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0
Résumé en Français

0.1 Contexte

La demande en puissance de calcul est de plus en plus importante. Afin d’y répon-

dre dans le passé, l’industrie des semi-conducteurs s’appuyait sur une élévation des

fréquences d’horloge des micro-processeurs jusqu’à être bloqué par la limite de puis-

sance. En effet, pour faire fonctionner les cœurs de calcul à très haute fréquence, un

voltage élevé est nécessaire, qui augmente la consommation dynamique de puissance

de la puce. Pour surmonter ce problème, la taille des transistors a été réduite, et nous

atteignons désormais les limites de miniaturisation à cause de contraintes physiques.

La solution économique qui a été trouvée est d’assembler de plus en plus de cœurs sur la

même puce. Ainsi, l’industrie est passée d’un cœur à plusieurs cœurs, et tend désormais

vers l’ère des puces à cœurs multiples. Cependant, le matériel n’est pas capable seul

d’exploiter tous ces cœurs, qui ont introduit un nouveau challenge: la parallélisation.

Pour qu’un même programme utilise de multiples cœurs, celui-ci doit exprimer d’une

manière ou d’une autre ses régions parallèle inhérentes. Celles-ci peuvent être soit

indiquées explicitement par le programmeur, en utilisant des structures syntaxiques

telles que les pragmas, soit détectées automatiquement par un compilateur. L’aspect

difficile de la programmation parallèle correspond aux dépendances. Un programme

parallèle doit respecter la sémantique du programme séquentiel original ou en d’autres

termes, il ne doit pas violer les dépendances. La parallélisation manuelle nécessite de
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0.2. DÉFINITION DU PROBLÈME

la part du programmeur d’identifier les dépendances, et de trouver une transformation

permettant la parallélisation, qui respecte ces dépendances. Non seulement cela est

difficile et est une cause importante d’erreurs, mais est en plus impossible dans cer-

tains cas où les dépendances dépendent de facteurs dynamiques telles que les données

d’entrée, ou lorsque l’allocation dynamique de mémoire est utilisée, etc.

Les compilateurs peuvent alléger ce problème en détectant automatiquement les

dépendances et en produisant une transformation de code valide qui respecte toutes les

dépendances. Le développeur peut ainsi se concentrer sur la logique du programme,

pendant que le compilateur se charge des optimisations. Les compilateurs de paral-

lélisation automatique peuvent résoudre cela efficacement lorsque le code peut être

analysé statiquement. Cependant, en présence de dépendances qui ne peuvent pas

être résolues statiquement, le compilateur est obligé de prendre des décisions conser-

vatives afin d’assurer la correction du programme. Ces décisions conservatives limi-

tent très fortement la capacité à paralléliser ou à appliquer d’autres transformations

d’optimisation. Une technique permettant de surmonter cette limite, c’est-à-dire de

paralléliser ou d’optimiser du code non-analysable statiquement, est d’utiliser la par-

allélisation spéculative.

0.2 Définition du problème

Grâce à des décennies de travaux de recherche, plusieurs compilateurs automatiques

peuvent effectuer des optimisations efficaces et agressives sur des codes statiquement

analysables. Néanmoins, les compilateurs actuels prennent des décisions conservatives

en présence d’entités dynamiques, et cela les empêche d’appliquer des optimisations

avancées. Les codes comportant des accès mémoire dynamiques (accès indirects ou

par pointeurs), un flot de contrôle et des bornes de boucle dynamiques, sont monnaie

courante. Une stratégie prometteuse pour surmonter ces difficultés est d’appliquer des

optimisations de code pendant l’exécution, lorsque le programme cible est en train de

s’exécuter, afin d’utiliser avantageusement les informations accessibles dynamiquement.
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Les optimiseurs dynamiques ont deux avantages majeurs : le premier est la disponibilité

de plus d’informations, les valeurs des variables étant connues ; le deuxième est la

possibilité de raisonner à partir du comportement courant du code en l’observant.

L’objectif de ce travail est d’optimiser des codes dynamiques en utilisant le modèle

polyédrique et la parallélisation spéculative.

Le modèle polyédrique est un cadriciel bien connu et largement utilisé d’optimisation

de boucles, et à été étudié intensivement dans le contexte statique. Le modèle est capa-

ble de proposer des optimisations agressives de boucles, telles que la parallélisation, le

pavage de boucles, la torsion de boucles, l’échange de boucles, etc. Cependant, l’unique

présence d’une entité non linéaire dans le code empêche le compilateur d’appliquer des

optimisations polyédriques. Actuellement, les compilateurs automatiques appliquent

uniquement des optimisations polyédriques lorsque le code est entièrement analysable

statiquement. L’application du modèle polyédrique à des codes dynamiques nécessite

un profilage, un ordonnancement, une génération de code et une vérification séman-

tique dynamiques. Le profilage du code à l’exécution peut révéler s’il est, entièrement

ou sur certaines phases, conforme au modèle polyédrique. Si oui, le code résultant de

la transformation doit être généré. Cela peut être accompli (i) en générant statique-

ment un ensemble de versions de code, l’une d’elle étant sélectionnée à l’exécution, (ii)

en générant tout le code optimisé à l’exécution, ou (iii) en générant des squelettes de

code et en les complétant à l’exécution. L’instrumentation pour le profilage n’étant

appliquée que sur une petite partie de l’exécution, le compilateur doit s’assurer que

la suite de l’exécution suit le comportement observé, qui sert de prédiction. Cela

peut être accompli en utilisant une vérification à l’exécution. Si celle-ci échoue, le

système doit être capable de restaurer l’état du programme à un état consistant, de

telle sorte que la contrainte sémantique ne soit pas violée. C’est pourquoi, un système

spéculatif est nécessaire. La spéculation de threads (Thread Level Speculation, TLS)

est une technique spéculative utilisée pour paralléliser les boucles. Dans les systèmes

TLS, des threads sont exécutés spéculativement, et le système surveille continuelle-
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0.3. SOLUTIONS PROPOSÉES

ment l’exécution du programme afin de détecter tout risque d’erreur sémantique. Si

un tel risque survient, le système stoppe le thread fautif et corrige les effets de son

exécution. Pour cela, un état cohérent du système est créé avant le démarrage de la

région spéculative. La région où le risque a été détecté est alors ré-exécutée soit dans

l’ordre séquentiel original, soit en utilisant une autre stratégie spéculative.

Cependant, une utilisation plus large et plus efficace de la parallélisation spécula-

tive est freinée par le surcoût temporel prohibitif induit par la détection centralisée

des conflits mémoire, la modélisation dynamique du code et la génération de code.

La plupart des systèmes TLS existants se basent sur un découpage naïf de la boucle

cible en tranches, et l’exécution parallèle de ces tranches, avec le support d’un module

de vérification centralisé très pénalisant en temps. Car n’utilisant pas de modèle de

dépendances, ces systèmes spéculatifs sont incapables d’appliquer des transformations

avancées et, de manière encore plus importante, la probabilité d’erreur et de nécessité

de restauration à un état cohérent est très élevée. La maintenance d’un état cohérent

dans les systèmes TLS implique la conservation de copies multiples des données. Les

systèmes TLS classiques effectue de telles copies à chaque itération de boucle, provo-

quant une croissance exponentielle du besoin en espace mémoire.

0.3 Solutions proposées

La solution proposée consiste à utiliser le modèle polyédrique au cours de l’exécution du

programme cible, via une parallélisation spéculative. Apollo, pour Automatic POLy-

hedral Loop Optimizer, est un cadriciel qui va plus loin que les compilateurs actuels, et

qui applique le modèle polyédrique dynamiquement par une technique TLS. Il utilise

l’instrumentation partielle pour identifier le comportement du code à l’exécution. A

partir de l’information de profil, il détermine si le comportement est compatible avec le

modèle polyédrique. Si oui, Apollo fait appel au compilateur polyédrique Pluto pour

calculer les optimisations de boucle à appliquer, puis il instancie un des squelettes de

code générés statiquement. Il surveille continuellement l’exécution pour détecter tout
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risque d’erreur de la spéculation de manière décentralisée. Si un problème est détecté,

un état cohérent antérieur du programme est restauré et le code séquentiel original est

exécuté.

Grâce à une utilisation dynamique le modèle polyédrique, Apollo est capable

d’appliquer des transformations de boucle avancées à des codes dynamiques. Le sys-

tème TLS interne à Apollo l’utilise également pour son système de vérification dé-

centralisé, ainsi que pour son système de sauvegarde mémoire pour réduire le volume

de donnée à copier pour construire un état consistant. L’approche combinée modèle

polyédrique-TLS renforce ainsi un compilateur qui peut optimiser spéculativement des

codes dynamiques pour la performance. Nous exposons dans cette thèse notre contri-

bution au développement d’Apollo. Mais cette approche ouvre une voie d’extension

peut-être encore plus impressionnante : l’application du modèle polyédrique à des codes

a priori incompatibles, c’est-à-dire présentant des comportements non-linéaires.

0.4 Présentation générale de l’architecture d’Apollo

Une vision globale d’Apollo est montrée à la figure 1. Son fonctionnement est résumé

ci-dessous.

À la compilation, la phase statique d’Apollo: (1) analyse précisément les instruc-

tions mémoire qui peuvent être désambiguïsé à la compilation; (2) génère une version

instrumentée pour observer les instructions mémoire qui ne peuvent pas être analysées

à la compilation. La version instrumentée s’exécutera sur un échantillon des itérations

de la boucle la plus externe et les informations acquises dynamiquement seront utilisées

à construire un modèle de prédiction des accès mémoire non-analysables statiquement;

(3) génère des squelettes de code parallèle qui sont des versions incomplètes du nid de

boucle original et qui requièrent une instanciation dynamique pour générer le code fi-

nal. Chaque instanciation représente une nouvelle optimisation, ainsi, les squelettes de

code peuvent être vus comme des motifs hautement génériques qui supportent un large

ensemble de transformations optimisantes et parallélisantes. De plus, les squelettes em-
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0.5. LE MODULE STATIQUE

0.5.1 Analyse statique

Le module statique exécute les passes d’analyse standards telles que l’analyse d’alias

(AA) ou l’évolution scalaire (scev), afin de collecter les informations d’alias et les

fonctions linéaires d’accès mémoire, de bornes de boucles et de scalaires, qui peuvent

être déterminées statiquement. Les informations ainsi collectées sont injectées dans le

binaire lui-même et seront utilisées ensuite par le module dynamique.

0.5.2 Itérateurs virtuels

Les boucles while et do-while ne possèdent pas la notion d’itérateur dans leur syntaxe.

Cependant, Apollo repose sur les itérateurs de boucles pour presque tous ses mécan-

ismes, comme la construction de fonctions linéaires, le calcul des dépendances, le calcul

des transformations, ainsi que la vérification. C’est pour cela que pour chaque boucle

d’un nid de boucle ciblé, une variable supplémentaire, appelée ‘itérateur virtuel’ est

insérée. Ces itérateurs virtuels se comportent comme des itérateurs de boucle, et essen-

tiellement convertissent tout type de boucle en boucle for. Ils démarrent toujours à la

valeur ‘0’ et sont incrémentés de ‘1’ à chaque itération: ils sont normalisés. Le raison-

nement sur les fonctions d’accès et donc les dépendances est basé sur ces itérateurs

virtuels.

0.5.3 Le versioning de code et les squelettes

La fonction la plus importante du module statique est la création de différentes ver-

sions du code d’entrée, appelées squelettes. Les squelettes peuvent être vus comme

des codes paramétrés où différentes instanciations de leurs paramètres résultent en dif-

férentes transformations du code. La structure générale des squelettes d’optimisation

est représentée à la figure 3.

Il y a trois types de squelettes de code: (i) les squelettes d’optimisation, (ii)

les squelettes d’instrumentation, et (iii) les squelettes originaux. Les squelettes
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0.6.3 Sélection de l’ordonnancement et du squelette

Apollo utilise Pluto pour calculer un ordonnancement valide et optimal. Pour cela,

Pluto est utilisé comme une bibliothèque et prend en entrée le polyèdre de dépendance

précédemment calculé. Lorsque l’ordonnancement a été déterminé, Apollo détecte les

boucles parallèles, en plus d’autres propriétés de la transformation. De là, le squelette

de code approprié est sélectionné.

0.6.4 JIT

Apollo utilise la compilation juste-à-temps (JIT) [1] pour optimiser encore plus le code.

En plus du bénéfice habituel du JIT, il est particulièrement important dans Apollo

à cause de l’usage dynamique du modèle polyédrique, et des nombreuses variables

constantes des fonctions linéaires qui peuvent être optimlisées. Le code résultant du

JIT est mis en cache et est réutilisé si la même transformation est re-appliquée.

0.6.5 Sauvegarde et point d’exécution sûr

Pour prendre en compte le risque d’échec de la spéculation, le système doit préserver

un état intermédiaire d’exécution valide, appelé état sûr. Grâce aux fonctions linéaires,

Apollo peut déterminer les zones mémoire d’écriture, même avant que le chunk soit

exécuté. Dès que la zone a été calculée, une copie mémoire propre de type ‘memcpy’

est exécutée afin de sauvegarder la zone d’écriture, avant de lancer le chunk.

0.6.6 Parallélisation

Apollo utilise son propre méchanisme intrinsèque, appelé dispatcher manager, pour

la parallélisation, reposant sur OpenMP [2]. À l’intérieur de chaque squelette

d’optimisation, chaque boucle est représentée par une fonction, qui est paramétrée

par les bornes de boucle inférieure et supérieure. Si la boucle est marquée comme

étant parallèle, le domaine d’itération est alors divisé en petites tranches, et la fonction
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est appelée en parallèle pour chacune de ces tranches. Si la boucle est séquentielle,

tout le domaine d’itération est exécuté en une seule grande tranche séquentielle.

0.6.7 Vérification dynamique

Alors que le squelette parallèle instancié s’exécute dans un chunk, le module dynamique

doit continuellement s’assurer de la correction du code transformé qui s’exécute [3],

en vérifiant (1) l’adhérence du modèle de prédiction aux locations mémoire qui sont

réellement accédées et (2) que les occurrences d’accès mémoire non-prédits n’invalident

pas la transformation de code qui a été appliquée, au regard de la sémantique du

programme. Apollo vérifie les fonctions linéaires en les comparant aux adresses, ou

valeurs, observées.

0.6.8 Retour arrière (rollback)

Si un thread détecte une mauvaise spéculation, un indicateur est activé. Lorsque tous

les threads terminent, l’indicateur est consulté pour vérifier si la spéculation a réussi. Si

ce n’est pas le cas, la sauvegarde est restaurée au point sûr. Puis, le squelette original

est sélectionné pour s’exécuter dans le chunk mal prédit, qui est suivi par un squelette

d’instrumentation. Si l’indicateur n’est pas activé, alors la spéculation a réussi et la

sauvegarde est supprimée.

0.6.9 Terminaison

Apollo exécute les squelettes de code jusqu’à atteindre la borne de la boucle la plus

externe. Si celle-ci est découverte à la compilation, alors avant de lancer chaque chunk,

elle est comparée à la borne supérieure du chunk pour vérifier si le prochain chunk est

le dernier. Si ce n’est pas le cas, ou si la borne n’est pas connue, alors le prochain chunk

est lancé spéculativement avec la même transformation, en assumant que le programme

n’a pas modifié son comportement. Mais il est possible que la condition de sortie soit

atteinte au cours du chunk. Si la borne du chunk n’est pas égale à la borne réelle, alors
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un retour-arrière est lancé et le chunk est re-exécuté avec le squelette original. Lorsque

la boucle externe termine son exécution, le module dynamique met à jour les variables

vivantes en sortie et rend le contrôle au programme utilisateur.

0.7 Resultats

Figure 5: Speedup of APOLLO, using 24 threads.

Les expérimentations ont été effectuées sur une plate-forme comprenant deux pro-

cesseurs AMD Opteron 6172 de 12 coeurs chacun, à 2.1 Ghz, exécutant Linux 3.11.0-

17-generic x86_64. Les mesures rapportées ont été obtenues en exécutant chaque

programme test cinq fois, et en prenant la moyenne des mesures. Les accélérations

sont par rapport aux meilleures version séquentielles obtenues avec les compilateurs

clang et gcc et l’option ‘-O3’.

L’ensemble des programmes tests a été construit à partir de bancs d’essai, de telle

sorte que les programmes sélectionnés mette en lumière les capacités d’Apollo. Les

programmes mri-q, sgemm et stencil proviennent de la suite Parboil [4], blackscholes

de la suite Parsec[5], backprop et needle de la suite Rodinia [6], dmatmat, djacit et

pcg de la suite SPARK00 [7], et enfin 2mm de la suite Polybench [8]. Le programme
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2mm a été re-écrit afin que ces accès mémoire se fassent via des pointeurs, et qu’il ne

soit pas analysable statiquement.

La figure 5 monttre les accélérations obtenues grâce à Apollo.

Figure 6: Comparaison des sur-coûts temporels

La figure 6 montre les différents sur-coûts temporels associés à chaque module

d’Apollo. Seuls les sur-coûts principaux sont considérés. Le temps d’instrumentation

(instrumentation time) comprend le temps de profilage du code. Il inclut le temps

d’exécution d’un petit chunk, et le temps de communication des accès mémoire et

des bornes de boucles au module dynamique. La légende solving access functions

comprend le temps passé à calculer les fonctions linéaires d’interpolation des accès

mémoire et des bornes de boucles. La légende scheduling time comprend le temps

pris par l’ordonnanceur, c’est-à-dire le temps d’instanciation de l’ordonnanceur, et le

temps pris par l’ordonnanceur de Pluto pour déterminer un ordonnancement optimal.

La légende FM time concerne le temps nécessaire à l’élimination de Fourier-Motzkin,

qui est utilisée pour calculer les bornes de boucles dans l’espace d’itérations transformé.
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Si la transformation reste la même entre chunks contigus, le solveur FM n’est invoqué

qu’une seule fois, mais les fonctions résultats réutilisées pour chaque chunk. Cependant,

si la transformation change, alors le solveur est invoqué à nouveau. La légende Backup

time se réfère au temps passé par le système de sauvegarde à calculer la zone mémoire

à sauvegarder et à effectuer effectivement la sauvegarde. La légende optimized skeleton

porte sur le temps pris par l’exécution parallèle effective, la vérification décentralisée

et la sauvegarde à la volée.

0.8 Apollo non-linéaire

Apollo peut traiter efficacement des classes de codes où les accès mémoire et les bornes

de boucles sont linéaires, au moins par phases. Si le comportement du code est compat-

ible avec le modèle polyédrique, la région concernée est assujettie à des optimisations

polyédriques de manière spéculative. Par contre, lorsque le comportement du code

dévie d’un comportement affine, alors cette région est exécutée avec le code original.

Pourtant, beaucoup de codes exhibent des comportement non-linéaires, et particulière-

ment les codes comportant des accès mémoire indirects, des pointeurs, etc.

Les références mémoire indirectes et les pointeurs sont très communs dans les codes,

c’est pourquoi la capacité à les traiter est un challenge majeur en parallélisation au-

tomatique. La plupart des codes exhibent un comportement mémoire non-linéaire ou

des bornes de boucles non-linéaires. La présence d’une seule entité non-linéaire dans

un programme empêche l’application du modèle polyédrique: aucune transformation

polyédrique ne peut être appliquée, ni la parallélisation d’aucune boucle. L’impact de

cette limitation empêche l’optimisation de beaucoup de codes, même lorsque la plupart

de leurs accès mémoire sont linéaires.

Notre objectif est de rendre Apollo capable d’optimiser les accès non-linéaires et

de le valider, afin de traiter plus de codes efficacement [9]. Pour traiter des entités

non-linéaires, une approche générale est de relâcher le modèle de dépendances. S’il

est relâché, alors il ne préserve plus la garantie originale concernant la validité de la
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transformation d’optimisation. Cela nous amène à un validateur dynamique, en plus

du système dynamique de vérification linéaire.

Address Address

Address

Loop Iterations

Address

Loop Iterations

Loop Iterations Loop Iterations

Affine Behavior
Nearly Affine Behavior 

Modelled By Regression Line

Nearly Affine Behavior 
Modelled By Tube Non-Affine Behavior

Figure 7: Représentation graphique des comportements affines, quasi-affines et non-affines.

0.8.1 Construction du polyèdre de dépendances

Le processus d’instrumentation est similaire à celui décrit précédemment. Une fonction

de régression est construite pour chaque accès mémoire, chaque scalaire et borne de

boucle. L’adhérence entre les valeurs observées d’adresses mémoire accédées (ou comp-

teurs de boucles) est utilisée pour classifier les accès comme étant soit affines, quasi-

affines ou non-affines. Un accès mémoire (ou borne de boucle) est classifié comme:

• affine, si toutes les observations adhèrent parfaitement à une équation linéaire,

et si tous les coefficients de la fonction sont des entiers;
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• quasi-affine, si la plupart des observations restent “proches” d’une équation linéaire;

• non-affine, si les observations ne correspondent à aucune des deux autres caté-

gories.

Une représentation graphique en dimension 2 de ces trois cas est donnée à la figure 7.

0.9 La modélisation des accès mémoire non-linéaires

Les accès mémoire non-linéaires correspondent aux accès mémoire (lecture ou écriture)

dont les instances ne correspondent à aucune fonction affine. C’est pourquoi une fonc-

tion de régression est calculée pour chaque instruction mémoire de ce type, ainsi que

le coefficient de corrélation associé. Selon ses valeurs, les accès mémoire non-linéaires

sont traités comme suit.

Le coefficient de corrélation se situe entre 0.9 et 1.

Un coefficient de corrélation entre 0.9 et 1 indique une bonne adhérence des valeurs

observées avec l’équation de régression, et suggère donc qu’elle approxime bien les accès

mémoire effectifs. It est donc raisonnable d’inclure cette équation de régression dans

le modèle de dépendance, l’idée étant que l’optimiseur polyédrique (l’ordonnanceur)

procure une transformation qui optimise les accès non-affines conjointement avec les

accès affines, optimisant ainsi la localité des données et le parallélisme pour les accès

affines et non-affines. Chaque hyperplan de régression est calculé via une régression

multivariée utilisant la méthode des moindres carrés [10]. L’hyperplan de régression

devrait donc être encodé dans le polyèdre de dépendances. S’il est directement encodé,

tel une fonction linéaire, l’ordonnanceur polyédrique considérera uniquement les points

situés exactement sur l’hyperplan de régression lorsqu’il calculera la solution. Par con-

séquent, l’utilisation seule de l’hyperplan de régression n’est pas suffisant, car il ignore

les points situés à côté de l’hyperplan. Ainsi, pour chaque accès quasi-affine, deux

hyperplans qui sont parallèles à l’hyperplan de régression sont construits, en ajoutant

un déplacement positif et négatif à l’hyperplan original. De manière informelle, un
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hyperplan est “au dessus” et l’autre “en dessous” de l’hyperplan original, formant tous

les deux un tube autour de l’hyperplan de régression (voir la partie inférieure gauche de

la figure 7). La distance entre les hyperplans tubulaires (le déplacement) est choisi de

telle sorte que tous les points raffinés se trouvent à l’intérieur du tube. Ce tube forme

une enveloppe convexe des points observés et est encodé dans le modèle de dépendance.

Le coefficient de corrélation est inférieur à 0.9.

Si le coefficient de corrélation est inférieur à 0.9, alors les accès mémoire sont carac-

térisés comme étant non-affines et sont exclus de la représentation des dépendances par

régression. Pour chacune des instructions mémoire correspondantes, les accès sont alors

approximés en utilisant l’intervalle des valeurs minimum et maximum des adresses ac-

cédées durant l’instrumentation. Les chevauchements entre de tels intervalles, les tubes

de régression et les fonctions linéaires, sont testés afin de déterminer si une dépendance

est possible, auquel cas aucune transformation de code ne sera effectuée. L’inclusion

d’accès quasi-affines et non-affines relâche le modèle polyédrique, mais ajoute le chal-

lenge d’une vérification supplémentaire pour les accès mémoire qui ont lieu en dehors

des régions prédites.

