBL1X, for which we demonstrated

increased protein dosage in the context of its aberrant reactivation

from the Xi, belongs to a complex with HDAC3 that is directly

linked to several forms of cancer (Spurling et al. 2008; López-

Soto et al. 2009; Kim et al. 2010; Müller et al. 2013; Miao et al.

2014). Aberrant dosage of such X-linked chromatin-associated

factors could easily be imagined to lead to pleiotropic effects in a

cancer context, promoting or enhancing more genome-wide mis-

regulation. Further studies will be required to explore the extent to

which X-linked gene reactivation might contribute to cancer

progression.

Importantly, in addition to the aberrant reactivation of genes

on the inactiveX, aberrant silencing of several genes that normally

escape XCI, such as RAB9A, BCOR, RPL39, or PNPLA4 was also ob-

served in tumor cell lines. BCOR mutations have already been im-

plicated in some cancers (Zhang et al. 2012). Aberrant repression

of such genes in a cancer context might be due to sporadic epimu-

tation or to impaired protection fromXCI through perturbation of

boundary elements (Filippova et al. 2005). Finally, we also showed

that abnormal activation of cancer/testis Antigen genes, which are

known to be aberrantly expressed in cancer, was from the active

rather than the inactive X chromosome in one case (MAGEA6),

pointing to differences in the stability of silent genes on the active

versus the inactive X chromosomes in cancer.

Consequences of genetic instability on the epigenetic status

of the Xi in cancer cells

Our study also reveals how chromosomal rearrangements, such as

deletions or translocations can have an impact on the epigenetic

status of a chromosome through loss of the XIC from an inactive

X fragment and/or juxtaposition of the XIC to an autosome. We

found such a scenario in the MDA-MB-436 cell line, where loss

of the XIC from an Xi fragment resulted in reduced H3K27me3

enrichment on the Xi, as expected from previous reports demon-

strating that PRC2 is recruited (directly or indirectly) to the Xi

via XIST RNA (Wutz et al. 2002; Plath et al. 2004; Maenner et al.

2010). However, the H3K27me3 profile on this Xi fragment is

not equivalent to a euchromatin region, indicating that other

mechanismsmay act to maintain an intermediate heterochromat-

ic organization. Furthermore, loss of XIST RNA coating and re-

duced H3K27me3 was not sufficient to result in notably higher

rates of sporadic gene reactivation of the inactive X-chromosome

fragment when compared to Xi fragments carrying an XIC and ex-

pressing XIST (Supplemental Fig. S10A). This is presumably

because other marks, such as hypoacetylation of H4, hypomethy-

lation of H3K4, and promoter DNAmethylation, are not fully per-

turbed and can propagate the inactive state. Thus, although XIST

RNA and PRC2-associated chromatin changes may participate in

maintaining the inactive state, they do not appear to be essential

in the context of this particular cell line.We alsomade the intrigu-

ing observation that in X:autosome translocations involving an Xi

fragment still carrying an XIC and expressing XIST RNA,

H3K27me3 enrichment could be found to spread into the autoso-

mal sequences adjacent to theXIC (for example in the SK-BR-3 and

MDA-MB-436 cell lines) (Fig. 3C). Although we were not able to

evaluate whether this results in aberrant gene silencing, such a

spread of heterochromatin into autosomal regions as previously

shown (Cotton et al. 2014) could clearly have important implica-

tions in a cancer context by inducing functional LOH for critical

genes such as tumor suppressors.

In conclusion, the perturbed transcriptional and chromatin

status of the inactive X chromosome that we have identified in

the context of breast cancer opens up several important clinical

perspectives. Today, there is still no rapid and efficient way to eval-

uate the epigenetic instability of tumor cells in a clinical context

(Portela and Esteller 2010). In theory, detection of X-linked gene

reactivation and aberrant chromatin status using IF and RNA

FISH in breast tumors could provide valuable biomarkers to assess

epigenetic status and/or to evaluate responsiveness of tumors to

drug treatments (Huang et al. 2002). Whether the same degree of

Xi epigenetic instability will be found in other types of cancer re-

mains an interesting question for the future.

Methods

RNA, DNA FISH, and immunofluorescence

ForXIST RNA FISH, a combination of two probes covering 16 kb of

XISTmRNAwas used (Okamoto et al. 2011). For nascent transcript

detection by RNA FISH, the following BAC (CHORI) probes were

used: HDAC8 (RP11-1021B19), TBL1X (RP11-451G24), ATRX

(RP11-42M11), HUWE1 (RP11-155O24), and KDM5C (RP11-

258C19). The correct chromosomal location of BACs was first ver-

ified using DNA FISH on metaphase spreads. A FISH probe for

MAGEA6 was generated by cloning the genomic sequence in

pCR-XL-TOPO vector. Human Cot-1 DNA (Invitrogen) was used

for Cot-1 RNA FISH. Probes were labeled by nick translation

(Vysis) with Spectrum Red-dUTP, Spectrum Green-dUTP, or Cy5-

dUTP following the manufacturer’s instructions. RNA and DNA

FISH were performed as described previously (Chaumeil et al.

2008). For more details see Supplemental Methods.

Microscopy

Images were generated using a Nikon confocal spinning disk mi-

croscope fitted with a 60×/1.4 OIL DIC N2 PL APO VC objective.
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For super resolution imaging, structured illumination (3D-SIM)

was performed using a DeltaVision OMX microscope (GE

Healthcare).

Human SNP Array 6.0 DNA and nascent RNA experiments

DNA copy number profiles

Genomic profiling was performed at Institut Curie using Affyme-

trix Human SNP Array 6.0; cell files were processed by Genotyping

Console 3.0.2 (Affymetrix, reference model file HapMap270, ver-

sion 29). Human SNP Array 6.0 data were mined using the previ-

ously described and validated GAP method (Popova et al. 2009).

Segmental absolute copy numbers and allelic contents (major al-

lele counts) were detected. R scripts and full details of the applica-

tion are available at http://bioinfo-out.curie.fr/projects/snp_gap/

and have been previously reported (Popova et al. 2009). For

more details see Supplemental Methods.

Nascent RNA allelic expression

Preparation of samples and analysis of nascent RNA were per-

formed as described previously (Gimelbrant et al. 2007). Briefly,

we purified nuclei of assessed cell lines (Nuclei Pure Isolation Kit,

Sigma) and subsequently purified nuclear RNA (by classical phe-

nol:chlorophorm extraction). Then, we hybridized cDNA ob-

tained by reverse transcription of nuclear RNA of each sample

onto Affymetrix Human SNP Array 6.0. Data was normalized by

Genotyping console, and raw single-SNP intensities were taken

as allelic expression of corresponding genes. Each SNP was charac-

terized by (1) global expression level score; (2) allelic expression

ratio score; and (3) genomic status (loss or retention of heterozy-

gosity score), which were summarized into a biallelic andmonoal-

lelic expression status. Genome-wide biallelic and monoallelic

expression profiles were obtained by cumulating SNP status in a

50-SNP window and at gene level.

Primary tumors

A hematein-eosin-safran (HES)–stained tissue section was made in

each primary tumor to evaluate tumor cellularity and diagnosis.

Characterization of the tumor samples was completed by the de-

termination of estrogen receptor, progesterone receptor, ERBB2,

cytokeratin 5/6, and epidermal growth factor receptor (EGFR) sta-

tus determined by immunohistochemistry done according to pre-

viously published protocols (Azoulay et al. 2005). All experiments

were performed in accordance with the French Bioethics Law

2004-800, the French National Institute of Cancer (INCa) Ethics

Charter, and after approval by the Institut Curie review board

and the ethics committees of our institution (“Comité de

Pilotage of the Groupe Sein”). In the French ethics law, patients

gave their approval for the use of their surgical tumor specimens

for research. Data were analyzed anonymously.

For details on experimental procedures used for cell culture,

DNA methylation analysis, Sanger sequencing, real-time PCR, al-

lele-specific PCR, pyro-sequencing, RNA sequencing analysis,

and chromatin immunoprecipitation analysis, see Supplemental

Methods.

Data access

All high-throughput data from this study have been submitted to

the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.

nih.gov/geo/) under accession number GSE62907.
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Extended Experimental Procedures 

Cell Culture 

Human Mammary Epithelial Cells (HMEC, Invitrogen) were grown in serum-free medium (HuMEC, Invitrogen). WI-

38, ZR-75-1, SK-BR-3 and MDA-MB-436 cells were grown in Dulbecco�s modified Eagle�s medium (DMEM; 

Invitrogen) containing 10% fetal bovine serum (FBS). 

 

DNA Methylation analysis.  

We bisulfite-treated 2  g of genomic DNA using Epitect bisulfite kit (Qiagen). Bisulfite converted DNA was amplified 

with bisulfite primers listed in Table S3.  All primers incorporated a T7 promoter tag, and PCR conditions are 

available upon request. We analyzed PCR products by MALDI-TOF mass spectrometry after in vitro transcription 

and specific cleavage (EpiTYPER by Sequenom®). For each amplicon, we analyzed two independent DNA 

samples and several CG sites in the CpG Island. Design of primers and selection of best promoter region to assess 

(approx. 500 bp) were done by a combination of UCSC Genome Browser (http://genome.ucsc.edu) and 

MethPrimer (http://www.urogene.org). All the primers used are listed (Table S3). NB: MAGEC2 CpG analysis have 

been done with a combination of two CpG island identified in the gene core. 

 

Analysis of RNA allelic expression profiles (based on Human SNP Array 6.0) 



DNA and RNA hybridizations were normalized by Genotyping console. Based on Log2ratios and Allelic Differences of 

DNA profile absolute segmental copy numbers were inferred. Single SNP raw intensities were considered from RNA 

profiles. Allelic expression scores were calculated based on both DNA and RNA profiles, as follows: 

1. RNA expression of SNP (log(Signal A +Signal B)) was smoothed using a 5 SNPs sliding window and 

excluding low expressed  SNPs (log(Signal A +Signal B)<6.5). Each SNP expression score was calculated 

by subtracting median and normalizing by standard deviation of expression level shown by exonic and 

intronic SNPs. Parameters were chosen based on comparisons to mRNA expression profile measured by 

Affymetrix 133plus2 array. 

2. Each SNP homozygosity score was calculated based on the inferred segmental copy number and major 

allele counts. If the segment was annotated to have a homozygous allelic status, all SNPs from the segment 

were annotated to be homozygous. If the segment was annotated to have a heterozygous allelic status, 

Allelic Difference was centered to the median of heterozygous band and normalized by standard deviation of 

heterozygous band. Homozygosity score of each SNP was set to centered and normalized Allelic Difference.  

3. Each SNP allelic expression ratio score was calculated as 2tangent( ) where   corresponded to the angle 

defined by (Signal A; Signal B) vector (  = 2*arctan(Signal A/Signal B)-pi/2). Balanced allelic expression 

corresponded to 0.  

4. Based on three thresholds: (1) Total expression score, (2) Heterozygous DNA call, (3) Allelic expression ratio 

score, all SNPs were classified into 6 groups: 

1) No expression or non-informative: designated by   0 

2) Contradictory 1 (homozygous SNP and bi-allelic expression): designated by   -1 

3) Contradictory 2 (homozygous AA SNP and mono-allelic BB expression or vice versa): designated by   

-2 

4) Mono-allelic expression: designated by   1 

5) Bi-allelic expression: designated by 2 

6) Marginal call (in-between mono-allelic and bi-allelic): designated by 1.5 

Further analysis and quality controls showed good correspondence between attributions and low number of 

contradictory calls.  

5. Profile of bi-allelic expression was obtained by summarizing bi-allelic expression calls in a sliding window of 

50 SNPs.  
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. Single SNP classification was summarized on the gene level, and each gene allelic expression has been 

score based on:  

 1) On the number of informative SNPs in the gene core (belonging to group 4, 5 or 6, see above) 

 2) On confidence attributed to the SNPs (depending on the distance from the threshold) 

 3) Consistence between SNPs within the same gene 

 

Sanger sequencing, real-time PCR, allele-specific PCR and pyro-sequencing 

Total RNA was isolated from cells using Trizol Reagent (Invitrogen) and purified on columns combined with DNase-

treated (Qiagen) to remove contaminating DNA. First-strand cDNA was prepared from 5  g of RNA and random 

hexamers using Superscript III (Invitrogen) at 50°C for 1 hr. gDNA was isolated using DNazol reagent (Invitrogen). 

cDNA and gDNA genotyping status (i.e. single variable position) was determined: either by a real-time PCR single 

nucleotide polymorphism (SNP) detection system with fluorescent competitive probes using an ViiA7 analyzer 

(Applied Biosystems), by Sanger sequencing (3130xl Genetic Analyzer, Applied Biosystems) of purified PCR 

product using BigDye V3.1 kit as recommended by the provider (Applied Biosystems) or by pyrosequencing as 

recommended by the manufacturer (Qiagen, Pyromark Q24). All real-time PCR reactions used SybrGreen Master 

Mix (Applied Biosystems) to a final volume of 10  l. Each sample was analyzed at least in triplicate. All the primers 

used are listed (Table S3). 