0.9.1 La modélisation des bornes de boucles non-linéaires

En présence de bornes de boucles non-linéaires, l’intervalle des adresses mémoire qui

seront accédées ne peut pas être déterminé, même avec une instrumentation dynamique.

Ainsi, nous ne pouvons pas construire le polyèdre de dépendances. Cela est même le

cas lorsque tous les accès mémoire sont linéaires.

La modélisation d’une boucle dans le modèle polyédrique nécessite:

1. Une fonction linéaire pour la borne inférieure, paramétrée par ses itérateurs de

boucles englobantes, ses paramètres de boucle et des constantes;

2. Une fonction linéaire pour l’itérateur, paramétrée par ses itérateurs de boucles

englobantes, ses paramètres de boucle et des constantes;
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3. Une fonction linéaire pour sa borne supérieure, paramétrée par ses itérateurs de

boucles englobantes, ses paramètres de boucle et des constantes.

En calculant un hyperplan minimal pour la borne de boucle supérieure, on s’attend

à ce que toute la boucle s’exécute au moins jusqu’au point où l’itérateur rencontre

cet hyperplan. Si l’hyperplan minimal conserve sa validité pendant l’exécution, la

boucle non-linéaire peut être parallélisée jusqu’à cet hyperplan minimal. Notons que la

parallélisation doit malgré tout être valide, c’est-à-dire que les dépendances ne doivent

pas empêcher la parallélisation. Le reste des itérations de la boucle non-linéaire doit être

exécuté séquentiellement, jusqu’à atteindre la condition de sortie de boucle originale.

L’avantage de cette approche est d’être capable de paralléliser et d’optimiser la partie

prédite, avec un très faible surcoût temporel. Cependant, cette approche ne garantit

pas la correction du programme car la partie séquentielle, qui n’a pas été prédite,

peut introduire une dépendance non prévue, et ainsi violer le modèle de prédiction

des dépendances. Les accès mémoire qui ont lieu dans l’espace non prédit sont par

conséquent considérés de manière équivalente aux accès mémoire non-linéaires. Comme

il a été expliqué dans la sous-section précédente, le système de traitement des accès

non-linéaires d’Apollo peut détecter toute violation sur des régions non-prédites, et

garantit donc la validité du programme. Si pendant l’exécution effective, la boucle

exécute des itérations non prédites par l’hyperplan minimal, alors que la boucle est

marquée pour une exécution parallèle, le système effectue un retour-arrière.

Une approche similaire au cas de la borne supérieure peut être appliquée pour la

borne inférieure. Les deux techniques peuvent être combinées pour produire trois

vagues d’exécutions: une partie séquentielle de tête, une partie “cœur” au milieu

d’exécution parallèle, et une partie séquentielle de queue. La gestion de toute trans-

formation telle que l’échange de boucles, le pavage de boucles, etc. suit les mêmes

principes.
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Le coefficient de corrélation se situe entre 0.9 et 1.

Une valeur haute du coefficient de corrélation indique que la borne de boucle oscille

autour d’un hyperplan. À la différence des hyperplans de régression des accès mémoire,

l’hyperplan des bornes de boucle ne peut pas être utilisé directement. L’hyperplan de

régression, par construction, minimise la moyenne des carrés des distances entre les

points observés. Cela implique qu’il peut y avoir des points au-dessus et/ou en-dessous

de l’hyperplan. Afin de gérer cela, pour l’hyperplan bornant inférieurement, l’hyperplan

est glissé de la largeur du tube, l’idée étant que l’hyperplan glissé se comporte comme

un minimum attendu. Notons que cela ne garantit toujours pas que tous les points

sont dans le domaine.

Le coefficient de corrélation est inférieur à 0.9.

Comme pour les hyperplans de régression des accès mémoire, un coefficient de cor-

rélation inférieur à 0.9 indique que la régression présente une faible adhérence aux

bornes de boucle observées. Cependant, des transformations optimisantes peuvent

malgré tout être appliquées, si une valeur seule représentant la borne minimale peut

être déterminée. Ainsi, une valeur seule (plutôt qu’un hyperplan), indiquant la borne

minimale prédite est utilisées à partir des observations. Dès que le polyèdre de dépen-

dances a été construit, un ordonnancement et un squelette sont déterminés de manière

similaire au cas purement linéaire d’Apollo.

0.9.2 Sauvegarde et point d’exécution sûr

Pour les accès non-affines en écriture, il n’y a pas d’information dans le modèle perme-

ttant de prédire les zones mémoire qui seront écrites pendant l’exécution du prochain

chunk. C’est pourquoi une sauvegarde à la volée est effectuée pendant l’exécution

parallèle spéculative du prochain chunk, où chaque location mémoire est sauvegardée

juste avant d’être mise à jour. Pour les accès quasi-affines en écriture, toutes les loca-

tions mémoire à l’intérieur du tube de régression sont sauvegardées avant de lancer le

prochain chunk. Cependant, il peut toujours y avoir des accès en dehors du tube, mais
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qui ne corrompent pas la sémantique de la boucle transformée. Mais puisque de tels

accès ne peuvent seulement être connus pendant l’exécution du chunk, ils sont traités

de la même manière que les accès non-affines: ils sont sauvegardés à la volée pendans

l’exécution du chunk. Pour les boucles avec des bornes non-linéaires, la sauvegarde

est calculée en se basant sur les hyperplans minimum et maximum. Chaque location

pouvant être mise à jour entre les hyperplans est sauvegardée avant le lancement du

chunk et ceux qui sont en dehors sont sauvegardés à la volée par chaque thread, de

manière similaire aux accès non-affines en écriture.

0.9.3 Vérification dynamique

La conformité des accès mémoire prédits par rapport aux fonctions linéaires de prédic-

tion, et l’adhérence des accès non-prédits au modèle polyédrique spéculatif, peuvent

seulement être vérifiées pendant l’exécution effective du code optimisé. Chaque thread

vérifie la validité de chacun de ses accès mémoire par rapport à tous les accès mémoire

prédits, et effectue ainsi une vérification immédiate et décentralisée. Selon la précision

du modèle, les opérations de vérification suivantes sont effectuées:

• Si l’instruction mémoire a été modélisée exactement par une fonction affine: le

thread vérifie l’égalité entre l’adresse accédée et celle prédite en instanciant la

fonction affine de prédiction. En cas de mauvaise prédiction, un risque potentiel

de dépendance non-prédite est détecté;

• Si l’instruction mémoire a été modélisée par un tube de régression (ou par un

intervalle d’adresses): le thread vérifie que l’adresse accédée se situe à l’intérieur

du tube (ou à l’intérieur de l’intervalle). Sinon, l’adresse est comparée aux

adresses prédites comme étant touchées par les autres instructions mémoire pen-

dant l’exécution du chunk courant. Si aucun risque d’interaction a été détecté,

l’adresse est conservée dans une table locale, afin d’être examinée plus tard, après

la fin du chunk courant, en utilisant la vérification centralisée. Sinon, un risque
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potentiel de dépendance non-prédite est détecté.

S’il y a un risque potentiel de dépendance non-prédite, un retour-arrière est lancé

par le thread fautif. Sinon, à la fin du chunk, une vérification entre threads est effec-

tuée afin d’assurer la consistance entre threads, en comparant les adresses qui ont été

conservées dans leurs tables locales respectives.

0.10 Résultats
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Figure 8: Accélération d’Apollo non-linéaire et du système centralisé, avec 24 threads

Les programmes de test ont été sélectionné parmi plusieurs bancs d’essai tels que

SPARK00 [7], Rodinia [11], Cbench [12] et Perfect [13]. Il faut noter que ces pro-

grammes ne peuvent pas être optimisés par des outils tels que Pluto, ou la version

précédente d’Apollo, à cause de la non-linéarité des accès mémoire et des bornes de

boucles. En plus de ces programmes, nous avons inclus Filter*, qui est une applica-

tion réelle de traitement d’images qui exhibe des références non-linéaires à des tableaux.

Chaque programme a été écrit en C/C++.

À la figure 8, nous montrons les accélérations d’Apollo avec la modélisation non-

linéaire et le système de vérification qui ont été présentés, et qui est comparé à une
*http://lodev.org/cgtutor/filtering.html
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Figure 9: Classification des surcoûts temporels en pourcentages

version complètement centralisée de vérification. Pour tous les programmes de test,

Apollo surpasse la version centralisée, tout en procurant des accélérations significatives

par rapport aux codes séquentiels originaux.

La figure 9 montre une classification des surcoûts temporels du système.

0.11 Conclusion

Dans cette thèse, nous présentons nos contributions à Apollo (Automatic specula-

tive POLyhedral Loop Optimizer), qui est un compilateur automatique combinant

la parallélisation spéculative et le modèle polyédrique, afin d’optimiser les codes à

la volée. En effectuant une instrumentation partielle au cours de l’exécution, et en la

soumettant à une interpolation, Apollo est capable de construire un modèle polyédrique

spéculatif dynamiquement. Ce modèle spéculatif est ensuite transmis à Pluto, qui est

un ordonnanceur polyédrique statique. Apollo sélectionne ensuite un des squelettes

d’optimisation de code générés statiquement, et l’instancie. La partie dynamique

d’Apollo surveille continuellement l’exécution du code afin de détecter de manière dé-
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centralisée toute violation de dépendance. Une autre contribution importante de cette

thèse est notre extension du modèle polyédrique aux codes exhibant un comportement

non-linéaire. Grâce au contexte dynamique et spéculatif d’Apollo, les comportements

non-linéaires sont soit modélisés par des hyperplans de régression linéaire formant des

tubes, soit par des intervalles de valeurs atteintes. Notre approche permet l’application

de transformations polyédriques à des codes non-linéaires grâce à un système de vérifi-

cation de la spéculation hybride, combinant vérifications centralisées et décentralisées.
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The beginning is the most important part of the

work.

Plato, The Republic

The secret to getting ahead is getting started.

Mark Twain

We all have to start somewhere…

Asif

1
Introduction

1.1 Context

The demand for computing power is increasing at an unprecedented rate. In order to

meet this vast requirement, the computing industry relied upon increasing the clock

speeds till it was hindered by the power wall. To operate the computing cores at high

frequencies, a high voltage is required, which increases the dynamic power consumption

of the chip. In order to overcome this, the size of transistor was reduced and we are

nearing the limits of shrinking due to physical constraints. The economic solution to

this problem is to pack more and more cores to the chip. Thus, the industry moved

from single core to multi core and is moving towards the many core era. However,

mere hardware is not capable of taking advantage of the latter as it introduced a new

challenge, program parallelization.

To utilize multiple cores by the same program, the program’s code should somehow

express its inherent parallel regions. Parallel regions could be either indicated explicitly
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by a programmer using syntax structures like pragma or they could be automatically

detected by a compiler. The challenging aspect of parallel programming is dependencies

between instructions. A parallel program should respect the semantics of the original

sequential program or in other words, it should not violate any program dependence.

Manual parallelization requires the programmer to identify the dependencies and find

a transformation which allows parallelization, but still respecting all the dependencies.

Not only is this process difficult and error prone, but also it is even impossible in some

cases where the dependencies are related to dynamic factors such as input data, or

when dynamic memory allocation is used etc.

Compilers can alleviate this problem by automatically detecting the dependencies

and producing a valid code transformation respecting them. The developer can thus

concentrate on the program logic while the compiler takes care of code optimization.

Current automatic parallelization compilers can solve this efficiently when the code can

be statically analyzed. However, in the presence of non statically resolvable dependen-

cies, the compiler is forced to take conservative decisions in order to ensure program

correctness. These conservative decisions limit to a huge extent the ability to paral-

lelize or to perform other optimizing code transformations. One technique to overcome

this limitation, i.e. to parallelize or to optimize non statically analyzable code, is to

use Thread Level Speculation (TLS).

1.2 Problem definition

Thanks to decades of research, many automated compilers can perform effective and

aggressive optimizations on statically analyzable codes. However, the current compilers

take conservative assumptions in presence of dynamic entities, and this prevents them

to perform aggressive optimizations on dynamic codes. Codes with dynamic memory

accesses (indirect accesses, pointers), dynamic control flow and dynamic loop bounds

are quite common. A promising strategy for overcoming such limitations is to perform

code optimization at runtime – while the target code is running – in order to take
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advantage of the dynamically available information. Runtime optimizers have two

major advantages: one is that more information is available at runtime as the values of

variables are resolved; the other is the opportunity to reason about the code behavior

by observing it. The objective of this work is to optimize dynamic codes using the

polyhedral model and thread level speculation (TLS).

The polyhedral model is a well known and widely used loop optimization frame-

work, and has been studied extensively in the static context. The model is able to

propose aggressive loop optimizations such as parallelization, loop tiling, loop skewing,

loop interchange etc.. However, the presence of a single non affine entity in the code

prevents the compilers from applying polyhedral optimizations. Currently, automated

compilers only apply polyhedral optimizations if the code is entirely statically analyz-

able. Applying the polyhedral model to dynamic codes requires dynamic monitoring,

dynamic code scheduling and code generation, and runtime verification. Dynamically

profiling the code can reveal whether the code, or at least some phases of the code

are amendable for polyhedral optimizations. If compatible, the code representing the

transformation has to be generated. This can be done by (i) statically generating a

set of code versions and choosing one at runtime, (ii) or by generating the entire code

at runtime, (iii) or by generating some code skeletons statically and completing them

at runtime. Since only a sample of the code execution is instrumented, the compiler

should ensure that the rest of the code phase follows the predicted behaviour. This can

be done by using runtime verification. If the verification fails, the system should be

able to restore the program state to a consistent one so that the semantic constraint

is not violated. Thus, a speculative system is required.

Thread Level Speculation (TLS) is a speculative technique to parallelize loops. In

TLS, some threads are executed speculatively, and the runtime system continually

monitors the program execution to detect any data race. If a data race occurs, the

system squashes the faulty speculative thread, and recovers the effects of its execution

(rollback). In order to recover, a consistent state of the system is created before the
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speculative execution begins. The violated region is either executed in the original

sequential order, or using some other speculative strategy. However, a wider and more

efficient use of TLS is mainly hampered by the prohibitive time overhead induced by

centralized data race detection among the parallel threads, dynamic code behavior

modeling and code generation. Most of the existing TLS systems rely on naively

slicing the target loops into chunks, and trying to execute the chunks in parallel with

the help of a centralized performance-penalizing verification module that takes care of

data races. Due to the lack of a data dependence model, these speculative systems

are not capable of doing advanced transformations and, more importantly, the chances

of rollback are high. Maintaining consistent state in TLS system, involves keeping

multiple copies of data. Typical TLS systems choose to make copies at every loop

iteration, thus exponentially increasing the memory requirement.

1.3 Proposed solution

The proposed solution consists of using the polyhedral model at runtime, aided by

thread level speculation. Apollo (Automatic speculative POLyhedral Loop Optimizer)

is a framework that goes one step beyond the current automated compilers, and applies

the polyhedral model dynamically by using TLS. Apollo employs partial instrumen-

tation to detect the code behaviour at runtime. Based on the profiling information,

Apollo determines if the code behaviour is compatible with the polyhedral model. If

compatible, Apollo uses the static polyhedral compiler Pluto to compute the set of

loop optimizations to apply, and then instantiates one of the statically generated code

skeletons. It continually monitors the program execution to detect any dependence

violation in a decentralized manner. If a violation is detected, the program state is

restored to a consistent state and the original sequential code is executed. We present

our contributions in the development of Apollo in this thesis.

But this dynamic and speculative approach opens to further extensions that are

even more important: the application of the polyhedral model to codes which are not
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a priori, compatible with it, i.e. which exhibit non-linear behaviors. In this thesis, we

develop and implement the idea of a prediction model based on approximation, and

which allows the application of advanced polyhedral transformations on such codes.

By using the polyhedral model dynamically, Apollo is able to propose advanced loop

transformations for dynamic codes. The TLS system inside Apollo also employs it to

construct a de-centralized verification system, and for the backup system to reduce the

amount of data which needs to be copied for constructing the consistent state. The

combined polyhedral model - TLS approach thus powers an automated compiler which

can speculatively optimize dynamic codes for performance.

The rest of thesis is organized as follows. Chapter 2 recalls the polyhedral model of

nested loops. Chapter 3 addresses the thread level speculation and the related state-

of-the-art. Details on the Apollo framework, and how dynamically polyhedral codes

are optimized are presented in Chapter 4. Chapter 5 details our extension of handling

codes which are exhibiting non-linear behaviors. Chapter 6 concludes the manuscript

and briefs the possible future work.
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God used beautiful mathematics in creating the

world.

Paul Dirac

Mathematics is a game played according to certain

simple rules with meaningless marks on paper.

David Hilbert

The beating of earth’s heart is in mathematics.

Asif 2
The Polyhedral Model

2.1 Introduction

The polyhedral model or the polytope model [14, 15] is a powerful mathematical

and geometrical framework for analyzing and optimizing for-loop nests. It captures

the program execution in a concise and precise manner. The model treats each loop

iteration inside a nested for-loop as lattice points inside a rational polyhedron. Thus,

the model looks at each instance of a statement rather than the statement itself. Tra-

ditional program representations such as Abstract Syntax Tree (AST), Control Flow

Graph (CFG) etc. suffice for simple optimizations such as constant folding or scalar

replacement, however, they are not powerful enough to perform complex transforma-

tions such as loop skewing, tiling etc. Representing a loop nest and their dependencies

in a mathematical model allows to formulate the loop optimization task as an opti-

mization problem using a set of linear equalities and inequalities. The solution to this
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optimization problem can be found using linear programming techniques.

The necessity of the polyhedral model arise from the limitations of the Internal

Representation (IR) used in compilers. In traditional intermediate program repre-

sentations such as abstract syntax trees, each statement appears only once, even if

executed multiple times (for e.g. statements inside a loop). One of the problems in

such representations is that they are not sufficiently precise. Two statements inside

a loop may be dependent only for some iterations of the statements; this fact cannot

be represented in traditional representations and these statements are conservatively

treated as a single entity. One other limitation is that iteration based transformations

of a statement are impossible, thus limiting the possible schedules.

The origin of the polyhedral model can be traced back to the work of Karp, Miller

and Winograd [16]. This work consisted of determining the schedule for SUREs (Sys-

tem of Uniform Recurrence Equations). In [17], Quinton studied a (restricted) form of

SUREs, defined over a polyhedral space. The space of valid schedules were obtained

as the space of solutions of an integer linear programming problem. Identifying depen-

dencies automatically from array subscript equations is an essential part of polyhedral

model based optimizations. This was studied by Banerjee in [18], which proposes a

test called the Banerjee test which can be used to prove (or disprove) whether a real

solution exists to a single linear equation subjected to loop bounds. The test is an

approximate test and only considers one array subscript of a multi dimensional array

at a time. Also, the test requires the loops to have constant bounds and ignores the

constraints on loop bounds expressed using other loop indices. Typically, if the Baner-

jee test fails to prove the non existence of dependencies, the GCD (Greatest Common

Divisor) test can be used. However, the GCD test ignores the loop bounds and in many

cases the GCD is 1, which ends up being very conservative. The I-Test [19] is based

on the Banerjee test, the major difference being that I-Test can prove (or disprove)

the existence of integer solutions in many cases, whereas Banerjee test deals with real

solutions. The Omega test [20] and Power test [21] are both dependence tests based on
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2.4. DCOP

Listing 2.1: Example of a valid SCoP: jacobi-2b kernel
#pragma scop

f o r ( t = 0 ; t < t s t e p s ; t++)
{

f o r ( i = 1 ; i < n 1 ; i++)
f o r ( j = 1 ; j < n 1 ; j++)

S0 : B [ i ] [ j ] = 0 . 2 * (A[ i ] [ j ] + A[ i ] [ j 1] +
A[ i ] [ 1+ j ] + A[1+ i ] [ j ] + A[ i 1 ] [ j ] ) ;

f o r ( i = 1 ; i < n 1; i++)
f o r ( j = 1 ; j < n 1; j++)

S1 : A[ i ] [ j ] = B[ i ] [ j ] ;
}

#pragma endscop

essary to know the value of the parameters at compile-time, they must remain fixed

during the execution of the SCoP.

An example of a valid SCoP is shown in Listing 2.1. The polyhedral representation

of a SCoP requires three components: (i) A context, which encodes the loop param-

eters and is used to prune the resulting space, (ii) A constraint matrix encoding the

iteration domain and dependence constraints and (iii) A scattering function, encoding

the schedule or order in which the statements should be executed. For each statement

there is an associated constraint matrix and a scattering function.

2.4 DCoP

A Dynamic Control Parts (DCoP) is the dynamic counterpart of a SCoP. Many pro-

grams, especially the ones using while loops, indirect accesses and pointers cannot be

analyzed statically. However, these programs can possibly exhibit an affine behavior

at runtime, at least in phases. If the program behavior can be predicted as affine, then

the program can be optimized using dynamic and speculative techniques using poly-

hedral transformations. In order to handle a DCoP region, the following mechanisms

are required: (i) A mechanism to express DCoP regions, or to automatically identify

the DCoP regions, (ii) A mechanism to dynamically observe the code behavior, (iii) A
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Listing 2.2: Example to illustrate DCoP
1 f o r ( i =0; i<NUM_NODES; i++)
2 {
3 Node * ne ighbours = node s_ l i s t [ i ] ;
4 whi l e ( ne ighbours )
5 {
6 neighbours >va lue++;
7 ne ighbours = neighbours >next ;
8 }
9 }

mechanism to check whether the observed behavior fits the affine model, (iv) A mecha-

nism to propose an optimizing transformation, (v) A mechanism to generate/select the

code representing the code transformations, (vi) A mechanism to facilitate speculation,

(vii) A mechanism to facilitate backup and rollback and (ix) A mechanism to verify

the speculation.

Consider the code in Listing 2.2. The DCoP of this example is valid in program

phases where the following conditions hold: (i) The loop bounds of the while loop

should be expressible as affine functions, (ii) The memory accesses in lines 4, 6 and 7

should be expressible as affine functions.

2.5 Loop nest modelling

The polyhedral model is a mathematical model to represent the loop nest. It represents

each instance of a statement as an integer points inside a convex polyhedron. This

section explains the details of the representation and its building blocks.

2.5.1 Iteration space

Definition 9 (Iteration space or Iteration domain). The set of integer vectors corre-

sponding to the actual executions of a statement is called the iteration domain of that

statement. The set of all iteration vectors corresponding to a given statement will form

its iteration domain.
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CHAPTER 2. THE POLYHEDRAL MODEL

iff there exists an instance of S, S(x⃗i), and an instance of T , T (x⃗j) such that, both

S(x⃗i) and T (x⃗j) access the same memory location and at least one of them is a write

access.

If in the original sequential execution order S(x⃗i) occurs before T (x⃗j) (x⃗i → x⃗j),

then T is said to be dependent on S. S is called the source statement and T is called

the target, or the sink, or the destination statement. A loop carried dependence arises

when two different iterations of the loop access the same memory location:

Based on the kind of memory accesses the dependences are classified as follows:

• RAW: read-after-write, or flow dependence

• WAR: write-after-read, or anti-dependence

• WAW: write-after-write, or output dependence

RAW is a true dependence and cannot be removed. WAR and WAW dependen-

cies can be eliminated using techniques like renaming, scalar expansion [26] or array

expansion [27], but these techniques are not generally considered inside the polyhedral

model. RAR (read-after-read or input dependence) dependencies are not considered as

dependencies, since the memory is not altered. However, RAR dependencies are useful

for some optimizations to improve data locality by reducing the data reuse distance.

There are two popular dependence representations which are widely used: (i) The

Distance Vectors and (ii) The Dependence polyhedron.

2.6.1 Distance vector representation

Distance vectors indicate the distance between the source and the target statements.

If the statements S(x⃗i) (source) and T (x⃗j) (target) are dependent, then, the distance

vector is:

d⃗ = x⃗j - x⃗i
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Listing 2.4: Example for illustrating distance vector and direction vector kernel
f o r ( i = 0 ; i < N; i++)
{

S0 : C[ i ] = C [ 0 ] + i ;
f o r ( j = 0 ; j < N; j++)
{

S1 : A[ i ] [ j ] = A[ i ] [ j 1] + B[ i ] [ j ] ;
}

}

The direction vector shows the direction of the dependence. A Direction vector is

more concise than a distance vector, but less precise. The direction vector is represented

by:

σ⃗ = sign(d⃗)

The sign of d⃗ = (d1, d2, ..., dh) is given by sig(d⃗) = (sig(d1), sig(d2), ..., sig(dh)), where

h is the loop depth and each component

sign(di) =























1, if i > 0,

1, if i < 0,

0, if i = 0.

The distance vector and the direction vector should always be lexicographically

non negative. A vector is lexicographically positive if the first non zero component is

positive. Otherwise, it is negative or null. The first non zero element is also known as

the leading element denoted by dl. The dependence is said to be carried by the loop

at depth l, if 1 ≥ l ≥ h. The dependence is not carried by any loop if l = h+ 1, which

is equivalent to d⃗ = 0⃗. Only loop carried dependencies are considered for dependence

analysis.

Consider Listing 2.4. The dependence from statement S1 to itself can be represented

by:
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S0

S1

S2

S3

S4

S5

AS � Z
dS×dS dS

S

ΓS � Z
dS×(dp+1) dp

βS � Z
dS+1

θS0(�x) = (0, i, 0, 0, 0, 0, 0)

θS1(�x) = (0, i, 1, j, 0, 0, 0)

θS2(�x) = (0, i, 2, 0, 0, 0, 0)
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Listing 2.6: Example to illustrate scheduling (parallel)
f o r ( i = 1 ; i < N; i++)
{

#pragma omp p a r a l l e l s e c t i o n
{

#pragma omp s e c t i o n
{

S0 :
}
#pragma omp s e c t i o n
{

S1 :
}

}
S2

}

θS3(x⃗) = (0, i, 3, j, 0, 0, 0)

θS4(x⃗) = (0, i, 3, j, 1, k, 0)

θS5(x⃗) = (0, i, 3, j, 2, 0, 0)

Since the scheduling represents the order in which the statements are going to be

executed, it should also be able to express parallelization. For a detailed illustration,

consider Listing 2.6. The corresponding scheduling functions are:

θS0(x⃗) = (0, i, 0)

θS1(x⃗) = (0, i, 0)

θS2(x⃗) = (0, i, 1)

Statement S2 should execute after both statements S0 and S1 as its timestamp is

higher. However, the timestamp for both S0 and S1 are the same, implying that they
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in Listing 2.7. Assume that a loop interchange is applied such that the transformed

loop iterators (p, q, r) = (k, i, j). The original loop satisfies the following constraints:























1 ≥ i ≥ N

i+ 1 ≥ j ≥ N

j ≥ k ≥ i+ j

Expressing the above in the transformed iteration space results in:































































q ≥ 0

q ≥ N

r ≥ N

p+ r ≥ 0

q r ≥ 1

p q r ≥ 0

By considering the equations which only contain r, the bounds for r can be expressed

as follows:

max(q + 1, p q) ≥ r ≥ min(N, p)

By eliminating r, the following is obtained:















































q ≥ 0

q ≥ N

q ≥ N 1

p q ≥ N

p+ q ≥ 1

This system gives the bounds for q as being:

max(0, p 1, p N) ≥ q ≥ min(N,N 1, p N)
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Listing 2.9: Example to illustrate scheduling matrix (doitgen)
f o r ( r = 0 ; r < N; r++)

f o r ( q = 0 ; q < N; q++) {
f o r (p = 0 ; p < N; p++) {

S0 : sum [ r ] [ q ] [ p ] = 0 ;
f o r ( s = 0 ; s < N; s++)
S1 : sum [ r ] [ q ] [ p ] = sum [ r ] [ q ] [ p ]

+ A[ r ] [ q ] [ s ] * C4 [ s ] [ p ] ;
}
f o r (p = 0 ; p < N; p++)

S2 : A[ r ] [ q ] [ p ] = sum [ r ] [ q ] [ p ] ;
}

ment instances such that spatial and temporal data localities are improved, and paral-

lelization opportunities are exposed. The schedule represents the ordering of state-

ments and iterations which map iterations in the domain of a statement (DS) to

a timestamp. A timestamp is a logical date, similar to the conventional date, e.g.

date:month:year:hour:minute:second.

Different transformations can be easily represented by changing each of the schedul-

ing sub-matrices. Loop transformations such as loop interchange, skewing, reversal can

be achieved by modifying AS. Loop shifting can be achieved by modifying ΓS. Loop

fission and loop fusion can be achieved by modifying βS. βS is called the static compo-

nent as it refers to the textual order of the statements, which is statically fixed at code

generation. AS and ΓS are related to the iterators, and hence are called the dynamic

components.

For a better understanding, the scheduling sub matrices for the statements in Listing

2.9 are listed below:

AS0 =













1 0 0

0 1 0

0 0 1













ΓS0 =













0 0 0

0 0 0

0 0 0













βS0 =



















0

0

0

0
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AS1 =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















ΓS1 =



















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



















βS1 =

























0

0

0

0

0

























AS2 =







1 0

0 1






ΓS2 =







0 0

0 0






βS2 =













0

0

0













2.7 Polyhedral Tools

This section describes the most commonly used polyhedral tools and libraries.

2.7.1 Math libraries

Piblib (Parametric Integer Linear programming solver) [33] is a widely used library to

find the lexicographical minimum (or maximum) point from the set of integer points

belonging to a convex polyhedron. Piblib can also be used to check whether a given

polyhedron is empty in order to validate whether a dependence exists or not. Polylib

(Polyhedral Library) [34] can be used to compute intersections, differences, unions,

convex hulls, simplifications, images and pre-images on both parametrized and non

parametrized polyhedra. It can also be used to find the vertices of a polyhedron and

to compute its Ehrhart polynomials. VisualPolylib is a visualization environment for

Polylib, which allows the interactive use of Polylib. Barvinok [35] can be used to count

the number of integer points inside both parametric and non parametric polyhedrons.

FM (Fourier-Motzkin library) [36] is a library dedicated to rational polyhedra and is

widely used for projecting out certain dimensions from a given system of inequalities.

Along with projection, it also provides many functions to manipulate rational polyhe-

dra, including the computation of the lexicographical maximum and minimum. ISL
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(Integer Set Library) [37] is a library for manipulating integer sets and relations. It also

supports parameters. ISL has specialized modules to compute dependencies, to gener-

ate schedules and to generate code. The code generation outputs an AST (Abstract

Syntax Tree).

2.7.2 Code analyzers

Clan (Chunky Loop ANalyzer) [38] is a polyhedral input parser written in C. Clan

can parse programs written in C, C++, C# and Java and extracts the polyhedral

loop nests in the OpenScop format [39]. The output can then be used for dependence

analysis, program transformation etc. Candl (Chunky ANalyzer for Dependences in

Loops) [40] is capable of computing dependencies. It is also capable of checking whether

a given transformation respects the program dependencies. In order to remove some

dependencies, Candl uses techniques such as array expansion or array privatization.

2.7.3 DSL Languages

Xfor [41] provides a general purpose syntax for expressing an affine loop nest. The

syntax is aimed at closely representing a loop nest in such a manner that the polyhe-

dral model’s key optimization parameters can be directly expressed in the syntax. It

supports semi-automatic parallelization along with manual tuning or complete manual

optimization, and is designed to bridge the gap between automatic and manual opti-

mization. By semi-automatically optimizing the code, overhead of finding a suitable

schedule can be avoided and by manual tuning, higher performance can possibly be

obtained. Along with a graphical interface to specify the transformation, an automatic

dependence analyzer is provided to check the validity of the manual transformations.

The IBB (Iterate But Better) [42] compiler automatically converts xfor code to C code.

Polymage [43] is a domain specific language and compiler for image processing

pipelines. The work is based on the fact that the typical image processing operations

can be represented as pipelines consisting of interconnected stages. The work tries
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to extract parallelism within the stages and to improve the data locality. The work

proposes an overlapped tiling method for heterogeneous processing and a heuristic

model to trade off between data locality and redundant computations.

2.7.4 Compilers and related

ClooG (Chunky Loop Generator) [44] can generate efficient code for a given Z poly-

hedron. CLooG has special flags (switches) to simplify the loop control. Users are

allowed to control the code generation mechanism for efficiency or for readability. Ma-

jor projects like Pluto and Graphite makes use of ClooG to generate the output code.

PLuTo (parallelization and locality optimization tool) [31] is a widely used auto-

matic polyhedral source-to-source optimizer. It targets arbitrarily nested, static affine

loop nests for simultaneous optimizations of locality and parallelism. It uses Clan,

Candl/ISL and Cloog, for scanning C code, computing dependencies and to generate

the transformed code. Pluto supports a wide range of loop optimizations such as paral-

lelization, tiling, diamond tiling, fusion, fission, interchange, skewing, reversal etc. It is

specifically known for its tiling capabilities. The tool aims to provide synchronization

free parallelism, improved data locality and pipelined parallelism.

Polly [45] is a high level loop and data locality optimizer for LLVM infrastructures.

It is implemented as a set of LLVM passes and works on the LLVM Internal Repre-

sentation (IR). Polly relies on ISL for dependence analysis and transformation. Since

Polly works on the LLVM IR, which is in SSA form, it has better granularity for each

statement when compared to tools such as Pluto. Along with other optimizations Polly

is able to generate SIMD and OpenMP code.

Graphite [46] is a high level memory optimization tool based on the polytope model

and is integrated in the GCC framework. The SCoP regions are automatically detected.

The framework is built on top of the scalar evolution, array and pointer analyses, data

dependence analysis and scalar range estimate modules of gcc. Code generation was

achieved using ClooG. In newer versions (gcc ≈ 5.0), it is done using ISL.
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Loopo [47] is yet another automatic polyhedral loop optimizer. The project em-

beds a code parser, dependence analyzer, automatic scheduler and code generator. It

also embeds dispo, a polyhedral visualization tool which is capable of visualizing the

polyhedron along with the dependencies. Loopo also allows manual scheduling. The

project is no more under active development.

LeTseE (the LEgal Transformation SpacE Explorator) [48] is an iterative polyhedral

optimization framework focusing on static affine parts of the program. The tool aims

to improve the optimization by measuring machine characteristics and by looking at

the data to break some conservative assumptions made by the compiler. From static

analysis, the framework determines the space where the transformations are legal,

and is then fed to a feedback directed space exploration algorithm. While running

each version, the hardware counters are monitored to measure performance. The best

performing version is output as C code.

CHiLL (Composing High-Level Loop Transformations) [49] is an optimization frame-

work with composable code transformations and empirical optimizations. Instead of

statically predicting the optimization, the framework runs the code on the target plat-

form with representative input to determine the set of transformations that should be

applied. A decision algorithm generates a set of transformation scripts each of which

expresses a set of valid high level transformations. A search engine is then used to

bound the parameters of the transformation scripts. From the original code and the

bounded transformation script, the code generator produces the final code.

PPCG (Polyhedral Parallel Code Generation for CUDA) [50] is an automatic poly-

hedral compiler targeting GPU’s. PPCG targets to offload any data parallel affine loop

execution to the GPU. The tool offers a multi level tiling strategy tailored for GPU

memory hierarchies. The memory transfer is automatically controlled by the compiler.

PPCG uses pet to extract the polytope model. It uses ISL to compute the dependen-

cies and to generate the schedule. The scheduler in ISL closely resembles to the one

of Pluto. The scheduler also takes care of partitioning the section into host and GPU
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sections. This is followed by memory allocation. Code generation is handled by PPCG

itself, and uses a custom code generator similar to the one of Cloog. PPCG is able to

produce CUDA, OpenMP and OpenCL codes.

R-Stream [51, 52] is a commercially available polyhedral compiler from Reservoir

Labs. It is capable of producing OpenMP code as well as CUDA codes. The tar-

get machine information is given in XML format to the compiler. From the input

code, the compiler automatically extracts the polyhedral regions. From the polyhe-

dral representation it schedule and group operations into tasks, such that the required

communication is minimized. Unlike PPCG, R-Stream can automatically determine

the tile sizes.

In [53], Jean-François Dollinger et al. proposed an adaptive runtime compiler for

hybrid CPU-GPU system. PPCG is used to generate different code versions of the

input statically. The generated code versions differ in terms of transformations, such

as the CUDA block size. Each such version is parametrized by loop parameters which

can vary at runtime. During installation, a profiler simulates the different code versions

of a micro benchmark, to characterize the bandwidth available between CPU and GPU.

Using this prediction metadata, during actual runtime, a time estimate is built for each

code version and the best one is selected and ran on both CPU and GPU. The first one

to finish is committed. For CPU version, OpenMP code generated from Pluto is used.

In [54], both CPU and GPU are jointly used. The scheduler, based on the separate

time estimate for CPU and GPU, schedules different task units to CPU and GPU in

such a manner that the load is balanced.

2.8 Limitations of the polyhedral model

The polyhedral model requires the memory accesses, the loop bounds and the control

to be expressed as affine combinations of enclosing loop iterators, loop parameters and

constants. The model has been extensively studied in the static context. However, the

static approach strictly limits the class of codes that can be handled by the polyhedral
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Listing 2.10: spmatmat (SPARK00)
1 f o r ( row = 1 ; row <= l e f t >S i z e ; row++ )
2 {
3 pElement = l e f t >FirstInRow [ row ] ;
4 whi l e ( pElement )
5 {
6 f o r ( c o l = 1 ; c o l <= c o l s ; c o l++ )
7 {
8 r e s u l t [ row ] [ c o l ] += pElement >Real *
9 r i g h t [ pElement >Col ] [ c o l ] ;

10 }
11 pElement = pElement >NextInRow ;
12 }
13 }

model. The current polyhedral model tools are restricted to a small class of compute-

intensive codes that can be analyzed accurately and transformed only at compile-time.

However, most legacy codes are not amenable to this model due to indirect or pointer

based accesses to static or dynamic data structures, which prevent a precise dependence

analysis to be performed statically. Another common reason is non-affine loop bounds.

Function calls inside loop nests set another challenge to the polyhedral model, as the

function definition may not be available, which is essential to build the dependence

polyhedra. Informally, it should be able to statically determine the exact memory

accesses that will occur inside the function call.

For a better understanding, consider the spmatmat code from SPARK00 [7] in

Listing 2.10. The code multiplies two matrices and saves the result in another matrix.

Assume that the input matrices are full matrices. Note that there is a while loop in

Line 4, pointer based accesses in Lines 3, 8, 9 and 11. The presence of anyone of the

latter will force the current polyhedral model based approaches to take the conservative

approach. However, at runtime, by partial instrumentation, one can determine whether

the while loop in Line 4 follows an affine function. This can be done by adding a loop

counter variable, initialized to zero and incremented once per loop iteration and reset
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to zero on loop exit. By collecting this counter value on loop exit (before resetting), and

the enclosing iterators, and subjecting this data to interpolation, one can determine

whether the behavior of the while loop can be precisely captured by the interpolating

function. The same holds for the pointer based memory accesses. Now that the code

behavior is determined as affine, the problem at hand is equivalent to a statically

analyzable code, with two exceptions. One exception is that, in statically analyzable

codes, the transformation itself is known at compile time, so the transformed code can

be statically produced. However, in the case of dynamic transformations, one has to

generate the transformed code at runtime. The second, and more profound problem

is that, dynamic codes can change their behavior. For example, consider the memory

read (pElement ⇔ NextInRow) in Line number 11. The memory allocation to the

rows need not be affine. It may happen that the program behavior observed during

the instrumentation phase is affine but not for the rest of the execution. This requires

runtime verification. The verification system should ensure that the behavior observed

during the instrumentation remains consistent with that of the rest of the execution.

In cases where the prediction does not hold, the system should rollback and re-execute.

Then the execution is thus speculative. To support this speculative execution and to

facilitate the rollback, a backup system may also be required.

Another set of limitations that arises from the foundations of the polyhedral model

is the rigorous adherence to affine functions. Typical dynamic codes may deviate from

the affine behavior. It may exhibit piecewise affine behaviors, near affine behaviors

or completely random behaviors. This type of memory behavior is usually the result

of indirect accesses and pointer based memory accesses. One way to handle codes

with piecewise affine behavior would be to split the outermost loop into small slices

and then speculate on these slices. Only the chunks where the affine functions break

needs to be rollbacked, and linear functions need to be readjusted to characterize the

next phase. Near affine behavior is an interesting problem with respect to polyhedral

optimizations. For the moment, let us consider the case where an access is near affine
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Listing 2.11: Example to illustrate non linear accesses (trmat - SPARK00)
1 f o r ( i = 1 ; i <= n ; i++ )
2 {
3 k1 = i a [ i ] ;
4 k2 = i a [ i + 1 ] 1 ;
5 f o r ( k = k1 ; k <= k2 ; k++ )
6 {
7 j = j a [ k ] ;
8 next = iao [ j ] ;
9 j ao [ next ] = i ;

10 i f ( job == 1 )
11 ao [ next ] = a [ k ] ;
12 i a o [ j ] = next + 1 ;
13 }
14 }

and never causes any dependence violation. In this case, the latter access can be

approximated by an affine function and this affine function can also be considered for

computing the polyhedral transformation so that, even this memory access is optimized

along with others. The challenging problem here is how to handle cases when there

is an actual dependence and how to verify that non predicted accesses do not cause

a dependence violation. For the random memory accesses, it is better to ignore them

while computing the polyhedral optimization, but , then ensure that these accesses

do not cause any dependence violation. Consider the trmat code from the SPARK00

benchmark suite shown in Listing 2.11. The code contains single and double indirect

memory accesses, and thus static analysis is impossible. The memory read and write

on array iao depends on value ja[k], which is only resolved at runtime. Similarly, the

actual accesses to arrays jao and ao can only be known at runtime as they are data

dependent. However, if the accesses are performed on unique memory locations, the

loops can be parallelized.

Non linear loops are also incompatible with the polyhedral model. A loop is non

linear if (i) the loop bounds cannot be represented by affine functions or (ii) if the loop

increment is non affine. Non linear bounds are quite common in codes, when compared
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to the non affine loop increments. The upper bound of a loop can be determined

from the lower bound and the number of loop iterations. Thus, if the latter are affine

expressions, one can apply polyhedral optimizations. Note that the loop increment

and the number of loop iterations alone are not sufficient to be compatible with the

polyhedral model. A trivial solution to this problem would be subsume the non linear

loop to a single statement. This approach has a serious limitation which is that the

non linear loop cannot be parallelized along with the fact that the memory accesses

inside the non linear loop are not optimized. Consider the code in 2.11 and assume

that the lower bound of the loop is an affine expression. In this case, we just need to

ensure that no value of k would create a new dependency. For example, consider a

situation where &jao[0] is equal to &ao[100]. As long as the value of k is less than 100,

there is no dependence between these accesses. The challenging problem is when the

lower bound of the loop is not an affine expression. Just ensuring that dependencies are

not violated is not enough in this case: there should be a dynamic mechanism which

ensures that the predicted lower bound and the actual value are the same.

Our solution to the above problems is APOLLO, a tool which applies the polyhedral

model dynamically. Its core principles rely on the polyhedral model and dynamic

speculation. By profiling a sample of the outermost loop, Apollo predicts the affine

functions and uses them to apply polyhedral model optimizations dynamically. The

next chapter details the architecture and functioning of Apollo.
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A ship is always safe at the shore - but that is

NOT what it is built for.

Albert Einstein

In practical life we are compelled to follow what

is most probable; in speculative thought we are

compelled to follow truth.

Baruch Spinoza

Chance, too, which seems to rush along with slack

reins, is bridled and governed by law.

Boethius
3

Thread Level Speculation

3.1 Introduction

Thread Level Speculation or TLS refers to a system in which different threads

process data simultaneously, possibly performing some unsafe operation, and temporar-

ily buffering the result on an individual basis. In order to ensure program correctness,

at some point in time, the threads are validated or discarded by checking for data con-

flicts between parallel segments. If the thread is validated, the temporary state of the

thread is committed, thus merging the speculative updates to the globally valid state,

called safe state. If the thread is discarded, speculative updates are discarded and

possibly some cleanup operations are performed. The execution is then resumed from

the last safe state. Thanks to the safe state, the whole re-execution of the program

can thus be prevented.

TLS systems are mainly used in dynamic environments to parallelize tasks where
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Listing 3.1: Example to illustrate TLS system
void vector_sum ( i n t * dest , i n t * source_1 , i n t * source_2 )
{

f o r ( i = 0 ; i < N 1 ; i++)
{

de s t [ i ] = source_1 [ i 1 ] + source_2 [ i 1 ] ;
}

}

the static analysis is not sufficient enough to determine the validity of parallelization

at compile time. In general, TLS systems extract parallelism from either (i) a loop

or (ii) a set of tasks. Thread level speculation has two forms, (i) Software based and

(ii) Hardware based. In software based TLS systems, the dependence violation, and

possible backup and rollback, etc. are handled by the software itself, whereas, in

hardware based TLS systems, these are handled by dedicated hardware.

3.1.1 Importance of thread level speculation

Thread level speculation is used in situations where, even dynamically, the code be-

haviour cannot be predicted. Simple dynamic optimizations do not always need to

rely on on speculative techniques. For example, consider the code in Listing 3.1

which adds two arrays and saves the result in the third array. Assuming that the

objective is the straightforward parallelization of the for loop, the only condition

that needs to be checked at runtime is to check whether any of the source arrays

(source_1andsource_2) overlaps with the target array (dest). A simple condition

checking for the latter can be inserted before the loop entry and the parallel and se-

quential versions can be selected accordingly; hence, no speculation is required.

However, there are codes for which, even at a given sequence point in the runtime,

the code behavior for the rest of the execution cannot be guaranteed. In order to

illustrate the need for dynamic analysis, consider the example in Listing 3.2. The

statement S0 and S1 are enclosed by two loops i and j. Static dependence analysis
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Listing 3.2: Example to illustrate TLS system
i n t A[N ] [N ] ;
i n t s e l e c t o r [N ] [N ] ;
f o r ( i = 1 ; i <= N; i++)
{

f o r ( j = 1 ; j <= N; j++)
{

S0 : i n t c = s e l e c t o r [ i ] [ j ] ;
S1 : A[ i ] [ c ] = A[ i 1 ] [ j ] + i + j ;

}
}

can help in determining that the straightforward parallelization of the outermost loop

is not valid. However, since the value of array selector (and hence the variable c) is

unknown at compile time, dynamic analysis is required for determining whether the

inner loop can be parallelized. However, by just observing a few iterations of the loop,

it cannot be guaranteed that the rest of the program execution would behave in a

similar manner. Thus, speculation is required to handle this code dynamically.

At runtime, the j loop may or may not carry a dependence based on the input data.

Assume that the data values of selector[i][j] = j. Also assume that the system decided

to speculate that loop j is parallel. One possible execution scenario is depicted in

Figure 3.1. Since all the threads access different memory addresses, the speculation is

valid. Now assume another scenario where the data values of selector[i][j] = j % 3 + 1.

As shown in Figure 3.2, thread 0 and thread 3 executing in time step 0 access the same

memory location, thus causing a data race. Hence, the parallel execution is not valid.

Note that the execution would be valid if the thread 0 was executed in time step 0

and the thread 3 was executed in time step 1. A similar situation can be observed for

thread 4 and thread 7. Since the system predicted that the parallel execution is valid

and a memory dependence violation occurred, the system should rollback.

This chapter is focused on Thread Level Speculation (TLS). The Overview section

gives the general principles and architecture of existing TLS systems. The applications

63



Core 0 Core 1 Core 2 Core 3

Thread 4

Load A[0][5]

.

.

.

Store A[1][5]T
im

e
 s

lo
t 

1

Thread 5

Load A[0][6]

.

.

.

Store A[1][6]

Thread 6

Load A[0][7]

.