 

RNA sequencing analysis  

 We performed RNA-sequencing and DNA exome-sequencing on ZR-75-1, SK-BR-3 and MDA-MB-436 cell lines. The 

RNA-sequencing correspond of paired-reads lane 2x100 bp sequencing on poly-A RNA purified. The DNA exome-

sequencing has been done by paired-reads lane 2x100 bp after a SureSelect® array-capture. Both sequencing has 

been performed on high-throughput Illumina HiSeq sequencer. Burrows-Wheeler Aligner (BWA) was used for the 

mapping. Briefly, SNPs were called from DNA exome-seq data using The Genome Analysis Toolkit (GATK, Broad 

Institute) and dbSNP database. For allelic expression analysis, we then only kept SNPs supported by >= 10 RNA-seq 

reads. For each gene, when several SNPs were informative, we assessed the allelic expression from the most 

informative SNP. We next calculated the allelic expression ratio as (100-(absolute(Allele A%-Allele B%))). Genes 

above 40 are considered as bi-allelically expressed and genes below 40 are categorized as mono-allelically 

expressed. We noted that remarkably fewer X-linked genes were retained in SK-BR-3, compared to the other 



samples. This is likely due to the large region of LOH on the long arm of the X-chromosome in this cell line. NB: We 

chose to keep the same threshold (of 40) for all cell lines, knowing that we would presumably underestimate the 

degree of Xi-gene reactivation for the ZR-75-1 line which is trisomic for the X-chromosome. Indeed, when the 

threshold is change for ZR-75-1 to account for ploidy, this would have led to just one more gene being included as 

�cancer-specific� escapee: ARHGEF9. We therefore chose to keep the same threshold of 40 for all lines, in order to 

simplified data presentation without impacting on the general conclusions. 

Chromatin Immunoprecipitation analysis 

Chromatin immunoprecipitation assays and massive parallel sequencing 

Cancer and normal cells were fixed with 1% para-formaldehyde during 30 minutes at room temperature. Chromatin 

from fixed cells was fragmented by sonication and immunoprecipitated in lysis buffer (50mM TrisHCl pH=8, 1mM 

EDTA, 140mM NaCl, 1% Triton, 0.1% Na-deoxycholate) complemented with protease inhibitor cocktail (Roche cat# 

11873580001). After overnight immunoprecipitation in presence of the corresponding antibodies, 2 washes with lysis 

buffer, 2 washes with lysis buffer containing 360mM NaCl, 2 washes with washing buffer (10mM TrisHCl pH=8, 

250mM LiCl, 0.5% NP-40, 1mM EDTA, 0.5% Na-deoxycholate) and 2 washes with 1xTE were performed before 

chromatin elution at 65°C (15 min in elution buffer: 50mM TrisHCl pH=8, 10mM EDTA, 1% SDS). The 

immunoprecipitated chromatin was decrosslinked overnight (65°C in presence of 1%SDS; 1xTE solution), the 

remaining proteins were removed by proteinase K treatment (Roche; cat# 03115852001) and phenol-chloroform 

extraction. The purified DNA was validated by quantitative real-time PCR (qPCR, Roche LC480 light cycler device; 

Qiagen Quantitect PCR reagents) and libraries for massive parallel sequencing were prepared following standard 

procedures (NEXTflexTM ChIP-seq library kit; cat# 514120). Chromatin immunprecipitation assays were performed 

with antbodies directed against RNA Polymerase II (Santa Cruz; sc-9001; H-224), H3K4me3 (Abcam; ab8580) and 

H3K27me3 (Millipore; ab07449). 

ChIP-seq libraries were prepared according to the standard Illumina protocol and sequenced with the HiSeq2500 

system. Single end sequencing was carried out to obtain around 25-150 million (M), 100bp long reads per sample. 

Alignment and Quality control 

Datasets were subjected to two types of quality control. FASTQC-0.10.1 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess the quality of sequencing and 

potential adapter or cross contaminants. Average sequencing quality (phred score) per base was above 30 (Q ! 30) 

for all datasets. In addition, aligned datasets were then subjected to NGS-QC ((Mendoza-Parra et al. 2013); www.ngs-



qc.org) to assess the robustness of enrichment. The majority of data sets were of «triple A» quality, no data set was 

below «triple B».  

For exome-seq and ChIP-seq, alignment was performed using BWA-MEM-0.7.7 (Li and Durbin 2009) with default 

parameters, which simultaneously checks for both global and local alignment for reads. Alignment was followed by 

three sets of filters to prevent bias in the analysis. 1) duplicate reads (PCR clonal reads) were filtered out using Picard 

tools-1.86 (http://picard.sourceforge.net) 2) reads with mapping quality less than 10 were filtered out using Bamtools-

2.2.3 (https://github.com/pezmaster31/bamtools) and 3) reads with more than one alignment reported were filtered out 

using in-house scripts. Further analysis was carried out on processed alignment file which is around 10-100M reads 

after these filters. 

ChIP Allele specific analysis 

To prepare the allele information for each cell-line for allele-specific analysis down the line, SNP analysis was carried 

out along with Human SNP Array 6.0 data. To identify novel variation (apart from known SNPs from Human SNP 

Array 6.0 data), SNP analysis was carried out on all three ChIP-seq, Exome-seq and RNA-seq data individually. ChIP-

seq data of different marks (H3K4me3, H3K27me3, RNA Pol II and Input) were merged for each cell line to increase 

the depth and confidence for variation calling. Variation calling was performed for each cell line separately for ChIP-

seq and Exome-seq following the best practice GATK-2.6.5 pipeline by filtering reads with Mapping quality ! 1 (Van 

der Auwera GA et al., 2013; http://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq). Variation calling 

for RNA-seq was carried out following the methods of Piskol, Robert et al., 2013 to avoid artifacts specific to RNA-seq 

data (Piskol et al. 2013). A final list of allele information was generated by combining the SNP information from the 

different data sets for each cell line. To increase the allele-specific sensitivity for the alignment, reads were 

additionally realigned in an allele-specific manner following the method of Satya et al. (Satya et al. 2012). Read counts 

for each allele and SNP position were extracted for each mark using in-house scripts. SNP positions with at least 

three reads from both alleles were considered as heterozygous positions. 

Peak calling and annotation 

Peak calling was performed using HOMER ((Heinz et al. 2010); http://homer.salk.edu/homer/index.html) with default 

parameters. For H3K27me3 and RNA Pol II, the 'style' parameter was chosen as 'histone' due to the broad patterns 

for this mark, whereas for H3K4me3, which generally give sharp peaks, the parameter 'factor' was chosen. Genomic 

context annotation over identified peaks were carried out using the HOMER annotation module but with basic 

annotation by excluding references other than coding genes and non-coding RNA. 



Integration of annotations 

A gene-based analysis of annotation integration was carried out using in-house scripts to integrate all annotation from 

peak and variation calling (informative SNP counts, read depths, homo/heterozygous SNP count and weighted allelic 

imbalance). To include annotations from regulatory regions 1Kb sequences upstream from the TSS and downstream 

of the TES were considered. A weighted arithmetic average was calculated for each gene by calculating average 

Allelic Imbalance (AI) where each SNP's AI was weighted by its read depth. 

Normalization of ChIP-seq data 

To illustrate the comparisons across cell lines, ChIP-seq data were normalized using an in-house developed tool 

called 'Epimetheus', which is based on quantile normalization (manuscript under preparation). Read Count Intensity 

(RCI) was calculated for a window of 100bp bin size across chromosomes and then these intensities were normalized 

using quantile normalization from the limma package. The impact of normalization was assessed using MA plots 

before and after normalization. Specified genomic feature based normalized RCI was constructed, which are 

illustrated in Figure 6. For TSS-centered plots and heatmaps, a separate TSS-based normalization was carried out 

with 20bp bin size to obtain higher resolution. 

 

RNA, DNA FISH and immunofluorescence. 

For DNA FISH, cells were denatured in 50% formamide/2X SSC at 80°C for 30 min and rinsed several times in 

cold 2X SSC prior to overnight hybridization at 42°C. Labeled BAC probes were denatured and competed with Cot-

1 DNA (3  g/coverslip) for 15 min at 37°C. Preparation of the X chromosome paint probe was performed according 

to the supplier�s instructions (CytoCell). After hybridization, coverslips were washed three times in 50%formamide/ 

2X SSC and three times in 2X SSC at 42°C for RNA-FISH and DNA-FISH, and then stained with DAPI (0.2 mg/ml). 

Immunofluorescence RNA-FISH was performed as described previously (Chaumeil et al. 2008). For 

immunofluorescence, the following antibodies were used: RNA polymerase II (clone CTD 4H8; Millipore cat# 05-

623), H3K9Ac (Millipore cat# 06-942), H4Ac (Millipore cat# 06-946), H3K27me3 on interphase (clone 7B11), 

H3K27me3 on metaphase (ActiveMotif cat# 39155), H3K4me2 (Millipore cat# 07-030) at a 1/200 dilution. For RNA 

FISH on tumors, either tumor stamps were generated from fresh tissue samples and immediately frozen at -80°C; 

or else cryosections (10 m thick) were generated. Just prior to IF / FISH, these stamps/sections were fixed in 3% 

paraformaldehyde/PBS for 10 min, then permeabilized in 1X PBS/0.5% Triton X-100/2 mmol/L vanadyl 

ribonucleoside complex (New England Biolabs) on ice for 4 min. After three washes in PBS, the sample was 



dehydrated through an ethanol series of washes prior to RNA FISH or DNA FISH, which was then performed as 

described previously (Vincent-Salomon et al. 2007). For immunofluorescence alone, samples were used directly, 

without prior ethanol treatment and dehydration. 

 

Sequential Immunofluorescence and RNA FISH analysis with super resolution OMX® 

microscopy 

Sequential Immuno-RNA FISH was performed as previously described (Chaumeil et al. 2008). Antibodies used for 

immuno-staining were: anti-H3K9Ac (Millipore cat# 06-942), anti-H3K27me3 (clone 7B11), anti-H3K4me2 (Millipore 

cat# 07-030) and anti-RNA polymerase II (clone CTD 4H8; Millipore cat# 05-623). Structured illumination image 

acquisition was carried out using a DeltaVision OMX version 3 system (Applied Precision, Issaquah, WA) coupled to 

three EMMCD Evolve cameras (Photometrics, Tucson, AZ). Multi-channel image alignment was performed using 

ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2012) and  UnwarpJ plugin (Sorzano et al. 2005). At least, thirteen nuclei were analyzed 

for each experiment. 

 

Data processing of 104 Basal-like breast carcinomas (BLC)  

We obtained controlled access to the EGA datasets from the study EGAS00001000132 including Human SNP Array 

6.0-arrays, RNA exome and whole genome sequencing data (Shah et al. 2012). Human SNP Array 6.0-arrays were 

processed using the GAP method to obtain absolute copy number and allelic content profiles (Popova et al. 2009). 

Samples that were classified as bad, average quality or contaminated by normal tissue were discarded. In details, we 

obtained 81 primary BLC tumors with RNA-seq and SNP-array data available. 39 samples classified as �bad� quality 

were removed from the analysis: 2 cases were identified as �normal�; 7 cases were identified with bad quality 

hybridization to SNP-arrays and 30 cases were identified with more than 50% contamination by the normal tissue, 

which showed low signal to noise ratio in SNP-array copy number and allelic imbalance profiles. Finally, 42 BLCs with 

good SNP-array quality (i.e. <50% contamination by the normal tissue and high signal to noise ratio) and RNA-seq 

data available were analyzed (cf Table S2). After evaluation of allelic status of X chromosome, we ended up with 25 

samples exhibiting heterozygosity, of at least some region of the X chromosome for further evaluation. Allelic 



expression was obtained as the number of reads and corresponding allelic frequency covering known SNP positions. 

SNPs coverage was obtained based on the SAMtools pileup processing of RNA-seq data (Li et al. 2009).  

  



Supplemental Figure Legends 

Figure S1.  Xi characterization in normal and cancer cells 

(A) Whole X chromosome DNA FISH (X paint in white). Continue of the Figure 1A. 

(B) XIST expression level assessed by real-time PCR. Normalization was performed using TBP expression levels 

(Kwon et al. 2009). Data represent the mean values +/- SEM. 

(C) XIST RNA FISH signal intensity. Quantification was performed using ImageJ software (NIH, Betesda) by 

quantifying FISH signal at XIST RNA domain (we normalized XIST intensity signal to the general RNA FISH 

background that we measured in proximity to the Xa identify by using HDAC8 RNA FISH). The number of nuclei 

analyzed is indicated at the bottom of the box plot. 