.

.

Store A[1][7]

Thread 7

Load A[0][8]

.

.

.

Store A[1][8]

Thread 0

Load A[0][1]

.

.

.

Store A[1][1]T
im

e
 s

lo
t 

0

Thread 1

Load A[0][2]

.

.

.

Store A[1][2]

Thread 2

Load A[0][3]

.

.

.

Store A[1][3]

Thread 3

Load A[0][4]

.

.

.

Store A[1][4]



Core 0 Core 1 Core 2 Core 3

Thread 4

Load A[0][5]

.

.

.

Store A[1][2]T
im

e
 s

lo
t 

1

Thread 5

Load A[0][6]

.

.

.

Store A[1][3]

Thread 6

Load A[0][7]

.

.

.

Store A[1][1]

Thread 7

Load A[0][8]

.

.

.

Store A[1][2]

Thread 0

Load A[0][1]

.

.

.

Store A[1][1]T
im

e
 s

lo
t 

0

Thread 1

Load A[0][2]

.

.

.

Store A[1][2]

Thread 2

Load A[0][3]

.

.

.

Store A[1][3]

Thread 3

Load A[0][4]

.

.

.

Store A[1][1]



Compile time

Runtime

Compile time

Dependence
Information



CHAPTER 3. THREAD LEVEL SPECULATION

the number of rollbacks must be as small as possible. A crucial aspect affecting this

is whether the in-place memory update strategy or whether the temporary buffering

strategy was used. In-place updates typically perform well when there is a low number

of rollbacks. In this scenario, as restores are rare, the only overhead is in backing up

data, and the backup is discarded when the threads commit. However, if the number

of rollbacks are higher, then in-place updates are costlier as the rate of both backups

and restores are high. In this latter scenario, it is better to use a temporary buffer,

as the only action required is to discard it. Thus, the overhead can be considerably

reduced.

TLS systems are not necessarily high energy consumers. It can be argued that, in

general, optimizations that improve performance, also reduce the energy consumption.

As with performance, energy consumption is also adversely affected if there are frequent

rollbacks. Energy consumption overhead in TLS system is mainly caused by the back-

up and restore mechanisms and from executing the speculative threads themselves.

However, even if the threads are discarded, not all the energy spent is wasted, as they

could have brought some data into caches which could be used in the following phase(s),

and also could have trained the branch predictor.

3.3 Applications of TLS system

Though mainly and most widely used for parallelization, TLS is also used to attain

other objectives. In [55], TLS principles are applied for speculative synchronization of

explicitly parallel programs. The goal is to remove speculatively placed synchronization

constraints by executing the threads past the active barriers, the busy locks, and the

unset flags. Every such construct is associated to one or more threads called safe

threads which cannot be rollbacked, and thus ensuring progress. Some restrictions are

present in the system, such as, there is no ordering between the threads and even in

the presence of anti-dependence, a rollback is triggered. Dedicated hardware checks for

cross-thread dependencies between safe threads and speculative threads. If a violation
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is detected between a speculative thread and the safe thread, the speculative thread

is rollbacked. If a violation is detected between two speculative threads, then one of

them is rollbacked as there is no ordering between them.

In [56] TLS is used for profiling and debugging. The system is used to monitor

memory locations and is capable also of breaking the code execution or rolling back

when a program error occurs. TLS is used to execute the main thread and the moni-

toring threads in parallel, thus reducing the overhead of program monitoring. It is also

used to buffer the states so that a safe state can be constructed for rolling back. In

[57], TLS mechanisms are used for debugging data races in multi-threaded programs.

Program states are constructed, while the program is executing. Unlike traditional

TLS, only when the maximum epochs are reached or when the cache lines are full, the

commit is invoked. This is because, in traditional TLS systems, the commit is invoked

as soon as it can be guaranteed that the data dependencies are not violated. However,

for bug detection, the safe states should be kept alive as far as possible. Among the

threads, a partial order is constructed to determine the hierarchy for rolling back.

3.4 State of the art TLS systems

Existing TLS systems can be broadly classified into two categories (i) Hardware based

and (ii) Software based.

3.4.1 Hardware based

Hardware based approaches use dedicated hardware to support TLS whereas software

based approaches do not require any special support from the hardware. Typically,

due to the additional hardware, Hardware Transactional Memory (HTM) systems have

lower overhead and are less reliant on compiler based optimizations. Typically, they

also have better power and energy efficiency. However, the publicly available HTMs

are not fully evolved for general purpose programs.

Transactional Synchronization Extensions (TSE) [58] from Intel is an extension
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to the x86 instruction set which enables TLS support in hardware. Hardware Lock

Elision (HLE) allows easy conversion of lock based programs to transactional programs.

Restricted Transactional Memory (RTM) in TSE supports instructions to begin, end

or abort a transaction. In addition to this, an additional instruction is provided to

check if the processor is executing a transactional region.

IBM’s Blue Gene/Q chip [59] provides some hardware support for speculative states

in memory. If required, it is the responsibility of the software to save and restore the

state of the registers. Two modes of operations are supported. (i) Ordered mode: In

this mode the final value of multiple writes to the same location is determined by the

thread ordering. The younger threads can watch older threads; (ii) Unordered mode:

In this mode, access to any speculative region by multiple transactions is considered in-

valid if at least one of them is a write. Thus, the former supports speculative execution

while the latter supports transactional memory.

Rock [60] from SUN uses a checkpoint based architecture in-order to support spec-

ulation. In the Execute Ahead (EA) mode, a single core can run two application

threads. When the system encounters a long latency instruction (Cache miss, micro

DTLB miss etc.), it creates a check point and EA mode is activated. The destination

register of the long latency instruction is marked as not available (NA) and is sent to

the Delayed execution Queue (DQ). For any following instruction which has at least one

source operand tagged as NA, the corresponding destination register is also marked as

NA and the instruction is sent to DQ. The instructions which do not have NA tagged

source operands are executed, and the results are saved as a speculative copy in a

destination register and the NA tag on the destination register is cleared. When the

long latency instruction completes its operation, the system switches from EA phase

to replay phase, where the deferred instructions from DQ are read and executed. Si-

multaneous speculative threading (SST) offers a more aggressive form of speculation.

In contrast to EA, in SST, two instruction queues are dedicated to a single software

thread. When a long latency instruction is completed, one of them continues to re-
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ceive new instructions from the fetch unit, while the other replays instructions from

DQ. Thus, with SST, it is possible to start a new EA phase in parallel with the replay

phase.

In [61] J.G. Steffan et al. propose a TLS system which uses a cache invalida-

tion protocol to detect dependence violations. The cache lines are extended to add

two new states, speculative-exclusive (SpE) and speculative-shared (SpS). The specu-

lative modifications are not propagated to the rest of the memory hierarchy and the

cache lines that are speculatively loaded are tracked to detect any violations. If a

speculative cache line has to be replaced, it is treated as a violation and the epoch

is re-executed. Three coherence messages are also added: read-exclusive-speculative,

invalidation-speculative, and upgrade-request-speculative. They are appended with the

epoch number in order to determine the logical order between itself and the requester.

When the speculation fails, speculatively modified lines are invalidated, and specula-

tively loaded lines change their state to either exclusive or shared, depending on the

speculative counterpart.

3.4.2 Software based

Software based approaches do not require any special hardware support for thread level

speculation. They provide more flexibility than the hardware based approaches and are

easier to modify. They can be easily integrated to existing systems and even languages.

Software Transactional Memory (STM) systems have fewer intrinsic limitations when

compared to the hardware as there is no limit of hardware structures such as caches.

Certain hybrid approaches have also been proposed to take advantage of both software

and hardware together.

In [62], J. Renua et al. study Chip Multiprocessor (CMP) TLS systems with the

perspective of power and energy. The bulk overhead of energy consumption in a hard-

ware TLS system steams from thread squashing, having hardware structures in the

cache hierarchy for data versioning and dependence checking, extra traffic due to data
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versioning and dependence checking, and finally the additional dynamic instructions

induced by TLS. The proposed solution, POSH, is a compiler based approach, where

the compiler automatically generates TLS code from sequential integer applications.

POSH generates task modules from subroutines of any nesting level or from loop nests

of any depth. It has two task spawning modes (i) Out of order: Select all subroutines

and loops larger than a certain size, and (ii) In order: Heuristics about task size and

overheads are used to select only one task. Once the tasks are identified, the system

inserts spawn instructions and tries to hoist them up as far as possible without vio-

lating any data or control dependence. The framework also includes a profiler, which

tries to identify the tasks that are not beneficial due to thread squashing. When a task

is invalidated or committed, all the corresponding cache lines needs to be updated to

mark it as killed or committed. For the latter a tag walk is required which is expensive

in terms of energy. The proposed system only does a lazy tag walk, when the cache is

near full, thus saving energy. Typical TLS system sends many messages to check the

version ID, which itself consumes a lot of energy. In the proposed system, the cache

lines are extended with two bits, newest and oldest and are updated when the cache

line is loaded. Thus, if a write occurs on the newest line, there is no need to check

other cache lines for exposed reads. Similarly, when the processor wants to displace

a line with the oldest bit set, it has to check for older versions. A huge number of

thread squashing will obviously hurt power and performance. In order to limit the

number of squashing, each task is only allowed to restart a limited number of times

after squashing. After reaching the limit, the task is only allowed to execute when it

becomes non speculative. The system also proposes to use task aware pruning, which

eliminates potential tasks that are not beneficial by using profiling.

In [63], J.G. Steffan et al. propose a combined software and hardware based ap-

proach in a framework called STAMPede. The system divides the entire work into

small work units each associated with its own speculative thread. The relative order

among the work units is expressed by assigning a time stamp to each work unit. The
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works unit are committed in the order of original the sequential execution. In order

to fork a new thread, a lightweight spawn instruction is implemented. Rather than

making the software aware of the number of speculative contexts, the semantics of

the spawn instruction allows it to fail. When a spawn fails, the speculative thread

which tried to spawn, executes that particular work unit itself. Thus, the number of

speculative threads can be controlled so that all the resources can be consumed, while

preventing unmanageable explosion of the number of threads. Once the threads finish

their speculative execution, they are stalled till they receive a token from its predeces-

sor. Once the token is received, each thread commits or discards its operations and

passes the token to the next thread. A special portion of the stack is used to forward

and synchronize variables, especially the scalar variables so that some dependencies

can be avoided. The consumer threads are responsible for detecting any violation. In

order to support this, each producer reports the locations that it produces and the

consumers track all the speculatively consumed locations. The hardware mechanism

used is the same in [61].

In [64], Lawrence Rauchwerger et al. propose the concept of inspector/executor: a

runtime technique to parallelize loops at runtime. At its core, there are two processes:

(i) inspector and (ii) executor. The inspector monitors the code and collects the mem-

ory addresses that were accessed. From the accessed addresses, data dependencies are

computed. The inspector is also able to identify privatizable and reduction variables.

The scheduler then finds iteration wise dependence relations and constructs a Directed

Acyclic Graph (DAG) in which the vertices denote the statements and the edges de-

note the dependencies between the statements. A cost model determines whether the

loop parallelization is profitable. This estimate is based on the previous runs of the

program. An expected speedup is computed based on this. The inspector can be

automatically generated, if the source loop can be distributed into a loop computing

the addresses of the array and another loop which uses these addresses (i.e., when the

address computation and data computation are not contained in the same strongly
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connected component of the dependence graph). The data from the instrumentation

phase is used to determine whether it is profitable to perform runtime parallelization.

If possible and profitable, the scheduler then parallelize the code. The executor, then

executes the code.

Using transactional memory with TLS has been studied in the work of Joao Barreto

et al. [65]. Transactional Memory (TM) requires the programmer to explicitly fork the

program into multiple threads. Though not trivial, this in theory can attain higher

levels of parallelism. On the other hand, TLS systems may encounter multiple rollbacks

if the data dependencies severely restrict the number of tasks that can be parallelized.

The proposed method, TLSTM (STM + STLS), uses compile time analysis to break

each transaction into multi threaded STM programs, which will run in parallel. If there

are no conflicts, then the transaction can commit earlier.

A seminal work on speculative runtime parallelization of loops is the work of

Lawrence Rauchwerger et al. [66]. The presented system tries to parallelize loops

speculatively, by detecting if the loop has any cross iteration dependencies. It tries

to avoid the use of an inspector executor phase because the address computation of

an array may actually depend on the data computation. This would introduce a cycle

between the data and address computations, which is essentially a cycle between the

inspector and the executor. The loops are speculatively parallelized in a doall fash-

ion, while the runtime checks for any violation. If a violation is detected, the loop

is re-executed sequentially. The exceptions are treated similarly to mispredictions:

The parallel execution is abandoned, the execution flags are cleared, followed by the

rollback and re-execution. For each array whose dependencies cannot be resolved stat-

ically, special data structures called shadow arrays are created for indicating whether

a location was read or written, and whether the read of a memory location in an it-

eration was preceded by a write in the same iteration. By using shadow array, it can

be determined whether the loop can be executed in a doall manner and also whether

privatization is required. Reduction is also performed by looking at certain known pat-
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terns, but using runtime checks to confirm its validity. The work does not try to find

a schedule which is valid for all cross iteration dependencies. This work is extended in

[67] to add support for partial parallelism. The loop is transformed into a sequence of

partially parallel loop. The privatization condition is replaced by a copy-in condition.

Since no transformation other than parallelization is applied, in the case of a single

mis-speculation, the computation is valid till the beginning of the mis-speculated iter-

ation. The re-execution only needs to be started from the mis-speculated iteration. In

the case of multiple mis-predictions, it is valid till the iteration which is lexicographical

less than all the mis-speculated iterations. Hence, the results of the valid iterations are

committed and the mis-predicted parts are re-executed.

In [68, 69], Alexandra Jimborean et al. present a STL framework called VMAD (a

Virtual Machine for Advanced Dynamic Analysis of Programs). VMAD is a speculative

loop optimization framework based on the polyhedral model. The system consists of

two main modules, (i) A Static Module and (ii) A Runtime module. The static module

consists of a set LLVM passes and operates on the LLVM IR (Intermediate Repre-

sentation). The user marks the loop nests of interest using a pragma. For each such

marked loop nest, the static module generates a set of code versions, each supporting a

different set of transformations. An instrumented version of the code is also generated

which includes callbacks to the runtime system to communicate the addresses accessed

and the enclosing iterator values. At runtime, the outermost loop is split into chunks

and the instrumentation version is selected for profiling the first chunk. Based on the

dynamic code behaviour, the system selects a polyhedral transformation and instan-

tiates one of the statically generated code versions. During the run of the optimized

code, the verification mechanism ensures that the speculative model still holds. If the

speculation succeeds, the safe state is updated, and the execution continues for the rest

of the chunks. If the system detects any violation, a rollback is initiated and thus the

safe state is restored. This is followed by the execution of the original sequential code

and re-instrumentation. When compared to other TLS systems, VMAD is capable of
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performing advanced loop transformations by using the polyhedral model. Our frame-

work, APOLLO, can be considered as a successor of VMAD. One among the major

differences between APOLLO and VMAD is how the transformation is selected. In

VMAD, the user proposes a set of code transformations statically. At runtime, when

the dependencies are resolved, the first valid transformation from the user proposed list

is selected. This approach has two major downsides. The first is that the system is not

fully automatic: the user needs to be aware of the program structure to propose trans-

formations and should enlist the transformations in the order of potential performance.

The second downside is that, since the system is dynamic and is targeting dynamic

codes, the exact code behaviour can only be known at runtime; hence proposing a

set of transformations statically is hard and moreover, the number of transformations

that needs to be listed may itself be high. In addition to this, selecting the first valid

transformation strategy, is a sub optimal solution; there may exist another valid trans-

formations in the proposed list of transformations which offers better performance.

VMAD was designed as a prototype and thus has a lot of practical issues on both per-

formance and codes that can be handled. Though the system is designed to support

imperfect loop nest(s), in practice, due to the usage of distance vectors and other imple-

mentation issues, the number of code kernels that could be handled was limited. Our

system overcomes these limitations by using the Pluto compiler dynamically; from the

dependencies which are identified during instrumentation, the dependence polyhedron

is constructed, and is fed to Pluto to get a valid optimizing transformation. Thus, in

our system, the process is fully automatic. Our system also utilizes JIT (Just In Time

compilation) to fine tune the code versions attaining higher levels of performance. In

terms of code compatibility, APOLLO is also capable of handling non linear memory

accesses and loop bounds using a generic extension of the polyhedral model. Design

and implementation details on Apollo are presented in Chapter 4.

Speculation support in OpenMP has been studied in [70]. The work proposes a

software only TLS system to support parallel execution of codes that cannot be ana-
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Listing 3.3: Example to illustrate limitations of TLS system (seidel 2d)
f o r ( t = 0 ; t <= t s t e p s 1 ; t++)

f o r ( i = 1 ; i <= n 2 ; i++)
f o r ( j = 1 ; j <= n 2 ; j++)

A[ i ] [ j ] =
(A[ i 1 ] [ j 1 ] + A[ i 1 ] [ j ] + A[ i 1 ] [ j + 1 ]
+ A[ i ] [ j 1 ] + A[ i ] [ j ] + A[ i ] [ j + 1 ]
+ A[ i + 1 ] [ j 1 ] + A[ i + 1 ] [ j ] + A[ i + 1 ] [ j + 1 ] )
/ 9 . 0 ;

lyzed at compile time. The speculative region is marked by the user, using a special

syntax which enlists the speculative variables. The reads and writes inside the specula-

tive region are replaced by their corresponding speculative versions of loads and stores.

The speculative load obtains the most up-to-date value and the speculative store writes

the result in the version copy of the current processor and ensures that no subsequent

thread uses an outdated value. A ‘commit or discard’ function is called once the threads

have finished their execution and the data is committed or discarded accordingly. The

scheduling method of OpenMP is also changed as the original schedulers present in

OpenMP always assumes that the tasks will never fail. The new scheduler assigns a

new chunk to each free thread. If the tread succeeds it will receive a new chunk, if not,

the scheduler may assign the same thread to re-execute the failed chunk to improve

locality and cache utilization.

3.5 Limitations of existing TLS systems

The current TLS system’s performance is limited by the factors that are detailed in

the following sections.

3.5.1 Missed parallelization opportunities

TLS systems mainly try to execute loop nests in parallel by simply cutting the out-

ermost loop into slices and executing them in parallel. However, no transformation is
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considered to make a loop parallel. To illustrate this, consider the example in Listing

3.3. Due to the dependencies from reads and writes on array A, none of the loops can

be parallelized.

However, by applying loop skewing ((t, i, j) -> (t, t+i, 2t+i+j)), the inner loop can

be parallelized. In some cases, the inner loop may be trivially parallel, but the outer

loop is not parallel unless a transformation has been applied. Thus, the coarseness of

the selected parallelization may be sub optimal, resulting in poor performance. Using

a profiling mechanism, some existing systems can determine whether it is profitable to

parallelize. However, if parallelization is not profitable, the only option for them is to

run the sequential version. In addition to a transformation, dynamic codes may require

the TLS system to support changing the transformation on the fly. The program,

depending on the input data, may exhibit a different behaviour in different phases of

the execution, and thus different optimizing transformations may be required.

3.5.2 Data locality is not considered

Efficient utilization of cache memories is a key factor for performance, especially since

the gap between the processing power and memory speeds are increasing. Traditional

TLS systems are focused only on parallelization and data locality is ignored. Our sys-

tem considers both data locality and parallelization simultaneously by taking advantage

of polyhedral transformations.

3.5.3 Backup

Since TLS systems are by definition speculative, hence they should have a mechanism

to restore their state in case of a mis-speculation. This is done by backing up the

memory. The different types of backup mechanisms available are briefly described in

Section 3.1. The amount of backup required, and the backup mechanism itself, has

a huge impact on the scalability of the TLS system. Versioning at each iteration can

increase the memory requirement to exponential levels, which will have adverse effects
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on the cache and memory bus. The empirical evidence suggests that backing up each

memory location one by one is costlier than backing up a block of memory. However,

most TLS systems perform their backup when a write happens on the fly, i.e. backing

up one memory location at a time. The memory bus has to support the load of both

the actual computations and the backup, resulting in an increased cache pressure. Our

system uses the polyhedral model to overcome this limitation as well. By using the

access functions, the speculative write region can be estimated and backed-up at once.

More details on our system is given in Section 4.6.7. However, if the accesses do not

fit the polyhedral model, then live backup is an essential requirement. Our system is

able to handle this case by backing up the predicted write region as a block, and then

only backing up the non predicted regions on the fly, thus minimizing the number of

backup operations. More details on this extension are given in Section 5.8.

3.5.4 Verification

Verification is another important factor that affects scalability. Traditional verification

mechanisms require the threads to communicate with each other. This requires syn-

chronization and acts as a bottleneck. If no transformation other than parallelization

is applied, the verifications can be limited to thread boundaries with reduced impact

on performance. However, when a transformation is applied, each iteration needs to

be verified, which increases the centralization load, even to extents where the parallel

code is consequently almost running sequentially, if not worse. The typical structure

of a verification system associated with a TLS system is shown in Figure 3.4.

An issue associated with this model of verification is the amount of data that needs

to be communicated for verification. Like online backup, the huge data exchange re-

quired for verification is competing with the actual data access on the memory bus

which leads to processor stalls. A suitable solution to this verification problem is to

formulate the memory accesses into a model and then use this model for verification.

The constructed model should facilitate a verification mechanism which will only use
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TLS systems only try to parallelize loops. However, some codes may require some

code transformations to be performed to make the loop parallel. In addition to this,

most existing systems are not capable of performing advanced code transformations

which aim both at parallelism and data locality. Centralized verification is another

bottleneck. The problems can be solved by modeling the code behavior and then using

the model for code optimization and verification. The polyhedral model is one widely

used loop optimization model. The next chapter details our adaptation and usage

of the polyhedral model at runtime, for efficient speculative loop parallelization and

optimization, implemented in our Apollo framework.
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You can’t cross the sea merely by standing and

staring at the water.

Rabindranath Tagore 4
APOLLO

4.1 Introduction

Typical automatic optimizers perform static analysis of the code at compile time to

resolve the dependencies and to compute a transformation which will optimize the

code. However, not all codes can be statically analyzed. The presence of while loops,

pointers, indirect accesses, etc. limit the scope of static optimizers. When a statically

unresolvable memory access is encountered, these compilers have to opt for the conser-

vative strategy and this results in suboptimal code. Dynamic optimizers can overcome

this limitation by using dynamic analysis and runtime optimizations. They can moni-

tor the runtime behavior of the program and can make use of the dynamically resolved

values to apply a better code optimization. The drawback of this approach is the time

overhead introduced at runtime, due to code profiling, code analysis and code genera-

tion. For such a system to be efficient, in terms of performance, it should be able to

mask the overheads with the performance gained from optimization. Dynamic optimiz-
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ers often rely on speculative techniques for achieving maximum performance. Thread

Level Speculation (TLS) [55, 56, 57, 58, 59, 60, 61, 62, 63, 61, 64, 65, 66, 67, 69, 70]

can be used to handle dynamic codes speculatively. However, in the traditional TLS

systems, the lack of a prediction model limits the performance gains. A novel approach

would be to club the polyhedral model with thread level speculation. The polyhedral

model is traditionally only applied to static codes (SCoP) Our system, Apollo, combine

the TLS strategy and the polyhedral model to optimize dynamic codes.

4.2 Overview of Apollo

Apollo stand for Automatic speculative POLyhedral Loop Optimizer. It is an au-

tomatic and dynamic loop optimization framework based on the polyhedral model.

Apollo targets loop nests of arbitrary depth, possibly imperfect, and which cannot be

analyzed statically at compile time. Apollo’s core concept is built around the fact that,

even though statically not analyzable as being linear, many programs exhibit a linear

behavior at runtime, at least in some phases. We call these codes DCoP, as defined in

Chapter 2. The system targets to optimize these codes efficiently by using the poly-

hedral model on the fly. Currently, we only target ‘C’ and ‘C++’ codes. However, all

the processing is done in LLVM IR and hence, extending Apollo to any other language

is as simple as extending the corresponding LLVM language parser to recognize our

pragma, which is used to specify the target loop nests.

The global overview of Apollo’s architecture is shown in Figure 4.1. The working

of Apollo is summarized below.

The user marks the target loop nest(s) of interest with a pragma (#pragma apollo

dcop). The pragma attributed code is passed to the Apollo compiler (apollocc for ‘C’

programs and apollo++ for ‘C++’ programs). At compile-time, Apollo’s static phase:

(1) precisely analyses memory instructions that can be disambiguated at compile-time;

(2) generates an instrumented version to track the memory accesses that cannot be
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of consecutive outermost loop iterations; (2) builds a linear prediction model for the

loop bounds and memory accesses; (3) computes dependencies between these accesses;

(4) instantiates a code skeleton, and generates an optimized, parallel version of the

original sequential code, semantically correct with respect to the prediction model;

(5) during the execution of the multi-threaded code, each thread verifies independently

whether the prediction still holds. If not, a rollback is initiated and the system attempts

to build a new prediction model. These stages are depicted in the region labeled

“compile time” in Figure 4.1.

The rest of the chapter is organized as follows. Section 4.3 describes the basic

requirements to apply the polyhedral optimizations dynamically and speculatively.

Section 4.4 describes how Apollo identifies the loop nests to be optimized. The Section

4.5 contains detailed information on the static part of Apollo. This includes how the

target loop nest is extracted (Section 4.5.1), the static analysis phase (Section 4.5.2)

and the code versioning (Section 4.5.4). The runtime part is detailed in Section 4.6.

This includes the working of instrumentation (Section 4.6.1), interpolation of the linear

functions (Section 4.6.2), dependence analysis (Section 4.6.3 and 4.6.4) and the code

scheduling and the skeleton instantiation (Section 4.6.5). The chapter concludes with

the summary of Apollo.

Apollo divides the outermost loop into small slices called chunks. Each chunk

represents an execution unit of Apollo. Code instrumentation, optimization etc. is

applied on each chunk(see Section 4.5.4). The first chunk is always used to instrument

the code. The rest of the chunks may be assigned to run the optimized code versions,

the original code version, or the instrumented code version, depending on the program

behavior. The size of each chunk is determined by the runtime. Each chunk boundary

marks a consistent state of the program. If a speculatively executed chunk fails, the

re-execution needs to begin from the end of last committed chunk. The chunking

mechanism is depicted in 4.2.

Without the chunking system, whenever a mis-speculation occurs, the re-execution
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Thus, for dynamic optimizations using the polyhedral model, the system should

dynamically ensure that all the above conditions are met. In general static analysis

fails to handle codes, where indirect accesses, pointers or while loops are present. At

runtime, for the latter class of codes, even though many variables are resolved, it cannot

be guaranteed that the polyhedral model holds without executing the code, and hence

it requires speculative execution. A dynamic system thus should:

1. Construct affine functions for loop bounds and memory accesses. (See subsection

4.6.2)

2. Perform dependence analysis on the fly. (See subsection 4.6.3)

3. Propose a polyhedral transformation. (See subsection 4.6.5)

4. Generate the code representing the transformation. (See subsection 4.6.5)

5. Provide a mechanism to recover the program state in case of a mis-speculation

(See subsection 4.6.7)

6. In order to validate the speculative optimization ensure that the predicted code

behavior is the same as the observed code behavior. This can be done by verifying

the predicted linear functions. (See subsection 4.6.10)

In addition to the above, dynamic optimizers should handle scalar variables which

carry cross-iteration dependencies. Predicting the scalar values can help in breaking

some dependencies. To illustrate this consider a simple loop nest in Listing 4.1 and the

corresponding LLVM IR in Listing 4.2. Consider the update of ptr in line number 3

and 9 of Listing 4.1. The corresponding update, represented by a phi node (%ptr.011)

is highlighted by red color in Listing 4.2. %ptr.011 depends on %4 which is the load

instruction updating the value of ptr, inducing a dependence carried by the inner while

loop. However, if this scalar can be represented by a linear function parametrized

only by enclosing loop iterators and constants, this linear function can then be used to
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Listing 4.1: Example to illustrate the handling of scalars
1 f o r ( i = 0 ; i < s i z e ; i++)
2 {
3 s t r u c t NODE * ptr = head ;
4 i n t key = key_ l i s t [ i ] ;
5 whi l e ( pt r )
6 {
7 i f ( ptr >va l == key )
8 found [ i ]++;
9 ptr = ptr >next ;

10 }
11 }

initialize %ptr.011, instead of updating it from %4. The latter breaks the dependence

carried by the while loop. Another common case where Apollo can effectively break

the dependence by scalar prediction is the adaptation of the loop iterators. The update

of the ‘for loop’ iterator, i (%indvars.iv), is highlighted by blue color in Listing 4.2.

%indvars.iv depends on %indvars.iv.next, introducing a dependence carried by the

outermost loop. Just like the former, Apollo can effectively predict the value of this

scalar, thus breaking the dependence.

The details on how the scalar prediction works is presented in Section 4.6.2.

4.4 Identifying the target loop nest(s)

Apollo can identify the loop nests to optimize in two ways. The user can mark the

loop nests of interest in the source code with the following pragma ‘#pragma apollo

dcop’. The dcop stands for dynamic control part (emphasizing that we are targeting

dynamic codes). The Clang parser is modified to recognize our pragma and to add

metadata to the statements in the loop for later processing. If the user does not wish

to mark the loop nests, then Apollo can automatically identify all the loops and apply

the metadata to all loops.
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Listing 4.2: Example to illustrate the handling of scalars (LLVM IR)
f o r . body :
%indva r s . i v = phi i 6 4

[ 0 , %f o r . body . l r . ph ] , [ %indva r s . i v . next , %f o r . i n c ]
%ar ray idx = ge t e l ementp t r inbounds i 32 * %key_l i s t ,

i 6 4 %indva r s . i v
%1 = load i 32 * %array idx , a l i g n 4 , tbaa 1
br i 1 %tobool10 , l a b e l %f o r . inc , l a b e l %whi l e . body . l r . ph

wh i l e . body . l r . ph :
%ar ray idx3 = ge t e l ementp t r inbounds i 32 * %found ,

i 6 4 %indva r s . i v
br l a b e l %whi l e . body

wh i l e . body :
%ptr . 011 = phi %s t r u c t .NODE*

[%head , %whi l e . body . l r . ph ] , [ %4, %i f . end ]
%va l = ge t e l ementp t r inbounds %s t r u c t .NODE* %ptr . 0 11 ,

i 6 4 0 , i 3 2 0
%2 = load i 32 * %val , a l i g n 4 , tbaa 5
%cmp1 = icmp eq i 32 %2, %1
br i 1 %cmp1 , l a b e l %i f . then , l a b e l %i f . end

i f . then :
%3 = load i 32 * %array idx3 , a l i g n 4 , tbaa 1
%inc = add nsw i32 %3, 1
s t o r e i 3 2 %inc , i 3 2 * %array idx3 , a l i g n 4 , tbaa 1
br l a b e l %i f . end

i f . end :
%next = ge t e l ementp t r inbounds %s t r u c t .NODE* %ptr . 0 11 ,

i 6 4 0 , i 3 2 1
%4 = load %s t r u c t .NODE** %next , a l i g n 8 , tbaa 8
%toboo l = icmp eq %s t r u c t .NODE* %4, nu l l
br i 1 %toboo l , l a b e l %f o r . i n c . l o op ex i t , l a b e l %whi l e . body

f o r . i n c . l o o p e x i t :
br l a b e l %f o r . i n c

f o r . i n c :
%indva r s . i v . next = add nuw nsw i64 %indva r s . iv , 1
%l f t r . w ide iv = trunc i 64 %indva r s . i v to i 32
%ex i t cond = icmp eq i 32 %l f t r . wideiv , %0
br i 1 %exi tcond , l a b e l %f o r . end . l o op ex i t , l a b e l %f o r . body

f o r . end . l o o p e x i t :
br l a b e l %f o r . end

f o r . end :
r e t vo id
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4.5 Static module

The main objective of the static module is to prepare the user code for runtime specu-

lation. The static module is built as set of LLVM passes and operates on the LLVM IR

(LLVM Intermediate Representation). LLVM IR is a SSA (Single Static Assignment

form) based intermediate code representation. It is specially designed for type safety,

low level operations and flexibility. LLVM IR has 3 representations. First is the human

readable form, where the IR is represented in ‘text’ form. This form is particularly

useful for debugging. The second is ‘on-disk’ binary representation, where the LLVM

IR is dumped in binary form on the disk. This form is particularly useful to inspect

actions performed by each pass and can be used by the JIT compiler. The third form

is ‘in-memory’ representation, in which the bit code is maintained in the memory it-

self. This form is mainly used to pass the LLVM IR between the LLVM passes so that

the overhead of dumping to disk and loading can be avoided. The following sections

explain the functions of the static module in detail.

4.5.1 Extracting the loop nest

The static module begins its operations by extracting each loop nest marked by the

‘apollo dcop’ pragma into its own function. The target loops are identified by looking

for the Apollo specific metadata of the statements, which would have been appended by

the modified clang parser. Extracting each marked loop nest to its own function helps

in keeping tight control over the loops that will be optimized by Apollo. For example,

consider a target loop nest which is nested inside another loop. Assume the user does

not wish to optimize the outer loop (due to IO operations, or low iteration count etc.).

If we run LLVM optimization passes, without extracting the loop to a function, some

statements may be hoisted or moved from one loop to another. Since the target loop

nest is identified by checking for the metadata of the statements, hoisting a statement

annotated with Apollo metadata to a loop which was not selected for optimization,
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Listing 4.3: Example to illustrate Virtual iterators
wh i l e ( pt r )
{

neigh_ptr = ptr >ne ighbours ;
wh i l e ( neigh_ptr )
{

S1 ( vi , v j ) ;
S2 ( vi , v j ) ;
ne igh_ptr = neigh_ptr >next ;

}

pt r = ptr >next ;
}

would result in considering the non selected loop for optimization.

4.5.2 Static analysis

The static module runs the standard LLVM analysis passes such as Alias Analysis

(AA) and Scalar Evolution (scev) to collect the alias information and statically deter-

minable linear functions for memory accesses, scalars, and loop bounds. The collected

information is injected to the binary itself and is later used by the runtime. The static

information helps in reducing the required instrumentation and there by reduces the

runtime overhead. For example, if the memory access function of a statement is stat-

ically determinable, the runtime instrumentation for that statement can be avoided,

only the base address needs to be collected at runtime. It also helps in determin-

ing some program characteristics such as the total number of loops, the number of

statements inside each loop etc. which are later used by the runtime.

4.5.3 Virtual iterators

While loops and do while loops do not have the notion of an iterator in their syntax.

However, Apollo relies on the loop iterators for almost everything such as constructing

the linear functions, to compute dependencies, to compute transformation and also
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Listing 4.4: Example to illustrate Virtual iterators
f o r ( v i = 0 ; v i < UPPER_1 && ptr ; i++)
{

f o r ( v j = 0 ; v j < UPPER_2 && neigh_ptr ; v j++)
{

S1 ( vi , vj , ne igh_ptr ) ;
S2 ( vi , vj , ne igh_ptr ) ;
//may be r ep l a c ed by s c a l a r p r e d i c t i o n
neigh_ptr = neigh_ptr >next ;

}
//may be r ep l a c ed by s c a l a r p r e d i c t i o n
ptr=ptr >next ;

}

to perform verification. In order to overcome this, for each loop inside the loop nest,

an additional variable, called ‘virtual iterator’ is inserted. These virtual iterators act

as loop iterators, essentially converting all types of loops to ‘for loops’. The virtual

iterators always start at ‘0’ and are incremented by ‘1’, or in other words, they are

normalized. The reasoning about the access functions and hence dependencies are

based on these virtual iterators. As an example consider the code in Listing 4.3. The

code has two while loops. The ‘C’ version of the code skeleton, after Apollo has inserted

the virtual iterator is shown in Listing 4.4. Variables vi and vj represent the virtual

iterator for the outer loop and the inner loop respectively.

4.5.4 Code versioning and Skeletons

The most important function of the static module is to create different code versions

of the input code, called skeletons. Each skeleton supports a particular combination of

loop transformations. In addition to this, an instrumentation skeleton is built for profil-

ing the code. Skeletons can be seen as parametrized codes where different instantiation

of their parameters result in different code transformations.
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the empirical fact that in Apollo, embedding the LLVM IR gives better performance.

Each optimization skeleton has three functions: the first is to apply the transfor-

mation given by the runtime; the second is to perform the original computations on

the transformed iteration domain; and the third is to verify the speculation.

The general structure of the optimization skeleton is represented in the Figure 4.3.

They can be abstracted to three main parts as follows:

Scalar Initialization: Apollo tries to predict the value of each scalar. The first

section of the skeleton corresponds to the initialization of the scalar values from the

prediction. This is essentially required to break some dependencies, especially if the

code contains pointers.

Code Kernel: This section essentially contains the actual computations performed

by the original code. The code kernel is governed by virtual iterators. Since the

virtual iterators are iterating over the transformed space, the code kernel will also

be executed in the transformed space. All the memory accesses are performed based

on the virtual iterators. The scalars, for which the linear functions were constructed

during instrumentation, are replaced by the corresponding computations in the scalar

initialization section.

De-centralized verification: For each statically unresolvable memory access,

loop bound or scalar, a linear prediction function is built during the instrumentation

phase. The de-centralized verification, ensures that the program behavior observed

during the instrumentation holds during the optimized run. Thus, the verification sys-

tem ensures that the predicted linear functions are valid, which in turn ensures that

the transformation itself is valid. In order to attain better performance, the verifica-

tion should verify the linear functions without central communication. Inter thread

communication requires synchronization which induces huge overhead and will act as

a bottleneck. Apollo’s de-centralized verification system verifies the memory accesses,

scalars and loop bounds by checking the equality between the predicted function and

the actual value. If the verification succeeds, the execution continues, otherwise, the
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thread signals a rollback by setting the rollback flag.

Just like the transformation, the linear functions for verifying the memory accesses,

the loop bounds and the scalars are passed from the runtime to the skeletons. Generic

linear functions are placed when the skeletons are constructed. It is the coefficient of

these generic linear functions which are patched during the runtime.

In addition to the above mechanisms, each optimized skeleton contains specialized

mechanisms to communicate with the runtime (for eg. to get the loop bounds using

Fourier Motzkin elimination). Even though the skeletons contain mechanisms to exe-

cute the user code in the transformed space, they do not incorporate mechanisms to

parallelize the code. Parallelization is controlled and managed solely by the runtime

as explained in Section 4.6.8.

Skeletons representing the original code

This skeleton essentially represents the original code kernel without any code transfor-

mation. The only modification done to the original code is to allow chunked execution

i.e. the runtime is able to instruct this skeleton to run from a specific outermost loop

iteration to another specific outermost loop iteration (see section 4.6.10). Original

skeleton is mainly used to execute the mis-predicted regions, or in cases where the

polyhedral model itself could not be constructed. If the original skeleton is selected

for execution due to a rollback, it is followed by an instrumented skeleton, hoping to

capture another polyhedral phase of the program.

Instrumentation skeleton

The instrumentation skeleton is used for code profiling and is the first skeleton launched

by the runtime. The instrumentation skeleton is injected with special code snippets

for code profiling and communication with the runtime. The injected code serves to

report the memory addresses accessed, the scalar values and loop exit values along with

the enclosing loop virtual iterator values. Several techniques are applied to reduce the
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Listing 4.5: Example to illustrate instrumentation
1 whi l e ( pt r )
2 {
3 Node * ne ighbours = ptr >ne ighbours ;
4 whi l e ( ne ighbours )
5 {
6 neighbours >va lue += ptr >va lue ;
7 ne ighbours = neighbours >next ;
8 }
9 ptr = ptr >next ;

10 }

overhead of instrumentation. As prescribed in sub section 4.5.2, one of them is to use

static analysis, to resolve the memory access function, loop bound function or scalar

access functions; if found statically, these statements are not instrumented. One of the

most important overhead reduction mechanisms is to instrument by samples, i.e. to

instrument only parts of each loop rather than the full loop.

For better understanding, consider the example in Listing 4.5. We have to resolve

the read memory accesses in line numbers 3, 6, 7 and 9 along with the write memory

access on line number 6. Assume that the write accesses on line numbers 3, 7 and

9 are linear and thus are treated as scalars. In addition to the memory accesses, we

have to resolve the loop bound for the inner while loop. Note that the outer while loop

is chunked, and hence its not necessary to find its loop bound; however if statically

determinable, it can potentially avoid one rollback of the last chunk (see subsection

4.6.12). Each instrumented access reports to the runtime, the instrumented value along

with the enclosing virtual iterator values. A C style version of instrumentation for the

code in Listing 4.5 is shown in Listing 4.6. The actual instrumentation skeleton is in

LLVM IR form, which is cumbersome to read.

Only a sample of each loop is selected for profiling. The rest of the iterations

inside the instrumentation skeleton simply executes in the original order without any

profiling. The general structure of partial instrumentation of the loops is represented
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Listing 4.6: Example to illustrate instrumentation
f o r ( v i = chunk_lower ; v i != chunk_upper ; v i++) // loop id = 0
{

apollo_run_read_mem (
&ptr >neighbours , // memory addre s s
v i ) ; // e n c l o s i n g i t e r a t o r s ’

Node * ne ighbours = ptr >ne ighbours ;
v j = 0 ;
wh i l e ( ne ighbours ) // loop id = 1
{

apollo_run_read_mem (
&ptr >value , // memory addre s s
vi , v j ) ; // e n c l o s i n g i t e r a t o r s ’

apollo_run_write_mem (
&neighbours >value , // memory addre s s
vi , v j ) ; // e n c l o s i n g i t e r a t o r s ’

ne ighbours >va lue += ptr >va lue ;
apollo_run_read_mem (

&neighbours >next , // memory addre s s
vi , v j ) ; // e n c l o s i n g i t e r a t o r s ’

ne ighbours = neighbours >next ;
v j++;

}
apollo_run_reg_bound ( 1 , // loop id

v j , // loop e x i t va lue
v i ) ; // e n c l o s i n g i t e r a t o r s ’

apollo_run_read_mem (
&ptr >next , // memory addre s s
v i ) ; // e n c l o s i n g i t e r a t o r s ’

pt r = ptr >next ;
}
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space are then computed using Fourier Motzkin elimination. It is worth noting that

Apollo does not invoke the ‘C’ code generator of Pluto.

4.6.6 JIT

Apollo uses Just In Time (JIT) [1] compilation to further optimize the code. In addition

to the general benefits of using JIT compilation, JIT usage inside Apollo is particularly

important due the dynamic use of the polyhedral model. As explained earlier, the

optimizations skeletons have linear functions corresponding to the transformation, loop

bounds and verification functions. These values are constant per phase and are resolved

only when the skeletons are instantiated. Note that each skeleton has two versions:

binary and LLVM IR. The JIT operates on LLVM IR version of the skeleton. When

the JIT is invoked, these values are treated as immediate values, which helps to obtain

better performance by using constant folding, common sub expression limitation and

dead code elimination. The resulting assembly code from JIT is saved in a code cache

and is reused if the transformation is reused. In general, applying JIT gives performance

benefits and thus is enabled by default in Apollo. However, it can be disabled by

specifying some environment variables.

4.6.7 Backup and Safe execution point

The optimizing transformations are deduced from the speculative prediction model that

was built. To accommodate the possibility that the speculation may fail, the system

must preserve a valid intermediate execution state, called safe state. In the case of

mis-speculation, the safe state can be restored and the original code execution can

be restarted from this point. Without any safe intermediate state, the entire original

code execution would have to be restarted from the very beginning of the target loop-

nest, which would induce a prohibitive time overhead and also, would eliminate the

opportunity of handling different dynamic phases of the same program.

One way to construct a safe point would be to backup each memory location just
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Listing 4.7: Sample code to illustrate various runtime mechanisms
1 f o r ( i = 1 ; i < 1000 ; i++)
2 {
3 whi l e ( pt r )
4 {
5 ptr = ptr >next ;
6 compute_statments ( pt r ) ;
7 }
8 }

Each loop is exacted to its own function. This is shown in Listing 4.8. The loops

are then executed by calling the dispatcher, with the loop function, loop id, the loop

bounds and other parameters. As shown in Listing 4.9, the dispatcher manager checks if

the loop is parallel (line numbers 5-6). If parallel, the loop function is called, multiple

times in parallel, each invocation with different dispatcher chunk bounds, and thus

orchestrating parallelization (line numbers 17 - 24). Otherwise, the loop function is

simply invoked with the loop bounds, thus orchestrating sequential execution (line

numbers 29-29).

4.6.9 Optimized skeleton execution

The optimized skeleton is instantiated with the transformation and the linear functions

for memory accesses, loop bounds and scalar values. If the binary version of the skeleton

was selected, it patches the generic transformation functions and other linear functions.

The JIT-ed skeletons already have the transformation and linear functions patched. In

either case it is followed by execution of the code in the transformed space.

Listing 4.10 shows an abstracted view of optimized skeleton with the perspective

of initializing the loop bounds, and initializing the linear functions of binary skeletons.

The loop bounds are computed in Line 5 and 9. The original iterators are recovered

in Line number 12. In Line number 17 (and in 21), the scalar linear function for ptr

is instantiated with the parameters from the runtime. In Line numbers 18 and 19, the
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Listing 4.8: Abstracted view of optimized skeleton to illustrate parallelization
1 void apo l lo_loopnest_opt imized_ske l ton_1 ( i n t chunk_lb ,
2 i n t chunk_ub , . . . )
3 {
4 i n t loop_id = 1 ;
5 // c a l l i n g d i s p a t ch e r co r r e spond ing to the ’ f o r loop ’
6 dispatcher_manager (&loop_1 , chunk_lb , chunk_ub , . . . ) ;
7 }
8

9 void loop_1 ( i n t lb , i n t ub , . . . )
10 {
11 i n t i ;
12 i n t loop_id = 2 ;
13 f o r ( i = lb , i < ub ; i++)
14 {
15 // c a l l i n g d i s p a t ch e r co r r e spond ing
16 // to the ’ wh i l e loop ’
17 dispatcher_manager (&loop_2 , loop_id , lb , ub , . . . ) ;
18 }
19 }
20

21 void loop_2 ( i n t lb , i n t ub , . . . )
22 {
23 i n t i ;
24 f o r ( i = lb , i < ub ; i++)
25 {
26 ptr = ptr >next ;
27 compute_statments ( pt r ) ;
28 }
29 }

memory access linear function is instantiated with the parameters from the runtime.