(D) DAPI signal intensity. Quantification was performed using ImageJ software by comparing the DAPI signal at the 

XIST RNA domain versus DAPI signal associated with the HDAC8 RNA FISH signal at the Xa. The number of nuclei 

analyzed is indicated at the bottom of the box plot. 

(E) Example of DAPI signal intensity quantification on HMECs and ZR-75-1 cells. 

(F) X-paint DNA FISH on metaphase spreads (grey) shows the number of X chromosomes (red) in normal and breast 

cancer cell lines. 

(G) KDM5C and HUWE1 expression at XIST domain assessed by nascent transcript RNA FISH (KDM5C, red; 

HUWE1, green; XIST, grey) 

Left Bar chart: Quantification (in %) of nuclei showing mono- or bi-allelic expression of HUWE1 associated with XIST 

RNA domain. 

Right Bar chart: Quantification (in %) of nuclei showing mono- or bi-allelic expression of KDM5C associated with XIST 

RNA domain. 

(H) Boxplot of the relative levels of XIST RNA coating and Cot-1 RNA exclusion. The number of nuclei analyzed is 

indicated at the bottom of the box plot. Examples of nuclei used for this analysis are shown in figures 1C. The 

quantification has been done by ImageJ software on images acquired on a Nikon confocal spinning disk microscope. 

For details on quantification method see Figure S2A and S2C. 



(I) Visual quantification of presence or exclusion of Cot-1 RNA at XIST RNA domain. The number of nuclei analyzed is 

indicated at the bottom of the bar chart. Quantification has been done on images acquired on a Nikon confocal 

spinning disk microscope. 

(J) Boxplot of the relative levels of XIST RNA coating and RNA Pol II exclusion. The number of nuclei analyzed is 

indicated at the bottom of the box plot. Examples of nuclei used for this analysis are shown in figures 1C. The 

quantification has been done by ImageJ software on images acquired on a Nikon confocal spinning disk microscope. 

For details on quantification method see figure S2A and S2C. 

(K) Visual quantification of RNA Pol II presence or exclusion at XIST RNA domain. The number of nuclei analyzed is 

indicated at the bottom of the bar chart. Quantification has been done on images acquired on a Nikon confocal 

spinning disk microscope. 

Box plot on this figure: Upper whisker represents 90%, upper quartile 75%, median 50%, lower quartile 25% and 

lower whisker 10% of the dataset for each cell line. 

(***) p< 0.001, (**) p<0.01, (*) p<0.05 using the Student's t-test. All the dataset are compared with HMEC dataset. 

Scale bar: 5 m 

Figure S2. Histone post-translational modifications associated with the X chromosome 

(A) Schematic view of the quantification done by ImageJ home-made macro to evaluate the enrichment / depletion of 

immuno-staining (or RNA FISH) signal at XIST domain compare to the non-XIST coated DNA. This quantification has 

been carried-out on immuno-RNA FISH images (see Figure 1C for example). Nucleoli have not been considered in 

the analysis. For MDA-MB-436 cells, to avoid bias in the quantification, we also excluded from the analysis the highly 

H3K27me3 enriched bodies which do not belong to X chromosome (nor in metaphase (Figure 3C) or in interphase 

(Figure S3F)). NB: Evaluation of the H3K27me3 enrichment on the inactive X chromosome was also performed using 

an X-chromosome DNA FISH paint (Figure S3F) to identify the Xi territory. This revealed the same changes in 

H3K27me3 enrichment in cancer cell lines as when XIST was used as a read out for the Xi. 

(B) Example of results obtained with ImageJ macro in the evaluation of H3K27me3 enrichment at XIST domain.  

(C) Example of results obtained with ImageJ macro in the evaluation of Cot-1 RNA depletion at XIST domain.  



(D)  Pearson�s co-localization coefficients have been evaluated for XIST RNA coating and H3K27me3 association on 

DeltaVision OMX microscope. Examples of nuclei used for the analysis are shown in Figures 2C. Data represent the 

mean values +/- SEM. The number of nuclei analyzed is indicated at the bottom of the box plot. 

(E) Immuno-RNA FISH revealing the degree of H4ac (green) depletion at XIST RNA domains (red). 

(F) Boxplot of the relative levels of XIST RNA coating and H4ac association. The number of nuclei analyzed is 

indicated at the bottom of the box plot. The quantification has been done by ImageJ software on images acquired on a 

Nikon confocal spinning disk microscope. For details on quantification method see Figure S2A and S2C. 

(G) Immuno-RNA FISH revealing the degree of H3K4me2 (green) depletion at XIST RNA domains (red). 

(H) Boxplot of the relative levels of XIST RNA coating and H3K4me2 association. The number of nuclei analyzed is 

indicated at the bottom of the box plot. The quantification has been done by ImageJ software on images acquired on a 

Nikon confocal spinning disk microscope. For details on quantification method see Figure S2A and S2C. Similar 

results have been obtained by immuno-RNA FISH for H3K4me3 and XIST RNA (Data not shown). 

(I) Visual quantification at XIST RNA coating of H3K27me3 enrichment; H3K9ac exclusion; H3K4me2 exclusion and 

H4ac exclusion. The number of nuclei analyzed is indicated at the bottom of the bar chart. Examples of nuclei used for 

this analysis are shown in figures 2A, 2D, S2E and S2G. Quantification has been done on images acquired with Nikon 

confocal spinning disk microscope. 

(J) Immuno-RNA-FISH for XIST (red) and H3K4me2 (green). Acquisition has been carried out by super-resolution 

structured illumination on DeltaVision OMX microscope. Inset for H3K4me2, XIST RNA and merge is shown below 

each cell lines. 

 (K) Immuno-RNA FISH for XIST (red) and RNA Pol II (green). Acquisition has been carried out by super-resolution 

structured illumination on DeltaVision OMX microscope. Inset for RNA Pol II, XIST RNA and merge is shown below 

each cell lines. 

(***) p< 0.001, (**) p<0.01, (*) p<0.05 using the Student's t-test. All the dataset are compared with HMEC dataset. 

Box plot on this figure: Upper whisker represents 90%, upper quartile 75%, median 50%, lower quartile 25% and 

lower whisker 10% of the dataset for each cell line. 

Figure S3. Nuclear organization of the XIST RNA coated chromosome  



(A) Genomic DNA Sanger sequencing of XIST provides genotype information for at least one SNP in each tumoral 

cell lines. cDNA sequencing reveals that XIST is mono-allelically expressed in the three tumor cell lines. 

(B) Bar chart of the percentage of nuclei observed as EdU positive or EdU negative. Briefly, we performed a 30min 

EdU pulse on cultured cells and then detected incorporated Edu using the Click-It assay (Invitrogen). At least 100 

nuclei were analyzed for each cell line. Indeed, we wondered whether the perturbed state of the Xi in some cells might 

be dependent on cell cycle, for example due to S phase when chromatin must be replicated. Thus, we further 

examined MDA-MB-436 cells, which showed the highest proliferation rate of the three cancer cell lines.  

 (C) The MDA-MB-436 cell line was used for a sequential IF / RNA FISH (EdU pulse and detection / H3K27me3 

immuno-staining / XIST RNA FISH). Using ImageJ macro, we quantified the degree of H3K27me3 enrichment in EdU 

positive and EdU negative cells to explore the impact of cell cycle on Xi epigenetic chromatin mark instability in 

tumoral cell lines. The level of H3K27me3 enrichment is slightly lower in this experiment compare to Figure 2B, 

presumably due to a slight decrease in immuno-staining quality following EdU �Click-It� detection. No particular 

correlation could be seen between EdU positive (S phase) or EdU negative (G1 or G2 phase) cells and disrupted 

H3K27me3 enrichment on the Xi , indicating that the disrupted chromatin patterns observed are not necessarily linked 

to a specific stage of the cell cycle such as S phase. 

(D) Example of H3K27me3 signal intensity quantification on EdU negative or EdU positive MDA-MB-436 cells 

(Immuno-RNA FISH: DNA, blue; XIST RNA, red; EdU, green and H3K27me3, white). 

(E) Immuno-blotting was performed on protein nuclear extracts prepared as follows. After washing with PBS, cells 

were incubated on ice for 10 minutes in buffer A (10 mM HEPES pH 7.8, 10 mM KCl, 2 mM MgCl2, 0.1 mM EDTA) 

with protease inhibitor cocktail, added 10% NP40, and centrifuged at 14,000 rpm for 20 seconds. The supernatant 

was removed. The pellet was suspended in buffer B (50 mM HEPES pH 7.8, 50 mM KCl, 300 mM NaCl, 0.1 mM 

EDTA, protease inhibitor cocktail) and incubated on ice for 30 minutes. Nuclear debris was pelleted by centrifugation 

at 14,000 rpm for 10 minutes, and the supernatants were used as nuclear extracts. Nuclear proteins (20 g) were 

separated on SDS�polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride (PVDF) 

membranes by a standard procedure. Antibodies used for immunoblotting were: H3K27me3 (ActiveMotif cat# 39155), 

H3K4me2 (Millipore cat# 07-030), H4ac (Millipore cat# 06-946), H3ac (Millipore, cat# 06-599), H3 (Abcam, cat# 

1791), Lamin A/C (Millipore, cat# 05-714). Immunoblots were revealed using enhanced chemiluminescence (ECL+, 

Amersham). Histone 3 and Lamin A/C are used as loading normalization. 



(F) Sequential immuno-RNA/DNA FISH was performed as described (Chaumeil et al. 2008). Briefly, staining and 

images acquisition were first carried out and positions saved. Slides were then treated with RNase A and RNase H for 

1h at 37°C. After several washes, slides were used for X chromosome paint DNA FISH. At least, 80 nuclei were 

analyzed for each cell lines. Grey and red drawing outlines of XIST RNA, H3K27me3 and H3K4me2 panels represent 

the X chromosome territories (from the X chromosome panel). For each cell lines either one or two planes are shown. 

Figure S4. Validation of X-linked genes allelic expression status 

(A) Schematic outline of our allele-specific transcriptional analysis of X-chromosome transcriptional activity. 

(B) Dilution- limited cultures enabled us to derive 22 independent clones from the primary WI-38 cell line. Analysis of 

each clone by allele-specific PCR reveals a clear mono-allelic expression of CLCN4 from either the maternal or 

paternal X chromosome (eleven from each origin were obtained). Amongst this 22 clones, we then chose two clones, 

displaying inactivation of one or the other X, for RNA-seq and two further clones (again with inactivation of opposite 

alleles) for the RNA SNP6 approach. Similarly, we also derived clones from HMEC cells by dilution-limit culture. 

However the cloning efficiency of HMEC cells was far lower than for WI-38 cells. Only two HMEC clones were 

obtained, both with very limited cell proliferation capacity and were therefore not used for the RNA SNP6 array or 

RNA-seq analysis but only for allele-specific PCR. Each clone shows a clear mono-allelic expression of NXT2 from 

maternal or paternal chromosome (data not shown). 

(C-E) We also derived single cell clones from the ZR-75-1, SK-BR-3 and MDA-MB-436 cells. Each tumor cell line 

revealed the same Xi/Xa allelic profile in all clones analyzed and the parental bulk cell line, as expected if these 

tumors (and the cell lines derived from them) were originally clonal, unlike WI-38 and HMEC primary cells which are 

polyclonal, with a mixed population of cells harboring a maternal or paternal inactivated X chromosome. For example, 

NXT2 allelic expression is strictly the same between the bulk population and the clones for ZR-75-1 (mono-allelic 

expression) and MDA-MB-436 (bi-allelic expression). 

(F) For the allele-specific transcriptome experiment we used two different WI-38 clones (with alternative paternal Xi / 

maternal Xi profiles). The allele-specific expression profile obtained on autosomal genes are almost the same in both 

clones. This demonstrates the robustness and accuracy of the approach and the fact that both clones present a 

similar allelic expression pattern on autosomes. 

(G) WI-38 clone #1 harbors an inactive X chromosome of different parental origin compared to clone #28, however the 

allelic expression patterns observed were very similar between the two clones revealing that at this level of resolution 



there are no striking differences in X-chromosome inactivation status between the maternal and paternal X 

chromosomes.  

(H-I) Allele-specific PCR using TaqMan® probes for the analysis of HDAC8 rs5912136 (H) and APOOL rs4828121 (I). 

The x axis show expression from allele A and the y axis expression from allele B. RT minus sample was used as 

negative control (i.e. no amplification of alleles A and B). To determine threshold for 100% of allele A or 100% allele B, 

we used pure gDNA material. For example, qRT-PCR with TaqMan® probes demonstrated that APOOL, is mono-

allelically expressed in WI-38 cells, but is bi-allelically expressed in tumor cell lines with similar expression levels from 

inactive and active alleles in MDA-MB-436 cells, and lower levels (about 30%) from the inactive allele in ZR-75-1 cells. 

 (J) Genomic DNA Sanger sequencing of several genes provides genotype information for at least one SNP. cDNA 

sequencing reveals whether the gene expression is mono- or bi-allelic. For example, cDNA and gDNA Sanger 

sequencing on SYTL4 reveal an mono-allelic expression in normal WI-38 cells and in the ZR-75-1 cell line, but an bi-

allelic expression in MDA-MB-436 cells, (and uninformative in SK-BR-3 cells due to LOH). 

Figure S5. Transcriptional activity of the X chromosome 

(A) Allele specific PCR based on TaqMan® probes for analysis of NXT2 rs3204027. The x axis shows expression 

from allele A and y axis expression from allele B. RT minus sample was used as negative control (i.e. no amplification 

of alleles A and B). To determine threshold for 100% of allele A or 100% allele B, we used pure gDNA material.  

(B) Cancer Testis (C/T) antigen mRNA expression analysis. We investigated expression of several X-linked members 

of the C/T antigen family. This was performed by normalizing data to TBP expression for each sample and then 

reported to HMEC expression to evaluate expression increased in breast cancer cell lines. These genes are normally 

only expressed in the testis and are silent in somatic tissues, on both the active and inactive X chromosomes, but 

have been reported to be over-expressed in breast tumors. We found that some of these genes showed no 

expression at all (MAGEA12, SAGE1, XAGE3, data not shown) in all cell lines examined, while others (MAGEA4, 

MAGEA6 and MAGEC2) showed increase expression in the cancer cell lines but not in normal cells. The aberrant 

expression of X-linked C/T antigens could either be due to reactivation on the Xi or the Xa. In the case of SK-BR-3, 

only the active X chromosome alleles, of those three genes, are present (due to LOH) meaning that the over-

expression we observed must be due to the re-activation of the alleles on the active X chromosome. To detect 

MAGEA6 expression in the other cell lines, RNA FISH was used. Data represent the mean values +/- SEM. 

(C) MAGEA6 expression analysis by RNA FISH on normal and tumoral cell lines (green). HDAC8 (red) and XIST 

(grey) RNA FISH has been used as control to localize Xi and Xa region within the nucleus. In normal cells (HMEC and 



WI-38), no expression of MAGEA6 was found. MAGEA6 expression could be detected from the active X in a 

significant proportion of SK-BR-3 (47%) and ZR-75-1 (32%) cells, but never from the Xi. In MDA-MB-436 cells, as the 

MAGEA6 loci are associated with an X chromosome fragment that is no longer linked to the XIC, it was not possible to 

determine from which allele the gene was expressed. 

(D) Z-projections of 3D RNA FISH show representative examples of HDAC8 expression (green) at XIST domains 

(grey) in normal (WI-38 and HMEC) and breast cancer cell lines (ZR-75-1, SK-BR-3, and MDA-MB-436). In SK-BR-3 

cells, arrowheads indicate active X chromosomes and arrows XIST-coated chromosomes. On the right, bar graph 

shows levels of HDAC8 expression from XIST domains, with reactivation in SK-BR-3 and MDA-MB-436 cells. 

(E) ATRX expression assessed by nascent transcript RNA FISH on DAPI-stained nuclei (ATRX, green; XIST, grey; 

DNA, blue). 

(F) TBL1X expression level assessed by real-time PCR. Normalization was performed using TBP expression level. 

Data represent the mean values +/- SEM. 

(***) p< 0.001, (**) p<0.01, (*) p<0.05 using the Student's t-test. All the dataset are compared with HMEC dataset. 

Figure S6. Perturbation of the Xi chromatin landscape in breast cancer cells 

(A) Gene promoter DNA methylation analysis. Each histogram indicates the ratio of promoter methylation (0 to 1) 

according to gene and to cell line. The position of the gene is indicated on the X chromosome. Color code indicates 

the known allelic expression status on the Xi for each gene in different cell lines (subject to XCI, blue; escape from 

XCI, red; LOH i.e. no locus on Xi, brown; unknown; black). Data represent the mean values +/- SEM. Primers used for 

analysis by EpiTYPER are available in Table S3. DNA methylation levels of X-linked promoters examined were 

consistent with the Xa:Xi chromosome ratios in different cell lines. For example, in ZR-75-1 a general reduction in 

DNA methylation of X-linked gene promoters was found compared to HMECs, consistent with the presence of two Xa 

versus one Xi. This was most pronounced for regions presenting LOH, where only the Xa allele is present. 

(B) Variation of H3K27me3 signals of 1Mb bins along the chromosome 17 between HMEC and either Wi-38 or the 

three tumor cell lines. Above 0 mean more enrichment in HMEC cells, and below 0 more enrichment in the cell line 

used in the comparison. The profile appears much more variable in the three tumor cell lines than by comparing 

HMEC to WI-38. 



(C) UCSC Genome Browser (Kent et al. 2002) whole X chromosome view of H3K4me3 and H3K27me3 ChIP-seq 

data. Our data have been normalized (see Materials and Methods for more details). The quality of ChIP-seq data sets 

was validated with the NGS-QC Generator and received QC Stamps between �triple A� and �BAA� ((Mendoza-Parra et 

al. 2013); www.ngs-qc.org). In addition to our own HMEC data, HMEC profiles for H3K4me3, H3K27me3 and 

H3K9me3 were obtained from ENCyclopedia Of DNA Elements (ENCODE) project and were used to : 1- compare the 

ChIP-seq quality of our dataset; 2- refine the position of the two distinct chromatin type identified on the Xi in normal 

human cells : H3K9me3 (green) or H3K27me3 (red) enriched. At the bottom, the X chromosome schematic view 

highlights the H3K9me3 (green) or H3K27me3 (red) enriched domain. The percentages correspond to the frequency 

of detection of those particular regions in human cells by immuno-staining on metaphase by Chadwick, B (Chadwick 

2007). Asterisk indicates a preferentially H3K9me3 enriched region which has not been observed by immuno-staining 

on metaphase by Chadwick, B, but which is clearly visible by ChIP-seq analysis on HMEC likely due to the higher 

resolution. 

(D) TSS-centered plots for RNA Pol II and H3K4me3 enrichment of X-linked subject to XCI or escaping from the XCI. 

For each cell lines, X-linked subject to the XCI or escaping from the XCI have been choose based on RNA-seq and 

RNA SNP6 analyzed done previously (cf Table S1)  (but for *HMEC, as we do not have allelic expression analysis 

available, we used X-linked genes list obtained from analyzing WI-38 clones). Genes escaping the XCI show higher 

enrichment of RNA Pol II and H3K4me3 at the TSS region, indicating that expression of an additional copy is sufficient 

to observe enrichment increase. Furthermore, in ZR-75-1 cells, there two active X and one inactive X chromosome 

meaning that we are still detecting expression of one additional copy out of three (even though the difference is 

reduced compare to the other cell lines). 

(E) Heatmap for enrichment of RNA Pol II and H3K4me3 at the TSS region. We represented heights X-linked: four are 

escaping XCI in all the cell lines (KDM6A, KDM5A, RPS4X and SMC1A) and four are silenced on the Xi in all the cell 

lines (RBM41, DLG3, HUWE1 and RRAGB).  

Figure S7. Local perturbation of the Xi chromatin in breast cancer cells 

(A) TSS-centered plots (+/- 1.5kb) show RNA Pol II and H3K4me3 enrichment for all the X-linked genes (except 

regional Xi loss) of each tumoral cell lines and HMEC. The number of genes analyzed is indicated below each plot. 

 (B) Heatmap for RNA Pol II and H3K4me3 enrichment at TSS +/- 1,5 kb. Genes listed are �cancer-specific� escapees 

(in respect to each of the three tumoral cell lines; see figure 6D to have the averaging of the TSS region enrichment). 



 (C) Example of H3K27me3, RNA Pol II and H3K4me3 Allelic Imbalance (AI) enrichment for known escaping or 

silenced X-linked genes in the three tumoral cell lines. AI has been calculated, for a given gene, by the weighted 

arithmetic mean of all the informative SNPs lying within the gene body (+1kb before TSS and +1kb after the TES). As 

for RNA-seq analysis, AI < 40 is considered as a mono-allelic enrichment (i.e. < 20% enrichment for the lowest 

enriched allele) and above AI > 40 as bi-allelic enrichment. X-linked genes escaping the XCI show an enrichment of 

H3K4me3 and RNA Pol II on the active and inactive allele. At the contrary, H3K27me3 is only detected enriched on 

one allele. X-linked subject to the XCI show mono-allelic enrichment of H3K27me3, RNA Pol II and H3K4me3. 

(D) Allelic imbalance (AI) of H3K27me3, RNA Pol II or H3K4me3 enrichment is shown for �cancer-specific� escapees 

in MDA-MB-436 cells. AI for a given gene represents the weighted mean of informative SNPs lying within the gene 

body +/- 1kb. As for RNA-seq analysis, AI < 40 is considered as a mono-allelic enrichment. 

 

Figure S8. Assessment of the epigenetic status of the inactive X chromosome in primary breast tumors 

(A-D) Examples of RNA FISH for HDAC8, ATRX, TBL1X nascent transcripts and XIST RNA; or immuno-RNA FISH 

for RNA Pol II and H3K27me3 combined with XIST RNA FISH on primary breast tumor samples: Luminal A sub-type 

IDC (Invasive Ductal Carcinoma) of grade II (T2) (A); HER2 amplified sub-type IDC of grade II (T3) (B); Basal-like 

sub-type IDC of grade III (T4) (C) and lymph node metastasis coming from patient on panel C (T4meta) (D). 

Left panel:  HDAC8, ATRX and XIST expression was assessed by RNA FISH on breast tumor stamps. 

Middle panel: TBL1X, MAGEA6 and XIST expression was assessed by RNA FISH on stamps of breast tumor stamps. 

 Right panel: Immuno-RNA FISH reveals the degree of H3K27me3 enrichment (green) and of RNA Pol II (red) 

depletion on the XIST coated chromosome (gray). Acquisition was carried out by super-resolution structured 

illumination on DeltaVision OMX microscope for the images displayed on the panel. Quantification of RNA Pol II 

exclusion and H3K27me3 enrichment at XIST domain have been carried-out on images acquired with a Nikon 

confocal spinning-disk microscope and with the DeltaVision OMX microscope. 

 (E) DAPI signal intensity of the Barr body. Quantification was performed on primary breast tumor samples and 

healthy breast tissues using ImageJ software by comparing the DAPI signal at the XIST RNA domain versus DAPI 

signal associated with the ATRX RNA FISH signal at the Xa. The number of nuclei analyzed is indicated at the bottom 

of the box plot. (***) p< 0.001, (*) p<0.05 using the Student's t-test. All the dataset are compared with healthy breast 

tissue #1. 



(F) Example of DAPI signal intensity quantification on one healthy breast tissue and one luminal A sub-type IDC of 

grade II (T1). 

Scale bar : 10 M 

Figure S9. Assessment of the inactive X chromosome transcriptional reactivation in primary breast tumors 

(A) Description of allelic expression analysis performed with dataset from 104 Basal-like breast tumors (Shah et al. 

2012). 

(B) The left chart shows allelic expression status of the 183 informative X-linked genes expressed in the 25 selected 

tumors (see Figure S9A). The right chart indicates allelic expression status of the 78 bi-allelically expressed genes in 

normal non-tumor cells (Cotton et al. 2013).  

(C) List of genes that escape in at least two primary breast tumors in a �cancer-specific� manner. The three genes in 

red were already identified as escapees in the three tumor cell lines (see Table S1). 

 

Figure S10. Summary of the inactive X epigenetic erosion in breast cancer cells 

(A) Summary table of the overall inactive X-chromosome status in normal and breast cancer cells. 

(B) Schematic view of the inactive X chromosome erosion in breast cancer cells. 

 

Table S1. List of the genes identified as subject to XCI or to escape from XCI in the WI-38 clones, ZR-75-1, SK-

BR-3 and MDA-MB-436. 

Table S2. List of the �good quality� primary breast tumors analyzed based on Shah et al dataset (Shah et al. 

2012). 

Table S3. List of primers used. 
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Fig S2, Chaligné et al.
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Fig S3, Chaligné et al.
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Fig S4, Chaligné et al.