4.6.10 Runtime verification

While the instantiated parallel skeleton runs inside a chunk, the runtime system must

continuously ensure the correctness of the transformed code that is run [3] by verifying

(1) the adherence of the prediction model to the memory locations that are actually

accessed and (2) that occurrences of any unpredicted memory accesses do not invalidate

the code transformation that has been applied, regarding the code semantics.
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Listing 4.9: Dispatcher Manager
1 apo l l o_run_dispatcher ( ( vo id *) l oop_funct ion ( int , int , . . . ) ,
2 i n t loop_id , i n t loop_lower , i n t loop_upper , . . . )
3 {
4

5 boo l l o op_ i s_pa r a l l e l =
6 t r a s f o rma t i on_p rop e r t i e s . i s_ l o op_pa r a l l e l ( loop_id ) ;
7

8 i f ( l o op_ i s_pa r a l l e l )
9 {

10 // dec id e number o f th r eads to use
11 num_threads = apollo_run_dispatcher_get_num_threads
12 ( loop_id , loop_lower , loop_upper ) ;
13 // c a l c u l a t e d i s p a t ch e r chunk_size
14 dispatcher_chunk_s ize = apo l lo_run_dispatcher_get_s ize
15 ( loop_id , loop_lower , loop_upper , num_threads ) ;
16

17 // run_in p a r a l l e l
18 #pragma omp p a r a l l e l f o r num_threads ( num_threads )
19 f o r ( i n t s l i c e_ l owe r = loop_lower ; s l i c e_ l owe r <
20 loop_upper ; s l i c e_ l owe r += dispatcher_chunk_s ize )
21 {
22 l oop_funct ion ( param , s l i c e_ l owe r , s l i c e_upper ,
23 loop_upper , . . . ) ;
24 }
25 }
26 e l s e
27 {
28 // run s e q u e n t i a l l y
29 l oop_funct ion ( loop_lower , loop_upper , . . . ) ;
30 }
31

32 }

The speculation verification system must be efficient to accommodate the fact that

the verification is potentially associated with each memory instruction, while at the

same time, it must be general enough to handle all the different types of required veri-

fications. The most common practice, especially in the field of thread level speculation,

is to use a centralized verification system [72, 73, 74]. Such a system does not scale as
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Listing 4.10: An abstracted view of optimized skeleton to illustrate transformation
1 void apo l l o_ loopne s t ( i n t chunk_lb , i n t chunk_ub ,
2 TX_TYPE TX_inv , LN_FN_TYPE l i n e a r_ fn . . . )
3 {
4 loop_id = 0 ;
5 FM_compute_bounds ( loop_id , &vi_lower , &vi_upper , . . . ) ;
6 f o r ( v i = vi_lower ; v i < vi_upper ; v i++)
7 {
8 loop_id = 1 ;
9 FM_compute_bounds ( loop_id , &vj_lower , &vj_upper , vi , . . . ) ;

10 f o r ( v j = vj_lower ; v j < vj_upper ; v j++)
11 {
12

⇔
[i, j] = TX_inv *

⇔
[vi, vj]T ;

13

14 auto ln_fn_ptr = l i n e a r_ fn . s c a l a r [ ptr_id ] ) ;
15 auto ln_fn_ptr_next = l i n e a r_ fn .mem[ ptr_next_id ] ) ;
16

17 *( ln_fn_ptr [ 0 ] * i + ln_fn_ptr [ 0 ] * i + ln_fn_ptr [ 0 ] ) =
18 *( ln_fn_ptr_next [ 0 ] * i + ln_fn_ptr_next [ 0 ] * j +
19 ln_fn_ptr_next [ 0 ] ) ;
20

21 compute_statments ( ln_fn_ptr [ 0 ] * i + ln_fn_ptr [ 0 ] * i
22 + ln_fn_ptr [ 0 ] ) ;
23 }
24 }
25 }

each memory access may be subject to verification, which implies a huge time overhead

induced by thread communication and synchronization.

Apollo verifies the linear functions for memory accesses, loop bounds and scalars,

by equating the predicted linear functions and the observed address (or value). For

better understanding consider the code in Listing 4.7. In order to illustrate verification

(other mechanisms are omitted for clarity), a ‘C’ version of the optimized skeleton is

shown in Listing 4.11.

In Listing 4.7 assume that the loop bound and the linear function corresponding to

the i loop iterator can be determined statically. We have to dynamically verify the loop

bound of the while loop in line number 3, the memory access function corresponding

108



CHAPTER 4. APOLLO

Listing 4.11: ‘C’ version of the verification system corresponding to Listing 4.7
1 f o r ( v i = 0 ; v i < 1000 ; v i++)
2 {
3 v j = 0 ;
4 whi l e ( v j < α4 * v i + β4 * v j + γ4 ) && ptr )
5 {
6 ptr = α1 * v i + β1 * v j + γ1 ;
7 i f (&ptr >next != α2 * v i + β2 * v j + γ2 )
8 {
9 s e t_ ro l l b a ck_ f l a g ( ) ;

10 r e tu rn ;
11 }
12 compute_statments ( pt r ) ;
13 ptr = ptr >next ;
14 vi_next = getnext_VI ( v i ) ;
15 vj_next = getnext_VI ( v j ) ;
16 i f ( p t r != α3 * vi_next + β3 * vj_next + γ3 )
17 {
18 s e t_ ro l l b a ck_ f l a g ( ) ;
19 r e tu rn ;
20 }
21 }
22 i f ( v j != α4 * v i + β4 * v j + γ4 )
23 {
24 s e t_ ro l l b a ck_ f l a g ( ) ;
25 r e tu rn ;
26 }
27 }

to ptr ⇔ next in line number 5 and the scalar value of ptr in line 5. The verification

function for the memory access and the loop bound are shown in line number 7 and

line number 22 in Listing 4.11. As illustrated, if the linear functions are satisfied, the

execution continues, otherwise, the rollback flag is set and the execution is squashed.

Unlike the memory accesses and the loop bounds, for the scalars, each iteration

verifies the next sequential iteration. Consider the scalar value of ptr in line 5 in

Listing 4.7 and the corresponding verification statement in line number 16 in Listing

4.11. Note that the iterator values used are corresponding to the next sequential

iteration.
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The state of a scalar variable at the end of one iteration is the same as the state

when it enters the next sequential loop iteration. The rational for our scalar verification

follows the same principle. The state of scalar variables in the iteration corresponding to

the very first sequential iteration of any chunk is trivially valid, as they are initialized

from a chunk boundary which is a consistent state. For the rest of iterations, the

previous iteration in the sequential order, verifies the current iteration, even if the

iterations are run in a different, and probably parallel, order.

4.6.11 Rollback

If any thread detects a mis-peculation a rollback flag is set. When all the threads finish

their executions, the rollback flag is checked to see if the speculation was successful

or not. If the speculation failed, the backup is restored to the safe point. Then the

original chunk is selected to run the mis-predicted chunk which is then followed by the

instrumentation skeleton. If the flag is not set, then the speculation succeeded and all

the backup is released.

4.6.12 Termination

Apollo continues to execute the code skeletons till the outermost loop bound is reached.

If the outermost loop bound is known at compile time, before launching each chunk,

the upper bound of the chunk is checked to see if the current chunk is the last chunk.

If the current chunk is not the last chunk, or if the loop bound is not known, then the

next chunk is speculatively launched with the same transformation assuming that the

program did not change its behavior. Eventually, the outermost loop bound is reached.

If the upper bound of the last chunk is not equal to the actual loop bound, a rollback

is triggered and the chunk is the re executed with the original skeleton.

Additionally, Apollo needs to update the state of ‘live out’ variables. The scalar

variables used inside the skeletons may be used outside the loop nest. These variables

are thus ‘live’ on loop nest exit. However, each skeleton has its own copy of scalars.
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Hence on exit, scalar values which are live, should be copied to the original scalars.

Once the outermost loop successfully completes the execution, Apollo cleans its data

structures and relinquishes the control back to the user code.

4.7 Results

Figure 4.8: Speedup of APOLLO, using 24 threads.

The experiments were run on a platform embedding two AMD Opteron 6172 pro-

cessors of 12 cores each, at 2.1 Ghz, running Linux 3.11.0-17-generic x86_64. The

reported measurements were obtained by running each benchmark five times, and tak-

ing their average. The speed-ups are reported against the best performing serial codes

among clang and gcc-compiled binaries with flag ‘-O3’.

The set of benchmarks has been built from a collection of benchmark suites, such

that the selected codes highlights Apollo’s capabilities. The benchmarks mri-q, sgemm

and stencil are from the Parboil benchmark suite [4], blackscholes from the Parsec

benchmark suite [5], backprop and needle from the Rodinia benchmark suite [6], dmat-

mat, djacit and pcg from the SPARK00 benchmark suite [7] and finally 2mm from the

Polyhedral benchmark suite polybench. The 2mm benchmark was rewritten to have

pointer based memory accesses, and hence is not analyzable by static tools.
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Figure 4.8 shows the speedup obtained using Apollo.

Figure 4.9: Overhead comparison

Figure 4.9 shows the various overheads associated with each Apollo module. Only

the major overheads are considered. The instrumentation time, refers to the time

taken for code profiling. It includes the time for running a small chunk, and the time

to register the memory accesses and loop bounds information to the runtime. The

solving access functions refers to the time spent on resolving the memory accesses and

loop bounds interpolating functions. The scheduling time refers to the time taken by

the scheduler, i.e., the time taken to instantiate the scheduler and the time taken by the

scheduler of Pluto to determine an optimal schedule. The FM time refers to the time

required for Fourier-Motzkin elimination. The Fourier-Motzkin elimination is used to

determine the loop bounds in the transformed iteration space. If the transformation

remains the same across contiguous chunks, the FM solver is only invoked once, but

the resulting functions are reused for each chunk. However, if the transformation is

changed, the FM solver is invoked again. Backup time refers to the time taken by the
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backup system to calculate the memory area that needs to be backed up and the time

for actual backup. The optimized skeleton refers to the time spent on actual parallel

execution, decentralized verification and live backup.

As Figure 4.9 shows, most of the execution time is spent in running the optimized

skeleton. The overheads on average is very less (around 4.35 %). In general, instru-

mentation and backup accounts for the major overheads. It is worth noting that the

instrumentation skeleton is slower not just due to code profiling, but also due to the

fact that this skeleton follows the original sequential schedule and thus no optimiza-

tions are applied yet. The latter accounts for the higher instrumentation time of the

benchmark backprop, where the optimization consists of parallelization and loop inter-

change. Even though instrumentation is costly, since it is rarely used, it can efficiently

be masked by the execution time of the optimized skeleton, especially if the number of

a rollbacks are less. If the execution time is less, the overheads are more pronounced.

This can be seen in the case of the benchmarks djacit and pcg which have low execution

times and thus the overheads are higher than the average (19.67 % for djacit and 9.05

% for pcg). In general, the overhead due to backup is unavoidable in Apollo. One

strategy which was tried to reduce the backup time was to verify all the accesses first

in an inspector-executor fashion. Once the entire chunk is verified then the computa-

tions are performed. Since the computation is performed only on verified accesses, the

backup is not required. However, due to data locality issues, this approach did not

yield much benefit. Also, the latter approach can only be applied to codes where the

verification can be split from the computation. Speedups could be further improved

by adding more transformations, especially tiling.

4.8 Summary

Apollo is an automatic loop optimizer which is based on Thread Level Speculation and

the Polyhedral model. By combining TLS with the Polyhedral model, codes exhibiting

dynamic polyhedral behavior, at least in phases, can take advantage of the advanced

113



4.8. SUMMARY

optimizing transformations offered by the polyhedral model. The overview of the whole

system is depicted in the Figure 4.1

Apollo consists of two main modules. The static module statically analyses the code

to determine the compile time dependencies, alias information and access functions. It

constructs a set of skeletons, each supporting a set of polyhedral transformations. The

skeletons are incomplete code snippets which needs to be filled with runtime parameters

for execution. The instrumentation skeleton has additional instructions injected to

profile the code. All the skeletons and static analysis information is included in the

final binary.

During the program run, the runtime first selects the instrumentation skeleton to

profile the code. By interpolating the instrumentation data, linear functions are built

for memory accesses, scalars and loop bounds. Then the dependencies are identified

and the dependence polyhedron is constructed. Pluto is then invoked to compute a

valid and optimizing transformation. From the transformation computed by Pluto,

the parallel loops are identified and based on the transformation properties, one of the

code optimization skeletons is selected. By using the linear functions, the write region

of the chunk which is going to be executed is computed, and that region is backed

up. The selected skeleton is then instantiated with transformation information and

verification information During the execution of the optimized skeleton, each thread

verifies its accesses in a de-centralized manner. In case of mis-speculation, the rollback

flag is set. If the speculation succeeds, the next chunk is launched with the same

transformation; only the loop bounds are updated using Fourier Motzkin elimination.

If the speculation does not succeed, a rollback is performed by restoring the backed up

data and the chunk is re-launched with the original skeleton, which is then followed

by the instrumentation skeleton. The whole process is repeated till the outermost loop

bound is reached. As it was shown in the result section, very good performance can

be achieved with our approach.

Even though Apollo can handle codes exhibiting a runtime polyhedral behavior, it
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is not able to handle codes when the memory accesses are not linear. Especially when

dynamic codes with indirect memory accesses or pointers are considered, it is seldom

the case that, all the accesses fits a linear model. The limitation in Apollo arises from

the fact that the polyhedral model is only able to handle affine codes. One possible

solution is not to use the polyhedral model and replace it with some other model.

However, to our knowledge, no other model is as effective as the polyhedral model in

proposing advanced code transformations. Hence, our solution consists of extending

the polyhedral model to handle non-linear codes and is made possible by our dynamic

framework. This approach is described in the next chapter.
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All birds find shelter during a rain. But eagle

avoids rain by flying above the clouds.

A. P. J. Abdul Kalam

Once we accept our limits, we go beyond them.

Albert Einstein

The only way to discover the limits of the possible

is to go beyond them into the impossible.

Arthur C. Clarke 5
Non affine Apollo

5.1 Introduction

Apollo can efficiently handle class of codes where the memory accesses and loop bounds

are linear; at least in phases. If the code behavior is compatible with the polyhedral

model, that particular region is subjected to polyhedral optimizations speculatively.

On the other hand, when the code behavior deviates from affine behavior, then that

particular region is executed using the original code. However, many codes exhibit

non linear behaviors, especially codes with indirect memory accesses, pointers etc.. In

addition to this, for a speculative system, such as Apollo, to be efficient in terms of

performance, the number of rollbacks should be small. The version of Apollo, described

in Chapter 4, would rollback whenever it encounters a non linear entity.

Indirect memory references and pointers are quite common in codes and hence,

ability to handle them is a prime challenge in automatic parallelization. Most of

the codes exhibit non-linear memory behavior or non-linear loop bounds. Traditional
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Thread-Level Speculation (TLS) systems which may handle such codes require a huge

amount of time for backing up memory, while also incurring a huge time overhead

from the centralized verification of the speculation. The lack of a prediction model

results in higher chances for wrong parallelization and rollback. Moreover, additional

loop transformations may be required to make the loop parallel and fast. Hence, a

prediction model that can accurately represent the program behavior is essential for

better performance.

However, even the presence of a single non-affine entity inside a program invali-

dates the use of the polyhedral model, i.e., no polyhedral code transformation shall be

performed nor parallelization of any loop. The impact of this limitation prevents a lot

of codes to be optimized, even when most of their memory accesses are linear. This

limitation arises because the dependence model cannot be constructed. When at least

one non-affine entity is present, the system should make conservative assumptions in

order to guarantee correctness. The most conservative approach is obviously to execute

the original code itself. In presence of a non-linear entity, most polyhedral optimizers

do so. In some very specific cases, some static checks can be encoded to still allow

some optimizations, however this is not enough in general [75].

The objective is to enable Apollo to optimize the non linear accesses and validate

them, so that it could handle more codes efficiently [9]. This chapter details the

challenges and our solutions to this problem. We show that a dynamic and speculative

strategy provides new opportunities to enlarge the scope of polyhedral optimizations.

The rest of the chapter is organized as follows. Section 5.2 gives the motivation for

handling non linear memory accesses using the polyhedral model. Section 5.3 describes

the class of non linear codes which is targeted by Apollo. The non linear dependence

polyhedron construction is detailed in section 5.4. Sections 5.5 and 5.6 detail the mod-

eling of non linear memory accesses and non linear loop bounds respectively. Section

5.7 details the scheduling. The modified safe point construction is detailed in Section

5.8. Speculation overhead management is detailed in Section 5.10. Related works and
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Listing 5.1: A simple non linear code
i n t A[N] , B[N] , C[N ] ;
i n i t_a r r ay (B, C) ;
f o r ( i = 0 ; i < N; i++)
{

A[ i ] = B[C[ i ] ] ;
}

their evaluation and comparison are detailed in Section 5.12. Section 5.13 shows the

performance gained using our approach.

5.2 Motivation

Non linear memory accesses introduce an interesting challenge to polyhedral optimiza-

tions or speculative optimizations in general. A lot of code kernels exhibit this behavior.

For example, consider a code which allocates a linked list of dynamic structures and

assume that each of the structures has a single dynamic field (say char* var_string).

Assume that, successive ‘malloc’ calls allocates contiguous memory locations. If all the

elements of the array have the same size, then accesses to these elements are dynam-

ically linear. However, more often than not, the dynamic field varies in size, and the

memory accesses are no more linear. It is worth noting that, if the initial assumption

of ‘malloc’ giving contiguous memory locations is broken, even if the dynamic field has

the same size across the linked list, the memory accesses are non linear.

For ease of understanding, consider a very simple code given in Listing 5.1. This

code is not compatible for polyhedral optimizations. The i loop can be parallelized

if array A do not overlap with either B or C. Since the definitions of the arrays are

available, alias analysis can successfully determine that these arrays do not overlap.

However, assuming that the values of array C are not linear, the memory access corre-

sponding to array B is not linear and hence not amendable for polyhedral optimization.

For a concrete and real world example, consider the loop kernel of the trmat code
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Listing 5.2: Example to illustrate non linear accesses (trmat - SPARK00)
1 f o r ( i = 1 ; i <= n ; i++ )
2 {
3 k1 = i a [ i ] ;
4 k2 = i a [ i + 1 ] 1 ;
5 f o r ( k = k1 ; k <= k2 ; k++ )
6 {
7 j = j a [ k ] ;
8 next = iao [ j ] ;
9 j ao [ next ] = i ;

10 i f ( job == 1 )
11 ao [ next ] = a [ k ] ;
12 i a o [ j ] = next + 1 ;
13 }
14 }

from the SPARK00 benchmark suite [7], listed in Listing 5.2. This kernel computes the

transpose of a sparse matrix. Since the matrix is sparse, the actual number of elements

in each column is unknown. Hence, before executing this kernel, the benchmark code

traverses the old index structure and populates the number of elements per column

into array ia (not shown in Listing 5.2). It is worth noting that this code cannot be

handled statically using the polyhedral model for several reasons:

• the for-loop in line number 5 has bounds defined by values k1 and k2, that may

change randomly during the execution of the loop nest, since these are elements

of array ia;

• a direct consequence is that the memory read ja[k] in line number 7 cannot be

disambiguated, as values of loop iterator k are unknown. The same holds for

access a[k] in line number 12;

• variable next holds the result of a single indirect access iao[j] in line 8, which

is actually iao[ja[k]]. At runtime, this latter memory access may be linear, or

quasi-linear, or of any other kind. Similarly, the memory writes in lines 10 and

12 are both using double indirect accesses and hence may also be of any kind:
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reference jao[next] is actually jao[iao[ja[k]]], and reference ao[next] is actually

ao[iao[ja[k]]].

To summarize, the code in Listing 5.2 has one loop with non-linear loop bounds,

and 6 memory accesses of unknown kinds; thus 7 unknown entities in total. It is worth

noting that no existing polyhedral static tools can handle this code. The presence

of just one unknown entity would force them to choose the conservative approach of

not optimizing this code. By using the techniques described in this chapter, we can

successfully optimize such codes, even if they exhibit non-linear memory behaviors and

loop trip counts.

A part from the obvious challenge of optimizing the codes with non linear accesses,

there is an additional challenge regarding the verification system. The de-centralized

verification system presented in Chapter 4 relies on predicting affine functions. In

addition to this, the initialization of scalar values also depends on affine functions.

However, since these functions may not be affine anymore, the whole mechanism has

to be redefined. The rest of the chapter shows our approach for tackling these problems.

5.3 Non-linear codes

Even if applied dynamically, the polyhedral model still limits the domain of codes that

can be handled to codes which exhibit a linear behavior, at least in some phases. This

single factor eliminates a large class of codes, as most of the codes have non-affine loop

bounds and non-affine memory accesses. However, in this chapter we show that the

applicability of the model can be extended by amending certain runtime policies to

accommodate these code classes, and thanks to the speculative and dynamic context

of application. Depending on the code kernel, the whole kernel or a part of it can be

subjected to the effective optimizations provided by the polyhedral model, even if it

does not exhibit a linear behavior.

DCoP defined in Section 2.4 corresponds to codes which exhibit polyhedral behavior
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Code behavior Pluto Apollo NL Apollo
Linear memory accesses, which are an affine func-
tion of loop iterators, with constants and unknown
loop parameters (e.g. a[i + N + c])

✔ ✔ ✔

Linear memory accesses, for which the loop itera-
tor coefficients depend on unknown loop parame-
ters (e.g. a[i * N + j])

✗ ✔ ✔

Linear loop bounds, which are affine functions of
loop iterators, constants and unknown loop param-
eters (e.g. j < i + N + c)

✔ ✔ ✔

Linear loop bounds, for which the loop iterator
coefficients depend on unknown loop parameters
(e.g. j < i * N)

✗ ✔ ✔

Statically unresolvable, dynamically linear mem-
ory accesses (e.g. a[b[i]], where b[i] is linear at
runtime)

✗ ✔ ✔

Statically unresolvable, dynamically linear mem-
ory accesses through pointers (e.g. *p, where p is
linear at runtime)

✗ ✔ ✔

Statically unresolvable, dynamically linear loop
bounds (e.g. j < b[i], where b[i] is linear at run-
time)

✗ ✔ ✔

Non-linear read memory accesses ✗ ✗ ✔

Non-linear write memory accesses ✗ ✗ ✔

Non linear loop bounds ✗ ✗ ✔

Support for function calls (including recursion) in-
side the loop nest

✗ ✗ ✔

Table 5.1: Comparison of different polyhedral code optimization approaches
‘a[]’ and ‘b[]’ represent arrays, ‘*p’ represents a memory access through a pointer, ‘i’ and ‘j’
are the loop iterators, ‘c’, a compile-time constant and ‘N’ an unknown compile-time loop

parameter.

dynamically. For the rest of the chapter, we re-define DCoP as follows. DCoP are

sections of code composed of sequence of loops, possibly imperfect, possibly with non

affine accesses, non affine conditionals and non affine loops, which are amendable to

polyhedral transformations.

This chapter emphasizes on techniques implemented in Apollo to handle such non-

linear behaviors. Table 5.1 shows a comparison between Pluto that applies the poly-

hedral model statically, Apollo, and the new Apollo with its extensions.

In order to handle non-affine entities, a general approach is to relax the dependence
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model. This can be done either by approximating the non-affine accesses with affine

functions, which can be computed by using linear regression; or by simply ignoring

these accesses while constructing the dependence polyhedron, and accounting for them

later during verification. If the model is relaxed, then it no more preserves the original

guarantee on the validity of the optimizing transformation. This calls for a runtime

validator, in addition to the runtime linear verification system. Whether to populate

the relaxed dependence model with regression equations, or to ignore the non-affine

accesses, depends on the quality of the regression hyperplanes: regarding how they

model the non-affine accesses. The fitness of the regression hyperplanes regarding the

original points can be expressed in terms of correlation coefficients [10]. The correlation

coefficient essentially measures the fitness of the predicted hyperplane and the observed

points. If the correlation coefficient is high, then including the regression equation in

the dependence model should provide a parallel schedule which optimizes the non-

linear accesses conjointly to the linear accesses. On the other hand, if the regression

hyperplane has a low correlation coefficient, adding it to the dependence model may

not provide any benefit with respect to optimizations; it could even be harmful to do

so. In this latter case, it is better to optimize the schedule by initially ignoring the

associated memory accesses. Additional runtime tests must then be performed in order

to ensure subsequently the validity of the optimizing transformation.

In the following, we give a detailed description on how loops with non-affine memory

accesses and loop bounds are handled for speculative optimization and parallelization.

5.4 Constructing the dependence polyhedron

The instrumentation process is similar to the one described in Section 4.6.4. During

the actual execution, a small slice of each loop of the target loop nest is profiled.

The collected profile consists of the memory addresses that are accessed – possibly

through successive function calls which may be recursive –, the iteration counts and the

enclosing loop iterators. By analyzing the loop trip count of each loop, and subjecting
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Figure 5.1: A graphical representation of affine, nearly-affine and non-affine behaviors.

this information to linear interpolation, and if necessary, to linear regression, we can

obtain the linear functions characterizing the loop bounds. Similarly, by analyzing the

memory access information, for each memory instruction, we can interpolate the linear

functions characterizing the sequence of memory addresses that are accessed. The

memory accesses occurring inside a function, possibly recursive and called from within

the loop nest, are handled similarly to other memory accesses, although only the non

recursive iterators are considered while constructing the linear functions. Essentially,

all the memory accesses occurring inside a recursive function are treated as non-linear

memory accesses.