G

WI-38 Clone #1
X1 active / X2 inactive

WI-38 Clone #28
X1 inactive / X2 active

WI-38 Clone #1 WI-38 Clone #28

X chromosomeChromosome 2F

0,0 0,5 1,0 1,5 2,0 2,5

0

1

2

3

4

5

0,0 0,5 1,0 1,5 2,0 2,5

0

1

2

3

4

5

0,0 0,5 1,0 1,5 2,0 2,5

0

1

2

3

4

5

 Bulk Clone #1 Clone #28

Number of tested clones = 22

CLCN4 (rs2240018)
WI-38B

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Bulk Clone #1 Clone #2

Number of tested clones = 3

NXT2 (rs3204027)
ZR-75-1C

HDAC8 (rs5912136)

0,0 0,5 1,0 1,5 2,0

0,0

0,5

1,0

1,5

2,0

0,0 0,5 1,0 1,5 2,0

0,0

0,5

1,0

1,5

2,0

0,0 0,5 1,0 1,5 2,0

0,0

0,5

1,0

1,5

2,0

0,0 0,5 1,0 1,5 2,0

0,0

0,5

1,0

1,5

2,0

0,0 0,5 1,0 1,5 2,0

0,0

0,5

1,0

1,5

2,0

WI-38

(Clone)

HMEC

(Clone)
ZR-75-1 SK-BR-3

MDA-MB

-436

TBL1X

WI-38 (clone)
2

Mono-allelic

expression

ZR-75-1
3

Bi-allelic

expression

SK-BR-3
4

Mono-allelic

expression

MDA-MB-436
1

[C/T] [C/T] [C/T] [T]

[C] [C/T] [T] [T]

Not

informative

AIFM1

gDNA

cDNA

Copy number 2

Bi-allelic

expression

MDA-MB-436

[C/T]

[C/T]

J

2

Mono-allelic

expression

2

Not

informative

3

Mono-allelic

expression

2

Bi-allelic

expression

[A/G] [G][A/G] [A/G]

[A] [G][G] [A/G]

APOOL (rs4828121)

0 1 2 3 4 5

0,5

1,0

1,5

2,0

2,5

3,0

0 1 2 3 4 5

0,5

1,0

1,5

2,0

2,5

3,0

0 1 2 3 4 5

0,0

0,6

1,2

1,8

2,4

3,0

0 1 2 3 4 5

0,5

1,0

1,5

2,0

2,5

3,0

0 1 2 3 4 5

0,5

1,0

1,5

2,0

2,5

3,0

Cell culture 
Nuclear purification

(Sucrose gradient)
Nascent RNA

genomic DNA 
Human SNP Array 6.0

hybridization

Copy Number

LOH

Informative SNPs

Mono-allelic expression

or

Bi-allelic expression

or

Undeterminable
cDNA

A

rs845441 

SYTL4

rs4828042

WI-38 (clone) ZR-75-1 SK-BR-3 MDA-MB-436

rs5977215

H I

10 200 0

Bi-allelic

expression

Mono-allelic

expression10 200 0

Bi-allelic

expression

Mono-allelic

expression10 200 0

Bi-allelic

expression

Mono-allelic

expression 10 200 0

Bi-allelic

expression

Mono-allelic

expression

Human SNP Array 6.0

hybridization

0,0 0,5 1,0 1,5 2,0 2,5

0

1

2

3

4

5

0,0 0,5 1,0 1,5 2,0 2,5

0

1

2

3

4

5

0,0 0,5 1,0 1,5 2,0 2,5

0

1

2

3

4

5

Number of tested clones = 3

CLCN4 (rs2240018)
SK-BR-3D

Bulk Clone #1 Clone #2

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Number of tested clones = 5

NXT2 (rs3204027)
MDA-MB-436 E

Bulk Clone #1 Clone #5

control DNA
cDNA
gDNA
RT minus

Allele A

A
lle

le
 B

WI-38

(Clone)

HMEC

(Clone)
ZR-75-1 SK-BR-3

MDA-MB

-436

control DNA
cDNA
gDNA
RT minus

Allele A

A
lle

le
 B



n = 310

FAM46D MAGEA4 MAGEA6 MAGEC2

1

10

10
6

ZR-75-1

MDA-MB-436

SK-BR-3

HMEC

WI-38

C
/T

 a
n
ti
g
e
n
s
 e

x
p
re

s
s
io

n
 

R
e
la

ti
v
e
 t

o
 H

M
E

C

(N
o
rm

a
liz

e
d
 t

o
 T

B
P

)

MDA-MB-436

DNA

MAGEA6 RNA

HDAC8 RNA

XIST RNA 

WI-38 HMEC ZR-75-1 SK-BR-3

Fig S5, Chaligné et al.

MAGEA6 RNA (cell %):

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Clone #6 

n=2

HMEC

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Bulk

ZR-75-1

Allele A

A
lle

le
 B

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Bulk

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Clone #1 

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Bulk

NXT2 (rs3204027)

control DNA
cDNA
gDNA
RT minus

MDA-MB-436 

 n=22

SK-BR-3WI-38

Not

Informative
Not Informative

Expressed

from Xa

Expressed

from Xa

Expressed

from Xa and Xi

A

3% (n = 3/99) 1% (n = 1/87) 32% (n = 57/174) 47% (n = 63/134) 32% (n = 31/97)

10
5

10
4

10
3

10
2

10
-1

MDA-MB-436WI-38 HMEC ZR-75-1 SK-BR-3

DNA

ATRX RNA

 XIST RNA

DNA

ATRX RNA

ATRX RNA

at XIST domain: 0% (n = 0/108) 0% (n = 0/152) 0% (n = 0/176) 1% (n = 2/130) 1% (n = 2/185)

C

B

0

0.2

0.4

0.6

0.8

H
M

EC

ZR
-7

5-
1

M
D
A-M

B-4
36

 

SK-B
R
-3

W
I-3

8 T
B

L
1
X

 e
x
p
re

s
s
io

n
 l
e
v
e
l

(N
o
rm

a
liz

e
d
 t

o
 T

B
P

)

** * ** *

** *** *

***

******

*** ***
***

*** *** ***

***

E

WI-38 HMEC ZR-75-1 SK-BR-3 MDA-MB-436

DNA

HDAC8 RNA

 XIST RNA

0

10

20

30

40

50

0

10

20

30

40

50

ZR-7
5-

1

M
DA-M

B-4
36

SK-B
R-3

HM
EC

W
I-3

8

n = 154 n =286n =262n =248

HDAC8 expression

in XIST domain

DNA

HDAC8 RNA

Merge

HDAC8 

XIST 

 %
 o

f 
c
e
lls

D

F



Fig S6, Chaligné et al.
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Fig S7, Chaligné et al.
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 Chapter 6. Concluding remarks and 
future perspectives 

6.1. Utility and limitations of developed tools 

Despite carrying basically the same DNA in each cell, instead of becoming an ever-

expanding mass of identical cells, we are made up of a wide variety of specialized tissues. 

The human genome project has identified that only ~1.5% of the genome codes for 

proteins (Lander et al., 2001). Somehow, each of the 200 different kinds of cells in the 

human body must be reading off a different set of the hereditary instructions written into 

the DNA. It has become evident that the hereditary instructions are mediated by a complex 

regulatory mechanism, termed as �epigenetics�. These comprise a variety of molecular and 

structural modifications to DNA and the histone proteins to which it is compactly bound, 

without changing the underlying sequence but ensure that the right genes are expressed at 

the right time (Martens et al., 2011). 

The past decade has seen a tremendous growth in the field of epigenomics, largely 

facilitated by the aid of massive parallel sequencing. Different specialized techniques have 

been developed to understand the epigenetics at various levels. Currently, ChIP-seq is one 

of the important techniques that has been widely used to study epigenetic modifications. 

Though it is a mostly a robust technique, it is inherently prone to significant variabilities 

embedded in individual assays including, but not limited to antibody efficacy and 

sequencing depth variation. One of the important aspects that directly influence ChIP-seq 

data is the quality of the antibody used. Egelhofer et al., have shown that 25% (out of 200 

antibodies tested) of commercially available antibodies are unsuitable for ChIP-seq 

experiments with either experimental validation or reanalysis of the data (Egelhofer et al. 

2011). A significant number of antibodies for histone modifications failed the western blot 

or dot blot specificity test. Hence, there is a growing concern about the need for extensive 

quality controls of antibodies. In this regard, NGS-QC can provide an independent global 

assessment of ChIP-seq data quality. This would be a significant step towards improving 

the quality of the data produced, leading to more reliable results and efficient use of 

resources in terms of man hours and money. Publishing journals and data repositories such 
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as GEO can include NGS-QC quality certification in their pipeline through which 

researchers will be informed about the reliability of the data. 

Local QCi annotated regions produced from NGS-QC are helpful to understand the 

robustness of each enriched regions and comparability of different datasets. Local QC 

regions of NGS-QC can provide robust enriched regions for a given dataset. In future, such 

annotation can be used to quickly compare different datasets to identify the similarity 

among them. For instance, when there are multiple samples available for a target, methods 

that perform overlap along population analysis can reveal the highly similar and dissimilar 

datasets based on the robust enrichments identified in local QC file. Thus, other than global 

quality indicator to evaluate the overall quality of a sample, NGS-QC provides several 

other additional information to further analyse/annotate the enrichment events. 

ENCODE consortium has recommended two different approaches to assess the ChIP-seq 

data quality, FRiP, IDR and strand cross-correlation methods (Landt and Marinov, 2012). 

Though FRiP and IDR (described in chapter 3.3) are useful metrics, their analysis depends 

on the annotation from peak callers. Such peak identification can vary across different 

tools and within a tool depending on user-controlled parameters. IDR can assess the 

samples which have replicates and can provide information about reproducible fraction of 

peaks only. Strand-cross correlation approach computes the characteristic asymmetric 

pattern between forward and reverse strand reads in enrichment events. Importantly, while 

this approach is applicable to profiles with sharp peaks, such as those seen for transcription 

factors, it cannot be used for the broad profiles often seen for histone marks (Mendoza-

Parra and Gronemeyer, 2014). Hence, NGS-QC, a robust annotation-free approach can 

provide genome-wide quality assessment for massive parallel DNA sequencing from ChIP-

seq and other DNA/RNA enrichment-based technologies. Though NGS-QC provides 

genome-wide robust analysis, we have observed that, some of the less enriched regions 

may escape from random sampling by chance, thus appearing to be a robust enriched 

region. NGS-QC tackles this issue by providing an option to repeat sampling in a single 

run, along with the three levels of sampling (90%, 70% and 50%). Though such scenario 

with multiple levels sampling is less expected, still it is probabilistic. 
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Next to antibody efficacy related issue, sequencing depth variation among samples is 

another technical issue that is observed in ChIP-seq. However, epigenetic studies involve 

multiple samples to compare and identify differential regulation of genes. It is crucial 

towards identifying cell-specific differences in regulation, especially in cancer cells to 

identify the role of epigenetics in it. Earlier, linear normalization, where read counts are 

scaled with respect to total number of reads, is commonly used in ChIP-seq data (Bailey et 

al., 2013). However, this approach does not account for signal-noise ratio difference 

among difference samples in ChIP-seq (Aleksic et al., 2014). Hence, we developed 

Epimetheus, a genome-wide, annotation free normalization approach for epigenome ChIP-

seq data. Our comparison of normalization effect on integrative analysis tools like 

ChromHMM has shown that prior normalization improves the results in which multiple 

samples ChIP-seq data are involved. The main advantage of Epimetheus is that the 

normalization results can be easily used in any downstream analyses. However, like any 

other analysis, the performance of Epimetheus also depends on quality and comparability 

of the data. Hence, a prior quality assessment is essential to avoid poor quality datasets 

affecting the normalization approach, as normalization techniques cannot inherently 

improve data quality. For example, when lower-quality datasets are used for integrative 

analyses that are sensitive to false-negative rates, incorrect inferences and conclusions 

become likely due to high disparity in distribution (Marinov et al., 2014). The basic 

assumption in quantile normalization is that the read count distributions of the samples to 

be similar. It is reasonable to assume that their probability distribution of the read counts 

over the whole genome is similar across different cell types, and in cases where the 

enrichment events under comparison comprise factors that are implicated in house-keeping 

events (histone modifications datasets) (Nair et al., 2012). However, an extensive study is 

needed to verify the suitability of quantile normalization in transcription factor data. 

Recently, an experimental spike-in based normalization approach to provide quantitative 

ChIP-seq data has been developed (Bonhoure et al. 2014; Orlando et al. 2014). In this 

approach, an exogenous reference is mixed in the library and used as an internal control. A 

linear scaling based on the total number of reads of exogenous reference is used in analysis 

to correct the sequencing depth differences, and claimed to provide quantitative and 

directly comparable results. But this approach is not addressing the technical differences 
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coming from antibody performances resulting in signal-noise ratio differences. In such 

cases, we propose to use the quantile normalization prior to linear scaling from spike-in 

approach. We believe Epimetheus pipeline is imperative even with experimental based 

normalization approaches. Epimetheus is intended for use with histone modification 

profiles as the enrichment pattern comparability is higher in it. 