The fitness between the observed values of accessed memory addresses (or loop trip

counts) is used to classify the accesses as either affine, nearly-affine or non-affine. A
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memory access (or loop bound) is classified as:

• affine, if all the observations fall perfectly into a linear equation and all the

coefficients of the linear functions are integers;

• nearly-affine, if most of the observations stay “close” to a linear equation;

• non-affine, if the observations do not fall into the other two categories.

A 2-dimensional graphical representation of these three cases is depicted in Figure 5.1.

Accesses which can be completely modeled using linear equations couple perfectly with

the polyhedral model. However, since the dependencies are calculated on the basis of

a small instrumented sample, a runtime verification system is still required to validate

the conformance of the prediction model to the rest of the code execution. The details

of this verification system are presented in the previous chapter.

The nearly-affine behaviors are common in C/C++ programs which use malloc

for allocating memory regions. Accesses to malloc-ed regions may not be affine due

to various reasons such as unavailability of contiguous space, differences between the

access pattern and the allocation pattern, variation of the size for each allocation

request either due to the program logic or due to security reasons: malloc may actually

allocate more size than requested, so that buffer zones can be created, which greatly

helps in avoiding buffer overflow attacks [76, 77]. Non-affine accesses are usually the

result of indirect accesses, or of accesses through pointers where the program logic

dictates accesses to memory locations in a random fashion.

As opposed to affine accesses, neither nearly-affine nor non-affine accesses can be

naturally handled by the polyhedral model. In order to extend the scope of the model,

the regression information must be expressed in a way that suits the model. The choice

of how memory accesses are characterized is based on the correlation coefficients of the

regression hyperplanes. We distinguish two cases that are explained below.
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5.5 Non-linear memory accesses modeling

Non-linear memory accesses refer to the memory accesses (read or write) whose in-

stances do not correspond to any affine function. Hence, a regression function is com-

puted for such memory statement and the associated correlation coefficient is computed.

Based on its value, the non-linear memory access is handled as follows.

The correlation coefficient is between 0.9 and 1.

A correlation coefficient between 0.9 and 1 indicates a good fit of the observed values

with the regression equation and thus suggests that it approximates well the actual

memory accesses. Hence, it is reasonable to include this regression equation into the

dependence model, the rationale being that the polyhedral optimizer (scheduler) gives

a transformation which optimizes the non-affine accesses conjointly with the affine

accesses, thus optimizing data locality and parallelism for the affine and non-affine

accesses. The value 0.9 was selected as an optimal value due to the following reasons.

If a higher value is selected, it will put more restrictions on the amount of non-linearity.

With a lower value, the amount of required backup will increase accordingly, resulting

in less performance gains. Thus, 0.9 was selected since it provides a good balance that

was observed through numerous experiments. It is worth noting that the correlation

coefficient also represents the confidence of the linear function against the memory

accesses. Thus, if the value is lower, it is better to treat the corresponding access using

the range mechanism explained below.

Each regression hyperplane is computed by multivariate linear regression using

the least-squares estimation [10]. However, the presence of outlier points can sway

the regression hyperplane away from the majority of the access points. In-order to

avoid this, we build the regression hyperplane in two steps: from an initial computed

regression equation, we compute the distance of each point to the resulting regression

hyperplane. Then, a set of points which are close to the median point is selected and the

regression hyperplane is recomputed by just considering these points. When compared
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to the original regression hyperplane, the newly constructed regression hyperplane

provides a better fit to the memory accesses as the outliers were eliminated while

computing it.

The polyhedral model requires the dependence constraints to be expressed in in-

teger Z-domains, whereas the regression hyperplanes lie in real R-domains. For each

regression hyperplane, the closest regression hyperplane in the Z-domain is constructed

by approximating the coefficients along each dimension to their closest integers. This

approximation does not alter much the accuracy since the polyhedral model only con-

siders the integer points that lie in the convex hull defined by the constraints.

The regression hyperplane should then be encoded into the dependence polyhe-

dron. If encoded directly, like a linear function, the polyhedral scheduler only considers

the points falling exactly on the regression hyperplane when computing the solution.

Therefore, using only the regression equations is not sufficient as it ignores the points

falling near the hyperplane. Hence, for each nearly-affine access, two hyperplanes that

are parallel to the regression hyperplane are constructed by adding positive and nega-

tive offsets to the original hyperplane. Informally one hyperplane is “above” and the

other is “below” the original regression hyperplane, both forming a tube around the

regression hyperplane (see the lower left of Figure 5.1). The distance between the

tubular hyperplanes (offset) is selected such that all the refined points fall inside the

tube. This tube forming a convex hull of the observed points is then encoded into the

dependence model.

The correlation is less than 0.9.

If the correlation coefficient is less than 0.9, then the memory accesses are charac-

terized as non-affine and excluded from the dependence representation using regression.

For each corresponding memory instruction, the accesses are then approximated using

the range of the minimum and maximum values of the addresses that were accessed

during instrumentation. Notice that this computed range may be very large. For ex-
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ample, consider a case in which the first loop iteration accesses the first element of a

large array and the next one accesses the last element. In this case, it is better not to

perform a range-based backup as the access is very sparse and the range size is very

large (in this example, the whole array should be backed up). Apollo only preforms

range-based backup if the backup size is less than three times the expected backup size.

The expected backup size is computed from the number of statement instances, which

in turn can be deduced using the enclosing loop bounds. If the range-based backup

is not performed, then all the accesses of the corresponding statement will be treated

using a “live backup” mechanism (see subsection 5.8).

Overlaps between such ranges, the regression tubes and the linear functions, are

tested to know whether a dependence may occur, in which case no code transformation

will be performed. This eager early detection of possible dependencies saves the time

spent in backing up data, executing a code with an invalid transformation and finally

rolling back.

The inclusion of nearly-affine and non-affine accesses relaxes the polyhedral model,

but appends the challenge of handling additional verification of the memory accesses

occurring outside the predicted regions. This is explained in subsection 5.9.

5.6 Non-linear loop bounds modeling

In the presence of non-linear loop bounds, the range of memory addresses that will be

accessed cannot be determined even with dynamic instrumentation. Thus, we cannot

build the dependence polyhedron. This is even true when all the memory accesses are

linear.

To illustrate this issue, consider the code in Listing 5.3. The non-linear inner j-loop

has a bound based on the value of C[i]. At runtime, if the successive values of C[i]

can be expressed as an affine function of iterator i and loop parameter N, then no

extension is required for Apollo to handle this loop. Otherwise, by applying regression

techniques and measuring the correlation coefficient, we can predict the values and
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Listing 5.3: A sample code to illustrate the limitations imposed on polyhedral model
by non-linear loop bounds
f unc t i on fun_nl_loop ( int *A, int *B, int *C)
{

for ( int i = 0 ; i < N; i++){
A[ i ] = i ;

for ( int j =0; j < C[ i ] ; j++){
B[ i ] += i * j ;

}
}

}

build the model as explained below. It is worth noting that even though the memory

access functions for all three arrays A, B, and C are linear, it is unknown at compile-

time whether their address ranges overlap, or in other words, whether they alias (for

example, if the function is invoked with (array1, array2, array1) as arguments, then

pointers A and C will alias). Compilers such as Pluto cannot handle this case due

to the presence of non-linear loop bounds. It is also worth noting that, even in the

absence of non-linear loop bounds, Pluto will assume that arrays A, B, and C do not

alias, since it is the programmer’s responsibility to ensure so; whereas in Apollo, this

is automatically verified.

Modeling a loop in the polyhedral model requires:

1. A linear function for the lower bound of a loop, parametrized by its outer loop

iterators, loop parameter and constants;

2. A linear function for the loop iterator, parametrized by its outer loop iterators,

loop parameter and constants;

3. A linear function for the upper bound of a loop, parametrized by its outer loop

iterators, loop parameter and constants.

Items (1), (2) and (3) are determined simultaneously by instrumenting the scalar

values characterizing the loop iterator. (4) is determined by instrumenting the loop trip
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count. For a given vector representing the values of the enclosing loop iterators, (1) and

(2) are used to compute the current value of the iterator of the loop in consideration

and (4) is used to compute until when the loop should iterate. The transformation

framework relies on these linear functions to define the domain of the statements and

the exact instances of the statements that are scanned.

For simplicity, consider only loop parallelization as being the optimizing transfor-

mation. Also assume that (1), (2) and (3) are at least dynamically linear, i.e., all the

linear functions characterizing the loop, except the upper bound, were obtained by

interpolation. Direct usage of a regression hyperplane may lead to an under or over

approximated domain. This implies that a loop with non-linear bounds cannot be par-

allelized directly. One approach to solve this issue would be to backup the addresses

accessed by each loop just prior to its execution (note that Apollo does not do this.

It only backups regions based on the outermost loop, before the optimized skeleton

is invoked); parallelize code in chunks; execute the chunks one after the other, until

a rollback occurs. Then, restore the state and execute the last chunk sequentially.

The immediate problem with this approach is the backup. Since each loop backs up

data, it would increase the storage requirement exponentially, and there may be a lot

of overlaps among backed up data. Moreover, the control of the loop would be very

complex, as well as the mechanism to restore memory.

We go one step further to enable parallelization of such loops. By computing a

minimal hyperplane for the loop upper bounds, we expect all the loops to execute

at least until the point where the iterator meets this hyperplane. If the minimal

hyperplane holds its validity during execution, the non-linear loop can be parallelized

until this minimal hyperplane. Note that, the parallelization should still be legal, i.e.,

the dependencies should not prevent parallelization. The rest of the iterations of the

non-linear loop should be executed sequentially until it reaches the original loop exit

condition. The advantage of this approach is that we are able to parallelize and optimize

the predicted part, with a very low time overhead. However, this does not guarantee the
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Listing 5.4: A sample code to illustrate the limitations imposed by non-linear lower
loop bound
f unc t i on fun_nl_loop ( int *A, int *B, int *C)
{

for ( int i = 0 ; i < N; i++){
A[ i ] = i ; //S_1
for ( int j = B[ i ] ; j < N; j++){
A[ j ] += i * j ; //S_2

}
}

}

program correctness as the sequential part, which was not predicted, could introduce

an unseen dependence, thus violating the dependence prediction model. The memory

accesses occurring in the unpredicted space are therefore considered to be equivalent

to non-linear memory accesses. As explained in the previous subsection, Apollo’s non-

linear memory access handling system can detect any violation on unpredicted memory

regions and thus guarantees the program validity. If during the actual execution, the

loop runs iterations that are not predicted using the minimum hyperplane, while the

loop is marked for parallel execution, the system performs a rollback.

A similar approach to that of the upper bound can be followed for the lower bound.

By using the current instance of the enclosing loop iterators and using regression,

one can predict the lower loop bound. To handle non-linearity, the loop can be run

sequentially using the actual values until the predicted lower bound, and then continue

in parallel manner. Both the upper and lower bounds non-linear techniques can be

combined to produce three waves of computation, a head sequential part, a middle

–core– parallel part and a tail sequential part. Handling any transformation such as

loop interchange, tiling, etc. follows the same principles.

All the loop iterators appear as scalars in the code. The scalar prediction is thus

responsible for the initialization of these values. If the loop lower bound cannot be

predicted, the initialization of these values is impossible. Thus, these loops cannot be
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optimized using the polyhedral model. This is illustrated by the code example in listing

5.4. The lower bound of the j-loop is determined by B[i]. If the successive values of

B[i] do not follow a linear function, there is no way to initialize j at each i-iteration.

The non-linear lower bound for loop j can be treated as a memory address and a

related dependence can be added to the model. Effectively, for each i-loop iteration,

the lower bound of the j-loop is loaded, not predicted. The immediate consequence is

that many optimizations are prevented. Hence, we choose another approach. Based on

the correlation coefficient of the loop trip counts, the loops are processed as follows.

The correlation coefficient is between 0.9 and 1.

A high value of the correlation coefficient indicates that the loop bounds tend to

swing around a hyperplane. Unlike the regression hyperplanes of memory accesses,

the loop bounds hyperplane cannot be used directly. The regression hyperplane, by

construction, minimizes the average square distance between the observed points. It

implies that there could be points below and/or above the hyperplane. Consider the

lower bound of a loop. Following the principles of construction of the lower bound

regression hyperplane, there may be bounds which are actually above the computed

hyperplane. If the loop is parallelized, due to over approximation, the generated code

could scan points outside the actual domain. A similar situation occurs when the

actual loop bounds are greater than the predicted hyperplane, as this indicates that

the generated code could skip some iterations which should be present in the domain.

In order to handle this, for the lower bounding hyperplane, the hyperplane is shifted

up by the width of the tube. The rationale being that, the shifted hyperplane acts as

an expected minimum. Note that this still does not ensure that all the points are in

the domain.

The correlation is less than 0.9.

As with memory access regression hyperplanes, a correlation coefficient lower than

0.9 indicates that the regression is a poor fit for the observed loop bounds. However,
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some optimizing transformations can still be applied if a single value representing the

lower bound can be found out. Hence, a single value (rather than a hyperplane),

indicating the predicted lower bound is selected from the observations.

Note that, unlike some existing schemes which handles a very simple outermost

while loop [78, 79, 80, 81], our system is capable of handling complex while loops

appearing anywhere in the loop-nest. Also, in most of the existing schemes, only the

upper limit is assumed to be unknown, whereas our system allows either upper bounds

or lower bounds, or even both of them, to be unknown. There is also an additional

challenge of handling non-linear memory accesses along with non-linear loop bounds.

If the non-linear loop bound cannot be characterized by regression, and a minimal

or maximal hyperplane cannot be constructed, or if after constructing the cutting

hyperplanes the optimized part will only have a very low number of iterations, then

the whole loop is subsumed to a statement such that the scheduler sees the whole loop

as a single statement and processes accordingly.

5.7 Scheduling and skeleton selection

The scheduling and skeleton selection is similar to the one described in Section 4.6.5.

Once the dependence polyhedron has been constructed as mentioned in the above

sections, Pluto is used for scheduling. Traditionally, Pluto takes as input a ‘C’ language-

based code and produces a ‘C’ language-based output. However, in Apollo, Pluto is

used as a library. Apollo directly encodes the dependence information into Pluto’s

internal structure and invokes its scheduler. The scheduler outputs the optimized

schedule (in a matrix format). Note that, the Pluto’s ‘C’ code generator (CLOOG) is

not invoked by Apollo. In addition to the transformation, Apollo also identifies the

loops which can be parallelized and uses this information to parallelize these loops.

Based on the transformation properties, Apollo selects an instantiates an appropriate

code skeleton.
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5.8 Backup and Safe execution point

The backup for the affine write accesses are handled in a similar manner as explained

in Section 4.6.7.

For non-affine write accesses, there is no information in the model enabling pre-

diction of the memory regions that will be read or written during the run of the next

chunk. Hence, a “live” backup is performed during the speculative parallel execution

of the next chunk, where each memory location is backed up just before being updated.

For nearly-affine write accesses, all the memory locations occurring inside the regres-

sion tube are backed-up before launching the chunk. However, there still could be

some outlier accesses occurring outside the predicting regression tubes, which however

do not corrupt the semantics of the transformed loop nest. Since such accesses can

only be known during the chunk execution, these accesses are handled similarly to the

non-affine case: they are backed up “live” during the chunk execution. As the live

backup is performed by each thread, in a distributed manner, one thread is not aware

of the locations which may have been already backed up by another thread. Neverthe-

less, by using the prediction model, the amount of live backup is significantly reduced

and therefore saves memory and execution time.

For loops with non-linear bounds, the backup is computed based on the predicted

minimum bound hyperplane and maximal bound hyperplane. Every location that may

be updated between the hyperplanes is backed-up before launching the chunk and

the ones lying outside are backed-up live by each thread, similarly to non-affine write

accesses.

Typical runtime speculation systems back up the data on the fly (live backup).

Our experiments show that, individually backing up memory locations is costly. This

is shown in Figure 5.2 where different backup strategies are compared. An image

processing kernel is studied to see the effect of different backup strategies while varying

the number of non-linear writes. Each non-linear write corresponds to a write operation
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5.9 Runtime verification

The affine memory accesses, scalars and loop bounds are verified in a similar manner as

described in Section 4.6.10. For the affine accesses the centralized communication in not

required. However, centralized verification, eager or lazy, cannot be avoided in all cases,

especially when there are memory accesses which cannot be predicted. Nevertheless,

the volume and frequency of communication to the central verification system can be

greatly minimized by using an approximate prediction model. In Apollo, each thread

verifies all its memory accesses in a decentralized manner, while only the unpredicted

accesses whose impact cannot be disambiguated using the prediction model, and which

potentially occurs rarely, are verified using a centralized mechanism. Moreover, notice

that the centralized verification inside Apollo only occurs at the frontiers between

consecutive chunks. A comparison between centralized and decentralized verification

approaches within Apollo is provided in Section 5.13

The conformity of the predicted memory accesses regarding the predicted linear

functions, and the compliance of the unpredicted accesses to the speculative polyhedral

model can only be verified during the actual execution of the optimized code. Each

thread verifies the validity of each of its memory accesses against all the predicted

memory accesses, and thus performs an eager and decentralized verification. Depending

on the accuracy of the model, the following verification operations are performed:

• If the memory instruction has been modeled exactly by an affine function: the

thread checks the equality between the actual accessed address and the one pre-

dicted by instantiating the predicting affine functions. In case of mis-prediction,

a potential risk of unpredicted dependence is detected;

• If the memory instruction has been modeled by a regression tube (or by a range

of addresses): the thread verifies that the actual accessed address lies inside the

tube (or inside the range). If not, the address is compared to the addresses that
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are predicted to be touched by all the other memory instructions during the

execution of the current chunk. If no risk of interaction has been detected, the

address is registered in a local table in order to be examined after the current

chunk completion using the centralized verification. Otherwise, a potential risk

of unpredicted dependence is detected.

If there is any potential risk of unpredicted dependence, a rollback is triggered by the

faulty thread. Otherwise, at the end of the chunk execution, a cross thread verification

is performed to ensure cross thread consistency by comparing the addresses that were

registered in the respective local tables. The chances of this lazy verification to fail is

very small, as the eager verifications performed by each thread detect, in most cases,

any potential risk much earlier. However, if it fails, a rollback is triggered.

Detecting the possibility of a rollback as early as possible is crucial for performance.

For the dynamically linear memory accesses and bounds, as soon as the interpolating

linear functions have been constructed, the rest of the instrumented points are used for

checking their correctness. If this fails, it is inferred that the program is not amenable to

any transformation, at-least in the current phase. For the nearly-affine linear functions,

the same principles are followed. For the non-affine accesses and bounds, a simple and

a fast check is done to verify if these accesses may interfere with any of the speculated

affine or nearly-affine accesses. Thus, this checking decreases the probability of rollback.

Note that these checks are done before even launching any parallel chunk, thus saving

the time overhead of memory backup, speculative execution and rollback.

5.10 Speculation overhead management

Apollo evaluates the benefit of speculation by itself during the program run and thus

is able to predict whether the speculation will provide any performance improvement.

This self-check is very important when the number of speculative chunks that succeed

is small, in which case the system should appropriately select the original code or
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the optimized one based on the predicted benefit. When a speculative chunk fails, it

induces the following overheads: (i) The cost of backup, (ii) the time taken for running

the (invalid) optimized skeleton, (iii) the time to rollback and (iv) the time required

to run the original code to overcome the faulty chunk. In order to analyze the cost

of rollbacks, consider Figure 5.3 which profiles an image processing code kernel where

the number of non-linear write accesses is controlled. One non-linear write represents

a write to one of the three RGB components of the image. In addition to the number

of non-linear writes, the number of rollbacks are also controlled by forcing Apollo to

rollback.
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Figure 5.3: Overhead of mis-speculation
Each code version is name αR_βNLW where α represents the number of rollbacks and β represents the number of

non-linear writes

In the figure, only the time lost by mis-speculation is measured. The backup time

represents the time required to compute the backup region, as well as the cost of

memory allocation and data copying. It also includes the cost of live backup. The par-

allel execution time represents the time spent by running the optimized skeleton. The

rollback represents the time required to restore memory, while the original execution
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time represents the time taken by the original skeleton to re-run the mis-speculated

chunk. Note that since the figure only represents the time lost in the case of a mis-

speculation, the values are zero when there is no mis-speculation. As expected, the

total cost of the rollbacks approximately follows a linear relationship with that of a

single rollback. Furthermore, the cost obviously increases as the number of non-linear

writes are increased.

It is obvious that performance degradation occurs when the system encounters

multiple rollbacks. In Apollo, if the speculation fails consecutively for the first three

chunks, the rest of the execution completes using the original code. However, if the

system encounters a mix of speculation successes and failures, it predicts the possible

performance gain of a single chunk and following this prediction, the original or parallel

skeleton is selected. This is done as follows. When a speculative chunk fails, Apollo

measures the individual time for backup, parallel execution, rollback and original exe-

cution. Note that even though the computation was wrong (as speculation failed), the

parallel execution time approximately remains the same as that of a correct one. In

order to obtain an interesting speedup, the ratio

original sequential execution time(TO)

apollo optimized execution time(TA)

should be greater than 1.

Let f denote the number of chunks that failed and p denote the number of chunks

that succeeded. Let F denote the total time required for executing and recovering a

failed chunk, P denote the time required for executing a parallel chunk along with the

associated backup, O denote the execution time of an original chunk, and R denote

the restore time. Let γ denote the expected speed up of an optimized chunk when

compared to the original chunk, i.e., γ = O/P . We want the execution time of Apollo

to be less than the execution time of the original serial code, i.e.:

TO/TA ≈ 1 (5.1)
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first profiles the code by employing instrumentation by sampling. Based on the profile,

Apollo computes the linear equations, regression equations and ranges suitable for

the modeling of each memory access and loop bound as explained in subsection 5.4,

which are then encoded into a relaxed polyhedral model. Once the dynamic polyhedral

model has been constructed, the polyhedral scheduler, Pluto, is invoked to produce an

optimizing parallelizing transformation. Based on the dynamic polyhedral model, a

safe point is computed by backing up the predicted memory write regions, and the

speculative chunk is launched. The speculative chunk is monitored constantly, in a

decentralized manner, to detect any potential dependence violation. If an unpredicted

memory access occurs inside a speculative chunk, live data backup is performed. If the

speculative chunk completes successfully, a cross thread verification, which validates the

program consistency across threads is launched. The probability of this verification to

fail is low, as the distributed verification, in most cases, detects any potential violation

much earlier. If the speculative execution succeeds, the speculative transformation is

re-applied for the next chunk and so on. On the other hand, if the speculation fails,

a rollback is performed and a chunk executing the original serial code is launched,

which is then followed again by an instrumentation phase if speculation has still been

evaluated as beneficial. The whole process is continued until the entire target loop nest

has been executed.

5.12 Related work

This section discusses existing work on handling non linear memory accesses using

speculative techniques and their comparison with Apollo.

Some previous work looks at handling while-loops in a limited setting. The work

from Martin Griebl et al. [78] proposes a method to handle while-loops using the

polyhedral model. However, the approach does not allow pointers or pointer based

accesses and requires all the accesses to be affine. It also requires a centralization

mechanism which needs synchronization in each and every iteration of the loop nest.
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The impact on performance is not studied. Our comparison with a centralized system

in Section 5.13 shows that our system performs better even with the added support

for non-affine accesses. Another work by Jean-Francois Collard [79] adds a very basic

speculative support to the latter, however, the work further restricts the scope to

programs with a single outermost while loop. The work requires huge amounts of

memory and all the latter restrictions apply. The work [81] follows a similar approach

to that of [79] but choses a conservative approach instead of speculation; no information

regarding the applicability or the performance impact is available.

In [80], Stefan J. Geuns et al. propose a framework to extract task based parallelism.