6.2. Data management in current bioinformatics 

One of the most important challenges that the biological research community is currently 

facing is in regard to data management. A single run of Illumina HiSeq 2500 machine 

alone can generate a terabyte of data. Storage of the data produced by modern DNA 

sequencing instruments has become a major concern. While the capacity of computing 

hardware doubles every 18 months, new biological data is doubling every 9 months (Bao 

et al., 2014). For example, as of 2013, European Bioinformatics Institute (EBI) has stored 

2 petabyte of genomics related data (Marx, 2013). With this trend, data management has 

become one of the major challenges in bioinformatics. Though all the files are compressed 

to reduce the storage occupancy, there has to be novel approaches to compress the data 

more efficiently without relying on generic approaches. For instance, a data-specific 

compression tools like Fqzcomp can compress the FASTQ files more efficiently than 

generic ones (Bonfield and Mahoney, 2013; Nicolae et al., 2015). Fqzcomp, a FASTQ file 

specific compression tool, has been shown to compress the files approximately to one tenth 

of its original size, which is two folds lesser than a regular compressing approach �gzip� 

(Bonfield and Mahoney, 2013). In such data specific tools, the known formats are encoded 

into numeric representation where only changes are stored. For example, in a FASTQ file, 

when there are two read identifiers as follows: @ SRR062634.2724180 and 

@SRR062634.2724181, the compressor stores the second ID as (18)(1), which means an 

increment from previous ID in 18th position. Similarly, sequences are packed as k-mers for 

which numbers are encoded. For example, sequences can be split at 4 base interval and 

each 4 bases is encoded into bytes. In this way, repetition of same identifiers or sequences 

can be reduced drastically during compression (Bonfield and Mahoney, 2013). In another 

aspect, storing FASTQ file as a default option can be replaced by storing alignment (BAM) 

file alone, where one can extract the sequence and quality from it if needed. Thus, it can 
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avoid the double storage of same information. A similar reference based compression 

approach has been proposed as an alternative to SAM/BAM (a standard alignment format), 

where sequences of aligned reads are not stored but only variations are stored (Jones et al. 

2012). In this way, sequences can be extracted from the reference genome and noted 

variations can be incorporated. 
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Glossary 

Sequencing applications and biological glossary: 

ATAC-seq: 

Assay for transposase-accessible chromatin (ATAC) sequencing captures open chromatin 

sites using a simple two-step protocol with 500�50,000 cells and reveals the interplay 

between genomic locations of open chromatin, DNA-binding proteins, individual 

nucleosomes and chromatin compaction at nucleotide resolution. Hyperactive Tn5 

transposase loaded in vitro with adaptors for high-throughput DNA sequencing can 

simultaneously fragment and tag a genome with sequencing adaptors. Avoids potentially 

loss-prone steps like such as adaptor ligation, gel purification and cross-link reversal as 

ATAC is minimal (Buenrostro et al., 2013). 

 

Barr body: 

Barr, named after Murray Barr, is the inactive X chromosome in female where one of the 

two X chromosomes as a dosage compensation method. In 1949, Barr and Bertram first 

identified a nuclear body within female cat neurons, but not in the corresponding male 

cells (Barr and Bertram 1949). 

 

BS-seq: 

This is a method which identifies methylation of cytosine (5mC) genome-wide. Cytosine 

methylation plays important role in gene regulation and chromatin remodelling. In this 

method, sodium bisulphite chemistry is used to convert non-methylated cytosines to uracil 

which is converted to thymine in the sequence reads or data output. After bisulphite 

conversion the DNA is sheared and sequenced using next generation sequencing 

technologies (Fraga and Esteller, 2002). 

 

ChIA-PET: 

Chromatin Interaction analysis using paired end tags (ChIA-PET) is used identify 

functional targets (Chromatin interactions) of DNA bound protein. ChIA-PET provides 

genome-wide high-resolution data for interactions that involve a given DNA-binding 
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protein. This method involves use of formaldehyde for cross linking the interactions, after 

this chromatin is immune-precipitated using antibody against protein of interest. DNA 

ligase is used to create chimeric DNA fragments. This is followed by restriction digestion 

and sequencing by next generation sequencing technologies (Wit and Laat, 2012). 

 

ChIP-exo: 

It is more precise method to probe exact binding of protein in a protein-DNA interaction 

genome wide. It uses lambda exonuclease to digest the DNA which is not bound to 

proteins. The exonuclease also removes contaminating DNA from the reaction. After this 

normal immunoprecipitation is performed using specific antibody. The isolated DNA is 

subjected to next generation sequencing technologies to get precise binding sites (Rhee and 

Pugh, 2012). 

 

ChIP-seq: 

Chromatin Immunoprecipitation (ChIP) coupled to sequencing is a method to probe sites 

of protein-DNA interaction. This method is widely used to map global binding of sites of 

transcription factors in a genome. In this method, protein-DNA interaction is cross linked 

using formaldehyde. Further, chromatin is sheared and immune-precipitated using specific 

antibody against a protein associated with the DNA. This purified ChIP DNA is sequenced 

using next generation sequencing technologies (Meyer and Liu, 2014). 

 

Exome-seq: 

Exome refers to the protein coding regions of the genome. This method comprises of 

selective capture of exome coupled to next generation sequencing methods. This is most 

widely used method of targeted sequencing. This is a cost effective method to genome 

sequencing if the interest lies in coding regions of the genome. It is used for identification 

of structural variants and SNPs. Its application lies in population and disease genetics (Ng 

et al., 2010). 

 

FAIRE-seq: 

Formaldehyde-assisted isolation of regulatory elements (FAIRE) sequencing is used to 

identify the open/accessible chromatin regions. Formaldehyde is used to crosslink 
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chromatin, and phenol�chloroform is used to isolate sheared DNA which then will be 

sequenced (Giresi et al., 2007). 

 

GRO-seq: 

Global run-on sequencing assay to quantify transcriptionally engaged polymerase density 

genome-wide. It is used to profile the activity of engaged PolII along transcribed regions 

providing real-time transcriptional behaviour. Capture of nascent transcripts helps to 

identify variety of RNA species beyond the regular genes encoding proteins (Allison et al., 

2014; Core et al., 2008). 

 

HiC: 

HiC is a method that assesses the three-dimensional architecture of whole genomes by 

coupling proximity-based ligation with high-throughput sequencing. In HiC, chromatin is 

cross-linked with formaldehyde, then digested using restriction enzymes, and re-ligated in 

such a way that only DNA fragments that are covalently linked together form ligation 

products. A biotin-labelled nucleotide is incorporated at the ligation junction to enrich 

chimeric DNA ligation junction for sequencing (Belton et al., 2012). 

 

MeDIP-seq: 

DNA methylation plays key role in gene expression and chromatin organisation. 

Methylated DNA immunoprecipitation or MeDIP is a method which employs antibodies 

against 5m Cytosine to immuno-precipitate all the methylated DNA in the genome. This 

method aids in analysis of methylome. The immune-precipitated DNA is sequenced using 

next generation sequencing technologies (Weber et al., 2005). 

 

MNase-seq: 

This method is used to probe the nucleosome positioning and density in the genome. It can 

also be used to find the nucleosome free regions in the genome. This method uses 

micrococcal nuclease (MNase) digestion to locate nucleosomes and after this isolated 

DNA is sequenced by next generation sequencing technologies (Meyer and Liu, 2014). 
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RIN number: 

The RNA integrity number (RIN) is a software tool designed to help scientists estimate the 

integrity of total RNA samples. A RIN number is computed for each RNA resulting in the 

classification of RNA samples in 10 numerically predefined categories of integrity. The 

output RIN is a decimal or integer number in the range of 1�10: a RIN of 1 is returned for 

a completely degraded RNA samples whereas a RIN of 10 is achieved for intact RNA 

sample. In general, RIN number greater than 7 is recommended for experiments. 

 

RNA-seq: 

This method comprises of sequencing RNA (whole transcriptome, mRNA or small RNA) 

using next generation sequencing methods. Sequencing transcriptomes is a major advance 

in the field of gene expression studies as it allows visualisation of whole transcriptome 

rather than subset of predefined genes in expression microarray studies. It provides 

comprehensive view of cellular transcriptomic profile and it also aids in identification of 

novel transcripts genome-wide (Morin et al., 2008). 

 

Single-end and Paired-end sequencing: 

In single-end sequencing, the sequencer reads a fragment from only one end to its specified 

sequencing length. In paired-end sequencing, the sequencer reads at one end of a fragment 

to its specified read length, and then starts another round of reading from the opposite end 

of the fragment. The main advantage of paired-end sequencing is that the information from 

both the ends of a fragment provides higher alignment accuracy. 

 

WGS: 

Whole genome sequencing (WGS) is the complete genome sequencing starting from 

genomic DNA without any prior capture or pull-down to attain reads covering the whole 

genome. WGS reveals the complete DNA make-up of an organism, enabling us to better 

understand variations both within and between species. It can be used to identify an 

individual's complete genome sequence (coding and noncoding regions); including copy 

number variation (e.g., repeats, indels) and structural rearrangements (e.g., translocations) 

(Rizzo and Buck, 2012). 
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Bioinformatic glossary: 

Background modeling: 

The background modeling is performed in peak calling to exclude background noises. It 

can be defined as an assumed statistical noise distribution or a set of assumptions that 

guide the use of control data to filter out certain types of false positives in the treatment 

data. 

 

Base quality: 

Base quality is the value provided by the sequencing machines to represent the confidence 

of a base called being correct. To give simplified representation, quality values are 

encoded as ASCII values like �A� for 65, �B� for 67, etc. Higher the value represents higher 

the confidence of base called being correct. 

 

Clonal reads/PCR duplicates: 

Clonal reads are the over-representation of the same fragment multiple times which are 

induced due to PCR step involved in sequencing. Clonal reads can arise from various 

reasons such as differences in GC content, whereby a higher GC content can lead to an 

increased PCR amplification. The resulting clonal reads can contribute disproportionally to 

read coverage data. Hence, it is recommended to remove the clonal reads to avoid bias in 

the analysis. 

 

False discovery rate (FDR): 

False discovery rate is similar to P-value, where it is used to represent the significance of 

results. In ChIP-seq peak calling, it is used to represent the chance of a result being wrong 

by performing peak calling at each p-value to find ChIP peaks over control and control 

peaks over ChIP. For example, if there are 1,000 peaks whose p-value   0.00018, MACS 

uses the input sample as the IP and IP as the control to identify peaks again. If totally there 

are 48 peaks in the input sample over the IP whose p-value   0.00018. The FDR for the 

peak X = 48 / 1000 = 0.048. 
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FASTQ 

FASTQ files are the raw sequence files that are generated from the sequencing machine. 

FASTQ format is represented in four parts at consecutive lines: (i) sequence/read ID 

starting with �@� symbol (ii) sequence (iii) quality ID starting with �+�, and (iv) quality 

values encoded in ASCII format. Symbols �@� and �+� are used to distinguish the sequence 

and quality values, as quality values can also have ATGC/atgc characters.  

 

Gapped alignment and ungapped alignment: 

When aligners search for a sequence match in the reference genome, gapped alignment 

allows gaps along with mismatches in the string match. As a given sample can have 

insertions or deletions, allowing gaps in the alignment can facilitate alignment of reads that 

carry an insertion or deletion. Subsequently, variation callers use this information to 

identify insertions or deletions in the sample. Ungapped alignment allows does not allow 

gaps in the string match; hence it cannot be used to identify insertions or deletions in the 

data. 

 

Hidden Markov model: 

Hidden Markov Model (HMM) is a full probabilistic model i.e., scores and the parameters 

used are all probability values that can be manipulated and optimized in a variety of ways. 

Hence, it has found wide applications in computational biology and it is used to solve a 

variety of problems, including gene finding, profile searches, multiple sequence alignment 

and regulatory site identification. In biological sequence analysis it relies on the fact that 

different parts of a sequence have different statistical properties. For example, GENSCAN 

� a gene finder that employs HMMs internally � assigns different probabilistic values for 

different states and transition probabilities for the transition between these states. Once a 

DNA sequence is given as an input, a HMM parses the sequence generating state paths and 

an observed path. Finally, the most probable state path is given as our gene model. HMMs 

have proven to be very successful in such applications. 
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Irreproducible discovery rate (IDR): 

IDR is recommended as a quality standard to evaluate the reproducibility information from 

the replicates by ENCODE consortium. The basic idea is that between two biological 

replicates, the most significant peaks are expected to have high consistency. However, the 

peaks with low significance, which are more likely to be false-positive, are expected to 

have low consistency. If the consistency between a pair of rank lists (peaks) that contains 

both significant and insignificant findings is plotted, a transition in consistency is expected 

(Fig. 1C). This consistency transition provides an internal indicator of the change from 

signal to noise and suggests how many peaks have been reliably detected. 

 

Local alignment and global alignment: 

The very basic difference between a local and a global alignment is that the local 

alignment tries to match a substring (part of a sequence) of the read with the reference 

whereas the global alignment performs an end to end alignment with the reference. With 

the use of local alignment, aligners try to improve the alignment rate and accuracy by 

clipping the low quality or contaminated part of the read. 

 

Local QC indicators (local QCi): 

Local QCis are the wiggle file output from NGS-QC, where  !"I (dispersion of RCI after 

sampling per bin) information is presented. Such local QCi regions can be used to judge 

the robustness of read accumulation in a given bin. 