Polyhedral transformations cannot be applied using this approach and the system is

focused on a very specific application. The work tries to parallelize while loops by

extracting task based parallelization. Each task is represented by a node in the task

graph, and the shared variables form the edges. Special shared data structures are

created to share variables. The proposed approach requires the memory accesses to

follow a dynamic single assignment per section (In a code section, the memory writes

to a given location must be unique) which limits the scope of the work. Our system

is able to parallelize and apply advanced loop transformations, and we do not rely on

dynamic single assignment. Moreover, the shared data structures proposed in the work

has limited size, there by limiting parallelism, whereas we have no such restrictions.

PPCG [50] is a polyhedral compiler targeting statically analyzable code for GPU’s.

In PPCG dynamic controls statements are supported by subsuming the whole loop

which contains the non-affine control (break, continue, etc), to a single statement. This

clearly limits the optimization opportunities, for example, in this scheme, a while loop

or a for loop containing a dynamic control flow can never be parallelized. Moreover,

the memory accesses should still be affine.

In [82], Barthou et al. present a static analysis procedure to find approximate

solutions to dataflow problems involving unknowns such as the iteration count of a

while statement or non-affine array subscripts. Pointers and aliasing are not allowed
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in the handled programs. Moreover, since it is static, the approach is necessarily

conservative, while our runtime approach handles the actual memory references and

iteration counts, that yield obviously more accurate approximations.

In [83], Anand Venkat et al. propose a method to handle non-linear codes using the

polyhedral model. It only handles sparse matrix computations where the non-linear

memory accesses that are considered are exclusively read operations through indirec-

tions. It is based on an inspector-executor mechanism. During the inspector phase, it

collects all the non-linear memory reads and creates a mapping function which maps

the iteration space to the non-linear memory access addresses. The executor then uses

the inverse of the created function to re-map the addresses in the transformed space.

When compared to our approach, this approach has the following major limitations: (i)

The work only supports non-linear reads, whereas our work also supports writes which

are crucial regarding data dependences. (ii) The work relies on an inspector-executor

mechanism. Thus, as with any inspector-executor system, it can only handle codes

where the computation of the target memory addresses can be split from the accesses.

Many codes violate this assumption, especially when using pointers. (iii) It is the re-

sponsibility of the user to ensure that the non-linear reads are disjoint from the write

regions. Hence, no related dependence analysis is performed by the proposed system.

(iv) Since the inspector code is sequential, its associated overhead has to be amortized

over many calls to the target loop nest. In our proposal, each run of a target loop nest

is handled and optimized. Thus, when compared to our system, the proposed system

has less automation.

In comparison, Apollo: features a linear prediction model using interpolation and

regression; applies optimizing polyhedral transformation on-the-fly, aiming for auto-

matic data locality optimization and parallelization; and takes advantage of a hybrid

centralized/decentralized speculation verification system, which significantly reduces

the time overhead of data race detection. Another key aspect of the proposed system

is to handle pointers and non-affine accesses along with non-affine loop bounds.
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5.13 Results

The experiments were run on a platform embedding two AMD Opteron 6172 processors

of 12 cores each, at 2.1 Ghz, running Linux 3.11.0-17-generic x86_64. The reported

measurements were obtained by running each benchmark five times, and taking their

average. The speed-ups are reported against the best performing serial codes among

clang and gcc-compiled binaries with flag ‘-O3’.
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Figure 5.4: Speedup of non linear Apollo and the centralized system, using 24 threads.

The benchmarks were selected from various benchmark suites such as the SPARK00

benchmark suite [7], the Rodinia benchmark suite [11], Cbench [12] and the Perfect

benchmark suite [13]. They were selected based on their loop properties and memory

access patterns. It is worth noting that these benchmarks cannot be optimized by tools

like Pluto or the previous version of Apollo, due to the non-linearity of the memory

accesses and loop bounds. In addition to the above benchmarks, we included Filter*,

a real world image processing application which exhibits non-linear array references.

Every benchmark source code is written in C/C++.

To show the gains provided by Apollo compared to a standard TLS system with

centralized speculation verification, we created a modified version of our framework
*http://lodev.org/cgtutor/filtering.html
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to simulate such a centralized mechanism. In the centralized verification system, each

thread has to communicate with each other. Our modification only consists of a call

to a runtime function for each memory access that the loop attempts to perform, thus

simulating such a centralized invocation. Inside the centralized runtime verification

function, two values are added and the result is written to a memory location. No

other operation are performed. Note that these operations are the bare minimum for

a centralized system. Furthermore, in our centralized version, the outermost loop is

parallelized and no memory backup is performed. We would like to emphasize the fact

that in this version, since the runtime verification simply performs a write, not even

the overhead of dependence verification is present and the dependencies are always

assumed to be respected. Thus, all actions are chosen in favor of the centralized

mechanism (no backup, no dependence checking, no central checks). The addresses of

the write locations were carefully chosen such that they reside in different cache lines,

to avoid the penalty of cache coherence protocols. This measurement serves as a base

for comparing against centralized systems, since this modified version only performs a

minimum amount of operations per memory access.

A real centralized system would have to perform costlier operations and would rely

on a central algorithm. It should be emphasized that our system is based on a weakly

centralized model, having a very small centralized verification in addition to possible

live backups. However, the weakly centralized verification is not live and hence does

not cause bottlenecks. Also, as mentioned earlier, the chances for a rollback to occur

at this step is very low, thanks to our prediction model, non-linear analysis and eager

verification system.

In figure 5.4, we show the speedups of Apollo using the non-linear modeling and ver-

ification system that were presented. As mentioned before, we compare our framework

to the centralized verification system. For all the benchmarks, Apollo outperforms

the centralized version, while providing significant speed-ups against the original serial

codes.
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Listing 5.5: susan corner (cbench)
1 for ( i =5; i<y_size 5; i++)
2 for ( j =5; j<x_size 5; j++) {
3 n=100;
4 p=in + ( i 3)* x_s ize + j 1 ;
5 cp=bp + in [ i * x_s ize+j ] ;
6

7 n+=*(cp *p++);
8 n+=*(cp *p++);
9 n+=*(cp *p ) ;

10 . . .

Benchmark trmat contains non-linear loop bounds and non-linear memory accesses

(as explained in subsection 5.3) that are modeled using regression tubes. Listing 5.5

shows an extract of the susan corner detection kernel from the Cbench benchmark

suite. Lines 6, 7, 8 (and a long list of lines which are not shown here) access a memory

location whose address is the result of a pointer computation depending on ‘cp’, which is

updated in line 5. The computation of ‘cp’ only uses linear memory accesses. However,

its successive values are not linear. Since it is used for an address computation, the

resulting address is not linear. Range modeling was used for this code as the regression

coefficient was low. Benchmarks ispmatmat and ispmatvec are both modeled using

regression tubes. Benchmark pfa-interp1, shown in Listing 5.6 (only some parts are

shown), has non-linear conditionals, non-linear loops and non-linear memory accesses.

Line 5 assigns the result of a function to variable ‘nearest’, which is then used in the

if -condition in line number 7, which leads to a dynamic non-linear conditional. Lines

13, 15, 16 and 18 update variables rmin and rmax, which are then used as loop bounds

for the for-loop in line 19. Since these values are not linear, the loop bounds are also

not linear, and consequently, so are the memory accesses in lines 20, 24 and 25. This

benchmark is handled using the range based mechanism.

Figure 5.5 shows a classification regarding the time-overhead of the system. Only

the major overheads are considered. The instrumentation time, refers to the time taken
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Listing 5.6: pfa-interp1 (Perfect)
1 for (p = 0 ; p < N_PULSES; ++p){
2 . . .
3 for ( r = 0 ; r < PFA_NOUT_RANGE; ++r ){
4 . . .
5 int nea r e s t = f ind_nearest_range_coord ( output_coords [ r ] ,
6 input_start , input_spacing , input_spacing_inv ) ;
7 i f ( n e a r e s t < 0){
8 resampled [ p ] [ r ] . r e = 0 . 0 f ;
9 resampled [ p ] [ r ] . im = 0 . 0 f ;

10 continue ;
11 }
12 . . .
13 rmin = nea r e s t PFA_N_TSINC_POINTS_PER_SIDE;
14 i f ( rmin < 0)
15 rmin = 0 ;
16 rmax = nea r e s t + PFA_N_TSINC_POINTS_PER_SIDE;
17 i f ( rmax >= N_RANGE)
18 rmax = N_RANGE 1 ;
19 for ( k = rmin ; k <= rmax ; ++k ){
20 win_val = window [ window_offset + ( k rmin ) ] ;
21 s inc_arg = ( out_coord ( input_sta r t + k *
22 input_spac ing ) ) * input_spacing_inv ;
23 s inc_va l = s i n c ( s inc_arg ) ;
24 accum . re += s inc_va l * win_val * data [ p ] [ k ] . r e ;
25 accum . im += s inc_va l * win_val * data [ p ] [ k ] . im ;
26 }
27 . . .
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Figure 5.5: Overhead classification in percentage

for code profiling. It includes the time for running a small chunk, and the time to reg-

ister the memory accesses and loop bounds information to the runtime. The solving

access functions refers to the time spent on resolving the memory accesses and loop

bounds interpolating functions. It also includes the time for finding the regression func-

tions, the range functions, and the regression coefficients – which classifies the access as

affine, nearly-affine or non-affine –. The scheduling time refers to the time taken by the

scheduler, i.e., the time taken to instantiate the scheduler and the time taken by the

scheduler of Pluto to determine an optimal schedule. The FM time refers to the time

required for Fourier-Motzkin elimination. The Fourier-Motzkin elimination is used to

determine the loop bounds in the transformed iteration space. If the transformation

remains the same across contiguous chunks, the FM solver is only invoked once, but

the resulting functions are reused for each chunk. However, if the transformation is

changed, the FM solver is invoked again. Backup time refers to the time taken by

the backup system to calculate the memory area that needs to be backed up and the

time for actual backup. The backup consists of copying regions of (1) affine memory
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accesses –computed using affine functions– (2) nearly-affine accesses – computed us-

ing the tube formulation of regression functions, and (3) non-affine memory accesses

–predicted using range information –. The optimized skeleton refers to the time spent

on actual parallel execution, decentralized verification and live backup.

Table 5.2: Comparison on binary size

Benchmark Apollo (in KB) clang 3.4
(in KB)

gcc 4.8.2
(in KB)Binary size Runtime (shared lib)

trmat 140.7 566.7 23.6 28.1
mperm 153 566.7 27.8 28.1
ispmatmat 177.6 566.7 23.7 28.1
ispmatvec 140.7 566.7 23.7 23.9
b+tree 228.9 566.7 38.3 42.4
filter 200 566.7 13.2 9
srad 152.2 566.7 17.6 17.5
susan corner 342.6 566.7 43.2 43.2
susan edge 395.8 566.7 43.2 43.2
backprojection 145.5 566.7 18.2 18.4
pfa-interp1 160.8 566.7 18.1 18.6

Table 5.2 compares the binary size of each benchmark generated by Apollo, against

the sizes of the binaries generated by compilers gcc and clang. On average, the binary

size produced by Apollo is 6.7 times larger than the one of clang and 6.4 times larger

than the one of gcc. The increase in size of the binary is due to the presence of multiple

skeletons. Also, each skeleton in LLVM-IR is encoded inside the binary, which is later

compiled at runtime using the LLVM JIT compiler. The runtime is compiled as a

shared object (SO) file. Apollo also requires some standard LLVM libraries for the

JIT.

5.14 Summary

Until now, the applicability of the polyhedral model on codes with dynamically-polyhedral

or non-affine behavior was impossible due to unavailable crucial information during

static compilation. Though the version of Apollo presented in Chapter 4 was able to

optimize dynamically affine codes, it was still not able to handle non linear codes. This
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Chapter detailed the extensions to our Apollo framework, which enables it to handle

non linear codes. During instrumentation Apollo classifies each access as either affine,

nearly-affine or non-affine. The classification is based on the correlation factor of the

interpolated access function. The accesses which strictly follow the affine function are

classified as affine. The accesses where the correlation factor is greater than 0.9 are

classified as nearly-affine and the rest of the accesses, where the correlation factor is

less than 0.9 are classified as non-affine.

When constructing the speculative polyhedral model, the affine memory accesses

and scalar accesses are treated in a similar manner as explained in Chapter 4. For

the nearly-affine memory accesses, a regression tube is computed by adding a positive

offset and negative offset to the corresponding regression function. This regression

tube is then encoded to the dependence polyhedron using linear inequalities. The

non-linear memory accesses are ignored while computing the dependence polyhedron.

However, additional checks are done to ensure that these accesses do not violate any

dependence. A range information is computed for each non-linear memory access,

which later will be used by the backup module and the verification module. For the non-

linear scalars and nearly-linear scalars, additional dependence constraints are added to

the dependence polyhedron to ensure that the scalar variables are loaded accordingly.

For the nearly-linear loops, speculative bounding hyperplanes are constructed, such

that the region between the bounding planes can be optimized using the polyhedral

model. The rest of the iterations follow the original sequential iteration. A range

information is computed for the non-linear loops, which is then used as a substitute

for the bounding hyperplanes.

The backup module uses the affine functions, regression functions and the range

information to perform the backup. For affine write accesses, the backed-up region is

computed based on the corresponding affine function and the chunk bounds. For the

nearly affine write accesses, the backed-up region is computed based on the regression

tube and the chunk bounds. For non affine accesses, the backup is only performed
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if the range is less than three times the expected backup. The latter heuristic helps

Apollo to avoid backing up huge regions of memory which will be sparsely used by the

optimized chunk, thereby reducing memory overheads.

During the optimized execution, all the non predicted accesses are backed-up live

per thread in a de-centralized manner. Additional checks are also done to ensure

that these accesses do not violate any predicted access. If a violation occurs, the

rollback flag is set and the thread execution is squashed. At the end of the optimized

chunk execution, a centralized verification system checks for cross thread dependence

violations. Thanks to eager verification mechanisms employed in Apollo, the chance

of a dependence violation at this stage is very less. If the rollback flag is set, the

restore module revives the safe state of the system, and employs the original skeleton

to overcome the faulty region. This is then followed by the instrumentation skeleton,

and the whole cycle is continued. The speculative execution is then continued till the

outermost loop bound is reached, at which point, the runtime relinquishes the control

of the loop and transfers the control back to the program.

Using the non linear approach Apollo is able to extend the scope of codes which

can be handled using the polyhedral model. Thanks to the dynamic and speculative

approach, and by relaxing the required constraints, we show that the applicability of

the polyhedral model can be extended to codes with a dynamic behavior that do not

naturally fit the model. Thus, this work effectively increases the domain of codes that

can take advantage of complex optimizing transformations at runtime to include codes

which exhibit non-linear memory behaviors. As shown in the experiments, aggressive

speculative polyhedral transformations, including parallelization, along with our verifi-

cation system which handles most of the verification in a distributed manner, can yield

very interesting speed ups. Moreover, Apollo also highlights the fact that codes may

exhibit interesting optimization opportunities depending on the processed input. This

work opens to investigations related to new memory allocation and access strategies

that may be better adapted to code parallelization and optimization, either in software
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or hardware.

The next chapter concludes the manuscript and points to the possible future work

on the framework.
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There is no real ending. It’s just the place where

you stop the story.

Frank Herbert

I do the very best I know how - the very best I

can; and I mean to keep on doing so until the end.

Abraham Lincoln

Lessons gained, ideas secured, is mankind’s eter-

nal nourishment.

Asif 6
Conclusion

6.1 Contributions

The efficient utilization of multi core and many core architectures is still an open

problem. Parallelization and data locality are the key factors to be targeted for yielding

high performance. Parallelization allows one to explore the processing power of all the

cores within a single program. Data locality optimizations will help in better using

the memory hierarchy, which is critical for performance since the gap between the

processing power and the memory speed is growing at an exponential rate.

Automatic compiler can solve this problem efficiently. They can abstract the op-

timization task from the developer, allowing him/her to concentrate on the program

logic. The polyhedral model is a well known mathematical model to optimize loop

nests. However, current compilers are limited to apply it on statically analyzable

codes. Moreover, due the limitation imposed by the model – the strict adherence to

affine functions –, the application of this model is limited to a small set of compute
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intensive codes.

The main objective of this dissertation is to extend the applicability of the poly-

hedral model to a wider a class of codes. The ideas are implemented in an indige-

nous compiler framework called APOLLO (Automatic speculative POLyhedral Loop

Optimizer). Apollo combines the power of the polyhedral model and Thread Level

Speculation (TLS).

The basic version of Apollo extends the applicability of the polyhedral model to

dynamic codes. To our knowledge, Apollo is the first framework which is capable of

dynamically predicting a polyhedral optimization (backed by Pluto), based on the dy-

namic code characteristics. Apollo is able to target any kind of loop nest, possibly

imperfect, and can apply the polyhedral optimizations dynamically. In addition to

applying the polyhedral model dynamically, Apollo contains various mechanisms to

reduce the runtime overheads. Partial instrumentation allows Apollo to reduce the

instrumentation overhead. By using Pluto as a dynamic scheduler, Apollo is able

to predict an optimizing transformation purely based on the runtime behavior of the

program. The backup mechanism is fine tuned to reduce the memory consumption

when the memory accesses are sparse. The de-centralized verification promotes code

scaling in addition to reducing the verification overhead. A Just-In-Time (JIT) com-

piler further optimizes the code, by extracting the invariants representing the code

transformation and linear functions.

The non linear version of Apollo adapts the polyhedral model to handle non lin-

ear codes. To our knowledge, this is the first framework which uses the polyhedral

model on non-trivial codes with generic non affine memory accesses and loop bounds.

Handling non linear entities allows Apollo to optimize function calls, possibly recur-

sive occurring inside the target loop nest. The framework is capable of detecting and

classifying non linear memory accesses and loop bounds by instrumenting the code.

The instrumentation information, including the non linear entities, are encoded in the

polyhedral model with the help of regression. Additional runtime checks are used to
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validate the model in addition to the verification of linear functions. A smart backup

system is able to speculatively approximate the write regions of a given chunk, even

before the chunk execution begins. Based on the estimation, the backup is performed

before the chunk is launched. For the non predicted accesses, the backup is performed

individually at runtime. Live backups are much more expressive than backups before

launching the chunk. The ability of the system to approximately predict the write re-

gions beforehand, helps Apollo to avoid huge runtime overheads. A novel two pronged

verification system employs both eager and lazy verification methodologies in the form

of a de-centralized and centralized verification system. The de-centralized system is

used to verify the predicted accesses when the target code is running and does not in-

duce the overhead of thread synchronizations. Inter thread dependencies are resolved

using the centralized verification system, which is executed after the speculative chunk

finishes its execution. It is worth nothing that only accesses which cannot be verified

by the de-centralized system are subjected to central verification. Thanks to the pre-

chunk execution verifications and eager verifications, the chance of a rollback being

triggered in the lazy verification system is very small.

6.2 Future work

One promising future direction of Apollo is to extend it to multiple platforms. Cur-

rently the framework is only evaluated on X86_64 platforms. ARM based processors

are interesting targets due to their wide use. The challenges in this direction involves

not only improving the performance but also respecting the power constraints. A mech-

anism estimating the amount of available parallel work can be employed to determine

the number of threads to be used and to decide whether to power up a dormant core.

The speculative performance gain prediction mechanism described in Chapter 5 can

be fine tuned to control the amount of speculation itself.

Many-core architecture is another interesting target for Apollo. If there is not

enough work to occupy all the computing cores, Apollo could utilize these cores for
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running code versions where the scalar values are also predicted. In the current ver-

sion of Apollo, if the scalar value cannot be predicted, it is marked as a dependence.

However, if it fits a nearly affine model, each version corresponding to one scalar value

along the direction of the regression tube can be launched. When the correct scalar

value is determined, the modifications of the corresponding thread can be committed

to the global state. In order avoid thread explosion and memory explosion, this strat-

egy should only be applied if the regression co-efficient is very high. Another possible

improvement targeting many-core architectures is to explore the transformation space

in Apollo. Automated schedulers typically use heuristics to determine the optimal

transformation, but the resulting transformation may not be the best for a given ar-

chitecture and environment. Instead of selecting one possible transformation, Apollo

could select multiple transformations and then apply each such transformation, possi-

bly on different chunks. Then, based on the chunk execution time, Apollo can be used

to determine the best version, and use it for the rest of the chunks. The architecture of

Apollo can be extended easily to support execution of multiple chunk simultaneously.

The selected transformation can be dumped to a persistent transformation cache for

reuse across different program executions. Instead of using heavy techniques like ma-

chine learning to match the program to the transformation cache, one could simply

walk this transformation cache and find a match based on a dependence encoding

which is independent of the transient program characteristics such as base address of

arrays.

Apollo can be extended to support data re-mapping for non-linear codes. This can

be done either virtually or by physical remapping. Remapping memory may require one

to observe the code regions outside the target loop nest to determine the remapping

order. This technique is useful when the mapping is reused. Data locality can be

improved on non linear codes with this approach, as the data is remapped in the order

of computations. However, one should take into consideration the cost of mapping,

copying in and copying out data.
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Although current Apollo can handle codes with recursion, the recursive functions

are treated as a single block of statement. However, recursive patterns such as tail

recursion can be converted to a while loop. Apollo can then handle this code, even if

the loop bounds are non linear.

GP-GPUs is a challenging target for any speculative system. Typically, the con-

ditionals inside the code kernels should be less for these systems to obtain optimal

performance. The major challenge of Apollo here is to redesign the verification system,

which induces a lot of conditionals into the code kernels. One possibility is to handle

codes where the verification can be split from the computation. The host device can

perform verifications in this case, and only the verified computations are performed in

GPU’s. Remapping is also interesting for GP-GPUs as the system inherently requires

to copy in and copy out data.

Heterogeneous computing can be facilitated by allocating threads to different work

units based on their processing power. The processing power can be estimated empir-

ically either statically or dynamically. The dispatcher manager of Apollo can be used

to map the threads to processors and to control the amount of work. This can also be

used to share work between CPU’s and GP-GPU’s or integrated GPU’s. Distributed

computing is another interesting target for Apollo. The dispatcher manager could

assign the big slices (typically the outermost loop slices) to distributed nodes, while

still parallelizing the slices inside each distributed node. Thanks to the de-centralized

verification, the affine accesses do not require any communication. For the non-affine

accesses, the multi staged verification should be extended by adding a layer which would

act as central verification system per distributed node. Once each node is verified, the

verification status, along with the summarized information of the accesses should be

sent to the master node, which would then perform the final global verification.

The code generation part of Apollo can be improved to provide support to a wider

class of transformations. For example, as of now, Apollo is not able to perform tiling.

Even though this can be done by adding support to the skeletons, a generic alternative
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approach can be employed. One such possibility is to generate a set of code snippets

representing each statement and loops, and then re-arranging and merging them at

runtime based on the transformation. An alternative approach would be to entirely

use dynamic code generation and to optimize it using JIT.

The architecture of Apollo is highly modular, which enables reusing different mod-

ules of Apollo elsewhere. The instrumentation module for example, could be used to

study the characteristics of any code. Apollo can dump the instrumentation data to

disk (using a library DLOG [84]), and thus can even be used for off-line analysis.

The regression model used in this work can be used in other fields. One such

possible field is value prediction. The value prediction can be used at a very low

level to predict the value of a load instruction before it is completed, or at a high

level to speculatively execute a function by predicting its input values. It can also be

used for branch prediction. Speculatively executing a function by offloading it to a

thread is particularly interesting for the regression tubes. If the function has enough

computations and is safe, then the tube based approach can almost entirely hide the

cost of the function call, subjected to the condition that there are enough available

cores.

The non-linear multi staged backup system can be applied to other TLS systems.

Typical TLS systems perform live backup, resulting in multiple copies of the same

location. The other option is to backup with central communication. The former

requires much more memory and the latter requires inter thread synchronizations.

Both of these are performance penalizing. Using the multi staged backup can reduce

both the memory requirement and the synchronization requirement.
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