 

Mapping quality: 

A mapping quality is basically the probability that a read is aligned in the wrong place. 

Mapping quality is represented in phred-scaled probability value. Different aligners use 

different approach to calculate mapping quality, but mostly it estimated based on the base 

quality scores of the read, uniqueness of the match and mismatching bases in the 

alignment. 
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P-value: 

P-value is the probability value of particular results being wrong, thus it helps to determine 

the significance of results. In data analysis, several tools provide P-value to represent the 

confidence value for a particular analysis. For example, in ChIP-seq peak calling analysis, 

P-value is used to determine the probability value of particular peak called being wrong. 

 

Phred score: 

A Phred quality score is used to represent the quality of each base. Phred quality score �Q� 

is -10log(P), where �P� is probability value of the base called being wrong. P-value of 0.01 

would result in quality score of 20 which means that there is a 1 in 100 chance of that base 

being miscalled. 

 

Poisson distribution: 

The Poisson distribution can be used to calculate the probabilities of various numbers of 

�true positive� identification based on the mean number of successes. 

 

Read count intensity or Reads per base: 

Read count intensity or reads per bin is the cumulative count of reads within a specified 

region or window. 

 

Read shifting: 

Read shifting is in silico approach of extending reads to its specified average fragment 

length. 

 

SAM/BAM: 

SAM (Sequence Alignment/Map format) is a standard alignment format. A SAM file is a 

TAB-delimited text format consisting of a header containing reference sequence 

information, and a line per read alignment containing alignment related information. BAM 

is the compressed binary format of SAM. 
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Soft clip/trim: 

In aligner�s perspective, clipping is that when there is no full match for a read alignment, 

aligners may clip the reads tail if they contain low quality bases to improve the alignment 

rate. 

 

Z-score: 

Z-score is a statistical measurement of a value from population indicating how many 

standard deviations from the mean of the population. It is calculated by the distance of an 

element from a mean value of population, and divided by the standard deviation. A 

positive Z-score represents a value greater than the mean and negative score represents a 

value less than the mean. Z-score of 0 represents an element equal to the mean. 
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Analyse intégrative de données issues de séquençage à haut débit de cellules cancéreuses 

du sein 

L�expression génique peut être affecté ou régulée génétiquement ou épigénétiquement. Des 

études ont montré, au fil des ans, que les modifications épigénétiques ont un rôle significant 

dans la régulation génique. La découverte des méchanismes et aspects fonctionnels de ces 

modifications nous aiderait à mieux comprendre pourquoi  différents types cellulaires 

possèdent de multiples comportements à partir du même ADN. Depuis la découverte du rôle 

essentiel de ces modifications, des changements aberrants ont été observés dans plusieurs 

maladies, dont le cancer. Puisque la majorité de ces modifications sont réversibles, un réel 

effort a été fait afin de les utiliser au cours de thérapies. Les avancées technologiques ainsi 

que la diminution des coûts ont  fait des méthodes de séquençage à haut débit un moyen 

rapide et exhaustif d�explorer les effets de l�expression des gènes. Parmi ces méthodes, le 

séquençage de fragments  immuno-précipités par immuno-précipitation de chromatine (ChIP-

Seq) est couramment utilisé pour détecter des interactions protéines-ADN et établir des profils 

épigénomiques de cellules afin de comprendre la différentiation des cellules souches, la 

cancérogenèse, etc. L�étude de l�épigénome nécessite le séquençage de plusieurs 

modifications d�histones pour comprendre l�état de la chromatine dans différentes régions 

entre différents échantillons (e.g. traitement/contrôle, sain/malade) au cours du temps. De 

même, les techniques « Exome-Seq » et « RNA-Seq » ont été largement utilisées pour 

comprendre les variations génétiques et leurs effets au niveau transcriptionel. Cela s�est 

traduit en une importante accumulation de données à intégrer pour pouvoir avancer des 

conclusions. Cela pose un réel défi bioinformatique puisque la technique du ChIP-Seq est, par 

nature, sujette à des variations entre échantillons dues à l�efficacité de l�anticorps, la 

profondeur de séquençage, etc. Ces variabilités couplés à des profils peu enrichis peuvent 

considérablement biaiser les études comparatives, d�où un besoin de nouvelles approches et 

de nouveaux outils pour répondre à ces limites. Étant données les limites des méthodes de 

séquençages et l�apparition de variations techniques entre échantillons (bruit), certaines 

données ne peuvent pas être directement comparées. Une approche bioinformatique est 

nécessaire afin de corriger de manière robuste ces différences les rendant comparable, puis de 

réaliser une analyse intégrative multidimensionnelle dans le but de comprendre le mécanisme 

de régulation génique. 

La première partie de ma thèse décrira le développement d�outils novateurs et leur importance 

vis-à-vis des problèmes préalablement décrits. La seconde partie détaillera l�intégration, grâce 



aux outils développés, de différents types de données dans le but de comprendre le rôle 

épigénétique de l�inactivation et de la réactivation du chromosome X, ainsi que des gènes 

soumis à empreinte dans les cellules cancéreuses du sein. 

A. Développement d�outils d�analyse de données de séquençage à haut débit 

L�accroissement du nombre d�expériences épigénomiques disponibles dans des bases de 

données publiques comme GEO, qui possède actuellement plusieurs milliers de profils, 

contribue fortement à l�expansion de l�information. Cela encourage l�intérêt porté aux études 

intégratives et comparatives visant à explorer les mécanismes de régulation génique. Les défis 

d�aujourd�hui consistent à définir de manière fonctionnelle les motifs locaux et globaux des 

états de la chromatine pour différents systèmes physiologiques dans une perspective 

multidimensionnelle. La technique « ChIP-Seq » si largement utilisée est intrinsèquement 

encline à générer des variations entre expériences, ce qui pose des problèmes d�ordre 

bioinformatique lors d�analyses comparatives, un problème récurrent dans les analyses « big 

data ». Plusieurs facteurs, tels que l�efficacité de l�anticorps ou de la librairie de séquençage, 

ont un impact direct sur la qualité des données et donc sur toutes les analyses ultérieurs. Il est, 

par conséquent, impératif d�évaluer la qualité des données avant toute étude comparative. 

Cependant, l�absence de systèmes de contrôle de qualité (QC) représente un frein majeur aux 

analyses comparatives de données séquencées. Cela concerne d�autant plus les expériences 

portant sur l�étude des interactions protéines-ADN (ChIP-seq), mais aussi celles basées sur un 

enrichissement (MeDIP-Seq, GRO-Seq, RNA-Seq).  

Comme décrit précédemment, la comparaison ou l�intégration de différents profils requiert 

une évaluation spécifique de la qualité puisque les motifs peuvent être variables et qu�il peut 

exister des divergences techniques entre profils dues à l�utilisation de différents anticorps, un 

séquençage plus ou moins profond ou une immuno-précipitation (IP) plus ou moins efficace, 

etc. Pour pallier à ces problèmes, nous avons développé NGS-QC Generator, un outil 

bioinformatique de contrôle qualité qui utilise les données de séquençage pour (i) attribuer des 

indicateurs de qualité globaux indiquant le degré de comparabilité des plusieurs profils NGS ; 

(ii) proposer des indicateurs de qualité locaux afin d�évaluer la robustesse des enrichissements 

dans une région génomique précise ; (iii) recommander une profondeur de séquençage 

optimale pour une cible donnée ; et (iv) donner des moyens de comparer différents anticorps 

et lots d�anticorps lors d�expériences ChIP-Seq ou toute autre expérience usant d�anticorps. 

C�est pourquoi nous avons développé une approche associant des indicateurs de qualité 



locaux et globaux à des profils ChIP-Seq ainsi qu�à d�autres types de profils issus de 

séquençage à haut débit. Cette approche a été utilisée pour certifier plus de 20,000 profils 

disponibles dans des bases de données publiques. Les résultats ont été compilés dans une base 

de données afin de permettre la comparaison des rapports de qualité (www.ngs-qc.org). 

 

Figure1. Capture d�écran des résultats d�une requête depuis la base de données NGS-QC sur des profils 

H3K27ac de l�Homo sapiens. (A) Nuage de points représentants les indicateurs de qualité par rapport au nombre 

total de reads alignés. (B) Diagrammes en violon représentant les différentes cibles retournées par la requête. (C) 

Tableau contenant des informations complémentaires pour chaque expérience (à droite) et outil de filtrage 

(gauche). 
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La logique de cette méthode est qu�au-delà d�une certaine profondeur de séquençage, un 

profil ChIP-Seq change d�amplitude mais pas de motif (Mendoza-Parra et al., 2013). Nous 

évaluons cette tendance par sélectionnant aléatoirement des reads (90 %, 70 % et 50 % du 

total) pour observer les divergences par rapport aux changements attendus. Des motifs 

d�intensité de comptage des reads (RCI) sont construits pour le profil original et les profils 

échantillonnés aléatoirement par comptage des reads chevauchant des fenêtres génomiques 

non-chevauchantes de taille fixe. En comparant le RCI observé (recRCI) et le RCI original 

(oRCI), nous calculons une dispersion RCI ( RCI) pour chaque fenêtre génomique. Puis, en 

mesurant la fraction de fenêtre possédant un  RCI dans un intervalle donné, une évaluation 

quantitative détermine les indicateurs de qualité. Afin de faciliter l�analyse comparative de 

données publiques et de maintenir un portail de contrôle qualité de référence, nous avons 

développé la base de données NGS-QC en appliquant la méthode à un important nombre de 

profils disponibles dans des bases de données publiques. Sur un site Internet dédié, les 

utilisateurs peuvent accéder à une collection d�indicateurs de qualité calculés sur de nombreux 

profils et, pour chaque profil, télécharger un rapport de contrôle qualité (Figure 1). 

Cependant, même les profils de haute qualité présentent des variations dans la profondeur du 

séquençage, impliquant la nécessité de normaliser les données avant toute étude comparative. 

Les méthodes existantes de normalisation se basent sur une correction linéaire, et/ou sont 

limitées à certaines régions génomiques. Pour pallier ces limites, nous avons développé 

Epimetheus, un outil de normalisation multi-profils, basé sur les quartiles, pour données de 

modifications des histones. 

Epimetheus procède en deux étapes de normalisation : une correction du classement des 

quartiles, puis une méthode du Z-score pour corriger les divergences inter-profil et inter-cible. 

Différents graphiques et fichiers de visualisation (données brutes et normalisées) sont, en 

outre, produits. Enfin, contrairement aux autres outils, Epimetheus produit des fichiers BED 

normalisés (le format BED est un format standard utilisé par de nombreux outils) par ajout ou 

suppression de reads tout en respectant la divergence entre l�intensité des données brutes et 

normalisées grâce au fichier d�alignement, ce qui peut être utilisé pour des analyses 

ultérieures (Figure 2).  



 

Figure 2. En plus de la normaliser, Epimetheus propose des graphiques pour comprendre l�enrichissement au 

niveau du promoteur (graphique TSS) et du corps de gène (graphique pour l�ARN PolII) ainsi qu�un graphique 

MA afin de comparer les expériences avant et après normalisation. Enfin, des fichiers BedGraph sont générés et 

peuvent être chargés dans un genome browser pour visualiser les données. 

  



Epimetheus a été validé en utilisant des réplicas biologiques de profils H3K4me3 dans des 

cellules HepG2 (Ernst et al., 2011). Avant normalisation, ces réplicas présentaient des 

nombres similaires de sites promoteurs enrichis, comme prévu. Cependant, du fait de 

variabilités techniques, ils présentaient également des différences significatives au niveau de 

l�enrichissement et du ratio signal/bruit. Epimetheus a permis d�ajuster ces différences grâce à 

la disparité des ratios signal/bruit entre les expériences. Pour vérifier les conséquences de la 

normalisation sur la détection des pics, nous avons utilisé MACS sur les données HepG2 

brutes et normalisées. Si quelques différences ont été observées en comptant les pics (ceci 

étant dû aux fluctuations des sites moins enrichis), les différences globales d�amplitude ont 

été corrigées (Figure 3A). Nous avons utilisé chromHMM (Ernst et Kellis, 2012) pour 

comparer les attributions aux états de la chromatine avant et après normalisation sur des 

profils de neuf différents marqueurs d�histones dans neuf lignées cellulaires (Ernst et al., 

2011). Cette comparaison a révélé des différences, petites mais néanmoins significatives, dans 

les annotations de l�état de la chromatine (2-7 %) de fenêtres génomiques. Il est à noter que 

les annotations de l�état de la chromatine de plusieurs gènes sont passées d�actives à 

suspendues et vice-versa ce qui, de manière générale, coïncidait avec leurs niveaux 

d�expression (exemple avec le gène MYO7A, Figure 3B). 

Epimetheus a été utilisé pour évaluer les niveaux d�enrichissement relatifs du recrutement de 

H3K27me3, H3K4me3 et ARN polymérase II (PolII) dans des analyses de la différenciation 

des cellules F9 (Mendoza-Parra et al., manuscrit soumis). Les RCIs des données brutes des 

marqueurs H3K27me3 répressifs ont montré un enrichissement variable non-attendu au 

niveau de la région Hoxa au cours du temps. Cependant nous avons observé, après 

normalisation, le motif d�activation génique colinéaire, précédemment décrit (Kashyap et al., 

2011 ; Montavon et Duboule, 2013) avec une perte progressive de marqueurs d�histone 

répressifs et un gain de marqueurs d�histone actifs, ainsi que le recrutement de PolII. Ces 

observations ont été confirmées par qPCR (Figure 3C). Epimetheus, par son approche 

sophistiquée et sa facilité d�utilisation, est un outil universel et flexible de normalisation de 

données épigénomique ou issues d�enrichissement (FAIRE/ATAC-Seq, PolII-Seq, MeDIP-

Seq, etc.). Il combine plusieurs langages de programmation tels que Perl, C, et R, et son 

manuscrit a été soumis. 

 



 

Figure 3. Effets de la normalisation. (A). De gauche à droite : diagrammes circulaires illustrant les évènements 

d�enrichissement au niveau du promoteur (par réplica ou en commun) avant et après normalisation. Les 

enrichissements de promoteurs annotés montrent que la normalisation donne des RCI plus similaires pour les 

pics communs et plus distinctes pour les enrichissements spécifiques du réplica. (B) Illustration du changement 

d�annotation de l�état de la chromatine pour MYO7A en utilisant la même expérience analysée ave ChromHMM. 

À noter que le promoteur de MYO7A a été annoté « actif » avec les données brutes puis « suspendu » avec les 

données normalisées, ce qui concorde avec l�absence d�expression génique [données ENCODE : 

ENCSR962TBJ]. (C) Profils d�intensité de l�enrichissement de H3K27me3 dans la région Hoxa pendant la 

différenciation par l�acide rétinoïque de cellules F9 de carcinome embryonnaire chez la souris. Contrairement 

aux données brutes, les données normalisées présentent une diminution graduelle du profil H3K27me3, ce qui 

concorde avec les résultats qPCR placés sous les profils. 

  



B. Développement de pipelines et exploration de données sur le cancer 

Il devient de plus en plus évident que les modifications épigénétiques telles que les 

changements dans la méthylation de l�ADN, la structure de la chromatine, les ARN non-

codant, et l�organisation nucléaire, accompagnent la cancérogenèse lorsque ces modifications 

sont interrompues de façon aberrante (Berdasco et Esteller, 2010). Le chromosome X inactivé 

(Xi), ou corpuscule de Barr, est un très bon exemple d�un évènement épigénétique interrompu 

par le cancer. Bien que la disparition des corpuscules de Barr soit considérée comme un signe 

de cancer, la raison de cette disparition reste incertaine : cela peut être dû à une perte de 

matériel génétique ou à une instabilité épigénétique suivie d�une réactivation de la 

transcription. Les études de la chromatine et de la transcription dévoilent, au sein des cellules 

cancéreuses, des éléments épigénomiques modifiés, ainsi qu�une aberrante expression des 

gènes au niveau du chromosome X inactivé, dont plusieurs gènes impliqués dans le 

développement de cancer. Nous avons observé que les tumeurs et lignes cellulaires du sein 

présentent souvent une importante instabilité épigénétique du chromosome X inactivé, 

accompagné d�une organisation tridimensionnelle du noyau anormale et des perturbations de 

l�hétérochromatine, comme une augmentation en marqueurs euchromatiques et des 

distributions aberrantes de marqueurs répressifs comme H3K27me3 et la méthylation d�ADN 

promoteur. 

Nous avons démontré que nombre de ces gènes sont réactivés de façon aberrante dans les 

tumeurs primaires du sein (MDA-MB-436, SK-BR-3 & ZR-75-1), puis nous avons démontré 

que l�instabilité épigénétique du chromosome X inactivé peut entraîner un mauvaise 

concentration en facteurs X-linked. Ainsi, notre étude propose la première analyse intégrée de 

chromosome X inactivé dans le contexte du cancer du sein et établit que son érosion 

épigénétique peut entraîner la disparition du corpuscule de Barr dans les cellules cancéreuses 

du sein. Ce travail offre de nouvelles idées et donne la possibilité d�utiliser le chromosome X 

inactivé comme une bio-marqueur épigénétique au niveau moléculaire et cytologique pour le 

cancer. Nous avons conduit une étude approfondie de l�organisation nucléaire, de l�état de la 

chromatine et de l�activité de la transcription de chromosome X inactivé dans des lignes 

cellulaires du cancer du sein et des échantillons de tumeurs primaires. Nous avons conclu 

qu�une cause fréquente de la disparition du corpuscule de Barr dans le cas du cancer du sein 

est la perturbation globale de son organisation nucléaire et de sa structure hétérochromatique. 

Enfin, les aberrations épigénomiques découvertes dans le Xi présent les cellules cancéreuses 



du sein sont accompagnées par une degré significatif de réactivations de gènes sporadiques ce 

qui, dans certains cas, peut entraîner des concentrations aberrantes au niveau protéique. 

Un pipeline a été développé pour intégrer et réaliser des analyses transcriptomiques et 

épigénomiques allèle-spécifiques. Les résultats du NGS-QC ont été utilisés pour déterminer la 

qualité des données avant analyse. Pour les données épigénomiques et transcriptomiques, une 

analyse allèle-spécifique a été menée en créant une référence de diploïdes grâce aux 

informations sur les SNP collectées de données SNP6, éxomiques et ChIP-Seq. Avant 

analyse, les données ChIP-Seq ont été normalisées avec Epimetheus pour ajuster les 

divergences entre échantillons. Une analyse génique d�annotations a été menée pour intégrer 

les annotations de piques et d�expressions géniques (nombre de SNP informatifs, profondeur 

de read, nombres de SNP homozygotes et hétérozygotes). Une moyenne arithmétique 

pondérée a été calculée pour chaque gène par calcul du déséquilibre allélique (DA) où le DA 

de chaque SNP a été pondéré par sa profondeur de read. Les gènes ont ainsi été classés par 

expressions mono-alléliques ou bi-alléliques. Cette étude a été publiée dans le journal 

Genome Research 

(http://genome.cshlp.org/content/early/2015/02/04/gr.185926.114.full.pdf+html). 

De même, les gènes imprimés sont un autre exemple où les gènes sont marqués 

épigénétiquement ou éteints dans un allèle dépendant du parent d�origine. Il a été remarqué 

que les modifications de ces gènes imprimés, quand les gènes exprimés mono-alléliquement 

deviennent bi-alléliques ou totalement inactifs, peuvent entraîner des effets négatifs comme 

des tumeurs ou maladies (e.g. tumeur de Wilms, rhabdomyosarcome embryonnaire, etc.). 

Plusieurs études ont été publiées, indiquant qu�une perte d�empreinte ou une méthylation 

différentielle des gènes imprimés est lié au cancer du sein. Une analyse intégrative est en 

cours afin de déterminer le rôle des gènes imprimés dans le développement du cancer du sein. 



 

Figure 4. Analyse allèle-spécifique conduisant à l�identification de gènes échappant à l�inactivation du 

chromosome X spécifique de lignées cellulaires cancéreuses. (A) Le schéma de l�enrichissement en 

H3K27me3 sur l�ensemble du chromosome X montre une perte localisée de l�inactivation du chromosome X. 

Ces régions sont annotées « active X only » (chromosome X activé uniquement) et les deux principales pertes 

d�enrichissements H3K27me3 dans les lignes cellulaires ZR-75-1 et MDA-MB-436 sont en rouge. Les domaines 

en rouge et vert représentent, respectivement, les régions enrichies en H3K27me3 et H3K9me3, telles 

qu�identifies dans les cellules humaines normales (Chadwick, 2007). (B) Les augmentation de l�abondance en 

marqueurs d�histone H3K4me3 et recrutement d�ARN Pol II sont affichées sous forme d�heat maps, où les gènes 

échappés sont actifs dans les deux allèles, contrairement à ce qui est observé dans une ligne cellulaire normale 

(HMEC). 
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ABSTRACT (175 words) 

Cell lineages, which shape body architecture and specify cell functions, derive from the 

integration of a plethora of cell intrinsic and extrinsic signals. These signals trigger a 

multiplicity of decisions at several levels to modulate the activity of dynamic gene 

regulatory networks (GRNs), which ensure both general and cell-specific functions within 

a given lineage, thereby establishing cell fates. Cellular �differentiation� models conserved 

certain sequences of events within a cell fate acquisition process. These models are 

important homogenous experimental systems to study the complex interplay between 

extrinsic signals and alterations at different levels in the gene regulatory hierarchies from a 

systems biology perspective. Here we have dissected the GRNs involved in the neuronal or 

endodermal cell-fate specification responses to retinoic acid (RA) in two stem cell models 

by integrating dynamic RXRa binding, chromatin accessibility and promoter epigenetic 

status with the transcriptional activity inferred from RNA polymerase II mapping and 
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transcription profiling. Our data reveals how RA induces a network of transcription factors 

which direct the temporal organization of cognate GRNs, thereby driving 

neuronal/endodermal cell-fate specification. By applying CRISPR/Cas9 editing 

approaches, we have first verified the relevance of early induced neuronal-specific factors, 

but in addition we have redirected cell-fate specification from endodermal to neuronal 

commitment, demonstrating that a systems view of cell fate specification provides the 

necessary insight for directional intervention. These results are encouraging in view of 

cell/tissue engineering for regenerative medicine. 
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Abstract 

The mechanistic links between transcription factors and the epigenetic landscape, which 

coordinate the deregulation of gene networks during cell transformation are largely 

unknown. We used an isogenic model of stepwise tumorigenic transformation of human 

primary cells to monitor the progressive deregulation of gene networks upon 

immortalization and oncogene-induced transformation. By combining transcriptome and 

epigenome data for each step during transformation and by integrating transcription factor 

(TF) - target gene associations, we identified 142 TFs and 24 chromatin 

remodelers/modifiers (CRMs), which are preferentially associated with specific co-

expression paths that originate from deregulated gene programming during tumorigenesis. 

These TFs are involved in the regulation of divers processes, including cell differentiation, 

immune response and establishment/modification of the epigenome. Unexpectedly, the 

analysis of chromatin state dynamics revealed patterns that distinguish groups of genes, 

which are not only co-regulated but also functionally related. Further decortication of TF 

targets enabled us to define potential key regulators of cell transformation, which are 

engaged in RNA metabolism and chromatin remodeling. Our study suggests a direct 

implication of CRMs in oncogene-induced tumorigenesis and identifies new CRMs 
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involved in this process. This is the first comprehensive view of gene regulatory networks 

that are altered during the process of stepwise human cellular tumorigenesis in a virtually 

isogenic system. 
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Prénom NOM

TITRE de la thèse

Résumé : Pipeline intégratif multidimensionnel d'analyse de données NGS pour 

l'étude du devenir cellulaire

L'épigénomique pourrait nous aider à mieux comprendre pourquoi différents types cellulaires 

montrent différents comportements. Puisque, dans le cadre d'études épigénétiques, il peut être 

nécessaire de comparer plusieurs profils de séquençage, il y a un besoin urgent en nouvelles 

approches et nouveaux outils pour pallier aux variabilités techniques sous-jacentes. Nous avons 

développé NGS-QC, un système de contrôle qualité qui détermine la qualité de données et 

Epimetheus, un outil de normalisation d'expériences de modifications d'histones basé sur les 

quartiles afin de corriger les variations techniques entre les expériences. Enfin, nous avons intégré 

ces outils dans un pipeline d'analyse allèle-spécifique afin de comprendre le statut épigénétique de 

XCI dans le cancer du sein où la perte du Xi est fréquent. Notre analyse a dévoilé des perturbations 

dans le paysage épigénétique du X et des réactivations géniques aberrantes dans le Xi, dont celles 

associées au développement du cancer.

Résumé en anglais : Multi-dimensional and integrative pipeline for NGS-based 

datasets to explore cell fate decisions

Epigenomics would help us understand why various cells types exhibit different behaviours. Aberrant 

changes in reversible epigenetic modifications observed in cancer raised focus towards epigenetic 

targeted therapy. As epigenetic studies may involve comparing multi-profile sequencing data, there 

is an imminent need for novel approaches and tools to address underlying technical variabilities. We 

have developed NGS-QC, a QC system to infer the experimental quality of the data and Epimetheus, 

a quantile-based multi-profile normalization tool for histone modification datasets to correct technical 

variation among samples. Further, we have employed these developed tools in an allele-specific 

analysis to understand the epigenetic status of X chromosome inactivation in breast cancer cells 

where disappearance of Xi is frequent. Our analysis has revealed perturbation in epigenetic 

landscape of X and aberrant gene reactivation in Xi including the ones that are associated with 

cancer promotion.


